
TE
AM
FL
Y

Team-Fly®

Wiley Publishing, Inc.

Mastering AspectJ
Aspect-Oriented

Programming in Java

Joseph D. Gradecki
Nicholas Lesiecki

Wiley Publishing, Inc.

Mastering AspectJ
Aspect-Oriented

Programming in Java

Joseph D. Gradecki
Nicholas Lesiecki

Publisher: Robert Ipsen Copyeditors: Elizabeth Welch and Tiffany Taylor
Editor: Robert M. Elliott Proofreader: Linda Seifert
Managing Editor: Vincent Kunkemueller Compositor: Gina Rexrode
Book Producer: Ryan Publishing Group, Inc.

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances
where Wiley Publishing, Inc., is aware of a claim, the product names appear in initial capital or ALL CAPITAL

LETTERS. Readers, however, should contact the appropriate companies for more complete information regarding
trademarks and registration.

This book is printed on acid-free paper. ∞

Copyright © 2003 by Wiley Publishing, Inc. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the Publisher for
permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the
contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particu-
lar purpose. No warranty may be created or extended by sales representatives or written sales materials. The
advice and strategies contained herein may not be suitable for your situation. You should consult with a profes-
sional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo and related trade dress are trademarks or registered trademarks
of Wiley Publishing, Inc., in the United States and other countries, and may not be used without written permis-
sion. All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Library of Congress Cataloging-in-Publication Data:

Gradecki, Joe, 1967-
Mastering Aspectj : aspect-oriented programming in Java / Joseph Gradecki, Nicholas

Lesiecki.
p. cm.

ISBN 0-471-43104-4 (PAPER/WEBSITE : alk. paper)
1. Object-oriented programming (Computer science) I. Lesiecki, Nicholas. II. Title.
QA76.64 .G715 2003
005.1’17—dc21

2002153175
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

Acknowledgments xi

About the Authors xiii

Introduction xv

Part I Aspect-Oriented Programming Primer

Chapter 1 Introduction to AOP 1
Where OOP Has Brought Us 1

What OOADP Did for Computer Science 2
How AOP Solves OOP Problems 9

What Is AOP? 9
Development Process with AOP 10

What’s Next 12

Chapter 2 Implementing AOP 13
AOP Language Anatomy 14

AOP Language Specification 14
AOP Language Implementation 16

AspectJ 19
Example Aspect 19

What’s Next 20

Part II Introduction to AspectJ

Chapter 3 Obtaining and Installing AspectJ 21
Requirements for AspectJ 21
Downloading AspectJ 21
Installing AspectJ 23

Setting PATH 25
Setting CLASSPATH 28

Testing the Installation 28
What’s Next 30

Chapter 4 Implementing AspectJ 31
Our First AspectJ Program 32

Writing the Component First 32
Aspect Code 33
Identifying the Join Point 34
Determining the Pointcut 34
Giving Advice 35
Adding an Aspect 36
Compiling and Executing the Example 36

Adding a New Concern 37

iii

C O N T E N TS

The Method for Returning Text 37
Logging Return Methods 38
A New Primary Concern 41

Exposing Context 43
Inter-type Declarations 44

Adding Class Code 45
Aspect Granularity 47
AspectJ Compiler Functionality 48

Specifying Source Directories 48
Weaving with JARs 49
Specifying Output to a JAR 50
Creating and Using Aspect Libraries 51
Impeding Weaving 51
Using Incremental Compiling 51

What’s Next 52

Chapter 5 AspectJ Join Points 53
The Dynamic Join Point Model 53
AspectJ Join Points 58
Join Point Signatures 60
Patterns 61

Type Name Patterns 62
Subtype Patterns 65
The Throws Pattern 65
Type Patterns 66

Reflection 66
thisJoinPoint Methods 67
thisJoinPointStaticPart Methods 70

Example Join Points 70
Method Call Reception and Execution 70
Constructor Call Reception/Execution and Object Initialization 74
Field Get/Set 75
Exception Handler Execution 77
Class Initialization 77

What’s Next 78

Chapter 6 AspectJ Pointcuts 79
Introducing Our Three Classes 79
Building Pointcuts 83

The Structure of a Pointcut 83
Using Designators 84

A Designator Quick Reference 85
Using Logical Operators to Create Designator Combinations 86

Combining Pointcuts 86
Method-Related Pointcuts 87
The Exception-Handling Designator 92
Field-Related Designators 94

C o n t e n t siv

State-Based Designators 96
Control Flow-Based Designators 109
Class-Initialization Designators 118
Program Text-Based Designators 119
Dynamic Property-Based Designators 122
adviceexecution 123
preinitialization 124
Dealing with Interfaces 124
Anonymous Pointcuts 125
Using Aspects in Classes 126
Creating Factory Objects 126
Catching Java Library Calls 128
Access to Final Attributes 130
Patterns with Exceptions 130

What’s Next 130

Chapter 7 Advice 131
How to Define Advice 132

Adding Information to System.out.println() 132
The advice 133
Formal Definition 136

Issues Common to All Types of Advice 137
Passing Context to Advice 137
Advice and Exceptions 145

Types of Advice: An Overview 146
Before Advice 147

Uses 148
After Advice 154

After (Unqualified) 154
After Throwing 157
After Returning 162

Around Advice 165
Replacing getProperty() Calls 166
Proceed() 169

Advice Precedence 179
Why Does Precedence Matter? 180
Determining Precedence 180
Runtime Execution 182
Pseudo Precedence 184

What’s Next 185

Chapter 8 Inter-type Declarations 187
Simple Examples of Inter-type Declarations 188

Adding a Method to a Class 188
Introduction and Advice 196

Inter-type Members: The Mechanics 199
Types of Inter-type Members 200

Contents v

C o n t e n t svi

Targets of Inter-type Declarations 202
Access Control 203
Conflicts Between Members 205

Declare Parents 208
Adding a Simple Interface 208
Declare Parents: The Mechanics 209

Interfaces with Concrete Members 212
Refactoring the Persistence Solution 212
Interfaces with Concrete Members: The Mechanics 215
Possibilities of Interfaces with Concrete Members 220

Declaring Precedence 226
An Example of Precedence 227
Declare Precedence: The Mechanics 227
Circularity 230
Effects of Precedence 231

Other Static Crosscutting 231
Statically Determinable Pointcuts 231
Custom Compilation Messages 232
Softening Exceptions 235

What’s Next 240

Chapter 9 Aspects 241
Aspect Structure 241

Writing Aspects 242
Aspect Extensions 245

Building Abstract Aspects 246
Inheriting from Classes and Interfaces 251

Aspect Instantiation and Associations 252
Singleton Aspects 253
Per-Object Aspects 253
Per-Control-Flow Aspects 256

Aspect Domination and Precedence 257
Accessing Aspect Objects 258
Aspect Privilege 259
What’s Next 261

Part III Using AspectJ

Chapter 10 Development Uses of AspectJ 263
Adopting AspectJ 263

Why Adopt AspectJ? 264
How to Put AspectJ into the Process 265
Previous Development Work 266
Backing It Out 266

Development Uses 266
Tracing 266
Condition Checks 268

Production Aspects 269
Loggings and Timings 269
Authorization 271

What’s Next 273

Chapter 11 Using AspectJ Tools 275
AspectJ Compiler Options 275

Filenames 276
The Structure Browser for Aspects 277
Using AspectJ IDE Extensions 281

JBuilder 281
Forte and NetBeans 288
Emacs 290
Eclipse 293

Ant 302
Debugging with AspectJ 303

An ajdb Command-line Tutorial 304
An ajdb GUI Tutorial 307

Using ajdoc 309
An ajdoc Example 310

What’s Next 311

Chapter 12 Error Handling and Common Problems 313
Compilation Errors 313

Wrong Compiler 313
Unable to Find Aspectjtools.jar 314
Out of Memory Error 315
Wrong JSDK 315
No Java Compiler 316

Extended Runtime Error Handling 317
Stack Overflow 317
Join Point Not Matching 317

Exception Throwing and Catching 322
Using TraceJoinPoints.java 323
Differentiating Between Call and Execution Designators 329

Using this() and target() 329
Effects of within/withincode 330

What’s Next 330

Chapter 13 Aspect-Oriented Examples: Patterns and Reuse 331
Reusable Persistence 332

The PersistenceProtocol Aspect 333
Applying PersistenceProtocol with Subaspects 335

Method Caching 341
Caching XML Representations 342

Design Patterns as Aspects 348
Adding Invalidation to the Aspect’s API 348

Contents vii

The Observer Pattern 349
Reusing Observer in AspectJ 350

Aspect-Oriented Design 360
What’s Next 361

Chapter 14 Using AspectJ in the Real World 363
Adding Features 364

Initial Application 364
Features to Be Added 364
Current Design 365
How Much Legacy to Consider 366
Writing Aspects and Primary Code 367
Testing 374
Documentation 374
Conclusion 377

Refactoring Web Spider 377
Logging 378
Timings 393
Checkpointing 395

What’s Next 397

Part IV Appendixes

Appendix A AspectJ API 399
Interface Hierarchy 399
Class Hierarchy 399
AspectJ API Descriptions 400

Interface: JoinPoint 400
Interface: JoinPoint.StaticPart 403
Interface: Signature 404
Interface: CatchClauseSignature 406
Interface: MemberSignature 406
Interface: CodeSignature 407
Interface: AdviceSignature 407
Interface: ConstructorSignature 408
Interface: InitializerSignature 408
Interface: MethodSignature 408
Interface: FieldSignature 409
Interface: SourceLocation 409
Class: SoftException 411
Class: NoAspectBoundException 411

Appendix B Useful Web Sites 413
Overview Sites 413
People 413
Tutorial in Nature 414
Papers 415

C o n t e n t sviii

TE
AM
FL
Y

Team-Fly®

Other Paradigms 416
Software Development and Systems 416
Events 416
Universities 417

Appendix C Other AOP Language Bindings 419
AspectR 419

Description 419
Requirements 420
Example Code 420

AspectS 420
Description 420
Requirements 421

Apostle 421
Description 421
Requirements 421

AspectC 421
Description 421
Requirements 421
Example Code 422

AspectC++ 422
Description 422
Requirements 422
Example Code 423

Pythius 423
Description 423
Requirements 424
Example Code 424

Index 425

Contents ix

xixi

Dedication

This book is dedicated to Christ, my wife, and our sons.
—Joseph D. Gradecki

For S.H.
—Nicholas Lesiecki

Acknowledgments

I’d like to thank Tim Ryan, Tiffany Taylor, Liz Welch, Nick Lesiecki, and the
many reviewers who spent considerable time looking over the manuscript.

—Joseph D. Gradecki

First, I’d like to thank my wife Suzanne, who put up with not having a husband
for months while I wrote this book. A sentence in the front of a technical man-
ual will hardly make up for your good-natured sacrifice. Second, I’d like to
thank our reviewers: Arno Schmidmeier and Andrew Barton. These dedicated
souls put up with a hectic schedule and gave us invaluable advice and technical
feedback on the manuscript. The book improved greatly as a result of your
input. (Any errors remain our responsibility.) Third, I’d like to thank the
AspectJ team (past and present) for delivering this book’s raison d’être and for
patiently answering my questions (and taking my suggestions!). In particular, I
thank Jim Hugunin, Erik Hilsdale, Ron Bodkin, Gregor Kiczales, and especially
Wes Isberg for their help and support. On a related note, thank you to Jan Han-
nemann and Vincent Massol whose contributions to the AspectJ community I
drew on while writing my material. Finally, thank you to my cat, Juno, for sit-
ting on my lap while I wrote.

To the Amherst College English Department: this is craft.

—Nicholas Lesiecki

A C K N O W L E D G M E N TS

xiii

C O N T E N TS

Joseph D. Gradecki is a software engineer at Comprehensive Software Solu-
tions, where he works on their SABIL product, a enterprise-level securities
processing system. He has built numerous dynamic, enterprise applications
using Java, AspectJ, servlets, JSPs, Resin, MySQL, BroadVision, XML, and
more. He is the author of Mastering JXTA and the coauthor of MySQL and

Java Developer’s Guide (with Mark Matthews and Jim Cole). Mr. Gradecki
holds Bachelor’s and Master’s degrees in Computer Science and is currently
pursuing a Ph.D. in Computer Science.

Nicholas Lesiecki enjoys coding “in the zone”—the zone where code flows
through your hands like water, your team shares a mind, and the results satisfy
you and the client. The desire to achieve this zone has driven him to embrace
techniques such as Extreme Programming and tools such as AspectJ. He is the
best-selling coauthor of Java Tools for Extreme Programming (with Rick
Hightower). He also contributed to the Cactus unit-testing framework. Most
recently, he authored articles about AspectJ and testing for IBM’s developer-
Works. Mr. Lesiecki serves eBlox, Inc. as principle software engineer in Tucson,
Arizona.

xiii

A B O U T T H E A U T H O R S

Most applications, particularly enterprise-level applications, are not one
module of code that exists in a single file. Applications are collections
of modules that work together to provide some desired functionality

defined by a set of requirements. Theoretically, developers can create modules
that contain discrete functions; so a security module and a login module might
be combined with an HTTP module to create a Web server application.

Due to the nature of object-oriented tools and languages, however, this ideal of
modular programming is seldom realized. Instead, developers are often forced
to create modules that have mixed goals; a single function such as logging in a
user might actually be distributed among several modules in an application.
This is the case with the Apache Web server, for example; 37 of its 43 modules
contain code that handles user login. This practice leads to tangled code that is
more prone to errors and is difficult to debug, refactor, document, and support.

The goal of aspect-oriented programming (AOP) is to solve these types of
development problems. AOP emphasizes the creation of aspects, which are
modules that centralize distributed functionality. To put AOP theory into prac-
tice, the Palo Alto Research Center (PARC) created AspectJ. AspectJ is an
open-source language that functions as an extension to Java. AspectJ is 100-
percent compatible with Java: AspectJ’s aspects work side by side with Java
classes to deliver a comprehensive application. Benefits of using AspectJ with
Java include:

■■ Less tangled code

■■ Shorter code

■■ Easier application maintenance and evolution

Introduction

■■ Applications that are easier to debug, refactor, and modify

■■ Code that is more reusable—developers can create libraries of aspects in
much the same way they already create libraries of objects in OOP

What’s in This Book

This book is designed to be a comprehensive introduction to the AOP para-
digm, a complete handbook to the AspectJ language, and a guide for using both
AOP and AspectJ in your next or current project. Some of the concepts you will
read about are:

■■ Join point—A predictable point in the execution of an application

■■ Pointcut—A structure designed to identify and select join points within an
AspectJ program

■■ Advice—Code to be executed when a join point is reached in the
application code

■■ Inter-type declarations—A powerful mechanism to add attributes and
methods to previously established classes

■■ Aspect—A structure analogous to a Java class that encapsulates join
points, pointcuts, advice, and inter-type declarations

All the aspect concepts are discussed with code snippets and full explanations.
With the AspectJ concepts in hand, we present a large number of examples that
show how you can use AOP to solve real problems.

All the code in this book can be found on the book’s Web site: www.wiley.
com/compbooks/gradecki. The site contains a compressed file with code for
each of the book’s chapters. The examples in the book were built using version
1.4 of the Java SDK (you must have the Java SDK installed). In addition to Java,
you need the AspectJ compiler and runtime components; these can be found at
www.eclipse.org/aspectj.

Who Should Read This Book

You should read this book if you currently design and develop software appli-
cations. All software contains requirements that crosscut the primary focus of
the application and complicate its design and coding. Because AspectJ is built
on top of Java, we assume you have a good understanding of that language.

I n t r o d u c t i o nxvi

Book Organization

The book is organized in three parts. Part I is a comprehensive overview of AOP
and the development of a language to support AOP. Part II discusses the pri-
mary concepts of AspectJ. These concepts are explained using short code sam-
ples. Part III takes the concepts from Parts I and II and applies them in practical
ways to the development of software projects. The chapters are described next.

PART I: Aspect-Oriented Programming Primer

Chapter 1: Introduction to AOP

This chapter provides a comprehensive overview of what AOP is, where it came
from, and how it’s been used. The chapter begins with a complete discussion of
object-oriented programming and some of the problems it cannot currently
solve during software development. The discussion continues with a look at
AOP and how it can be applied to the problem of separation of concerns.

Chapter 2: Implementing AOP

Chapter 2 demonstrates how to translate AOP concepts from theory into con-
crete compiler support. The primary focus is on code weaving, which involves
adding aspect code to join points at compilation time.

Part II: Introduction to AspectJ

Chapter 3: Obtaining and Installing AspectJ

Chapter 3 begins looking at the practical side of AOP by discussing how to
obtain AspectJ and install it on your system. A simple example is presented,
which will help you determine whether the system is installed correctly.
Because AspectJ is built on and works in conjunction with Java, both Windows
and Linux installations are covered.

Chapter 4: Implementing AspectJ

Learning any new language or paradigm is much easier with an example. The
Hello World application is discussed in this chapter. It covers most major con-
cepts and compiling mechanisms and provides you with a view of what’s ahead
in the rest of the book.

Book Organization xvii

Chapter 5: Join Points

The most important concept in AspectJ is the join point. A join point is a well-
defined point within an application that can be used as a trigger with AspectJ
code. This chapter begins with a look at the Dynamic Join Point model used
within AspectJ. AspectJ provides a variety of different types of join points for
handling such constructs as methods, constructors, and the setting/getting of
attributes. The signature is the defining part of a join point; it can be specified
with text or using patterns and wildcards. The chapter uses a number of code
snippets to illustrate a wide variety of join points.

Chapter 6: Pointcuts

The pointcut is a language construct that selects a set of join points. Chapter 6
uses the knowledge you gained from writing a join point to demonstrate how to
form pointcuts that implement requirements that crosscut the primary applica-
tion. Within each user-defined pointcut are a number of different designators
specifying when a join point should be matched. The chapter also discusses the
use of reflection, which allows AspectJ code to see into the context of a join
point.

Chapter 7: Advice

Once you have picked out interesting points in your program with a pointcut
(say, all calls to methods whose names begin with set), AspectJ allows you to
define advice—code that runs after, before, or instead of that join point. For
instance, you could log the executions of all set methods or inspect their para-
meters for legality. This chapter demonstrates how to define advice and covers
the different types and uses of advice.

Chapter 8: Inter-type Declarations

In addition to providing join points and advice, AspectJ also expands Java’s
type system by allowing inter-type declarations. Inter-type declarations let you
add methods or attributes to a class (or even an interface) from outside that
type. The ability to add concrete implementations onto interfaces allows for a
type of multiple inheritance. Inter-type declarations also allow aspects to alter
inheritance hierarchies—adding new interfaces or supertypes to any type in the
system. This chapter covers the mechanics and uses of AspectJ’s inter-type dec-
larations and shows how they dramatically broaden the power of the previously
presented constructs. The chapter also covers two less dramatic (but still
important) capabilities: exception softening and custom compilation errors.

Introductionxviii

TE
AM
FL
Y

Team-Fly®

Chapter 9: Aspects

AspectJ code is a combination of join points, pointcuts, advice, and inter-type
declarations. It would be counter-productive to throw this new code into the
same application you are trying to save from the mess of code tangling. An
aspect is language construct provided by the AspectJ language for encapsulat-
ing the combination of constructs needed for AOP. This chapter provides a
comprehensive view of aspects and how to build them in a number of different
examples and situations.

Part III: Using AspectJ

Chapter 10: Development Uses of AspectJ

This chapter begins by showing some uses for AspectJ. The chapter covers top-
ics including adopting AspectJ, testing uses, common concerns, production
aspects, and performance tuning.

Chapter 11: Using Aspect J Tools

Part of the overall power of AspectJ is its ancillary extensions to common Inte-
grated Development Environments (IDEs). The current system includes exten-
sions for JBuilder, Forte, Eclipse, and Emacs, and this chapter details the use of
these extensions. AspectJ also provides a structure browser that gives a com-
prehensive view of the application and aspect code. This chapter also discusses
debugging AspectJ code and use of Ant for building and compiling applications.

Chapter 12: Error Handling and Common Problems

This chapter examines common compilation and runtime errors that occur
when using AspectJ. It details both the origins of the errors and also suggest
solutions.

Chapter 13: Aspect-Oriented Examples: Patterns and Reuse

This chapter uses two medium sized examples to demonstrate how aspects can
add a coherent layer of functionality to an application. Combining pointcuts,
advice, and inter-type declarations, the examples show how you can add per-
sistence and automatic cache invalidation to domain objects without modifying
them. The second example leverages a reusable aspect version of the Observer
pattern. The chapter concludes by considering implications of the examples for
component reuse.

Book Organization xix

Chapter 14: Using AspectJ in the Real World

This chapter brings together all the concepts learned throughout the book and
applies them to two real-world scenarios. The first scenario involves using
AspectJ and AOP in the addition of a new application feature. Topics covered
include designing with aspects in mind, handling documentation, and coding
the aspects. The second scenario involves refactoring an open-source project
to use aspects for both timing and logging functionality.

Appendix A: AspectJ API

This appendix provides a complete Application Programming Interface (API)
for the AspectJ language. The API covers AspectJ 1.1.

Appendix B: Useful Sites

This appendix provides a list of important Web sites covering AOP and AspectJ.

Appendix C: Other AOP Language Bindings

Java isn’t the only language to benefit from the use of AOP concepts. A large
number of projects in the open-source community provide AOP support for C,
C++, Ruby, and other languages. This appendix provides summaries of the
additional language projects and where you can find more information.

I n t r o d u c t i o nxx

Software development has come a long way since the days of toggle
switches. Once the usefulness of software development was realized, its
advancement became tied to finding techniques to more efficiently model

real-world problems. Years ago, the common methodology for solving a prob-
lem was to break it into smaller and smaller modules of functionality, which in
turn consisted of a dozen or more lines of code. This methodology worked, but
it suffered from a system state being controlled through a large number of
global variables that could be modified by any line of code in the application.
The advent of object-oriented methodologies pulled the state of the system into
individual objects, where it could be made private and controlled through
access methods and logic.

This leads to the current situation: Developers are still having difficulty fully
expressing a problem into a completely modular and encapsulated model.
Although breaking a problem into objects makes sense, some pieces of func-
tionality must be made available across objects. Aspect-oriented programming
(AOP) is one of the most promising solutions to the problem of creating clean,
well-encapsulated objects without extraneous functionality. In this chapter, we
will explore what object-oriented programming (OOP) did right for computer
science, problems that arise from objects, and how AOP can fill in the blanks.

Where OOP Has Brought Us

Object-oriented analysis, design, and programming (OOADP) is no longer the
new kid on the block; it has been proven successful in both small and large

Introduction to AOP

C H A P T E R 1

1

projects. As a technology, it has gone through its childhood and is moving into
a mature adult stage. Research by educational establishments as well as audits
by companies have shown that using OOP instead of functional-decomposition
techniques has dramatically enhanced the state of software. The benefits of
using object-oriented technologies in all phases of the software development
process are varied:

■■ Reusability of components

■■ Modularity

■■ Less complex implementation

■■ Reduced cost of maintenance

Each of these benefits (and others you can think of) will have varied impor-
tance to developers. One of them, modularity, is a universal advancement over
structured programming that leads to cleaner and better understood software.

What OOADP Did for Computer
Science

The object-oriented methodology—including analysis, design, and program-
ming—brought to computer science the ability to model or design software
more along the lines of how you envision a system in the real-world. The
primary tool used for this modeling is the object. An object is a representation
of some primary component of the problem domain. The object has attributes
representing the state of the object and behaviors that act on the object to
change its state. For example, if you were tasked with designing a system
to handle selling DVD products, an OO design might include objects like a
product, a DVD, and a Boxset, as well as many others.

The objects must be filled out with attributes and behaviors specific to their
roles. A product might have a context defined as follows:

■■ Attributes

• Price

• Title

• Suppliers

■■ Behaviors

• Assign price

• Assign title

• Get suppliers

Introduction to AOP2

Of course, a production system would include many more attributes and behav-
iors, but those added to the product object here will suit our purpose. In defin-
ing the product, we create or acknowledge a relationship between the product
and a supplier object. After further decomposition of the problem, DVD objects
are created as well as Boxset objects, as shown in Figure 1.1.

Where OOP Has Brought Us 3

Product Suppliers

DVD

2..*

1+

0..*

Boxset

Figure 1.1 Example class model.

One of the goals in object design is encapsulating all the data and methods nec-
essary for manipulating that data fully within the object. There shouldn’t be any
outside functions that can directly change the product object, nor should the
product object make changes to any other object. Instead, a supplier object
might send a message to a product object asking it to change its state by adding
the supplier object to a list of suppliers in the product object. When a message
is sent from one object to another, the receiving object is fully in control of its
state. All the attributes of the object are encapsulated in a single entity, which
can only be changed through an exposed interface. The exposed interface con-
sists of the methods of the object having a public access type. The object could
have internal private methods, but those methods aren’t exposed to other
objects. The encapsulation of the object is achieved by exposing an interface to
other objects in the system. The interface defines the methods that can be used
to change the object’s state. The functionality behind the exposed interface is
kept private.

Designing an object-oriented system in this manner aids in the functioning of
the system, debugging if problems arise, and the extension of the system. All
the objects in the system know their roles and perform them without worrying
about malicious changes being made to their state. From a simplistic view, the
system is just a group of objects that execute and send messages to each other,
requesting information and changes in the other objects.

As the state of object-oriented technology has evolved, the vocabulary has, as
well. As you know, an object is an instantiation of a class. The class is an
abstract data-type used to model the objects in a system. A class is built based
on a requirement extracted through an analysis phase (assuming there is an
analysis phase). The class might be built on the fly during coding of a solution,
with the requirement written in the comments of the class. These requirements
and classes can be linked by a concern.

A concern is some functionality or requirement necessary in a system, which
has been implemented in a code structure. This definition allows a concern to
not be limited to object-oriented systems—a structured system can also have
concerns. In a typical system, a large number of concerns need to be addressed
in order for the system to accomplish its goals. A system designer is faced with
building a system that uses the concerns but doesn’t violate the rules of the
methodologies being used. When all the concerns have been implemented with
system code as well as related functional tests, the system is complete.

Problems Resulting from OOP

If you read books and articles about object orientation, they commonly say that
OOP allows for the encapsulation of data and methods specific to the goal of a
specific object. In other words, an object should be a self-contained unit with
no understanding of its environment, and its environment should be aware of
nothing about the object other than what the object reveals. A class is the
cookie cutter for objects in a system, and it implements a concern for the sys-
tem. The goal of the class is to fully encapsulate the code needed for the con-
cern. Unfortunately, this isn’t always possible. Consider the following two
concerns:

Concern 1: The system shall keep a price relating to the wholesale value of
all products.

Concern 2: Any changes to the price shall be recorded for historical
purposes.

The first concern dictates that all products in the system must have a wholesale
price. In the object-oriented world, a Product class can be created as an
abstract class to handle common functionality of all products in the system:

public abstract class Product {

private real price;

Product() {

price = 0.0;

}

public void putPrice(real p) {

price = p;

Introduction to AOP4

}

public int getPrice() {

return price;

}

}

The Product class as defined here satisfies the requirement in concern 1. The
principles of OO have been maintained, because the class encapsulates the
code necessary to keep track of the price of a product. The same functionality
could easily be created in a structured environment using a global array.

Now let’s consider concern 2, which requires that all operations involved in
changing the price be logged. In itself, this concern does not conflict with the
first concern and is easy to implement. The following class defines a logging
mechanism:

public class Logger {

private OutputStream ostream;

Logger() {

//open log file

}

void writeLog(String value) {

//write value to log file

}

}

A logger object is instantiated from the Logger class by the application’s con-
structor or other initialization function, or individual logger objects are created
within those objects needing to log information. Again, the fundamental object-
oriented concepts remain in the Logger class.

To use the logger, you add the writeLog() method to code where the product
price might be changed. Because you only have one other class, Product, its
methods should be considered for logging inclusion. As a result of the class
analysis, a new Product class emerges:

public abstract class Product {

private real price;

Logger loggerObject;

Product() {

price = 0.0;

loggerObject = new Logger();

}

public void putPrice(real p) {

loggerObject.writeLog("Changed Price from" + price + " to " +

p);

price = p;

Where OOP Has Brought Us 5

}

public int getPrice() {

return price;

}

}

The change made to the Product class is the inclusion of the logging method
calls in the setPrice() method. When the price is changed using this method, a
call is made to the logger object, and the old/new prices are recorded. All
objects instantiated from the Product class have a local logger object to handle
all logging functionality.

Let’s look at the idea of encapsulation and modularity within object-oriented
methodologies. By adding code to the Product class to handle a second concern
in the system, it would appear that we’ve broken the idea of encapsulation. The
class no longer handles only its concern, but also must fulfill the requirements
of another concern. The class has been crosscut by concerns in the system.

Crosscutting represents the situation when a requirement for the system is met
by placing code into objects through the system—but the code doesn’t directly
relate to the functionality defined for those objects. (Crosscutting is discussed
in more detail in the next section.) A class like Product, which is defined to rep-
resent a specific entity within the application domain, should not be required to
host code used to fulfill other system requirements.

Consider what would happen to the Product class if you added timing informa-
tion, authentication, and long-term data persistence. Are all these concerns
supposed to be designed into the Product object? Structured and object-
oriented languages leave you no other choice when addressing crosscutting
concerns. The additional concerns are forced to be part of another concern,
thus breaking many of the rules of our favorite methodology.

This mixing of concerns leads to a condition called code scattering or tangling.
With code scattering, the code necessary to fulfill one concern is spread over
the classes needed to fulfill another concern. Code tangling involves using a sin-
gle method or class to implement multiple concerns. Both of these problems
break the fundamentals of OO and cause headaches for designers (for more
information, see the following section). Consider the following Product class,
where the two concerns mentioned earlier have been added in pseudocode
form. This additional functionality is necessary, but it shouldn’t be part of the
Product class:

public abstract class Product {

private real price;

Logger loggerObject;

Introduction to AOP6

Product() {

price = 0.0;

loggerObject = new Logger();

}

public void putPrice(real p) {

//start timing

//Check user authentication

loggerObject.writeLog("Changed Price from" + price + " to "

+ p);

price = p;

// log if problem with authentication

//end timing

//log timing

}

public int getPrice() {

//check user authentication

return price;

}

public void persistIt() {

//start timing

//save this object

//end timing

//log timing

}

}

Once the Product class has been created, a DVD concrete class is formulated.
The class inherits all the functionality found in the Product class and adds a few
more attributes. The DVD class includes an attribute and associated methods
for the number of copies currently available. This is important information that
should be included in all logging activities:

public class DVD extends Product {

private String title;

private int count;

private String location;

public DVD(String inTitle) {

super();

title = inTitle;

}

private void setCount(int inCount) {

//start timing

//check user authentication

count = inCount;

Where OOP Has Brought Us 7

//end timing

//log timing

}

private int getCount() {

return count;

}

private void setLocation(String inLocation, int two) {

//start timing

//check user authentication

location = inLocation;

//end timing

//log timing

}

private String getLocation() {

return location;

}

public void setStats(String inLocation, int inCount) {

//start timing

//check user authentication

setLocation(inLocation, 0);

setCount(inCount);

//end timing

//log timing

}

}

Do you notice any problems with the code? The logging hasn’t been included in
the methods that change the count information. Unfortunately, the developer
missed this concern when creating the new class.

Results of Tangled Code

A developer doesn’t have to be in the industry long to find out the effects of tan-
gled and scattered code. Some of the effects are as follows:

■■ Classes that are difficult to change

■■ Code that can’t be reused

■■ Code that’s impossible to trace

Engineers and managers who need to refactor code commonly encounter one
example of dealing with tangled code. If the code is written in clear compo-
nents using well-defined objects, a relatively obvious cost-benefit ratio can be
created. If the time and money can be justified, the components of the system

Introduction to AOP8

TE
AM
FL
Y

Team-Fly®

can be refactored. However, in most cases, the code for the components is
intertwined, and factoring becomes too cost prohibitive under traditional
means. However, AOP allows the refactoring to be performed on a different
level and in a manner that helps to eliminate some of the tangled code.

In one of the original AspectJ Tutorial presentations (http://aspectj.org/docu-
mentation/papersAndSlides/OOPSLA2002-demo.ppt), you could analyze the
Jakarta Tomcat project to determine where code that performed logging was
located in the source code. The result of the project showed that the logging
code wasn’t in just one place in the code, and not even in a couple of small
places—it’s spread throughout the source code.

As the Tomcat analysis project showed, code tangling is a major problem. Just
think about the nightmare if the code for logging needed to change. The tangled
code clearly accomplishes some defined functionality, like logging. The code is
tangled because it needs to be spread throughout the application. When a
requirement results in tangled code, we say that it crosscuts the system. The
crosscutting isn’t always a primary requirement of the system, just as logging
isn’t required for the application software to function properly; but sometimes
it is required in the case of user authentication.

How AOP Solves OOP Problems

Aspect-oriented programming is a paradigm created to solve the problems dis-
cussed so far without the difficulties and complexities encountered with
subject-oriented programming (SOP) and multidimensional separation of con-
cerns (MDSOC). AOP isn’t necessarily a new idea; its roots lie in the separation
of concerns movement, but it has moved into the forefront through work by
Gregor Kiczales and his colleagues at Xerox’s PARC (www.parc.com/groups/
csl/projects/aspectj/).

AOP doesn’t require the user to learn a host of new techniques, but instead
relies on the features of its host language to solve crosscutting of concerns.
Depending on the implementation of AOP, you need to learn only a handful of
new keywords. At the same time, AOP supports reuse and modularity of code,
to eliminate code tangling and scattering. With the advent of Java and the
AspectJ support language, AOP is on the verge of becoming the next big thing
in computer science since the adoption of OOP.

What Is AOP?
Aspect-oriented programming is a paradigm that supports two fundamental
goals:

How AOP Solves OOP Problems 9

■■ Allow for the separation of concerns as appropriate for a host language.

■■ Provide a mechanism for the description of concerns that crosscut other
components.

AOP isn’t meant to replace OOP or other object-based methodologies. Instead,
it supports the separation of components, typically using classes, and provides
a way to separate aspects from the components. In our example, AOP is
designed to support the separation of the example concerns and to allow both
a Logger and a Product class; it also handles the crosscutting that occurs when
logging is required in the components supporting another concern.

Development Process with AOP
To get an idea of how AOP helps with crosscutting, let’s revisit the example
concerns:

Concern 1: The system shall keep a price relating to the wholesale value of
all products.

Concern 2: Any changes to the price shall be recorded for historical
purposes

The two classes built to implement these concerns separated their functional-
ity, as would seem appropriate. However, when concern 2 is fully implemented,
it becomes clear that calls from the Product class will need to be made to the
Logger class. Suddenly the Product class isn’t completely modular, because it
needs to incorporate within its own code calls to functionality that isn’t part of
a product.

AOP provides several tools that can help with this problem. The first is the lan-
guage used to code the requirements or concerns into units of code (either
objects or functions). The AOP literature commonly calls this the component
language. The secondary or support requirements (aspects) are coded as well,
using an aspect language. Nothing in the paradigm states that either language
needs to be object-oriented in nature, nor do the two languages need to be the
same. The result of the component and aspect languages is a program that han-
dles the execution of the components and the aspects. At some point, the
respective programs must be integrated. This integration is called weaving, and
it can occur at compile, link, run-, or load time.

Using this information, let’s look at how AOP handles the issue of putting log-
ging code directly into the Product class. AOP is designed to respect the idea
that some requirements can be modularly coded and others will crosscut the
previously modular classes. In our example, concern 1 can be implemented in
the Product class without violating the modularity of the class. Concern 2 can-
not be implemented in a modular fashion within the Product class because it

Introduction to AOP10

needs to be implemented in different spots throughout the Product class and
other classes in the software system.

If we step back from the implementation details behind both concerns, we find
that concern 2 doesn’t necessarily need to be coded directly in the Product
class (and the DVD class, the Boxset class, and so on). Instead, it would be
ideal if the logging code could be called when the system calls any log-worthy
methods.

For this to occur, an aspect must be created specifying that when the system
encounters a call to the method setPrice(), it should first execute code defined
in the aspect language. Here’s an example of what the aspect might look like in
a (fictional) object-oriented aspect language:

define aspect Logging{

Logger loggingObject = new Logger();

when calling set*(taking one parameter) {

loggingObject.writeLog("Called set method");

}

}

This aspect is compiled along with the component Product class using a com-
piler provided by the AOP system. The compiler weaves the aspect code into
the component code to create a functioning system. Figure 1.2 shows graphi-
cally how the weave looks.

How AOP Solves OOP Problems 11

Product Logger

weave

Product with
Logging

Figure 1.2 A graphical illustration of a weave.

The weave occurs based on the information provided in line 3, where the aspect
is defined to act when a call is made to any method having a name starting with
set and taking a single parameter. Once the system begins to execute, a call is
made to the setPrice() method of the DVD object. Just before control is given
to the setPrice() method of a target object, the code in line 4 executes and pro-
duces the statement “Called set method” in the system log. As a result of using

AOP, any call matching the aspect criteria produces an entry in the log—you
don’t have to scatter code throughout the entire program to support the
concern.

What’s Next

In Chapter 2, we will look at some of the details behind implementing a lan-
guage extension to support the functionality required in AOP. The primary con-
sideration in any AOP tools is the weaver. We’ll discuss the current state of AOP
weavers as well as future implementations.

Introduction to AOP12

Aspect-oriented programming (AOP) in accomplished by implementing a
series of primary concerns in a given language. These crosscutting con-
cerns are added to the system through an aspect-oriented language. The

support code developed using the aspect-oriented language is used to imple-
ment any crosscutting concerns based on common AOP terms and must be
weaved into the primary application. In most implementations, the support
code is written in the same language as the primary application; that is the case
for AspectJ. Figure 2.1 shows the generalized AOP process.

Implementing AOP

C H A P T E R 2

13

Code written
to satisfy
primary
concern

Code written
to satisfy

crosscutting
concerns

Code that
satisfies
system

requirements

AOP
language
compiler
weaves

<<Crosscuts>>

Figure 2.1 AOP process.

In this chapter, we will look at the language features of AOP and provide an
overview of AspectJ. The topics covered are as follows:

■■ AOP language anatomy

■■ Concern implementation

■■ Weavers

■■ Compilers

■■ AspectJ

AOP Language Anatomy

The primary goal of an AOP language is the separation of concerns. An applica-
tion is written in a language that best satisfies the needs of the application and the
developers. This language could be Java, C++, C#, Visual Basic, or even Cobol; in
all these languages, a compiler converts the written language syntax into a format
the machine can execute. In the case of Java or .NET, the language syntax is con-
verted to byte code, which in turn is executed by a runtime environment.

During the development of the application, all the requirements are satisfied to
produce the final system. As you saw in Chapter 1, “Introduction to AOP,” the
requirements include those necessary to meet the true needs of the application
as well as conveniences such as logging and timing. Unfortunately, in most
cases, this type of development (whether object-oriented or not) produces tan-
gled code. When you use AOP, the development process isn’t the same: The pri-
mary concerns are implemented using a language deemed appropriate for the
application, and the crosscutting concerns are implemented in an aspect-ori-
ented language.

It doesn’t matter what language type is used for the implementation as long as
the code written for the crosscuts can be combined with the primary applica-
tion to produce a fully executable system. Any language that expects to imple-
ment concerns must have a specification and implementation.

AOP Language Specification
In Chapter 1, we briefly touched on the major components of an AOP system.
In this section, we will lay out the pieces any AOP language must be able to rep-
resent in order to allow the development of code for crosscuts. The major com-
ponents of an AOP language are as follows:

■■ Join points

■■ A type of language to match join points

■■ Advice

■■ An encapsulating component, such as a class

Implementing AOP14

Join Points
A join point is a well-defined location within the primary code where a concern
will crosscut the application. Join points can be method calls, constructor invo-
cations, exception handlers, or other points in the execution of a program.

Suppose the specification document for a new system created by an AOP-
aware team includes a concern stating that all SQL executions to the database
should be logged. To facilitate the development of the primary system, a trans-
action component class is created to handle all database communication from
business-level components. Within the transaction component, a method called
updateTables() handles all database updates. To fully implement the crosscut
concern, you need to add code to the method to register a timestamp when the
method is first called. You must also include code at the end of the method to
register a timestamp and add a success flag to the log. Thus, the join point to the
implementation is the name of the method along with (possibly) the class
name. For example, the following statement describes a join point:

public String DBTrans.updateTables(String);

The exact syntax will vary from language to language, but the goal of the join
point is to match well-defined execution points.

Pointcuts
Given that the join point is a well-defined execution point in an application, you
need a construct that tells the aspect-oriented language when it should match
the join point. For example, you may want the aspect language to match the
join point only when it is used in a call from one object to another or possibly a
call from within the same object. To handle this situation, you can define a des-
ignator named call() that takes a join point as a parameter:

call(public String DBTrans.updateTables(String))

The designator tells the aspect language that the public String
DBTrans.updateTables(String) join point should be matched only when it’s part
of a method call.

In some cases, you may use multiple designators to narrow the join point match
or create groupings. Regardless, another construct called a pointcut is typically
used to group the designators. A pointcut can be named or unnamed, just as a
class can be named or anonymous. For example, in the following example the
pointcut is called updateTable(). It contains a single designator for all calls to
the defined join point:

Pointcut updateTable() :

call(public String DBTrans.updateTables(String))

The pointcut is used in advice structures, described next.

AOP Language Anatomy 15

Advice

In most AOP specifications, advice code can execute at three different places
when a join point is matched: before, around, and after. In each case, a pointcut
must be triggered before any of the advice code will be executed. Here’s an
example of using the before advice:

before(String s) : updateTables(s) {

System.out.println("Passed parameter – " + s);

}

Once a pointcut has triggered, the appropriate advice code executes. In the
case of the previous example, the advice code executes before the join point is
executed. The String argument is passed to the code so it can be used if needed.
In most AOP systems, you have access to the object associated with the join
point as well as other information specific to the join point itself.

Aspects

A system that has 10 crosscutting concerns might include 20 or so join points
and a dozen or more pointcuts with associated advice. By using AOP, you can
reduce code tangling and disorganization rather than create more. With this in
mind, the aspect syntax was developed to handle encapsulation of join points,
pointcuts, and advice.

Aspects are created in much the same manner as classes and allow for com-
plete encapsulation of code related to a particular concern. Here’s an example
aspect:

public aspect TableAspect {

pointcut updateTable(String s) :

call(public String DBTrans.updateTables(String) &&

args(s);

before(String s) : updateTable(s) {

System.out.println("Passed parameter – " + s);

}

}

The TableAspect aspect is an object that implements a concern related to the
UpdateTables() method. All the functionality required for this concern is neatly
encapsulated in its own structure.

AOP Language Implementation
The examples presented so far are written in the AspectJ AOP language and fol-
low the Java specification because, as you will see shortly, AspectJ is designed
to be used with applications written in Java. Once a concern has been written

Implementing AOP16

in an AOP language, a good deal of work must still be done to get the primary
and AOP applications to run as a complete system. This task of integrating the
crosscutting concern code and the primary application is called weaving. Table
2.1 lists the different types of weaving.

Table 2.1 AOP Weaving Types

TYPE DESCRIPTION TOOL USED

Compile-time The source code from the primary Compiler
and aspect languages is weaved
before being put through the
phases of the compiler where
byte code is produced. AspectJ
1.0.x uses this form of weaving.

Link-time The weaving occurs after the primary Linker
and aspect language code has been
compiled into byte code.
AspectJ 1.1.x uses this form of weaving.

Load-time The weaving occurs when classes Classloader under Java
are loaded by the classloader.
Ultimately, the weaving is at the
byte-code level.

Run-time The virtual machine is responsible for Virtual machine
detecting join points and loading and
execution aspects.

Using Java as an example, at some point in development a number of classes
and possibly aspects will represent all the concerns defined for a particular
application. The primary application can be compiled into Java byte code using
the Javac compiler. Once compiled, the application byte code can be executed
within the Java Runtime Environment. Unfortunately, a number of aspects also
need to execute. Because the aspects are Java code as well, it isn’t unreason-
able to think that a compiler can be used to convert the aspect code into pure
Java code; the aspects are converted to classes, and pointcuts, join points, and
designators are turned into other Java constructs. If this step is performed, the
standard Java compiler can also be used to produce byte code from the aspects.

Assume that a compiler is available that will convert both the Java and aspect
code into Java byte code during the compilation process. You need a way to
incorporate the aspect code into the Java code. In compile-time weaving, the
aspect code is analyzed, converted to the primary language if needed, and
inserted directly into the primary application code. So, using the previous exam-
ple, you know that a join point has been defined on the updateTables() method

AOP Language Anatomy 17

and that a pointcut defined to execute before the updateTables() method actually
executes. The compile-time weaver finds the updateTables() method and weaves
the advice code into the method. If the aspect is converted to a class, the call
within the updateTables() method can reference a method of the new aspect
object.

Here’s a simple example of what the code might look like after the compile-time
weaver pulls together the primary Java code and the aspect defined earlier:

public String updateTables(String SQL) {

//start code inserted for aspect

TableAspect.updateTable(SQL);

//end code inserted for aspect

initializeDB();

sendSQL(SQL);

}

In this example, a call is inserted to the updateTable() method of the
tablesAspectClass class created from the TableAspect aspect code defined
earlier. This work is handled by a preprocessor before any traditional compila-
tion takes place. Once the aspect has been weaved into the primary application
code, the resulting intermediate files are sent to the Java compiler. The resulting
system code implements both the primary and crosscutting concerns.

One of the downfalls of a compile-time weaving system is its inability to dynam-
ically change the aspect used against the primary code. For example, suppose
an aspect handles the way the updateTables() method connects to the data-
base. A simple connection pool can consist of the details within the aspect. It
would be interesting if the aspect could be swapped with another aspect during
execution of the primary application based on predefined rules. A compile-time
weaver cannot do this type of dynamic swapping, although code can be written
in an aspect to mimic the swapping. In addition, compile-time weaving suggests
that you need to have the source code available for all aspects, and conve-
nience features like JAR files cannot be used.

A link-time or run-time weaver doesn’t weave the aspect code into the primary
application during the compile but waits until runtime to handle the weave. A
processor is still used to place hooks in the methods/constructor of the primary
language as well as other strategic places. When the hooks are executed, a mod-
ified runtime system determines whether any aspects need to execute. As you
might expect, dynamic weaving is more complicated because of the need to
change the system where the application is executing. In a byte-code system
where a runtime environment is available, the process isn’t as involved as a sys-
tem like C++, where a compiler produces machine-level code.

Implementing AOP18

TE
AM
FL
Y

Team-Fly®

AspectJ

This book covers the use of a byte-code weaving AOP language called AspectJ.
The AspectJ language comes from research work performed at the Xerox Palo
Alto Research Center by a team of researchers including Gregor Kiczales (proj-
ect leader), Ron Bodkin, Bill Griswold, Erik Hilsdale, Jim Hugunin, Wes Isberg,
and Mik Kersten. The stated goal of AspectJ is to make the methodology of AOP
available to a large number of developers. In order to accomplish this goal,
AspectJ is built on top of the Java language and works to provide a seamless
integration of primary and crosscutting concerns.

In the forthcoming chapters, we’ll discuss the AspectJ system in detail. To kick
things off, let’s look at a simple example along with aspect code and see how
the AspectJ weaver accomplishes the task of integrating AOP into standard
Java.

Example Aspect
This example class and related aspect will give you an idea of what writing in
AspectJ is all about. Listing 2.1 shows the code for a very simple Java class and
main() method. The Simple class has a single attribute and method. A main()
method is used to instantiate an object of the class and makes a call to the
getName() method.

AspectJ 19

public class Simple {

private String name;

public String getName() {

return name;

}

public static void main(String args[]) {

Simple simple = new Simple();

System.out.println(simple.getName());

}

}

Listing 2.1 Simple Java application.

Listing 2.2 shows an AspectJ aspect complete with a join point related to the
getName() method in the primary code, and a pointcut defining the conditions
necessary for triggering advice code found in the before() statement. The pur-
pose of the aspect is to execute code when a call is made to the getName()
method of a Simple object.

Implementing AOP20

public aspect SimpleAspect {

pointcut namePC() : call (public String getName());

before() : MatchAllgetName() {

System.out.println(thisJoinPoint.getSignature());

}

}

Listing 2.2 Simple aspect.

If the standard Java compiler is used to compile the Simple class and the
SimpleAspect aspect files, the compiler will produce a few errors related to the
SimpleAspect aspect. The compiler won’t be able to recognize the aspect,
pointcut, before, and other statements used in the code. The AspectJ system
includes a compiler called ajc that compiles both the aspect code and the pri-
mary code. As you will see in detail in Chapter 12, “Error Handling and Com-
mon Problems,” the ajc compiler is built on top of IBM’s Eclipse project
compiler, which allows a strict compliance to the Java language and resulting
byte code. The ajc compiler adds the ability to compile the AspectJ-specific
keyword into byte code and facilitates the weaving of the byte codes into class
files. The aspect code is converted from an aspect construct into a class, and
the other AspectJ-specific constructs are converted to standard Java. The
AspectJ compiler weaves the aspect byte code into the byte code of the primary
application byte code and produces appropriate Java class files that can be exe-
cuted by the Java Runtime Environment.

What’s Next

In this chapter we have looked at the major components necessary for the
implementation of concerns that crosscut a primary application. An AOP lan-
guage consists of a specification and implementation such that concerns can be
accurately represented in the primary code without code tangling. We intro-
duced the AspectJ language and showed how the language implements the
major components. In Chapter 3, we look at the steps necessary to obtain
AspectJ, install it, and verify a successful installation.

AspectJ is an implementation of AOP for the Java language built as an
extension to the language. A compiler and a set of JAR files take
common Java code and AspectJ aspects and compile them into stan-

dard Java byte-code, which can be executed on any Java-compliant machine. In
this chapter, we will look at:

■■ Requirements for AspectJ

■■ Downloading and installing AspectJ

■■ Testing the AspectJ installation

Requirements for AspectJ

AspectJ is an extension to the Java language and thus requires Java to be
installed on the local machine. Your version of Java must be 1.2 or later, and the
full Software Development Kit (SDK) needs to be installed. For the examples in
this book, we used the latest version of Java (1.4) with great success. You can
download and install Java from java.sun.com.

Downloading AspectJ

You can find the AspectJ system at www.eclipse.org/aspectj under the Down-
loads links on the left navigation menu to bring up the page shown in Figure 3.1.

Obtaining and Installing AspectJ

C H A P T E R 3

21

Figure 3.1 Primary download page at www.eclipse.org/aspectj.

The AspectJ system is divided into three areas:

■■ Compiler and Core Tools—A single JAR file download containing the
AspectJ compiler and its support files.

■■ Documentation and Examples—Offline documentation, tutorial, and
examples. The documents are the same as those found on the Web site.

■■ Development Environment Support—Extensions to several popular
development tools. These extensions let you directly display and manipu-
late AspectJ components through a specific IDE. More information about
these extensions can be found in Chapter 11 “Using AspectJ Tools.”

The primary download necessary to begin working with AspectJ is the one
found in the Compiler and Core Tools areas. At the time of this writing, there is
a single JAR file with a version of 1.1.b2. Click on the link for the file and save
the file to your local hard drive. Don’t decompress the JAR file; it is a self-
extracting Java installer. Once you’ve downloaded the file to the hard drive, you
can install it.

Obtaining and Installing AspectJ22

Installing AspectJ

The process of installing AspectJ on all Java-supported environments is the
same, due to the nature of Java. The JAR file downloaded from the Aspect.org
Web site is a self-extracting Java installer; you can invoke it either by double
clicking the program’s icon in a GUI window (My Computer in Windows or a
Window Manager window under UNIX) or by executing the following Java
command in a Command Prompt or Terminal window:

java -jar aspectj-tools-1.1.0.jar

This command launches Java, unjars the specified file, and begins executing
the file. The installation begins with a splash screen, as shown in Figure 3.2.

Installing AspectJ 23

Figure 3.2 AspectJ installer splash screen.

After you read the information on the splash screen, click the Next button to
continue with the installation or click Cancel to exit. The next screen defines
your Java home path. Figure 3.3 shows that the system has accurately found an
installation of Java.

On the machine where AspectJ was installed in Figure 3.3, a JAVA_HOME envi-
ronment variable was previously defined. If the installer cannot find a Java
installation, use the Browse button to find a root directory for an installation.

After you’ve entered the correct path into the Java Home Directory control,
click Next. The next installer dialog will prompt you for an installation direc-
tory for AspectJ; see Figure 3.4. A default path will be provided; you can change
it as needed.

Figure 3.4 AspectJ installation path screen.

Clicking the Install button will begin the process to copy AspectJ to your sys-
tem. If you need to make any changes to previous screens, click the Back but-
ton before clicking Install. When the installation program finishes putting the
necessary system files on the local machine, a Continue screen will be dis-
played, as shown in Figure 3.5.

Click Next to see the final screen of the installation, shown in Figure 3.6.

Obtaining and Installing AspectJ24

Figure 3.3 AspectJ Java locator screen.

Figure 3.6 AspectJ installation final screen.

The final screen shows several final steps you need to perform regardless of the
system type on which you are installing the system. These steps include setting
up the /bin directory of AspectJ to be visible from the PATH variable and setting
up the CLASSPATH for the aspectjrt.jar runtime file.

Setting PATH
When you aren’t using a graphical development tool, the AspectJ compiler is
launched from a command prompt under Windows or a terminal window under

Installing AspectJ 25

Figure 3.5 AspectJ installation Continue screen.

UNIX/Linux. Each of these systems requires an environment variable called
PATH to be set; this variable provides the shell with a number of different direc-
tories in which to look for commands typed at a prompt. For AspectJ, the PATH

environment variable needs to include the path c:\aspectj1.1\bin if you used the
default installation directory when AspectJ was installed, or the path to the \bin
directory if you installed AspectJ in another location.

Setting the PATH variable under Windows varies according to the system you’re
using. For Windows NT and Windows 2000, follow these instructions:

1. Right-click on the My Computer icon and select Properties.

2. In the dialog that appears, click on the Advanced tab. In the middle of the
resulting window is an Environment Variables button. Click it to reveal the
dialog shown in Figure 3.7.

3. In the System Variables area, scroll down the list of variables until you find
Path. Click this entry and click the Edit button.

4. Click in the Variable Value edit line, move to the end of the list of values,
and add the string ;c:\aspectj1.1\bin as shown in Figure 3.8.

5. Click OK to close the dialog, and click OK again to close the My Computer
dialog.

Obtaining and Installing AspectJ26

Figure 3.7 Environment Variables tab in Windows.

For Windows XP, follow these instructions:

1. Click Start and right-click on the My Computer icon.

2. Select the Advanced Tab.

3. Follow steps 2 through 5 in the previous list of instructions for Windows
2000.

Figure 3.8 Editing the PATH variable.

For Win95/98/ME, follow these instructions:

1. Locate the autoexec.bat file in the C:\ root directory.

2. Open the file using notepad.exe.

3. Find and edit or add a line for the PATH:

PATH C:\WINDOWS;C:\WINDOWS\COMMAND;C:\;C:\DOS;C:\aspectj1.1\bin.

4. Save the file.

For all the Windows configurations, the new environment variable will not be
available until you open a new command prompt window. All existing com-
mand prompt windows will not see the new or changed variable.

In the UNIX/Linux world, things are a little different. A terminal window is actu-
ally a shell application that has been executed. Each time a new terminal win-
dow is opened, a series of files are sourced and an environment is created. For
the most part, a current environment’s PATH environment variable can be
changed for the current session in a terminal window. The PATH variable in the
current session is changed based on the environment currently being used. For
example, if you are using bash, you should be able to execute the following
commands:

$PATH=$PATH:\apps\aspectj\bin

EXPORT PATH

Installing AspectJ 27

Check your version of the shell and look in appropriate online documentation
or UNIX books for the specific command to use.

To make the PATH variable see the AspectJ /bin directory each time a terminal
window is opened, you must place the path to the /bin directory in one of the
sourced files. There are a number of different places these sourced files can be
located and called. The file could be .login, .bash_profile, or .cshrc, located in
the home directory. At times, a global file may be called, which is commonly
located in the /etc directory. Your mileage will vary, because the shell environ-
ment under UNIX/Linux can be any number of environments—bash, csh, and
others. In some of these environments, you need to set the appropriate variable
and export it. Consult your system’s documentation for more information.

Setting CLASSPATH
The AspectJ system requires a runtime JAR file in order to execute correctly.
This JAR file must be located in the CLASSPATH of the Java installation. There
are three common ways to give the Java Runtime Environment access to the
JAR file:

■■ The JRE can access JAR files directly if they are in the /jre/lib/ext directory
of the current Java system. If you use this access, copy the aspectjrt.jar
file to the jdk1.x/jre/lib/ext directory. The aspectjrt.jar file can be found in
the \aspectj1.1\lib directory.

■■ Using the same steps outlined earlier, you can add the path to the
aspectjrt.jar file to the CLASSPATH environment variable. Be sure to
add the entire path, such as c:\aspectj1.0\lib\aspectjrt.jar.

■■ A common way to use a CLASSPATH is through the –classpath command-
line flag to the Java compiler. You can use the same command-line flag
with the AspectJ compiler. The format of the flag is

-classpath c:\aspectj1.1\lib\aspectjrt.jar

Testing the Installation

When you’ve finished all the installation steps, you should test the complete
installation. Our goal for now is to test that the Java compiler, AspectJ com-
piler, PATH, CLASSPATH, and Java runtime are all working together nicely; we
won’t discuss any details of the code.

To test the installation, follow these steps:

1. Open a terminal window or command prompt and change to a working
directory.

Obtaining and Installing AspectJ28

TE
AM
FL
Y

Team-Fly®

2. Type the command java. You should receive output from the compiler dis-
playing all the command-line options. If you don’t receive this information
or you receive text saying the command cannot be found, your PATH envi-
ronment variable is unable to see the /bin directory of your Java installa-
tion. Verify the PATH environment variable, the value entered, and the path
to the /bin directory of your Java installation.

3. Type the command ajc. You should receive output from the AspectJ com-
piler listing all of its command-line options. If you don’t receive this infor-
mation or you receive text saying the command cannot be found, your
PATH environment variable is unable to see the /bin directory of your
AspectJ installation. Verify the PATH environment variable, the value
entered, and the path to the /bin directory of your AspectJ installation.

4. Open a text file called Test.java and enter the code found in Listing 3.1.
Compile the code with the command javac Test.java. Execute the code
with the command java Test. A single string should appear on the screen
reading “Test Method.”

5. Open a text file called TestAspect.java and enter the code found in
Listing 3.2.

6. Compile the Test and TestAspect.java files using the AspectJ compiler with
the command – ajc Test.java TestAspect.java. If you get an error stating
the aspectjrt.jar file cannot be found, try the following command:

ajc –classpath ".;c:\aspectj1.1\lib\aspectjrt.jar"

Test.java TestAspect.java

7. This command uses the –classpath command-line flag to tell the system
where the AspectJ runtime JAR file is located. If you still receive an error
saying aspectjrt.jar cannot be found, check the AspectJ installation.

8. Execute the code with the command – java Test.java.

Figure 3.9 shows the output from this test installation code. If your output looks
like that found in Figure 3.9, the AspectJ and Java installations were successful,
and you are ready to begin using AspectJ.

Testing the Installation 29

class Test {

public void testMethod() {
System.out.println("Test Method");

}

public static void main(String args[]) {
Test test = new Test();
test.testMethod();

}

}

Listing 3.1 Test.java code.

Obtaining and Installing AspectJ30

public aspect TestAspect {

pointcut callTestMethod() : call(public void Test.test*(..));

before() : callTestMethod() {

System.out.println("Before Call");

}

after() : callTestMethod() {

System.out.println("After Call");

}

}

Listing 3.2 TestAspect.java code.

Figure 3.9 Installation example execution output.

What’s Next

In Chapter 4, we will take a more detailed look at using the command-line
AspectJ compiler. To help with this task, we will discuss a simple Hello World
program as we begin to dive deeper into AOP and AspectJ.

In most programming books, you find an example of how to use a new lan-
guage that incorporates the familiar Hello World program. Using a small
programming example allows an author to express most of the basics of a

new language or paradigm in a compact manner.

In this first chapter on the use of AspectJ, we also use a version of Hello World
to illustrate how to use the AOP (aspect-oriented programming) paradigm
using AspectJ. The topics we cover include:

■■ Writing a component

■■ Identifying join points

■■ Determining pointcuts

■■ Giving advice

■■ Adding an aspect

■■ Compiling and executing

■■ Adding new concerns

■■ Exposing context

■■ Using inter-type declarations

■■ Using AspectJ Compiler

Implementing AspectJ

C H A P T E R 4

31

Our First AspectJ Program

In any development cycle for a software application, we must take a clear num-
ber of steps, and AspectJ is no different. Unfortunately, the overall coding expe-
rience with AspectJ is limited because of its recent introduction into the
mainstream of software development. For the most part, though, traditional
software development methodologies such as incremental development and
object-oriented analysis, design, and programming can be used to develop
AspectJ-based applications.

At a basic level, there are three ways to develop an AspectJ application. The
first is to begin development using the primary concerns and writing in the
component language. This development is followed with the writing of AspectJ
code for the crosscutting concerns. The second way to develop an AspectJ
application is to add a new concern to existing code using AOP. The third way
isn’t obvious but it’s very important: You add a new primary concern to an appli-
cation you have already developed (using either of the methods we just listed).
By virtue of AspectJ, the new code is automatically crosscut by the existing
crosscutting concerns assuming that the code matches defined join points.

Writing the Component First
Software development is supposed to begin with a discussion of the require-
ments the customer feels are most important. These requirements are written
as a specification document, illustrated in some visual presentation, or defined
in a host of other ways. Although not exclusive to aspect-oriented program-
ming, the term concern can be applied to the requirements. The concerns are
generally separated into “must-have” and “nice-to-have.” The must-have con-
cerns have to be implemented in order for the application to provide an appro-
priate level of functionality to the customer. At the same time, designers and
architects look at the must-have concerns and add additional ones to provide
important functionality for the operation of the application during execution—
functionality such as log caching and connection pools.

In the case of our Hello World program, there is one primary concern. The def-
inition of the concern is:

Concern 1: Application shall produce the text “Hello World” to the console.

Obviously, this concern has a single focus and doesn’t require implementation
across several classes. In fact, just one is required, as shown in Listing 4.1.

Implementing AspectJ32

Our First AspectJ Program 33

class Test {
public void helloWorld() {

System.out.println("Hello World");
}

public static void main(String args[]) {
Test test = new Test();
test.helloWorld();

}
}

Listing 4.1 Test.java.

The code in Listing 4.1 implements a Test class with two methods. The first
method, called helloWorld(), implements the single concern of our system.
When called, the method outputs the text Hello World to the console. The
method is called from the main() method of the Test class. Because the Test
class is simple, the compiling and executing is also simple. The command to do
the compile is

javac Test.java

Once compiled, the code is executed with the command
java Test

The output of the application is also simple:
Hello World

After you’ve implemented the primary concern for the system with the compo-
nent language, it is time to look at any ancillary concerns. When our architects
looked at the Hello World application and the requirements from the customer,
they decided an additional concern was necessary. The new concern says:

Concern 2: All output functions shall log their execution.

Aspect Code
To aid our discussion in the remainder of the chapter, we listed the AspectJ
code necessary to implement our ancillary concern in Listing 4.2.

public aspect TestAspect {
pointcut outputLog() : call(public void helloWorld());
before() : outputLog() {

System.out.println("Before Call");
}

}

Listing 4.2 TestAspect.java.

Identifying the Join Point
As you’ll learn in Chapter 5, the AspectJ language defines a term called a join

point. A join point is a well-defined “point” in the execution of a component
application. This point can be a method call, the execution of a constructor, or
even access to an attribute of a specific class. There are a few exceptions,
which we detail in Chapter 5.

Once we’ve implemented a concern in the component language, we need to per-
form an analysis to determine where ancillary concerns might crosscut the
code. This is a new step in the software development process many of us typi-
cally use. We have always had concerns that crosscut the primary functionality
of the code, but rarely has this functionality been pulled out and made a focus.
We might know from experience that we need to add some level of logging to
the code without a written requirement. Our typical reaction to the full devel-
opment of our primary concerns is to begin the test cycle. Instead, we must turn
our attention to the ancillary concerns from the architects and designers. And
we must be careful to use AspectJ to implement the ancillary concerns.

Given the concern we have documented and the component code from Listing
4.1, it should be clear that there is one join point in the code where a call is
made to the println() method of the System class. Thus, any place in the code
where a call is made to println(), a log write should occur. This is a subtle point
that you must understand. A join point is a point in the execution of the pro-
gram. Even though the HelloWorld() method is where the call is made to
println(), we should not consider the HelloWorld() method to be the join point
for our crosscutting concern because it isn’t the true moment in time where the
join point occurs. However, since the println() method call occurs within the
HelloWorld() method, we could say that the execution of the HelloWorld()
method or the call to the method is a join point. The distinction partially falls on
the granularity of the moment when the code is executed by the system.

Determining the Pointcut
After identifying the join points for a specific concern, we need to group them
using another new AspectJ term called the pointcut, which is outlined in detail
in Chapter 6. By combining the join points into a pointcut, the crosscutting of a
concern becomes evident. The pointcut acts as a grouping for specific join
points. We could easily have two different pointcuts that group 10 join points in
different ways. The format of a pointcut is

pointcut name([parameters]): designator(ajoinpoint);

For example, the pointcut for handling our ancillary concern is defined in line 2
of Listing 4.2. This sample pointcut illustrates many important characteristics.

Implementing AspectJ34

First, we have the name() part of the pointcut. The name, which looks like a
method, will be used shortly to handle actions performed when a join point is
encountered by the Java runtime. Second, the ajoinpoint part of the pointcut is
the signature of the join point where something should occur based on our
ancillary concern. Finally, and possibly most important, is the designator. The
designator is an AspectJ-defined term that indicates when a join point should
be associated with a pointcut. In our example, the call designator associates the
join point defined by the calling of the public void helloWorld() method with
the outputLog() pointcut. When other actions are needed for the join points, a
dozen or so designators (described in Chapter 6) are available.

Giving Advice
The pointcut defines the places within a component—the join points—where a
concern crosscuts the code. Of course, this is only half of the implementation
of the ancillary concern. The second half of the story is the action that should
take place when a pointcut is triggered. The action has a specific term in
AspectJ called advice (which we cover in detail in Chapter 7).

The three types of advice are:

■■ After

■■ Before

■■ Around

After advice tells the system that when a pointcut is triggered, some code
should be executed after the join point has executed. Before advice tells the
runtime to execute designated code just before the join point. Around advice
executes code defined for the concern instead of the code in the join point.

Based on the definition of our aspect concern, the system should log when an
output function is called. Whether this concern means before the method call or
after is certainly open to interpretation. Let’s just assume it means before the
method call actually takes place. With this in mind, the general form of the
advice declaration is as follows:

before([parameters]) : pointcut {

code to execute before pointcut

}

The advice signature begins with one of the three types—before, after,
around—followed by a pointcut declaration. After the signature, a block of
code is created that will be executed when the pointcut is triggered. The code
declared within an advice block consists of standard Java code. You can make
calls to the Java class library or other methods just as you would when writing
a traditional Java application. You can find more on this topic in Chapter 7.

Our First AspectJ Program 35

To handle the crosscutting concern in our example, let’s accomplish the logging
of a call to an output method through a single display of text to the console. The
advice resembles lines 3 through 5 in Listing 4.2.

Let’s take a moment and explain what this code is doing. When our component
code is executed, a call will eventually be made to the helloWorld() method.
Clearly the exact moment and time when the method call takes place isn’t
known. The method call is a join point for our example, and when the method
call is executed, a match is made against the join point declaration and any
pointcut used to group the join point. The advice code associated with any
pointcut using the executed join point is executed.

Adding an Aspect
The code developed so far includes the Test class, which implements the pri-
mary system concern, a pointcut defining a specific join point in the component
code, and advice to be executed upon a matched join point or combination of
join points. The pointcut and advice contain the AspectJ code needed to imple-
ment the crosscutting concern previously defined. In one sense, the pointcut
could be related to a class attribute and the advice to a class method. This com-
parison isn’t altogether far-fetched because AspectJ includes the concept of an
aspect, a construct that encapsulates all the code necessary to implement a
crosscutting concern. We cover the aspect keyword and concept in depth in
Chapter 9, “Aspects.”

By using the aspect keyword, we can combine the pointcut and advice code
into a single encapsulated module that works as a unit to implement a single
crosscutting concern. This encapsulation is important because it allows
the crosscutting code to be modularized in the same way as the component
Java code. The aspect in Listing 4.2 shows how the pointcut and advice code
defined earlier are encapsulated.

From the code in Listing 4.2, you can see that the format of an aspect models
that of a class in the Java language. Note that this doesn’t have to be the case
because the aspect language could be different from the component language.
For instance, the component language might be Java but the aspect language
could be C++.

Compiling and Executing the Example
Once all the concerns have been written, we need to compile and execute the
code. In Chapter 3, we installed the AspectJ system and tested it to be sure it
was operational. The same steps for testing AspectJ should be used when com-
piling most AspectJ and Java code. To begin with the code in this chapter, either

Implementing AspectJ36

type the code in Listings 4.1 and 4.2 into Java source files with the names
Test.java and TestAspect.java, respectively, or download the code from
www.wiley.com/compbooks/gradecki.

From a command prompt under Windows or a terminal window under UNIX,
execute the AspectJ compiler with the appropriate command:

ajc Test.java TestAspect.java

The compiler command invokes a batch or script file on the appropriate envi-
ronment, which in turn invokes the Java runtime to execute the
org.aspectj.tools.ajc.Main code found in the \lib\aspectjtools.jar file. This code
is the actual AspectJ compiler, and it handles compiling the component Java
classes as well as the AspectJ aspects.

If the command works successfully, two class files should be generated in the
current directory (or in directories appropriate for any package definition
added to the code). Once the class files have been generated, they can be exe-
cuted just as any other Java application would be. Use the following command
to see the result of our implementation of the concerns:

java -classpath "./;c:\aspectj1.0\lib\aspectjrt.jar" Test

The result of this command is the execution of the Test main() method, which
implements the primary concern with appropriate hooks in place for the
AspectJ code handling the crosscutting concern. The output from the example
code is

Before Call

Hello World

Adding a New Concern

Once a system is operational, we must typically make changes to satisfy the
requirements of our users. In this section, we add three new concerns and see
how they affect the code necessary to build the system:

Concern 3: Application shall return the text “Hello World”.

Concern 4: Application shall log all methods returning text to a log file.

Concern 5: Application shall accept name parameter, append to “Hello”
text, and display to console.

The Method for Returning Text
The third concern in our application requires that we add to the component
code that returns a text string instead of displaying the text to the console. This
is a simple method; Listing 4.3 shows the new method highlighted in bold.

Adding a New Concern 37

Implementing AspectJ38

class Test {

public void helloWorld() {

System.out.println("HelloWorld");

}

public String helloWorldReturn() {

return "Hello World";

}

public static void main(String args[]) {

Test test = new Test();

test.helloWorld();

System.out.println(test.helloWorldReturn());

}

}

Listing 4.3 New Test.java.

With the new method added to the component, you’re probably wondering
what the AspectJ code will produce. A quick recompile and execution yields
the following result:

Before Call

Hello World

Is this what we would expect based on the pointcut defined earlier and its
related join point? Actually, yes, the pointcut uses a join point defined as

call(public void helloWorld());

The join point is very specific to the method with a signature public void
helloWorld(). The method added to the component code is public string
helloWorldReturn(), which is very different from the one defined.

Logging Return Methods
The second new concern, Concern 4, tells us that all methods returning a text
string should also be logged just as those that display text to the console. The
pointcut used in our aspect is

pointcut outputLog() : call(public void helloWorld());

There are two easy ways to add functionality to the aspect to support the new
concern. The first way is to change the defined point using wildcards or logical
operators. The second way is to add an additional pointcut to handle the new
concern. Let’s take a look at both methods.

TE
AM
FL
Y

Team-Fly®

Using the Same Pointcut

The first way is to change the pointcut by adding a completely new signature or
using wildcards in the definition of a pointcut. The first step in the process is to
define the join point we are interested in adding to the aspect. The pointcut nec-
essary to support the new concern is

call(public string helloWorldReturn())

The pointcut uses a join point defined as a call to the helloWorldReturn()
method. Clearly the new pointcut is different from the pointcut used to match
the public void helloWorld() signature and supports the output we saw when
we ran our code earlier. A pointcut can use logical operators like AND and OR
to build a set of join points that can be related to one another. Since the two
concerns—Concern 2 (All output functions shall log their execution) and Con-
cern 4 (Application shall log all methods returning text)—appear to support the
same kind of logging, it makes sense to use the same pointcut. In fact, we could
just change Concern 2 to support the logging listed in Concern 4, further
supporting the idea of using a single pointcut for both concerns.

By using the OR logical operator, we combine the two join points in the
following way:

pointcut outputLog() : call(public void helloWorld()) ||

call(public string helloWorldReturn());

This pointcut is triggered when either the helloWorld() or the helloWorld
Return() method is encountered during the execution of the component
application. No additional changes are needed in the aspect code to support
concerns 2 and 4. To demonstrate the use of the new primary concern, we
changed the Test code as shown in Listing 4.4.

Adding a New Concern 39

class Test {

//methods defined in Listing 4.4

public static void main(String args[]) {

Test test = new Test();

test.helloWorld();

System.out.println("say - " + test.helloWorldReturn());

}

}

Listing 4.4 The code that calls the new primary concern.

After we’ve compiled and executed the Test code and the modified AspectJ
code, the output from the application is as follows:

Before Call

Hello World

Before Call

say - Hello World

Join Point Wildcards

Pointcuts can also be created by using join point wildcards. After a quick analy-
sis of the two methods being caught by the pointcut, we find that the only differ-
ences between the methods are the return types and the method name. In the
case of the method name, the first part of the name is the same, with only the
addition of the text Return at the end of one of them. AspectJ allows the use of
wildcards in most parts of the join point. You can find more information on join
point wildcards in Chapter 6. Our example suggests a join point like this one:

call(public * helloWorld*())

This join point says to match all methods that:

■■ Are defined as public

■■ Have any return type

■■ Have a method name starting with a text string “helloWorld”

Adding a Second Pointcut

It just so happens that both of the crosscutting concerns indicate that logging
should occur when specific types of methods are called within the component
code. However, if we read Concern 4 closely, we find that the concern also
requires that the logging be saved in a log file. Using the pointcut defined earlier
using the logical operator, a call to either of the methods results in a message
being displayed on the console. Calls to the helloWorldReturn() method should
be logged but not to the console.

How do we handle implementing two or more concerns that seem to have iden-
tical functionality but would need to be coded differently? This comes down to
a design decision similar to the one you must make when designing the primary
application. The two concerns we are talking about in this example both
require logging but in different respects. One quick design solution would
group the two concerns into a single aspect, a logging aspect, with different
pointcuts to handle the different join points. The code for handling the logging
of the helloWorldReturn() method to a log file would exist in a separate advice.
In this example, the concerns don’t differ enough in functionality to warrant
separate aspects.

Implementing AspectJ40

The aspect for handling both of these concerns is shown in Listing 4.5.

Adding a New Concern 41

public aspect TestAspect {

pointcut outputLog() : call(public void helloWorld());

before() : outputLog() {

System.out.println("Before Call - log to console");

}

pointcut fileLog() : call(public String helloWorldReturn());

before() : fileLog() {

System.out.println("Before Call - log to file");

}

}

Listing 4.5 This aspect handles multiple concerns.

After compiling and executing the aspect shown in Listing 4.5 with the Test
component class, the output generated is as follows:

Before Call - log to console

Hello World

Before Call - log to file

say - Hello World

A New Primary Concern
The fifth concern we must add to our application is:

Concern 5: Application shall accept name parameter, append to “Hello”
text, and display to console.

For this concern, we need to add a simple method to the Test class that accepts
a single String parameter and outputs a string to the console:

public void helloWorldUnique(String name) {

System.out.println("Hello, " + name);

}

Once we’ve added this new method to the component class, we must perform a
quick analysis of the crosscutting concerns and related aspects to be sure the
new method will be included in appropriate pointcuts. If we use the aspect in
Listing 4.6, then we are in trouble because the new code will not be caught.

We must compare the functionality of the new code against the two concerns
currently defined in the system. Concern 2 crosscuts those methods that output
text to the console that matches the output of the new code. To handle the new
code, the new method’s join point must be added to the pointcut. It’s probably
a safe bet that a wildcard can be used in the outputLog() point to handle all

potential helloWorld methods. We’ve listed the new aspect code in Listing 4.6,
with the change in bold. The new component code is shown in Listing 4.7.

Implementing AspectJ42

public aspect TestAspect {

pointcut outputLog() : call(public void helloWorld*());

before() : outputLog() {

System.out.println("Before Call - log to console");

}

pointcut fileLog() : call(public String helloWorldReturn());

before() : fileLog() {

System.out.println("Before Call - log to file");

}

}

Listing 4.6 The parameter method aspect.

class Test {

// unchanged methods omitted

public void helloWorldUnique(String name) {

System.out.println("Hello, " + name);

}

public static void main(String args[]) {

Test test = new Test();

test.helloWorld();

System.out.println("say - " + test.helloWorldReturn());

test.helloWorldUnique("Joe");

}

}

Listing 4.7 The parameter method component code.

After executing the Test code with the new component method and the new
Aspect code, we see the following output:

Before Call - log to console

Hello World

Before Call - log to file

say - Hello World

Hello, Joe

The first four lines of output relate to our concerns written earlier. The last line
is the important one for our new component code. You’re probably thinking,
“Wait a minute—shouldn’t there be six lines of code? An output line for the

aspect followed by a line of code from the component?” Yes, that’s true;
however, if you look back at the aspect in Listing 4.6 and take a good look at the
outputLog() pointcut versus the signature of the helloWorldUnique() method,
one difference should be noted. The helloWorldUnique() method includes a
parameter but the pointcut’s join point definition shows an empty parameter
list. Go into the code and add two periods in the parameter list of the join point,
like this:

pointcut outputLog() : call(public void helloWorld*(..));

Now when the code is executed, the output is as follows:

Before Call - log to console

Hello World

Before Call - log to file

say - Hello World

Before Call - log to console

Hello, Joe

The new output is what should be expected for all three calls in the main()
method of the application. The double periods in the parameter part of the join
point signature act as a wildcard for any number or types of parameters.

Exposing Context

In the previous example, we added a new method to the component code that
included parameters. When we executed the advice code, a simple text mes-
sage was displayed to the console and the parameter to the join point method
was ignored. AspectJ provides the ability to access the parameters of the com-
ponent method being executed within the advice code, as well as a host of other
contextual information.

The parameters of the component are visible by adding an args designator
to the pointcut definition as well as by specifying the arguments in the parame-
ter list of the pointcut definition itself. For example, in the method call
helloWorldUnique(String), a single parameter is available of the String type. We
can create a pointcut definition that indicates our desire to access this parame-
ter when the appropriate component join points are triggered. Here’s the code
for the pointcut:

pointcut uniqueLog(String s) :

call(public void helloWorldUnique(String)) &&

args(s);

This pointcut looks the same as the others we have built except for two things.
First, we have added a parameter in the pointcut signature name. Second, we
added another designator called args. The purpose of the args designator as

Exposing Context 43

used here is to provide the associated advice code with access to the parame-
ters originally passed to the helloWorldUnique() method. There is just one join
point in this pointcut definition, and it includes calls made to the method pub-
lic void helloWorldUnique(String). By including a single parameter type in the
method signature, we are stating that only calls with a single parameter should
be considered.

The args designator has a single parameter. This parameter is directly related to
the single parameter passed to the method defined as part of our join point. The
pointcut completely defines a single parameter based on a combination of the
join point and the args designator. Therefore, if the pointcut is expecting a
String called s, there should be a join point defined with a String parameter and
an args designator with a variable defined as s. Now the pointcut can be used
with advice to examine the parameter. For example:

before(String s) : uniqueLog(s) {

System.out.println("Passed value = " + s);

}

Notice the use of the parameter to the before advice designator. When the
pointcut uniqueLog is triggered, its String parameter defined by the s variable is
made available to the before() advice body. Within the body of the advice, the s
parameter is used to display the value of the String passed to the original
method. The output from the Test component class and the new aspect is as
follows:

Before Call - log to console

Hello World

Before Call - log to file

say - Hello World

Passed value = Joe

Hello, Joe

When the helloWorldUnique() method is executed, the appropriate advice is
triggered and the value passed to the component method is displayed.

Inter-type Declarations

All of our examples to this point have dealt with the concept of dynamic cross-
cutting, which provides a way to crosscut the primary code. However, dynamic
crosscutting doesn’t change the hierarchy of the classes in an application, nor
does it change the makeup of any of the classes. If a class doesn’t contain a spe-
cific attribute or method at runtime, it won’t change at runtime either unless
AspectJ Introduction declarations are used.

An Introduction declaration is a way to add new functionality to an application
by defining new attributes and methods to an established class or set of classes.

Implementing AspectJ44

In this section, we examine this topic; you can find a more in-depth discussion
on inter-type declarations in Chapter 8, “Inter-type Declarations.”

To show how the introduction can be used, let’s continue with our example Test
class and its aspect class. The Test class doesn’t support keeping track of the
number of times a call is made to the helloWorldUnique() method. This is an
important requirement because the helloWorldUnique() method is very expen-
sive when executed in a production environment. Imagine for a moment that
the source code for this class wasn’t available but the boss just needed to have
this information. Rather than having to rewrite the code, we can use AspectJ.

Adding Class Code
To keep track of the number of times the method is called, let’s use a simple
integer variable. The Test class doesn’t include an integer, so we need to add
one using the TestAspect aspect. You can add an inter-type declaration in much
the same way you add an attribute or a method to a class. The code for adding
a vector to the Test class is

private int Test.methodCallCount;

This code instructs the compiler to add an integer to the Test class and make
the attribute private. Now we need to write some code to access the integer.
The code in Listing 4.8 shows a new aspect, including code to use the vector
defined earlier.

Inter-type Declarations 45

public aspect TestAspect {
private int Test.count = 0;

public void Test.incCount() {
count++;

}

public int Test.getCount() {
return count;

}

pointcut uniqueLog(Test t, String s) :
call(public void helloWorldUnique(String)) &&
args(s) &&
target(t);

before(Test t, String s) : uniqueLog(t, s) {
t.incCount();

System.out.println("Count:" + t.getCount());
}

}

Listing 4.8 Our inter-type declarations aspect code.

The aspect code in Listing 4.8 includes a new designator called target in the point-
cut definition. The target designator is used to provide access to the target object
of the method call public void helloWorldUnique(String). The code for providing
access to the object is basically the same as the code for accessing the join point’s
arguments. The primary difference is the addition of the target designator. Notice
the order of the object and parameter in both the pointcut and the advice defini-
tions. The order must be the same between the two definitions.

Within the advice code, the target object is accessed using the variable defined
in the pointcut and advice--t in the case of our example in Listing 4.9. Since the
aspect has added the count integer variable to the Test class as well as appro-
priate accessor functions, it can access the variable as needed and yet maintain
the modularity of the Test class.

The Test class code, shown in Listing 4.9, includes several calls to the
helloWorldUnique() method to illustrate the use of the added vector.

Implementing AspectJ46

class Test {
public void helloWorld() {

System.out.println("Hello World");
}

public String helloWorldReturn() {
return new String("Hello World");

}

public void helloWorldUnique(String name) {
System.out.println("Hello, " + name);
}

public static void main(String args[]) {
Test test = new Test();

test.helloWorldUnique("Joe");
test.helloWorldUnique("Sam");
test.helloWorldUnique("Fred");

}
}

Listing 4.9 Our Test class code.

The output from the Test class and its aspect is as follows:

Count: 1

Hello, Joe

Count: 2

Hello, Sam

Count: 3

Hello, Fred

The aspect was able to successfully add code to the Test class, and the integer
and its associated accessor function were used to display the number of times
the helloWorldUnique() method was called.

Aspect Granularity

Looking back at the last primary example code in Listing 4.9 and the various
aspects defined in this chapter, you note that each time new methods are added
to the primary code, the aspect code also has to change. This is because we
based our join points on the calls to methods that contained the
System.out.println() method call instead of on the call to the println() method
itself. Although this doesn’t seem like a big deal, it causes us more work when
additional classes and methods are added to the primary code.

Let’s assume we still have our crosscutting concern that dictates we need to log
all output calls. If we use our previous method of defining join points and point-
cuts, we need to write an aspect as shown in Listing 4.10.

Aspect Granularity 47

public aspect MultiPoint {

pointcut logBasic() : call(public void helloWorld());

pointcut logReturn() : call(public String helloWorldReturn);

pointcut logUnique() : call(public void helloWorldUnique(String));

pointcut logAll() : logBasic() ||

logReturn() ||

logUnique();

before() : logAll() {

//log to database

}

}

Listing 4.10 A multiple join point aspect.

In Listing 4.10 we take some liberty by combining several join points into a
single pointcut using the OR operator. If we add a new method that uses a
println() method call, we have to add another join point definition to the code
and append it to the pointcut definition. This approach isn’t very efficient.

Fortunately, AspectJ is powerful and allows us to define a join point based on
calls to methods in packages we didn’t write ourselves. Consider the aspect
shown in Listing 4.11.

Implementing AspectJ48

public aspect SinglePoint {

pointcut logPrintln() : call(* System.out.println(..));

before() : logAll() {

//log to database

}

}

Listing 4.11 A single join point aspect.

In the new aspect, the join point is now a call to the System.out.println()
method regardless of the type or number of parameters to the method call. If
we add another method to the primary code to satisfy a new concern, our
aspect automatically picks up any calls to the println() method in the new code.
This is a tremendous development savings—provided by the power contained
in the AOP paradigm and the AspectJ language.

AspectJ Compiler Functionality

The AspectJ compiler is built to allow the use of aspects in a variety of circum-
stances regardless of whether or not the source code is available to the devel-
oper. Suppose you’d like to add an aspect to code contained within a JAR file,
or you’d like to package a useful aspect into its own JAR file for use by other
developers. The compiler allows for these types of scenarios. In this section, we
show you how to:

■■ Specify source directories

■■ Weave with JARs

■■ Specify output to a JAR

■■ Create and use aspect libraries

■■ Compile without weaving

■■ Use incremental compiling

Specifying Source Directories
When you’re developing a software project, it is customary to separate the mod-
ules or objects into different files. This separation can be extended to the files
themselves, whereby groups of files are placed in different directories based on
their usage. For example, we might build an application that has a GUI and
includes network and encryption components. We could place the files for each
in these directories:

TE
AM
FL
Y

Team-Fly®

/development/project1/gui

/development/project1/network

/development/project1/encryption

To compile the files, we must pass all the code to the AspectJ compiler. We
accomplish this by using the –sourceroots compiler flag and separating the
directories with a delimiter. On UNIX, we’d compile the directories with the
command

ajc –sourceroots /development/project1/gui:

/development/project1/network:/development/project1/encryption

The compiler moves into each directory and compiles the code found in the
directories. As of this writing, all files in the specified directories with exten-
sions of .java and .aj are automatically compiled.

Under UNIX, the delimiter for separating the directories is the : (colon). On a
Windows machine, the delimiter is a ; (semicolon).

Weaving with JARs
The 1.1 release of AspectJ broke with the past 1.0 version by performing
all weaving of aspects using byte code instead of at the source level. This
means an aspect can be written and applied to binary code even if the source
code isn’t available. The most common scenario where binary code will be
weaved with an aspect is when a JAR file exists with the compiled .class files.

Consider the following two snippets of code:

public class GUI1 {

public GUI1() {

init();

}

private void init() {}

}

public class GUI2 {

public GUI2() {

init();

}

private void init() {}

}

Using another Java compiler, the two classes are compiled and added to a JAR
file called gui.jar:

javac GUI1.java GUI2.java

jar –cf gui.jar GUI1.class GUI2.class

AspectJ Compiler Functionality 49

Let’s further assume that we have an aspect defined to match on the init()
methods:

public aspect InitAspect {
pointcut outputLog() : execution(private void init());
before() : outputLog() {

System.out.println("GUI classes Init() method - log to
console");

}
}

We also need a Driver object, which could be defined as

public class Driver {
public static void main(String[] args){

GUI1 gui1 = new GUI1();
GUI2 gui2 = new GUI2();

}
}

We want to weave the aspect defined earlier into the gui.jar file as well as
include the Driver class so we can execute the code. The following command
does the work:

ajc –injars gui.jar Driver.java InitAspect.aj

The result will be four files:

GUI1.class
GUI2.class
Driver.class
InitAspect.class

To accomplish the weaving into JAR files, we use the –injars flag. This flag tells
the compiler to pull the .class files stored in the specified JARs and use them in
the weaving with any provided aspects. Multiple JAR files are passed to the
compiler by separating the JARs with : (in UNIX) or ; (in Windows).

NOTE
The AspectJ compiler assumes and requires that aspects be woven into the code once.
Therefore, JAR files that have already been woven should not be passed to the com-
piler for a second pass with a new aspect.

Specifying Output to a JAR
It is possible to direct the output from the AspectJ compiler into a JAR file. Con-
sider our earlier example. Suppose we want to weave the InitAspect into the
gui.jar file and place the results into a new JAR called weavedgui.jar. The fol-
lowing command does the job:

ajc –injars gui.jar –outjar weavedgui.jar InitAspect.aj

Implementing AspectJ50

The JAR weavedgui.jar contains the classes GUI1.class, GUI2.class, and
InitAspect.class all weaved together. Note again that the new JAR file cannot be
used in a further AspectJ compile.

Creating and Using Aspect Libraries
Using JAR files creates a more modular and easy-to-handle system. The files
also allow components to be shared and used in other projects. When aspects
are created and compiled, they can also be combined into a JAR file using the
–outjar option. For example, we might have a directory called aspects where
only source code for aspects is located. This directory can be compiled and a
new JAR file built with this command:

ajc –sourceroots aspects –outjar aspects.jar

The aspects.jar file contains all the aspects ready to be woven into the system
code. Let’s say the system code is located in a directory called code. The fol-
lowing command compiles the system, weaves in the aspects contained within
the aspects.jar file, and produces a final JAR:

ajc –aspectpath aspects.jar –sourceroots code –outjar system.jar

This compile command uses a new flag called –aspectpath. This flag is designed
to pick up a JAR file containing aspect byte code to be weaved with other Java
code. The –sourceroots flag is used to pull all the source code within the code
directory. The two pieces of code are weaved and the output placed in a JAR
file called system.jar.

Impeding Weaving
As a convenience function, the AspectJ compiler can be used as a traditional
Java compile where the weaving activity is suppressed. The suppression is
accomplished by using the –noweave flag. The classes produced by the com-
piler when weaving is suppressed can be passed back through the compiler for
weaving at a later time.

Using Incremental Compiling
One of the requested options for the AspectJ compiler between versions 1.0 and
1.1 was support for incremental compiling. The compiler now supports incre-
mental compiling through both the command-line version and the various IDE
plug-ins presented in Chapter 11, “Using AspectJ Tools.”

To use incremental compiling, we need to add the –incremental flag to the com-
pile command line, and the –sourceroots option must also be present. The
–incremental flag tells the compiler to perform incremental compiling on the

AspectJ Compiler Functionality 51

directories specified in –sourceroots. For example, we can perform incremen-
tal compiling on the three directories mentioned earlier with the following
command:

ajc –incremental –sourceroots /development/project1/gui:

/development/project1/network:/development/project1/encryption

The compiler performs an initial compile of all the source code and then waits
for console input before attempting an incremental compile. The incremental
option can also be used with –injars, as shown in Figure 4.1.

Implementing AspectJ52

Figure 4.1 Incremental compiling with a JAR file.

As shown in Figure 4.1, there are three directories: one that contains the appli-
cation driver source code, one that contains the system aspect and JARs, and
one that contains a JAR file. By combining the flags, we ensure that all of the
code is compiled; the user is then prompted to press a key to perform an incre-
mental compile.

What’s Next

In this chapter, we looked at all of the major pieces necessary for the creation
of a component application and the AspectJ code necessary to support those
concerns that crosscut the primary concerns of the system. In the next chapter,
we dive into the join points and learn how they can be referenced in an AspectJ
aspect.

Once you become familiar with the concepts surrounding AOP (aspect-
oriented programming) and using the AspectJ language, it becomes
clear that one of the most important parts of the paradigm is the join

point. The join point is a well-defined “point” in the execution of a component
application. As discussed in the paper “An Overview of AspectJ,” the team at
PARC went through a number of different join point models before ending up
with a model based on well-defined execution points. In this chapter, we
explore the concept of a join point in detail and provide several working exam-
ples of how to indicate (using AspectJ) the join points upon which crosscutting
should occur. The topics in this chapter include:

■■ The dynamic join point model

■■ AspectJ join points

■■ Signatures

■■ Patterns

■■ Reflections

■■ Join point examples

The Dynamic Join Point Model

To illustrate what join points are and how they are used in writing AspectJ
programs for crosscutting a component application, let’s use a simple component
class. We use this same class throughout this chapter to provide join point

AspectJ Join Points

C H A P T E R 5

53

examples. Figure 5.1 shows a class hierarchy that implements a hierarchy for
products. The Product class is a high-level class containing attributes for the
product price. The DVD class represents a DVD and extends Product. The Boxset
class extends Product and encapsulates some number of DVD products. Each
class has setter and getter methods, and the DVD/Boxset class has a constructor.
Listing 5.1 contains the code for the various classes represented in Figure 5.1.

Of particular importance are the count and location attributes in both DVD and
Boxset. These attributes and associated methods are used to track product. In
themselves, these attributes and methods don’t have anything to do with the fun-
damental DVD and Boxset product. They represent a concern, inventory han-
dling, outside the scope of either class. The concern is crosscutting the core
implementation of the classes. As we all know, there are always several ways to
code a problem. Some argue that inventory handling should be a primary concern
and thus coded with the component language and potentially as part of the Prod-
uct class. However, I contend that a product doesn’t contain inventory informa-
tion. A product is an entity that contains attributes such as price, title, and size.

AspectJ Join Points54

Product

double price

setPrice (double)

DVD

String title
int count
String location

public DVD(String)
public void setCount(int)
public int getCount()
private void setLocation(String)
private String getLocation()
public void setStats(String int)

Boxset

int totalCount
Vector includedDvds
String location
String title

public Boxset(String)
public void add(DVD)
private void setLocation(String)
private String getLocation()

1
*

Figure 5.1 Our sample class hierarchy.

public class Product {

private double price;

Listing 5.1 Our sample class code. (continues)

The Dynamic Join Point Model 55

public void setPrice(double inPrice) {

price = inPrice;

}

}

public class DVD extends Product {

private String title;

private int count;

private String location;

public DVD(String inTitle) {

title = inTitle;

}

public void setCount(int inCount) {

count = inCount;

}

public int getCount() {

return count;

}

private void setLocation(String inLocation) {

location = inLocation;

}

private String getLocation() {

return location;

}

public void setStats(String inLocation, int inCount) {

setLocation(inLocation);

setCount(inCount);

}

}

import java.util.Vector;

public class Boxset extends Product {

private int totalCount;

private Vector includedDvds;

private String location;

private String title;

public Boxset(String inTitle) {

Listing 5.1 Our sample class code. (continues)

AspectJ Join Points56

includedDvds = new Vector();

totalCount = 0;

title = inTitle;

}

public void add(DVD inDvd) {

inDvd.setStats(location, 1);

includedDvds.add(inDvd);

totalCount++;

}

public void setLocation(String inLocation) {

location = inLocation;

}

public String getLocation() {

return location;

}

}

Listing 5.1 Our sample class code. (continued)

We use the defined classes in the following snippet of code to show how the
join points are detailed throughout the DVD class:

DVD dvd1 = new DVD("Star Wars");

DVD dvd2 = new DVD("Empire Strikes Back");

DVD dvd3 = new DVD("Return of the Jedi");

Boxset set = new Boxset("StarWars Trilogy");

set.setTitle("Great DVD Store");

set.add(dvd1);

set.add(dvd2);

set.add(dvd3);

The code begins with the creation of three DVD objects and one Boxset object.
All the objects have their title attribute set through the constructor of each indi-
vidual object. Figure 5.2 illustrates the creation of all the objects along with an
execution path for the creation of the Boxset object. The join points for the
creation of the Boxset object are as follows:

1. A constructor call join point for the call made to create the Boxset object

2. A constructor call reception (not a join point in AspectJ but noted)

3. A constructor execution join point for when the code within the construc-
tor is invoked

4. A constructor call for the creation of the Vector object within the Boxset
constructor

5. A constructor call reception join point for the creation of the Vector object

6. A constructor execution join point for the Vector object

7. A field set join point for setting the totalCount attribute

8. A field set join point for setting the title attribute

Although we haven’t shown them here, the Vector object could have join points
defined against it as well. Just because we don’t have the source code doesn’t
mean we cannot match the methods/constructors and other join points with the
object.

The Dynamic Join Point Model 57

4
3

2

1

5 6

7
8

Boxset boxset = new Boxset();

Figure 5.2 The execution path for creating the Boxset object.

The point that should be most clear from Figure 5.2 is the number of join points
available in the execution of just a single line of code. At just about any key
location (except for the individual statements), a join point is available.

In Figure 5.3, we see the execution path for a line of code in the previous exam-
ple, set.add(dvd1);, which adds a whole set of additional join points. The points
are as follows:

1. A method call join point for the call to the add() method

2. A method call reception join point for the beginning of code execution
within the add() method

3. A method execution join point

4. A method call reception join point for the call to the DVD setStats()
method

5. A method execution join point for the beginning of code execution with
the setStats() method

6. A method call join point for the call to the DVD setLocation() method call

7. A method execution join point for the beginning of code execution within
the setLocation() method call

8. A field set join point for setting the location attribute

9. A method call reception join point for after code execution in the
setLocation() method call

10. A method execution join point for the call to the DVD setCount() method
call

11. A field set join point for setting the count attribute

12. A method call join point for the call to the add() method of the Vector

13. A field set join point for the totalCount join point.

AspectJ Join Points58

12
4

5

9

1

10

7

13

32

6

8

11

Figure 5.3 The execution call path for the add() method.

We used some of the specific join points made available in AspectJ in our exe-
cution call paths. Note that not all available join points are used in a typical
application, nor are all types of designators used. In the next section, we exam-
ine the specific join points available in AspectJ.

AspectJ Join Points

The current version of AspectJ, 1.1, defines a host of join points available to be
triggered. These join points are:

TE
AM
FL
Y

Team-Fly®

Method call—A method call join point is defined when any method call is
made by an object or a static method if no object is defined, as in the case
of the main() method. This join point is defined within the calling object or
application. Consider this code example based on the classes we defined
earlier:

public static void main(String args[]) {

Boxset set = new Boxset("StarWars Trilogy");

set.setTitle("Great DVD Store");

}

A join point set on the set.setTitle(“Great DVD Store”); method is triggered
in the context of main() as opposed to the Boxset object. Consider the fol-
lowing pointcut:

pointcut TitleChange() : call(public void setTitle(String)) &&

target(Boxset);

This pointcut defines a group containing a join point defined by a call to the
setTitle(String); method. Any place in the code where a call is made to set-
Title(String), the pointcut is triggered as long as the target of the call is a
Boxset object.

Constructor call—A constructor call join point is defined when a con-
structor is called during the creation of a new object. This join point is
defined within the calling object or application if no object is defined. Con-
sider this code example:

public static void main(String args[]) {

Boxset set = new Boxset("StarWars Trilogy");

}

A join point set on the new statement triggers a constructor call join point
based on the main() method. Here’s a pointcut for this example:

pointcut constructSet() : initialization(Boxset.new(String));

Method call execution—A method call execution join point is defined
when a method is called on an object and control transfers to the method.
The join point is triggered based on the object receiving the method call
before any of the code within the method is executed. It is assured that the
join point will be triggered upon transfer of execution to the method just
before the method code begins to process. For example, consider the fol-
lowing code example:

public static void main(String args[]) {

Boxset set = new Boxset("StarWars Trilogy");

set.setTitle("Great DVD Store");

}

In this example, a method call execution join point could be defined on the
setTitle(String) method. When the call is made to the method through the

AspectJ Join Points 59

set object, the join point will be triggered based on the set object just before
the setTitle() method is to be executed. A corresponding pointcut would be

pointcut titleReception() :

execution(public void setTitle(String));

Constructor call execution—A constructor call reception join point is
the same as the method call reception join point except we are dealing with
constructors. The join point is triggered before the constructor code starts
to execute.

Field get—A field get join point is defined when an attribute associated
with an object is read. In our example, a call to the method getLocation()
causes a field get join point to be triggered because the attribute is
accessed, not because of the actual getLocation() method. A corresponding
pointcut would be

Pointcut locationGet() : get(public String DVD.location);

Field set—A field set join point is defined when an attribute associated
with an object is written. In our example, a call to the method
setLocation(String) causes a field set join point to be triggered. A corre-
sponding point would be

Pointcut locationSet() : set(public String DVD.location);

Exception handler execution—An exception handler execution join
point is defined when an exception handler is executed.

Class initialization—A class initialization join point is defined when any
static initializers are executed for a specific class. If there are no static ini-
tializers, there will be no join points.

Object initialization—An object initialization join point is defined when a
dynamic initializer is executed for a class. This join point is triggered after a
call to an object’s parent constructor and just before the return of the
object’s constructor.

Join Point Signatures

By far, one of the most important parts of a join point is the signature. For each
of the different join point types, AspectJ defines specific parts to be included in
the signature:

Method call execution—The format of a method call execution
signature is

<access_type> <return_value> <type>.<method_name>(parameter_list)

For example:

public void DVD.setLocation(String)

AspectJ Join Points60

Constructor call execution—The format of a constructor call execution
signature is

<method_access_type> <class_type.new>(<parameter_list>)

[throws <exception>]

For example:

private DVD.new(String)

private DVD.new(String) throws IOException;

Field get—The format of a field get signature is

<field_type> <class_type>.<field_name>

For example:

double Product.price

Field set—The format of a field set signature is

<field_type> <class_type>.<field_name>

Exception handler execution—The format of an exception handler exe-
cution signature is

<exception_type>

For example:

IOException

Class/object initialization—The format of an object initialization signa-
ture is

<method_access_type> <method_name>(<parameter_list>)

For example:

DVD.new()

As we see later in this chapter, we can define signatures for the join points in an
example program in numerous ways. Unfortunately, at times there is a need to
match more than a single join point with a single signature, as was the case in
Chapter 3, when we needed to match helloWorld and helloWorldUnique.
Instead of writing two separate signatures, we can use wildcards or patterns.

Patterns

Using our example code in Listing 5.1, suppose we have a concern that tells us
to handle the setting of all attributes in a class in a common format. Looking at
the DVD class, we find that there are two set methods: setLocation() and set-
Count(). Using some of the knowledge we have from Chapter 3, we can create
two join points with the code

call(public void setLocation(String)

Patterns 61

and

call(public void setCount(int)

These two join points are based on the setLocation() and setCount() methods,
which are defined as

private void setCount(int inCount) {

count = inCount;

}

private void setLocation(String inLocation) {

location = inLocation;

}

The two join points can be used in a single pointcut by combining the join
points using the || symbol. In this scenario, we could define a pointcut so that a
trigger would occur when the setLocation() or the setCount() method is called.
This certainly works and it isn’t much trouble, but more complex join points or
a larger number of join points could get messy.

Type Name Patterns
Fortunately, AspectJ allows the use of name patterns through the * character.
The * is actually a special type name and can be used to match all types, includ-
ing primitive types as needed. In addition, the * can be used to match zero or
more characters except for “.”. Using this information, we can combine the two
join points into one:

call(private void DVD.set*(*))

Notice the need for two * wildcards. The first wildcard used in the set* portion
tells the system to match all methods that are defined as access private, that
return void, that belong to the DVD class, and that have a method name starting
with the text “set” followed by any number of additional characters (except the
“.”). Based on the earlier code for setLocation() and setCount(), these two
methods would match so far. However, notice that both of the methods have
different parameter types passed to them. Without the second wildcard, this
would cause a problem in the join point. The second wildcard tells the system
to continue matching methods as long as they have a single parameter of any
type. If one of the methods is changed to have zero parameters or more than 1,
the signature will not be triggered on that particular join point because it won’t
match.

In another example, suppose we are interested in all the methods defined
within the DVD class that have a single parameter. The signature is

call(private void DVD.*(*))

AspectJ Join Points62

This signature matches all private methods defined within the DVD class having
a single parameter. This example can be expanded to match all methods regard-
less of access type:

call(* void DVD.*(*))

In this signature, we’ve replaced the access type with a wildcard indicating that
join points within the application should be matched regardless of whether
they are defined as public, protected, or private. Further, we can eliminate the
return type and replace it with a wildcard as well:

call(* * DVD.*(*))

Here we are matching all methods within the DVD class having a single param-
eter. If there is no class type defined in a signature, the system will assume you
mean any class within the application should be used for matching join points.
Next, any class can be used:

call(* * *.*(*))

In this signature, the class type has been replaced with a wildcard. Now all
methods will be matched across all classes used in an example application.
However, in all your examples, a single parameter is matched because of the
wildcard. This signature will not match methods with two parameters. An addi-
tional wildcard is available in AspectJ to handle this situation as well as several
others.

AspectJ has a wildcard, “..”, which can be used to match any sequence of char-
acters as well as act as a wildcard for parameter counts within matching para-
meters. Take, for example, the following methods:

private void setCount(int inCount) {

count = inCount;

}

private void setLocation(String inLocation) {

location = inLocation;

}

private void setStats(String inLocation, int inCount) {

setCount(inCount);

setLocation(inLocation);

}

To match all these methods, we can use the following signature:

call(private void DVD.set*(..))

This signature matches all three of the earlier methods, including the one with
two parameters. The “..” wildcard, when not used in the parameter part of a call
or execution join point, can be used to match any sequence of characters that
start and end with a period. As an example of using the “..” wildcard as well as

Patterns 63

matching types within a package, let’s assume there is a package hierarchy
defined as

com.company.department.room.class1

com.company.department.room.class2

com.company.department.room.class3

As we see in the next chapter, a pointcut designator called target is triggered
when a class is a target during execution. There will be times when join points
need to be defined based on specific classes in a package. As a start, we can
specify that a join point be triggered when the class1 class defined earlier is a
target in the execution of a program. The signature might look like this:

target(com.company.department.room.class1)

If we want to target any of the classes within the com.company.department.
room path, we can use this signature:

target(com.company.department.room.*)

This signature matches all three class types: class1, class2, and class3. If we use
the * wildcard (as in the signature we just created), the system assumes that
there will be no types between room and the actual class. What if we want to
match inner class types, such as com.company.department? In that case, we
need to use the “..” wildcard. For example:

target(com.company..*)

This signature matches all class types that begin with the path com.company. If
you know all the possible inner types, you could also write the signature as

target(com.company.*.*.*)

Finally, the wildcards can be used along with package definitions in a signature
like the following example:

call(public * com.company.department.room.*.*(..)

This signature matches all public methods with any number of parameters and
any return type belonging to any class defined in the com.company.
department.room hierarchy. Using our example classes above, this signature
matches any public methods in class1, class2, and class3. Inner classes can also
be part of a signature for a method call join point. For example:

call(private * com.company.department..*(..)

This signature matches all private methods with any return type and part of the
com.company.department package hierarchy. The methods can have any type
and number of parameters.

AspectJ Join Points64

Subtype Patterns
We have seen how a class type can be matched based on a method or a con-
structor. For example, we can match the constructor call join points with the
signature

call(DVD.new(..))

Only constructors for the DVD class are obtained. Now, let’s assume we have
the following class:

public class SpecialEditionDVD extends DVD {

}

The signature defined here will not find the constructors of the SpecialEditionDVD
class. We must create a new signature for this specific purpose. AspectJ includes
a subtype pattern wildcard, +, which allows a hierarchy of types to be matched
instead of just a single class. The signature necessary to match all constructors
in the DVD class as well as any derived classes is

call(DVD+.new(..)

The same subtype pattern can be applied to method join points. For example:

call(public String DVD+.set*(String))

This signature matches all methods that have a name beginning with set

throughout the DVD class hierarchy.

The Throws Pattern
There will be times when a method or constructor must be matched based on
the exceptions it is defined to throw. For example, we might have a method
defined as

public int getInventory(String title) throws PCException8 {

}

While we’ve seen that the call() designator can be used to match the method
based on its access type, return value, name, and parameters, AspectJ 1.1 adds
the ability to extend the matching to the entire signature. Thus, we might create
a join point like

call(public int getInventory(String title) throws PCException8)

The throws clause can take advantage of wildcards as well. For example:

call(public int getInventory(String title) throws *Exception*)

This join point matches methods where the word Exception appears in the
exception class name. The rule behind the match says that the call designator

Patterns 65

will match methods if the matching method or constructor contains any of the
types in the throws clause. In other words, the call designator would match the
following method:

public int getInventory(String title) throws PCException8, RunExcept {

}

The call designator is looking for matching methods where there is at least one
exception that has the Exception string in it, and our new signature has at least
one. We can negate the matching with a ! character. For example:

call(public int getInventory(String title) throws !PCException8)

This designator does match our method because it contains a PCException8
exception.

Type Patterns
Just when creating join points was getting commonplace, another variation was
thrown into the mix. All the previously defined join points can be combined
using logical operators and (&&), or (||) and not (!). Using our last join point as
an example, suppose we’re interested in the subtypes of the DVD class hierar-
chy but not the DVD class itself. To match the constructors in the subtypes only,
we can use the following join point:

call((DVD+ && ! DVD).new(..))

Note the use of the grouping brackets before the new() method. This signature
begins by saying we are interested in matching all DVD+ subtypes, including
the DVD type with DVD+. The signature continues with an AND logical opera-
tor. Thus we are interested in all DVD subtypes, including DVD as well as NOT
DVD. Therefore, all subtypes of DVD will be matched but not DVD itself, which
is the normal operation for DVD+. Once the type matching is complete, the rest
of the signature is included to determine the entire join point matching criteria.
All constructors of DVD subtypes will be matched, but not those for the DVD
type itself.

There is virtually no limit to the number of logical combinations that you can
create. However, the placement of the brackets is very important and dictates
how you set up the join point combination.

Reflection

When a join point is triggered, AspectJ can give the code access to some of the
context of the join point. The access is provided through three classes:

AspectJ Join Points66

thisJoinPoint—This variable is bound to the join point object and has a
parent type of org.aspectj.lang.JoinPoint.

thisJoinPointStaticPart—This variable is bound only to a limited amount
of the join point object and doesn’t require memory allocation when used.

thisEnclosingJoinPointStaticPart—This variable is bound to only
the static part of the join point object and has a parent type of
org.aspectj.lang.Join point.StaticPart.

Through these variables, a wide variety of information becomes available. For
the following list of methods, consider a join point defined as

call(public void setCount(int))

This join point is based on the DVD class defined earlier in the chapter.

thisJoinPoint Methods
The methods available in the thisJoinPoint object are as follows:

String toString();—This method returns a string representation of the
join point. Using this method and the join point from our earlier example
produce the string

call(void DVD.setCount(int))

Notice the addition of the DVD class type to the join point string returned
from the method. In the definition of the join point, an implied * wildcard is
assumed. A full signature is public void *.setCount(int), thus matching a set-
Count() method regardless of class type.

String toShortString();—This method returns a short string representa-
tion of the join point. The output of this method using the above join
point is

call(DVD.setCount(..))

String toLongString();—This method returns an extended representation
of the join point. For example:

Call(public void DVD.setCount(int))

Object getThis();—This method returns the currently executing object
associated with the join point. As the source code for AspectJ suggests, this
method shouldn’t be used because the this() pointcut designator is more
efficient and offers better typing support. The object is made available dur-
ing the execution of a method. Note that a join point object is available only
when you’re using a method or constructor execution join point. The fol-
lowing code uses the method and produces the listed output:

DVD dvd = (DVD)thisJoinPoint.getThis();

System.out.println(dvd.toString());

Reflection 67

The output is

DVD@172e08

which shows that the enclosing join point object was obtained successfully.

Object getTarget();—This method returns the target object associated
with a join point. The target object is available on join points such as the
method call reception or constructor call reception join points. When a join
point or method is called, the getTarget() method returns the object. Note
that the target designator should be used for more efficient access to the
target object.

Object[] getArgs();—This method returns the actual arguments to the
join point. The getArgs() method should be used on the join points associ-
ated with execution of a method or constructor. For example, consider the
following code based on the join point defined earlier:

Object[] args = thisJoinPoint.getArgs();

for(int i=0;i<args.length;++i) {

System.out.println("Argument:" + i + " is " + args[i]);

}

The result of this code when the application has a statement,
dvd.setCount(1);, is

Argument:0 is 1

Signature getSignature();—This method returns an object representing
the signature at the join point. The Signature object contains several of its
own methods:

String getName()—This method returns the identifier part of the
signature.

int getModifiers()—This method returns the modifiers of the signature
represented as an integer. The integer returned can be cast to a
java.lang.reflect.Modifier and used to determine what type of access modi-
fier the join point uses.

The following code shows an example of using both the getName() and
getModifiers() methods:

Signature signature = (Signature)thisJoinPoint.getSignature();

System.out.println(signature.getName());

System.out.println(java.lang.reflect.Modifier.toString(

signature.getModifiers()));

System.out.println("isPublic : " +

java.lang.reflect.Modifier.isPublic(

signature.getModifiers()));

System.out.println("isPrivate : " +

java.lang.reflect.Modifier.isPrivate(

AspectJ Join Points68

TE
AM
FL
Y

Team-Fly®

signature.getModifiers()));

System.out.println("isProtected : " +

java.lang.reflect.Modifier.isProtected(

signature.getModifiers()));

The output produced by this code is

class DVD

isPublic : false

isPrivate : true

isProtected : false

In addition to the Signature class, the output of the getSignature() method
can be cast to a more specific subtypes as defined in
org.lang.aspectj.reflect. These subtypes, which are discussed in more detail
in Chapter 6, are

■■ AdviceSignature

■■ CatchClauseSignature

■■ CodeSignature

■■ FieldSignature

■■ InitializerSignature

■■ MemberSignature

■■ MethodSignature

SourceLocation getSourceLocation();—This method, associated with
the thisJoinPoint object, returns an object from the SourceLocation class
representing the caller of the join point. If there is no object, the method
will return null. Within the SourceLocation class is the method Class
getWithinType();, which is called to obtain the calling class.

Consider the following code:

SourceLocation sl = thisJoinPoint.getSourceLocation();

Class theClass = (Class)sl.getWithinType();

System.out.println(theClass.toString());

This code produces the following output because the call to the method set-
Count() occurs within the DVD class:

class DVD

String getKind();—This method returns a String representing the type of
join point that has been triggered. For example:

System.out.println(thisJoinPoint.getKind());

This code produces the following output because the join points were
defined with a call pointcut designator:

method-call

Reflection 69

StaticPart getStaticPart();—This method returns the static part of the con-
text as described in the next section.

thisJoinPointStaticPart Methods
The thisJoinPointStaticPart class is defined as a helper class to thisJoinPoint.
Through this class, only the static parts of the context are available. The static
part can be accessed using the getStaticPart() method described earlier or
through the thisJoinPointStaticPart object. The methods available in the static
part are

Signature getSignature();

SourceLocation getSourceLocation();

String getKind();

String toString();

String toShortString();

String toLongString();

The functionality for these methods is identical to those listed in the
thisJoinPoint section.

Example Join Points

In this final section, we present code snippets for each of the major join point
types along with example join points.

Method Call Reception and Execution
The method call reception join point is based on the assumption that a method
associated with an object will be called by some other method. As we see in the
next chapter, method call reception join points are primarily used in the call()
pointcut designator. To get an idea of how to use these join points, consider the
Stack class in Listing 5.2.

AspectJ Join Points70

public class Stack {

static final int DEFAULT_CAPACITY=5;

private Object [] theArray;

private int topOfStack;

public Stack() {

theArray = new Object[DEFAULT_CAPACITY];

topOfStack=-1;

Listing 5.2 A method join point example stack. (continues)

Example Join Points 71

}

public Stack(int capacity) {

theArray = new Object[capacity];

topOfStack=-1;

}

public void push(Object x) {

if (topOfStack+1 == theArray.length)

doubleArray();

topOfStack++;

theArray[topOfStack]=x;

}

public void pop() throws Exception {

if (isEmpty())

throw new Exception("Stack pop");

topOfStack--;

}

public Object top() throws Exception {

if (isEmpty())

throw new Exception("Stack top");

return theArray[topOfStack];

}

public boolean isEmpty() {

return topOfStack==-1;

}

public void clear() {

topOfStack=-1;

}

public int getSize() {

return topOfStack+1;

}

private void doubleArray() {

int oldArraySize = theArray.length;

Object [] biggerArray = new Object[oldArraySize*2];

for (int i=0; i<oldArraySize; i++){

biggerArray[i]=theArray[i];

theArray=biggerArray;

}

}

Listing 5.2 A method join point example stack. (continues)

AspectJ Join Points72

public static void main(String args[]) {

Stack stack = new Stack();

stack.push(new Integer(4));

try {

System.out.println(stack.top());

} catch(Exception e) { System.exit(1); }

stack.push(new Integer(5));

stack.push(new Integer(6));

try {

System.out.println(stack.top());

stack.pop();

} catch(Exception e) { System.exit(1); }

System.out.println("Empty? : " + stack.isEmpty());

}

}

Listing 5.2 A method join point example stack. (continued)

Running the code in Listing 5.2 produces the following output:

4

6

Empty? : false

Let’s put together a few situations and determine what the method call join
points should look like.

Situation: All stack manipulations should be logged to the console.

Solution: Implement a join point that takes into consideration all the
methods in the Stack class but only the Stack class. The join point might look
like this:

call(public * Stack.*(..))

When put into a simple aspect (as shown in Chapter 3) and using the thisJoin-
Point.toLongString() method, the following output is displayed to the console:

call(public static void Stack.main(java.lang.String[]))

call(public void Stack.push(java.lang.Object))

call(public java.lang.Object Stack.top())

call(public boolean Stack.isEmpty())

4

call(public void Stack.push(java.lang.Object))

call(public void Stack.push(java.lang.Object))

call(public java.lang.Object Stack.top())

call(public boolean Stack.isEmpty())

6

call(public void Stack.pop())

call(public boolean Stack.isEmpty())

call(public boolean Stack.isEmpty())

Empty? : false

Notice the output from just the Java application is intermixed with output from
the toLongString() method. The output can be analyzed against the code in
main() to determine if it is doing what it should be doing. This can be very use-
ful when your code is doing more than you expect it to be doing.

Situation: The push operation appears to be having problems with the top of
the stack. You want to know the size of the stack just before a new object is
forced on top of it.

Solution: Narrow the scope of the method call join point to only the push()
method and obtain the target object of the call. The following join point code
will do the trick:

pointcut field() : call(* Stack.push(..));

before() : field() {

Stack stack = (Stack)thisJoinPoint.getTarget();

System.out.println(thisJoinPoint.toLongString() +

" Stack Size:" + stack.getSize());

}

Ignoring most of the code in this example, we see the join point has been nar-
rowed to just the Stack.push methods that accept any number of parameters
and types. When a join point is found, the code uses the thisJoinPoint object to
obtain the signature of the method triggered by the join point as well as the tar-
get object that will be handling the join point method. The output produced
using the same main() method in Listing 5.2 is as follows:

call(public void Stack.push(java.lang.Object)) Stack Size:0

4

call(public void Stack.push(java.lang.Object)) Stack Size:1

call(public void Stack.push(java.lang.Object)) Stack Size:2

6

Empty? : false

The output produced shows the full join point method, which could be helpful
when there are multiple overloaded methods of the same name. The code could
have been calling the wrong method. Following the method name is the size of
the stack before the new value is pushed onto it.

Situation: The join point could be further narrowed to just when the Stack is
doubled in size.

Solution: Build a join point specifically for the doubleStack() method. The fol-
lowing join point should do the trick:

call(private void Stack.doubleArray());

Example Join Points 73

However, when this join point is used along with thisJoinPoint to display the
actual method call, nothing appears on the screen based on the code in Listing
5.2. That shouldn’t be the case since the signature is accurate. However, notice
the default size of the stack. Either it’s greater than the number of items pushed
onto the stack, or the doubleArray() method was never executed. When you’re
creating join points, it’s important to realize that an accurate signature doesn’t
mean much if the method is never called.

NOTE
In order for the AspectJ compiler to recognize and match call join points, you must
present the code where the call is made to the compiler in source-code format and
not as a CLASS or JAR file.

Constructor Call Reception/Execution
and Object Initialization

The next class of join points we discuss is the constructor call reception. This
join point is matched when a call is made to a constructor. In the course of a
normal application, the constructor is called many times, not just by your code
but also by the system when a temporary object is needed or a copy must be
created.

Situation: You are only interested in the constructors of a class.

Solution: Calling a constructor isn’t the same as calling a method because the
object hasn’t been created yet. As you know, a special pattern is used to identify
a constructor join point. This join point can be used for any and all constructors
in a class:

call(Stack.new(..))

Situation: You are only interested in the default constructor of a class.

Solution: For this join point, no parameters can be allowed in the signature
part of the join point:

call (Stack.new())

Situation: You want to see the constructor that accepts an integer parameter.

Solution: Use a join point with the integer parameter specified:

call(Stack.new(int))

Situation: Extensive memory use is occurring in your application, and you
suspect that the constructor is being called to create an extraordinary number
of objects.

AspectJ Join Points74

Solution: Build a join point that will match all constructors for your class. For
the Stack class in Listing 5.2, the following join point will do what is needed.
Also included in this join point is an introduction so a running count of objects
can be kept:

private int Stack.objectCount = 0;

pointcut field() : execution(Stack.new(..));
before() : field() {

Stack stack = (Stack)thisJoinPoint.getTarget();
stack.objectCount++;
System.out.println("Object Count = " + stack.objectCount);

}

For this join point, the new() operator is specified in order to match appropri-
ate constructors of the class. The use of a count variable lets us know how
many objects are created. The output using this join point is

Object Count = 1
4
6
Empty? : false

NOTE
If the instantiation of the object is presented to the AspectJ compiler as a binary
(either CLASS or JAR), the call to the constructor won't be matched. You must pass the
source code for the instantiation to the compiler for the match to be successful.

Field Get/Set
Nearly all classes have attributes, and those attributes define the state of an
object once instantiated. The state of the object changes when the attributes
are written with different values. During the course of an application’s execu-
tion, keeping track of when the attributes change can be important. However,
at the same time, it might not be important to know what method is changing
the attribute. For these situations, we can use the field get/set join points.

Situation: For the Stack class, one of the most widely used attributes is
theArray, which holds the values in the stack. Each time the theArray attribute
is set, we want to know it.

Solution: Add a join point against the attribute in question. For example, the
following snippet of code produces a message with the size of the array
attribute each time it is accessed:

pointcut field() : set(private Object [] Stack.theArray);

before() : field() {

System.out.println("Attribute theArray set");

}

Example Join Points 75

When this join point is used against our example Stack class, the following out-
put is produced:

Attribute theArray set

4

6

Empty? false

What’s important to notice when using an array join point is the fact that each
write to the cells of the array is not a trigger for the join point. Only when a
value is assigned to the actual variable does the join point get triggered.

Situation: At the same time, each of the reads of an attribute can be triggered
through a join point. We are interested in identifying when the top of the stack
indicator is read by our code.

Solution: We can create a specific join point against the topOfStack attribute.
For example:

pointcut field() : get(private int Stack.topOfStack);

before() : field() {

System.out.println("Attribute topOfStack read");

}

The output produced when this join point is used against our stack code is as
follows:

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

4

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

6

Attribute topOfStack read

Attribute topOfStack read

Attribute topOfStack read

Empty? : false

Clearly the topOfStack attribute is read quite extensively during the operation
of our code. By analyzing the access to the attributes of our objects, we can
identify patterns as well as potential efficiency problems.

AspectJ Join Points76

Exception Handler Execution
AspectJ allows the capturing of exceptions using exception handler execution
join points. Capturing exceptions can be useful for activities such as logging,
where all exceptions are written to a log file regardless of whether or not they
cause the application to end. Here’s an example of a join point for an exception
in our Stack class:

pointcut field() : handler(Exception);

before() : field(s) {

System.out.println("Exception Thrown");

}

The Stack class main() was changed to attempt a pop() operation on an empty
stack. This action throws an exception and causes the join point to grab it, pro-
ducing the following output:

4

5

Empty? : true

Exception Thrown

Class Initialization
When a new object is instantiated, unique static code is executed to facilitate
the creation. The developer isn’t generally involved in writing the static code,
but a join point can be created against it. The static class initialization code will
most likely execute only a single time regardless of the number of objects
instantiated from the class. For example:

pointcut field() : staticinitialization(Stack);

before() : field() {

System.out.println(thisJoinPoint.getSignature());

}

When the stack code is executed, a single stack object is created. The output
shows the join point captured:

Stack.<init>

4

5

Empty? : true

If another stack statement—such as Stack stack2 = new Stack(45);—is added
to the stack code, the join point will not be captured a second time.

Example Join Points 77

What’s Next

This chapter has focused on the many different variations of join points that
can be defined using AspectJ. In addition, we examined the reflective charac-
teristics available in AspectJ through the thisJoinPoint object and its related
classes. In the next chapter, we use the join points in the definition of pointcuts.
Pointcuts are the next step in defining code for implementing crosscutting
concerns.

AspectJ Join Points78

TE
AM
FL
Y

Team-Fly®

In the previous chapter, you learned all about the join point. As you know,
the join point is a well-defined location within the execution of an applica-
tion. This might be a method call or an attribute within one specific class or

all classes. By itself, the join point isn’t of much use, but when combined with a
designator and a pointcut definition, the code begins to show how crosscutting
concerns affect the execution of the primary application. In this chapter, we
cover the AspectJ construct called the pointcut and all its intended purposes.
The specific topics include:

■■ Building a pointcut using the previously defined join points

■■ Using pointcut designators

■■ Combining designators

■■ Understanding pointcut reflection

Introducing Our Three Classes

For the examples in this chapter, we use three classes. The first, called Product,
represents a high-level top class. The code for the Product class is shown in
Listing 6.1. A second class, called DVD, extends the Product class and provides
implementation for a DVD product. Listing 6.2 contains the code for the DVD
class. The third class, called Boxset, is designed to contain any number of DVD
objects and represent them as a boxed set. The code for the Boxset class is
shown in Listing 6.3. Refer back to Chapter 5, Figure 5.1, to see the UML class
diagram for the represented classes.

AspectJ Pointcuts

C H A P T E R 6

79

AspectJ Pointcuts80

public class Product {

private double price;

public Product() {

price = 0.0;

}

public double getPrice() {

return price;

}

public void setPrice(double inPrice) {

price = inPrice;

}

public static void main(String args[]) {

Product product = new Product();

product.setPrice(5.00);

}

}

Listing 6.1 The Product class.

public class DVD extends Product {

public static final String encoding = "region 0";

private String title;

private int count;

private String location;

public DVD(String inTitle) {

super();

title = inTitle;

}

private void setCount(int inCount) {

count = inCount;

}

public int getCount() {

return count;

Listing 6.2 The DVD class. (continues)

Introducing Our Three Classes 81

}

public void setTitle(String inTitle) {

title = inTitle;

}

public String getTitle() {

return title;

}

public void setLocation(String inLocation) {

location = inLocation;

}

public String getLocation() {

return location;

}

public void setStats(String inLocation, int inCount)

throws DVDException {

setLocation(inLocation, 0);

if (inCount == 0) {

throw new DVDException(title);

} else {

setCount(inCount);

}

}

public static void main(String args[]) {

DVD dvd = new DVD("Title");

try {

dvd.setStats("store 1", 1);

} catch(DVDException e) {}

dvd.setLocation("New Store", 0);

dvd.setCount(1);

System.out.println("Location and count = " +

dvd.getLocation());

dvd.setTitle("Better Title");

System.out.println("Title = " + dvd.getTitle());

}

}

Listing 6.2 The DVD class. (continued)

AspectJ Pointcuts82

import java.util.Vector;

public class Boxset extends Product {
private int totalCount;
private Vector includedDvds;
private String location;
private String title;

public Boxset(String inTitle) {
includedDvds = new Vector();
totalCount = 0;
title = inTitle;

}

public void add(DVD inDvd) {
try {

inDvd.setStats(location, 1);
} catch (DVDException e) {

e.printStackTrace();
}
includedDvds.add(inDvd);
totalCount++;

}

public void setLocation(String inLocation) {
location = inLocation;

}

public String getLocation() {
return location;

}

public static void main(String args[]) {
Boxset boxset = new Boxset("Star Wars");
DVD dvd = new DVD("Return of the Jedi");
boxset.add(dvd);

}
}

Listing 6.3 The Boxset class.

class DVDException extends Exception {

private String title;

public DVDException() {

title = "none";

Listing 6.4 The DVDException class. (continues)

Building Pointcuts 83

}

public DVDException(String intitle) {

title = intitle;

}

public String getTitle() {

return title;

}

}

Listing 6.4 The DVDException class. (continued)

Building Pointcuts

Once the join points for crosscutting concerns have been identified and written,
they need to be put into code using a pointcut. A pointcut is an AspectJ con-
struct designed to identify join points and obtain the context surrounding the
join point. The pointcut is more than just a container for join points; it directly
shows how a concern will crosscut the primary application. The pointcut is
valid across all objects instantiated from the classes, and if you have a large
number of objects, you should anticipate a large number of matches.

The Structure of a Pointcut
We can represent the structure of a pointcut in the same way we’d represent a
method signature in the Java language. Here’s the format of a pointcut:

<pointcut> ::= <access_type> <pointcut_name> ({ <parameters> })

: { designator [&& | ||] };

<access_type> ::= public | private [abstract]

<pointcut_name> ::= { <identifier> }

<parameters> ::= { <identifier> <type> }

<designator> ::= [!]Call | execution | target | args |

cflow | cflowbelow | staticinitialization |

within | if | adviceexecution |

preinitialization

<identifier> ::= letter { letter | digit }

<type> ::= defined valid Java type

As you have already seen in some of our previous examples and in Chapter 8,
you place the pointcut within an aspect construct and use it to match join
points in the code. The access type of the pointcut can be either public or
private (depending on design considerations) and indicates the scope of the

pointcut in the aspect/class. The default access type is package, and thus you
must supply the specific access type needed for the pointcut. After the access
type is the name of the pointcut. This name is a text string used to represent the
pointcut within the aspect/class. The name is analogous to the method name
used in a traditional Java class. Within the context of an aspect or class, all
pointcuts must have a unique name, which means there is no overloading of
pointcuts in AspectJ. If you have to make a small change in a pointcut defini-
tion, you have to create a new pointcut.

The name of the pointcut can contain a number of parameters. These parame-
ters, as we discuss later in this chapter, are used to transfer the context pulled
from a join point. The context can be transferred to either an advice construct
or other join points.

The parameters to the pointcut are followed by a colon and one or more point-
cut designators. Our examples in Chapter 5 showed several of the different des-
ignators, including call and execution. The designator provides a definition
around the join point used in the pointcut. The majority of this chapter covers
the various designators and how they are used to build pointcuts. In order for a
pointcut to have multiple designators, you must use the common logical opera-
tors to create a combination.

Most of the pointcuts defined in this book will be the named variety. Java pro-
vides the ability to create unnamed or anonymous structures. AspectJ offers
this ability as well, in a construct called the primitive pointcut. The primitive
pointcut doesn’t have a name and merely consists of the join point designators.
As we move forward in the chapter, any place where you see a pointcut used
with an advice construct, know that you can replace the pointcut with a primi-
tive pointcut.

Using Designators

As mentioned earlier, the pointcut selects a set of one or more join points to
determine its intended action. When the join point is reached in the primary
application code, the pointcut will be activated and potentially some amount of
code executed. (This code, called the advice, is covered in Chapter 7.) In this
section, we examine each of the possible pointcuts and provide example code
to show how the designator acts in an AspectJ application. All the designators
are written in the following format:

designator ::= designator_identifier(<signature> |

<typePattern> | <pointcut>)

<designator_identifier> ::= Call | execution | target | args |

cflow | cflowbelow | staticinitialization |

AspectJ Pointcuts84

within | if | adviceexecution |

preinitialization

<typePattern> ::= Java class type

<pointcut> - defined above

The “parameter” in the designator is either a join point signature or a join point
class type, or another pointcut. As you may recall, we discussed these parame-
ter types in Chapter 5, but to refresh your memory, a join point signature gen-
erally represents the signature of a method, a constructor in a class, or a type.
There might be a number of different wildcards in the signature, but at some
level the join point signature resembles a method call. In the case of a con-
structor join point, the signature includes the new() call. For a join point class
type, the parameter is the name of a class in the application. You can use wild-
cards with class types as well.

The TypePattern is typically a class in the application with or without wild-
cards. An example would be DVD or PRODUCT+, as discussed in Chapter 5.
Keep in mind that some of the designators require a parameter to be another
pointcut construct, either named or primitive. Throughout the remainder of this
book, you’ll see examples that use these three parameters types.

A Designator Quick Reference
We describe all the designators in detail in the sections that follow, but we’ve
listed them here for quick reference:

execution—Matches execution of a method or constructor.

call—Matches calls to a method or constructor.

initialization—Matches execution of the first constructor to a class.

handler—Matches exceptions.

get—Matches the reference to a class attribute.

set—Matches the assignment of a class attribute.

this—Returns the object associated with a particular join point or limits the
scope of a join point by using a class type.

target—Returns the target object of a join point or limits the scope of a
join point.

args—Exposes the arguments to a join point or limits the scope of the
pointcut.

cflow—Returns join points in the execution flow of another join point.

cflowbelow—Returns join points in the execution flow of another join
point but not including the current join point.

Using Designators 85

staticinitialization—Matches the execution of a class’s static initialization
code.

withincode—Matches join points within a method or constructor.

within—Matches join points within a specific type.

if—Allows a dynamic condition to be part of a pointcut.

adviceexecution—Matches on advice join points.

preinitialization—Matches preinitialization join points.

Using Logical Operators to Create
Designator Combinations

All the designators we’ve listed can be combined using the standard logical
operators:

&& (and)—Matches when both arguments to the operator are true.

|| (or)—Matches when one or more of the operator arguments is true.

! (not)—Matches all join points not matched by the defined pointcut.

When using the logical operators to form designator combinations, take care to
order the arguments correctly. If you have any doubt how the system will eval-
uate the logical combinations, use parentheses to group combinations for the
desired outcome.

Combining Pointcuts

When you’re writing pointcuts, it is possible to combine them. For example:

pointcut setLoc() :

call(public void DVD.setLocation(..));

pointcut setStat() :

call(public void DVD.setStats(String, int));

pointcut localSetLoc() :

setLoc() && cflow(setStat());

before() : localSetLoc() {

System.out.println(thisJoinPoint.toLongString());

}

Notice how the third pointcut definition includes the previously defined set-
Loc() and setStat() pointcuts. This makes writing pointcuts very clean and easy
to read.

AspectJ Pointcuts86

Method-Related Pointcuts
The first three designators—execution, call, and initialization—are part of a set
called the method-related pointcuts. You use these designators to match point-
cuts when a method or constructor of a Java class is invoked and/or executed.

execution

The execution designator is matched by a join point defined on a method or
constructor of a class within the primary application. Use this designator when
you are interested in the actual execution of a method or constructor. The for-
mat is

execution(join point signature)

Figure 6.1 shows where the match will occur using the execution designator.

Combining Pointcuts 87

public void doWork() {

}

}

public static void main(String args) {

Vector vec = new Vector();
vec.add(1);

myObj.doWork();

execution(public void doWork())

Joinpoint match

Joinpoint match code interruption

Figure 6.1 The execution designator.

You can write the join point signature using the full Java signature of a
method/constructor or one of the many different combinations of wildcards
shown in Chapter 5. Here’s an example of an execution pointcut:

pointcut Location() :

execution(public void setLocation(String));

This example defines a pointcut that cuts across all objects in the primary appli-
cation that have a method called setLocation(String). The pointcut matches
only when the method defined by the join point begins execution. In this case,
we define execution as beginning at the moment just before the first statement
in the method is to execute and ending after the last statement of the
method/constructor.

The execution designator works on class constructors as well as methods.
When you’re capturing a constructor join point, note that the only difference is
the use of the new() pattern. For example:

pointcut DVDConstruct : execution (public DVD.new(..));

This code will match the pointcut when the default constructor of any DVD
object is executed. In either case—the method or the constructor signature—
the execution designator will be matched when the application is executing
within the scope of the signature’s object. At this point, the pointcut only knows
about the called object and doesn’t know anything about the object or static
method that made the originating method/constructor call. This is important
because we will use another pointcut designator shortly that will allow us to
obtain the context of the pointcut. Consider the pointcut defined earlier and
some example advice:

pointcut DVDConstruct() : execution (public DVD.new(..));

before() : DVDConstruct() {

System.out.println(thisJoinPoint.toLongString());

}

The output from the previous pointcut using our DVD example code is

execution(public DVD(java.lang.String))

store 1

This output tells us that the AspectJ runtime system determined that a con-
structor within the DVD class was being executed. When this determination
was made, the pointcut advice code executed and displayed the full name of the
matched join point.

Execution, Constructors, and Initializers

Consider the following short example:

public class Test {
public Vector vec = new Vector();

public Test() {
vec.add(1);

}

public static void main(String[] args) {
Test test = new Test();

}
}

Here we find a class that creates a private vector and pushes an integer to it.
Now consider this aspect:

public aspect TestVec {
pointcut vec(Test t) : execution(Test.new()) &&

this(t);
before(Test t) : vec(t) {

System.out.println("Size of Vector : " + vec.size());
}

}

AspectJ Pointcuts88

TE
AM
FL
Y

Team-Fly®

This aspect is designed to match the constructor of the Test class and execute
advice before the constructor executes. The value output to the screen for the
size of the vector in AspectJ version 1.0 is 1. However, in AspectJ 1.1, an excep-
tion is thrown. This is because the initializer code—Vector vec = new
Vector();—is considered part of the execution of the constructor and is not
independent.

Because the initializer code is part of the constructor, we cannot work with any
of the attributes or objects created because the constructor has not yet executed.
This change between versions 1.0 and 1.1 doesn’t affect after advice because the
constructor will have already executed before the after advice executes.

call
The call designator, shown in Figure 6.2, is also matched by a join point defined
on a method or constructor. Use this designator when you are interested in the
actual calling of a method or a constructor as opposed to the execution of code
within a join point. The format of the designator is

call(join point signature)

Combining Pointcuts 89

public void doWork() {

}

}

public static void main(String args) {

Vector vec = new Vector();
vec.add(1);

myObj.doWork();

call(public void doWork())

Joinpoint match

Joinpoint match
code interruption

Figure 6.2 The call designator.

In Figure 6.2 we see that the call designator matches a join point before an exe-
cution designator matches the same join point. Of particular importance is the
context from which the match occurs. In the case of call, the context is the
object making the call. In execution, control has passed to the target object of
the method call:

call(join point signature)

Here’s an example of a call designator used in a pointcut:

pointcut DVDGetLoc() :

call(public String DVD.getLocation());

This pointcut tells us it will be matched when the getLocation() method of any
DVD object is called. The scope of the pointcut remains with the object or sta-
tic method that performed the actual call. Later in this chapter you learn how to

obtain both the caller of the method and the target object of the call. When the
match occurs, the system hasn’t yet begun any execution of the method or con-
structor; thus the match point indicates an intention to execute the named sig-
nature. The pointcut can be combined with advice, as shown here:

pointcut DVDGetLoc() : call(public String DVD.getLocation());
before() : DVDGetLoc() {

System.out.println(thisJoinPoint.toLongString());
}

With the DVD example code and this pointcut, the following output is displayed
to the console:

call(public java.lang.String DVD.getLocation())

store 1

The pointcut has been matched on the call to the getLocation() method. The
output from the call designator doesn’t look that much different based on the
use of the toLongString() context method. However, if we look ahead and use
the this designator, we can see that we have full access to the object associated
with the match join point. The following code uses the both the execution and
call designators along with the this designator:

pointcut Stats(Object obj) :
execution(public void DVD.setStats(..)) &&
this(obj);

pointcut Stats2(Object obj);
call(public void DVD.setStats(..)) &&
this(obj);

pointcut allStats(Object obj) :
Stats(obj) ||
Stats2(obj);

before(Object obj) : DVDGetLoc(obj) {
System.out.println(thisJoinPoint.toLongString());
if (obj instanceof DVD)

System.out.println("DVD object");
else if (obj instanceof Boxset)

System.out.println("Boxset object");
else

System.out.println("Unknown object");
}

When executed against the Boxset example code, the following output is
produced:

call(public void DVD.setStats(java.lang.String, int))
Boxset object
execution(public void DVD.setStats(java.lang.String, int))
DVD object

AspectJ Pointcuts90

As expected from the designator descriptions, the call designator matches on
the call to the setStats() method from the Boxset object, whereas the execution
designator matches the join point as it executes within the DVD object.

initialization
The initialization designator is used to match the constructor called when a
new object is instantiated. The designator is designed so that all constructors in
a hierarchy chain are called. The format of the initialization designator is

initialization (join point signature)

Here’s an example of the designator used in a pointcut:

pointcut Construct : initialization (new(..));

This pointcut creates a crosscut through the entire constructor chain of all
objects in the system. In our example classes defined earlier in the chapter, the
DVD class constructor calls the Product constructor through the use of the
super() statement. The pointcut is matched when the DVD constructor is called
and when the Product constructor is called. The order of the join points are the
Product and then the DVD constructor because the Product constructor is actu-
ally the first constructor to execute. This is because the super() statement has
a special meaning in the Java language.

The output from our example classes would be different if we changed the join
point signature to something along the lines of

pointcut DVDconstruct : initialization (DVD.new(..));

This pointcut includes a join point that narrows the scope of the crosscut to
only the DVD class. The join point for the Product constructor is not recog-
nized. In another example, consider several classes that implement and extend
each other:

interface NewInterface {}

class Inner1 {}

class Inner2 extends Inner1 {}

class Outer extends Inner2 implements NewInterface {

public static void main(String[] args) {

Outer outer = new Outer();

}

This initialization designator would match the Outer class:

pointcut outerMatch() : initialization(Outer.new());

If executed, the matches made by the pointcut would be as follows:

Inner1

Inner2

NewInterface

Outer

Combining Pointcuts 91

The initialization designator matches all the constructors found in the entire
hierarchy of the instantiated object. In our example, the Outer class extends the
Inner2 class, which itself extends Inner1. The execution of the code requires
that the Inner1 constructor be called first because it is the foundation of all the
other classes.

The Exception-Handling Designator
When an application is executing, there is a very good chance that it will pro-
duce an error at some point. A good developer will include exception-handling
code in the key parts of the application so that errors can be caught and poten-
tially handled. Let’s take a look at the handler designator.

Handler

The handler designator is designed to capture the execution of exception han-
dlers anywhere in the primary application. The format of the designator is

handler(Class Type Pattern)

The single join point for the handler designator is a class type pattern. The pat-
tern can consist of a single class, a full class hierarchy, a class with a wildcard,
or a combination of classes using logical operators. Here’s an example of a
pointcut based on one of the exceptions in our example code at the beginning
of the chapter:

pointcut handle() : handler(Exception)

This pointcut is matched when any exception is thrown in the code that has a
class type of Exception. For example, the handler designator and pointcut just
defined could be used to display where a particular exception is thrown. The
code looks like this:

before() : handle() {

System.out.println(thisJoinPoint.toLongString());

}

Looking at the class definition for DVD and DVDException in Listing 6.4, note
that a single exception exists in the add() method. If the value of the incoming
count parameter is 0, an exception is thrown. If we compile and execute the
main() method found in the Boxset class, the only output generated is

DVDException

at DVD.setStats(DVD.java:32)

at Boxset.add(Boxset.java:17)

at Boxset.main(Boxset.java:36)

AspectJ Pointcuts92

This output comes from the code in the catch() part of the add() method of the
Boxset class. The e.printStackTrace(); statement produces the method tree
listed here. But why wasn’t the exception caught by AspectJ code? The reason
is our pointcut specifically used a class type of Exception. The exception
thrown in the DVD code is a call derived from Exception called DVDException.
There are a few ways to get the DVDException to match a pointcut, such as the
following:

pointcut handle() : handler(DVDException);

pointcut handle() : handler(DVD*);

pointcut handle() : handler(Exception+);

Each of these pointcuts are matched when the DVDException is thrown. The
output looks like this:

handler(catch(DVDException))

DVDException

at DVD.setStats(DVD.java:32)

at Boxset.add(Boxset.java:17)

at Boxset.main(Boxset.java:36)

When an exception is thrown, it would be great if the exception object could be
accessed within the code. It is possible to get access to the exception object by
using the args designator, which we discuss later in the chapter. For now, here’s
an example of how the handler designator looks when combined with the args
designator:

pointcut handle(DVDException e) : handler(DVDException) &&

args(e);

before(DVDException e) : handle(e) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(e.getTitle());

}

The result of executing the Boxset code with this new pointcut is

handler(catch(DVDException))

Return of the Jedi

DVDException

at DVD.setStats(DVD.java:32)

at Boxset.add(Boxset.java:17)

at Boxset.main(Boxset.java:36)

The exception object was successfully passed to the code where the title
attribute is output to the console. Since we might not always know if an Excep-
tion class is caught or is a derived class, we can use the class wildcard pattern
and the instanceof keyword to determine the right class type. For example:

pointcut handle(Exception e) : handler(Exception+) &&

args(e);

Combining Pointcuts 93

before(Exception e) : handle(e) {

if (e instanceof DVDException) {

System.out.println(((DVDException) e).getTitle());

}

System.out.println(thisJoinPoint.toLongString());

}

In this pointcut and related advice code, any Exception class will be caught
because of the Exception+ class type used in the handler designator. When the
exception object is passed to the advice code, the instanceof keyword deter-
mines whether or not the join point class is DVDException. If the class is
DVDException, the title given to the object is displayed.

Field-Related Designators
Attributes are one of the most important parts of a class because they define
the state of an instantiated object. Any change to an attribute changes the state
of the object; therefore, most attributes should be defined as private. To change
the state of the object we use an accessor method, or directly change an
attribute from within the body of a class method. There are two accessor meth-
ods: the setter and the getter. AspectJ allows join points to be created against
setter and getter methods using the call and execution designators but also pro-
vides an even stronger tool: the get and set designators. These designators
allow pointcuts to be defined when an attribute is referenced (get) and
assigned (set).

get

The get designator is matched when a join point based on a class attribute is ref-
erenced anywhere in the primary code. The format of the get designator is

get(join point signature)

The join point signature used in a get designator is that of an attribute in a class.
The signature can be very specific, such as a class type and the attribute name.
For example:

getTitle() : get(private String DVD.title);

If we use the same advice code from our previous code examples and execute
the Boxset main() method, we get the following output:

get(private java.lang.String DVD.title)

DVDException

at DVD.setStats(DVD.java:32)

at Boxset.add(Boxset.java:17)

at Boxset.main(Boxset.java:36)

AspectJ Pointcuts94

This output is interesting because we executed the Boxset main() method and
not the DVD code. However, the Boxset code includes code for creating a new
DVD object. When the object is added to the Boxset object, an exception is
thrown. The code within the exception is passed the title of the DVD where the
exception occurs. This passing of the title is a reference to the title attribute and
thus matches the defined pointcut.

If we are interested in an attribute that just happens to have the same name
across a number of different classes, we can eliminate the class type from the
signature, as shown here:

getTitle() : get(private String title)

This signature matches all title attributes regardless of the class in which the
attribute is defined.

set

The set designator is matched when a join point based on a class attribute is
assigned anywhere in the primary code. The format of the set designator is

set(join point signature)

The join point signature used in the set designator is the same as that used in
the get designator. We can use specific join points or add wildcards to make the
signature hit a broad number of join points. Here’s an example of a set join
point:

setTitle() : set(private String title)

This pointcut matches all title attributes across classes within the primary
code. Consider the following advice:

pointcut setTitle() : set(private String title);

before() : setTitle() {

System.out.println(thisJoinPoint.toLongString());

}

This pointcut says that we want to match all changes to the title attribute that
is declared as private String. Since a specific class isn’t defined in the join point,
all classes with a title attribute are potential matches. If we use this pointcut
against the Boxset code, we obtain the following output:

set(private java.lang.String Boxset.title)

set(private java.lang.String DVD.title)

set(private java.lang.String DVDException.title)

DVDException

at DVD.setStats(DVD.java:32)

at Boxset.add(Boxset.java:17)

at Boxset.main(Boxset.java:36)

Combining Pointcuts 95

The code in the Boxset example and the output here shows that a title attribute
is set in three different objects of the application. The Boxset, DVD, and
DVDException classes all have the specified join point defined in the pointcut
because they all have separate definitions of the title attribute. Each of the
three join point definitions shown in the output are based on different classes.
The first is the Boxset, followed by the DVD, and finally the DVDException
class. The idea of tracking all changes to an attribute directly instead of relying
on catching all methods that change the attribute is a powerful feature. In look-
ing at the Boxset class, you wouldn’t know that the DVD and DVDException
classes also include a title attribute.

Because the set designator deals with the changing of an attribute, it passes a
single argument to the pointcut. The argument represents the value the
attribute is being set to, but in order to access the value, we have to use the args
designator. Here’s an example pointcut for the title attribute using the args des-
ignator to grab the new value:

pointcut setTitle(String arg) : set(private String title) &&

args(arg);

before(String arg) : setTitle(arg) {

System.out.println(thisJoinPoint.toLongString());

System.out.println("New value = " + arg);

}

The output based on the Boxset code is

set(private java.lang.String Boxset.title)
New value = Star Wars
set(private java.lang.String DVD.title)
New value = Return of the Jedi
set(private java.lang.String DVDException.title)
New value = Return of the Jedi

It just so happens that the title in the objects is set by either a specific accessor
function or the class constructor. In each case, the value to be assigned to
the title attribute is passed into the method or constructor. The join point
catches the passed value, and we are able to display the value before it is actu-
ally set to the title attribute.

State-Based Designators
When a join point is executed in the primary application, the pointcut associ-
ated with the join point is matched. In several cases throughout this and the
previous chapter, we use a variable called thisJoinPoint to access the object
where a method is executing. The variable thisJoinPoint allows us to use the
methods of the object to send detailed output to the console or to examine
attributes of the object. AspectJ includes three designators that provide us with
even greater control over access to objects and parameters of join points—as

AspectJ Pointcuts96

well as more control over when a join point is matched. The designators are
this, target, and args.

this

The this designator is typically used in two different cases. The first is in com-
bination with other designators to provide access to the object where the join
point is found. The second is to force the join point to be matched only when
found in a particular class. The format of the this designator is

this(class type pattern or ID)

When the signature of the this designator is a class type pattern, the current join
point is picked if the currently executing object is an instance of the class. If an
ID is used for the signature, the ID will have a class identifier associated with it.
This class will be used in the matching process. The ID actually acts as a param-
eter to the pointcut and will ultimately hold the object when the join point has
been matched. In an upcoming section, we see an example of using the ID.

Using this instead of getThis()

In our first example, we are using the this designator in place of the method call
getThis() associated with the thisJoinPoint variable—which happens to be the
preferred method according to the AspectJ programmer’s guide because of the
cost of reflection involved with the getThis() method call. Consider the follow-
ing pointcut and related code:

pointcut DVDGetLoc() :

execution(public String DVD.getLocation());

before() : DVDGetLoc() {

System.out.println(thisJoinPoint.toLongString());

DVD dvd = (DVD)thisJoinPoint.getThis());

System.out.println(dvd.getCount());

}

In this pointcut, the join point is the method getLocation() of the DVD class.
When a join point is found, the pointcut is matched and the object associated
with the execution of the join point is obtained using the getThis() method.
Instead of relying on the getThis() method, the AspectJ language recommends
you use the this designator. Using the this designator, our pointcut now looks
like the following:

pointcut DVDGetLoc(DVD dvd) :

execution(public String getLocation())

&& this(dvd);

before(DVD dvd) : DVDGetLoc(dvd) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(dvd.getCount());

}

Combining Pointcuts 97

The new pointcut includes a combination of the execution and this designators.
The this designator is defined to pass the object where the execution match
occurs through the dvd variable. The dvd parameter is used to pass the object
associated with the join point getLocation() when it matched in the primary
application. Within the advice code, the dvd parameter is passed from the point-
cut. Once inside the advice code, the DVD object can be used just as if it were
in the primary code. The advice shown here calls the getCount() method to out-
put a value from the object.

Adding Match Criteria Through this

The second case for using the this designator is to add criteria for the selection
of a join point. Consider the following pointcut:

pointcut setTitle(String arg) : set(private String title) &&

args(arg) &&

this(DVD);

before(String arg) : setTitle(arg) {

System.out.println(thisJoinPoint.toLongString());

System.out.println("New value = " + arg);

}

Note that this code example works only when the object is setting its own fields
because of the this && set designators. When the code is executed without the
this(DVD) designator, there will be three join point matches for Boxset, DVD,
and DVDException. When we add the designator this(DVD), the pointcut will
be matched when the title attribute is set by a DVD object only. There is no need
to add a parameter to the pointcut signature because we don’t return the object
for further processing.

Using Class Type Wildcards

The 1.1 version of AspectJ does not allow the use of wildcards with the this, tar-
get, or args designators. This is a change from version 1.0. Refer to the section
on the if designator to learn a way around this limitation.

Combining this Designators

There will be times when you might have a large number of classes in a hierar-
chy but you are ultimately interested in only two or three of them. When defin-
ing a pointcut, you can combine multiple this designators to match just the right
classes you are interested in. For example, suppose we want the entire Product
hierarchy but not the Boxset class. Using the this designator and wildcards,
you’d just list the classes you want to match. Here’s an example of the pointcut:

pointcut setTitle() :

set(private String title) &&

(this(DVD) || this(CD);

AspectJ Pointcuts98

TE
AM
FL
Y

Team-Fly®

In this pointcut, two this designators are used to match the classes we are inter-
ested in. We’ve added a fictitious CD class to illustrate the OR. Notice the use of
the parentheses to make sure we get a match on either class and that they aren’t
mixed up in another other combination.

Finally, we can combine the classes within the parameter space of a single this
designator. A pointcut using this technique is

pointcut setTitle() :

set(private String title) &&

this(DVD || CD);

Combining this and call Designators

Before we move on to the target designator, consider this pointcut and advice
code:

pointcut setTitle(DVD dvd) :

call(public String DVD.getLocation()) &&

this(dvd);

before(DVD dvd) : setTitle(dvd) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(thisJoinPoint.getKind());

}

When this pointcut is used with the DVD code, nothing is produced from the
advice code. Here’s why: The intent of the call designator is to match when a
method call is being made. However, when combined with the call designator, the
this designator binds to the caller. We could actually use the call with this to find
all calls to DVD.setLocation() that come specifically from the Boxset object:

pointcut setTitle(DVD dvd) :

call(public String DVD.getLocation()) &&

this(Boxset);

before(DVD dvd) : setTitle(dvd) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(thisJoinPoint.getKind());

}

target

The target designator works in two situations with the call/execution and
set/get designators. The first situation is invoked when the target designator is
provided a class type pattern as its parameter. The class type pattern narrows
the scope of the call, set, or get designators to any or all classes it matches.
In the second situation, the target designator is used much like the this desig-
nator to return to the pointcut the object where the call or access of an attribute
is about to occur. The format of the target designator is

target(class type pattern or ID)

Combining Pointcuts 99

Limiting Scope Using the target Designator

When the target designator is used to limit the scope of a call join point, it is
combined with the call, as in the following example:

pointcut setTitle() :

call(public String getLocation()) &&

target(DVD);

before() : setTitle() {

System.out.println(thisJoinPoint.toLongString());

System.out.println(thisJoinPoint.getKind());

}

Here we find a call join point based on any getLocation() method in the appli-
cation combined with a target class of DVD. When executed against the DVD
code, the following output is observed:

call(public java.lang.String DVD.getLocation())

method-call

store 1

Using the target Designator with set/get

You can also use the target designator with set/get. For example:

pointcut setTitle() :

set(private String title) &&

target(DVD);

before() : setTitle() {

System.out.println(thisJoinPoint.toLongString());

}

This pointcut tells the system to match all assignments on the title attribute for
all classes in the system. If just set(private String title) were matched against
the Boxset code, there would be three join point matches. However, with the
addition of the target designator and its class type pattern of DVD, a single join
point will actually get the match. Note that in the case of the set/get designators
and an un-encapsulated member, you can detect which object is accessing the
member and target, which enables you to detect whose member is being
accessed.

Returning the Target Object Using the target
Designator

Next, let’s look at a situation where we don’t have to limit the matching but can
return the target object of a call join point. Keep in mind, though, that you can
also limit and return the object using the target designator. For example:

pointcut setLoc(DVD dvd) :

call(private void DVD.setLocation(..)) &&

AspectJ Pointcuts100

target(dvd);

before(DVD dvd) : setLoc(dvd) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(dvd.getCount());

}

In this code, we are attempting to catch the setLocation() method on DVD
objects—the idea is that if the location is being set, a check should be made of
the current count. If the count is 0, maybe the location should not be set. For
the example, we just display the value of count. Notice how we’ve used the tar-
get designator to obtain access to the object where the call to the getLocation()
method executes. Once the join point is matched, the target object is supplied
to the pointcut and, subsequently, to the advice code. Running this against the
DVD count code returns the following:

call(private void DVD.setLocation(java.lang.String, int))

0

store 1

Obtaining Multiple Class Target Objects

Sometimes when using the target designator to return the object of the
intended method call, you might want to return several different object types.
The most logical way to return an object is by using a wildcard; however, this
doesn’t work in the current version of AspectJ:

pointcut setLoc(Product prod) :

call(* void DVD.setLocation(..)) &&

target(prod);

//Note: no + wildcard

Let’s look at an example to see the problem. Consider the following pointcut:

pointcut setLoc(DVD dvd) :

call(private void DVD.setLocation(..)) &&

target(dvd);

Assume we don’t want to just return DVD objects but all the objects in the
Product+ hierarchy—including Product, DVD, and Boxset. Here’s a possible
solution:

pointcut setLoc(Product+ prod) :

call(* void DVD.setLocation(..)) &&

target(prod);

Here we find an attempt to place the + wildcard in the class type defined within
the pointcut name parameter. Unfortunately, AspectJ doesn’t like this format.
We can’t use the * wildcard either, or we’ll get an error. One solution is to use
the Object class. For example:

Combining Pointcuts 101

pointcut setTitle(Object prod) :

set(private String title) &&

target(prod);

before(Object prod) : setTitle(prod) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(((Product)prod).getPrice());

}

In this pointcut, the target designator references the ID in the pointcut name
parameter, which is defined as an Object. The same Object definition extends
to the advice code, where the incoming object is cast to a Product. Since Boxset
and DVD derived from Product, we don’t have to worry about the cast unless
another class type is introduced in the code that isn’t derived from Product. In
a case like this, we could add another target designator to limit the scope of this
point to the Product hierarchy. For example:

pointcut setTitle(Object prod) :

set(private String title) &&

target(prod) &&

target(Product) ||

target(DVD);

The last target designator will allow matches on the join point only when the
target of the assignment is a Product class or any of its derived types. Fortu-
nately, there is a simple solution. Consider the following pointcut, which looks
very similar to the previous one:

pointcut setLoc(Product prod) :

call(* void setLocation(..)) &&

target(prod);

Here we are requesting the target object of type Product, but since Boxset and
DVD are derived classes of Product, we automatically get them in the process.
Note that if you are interested in limiting those classes that are making method
calls, you should use specific classes in the call designator; however, if you
want to limit your results based on the object being called, use classes in the
target designator.

Beware of the Infinite Loop

There is a situation that can develop when you’re using an object returned
through the this or target designators and you’re accessing some of the meth-
ods of the object. Consider the following pointcut and advice code:

pointcut Location(DVD dvd) :

call(public String DVD.getLocation()) &&

target(dvd);

before(DVD dvd) : Location(dvd) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(dvd.getLocation());

}

AspectJ Pointcuts102

The intended functionality of the pointcut is to match all calls to a getLoca-
tion() method of a DVD object. When the match is made, the target object is
returned and used in the advice code. The code displays the current value of the
Location before the call is made. However, notice that when the
System.out.println(dvd.getLocation()); statement executes, another call is
made to getLocation() and the pointcut is matched again—which in turn exe-
cutes our statement and results in the creation of an infinite loop. We can avoid
the infinite loop by using a designator called within (discussed later in the chap-
ter). This designator allows a pointcut to be scoped based on a join point within
a method or class type. Since an aspect defines a Java type, it can be used with
the within designator. Consider the following join point and aspect:

public aspect DVDAspect {

pointcut setTitle(DVD dvd) :

call(public String DVD.getLocation()) &&

target(dvd) &&

!within(DVDAspect);

before(DVD dvd) : setTitle(dvd) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(dvd.getLocation());

}

}

The new pointcut matches against the getLocation() method in a DVD object,
returns the target object, and checks to make sure that the getLocation()
method being picked doesn’t reside within the DVDAspect class type. Thus, the
call to getLocation() in the advice code will not match the join point.

Multiple Targets

There will be times when you’ll define a pointcut using two different join
points. For example:

pointcut titleCount() :

call(public void DVD.setTitle(..)) ||

call(public void DVD.setCount(..)));

This pointcut will be matched when either of the join points is matched. Note
that using a && (and) logical operator in this pointcut instead results in the
pointcut never being matched because there is no place in the primary code
where both the setTitle() and setCount() methods can be executed at the same
time. Note that call() && call() can never match without the use of wildcards.
For example, call(process*) && call(*Image) would match processImage(). In
such cases, you might want to use a match like call(process*Image()). Let’s
make a small change to the code that will allow us to pull target objects when a
join point is matched:

pointcut titleCount(DVD dvd) :

target(dvd) &&

Combining Pointcuts 103

(call(public void DVD.setTitle(..)) ||

call(public void DVD.setCount(..)));

Notice that we used parentheses to make sure that we are matching on one of
the join points first and then the target designator to return the object.

When writing a join point, you might encounter situations in which the com-
piler complains. Here’s one such situation:

pointcut titleCount(DVD dvd1, DVD dvd2) :

((target(dvd1) && call(public void DVD.setTitle(..)) ||

(target(dvd2) && call(public void DVD.setCount(..)));

This join point either matches the setTitle() method and returns the target
object, or it matches the setCount() method and returns its target object, but
never both. The AspectJ compiler complains about this pointcut because it is
expecting two target objects based on the parameters in the pointcut name.
However, only a single join point is matched, leaving one target not available.

args

The last designator in this group is called args, and it has two purposes. The
first is to provide the arguments sent to the join point as parameters. The sec-
ond is to limit the matching on a specific call, execution, or initialization desig-
nator. The format of the args designator is

args(class type or ID, class type or ID, .., class type or ID)

Limiting Access with args

In the previous chapter, you learned that a join point will typically represent a
method or constructor in our code. Since methods/constructor often contain
parameters, you can specify those parameters directly in the join point. For
example:

pointcut arguments() :

call(public void setTitle(String));

This pointcut will match join points only in which the name is setTitle and the
parameter to the method is a String. This pointcut could also be written as

pointcut arguments() :

call(public void setTitle(..)) &&

args(String);

Obtaining a Single Argument

A common use for the args designator is to obtain access to the parameters
being passed to the join point. For example, the DVD object has a method
called setTitle() that accepts a single String parameter. At present, the code

AspectJ Pointcuts104

does not check the string being set to the parameter. Suppose we want to have
a spell-checker run against the incoming value. The following pointcut allows
us access to the argument of the setTitle() method:

pointcut setTitle(String inTitle) :

call(public void setTitle(..)) &&

args(inTitle);

before(String inTitle) : setTitle(inTitle) {

System.out.println(thisJoinPoint.toLongString());

System.out.println("Incoming title " + inTitle);

}

In this pointcut, the args designator includes an ID related to the parameter of
the pointcut name. When the pointcut is matched, the string sent to the
setTitle() method is associated with the inTitle ID. The inTitle ID is passed to
the advice and printed so we can see that it was truly passed from the join point
into the advice code. The output from this code is

Location and count = store 1

call(public void DVD.setTitle(java.lang.String))

Incoming title Better Title

Title = Better Title

The second and third text lines come from the pointcut being matched when
the DVD object calls the setTitle() method. The parameter to the setTitle()
method is a String. What happens if the wrong type is put in the args designa-
tor? For example:

pointcut setTitle(int inTitle) :

call(public void setTitle(..)) &&

args(inTitle);

Here the inTitle ID is associated with an int instead of a String type. The
setTitle() join point tells us to accept any parameter type or count when it finds
a setTitle() method. This pointcut will compile just fine, but when woven into
the same code as the earlier pointcut, there is no match. This is because even
though the join point will be matched, the system is unable to return the String
passed to the setTitle() method into the args designator since they aren’t iden-
tical. Even if we change the “..” wildcard to be an exact match of String, the
compiler will still be successful and no match will be found.

Obtaining Multiple Arguments

Occasionally methods will have more than a single parameter and the types
won’t be the same. Consider the setStats(String, int) method of the DVD class.
In this case, we want to match the join point on this method and return both of
the parameters to the advice code. Here’s a join point to accomplish this:

pointcut setStats(String inTitle, int inCount) :

call(public void setStats(String, int)) &&

Combining Pointcuts 105

args(inTitle, inCount);

before(String inTitle, int inCount) : setStats(inTitle, inCount) {

System.out.println(thisJoinPoint.toLongString());

System.out.println("Incoming title " + inTitle);

System.out.println("Incoming count " + inCount);

}

This pointcut is designed to pull both of the arguments to the setStats() method
and display them on the console. The output from this pointcut and DVD exam-
ple code from earlier in the chapter is

call(public void DVD.setStats(java.lang.String, int))

Incoming title store 1

Incoming count 1

Location and count = store 1

Title = Better Title

Each of the parameters are passed to the pointcut in the order they are found in
the join point. Just as in the previous example, if the args IDs are not the same
type as the parameters being passed, the join point will not be matched.

Combining args and target/this Designators

In many of our previous examples, we have used args along with target or this.
Here’s one such pointcut:

pointcut setTitle(String inTitle, DVD dvd) :

call(public void setTitle(..)) &&

args(inTitle) &&

target(dvd);

before(String inTitle, DVD dvd) : setTitle(inTitle, dvd) {

System.out.println(thisJoinPoint.toLongString());

System.out.println("Incoming title " + inTitle);

System.out.println("Count = " + dvd.getCount());

}

This pointcut matches the setTitle() method passing into the pointcut the argu-
ment of the method as well as the target object. All of this is sent to the advice
code to produce the following output based on the DVD class:

Location and count = store 1

call(public void DVD.setTitle(java.lang.String))

Incoming title Better Title

Count = 1

Title = Better Title

Using Wildcards with the args Designator

As you might expect, we can also use wildcards in the args designator to enable
matching of overloaded methods. Consider the following class:

AspectJ Pointcuts106

public class UpdateIt {

public void update(String s, int i, String s2) {

}

public void update(String s, int i, double d) {

}

public static void main(String args[]) {

UpdateIt updateIt = new UpdateIt();

updateIt.update("One", 1, "1");

updateIt.update("One", 1, 1.0);

}

}

These methods are overloaded based on the type order of the parameters. If we
want to build a join point to match the two methods, we can write a pointcut
similar to any of the following examples:

pointcut updatePC() : call(public void update(..);

pointcut updatePC() : call(* update(String, int, ..);

pointcut updatePC() : call(* update(String, ..);

The last two pointcuts use the “..” wildcard in the list of possible parameters for
the update method. The second pointcut has the wildcard for the third parame-
ter. In our overloaded methods, this third parameter is where they differ, so the
pointcut will be able to match both without a problem. The third pointcut tells
the system to match any update method where the first parameter is a String
and that has any number or type of parameter after the first.

We now need to extend this example to include the use of the args designator
because we are interested in receiving some of the parameters sent to the meth-
ods. First, note that there is no way to use the wildcard to send back all of the
parameters from the method. The following args designator and pointcut are
not valid:

pointcut updatePC(..) :

call(public void update(String, int, ..)) &&

args(..);

This pointcut would imply that when a match is made with the join point, the
system would return all of the parameters regardless of the type or count.
AspectJ requires that all arguments be bound to an actual type and ID. With this
in mind, the following pointcut and some advice code return all of the
arguments:

pointcut updatePC(String arg1, int arg2, Object arg3) :

call(public void update(String, int, ..)) &&

args(arg1, arg2, arg3);

before(String arg1, int arg2, Object arg3) :

Combining Pointcuts 107

updatePC(arg1, arg2, arg3) {

System.out.println(thisJoinPoint.toLongString());

if (arg3 instanceof String) {

System.out.println("It is a String");

} else {

System.out.println("It is a double");

}

}

Each of the arguments to the method are bound to the appropriate parameters
in the pointcut definition. Notice the use of the third argument. Since we don’t
know what the argument will be, we have to use the Object class type. The for-
mat of this pointcut could cause a problem, though, because the third parame-
ter is an object in one of the methods and a primitive type in another. The result
of this pointcut and advice against the UpdateIt class is

call(public void UpdateIt.update(java.lang.String, int,

java.lang.String))

It is a String

call(public void UpdateIt.update(java.lang.String, int, double))

It is a double

It worked because the system was able to box the double into an Object type
during the transfer of the arguments. This example assumes we are interested
in all of the objects in the methods that match, but what do we do if we are
interested in the last argument only? It could be that the last argument is the
only one that will be different based on the business logic of the code. Do we
need to pass in the other arguments? The answer is no, as shown here:

pointcut updatePC(Object arg3) :

call(public void update(String, int, ..)) &&

args(.., arg3);

before(Object arg3) : updatePC(arg3) {

System.out.println(thisJoinPoint.toLongString());

if (arg3 instanceof String) {

System.out.println("It is a String");

} else {

System.out.println("It is a double");

}

}

In this pointcut, we changed the args designator to include just a single ID along
with the “..” wildcard. This designator tells the system we aren’t interested in
the number or types of arguments in the first part of the join point—only the
very last one. Since the args designator will return only a single argument to the
pointcut, only a single parameter appears in the pointcut signature:
updatePC(Object arg3). We changed the advice code as well to reflect the sin-
gle parameter of the pointcut.

AspectJ Pointcuts108

TE
AM
FL
Y

Team-Fly®

When this new pointcut is matched against the UpdateIt code, we receive the
same output we did earlier. In this case, we no longer have to specify all of the
parameters, nor do we get access to them. We can use the same wildcard for the
last part of a join point signature. For example:

pointcut updatePC(String arg1) :

call(public void update(String, int, ..)) &&

args(arg1, ..);

before(String arg1) : updatePC(arg1) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(arg1);

}

Here we have switched the placement of the “..” wildcard; it is now the last part
of the join point signature because we are only interested in the first argument.
Both the pointcut signature and the advice need only the single argument that
is returned from the args designator.

Control Flow-Based Designators
In our examples so far, we have allowed join points to be matched throughout
an application without regard to when the join point originated. For example,
we were able to catch all calls to the setLocation() method made on a DVD
object. The setLocation() method is an accessor function for the Location
attribute, and it is defined as public. This means that it can be called by anyone.
Looking at the DVD class code at the beginning of this chapter, we can see that
the setLocation() method is also called within the setStats() method. It would
be interesting if we could localize the matching of the setLocation() method to
just the call within the setStats() method. This just so happens to be what the
cflow and cflowbelow designators allow. The format of these designators is

cflow(pointcut)

cflowbelow(pointcut)

These are the first designators where neither an ID nor a join point signature is
used as a parameter. Instead, the parameter to these designators is a pointcut
definition. This is because these designators come into play when a specific
pointcut has been matched. They act as a sort of flag to the system, telling it
when a pointcut has been reached and when the pointcut is no longer valid.

cflow

The cflow designator matches any join points that occur beginning when a call
to a specific method takes place until the end of the method. Let’s look at an
example using the DVD class:

Combining Pointcuts 109

pointcut setLoc() :

call(public void DVD.setLocation(..));

pointcut setStat() :

call(public void DVD.setStats(String, int));

pointcut localSetLoc() :

setLoc() && cflow(setStat());

before() : localSetLoc() {

System.out.println(thisJoinPoint.toLongString());

}

The first two pointcuts match join points on the two methods in which we are
interested. The setLoc() pointcut represents the call to the setLocation()
method, which is our primary focus. The second pointcut, setStat(), is the
method that contains a setLocation() call. The use of separate pointcuts for
these join points is only partially for convenience. Recall that the cflow desig-
nator only takes a pointcut as a parameter. The pointcut can be a named point-
cut, as in our earlier example, or just the designator, like cflow(call(public void
DVD.setLocation(..));.

The third pointcut in this example combines two conditions. The first is the set-
Loc() pointcut, which indicates that the setLocation() join point must be
matched for this pointcut to be matched. The second condition is the cflow des-
ignator using a parameter of setStat(). The cflow indicates that the localSet-
Loc() pointcut should match when we are currently executing (cflow) within
the setStats() method and a setLocation() join point is encountered. If a setLo-
cation() join point is matched but it is outside the execution path starting and
ending with the setStat() pointcut, it should be ignored.

When this pointcut is executed against the DVD class, the output obtained is

call(public void DVD.setLocation(java.lang.String, int))

Location and count = store 1

Title = Better Title

This output should be compared against the original pointcut without the cflow
designator:

call(public void DVD.setLocation(java.lang.String, int))

call(public void DVD.setLocation(java.lang.String, int))

Location and count = New Store

Title = Better Title

Without the cflow() designator, a second setLocation() join point is matched
within the main() function as well as in the setStats() method.

Multiple cflow Designators

If there are several places within your code where the join point in which you’re
interested can be found, you can use multiple cflow designators. For example:

AspectJ Pointcuts110

pointcut setLoc() :

call(public void DVD.setLocation(..));

pointcut setStat() :

call(public void DVD.setStats(String, int));

pointcut setAll() :

call(public void Boxset.setAll(..));

pointcut localSetLoc() :

setLoc() &&

(cflow(setStat()) ||

cflow(setAll()));

This code contains four pointcuts; we included the first three for use within the
fourth. The code says that we are interested in a join point defined against the
setLocation() method when a call to the method is made within either the DVD
object’s setStats() method or the Boxset object’s setAll() method. If setLoca-
tion() occurs in any other place, it is ignored.

Combining cflow Parameters

The previous example was based on the desire to match a single join point in
two or more methods. The pointcut is built using a join point to be matched
ANDed with two or more cflow designators. Let’s now turn our attention to a
situation in which we want to add depth to the matching process. Consider the
following class:

public class Flow {

public void two() {

System.out.println("two");

}

public void one() {

two();

}

public static void main(String args[]) {

Flow flow = new Flow();

flow.one();

}

}

In this class, the main() method calls the one() method, which in turn calls the
two() method. The two() method displays the value “two” on the console. If we
want to match the println() method, the following pointcut will do the job:

pointcut callToPrint() :

call(void java.io.PrintStream.println(String));

Now we can easily match this join point within the call to the two() method by
adding another pointcut and the cflow designator:

pointcut callToPrint() :

call(void java.io.PrintStream.println(String));

Combining Pointcuts 111

pointcut getTwo() :

call(public void two());

pointcut matchPrint() :

callToPrint() &&

cflow(getTwo()) &&

!within(FlowAspect);

Now suppose we want to match the println() method call only when the two()
method is called by the one() method. How about if we just add another cflow
with a pointcut for the one() method as we did in the previous section? Well,
this won’t do what we want because it tells the system to match the println()
method when called from either the one() or two() method.

The solution is to combine the pointcuts for the one() and two() join points in
the same cflow. For example:

pointcut getPrint() :

call(void java.io.PrintStream.println(String));

pointcut getTwo() :

call(public void two());

pointcut getOne() :

call(public void one());

pointcut matchPrint() :

getPrint() &&

cflow(getTwo() &&

getOne());

Here we find the matchPrint() pointcut where a match is made against the
println() method and a combination of the one() and two() pointcuts. By com-
bining both getOne() and getTwo() in the same cflow designator, we tell the
system to match only when the println() method occurs in the execution flow
of both the one() and two() methods. The only way the execution can occur in
both methods is when the one() method calls the two() method or the two()
method calls the one() method.

Combining cflow and Other Designators

It is possible to combine the cflow designator with all of the other ones we have
discussed so far. For example, suppose we’re interested in the setLocation()
method when it is called within the setStats() method but we also want to get a
copy of the target object and the parameter being passed to setLocation(). The
concern we are implementing might require that an inventory-tracking function
occur when a DVD is moved from one store to another. Here’s what the new
pointcut would look like:

pointcut setLoc() :

call(public void DVD.setLocation(..));

pointcut setStat() :

call(public void DVD.setStats(String, int));

AspectJ Pointcuts112

pointcut localSetLoc(DVD dvd, String place) :

setLoc() &&

cflow(setStat()) &&

target(dvd) &&

args(place, ..);

before(DVD dvd, String place) : localSetLoc(dvd, place) {

System.out.println(thisJoinPoint.toLongString());

System.out.println("Incoming Location = " + place);

System.out.println("Current Location = " + dvd.getLocation());

}

The first thing you notice is the size of the third pointcut, which handles all of
the join points we are interested in. Each of the designators in the localSetLoc()
pointcut has a job to do, and only when all of the situations line up does the
pointcut get matched. Here are the jobs of each designator:

setLoc() pointcut—Handles the matching of the setLocation() join point.

cflow(setStat()) designator—Handles matching only when the setLoc()
pointcut occurs during the execution of setStats().

target(dvd) designator—Returns the target DVD object of the setLoca-
tion() method.

args(place, ..)—Returns the first parameter to setLocation() and ignores
all other parameters.

cflowbelow

In our example, the primary code is in the process of setting a location for a
DVD object. If the code had been written so that another setLocation() method
call could be made while the current setLocation() method is executing, the
pointcut would match again potentially before the first code finished executing.
This type of situation can occur when there is a hierarchy of objects, each with
a polymorphic version of a single method. In many cases, you don’t want to han-
dle all calls to a specific method—just the topmost call.

Consider this pointcut:

pointcut setLoc() :

call(public void DVD.setLocation(..)) ||

call(public void DVD.setStats(..)) ||

call(public void Boxset.setLocation(..)) ||

call(public void Boxset.add(..));

before() : setLoc() {

System.out.println(thisJoinPoint.toLongString());

}

Combining Pointcuts 113

In this pointcut we find a number of join points across both the DVD and Boxset
classes, and all of the join points are ORed together, indicating what the set-
Loc() pointcut should match when any of the join points are reached. From a
concern standpoint, we are interested in knowing when the setLocation()
method of any of the DVDs or Boxsets is called. When we execute the code
against the Boxset class, we get the following output:

call(public void Boxset.add(DVD))

call(public void DVD.setStats(java.lang.String, int))

call(public void DVD.setLocation(java.lang.String, int))

If you look at the Boxset code, you notice that the add() method sets the loca-
tion of the Boxset using a local setLocation() method and the setStats() method
of the DVD class using its local setLocation() method. If either the add() or the
setStats() method is used, we get a second match of the pointcut when the set-
Location() method is called. We really don’t want this—we just want to know
when the first of any join point listed in the pointcut is reached. The
cflowbelow designator can help us with this. Consider this new pointcut using
cflowbelow:

pointcut setLoc() :

call(public void DVD.setLocation(..)) ||

call(public void DVD.setStats(..)) ||

call(public void Boxset.setLocation(..)) ||

call(public void Boxset.add(..));

pointcut topSetLoc() :

setLoc() &&

!cflowbelow(setLoc());

before() : topSetLoc() {

System.out.println(thisJoinPoint.toLongString());

}

When this new pointcut is executed against the Boxset class, we obtain the fol-
lowing output:

call(public void Boxset.add(DVD))

Only a single pointcut has been matched. Why? If you follow the code, the add()
method calls the setStats() method of the DVD object, which in turn calls the
setLocation() method. We only want to know about the add() method in this
case. We do this by using the cflowbelow designator, which takes as a parame-
ter a pointcut. Our pointcut topSetLoc() tells the system to first match any of
the four join points listed in the setLoc() pointcut. When a match is found, the
system should check to see if we are in the execution flow below the current
join point. Below means not including the current join point. So, when the add()
join point is reached, the setLoc() pointcut will match first. The topSetLoc()
pointcut will match next, and the system will check to see if the add() method
is in the execution flow.

AspectJ Pointcuts114

When the setStats() method within the add() method is reached, the setLoc()
pointcut will match. The topSetLoc() matches next, and the system checks the
execution path of setStats(). Since the pointcut had previously matched, the
system remembered that we are still within the execution path of add(), so
cflowbelow doesn’t match. The same sequence of events occurs in the case of
the setLocation() join point.

Let’s use an example based on a recursive algorithm. Here’s the code for a
recursive factorial algorithm:

public class Fact {

public long factorial(int n) {

if (n == 0) {

return 1;

}

return n * factorial(n - 1);

}

public static void main(String args[]) {

Fact fact = new Fact();

System.out.println("Fact of 7 = " + fact.factorial(7));

}

}

Next we have a pointcut designed to return just the original call to the recursive
algorithm:

pointcut getFact(int i) : call(public long factorial(i));

pointcut topGetFact2(int i) :

getFact(i) &&

!cflowbelow(getFact(int));

before(int i) : topGetFact2(i) {

System.out.println(thisJoinPoint.getSignature());

System.out.println(i);

}

In this code, we have two different pointcuts. The first pointcut, called get-
Fact(), is based on a join point for the factorial method in the primary code.
There are no constraints for this pointcut; therefore, it will be matched each
time the primary code calls the method. The topGetFact2() pointcut is a com-
bination built by using the getFact() pointcut and the cflowbelow designator.
This cflowbelow designator is built using the getFact() pointcut and will be
matched if our current join point is called below the first call that the join point
defined in the getFact() pointcut. Since our primary code is recursive, all calls
except the first call to the factorial() method will be made below the first one.
So, cflowbelow(getFact(int)) will be matched for all getFact() pointcuts
except the very first one. The reason for this is the use of getFact(int) in the
parameter to cflowbelow, which tells the system to use the join point when first
encountered.

Combining Pointcuts 115

The output from the Fact class and our pointcut is as follows:

long Fact.factorial(int)

7

Fact of 7 = 5040

Next, we might be interested in each of the calls to the factorial join point as
well as the original call used to start the recursion. The pointcut would now
look like this:

pointcut topGetFact2(int i, int j) :

getFact(i) &&

cflowbelow(cflow(getFact(j)) && !cflowbelow(getFact(int)));

before(int i, int j) : topGetFact2(i, j) {

System.out.println(thisJoinPoint.getSignature());

System.out.println("Current = " + i + " original = " + j);

}

The topGetFact2() pointcut has two purposes. The first is to obtain the
currently running factorial join point. This step is accomplished using the
getFact() pointcut, which matches all factorial method calls and includes a
parameter for the integer passed to the method.

The second purpose is to obtain the very first method call to the factorial join
point. This step is accomplished using a rather ugly-looking cflowbelow desig-
nator. Let’s begin talking about this part of the join point by looking at the pur-
pose of the outer cflowbelow. The output for the entire pointcut is as follows:

current factorial call parameter value – original call parameter value

So if we call factorial(7) , the output looks like this:

Current = 6 original = 7

With this type of output, there is no purpose for the very first call to factorial. In
other words, we don’t want to see output like

Current = 7 original = 7

Therefore, we define the pointcut as

getFact(i) && cflowbelow()

This says that we want to know about all calls to the factorial join point but only
after the first call to the join point. This combination allows us to bypass the
Current = 7 original = 7 output.

Next, we want to be able to pull back the original factorial() method call param-
eter value. This is accomplished with the code

cflow(getFact(j)) && !cflowbelow(getFact(int))

AspectJ Pointcuts116

This pointcut combination says that we are interested in all calls to the factor-
ial join point, including the first one—which is good because we need the orig-
inal parameter value. In order to limit which join point call is matched, we
created a combination with the inverse of a cflowbelow based on the factorial
join point.

The output from the Fact class and this new pointcut is

long Fact.factorial(int)

Current = 6 original = 7

long Fact.factorial(int)

Current = 5 original = 7

long Fact.factorial(int)

Current = 4 original = 7

long Fact.factorial(int)

Current = 3 original = 7

long Fact.factorial(int)

Current = 2 original = 7

long Fact.factorial(int)

Current = 1 original = 7

long Fact.factorial(int)

Current = 0 original = 7

Fact of 7 = 5040

Finally, suppose we’re interested in the current call to the factorial join point as
well as the previous. The following pointcut will give us that information:

pointcut topGetFact(int i, int j) :

getFact(i) &&

cflowbelow(getFact(j));

before(int i, int j) : topGetFact(i,j) {

System.out.println("Current = " + i + " Previous = " + j);

}

The first part of the topGetFact() pointcut pulls all of the calls to the factorial
join point and obtains the parameter value passed to the associated method.
The second part of the pointcut obtains the previous join point by using the full
cflowbelow designator. The output from the Fact class and this pointcut is as
follows:

Current = 6 Previous = 7

Current = 5 Previous = 6

Current = 4 Previous = 5

Current = 3 Previous = 4

Current = 2 Previous = 3

Current = 1 Previous = 2

Current = 0 Previous = 1

Fact of 7 = 5040

Combining Pointcuts 117

Class-Initialization Designators
When we’re defining a class to represent some object in the design of an appli-
cation, it is likely that each object instantiated from the class must possess cer-
tain attributes in order to operate correctly. One or two of these attributes will
more than likely have the same value from object to object. An example is a
lookup table in which the same values are accessed by all objects in a read-only
manner. These type attributes are typically designated as static in a class. The
class itself owns the attribute, but all instantiated objects, as well as potentially
other objects, can access the attributes provided that the permissions are set
correctly. Here’s an example of a class with static attributes:

public class StaticExample {

private static int lookup[][];

private static final int N = 25;

private static final int M = 25;

}

This class code defines three static attributes with scope visibility to the class
as well as all objects instantiated from the class. When we execute the Java
application that contains this static code, a static initializer built within the Java
Runtime Environment executes.

staticinitialization

AspectJ includes a designator called staticinitialization, which we can use to
build a pointcut against a join point for the static initializer of a particular class
type. The format of the staticinitialization designator is

staticinitialization(class type pattern)

The join point matches when the static initializer for the object begins to
execute. Consider the following pointcut set against the DVD class:

pointcut staticInit() : staticinitialization(DVD);

before() : staticInit() {

System.out.println(thisJoinPoint.toLongString());

}

When we execute this code against the DVD class, the following output is
generated:

staticinitialization(static DVD.<clinit>)

Location and count = New Store

Title = Better Title

The output shows where the join point was matched against the code, clearly
showing that the static clinit cliint code was executed. If you remember, the

AspectJ Pointcuts118

TE
AM
FL
Y

Team-Fly®

DVD class is a derived class from Product. The pointcut can be changed slightly
to match when the Product and the DVD class static initializers are executed.
For example:

pointcut staticInit() : staticinitialization(Product+);

before() : staticInit() {

System.out.println(thisJoinPoint.toLongString());

}

The output from this pointcut is

staticinitialization(static Product.<clinit>)

staticinitialization(static DVD.<clinit>)

Location and count = New Store

Title = Better Title

Notice how the Product static initializer comes before the DVD, as you would
expect since Product is the parent class to DVD.

Program Text-Based Designators
There are times when join points must be limited to specific class types, and the
target or this designator can be used for that purpose. However, we don’t have
much control over where in a class the join points can be matched with these
designators. The cflow designator gives us more control, but if the method rep-
resenting the join point defined in cflow calls another method of the same or
different object, a join point can still be matched. This is because the execution
flow is still within the scope of the original join point. What we need is a way to
limit the scope of a join point to a single method or constructor within an
object. The withincode designator handles this type of scoping.

withincode

The format of the withincode designator is

withincode(join point signature)

Using our DVD code, suppose we want to match the setLocation() method call.
The pointcut is

pointcut setLoc() : call(public void setLocation(..));

Executing this pointcut against the DVD code produces the following output

call(public void DVD.setLocation(java.lang.String, int))

call(public void DVD.setLocation(java.lang.String, int))

Location and count = New Store

Title = Better Title

This output tells us that there are two setLocation() calls in the execution of the
DVD main() method. One of those setLocation() calls is in the main() method

Combining Pointcuts 119

itself, and the other is in the setStats() method. We are interested in only the
call within the setStats() method, and we need to build a pointcut to limit the
matching scope. At first consideration, the cflow designator appears to be a
good match; if we build a pointcut using it and execute the pointcut, a single
setLocation() join point will be matched. So, all is well—until the setStats()
method is expanded and it calls another method with a setLocation() method
within that new method. Remember that cflow limits the scope to the entire
execution of the original matched join point regardless of the other methods
called.

The solution to this problem is to use the withincode designator. For example:

pointcut getLoc() :

call(public void setLocation(..)) &&

withincode(public void DVD.setStats(..));

before() : getLoc() {

System.out.println(thisJoinPoint.toLongString());

}

This pointcut tells the system to match all calls to the setLocation() join point
but only (using the AND logical operator) when the join point falls within the
setStats() method of the DVD class. Note that without the DVD class type
attached to the setStats() join point signature, the pointcut could potentially be
matched on objects other than DVD that have the setStats() method. The with-
incode designator is based on the execution of code within the join point
selected and doesn’t extend to objects created within the matched join point.

within

What if we had a situation where another object was created local to a method
that has been matched by a join point? Would the system be able to tell that our
new object is within the scope of a method defined in a withincode designator?
Consider the following class:

public class Within {

private int count;

private class Inner {

public void updateCount(Within w, int i) {

w.setCount(i);

}

}

public void setCount(int i) {

count = i;

}

AspectJ Pointcuts120

public void one() {

Inner inner = new Inner();

inner.updateCount(this, 4);

System.out.println(count);

}

public static void main(String args[]) {

Within withinIt = new Within();

withinIt.one();

}

}

In this code, a setCount() public accessor function is used to update a private
count attribute. Within the one() method, a private Inner class object is instan-
tiated and the updateCount() method is called using a parameter of the current
object and the value 4. The updateCount() method of the Inner class calls the
setCount() method. We are interested in a pointcut being matched when the
setCount() method is called within the one() method. Here’s a possible pointcut
definition:

pointcut setC() :

call(public void setCount(int)) &&

within(public void one());

before() : setC() {

System.out.println(thisJoinPoint.toLongString());

}

The familiar call designator is used to match the setCount() join point any-
where in the code. This is followed by the withincode designator with a join
point of the one() method. The question is, will the call to setCount() found in
the Inner class’s updateCount() method cause the pointcut to the matched? The
answer is yes, because an Inner class object was instantiated within the execu-
tion path of the one() method. The within designator remains active until the
end of the join point.

Anonymous and Inner-Class within/withincode Join Points

There is currently a limitation for both the within and withincode designators
as they relate to inner and anonymous classes. Suppose you have this class:

public class test {

private class innertest {

public inertest() {

JButton button = new JButton("Button");

button.addActionListener(

new ActionListener() {

public void ActionPerformed (ActionEvent e) {

//do something

}

Combining Pointcuts 121

}

);

}

}

}

An aspect created to match join points at the comment //do something won’t
work when using the designator based on the inner class like this:

within(test.innertest)

The join points within the anonymous class of the inner class can be matched
with the designator

within(test)

The AspectJ team hopes to clear this limitation in a revision of 1.1.

Dynamic Property-Based Designators
As we mentioned earlier, you cannot use wildcards with the this, target, and
args designators when specifying class information. To overcome this problem,
you can use the if designator. The format of the designator is

if(BooleanExpression)

The if designator matches join points based on some dynamic property used as
the condition to the if designator. The dynamic property must, of course, evalu-
ate to a value of true or false. We can take advantage of this designator to match
a hierarchy of classes if needed. This example is derived from the initial
AspectJ 1.1 readme:

pointcut handleMatch() : this (Object) &&

if (matchThem"com.test.Product.",

thisJoinPoint.getTarget().getClass().getName()));

static boolean matchthem(String pattern, String className) {

if (className.indexOf(pattern) >= 0) return true;

}

In this pointcut, we match on all objects in the code derived from Object and a
dynamic property based on the name of the current object. The name of the cur-
rent target object and the pattern we are interested in are passed to the
matchThem() method. The method checks the pattern against the object name.
If the pattern is found, the method returns a true value. If you have more com-
plex patterns, the matchThem() method might be more complex, but all it
needs to do is make sure the class name has a specific pattern.

AspectJ Pointcuts122

adviceexecution
AspectJ 1.1 introduced a new designator to the language, called adviceexecu-

tion, which lets you create a pointcut that will match a join point based on the
execution of an advice. The format of the designator is

adviceexecution()

Consider the following example Java application and aspect code:
Primary Code:

public class Test {

public Test() {

Database database = new Database();

database.databaseCall();

}

public static void main(String[] args) {

Test test = new Test();

}

}

Aspect Code

public aspect DatabaseCallAspect {

pointcut primary() : call(public void databaseCall());

pointcut aspects() : adviceexecution() &&

within(DatabaseCallAspect);

before() : primary() {

System.out.println(thisJoinPoint.getSignature());

}

before() : aspects() {

System.out.println("Call to advice");

}

}

In this example, we make external calls to a database in the primary code. In
the aspect code, we have created two pointcuts to match the database call and
one to match the execution of the two advice code blocks. When the applica-
tion and aspect code is woven together and executed, the output is

Call to advice

Call to advice

void Database.databaseCall()

Here we can see the appropriate database calls are matched as well as the
beginning of execution for both aspects.

Combining Pointcuts 123

preinitialization
We can use the preinitialization designator to match a join point defined before
an object is fully instantiated. For example:

public aspect DVDAspect {

pointcut instant() : preinitialization(DVD.new());

before() : instant() {

System.out.println(thisJoinPoint.getSignature());

}

Dealing with Interfaces
All of the pointcuts we have discussed are also valid in those cases where inter-
faces are used to enhance the design of an application. Consider the following
interface and two implementations:

public interface SimpleInterface {

public void doSimple(int i);

}

public class SimpleIOne implements SimpleInterface {

private int count;

public void doSimple(int i) {

count = i;

}

public static void main (String args[]) {

SimpleIOne simple1 = new SimpleIOne();

simple1.doSimple(5);

SimpleITwo simple2 = new SimpleITwo();

simple2.doSimple(6);

}

}

public class SimpleITwo implements SimpleInterface {

private int count;

public void doSimple(int i) {

count = i;

}

}

The two classes, SimpleIOne and SimpleITwo, implement the interface and pro-
vide code for the doSimple() method. However, the SimpleIOne class has a

AspectJ Pointcuts124

main() method where both a SimpleIOne and a SimpleITwo object are created,
and the doSimple() method is executed against each of the objects. We can cre-
ate a join point and associated pointcut to match the doSimple() methods of the
two classes quite simply:

pointcut simple() : call(public void doSimple(int));

before() : simple(){

System.out.println(thisJoinPoint.toLongString());

System.out.println(thisJoinPoint.getKind());

}

The join point matches all uses of the doSimple(int) method regardless of the
class where it is defined. The output from this pointcut and the main() method
in the SimpleIOne code is as follows:

call(public void SimpleIOne.doSimple(int))

method-call

call(public void SimpleITwo.doSimple(int))

method-call

Now, if we were to change the code to match based on the interface itself, the
pointcut would be as follows:

pointcut simple() :

call(public void SimpleInterface.doSimple(int));

Executing the new pointcut against the SimpleIOne code produces the same
output shown earlier since there is no code in the SimpleInterface interface
itself. The pointcut is telling us where the interface has ultimately been imple-
mented.

Anonymous Pointcuts
All of the pointcuts created in this chapter are called named pointcuts because
there was a name attached to its definition. AspectJ allows the use of anony-
mous pointcuts in cases where there isn’t a need for a name. Here’s an example
of an anonymous pointcut:

before() : call(public void doSimple(int)) {

System.out.println(thisJoinPoint.toLongString());

System.out.println(thisJoinPoint.getKind());

}

In this snippet, the same pointcut used in the previous section to find the
doSimple() join point is implemented from an interface. The previous pointcut
isn’t used in a more complex pointcut, so it is a good candidate to become an
anonymous pointcut. The output from executing the code is the same as shown
earlier.

Combining Pointcuts 125

Using Aspects in Classes
When writing a number of pointcuts for the implementation of a concern, you
should take into account the issue of modularity. For many of our examples, we
split the code between primary Java files and files implementing the crosscut-
ting concerns. To show how the cflow and cflowbelow designators work, let’s
suppose we have a couple of files, called Flow.java and FlowAspect.java. The
Flow.java file contains the primary application code, and FlowAspect.java con-
tains the join points, pointcuts, and advice code encapsulated in an aspect.
Even though the aspect code is kept in a separate file, the pointcuts and related
join points are visible across all of the code compiled to produce an application.

When a concern crosscuts a number of classes in the application code, it might
be useful to implement the pointcut in the same source file as the code itself.
For example, suppose we defined a pointcut in the Flow.java class that defines
a specific join point in the Flow class. We defined another pointcut in a class
called Flow2.java that matches some other method specific to the Flow2 class.
This is followed by an aspect defined in another file called FlowAspect.java.
The pointcut has to reference the pointcuts in each of the files to be effective.
For example, assume we have a pointcut called flowPC() in the Flow class and
a pointcut called flowPC2() in the Flow2 class. We could define a third pointcut
referencing both of the pointcuts:

public Aspect FlowPCDs() :

call(Flow.flowPC()) &&

execution(Flow2.flowPC2());

In order for the compiler to find the appropriate pointcuts, we must provide the
full class definition. By putting pointcuts into the class where the pointcut’s join
point is found, we create another level of encapsulation.

Creating Factory Objects
Using the Factory design pattern is a common coding technique. The following
example application is designed to allow the creation of two different objects
called Factory1 and Factory2. If a user of the Factory class needs one of these
objects, the user should get an instance of the Factory and request an object of
the correct type. If an application uses a new() method, we might build an
aspect to produce an error:

public class Factory {

static public Object makeInstance(int i) {

if (i == 0) {

return (Object) new Factory1();

} else {

AspectJ Pointcuts126

return (Object) new Factory2();

}

}

public static void main(String args[]) {

Factory1 factory1 = (Factory1)Factory.makeInstance(0);

Factory2 factory2 = (Factory2)Factory.makeInstance(2);

Factory1 badFactory1 = new Factory1();

}

}

public class Factory1 {

public Factory1() {

}

}

public class Factory2 {

public Factory2() {

}

}

Next we have the aspect that accomplishes two tasks. The first is determining
when an object is created properly through the makeInstance() method of the
Factory class. We accomplish this by using a call designator with a signature of
Factory.makeInstance. To find examples of using just a new() method to pro-
duce a new Factory1 or Factory2 object, we must create a combination point-
cut. The first part is matching a call to the new() method of any Factory class.
This is done using the call(Factory*.new()) designator. However, we don’t
want to include calls in the makeInstance() method of the Factory class
because that’s where the good objects are created. To keep the pointcut from
matching the new() calls in makeInstance(), we can use the cflow designator
with a NOT operator.

Finally, say we don’t want to match on any calls to instantiate the Factory class
itself. The resulting pointcuts and example advice is shown here:

public aspect FactoryAspect {

pointcut buildFactory() : call(Factory.new());

pointcut factory() : call(* Factory.makeInstance(..));

pointcut notFactory() :

call (Factory*.new()) &&

!cflow(factory()) &&

!buildFactory();

}

before() : factory() {

System.out.println(thisJoinPoint.getSignature());

}

Combining Pointcuts 127

before() : notFactory() {

System.out.println(thisJoinPoint.getSignature() + " BAD!");

}

}

When the main() method of the Factory class is executed with the aspect
woven into the code, the following output occurs:

Object Factory.makeInstance(int)

Object Factory.makeInstance(int)

Factory1() BAD!

Catching Java Library Calls
A very common question about AspectJ is how to match join points on code
found in a package that wasn’t written by the developer. A good example is the
class libraries provided by Java—especially the GUI classes. We use the follow-
ing example to illustrate matching on package methods:

import java.io.*;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class Gui extends JFrame {

JTextArea displayArea;

JButton sendButton;

public Gui() {

super("GUI");

Container c = getContentPane();

sendButton = new JButton("Send Search");

sendButton.addActionListener(

new ActionListener() {

public void actionPerformed(ActionEvent e) {

sendData();

}

}

);

c.add(sendButton, BorderLayout.NORTH);

displayArea = new JTextArea();

c.add(new JScrollPane(displayArea), BorderLayout.CENTER);

setSize(150,150);

AspectJ Pointcuts128

TE
AM
FL
Y

Team-Fly®

show();

}

private void sendData() {

}

public static void main (String args[]) {

Gui gui = new Gui();

gui.displayArea.append("New String");

}

}

This example builds a GUI and displays a button and text area. After the GUI is
instantiated, the code adds a small text string to the text area. When a user
clicks the button, the sendData() method is called. Our goal is to match on the
calls to the constructor for the JTextArea, to the add() method of the GUI con-
tainer, and to the sendData() method. The following shows an aspect with the
necessary pointcuts:

public aspect GuiAspect {

pointcut textArea() : call(javax.swing.JTextArea+.new(..));

pointcut container() : call(* java.awt.Container.add(..));

pointcut senddata() : call(private void Gui.sendData());

before() : textArea() {

System.out.println(thisJoinPoint.getSignature());

}

before() : container() {

System.out.println(thisJoinPoint.getSignature());

}

before() : senddata() {

System.out.println(thisJoinPoint.getSignature());

}

}

Once the aspect is woven in the primary code, the application displays a GUI on
the screen. When a user clicks the button, the application generates the follow-
ing output:

void java.awt.Container.add(Component, Object)

javax.swing.JTextArea()

void java.awt.Container.add(Component, Object)

void Gui.sendData()

Note the use of the entire signature for the join points. This is a requirement
when you’re matching join points in a package.

Combining Pointcuts 129

Access to Final Attributes
Many classes use constants or final attributes in their class definitions. For
example:

public class Test{

public static final String WARNING = "This is a warning";

}

Currently no designator is available that will allow a match to occur when a
final attribute is used.

Patterns with Exceptions
There might be times when you need to match methods with a listing of thrown
exceptions. It is possible to list the exceptions in the various designators. For
example:

call(* *(..) throws IOException)

This call designator selects all the methods declaring that they threw
IOExceptions.

What’s Next

In this chapter, we provided an in-depth overview of the pointcut and discussed
how you can use designators along with join points to implement the crosscut-
ting of concerns. Several of our examples have shown the use of pointcuts in
action on real code. The join point identifies the place where a pointcut should
be matched in the execution of the primary application. The advice, which we
cover in the next chapter, is executed when the pointcut is matched and pro-
vides the code necessary to implement the crosscutting concerns.

AspectJ Pointcuts130

Chapter 6 discussed pointcuts, which are vital for assembling and naming
interesting “points” in the execution of an application. The natural com-
plement to a pointcut is advice—code that executes when the applica-

tion reaches a join point. If you’ve been reading this book chapter by chapter,
you’ve seen dozens of pieces of advice. For instance, in this example the advice
is shown in bold:

pointcut DVDConstruct() : execution (public DVD.new(..));

before() : DVDConstruct() {

System.out.println(thisJoinPoint);

}

We’ve shown you so much advice without fully introducing the concept
because advice is such a vital part of AspectJ. We’ve used it to demonstrate that
join points were reached, that pointcuts selected the right join points, and that
pointcuts can expose join point context. This chapter delves into advice in its
own right. We’ll explore:

■■ How to define advice

■■ How to use join point context in advice

■■ Advice and exceptions

■■ The different types of advice (before, after, and around)

■■ How to use the special proceed syntax available in around advice

■■ Advice precedence

Advice

C H A P T E R 7

131

Along the way, we’ll show you some examples of how advice can implement
crosscutting concerns. We’ll only be able to scratch the surface, because almost
everything you do in AspectJ builds on advice. However, we hope this chapter
will spark your thinking about the sorts of concerns AspectJ can implement.

How to Define Advice

If you’ve read some of the earlier examples in the book, you can probably put
together working advice. However, we’ll begin from scratch and explore the dif-
ferent parts of advice using an example.

Adding Information to
System.out.println()

Let’s start with motivation. For simple programs, System.out.println is a great
way to display output to the user or to check on the flow of an application. We’ll
use it heavily to demonstrate that our advice works as planned.

However (as you’re probably aware), using more than one or two occurrences of
System.out.println can be confusing. There’s no way to tell where the printout
came from, when it happened, or anything else about its context. To remedy this
problem, JDK 1.4 introduced logging classes. Users of JDK 1.3 can rely on third-
party logging frameworks. Either solution introduces complexity. Let’s look at
what AspectJ can do to help you address System.out.println’s limitations.

With what you know of pointcuts, it should be easy to identify and advise calls
to System.out.println. First let’s set up some test code so you’ll know when
you’ve succeeded (see Listing 7.1).

A d v i c e132

public class PrintTest {

public PrintTest() {

System.out.println("In constructor.");

}

public void test1(){

System.out.println("In test1");

}

public void test2(){

System.out.println("In test2");

Listing 7.1 A class that uses printlns. (continues)

How to Define Advice 133

}

public static void main(String[] args){

System.out.println("In main.");

PrintTest t = new PrintTest();

t.test1();

t.test2();

}

}

//output

In main.

In constructor.

In test1

In test2

Listing 7.1 A class that uses printlns. (continued)

The advice
In order to add a little context to the printlns, let’s find out the name of the class
that made the call to System.out.println. Here’s the advice you can use:

before(Object caller) : logCalls(caller) {

System.out.print(getClassName(caller) + ":");

}

Essentially, this advice says, “Before log calls, issue an additional print state-
ment stating the class name of the caller.”

Analysis of Println Advice

Let’s break down the advice. First comes the type of the advice:

before(Object caller) : logCalls(caller) {

System.out.print(getClassName(caller) + ":");

}

The word before specifies the type of advice you’re defining—the other options
are after and around (more about them later). In this case, before means the
advice will execute before the join points it affects.

Next come the formal parameters of the advice (if any):

before(Object caller) : logCalls(caller) {

System.out.print(getClassName(caller) + ":");

}

As you saw in Chapter 6, pointcuts can expose variables that represent well-
defined pieces of the execution context of a join point. Advice makes use of this
context by binding it into formal parameters. We’ll get into that topic in detail
later in this chapter. For now, understand that the advice can refer to an object
exposed by the logCall pointcut via the identifier “caller.”

After the advice type and parameters comes the pointcut:

//within aspect AddSourceInfo

before(Object caller) : logCalls(caller) {

System.out.print(getClassName(caller) + ":");

}

public pointcut logCalls(Object caller) :

call(public void print*(*)) &&

target(PrintStream) &&

this(caller) &&

! within(AddSourceInfo);

Advice is always defined relative to a pointcut. The pointcut selects the join
points that the advice runs at. The logCalls pointcut begins by using call() to
identify calls to any methods starting with print on objects of type PrintStream.
this(caller) exposes the currently executing object (the one that made the call
to println). Finally, ! within(AddSourceInfo) excludes any calls to println made
from within the aspect itself.

Now you define the body of the advice:

before(Object caller) : logCalls(caller) {

System.out.print(getClassName(caller) + ":");

}

private String getClassName(Object o){

if(o == null){

return "unknown";

}

String name = o.getClass().getName();

//remove package name for shorter output

name = name.substring(name.lastIndexOf('.') + 1);

return name;

}

The body of the advice acts like a method body. It can use its formal parameters
much like methods use their parameters, and it can call other methods to help
it do its work. The main differences between advice bodies and method bodies
are that advice bodies are restricted in their return values (more on that later)
and advice bodies have implicit access to special AspectJ constructs such as
thisJoinPoint and proceed().

A d v i c e134

If you compile AddSourceInfo and weave it into PrintTest, you get the following
output:

In main.

PrintTest:In constructor.

PrintTest:In test1

PrintTest:In test2

It looks like a success. The pointcut has identified calls to print*. The advice
has added the additional information before each call. Only the call from
main()was missed. However, that’s a limitation of the pointcut, not the advice.
Because the pointcut relies on this() to identify the caller, it does not pick out
any calls coming from code where there is no currently executing object. This
excludes any calls from static methods, which isn’t acceptable. Let’s see how to
include the calls from main().

Refactoring the Println Advice

If you examine the API for thisJoinPointStaticPart (introduced in Chapter 5,
“Join Points”) you find a method called getSourceLocation().Replace the body
of the advice with the following:

before(Object caller) : logCalls(caller) {

System.out.print(

thisJoinPointStaticPart.getSourceLocation() + "-"

);

}

Recompile (and reweave), and the output now looks like this:

PrintTest.java:23-In main.

PrintTest.java:11-In constructor.

PrintTest.java:15-In test1

PrintTest.java:19-In test2

That looks perfect. It even has line numbers! Now that you aren’t using the
caller parameter of the advice, you can delete it, along with the parts of the log-
Calls pointcut that exposed it. The final aspect appears in Listing 7.2.

How to Define Advice 135

public aspect AddSourceInfo {

public pointcut logCalls() :

call(public void print*(*)) &&

target(PrintStream) &&

! within(AddSourceInfo);

Listing 7.2 The final form of the AddSourceInfo aspect. (continues)

A d v i c e136

before() : logCalls() {

System.out.print(

thisJoinPointStaticPart.getSourceLocation() + "-"

);

}

}

Listing 7.2 The final form of the AddSourceInfo aspect. (continued)

Formal Definition
Now that you’ve seen a detailed example, let’s look at the formal syntax for an
advice definition:

Advice ::= [ReturnType] TypeOfAdvice "("[Formals]")"

[AfterQualifier] [throws TypeList] ":"

Pointcut "{" [AdviceBody] "}"

TypeOfAdvice ::= before | after | around

ReturnType ::= TypeOrPrimitive ;(applies only to around advice)

AfterQualifier ::= ThrowsQualifier | ReturningQualifier

;(applies only to after--defined later)

Formals ::= ;(as a Java parameter list)

Pointcut ::= ;(see Chapter 6)

AdviceBody ::= ;(as a Java method body—with differences discussed

later)

This is a simplified treatment that emphasizes AspectJ’s contributions rather
than those areas where it overlaps with Java. Don’t worry about the special
syntax for around and after advice—we’ll deal with those permutations in
the sections about those types of advice.

Unlike pointcuts, which can appear in classes as well as aspects, advice can
appear only within the body of an aspect. Unlike methods, fields, or other type
members, advice does not have an associated identifier. This is natural, because
you never need to refer to the advice by name within your code. However, the
lack of an identifier can make things confusing when you’re trying to talk or
write about advice. Often you can solve this issue by using well-named point-
cuts with your advice. For instance, you could refer to the advice developed in
the AddSourceInfo example as “the advice that executes before log calls” (log-
Calls() being the name of its pointcut).

The lack of an identifier also makes it difficult to distinguish one bit of advice
from another when reading an advice signature. (This can happen, for instance,
if you use thisJoinPoint.getSignature to get information about advice-execution
join points). There is also no way to pick out and advise the execution of a

single piece of advice. The preferred way to use the adviceexecution() pointcut
is to pair it with within(YourAspect), thus limiting its scope to advice appearing
in the body of YourAspect.

Issues Common to All Types of Advice

Before we consider the different types of advice in detail, let’s examine features
common to all three types of advice.

Passing Context to Advice
The previous section included a simple example of passing context to advice.
This section examines another example and considers some of the issues
raised by passing context to advice.

Example: Employee Raises

This section introduces an example application that will make several appear-
ances throughout the book: a simple personnel management system. At the
heart of the system is the Employee class, shown in Listing 7.3.

Issues Common to All Types of Advice 137

package personnel;

import java.text.NumberFormat;

import java.io.PrintStream;

public class Employee {

private int salary;

private String name;

private Manager manager;

private NumberFormat formatter =

NumberFormat.getCurrencyInstance();

public Employee(String name, int startingSalary) {

this.name = name;

salary = startingSalary;

}

public void raiseSalary(int increment){

salary += increment;

}

public void costOfLivingAdjustment(){

Listing 7.3 The Employee class enables some basic actions. (continues)

A d v i c e138

salary += 125;

}

public int getSalary(){

return salary;

}

public String getSalaryDisplay(){

return formatter.format(salary);

}

public String toString(){

String type = getClassName();

return type + " " + name + ":"

+ getSalaryDisplay();

}

public personnel.Manager getManager() {

return manager;

}

public void setManager(personnel.Manager manager) {

this.manager = manager;

}

public java.lang.String getName() {

return name;

}

public void setName(java.lang.String name) {

this.name = name;

}

public String getClassName(){

String name = getClass().getName();

name = name.substring(name.indexOf('.') + 1);

return name;

}

}

Listing 7.3 The Employee class enables some basic actions. (continued)

To give motivation to the examples, assume that you’re customizing the per-
sonnel management application for a particular department within a company.
As you might imagine, raises are an interesting event in this application. Raises
mean more money for the employee, less money for the company, new tax cal-
culations, different 401(k) contributions, and so on. Because raises have such
far-reaching consequences, the department would like to have a record of them.

TE
AM
FL
Y

Team-Fly®

You know how well AspectJ handles logging, so let’s use advice to perform
this task. Listing 7.4 shows both the logging aspect and example code that
exercises it.

Issues Common to All Types of Advice 139

public class Example {

public static void main(String[] args){

raiseAndCheck("Rebekah", 5000);

raiseAndCheck("Omar", 6000);

raiseAndCheck("Philipe", 7000);

}

private static void raiseAndCheck(String name,

int raise){

Employee e = new Employee(name, 50000);

e.raiseSalary(raise);

System.out.println("After raise: " + e);

}

}

public aspect LogRaises {

pointcut raises() : call(void raiseSalary(int)) &&

target(Employee);

before() : raises() {

System.out.println("Raise occurred.");

}

}

//output--notice output from AddSourceInfo as well as LogRaises

LogRaises.java:10-Raise occurred.

Example.java:18-After raise: Employee Rebekah:$55,000.00

LogRaises.java:10-Raise occurred.

Example.java:18-After raise: Employee Omar:$56,000.00

LogRaises.java:10-Raise occurred.

Example.java:18-After raise: Employee Philipe:$57,000.00

Listing 7.4 Basic logging of raises.

By now you’re probably familiar with using AspectJ to do this sort of
logging. The only thing worth mentioning so far is that you can weave in the
AddSourceInfo aspect to see which printlns come from where. (In fact, this
aspect is so useful in interpreting the examples that we leave it in for many of
the examples throughout the chapter.)

Passing in the Employee and Amount as Formal Parameters

The output from LogRaises isn’t very useful. A raise log without data about
whose salary was raised and the amount of the raise is fairly useless. So, let’s
pass that information into the advice as formal parameters.

First the pointcut must be modified to expose the context:

pointcut raises(Employee emp, int amount) :

call(void raiseSalary(int)) &&

target(emp) && args(amount);

Then you modify the advice to accept the employee and amount as formal para-
meters:

before(Employee emp, int amount) : raises(emp, amount) {

System.out.println(emp + " to receive raise of " +

amount);

}

The output looks like this:

LogRaises.java:11-Employee Rebekah:$50,000.00 to receive raise of

5000

Example.java:16-After raise: Employee Rebekah:$55,000.00

LogRaises.java:11-Employee Omar:$50,000.00 to receive raise of

6000

Example.java:16-After raise: Employee Omar:$56,000.00

LogRaises.java:11-Employee Philipe:$50,000.00 to receive raise of

7000

Example.java:16-After raise: Employee Philipe:$57,000.00

Now that you’ve seen context binding in action, let’s consider the technical
details.

Formal Parameters

Formal parameters pass join point context to advice in an explicit and type-safe
fashion. Most of the information that can be passed in as advice parameters can
also be extracted via reflection. Each type of access has advantages and disad-
vantages. We’ll discuss which to use when in the section “Reflective Access to
Join Point Context.”

Context Available as Formals

Chapter 6 discussed in detail how to pull context out of join points with point-
cuts. To review, advice can use four types of context:

■■ Arguments—(Selected with args().) These can be actual method or con-
structor parameters. They can also be less formal types of arguments,
specifically exceptions passed to handler blocks and field assignment val-
ues.

■■ The currently executing object—(Selected with this().) Remember that
this context is not available during the execution of a static method.

■■ The target of a method/constructor call or field reference—
(Selected with target().)

A d v i c e140

■■ The return value or thrown exception from a join point—(Selected
with returning() or throwing().) This type of context can only be accessed
by after advice of the correct type.

The Left-Right Rule

It’s important to remember that every named parameter on the left side of the
colon must match a piece of context exposed by the pointcut on the right side
of the colon. Consider the raise logging advice discussed earlier:

before(Employee emp, int amount) : raises(emp, amount) {

System.out.println(emp + " to receive raise of " +

amount);

}

Here Employee emp on the left side matches raises(emp, amount) on the right
side. The same does not necessarily apply in the other direction—the right side
can expose more context than is used by the left side. The Left-Right rule
applies to pointcuts as well as advice. For example, in the definition of the
raises pointcut, Employee emp on the left matches target(emp) on the right.

Unlike method parameters, the order in which the parameters appear doesn’t
matter; AspectJ will match up the identifiers for you. You could swap the order
of the parameters without affecting the program:

before(int amount, Employee emp) : raises(emp, amount) {

System.out.println(emp + " to receive raise of " +

amount);

}

Parameter-Context Mismatches

Sometimes you can construct a pointcut that seems to match all the required
parameters but actually doesn’t. Let’s say you wanted to add cost of living
increases to the raises pointcut:

pointcut raises(Employee emp, int amount) :

call(void raiseSalary(int)) &&

target(emp) && args(amount) //amount bound

||

call(void costOfLivingAdjustment())

&& target(emp);//amount not bound

In this pointcut, args(amount) appears on one side of the || but not on the other.
The compiler will complain. Chapter 6 has more examples of this behavior.

Formal Parameters Are Like Method Parameters

If you’re experienced with the Java language, you should find it natural to
work with advice parameters. After you enter the body of the advice, the advice

Issues Common to All Types of Advice 141

parameters behave just like method parameters. The advice body can call meth-
ods on the parameters, pass them to other methods, or store them in a data
structure. Like method parameters, advice parameters are local to the advice.
In other words, if you reassign a parameter, it will have no effect outside the
advice. However, you can change the state of the parameters and have the
change reflected outside the advice.

Reassignments. To illustrate this, consider some malicious aspect code. Here
an unscrupulous programmer attempts to reassign the target of a raise:

before(Employee emp): raises(emp, int){

emp = new Employee("me", 60000);

}

First (as discussed in the previous section), note that the advice doesn’t need to
use the amount context exposed by the raises pointcut. This snippet illustrates
the preferred method of indicating that you don’t wish to bind a piece of con-
text: replace the identifier with the type of the context (replace the identifier
“amount” with type “int” in the pointcut).

Recompiling with this piece of advice yields output like the following:

LogRaises.java:7-Employee Rebekah:$50,000.00 to receive raise of

5000

Example.java:16-After raise: Employee Rebekah:$55,000.00

...

In other words, the advice does not affect the actual raises. The effect of
“emp =” lasts only until the end of the advice body. It’s possible to do what this
malicious advice attempts (change the target of a method call), but only with
around advice—and the syntax is more complicated.

State changes. It’s much easier to affect join point context by changing the
state of formal parameters. Consider the following advice:

before(Employee emp): raises(emp, int){

emp.costOfLivingAdjustment();

}

This advice adds a cost of living adjustment to the employee’s base pay before
any raise. You can see from the output that this advice does affect the employ-
ees in Example:

LogRaises.java:7-Employee Rebekah:$50,125.00 to receive raise of

5000

Example.java:16-After raise: Employee Rebekah:$55,125.00

LogRaises.java:7-Employee Omar:$50,125.00 to receive raise of

6000

Example.java:16-After raise: Employee Omar:$56,125.00

...

A d v i c e142

If you inspect the output closely, you can see that the advice we just looked at
takes effect before the advice that logs the raise attempt. That’s interesting:
Does the cost of living adjustment count as part of the raise? If so, shouldn’t it
be applied after the log? AspectJ allows the programmer to control the order of
advice execution through advice precedence, which we’ll discuss toward the
end of the chapter. For the moment, remove both of these pieces of advice.

Object-typed Parameters and Boxing

Suppose you want to write a pointcut that encompasses widely varying join
points. For instance, say you’re debugging Employee and you want to track
changes in state. The aspect in Listing 7.5 uses the set() pointcut to log any
assignments to a field of Employee.

Issues Common to All Types of Advice 143

public aspect TrackSets {

before(Object newValue) :

employeeFieldSets(newValue){

String name =

thisJoinPoint.getSignature().getName();

System.out.println("The new value of " +

name + " is " + newValue);

}

pointcut employeeFieldSets(Object newValue):

set(* *) && target(Employee) &&

args(newValue);

}

//output

TrackSets.java:14-The new value of formatter is

java.text.DecimalFormat@67500

TrackSets.java:14-The new value of name is Rebekah

TrackSets.java:14-The new value of salary is 50000

LogRaises.java:7-Employee Rebekah:$50,000.00 to receive raise of

5000

TrackSets.java:14-The new value of salary is 55000

Example.java:16-After raise: Employee Rebekah:$55,000.00

...

Listing 7.5 Object boxing in action.

The pointcut employeeFieldSets uses set(* *) to target all field sets, and
then narrows the selection to those join points where the target is an Employee
(target(Employee)). It exposes the argument of the field assignment

with args(newValue). The advice accepts the args context through its one for-
mal parameter: Object newValue.

The output shows that the pointcut works as described. Formatter is set to a
DecimalFormat, name is set to the String “Rebekah”, and salary is set to 50000.
But Salary is an int field—how did it enter the advice through a formal parame-
ter with the type of Object? If you read Chapter 6, you might remember that
AspectJ automatically boxes primitives to their wrapper types. In other words,
when it entered the advice, the “50000” you saw in the output was an object of
type java.lang.Integer. This boxing behavior is convenient for situations when
context must reflect both object and primitive types.

Reflective Access to Join Point Context

In addition to formal parameters, advice can also use special implicit variables
provided by AspectJ to inspect and manipulate join point context. Chapter 5
introduced these objects in detail and explored their API and uses. To review,
there are three special variables:

■■ thisJoinPoint—Can access some of the information available through for-
mal parameters using getTarget(), getThis(), and getArgs(). It can also pro-
vide information about the signature, location, and kind of the join point.

■■ thisJoinPointStaticPart—Can access less information (signature, kind,
and location) but does not require memory allocation at each use.

■■ thisEnclosingJoinPointStaticPart—Is the same as thisJoinPointStatic-
Part, except that it binds to the join point enclosing the current join point.

When to Use Reflective Access

As you saw in the first example in the chapter, there are times to use one type
of access and times to use the other. Reflective access obviously wins when it
provides information that formal parameters cannot (for instance, the line-
numbers from getSourceLocation() are very helpful). Another example is
getArgs(). The reflective version returns an Object array, allowing for easy
access to the full parameter list of a join point. In contrast, formal parameters
would require the pointcut to name each possible argument. For uses such as
broad logging, reflective access can simplify the code.

On the downside, reflective access can be slower and more memory intensive
than similar access through formal parameters. This may or may not have a sig-
nificant impact on your application, but for certain types of pointcuts, it can
introduce a considerable overhead.

A d v i c e144

When to Use Formals

Formal parameters clarify the intent of the advice to fellow programmers. After
you become familiar with the syntax of AspectJ, context exposure using point-
cuts seems expressive. Using the reflective objects, by contrast, involves a
degree of obfuscation. Furthermore, the compiler cannot help you catch your
mistakes as easily. Casting the result of getTarget() to an Employee will only
fail at runtime; using target(anEmployee) will limit the pointcut to those join
points where the target is an employee. For these reasons, it’s usually better to
access context through formal parameters.

Advice and Exceptions
AspectJ places restrictions on exceptions thrown from advice. These restric-
tions are similar to the restrictions placed on overriding methods in traditional
Java. The rationale is the same: If a class calls System.out.println, it doesn’t
expect the method to throw a SQLException. Java’s exception-handling policy
mandates that checked exceptions must be declared in throws clauses. For that
reason, you can’t subclass PrintStream and throw a SQLException in your ver-
sion of println. To maintain compatibility with the Java language, AspectJ must
enforce similar restrictions on advice. Listing 7.6 (additions to AddSourceInfo)
contains troublesome advice that might violate these rules.

Issues Common to All Types of Advice 145

before(Object msg) : logCalls() && args(msg){

writeToDatabase(msg);

}

private void writeToDatabase(Object message)

throws SQLException

{

if(Math.random() > .5){

throw new SQLException("DB unavailable.");

}

}

Listing 7.6 An addition to AddSourceInfo that causes problems.

If you compile the code in Listing 7.6, the compiler complains that the SQLEx-
ception is not handled by the advice. You can address this issue by adding a
throws clause to the advice declaration:

before(Object msg) throws SQLException :

logCalls() && args(msg){...}

However, the advice still violates Java’s exception policy because a println
should not throw a SQLException. Unfortunately, there’s no easy way around
this problem. Because PrintStream.println does not declare throws SQLExcep-

tion, any advice that applies to that method cannot throw it either. To solve this
problem, advice must catch and handle the exception, or it can use AspectJ’s
exception-softening capabilities (see Chapter 8, “Inter-type Declarations”).

The Rules

To be explicit, the rules for advice and exceptions are

■■ Advice must declare any checked exceptions it can throw in a throws
clause (just like a method).

■■ Advice cannot throw an exception that would be illegal for one of its join
points to throw. (This means that all RuntimeExceptions are legal.)

What Can a Join Point Throw?

For cases such as the example in Listing 7.6, figuring out what exceptions are
legal is a snap. Method and constructor-based join points can only throw excep-
tions that appear in their throws clauses. Other join points have less obvious
rules. Here are the exceptions that each type of join point can throw:

■■ Method and constructor call and execution join points can throw excep-
tions declared in the relevant throws clause.

■■ Object initialization join points can throw exceptions declared in every
constructor in the class.

■■ Field access and static initialization join points cannot throw any checked
exceptions.

■■ Handler join points can throw any exceptions that may be thrown from the
body of the specified handler. In other words, advice that applied to the
following handler block could throw a SQLException but not an
IOException:

catch(Exception e){

if(someCondition){

throw new SQLException("Database not up.");

}

}

Types of Advice: An Overview

Now that we’ve covered topics that apply to all types of advice, we’ll discuss
the three different types of advice. We’ll postpone a consideration of advice

A d v i c e146

precedence until the end of the chapter, because that discussion requires famil-
iarity with the operation of different advice types.

The types of advice are distinguished by when they run relative to the join
points they affect:

■■ Before advice runs before each affected join point. It’s the simplest type of
advice.

■■ After advice runs after the join point and comes in three flavors:

• Unqualified after advice runs no matter what the outcome of the join
point.

• After returning advice runs only if the join point returned normally
(and it can perform additional matching based on the type of the value
returned).

• After throwing advice executes if the join point ended by throwing an
exception (and it can perform additional matching based on type of the
exception thrown).

■■ Around advice is the most intrusive. It runs instead of the join point and
has the ability to invoke the join point (if it chooses) using the special
proceed() syntax.

NOTE
The distinction is subtle, but around advice runs instead of the join point and any
advice of lower precedence that affects the join point. The advice of lower precedence
may be thought of as part of the join point for the purpose of advice of higher prece-
dence. See the section “Advice Precedence” for further details.

Certain types of advice fit some concerns better than others. For instance, it’s
too late to prevent a join point from happening if you use after advice. As
another example, around advice is your only choice if you need to alter a join
point’s arguments. The next three sections will explore the types of advice and
offer examples of their use.

Before Advice

Most of the advice you’ve seen so far has been before advice. We’ve used it
because it’s the simplest. It doesn’t have additional matching criteria (like
after), nor does it have the power to alter join point context (like around). It
simply runs before the join point in question. Its syntax is as follows:

BeforeAdvice ::= before "("[Formals]")"

[throws TypeList] ":"

Pointcut "{" [AdviceBody] "}"

Before Advice 147

Uses
Before advice excels at pre-conditions. Any time you think to yourself, “Before
X happens, I must do Y,” action Y represents a good concern for before advice.
Two common before concerns are argument checking and setup code. In
another example, the first aspect in the chapter uses before’s time-of-execution
to ensure that before a call to println happens, another print prepends informa-
tion to the print stream.

The lazy-initialization pattern represents a more complicated example of the
sort of concern that before can address. Most OO programmers have used this
pattern. Lazy initialization defers the initialization of a field until just before it’s
used. This pattern can postpone or eliminate expensive set-up code that may
not need to run in all circumstances. In OO languages, the pattern is accom-
plished by encapsulating the field—the accessor method initializes the field if it
has not already been initialized.

As an example, examine Listing 7.7. The listing shows a simple class that uses a
(expensive to construct) Connection to an external resource.

A d v i c e148

public class DataAccessor {

Connection conn;

public void getRecords(){

conn.fetch("some-arg");

}

private Connection obtainConnection(){

return new Connection();

}

public static void main(String[] args){

new DataAccessor().getRecords();

}

}

//output (without further modification)

Exception in thread "main"

java.lang.NullPointerException

at lazy.DataAccessor.getRecords(DataAccessor.java:9)

at lazy.DataAccessor.main(DataAccessor.java:17)

Listing 7.7 The DataAccessor class is a candidate for lazy initialization.

TE
AM
FL
Y

Team-Fly®

From the NullPointerException in the output, you can see that conn has not
been initialized before use. Suppose that you want to initialize it, but not until a
method uses it. To do so using OO techniques, you’d write an accessor like this:

private Connection getConnection(){

if(conn == null){

conn = obtainConnection();

}

return conn;

}

The method getRecords() (and any other user of the field) could use conn in
the following manner:

public void getRecords(){

getConnection().fetch("some-arg");

}

The disadvantage of this pattern is that you must remember to use it every-
where. If even a single method forgets to go through the accessor, the result
may be an exception like the one shown in Listing 7.7.

Using before advice to initialize the field allows the weaver to do your remem-
bering for you. Listing 7.8 shows an aspect that uses before advice to ensure
that the conn field is initialized before any code uses it.

Before Advice 149

public class DataAccessor {

Connection conn;

public void getRecords(){

conn.fetch("some-arg");

}

public static void main(String[] args){

new DataAccessor().getRecords();

}

public static aspect LazyInit {

before(DataAccessor targ) :

get(Connection conn)&&

Listing 7.8 An aspect provides lazy initialization using before advice. (continues)

A d v i c e150

target(targ) && ! within(LazyInit) {

if(targ.conn == null){

targ.conn = obtainConnection();

}

}

private Connection obtainConnection(){

return new Connection();

}

}

}

//output

Connection.java:6-Fetching with arg: some-arg

Listing 7.8 An aspect provides lazy initialization using before advice. (continued)

The aspect appears as a static inner aspect of DataAccessor because it affects
the class in an intimate way. For small-scope aspects such as this, including
them as static inner aspects allows them to stay near code they affect.

The before advice uses an anonymous pointcut to select all accesses to the field
conn (get(Connection conn)). It then limits itself to those field sets that have a
target of DataAccessor and do not appear within the aspect itself (target(targ)
&& ! within(LazyInit)). Using the target pointcut also exposes the DataAcces-
sor instance to the advice, allowing the advice to assign a new value to its conn
field (targ.conn = obtainConnection()). As you can see from a message in the
output, the fetch executes on the (initialized) Connection. Because the only ini-
tialization code appears in the before advice, the output signals that the advice
has executed successfully.

Using AspectJ to lazily initialize a class with a single field access is probably
overkill—especially when proven idioms exist in the OO realm. However, the
weaver will not forget to advise the contents of a new method that someone
adds to DataAccessor in five months. Furthermore, you’ve removed the respon-
sibility for Connection initialization from the DataAccessor class. If you need to
change the way the DataAccessor gets its connection, you need only change the
LazyInit aspect. This structure allows additional flexibility.

Stopping Unwanted Join Points

In addition to paving the way for join points by setting up state, before advice
can also stop join points from executing if conditions aren’t right. It does so by
throwing an exception. This capability allows for flexible pre-condition checks.

To illustrate this capability, let’s return to the personnel management applica-
tion. For reasons of their own, management has decided only to allow raises of
a minimum amount. Translating this requirement into technical terms, you
decide to stop the execution of the raiseSalary method if the amount doesn’t
meet the minimum ($6000). Listing 7.9 shows the example code that exercises
the new capabilities.

Before Advice 151

public class Example {

public static void main(String[] args){

raiseAndCheck("Rebekah", 5000);

raiseAndCheck("Omar", 6000);

raiseAndCheck("Philipe", 7000);

}

private static void raiseAndCheck(String name,

int raise){

Employee e = new Employee(name, 50000);

try {

e.raiseSalary(raise);

} catch (Exception ex) {

System.out.println("Raise failed with " + ex);

}

System.out.println("After raise: " + e);

}

}

//output--indicates all raises are applied

LogRaises.java:7-Employee Rebekah:$50,000.00 to receive raise of

5000

Example.java:16-After raise: Employee Rebekah:$55,000.00

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of

6000

Example.java:16-After raise: Employee Omar:$56,000.00

LogRaises.java:7-Employee Philipe:$50,000.00 to receive raise of

7000

Example.java:16-After raise: Employee Philipe:$57,000.00

Listing 7.9 The example will signal any exceptions to the console.

Astute readers may be asking themselves at this point why the example appli-
cation takes care of checking the Employee’s state and handling the resultant
exception. Couldn’t you do it with advice? The answer is that you can—and you
will, in the section about after advice. (Feel free to skip ahead if you’re inter-
ested.)

To implement the policy, you need to get access to the amount of a raise.
Perhaps you could reuse the pointcut defined when logging the raises.

To accomplish this end, move the raises pointcut into its own aspect. You can
see the result in Listing 7.10.

A d v i c e152

public aspect Raises {

public pointcut raises(Employee emp, int amount) :
call(void raiseSalary(int)) &&
target(emp) && args(amount);

}

Listing 7.10 The Raises aspect now defines the raises pointcut.

Defining the raises pointcut in a separate aspect allows any aspect to reference
(and thus reuse) the pointcut. Because you’ve already written two aspects that
need it, this seems like a sensible choice. (Note that the pointcut has not
changed since we first saw it.)

The aspect that enforces the minimum raise policy appears in Listing 7.11.

public aspect MinimumRaisePolicy {

private static final int MIN_INCREMENT = 6000;

before(int increment) :
Raises.raises(Employee, increment){

if(increment < MIN_INCREMENT){
throw new IllegalArgumentException("Raise of " +
increment + " is less than department minimum.");

}
}

}
//output from Example's main method
Example.java:19-Raise failed with java.lang.IllegalArgumentException: Raise
of 5000 is less than

department minimum.
Example.java:21-After raise: Employee Rebekah:$50,000.00

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of
6000

Example.java:21-After raise: Employee Omar:$56,000.00

LogRaises.java:7-Employee Philipe:$50,000.00 to receive raise of
7000

Example.java:21-After raise: Employee Philipe:$57,000.00

Listing 7.11 This aspect throws an exception if the raise amount is lower than the minimum.

At each raise join point, the advice in MinimumRaisePolicy executes. The
advice inspects the amount of the raise (passed into the advice as a formal
parameter) and throws an exception if the amount is too low. The output indi-
cates that the advice operates correctly. On the first line, a printout from the
exception handler block indicates that the $5000 raise caused an exception.
The next line indicates that Omar’s raise met the criteria and proceeded suc-
cessfully.

Logging Failure: An Unintended Side Effect

If you look more closely at the output, you’ll notice a side effect of the new
aspect: Rebekah’s raise was not logged. MinimumRaisePolicy’s advice sup-
pressed the advice from LogRaises: The new advice executed before the advice
written earlier. When MinimumRaisePolicy threw an exception, it prevented
LogRaises’ advice from executing just as effectively as it prevented the actual
raise. This sort of situation can arise whenever two pieces of advice apply to the
same join point. Fortunately, AspectJ allows you to specify which advice takes
precedence. The final section of the chapter, “Advice Precedence,” covers this
topic in detail.

For the moment, you can solve this problem by adding the following line to the
Raises aspect:

declare precedence : LogRaises, *;

This line uses a declare form (more on that topic in Chapter 8) to specify that
LogRaises’ advice takes precedence over advice defined in any other aspect
(hence the *). Now the output correctly logs the failed raise:

LogRaises.java:7-Employee Rebekah:$50,000.00 to receive raise of

5000

Example.java:19-Raise failed with

java.lang.IllegalArgumentException: Raise of 5000 is less than

department minimum.

Example.java:21-After raise: Employee Rebekah:$50,000.00

Is an Exception Appropriate?

We set ourselves up to succeed with this example by inserting a catch block into
the example code. If we had not, the IllegalArgumentException would have ter-
minated the main method of the Example class. Because IllegalArgumentExcep-
tion is an unchecked exception, there’s no automatic way for a caller to know
that it should be caught. (Keep in mind that you could not convert it to a checked
exception without modifying Employee—see the section on advice and excep-
tions.) These issues shouldn’t scare you away from using exceptions to halt join
points; however, throwing one may not be the right action to take. In these cases,
around advice can implement a more flexible response.

Before Advice 153

Increased Modularity with Advice

Despite the issues we’ve raised, adding this business rule as an aspect rather
than putting it directly into the component code has led to an increase in mod-
ularity. The Employee class does not involve itself in the distinction between
legal and illegal raises. You’ve separated the concern of “raise legality” from the
concern of “applying the raise.” By separating the concerns, you can alter or
replace each of them in isolation. Employee could be deployed in a different
department, incorporated into a system with no departmental policy, or used in
a situation with completely different rules about what defines an allowable
raise. For instance, a different departmental policy aspect could request that a
Manager object pre-authorize the change in salary.

After Advice

The overview earlier in the chapter shed a little light on the three different types
of after advice. This section will illuminate the issue further using examples.

After (Unqualified)
Unqualified after advice (after advice without an additional throwing or return-
ing qualifier) executes after the join points it affects, regardless of the outcome.
Because of this guarantee, unqualified after advice behaves as if it were called
from a finally block:

try{

//original join point

}

finally{

//unqualified after advice

}

Sometimes this is the desired behavior, but often it’s not. For instance, if you’re
attempting to notify the Payroll system that an employee just got a raise, you
probably wish to notify the system only if the raise was successful. In that case,
after returning and throwing offer more precise matching of advice to circum-
stance.

Mandatory Cleanup Using After Unqualified

In some situations it makes sense to execute advice regardless of the outcome.
Users of JDBC will no doubt spot one: In order to conserve database resources,
database connections must be closed as soon as their users are through with
them. Connection pooling has helped with this situation, but (similarly) the

A d v i c e154

connection must be returned to the pool after use. Let’s look back at the
DataAccessor class and see if after advice can help you remember to close con-
nections.

Listing 7.12 simulates an open/closed state on the Connection object (we’ve
avoided using the actual JDBC classes for simplicity).

After Advice 155

public class Connection {
private boolean isOpen;

public void fetch(String arg) {
if(! isOpen){

throw new IllegalStateException("closed");
}
System.out.println("Fetching with arg: " + arg);

}

public void riskyFetch() {
throw new RuntimeException("Bad fetch.");

}

public void open(){
System.out.println("Opening.");
this.isOpen = true;

}

public void close(){
System.out.println("Closing.");
this.isOpen = false;

}
}
//changes to DataAccessor
public void getOtherRecords(){

conn.riskyFetch();
}

public static void main(String[] args){
DataAccessor accessor = new DataAccessor();

accessor.getRecords();
accessor.getOtherRecords();

}

//output from DataAccessor's main
Exception in thread "main" java.lang.IllegalStateException:
closed

at lazy.Connection.fetch(Connection.java:8)
at lazy.DataAccessor.getRecords(DataAccessor.java:9)
at lazy.DataAccessor.main(DataAccessor.java:13)

Listing 7.12 Connection maintains open/closed state.

Whoops. It looks like you’ll need some before advice to open the connection as
well as after advice to close it. Listing 7.13 contains the advice for the aspect
you’d like to write.

A d v i c e156

public aspect ConnectionState {

pointcut connectionUses(DataAccessor user):

/* How should you define this pointcut? */ ;

after(DataAccessor user) : connectionUses(user){

user.conn.close();

}

before(DataAccessor user) : connectionUses(user){

user.conn.open();

}

}

Listing 7.13 The ConnectionState aspect opens the connection before use and closes it
afterward.

As you can see, the aspect is incomplete. To figure out when to open and close
the connection, you need to construct a pointcut. The pointcut should encap-
sulate the idea of connection use. In other words, it should pick out join points
that use the connection so that you can open before those join points and close
afterward. Unfortunately, selecting when an object is used is a tricky thing. An
object can begin use when a client calls one of its methods. Picking out when it
leaves use is harder. As humans, we have an intuitive sense of leaves use

because we can see the intent of the program. However, we want to eliminate
the human factor in this example.

There are several ways to write the sort of pointcut you’re looking for. One of
the simplest is also the most arbitrary. You can specify that the connection will
be used by every public method on DataAccessor, and that its use will end once
the method terminates:

pointcut connectionUses(DataAccessor user):

this(user) && execution(public * *(..));

The pointcut glosses over some potential issues (for instance, what if
DataAccessor gives its connection to another class to use?). However, it covers
most cases reasonably well. With the new aspect in place, you can execute
DataAccessor’s main again and inspect the results:

Connection.java:14-Opening.

Connection.java:10-Fetching with arg: some-arg

Connection.java:19-Closing.

Connection.java:14-Opening.

Connection.java:19-Closing.

Exception in thread "main" java.lang.RuntimeException: Bad fetch.

at lazy.Connection.riskyFetch(Connection.java:24)

at lazy.DataAccessor.getOtherRecords(DataAccessor.java:13)

at lazy.DataAccessor.main(DataAccessor.java:20)

The first line of the output indicates that the pointcut has correctly matched
DataAccessor’s fetch() method and that the before advice opened the connec-
tion. The fetch method can now execute without an exception. Immediately
after fetch(), the after advice executes, closing the connection. Then the con-
nection is reopened for riskyFetch(). Immediately afterward, it’s closed. The
stack trace at the end of the output shows that riskyFetch() threw an Excep-
tion, which was correctly propagated to the main method. Because you saw the
Closing printout, you know the connection was closed despite the exception.

Automated Clean Up Saves Code

In order to get the same behavior from a non-aspect-aware system, you would
need to insert try-catch-finally blocks into all the methods on DataAccessor
that used the connection. Doing so reduces readability, increases tedium, and
prevents easy modification of behavior (what if the connection must be
returned to a pool instead of closed?). With a little unqualified after advice, the
policy of closing connections after every method (regardless of outcome)
becomes clear.

Will After Always Execute?

Despite the guarantee that unqualified after advice will execute regardless of
whether the join point returns normally, in some situations advice precedence
can prevent it from happening. Be sure to study the section on advice prece-
dence carefully, because the effects of advice on other advice can be counter-
intuitive at first.

After Throwing
In many cases, the guarantees of unqualified after advice don’t fit the situation.
For the next example, let’s return to employee raises. Once an employee has
received a raise, certain consequences follow: Budgets need updating, the pay-
roll system needs to recalculate the employee’s paycheck, the employee needs
to get an email informing them of their new salary, and so on. Alternatively, if a
raise fails, the employee’s manager may need to be notified (perhaps there’s
something the manager can do to resolve the problem). After advice fits these
post-effect needs perfectly, but it must know which situation applies—did the
raise succeed or fail? After returning and after throwing advice execute only in

After Advice 157

the case of failure or success, respectively. This allows aspects to tailor their
advice to the post–join point situation.

Let’s begin with failure. If a raise fails, you want to log its failure. You can use
after throwing to accomplish this.

Logging All Failed Raises: After Throwing

Listing 7.14 shows a piece of after advice that will execute only if a raise fails.

A d v i c e158

public aspect FailedRaisePolicy{

after(Employee emp, int amount) throwing :

Raises.raises(emp, amount){

System.out.println("Raise of " + amount +

" failed on " + emp);

}

}

//changes to example class--no need to log exceptions

//anymore

private static void raiseAndCheck(String name,

int raise){

Employee e = new Employee(name, 50000);

try {

e.raiseSalary(raise);

} catch (Exception ex) {/*logged by advice*/}

System.out.println("After raise: " + e);

System.out.println();//space out the output

}

//output

LogRaises.java:7-Employee Rebekah:$50,000.00 to receive raise of

5000

FailedRaisePolicy.java:10-Raise of 5000 failed on Employee

Rebekah:$50,000.00

Example.java:19-After raise: Employee Rebekah:$50,000.00

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of

6000

Example.java:19-After raise: Employee Omar:$56,000.00

LogRaises.java:7-Employee Philipe:$50,000.00 to receive raise of

51000

[...]

Listing 7.14 FailedRaisePolicy uses after throwing to detect an exception thrown from a raise
join point.

TE
AM
FL
Y

Team-Fly®

Again, the aspect reuses the pointcut from Raises. After each raise that throws
an exception, the advice executes, printing a message.

NOTE
In order to get the advice to execute after the failures, you must alter the precedence
situation. The revised line in the Raises aspect reads declare precedence : LogRaises,
FailedRaisePolicy, *;. This means FailedRaisePolicy comes second only to LogRaises
when determining precedence.

Using the Thrown Exception

If you examine the output, it looks like you lost information: You no longer
know why a raise failed. Fortunately, AspectJ allows you to pass the thrown
exception into the after advice. Listing 7.15 illustrates the syntax.

After Advice 159

public aspect FailedRaisePolicy{

after(Employee emp, int amount)

throwing (Exception e) :

Raises.raises(emp, amount){

System.out.println("Raise of " + amount +

" failed on " + emp + " because of " + e);

}

}

//output

LogRaises.java:7-Employee Rebekah:$50,000.00 to receive raise of

5000

FailedRaisePolicy.java:11-Raise of 5000 failed on Employee

Rebekah:$50,000.00 because of

java.lang.IllegalArgumentException:

Raise of 5000 is less than department minimum.

Example.java:19-After raise: Employee Rebekah:$50,000.00

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of

6000

Example.java:19-After raise: Employee Omar:$56,000.00

[...]

Listing 7.15 After throwing advice can access the thrown exception.

The bold text shows how to turn the exception thrown from the join point
into an extra formal parameter. The output shows that the exception arrives

successfully at the advice. Now someone inspecting the log knows why a given
raise failed.

Notifying the Manager: After Throwing(…)

To spice up the example, let’s say you want to notify an employee’s manager of
specific failures. Currently, there’s only one cause of failure: Employees cannot
receive raises of less than $6,000. So, before you can selectively notify the man-
ager, let’s introduce another error condition.

Adding a New Error Condition

Imagine that HR has strict rules about maximum salaries. Any salary greater than
$100,000 needs special authorization. Because this rule is similar to the earlier
raise rule, it should be easy to build this aspect. Listing 7.16 contains the code.
(Keep in mind that you’re just setting the stage for later notification advice.)

A d v i c e160

public aspect MaxSalaryPolicy {

private static final int MAX_SALARY = 100000;

before(Employee emp, int amount) :

Raises.raises(emp, amount){

int newSalary = emp.getSalary() +

amount;

if(newSalary > MAX_SALARY){

throw new SalaryCapException("New salary "

+ newSalary + " exceeds maximum.");

}

}

}

//change to Example.main()

public static void main(String[] args){

raiseAndCheck("Rebekah", 5000);

raiseAndCheck("Omar", 6000);

raiseAndCheck("Philipe", 51000);//over cap

}

//output

LogRaises.java:7-Employee Philipe:$50,000.00 to receive raise of

51000

Example.java:19-Raise failed with raises.SalaryCapException: New

salary 101000 exceeds maximum.

Example.java:21-After raise: Employee Philipe:$50,000.00

Listing 7.16 An aspect that introduces a new error condition.

If a caller attempts to raise the employee’s salary beyond $100,000, the new
advice throws a SalaryCapException (SalaryCapException extends Runtime-
Exception so that the advice does not violate the throws contract of rais-
eSalary()).

Detecting the New Error

In addition to passing the thrown exception into the advice, adding a formal
parameter to the throwing clause narrows the scope of the advice. The advice
executes only on those join points that throw an exception of the specified
type. In other words, if you use after() throwing(SalaryCapException e), you
will effectively write advice that executes only if the new error condition
occurs. Listing 7.17 contains a new piece of advice that uses this facility.

After Advice 161

//new after advice added to FailedRaisePolicy
after(Employee emp)

throwing (SalaryCapException e) :
Raises.raises(emp, int){

emp.getManager().notify("Raise failed for " +
emp.getName() + "--see log.");

}

//changes to Example--give everyone a Manager to notify
private static Manager shelly =

new Manager("Shelly", 80000);

public static void main(String[] args){
raiseAndCheck("Rebekah", 5000);
raiseAndCheck("Omar", 6000);
raiseAndCheck("Philipe", 51000);
}

private static void raiseAndCheck(String name,
int raise){

Employee e = new Employee(name, 50000);
e.setManager(shelly);

try {

e.raiseSalary(raise);
} catch (Exception ex) {}
System.out.println("After raise: " + e);
System.out.println();//space out the output

}

//output

Listing 7.17 After throwing can execute based on which exception was thrown. (continues)

A d v i c e162

LogRaises.java:7-Employee Rebekah:$50,000.00 to receive raise of
5000

FailedRaisePolicy.java:19-Raise of 5000 failed on Employee
Rebekah:$50,000.00 because of
java.lang.IllegalArgumentException:
Raise of 5000 is less than department minimum.

Example.java:25-After raise: Employee Rebekah:$50,000.00

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of
6000

Example.java:25-After raise: Employee Omar:$56,000.00

LogRaises.java:7-Employee Philipe:$50,000.00 to receive raise of
51000

Manager.java:12-Shelly notified of:
Manager.java:13--->Raise failed for Philipe--see log.
FailedRaisePolicy.java:19-Raise of 51000 failed on Employee

Philipe:$50,000.00 because of raises.SalaryCapException: New
salary 101000 exceeds maximum.

Example.java:25-After raise: Employee Philipe:$50,000.00

Listing 7.17 After throwing can execute based on which exception was thrown. (continued)

The important parts of Listing 7.17 are highlighted. Each employee now has a
manger with a simple notify(String) method. The new after advice specifies
throwing(SalaryCapException e) instead of throwing (Exception e). From
looking at the output, you can see that Shelly was only notified of the raise fail-
ure for the Philipe (the over-the-limit raise). Notice that the first advice (the one
that simply logs the failure) still takes effect. It detects both exceptional termi-
nations, because both IllegalArgumentException and SalaryCapException sub-
class Exception. If the join point had failed with an Error then neither advice
would have executed.

After Returning
Let’s look at an example of how you might use after returning to implement the
opposite sort of concern: notifying the payroll system of a successful raise. List-
ing 7.18 contains the code for a simple aspect that informs the legacy payroll
system of a raise event.

public aspect NotifyPayroll {

after(Employee emp) returning :

Raises.raises(emp, int){

Listing 7.18 NotifyPayroll uses after returning to send information about successful raises.
(continues)

After Advice 163

getPayrollServer().recalculatePaycheck(

emp.getName(), emp.getSalary()

);

}

private PayrollServer getPayrollServer(){

return new PayrollServer("PayrollServer1");

}

}

//output

LogRaises.java:7-Employee Rebekah:$50,000.00 to receive raise of

5000

FailedRaisePolicy.java:19-Raise of 5000 failed on Employee

Rebekah:$50,000.00 because of

java.lang.IllegalArgumentException:

Raise of 5000 is less than department minimum.

Example.java:25-After raise: Employee Rebekah:$50,000.00

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of

6000

PayrollServer.java:12-PayrollServer1

PayrollServer.java:13-Recalculating paycheck for Omar

PayrollServer.java:15-New salary : 56000

Example.java:25-After raise: Employee Omar:$56,000.00

LogRaises.java:7-Employee Philipe:$50,000.00 to receive raise of

51000

Manager.java:12-Shelly notified of:

Manager.java:13--->Raise failed for Philipe--see log.

FailedRaisePolicy.java:19-Raise of 51000 failed on Employee

Philipe:$50,000.00 because of raises.SalaryCapException: New

salary 101000 exceeds maximum.

Example.java:25-After raise: Employee Philipe:$50,000.00

Listing 7.18 NotifyPayroll uses after returning to send information about successful raises.
(continued)

The after advice in NotifyPayroll specifies returning and therefore executes
only when the raise completes successfully. The output indicates that only
news of Omar’s (successful) raise reached PayrollServer.

Using the Return Value

Like after throwing, after returning can pass an extra formal into the advice
body by using the form “returning (SomeType t)”. Again, the advice will execute

only if the type of the join point’s return value matches SomeType. If you spec-
ify “returning (Object o)”, the advice will match all types, including primitives
and void returns. Primitives are boxed to Java wrapper types just like other for-
mals. Void returns results in the formal containing null. You can see this if you
change the advice a little (as a demonstration):

after(Employee emp) returning (Object o):

Raises.raises(emp, int){

System.out.println("Returned " + o);

getPayrollServer().recalculatePaycheck(

emp.getName(), emp.getSalary()

);

}

//output

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of

6000

NotifyPayroll.java:10-Returned null

PayrollServer.java:12-PayrollServer1

PayrollServer.java:13-Recalculating paycheck for Omar

PayrollServer.java:15-New salary : 56000

Example.java:25-After raise: Employee Omar:$56,000.00

What Constitutes the Return Value?

Now that you know how to inspect the return value of a join point, you can ask,
“What is the return value?” Method execution and call join points return the
value returned by the relevant method (barring any around advice). The return
values of other join points are not so intuitive. Here is a list of other join points
and their return values:

Object construction/initialization. Most of the join points involved
in the construction of a new object (including initialization, static initializa-
tion, and constructor execution) return null. The important exception to
this rule is that (outermost) constructor calls return the object that was
constructed. This makes sense, because the object construction process
does not complete until the constructor returns. Returning the object any
earlier would return the object in the middle of creation.

Field access. Field get join points return the value of the field after the
field access completes. In other words, for the following snippet

Employee.salary = 100;

someLocalVariable = Employee.salary;

the get join point for Employee.salary would return 100.

Field assignment. These join points do not return a value. (This is a
change from AspectJ 1.0.x, in which assignment join points returned the
new value of the field.)

A d v i c e164

Handler. Handler join points cannot be the targets of after returning advice.
This limitation may be addressed in future releases of AspectJ, but some
thorny issues surround the definition of what it means to return from a han-
dler block. As an exercise, consider the following:

//is this a return?

catch(Exception e){

doSomething();

}

//or is this?

catch(Exception e){

doSomething();

return -1;

}

Illegal Matches

Like many areas, after returning/throwing advice allows you to specify a com-
bination of parameters and pointcuts that does not match any join points in
your system. For example, the following advice (in the NotifyPayroll aspect)
could never run:

after() returning (int neverHappens):

Raises.raises(Employee, int){

System.out.println("***Never happens.");

}

Because none of the join points selected by raises returns an int, this advice
cannot execute after anything. However, as of this writing, AspectJ will allow it
the advice to compile.

Around Advice

Around advice is both the most complicated and the most powerful type of
advice. Its name suggests that it runs both before and after the join point.
Although this can be true, with around advice, the join point may not run at all.
Around advice actually runs instead of the join point. (Keep in mind that the
join point includes any advice of lower precedence that plans to run at the join
point.) Around offers the special proceed() form so the advice can invoke the
original join point when (and if) it chooses. Because it has control over the
underlying join point, around advice can implement invasive changes in your
code. You can do such things as replace a field access with a method call,
change the target of a method, or alter a constructor’s arguments.

Around Advice 165

Replacing getProperty() Calls
Let’s begin with a simple example. Most programmers who’ve worked with Java
have used java.util.Properties to get basic runtime configuration information.
Imagine you’re using a properties object to provide messages for an applica-
tion. Look at the example code and output in Listing 7.19.

A d v i c e166

public static void main(String[] args) {

Properties props = new Properties();

props.setProperty("msg1", "Hello");

System.out.println("Value of msg1 " +

props.getProperty("msg1"));

System.out.println("Value of msg2 " +

props.getProperty("msg2"));

}

//output

Value of msg1 Hello

Value of msg2 null

Listing 7.19 Properties returns null if a property isn't defined.

Because the marketing department gives regular demonstrations of the unfin-
ished application to the customer, it doesn’t want an unfriendly null to appear
where instructions should be. So, marketing asks you to provide a reasonable
default. Rather than manually modifying tens of calls to getProperty, you decide
to use AspectJ. With around advice, you can make some intelligent decisions
based on whether the returned value from the Properties object was null. List-
ing 7.20 contains the pointcut and advice you use.

pointcut getProp(String key, Properties p) :

call(String getProperty(String)) &&

target(p) && args(key)&&

! within(NullPropertyHandler);

String around(String key, Properties p) :

getProp(key, p){

String result = p.getProperty(key);

Listing 7.20 Around advice can return a value other than the one originally intended. (continues)

Around Advice 167

if(result == null){

return "Instructions go here.";

}

else {

return result;

}

}

//output

Value of msg1 Hello

Value of msg2 Instructions go here.

Listing 7.20 Around advice can return a value other than the one originally intended. (continued)

The getProp() pointcut should not contain any surprises. It selects all calls to
getProperty where the target is a Properties object. Both the target and the key
are exposed so that you can replace the call.

The advice contains a few new elements. Specifically, it declares a return type
and returns a value. These elements are necessary because the advice replaces
a method call. In order to integrate with the target code, the advice must
observe the same contract as the join point it replaces. Because all join points
technically return results (even if the result is null or void), around advice must
return them as well.

NOTE
Experienced AspectJ users may wonder why the example doesn’t use proceed(). Don’t
worry; we’ll refactor it in a moment.

The body of the advice is straightforward. When a getProperty call is encoun-
tered, the advice executes. It makes a different call to getProperty with the
same argument. If the result is null, it returns a default result instead. The out-
put confirms that the advice behaves correctly: The property msg1 maps cor-
rectly, and the value of the property msg2 becomes the default.

Implications of Replacing Join Points

Around advice can be confusing. Imagine the following code in a system with
NullPropertyHandler applied:

if(props.getProperty("baz") == null){

doSomething();

}else{

doSomethingElse();

}

Because of the advice in NullPropertyHandler, getProperty will never return
null. Therefore, doSomethingElse() will never execute, even if the property baz
has no mapping.

As tools support for AspectJ grows, it should be increasingly apparent when
advice affects a call such as getProperty. As an example of a tool-based
reminder, examine Figure 7.1, which shows the Properties example in the
graphical structure browser. Location 1 shows a list of all the method call sites
affected by the around advice. Double-clicking on a call site opens the affected
source in the right pane (location 2).

A d v i c e168

Figure 7.1 The AspectJ browser shows which methods are affected by NullPropertyHandler’s
advice.

Despite increased tool support, replacing join points entirely can still be
confusing—proceed with care.

Returning from Before and After

Having seen a return from around advice, you may wonder whether before and
after advice can return values. The answer is no. Before and after advice behave
like void methods. They can contain a return statement, but it serves only to
forward control flow out of the advice. As an example, you can rewrite one of
the raise advices like this:

//old

before(int increment) :

Raises.raises(Employee, increment){

TE
AM
FL
Y

Team-Fly®

if(increment < MIN_INCREMENT){

throw new IllegalArgumentException("Raise of " +

increment + " is less than department minimum.");

}

}

//new, with return

before(int increment) :

Raises.raises(Employee, increment){

if(increment >= MIN_INCREMENT){

return;

}

throw new IllegalArgumentException("Raise of " +

increment + " is less than department minimum.");

}

Proceed()
In the introduction to this section, we hinted at proceed()—the syntax that
allows around advice to execute the original join point. If you think about
NullPropertyHandler’s advice, you’ll see that we spent considerable effort
recreating the original call. We had to get the target object and then execute the
method we knew we were replacing. For our simple example, it worked. For
more complicated pointcuts that select many method calls (or even different
kinds of join points), it would be difficult to manually re-create the original join
point. The proceed() form solves this problem by shifting the burden of invok-
ing the original join point onto AspectJ. In the next example, you’ll rewrite Null-
PropertyHandler to use proceed()—Listing 7.21 contains the code.

Around Advice 169

public aspect NullPropertyHandler {

pointcut getProp() :

call(String getProperty(String));

String around() : getProp(){

String result = proceed();

if(result == null){

return "Instructions go here.";

}

Listing 7.21 Proceed() invokes the original join point. (continues)

A d v i c e170

else {

return result;

}

}

}

//output

Value of msg1 Hello

Value of msg2 Instructions go here.

Listing 7.21 Proceed() invokes the original join point. (continued)

The first thing you may notice is what’s missing: The pointcut and advice no
longer have to worry about the target and arguments of the original method
call. The pointcut does not expose them, and the advice does not take them as
formal parameters.

Instead of making the method call within the advice, the advice now uses pro-
ceed(). The proceed form acts like a method call: It takes as parameters any for-
mals passed to the advice (in this case, none) and returns a value typed to the
return type of the advice. (In this example, proceed() returns a String.)

NOTE
The getProp() pointcut also omits the !within(NullPropertyHandler) pointcut. There’s
no need to include it, because the aspect does not advise proceed(). Using proceed()
does not count as a new occurrence of the join point—only a modification of the con-
trol flow that leads to the original join point.

The rest of the advice remains unchanged. It inspects the return value of pro-
ceed() (in this case, the result of the original call to getProperty) and returns
either the normal or the default value as before. As you’ll notice, the output is
equivalent.

More on Return Values

Now that you’ve seen around and proceed in action, it’s worth exploring some
of the subtleties of around’s return capabilities.

Compatibility with Join Points

The return type of around advice must be compatible with the return type of the
join points it replaces. In other words, you could declare the advice in Null-
PropertyHandler like this

Object around() : ...

because Object is a supertype of String. Therefore, the return type of the advice
is compatible with the return type of the original. However, you couldn’t
declare the return type as “int”, because the only join point affected has a return
type of String. Around advice that only affects void-returning pointcuts may
declare a return type of void.

If you declare a wider return type (such as Object), AspectJ will do you the
favor of casting the return value back to the appropriate type after the advice
executes. Naturally, this means that if you return the wrong type, you’ll get a
ClassCastException at runtime. For instance, if you changed the advice to

Object around(...) : ... {//omitting the details

//matches at compile time--Integer is an Object

return new Integer(-1);

}

your output would be

Exception in thread "main" java.lang.ClassCastException:

java.lang.Integer

at simple.PropertyDemo.main(PropertyDemo.java:14)

Although the return was legal at compile time, it was illegal at runtime. In addi-
tion to casting, AspectJ will also unbox wrapper types when appropriate. That
means the following pieces of around are functionally equivalent:

//Object-typed return

Object around(): call(int size()) {

return new Integer(-1);

}

//int-typed return

int around(): call(int size()) {

return -1;

}

//example code

System.out.println("Size is: " + props.size());

//output--in either case

Size is: -1

You may wonder why you’d need to type around’s return to Object when you
can use the exact type (such as int). For advice that applies to a single method,
precision is indeed better. However, imagine the following pointcut:

pointcut allMethods(): call(* *(..));

You might need such a pointcut if you were providing security or comprehen-
sive logging. In this case, the only return type that matches all the join points is
Object.

Around Advice 171

The Return Value of Proceed()

As stated in the example, proceed() returns a value that’s typed to the return
type of the advice. In other words, you could rewrite the NullPropertyHandler
advice like this:

Object around() : getProp(){

String result = (String)proceed();

//...

}

The cast becomes necessary because the return type of proceed is now Object
(to match the return type of the advice).

If you’re dealing with heterogeneous return types, AspectJ will box the return
value of proceed() just as it does with after advice. As a short example, look at
the following advice applied to the Properties example:

pointcut allMethods():

call(* *(..)) && target(Properties);

Object around() : allMethods(){

Object result = proceed();

System.out.println("Result of "

+ thisJoinPoint.toShortString()

+" was: " + result);

return result;

}

//output

Result of call(Properties.setProperty(..)) was: null

Result of call(Properties.getProperty(..)) was: Hello

Value of msg1 Hello

Result of call(Properties.getProperty(..)) was: null

Value of msg2 Instructions go here.

Result of call(Hashtable.size()) was: 1

Size is: 1

As you can see, proceed() returns null for void methods (see the first printout).
The call to proceed() also boxes primitives (see the result of the call to int
size()). For more details about return values, see the earlier section on after
returning advice.

Altering Context with Proceed()

So far, you’ve only altered the return value of a join point. That represents sig-
nificant power. However, around advice can also change the context in which a
join point executes. With proceed(), you can alter the arguments and target of
a join point as well.

A d v i c e172

As an example, let’s return to the employee management system. Let’s say that
constant outages on the payroll server plague the NotifyPayrollAspect. Raises
are being denied because the servers are occasionally down. To remedy this sit-
uation, you’d like to retry the payroll notification with several of the company’s
payroll servers before giving up.

Setting Up the Outages

The code you’ve written so far does not use an actual server—only a local object
that couldn’t possibly be down. To simulate the fictional problems experienced
by the system, you’ll use advice again. Check out Listing 7.22 for the code.

Around Advice 173

public aspect NetworkCalls {

pointcut callsToServer(PayrollServer server) :

call(public * PayrollServer+.*(..)) &&

!call(new(..)) && !call(* get*()) &&

target(server);

}

public aspect OutageSimulator {

before() :

NetworkCalls.callsToServer(PayrollServer){

if(Math.random() > .5){

throw new UnavailableException();

}

}

}

//output

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of

6000

FailedRaisePolicy.java:19-Raise of 6000 failed on Employee

Omar:$56,000.00 because of raises.UnavailableException

Example.java:25-After raise: Employee Omar:$56,000.00

Listing 7.22 An aspect simulates server unavailability.

The definition of the pointcut (calls to any public method except the construc-
tor) appears in a different aspect because you’ll reuse it later. The advice in Out-
ageSimulator throws an UnavailableException on 50 percent of these join
points. You can see from the output that the simulated outage affected poor
Omar—his representation as an Employee object now has a higher salary. Until
the payroll server gets word of it, however, he won’t see a dime.

You need to notice two points before we move on to the main example. First,
AspectJ excels at simulating error conditions such as these. Often, when you’re
testing exception-handling code it’s difficult to provoke an actual error. AspectJ
gets around this problem by letting you simulate failures at any join point. Sec-
ond, the only calls to the PayrollServer in this code come from the NotifyPay-
roll aspect. Aspects can advise each other. Anyone who has written advice that
affects itself and ended up with a StackOverflowError will remember this, but
it’s worth keeping in mind in case you’re tempted to think that aspects only
affect component code.

Retrying the Call with Around Advice

To get Omar his raise, you need to retry the failed method call on several dif-
ferent servers. You do this by using proceed() with different arguments. Look at
the advice in Listing 7.23.

A d v i c e174

public aspect RetryNotifications {

/**

* In reality the server choices might

* come from polling the network.

*/

private PayrollServer[] servers =

new PayrollServer[]

{

null,//placeholder for original target

new PayrollServer("PayrollServer2"),

new PayrollServer("PayrollServer3"),

new PayrollServer("PayrollServer4"),

};

void around(PayrollServer original) :

NetworkCalls.callsToServer(original){

servers[0] = original;

int count = 0;

while(true){

PayrollServer current = servers[count];

try{

System.out.println(

"Attempting to send update to " +

current.getName()

Listing 7.23 RetryNotifications uses proceed() to try different servers in the event of failure.
(continues)

Around Advice 175

);

proceed(current);

return;//if successful

}

catch(UnavailableException e){

System.out.println("Network failure");

if(++count >= servers.length){

System.out.println("Alternates failed.");

throw e;

}

//continue

}

}//while

}//advice

}

//change to NetworkCalls

declare precedence : RetryNotifications, *;

//output

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of

6000

RetryNotifications.java:29-Attempting to send update to

PayrollServer1

RetryNotifications.java:37-Network failure

RetryNotifications.java:29-Attempting to send update to

PayrollServer2

PayrollServer.java:12-PayrollServer2

PayrollServer.java:13-Recalculating paycheck for Omar

PayrollServer.java:15-New salary : 56000

Example.java:25-After raise: Employee Omar:$56,000.00

Listing 7.23 RetryNotifications uses proceed() to try different servers in the event of failure.
(continued)

There are several things to notice in the example. The around advice declares a
return type of void, because the NetworkCalls.callsToServer pointcut only
selects join points with void return values. More important, the call to pro-
ceed() passes in a single argument of type PayrollServer. This requires some
explanation.

Recall the pointcut that the advice uses:

pointcut callsToServer(PayrollServer server) :

call(public * PayrollServer+.*(..)) &&

!call(new(..)) && !call(* get*()) &&

target(server);

The advice accepts the target of the join point as a formal parameter:

void around(PayrollServer original) :

NetworkCalls.callsToServer(original){...}

Because the advice takes the target as a parameter, AspectJ requires that the
join point invoked by proceed() receive a target of the same type. When pro-
ceed(current) executes, the join point call will happen with whatever target
current references at the time. In other words, the advice will retry the method
call on different servers until it succeeds (or runs out of options). In the output
shown, the advice retries the call to recalculatePaycheck on Server2 when
Server1 fails. Because the call to Server2 succeeds, the around advice returns,
and execution continues normally. Omar gets his raise.

Implications of Changing Targets with Around

In this case, switching the targets of a method call had few implications for the
behavior of the system. Relatively speaking, the system behaves just as it did
before the advice was applied (except it tolerates a higher degree of server
unavailability). Despite this fact, the implications for how you think about pro-
gramming are profound. A single method call has been (potentially) converted
into several method calls—each with a different target.

You can imagine even wilder alterations. Remember the malicious (but ineffec-
tive) advice that redirected raises?

before(Employee emp): raises(emp, int){

emp = new Employee("me", 60000);

}

It could work with around advice:

void around(Employee emp) : Raises.raises(emp, int){

proceed(new Employee("me", 50000));

}

//output

LogRaises.java:11-Employee me:$50,000.00 to receive raise of 5000

In practice, this advice yields somewhat nonsensical results, but it serves for
illustration.

Altering This and Arguments

In addition to the target of a join point you can change two other pieces of con-
text: the arguments and (in limited circumstances) the currently executing
object (this).

A d v i c e176

Changing This

You may wonder how much sense it makes to change the currently executing
object. It depends what sort of join point you’re using. For method execution
join points, changing this acts like changing target for call join points. For
instance, if you alter the callsToServer pointcut use execution() and this()
instead of call() and target(), you get identical results:

pointcut callsToServer(PayrollServer server) :

execution(public * PayrollServer+.*(..)) &&

!execution(new(..)) && !execution(* get*()) &&

this(server);

//output

LogRaises.java:7-Employee Omar:$50,000.00 to receive raise of

6000

RetryNotifications.java:29-Attempting to send update to

PayrollServer1

RetryNotifications.java:37-Network failure

RetryNotifications.java:29-Attempting to send update to

PayrollServer2

PayrollServer.java:12-PayrollServer2

PayrollServer.java:13-Recalculating paycheck for Omar

PayrollServer.java:15-New salary : 56000

Example.java:25-After raise: Employee Omar:$56,000.00

This works because it makes sense to execute the method on another object.
This becomes a surrogate target.

For almost every other type of join point, changing this makes less sense. Think
of a method call that happens in Employee. The employee sends a notify mes-
sage to their boss:

//in the (fictional) requestRaise() method

getManager().notify("I want a raise.");

//...method continues

The method call join point for that line has the following context:

■■ This—The Employee object (in the middle of execution)

■■ Target—The Manager

■■ Arguments—The String “I want a raise.”

When the weaver replaces the call join point with around advice, the around
advice can sensibly change the arguments and target of the join point—the
notify call hasn’t happened yet. However, changing the currently executing
object would mean changing something that has already happened. The
Employee object has already begun the execution of its requestRaise method.
There’s no way for AspectJ to go back in time and change the object that’s about
to make the notify call.

Around Advice 177

Changing Arguments

Changing arguments is perhaps the simplest of context manipulations. To
demonstrate its effects, let’s return to the example that opened the chapter.
There you relied on the fact that System.out.print would (in practice) prepend
a string onto a subsequent println. If you were affecting a different sort of log-
ging call, this behavior might not hold true. You really want to tack the location
information onto the message itself. With around advice, you have that tool:

void around(Object msg) : logCalls(msg) {

String location =

thisJoinPointStaticPart.getSourceLocation() + "-";

String newArg = location + msg;

proceed(newArg);

}

public pointcut logCalls(Object msg) :

call(public void print*(Object)) &&

target(PrintStream) && args(msg) &&

! within(AddSourceInfo);

To get the new version to work, you must modify its pointcut to expose the
argument to the print* method. You also limit the join points to those where the
method accepts a single argument of type Object (using the pointcut
print*(Object)). Doing so avoids advising calls where the argument is a
primitive—(more on that in the next section).

With the modified pointcut, the advice uses a slightly different strategy: It gets
the location from thisJoinPoint (as before) and concatenates it with the original
argument. Then the advice uses proceed() to invoke the original join point with
the new argument. The resulting output matches the original output of the
aspect.

More on Proceed()'s Parameters

The compiler does its best to ensure that you pass the correct type and number
of arguments to proceed(). For example, in the println example you could not
write

proceed(-1);//wrong type of argument

nor
proceed(location, msg);//wrong number of arguments

The exact rule is that proceed()’s parameter list matches the parameter list of
the advice. If the advice takes two Strings as formal parameters, proceed()
must receive two Strings as parameters. By employing this rule, AspectJ can
catch many problems at compile time. However, because AspectJ allows broad

A d v i c e178

TE
AM
FL
Y

Team-Fly®

typing of exposed context, you can end up causing a runtime exception if
you’re not careful. As an example, let’s look back at the logCalls pointcut you
altered in the previous section. If you do not restrict the join points to those
print methods that take an Object, the pointcut will match methods such as
println(int). Look at the results:

//advice declaration

void around(Object msg) : logCalls(msg) {

//...

}

//new pointcut—Object formal will accept boxed int...

public pointcut logCalls(Object msg) :

call(public void print*(*)) && //matches primitives

... args(msg) ...;

//new line in PrintTest.main

System.out.println(1);//line 27

//output

Exception in thread "main" java.lang.ClassCastException:

java.lang.String can not be converted to int

org.aspectj.runtime.internal.Conversions.intValue(Unknown ...

println_decorator.PrintTest.main(PrintTest.java:27)

Because the around advice takes an Object-typed parameter, AspectJ boxes the
int as an Integer. In this particular advice, proceed() takes only a single param-
eter of type Object. Therefore, the compiler allows the advice to pass the
enhanced message (“SomeLocation:xx-1”) to proceed because the String is an
Object. However, the new pointcut will select the call to System.out.println(1)
at line 27. This join point expects an int. When the join point gets the new argu-
ment (a String), AspectJ cannot convert it to the expected int and so throws a
ClassCastException.

Advice Precedence

Sometimes you can write advice as if it’s the only advice in the world. When sev-
eral pieces of advice affect the same join point, however, they can begin to
affect each other as well. So far you’ve seen several situations where you
needed to change the precedence of advice in order to get it to run properly. In
the first case, an exception thrown from MinimumRaisePolicy prevented
advice in LogRaises from logging the raise. As we explained at the time, this
happened because the new advice took precedence over the old advice. This
section explores AspectJ’s precedence rules and how you can make them work
in your favor.

Advice Precedence 179

Why Does Precedence Matter?
Precedence affects both when advice executes and whether it executes at all.
AspectJ allows programmers to control the precedence of advice because
there’s no way for the weaver to automatically know which advice should take
precedence. For example, earlier you changed the precedence of your aspects
because you wanted to log all raise attempts whether they failed or not. But
suppose you did not want to clutter the log files with raise attempts that fell
through. In that situation, you would want the MinimumRaisePolicy to take
precedence over LogRaises.

To understand how advice affects other advice, it’s important to understand
how AspectJ determines precedence and how advice reacts to it. There are two
phases to the precedence system in AspectJ:

1. The weaver determines the total precedence order for a given join point.

2. Advice executes at runtime according to the precedence order—possibly
disrupting the execution of advice of lower precedence.

Determining Precedence
AspectJ determines precedence one join point at a time. In other words, if two
pieces of advice never operate on the same join point, their relative precedence
won’t ever be determined. If (as in the personnel management system) two
pieces of advice do share a join point, the weaver assigns relative precedence
based on whether they reside in different aspects or in the same aspect.

Inter-Aspect Precedence

If pieces of advice reside in different aspects, three main situations determine
precedence:

1. Aspects may take precedence over other aspects using precedence

declarations. We discuss this matter in detail in Chapter 8, which covers
inter-type declarations. To summarize, all advice declared in A precedes all
advice declared in B if the following statement appears in an aspect:

declare precedence : A, B;

2. If an aspect extends another aspect, advice in the subaspect receives

higher precedence than advice in the superaspect. This allows sub-
aspects to override their parents’ behavior.

3. If neither of the previous cases applies, then the relative precedence of
advice between the aspects remains undefined. They will execute in a defi-
nite order, but not one that can be set or determined by the programmer.

A d v i c e180

Intra-Aspect Precedence

If two pieces of advice are defined in the same aspect, their precedence is deter-
mined by their order and type. There are two main situations:

■■ One of the pieces of advice is after advice. In this case, the advice
defined later in the file takes the higher precedence.

■■ Neither advice is of the after type. In this case, the advice defined ear-
lier in the file takes precedence.

For example, let’s say you have three pieces of advice in this order:

Before1

Before2

After

The weaver makes three judgments of relative precedence:

Before1 vs. Before2

Before1 vs. After

Before2 vs. After

Based on rule 2 from our list, Before1 > Before2 (read > as takes precedence

over). Based on rule 1, After > Before1 and After > Before2. When combined,
the relative precedence looks like this:

After > Before1 > Before2

If you’re asking yourself why the rules are so complicated, you’re not alone. At
first glance, it seems that an easier precedence rule (earlier advice always takes
precedence over later) would serve the language better. It turns out that prior
to the 1.0 release of AspectJ, this was the precedence rule. However, it also led
to confusion. The problem is that after advice of a higher precedence executes
after advice of lower precedence. This order makes sense, because it gives
higher priority after advice the last word on the join point. So, the simpler
precedence rule led to a counter-intuitive result. For the following set of advice
affecting a common join point,

Before1

Before2

After1

After2

the older precedence rule led to the following execution order:

Before1

Before2

After 2

After 1

Many users complained about this effect and asked that it be changed. The
AspectJ team obliged. The end result is that if you’re trying to manually

Advice Precedence 181

compute precedence order (or write an AspectJ compiler), your life is more dif-
ficult. On the other hand, if you’re just writing advice, you’re less likely to be
tripped up by the resulting execution order.

Circular Relationships

It’s possible to define advice that forms a circular precedence relationship. The
weaver will report these errors. A simple example of circular precedence arises
when the following precedence declarations appear in the same weaving:

declare precedence : A, B;

declare precedence : B, C;

declare precedence : C, A;

The same sort of circular error can arise within advice defined in a single
aspect. Fortunately, because AspectJ handles precedence on a per-join-point
basis, if C does not apply to the same join points as both A and B, the circular-
ity problem never arises. AspectJ’s documentation suggests that you can use
circularity to ensure that two aspects never affect the same join point. (See
Chapter 8 for further details about circularity in precedence relationships.)

Runtime Execution
The order of advice execution is determined by precedence. However, as we
alluded in the section on intra-aspect precedence, the advice with the highest
precedence does not always execute first. The following list describes the way
in which precedence affects each type of advice. In all cases, the advice with

the next precedence is understood to include the original join point if no further
advice affects the join point:

■■ After advice defers execution. Instead of running immediately, after
advice forwards control to the advice with the next highest precedence.
When that advice finishes executing, the after advice runs its body if its
subtype matches the outcome of the join point. (In other words, after
throwing executes only if the next advice—or the join point—throws an
exception.)

■■ Before advice executes its body. If the advice terminates normally, it for-
wards control to advice with the next highest precedence. If the before
advice throws an exception, it will prevent any advice of lower precedence
from running.

■■ Around advice also executes its body. It has the option of running the next
advice by calling proceed(..). If it throws an exception or otherwise termi-
nates before calling proceed(..), advice of lower precedence (and the join
point) will not run.

A d v i c e182

These rules seem complicated, but they lead to a coherent result. A given piece
of advice treats advice of lower precedence as if it were part of the join point.
This makes sense conceptually: A method call is not just a method call, it is a
method call plus any advice that attaches to it. If the call doesn’t happen, nei-
ther does the advice. This conceptual model can help you prevent undesirable
situations, such as log entries for methods that never execute.

The next section walks through a fictional join point to help you get a feel for
precedence in action. For the purposes of this chapter, we’ll call the set of
lower precedence advice (and the computation under the join point) the view-

able join point.

An Example of Precedence Effects

Let’s consider a sample join point festooned with some advice (see Figure 7.2).

Advice Precedence 183

Before - 2

Before - 3

Around - 4

computation

After - 5

After - 1

Figure 7.2 Advice arranged from left to right in order of precedence and from top to bottom in
order of execution.

Each piece of advice bears a number according to its precedence. The gray bars
indicate the viewable join point for that advice. When the flow of control enters
the (whole) join point, the following steps occur:

1. Execution begins with the advice that has the highest precedence. This is
After-1 in the figure. Because after advice defers execution, control passes
to the advice with the next highest precedence: Before-2.

2. Before-2 executes its body and then forwards control to the advice that has
the next highest precedence. If it threw an exception, advice 3-5 and the
computation would not execute. After-1 would still execute if its subtype
were throwing or unqualified.

3. Before-3 executes in the same manner as Before-2.

4. Around-4 executes. If it calls proceed(), the computation and After-5 get a
chance to run.

5. After-5 defers execution and runs the computation. When the computation
returns (depending on the type of the after advice), After-5 may run.

6. After-1 gets a chance to execute. Suppose its type is after throwing.
Because all the other advice represents its viewable join point, any of the
other pieces of advice could trigger After-1’s execution by throwing an
exception. On the other hand, the computation itself could throw an
exception, and if Around-4 caught the exception and returned normally,
After-1 would not execute.

This model takes some getting used to, but once you’ve mastered thinking
about precedence this way, you’ll find its effects predictable.

Pseudo Precedence
It’s important to remember that precedence only affects advice execution
around a single join point. Often join points execute in a predictable sequence.
For instance, method execution join points always happen after method call
join points. As a result, an extra layer of pseudo precedence can affect how
advice executes, as illustrated in Figure 7.3.

A d v i c e184

Before - 1e

call(foo())

execution(foo())Before - 2

Before - 3

Around - 4

computation

After - 5

After - 1

Around - 2e

After - 3e

computation

Figure 7.3 All the advice on the call join point has pseudo precedence over the execution advice.

In the figure, the computation from the earlier example turns out to contain an
execution join point for the same method. Because call join points happen
before execution join points, all the advice on the left half of the figure takes
effect as if it had a higher precedence than the advice on the right. Pseudo
precedence is intuitive—if a method call does not happen, then the method exe-
cution can’t happen either. Despite being intuitive, its effects are worth remem-
bering if your advice does not execute in the expected order.

What’s Next

Looking back over the personnel management application, you’ve implemented
quite a few crosscutting concerns. Raises are logged and checked for adher-
ence to department policy, and the payroll system is automatically notified
afterward. If the payroll server is unavailable, you retry the notification on
other servers. None of these concerns required modifications to the code for
Employee. As far as this chapter is concerned, you could have purchased a JAR
containing Employee and Manager from a component vendor.

With advice, you can effectively compose join points. In other words, without
changing the source for the original join point, you can add pre and post effects,
handle failures, and even alter the join point’s arguments or target. AspectJ’s
advice-weaving capabilities allow almost any join point to be effectively altered
from the outside in a predictable and structured way. As a result, you’ve
been able to alter the definition of a raise to include each new concern without
changing its basic meaning. Maintainers of the code can now modify
each concern without modifying the core raise code and without affecting the
other concerns. Because of this situation, flexibility, and cohesion increase.

This chapter has focused on the natural complement to the pointcut: advice. We
considered accessing context, exceptions, and advice precedence. We looked
at each type of advice (before, after, and around) and showed which sorts of
crosscutting concerns you can implement with each. The next chapter focuses
on inter-type declarations. These static changes to the type structure of AspectJ
programs increase the power and flexibility of advice. By altering Java’s type
system inter-type declarations allow for more powerful and more modular
aspects. Once you’ve read the next chapter, you’ll have a good idea of the full
capabilities of AspectJ.

What’s Next 185

So far, this book has concentrated on dynamic crosscutting—AspectJ’s
ability to define and advise points in the dynamic execution of a program.
We’ve defined join points, selected them with pointcuts, and executed

code at them with advice. These features are revolutionary, so they get a lot of
attention. Inter-type declarations—(alterations to classes and inheritance hier-
archies from outside the original class definitions) aren’t as groundbreaking.
Even though they keep a lower profile, AspectJ’s inter-type declarations are
crucial to the language. Because they support a more flexible type system, they
allow aspects to capture crosscutting concerns in an encapsulated way.

As their name suggests, inter-type declarations are declarations about a pro-
gram’s structure that occur between types. For instance, you can use an aspect
to add new methods to a class, or declare that a class extends a new superclass.
Here are the types of changes possible with inter-type declarations:

■■ Add members (methods, constructors, fields) to types (including other
aspects)

■■ Add concrete implementation to interfaces

■■ Declare that types extend new types or implement new interfaces

■■ Declare aspect precedence

■■ Declare custom compilation errors or warnings

■■ Convert checked exceptions to unchecked

Inter-type declarations are described as static crosscutting because they affect
the static type hierarchy of programs. Subject to a few new scoping rules, the

Inter-type Declarations

C H A P T E R 8

187

rest of the system will treat the new program structure as if it had been declared
naturally. Although inter-type declarations give aspects the ability to alter
classes from the outside, the end result fits neatly into Java’s type system. In
other words, you know much of this territory already. Familiar rules for over-
riding methods, shadowing instance variables, and the like apply predictably to
AspectJ programs. If something seems as though it would work a certain way in
a pure Java program, it probably works similarly in AspectJ. There are some
important additions and exceptions to this general principle, which we’ll cover
in the sections ahead.

On the surface, adding a method or a new interface to a class doesn’t seem
impressive. When the new method or interface interacts with advice, however,
the results can be astounding. It’s difficult to get a sense of how inter-type dec-
larations and aspects can cooperate without seeing the process in operation.
So, you might have to wait until you’re familiar with the basics before you
understand why you’d add a new method to a class from the outside, rather
than adding it on the inside.

We begin the chapter by looking at examples of inter-type method declarations.
Then we’ll dive into the mechanics of inter-type members and illustrate how to
use declare parents to affect type structure. Once you have a grasp of these fea-
tures, we’ll explore AspectJ’s ability to add concrete behavior to interfaces.
This topic will open the door to further consideration of idioms and usage.
We’ll conclude with a look at aspect precedence, exception softening, and cus-
tom compilation messages—important but less far-reaching forms of static
crosscutting.

Simple Examples of Inter-type Declarations

Before we dive too deeply into the mechanics, let’s look at some examples of
how to use inter-type declarations.

NOTE
Many of the examples in this chapter rely on simple component code introduced in
Chapter 7, “Advice”—namely, classes representing different types of employees in a
personnel management system. Please refer to Chapter 7 or the online code samples
to see the full source code for these components.

Adding a Method to a Class
Good components encapsulate just enough behavior and state to accurately
represent their primary abstraction. An Employee class should encapsulate

Inter-type Declarations188

TE
AM
FL
Y

Team-Fly®

things like the employee’s name, salary, history at the company, and so on.
Unfortunately, crosscutting concerns interfere with this simple dictum. Glue
code and non-central concerns can obscure the ideal class and prevent pro-
grammers from understanding its role in the system.

Representing classes in another format is a perfect example of this sort of
crosscutting requirement. Suppose business concerns dictate that the person-
nel system must integrate with a third-party system via XML. To facilitate the
integration, programmers must render each major class in the personnel sys-
tem to an XML representation. In a traditional OO environment, this concern
might dictate that you add the method in Listing 8.1 to the Employee class.

Simple Examples of Inter-type Declarations 189

/* the conversion method */

public void toXML(PrintStream out){

out.println("<employee>");

out.println(" <name>");

out.println(" " + getName());

out.println(" </name>");

out.println(" <salary>");

out.println(" " + getSalary());

out.println(" </salary>");

out.println("</employee>");

}

/* some demo code */

public static void main(String[] args){

Employee bill = new Employee("Bill Grimes", 35000);

System.out.println("Bill as XML: ");

bill.toXML(System.out);

}

/* output */

Bill as XML:

<employee>

<name>

Bill Grimes

</name>

<salary>

35000

</salary>

</employee>

Listing 8.1 The toXML() method implements a crosscutting concern.

A good encapsulator must ask, “Does this behavior really belong to an
Employee?” The answer lies in a gray area, but our intuition suggests that
toXML() belongs together with other XML integration code rather than with

code concerned with raises, payrolls, or managers. Accordingly, an OO pro-
grammer might write a separate conversion class (see Listing 8.2).

Inter-type Declarations190

public class EmployeeXML{

private Employee emp;

public EmployeeXML (Employee emp) {

this.emp = emp;

}

public void toXML(PrintStream out){

out.println("<employee>");

out.println(" <name>");

out.println(" " + emp.getName());

//...etc.

}

Listing 8.2 A separate converter class provides an OO solution.

However, adding multiple converter classes becomes tedious and introduces
another class hierarchy that’s tightly coupled to the Employee hierarchy. Inter-
type declarations provide an alternative that combines the simplicity of the first
solution with the modularization of the second. Check out Listing 8.3.

public aspect XMLInterface {

/**

* Exercises the newly introduced capabilities.

*/

public static void main(String[] args){

Employee bill = new Employee("Bill Grimes", 35000);

System.out.println("Bill as XML: ");

bill.toXML(System.out);/* 4 */

}

/**

* Adds a new public method to Employee.

*/

public void /*1*/ Employee.toXML(PrintStream out){

out.println("<employee>");

out.println(" <name>");

out.println(" " + getName());/* 2 */

out.println(" </name>");

out.println(" <salary>");

Listing 8.3 Introduction provides something more compact. (continues)

Simple Examples of Inter-type Declarations 191

out.println(" " + getSalary()); /* 3 */

out.println(" </salary>");

out.println("</employee>");

}

}

/* output of main method */

Bill as XML:

<employee>

<name>

Bill Grimes

</name>

<salary>

35000

</salary>

</employee>

Listing 8.3 Introduction provides something more compact. (continued)

The XMLInterface aspect uses inter-type declaration to add the toXML()
method to the Employee class. Let’s break down the example. The aspect
includes two elements: a main method and the inter-type declaration. The syn-
tax of an inter-type method declaration resembles that of a traditional method
declaration. The main difference occurs at location 1: Instead of toXML(),you
write Employee.toXML(). This declares the method as part of the Employee
type rather than the enclosing type. Notice that the body of the method has not
changed since it was moved from Employee.java. In particular, at locations 2
and 3 the new method references other public methods of the Employee class.

As you can see from the main method at location 4, client code can call the
inter-type member just as if it were a normal method. The output of the main
method is identical to the output in the first listing. In almost every respect, the
inter-type method behaves like a normally declared method.

Is Member Introduction a Good Idea?

You’ve kept a tangential method out of the Employee class. Does this justify a
feature with the power of member introduction? After all, now it’s more diffi-
cult to look at the source code for Employee and see all of its behavior. Isn’t this
a drawback?

Tool Support

The use of aspect-oriented development tools can alleviate concerns about
overlooking inter-type members. Tools such as the graphical structure browser

that ships with AspectJ provide an aspect-aware view of the code. Figure 8.1
shows a screenshot of the toXML() example.

Inter-type Declarations192

Figure 8.1 The structure browser shows toXML() as a member of Employee.

At location 1, the structure browser displays the toXML() method as part of the
Employee class alongside traditional members such as setName() and
toString(). Double-clicking on the method brings up the source for the inter-
type declaration in the right-hand pane (location 2). At location 3, the browser
displays the inter-type declaration of toXML() as part of the aspect declares it.
As with other AspectJ constructs, the structure browser makes inter-type dec-
larations visible and easy to navigate. (For more information about AspectJ’s
development tools, see Chapter 11, “Using Aspect J Tools,” which includes
examples of structure browser functionality as well as demonstrations of its
integration into several IDEs.)

Of course, if you don’t use an aspect-aware browser, you may miss Employee’s
new behavior. However, as IDEs have become increasingly necessary for high
productivity in any language, the use of graphical tools to browse code has
become standard practice among programmers. Relying on AspectJ-specific
tools to provide high productivity in AspectJ will be no different.

More Flexible Code Structure

In addition to being as visible as normal members, inter-type declarations allow
more flexibility in the grouping of behavior. Consider Listing 8.4, which refac-
tors the aspect and adds more introductions.

Simple Examples of Inter-type Declarations 193

public aspect XMLInterface {

/**

* Exercises the newly introduced capabilities.

*/

public static void main(String[] args){

Employee bill = new Employee("Bill Grimes", 35000);

System.out.println("Bill as XML: ");

bill.toXML(System.out);

Manager boss = new Manager("Big Boss", 90000);

boss.setTitle("Head Cheese");

System.out.println("Boss as XML: ");

boss.toXML(System.out);

Programmer jenny =

new Programmer("Jenny Suza", 70000);

jenny.setLanguage("Java/AspectJ");

System.out.println("Jenny as XML: ");

jenny.toXML(System.out);

}

/**

* Utility method shared by introduced toXML methods.

*/

private static void printBasicAttributes(Employee e,

PrintStream out){

out.println(" <name>");

out.println(" " + e.getName());

out.println(" </name>");

out.println(" <salary>");

out.println(" " + e.getSalary());

out.println(" </salary>");

}

public void Employee.toXML(PrintStream out){

out.println("<employee>");

printBasicAttributes(this, out);

out.println("</employee>");

}

/**

* Adds title field.

*/

public void Manager.toXML(PrintStream out){

out.println("<manager>");

Listing 8.4 Introduction allows grouping of similar functionality. (continues)

Inter-type Declarations194

printBasicAttributes(this, out);

out.println(" <title>");

out.println(" " + getTitle());

out.println(" </title>");

out.println("</manager>");

}

/**

* Adds language field.

*/

public void Programmer.toXML(PrintStream out){

out.println("<programmer>");

printBasicAttributes(this, out);

out.println(" <language>");

out.println(" " + getLanguage());

out.println(" </language>");

out.println("</programmer>");

}

}

/* output */

Bill as XML:

<employee>

<name>

Bill Grimes

</name>

<salary>

35000

</salary>

</employee>

Boss as XML:

<manager>

<name>

Big Boss

</name>

<salary>

90000

</salary>

<title>

Head Cheese

</title>

</manager>

Jenny as XML:

<programmer>

<name>

Jenny Suza

</name>

Listing 8.4 Introduction allows grouping of similar functionality. (continues)

Simple Examples of Inter-type Declarations 195

<salary>

70000

</salary>

<language>

Java/AspectJ

</language>

</programmer>

Listing 8.4 Introduction allows grouping of similar functionality. (continued)

In the expanded version, the aspect takes responsibility for the XML rendering
of all the model objects. By doing so, it causes all the XML conversion code to
localize in a single place. Because of the aspect, it’s easy to scan all the imple-
mentations of toXML at once and to refactor them together. For the example,
we deliberately chose simple XML renderings of the objects. However, if the
XML was convoluted or proprietary to a third-party system, keeping the XML
code out of the component code would make even more sense. An appropri-
ately coupled Employee class shouldn’t need to know about the entity names
the third-party system uses.

NOTE
For the record, many XML binding tools could provide an elegant solution to rendering
an Employee as XML. Similarly, EJB provides solutions to many common crosscutting
concerns found in enterprise middleware. The intent of our examples isn't to suggest
that AspectJ provides the best solution for all crosscutting concerns, but rather to
show how AspectJ can help with common ones. Once you're familiar with what it can
do, you'll be in a better position to evaluate which tool provides the superior solution.
You may also discover new crosscutting concerns that no special tool addresses.

AspectJ gives users the choice of how they would like to organize and group
their functionality. As the previous example suggests, in some situations com-
mon behavior belongs together in an aspect rather than in each individually
implementing class. With AspectJ, that option is open. You can make intelligent
decisions about how to structure your code so it makes the most sense.

Inter-type Declarations and Coupling

Of course, now that you’ve added public methods to the entire employee hier-
archy, any class that calls the methods becomes dependent (indirectly) on the
XMLInterface aspect. This may be acceptable if XML rendering is an important
behavior used in many parts of the system. However, such a situation can lead
to less modularity. One of the potential benefits of AspectJ is pluggability. With

some care, AspectJ will let you design a system that supports layers of behav-
ior you can compose at build time. Having too much interdependence between
components and aspects can hinder this type of design.

However, AspectJ’s scoping rules allow for inter-type members that other code
can’t see. This behavior allows the aspect to control how much other code can
depend on behavior it introduces onto a type. The next section explores how to
use such private inter-type behavior to help an aspect do its job.

Introduction and Advice
So far, the power of the advice you’ve written in this book has been limited. One
of the reasons is that we just covered inter-type declaration in the last few
pages. The utility and elegance of advice increases exponentially once it coop-
erates with inter-type declarations.

The next example illustrates this fact. It assumes the Employee class has been
crosscut by the need to persist its state to a database. To cooperate with a third-
party persistence framework, the Employee must implement a store() method
that takes care of the details of writing its state to a database. (Readers experi-
enced with EJBs that use bean-managed persistence will recognize the pat-
tern.) As an additional requirement, because database access costs precious
time, Employee must be careful to persist data only when its state has changed.
Pre-AOP, one of the only ways of doing this was to manually update a dirty flag
whenever a field changed. To manually maintain a dirty/clean state, you could
add the following code to the Employee class:

/* manually adding an update to the dirty flag */
public void raiseSalary(int increment){

dirty =true;
salary += increment;

}

/**
* Uses the dirty flag to avoid expensive
* database updates.
*/

public void Employee.store(){
if(dirty){

//update row in database
}
dirty = false;

}

There is a problem with this approach: Persistence code tangles with Employee
code. If many classes persist themselves, inserting code that updates the dirty
flag become boring and error-prone. Certainly Employee cannot be reused with
a different persistence strategy.

Inter-type Declarations196

If you have read Chapters 6 and 7 (covering pointcuts and advice), you may
spot a way to capture state-change events. Here is some advice that will exe-
cute whenever the state of an Employee changes:

private pointcut stateChange(Employee emp) :

set(* Employee.*) &&

target(emp);

after(Employee emp) : stateChange(emp){

//now what?

}

The pointcut picks out join points that will change the state of the Employee.
Note that you can define state change events however you like—execution of
any set* methods is another way of doing it. In this case, we chose field assign-
ments. With this pointcut and advice, every time a field on Employee changes,
you have the opportunity to record that the object has become dirty.

Inter-type declaration provides the perfect way to store state about an object
without tangling the state into the object itself. With a few inter-type declara-
tions, you can easily manage a dirty flag without polluting the original class.
Listing 8.5 contains the full Persistence aspect.

Simple Examples of Inter-type Declarations 197

public aspect Persistence {

/**

* 1 Adds a dirty flag to the Employee type.

*/

private boolean Employee.dirty = false;

/**

* 2 Note that we have to exclude sets to

* the dirty flag--a good reminder that

* inter-type members are full citizens

* of the modified type.

*/

private pointcut stateChange(Employee emp) :

set(* Employee.*) &&

! set(boolean Employee.dirty) &&

target(emp);

/* 2 */

after(Employee emp) : stateChange(emp){

emp.dirty = true;

}

Listing 8.5 Introduction allows an aspect to add state directly to an object. (continues)

Inter-type Declarations198

/**

* 3. This inter-type method uses the dirty

* flag to avoid expensive database

* updates.

*/

public void Employee.store(){

if(dirty){

System.out.println("Storing : " +toString());

}

else{

System.out.println("Employee does not need " +

"to be stored.");

}

dirty = false;

}

/**

* Exercises the persistence functions

* of the modified Employee class.

*/

public static void main(String[] args){

Employee janet = new Employee("J. Smythe", 99000);

janet.store();//new employee, should store

janet.store();//no changes

janet.raiseSalary(2300);

janet.store();//should store

}

}

/* Output */

Storing : Employee J. Smythe:$99,000.00

Employee does not need to be stored.

Storing : Employee J. Smythe:$101,300.00

Listing 8.5 Introduction allows an aspect to add state directly to an object. (continued)

The first thing to notice about the example is at location 1. The Persistence
aspect adds a private member variable to the Employee class that serves as a
dirty flag. Like declaring a method, declaring a member variable on another
type resembles the standard Java declaration. Again, the aspect must qualify
the member with the target of the declaration (“Employee.dirty” instead of just
“dirty”). Because it declares the member as private, the aspect ensures that only
code in the aspect can access and use it. Thus code in the Employee class
remains unaware of the dirty flag’s existence and could even declare a dirty
variable of its own if it wanted to.

You saw the pointcut and advice at location 2 earlier. However, this version
makes a couple of changes. The stateChange pointcut excludes field assignments

TE
AM
FL
Y

Team-Fly®

to the dirty flag because they do not reflect changes to persistent state (and
would result in recursive advice calls). As we’ve said before, aspects can affect
aspects, and inter-type declared members are no exception. Now that you’ve
added the dirty flag, you also know what to do in the after advice—you set the
dirty flag of the changed Employee to true.

The store() method at location 3 uses the dirty flag just as it did without
aspects, resetting the flag to false after the database update completes. The
main method exercises the new behavior of the Employee class. As the con-
structors for Employee execute, they initialize member variables, triggering the
after advice and setting the dirty flag. Thus the first call to store() saves the
object’s state. Calling store() again has no effect, because none of Janet’s fields
have changed. Finally, calling raiseSalary() and then store() results in a data-
base update, because raiseSalary() reassigns the value of one of Janet’s fields.

Notice that if you had defined state changes as execution(* void
Employee.set*(..)), you might not have captured this last event. Pointcut com-
position takes careful thought.

Thoughts on the Example

Inter-type declarations help aspects do their job by giving them the ability to
add necessary behavior onto the types they affect. This ability allows aspects to
form coherent modules of behavior. The Persistence aspect stores dirty state
directly on the object it affects, where other code in the aspect (such as the
store method) can use it easily. At the same time, it prevents unrelated code
from accessing the state and keeps Employee from having to know about its
participation in the persistence strategy.

Because Employee could be recompiled without this Persistence aspect, it
could be reused in other persistence environments. In this way, AspectJ
expands on Sun’s famous promise of “Write once, run anywhere.” Sun’s promise
means “Write your application once, run it on any OS.” With careful design,
AspectJ can promise, “Write modules once, run them in any application.” (We’ll
look more at the topic of reuse and modularization later in this chapter and in
Chapter 13, “Aspect-Oriented Examples: Patterns and Reuse.”)

Inter-type Members: The Mechanics

As you saw in the earlier examples, declaring members from other types can be
simple. This section details the mechanics of external member declarations and
explores things like member conflicts and scoping in more detail. First we’ll
look at the syntax of inter-type members; then we’ll cover technical details
relating to them.

Inter-type Members: The Mechanics 199

Types of Inter-type Members
You can declare the following sorts of members using inter-type declarations:

■■ Concrete methods

■■ Abstract methods

■■ Constructors

■■ Fields

The next sections detail the syntax for each form.

Concrete Method

You can add a concrete method to any type (including an interface). The
syntax is:

ConcreteInterTypeMethod ::=

Modifiers ReturnType TargetType "." Id "(" Formals ")"

[ThrowsClause] "{" MethodBody "}"

Modifiers ::= ;(as Java modifiers--see below)

ReturnType ::= ;(as Java)

TargetType ::= ;(any legal AspectJ type. Defines the type to add

the member to.)

Id ::= ;(as a Java identifier. Defines the name of the added

method.)

Formals ::= ;(as Java formal parameters)

ThrowsClause ::= ;(as Java throws clause)

MethodBody ::= ;(as Java method body--see below.)

You can add any modifiers to the inter-type member that would be legal if the
member appeared on target type (static, synchronized, and so on). The only
modifiers that act differently are the access modifiers (discussed in their own
section).

The body of the inter-type method implements the method and functions as if
the method appeared in the target type—with some important restrictions (see
the section “Access Control”). Here are some examples:

public void Employee.toXML(PrintStream out){

out.println("<employee>");

printBasicAttributes(this, out);

out.println("</employee>");

}

public static double Employee.calculateTax(int salary){

return salary * .35;

}

Inter-type Declarations200

Abstract Method
You can also add an abstract method to any abstract type or interface:

AbstractInterTypeMethod ::=
abstract Modifiers ReturnType AbstractTargetType "." Id
[ThrowsClause] "(" Formals ")" ";"

AbstractTargetType ::= ;(any legal AspectJ type. Must be an
interface or an abstract class. Defines the type to add the
member to.)

(Note that the abstract modifier can come before or after the other modifiers.)
Just as in Java, concrete subtypes of AbstractTargetType must implement the
added abstract method. The concrete subtype can do this with a normal or an
inter-type implementation. Here’s an example:

public abstract void AbstractXMLSupport.toXML(PrintStream out);

Constructor

You can add a constructor to a concrete or abstract class using the special new

identifier (this identifier matches the join point signature for constructors).
Unlike other inter-type member declarations, this one cannot be applied to
interfaces or aspects:

InterTypeConstructor ::=
Modifiers ConstructorTargetType "." new "("
Formals ")" [ThrowsClause] ";"

ConstructorTargetType ::= ;(any concrete or abstract class)

For example:

public Employee.new(String name, int salary, Manager mgr){
this(name, salary);
setManager(mgr);

}

Fields

Aspects can add fields to any type with the following forms:

InterTypeField ::= Modifiers TypeOfField TargetType.Id [FieldInitialia-
tion];
TypeOfField ::= ;(any legal AspectJ type)
FieldIntialization ::= "=" Expression ";"

The following examples illustrate the use of standard Java modifiers with field
introductions:

static String[] Programmer.possibleSkills =
new String[]{"coding", "refactoring"};

private volatile int Employee.someVolatileValue;

Inter-type Members: The Mechanics 201

Note that, unlike normal Java (and AspectJ 1.0), you can only make one inter-
type field declaration per line. In other words, the following declaration is
illegal:

boolean Employee.dirty, Department.dirty;

NOTE
Inter-type members act as full members of the target types. However, the declaration
itself belongs as a member to the aspect that declared it.

Targets of Inter-type Declarations
It’s worth remembering that aspects and interfaces are also types, and as such
can be affected by inter-type declarations. This section explains some of the
consequences of declaring members onto different types.

Classes

Adding members to classes represents the base case for inter-type declarations.
Inter-type methods on classes can be overridden, shadowed, and called as nor-
mal. An easy-to-overlook consequence is that if an aspect adds a method to a
class, subclasses get the method as well. In other words, if you add terminate()
to Employee, terminate() can be called on a Manager, which extends
Employee, as well.

Interfaces

AspectJ can add concrete state and behavior to interfaces, allowing for rootless
type hierarchies. This feature enables such interesting behavior that we give it
a full section later in the chapter. For the moment, remember that you can add
concrete methods and instance variables onto an interface. This will cause any
class that implements the interface to exhibit the behavior. For examples, see
the section on interfaces later in the chapter (“Interfaces with Concrete Mem-
bers”).

Aspects

All aspects define Java types. In addition to specifying crosscutting behavior,
they can have state, define instance methods, and possess other class-like
behavior. Just like other types, they can also be the targets of inter-type decla-
rations. The only plausible examples for inter-type declarations onto aspects
that we can think of involve aspects managing and crosscutting other aspects.

Inter-type Declarations202

Rather than entering that sticky territory, Listing 8.6 simply demonstrates the
possibility.

Inter-type Members: The Mechanics 203

public aspect Target {
//method to be added by other aspect

public static void main(String[] args){
Target.aspectOf().addedMethod();

}
}

aspect Introducer{
public void Target.addedMethod(){

System.out.println("HI! You've met my method.");
}

}
/* Output: */
HI! You've met my method.

Listing 8.6 Aspects are legal targets for introduction.

TypePatterns

In AspectJ 1.0, inter-type declarations could affect more than one class by using
type patterns. In 1.0, the following modification to the Persistence aspect added
the dirty flag to both the Department and Employee classes:

private boolean (Employee || Department).dirty = false;

AspectJ 1.1 disallows this sort of inter-type declaration because it leads to prob-
lems. Experienced readers may guess that there is an alternative—declaring
the member on an interface and making the target classes implement the inter-
face. Again, see the section on interfaces for examples.

Access Control
Inter-type members pose interesting questions regarding access control. Can
the new code access private state? Who can see the new member? Is it a good
idea for them to see it? Fortunately, AspectJ’s access-control rules resolve
these questions in a way that’s understandable and that allows for full aspect-
encapsulation. A single rule describes the lion’s share of differences between
standard Java access rules and AspectJ access rules:

Access modifiers on inter-type members are scoped with regard to the aspect
that declares them, not the target type.

As explained in the persistence example, this means privately declared mem-
bers such as

private boolean Employee.dirty = false;

can only be seen/used by code in the aspect that declared them. This rule pre-
vents other code (even that of Employee) from accessing persistence members
it should have no knowledge of. One consequence of the rule is that you can’t
add a private method or field that’s usable by the target type (Employee can’t
access its aspect-declared dirty field directly). This limitation makes sense
because private members are supposed to represent hidden implementation
details. Scattering them among different files would reduce source cohesion
without adding any viewable behavior.

Standard Java has three access levels besides private: public, protected, and
package (default). Inter-type members with package access can only be seen by
code in the package of the aspect that declared the member. Java’s protected
level is not supported for inter-type declaration. Finally, as you saw in the
toXML example, the public access level allows inter-type members to form part
of the public interface of a type.

What Can an Inter-type Member See?

The access control rule also governs what the added code can see. Because
inter-type code is scoped via the aspect that declared it, it can usually view the
only the public interface of the target type. In other words, the new store()
method can view the public setters and getters of Employee but not the corre-
sponding private variables:

public void Employee.store(){
if(dirty){

System.out.println("Storing : " +toString());

/* this ok, getName() is a public method */
System.out.println(" Writing : " + getName());

/* will not compile, as inter-type code
* can only access private members declared
* by the same aspect
*/

//System.out.println(" Writing : " + salary);
//[...]

}

Getting More Access

If Employee was in the same package as Persistence, the store() method would
have a little more leeway: It could access any package or protected members

Inter-type Declarations204

defined by Employee. This follows Java’s access rules. Code that resides closer
to other code has more privileges than code that is further away.

If inter-type members need to use private instance variables of the target type
to do their job, you may need to ask whether they should be defined in the tar-
get type directly. Of course, there are situations (debugging and performance
tuning come to mind) when a mechanism to bypass access rules can be conve-
nient. For these situations, you can mark the declaring aspect with the special
privileged modifier. Inter-type members from a privileged aspect can access
almost anything. The previous code snippet would compile in its entirety if the
Persistence aspect were declared privileged.

Conflicts Between Members
The ability to define members on a type from anywhere in the system leads to
the potential for conflicts between members with the same name. AspectJ does
its best to resolve these conflicts gracefully. However, it’s possible to define
members that directly conflict. For instance, you can’t put two public toString()
methods on the same class. This section details some of the gray area cases.

Non-Conflicting Scopes

In standard Java, you could declare a private method named compute() onto
both the Employee and Manager classes. These two methods would not affect
each other. Each class could count on being able to execute its own copy.
Because each method is private, they reside in non-conflicting scopes.

AspectJ attempts to preserve this behavior with inter-type declarations. For
example, if you privately declared a compute() method onto Employee from
two different aspects, each aspect would use its own version without conflicts.
Listing 8.7 illustrates this principle.

Inter-type Members: The Mechanics 205

public aspect Caching {

/* 1 */

private void Employee.compute(){

System.out.println("Computing for Cache.");

}

public static void main(String[] args){

new Employee("C. Calson", 35000).compute();

/* calls the next aspect just for demonstration */

Tracing.main(new String[0]);

}

Listing 8.7 Private inter-type members don’t conflict. (continues)

Inter-type Declarations206

}

public aspect Tracing{

/* 2 */

private void Employee.compute(){

System.out.println("Computing for Trace.");

}

/* accesses the method for demonstration

* purposes

*/

public static void main(String[] argv){

new Employee("T. Thompson", 35000).compute();

}

/* Output */

Computing for Cache.

Computing for Trace.

Listing 8.7 Private inter-type members don’t conflict. (continued)

In the example, two aspects (Caching and Tracing) each declare a private
helper method onto the Employee class (locations 1 and 2). Each aspect also
has a static main method that uses compute(). As you can see from the output,
each aspect sees its own copy of the method. If both of the aspects declared
compute() as public, the compiler would signal an error:

//from Caching

public void Employee.compute(){

System.out.println("Computing for Cache.");

}

//from Tracing

public void Employee.compute(){

System.out.println("Computing for Trace.");

}

/* compiler error - conflict between publicly visible versions

of compute()

*/

Conflicts and Precedence

Although two public inter-type declarations of compute() result in a conflict,
AspectJ allows you to resolve the conflict with aspect precedence (covered
later in this chapter). If you add the following line to Caching, its version of
compute() will supplant Tracing’s version:

declare precedence : Caching, Tracing;

/* New Output */

Computing for Cache.

Computing for Cache.

As a result of precedence declaration, Caching has precedence over Tracing.
This causes the main method in both aspects to use Caching’s version of
compute(). This behavior applies to subaspects as well. Since subaspects
take precedence over their parents, all inter-type members from a subaspect
will supplant inter-type members from its parents in cases of conflict.

Aspect Versus Target Members

Although inter-type members act as if they are defined directly on the type, they
can also see static members of the enclosing aspect. Inter-type code cannot see
instance members of the enclosing aspect because there’s no way to determine
which instance they should access. (See Chapter 9, “Aspects,” for information
about aspect instantiation.) As an example, let’s say you temporarily add an
informative println to the store() method that displays statistics about how the
aspect is being used:

//In Persistence...
public void Employee.store(){

displayStats();
if(dirty){
//[...]

private static void displayStats(){
System.out.println("The Persistence aspect has ");
System.out.println("these interesting stats: ...");

}
/* Output from a call to store */
The Persistence aspect has
these interesting stats: ...
Storing : Employee J. Smythe:$99,000.00

Writing : J. Smythe

Employee’s store() can access the static displayStats() method of the Persis-
tence aspect. Think of this ability as a convenience that AspectJ provides for
inter-type code. Despite being able to access static members of the enclosing
aspect, members of the target type with the same name always take prece-
dence. If the Employee class were to define a displayStats() method of its own

public void displayStats(){
System.out.println(getName() +" has " +

"these interesting stats: ...");
}

the inter-type method would use it instead:
/* Output */
J. Smythe has these interesting stats: ...
Storing : personnel.Employee J. Smythe:$99,000.00

Writing : J. Smythe

Inter-type Members: The Mechanics 207

Inter-type Declarations and Inheritance

Because inter-type methods are first-class citizens of the target types, they are
subject to Java’s inheritance rules. Public/default methods on subtypes over-
ride corresponding methods on supertypes. This happens regardless of
whether the overriding method is natural or inter-type. You already saw this
behavior in the toXML example, where both programmers and managers over-
rode the default XML representation of Employee. (Turn back to Listing 8.4 to
review the example.)

Declare Parents

The next two sections illustrate how to leverage interfaces with concrete mem-
bers. The mechanics of adding members to interfaces with inter-type declara-
tion is largely the same as adding them onto, say, abstract classes. However, a
few details are particular to interfaces. Furthermore, adding behavior to inter-
faces opens several new avenues of design in AspectJ. For these reasons, we’ve
separated the material on interfaces into its own section. Before covering inter-
faces, however, we’ll detour through the declare parents form; it becomes
instrumental in using interfaces to their full potential.

In addition to allowing you to add individual members to types, AspectJ enables
you to add supertypes and interfaces to any type (with some restrictions). Let’s
look at a basic example.

Adding a Simple Interface
Suppose you wanted to make Employee Comparable, but you knew different
applications that used the class would want different implementations of the
method. (One department could compare employees by name, another by
salary.) This requirement necessitates an aspect-oriented solution. Listing 8.8
demonstrates how to make Employee implement the Comparable interface
without modifying the original class.

Inter-type Declarations208

public aspect EmployeeComparable {

/* 1
* ensures that the Employee class
* implements the Comparable interface
*/

declare parents : Employee implements Comparable;

Listing 8.8 Adding a simple interface to a class. (continues)

TE
AM
FL
Y

Team-Fly®

Declare Parents 209

/* 2
* Implements the required method from
* Comparable.
*/

public int Employee.compareTo(Object o){
Employee e = (Employee)o;
return getName().compareTo(e.getName());

}

public static void main(String[] args){
//not in order
Employee[] employees = new Employee[]{

new Employee("Fatima", 55000),
new Employee("Arthur", 38000),
new Employee("Belle", 42000)};

Arrays.sort(employees);

for(int i=0; i <employees.length; i++){
System.out.println(employees[i]);

}
}

}
/* Output –notice that they are in alphabetical order*/
Employee Arthur:$38,000.00
Employee Belle:$42,000.00
Employee Fatima:$55,000.00

Listing 8.8 Adding a simple interface to a class. (continued)

The example does two major things. At location 1, it uses declare parents to
specify that Employee implements the Comparable interface. This declaration
has the same effect as writing “implements Comparable” in the class definition
of Employee. One consequence is that the class must now implement the com-
pareTo(Object) method. Fortunately, with inter-type declaration, you can add
the method at the same time (location 2). Now Employee can be sorted with
ease (see the main method and the output).

Declare Parents: The Mechanics
Declare parents has two subcases: implementing new interfaces and extending
new classes. Generally, it’s less problematic to implement new interfaces than
to extend new classes, so we’ll cover that case first.

Implementing New Interfaces

As you saw in the example, adding a new interface to a class means using the
following syntax:

InterfaceDeclaration ::=

declare parents ":" TypePattern implements

TypeList ";"

TypePattern ::= ;(AspectJ type pattern--see Chapter 6 for examples)

TypeList ::= Type {"," Type}

The types in TypeList should represent valid interface types. By using a type
list, declare parents can add multiple interfaces at once:

declare parents : Employee implements Comparable,

Cloneable,

Serializable;

As with most inter-type declarations, using declare parents results in behavior
that’s almost identical to putting the implements declaration directly in the
affected class. To be fully legal, the affected type must now implement all the
methods of the specified interfaces. The type can declare these members itself
or aspects can introduce them.

Extending New Classes

To change the superclass/superaspect of a type, you can use the following
syntax:

SuperclassDeclaration ::=

declare parents ":" TypePattern extends

TypeList ";"

You may wonder why a list of types is allowed. It may have been a convenience
to the implementers—although you can add more than one class to the list, they
must belong to the same inheritance hierarchy:

declare parents : SuperProgrammer extends

Programmer,

//Manager,-- conflicts with Programmer

Employee;//redundant

This declaration amounts to the same thing as

declare parents : SuperProgrammer extends Programmer;

The classes in the type list must be compatible with the original supertype of
the target. This means aspects have relative freedom if the target extends
Object, but must tread carefully if the target already has a superclass. For
instance, a parents declaration could make a Collection extend AbstractList
instead of AbstractCollection (because AbstractList extends AbstractCollec-
tion), but could not make it extend AbstractMap (no relation to the original
superclass). The next section gives an example of when you might want to
extend new classes.

Inter-type Declarations210

Type Patterns

Unlike inter-type members, which cannot target type patterns, type patterns
used with declare parents can have powerful effects. Let’s look at some uses
cases. Suppose you wanted to add behavior to some test classes you had writ-
ten for a third-party testing framework (such as JUnit). You might decide to cre-
ate a custom base class to support common behavior. The following line could
add the base class to all classes ending in Test:

declare parents: *Test extends CustomTestCase;

The next declaration selects nearly the same set of classes:

declare parents: (TestCase+ && !TestCase)

extends CustomTestCase;

Here you specify that any class that extends JUnit’s TestCase (but not TestCase
itself) also extends CustomTestCase—this picks up any classes that did not
participate in the naming convention but did extend the JUnit’s base class.

Superclass declarations can help you adjust inheritance hierarchies, especially
when you’re using well-known base classes. However, this form can run
aground due to limitations on the code AspectJ controls. For instance, you
might want to specify that every class in the personnel package should extend
a new base class (let’s call it Root) that defines useful behavior you need every-
where. You could try this with a line such as the following:

declare parents : personnel..* extends Root;

However, the compiler will complain that some classes already have a base
class: notably, your custom exceptions. There’s not much you can do to get
around this problem because you can’t affect the parents of Exceptions (short
of weaving your aspects into java.lang). AspectJ provides a more elegant situa-
tion, however—interfaces with concrete members—which we’ll cover in a
minute.

Type Patterns and Traditional Interfaces

Before we discuss interfaces with concrete members, let’s look at interfaces
without inter-type members. As you might guess, you can use type patterns
effectively with traditional interfaces. For instance, you can make all the
classes in a package serializable with a single line:

declare parents : personnel..* implements Serializable;

This way you can send any type in the package over a network.

Declare Parents 211

Interfaces with Concrete Members

We’ve been hinting at AspectJ’s powers with regard to interfaces for most of the
chapter. This section will end the suspense. AspectJ allows aspects to use inter-
type declaration to add concrete methods and non-public/static fields to inter-
face types. This represents an important divergence from Java’s type system. In
standard Java, interfaces support interface inheritance but not implementation
inheritance. Thus a concrete class that implements an interface must either
implement or inherit the implementation for every method on the interface.
This obligation may entail a lot of effort, but often there are ways to avoid some
of the work. For example, Java2’s collections framework comes with both
interfaces (Collection) and abstract base classes (AbstractCollection). These
abstract classes implement some of the methods of the interface in order to
“minimize the effort required to implement this interface” (http://java.sun.
com/j2se/1.4/docs/api/java/util/AbstractCollection.html). However, sometimes
abstract classes cannot do the trick. For instance, it’s impossible to use abstract
classes when the class must extend something else.

AspectJ does away with the problems of Java’s interfaces by allowing inter-
faces to support concrete as well as abstract behavior. This way, AspectJ pro-
grams can support a sort of multiple inheritance. Interfaces that receive
concrete members work a little like mixin classes in other languages: They can-
not be instantiated directly and do not support constructors. Because of these
restrictions, they remain true to Java’s conception of interfaces as perspectives
or views on the classes that implement them.

Interfaces are crucial to AspectJ’s quest for modularity. Using them, an aspect
can define a protocol for classes that it affects and then interact with its targets
only through that protocol. By allowing concrete members on interfaces,
AspectJ allows the protocol to support behavior without forcing the affected
components to implement the behavior. The next example explores this idea.

Refactoring the Persistence Solution
Early in the chapter, you integrated the Employee class with a persistence
framework. You added a flag to indicate when a store operation was necessary.
If you’re particularly attuned to software reuse, you might wonder if you’ll have
to do this for each affected class. The answer is no—if you use power of
AspectJ’s interfaces. Listing 8.9 contains the code for a new Persistence aspect
that uses an interface.

Inter-type Declarations212

Interfaces with Concrete Members 213

/* The basic definition of a persistable object */

public interface PersistentObject{

public void store();

}

public aspect InterfacePersistence {

/* 1

* Declares a private member variable on

* the PersistentObject interface

*/

private boolean PersistentObject.dirty = false;

/* 2

* This concrete method

* decides whether or not to store

* based on the private dirty flag

*/

public void PersistentObject.store(){

if(dirty){

System.out.println("Storing : " + toString());

}

else{

System.out.println("This PersistentObject " +

"does not need to be stored.");

}

dirty = false;

}

/* 3

* This declare parents applies the

* PersistentObject interface to Employee

* and department.

*/

declare parents : (Employee || Department)

implements PersistentObject;

/* 4

* The pointcut and advice now operate

* on the interface type rather than

* the affected classes directly

*/

pointcut stateChange(PersistentObject po) :

(set(!transient * *.*) &&

Listing 8.9 Concrete interfaces allow aspect-oriented behavior to be applied to multiple types.
(continues)

Inter-type Declarations214

! set(boolean PersistentObject.dirty))

&& target(po);

after(PersistentObject po) : stateChange(po){

po.dirty = true;

}

/* Exercises both affected classes */

public static void main(String[] args){

Employee janet = new Employee("J. Smythe", 99000);

janet.store();//new employee, should store

janet.store();//no changes

janet.raiseSalary(2300);

janet.store();//should store

System.out.println("Now trying a department:");

Department hr = new Department("Human Resources");

hr.store();//new, should store

hr.store();//no changes

hr.setBudget(1000000);

hr.store();//should store

}

}

/* Output */

Storing : Employee J. Smythe:$99,000.00

This PersistentObject does not need to be stored.

Storing : Employee J. Smythe:$101,300.00

Now trying a department:

Storing : Department Human Resources budget: 0

This PersistentObject does not need to be stored.

Storing : Department Human Resources budget: 1000000

Listing 8.9 Concrete interfaces allow aspect-oriented behavior to be applied to multiple types.
(continued)

Let’s look at the example step by step. First, notice the PersistentObject inter-
face. The first file in the example defines this interface exactly as in standard
Java. Even though AspectJ allows inter-type declarations onto interfaces, it
does not support directly defining concrete methods and fields in the body of
the interface. (We’ll talk more about this under the section, “An Idiom for
Bodies.”)

The aspect itself has several sections. Sections 1 and 2 use inter-type declara-
tions to add the dirty flag and the store() method directly to the PersistentOb-
ject interface (instead of the Employee class). Note that the store() method can
access and write to the private variable dirty that belongs to the interface.

The declare parents at location 3 uses a type pattern to make Employee and
Department implement PersistentObject. The stateChange pointcut and advice
at location 4 can now refer to the types they affect through PersistentObject.
Notice that the stateChange pointcut now affects all (non-transient) field sets
where the target is a PersistentObject—not just those defined by Employee.

The main method demonstrates the effects of the aspect. Both Department and
Employee now act as persistent objects with optimized writing behavior.

Thoughts on the Example

Consider that both Employee and Department exhibit persistent behavior with-
out modifications to their class. Further consider that the “don’t update unless
dirty” behavior applies to both objects (and any new objects marked with the
PersistentObject interface). Now compare this behavior to the Java solution of
declaring a dirty flag on each persistent object, manually updating it at each
state change, and checking the flag before writing, and you’ll get a sense of how
much code you can save with AspectJ.

Experienced developers may see problems remaining with this example. In a
real system, each class would need its own store() method—or at the very least
you’d need a better general-purpose implementation. Furthermore, you need to
customize the pointcut that defines state changes. Changes to instance vari-
ables are not necessarily reliable indicators of state changes. Look at the fol-
lowing methods from Department:

public void removeEmployee(Employee emp){

employees.remove(emp);

}

public void addEmployee(Employee emp){

employees.add(emp);

}

These methods clearly change the state of the department. However, because
they don’t set instance variables, their use will not dirty the object. Chapter 13,
“Aspect-Oriented Examples: Patterns and Reuse” further expands this example
to solve these problems and provide a more reusable persistence solution.

Interfaces with Concrete Members:
The Mechanics

As you can see in Listing 8.9, the syntax of declaring members onto interfaces
does not vary from the syntax for declaring members on any other type. The
only thing you cannot declare on an interface is a constructor. This limitation
keeps the notion of an interface separate from that of a class and also ensures

Interfaces with Concrete Members 215

that object construction remains predictable. Access rules function the same
way for interfaces as for other types. Multiple aspects can declare members on
an interface, and they can also use declare parents to affect the inheritance
hierarchy of an interface.

Despite these major similarities, there are a few tricky issues regarding initial-
ization and conflicts when dealing with interfaces that have concrete members.
The next two sections detail these issues.

Conflicts

All languages that support multiple inheritance must deal with the issue of con-
flicts between inherited behavior. Much ink has been spilled about the issue of
the diamond problem (a particular variety of conflict). Many articles contend
that Java programs are simpler without multiple inheritance and that the
headaches aren’t worth the benefits. Let’s look at examples of how these prob-
lems might arise and what AspectJ does to solve them.

The Diamond Problem

The diamond problem poses this question: “What happens if you build a class
that inherits from two different parents that have a method with the same
name?” Listing 8.10 shows an example of how this problem might arise.

Figure 8.2 illustrates the hierarchy graphically.

Inter-type Declarations216

interface ThreeDimensional {}

interface Persuadable {}

public class Person implements ThreeDimensional,

Persuadable{}

public aspect MultipleInheritance {

public void ThreeDimensional.manipulate(){

System.out.println("Rotating object");

}

public void Persuadable.manipulate(){

System.out.println("Persuading someone");

}

}

Listing 8.10 Person implements two conflicting interfaces.

Interfaces with Concrete Members 217

ThreeDimensional Persuadable

Person

Figure 8.2 Person’s hierarchy seen in graphical terms.

Persuadable’s manipulate() and ThreeDimensional’s manipulate()conflict.
AspectJ lets the programmer decide which method Person will support by giv-
ing you a compilation error. This behavior stays consistent with how AspectJ
treats all conflicts. Recall that Caching and Tracing could not both declare a
compute() method unless the declarations were private (see Listing 8.7). To
solve the problem you could rename one of the methods (rotate() instead of
manipulate()).

The conflict sharpens when you add a common supertype to Person’s two par-
ents. You can do this by creating a Manipulable interface:

interface Manipulable{}

public interface Persuadable extends Manipulable{}

public interface ThreeDimensional extends Manipulable{}

/* in the aspect: */

public void Manipulable.manipulate(){

System.out.println("Manipulating something.");

}

Now the inheritance relationship resembles a diamond—hence diamond

problem (see Figure 8.3).

ThreeDimensional Persuadable

Person

Manipulable

Figure 8.3 Now Person’s parents share an ancestor.

You don’t want to rename one of the methods, because each one overrides the
method on Manipulable. Changing the name would remove the overriding rela-
tionship.

Java avoids this headache by forcing Person to choose. Because Person takes
responsibility for implementing all interfaces, it resolves any conflicts by
default. The Person class defines behavior for every method of the interface
regardless of whether it conflicts with a method from another interface.

AspectJ’s uses the same solution—with a difference. If you implement manipu-
late() on Person, you resolve the conflict: Person’s method overrides both inter-
face methods. See Listing 8.11 for the details.

Inter-type Declarations218

public class Person implements ThreeDimensional, Persuadable{

/*

* This method solves the conflict.

*/

public void manipulate(){

System.out.println("I'm convinced.");

}

}

public static void main(String[] args){

Person p = new Person();

p.manipulate();

}

/* Output */

I'm convinced.

Listing 8.11 Person steps up to resolve the conflict.

The difference with AspectJ’s solution to the diamond problem is that pro-
grammers must only resolve conflicts—you don’t have to implement non-
conflicting behavior.

The Triangle Problem

The triangle problem manifests a modified version of the diamond dilemma.
This time the compiler can make some intelligent choices.

If you define a toString method on Manipulable and also on ThreeDimensional,
but not on Persuadable, the inheritance hierarchy (for the toString method)
looks a bit like a triangle. (Listing 8.12 contains the code, and Figure 8.4 shows
the inheritance diagram.)

TE
AM
FL
Y

Team-Fly®

Interfaces with Concrete Members 219

/* these declarations appear in an aspect */

public String Manipulable.toString(){

return "I'm Manipulable.";

}

public String ThreeDimensional.toString(){

return "I'm 3D!";

}

Listing 8.12 The situation becomes more complicated.

ThreeDimensional Persuadable

Person

Manipulable

(Does not override toString)

Figure 8.4 Person inherits toString by two paths, one longer than the other.

Here the compiler has a little more information to go on. Because ThreeDimen-
sional already overrides Manipulable’s toString, it represents the most special-
ized version of the method. Person thus uses ThreeDimensional’s version (as
you can see from the following main method and output):

public static void main(String[] args){

Person p = new Person();

System.out.println(p.toString());

}

/* Output */

I'm 3D!

You could argue that there’s still a conflict and the compiler should flag it. In
fact, the issue was argued on the AspectJ mailing list. The consensus was that
the current behavior best represents user intent in most cases.

Final Thoughts on Conflicts

As you can see, deep multiple inheritance hierarchies can lead to confusing sit-
uations. Although it’s too early to tell exactly what the structures of mainstream

aspect-oriented programs will look like, we feel they will posses simpler hier-
archies with more type-based behavior defined in terms of shallow, crosscut-
ting interfaces. Deep inheritance chains with specialized branches should
become a thing of the past. If we’re right, you won’t have to think about these
sorts of conflicts very often.

Order of Initialization

Because field declarations in interfaces can contain initialization code, multiple
supertype initializations can run for the same type. AspectJ resolves the order
of the initialization with the following rules (in order of priority):

1. Supertypes are always initialized before their subtypes. (This makes sense
and follows Java’s rules.)

2. Initialization code runs only once for a given type in a given construction
chain. This means that in the previous example, Manipulable’s initialization
code (if any) will run only once, even though it’s a parent of both ThreeDi-
mensional and Persuadable.

3. Initializers for a type’s superclass run before the initializers for any imple-
mented interfaces. This rule makes sense because the superclass repre-
sents the primary parent of the type and thus has a greater stake in object
construction.

For the previous example, these rules mean that when you construct a Person,
initializers run in the following order:

Object, Manipulable, ThreeDimensional, Persuadable, Person

(ThreeDimensional and Persuadable may swap places, depending on the whim
of the compiler.) Most of the time, you won’t have to think about the order of
initialization. If you are trying to pin it down, it’s easiest to add tracing advice
that will tell you what’s going on.

Possibilities of Interfaces with
Concrete Members

The next two sections explore uses for interfaces that have concrete members
and point out some interesting possibilities.

Role Definition

As you saw with the Persistence example, interfaces can help you reuse aspect-
oriented code. Because aspects can crosscut classes that know nothing about
them, you can use aspects in all sorts of systems, even those written without

Inter-type Declarations220

aspects in mind. The dynamic weaving capabilities of AspectJ 1.1 dramatically
expand this possibility. Of course, in order to operate on components, aspects
must know something about them. This poses a problem—if the aspects are
supposed to be generic and reusable, they cannot be tied to their targets.

Component-oriented software also faces this problem. Unfortunately, the solu-
tion exhibits undesirable properties. Anyone familiar with Java servlets or EJBs
knows about this territory. In these spaces, a container (similar for the pur-
poses of discussion to a set of aspects) hosts and provides services to compo-
nents that run within it. For example, servlet filters provide a form of around
advice applicable to servlet requests. EJB containers provide transactional
wrappers around method invocations. In order to participate in this relation-
ship, components implement marker interfaces. For instance, all servlets (by
definition) implement javax.servlet.Servlet. Doing so allows containers to inter-
act with components they know little or nothing about.

Similar to containers, reusable aspects can define their interactions with target
components in terms of interfaces. However, aspects allow more control over
how much knowledge the components have about the relationship. In a
component-container relationship, affected components must declare their
role (MyServlet implements Servlet). Aspect-oriented systems have this option
too (SomeNewClass implements PersistentObject). However, with inter-type
declarations, targets can participate in a role without their knowledge. Adapter
aspects can make declarations such as the following:

declare parents : com.mycompany.entities..* implements PersistentObject;

With this sort of adapter, a set of off-the-shelf components can have their role in
complex crosscutting behavior defined for them.

This technique opens a wide range of possibilities. In contrast, the component-
container model suffers from effort impedance. In other words, only the most
common and widespread concerns are worth the effort of standardizing an
interface, creating containers, and modifying components to operate within
them. The EJB component-container model promoted by Sun illustrates this
situation. Early versions of the EJB specification met the needs of large-scale
enterprise systems and often ignored or marginalized concerns applicable to
smaller market segments. As more organizations adopted the EJB model, EJB
containers began to handle a wider range of concerns.

Assuming a basic familiarity with the principles of AOP, aspects require less
effort to integrate and develop than defining a container and promoting it as a
standard. As a result, smaller-scale concerns can be captured and sold without
a marketing campaign (or grass-roots support) to back them. Design patterns
such as Observer or Flyweight can be captured in a reusable aspect library and
incorporated into any system the way collections libraries are today.

Interfaces with Concrete Members 221

Chapter 13, “Aspect-Oriented Examples: Patterns and Reuse” explores this
territory further.

Mixin Style Inheritance

Often a set of classes needs to access services provided by their environment.
These services could range from sophisticated application-specific behavior to
something as simple as logging. Often these services are implemented as stati-
cally accessible methods (System.out.println) or as objects available through a
globally accessible source (such as JNDI). Each solution has problems—static
methods cannot be overridden, leading to less customizable behavior. Globally
accessible objects suffer from complexity—first you must access the object,
and then you invoke the service.

It would be great if you could build a service into affected objects so you could
call, say, logging, like this

int i = frob(param);

log("result of frob " + i);

instead of

System.out.println("result of frob " + i);

As you might have guessed, AspectJ interfaces allow this sort of behavior.
Classes can declare that they implement an interface and thereby gain access to
any concrete behavior that has been defined on the interface. This situation
resembles mixin inheritance in languages such as C++. Let’s look at an example
based around logging.

An Idiom for Interface Bodies

Although AspectJ allows inter-type declarations to add behavior to interfaces,
it does not permit you to directly add members the way you would to a class.
For that reason, to create a standalone interface with concrete behavior, you
must combine an aspect and an interface. Listing 8.13 shows this technique.

Inter-type Declarations222

public interface LogService {

/* 1 */

static aspect BODY{

private static boolean getDebug(){

return "true".equals(

System.getProperty("debug"));

Listing 8.13 The LogService interface uses a static inner aspect to define concrete methods.
(continues)

Interfaces with Concrete Members 223

}

public void LogService.log(String s){

System.out.println(s);

}

public void LogService.warn(String s){

System.err.println("WARNING: " + s);

}

public void LogService.debug(String s){

if(getDebug()){

System.out.println("DEBUG: " + s);

}

}

}

}

Listing 8.13 The LogService interface uses a static inner aspect to define concrete methods.
(continued)

The LogService interface provides a set of simple logging methods that any
class can use. The static inner aspect named BODY (location 1) defines the
interface and implementation for all of LogService’s methods. Using this idiom,
the interface and implementation remain together while respecting AspectJ’s
limitation on directly implementing interface members.

Listing 8.14 shows a sample class that implements and uses the LogService
interface.

public class ShoppingCart implements LogService{

private double itemTotal;

public ShoppingCart(double itemTotal) {

this.itemTotal = itemTotal;

}

public void checkOut() {

double grandTotal = calculateTotal(itemTotal);

log("Customer's total: " + grandTotal);

sendOrderToFulfillment(grandTotal);

}

private void sendOrderToFulfillment(double grandTotal) {

Listing 8.14 The ShoppingCart uses LogService to communicate. (continues)

Inter-type Declarations224

warn("Fulfillment server down!");

}

public double calculateTotal(double itemTotal){

double grandTotal = itemTotal;

grandTotal = calculateShipping(grandTotal);

grandTotal = calculateTax(grandTotal);

return grandTotal;

}

private double calculateTax(double grandTotal) {

double taxTotal = grandTotal + grandTotal * .05;

debug("Tax total: " + taxTotal);

return taxTotal;

}

private double calculateShipping(double grandTotal) {

double shipTotal = grandTotal + grandTotal * .10;

debug("Ship total: " + shipTotal);

return shipTotal;

}

public static void main(String[] args) {

new ShoppingCart(100).checkOut();

System.setProperty("debug", "true");

new ShoppingCart(200).checkOut();

}

}

/* Output */

Customer's total: 115.5

Fulfillment server down!

DEBUG: Ship total: 220.0

DEBUG: Tax total: 231.0

Customer's total: 231.0

Fulfillment server down!

Listing 8.14 The ShoppingCart uses LogService to communicate. (continued)

ShoppingCart uses the methods of LogService just as if it had inherited them
from an abstract class. As you can see from the output, they operate that way,
too.

Thoughts on Mixins

Services implemented through mixin-style interfaces are flexible. Because
interfaces follow well-defined inheritance rules, other aspects (or even the
classes involved) can override portions of the behavior. Suppose you’ve

decided that warnings from the shopping cart demand urgent attention. Listing
8.15 shows how easy it is to add this functionality using inheritance.

Interfaces with Concrete Members 225

public interface CriticalLogging extends LogService{

static aspect BODY{

public void CriticalLogging.warn(String s){

System.out.println(s +

"-Paging systems administrator.");

}

}

}

aspect ApplyCriticalLogging{

declare parents :

ShoppingCart implements CriticalLogging;

}

/* New output */

Customer's total: 115.5

Fulfillment server down!-Paging systems administrator.

DEBUG: Ship total: 220.0

DEBUG: Tax total: 231.0

Customer's total: 231.0

Fulfillment server down!-Paging systems administrator.

Listing 8.15 Inheritance allows easy customization of logging behavior.

The CriticalLogging interface at overrides the warn method defined on LogSer-
vice. The new method pages an administrator in the event of a warning. The
ApplyCriticalLogging aspect uses declare parents to apply the new interface to
the classes that need it. Now, when ShoppingCart calls warn(), CriticalLog-
ging’s implementation executes, and the sysadmin receives a page.

Template Methods

You can also use interfaces to implement the template method pattern in
AspectJ. For example, if the logic for calculating totals appeared in several
classes you could define a generic implementation of calculateTotal() and defer
the details to implementing classes. Listing 8.16 contains a template interface.

public interface TotalAlgorithm {

static aspect BODY{

public double TotalAlgorithm.

calculateTotal(double itemTotal){

Listing 8.16 TotalAlgorithm defines a template method that ShoppingCart fills out. (continues)

Inter-type Declarations226

double grandTotal = itemTotal;

grandTotal = calculateShipping(grandTotal);

grandTotal = calculateTax(grandTotal);

return grandTotal;

}

/* first hook method*/

public abstract double TotalAlgorithm.

calculateShipping(double total);

/* second hook method*/

public abstract double TotalAlgorithm.

calculateTax(double total);

}

}

/* Modified shopping cart */

public class ShoppingCart implements LogService, TotalAlgorithm{

//...same definition except calculateTotal() not declared

}

/* Output */

//...identical

Listing 8.16 TotalAlgorithm defines a template method that ShoppingCart fills out. (continued)

In standard Java, TotalAlgorithm would be an abstract class (the only choice
for combining a mix of abstract and concrete behavior). In AspectJ, you can use
an interface similar to LogService. The interface declares two abstract hook
methods (calculateShipping and calculateTax). By doing so, it requires sub-
classes to complete the algorithm by filling in the implementations.

The exciting thing about this example is that ShoppingCart now extends two
modules of concrete behavior: CriticalLogging and TotalAlgorithm. Without
AspectJ, ShoppingCart would have to choose one or the other (or unite them
into an artificial TotalAlgorithmAndCriticalLogging base class).

Declaring Precedence

Chapter 7 covered advice precedence. Specifically, it dealt with the different
effects of precedence and explained how each type of advice reacts to prece-
dence. That chapter also contained several situations in which you had to alter
precedence to make advice execute according to your intent. However, we
postponed a full consideration of how to declare inter-aspect precedence until
this chapter.

An Example of Precedence
As an example, imagine a join point that several aspects are interested in. These
aspects declare before advice on the doSomething() method of SomeObject.
You’ll give them descriptive names, but for the moment you’ll just have them
print a message to the console about what they’re doing:

public aspect Notification {

before() : call(void doSomething()){

System.out.println("Notification:" +

" Sending update somewhere.");

}

}

To specify which aspect has precedence over which, you can include a prece-
dence declaration, either in one of the relevant aspects or in another aspect.
For this example, you can use a coordinator aspect:

public aspect Coordinator {

declare precedence : Notification, Tracing, *;

}

If you run some code that calls doSomething(), you’ll see the following:

Notification: Sending update somewhere. //from Notification

Tracing: logging call. //from Tracing

Finally doing something. //the join point

Notification prints its message to the console first—indicating that its before
advice took precedence over Tracing’s before advice. (Precedence doesn’t
always mean executes first; different types of advice react to precedence dif-
ferently—see Chapter 7 for details.)

Declare Precedence: The Mechanics
The syntax for a precedence declaration is as follows:

PrecedenceDeclaration ::= declare precedence ":" TypePatternList ";"

Type patterns that show up in a precedence declaration list conform to some
special rules. First, the same aspect cannot be selected by more than one type
pattern in the list. The following violates this rule:

declare precedence : Notification, Tracing, Not*;

Second, the special * pattern means “any aspect not selected by a pattern in the
same list.” The * pattern allows the declaration to place any non-listed aspects
before, between, or in front of listed aspects. For instance, this declaration places
any other aspects between Notification and Tracing in terms of precedence:

declare precedence : Notification, *, Tracing;

Declaring Precedence 227

Because * essentially means “all other aspects,” it cannot appear more than
once in the same precedence list.

Multiple aspects can make precedence declarations, and multiple declarations
can appear in a single aspect. AspectJ will define a total precedence order for
each join point that draws on information from all the precedence declarations in
the system. However, it cannot resolve circularity (see the section “Circularity”).

More About Type Patterns

If you add a type pattern to a precedence list that does not match any concrete
aspects, AspectJ ignores it. As an example, let’s add Exception to the type pat-
tern list:

declare precedence : Exception, Notification, Tracing, *;

The addition of Exception does not change the precedence of the aspects. Noti-
fication will come first, Tracing second, and others third. AspectJ treats Excep-
tion as a type pattern without any valid matches.

Because abstract aspects are (by definition) not concrete, adding them to the
type pattern list will have no effect. At the time of this writing, the AspectJ com-
piler does not flag this situation with a -Xlint warning. However, in the future, it
will probably do so. Although you cannot add abstract aspects to the list
directly, the + type pattern will grant precedence to all aspects that extend a
given type. Let’s look at two concrete aspects—MoreSecurity and CustomSecu-
rity—that extend a common abstract aspect named Security. Listing 8.17 con-
tains the code.

Inter-type Declarations228

public abstract aspect Security {

before() : call(void doSomething()){

System.out.println("Security: checking policy.");

}

}

public aspect MoreSecurity extends Security {

before() : call(void doSomething()){

System.out.println("More security: checking policy.");

}

}

public aspect CustomSecurity extends Security {

before() : call(void doSomething()){

Listing 8.17 Security+ grants precedence to its subaspects. (continues)

TE
AM
FL
Y

Team-Fly®

Declaring Precedence 229

System.out.println("CustomSecurity: checking policy.");

}

}

public aspect Coordinator {

declare precedence : Security+, Notification, Tracing;

}

/* Output: */

More security: checking policy.

CustomSecurity: checking policy.

Security: checking policy.

Security: checking policy.

Notification: Sending update somewhere.

Tracing: logging call.

Finally doing something.

Listing 8.17 Security+ grants precedence to its subaspects. (continued)

The Coordinator aspect uses Security+ to match all concrete aspects that
extend the Security type. As you can see from the output, MoreSecurity and
CustomSecurity now take precedence over Notification and Tracing.

Subaspects Precede Superaspects

As you may remember from Chapter 7, advice in subaspects takes precedence
over advice defined in its parent(s). This explains why the advice from Security
appears after the advice from either subaspect in Listing 8.17. Unfortunately,
there’s no way to reverse this order in AspectJ 1.1 (it was possible in AspectJ
1.0).

The Effects of Multiple Concrete Aspects

If you examine the output in Listing 8.17, you’ll see that the advice for Security
(the abstract superaspect) executes twice on the same join point. It does so
because each concrete aspect instantiates and operates independently of other
concrete aspects. Two aspects of type Security crosscut the system—one
extended by MoreSecurity, and the other by CustomSecurity. Just as with two
totally unrelated aspects (say, Notification and Tracing), each gets a chance to
execute its advice at a given join point.

Marker Interfaces

As with other areas (such as inter-type member declarations), marker inter-
faces can appear in precedence lists. This ability allows flexibility in applying

precedence policies. As an example, the following Coordinator aspect accom-
plishes the same effect as the previous version:

public aspect Coordinator {

public static interface HighestPriority{};

declare parents : *Security implements HighestPriority;

declare precedence : HighestPriority+, Notification,

Tracing;

}

First the aspect declares a marker interface, HighestPriority. Then it uses
declare parents to mark all aspects whose names end with Security with the
HighestPriority interface. Finally, it uses declare precedence with a + type pat-
tern to state that any concrete aspects that implement HighestPriority receive
precedence over all other aspects. (Remember, if HighestPriority appeared
without the plus, it would have no effect.)

Circularity
Two types of precedence circularity are possible: those caused by the same dec-
laration and those caused by multiple declarations. As the mechanics section
stated, the same aspect cannot appear more than once in the same precedence
list. The following two declarations result in clear circularity—Notification
cannot precede itself:

declare precedence : Notification, Tracing, Notification;

declare precedence : Notification, Tracing, Not*;

You can think of this error as a convenience to the programmer. With only a
quick look, you might miss that Not* matches Notification.

Despite this convenience, AspectJ will forgive the following two declarations
(even if they appear in the same aspect):

declare precedence : Notification, Tracing;

declare precedence : Tracing, Notification;

To be more precise, it will forgive them on one condition: that Tracing and

Notification do not declare advice that affects the same join point. (The exam-
ple you’ve been working with up until now would violate the rule.)

Why should AspectJ treat these two conditions (which seem to amount to the
same circularity) differently? AspectJ’s implementers may have decided on this
behavior to allow more precedence declarations to coexist in the same system.
Recall from Chapter 7 that AspectJ determines precedence on a per-join-point
basis. If advice from two aspects never shares a join point, AspectJ need never
determine the exact precedence. Although the declarations cause circularity in

Inter-type Declarations230

theory, they might not in practice. Thus two aspects (possibly from different
libraries) can make circular precedence declarations without causing unneces-
sary errors.

Effects of Precedence
Aspect precedence primarily affects advice. Chapter 7 detailed the effects on
each type of advice. However, advice is not the only thing affected by prece-
dence. Recall from earlier in the chapter (“Conflicts and Precedence”) that
inter-type members from aspects with higher precedence supplant conflicting
members from aspects with lower precedence.

Other Static Crosscutting

You’ve already seen the big guns in AspectJ’s static crosscutting arsenal. The
next two subsections cover some of the less expansive—but still very useful—
features in the set. Softened exceptions provide a way around Java’s sometimes
restrictive exception policy. Custom compilation messages allow you to
enforce constraints such as coding standards and architectural rules. Both fea-
tures depend on a certain subtype of pointcut: those whose scope can be deter-
mined entirely at compile time. The next subsection discusses these pointcuts.

Statically Determinable Pointcuts
Pointcuts that operate only on compile-time information are called statically

determinable. The primitive pointcuts that fit this description are call(), execu-
tion(), adviceexecution(), get(), set(), handler(), intialization(), staticinitializa-
tion(), within(), and withincode(). User-defined pointcuts that consist entirely
of these pointcuts are also considered statically determinable.

Non-statically determinable pointcuts include all pointcuts that expose context
(because context is necessarily a runtime concept). The full list of disallowed
pointcuts follows:

■■ cflow() and cflowbelow()—Because the control flow of even a moder-
ately complex program cannot be determined at compile time, these point-
cuts necessarily operate on runtime information. Some of the functionality
of these pointcuts can be replicated with within() and withincode().

■■ if()—If() operates specifically on runtime information, allowing more
dynamic crosscutting expressions. As such, it can’t be used at compile time.

■■ this(), target(), and args()—These pointcuts are designed to expose
runtime context. They can also act as discriminators. If you need to

Other Static Crosscutting 231

replicate some of their discriminating functionality, you can use the signa-
tures of other pointcuts. For example, call(* foo(..) && args(int) is close to
call(* foo(int)). within() can mimic the function of this() for some pur-
poses.

Custom Compilation Messages
One of the most interesting features of AspectJ is its ability to specify custom
compilation errors and warnings. There are coding practices that should be dis-
couraged and others that should be outright disallowed. Some of these coding
practices are matters of style, and tools have been available for years that
enforce such concerns as naming conventions. Other concerns are architecture
specific. For example, once you have defined a reusable LogService interface
(see the section on mixin-style interfaces), you may wish to disallow calls to
System.out.println in any class that implements it. AspectJ allows aspects to
warn or error on the occurrence of any join point that can be picked out by a
statically determinable pointcut.

Enforced Thread Safety

Certain types of components are designed to execute in a multithreaded envi-
ronment. Java servlets, for instance, often handle concurrent HTTP requests.
Such components need to be built so that they do not they do not store thread-
specific state in instance variables. If they did, the data from one thread could
overwrite data from another. The next example shows how to use a marker
interface called ThreadSafe to specify that a component needs to abide by
these design rules. An aspect enforces that no state can be set in instance vari-
ables (except during initialization). See Listing 8.18 for the full code.

Inter-type Declarations232

public interface ThreadSafe {

public void init(Object context);

public static aspect ThreadSafety{

/* 1

* Selects any field assignments in

* a ThreadSafe class that do not

* occur within init code.

*/

pointcut notWithinInit() :

set(!static * *)

Listing 8.18 The ThreadSafe interface uses an aspect to require that implementers adhere to
design rules. (continues)

Other Static Crosscutting 233

&& within(ThreadSafe+)

&& ! initCode();

/* 2

* Picks out init code.

*/

pointcut initCode() :

withincode(void init(Object))

|| withincode(new(..));

/* 3

* Declares an error on any join

* point selected by the first

* pointcut.

*/

declare error : notWithinInit():

"Instance variables of a ThreadSafe class cannot be

set outside of the init method or constructor.";

}

}

public class Demo implements ThreadSafe{

private int foo;

public Demo(){

foo = 0;//ok

}

public void init(Object o){

foo = Integer.parseInt((String)o);//ok

}

public void doWork(){

foo++;//not ok

}

}

/* Compiler output */

ThreadSafe.java: Instance variables of a ThreadSafe class cannot

be set outside of the init method or constructor [...line

information...]

Listing 8.18 The ThreadSafe interface uses an aspect to require that implementers adhere to
design rules. (continued)

The ThreadSafe interface defines a single method—init(Object)—that mimics
the initialization methods found on such components as servlets. It also defines
a static aspect with a single declare error form. The notWithinInit pointcut at
location 1 picks out any field assignment join points (set(* *)) that occur within

any type that implements ThreadSafe (within(ThreadSafe+)) and do not hap-
pen in initialization code (! initCode()).

The user-defined pointcut initCode() selects any join points that fall within
either the constructor (withincode(new(..))) or the init method
(withincode(void init(Object))). Because the first pointcut already narrows
affected types to ThreadSafe+, there’s no need to specify this information
again.

The error declaration operates on the notWithinInit pointcut. It will print an
error at each join point matched by the pointcut (the error will stop the compi-
lation). Because the join point foo++ assigns a value to an instance field outside
of initialization code, it matches the pointcut. When you compile the example,
you get an error stating that the field assignment in doWork is illegal.

NOTE
This example deliberately simplifies the issue of when field sets should be allowed for
complete thread safety. For example, inner types aren’t addressed.

Utility of Custom Compilation Messages

Because of the expressiveness of AspectJ’s join point model, declare error and
warning allow for sophisticated error conditions. In the ThreadSafe example,
you saw how interfaces can allow declarative participation in design enforce-
ment. You can also enforce the design of all classes (omit any type information
from the pointcuts), classes with certain names (within(*JDBC)), or classes in
a certain package (com.mycompany.model..*).

Using AspectJ in this manner allows you to familiarize yourself with AspectJ’s
join point model and other AOP concepts without forcing production code to
depend on AspectJ. Development and QA builds can use the AspectJ com-
piler/weaver while the production system uses standard Java tools. This sce-
nario can be attractive to technical managers seeking to build familiarity with a
new technology while minimizing risks.

Declare Error/Warning: The Mechanics

There’s not a lot to the mechanics of declare error and declare warning. The
official syntaxes are as follows:

MessageDeclaration ::=

declare [error | warning] ":"

StaticallyDeterminablePointcut ":"

Inter-type Declarations234

Message ";"

StaticallyDeterminablePointcut ::= ;(a statically determinable

pointcut as described in the previous section)

Message ::= ;(a Java string literal)

The pointcut selects all join points that should generate messages if the com-
piler encounters them. Message constitutes the String the compiler will print if
it encounters a match for the pointcut. The only difference between error and
warning is that errors will stop the compilation.

The PatternTesting Project

If you’re intrigued by the possibilities of declare error and warning, you’re not
alone. The PatternTesting project on SourceForge (founded by noted Open
Source/testing figure Vincent Massol) exists to provide reusable pattern tests.
These pattern tests use both runtime tests and declare error/warning to enforce
frequently encountered design rules. At the time of this writing, the project is in
its early stages, but it’s growing quickly. If you’re interested in learning more
about AspectJ’s capabilities in this area or want to suggest one of your own
favorite design guidelines, head to http://patterntesting.sourceforge.net.

Softening Exceptions
AspectJ allows users to bypass Java’s exception checking system by softening

exceptions. As experienced Java developers are aware, Java ensures that all
subclasses of Exception (except those that subclass RuntimeException) are
either declared in signatures or caught and handled. Sometimes this feature
reminds programmers to handle exceptional conditions. Often, however,
exceptional conditions indicate flaws in program design or infrequently
encountered combinations of state and input. Intermediary callers may not
have any better idea of how to deal with the condition than did the original
thrower. As such, a lot of error handling that we’ve seen in practice amounts to
logging the exception or rethrowing an unchecked exception in the place of the
original checked exception.

In recognition of this state of affairs, AspectJ’s designers incorporated the abil-
ity to selectively silence exceptions and rethrow them as unchecked exceptions
using the declare soft form.

Softening IOExceptions

Let’s say you want to create a helper class that writes data to a temporary file-
based cache. Listing 8.19 contains such a class.

Other Static Crosscutting 235

Inter-type Declarations236

public class CacheManager {

File tempDir = determineTempDir();

private File determineTempDir(){

File t =

File.createTempFile("tmp",null);//1 IOException

File tempDir = t.getParentFile();

t.delete();

return tempDir;

}

public void write(int id, byte[] cacheData){

File cache = new File(tempDir, ""+ id);

cache.createNewFile();//2 IOException

cache.deleteOnExit();

OutputStream out = //3 FileNotFoundException

new FileOutputStream(cache);

out.write(cacheData);//4 IOException

}

static aspect SuppressIOE{

/* 5 */

declare soft : IOException : within(CacheManager);

}

public static void main(String[] args){

CacheManager manager = new CacheManager();

manager.write(0, new byte[]{1,2,3});

}

}

Listing 8.19 The CacheManager calls several methods that throw IOExceptions.

We’ve included an end-of-line comment at each method call where an exception
might be thrown. Let’s look at the potential exceptional conditions. The first
occurs at location 1. An IOException while creating a temporary file seems
unlikely—perhaps something is wrong with the temporary directory. In any
case, it seems like something that should halt the application rather than some-
thing which CacheManager’s caller could react to. Assuming the IDs passed to
write() are unique, the exception at location 2 is also unlikely. At 3, you see the
potential for a FileNotFoundException. This seems implausible, because you
created the file two lines ago. Finally, at 4 you face another IOException when
writing data to the file. In all cases, the exceptions don’t seem like normal pro-
gram conditions. Callers of the CacheManager aren’t likely to have a meaning-
ful response either.

To silence the exceptions without inserting identical handler blocks, you can
use the declare soft form shown at location 5. The declaration tells AspectJ to
soften any IOException thrown from a join point within CacheManager. To

soften in this context means that AspectJ will catch the exception and rethrow
it wrapped in an org.aspectj.lang.SoftException.

Further Developing the Example

Let’s say you add another method to the cache manager that reads data from
the cache, and you adjust the main method to exercise it:

public InputStream read(int id){

File cache = new File(tempDir, ""+ id);

return new FileInputStream(cache);

}

public static void main(String[] args){

CacheManager manager = new CacheManager();

manager.write(0, new byte[]{1,2,3});

manager.read(0);

manager.read(1);//uh oh

}

If you run this code, the output will be something like this:

Exception in thread "main"

org.aspectj.lang.SoftException

at introduction.CacheManager.new$constructor_call0

(CacheManager.java:41)

at introduction.CacheManager.read

(CacheManager.java:28)

at introduction.CacheManager.read$method_call0

(CacheManager.java:48)

at introduction.CacheManager.main

(CacheManager.java:48)

The first stack line takes you to line 41—the aspect where the declare soft con-
version takes place. The second line (28) takes you to the read method where
the underlying exception was thrown. This outcome brings up two questions:
How informative is the soft exception? And, should you have included the read
method in the softening?

NOTE
This stack trace was generated from an earlier version of AspectJ—the exact stack
frames are likely to change over time. The basic point (that the stack trace does not
reflect that of the original exception) is likely to remain true as the language evolves.

Other Static Crosscutting 237

How Informative Is the SoftException?

The stack trace of the SoftException more accurately reflects the implementa-
tion details of the softening mechanism than the chain of events that led to the
error. To see this, let’s change the declare soft to affect only method execution
join points defined in the CacheManager class:

declare soft : IOException :

execution(* *(..))

&& within(CacheManager);

Now your stack trace is as follows:

Exception in thread "main" org.aspectj.lang.SoftException

at introduction.CacheManager.read

(CacheManager.java:41)

at introduction.CacheManager.main

(CacheManager.java:48)

Note that you can no longer see line 28 where the exception was thrown. (The
exception is softened at a different join point—the method execution rather
than the constructor call that caused the problem.) In addition to being unable
to track the exception back to the source, you also have no idea what type of
exception caused the problem—all you can see is SoftException.

To regain this information, you can access the root cause of a SoftException by
calling getWrappedThrowable(). However, most top-level exception handlers
will not automatically unwrap and display the root cause for you. As such,
unless you operate with care, the SoftException may hinder your bug hunting.

Use Your Own Soft Exception

You can help matters by using your own wrapper exception instead of the one
that ships with AspectJ. A future version of the language will probably support
doing this declaratively. In the meantime, you can do it with a bit of advice. List-
ing 8.20 contains the revised aspect.

Inter-type Declarations238

static aspect SuppressIOE{
pointcut IOThrowers() :

execution(* *(..))
&& within(CacheManager);

after() throwing (IOException e) : IOThrowers(){
e.printStackTrace();
/* provide your own wrapper below */
throw new RuntimeException("" + e);
//JDK 1.4 allows throw new RuntimeException(e);

Listing 8.20 New after advice allows a custom wrapper. (continues)

TE
AM
FL
Y

Team-Fly®

Other Static Crosscutting 239

}

declare soft : IOException : IOThrowers();

}

Listing 8.20 New after advice allows a custom wrapper. (continued)

The aspect now defines a pointcut—IOThrowers()—that selects all executions
of methods defined in the CacheManager class. The aspect reuses the pointcut
in both the declare soft form and in after throwing advice. The advice logs the
original exception and throws a runtime exception. It could easily use a custom
wrapper exception or the exception chaining mechanism standardized in Java
1.4. The advantage of using a different wrapper exception is that the exception
itself can automatically display the stack trace of the root cause. (JDK 1.4’s
chained exceptions do this.) Even without a chained exception, you can exam-
ine the logs to see your stack trace:

java.io.FileNotFoundException:

/tmp/1 (No such file or directory)

at java.io.FileInputStream.open(Native Method)

at java.io.FileInputStream.<init>(FileInputStream.java:59)

at java.io.FileInputStream.<init>(FileInputStream.java:90)

at introduction.CacheManager.read(CacheManager.java:28)

at introduction.CacheManager.main(CacheManager.java:60)

Now you know what went wrong.

This seems like a lot of trouble to save a few try blocks! Of course, we’ve delib-
erately limited the scope to a single class. Your soft declaration could be
applied to whole packages if you wished. Having a consistent, cross-system
exception handling policy in one place, where it can be easily customized,
saves significant code complexity.

Selective Softening

Now that you have the failure information, let’s turn to the second question:
Should you soften all the exceptions? The answer belongs to the application
authors. If callers of CacheManager can respond to a read problem intelligently
(perhaps by generating the non-cached data), then it makes sense to declare the
FileNotFoundException in the signature of read(). Because declare soft oper-
ates on pointcuts, you can easily adjust which join points’ exceptions are soft-
ened. For example, you could redefine IOThrowers to read as follows:

pointcut IOThrowers() :

execution(!static * *(..))

&& !execution(* read(..))

&& within(CacheManager);

The first line selects non-static method executions (excluding main). The sec-
ond line excludes the read method by name. The third-line (again) restricts the
set of join points to those appearing within CacheManager. Defining the point-
cut this way allows the unlikely exceptions to be ignored and the informative
exceptions to be propagated normally.

Softening Exceptions: The Mechanics

Exception handling is inherently tricky. As you’ve seen in this section, AspectJ
allows very different handler effects with a few lines of code. That being said,
the syntax of declare soft is not complicated:

SoftenDeclaration ::=

declare soft ":" Type ":"

StaticallyDeterminablePointcut ";"

Type selects the type of exception to soften. As of this writing, it’s illegal for
Type to refer to a non-Throwable. Keep in mind that many types subclass
Exception. The following declaration is very broad:

declare soft : Exception : somePointcut();

In particular, this declaration affects RuntimeException (because it subclasses
Exception). Furthermore, AspectJ’s SoftException subclasses RuntimeExcep-
tion. Because RuntimeExceptions are already soft, you run the risk of softening
the same exception multiple times, making the resultant stack trace difficult to
wade through.

What’s Next

This chapter covered AspectJ’s inter-type declarations and other static cross-
cutting forms. We explored the mechanics and motivation behind inter-type
members, discovered how and why aspects can alter inheritance hierarchies,
and looked closely at AspectJ’s treatment of interfaces. We ended the chapter
with precedence, exception softening, and custom compilation messages. Each
of these features contributes to AspectJ’s crosscutting power, although none
does so as visibly as the join point and advice combination.

Inter-type declarations open up Java’s type system, making it a more suitable
ground for complex and powerful aspect behavior. Chapter 13, “Aspect-
Oriented Examples: Patterns and Reuse,” continues to explore this territory by
showing how AspectJ’s features can work together to provide reusable cross-
cutting.

The next chapter will explore aspects, the basic unit of crosscutting modularity
in AspectJ.

Inter-type Declarations240

If you’ve worked through the examples in the previous chapters, you’ll
remember that all the pointcuts, join points, and advice were encapsulated
using the aspect keyword. AspectJ uses the aspect keyword to denote a

structure designed to encapsulate all the code necessary to implement a cross-
cutting concern, in much the same fashion as the Java keyword class. Without
the aspect, the code for implementing a crosscutting concern would simply
contribute to the code-tangling problem we are attempting to solve. In this
chapter, we will look at:

■■ Aspect structure

■■ Aspect extensions

■■ Instantiation and associations

■■ Domination

■■ Giving aspects class privilege

■■ Example aspects

Aspect Structure

An aspect looks and acts just like a Java class by providing a convenient con-
tainer for the encapsulation of join points, pointcuts, and advice code. The
aspect can contain its own attributes and methods to further support object-
orientation within the concerns the aspect represents. The format of an aspect
is as follows:

Aspects

C H A P T E R 9

241

aspect ::= <access> [privilege] [static] aspect <identifier>

<class identifier><instantiation>

<access> ::= public | private [abstract]

<identifier> ::= letter { letter | digit }

<class identifier> ::= [dominates] [extends]

<instantiation> ::= [issingleton | perthis | pertarget | percflow

| perflowbelow]

//pointcuts

//advice

//methods/attributes

}

The most common access for an aspect is public, but sometimes an aspect is
declared abstract or private (as you will see later in this chapter). The access
specified for an aspect follows the rules set up for Java classes. If you don’t
specify an access type, the aspect will default to package access.

Writing Aspects
There are several ways to write an aspect and associate it with the primary
application code; these approaches relate directly to the concern being imple-
mented through the aspect. An aspect can be located in its own file much as a
high-level Java class has its own file. On the other hand, if the aspect affects
only a single class in the primary code, you can write it in the same file as the
Java class.

The types of concerns that need to be implemented through AspectJ can be
grouped according to the level of primary application source they will affect. If a
concern indicates that all writes to the file system need to be logged based on
their source call, then the concern probably will crosscut a large portion of the
code, because the concern requires that the source call for the write be logged.
This type of system-level concern generally warrants its own implementation file.

In contrast, the concern may require that all writes to the file system be logged,
but only with low-level information about the write. If the primary application
has been written appropriately, a database or file system class or two probably
is designed to handle all such writes. The aspect can be written in one of the
class files to maintain a level of encapsulation.

Finally, a concern may be identified where the functionality is close to the
requirements of a system object, but agreement cannot be reached to include
the functionality in the Java class. In this case, you can include the aspect as a
member of the Java class. In this design, the concern can be implemented as
either part of the Java class code or an aspect. By using an aspect, you make an
implied statement that the functionality doesn’t belong in the primary class
definition—the aspect allows it to be pulled out, but you maintain a deep

A s p e c t s242

association. In addition, if the AspectJ constructs are the easiest way to imple-
ment the functionality, you should use an aspect.

All these situations lead to three possible placements for aspect code as it relates
to the primary Java code. The sections that follow cover these placements:

■■ Separate aspect file

■■ Aspect combined with a source file

■■ Aspect embedded in a source class

Listing 9.1 shows the primary Java code used to describe how to add an aspect.

Aspect Structure 243

public class Simple {

private String name;

public String getName() {

return name;

}

public static void main(String args[]) {

Simple simple = new Simple();

System.out.println(simple.getName());

}

}

Listing 9.1 Simple Java class.

Separate Aspect File

When a concern crosscuts a large percentage of your primary Java code—or,
sometimes, more than a few classes—typical object-oriented design rules dic-
tate that the aspect be created in its own file and not directly associated with
any other aspect or class. Using the example Java code in Listing 9.1, you would
expect to find a file on the system called Simple.java. Using the same format,
you can create an aspect with its own source file by giving the file the same
name as the aspect. Consider this aspect definition:

public aspect SimpleAspect {

pointcut namePC() : call(public String Simple.getName());

before() : namePC() {

}

}

Although this code is short, it creates a new aspect called SimpleAspect that
matches all calls to the public String getName() method of the Simple class.
The code is contained in a file called SimpleAspect.java. Using the command-
line compiler shown in Chapter 3, “Obtaining and Installing AspectJ,” the
Simple.java and SimpleAspect.java files are compiled with this statement:

ajc –classpath ".\;c:\aspectj1.0\lib\aspectjrt.jar" Simple*.java

The result is two class files: Simple.class and SimpleAspect.class. Subse-
quently, the Simple class’s main() method can be executed with the following
command:

java Simple

The main() method executes, and appropriate actions are taken when the call
is made to the getName() method.

Combining an Aspect and a Source File

When an aspect affects only a single class or several embedded classes,
it is proper to locate it in the same class file as the primary code. Consider
the code in Listing 9.2, which is pulled from a source file called
SimpleCombined.java. In this source file, a primary code Java class called
SimpleCombined is based on the Simple class defined earlier. After the class
is the definition of an aspect that has a join point defined specifically on the
SimpleCombined class.

A s p e c t s244

public class SimpleCombined {

private String name;

public String getName() {

return name;

}

public static void main(String args[]) {

SimpleCombined simple = new SimpleCombined();

System.out.println(simple.getName());

}

}

public aspect SimpleCombinedAspect {

pointcut namePC() :

call(public String SimpleCombined.getName());

before() : namePC() {

}

}

Listing 9.2 Aspect and primary code in one file.

As you know, the Java compiler does not like two public classes in the same
file, and the compiler will definitely have a problem with both a class and an
aspect. To find out what the AspectJ compiler does with code that appears in a
single file and contains both a class and an aspect, you need to compile the pro-
gram using the -preprocess option. The compiler places intermediate java files
in the ./ajcworkingdir directory. Even though there is only a single source file,

two files are found in the directory: SimpleCombined.java and SimpleCom-
binedAspect.java. As you might expect, the AspectJ compiler pulled out the
aspect in the combined source code and created a new source file for the result-
ing class. If you are using the latest AspectJ System (1.1 or greater), the
-preprocess option isn’t available, so you will not see the intermediate steps.

Embedding an Aspect in a Source Class

If you have a concern that only crosscuts a single class, such as a database con-
nection class, you can embed a concern directly in the class as a class member.
The code in Listing 9.3 shows an example of putting a private aspect into a Java
class.

Aspect Extensions 245

public class SimpleEmbedded {

private String name;

public String getName() {

return name;

}

public static void main(String args[]) {

SimpleEmbedded simple = new SimpleEmbedded();

System.out.println(simple.getName());

}

private static aspect SimpleCombinedAspect {

pointcut namePC() : call(public String getName());

before() : namePC() {

System.out.println("getName() method found");

}

}

}

Listing 9.3 Embedded aspect and class.

You should notice two things about the internally defined aspect. First, the
aspect is declared static; this is a requirement for all such aspects. Second, the
access type is declared private. By using a private access type, you fully encap-
sulate the aspect in the defined class, and no other classes have access to it.
However, depending on the application design, the aspect could be public.

Aspect Extensions

The previous discussion provided some insight into how aspects are created
and their conversion from aspects into classes. To further support the develop-
ment of code to implement concerns, the AspectJ language lets you extend

abstract aspects in a number of ways. You can extend an aspect by first build-
ing an abstract aspect and using it as a foundation for other aspects. In addition,
you can extend aspects by inheriting from other classes and interfaces. How-
ever, the AspectJ language does not allow a class to either extend or implement
an aspect.

Building Abstract Aspects
To determine where it would be most beneficial to extend aspects, let’s con-
sider an example concern that requires all calls to a sorting algorithm to be
timed. The primary application is made up of three classes:

■■ VectorSort implements the shell, bubble sorts on a Java Vector class, and
uses the VecObj as the stored object (Listing 9.4).

■■ VecObj holds and compares integers (Listing 9.5).

■■ Work makes appropriate calls to the VecObj and VectorSort classes. Within
the Work class, a main() method builds a VectorSort structure, populates
the structure, and sorts it (Listing 9.6).

The shell and bubbleSort algorithms are demonstrated in the main() method
with repeated calls to populate the vector and sort it.

A s p e c t s246

public class VectorSort extends java.util.Vector{

public VectorSort() {

super();

}

public void shellSort() {

int i, j, h = 1, n = size(), v;

VecObj o;

do {

h = (3 * h) + 1;

} while (h <= n);

do {

h /= 3;

for (i = h + 1; i <= n; i++) {

o = (VecObj) elementAt(i - 1);

j = i;

while (o.compare((VecObj) elementAt((j - h) - 1))

< 0) {

setElementAt(elementAt((j - h) - 1), j - 1);

j = j - h;

Listing 9.4 VectorSort class source code. (continues)

Aspect Extensions 247

if (j <= h) {

break;

}

}

setElementAt(o, j - 1);

}

} while (h > 1);

}

public void bubbleSort() {

int i, j;

for (i = 0; i < size(); i++) {

for (j = i + 1; j < size(); j++) {

VecObj o1, o2;

o1 = (VecObj) elementAt(i);

o2 = (VecObj) elementAt(j);

if (o1.compare(o2) > 0) {

setElementAt(o2, i);

setElementAt(o1, j);

}

}

}

}

}

Listing 9.4 VectorSort class source code. (continued)

public class VecObj {

private int value;

public VecObj(int inValue) {

value = inValue;

}

public int getValue() {

return value;

}

public int compare(VecObj o) {

if (o.getValue() < value)

return 1;

else if (o.getValue() == value)

return 0;

Listing 9.5 VecObj class source code. (continues)

A s p e c t s248

else

return -1;

}

}

Listing 9.5 VecObj class source code. (continued)

import java.util.Random;

public class Work {

private VectorSort vs;

private Random random;

public Work() {

vs = new VectorSort();

random = new Random();

}

public void fillVector(int size) {

vs.clear();

for (int i=0;i<15;++i) {

VecObj a = new VecObj(random.nextInt(50));

vs.add(a);

}

}

public void bubbleSort() {

vs.bubbleSort();

}

public void shellSort() {

vs.shellSort();

}

public void printVector() {

for (int i=0;i<vs.size();++i) {

System.out.print(((VecObj)vs.elementAt(i)).getValue() + ",

");

}

System.out.println("");

}

public static void main (String args[]) {

Listing 9.6 Work class source code. (continues)

TE
AM
FL
Y

Team-Fly®

Aspect Extensions 249

Work work = new Work();

work.fillVector(10000);

work.bubbleSort();

work.fillVector(10000);

work.shellSort();

}

}

Listing 9.6 Work class source code. (continued)

To implement a concern to time all sort calls, you must add code to both the
shellSort() and bubbleSort() methods. This seems easy, because you’re dealing
with only two methods; but in a larger system, the concern could be extended
to a large number of operations that need to be timed. Some luckless developer
would be given the task of looking through all the code and adding the appro-
priating timing routines. Later, when a better timing mechanism was developed
or the output format needed to be changed, the developer would have to go
back and locate every place the original timing information was added. Both
tasks are very time consuming, but they can be solved with AspectJ in a matter
of minutes. Consider the aspect found in Listing 9.7.

import java.util.Date;

import java.text.DateFormat;

public aspect VectorSortAspect {

pointcut methods() : execution(public void VectorSort.shellSort()) ||

execution(public void VectorSort.bubbleSort());

before() : methods() {

System.out.println("-->" + thisJoinPoint.getSignature() + ":"

+ (new Date()).getTime());

}

after() : methods() {

System.out.println("<--" + thisJoinPoint.getSignature() + ":"

+ (new Date()).getTime());

}

}

Listing 9.7 VectorSortAspect aspect source code.

In this aspect, a pointcut is created to match specific join points in the Vector-
Sort class. The methods pointcut groups all the methods that need to be timed.

The goal is to use before and after advice based on the execution of the join
points to display the start time and end time information. When the aspect is
matched against the Work class, the following output is obtained:

-->void VectorSort.bubbleSort():1026085802000

<--void VectorSort.bubbleSort():1026085802010

-->void VectorSort.shellSort():1026085802010

<--void VectorSort.shellSort():1026085802010

The bubbleSort() method took a total of 10 milliseconds to execute, and the
shellSort() method took less than a millisecond to perform the requested sort.

The aspect works for the example code, but let’s change it a bit to be more gen-
eral. In some cases, timings need to be at the nanosecond level; in other cases,
milliseconds are fine. The abstract aspect can even be implemented to store
timing results in a database. You can provide full flexibility, yet ensure consis-
tency throughout the application. AspectJ allows you to generalize an aspect by
declaring it abstract, giving you more flexibility when implementing the timing
routines. Listing 9.8 contains an example of the timing aspect in abstract form.

A s p e c t s250

abstract aspect AbstractTiming {

abstract pointcut methods();

public abstract String getTime();

before() : methods() {

System.out.println("-->" + thisJoinPoint.getSignature() + ":"

+ getTime());

}

after() : methods() {

System.out.println("<--" + thisJoinPoint.getSignature() + ":"

+ getTime());

}

}

Listing 9.8 Abstract timing aspect.

An aspect must be declared abstract if any of the pointcuts or methods in the
aspect are abstract. You create methods—a single, abstract pointcut—by
prepending the keyword abstract to the pointcut and ending the pointcut defi-
nition with a semicolon instead of putting a body on the pointcut. The methods
pointcut is designed to be defined within a concrete class indicating the join
points in a specific application that need to be timed. Further, the getTime()
method is abstract so you can provide the specific time precision. Once you’ve
created the abstract aspect, you must create a specific one. Listing 9.9 shows a
concrete aspect that extends the abstract aspect.

Aspect Extensions 251

import java.util.Date;

import java.text.DateFormat;

public aspect VectorTiming extends AbstractTiming {

pointcut methods() :

execution(public void VectorSort.shellSort()) ||

execution(public void VectorSort.bubbleSort());

public String getTime() {

return new String((new Date()).getTime());

}

}

Listing 9.9 Concrete timing aspect.

For the concrete aspect, the use of the extends keyword in the VectorTiming
definition tells the AspectJ compiler that the concrete aspect needs to define
each abstract method and pointcut in the abstract aspect.

You might be required to write another concrete aspect for database access.
Using the same abstract timing aspect, the new concrete aspect is easy to write:

public aspect DatabaseTiming extends AbstractTiming {

pointcut methods() :

execution(public void DatabaseAccess.runQuery()) ||

execution(public void DatabaseAccess.getMetadata());

public String getTime() {

return new String((new Date()).getTime());

}

}

AspectJ only allows inheritance from abstract aspects; the compiler will not
allow inheritance from a concrete aspect. In addition, if your derived aspect
attempts to override a concrete pointcut in the inherited aspect, a compile-time
error will occur.

Inheriting from Classes and Interfaces
In the previous example, you saw how an aspect can extend an abstract aspect.
In addition, an aspect can extend traditional Java classes and interfaces. The
VectorTiming aspect in Listing 9.9 handles all the time functionality itself. You
can also create a timing interface, called Timings (see Listing 9.10).

A s p e c t s252

public interface Timings {

int PRECISION = 10;

public String getTime();

public long getTimeLong();

}

Listing 9.10 Timings interface.

Listing 9.11 shows how the VectorTiming2 aspect can not only extend the
AbstractTiming aspect but also implement the Timings interface. In order to
implement the Timings interface, the VectorTiming2 aspect must define both
the getTime() and getTimeLong() methods. By using an interface, separate
developers can implement specific functionality while maintaining consistency.

import java.util.Date;

import java.text.DateFormat;

public aspect VectorTiming2 extends AbstractTiming implements

Timings {

pointcut methods() :

execution(public void VectorSort.shellSort()) ||

execution(public void VectorSort.bubbleSort());

public String getTime() {

return new String((new Date()).getTime()+"");

}

public long getTimeLong() {

return (new Date()).getTime();

}

}

Listing 9.11 Aspect using an interface and abstract aspect.

Aspect Instantiation and Associations

As we discussed earlier in this chapter, the AspectJ compiler converts aspects
into traditional Java classes for compilation by the Java compiler. During con-
version and before any of the system code executes, the new class is given a
static attribute that is assigned an object of the aspect class type. This type of
object creation is the default for all aspects and is considered a singleton

approach. One object of the aspect class type is instantiated for use in all pri-
mary class and aspect code. Aspect instantiation is performed by static code in
the class definition because, by design, no public constructor is available.

The AspectJ language provides several types of instantiation methods for
aspects in a system:

■■ Singleton

■■ Per-object

■■ Per-control-flow

The different types can be assigned directly or inherited from a parent aspect.
If an aspect doesn’t have a parent, the default singleton type is used.

Singleton Aspects
Singleton is the default type assigned to all aspects that do not have parent
aspects or declare a specific instantiation type. The singleton type can be
assigned to an aspect to ensure that only one object of the aspect class type
is created for the entire primary application. One concrete use of this instantia-
tion type is to change the instantiation type inherited from a parent and
force only one object to be created. The format to create a singleton aspect is
as follows:

aspect ID issingleton {

}

Per-Object Aspects
If you need an aspect object created for each object associated with a this or
target designator, then you can use the perthis(pointcut) and pertarget(point-
cut) aspect instantiation keywords. In most cases, these keywords cause a
unique aspect class object to be created for each object encountered with this
or target. When the join point associated with an aspect using these keywords
is matched, the appropriate aspect class object is used for execution of the
aspect advice. This differs from the singleton approach, where only a single
object is available to the entire Java application. The format for using the
perthis and pertarget keywords is as follows:

aspect ID perthis(pointcut) {

}

aspect ID pertarget(pointcut) {

}

The example code in Listing 9.12 and the aspect in Listing 9.13 show how
perthis instantiation works.

Aspect Instantiation and Associations 253

A s p e c t s254

import java.util.Random;

import java.util.Date;

public class Work implements Runnable {

private VectorSort vs;

private Random random;

private int count;

public int getCount() {

return count;

}

public void setCount(int i) {

count = i;

}

public Work() {

vs = new VectorSort();

random = new Random(new Date().getTime());

}

public void fillVector(int size) {

vs.clear();

for (int i=0;i<count;++i) {

VecObj a = new VecObj(random.nextInt(50));

vs.add(a);

}

}

public void bubbleSort() {

vs.bubbleSort();

}

public void run() {

setCount(random.nextInt(5000));

fillVector(count);

bubbleSort();

}

public static void main (String[] args) {

for(int i=0;i<5;i++) {

try {

Work work = new Work();

Thread thread = new Thread(work);

thread.sleep(5);

Listing 9.12 perthis keyword example. (continues)

Aspect Instantiation and Associations 255

thread.start();

} catch(Exception e) { }

}

}

}

Listing 9.12 perthis keyword example. (continued)

import java.util.Date;

import java.text.DateFormat;

public aspect VectorTiming extends AbstractTiming perthis(this(Work)) {

String startTime;

pointcut methods(Work obj) :

execution(public void Work.bubbleSort()) &&

this(obj);

before(Work obj) : methods(obj) {

startTime = getTime();

}

after(Work obj) : methods(obj) {

System.out.println("Count: " + obj.getCount() + " Start Time

= " + startTime);

System.out.println("Count: " + obj.getCount() + " End Time

= " + getTime());

}

public String getTime() {

return new String((new Date()).getTime()+"");

}

}

Listing 9.13 perthis keyword aspect.

In Listing 9.12, five different Work objects are created. Each object generates a
random number of values in a Vector object and then sorts the vector using the
bubble sort algorithm. The aspect in Listing 9.13 builds a new aspect object for
each new Work object, as indicated by the this(Work) designator in the perthis
keyword. Each aspect object attempts a match on the bubbleSort call in the
Work object. When a match occurs, the before advice gets the current time and
stores it in a private attribute. The after() advice for the same match outputs
both the value of the private attribute and the ending time. Here’s the output
when the example code is executed with the perthis aspect:

Count: 6 Start Time = 1030497141697

Count: 6 End Time = 1030497141797

Count: 1534 Start Time = 1030497141747

Count: 1534 End Time = 1030497142067

Count: 1534 Start Time = 1030497141697

Count: 1534 End Time = 1030497142107

Count: 3887 Start Time = 1030497141487

Count: 3887 End Time = 1030497143399

Count: 4116 Start Time = 1030497141927

Count: 4116 End Time = 1030497143650

Notice that all the start times are different, as you would expect if you had five
different aspect objects. Here’s the result if the same example code is executed
but the aspect doesn’t use perthis:

Count: 184 Start Time = 1030497196966

Count: 184 End Time = 1030497196986

Count: 184 Start Time = 1030497196966

Count: 184 End Time = 1030497197157

Count: 2814 Start Time = 1030497196966

Count: 2814 End Time = 1030497198228

Count: 2814 Start Time = 1030497196966

Count: 2814 End Time = 1030497198438

Count: 3427 Start Time = 1030497196966

Count: 3427 End Time = 1030497198629

In this case, all the start times are the same. The first thread that executes the
bubbleSort() method sets the private attribute, and all other matches write over
it when they execute. The last thread to set the attribute dictates its value for all
the matches. This starting value is printed by all the threads in the after advice.

Per-Control-Flow Aspects
When you use the cflow and cflowbelow designators in an aspect, a flow of
execution is matched based on the associated join points for the designators.
You can use the percflow(pointcut) and percflowbelow(pointcut) keywords
with an aspect to force the instantiation of an aspect class object each time the
flow of execution is entered. The format of the keywords is as follows:

aspect ID percflow(pointcut) {

}

aspect ID percflowbelow(pointcut) {

}

To explore how these designators can be used, consider Listing 9.13.
If you replace perthis(Work) with percflow(execution(public void Work.
bubbleSort())), you will significantly narrow the scope of where the aspect
objects are created and destroyed. Once the scope is narrowed, you can use dif-
ferent join points within the execution flow to time specific elements of the

A s p e c t s256

code. A new aspect is shown in Listing 9.14, where only the timings associated
with calls to the compare() method are matched.

Aspect Domination and Precedence 257

import java.util.Date;
import java.text.DateFormat;

public aspect VectorTiming extends AbstractTiming percflow(execution(public
void VectorSort.bubbleSort())) {

String startTime;

pointcut methods() :
call(public int VecObj.compare(..));

before() : methods() {
startTime = getTime();

}

after() : methods() {
System.out.println(" Start Time = " + startTime);
System.out.println(" End Time = " + getTime());

}

public String getTime() {
return new String((new Date()).getTime()+"");

}
}

Listing 9.14 Percflow used in aspects.

The output from the aspect is similar to that for perthis, except the timings are
very small because the calls to the compare() method are quick.

Aspect Domination and Precedence

In addition to hierarchies, there is another way to allow aspects to dominate or
wrap each other. Aspect domination occurs when pointcuts are defined in two
separate aspects, and those pointcuts consist of common join points. Consider
the aspect in Listing 9.13, where a join point is defined on the execution of the
bubbleSort() method. Everything works well until another aspect is defined on
the same join point, but for a different crosscutting concern (such as logging):

aspect LogBubble {

pointcut method() :

call(public void Work.bubbleSort());

before() : method() {

//do logging

}

You now have two different aspects based on the same join point. A number of
factors dictate which advice code associated with a matched pointcut will eval-
uate first. If the advice and pointcuts are defined in different aspects, then the
order of execution is undefined—either pointcut and advice could execute
first. If one aspect is a subaspect of another, the subaspect pointcut/advice will
execute first.

In the previous example, the timing advice might execute before the logging
advice. This could be a problem, because you are timing your logging as well as
the bubble sort algorithm. You can prevent this behavior by using the dominates

keyword. Using the aspect in Listing 9.13, change the first lines as follows:

public aspect VectorTiming

extends AbstractTiming

dominates LogBubble

perthis(this(Work) {

When the bubbleSort() method is matched, the timing aspect will execute
instead of the LogBubble aspect, because it dominates the aspect. (See the end
of Chapter 7, “Advice,” for more information about aspect precedence.)

Accessing Aspect Objects

During the execution of the application, the object(s) created for a specific
aspect in a system are made available to other aspects using the aspectOf()
method. When the aspectOf() method is executed within another aspect, the
system attempts to return the object currently associated with the specific
aspect. Consider the code in Listing 9.15.

A s p e c t s258

public aspect VectorLogging dominates VectorTiming {

pointcut methods() :
call(public void Work.bubbleSort());

before() : methods() {
System.out.println("Start time = " + VectorTiming.aspectOf(thisJoin-

Point.getThis()).getTime());
}

after() : methods() {
System.out.println("End time = " +

VectorTiming.aspectOf(thisJoinPoint.getThis()).getTime());
}

}

Listing 9.15 Aspect using the AspectOf() method.

TE
AM
FL
Y

Team-Fly®

The new aspect called VectorLogging dominates VectorTiming (defined in List-
ing 9.15). When the application in Listing 9.14 executes, the VectorLogging
aspect dominates the VectorTiming aspect when the bubbleSort() method is
matched. In this case, you still want some timing information, so both the
before and after advice code blocks execute the aspectOf() method against the
VectorTiming aspect. The aspectOf() method tries to find an aspect object asso-
ciated with the current join point based on the specific aspect (VectorTiming, in
this case). If the object is found, the code calls the object’s getTime() method.

The aspectOf() method has two different signatures, which relate to the instan-
tiation method for the aspect:

■■ aspectOf()—Used with singleton and percflow/percflowbelow

■■ aspectOf(object)—Used with perthis and pertarget

The VectorTiming aspect uses perthis, so your VectorLogging aspect must pass
the current object using the getThis() method call.

Aspect Privilege

As you begin to write aspects, sometimes you will want to access a private
attribute of a class being crosscut. Generally, you can use a simple accessor
method to obtain the attribute’s value. Consider the primary code in Listing 9.16.

Aspect Privilege 259

public class PrivateAttribute {

private int cannotSeeMe;

private int accessorAvailable;

public PrivateAttribute(int a, int b) {

cannotSeeMe = a;

accessorAvailable = b;

}

public int getAccessorAvailable() {

return accessorAvailable;

}

public static void main (String args[]) {

PrivateAttribute pa = new PrivateAttribute(5, 10);

}

}

Listing 9.16 Primary code with private attributes and accessor methods.

The PrivateAttribute class has two private attributes that are available to the
code in the class. There is a single accessor method for the accessorAvailable
attribute, but not for the cannotSeeMe attribute. External objects cannot
access the cannotSeeMe attribute. If you were to write an aspect that tried to
access the cannotSeeMe attribute, an error would result. Consider the aspect in
Listing 9.17.

A s p e c t s260

public aspect PrivateAttributeAspect {

pointcut startIt(PrivateAttribute obj) :

initialization(PrivateAttribute.new(..)) &&

target(obj);

after(PrivateAttribute obj) : startIt(obj) {

System.out.println(obj.getAccessorAvailable());

System.out.println(obj.cannotSeeMe);

}

}

Listing 9.17 Aspect with private attribute attempt.

When the aspect and the primary code in Listing 9.18 are compiled, the follow-
ing error results:

.\PrivateAttributeAspect.java:8:28:

PrivateAttribute.cannotSeeMe has private access

System.out.println(obj.cannotSeeMe);

^

1 errors

The compiler does not allow the aspect to access any of the protected or pri-
vate attributes in the target/this returned object by default. This behavior
clearly is a good thing, because the Java compiler is maintaining the access
types defined for the aspects and classes. However, what if you really need to
access the private/protected attribute, and there is no accessor method? The
answer is to define the aspect as privileged. Consider the aspect in Listing 9.18.

privileged aspect PrivateAttributeAspect {
pointcut startIt(PrivateAttribute obj) :

initialization(PrivateAttribute.new(..)) &&
target(obj);

after(PrivateAttribute obj) : startIt(obj) {
System.out.println(obj.getAccessorAvailable());
System.out.println(obj.cannotSeeMe);

}
}

Listing 9.18 Privileged aspect.

The privileged keyword added to the aspect in Listing 9.20 allows the aspect to
have internal access to the private cannotSeeMe attribute. Clearly this is a vio-
lation of encapsulation and security for the primary code class. Just as the
friend functionality in C++ was a hot topic of discussion concerning its break-
age of encapsulation in a class, the privileged keyword is also troublesome.
There could be times when it is absolutely necessary to access a private
attribute of a class—say, when there is no accessor method—but you should
take extreme care when doing so.

NOTE
The astute reader will notice from the formal definition at the beginning of the chap-
ter that the protected access type is missing. The AspectJ language does not allow you
to assign the protected access type to an aspect. Attempting to use protected will
result in a compile-time error.

What’s Next

In this chapter, we have taken a comprehensive look at the aspect and the vari-
ous ways aspects can be written to fully implement a concern. The AspectJ lan-
guage combines all the major concepts like join points and pointcuts and brings
them into the aspect, allowing designers and developers to maintain class
encapsulation.

The next section of the book covers using AspectJ: examples, common prob-
lems, tools, and finally two case studies that apply aspect-oriented techniques
to real applications. In Chapter 10, we begin our look at the practical uses of
AspectJ.

What’s Next 261

As our attention turns away from the specifics of the AspectJ language
and toward using the system to solve real problems, we focus on intro-
ducing AspectJ to your development team members so that they under-

stand its benefits and endorse using the language. This chapter examines these
topics:

■■ Adopting AspectJ

■■ Testing uses

■■ Addressing crosscutting concerns

■■ Understanding the production aspects

■■ Tuning performance

Adopting AspectJ

Suppose we’re sitting in a conference room with our development team, listen-
ing as team leaders express the goals of our project. The business leaders talk
about the domain of the user, how we have to develop a complete product that
fits the needs of the user, how we don’t have enough time, and how extremely
tight the budget is. The quality assurance (QA) team leader explains how the
code must be bulletproof, how the concepts of Extreme Programming will be
used to develop tests up front, and how we need to keep the code modular so
we can incorporate testing with ease. Finally, the development leader gets up,
looks at the business leader, looks at the QA leader, and then goes down the

Development Uses of AspectJ

C H A P T E R10

263

road of writing quality software. The team must reuse code, build fully encap-
sulated classes, and document all appropriate functionality. The code must ful-
fill the needs of the user as well as internal organizations, and above all, the
requirements must be met.

At the end of the leadership speeches, the team is clapping and ready to dive
into analyzing and designing the solution to the problem. All the while you may
be quietly sitting in your seat wondering where the reuse will come from, the
2.1 release of the software or the 3.0 version (and the code wasn’t written
all that well in those versions). You are also thinking about the concept of
building fully encapsulated classes. Is this even possible? You remember that in
your last project, all calls to the database had to be logged and the result of
the actual database transaction was also saved for logging purposes. These
requirements absolutely violated the concept of encapsulation. It’s like the use
of the C++ friend keyword became a requirement in itself instead of a forbidden
keyword.

After reading about AspectJ and how it can help with the process of building
new software (as well as retrofitting code that is also in production), you may
want AspectJ to be part of the process for your next project. But first, you have
to convince team members and management that AspectJ will make for better
code and better coders. In the interim, you can use AspectJ for your own test-
ing, logging, QA activities, and other functions.

Why Adopt AspectJ?
Throughout this book, we have discussed why individual developers and orga-
nizations should adopt the use of AspectJ, but a few points are worth repeating.
AspectJ allows you to separate the concerns that comprise your system. By
separating concerns, you are able to build classes that represent the primary
requirement of a system without having to add more support code to them. If all
of the calls to a database transaction class need to be logged and timed, the
additional code for this task doesn’t have to be part of the database class itself.
The class doesn’t care about being logged and timed—it just wants to perform
a transaction against the database. The support or ancillary logging and timing
code doesn’t belong in the class.

This is a simple example to get your team thinking. All it takes is a whiteboard
and a few minutes to draw out a simple database class and show how adding
extraneous support code breaks all the object-oriented rules the language itself
is trying to enforce. After a few strokes of the marker, you will have a number
of the team members agreeing that forcing all this additional information into
the primary classes isn’t a good idea. In addition to addressing the development
side of things, you can provide examples for the testing group.

Development Uses of AspectJ264

In a simple manner, full-parameter verification can be provided for key meth-
ods of a class or all methods. Verification can be switched on for testing to
ensure the code catches all conditions and then switched off in production for
efficient code execution. Finally, you can pull in the business leadership
because AspectJ is still Java, it doesn’t cost anything, and the analysis of the
problem will still produce the same information—but now instead of forcing
requirements into unrelated classes, independent ones will be created. Man-
agement will also be able to see the benefits AspectJ brings in the area of refac-
toring, adding new requirements, and less time searching for bugs.

How to Put AspectJ into the Process
During your discussions, someone will ask where AspectJ and crosscutting fit
into the software development process. Before answering this question, let’s
quickly review the development process. When a new project is starting, or an
existing application requires increased functionality, someone is responsible
for gathering user requirements. These requirements are typically written or
typed long-hand, and then converted to a more formal product like use cases or
functional specs. This conversion is called the specification; it provides both
the user and the design team with information about what the system must do.
In most cases, the use cases are more verbose and provide a level of application
flow, but both contain the necessary information about the end system.

Once the specification document has been created, a design team begins the
process of developing the packages, classes, and relationships between all of
them. The goal of the design is to create a system of classes that is able to work
together to handle all the requirements of the system. Where does AspectJ
come into play? There are a couple places where you can use the concepts
behind AspectJ.

The first is when the specification document is created. While the analysis team
is building the document, those requirements that stand out as being core or
primary to the developer and use of the system should be marked as such.
Determining whether or not a requirement crosscuts the system is sometimes
challenging, but they can be identified by looking for requirements that touch
many parts of the system. Also, many broadly defined requirements will cross-
cut that system as they try to gather information. At design time if the analysis
team has separated the requirements, the primary requirements are written
using Java and the secondary or crosscutting ones are written using AspectJ. If
the analysis team has not separated the requirements, the design team should
build the classes for the system with an eye to those requirements that involve
placing attributes and methods in more than a few classes. These requirements
are secondary and crosscut the primary functionality of the code. When the
design is finished, another pass of the classes should be performed in order to

Adopting AspectJ 265

identify any other requirements that crosscut the system classes. In some
cases, such as logging, the crosscutting will entail a large number of classes, but
a memory pool requirement might affect only a small percentage of classes. In
both these cases, however, pulling the requirement and writing it in AspectJ
will create a more modular and encapsulated design.

Previous Development Work
If your team is in the middle of development or you are currently doing mainte-
nance work on a legacy Java application, AspectJ can still be of use. During the
refactoring of a class or even while you’re making a relatively minor change,
you can analyze the class structure to determine if any of the methods or attrib-
utes appear to crosscut the class. You can pull these out of the code and put
them into the AspectJ language without affecting too much of the code. The
aspect could even be included in the class as a member to avoid having to add
a file to the system.

Backing It Out
During software development, AspectJ can be easily backed out because you
have the code in the form of an advice and the location to place the code based
on the join points. You’d just need to add the advice code to all places in the sys-
tem when the join point is found. Of course, this could be a huge issue if
requirements crosscut many of the system classes, and would add greatly to the
complexity of the system. Even more important is the fact that you’d be tan-
gling the application code on purpose! Avoiding spaghetti code is one of the rea-
sons we want to use AspectJ in the first place.

Development Uses

There are many places in the development of a system where temporary code
is needed to handle such tasks as tracing and condition checking on method
parameters. Just imagine the excitement from the QA group when you show
them how a use case flows through the system. You can show arguments going
into all methods and validating their contents.

Tracing
When you’re developing a system, it can be helpful to follow the flow of infor-
mation and methods calls made during execution. This is especially true when
you’re modeling a use case with the code. Since most developers rely on the
class’s API and related documentation, possibly written by a fellow developer,

Development Uses of AspectJ266

they won’t know what occurs within the other object. By using tracing, all the
method calls can be mapped from the moment the execution enters the method
until it exits.

Before we discuss how AspectJ enables detailed tracing, let’s consider how we
would write tracing into our own code. One of the most common methods for
tracing an application is using the step function available in many IDEs. The
debugger provides the ability to execute the code and follow the statement line
by line. Within JBuilder, for example, you can set a breakpoint in the code and
execute each statement with the press of a button. You can watch the code as it
moves from object to object executing methods along the way. This works well
for small traces, but it you have even 20 or 30 objects, or the code relies on
some level of timing, the IDE isn’t a good solution. If you have a very large appli-
cation that relies on specific timings, the debugger probably cannot be used—
it might rely on a specific Java Virtual Machine, for instance. Of course, if your
application is executing in a production environment and the execution isn’t
directly reproducible in a development environment, you need another option.

A better way is to put console or file output statements in each of the methods
of all classes. The code might be as simple as this:

System.out.println("--> enter move method");

System.out.println("<-- exit move method");

As the code above is activated, enter and exit text will be displayed based on
the exact execution path. It is a fairly easy task to insert these two statements
in 30 different classes, each of which has 10–15 methods. But don’t forget that
QA doesn’t want to see these statements when the code is submitted for testing,
so you might need to wrap the code with a condition to keep the code from exe-
cuting when a release build is created. In that case, every method would need a
minimum of four additional lines of code for tracing purposes.

A much better solution is to use an aspect. For example:

public aspect trace {

pointcut method() : execution(* *.*(..));

before() : method() {

System.out.println("--> enter "+ thisJoinPoint.getSignature() + "

method");

}

after() : method() {

System.out.println("<-- exit " + thisJoinPoint.getSignature() + "

method");

}

}

In this aspect, the pointcut catches all methods in all classes. The before advice
prints the enter text, and the after advice prints the exit text. In a matter of

Development Uses 267

10 minutes, all the code in your application can be traced without affecting the
individual methods of the classes.

Condition Checks
For the most part, as developers we are responsible for handling any and all
data that is passed to a method from any source, whether from the local object
or another object. We use many lines of code to determine if an argument value
falls within acceptable ranges or even has a value at all. During development,
we anticipate the values passed to the method and code appropriately.
Wouldn’t it be great to have something within the methods that recorded the
values coming to the method through the parameter and possibly analyze them
for us so we know what additional checks to put in the production code?

Using Java to add this type of functionality to class’s methods would require
several lines of code to perform the recording of the value, but there really isn’t
any way to capture the incoming value and change it into either an appropriate
value or an inappropriate one for testing purposes. However, AspectJ does pro-
vide this ability:

public aspect paramTest {

pointcut method(String s) :

call(public void myClass.func1(String)) &&

args(s);

void around(String s) : method(s) {

If (s == null || s == "")

proceed("empty")

else If (s.length > 64) {

proceed("string too long")

else

proceed(s);

}

}

In this example, we are catching all calls to the func1() method of the myClass
class. When the join point is matched, a quick check is made of the incoming
string parameter. If the value is ever null or an empty string, a new string is
passed with the value of “empty”; otherwise, the length of the string is checked
and if the value is greater than 64, a smaller string is passed to the method. If
neither of these cases is true, the method is passed the original string. This
check is important because the output display might have a 64-character limi-
tation and strings longer than 64 become unreadable. The code could be further
enhanced by putting the incoming string value into a file for later checking.

The QA group as well as the developer can take advantage of the values being
passed to the method during integration of the class into the full system as well
as during the unit test phase. The output shows if adequate values are being

Development Uses of AspectJ268

TE
AM
FL
Y

Team-Fly®

tested and if additional code needs to be incorporated to handle obscure val-
ues. In many systems, a failure occurs when a value is passed to a method that
we just didn’t think could be passed. During the testing of an application with
the preceding aspect, the QA team, as well as the development team, could
have a task in their methodology for analyzing the values to the method. This
analysis would provide information on the largest, smallest, most frequent, and
other values passed. The code could be optimized for specific values or other
changes as needed.

These types of aspects would be most beneficial in the development and testing
of the application. When the application is put into production, the aspects
could either be removed or made nonfunctional. However, if an issue occurs in
production, we could easily add the aspects back to the application, and addi-
tional information would be made available to a production support team.

Production Aspects

As you can tell from the previous discussion, a large amount of data can be pro-
duced from the aspects. This isn’t something that you would want to occur dur-
ing production. It would even be too dangerous to output large amounts of data
to a file because the file system could become full without maintenance. There
are some requirements in the development of a system that also crosscut the
primary functionality and must be available during production. In this section,
we look at two such requirements:

■■ Logging and timings

■■ Authorization

Loggings and Timings
During the implementation of a trace aspect, we as developers gain a better
understanding of the execution of our application. As you might already know,
if you provide your users with a GUI filled with buttons and edit lines, they will
click the buttons and put all kinds of data in the edit lines. You don’t have too
much control over what they will put in the edit lines, nor do you control the
order in which the user clicks the buttons.

When users report an error with your software, they won’t always know what
they did to receive the error. This type of situation suggests the need for some
level of logging within production code. In addition, key areas of the system
also benefit from the use of timings to determine if they are holding up under
the stress of live production use.

Production Aspects 269

In a traditional development environment, logging of the application would be
accomplished by creating a log class such as this:

public class log {

public log() {

//open log file or connect to db

}

public void store(String msg) {

// place msg in db or file

}

}

When the application starts, a log object is instantiated to be used globally by
the application or instantiated locally for each of the major objects. Each time
an error, warning, or simple log message needs to be placed in the file or the
database, a call is made to the store() method passing in the necessary text. We
place the method in the primary code to be called during execution. We can cre-
ate the same type of class for the timing concern with start() and end() meth-
ods that make appropriate calls to either the log class or internal methods for
storing the timing information in a file or database.

It is up to us to place the log and timing methods in the right places and meth-
ods. Any changes to the method calls or text that should be saved will require a
search for all possible calls.

The use of an aspect makes our job much easier. Using either a common join
point or a combination of numerous specific join points, we can accomplish the
logging using a comprehensive aspect. For example:

public aspect log {

pointcut CPMethods() : execution(* CFClass.*(..));

pointcut EPMethods() : execution(* EPClass.*(..));

pointcut DBMethods() : execution(* DBClass.*(..));

pointcut EPDBMethods() : EPMethods() || DBMethods();

before() : CPMethods() {

}

after() : CPMethods() {

}

before() : EPDBMethods() {

}

after() : EPDBMethods() {

}

}

In this aspect, we’ve used three separate pointcuts to obtain the join points of
methods specific to three classes of the application. When any of the methods

Development Uses of AspectJ270

of the CPClass, EPClass, and DBClass are matched, before advice is executed.
It is expected that this advice will put some type of text into a database or file
indicating that the beginning of a method has started. The after advice is used
to indicate successful execution of the method. In discussing the log class ver-
sus the log aspect, it can be argued that there is finer control available with the
log class because the log.store(“here”) call can be put anywhere in a method,
not just at the beginning or end of a method, as is the case with an aspect.

Although true, a good system design states there should be a small number of
statements, 10 or so, in a typical method. If this is the case, there isn’t much dif-
ference between putting the advice at the beginning and end of the methods as
opposed to including several statements in a method. Of course, if there is
another method call within the current one, it will be matched by an appropri-
ate join point.

In the next aspect example, we consider a timings aspect that will place spe-
cific start and end clock values into the database or appropriate log file:

public aspect timings dominates log{

pointcut DBMethods(String s) :

execution(public void DBMethods.*(String)) &&

args(s)

before(String s) : DBMethods(s) {

}

after(String s) : DBMethods(s) {

}

}

One of the first things you notice is the use of the dominates keyword in the
timings aspect. The timings aspect is said to dominate the log aspect pre-
viously defined: all methods with a join point matching public void
DBMethods.*(String) will trigger the timings DBMethods() pointcut instead of
the DBMethods() pointcut also defined more generally in the log aspect. Basi-
cally, we want all methods in the DBMethods class to be logged, but for those
methods that have a single String argument, we want timing information pro-
vided in their record. These methods might be used to send SQL statements to
the database; the amount of time used by the methods has a direct effect on per-
formance, so it should be recorded and reviewed.

In both the timings and log aspects, we are able to provide basically the same
level of performance and functionality of the log/timing classes but in a much
better encapsulation of the code.

Authorization
Many Web applications now require a username and password. In most cases,
the authorization of a person has to be passed from one page to another or

Production Aspects 271

maintained in some sort of database state. In many traditional applications, the
issue of authorization is also a consideration, so access to particular parts of a
system needs to be restricted to specific individuals. When a user attempts to
select a particular option, control will more than likely be transferred to a spe-
cific method for the requested functionality. The first line of the method gener-
ally determines if the user has rights to access that particular part of the
application. Many applications have differing levels of authorization from the
module to the screen and even down to a specific field. All of these different
levels relate to an object instantiated in the system. For example:

public class Profile {

private String name;

private String address;

public void setName(Caller c, String s) {

if (Caller.credentials("nameprofile") == 'y') {

name = s;

}

}

public void setAddress(Caller c, String s) {

if (Caller.credentials("addressprofile") == 'y') {

address = s;

}

}

}

In this simple class, there exists a private variable called name that represents
the username of a person in our medical application. The name associated with
the object is sensitive data and shouldn’t be changed by just anyone. In order to
accomplish this goal, the setName() method requests the credentials of the cur-
rent user of the system specifically referencing the nameprofile field. If the user
has the appropriate credentials, the user is allowed to make the name change.

Now take a look at the setAddress() method. Our application allows a user to
change the address but not the name of a medical client. If the code attempts to
call the setAddress() method, the code checks the addressprofile credentials of
the user to determine if the user should be allowed to change the address. Just
imagine all of the code necessary to check city, state, zip, and many other fields.
Instead, an aspect can handle the authorization automatically. Consider the
following:

public aspect authorization {

pointcut name(Caller c, String s) :

(setName(Caller, String) ||

setTelephone(Caller, String)) &&

args(c, s);

pointcut address(Caller c, String s) :

Development Uses of AspectJ272

(setAddress(Caller, String) ||

setCity(Caller, String) ||

setState(Caller, String)) &&

args(c, s);

around(Caller c, String s) : name(c, s) {

if (Caller.credentials("nameprofile") == "y") {

proceed(c, s);

}

}

around(Caller c, String s) : address(c, s) {

if (Caller.credentials("addressprofile") == "y") {

proceed(c, s);

}

}

}

In this aspect, all the join points related to the changing of sensitive data for the
client are grouped in the name() pointcut and all address-related methods in
the address() pointcut. When a join point is matched, the appropriate pointcut
will be matched and the selected around advice executed. The code checks the
credentials of the user of the code and determines if the original code should
proceed or be bypassed. Any necessary changes to the way authorization is
done within the application can be easily determined by looking at the aspect
code itself.

What’s Next

In this chapter, we provided important information for those of you who want
to adopt AspectJ and the AOP methodology but have to convince managers and
team members. By understanding how AOP can be used in both development
and production phases, you can realize the full power of AOP. In the next chap-
ter, we present a handful of examples to show practical uses of AOP.

What’s Next 273

The AspectJ system is designed to be more than just an extension to Java
and a compiler for converting the extension keywords into Java-
compliant code. In the quest to build a comprehensive solution for

aspect-oriented programming (AOP), the AspectJ team has included the
following tools in the package:

■■ The AspectJ compiler

■■ The AspectJ structure browser

■■ IDE extensions

■■ Ant support

■■ The AspectJ debugger (ajdb)

■■ The AspectJ documentation creator (ajdoc)

In this chapter, we cover each of these and provide examples along the way.

AspectJ Compiler Options

For most of the examples in this book, we’ve used the AspectJ compiler
without having to use command-line options other than –classpath and
–preprocess. In this section, we detail all of the command-line flags available
with the AspectJ compiler:

–argfile path—Specifies the location of a line-delimited file containing pos-
sible command-line options. You place the options in the command line of
the compiler.

Using AspectJ Tools

C H A P T E R11

275

–aspectpath—Specifies the path to aspects found in JAR or CLASS files.

–bootclasspath path—Specifies the location of the default boot CLASS
files.

–classpath path—Specifies the location of any support files needed for the
compiler.

–d directory—Specifies where the compiler should place the final CLASS
files it produces. The default directory is the current directory.

–emacssym—Produces symbols from the compiled code for use with
Emacs.

–encoding Encoding—Specifies the encoding used in the source files to be
compiled.

–extdirs path—Specifies the location of the extension files.

–incremental—Instructs the compiler to use incremental compiling.

–injars path—Specifies JARs used in the weaving process. You separate
multiple JARs with a colon (:) or a semicolon (;).

–noweave—Causes Java code to be compiled but not woven.

–O—Optimizes the code produced by the AspectJ compiler.

–outjars—Specifies the path and name of the JAR in which the compiler
should place the compiled code.

–source 1.4—Causes the compiler to treat assert as a true language key-
word as defined in version 1.4 of the Java language.

–usejavac—Forces the system to use the Javac compiler when producing
final CLASS files.

–verbose—Produces output messages from the compiler about its various
activities.

–version—Displays the current version of the compiler. For example: ajc
version 1.0.5 (built Jun 27, 2002 4:59 PM PST) running on java 1.4.0_01.

–workingdir directorypath—Specifies the location of intermediate files
produced when the AspectJ compiler compiles aspects and weaves them
into the primary Java code. All of the files in this directory are removed
unless you use the –preprocess flag.

Filenames
The AspectJ compiler recognizes all files with an extension of .java and
produces files with the .java extension as well. However, the compiler also

Using AspectJ Tools276

supports files with the .aj extension. The designers of AspectJ recommend you
use the .aj extension if the files contain any type of AspectJ code. This includes
files containing just aspects and those containing both classes and aspects. The
AspectJ team does not recommend using any other type of mechanism to dif-
ferentiate the AspectJ code from the Java application code.

NOTE
As is often the case when we're building large projects, the number of source files can
become large and adding aspects only increases the file count. Trying to list all the
files on a command line for either the Java or AspectJ compiler isn’t very practical.
Both compilers will accept a simple build file listing all the files to be used during
the compilation phase. The file can have any filename but typically ends with the
extension .lst. All the files to be built by the compiler are listed in the build file using
either absolute or relative file paths. Here’s an example of a build file:

C:\aop\software\chapter08\Product.java

\aop\software\chapter08\ProductAspect.java

..\..\aop\software\chapter08\DVD.java

..\GUI*.java

The Structure Browser for Aspects

One of the early access tools made available by the AspectJ developers is the
structure browser. This application is designed to provide a graphical view of
Java and aspect source files located within a build file. In addition, you can use
the structure browser to launch the AspectJ compiler and edit files from the
build list. All of these features suggest that the structure browser is a simple
programming IDE; however, the features are limited and a development envi-
ronment like Eclipse is recommended.

The browser is located in the \bin directory of the default installation directory.
You can execute the application by typing ajbrowser in a command prompt or
terminal window. You can follow the command with the name of a build file:

ajbrowser

ajbrowser product.lst

Figure 11.1 shows the main screen of the browser after we’ve loaded a build
file. We’ll refer to the numbers on the image to highlight some of the core fea-
tures of the browser. If you don’t use a build file in the command line, the error
dialog box shown in Figure 11.2 will appear. In this case, a build file will have to
be opened through the browser itself.

The Structure Browser for Aspects 277

Figure 11.1 The AspectJ structure browser.

Using AspectJ Tools278

Figure 11.2 The Build File message from the AspectJ structure.

In order for you to see the source file information made available in the build
file, the project must be built by the browser. To do the build, select Build from
the Project menu or click the Build button (#1 in Figure 11.1). The browser
launches the AspectJ compiler and builds all of the files in the project. During
the build, any error messages from the compiler are displayed in a window (#2
in Figure 11.1). Once a successful build is completed, the files associated with
the build are made available in the browser, as shown in Figure 11.3. You can
expand each of the product files by simply clicking on the filename. The con-
tents of the file appear in the far-right window of the browser. The expanded file
shows all imports as well as inherited classes. You can see a fully expanded
view of the file in the lower-left window of the browser. The attributes of the
class associated with the selected file are shown with a small box icon. Class
methods have a gear icon assigned to them. If an entry in the view has a
toggle switch next to it, this means additional information or elements are asso-
ciated with the entry. Click the entry to toggle the display of the additional
information.

TE
AM
FL
Y

Team-Fly®

Figure 11.3 Build files available in the browser.

The Structure Browser for Aspects 279

Figure 11.4 The DVD add() method.

In Figure 11.4, the add() method has been toggled. Notice that the source code
in the right window automatically displays the method in question. Underneath
the add() method in the left window is a red arrow with the description

“method affected by.” This means aspect advice exists that could affect the
execution of the method. In Figure 11.5, the red arrow toggle has been selected
to reveal the advice signature and the signature has been selected to display the
advice source code in the right window. In the title bar of the top-left window
are three colored buttons, labeled #3, #4, and #5. The button labeled 3 filters the
information presented in the window by member, type, file, or package visibil-
ity. The button labeled 4 filters the members based on access type, member
type, and possible keywords, such as static or abstract. The button labeled 5 fil-
ters the associations displayed for all members. The filters can be based on
inheritance as well as aspect relationship.

Using AspectJ Tools280

Figure 11.5 The DVD add() method advice.

When you click the advice entry for the add() method, the lower-left window
changes to display the file where the advice is located. In Figure 11.5, the file is
called BoxsetAspect. The pointcuts defined in the aspect are displayed along
with all of the advice methods. In the title bar of the lower-left window are small
buttons that allow you to limit the information shown. The filters include the
ability to sort the entries (#6), to remove all non-AspectJ members (#7), and to
hide all associations between the pointcuts/advice and the primary Java code
(#8).

The browser allows you to execute classes as well as build them. In order to
execute the code, you have to specify the fully qualified name for the main
class. You specify the class by selecting the Options option under Tools on the

main menu. The resulting Settings dialog box has three tabs on it for setting var-
ious browser options. The middle tab, called AJBrowser Options, has a text
area in which you can enter the name of the class where the system can find
and execute the appropriate main() method. For our example, we entered the
class Boxset. Once you’ve entered the class, click the green run arrow on the
main browser window to run the code.

In addition to allowing you to specify the class you want to use for running the
application, the Settings dialog box includes a host of other options for setting
directory paths and controlling strictness of the compiler, as well as a couple of
compiler options.

Using AspectJ IDE Extensions

One of the goals of the AspectJ development group is widespread acceptance
of the language. We can help with this goal by developing extensions to some of
the major programming environment tools such as JBuilder and Forte. The
extensions allow the direct integration of aspects into the Java language typi-
cally using a visual presentation versus a simple editor. The current IDE exten-
sions available are

■■ JBuilder

■■ Forte

■■ Emacs

■■ Eclipse

As the AspectJ FAQ states, the criteria for choosing IDEs included the extensi-
bility of the IDE, the size of the community involved in using and extending the
IDE, and the time available to the AspectJ team. In this section, we examine
each of the extensions for the given IDEs.

JBuilder
JBuilder from Borland is one of the premier development environments avail-
able to the Java community. The IDE is available in three different flavors: per-
sonal, professional, and enterprise. The personal version is available free of
charge as long as you run it for personal use only. The enterprise edition is
available in a trial format. Both versions are available at www.borland.com/
products/downloads/download_jbuilder.html. Borland requires that you create
a login for its downloads, but this isn’t an extensive process. Version 6 of the
product became available earlier this year and is very stable. The Java SDK
provided with version 6 is 1.3.1, but you can also use 1.4.0. Version 7 became

Using AspectJ IDE Extensions 281

available at the end of June/early July 2002. Figure 11.6 shows an example of
the IDE with a Java project loaded into the environment.

Using AspectJ Tools282

Figure 11.6 A JBuilder project example.

To obtain the information we provide in the next section, we used version 6 of
the Personal Edition, and we also tested version 7 and found no problems. Out
of the box, JBuilder doesn’t provide any type of AspectJ support. In order to
extend JBuilder, a quick trip to the AspectJ Web site is in order. On the page
http://aspectj.org/servlets/AJSite?channel=download&subChannel=com-
pilerAndTools, you’ll find a download file toward the bottom of the page called
ajde-jbuilderOpenTool-1.0.5.jar. Download this file to the local machine where
JBuilder is installed.

The AJDE for JBuilder Installation
To begin, type the following at a command prompt or terminal window:

java –jar ajde-jbuilderOpenTool-1.0.5.jar

This command launches the installation program contained within the speci-
fied file. You’ll see the splash screen shown in Figure 11.7.

The splash screen provides information about the version of the extension as
well as the type and location of the license. Once you’ve read the information,
click the Next button to display the screen shown in Figure 11.8.

Figure 11.7 The JBuilder AspectJ Extension splash screen.

Using AspectJ IDE Extensions 283

Figure 11.8 The JBuilder AspectJ Extension location screen.

The location screen provides an edit line for you to enter the location of the
lib\ext directory created during your installation of the JBuilder product.
The default location will be c:\jbuilder6\lib\ext. After entering the location or
leaving the default one, click the Install button to begin the short process of
copying the necessary files to the ext directory. When the system is finished,
you will see the screen shown in Figure 11.9. Click the Next button to bring up
a release notes screen.

Figure 11.9 This screen tells you the install was successful.

The final screen in the installation wizard provides a few steps you have to take
before using the extension. First, if JBuilder is currently executing, you have to
shut it down. We will walk through the second step shortly. If you don’t want
the extension to be in JBuilder, simply delete the following files from the lib/ext
directory:

■■ aspectjrt.jar

■■ ajdeForJBuilder.jar

Using AJDE for JBuilder
To begin using the AspectJ Development Environment (AJDE) for JBuilder,
create a project and add all the Java and aspect files associated with a project.
It is important to add the files to the project instead of relying on JBuilder to
find them using the SOURCEPATH because the AspectJ compiler doesn’t use
the JBuilder SOURCEPATH designator. In Figure 11.10, we’ve added files for a
simple project.

If you attempt to use JBuilder’s build functionality, errors will occur because
JBuilder uses the standard Java compiler. To activate AJDE for JBuilder, click
the red/blue AJ button located on the toolbar of JBuilder (#1 in Figure 11.10).
Or, you can click Tools, choose AspectJ, and then select Start AJDE. When
AJDE is started, not much occurs in the JBuilder IDE right away except for a
couple additional windows and an expanded AspectJ toolbar. The additional
icons are

■■ AspectJ Browser—#2

■■ AspectJ Options—#3

■■ Compile Using AspectJ Compiler—#4

Using AspectJ Tools284

Figure 11.10 Our JBuilder project and files.

With all the files added to the project and AJDE activated, you can now compile
the project by clicking on the button called Compile Using ajc or by pressing
Ctrl+F11. The ajc compiler will compile all the files loaded in the current
project as well as all packages and subpackages. If the build is successful, text
will appear at the bottom of the JBuilder windows telling you that the “Build
succeeded in X seconds.” If there is an error, an additional window appears
displaying the appropriate error message. Simply double-click the error mes-
sage to open the file with the error and then edit the file. To run the project,
click the Run Project icon (the green arrow) or press Ctrl+F12. The system will
execute the Java Runtime Environment against the compiled code. You might
see a dialog box that prompts you for the class where the main() method can be
found. Add the class to the appropriate edit line and click OK.

At this point, the runtime will continue to run the project; however, you might
see an error message containing the text java.lang.NoClassDefFoundError:

org/aspectj/lang/Signature. This means the system is unable to find the
AspectJ runtime. If you look at the command line that the system was attempt-
ing to use to execute the project, you’ll note that the path associated with the
AspectJ runtime begins with the text c:\apps… This path is probably not avail-
able on your system. To edit the path for the correct location of the AspectJ run-
time on your system, click the Project menu item in JBuilder. Select the Default

Using AspectJ IDE Extensions 285

Project Properties option and in the resulting dialog box, click the Required
Libraries tab. Then click the Add button and select AspectJ Runtime. Click OK
to add the AspectJ library as a default required library. You could do this only
for the current project if you don’t want it as a default for all your projects.

In the Required Library combo box of the Project Properties dialog box, you’ll
see an entry called AspectJ Runtime. Double-click on that entry to bring up a
dialog box called Configure Library. In a text area labeled Library Settings you’ll
see a path associated with the runtime library. Select the path and then click the
Edit button. Change the path to the correct location of the AspectJ runtime—
probably c:\aspectj1.0\lib\aspectjrt.jar. Keep clicking OK until you exit the
Project Properties box, and then try to execute the project again. This attempt
should be successful, and you’ll see the output displayed in a JBuilder window
or through an application GUI if one is available.

Using AspectJ Browser in JBuilder

As part of the AJDE for JBuilder, the AspectJ browser is embedded for easy tra-
versal of the Java primary code as well as the AspectJ code. To activate the
browser, click the AspectJ Browser button (#3 in Figure 11.10). Although this
activates the browser, the information about the classes might not be available
until you rebuild the project. Once you do, you’ll see a display like the one in
Figure 11.11.

Using AspectJ Tools286

Figure 11.11 The AspectJ browser in JBuilder.

You’ll find all of the browser functionality we described earlier; in fact, there is
an additional piece of functionality, as shown in Figure 11.11 (#1). By right-
clicking the arrow, you display a menu that contains links to source code asso-
ciated with that item. This includes, for example, inherited methods, join
points, and pointcuts. Figure 11.12 shows an example of one such menu and its
links.

Using AspectJ IDE Extensions 287

Figure 11.12 Link points in code.

Note that all of the same filters are available in the JBuilder browser just as they
were in the stand-alone browser.

Using Build Files

You can also create projects in JBuilder to handle .lst build files. Create a nor-
mal JBuilder project and add a .lst build file to the project. Double-click the
project’s .lst entry (#1 in Figure 11.13) to reveal a number of tabs in the right-
most window. Click the tab labeled lst Designer (#2). You can edit the .lst file
using the Designer tab or through the Source tab manually.

Figure 11.13 The lst Designer in JBuilder.

Forte and NetBeans
The Forte and NetBeans IDEs are alternatives to the JBuilder product. They are
available at http://forte.sun.com and http://netbeans.org, respectively. Both of
the IDEs provide the same level of development support and can also be used
for AspectJ development with an extension. The extension, called AJDE for
Forte, is available at http://aspectj4netbean.sourceforge.net/. Before installing
the extension, you must install either Forte or NetBeans. Once you do, launch
the extension installation file in a command prompt or terminal window by
issuing the command:

java –jar ajde-forteModule-1.0.5.jar

The installation program begins with a splash screen that displays the version
of the extension and license information. Follow these steps:

1. Click the Next button to display a dialog box requesting information about
the installation location for the code. The default is c:\forte4j\modules. If
you have installed the software on another drive, then enter the correct
installation path. Do not change the modules subdirectory path because
this is where the IDE expects to find extensions.

Using AspectJ Tools288

TE
AM
FL
Y

Team-Fly®

2. Click Install to start the process of copying the files from the installation
JAR to the modules subdirectory.

3. Click Next when the installation wizard indicates that all of the files have
been copied.

4. Read the final wizard dialog box and note the availability of a readme
HTML file. Click Finish.

Uninstalling AJDE for Forte

Uninstalling AJDE for Forte is simple. Just remove the file ajdeForForte.jar
from the <installation drive>\Forte4J\modules directory and the file aspec-
tjrt.jar from the <installation drive>\Forte4J\lib\ext directory. After you shut
down Forte and then launch it again, the extension will not be in the IDE.

An AJDE for Forte Example

Let’s look at the steps for using AJDE for Forte with some of the example code
from Chapter 6 (all the code in this book is available at www.wiley.com/comp-
books/gradecki). You can generally follow these steps with any project.

1. Start Forte.

2. Create a new project using the Project Manager under the Project menu.
Mount the chapter12 directory because this directory contains a build list
that will be used to pull in the necessary files for the example. You should
also mount the chapter06 directory since the source files are located in this
directory.

3. Start AJDE for Forte by navigating to the Tools menu, selecting AspectJ,
and then choosing Start AJDE. Or you can click the AJ button on the Forte
IDE toolbar. Either of these actions results in the addition of several but-
tons on the IDE, as shown in Figure 11.14. Also, note that a new tab, called
AspectJ, is added to the Explorer window. The new additions are

#1—The Start/Stop AJDE button

#2—The Rebuild button

#3—The Build Selection button

#4—The Options button

#5—The AspectJ Explorer tab

Using AspectJ IDE Extensions 289

Figure 11.14 The Forte AJDE extension.

4. When you mounted the chapter12 directory in step 2, all of the build files
in the directory were assigned to the Build Selection button. At this point,
click the button to see the builds. For this example, we selected the build
called Product.lst, and the AspectJ Explorer tab displays the appropriate
files in the build list.

5. Click the Build button to build the files in the project. You can navigate the
various attributes and methods of the classes within the AspectJ tab of the
IDE. The navigation works and looks the same as in the stand-alone
AspectJ browser. Source files will appear in the rightmost window when
you double-click an attribute or method on the class hierarchy.

6. When the code is ready to be executed, select the FileSystems tab in the
GUI Explorer window. Double-click on the entry where the actual code file
can be found for the class to be executed. In our case, double-click on the
entry for chapter06 and select the Boxset class. Right-click the entry and
select Execute. The GUI launches a virtual machine and executes the
main() method in the Boxset class. When the results have been displayed,
click the Editing tab to return to the original Explorer tabs.

Emacs
Outside of vi, Emacs is the longest-running editor in the UNIX community.
Emacs provides exceptional support for developers who need to write code on
a continual basis. Some developers wouldn’t dream of using anything other

Using AspectJ Tools290

than Emacs for their source code development. With this type of backing, the
AspectJ team created an extension to the application that provides support for
the new language within the editor.

The Emacs extension is called AspectJ-mode, and it works with GNU-emacs
and XEmacs. For GNU-emacs, install version 20.3.1 or higher from
www.gnu.org/software/emacs/. For XEmacs on Linux/UNIX, install version
21.1.14 or higher and Windows 21.4 or higher from www.xemacs.org. The steps
for installing the Emacs extension (based on XEmacs for Windows) are as
follows:

1. Download the extension from http://aspectj4emacs.sourceforge.net/.

2. Extract the files from the aspectj-emacsMode-1.0.5.tgz file into the installa-
tion directory for Xmacs/XEmacs/xemacs-packages.

3. The AspectJ extension comes with a sample .emacs file in the directory
created during step 2. Copy this file to your home directory.

NOTE
On a UNIX box, finding a home directory is easy; on Windows it is not. For
Windows NT/2000, a home directory is provided based on the path c:\Documents
And Settings\<your login>\My Documents. On XP, it will be c:\Documents And
Settings\<your login>. For Windows 9x or if XEmacs cannot find your home directory,
create an environment variable called HOME and set it equal to a path on your system
to a default directory.

4. Using a command prompt, change to your home directory and execute the
command:

Mkdir .xemacs

5. Change into the .xemacs directory and execute the command

edit init.el

6. Copy the following into the directory:

(setq load-path (cons "c:/program files/XEmacs/xemacs-

packages/aspectj-emacsMode-1.0.5" load-path))

(require 'aspectj-mode)

(when (eq system-type 'windows-nt)

(setq shell-file-name "c://windows//system32//cmd.exe")

(setq explicit-shell-file-name shell-file-name)

(setenv "SHELL" shell-file-name))

(when (not (string-match "XEmacs" emacs-version))

(global-font-lock-mode t))

Using AspectJ IDE Extensions 291

7. Change into the xemacs-packages\lisp directory of your XEmacs installa-
tion and either remove the jde directory or move it to your temp directory
in order to keep the normal Java mode from executing when Java files are
loaded into the editor.

8. Launch XEmacs.

AspectJ-Mode Features

In order to see the features available in AspectJ-mode, use XEmacs to open a
Java file with the AspectJ keywords. The system might ask if you want to merge
your .emacs with the system .emacs. Answer yes and allow the merge to occur.
Once the Java file is loaded into the editor, you’ll see that the AspectJ keywords
have been highlighted as valid keywords, as shown in Figure 11.15. Notice the
addition of the AspectJ menu in the toolbar.

Using AspectJ Tools292

Figure 11.15 Using XEmacs to edit AspectJ code.

The AspectJ menu includes an option for compiling code using the AspectJ
compiler. From the AspectJ menu choose the Compile option. At the bottom of
the resulting window enter the compile files you want to use in the compilation
or enter a build file. Once the code has been built, you’ll discover another fea-
ture of AspectJ-mode. In Figure 11.16, the Boxset.java file is visible in the edi-
tor window. Notice the annotations to the right of the methods where join

points have been defined. The annotations, controlled by the AspectJ menu
item, let you know which file contains an aspect relating to the method.

Using AspectJ IDE Extensions 293

Figure 11.16 The Boxset class annotations.

Click the BoxsetAspect.java tab in the editor window to reveal annotations
associated with the advice defined for the aspect, as shown in Figure 11.17.

The AspectJ-mode package also features the concept of a jump menu. Click
the Boxset.java file and select the method name where you’ve defined advice
code. Then, select Jump from the AspectJ menu to open a jump menu at the
bottom of the XEmacs window. Click the X or SPC button, and the editor
“jumps” to the advice code and displays it in the center window. Figure 11.18
shows an example of this functionality.

Eclipse
One of the most exciting achievements in the development tools community
has been IBM’s release of Eclipse. This extensible IDE isn’t specific to one lan-
guage, but it provides an API in which we can achieve support for many lan-
guages with moderate effort. Probably the most important aspect of the new
IDE is the fact that it has been released open source with an extensive com-
munity already behind it.

Figure 11.17 The BoxsetAspect annotations.

Using AspectJ Tools294

Figure 11.18 Using the jump menu.

Before you can install the extension, you must install Eclipse. You can find the
application at www.eclipse.org. The application is simple to install, and the
Web site includes comprehensive instructions. For our example, we installed
the Eclipse application in the c:\eclipse-SDK-2.0-win32 directory.

You can find the AspectJ plug-in for Eclipse on the eclipse.org Web site at
www.eclipse.org/ajdt. You need two files for the plug-in:

AJDT Plug-in

AJDE Tools Plug-in

The two files are available for various versions of AspectJ. You should unzip
those files in the Eclipse installation’s plugins directory. Once you’ve installed
the two files, you must complete a few more steps to verify that the installation
was successful and that the Eclipse IDE is properly configured to use the AJDE.

The Eclipse AJDE Installation Check

To check the installation of AJDE, launch the Eclipse application by double-
clicking the Eclipse icon in the installation directory. Once the application
launches, click the Help menu and select About. At the bottom left of the result-
ing dialog box, click the Plug-in Details button to display the dialog box shown
in Figure 11.19. At the top you should see a plug-in named org.aspectj.ajde. The
version of the plug-in should be 1.0.5. This verifies that the primary AJDE has
been installed successfully. Next, scroll to the bottom of the plug-in details grid
to find a plug-in named org.eclipse.ajdt.ui, version 0.5.0. This verifies the instal-
lation of the other necessary plug-in, as shown in Figure 11.20.

Using AspectJ IDE Extensions 295

Figure 11.19 The Plug-in Details screen.

Figure 11.20 The Plug-in Details screen for org.eclipse.ajdt.ui.

The Eclipse Configuration Setup

In order for the AspectJ Development Tools (AJDT) plug-in to work properly,
you must set several configuration options in the Eclipse IDE. These changes
are documented in the AJDT release notes found in the directory
\plugins\org.eclipse.ajdt.ui_0.5.0\releaseNotes\readme.html (complete with
screenshots). The following is a summary of those steps (without the screen-
shots). You must follow these steps in order for the AJDT plug-in to work cor-
rectly.

The Eclipse Default Editor

Out of the box, Eclipse is designed to use the Java Development Tools (JDT)
editor. For the plug-in to work properly with aspects, you have to change the
default editor:

1. Select Window from the main menu and then choose Preferences.

2. Expand the Workbench entry and select File Associations

3. Click the *.java entry.

4. Click the AspectJ/Java Editor entry and click Default.

5. Click OK.

A Wizard Shortcut

1. Select Window from the main menu and choose Customize Perspective.

2. Expand the File New entry.

Using AspectJ Tools296

3. Click the Aspect and/or AspectJ Project button if you want them on the
New menu list.

Disable Early Indication

The Disable Early Indication option highlights errors while you type but it isn’t
AspectJ aware. The option doesn’t cause any problems, but it can be annoying.
To disable the option:

1. Select Window from the main menu, and then choose Preferences.

2. Expand the Java node.

3. Click Editor.

4. Select the Problem Indication tab.

5. Deselect the option Show Problems Before Compiling.

6. Click OK.

Things You Should Know

The release notes document provides information about the functionality of
Eclipse in cooperation with the AJDT plug-in. To summarize:

1. Changes to the code will not automatically change the view; only a rebuild
changes the view.

2. There is no incremental building in the IDE since AspectJ doesn’t support
this option in 1.0.6 or earlier; however, it is supported in 1.1.

3. The AJDT plug-in supports multiple builds. Select a different build using
the down arrow drop-down next to the Build button.

Eclipse Example

Let’s look at a simple example to see how we can use the AJDT plug-in with the
Eclipse IDE. We use example files and a build file from the chapter06 and chap-
ter12 directories of the example code. You can use the following steps for the
development of projects using AspectJ and Java:

1. Launch Eclipse.

2. Select File, then New, and then Project to bring up the New Project wizard.

3. In the first screen of the wizard, select AspectJ in the left window and
select AspectJ Project in the right window, as shown in Figure 11.21. Click
the Next button to continue.

4. Give the project a name and select the location where you want to place
the project directory. The default is in the workspace, as shown in Figure
11.22. Click Next to continue.

Using AspectJ IDE Extensions 297

Figure 11.21 The Eclipse AspectJ project dialog box.

Using AspectJ Tools298

Figure 11.22 Naming the project and selecting a location.

5. In the Java Settings window, you must add the AspectJ runtime JAR to the
project. Click the Libraries tab and then click the Add External Jars button.

6. In the resulting dialog box, find the aspectjrt.jar file in the
plugins/org.aspectj.ajde.1.0.5 directory of the default Eclipse installation.
Click the file and then click OK.

7. You should now see a screen like the one shown in Figure 11.23. Click Fin-
ish to continue building the new AspectJ project.

TE
AM
FL
Y

Team-Fly®

Figure 11.23 The Eclipse AspectJ project Java Settings dialog box.

8. The new project is loaded into the Eclipse IDE. To add source files to the
project that have already been created, click File, then Import. To add new
classes, packages, or interfaces to the project, click File, then New. For
this example, let’s use files from the chapter06 directory.

9. In the Import dialog box, double-click on the Filesystems entry to gain
access to the example files. In the Directory edit line, enter the path to the
chapter06 directory (or use the Browse button to locate the directory). The
files from the directory will be visible in the right window of the dialog
box. At this point, select the files that you wish to add to the current
project.

10. In the Destination Folder edit line, add the name of the project where you
want to put the imported files (or use the Browse button and select the
current project). Figure 11.24 shows the dialog box at this point.

11. Click the Finish button. The files are added to the current project; you can
display them by clicking the + expander button next to the project name,
as shown in Figure 11.25.

12. To build the project, click the Build button or select Rebuild Project from
the Project menu. The IDE launches the compiler and builds the entire
project.

13. To execute the built code, click the Run button (or select Run from the
Project menu). The IDE displays a Launch Configurations wizard that lets
you determine the class and method you want to use when launching the
project.

Using AspectJ IDE Extensions 299

Figure 11.24 The Import dialog box.

Using AspectJ Tools300

Figure 11.25 The Eclipse IDE with a project.

14. Click the Java Application entry in the Launch Configurations combo box
and expand the entry to automatically create a new launch configuration.
Give the configuration entry a name in the right part of the dialog box. The

project entry should be automatically filled; its value is based on the current
project. In the Main Class edit box, enter the class name Boxset since it con-
tains the main() method. Figure 11.26 shows the dialog box at this point.

The results of the project are displayed in the IDE, as shown in Figure 11.27.

Using AspectJ IDE Extensions 301

Figure 11.26 The Launch Configurations dialog box.

Figure 11.27 The Eclipse IDE.

Ant

Ant is a build tool designed to allow you to compile code across platforms and
without the problems associated with the various make tools. It is possible to
use Ant in the development process with AspectJ. The first step is to install Ant
from this Web site: http://jakarta.apache.org/builds/. Navigate through the vari-
ous directories and install an appropriate version of Ant. For this example, we
installed the Ant distribution at c:\ant.

In the directory where you would like to build a set of files, create a file called
build.xml and place the code shown in Listing 11.1 into it.

Using AspectJ Tools302

<project name="Product" default="init" basedir=".">

<property name="src" value="."/>

<property name="build" value="build"/>

<taskdef name="ajc" classname="org.aspectj.tools.ant.taskdefs.Ajc" >

<classpath>

<pathelement location="c:/ant/lib/aspectj-ant.jar"/>

<pathelement location="c:/aspectj1.0/lib/aspectjtools.jar"/>

</classpath>

</taskdef>

<target name="init">

<mkdir dir="${build}"/>

</target>

<target name="compile" depends="init">

<ajc srcdir="${src}" destdir="${build}" >

<classpath>

<pathelement location="c:/aspectj1.0/lib/aspectjrt.jar"/>

</classpath>

</ajc>

</target>

</project>

Listing 11.1 Example Ant build file.

Replace the paths in Listing 11.1’s code with the specific location of the JAR
files on your system. At a command prompt or terminal window, change to the
source directory and execute the build.xml file with the command

ant compile

In response, the system generates output like the following and places the
resulting class files into a directory called build:

C:\data\aop\software\chapter12\ant>ant compile

Buildfile: build.xml

init:

compile:

[ajc] Compiling 5 source and 0 arg files to

C:\data\aop\software\chapter12\ant\build

BUILD SUCCESSFUL

Total time: 3 seconds

C:\data\aop\software\chapter12\ant>

Debugging with AspectJ

Debugging is an activity required in all software development methodologies
and something all developers will be faced with at some point. It is important to
be able to walk through the source code when you’re faced with a tricky bug.
AspectJ supports source-level debugging according to FSR-45, which is also
written into Java 1.4’s debugger. If you are writing against 1.4, there is a good
chance that you can use any of the current development environments to walk
through the source code.

If your development environment doesn’t support AspectJ code debugging,
don’t despair. As long as you are using version 1.0.6 of AspectJ or earlier, the
language support tools include a debugger that you can use to walk through the
code. Version 1.1 isn’t supported by the AspectJ debugger tool (ajdb). The ajdb
application is currently able to debug AspectJ code in both a command-line and
GUI environment. The debugger is available only for AspectJ version 1.0
because it is expected that better FSR-45 support will be available in the com-
mon IDEs. The commands supported by ajdb are the same as those for Java’s
debugging tool, jdb, and can be found in the jdb documentation. We provide a
short tutorial here to get you started. Start the debugger by issuing the com-
mand jdb in the command-line version and jdb –gui in the GUI version. The full
command summary for the debugger is

ajdb <command-line options><class><arguments>

For command-line options you can use one or more of the command-line flags
listed here. The class option represents the class that you want to receive con-
trol once the debugger starts and arguments are passed to the starting class.

The command-line flags are

–classpath path—Specifies the path the executing code should use to find
CLASS files

Debugging with AspectJ 303

–Dname=value—Defines the property name with the starting value of
value.

–help—Displays the ajdb help summary.

–read file—Specifies a file to be read by the debugger with line-delimited
initialization commands.

–sourcepath path—Specifies the path the executing code should use to
find source files.

–gui—Launches the debugger into GUI mode.

–v | verbose [:class|:gc|:jni]—Provides additional information about class,
garbage collection, or dynamic library loading. The default is class loading.

–workingdir directory—Sets the working directory for ajdb.

–Xoption—Specifies Java Runtime Environment commands passed by the
debugger to the JRE.

An ajdb Command-line Tutorial
The ajdb tool works in a manner identical to jdb; therefore, this tutorial will be
a short introduction to the tool. This tutorial begins with the execution of the
ajdb tool.

Compile the project that you wish to debug with the AspectJ compiler using the
–preprocess command-line option. For this tutorial, we are compiling the
Boxset class in the chapter06 code. The compiler command used within the
c:\data\aop\software\chapter06 directory is

ajc –preprocess Product.java DVD.java DVDException.java Boxset.java

Start the command-line debugger by typing ajdb in a command prompt or ter-
minal window. The tool first displays the default working directory it will be
using. Let’s assume that you started the compiler and debugger in the same
directory and did not specify a working directory for the –preprocess com-
mand-line option. (If you did specify a working directory, you must provide the
same working directory to the debugger by using the –workingdir option.)

In this example, let’s debug the add() method associated with the Boxset class.
The first thing we need to do is tell the debugger where it can find the source
files for the project. The use command handles this job:

use c:\data\aop\software\chapter06 directory

One difference between ajdb and jdb is the ajdb’s ability to list the contents of
a file within the debugger before starting to debug it. For example, we want to
debug the add() method of the Boxset class. Let’s use the following list
command:

list Boxset.java

Using AspectJ Tools304

The options available for the list command are

no option—Lists the source code containing the point the debugger is cur-
rently stopped at; this requires a running virtual machine.

class—Lists the specified class.

class linenumber—Displays line number linenumber of the class class.

class start end—Displays lines start through end of the class class.

Figure 11.28 shows what the output from the debugger looks like up to this
point.

Debugging with AspectJ 305

Figure 11.28 ajdb example output.

Next, let’s set a breakpoint on the main() method of the Boxset class with the
stop command:

stop on Boxset.main

The command is accepted by the debugger; the resulting output looks like this:

> stop on Boxset.main

Set breakpoint Boxset.main

Deferring breakpoint Boxset.main

It will be set after the class is loaded.

>

Although this resembles an error message, it isn’t, because the debugger hasn’t
loaded the Boxset class yet and cannot set the breakpoint until it does. The
message just informs us that the breakpoint will be set when the class is loaded.

Once the breakpoint is set, we can instruct the debugger to execute the code
using the command run:

run Boxset

When the debugger comes to the breakpoint, it will interrupt execution, display
breakpoint information, and wait for you to enter a command. For example:

Breakpoint hit: thread="main", Boxset.main(), line=34, bci=0

34 Boxset boxset = new Boxset("Star Wars");

main[1]

The main[1] code is an ajdb command prompt and will poll until you enter a
command. You can access a list of the available commands by typing the help

command.

One of the commands, step, will execute the command at the current cursor
position. Based on the code in line 8, the debugger sits on line 34 waiting to
instantiate a new Boxset object. When the statement is executed, the debugger
outputs step information as well as the next line in the application. For exam-
ple, the following output is generated when the step command is executed:

Step completed: thread="main", Boxset.<init>(), line=9, bci=0

9 public Boxset(String inTitle) {

main[1]

If you are interested in seeing the values of current local variables, use the com-
mand locals. For example:

main[1] locals

Method arguments:

inTitle = "Star Wars"Local variables:

main[1]

You can change a variable by using the set command. For example:

main[1] set inTitle = "Star Wars set"

Changed 'inTitle' from '"Star Wars"' to '"Star Wars set"'

main[1]

When you finished debugging the application, enter the exit command at the
main[1] command prompt.

It is possible to set a breakpoint on the aspect code using the information con-
tained in the BoxsetAspect.java class source file. The method that will be called
when a join point is found is called before0$ajc. Using the stop command, you
can set a breakpoint on the method. For example, the command

Stop on BoxsetAspect.before0$ajc

Using AspectJ Tools306

produces output like this:

Breakpoint hit: thread="main", BoxsetAspect.<advice #>(), line=12, bci=0

12 System.out.println(thisJoinPoint.toLongString());

main[1]

It is also possible to use the stop command to set a breakpoint based on a line
number. For example:

Stop on BoxsetAspect.java:13

This aspect will cause a breakpoint to be added to the add() method.

An ajdb GUI Tutorial
The ajdb tool also has a GUI component that makes using the debugger easier
for those without ajdb experience. The GUI is designed to provide the most
basic jdb commands in a button/menu format but still allows the developer
to enter individual commands manually. Let’s see how to use the graphical
debugger.

Begin by executing the debugger with the following command to produce the
application shown in Figure 11.29:

ajdb –gui

Debugging with AspectJ 307

Figure 11.29 The ajdb GUI starting screen.

Once the debugger starts, you can access most of the common jdb commands
from the menu or by clicking the buttons at the bottom of the window. To start
using the debugger, you must specify the source location of the files you want
to debug by using the use command. There three ways to accomplish this task:
Click the SRC button at the bottom of the window, select Use from the main
menu, or type the command in the Command text box. The button and menu
will bring up a dialog box where you can enter the path to the source. Use one
of these methods to specify the source code location for the files you want to
debug. Our example uses c:\data\aop\software\chapter06. Regardless of how
you accomplish this task, the debugger will display the outcome in the right-
most window of the application.

Now set a breakpoint for the main() method of the Boxset class by typing the
command, by clicking the button that looks like a green arrow on a red button,
or by selecting Breakpoint from the main menu. The menu and button display a
dialog box, as shown in Figure 11.30. You have the option of setting a method
breakpoint on a class method, a line number based on a class, or a line number
based on a source file. In Figure 11.30, we have specified a method breakpoint.

Using AspectJ Tools308

Figure 11.30 The Set A Breakpoint dialog box in ajdb.

After you’ve set the appropriate breakpoints, it is time to execute the applica-
tion. Do this by selecting either the large green arrow at the bottom of the win-
dow or choosing Run from the Main menu. A dialog box will appear prompting
you for the class you want to execute. Enter the name of a class if it contains a
main() method or a class.method combination.

The debugger will begin the execution of the application and display console
messages in the right window.

TE
AM
FL
Y

Team-Fly®

Breakpoint Lines

In both the command-line and GUI versions of the debugger, you can set break-
points based on lines numbers; however, the debugger must be in the middle of
execution in order for the breakpoints to be set. Once a single breakpoint has
been triggered, you can use the stop on command to set the line number break-
points. An example of a line breakpoint is

stop on Boxset:54

This breakpoint is triggered when the debugger hits line 54 of the Boxset class
once the application starts to execute again.

Using ajdoc

The AspectJ documentation creator tool (ajdoc) lets you output AspectJ pro-
jects in the same format that Javadoc handles traditional Java projects. The
new tool takes all Java or .aj files provided to it and relates all the methods, join
points, and advice. The classes in the project will be fully documented between
the primary Java and AspectJ code. The format for using ajdoc is

ajdoc <options> <packagenames> <sourcefiles> <classnames> <@files>

The command line for the tool includes various option flags, package names
you can include in the documentation, source files you can use as input, class
names you want to include, and possible @ files.

The options available to the ajdoc tool are

–argfile file—Specifies a line-delimited file consisting of files to be used in
the command line. For example: ajdoc –argfile tobeincluded.txt.

–bootclasspath path—Specifies a path to the files needed by the bootstrap
classloader. Using this option overrides the default location path.

–classpath path—Specifies the location(s) for CLASS files needed for exe-
cution of the primary Java code.

–encoding encoding—Specifies the encoding used in the source files.

–extdirs path—Specifies the path to the installed extensions. Using this
option overrides the default location path.

–help—Displays the help information compiled into the command.

–locale name—Specifies the locale you want to use with the command.

–log—Tells the tool to log each pass necessary for document creation.

–overview file—Specifies an HTML file you want to use as overview docu-
mentation in the final output.

Using ajdoc 309

–public—Specifies that the tool should only show public classes and
members.

–protected—Specifies the tool should only show public and protected
classes and members.

–package—Specifies the tool should only show package/protected/public
classes and members.

–private—Specifies the tool should show all classes and members.

–sourcepath path—Specifies the path to where source files can be found.

–standard—Specifies that the com.sun.tools.doclets.standard.Standard
doclet should be used.

–verbose—Specifies the tool should show display messages about its
execution.

An ajdoc Example
Producing documents for your Java code and aspects is quite easy with the
ajdoc application. While all the kinks aren’t worked out of the applications yet,
in general you will find the application works as you’d expect. Consider some
of the code from Chapter 6. The Boxset class inherits from Product and also has
an associated aspect in BoxAspect. We can produce documentation for these
three classes/aspects with the following command:

ajdoc –d doc –standard –private Boxset.java BoxsetAspect.java

Product.java

After we enter this command in a terminal window or command prompt, the
application sends the following output to the console:

Starting compile...

Loading source file C:\data\aop\software\chapter06\Boxset.java...

Loading source file C:\data\aop\software\chapter06\BoxsetAspect.java...

Loading source file C:\data\aop\software\chapter06\Product.java...

Creating root...

Generating documentation...

Standard Doclet version 1.4.0

Generating doc\constant-values.html...

Building tree for all the packages and classes...

Building index for all the packages and classes...

Generating doc\overview-tree.html...

Generating doc\index-all.html...

Generating doc\deprecated-list.html...

Building index for all classes...

Generating doc\allclasses-frame.html...

Generating doc\allclasses-noframe.html...

Using AspectJ Tools310

Generating doc\index.html...

Generating doc\packages.html...

Generating doc\Boxset.html...

Generating doc\BoxsetAspect.html...

Generating doc\Product.html...

Generating doc\package-list...

Generating doc\help-doc.html...

Generating doc\stylesheet.css...

The HTML for the documentation of the selected classes and all their members
is written to the doc directory. As you can see by checking the information
displayed on the console, all the standard Javadoc files are written. Figure 11.31
shows the class hierarchy of the classes provided to the application. Notice the
BoxsetAspect aspect is shown as a class instead of an aspect in order to main-
tain consistency with Javadoc.

What’s Next 311

Figure 11.31 The Boxset hierarchy from ajdoc.

What’s Next

In this chapter, we devoted considerable attention to the numerous support
application provided in the AspectJ system. Debuggers and IDE extensions
allow for comprehensive solutions necessary for the complete adoption of
aspect-oriented programming and especially AspectJ. In the next chapter, we
analyze the errors that you might encounter in both the compile and execution
phases of AspectJ.

Throughout the development cycle with aspect-oriented programming
and AspectJ, you will develop code and attempt compilations that pro-
duce errors. You will also want to do things with AspectJ that aren’t pos-

sible based on the current implementation of the language. This chapter brings
together many of the errors and limitations the authors have experienced, as
well as some from the AspectJ mailing list. We hope this information will help
you through the difficult times when you’re using the language.

Compilation Errors

A compilation error can occur when the Java or AspectJ compiler is executed
against a single file or a group of files. This section introduces errors commonly
encountered during the compile phase.

Wrong Compiler
Consider the following class snippet:

public class CompileTest {

public CompileTest() {

//do nothing default constructor

}

private aspect CompileTestAspect {

pointcut grabConstructor() : execution(CompileTest.new());

Error Handling and Common
Problems

C H A P T E R12

313

before() : grabConstructor() {

System.out.println("I’m in the constructor");

}

}

}

Suppose you try to compile this code with the following command:

java –classpath "c:\aspectj1.0\lib\aspectjrt.jar"

CompileTest.java

Most of us are familiar with using the Java compiler, and won’t anticipate any
error with this compile attempt. However, the compiler will immediately flag
the keyword aspect as a syntax error. Here is the error produced:

CompileTest.java:6: ';' expected

private aspect CompileTestAspect {

^

CompileTest.java:6: cannot resolve symbol

symbol : class aspect

location: class CompileTest

private aspect CompileTestAspect {

^

2 errors

You can’t use the standard Java compiler to compile a class file that contains
AspectJ code. You must first use the AspectJ compiler, ajc; it will in turn exe-
cute the Java compiler if the -preprocess command-line flag isn’t used. If you
use the -preprocess flag in the execution of the AspectJ compiler, you can use
the Java compiler to compile the previously weaved code contained in the
working directory where ajc places the files.

Unable to Find Aspectjtools.jar
Using the same source code provided for the previous example, you can see
another error when you use the AspectJ compiler to compile the class. Con-
sider this command for executing the compiler.

C:\data\aop\software\chapter12>ajc -classpath

"c:\aspectj1.0\lib]aspectjrt.jar" CompileTest.java

This command will not work correctly, and a rather extensive error will be
generated:

Can't find org.aspectj.lang.JoinPoint on your classpath anywhere.

You need to include aspectjrt.jar on your classpath when

compiling or

running applications with ajc.

See README-TOOLS.html in the top directory of

the distribution for more details on how to configure this

correctly.

Error Handling and Common Problems314

I looked in:

c:\j2sdk1.4.0_01\jre\lib\rt.jar

c:\j2sdk1.4.0_01\jre\lib\i18n.jar<not found>

c:\j2sdk1.4.0_01\jre\lib\sunrsasign.jar

c:\j2sdk1.4.0_01\jre\lib\jsse.jar

c:\j2sdk1.4.0_01\jre\lib\jce.jar

c:\j2sdk1.4.0_01\jre\lib\charsets.jar

c:\j2sdk1.4.0_01\jre\classes

c:\j2sdk1.4.0_01\jre\lib\ext\dnsns.jar

c:\j2sdk1.4.0_01\jre\lib\ext\ldapsec.jar

c:\j2sdk1.4.0_01\jre\lib\ext\localedata.jar

c:\j2sdk1.4.0_01\jre\lib\ext\sunjce_provider.jar

c:\aspectj1.0\lib]aspectjrt.jar<not found>

This error results when the AspectJ compiler is unable to find the aspectrt.jar
file in your classpath. Although it appears that you included the file in your
classpath, further analysis of the command reveals a] character in the path to
the JAR file instead of a \ character. The system doesn’t flag the wrong charac-
ter, but instead returns an error saying the JAR file cannot be found. The same
error will be produced no matter why the system can’t find the file. To find the
root cause, note that the AspectJ compiler command, ajc, is ultimately a script
file for executing a Java virtual machine (JVM) and providing it with a class to
execute that handles the code necessary to compile the aspect code. The code
for the execution of the AspectJ compiler is as follows:

"%JAVA_HOME%\bin\java" –classpath "%ASPECTJ_HOME

%\lib\aspectjtools.jar;%JAVA_HOME%\lib\tools.jar;%CLASSPATH%"

-Xmx64M org.aspectj.tools.ajc.Main %1 %2 %3 %4 %5%6 %7 %8 %9

Notice the execution of the Java Runtime using a classpath and a number of
options. One of those options is the class to execute: org.aspectj.tools.ajc.Main.
Without the aspectjrt.jar file, the compiler cannot execute.

Out of Memory Error
Sometimes the JVM associated with the compiler runs out of memory dur-
ing the compilation of a project. Such projects are large, with numerous
classes and aspects. When this occurs, you need to open the ajc compiler
script or batch file and change the JVM memory option from its initial flag
of -Xmx64M to a larger value such as -Xmx128M or -Xmx256M.

Wrong JSDK
When you install the AspectJ compiler and support JAR files on the local sys-
tem through the installation wizard, the wizard asks for the location of the Java
Software Development Kit (JSDK). This path is put into the compiler startup

Compilation Errors 315

scripts, which are located in the /bin directory of the AspectJ installation. The
Windows batch file contains the following information:

@echo off

REM This file generated by AspectJ installer

REM Created on Sat Jul 13 07:24:01 MDT 2002 by User

if "%JAVA_HOME%" == "" set JAVA_HOME=C:\Program

Files\Java\j2re1.4.0_01

if "%ASPECTJ_HOME%" == "" set ASPECTJ_HOME=c:\aspectj1.0

if exist "%JAVA_HOME%\bin\java.exe" goto haveJava

if exist "%JAVA_HOME%\bin\java.bat" goto haveJava

if exist "%JAVA_HOME%\bin\java" goto haveJava

echo java does not exist as %JAVA_HOME%\bin\java

echo please fix the JAVA_HOME environment variable

:haveJava

"%JAVA_HOME%\bin\java" -classpath

"%ASPECTJ_HOME%\lib\aspectjtools.jar;%JAVA_HOME%\lib\tools.jar;

%CLASSPATH%" -Xmx128M org.aspectj.tools.ajc.Main %1 %2 %3 %4 %5

%6 %7 %8 %9

If you change JSDK versions, you don’t want to go through the hassle of rein-
stalling AspectJ—and you don’t need to. Just open the shell script or bat file in
the /bin directory (depending on your operating system) and edit the line that
sets JAVA_HOME to a specific version. Note that if the environment already
has a variable named JAVA_HOME and that variable is set to a value, the set
command for JAVA_HOME will be skipped. So, if you previously set
JAVA_HOME in your .cshrc file or through the Environment Variables button
under Windows, you don’t need to change the startup scripts for the compiler.

No Java Compiler
The AspectJ compiler requires the use of several JAR files in the system. The
first is the aspectjrt.jar file located in the /lib directory of the AspectJ installa-
tion. The second is the tools.jar file located in the Java installation. However, if
the system is unable to find the tools.jar file located in the /lib directory of the
Java SDK installation, an error will be produced.

An error can also result if the JAVA_HOME path isn’t valid, because the first
thing the AspectJ compiler script does is try to execute the java command.
Such an error might look like this:

java does not exist as c:\j2sdk1.4.0_011\bin\java

please fix the JAVA_HOME environment variable

The system cannot find the path specified.

In such cases, you need to verify the JAVA_HOME environment variable or the
value placed in the compiler script.

Error Handling and Common Problems316

Extended Runtime Error Handling

Runtime errors can occur during the execution of a primary application that
has been enhanced with AspectJ code. Other times, the code may not work as
you expect. In this section, we’ll cover the most common situations in which
these problems take place.

Stack Overflow
If you aren’t careful, an overflow condition can occur. Consider the following
Java code:

public class Recursive {

public print() {

System.out.println("Test");

}

public static void main(String args[]) {

Recursive recursive = new Recursive();

recursive.print();

}

}

Now let’s build a simple aspect that matches any println() statements in the
Java primary code:

public aspect RecursiveAspect {

pointcut print() : call(* System.out.println(..));

before() : print() {

System.out.println(thisJoinPoint.getSignature());

}

}

This aspect matches on the println() method call and displays the signature
where the match was found. If you compile and execute this code, you will
receive a stack overflow. In addition, the output will not be what you expect—
you expect a single signature to be displayed, but lines of output will begin to
scroll off your screen.

The problem with the code is the System.out.println() method call in the advice
of the aspect. This output call will also be matched, thus calling the advice,
which calls println()—and thus a recursive situation is formed. It is a good idea
to use either this() or target() designators to limit the scope of the match. You
can also use the negation operator, !, to exclude classes/aspects.

Join Point Not Matching
One of the most frustrating parts of using AspectJ happens when you execute
the primary and aspect code—and code you expect to execute, doesn’t. The

Extended Runtime Error Handling 317

problem is most likely in the join point definition of an aspect. In this section,
we’ll consider some of the different errors that can occur when you’re writing
join point definitions.

Misspelled Name

The join points for an aspect are based on method signatures and object class
names. When the AspectJ compiler compiles the aspect code and weaves it into
the primary Java code, all attempts will be made to match the join points in the
aspect against the methods or possibly the classes in the primary code. If a
match can be made, appropriate changes are made to the primary code based
on the pointcut’s advice. If a match cannot be made against a join point and
methods/classes in the primary code, then the join point’s advice code is not
added to the primary code. Consider the following code:

public class CompileTest {

public CompileTest() {

}

public int returnOne() {

return 1;

}

public static void main(String args[]) {

CompileTest compileTest = new CompileTest();

compileTest.returnOne();

}

private static aspect CompileTestAspect {

pointcut grabOne() : call(* *.return1());

before() : grabOne() {

System.out.println("I've got One");

}

}

}

In the primary code, the returnOne() method returns the value 1 to the caller.
An aspect associated with the code has a pointcut called grabOne(). The desig-
nator used in the pointcut is a call that attempts to match a join point called
return1(), which is associated with any object in the primary code. When the
code is executed, the before() advice for the grabOne() pointcut does not fire,
because the AspectJ compiler is unable to make a match between the return1()
join point and any of the methods in the primary code class.

The concept of correct join point matching can extend to the join point’s para-
meters. If the join point specifies that there are no parameters but the methods
of the class all have parameters, no match will be made.

Error Handling and Common Problems318

TE
AM
FL
Y

Team-Fly®

No Package Declaration

When you’re using join points that are part of a package, you must be careful
how the join point is written in a pointcut designator. Consider the following
example primary code:

package com.gradecki;

public class CompileTest2 {

public CompileTest2() {

}

public int returnOne() {

return 1;

}

public static void main(String args[]) {

CompileTest2 compileTest = new CompileTest2();

compileTest.returnOne();

}

}

The CompileTest2 class is contained in a package declaration starting with
com.gradecki. Now consider the following aspect:

public aspect CompileTest2Aspect {

pointcut grabOne() : call(* CompileTest2.returnOne());

before() : grabOne() {

System.out.println("I've got One");

}

}

This aspect contains a join point definition designed to match against the
returnOne() method of the CompileTest2 class. When the AspectJ compiler
begins the weaving process, it tries to find the appropriate class/method based
on the code in its intermediate directory. Unfortunately, there is no Compil-
erTest2 class in the intermediate directory, because the class is in a path of
com.gradecki. In order to match a join point associated with a class/method in
a package, you must use either the package or wildcards. The following two
aspects show the possibilities:

public aspect CompileTest2Aspect {

pointcut grabOne() : call(* com.gradecki.CompileTest2.returnOne());

before() : grabOne() {

System.out.println("I've got One");

}

}

public aspect CompileTest2Aspect {

pointcut grabOne() : call(* *.returnOne());

before() : grabOne() {

Extended Runtime Error Handling 319

System.out.println("I've got One");

}

}

More Subtype Matching

Let’s look at another common problem when you’re writing aspects that you
want to match all calls to methods declared in a class or its derived classes. The
designator is written as follows, assuming a class name of Foo:

call(* Foo+.*(..))

This call designator says to match all methods of Foo or its derived classes,
regardless of return type, method name, or the type/number of method para-
meters. However, this will not match methods like toString(), hashCode(), and
so on.

To absolutely match all methods, you can use the following designator:

call(* *(..)) && target(Foo)

Here, the call designator matches all methods called on any method in the sys-
tem—something you will probably never do except when combined with the
target designator as in the example. The call() designator is combined with tar-
get(Foo) to narrow the matched calls to those where the target object is Foo.
The new designator will match toString(), and so forth.

Type/Type+ Commonality

As you read the mailing lists and other materials for AspectJ, you will note that
in some places a type name like Foo is used, and in other places the name is
Foo+. As we mentioned in Chapter 5, “Join Points,” Foo matches only against
the Foo class, whereas Foo+ matches on Foo and any derived classes. As you
write aspects you must pay attention to this distinction, because in many cases,
you will want to write Foo+ instead of Foo in order to handle extensions to
your code.

Matching All Types

If you are interested in matching all types in a package or subpackage, the type
pattern must be in the following format:

call(com.gradecki..*);

Notice the two periods (..) between the text and *. This double period is a wild-
card indicator just like that used in parameters:

call(void int myFoo(..));

Error Handling and Common Problems320

Improper Use of args()

Another possible problem when you’re defining join points and pointcuts is the
use of logical operators and the args() designator. Consider the following pri-
mary code method:

public void showTwo(int a, float b) {

}

Suppose you want to build a pointcut to match the showTwo signature, and the
pointcut should have two parameters of type int and float. You use the call()
and args() designators for this purpose, combined with a logical AND operator.
Here’s one possibility for the definition of the pointcut:

pointcut matchShowTwo() : call(public void showTwo(..)) &&

args(int) &&

args(float);

At first glance, it appears the pointcut has been created to match a call to the
showTwo() method that has zero or more parameters and also two arguments
(a and b) passed back to the pointcut advice. However, args(int) && args(float)
really says to match on the method showTwo() that has one argument where
the first parameter is both of type int and float. Obviously this cannot happen,
so the pointcut will never be triggered.

The problem comes down to the args() designator, which is supposed to use
comma separators between the parameters. For example:

pointcut matchShowTwo() : call(public void showTwo(..)) &&

args(int, float);

This new pointcut tells the system to match the showTwo() method where the
arguments to the method are defined as int followed by float.

Using call() && execution()

A very common error occurs during the development of aspects when you
attempt to match a call and execution of a method. For example:

call(* Foo.getFoo(..));

This designator will match all calls to the Foo.getFoo()

methods. Now consider

execution(* Foo.getFoo(..));

This designator matches the execution of the method Foo.getFoo(). What does
the following join point match?

call(* Foo.getFoo(..)) && execution(* Foo.getFoo(..));

Nothing! There can never be a point in the execution of code where both the
call and execution occur at the same time.

Extended Runtime Error Handling 321

Using the IDE to Determine Join Point Access

Chapter 11, “Using Aspect J Tools,” discusses the use of IDEs for AspectJ devel-
opment. Note that if you aren’t able to get an aspect to match on a join point
successfully, turning to one of the IDEs may be the right decision—most pro-
vide indicators in the code where a match will be made.

Exception Throwing and Catching

A recent mailing list thread discussed join points for catching exceptions—
either thrown and caught or thrown and not caught. Ultimately, the system will
catch an exception if no other catch() is capable. Consider the following pri-
mary and aspect code:

public class CompileTest3 {
public CompileTest3() {
}

public int returnOne() {
try {

int i[] = new int[1];
i[4] = 1;

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("In catch");
return 0;

}
return 1;

}

public int returnTwo() {
int i[] = new int[1];
i[4] = 1;
return 2;

}

public static void main(String [] args) {
CompileTest3 compileTest = new CompileTest3();
System.out.println(compileTest.returnOne());
System.out.println(compileTest.returnTwo());

}

private static aspect CompileTestAspect {
pointcut grabHandler() : handler(ArrayIndexOutOfBoundsException);
pointcut grabMain() : execution (void main(..));

after() : grabHandler() {
System.out.println("In Handler");

}

before() throwing(ArrayIndexOutOfBoundsException e) :
grabMain() {

Error Handling and Common Problems322

System.out.println("In main");
}

}
}

This CompileTest3 class has two methods called returnOne() and returnTwo().
Both methods make the mistake of allocating memory in a small integer array
but use a cell outside of the currently allocated bounds. In returnOne(), the
code for allocating and using the array is wrapped by a try-catch block. In
returnTwo(), there is no try-catch block. You are interested in catching both
exceptions when they are thrown, due to the i[4]=1; statement.

Two pointcuts are defined In the aspect. The first one, grabhandler(), uses the
handler designator to specify that the pointcut should be triggered when a
catch handler is activated to handle an ArrayIndexOutOfBoundsException.
The advice is to be executed before the actual handler code. The second point-
cut, grabMain(), has an execution designator with a join point defined to be the
main() method. Obviously, this pointcut alone won’t catch any exceptions.

Moving to the advice, you see the grabHandler pointcut assigned to before
advice. This advice will execute when any catch code is executed. The grab-
Main pointcut is used with an after() throwing advice designator. So, if an
ArrayIndexOutOfBoundsException is thrown and not handled, this advice
code will execute.

The result of running the previous code is as follows:

In Handler

In catch

0

In main

Exception in thread "main" java.lang.ArrayIndexOutOfBoundsException

at CompileTest3.returnTwo(CompileTest3.java:18)

at CompileTest3.main(CompileTest3.java:25)

The code begins displaying output when the array exception is thrown and exe-
cution transfers to the before() advice. Once the code in the advice finishes, the
code in the catch() block executes, returning 0 to the main method. Next, the
returnTwo() method executes, and another exception is thrown but not caught.
After the exception is thrown, the after() advice code executes; then the Java
system outputs the error to the console, because no catch() blocks are defined
to catch the second exception.

Using TraceJoinPoints.java

Some time ago, a discussion on the AspectJ mailing list talked about tracing
join points in a piece of code. The result of the discussion was a piece of

Using TraceJoinPoints.java 323

AspectJ code designed to trace all the join points in an application and output
those join points in XML format. Listing 12.1 shows the TraceJoinPoints.java
aspect.

Error Handling and Common Problems324

//---------------------- TraceJoinPoints.java

/*

Copyright (c) Xerox Corporation 2001, 2002. All rights reserved.

Use and copying of this software and preparation of derivative

works based upon this software are permitted. Any distribution

of this software or derivative works must comply with all

applicable United States export control laws.

This software is made available AS IS, and Xerox Corporation

makes no warranty about the software, its performance or its

conformity to any specification.

*/

package aj;

import org.aspectj.lang.*;

import org.aspectj.lang.reflect.*;

import java.io.*;

public abstract aspect TraceJoinPoints dominates * {

protected abstract pointcut entry();

protected pointcut exit(): call(* java..*.*(..));

final pointcut start(): entry() && !cflowbelow(entry());

final pointcut trace():

cflow(entry()) && !cflowbelow(exit()) && !within(TraceJoinPoints+);

before(): start() { makeLogStream(); }

before(): trace() { logEnter(thisJoinPointStaticPart); }

after(): trace() { logExit(thisJoinPointStaticPart); }

after(): start() { closeLogStream(); }

//------------ added

/**

* Emit a message in the log, e.g.,

* <pre>TraceJoinPoints tjp = TraceJoinPoints.aspectOf();

* if (null != tjp) tjp.message("Hello, World!");</pre>

*/

Listing 12.1 The TraceJoinPoints.java aspect. (continues)

Using TraceJoinPoints.java 325

public void message(String s) {

out.println("<message>" + prepareMessage(s) + "</message>");

}

public void message(String sink, String s) {

if (null == sink) {

message(s);

} else {

out.println("<message sink=" + quoteXml(sink)

+ " >" + prepareMessage(s) + "</message>");

}

}

protected String prepareMessage(String s) { return s; } //

XXX implement

//--------- end of added

PrintStream out;

int logs = 0;

protected void makeLogStream() {

try {

out = new PrintStream(new FileOutputStream("log" +

logs++ + ".xml"));

} catch (IOException ioe) {

out = System.err;

}

}

protected void closeLogStream() {

out.close();

}

int depth = 0;

boolean terminal = false;

protected void logEnter(JoinPoint.StaticPart jp) {

if (terminal) out.println(">");

indent(depth);

out.print("<" + jp.getKind());

writeSig(jp);

writePos(jp);

depth += 1;

terminal = true;

}

void writeSig(JoinPoint.StaticPart jp) {

out.print(" sig=");

Listing 12.1 The TraceJoinPoints.java aspect. (continues)

Error Handling and Common Problems326

out.print(quoteXml(jp.getSignature().toShortString()));

}

void writePos(JoinPoint.StaticPart jp) {

SourceLocation loc = jp.getSourceLocation();

if (loc == null) return;

out.print(" pos=");

out.print(quoteXml(loc.getFileName() +

":" + loc.getLine() +

":" + loc.getColumn()));

}

String quoteXml(String s) {

return "\"" + s.replace('<', '_').replace('>', '_') +

"\"";

}

protected void logExit(JoinPoint.StaticPart jp) {

depth -= 1;

if (terminal) {

out.println("/>");

} else {

indent(depth);

out.println("</" + jp.getKind() + ">");

}

terminal = false;

}

void indent(int i) {

while (i-- > 0) out.print(" ");

}

}

Listing 12.1 The TraceJoinPoints.java aspect. (continued)

The TraceJoinPoints aspect is abstract and must be derived from in order to
operate correctly. Listing 12.2 shows an example of using the aspect.

import aj.TraceJoinPoints;

public class CompileTest4 {
private int [] i;

public CompileTest4() {

Listing 12.2 Using the TraceJoinPoints.java aspect. (continues)

Using TraceJoinPoints.java 327

}

public int returnOne() {
try {

i = new int[1];
i[4] = 1;

} catch(ArrayIndexOutOfBoundsException e) {
System.out.println("In catch");
return 0;

}
return 1;

}

public int returnTwo() {
i = new int[1];
i[4] = 1;
return 2;

}

public static void main(String [] args) {
CompileTest4 compileTest = new CompileTest4();
System.out.println(compileTest.returnOne());
System.out.println(compileTest.returnTwo());

}

private static aspect CompileTestAspect {
pointcut grabHandler() : handler(ArrayIndexOutOfBoundsException);
pointcut grabMain() : execution (void main(..));

before(): grabHandler() {
System.out.println("In Handler");

}

after() throwing(ArrayIndexOutOfBoundsException e) :
grabMain() {

System.out.println("In main");
}

}
}

public aspect CompilerTestAspect extends TraceJoinPoints {
protected pointcut entry() :

execution(static void CompileTest4.main(String[]));

public static void main (String[] args) {
CompileTest4.main(args);

}
}

Listing 12.2 Using the TraceJoinPoints.java aspect. (continued)

The aspect CompilerTestAspect extends the TraceJoinPoints aspect and over-
rides the entry and main methods of the aspect. The entry point for most appli-
cations is a main() method, but it can be any other valid method of a class. The
rest of the code executes and performs various common Java activities like
constructor calls, method calls, attribute access, and exceptions. The result of
the TraceJoinPoints aspect on the primary Java code is as follows:

- <method-execution sig="CompileTest4.main(..)"

pos="CompileTest4.java:26:3">

- <constructor-call sig="CompileTest4()"

pos="CompileTest4.java:27:32">

- <initialization sig="CompileTest4()"

pos="CompileTest4.java:3:27">

<instanceinitializer-execution sig="CompileTest4._init_"

pos="CompileTest4.java:3:1" />

<constructor-execution sig="CompileTest4()"

pos="CompileTest4.java:6:3" />

</initialization>

</constructor-call>

<field-get sig="System.out" pos="CompileTest4.java:28:12" />

- <method-call sig="CompileTest4.returnOne()"

pos="CompileTest4.java:28:24">

- <method-execution sig="CompileTest4.returnOne()"

pos="CompileTest4.java:9:3">

<field-set sig="CompileTest4.i" pos="CompileTest4.java:11:7"

/>

<field-get sig="CompileTest4.i" pos="CompileTest4.java:12:7"

/>

- <initialization sig="CompileTest4.CompileTestAspect()"

pos="CompileTest4.java:32:43">

<instanceinitializer-execution

sig="CompileTest4.CompileTestAspect._init_"

pos="CompileTest4.java:32:3" />

<constructor-execution sig="CompileTest4.CompileTestAspect()"

pos="CompileTest4.java:32:3" />

</initialization>

<staticinitialization

sig="CompileTest4.CompileTestAspect._clinit_"

pos="CompileTest4.java:32:3" />

- <advice-execution sig="ADVICE:

CompileTest4.CompileTestAspect.before()"

pos="CompileTest4.java:36:5">

<field-get sig="System.out" pos="CompileTest4.java:37:15" />

<method-call sig="PrintStream.println(..)"

pos="CompileTest4.java:37:8" />

</advice-execution>

- <exception-handler

sig="catch(ArrayIndexOutOfBoundsException)"

pos="CompileTest4.java:13:7">

Error Handling and Common Problems328

TE
AM
FL
Y

Team-Fly®

<field-get sig="System.out" pos="CompileTest4.java:14:14" />

<method-call sig="PrintStream.println(..)"

pos="CompileTest4.java:14:7" />

</exception-handler>

</method-execution>

</method-call>

<method-call sig="PrintStream.println(..)"

pos="CompileTest4.java:28:5" />

<field-get sig="System.out" pos="CompileTest4.java:29:12" />

- <method-call sig="CompileTest4.returnTwo()"

pos="CompileTest4.java:29:24">

- <method-execution sig="CompileTest4.returnTwo()"

pos="CompileTest4.java:20:3">

<field-set sig="CompileTest4.i" pos="CompileTest4.java:21:5"

/>

<field-get sig="CompileTest4.i" pos="CompileTest4.java:22:5"

/>

</method-execution>

</method-call>

</method-execution>

The output from the aspect clearly shows the join points available in the pri-
mary code as well as an encapsulation of where they will be when executed. All
this information is helpful when you’re creating join points and limiting them
with cflow and cflowbelow.

Differentiating Between Call and Execution
Designators

A common discussion point on the mailing lists centers around a call() desig-
nator versus execution() and how those designators interact with the
within/withincode and other issues. Briefly, you know that call() is matched
when a caller makes a method call against a callee object. The call() will always
be matched before the called method executes. However, the scope of the call()
designator doesn’t end until the method returns or throws an exception. In the
case of the execution() designator, it is matched when the method begins to
execute and continues until after the last statement. The execution() designa-
tor is always within the scope of a call() designator if one is matched.

Using this() and target()
In this section, we’ll to consider situations where the call() and execution()
designators are combined with this() and target(). There are four combinations
and possible results, as Table 12.1 shows.

Differentiating Between Call and Execution Designators 329

Table 12.1 Possible combinations of call/execution with this/target

&& THIS() TARGET()

call() A type in the this() designator, A type in target(), target(DVD), means
this(DVD), means the call join the call join point will match when the
point must be made from join point is associated with a DVD
a DVD object. object.

A variable in this(), this(obj), will A variable in target(), target(obj), will pass
pass the object making the call the object that is the recipient of the join
to the advice. point.

execution() A type in the this() designator, A type in target(), target(DVD), means the
this(DVD), means the executing call join point will match when the
join point must be within execution is occurring in the specified
a DVD object. type.

A variable in this(), this(obj), will A variable in target(), target(obj), will pass
pass the object executing the the object executing the join point.
join point to the advice.

Effects of within/withincode
Dealing with the within()/withincode() designators can be tricky when you’re
using call() and execution(). A call() designator combined with within() or
withincode() will be matched only when the join point method associated with
call() is found within the execution of the code matched by within()/within-
code().

Consider a method called A(). within()/withincode() is used to match the exe-
cution of A(). In addition, there is a call() designator for method B(). The point-
cut might look like this:

pointcut wacky() : within(execution(* *.B(..))) &&

call(* *.A(..));

The wacky pointcut is valid only when a call to method A() occurs within the
execution scope of method B().

What’s Next

In this chapter, we have looked at some of the common errors that can
occur when you use AspectJ, its compiler, and weaved code. In Chapters 13 and
14, we’ll pull together everything we’ve discussed and use AspectJ in two
real-world situations: adding functionality to an existing application and build-
ing an application from the ground up.

Error Handling and Common Problems330

If you’re like us, you learn by example. With something as revolutionary as
AspectJ, examples can be critical to understanding both the potential of a
new technology as well as successful techniques for using it. Accordingly,

we’ve tried to put examples into every chapter to help you understand language
issues and the types of concerns that AspectJ can modularize. This chapter and
the next take a step backward to consider larger issues. In this chapter, we
delve into patterns and reuse, and explore how to turn a unit of crosscutting
behavior into something that you can reapply to different situations. Chapter 14
looks at AspectJ in context, weaving crosscutting concerns into complete
applications. By the time you’ve finished reading these two chapters, you
should have a better sense of how to apply aspects to your own applications.

The examples in this chapter draw from the skeleton of an Employee manage-
ment system introduced in Chapter 7, “Advice,” and the beginnings of a persis-
tence solution presented in Chapter 8, “Inter-type Declarations.” You might
consider glancing back at those examples to refresh your memory before you
proceed.

We begin this chapter by refactoring the persistence example from Chapter 8.
This chapter turns the solution into a fully reusable aspect that we can apply to
any object in our system. After the refactoring, we explain some of the general
features of reusable aspects. Once we’ve developed a familiarity with aspect
reuse we apply the concept to design patterns. It turns out that AspectJ can
represent design patterns as aspects. We test the idea of aspect reuse by using
a third-party implementation of the Observer pattern to help us with cache
invalidation.

Aspect-Oriented Examples:
Patterns and Reuse

C H A P T E R13

331

Throughout the chapter, we attempt to present design considerations and high-
light areas where aspect-oriented programming (AOP) can improve the modu-
larity and understandability of your software systems.

Reusable Persistence

We’ve already been through two iterations of persisting the objects in our
Employee management system (you can see the latest iteration of the design in
Chapter 8, Listing 8.9). However, we’re a long way off from a total solution.

Here’s a little bit about what we’ve developed so far:

■■ Each persistable class implements a marker interface (PersistentObject)
that allows it to interact with a persistence container. (We’re thinking of
bean-managed persistence entity beans in an EJB container, but the exam-
ple does not tie directly to EJBs.)

■■ The PersistentObject interface defines a store() method that takes respon-
sibility for writing a persistent representation of the object to a database.
(A complementary read() method would be required in a real system, but
we’ll focus on store() for now).

■■ The container (outside of our control) decides when to call the store()
method.

■■ Since database updates are expensive, we only want to execute them if the
object’s state has changed since it was last stored. The persistence aspect
implements this behavior by storing a “dirty” flag that we set to true if we
determine that the object’s state has changed.

■■ We can apply the role of “PersistentObject” to any class in the system with-
out modifying the class. The persistence aspect allows this by adding con-
crete members to the PersistentObject interface. (Chapter 8 applies the
interface to the Employee and Department classes.)

■■ In order to make the persistence solution fully reusable, we need to cus-
tomize the persistent behavior of each affected object. Each persistent
class needs its own store() method, and each class should similarly decide
which operations change its state.

The pointcuts that we used to describe state changes in Chapter 8 were the
same for both affected objects. For this reason, our previous example missed
some important methods that would “dirty” the Department object. Specifi-
cally, we could add and remove Employees from a Department without trigger-
ing a “state change.” Furthermore, we did not customize the store() method for
each class.

Aspect-Oriented Examples: Patterns and Reuse332

The PersistenceProtocol Aspect
To provide aspect-oriented behavior that can be customized, you use an
abstract aspect. As you may recall from Chapter 9, “Aspects,” aspects can
extend other aspects. Just as with extending a class in Java, extending an
aspect allows the subtype to inherit generic behavior from its supertype. The
subtype overrides or adds members to tailor the generic behavior to its specific
requirements. Creating an abstract persistence aspect allows us to create sub-
aspects that customize persistence behavior for each class we wish to persist.

Listing 13.1 contains the code for the abstract aspect. It defines a number of
pieces of advice, as well as some abstract methods and pointcuts. Subaspects
take responsibility for filling in the abstract behavior.

Reusable Persistence 333

/**

* Marks that a class fills the role of a persistable

* entity. The example makes the interface public

* because it posists that a container will use the role.

* Otherwise the interface might be made package access

* to keep other code from depending on it.

*/

public interface PersistentObject{

public void store();

}

public abstract aspect PersistenceProtocol {

/** 1

* Declares a private member variable on

* the PersistentObject interface.

*/

private boolean PersistentObject.dirty = false;

/** 2

* Fulfills the contract required by the third

* party container, overridden to only call

* store(Connection) when the object is dirty.

*/

public final void PersistentObject.store() {

if(dirty){

store(getConnection());

}else{

Listing 13.1 PersistenceProtocol defines the general persistence behavior of PersistentObjects.
(continues)

Aspect-Oriented Examples: Patterns and Reuse334

System.out.println("This PersistentObject " +

"does not need to be stored.");

}

dirty=false;

}

/** 3

* Takes the place of the no-arg store() method.

* Each PersistentObject must implement this

* method to customize its storage.

*/

public abstract void

PersistentObject.store(Connection c);

/** 4

* Each subaspect must define this pointcut

* to identify those operations which change

* a PersistentObject's state.

*/

abstract pointcut stateChange(PersistentObject po);

/** 5

* Sets the dirty flag on the object after each

* state change.

*/

after(PersistentObject po) returning : stateChange(po){

po.dirty = true;

}

/** 6

* Each subaspect has the chance to override

* this method on their persistent objects if they need

* to get a connection from a different source.

*/

Connection PersistentObject.getConnection(){

Connection conn = null;

//get connection from some source

return conn;

}

}

Listing 13.1 PersistenceProtocol defines the general persistence behavior of PersistentObjects.
(continued)

Let’s take a look at the features of the aspect. If you remember the earlier incar-
nations of this example, the dirty flag declared onto the PersistentObject inter-
face (location 1) should come as no surprise. The exact mechanics differ, but

the intent of the flag remains the same. It serves to mark the object as requiring
storage at the next opportunity.

The store() method at location 2 meets the (supposed) contract of the third-
party persistence container.. As in previous examples, store() uses the dirty flag
to determine whether the object should store itself. If storage is necessary, the
method calls the abstract store(Connection) method. Subaspects implement
store(Connection) to write the object to the database. (Notice that Persisten-
ceProtocol declares the inter-type store() method final so that subaspects will
override store(Connection) instead.) Once the store operation completes, the
aspect marks the PersistentObject as “clean.”

PersistenceProtocol supplies the connection to store(Connection). This allows
it to take responsibility for obtaining the connection. Using this technique, the
aspect provides important context to the storage operation. In a real applica-
tion, the aspect could even open the connection before passing it to store(Con-
nection) and close it afterward. In this manner, common behavior (obtaining a
connection, opening it, and so on) remains in a common location rather than
appearing in each persistent object. Also, notice that the getConnection()
method can be overridden by subaspects if necessary. That way, if Employee
needs a different connection than Department, the change will be easy to make.

The stateChange pointcut and associated advice at locations 4 and 5 implement
the dirtying behavior. The advice simply sets the dirty flag after any join points
selected by stateChange. PersistenceProtocol delegates the exact definition of
stateChange to its subaspects. This way, the abstract aspect (PersistenceProto-
col) defines common behavior (dirtying the object) while the subaspects deter-
mine under what circumstances the behavior takes effect.

To review, PersistenceProtocol defines an interface for persistent objects. It
interacts with these objects through the interface. It stores persistent objects
only when dirty and dirties them at join points defined by its concrete sub-
aspects.

Applying PersistenceProtocol with Subaspects
At this point you’ve seen the general behavior. The picture remains incomplete
without applying PersistenceProtocol to target classes. To successfully apply
PersistenceProtocol, we need to write a subaspect that does three things:

1. Declares that a class (or set of classes) implements PersistentObject. Cur-
rently AspectJ supports no way to enforce that a subaspect does this, but
the subaspect will make little sense without it.

2. Defines a pointcut (stateChange) that captures any operations which alter
the state of the persistent object.

Reusable Persistence 335

3. Defines a store(Connection) method for the classes affected by the aspect.
This method writes the state of the persistent object to the database.

Let’s demonstrate two concrete implementations of PersistenceProtocol:
EmployeePersistence and DepartmentPersistence.

A Simple Subaspect: EmployeePersistence

EmployeePersistence is the simpler of the two cases. You can peruse the full
source of the aspect in Listing 13.2.

Aspect-Oriented Examples: Patterns and Reuse336

public aspect EmployeePersistence extends

PersistenceProtocol{

/* 1 */

declare parents : Employee implements PersistentObject;

/** 2

* Defines state changes as assignments to

* any instance variables of Employee.

*/

pointcut stateChange(PersistentObject emp) :

set(!static !transient * *)

&& target(emp) && target(Employee);

/* 3 */

public void Employee.store(Connection conn){

System.out.println("About to store " + this);

//omitting actual details of SQL statements

}

}

Listing 13.2 EmployeePersistence customizes the persistence policy applied to Employees.

As you can see, customizing the persistence policy is a matter of a few lines. At
location 1, the aspect declares that Employee will participate in the persistence
protocol. At location 2, it overrides the stateChange pointcut. This pointcut
resembles those found in Chapter 8. Specifically it defines a state change as an
assignment to a nontransient instance variable. Notice that stateChange
includes two target() pointcuts. The first exposes the PersistentObject as join
point context. The second (target(Employee)) limits the scope of the pointcut
to field assignments on Employees. The reason we need two targets is that the
signature of an overriding pointcut must match the signature of the overridden
pointcut exactly. Thus, the exposed context must be typed to PersistentObject.
However, the pointcut does not want to target all PersistentObjects—it’s only
concerned with Employees. Therefore, we add the second target() designator.

Finally the store(Connection) method at location 3 writes data to the database.
We’ve omitted the gory details and simply added a println() to indicate that the
method executes.

A More Complex Subaspect: DepartmentPersistence

Sections 1 and 3 of DepartmentPersistence resemble EmployeePersistence.
The store() method has an added println() to signify the update to the Depart-
ment’s list of Employees. The real difference lies in the stateChange pointcut.
Namely, it incorporates add() and remove() methods. Because the addEm-
ployee() and removeEmployee() methods of Department clearly alter the state
of the object but do not set any instance variables, the pointcut cannot rely
solely on set(! static !transient * *). Take a look at Listing 13.3.

Reusable Persistence 337

public aspect DepartmentPersistence extends

PersistenceProtocol{

/* 1 */

declare parents : Department implements PersistentObject;

/* 2 */

pointcut stateChange(PersistentObject po) :

(

set(! static !transient * *) ||

addsAndRemoves ()

)

&& target(po) && target(Department);

/* 3 */

pointcut addsAndRemoves():

call(* add*(..)) || call(* remove*(..));

/* 4 */

public void Department.store(Connection conn){

System.out.println("About to store " + this);

System.out.println(" Updating employee list: " +

getEmployees());

//omitting actual details of SQL statements

}

}

Listing 13.3 The DepartmentPersistence aspect sports a different stateChange pointcut.

In addition to looking at instance variables, the stateChange pointcut in
DepartmentPersistence looks at method calls. The addsAndRemoves pointcut
(location 3) uses || to select calls any method whose name begins with “add” or

“remove”. stateChange combines this new pointcut with a set() pointcut simi-
lar to the one in EmployeePersistence.

The Persistence Aspects in Action

The Main class in Listing 13.4 demonstrates the behavior of the Persistence-
Protocol and its subaspects. An employee and a department are constructed
and modified several times. The main() method calls the store() method on
each object at various points in its lifecycle. We use println()s to specify our
expectations about whether the object should write to the database at each call
to store(). Just after the demo class appears a short aspect that decorates
println() methods from the Main class. Although we won’t consider it in detail,
it illustrates AspectJ’s power to quickly implement a small crosscutting concern
(the aspect surrounds each println() from Main with “[]:”).

Aspect-Oriented Examples: Patterns and Reuse338

public class Main {

public static void main(String[] args) {

Employee janet = new Programmer("J. Smythe", 99000);

System.out.println("New employee, should store");

janet.store();

System.out.println("No changes, shouldn't");

janet.store();

janet.raiseSalary(2300);

System.out.println("Should store");

janet.store();

System.out.print("-------------");

System.out.println("Now trying a department");

System.out.println();

Department hr = new Department("Human Resources",

250000);

System.out.println("New dept., should store");

hr.store();

System.out.println("No changes, shouldn't");

hr.store();

hr.addEmployee(janet);

hr.addEmployee(new Employee("Bill Buxley", 29000));

System.out.println("Employees added, should store");

hr.store();

System.out.println("Shouldn't");

hr.store();

hr.removeEmployee(janet);

System.out.println("Employee removed," +

Listing 13.4 This Main class demonstrates the effects of the persistence aspects. (continues)

TE
AM
FL
Y

Team-Fly®

Reusable Persistence 339

" should store");

hr.store();

}

}

aspect DecoratePrintlns{

/* Selects printlns in the Main class. */

pointcut printlnsInMain(String s):

call(void println(String)) && args(s)

&& within(Main);

/* Calls proceed() with a new argument,

* effectively decorating the fucntion.

*/

void around(String s) : printlnsInMain(s){

proceed("["+s +"]:");

}

}

/* Output */

[New employee, should store]:

About to store Programmer J. Smythe:$99,000.00

[No changes, shouldn't]:

This PersistentObject does not need to be stored.

[Should store]:

About to store Programmer J. Smythe:$101,300.00

-------------[Now trying a department]:

[New dept., should store]:

About to store Department Human Resources budget: 250000

Updating employee list: []

[No changes, shouldn't]:

This PersistentObject does not need to be stored.

[Employees added, should store]:

About to store Department Human Resources budget: 250000

Updating employee list: [Programmer J. Smythe:$101,300.00,

Employee Bill Buxley:$29,000.00]

[Shouldn't]:

This PersistentObject does not need to be stored.

[Employee removed, should store]:

About to store Department Human Resources budget: 250000

Updating employee list: [Employee Bill Buxley:$29,000.00]

Listing 13.4 This Main class demonstrates the effects of the persistence aspects. (continued)

There’s nothing unexpected in the output. When either an Employee or a
Department is created, or its state modified, the persistence aspects conspire to
ensure that the object will store its state at the next call to store().

Thoughts on Reusable Aspects

Aside from demonstrating how AspectJ can capture persistence behavior, this
example illustrates several aspect-oriented design principles. Most of these
revolve around coupling. As we’ve mentioned before, the use of inter-type dec-
larations allows component code to be entirely unaware of aspects. Let’s look a
little more closely at what that means.

Patterns and Roles

The PersistenceProtocol aspect defines a pattern. Since pattern has come to be
a widely used (and sometimes misused) software term, let’s narrow its mean-
ing. PersistenceProtocol defines a behavior pattern for code that interacts with
it. Objects that implement the PersistentObject interface play a role within a set
of actions and interactions defined by the aspect. For now, we’ll use the term
behavior pattern to differentiate this meaning from the many other meanings
that “pattern” brings to mind.

Object-oriented programming (OOP) and AOP systems realize behavior pat-
terns differently. In traditional Java, behavior patterns range from informally
organized sets of interactions scattered through related classes to well-defined
containers that provide services to installed components. In aspect-oriented
programs, behavior patterns can be constructed as aspects. With or without
aspects, behavior patterns must define roles that that participants play. Java
and AspectJ treat the matter of role definition very differently.

Who Knows What about Whom

In our example, the PersistenceProtocol aspect knows only about the role that
components play within it. It does not know about Employees or Departments
and interacts with those classes only through a narrowly defined interface. The
same can also be said of many established object-oriented behavior patterns.
A container usually interacts with components through a similar type of
interface.

Things begin to differ when we consider what the component knows. In our
example, all Employee knows about is its central abstraction. In other words,
it models a real-world employee. After countless examples and wild new behav-
iors, the Employee class has scarcely changed since we first looked at it.
To implement a persistence pattern in traditional Java, the Employee would
need to know about its role. Perhaps it would implement an interface like
PersistentObject directly. The result would be a sort of persistent-Employee
that blended the central abstraction with an external role. The definition of
Employee would depend on the definition of PersistentObject. Such a class
would serve as a classic example of close coupling.

Aspect-Oriented Examples: Patterns and Reuse340

NOTE
Some frameworks get around the issue component to container coupling by using
such techniques as reflection and metadata descriptor files. We would argue that
these systems also exhibit AOP properties (to a limited extent).

The disadvantages of close coupling are well known. If, for instance, the inter-
face for PersistentObject needed to change, that change would ripple to all
affected classes. Furthermore, the persistent-Employee couldn’t be reused in a
system with a different notion of persistence.

Blending persistence directly into Employee also reduces Employee’s cohe-
sion. With only a single role, the effect is minimal. However, as it supported
more and more roles, the Employee would represent its primary abstraction
less and less well. A persistent-Employee is one thing. A remote-persistent-
notifying-Employee is another.

Instead of blending roles into affected classes, AspectJ offers “bridge” aspects.
In our example, the bridge aspects were EmployeePersistence and Depart-
mentPersistence. These aspects concretized the PersistenceProtocol and
adapted it to suit Employee and Department. These bridge aspects are very
closely coupled—they have intimate knowledge of both the behavior pattern
and the component classes. If something were to change on either side, you can
bet that we would need to revisit these aspects in short order. However, this
sort of close coupling is different. The next section explores why.

Encapsulated Coupling

Despite their coupling, bridge aspects offer a compelling advantage—they
encapsulate the coupling. In other words, they act as adapters between the
components and the pattern. Neither the role-players nor the role-definers need
to know about each other. The end result is more independent modules. With a
new set of bridge aspects, PersistenceProtocol could be applied to a new sys-
tem. Similarly, the Employee class can play multiple roles without increasing in
complexity or blurring its central abstraction. With AspectJ we’re closer to an
off-the-shelf component model than ever before.

Method Caching

The next section steps away from design considerations to look at another
example of how AspectJ can capture a crosscutting concern. But before we’ve
finished with the example we’ll be back to considering patterns and reuse.

Method Caching 341

As we’ve seen several times throughout the book, around advice can be used to
dynamically replace join points. Aspects can use this power to neatly replace
method calls, among other things. For example, around advice can replace a
method call with a less expensive method call. This section considers how you
can use around advice to transparently cache the results of a method call,
thereby improving performance.

Caching XML Representations
In Chapter 8 we added methods to classes from our Employee management
system that rendered the objects as XML. Creating XML representations can be
time-consuming. Therefore, these toXML() methods seem like good candidates
for our caching strategy. This example focuses on the caching the results of
toXML()on Department.

Department's XML Representation

Listing 13.5 contains the code for rendering a department as XML. There’s not a
lot of aspectual behavior to consider beyond the inter-type declaration of the
toXML() method onto Department (location 1). Since a Department contains a
list of Employees, the XML representations of all of the Employees are included
in the output.

Aspect-Oriented Examples: Patterns and Reuse342

public aspect DepartmentXML {

/* 1 */

public void Department.toXML(PrintStream out){

out.println("<department>");

printContents(this, out);

out.println("</department>");

}

private static void printContents(Department d,

PrintStream out){

out.println("<title>");

out.println(" " + d.getTitle());

out.println("</title>");

out.println("<budget>");

out.println(" " + d.getBudget());

out.println("</budget>");

out.println("<employees>");

printEmployees(d, out);

out.println("</employees>");

Listing 13.5 Department's XML representation depends on the XML representation of its
Employees. (continues)

Method Caching 343

}

private static void printEmployees(Department d,

PrintStream out){

Iterator it = d.getEmployees().iterator();

while(it.hasNext()){

((Employee)it.next()).toXML(out);

}

}

public static void main(String[] args){

Department it =

new Department("IT", 200000);

Employee joe = new Programmer("Joe", 85000);

Employee nick = new Programmer("Nick", 85000);

it.addEmployee(joe);

it.addEmployee(nick);

it.toXML(System.out);

}

}

/* Output */

<department>

<title>

IT

</title>

<budget>

200000

</budget>

<employees>

<programmer>

<name>

Joe

</name>

<salary>

85000

</salary>

<language>

null

</language>

</programmer>

<programmer>

<name>

Nick

</name>

<salary>

85000

Listing 13.5 Department's XML representation depends on the XML representation of its
Employees. (continues)

Aspect-Oriented Examples: Patterns and Reuse344

</salary>

<language>

null

</language>

</programmer>

</employees>

</department>

Listing 13.5 Department's XML representation depends on the XML representation of its
Employees. (continued)

The output of the main method shows a department as (very untidy) XML.

Caching the toXML() Method

Assume we’ve decided that Department’s toXML() method is too slow. To
improve performance, we’d like to execute it only if the Department has
changed since the last time it was called. Otherwise, we can safely reuse the
results of the last call. To keep things simple, this example applies caching only
to Department. If we wanted to, we could easily make the caching aspect
abstract and apply it to several different classes (just as we did with Persisten-
ceProtocol). Listing 13.6 contains the CacheToXML aspect.

public aspect CacheToXML {

/** 1

* Identifies calls to the toXML method.

*/

pointcut cacheableCalls (PrintStream out, Department d) :

call(void toXML(PrintStream))

&& target(d) && args(out);

/** 2

* Declares a cache field on the Department itself.

*/

private String Department.xmlCache;

/** 3

* Executes instead of calls to toXML.

*

* Calls proceed and stores result if no

* cache exists. Otherwise uses cached

Listing 13.6 CacheToXML stores and reuses the results of Department's toXML() method.
(continues)

Method Caching 345

* data.

*/

void around(PrintStream out, Department d):

cacheableCalls (out, d){

if(d.xmlCache == null){

System.out.println("(generating fresh)");

ByteArrayOutputStream data =

new ByteArrayOutputStream();

proceed(new PrintStream(data), d);

d.xmlCache = data.toString();

}

else{

System.out.println("(using cached data...)");

}

out.print(d.xmlCache);

}

/** 4

* Dirtying behavior similar to Persistence

* example. (See advice at 5).

*/

pointcut stateChange(Department d) :

(

set(! static !transient * *) ||

call(* add*(..)) || call(* remove*(..))

)

&& target(d);

/** 5

* Clears the cache if dept. changes.

*/

after(Department d) :

stateChange(d) &&

!within(CacheToXML){

d.xmlCache = null;

}

}

/* Test class */

public class Main {

public static void main(String[] args){

Listing 13.6 CacheToXML stores and reuses the results of Department's toXML() method.
(continues)

Aspect-Oriented Examples: Patterns and Reuse346

Department it =

new Department("IT", 200000);

Programmer joe = new Programmer("Joe", 85000);

it.addEmployee(joe);

System.out.println("new dept. should use fresh");

it.toXML(System.out);

System.out.println("no changes should use cache");

it.toXML(System.out);

Programmer nick = new Programmer("Nick", 85000);

it.addEmployee(nick);

System.out.println("new employee");

it.toXML(System.out);

nick.setLanguage("AspectJ");

joe.setLanguage("AspectJ");

System.out.println(

"languages changed-should use fresh");

it.toXML(System.out);

}

}

/* Output */

[new dept. should use fresh]:

(generating fresh)

<department>

... <!-- nothing unexpected -->

</department>

[no changes should use cache]:

(using cached data...)

<department>

...

</department>

[new employee]:

(generating fresh)

<department>

... <!-- added nick -->

<programmer>

<name>

Nick

</name>

<salary>

85000

Listing 13.6 CacheToXML stores and reuses the results of Department's toXML() method.
(continues)

Method Caching 347

</salary>

<language>

null

</language>

</programmer>

</employees>

</department>

[should use fresh-languages changed]:

(using cached data...) ...<!-- problem! -->

<department>

<programmer>

<name>

Joe

</name>

<salary>

85000

</salary>

<language>

null <!--should be AspectJ! -->

</language>

</programmer>

<programmer>

<name>

Nick

</name>

<salary>

85000

</salary>

<language>

null <!--should be AspectJ! -->

</language>

</programmer>

</employees>

</department>

Listing 13.6 CacheToXML stores and reuses the results of Department's toXML() method.
(continued)

The pointcut and around advice at locations 1 and 3 do the majority of the
interesting work in this aspect. The cacheableCalls pointcut selects calls to

Department’s toXML() method and exposes the Department as well as the
PrintStream argument as context. The around advice at location 3 makes use of
the context. If the Department’s cache lies empty, the advice will call proceed
and cache the results. If the cache contains data, or the advice is done caching,
it writes the contents of the cache to the original PrintStream. The pointcut
and advice at locations 4 and 5 serve to empty the cache if the Department
changes state. For an in-depth discussion on the stateChange pointcut, see the
persistence example earlier in the chapter.

There’s a problem, however. If we look at the last XML rendering of the depart-
ment, we can see it prints Nick and Joe’s skills as “null” rather than “AspectJ.”
If we look at the stateChange pointcut, we can see why. There’s no provision to
select state changes on Employees in the Department! The next subsection
seeks to remedy this.

Design Patterns as Aspects

To invalidate the Department’s cache, we must notify the Department every
time one of its employees changes state. If there’s one thing we know by now,
it’s that AspectJ is good at notifications. However, this problem may prove
thorny.

Adding Invalidation to the Aspect's API
In order to pave the way for additional invalidation conditions, we need to
refactor our invalidation mechanism somewhat. We don’t want to expose other
code to the implementation details of the cache. Accordingly, we add a public
invalidate() method to the aspect so that other code can invalidate a Depart-
ment’s cache without manually clearing the cache field. Listing 13.7 shows the
new API.

Aspect-Oriented Examples: Patterns and Reuse348

/** 5

* Clears the cache if dept. changes.

*/

after(Department d) : stateChange(d){

invalidate(d);

}

/** 6

* Allows other callers to programmatically

* clear the cache.

*/

public void invalidate(Department d){

d.xmlCache = null;

}

/* Sample use*/

CacheToXML.aspectOf().invalidate(someDept);

Listing 13.7 The invalidate() method hides the implementation details of the aspect.

Using the aspect’s method to clear a Department’s cache clarifies the client’s
dependency on the aspect. It also allows the aspect to change its caching

TE
AM
FL
Y

Team-Fly®

implementation without disturbing clients who use it. This idiom (going
through an aspect to access behavior added by the aspect) appears often in the
AspectJ documentation.

Detecting State Changes on Employee

Ordinarily we might just set up another pointcut and advice to call the new
invalidate() method. However, we have a small problem: we can’t notify a
department after a change to Employee unless we know which department to
notify. We can check if an Employee belongs to a department easily enough:

d.getEmployees().contains(emp)

We could even use that expression in advice: if(d.getEmployees().

contains(employee)){…}. However, the association is unidirectional. That is,
there’s no way to ask an Employee for his or her Department. We could add a
bidirectional association using inter-type declarations and automatically
update it using advice. However, we plan to go a step beyond that.

The Observer Pattern
Those of you familiar with design patterns, especially those popularized in
Design Patterns by Gamma, et. al (Addison-Wesley, 1995) can probably see
what’s coming. The Observer pattern suits this sort of need perfectly. Let’s
review the pattern briefly.

Observer in a Nutshell

The Observer pattern’s intent, according to the Portland Pattern Repository
Wiki (http://c2.com/cgi/wiki?ObserverPattern) is to:

“Define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated
automatically.”

This looks like exactly what we want. We want to maintain a dependence
between Employees and Departments so that when an Employee changes
state, its department is notified and updated (its cache cleared).

Implementing Observer in Java

In ordinary Java, a Subject class keeps track of any objects that need to know
about changes in its state (they’re usually stored in a list on the Subject). When
the Subject’s state changes, it iterates through the list and notifies each
Observer of the change.

Design Patterns as Aspects 349

Observer, like many patterns, suffers from scattering. The Subject implements
some parts, and the Observer others. Unless you’re familiar with the pattern,
you might not understand that these pieces cooperate. Furthermore, you can’t
simply pull the Observer pattern out of a third-party pattern library and drop it
into your code. You need to make changes to both of the involved classes and
then hook them together at the right time. In our case, we’d have to modify the
Department so that it began observing each Employee as soon as it was added
and stopped observing once the Employee left. This approach is worthwhile
perhaps, but somewhat invasive. Will the code really be better off with all this
added complexity? Do we really need this performance improvement?

Reusing Observer in AspectJ
Think back to the persistence example. We used the PersistenceProtocol
aspect to define interactions between code and to specify roles for participants.
We then customized the behavior pattern to suit two different classes. Surely
we can apply the same principles to this situation. We could create an abstract
aspect and then customize it to the Employee/Department caching situation. At
the end of the day we’ll have built a pattern we can actually reuse instead of
reimplementing it when we need it again.

Building a reusable pattern would be great. But our lives would be even easier
if we could use an already tested and debugged pattern from a library. After all,
who wants to reinvent the wheel? It turns out that Jan Hannemann and Gregor
Kiczales have created a reusable library of AspectJ pattern implementations as
part of a project for the Software Practices Lab at the University of British
Columbia (UBC). Sure enough, the library contains an implementation of
Observer.

This example looks like a perfect situation in which to test AspectJ’s claims of
enhanced modularity and reuse. Let’s attempt to solve our caching problem by
extending the ObserverProtocol aspect that ships with the library. If we can
successfully add the Observer pattern to our code without complicating our
core classes, we’ll know we have a new tool in our design chests.

The ObserverProtocol Aspect

Since we’re big fans of open source software and the practice of reading code,
we reprint the full source for the ObserverProtocol aspect in Listing 13.8. As
you can see, the source is thoroughly commented. We’ll add a few points of our
own at the end.

Aspect-Oriented Examples: Patterns and Reuse350

Design Patterns as Aspects 351

package ca.ubc.cs.spl.pattern.library;

/* -*- Mode: Java; tab-width: 4; indent-tabs-mode: nil;

* c-basic-offset: 4 -*-

*

* This file is part of the design patterns project at UBC

*

*The contents of this file are subject to the Mozilla Public

* License Version 1.1 (the "License"); you may not use this

* file except in compliance with the License. You may

* obtain a copy of the License at either

* http://www.mozilla.org/MPL/ or http://aspectj.org/MPL/.

*

* Software distributed under the License is distributed on

* an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either

* express or implied. See the License for the specific

* language governing rights and limitations under the

* License.

*

* The Original Code is ca.ubc.cs.spl.patterns.

*

* Contributor(s):

*/

import java.util.WeakHashMap;

import java.util.List;

import java.util.LinkedList;

import java.util.Iterator;

/**

* Defines the general behavior of the observer design

* pattern.

*

* Each concrete sub-aspect of ObserverProtocol defines one

* kind of observing relationship. Within that kind of

* relationship, there can be any number

* of subjects, each with any number of observers.

*

* The sub-aspect defines three things:

*

* what types can be subjects or observers

* this is done using +implements

*

* what operations on the subject require updating the

Listing 13.8 A reusable implementation of the Observer design pattern from UBC’s Aspect-
Oriented Pattern Implementation project. (continues)

Aspect-Oriented Examples: Patterns and Reuse352

* observers
 this is done by concretizing the

* changes(Subject) pointcut

*

* how to update the observers

* this is done by defining a method on

* updateObserver(Subject, Observer)

*

*

* Note that in this implementation, the work of updating is a

* method on the sub-aspect, not a method introduced on the

* observer. This allows one class of object to be the

* observer in different kinds of observing relationships,

* each of which

* has a different updating behavior. For observers that just

* have a single generic update behavior, the method on

* updateObserver will just be a simple call that generic

* updater.

*

* @author Gregor Kiczales

* @author Jan Hannemann

* @version 1.0, 05/13/02

*

*/

public abstract aspect ObserverProtocol {

/**

* This interface is used by extending aspects to say

* what types can be subjects. It models the subject

* role.

*/

protected interface Subject { }

/**

* This interface is used by extending aspects to

* say what types can be observers. It models the

* observer role.

*/

protected interface Observer { }

/**

Listing 13.8 A reusable implementation of the Observer design pattern from UBC’s Aspect-
Oriented Pattern Implementation project. (continues)

Design Patterns as Aspects 353

* Stores the mapping between <code>Subject</code>s

* and <code>Observer</code>s. For each subject, a

* <code>LinkedList</code> is of its observers is stored.

*/

private WeakHashMap perSubjectObservers;

/**

* Returns a <code>Collection</code> of the observers of

* a particular subject. Used internally.

*

* @param s the subject for which to return the observers

* @return a <code>Collection</code> of s's observers

*/

protected List getObservers(Subject s) {

if (perSubjectObservers == null) {

perSubjectObservers = new WeakHashMap();

}

List observers = (List)perSubjectObservers.get(s);

if (observers == null) {

observers = new LinkedList();

perSubjectObservers.put(s, observers);

}

return observers;

}

/**

* Adds an observer to a subject. This is the equivalent

* of <i>attach()</i>, but is a method on the pattern

* aspect, not the subject.

*

* @param s the subject to attach a new observer to

* @param o the new observer to attach

*/

public void addObserver(Subject s, Observer o) {

getObservers(s).add(o);

}

/**

* Removes an observer from a subject. This is the

* equivalent of <i>detach()</i>, but is a method on the

* pattern aspect, not the subject.

Listing 13.8 A reusable implementation of the Observer design pattern from UBC’s Aspect-
Oriented Pattern Implementation project. (continues)

Aspect-Oriented Examples: Patterns and Reuse354

*

* @param s the subject to remove the observer from

* @param o the observer to remove

*/

public void removeObserver(Subject s, Observer o) {

getObservers(s).remove(o);

}

/**

* The join points after which to do the update.

* It replaces the normally scattered calls to

* <i>notify()</i>. To be

* concretized by sub-aspects.

*/

protected abstract pointcut subjectChange(Subject s);

/**

* Call updateObserver after a change of interest to

* update each observer.

*

* @param s the subject on which the change occured

*/

after(Subject s): subjectChange(s) {

Iterator iter = getObservers(s).iterator();

while (iter.hasNext()) {

updateObserver(s, ((Observer)iter.next()));

}

}

/**

*Defines how each <code>Observer</code> is to be updated

* when a change to a <code>Subject</code> occurs. To be

* concretized by sub-aspects.

*

* @param s the subject on which a change of interest

* occured

* @param o the observer to be notifed of the change

*/

protected abstract void updateObserver(Subject s,

Observer o);

}

Listing 13.8 A reusable implementation of the Observer design pattern from UBC’s Aspect-
Oriented Pattern Implementation project. (continued)

What does the aspect actually do? Well, first it defines two roles, Subject and
Observer. When we extend the aspect, we’ll use our subaspect to apply these
roles to Employee and Department, respectively. Second, it maintains a set of
mappings between Subjects and Observers. Each Subject can have a number of
Observers. (The aspect maintains this with a WeakHashMap with Subjects as
keys and LinkedLists of Observers as values.) Client code or subaspects can use
the addObserver() and removeObserver() methods to alter these mappings.

It’s important to realize that the relationship between Subjects and Observers
varies dynamically. The two classes enter the pattern only when they’re passed
as arguments to addObserver(). This means that a given component could be
added to any number of Subject-Observer relationships—possibly playing dif-
ferent roles in each. It also means that, to apply the pattern, another entity must
take responsibility for pairing Subjects and Observers by calling addObserver()
and removeObserver(). This entity could be anything from component code to
another aspect to a front end that accepts input from the user. (We plan to use
our subaspect to handle this responsibility).

The aspect defines after advice relative to the abstract subjectChange pointcut.
Subaspects implement subjectChange to select join points that signal a state
change for the subject. The advice on subjectChange then calls the abstract
method updateObserver() for each Observer that’s watching the changed
Subject.

As you can see, the number of implemented lines of code is low—the real use-
fulness of the aspect comes from the order it imposes on the pattern. All of the
relationships and interactions are captured in code or delegated to subaspects
to fill in.

Extending ObserverProtocol

So far, so good. The real test comes when we apply the aspect to our situation.
Let’s review the questions our subaspect must answer in order to successfully
implement the pattern:

1. Who are the Subjects and who are the Observers?

2. What constitutes a change in the Subject?

3. What constitutes an update to the Observer?

4. When does the Observer begin watching the Subject, and when does it
stop?

The ObserverProtocol aspect does not require subaspects to answer question 4
in the same manner it requires them to answer 1 through 3. However, the pat-
tern will only activate when we call addObserver() to pair the Employee and

Design Patterns as Aspects 355

Department. In our case, we know exactly when we want to activate the pat-
tern: after the addEmployee() method executes. Accordingly, we can use
advice to automate the call to addObserver().

Listing 13.9 showcases our use of ObserverProtocol. We’ve commented the
aspect to indicate which segments of code answer each question.

Aspect-Oriented Examples: Patterns and Reuse356

public aspect EmployeeObserver extends ObserverProtocol {

/**

* Question 1.

* Who are the Subjects and who are the Observers?

*/

declare parents : Employee implements Subject;

declare parents : Department implements Observer;

/**

* Question 2.

* What constitutes a change in the Subject?

*/

protected pointcut subjectChange(Subject emp) :

set(!static !transient * *)

&& target(emp) && target(Employee);

/**

* Question 3.

* What constitutes an update to the Observer?

*

* A: Updating the observer consists of invalidating

* its cache.

*/

protected void updateObserver(Subject emp,

Observer dept){

CacheToXML.aspectOf().invalidate((Department)dept);

}

/**

* Question 4.

* When does the Observer begin watching the Subject,

* and when does it stop?

*/

/**

* Identifies addEmployee and exposes the players.

*/

Listing 13.9 EmployeeObserver fills in the details of the Observer pattern. (continues)

Design Patterns as Aspects 357

private pointcut additions(Employee emp,

Department dept):

call(public void addEmployee(Employee))

&& target(dept) && args(emp);

/**

* Does the same for removeEmployee.

*/

private pointcut removals(Employee emp, Department dept):

call(public void removeEmployee(Employee))

&& target(dept) && args(emp);

/**

* After additions, create the relationship.

*/

after(Employee emp, Department dept) returning :

additions(emp, dept){

addObserver(emp, dept);

}

/**

* After removals, remove the relationship.

*/

after(Employee emp, Department dept) returning :

removals(emp, dept){

removeObserver(emp, dept);

}

public static void main(String[] args){

Department dept =

new Department("IT", 200000);

Programmer joe = new Programmer("Joe", 85000);

dept.addEmployee(joe);

Programmer nick = new Programmer("Nick", 85000);

dept.addEmployee(nick);

System.out.println("new dept, fresh");

dept.toXML(System.out);

System.out.println("no change, cache");

dept.toXML(System.out);

nick.setLanguage("AspectJ");

joe.setLanguage("AspectJ");

System.out.println("changes to Nick and Joe, fresh");

dept.toXML(System.out);

Listing 13.9 EmployeeObserver fills in the details of the Observer pattern. (continues)

Aspect-Oriented Examples: Patterns and Reuse358

dept.removeEmployee(joe);

System.out.println("joe removed, fresh");

dept.toXML(System.out);

joe.raiseSalary(3000);

System.out.println("Changes to Joe, but Department");

System.out.println("no longer observing him, cache");

dept.toXML(System.out);

}

}

/* Output */

[new dept, fresh]:

(generating fresh)

...

[no change, cache]:

(using cached data...)

...

[changes to Nick and Joe, fresh]:

(generating fresh)

<department>

...

<employees>

<programmer>

<name>

Joe

</name>

<salary>

85000

</salary>

<language>

AspectJ <!-- correct! -->

</language>

</programmer>

<programmer>

<name>

Nick

</name>

<salary>

85000

</salary>

<language>

AspectJ <!-- correct! -->

</language>

</programmer>

Listing 13.9 EmployeeObserver fills in the details of the Observer pattern. (continues)

TE
AM
FL
Y

Team-Fly®

Design Patterns as Aspects 359

</employees>

</department>

[joe removed, fresh]:

(generating fresh)

...

[Changes to Joe, but Department]:

[no longer observing him, cache]:

(using cached data...)

...

Listing 13.9 EmployeeObserver fills in the details of the Observer pattern. (continued)

The aspect answers question 1 early. It uses declare parents to mark an
Employee as a Subject and a Department as an Observer. It answers question 2
by defining (a now familiar-looking) subjectChange pointcut, thereby overrid-
ing the abstract version from ObserverProtocol. EmployeeObserver also over-
rides the abstract updateObserver() method. The overridden version calls
CacheToXML’s invalidate() method on the Department. (In this manner, it
answers question 3.)

Question 4 (when does the relationship between Employees and Departments
start and end) deserves a little more attention. First the aspect defines two
pointcuts: additions and removals. These pointcuts identify the start and end of
the relationship. Essentially, every time an Employee enters a Department it
simultaneously enters into the Subject-Observer relationship with that Depart-
ment. When it exits the Department it also exits the relationship. Two pieces of
after returning advice implement this behavior by calling addObserver() and
removeObserver(), respectively.

Notice that the EmployeeObserver aspect could easily serve several depart-
ments and that Employees could work for multiple Departments. Each Depart-
ment would receive notifications for all its Employees, regardless of how many
other departments that Employee belonged to.

More Patterns in AOP?

AspectJ’s claims for enhanced modularity and reuse have proven themselves—
at least with regards to patterns. In this example, we took an off-the-shelf
design pattern and customized it to our application with a single subaspect.
Now the Department’s cache will invalidate whenever a dependent Employee
changes.

With a little thought, you may see other uses for the ObserverProtocol aspect.
Observer made it into the GoF patterns because it was a widespread best prac-
tice for dealing with dynamic notification. Because AspectJ makes it easy to

reuse already-implemented patterns, we wouldn’t be surprised if the number of
patterns in the average application increased with the adoption of AOP.

Aspect-Oriented Design

This chapter has focused on design and reuse by showing:

■■ An example of how to turn a special-purpose aspect into a generic solution
to a problem (PersistenceProtocol)

■■ An example of how to add crosscutting behavior to your code by extending
a third party pattern aspect (ObserverProtocol)

So, now that we’ve looked at these topics, what can we say about the emerging
shape of aspect-oriented design?

AspectJ clearly shows an aptitude for encapsulating what we called behavior
patterns. In this area AspectJ shows the programmer more forest and fewer
trees. It does this by capturing and organizing interactions between classes. In
object-oriented systems these interactions remain scattered through the partic-
ipants in the behavior pattern. In aspect-oriented systems they are localized by
the language’s crosscutting constructs (pointcuts, advice, marker interfaces,
and so on). The this organization gives programmers the ability to reason about
more concerns (and more complicated concerns) simultaneously. Futhermore,
behavior patterns can be tested and perfected in isolation, free from contextual
distractions. This leads to higher potential for the reuse of generic code, mean-
ing that teams can spend less time reinventing the wheel and more time adding
unique value.

The emergence of byte-code weaving in AspectJ 1.1 intensifies the situation. In
theory it will be possible to buy components from one vendor, behavior pat-
terns from another, and weave them together into a coherent system with a few
adapter aspects. Component-based reuse has been the pie-in-the-sky dream of
software engineers and managers for years, if not decades. Will AspectJ really
make it happen?

The answer is…yes and no. AspectJ cannot modularize everything, nor does it
provide convenient idioms for every operation that a programmer can express
in thought or words. Third-party software may prove resistant to modification
unless it’s designed for simplicity. Toolkits and frameworks that “do everything”
may hamper clean aspect compositions.

However, the results of applying the “off-the-shelf” Observer pattern are
encouraging. Previous attempts at truly component-oriented software missed
two important capabilities that AspectJ provides. First, they lacked the ability
to significantly alter a module’s behavior without modifying its source code.

Aspect-Oriented Examples: Patterns and Reuse360

Java 2 Platform Enterprise Edition (J2EE), for instance, offers XML descrip-
tors that can customize a component—but only in limited ways. AspectJ allows
modifications that the component designers may never have dreamed of. Sec-
ond, previous solutions forced components to adhere to specialized interfaces,
meaning that components for one set of behavior patterns couldn’t be reused
with another set.

In a sense, AspectJ offers only a foretaste of the possibilities of aspect-oriented
design. As the language evolves, it will continue to offer more elegant and pre-
cise encapsulations of a wider variety of concerns. Already the prospects of
generic typing loom on the horizon. Beyond even aspect-oriented software lies
intentional software—software that makes the source code resemble the
design. For the moment, however, we’re excited by AspectJ, and even a little
overwhelmed. As deep as we’ve gotten, we’ve only scratched the surface.

What’s Next

The final chapter in the book continues our examination of the larger issues
involved in using AspectJ. The chapter applies aspects to two complete appli-
cations. In the first example, we use AspectJ to add new features to an applica-
tion. In the second, we refactor the application with AspectJ—moving
crosscutting concerns from components into aspects. The chapter considers
issues such as UML notation for aspects, designing with aspects in mind, and
interfacing with existing code.

If after Chapter 14 you still hanker for examples of AspectJ in action, you might
want to check out these likely sources:

The AspectJ documentation:

(http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-home/
documentation.html). The examples include a very nice sample application
(Spacewar) that implements some heavy-duty concerns (aspect-oriented
thread synchronization is a sight to behold). The docs also ship a few
smaller scale examples.

The Aspect-Oriented Design Pattern Implementation Project:

(www.cs.ubc.ca/labs/spl/projects/aodps.html). Aside from the Observer pat-
tern, Jan Hanneman and Gregor Kiczales implemented the other 22 “Gang
of Four” (GoF) design patterns in AspectJ and Java simultaneously. If
you’re familiar with the GoF patterns, you may find their implementation in
AspectJ to be a good tool for understanding aspects in general. This project
is also a great place to see reusable aspects in action. Hanneman and Kicza-
les’s paper, Design Pattern Implementations in Java and AspectJ, does an
excellent job of discussing patterns and aspects and influenced the shape of
this chapter a great deal.

What’s Next 361

To show how aspect-oriented programming can affect a complete project,
this chapter walks you through the software development cycle when
using aspects. We’ll consider two scenarios: adding a new application

feature and refactoring a previous project.

The first example centers around the addition of logging and thread pooling to
a piece of software found on an open-source Java Web site. This is a good exam-
ple of how you can add a new feature to source code you haven’t developed (or
even seen before). The software shows a graphical representation of a projec-
tile being shot from a cannon. The projectile has a given mass, and the cannon
has an angular position relative to the ground. The velocity is also controllable
through a slide control on the application’s GUI. The software looks nice graph-
ically, but it doesn’t keep a record of changes made to the controls or final out-
come values. Some of the software’s fictitious users are interested in knowing
when any control is changed, even if the Fire button isn’t clicked. In addition,
you’ll make all intermediate plotted values and the final distance available in
a log.

The second example focuses on refactoring an application to remove logging
and timing values from the original code. Your primary intent will be to bring
the modularity of some of the classes back to a more acceptable state instead
of allowing extraneous code to work its way into otherwise encapsulated
classes.

Using AspectJ in the Real World

C H A P T E R14

363

Adding Features

In most cases where a developer can get the attention of the chief architect (or
happens to be the chief architect), AOP isn’t given the red-carpet treatment.
Like most new technologies, it requires a trying-out period during which things
like usability, performance, and maturity can be proven. This try-out period is
typically associated with either a very small project or a new feature being
added to a project.

Initial Application
Many developers will be familiar with this situation: You go to work knowing all
the tasks you need to accomplish, only to be informed of a change in direction.
The boss lets you know that an important customer has raised a high-priority
issue and you need to add a new feature or two to production code already in
the field. You’ve never used the software, and there is very little documentation.
Fortunately, the customer wants the job done right, so you have an unrealistic
due date instead of an impossible one.

In this example, the current application is called Projectile Motion; you can find
the source code at www.phys.virginia.edu/classes/109N/more_stuff/Applets/
ProjectileMotion/applet.html. This software, which is covered by the GNU GPL
license, provides scientists around the world with a graphical representation of
the flight path of a projectile that has a specific mass and is fired from a cannon
at a specified angle and velocity.

Features to Be Added
The customer has indicated that the Projectile Motion application does its
required job well, but they would like a few problems addressed:

■■ The application cannot provide output in a form other than the graphical
format. The customer would like results from the calculations to be output
to a file. For each run, the starting values entered by the user, all intermedi-
ary values, and the final distance should be put into a text file for later pro-
cessing.

■■ The customer wants a tracking feature that records all values set for mass,
velocity, and angle. This information should be noted when the user starts
the projectile in motion. In addition, every time the user selects a value for
one of these three variables, all three values should be recorded.

■■ The customer wants to affect time in the calculation of the projectile, by
letting the user move time ahead or behind. The code should display an
input box asking the user if time should be changed from the present

Using AspectJ in the Real World364

value. You might even tell the application not to bother asking for a change
until a certain time is reached. Ultimately, you will be able to give the soft-
ware the ability to replay data based on a new system time and also to
determine the system’s response to bad data.

Current Design
Figure 14.1 shows the sample output after you download the source code for
the application, compile it, and execute it to determine what it does. Now you
can set out to understand the design structure of the code; this exercise leads
to the UML class diagram shown in Figure 14.2.

Adding Features 365

Figure 14.1 Application sample output.

Projectile
PositionGraph

DrawableAxis

RotFilter

BuddyBar

-dart : Projectile
-ordinate : DrawableAxis
-abscissa : DrawableAxis

ProjectileApplet

-bullet : Projectile
-arcs : PositionGraph
-velocityBuddy : BuddyBar
-angleBuddy : BuddyBar
-massBuddy : BuddyBar

Figure 14.2 Projectile Motion UML class diagram.

From the UML diagram, you can see that the application includes six classes.
Two of those classes, ProjectileApplet and PositionGraph, do the most work.
From the comments in the source code, you can determine the purpose of each
class:

ProjectileApplet—Contains the logic for handling setup, getting input
from the user, and firing a projectile

Projectile—Calculates where a projectile is located, based on mass, veloc-
ity, and the angle of the firing cannon

PositionGraph—Draws the projectile on a graph

BuddyBar—Displays input sliders to the user

DrawableAxis—Draws horizontal and vertical graphs with units appropri-
ate for the mass, velocity, and angle of the firing cannon

RotFilter—Rotates a graphical image

Understanding the class structure and purpose of each class lets you determine
where to add code for the new features. The basic flow of execution follows
these steps:

1. A ProjectileApplet object is created. It creates a PositionGraph, three Bud-
dyBar controls, and a Projectile. Listener methods are created for each
control. When a slider is changed, the appropriate value, mass, velocity,
and angle are changed in the Projectile object. When the user clicks the
Fire button, the Projectile’s fire() method is called.

2. The Projectile object created is a Runnable object. It waits for the fire()
method to be called, and then begins calculating projectile positions.
[awk.]The code interrupts the current processing of a projectile path in
order to automatically reset and start over on a new path. The Projectile
class also includes a listener interface through which other objects can
register to receive updates on the position of the projectile.

3. The PositionGraph object is created and provided to the Projectile object
in order to register with the Projectile object’s listener. The PositionGraph
object waits for updates from the Projectile object and plots them as
needed. Just before the Projectile object begins to calculate position val-
ues, a call is made to the PositionGraph object to allow the object to dis-
play axis controls with appropriate units on them.

4. When the fire button is clicked, the Projectile object begins calculating
new positions and passes them to the PositionGraph object for display.

How Much Legacy to Consider
One of the primary considerations after you review the design and code of the
current application is the mix of new code versus AspectJ code to use to

Using AspectJ in the Real World366

implement the new tasks. In other words, you must decide whether to write
code in AspectJ because it’s available and you want to use it, or whether to
spend time considering the design of the application and use all available fea-
tures to implement the new concern.

The answer is simple: If the new concern that needs to be added to the applica-
tion will crosscut the legacy application, then you should write an aspect. If you
can write the concern as a stand-alone class and plug it into the current code
without upsetting the previously written classes, then you should use the pri-
mary language.

Writing Aspects and Primary Code
Your goal is to add the new concerns to the current application without resort-
ing to tangled code in the classes already defined. As you look at the first con-
cern—which deals with handling logging of starting, intermediate, and ending
values—it should occur to you that the Projectile object already provides the
ability to obtain this information. Recall that the PositionGraph object registers
itself with the Projectile object to receive updates when a position changes.
Upon inspection of the two classes, you find that the Projectile’s listener class
is actually an interface, defined in Listing 14.1.

Adding Features 367

public interface ProjectileListener {

public void setPosition(double x,double y,

double vx,double vy,double time,boolean mark);

// Initial velocity and angle.

public void beginFiring(double velocity, double angle,

double[] endStats);

// shotStats[0] endDistance [1] end velocity [2]

// maxHeight [3] endTime

// endStats[0] kappa [1] gamma

// endStats[2] vx0 [3] vy0 [4] t0 -- all three scalings.

public void endFiring(double[] shotStats);

}

Listing 14.1 The ProjectileListener class.

The interface has three primary methods: beginFiring(), setPosition(), and end-
Firing(). All three methods fit perfectly with the information you need to log
based on the first new concern. You don’t need to create an aspect for this con-
cern, because you can build a new class that implements these three methods
and registers itself with the Projectile object. When the beginFiring() method is
called, the new class opens a log file and inserts the initial values from the appli-
cation. The setPosition() method adds intermediate position information to the

file, and the endFiring() method records final information and closes the file.
After all that, you don’t even need an aspect.

A simple version of the new class is shown in Listing 14.2.

Using AspectJ in the Real World368

import java.io.*;

public class PathLogging implements Projectile.ProjectileListener

{

Logger logObj;

public PathLogging (Projectile bullet) {

bullet.addListener(this);

logObj = Logger.instance();

}

public void setPosition(double x,double y, double vx,double

vy,double time,boolean mark) {

logObj.write("x= " + x + " time= " + time);

}

public void beginFiring(double velocity, double angle, double[]

endStats) {

logObj.write("Begin Firing");

}

public void endFiring(double[] shotStats) {

logObj.write("End Firing\n");

}

}

Listing 14.2 The PathLogging class.

Logger Helper Class

A helper class called Logger, shown in Listing 14.3, handles opening the log file,
closing the file, and appending a string to the current file contents. This helper
class logs the projectile path information as well as the information to be
recorded as indicated in the second concern (discussed next).

import java.io.*;

public class Logger{

FileWriter fw;

static private Logger _instance = null;

Listing 14.3 The Logger class. (continues)

TE
AM
FL
Y

Team-Fly®

Adding Features 369

static public Logger instance() {

if(_instance == null) {

_instance = new Logger();

}

return _instance;

}

protected Logger() {

try {

fw = new FileWriter("log.txt");

} catch(IOException e){}

}

public void close() {

try {

fw.close();

} catch(IOException e){}

}

public void write(String s) {

try {

fw.write(s + "\n");

} catch(IOException e){}

}

}

Listing 14.3 The Logger class. (continued)

One of Java’s more painful characteristics is the need to either declare an
exception thrown or add try/catch blocks to all code that might throw an excep-
tion. Such is the case for the FileWriter code defined in Listing 14.3. However,
AspectJ lets you remove the try/catch blocks or signature definitions by setting
up a software exception in an aspect. Consider the following aspect, which
handles the exceptions in constructor, write, and close methods:

public aspect LoggerAspect {

declare soft : IOException : within(Logger);

pointcut writerCall(Logger obj) :

call(* Logger.*(..)) &&

this(obj);

after (Logger obj) throwing (Exception e) : writerCall(obj) {

obj.close();

}

}

In this aspect, a soft exception is declared based in the Logger class. This
means any method with the class could potentially throw an IOException.
Next, the constructor and write methods are selected as join points using a call
designator. When either of these join points is matched and the method is
throwing an exception, the after advice will execute. The after advice calls the
close() method of the FileWriter object to make sure the object is cleaned up
when an error has occurred.

With this base aspect in place, any new methods added to the Logger class don’t
need to include try/catch blocks or declare they are throwing IOException.
Although this might seem like a small win, it makes a big difference when the
class has a large number of methods.

Adding PathLogging

The PathLogging class must be incorporated into the application so it can be
instantiated and registered with the Projectile object. The most logical
approach is to make the new class an attribute in the ProjectileFrame class in
the same manner as PositionGraph. The code is as follows:

PathLogging pl = new PathLogging(bullet);

Once the application is executed, the movement of a projectile is recorded to a
file. Here’s a small piece of the output in the file:

Begin Firing

x= 0.0 time= 0.0

x= 0.0 time= 0.07663140638417193

x= 1.310474229738103 time= 0.15326281276834386

x= 2.620948459476206 time= 0.2298942191525158

x= 3.9314226892143087 time= 0.3065256255366877

Moving to the second concern, which specifies that all changes to the mass,
velocity, and angle controls should be logged, you have to look in the Projec-
tileApplet code to see how the control changes are handled. The code that does
the work is as follows:

public void buddyValueChanged(BuddyBar changer, double dVal){

if (changer==velocityBuddy) {

bullet.setVelocity(dVal);

} else if (changer == angleBuddy) {

bullet.setAngle(dVal*Math.PI/180);

} else if (changer == massBuddy) {

bullet.setMass(dVal);

}

The code sets the new velocity, mass, or angle value on the Projectile object and
returns. All you need to do is add code to open a log file when the Projec-
tileApplect code starts; you can add writes to the log file in this method. Of

Using AspectJ in the Real World370

course, doing so violates the objective of avoiding tangled code. Therefore, the
second concern is a perfect opportunity to use an aspect. This aspect is based
on the call to the method and requires you to access the variables passed to the
code (see Listing 14.4).

Adding Features 371

public aspect LogIntermediate {

Logger logObj = Logger.instance();

private void writeInfo(double mass, double velocity, double

angle) {

logObj.write("Mass="+mass+" Velocity="+velocity+"

Angle="+angle);

}

pointcut valueChange(Projectile bullet) :

(execution(public void Projectile.setVelocity(double)) ||

execution(public void Projectile.setAngle(double)) ||

execution(public void Projectile.setMass(double))) &&

this(bullet);

after(Projectile bullet) : valueChange(bullet) {

writeInfo(bullet.getMass(), bullet.getVelocity(),

bullet.getAngle());

System.out.println(bullet.getVelocity());

}

}

Listing 14.4 The LogIntermediate aspect.

The aspect intercepts the call to each of the ProjectileApplet object’s set meth-
ods. After advice is executed when the method has completed its work, and a
write is made to the log file associated with the application. This aspect catches
all changes to the slider controls for each of the variables mass, velocity, and
angle. The output from changing the three variables is saved in the log file. Here
is an example of the output:

Mass=10.0 Velocity=56.935 Angle=0.7068583470577035

Mass=10.0 Velocity=57.43 Angle=0.7068583470577035

Mass=10.0 Velocity=57.925 Angle=0.7068583470577035

Mass=10.0 Velocity=58.42 Angle=0.7068583470577035

Mass=10.0 Velocity=58.915 Angle=0.7068583470577035

Mass=10.0 Velocity=59.41 Angle=0.7068583470577035

Mass=10.0 Velocity=59.905 Angle=0.7068583470577035

Mass=10.0 Velocity=59.905 Angle=0.7068583470577035

Mass=10.0 Velocity=59.905 Angle=1.2252211349000193

Mass=10.0 Velocity=59.905 Angle=1.233075116533994

The third concern is a little more involved and causes a change to occur in the
execution of the application that isn’t meant to occur in the original design.
Comments in the source code discuss the possibility of changing the parame-
ters of the project in mid-flight. You don’t alter the characteristics of the pro-
jectile, but instead change the current time. Doing so can be handy for replaying
a projectile’s flight or stepping through its flight.

The Projectile object is the primary place for the flight calculations. The
method calcPosition(double) takes a double value representing the time and
updates the internal attributes of the object. Time starts at zero and is incre-
mented by a value of .008 units during each iteration within an internal loop.
The aspect you add intercepts the call to calcPosition(double) and gives the
user an opportunity to provide an input time other than that used by the appli-
cation. The aspect uses a small input dialog, shown in Figure 14.3, to obtain the
value from the user.

Listing 14.5 shows the aspect.

Using AspectJ in the Real World372

Figure 14.3 CalcPosition input box.

import java.awt.Graphics;

import javax.swing.*;

Listing 14.5 The TimeAspect aspect. (continues)

Adding Features 373

public aspect TimeAspect {

pointcut interceptTime(double time, Projectile bullet) :

execution(private void calcPosition(double)) &&

args(time) &&

this(bullet);

void around(double time, Projectile bullet) :

interceptTime(time, bullet) {

String input = JOptionPane.showInputDialog("Current time is "

+ time + "\n" +

"Enter new time

value or blank to continue\n");

if (!input.equals("")) {

double newTime = Double.parseDouble(input);

bullet.t = newTime;

proceed(newTime, bullet);

} else {

proceed(time, bullet);

}

}

}

Listing 14.5 The TimeAspect aspect. (continued)

The aspect begins with a definition of a pointcut using an execution designator
against the join point private void calcPosition(double). Because you must
access the incoming time parameter, the args designator is specified as well.
The source code for the Projectile class shows that the time value passed to the
method is based on a class attribute called t. If you want the calculations to
change based on a new time value, the t attribute must also be set to the new
time value. For this reason, the object where the join point is matched is passed
to the code as well, through the this designator. The interceptTime pointcut is
associated with around advice, so you can affect the outcome of the matched
method. The parameter to the calcPosition() method and the affected object
are both passed to the advice.

The advice code begins by creating and displaying a dialog box, shown in Fig-
ure 14.3. The dialog displays the current value passed into the method as a ref-
erence value for the user. The user has the option of clicking OK to use the
original value or entering their own value for use in the calcPosition() method.
In either case, the advice code checks the string returned from the dialog box.
If the string is empty, then the user wants the current time value to be used. If
the string isn’t empty, then the user has changed the time, and the code extracts
a double value from the string. Once the time value has been determined to be
either the old or a new value, the proceed keyword is used to pass both the new

time value and the Projectile object back to the system so the original code can
continue processing.

Figure 14.4 shows an example of advancing the projectile in time. The projec-
tile has an arc graph just after it was fired; the graph continues its downward
fall when the time advances forward.

Using AspectJ in the Real World374

Figure 14.4 Interrupted flight path.

Testing
One of the benefits of incorporating the concerns for this example is the testing
group’s unprecedented access to a large number of variables in the application
while the application is running. In addition, the group can change the time
value to determine how the code reacts to bad data and so on.

Documentation
When you make any changes to an existing application, it’s important to keep
the documentation consistent. In this case, no initial design information existed
outside the code itself. A UML-based class diagram was created to help you
understand the application’s architecture. Because the diagram has already
been created, it will be useful to keep it up to date.

A number of articles have been written about expanding UML to handle AOP
concepts. Figure 14.5 shows why there is so much discussion about adding
AOP to UML diagrams.

Figure 14.5 Initial concern placement in UML.

The UML class diagram in Figure 14.5 shows how the PathLogging class, which
addresses the first concern, was added to the application. The class is a normal
Java class and doesn’t lead to problems with the UML diagram. The second con-
cern was addressed with an AspectJ aspect called LogIntermediate. From the
diagram, it appears that the aspect is just another class in the application; there
is no indication that the aspect crosscuts the application, nor are any con-
structs, such as pointcuts, shown. The third concern was also addressed with
an aspect—but again, it looks like a class. You could add a number of notes to
the UML diagram; however, it’s better to represent the aspects and their related
concepts in a form that brings out the fact that the aspects are ancillary to the
application, and that in many cases they could be removed with affecting the
application.

Figure 14.6 shows another UML diagram in which the LogIntermediate and
TimeChange aspects are defined in terms more appropriate for aspects. These
aspects are shown to be dependent on the Projectile class, and the LogInter-
mediate aspect <has-a> Logger object associated with it. Each of the aspects is
drawn into the diagram using a dotted box to represent the fact that these
aspects are easy removed from the application without upsetting the primary
functionality.

Adding Features 375

Projectile

TimeAspectLogIntermediatePathLogging

Position Graph

DrawableAxisRotFilter

BuddyBar

Logger

-dart : Projectile
-ordinate : DrawableAxis
-abscissa : DrawableAxis

Projectile Frame

-bullet : Projectile
-arcs : PositionGraph
-velocityBuddy : BuddyBar
-angle Buddy : BuddyBar
-massBuddy : BuddyBar
-pl : PathLogging

Figure 14.6 A possible UML solution.

NOTE
There is currently no defined standard for adding aspects to a UML diagram. At the
following Web site, you can find a number of articles that show how aspects should
be added to class diagrams, collaboration diagrams, and others:
http://lglwww.epfl.ch/workshops/aosd-uml/papers.html.

Each aspect figure is designed to provide as much information as necessary
about its structure so a designer can accurately convey the purpose and rela-
tionship of the aspect to the rest of the primary code. At the top of each aspect
is its name, followed by the classes it will potentially match. This portion of the
aspect may be quite large if the aspect can match a large number of methods
spread across many classes. After the list of affected classes, the advices found
in the aspect are listed, along with their associated pointcuts.

The pointcuts defined in the aspect are listed in boxes under the aspect’s
labeled box. The first part of the pointcut is its name, followed by the designa-
tors specifying the join points the pointcut will use to match primary code. If
the aspect includes more than one pointcut, you’ll create additional boxes
within the aspect.

As you look at this example and read the articles at the link in the preceding Note,
you will come to understand the need for a standard way to represent aspects in
UML—and there are as many ideas for how to do this as there are designers.

Using AspectJ in the Real World376

Logger

PathLogging

ProjectileFrame Projectile

LogIntermediate <<aspect>>

 after (Projectile) : valueChange (bullet)

Projectile

Pointcut valueChange

Execution (public void
Projectile.setVelocity (double))

Timechange <<aspect>>

 void around (double, projectile) :
interceptTime (time, bullet)

Projectile

Pointcut InterceptTime

Execution (private void calcPostion (double)) &&
args (time) &&

Execution (public void
Projectile.setMass (double))

this (bullet)

Conclusion
A popular question about AspectJ is whether you should use it instead of incor-
porating the feature directly into the primary application through a refactoring
exercise or a hack job. This question can be answered intelligently, but the
answer depends on the application and the state of the source code.

First, hacking the feature into the code isn’t a good option; although quick, this
approach will lead to problems down the road. Adding a feature during the
refactoring process isn’t necessarily a good idea either, because the focus of the
exercise will vacillate between the refactor and adding the feature. If you have
source code and accurately encapsulated classes, adding the feature may be
best in the primary language, unless it will crosscut the classes and compo-
nents.

In this section’s example, adding the ability to log and control the play time of
the projectile crossed many classes. This fact alone makes AspectJ a good
choice for the implementation.

Refactoring Web Spider

In all projects, there comes a time when the code is used in a production set-
ting, features are being added, and the original developers have moved on to
different projects. Eventually, the code begins to get messy and performance
may start to suffer. One solution is to refactor the code. This process can entail
the entire system, a complex method of one class, or a single feature.

During the refactoring process, a primary goal should be better encapsulation of
the classes and components. Even in the best of circumstances, you’ll need to
place some code in multiple classes, where it breaks the classes’ encapsulation.
In these circumstances, the solution is to use AOP, and AspectJ specifically.

When the project was written in Java, you can use AspectJ to write better code.
To show how you can refactor an application using AspectJ, this section takes
the open-source Web spider called WebLech (available at http://
weblech.sourceforge.net), removes some of the crosscutting concerns, and
replaces the concerns with aspects. The section is roughly broken into subsec-
tions based on the concern to be removed from the primary code.

As we move through the sections, we’ll show most of the aspect code but only
a small portion of the primary code, for space reasons. We recommend that you
download the code for this example from the book’s Web site
(www.wiley.com/compbooks/gradecki) so you’ll have a full picture of the
changes. It may also be helpful to have the original source code available, as
found at the weblech.sourceforge.net site.

Refactoring Web Spider 377

Logging
When you review the code for the Web spider, it will become clear that logging
is one of the first crosscutting concerns that needs to be removed from the
code. Within the code, all the logging is handled using the Log4J package. The
Log4J package is encapsulated within a Logger class, where a static attribute
called _logClass holds a logging instance based on a WebLech category.

Any class in the code that wants to log information needs to import either the
Log4J or Logger class and pull the log instance. Once this has been accom-
plished, information can be logged using the instance’s info(), error(), and
debug() methods. In the spider’s source code, there are anywhere from 2 to 10
calls to the logger in any given method. This is quite a bit of crosscutting, and it
must be evaluated. The evaluation is multifaceted:

1. Do all the different logging events need to occur? In other words, do you
need to use info(), error(), and debug() without any criteria, or would sim-
ple logging statements suffice? Answer: For this application, there’s no rea-
son to use multiple levels of logging criteria.

2. What impact does the logging crosscutting concern have on the readability
and maintainability of the code? Answer: The logging is dispersed through-
out the code and detracts from its readability.

3. Will pulling logging into an aspect help with encapsulation and modulariza-
tion? Answer: Yes.

The result of the evaluation determines whether logging should be an aspect
(yes) and how much functionality and complexity should be contained in the
aspect. The last part addresses question 1: If you need the logging granularity, it
can be obtained through a level of logic in the aspect code and how the join
points are handled.

To refactor the logging concern to an aspect, you will start with the logger’s out-
put mode.

Logger Output

As we mentioned, the logging used in WebLech is Log4J, and it has been used
extensively throughout all the code. You don’t have to abandon the use of Log4J
if it provides a capability necessary for analysis.

The following code implements a logger aspect using Log4J. The code is based
on Listing 14.3, except the aspect is defined to be abstract. To promote modu-
larization, each class in the system has an associated logging aspect. When a
class is changed, it will be easy to find the aspect to update:

Using AspectJ in the Real World378

TE
AM
FL
Y

Team-Fly®

package weblech.util;

import org.apache.log4j.Category;

import weblech.util.Log4j;

abstract aspect LoggerAspect {

protected static final Category _logClass =

Category.getInstance("LoggerAspect");

static {

Log4j.init();

}

}

At this moment, all the aspect does is obtain a Log4J instance and make sure it
is initialized. The next few sections walk through the application code, showing
how it is refactored to use a logging aspect. Note that all the code could easily
be logged with a single aspect matching all methods in the code. Remember the
evaluation questions? The granularity of logging captured by the logging
aspects is directly proportional to the complexity of the join points, advice, and
aspects. For this example, assume that a higher level of complexity is necessary
in order to provide intelligent logging.

For the most part, the aspects you add to the project will not use introduction.
However, in a few places, accessor methods are supplied for class attributes
needed to provide accurate logging.

Refactoring DumbAuthenticator.java

The DumbAuthenticator.java file implements a class to handle passing a user-
name and password to Web sites that need authentication. The class includes
two methods with a total statement count of five; two of those statements are
dedicated to logging. The class’s code includes five additional lines of code for
logging. About half of this class deals with logging, and although the logging is
necessary, the class is a prime example of how a simple concern can crosscut
and even dominate a class. Listing 14.6 shows the original object code.

Refactoring Web Spider 379

package weblech.spider;

import org.apache.log4j.Category;

import java.net.Authenticator;

import java.net.PasswordAuthentication;

import weblech.util.Log4j;

public class DumbAuthenticator extends Authenticator

{

Listing 14.6 The DumbAuthenticator class. (continues)

Using AspectJ in the Real World380

private final static Category _logClass = Category.getInstance(DumbAuthen-

ticator.class);

static

{

Log4j.init();

}

private final String user;

private final String password;

public DumbAuthenticator(String user, String password)

{

_logClass.debug("DumbAuthenticator(" + user + ", ***)");

this.user = user;

this.password = password;

}

public PasswordAuthentication getPasswordAuthentication()

{

_logClass.debug("getPasswordAuthentication()");

return new PasswordAuthentication(user, password.toCharArray());

}

}

Listing 14.6 The DumbAuthenticator class. (continued)

The first method in the class is the constructor, which logs the username
passed to the constructor. The second method returns the object’s authentica-
tion information and logs just the method name. In both cases, the logging is
accomplished with a call to the debug() method. It’s quite simple to create an
aspect for this class. Listing 14.7 shows the resulting LoggingAspectDumbAu-
thenticator aspect.

package weblech.spider;

public aspect LoggerAspectDumbAuthenticator extends LoggerAspect

{

pointcut logConstructor(String username, String password) :

initialization(public DumbAuthenticator.new(..)) &&

args(username, password);

pointcut logGet() :

call(* getPasswordAuthentication());

Listing 14.7 The LoggerAspectDumbAuthenticator aspect. (continues)

Refactoring Web Spider 381

before(String username, String password) :

logConstructor(username, password) {

_logClass.debug("DumbAuthenticator(" + username + ", ***)");

_logClass.info("DumbAuthenticator(" + username + ", ***)");

}

before() : logGet() {

_logClass.debug(thisJoinPoint.getSignature());

_logClass.info(thisJoinPoint.getSignature());

}

}

Listing 14.7 The LoggerAspectDumbAuthenticator aspect. (continued)

This aspect extends the abstract LoggingAspect aspect. The extension allows
automatic instantiation of the Log4j object and lets the code log to both the
screen and a log file without further programmer action. Within the aspect are
two pointcuts: logConstructor and logGet. The logConstructor pointcut uses
the initialization designator to match a join point on the method constructor.
The logGet pointcut uses a call designator to match the getPasswordAuthenti-
cation() method. You use two different pointcuts because the logging output
for each join points is different. For both pointcuts, before advice is defined in
which information is presented to the console as well as a log file.

To test the DumbAuthenticator and its aspect, you can use the following test
application:

package weblech.test;

import weblech.spider.DumbAuthenticator;

import java.net.Authenticator;

import java.net.PasswordAuthentication;

public class TestDumbAuthenticator {

public static void main(String [] args) {

DumbAuthenticator da = new DumbAuthenticator("Gradecki", "password");

PasswordAuthentication pa = da.getPasswordAuthentication();

}

}

This tester allocates a DumbAuthenticator object, thus triggering a match on
the LogConstructor pointcut. The code makes a call to the getPasswordAu-
thentication() method to trigger the logGet pointcut. You can compile and exe-
cute the code with this command:

java -classpath "C:\aspectj1.0\lib\aspectjrt.jar;.\classes;

.\lib\log4j-1.1.3.jar" weblech.test.TestDumbAuthenticator

The following output appears on the screen and in a log file called weblech.log:

Log4j configured to use weblech.log -- view full logging here

2002-08-01 00:06:00,710 [main] INFO

LoggerAspectDumbAuthenticator.java;weblech/

spider/LoggerAspect.java[1k]:14 - DumbAuthenticator(Gradecki,

***)

2002-08-01 00:06:00,730 [main] INFO

LoggerAspectDumbAuthenticator.java;weblech/

spider/LoggerAspect.java[1k]:19 - PasswordAuthentication

weblech.spider.DumbAuth

enticator.getPasswordAuthentication()

With the addition of the aspect, the original DumbAuthenicator class code
becomes dramatically smaller, as shown in Listing 14.8.

Using AspectJ in the Real World382

package weblech.spider;

import java.net.Authenticator;

import java.net.PasswordAuthentication;

public class DumbAuthenticator extends Authenticator {

private final String user;

private final String password;

public DumbAuthenticator(String user, String password)

{

this.user = user;

this.password = password;

}

public PasswordAuthentication getPasswordAuthentication()

{

return new PasswordAuthentication(user,

password.toCharArray());

}

}

Listing 14.8 The final DumbAuthenticator class.

Refactoring URLGetter.java

URLGetter.java is the next class to be refactored away from using the logging
classes directly. The class takes a URL to a Web site, creates a connection
object, connects to the site, downloads the provided HTML, and returns a
URLObject with the site HTML enclosed. The majority of the information
logged is for basic tracing of the connection process, with a few logs when an
exception occurs. Because of the length of the source file, we won’t reproduce

it here; you can find it in the download file mentioned earlier in the chapter. The
aspect is as shown in Listing 14.9.

Refactoring Web Spider 383

package weblech.spider;

import java.net.URL;

import java.io.*;

public aspect LoggerAspectURLGetter extends LoggerAspect {

pointcut logConstructor() :

initialization(public URLGetter.new(..));

pointcut logGetURL(URLToDownload url) :

execution(URLObject getURL(URLToDownload)) &&

args(url);

pointcut logGetURLNoArgs() :

execution(URLObject getURL(..));

pointcut catchSleep() :

call(* Thread.sleep(..));

pointcut logFailureRate(URLGetter ug) :

this(ug) &&

cflow(catchSleep());

pointcut logOpenConnection(URLToDownload url) :

call (public java.net.URLConnection java.net.URL.openConnection()) &&

cflow(logGetURL(url));

pointcut logConnect() :

call (public void java.net.HttpURLConnection.connect()) &&

cflow(logGetURLNoArgs());

pointcut logResponse() :

call (public String java.net.HttpURLConnection.getResponseMessage()) &&

cflow(logGetURLNoArgs());

pointcut logHeaderField(String key) :

call (public String java.net.HttpURLConnection.getHeaderField(String)) &&

cflow(logGetURLNoArgs()) &&

args(key);

pointcut logStream() :

call(java.io.BufferedInputStream.new(..));

pointcut logStats(URLGetter url) :

call(* java.net.HttpURLConnection.getContentLength()) &&

Listing 14.9 The LoggerAspectURLGetter aspect. (continues)

Using AspectJ in the Real World384

cflow(logGetURLNoArgs()) &&

this(url);

pointcut logFileNotFound(FileNotFoundException e) :

handler(FileNotFoundException) &&

args(e);

pointcut logIOException(IOException e) :

handler(IOException) &&

args(e);

/************************/

before() : logConstructor() {

_logClass.debug("URLGetter()");

_logClass.info("URLGetter()");

}

before(URLToDownload url) : logGetURL(url) {

String text = new String(thisJoinPoint.getSignature().toString());

_logClass.debug(text + url);

_logClass.info(text + url);

}

after(URLGetter ug) : logFailureRate(ug) {

_logClass.warn("Lots of failures recently, waiting 5 seconds

before attempting download");

}

before(URLToDownload url) : logOpenConnection(url) {

URL requestedURL = url.getURL();

_logClass.debug("Creating HTTP connection to " +

requestedURL);

}

after(URLToDownload url) : logOpenConnection(url) {

URL referer = url.getReferer();

if (referer != null)

_logClass.debug("Setting Referer header to " + referer);

}

before() : logConnect() {

_logClass.debug("Opening URL");

}

after() returning (String resp) : logResponse() {

_logClass.debug("Remote server response: " + resp);

Listing 14.9 The LoggerAspectURLGetter aspect. (continues)

Refactoring Web Spider 385

}

after(String key) returning (String value) : logHeaderField(key) {

_logClass.debug("Received header " + key + ": " + value);

}

before() : logStream() {

_logClass.debug("Getting buffered input stream from

remote connection");

}

after(URLGetter url) returning (int length): logStats(url) {

_logClass.info("Downloaded " + url.content.length + " bytes,

" + url.bytesPerSec + " bytes/sec");

if (url.content.length < length)

_logClass.warn("Didn't download full content for URL: " +

url);

}

before(FileNotFoundException e) : logFileNotFound(e) {

_logClass.warn("File not found: " + e.getMessage());

}

before(IOException e) : logFileNotFound(e) {

_logClass.warn("File not found: " + e.getMessage());

}

}

Listing 14.9 The LoggerAspectURLGetter aspect. (continued)

We’ll discuss each of the pointcuts and related advice. Some of the pointcuts
are built creatively to handle the original logging commands. At one point, a
variable local to a method had to move to the class level in order for the logging
command to provide necessary information. This change will be noted in the
particular pointcut.

This pointcut produces a log entry when the constructor for the URLGetter
class is used:

pointcut logConstructor() :

initialization(public URLGetter.new(..));

This pointcut produces a log entry when the getURL() method begins to exe-
cute. The advice for this pointcut needs to output the URL passed to the
method; thus the args designator is used to access the parameter:

pointcut logGetURL(URLToDownload url) :

execution(URLObject getURL(URLToDownload)) &&

args(url);

Some of the pointcuts described later are scoped directly to the getURL()
method. The cflow designator must be used to be sure the join points are only
matched within the specific method:

pointcut logGetURLNoArgs() :

execution(URLObject getURL(..));

The first part of the getURL() method contains code that logs a message when
more than 10 attempts are made to download a specific URL. The code appears
as follows:

pointcut logFailureRate(URLGetter ug) :

this(ug) &&

call(* Thread.sleep(..));

As you can see, there isn’t anything in the conditional to use as a join point,
because AspectJ doesn’t yet support join points on conditional statements. For-
tunately, the sleep() method only occurs within the conditional, and you can
use it as a join point to indicate that more than 10 failures have occurred:

if(failureCount > 10) {

_logClass.warn("Lots of failures recently, waiting 5

seconds before attempting download");

try { Thread.sleep(5 * 1000); } catch(InterruptedException e) { };

failureCount = 0;

}

The next join point is based on the opening of a connection to a specific URL.
The point is defined based on the openConnection() method call and its loca-
tion in the getURL() method. The URL object passed to the getURL() method is
obtained so the log can indicate which URL is being opened:

pointcut logOpenConnection(URLToDownload url) :

call (public java.net.URLConnection java.net.URL.openConnection()) &&

cflow(logGetURL(url));

When the code tries to connect to the Web site based on the URL specified to the
getURL() method, a call is made to the connect() method. The logConnect()
pointcut is triggered when a call is made to the connect() method; the call is
made within the getURL() method:

pointcut logConnect() :

call (public void java.net.HttpURLConnection.connect()) &&

cflow(logGetURLNoArgs());

After a connection to a Web server is attempted, the response from the server
is captured through the getResponseMessage() method and output to the log.
Because you only want to match on the join point when it occurs within
getURL(), you use the cflow designator:

pointcut logResponse() :

call (public String java.net.HttpURLConnection.getResponseMessage())

Using AspectJ in the Real World386

&&

cflow(logGetURLNoArgs());

Before the text of the HTML page associated with the URL is downloaded, you
obtain and log HTTP headers. The getHeaderField() method is called a number
of times with a specific parameter. The logHeaderField pointcut includes the
args designator to pull the value passed with the method:

pointcut logHeaderField(String key) :

call (public String java.net.HttpURLConnection.getHeaderField(String))

&&

cflow(logGetURLNoArgs()) &&

args(key);

However, it’s also important to show the value returned by the getHeader-
Field() method. You can obtain the return value in the advice used with this
pointcut:

after(String key) returning (String value) : logHeaderField(key) {

_logClass.debug("Received header " + key + ": " + value);

}

Notice the use of the returning keyword so you get access to the value from the
method after it executes.

The headers are followed by the code needing a stream to keep track of the text
from the URL:

pointcut logStream() :

call(java.io.BufferedInputStream.new(..));

Because the stream is created as an object using new(), you can use the same
initialization as a join point to indicate the stream object has been created:

pointcut logStats(URLGetter url) :

call(* java.net.HttpURLConnection.getContentLength()) &&

cflow(logGetURLNoArgs()) &&

this(url);

The logStats pointcut is a problem, because the code must be able to output
values from two local variables. These local variables aren’t accessible using
AspectJ. For this reason, their definition appears in the attribute section of the
class. To access the variables, you pass to the advice code the URL object
where the getContentLength() method is called.

The last pointcuts in the aspect are associated with exceptions that can occur
in the code. In both pointcuts, information about the exception is put in the log
as well:

pointcut logFileNotFound(FileNotFoundException e) :

handler(FileNotFoundException) &&

args(e);

Refactoring Web Spider 387

pointcut logIOException(IOException e) :

handler(IOException) &&

args(e);

Refactoring HTMLParser.java

The last refactored class we will look at in detail is HTMLParser. This class
parses the HTML text returned from the Web site, with the goal of determining
whether there are additional links to follow or files to download. The resulting
aspect from this class is shown in Listing 14.10.

Using AspectJ in the Real World388

package weblech.spider;

import java.io.IOException;

import java.net.URL;

import java.util.List;

public aspect LoggerAspectHTMLParser extends LoggerAspect {

pointcut logParse(URL sourceURL, String textContent) :

execution(* HTMLParser.parseAsHTML(URL, String)) &&

args(sourceURL, textContent);

pointcut logSize(URL sourceURL, String textContent) :

call(int java.util.ArrayList.size()) &&

cflow(logParse(sourceURL, textContent));

pointcut logExtract(String tag, String attr) :

call(private void HTMLParser.extractAttributesFromTags(

String, String, ..)) &&

args(tag, attr, ..);

pointcut logMail() :

execution(private void logMailURL(String));

pointcut logMailException(IOException e) :

handler(IOException) &&

cflow(logMail()) &&

args(e);

//***

before(URL sourceURL, String textContent) : logParse(sourceURL,

textContent) {

_logClass.info("parseAsHTML()");

}

after(URL sourceURL, String textContent) returning (int size) :

logSize(sourceURL, textContent) {

Listing 14.10 The LoggerAspectHTMLParser aspect. (continues)

TE
AM
FL
Y

Team-Fly®

Refactoring Web Spider 389

if(size == 0) {

_logClass.debug("Got 0 new URLs from HTML parse, check

HTML\n" + textContent);

}

_logClass.info("Returning " + size + " urls extracted from

page");

}

before(String tag, String attr) : logExtract(tag, attr) {

_logClass.info("extractAttributesFromTags(" + tag + ", " +

attr + ", ...)");

}

before() : logMail() {

_logClass.info("logMailURL()");

}

before(IOException e) : logMailException(e) {

_logClass.warn("Caught IO exception writing mailto URL:" +

e.getMessage());

}

}

Listing 14.10 The LoggerAspectHTMLParser aspect. (continued)

This aspect includes three pointcuts of particular importance. The first, log-
Parse(), is defined as follows:

pointcut logParse(URL sourceURL, String textContent) :

execution(* HTMLParser.parseAsHTML(URL, String)) &&

args(sourceURL, textContent);

The primary method in the HTMLParser class is parseAsHTML(), which
accepts both a URL and the text obtained from the URL. The logParse pointcut
is triggered on the parseAsHTML() method and provides access to the two
parameters for logging purposes:

Once the logParse() method has done its work, the number of URLs obtained
from the HTML text is checked to see if any additional ones were found. You
want to log the situation when no additional links are found. The logParse
pointcut is used within a cflow designator. The pointcut is pulled out for
examination here because of the binding of the parameters to the logParse
pointcut. Because you want to have access to the parameters in the new point-
cut, you must provide the types and names in the pointcut definition as well:

pointcut logSize(URL sourceURL, String textContent) :

call(int java.util.ArrayList.size()) &&

cflow(logParse(sourceURL, textContent));

The final pointcut of note is logExtract, which matches on a join point based on
the extractAttributesFromTags() method:

pointcut logExtract(String tag, String attr) :

call(private void HTMLParser.extractAttributesFromTags(

String, String, ..)) &&

args(tag, attr, ..);

This method accepts six parameters, but four of them are not important to log-
ging activity—you are only interested in the first two. As you can see in the
pointcut definition, the first two parameters are defined, and the remaining
ones are defined using the .. parameter. Using .. in the definition matches any
calls to extactAttributesFromTags() where the first two parameters are Strings
and the last four parameters are anything else. When you want to access these
parameters, they must be defined in the args designator as well. This isn’t
enough, though, because in order to accurately bind the first two parameters,
you must use the .. parameter in the args designator as well.

Refactoring Spider.java

For completeness, Listing 14.11 shows the aspect used for the Spider class.

Using AspectJ in the Real World390

package weblech.spider;

import java.io.IOException;

import weblech.spider.URLToDownload;

public aspect LoggerAspectSpider extends LoggerAspect {

boolean html, xml, image;

pointcut logStart() :

execution(public void Spider.start());

pointcut logThread() :

initialization(Thread.new(..)) &&

cflow(logStart());

pointcut logWriteCheckPoint() :

execution(private void writeCheckpoint());

pointcut logReadCheckPoint() :

execution(public void readCheckpoint());

pointcut logWriteCheckPointException(IOException e) :

handler(IOException) &&

cflow(logWriteCheckPoint()) &&

Listing 14.11 The LoggerAspectSpider aspect. (continues)

Refactoring Web Spider 391

args(e);

pointcut logReadCheckPointException(IOException e) :

handler(IOException) &&

cflow(logReadCheckPoint()) &&

args(e);

pointcut logThreadStop() :

execution(public void Spider.run());

pointcut logDownloadURL(URLToDownload url) :

execution(private List downloadURL(URLToDownload, ..)) &&

args(url, ..);

pointcut logDownloadURLNoArgs() :

execution(private List downloadURL(..));

pointcut logQueue(URLToDownload url) :

cflow(logDownloadURL(url)) &&

execution(* *.existsOnDisk());

pointcut logIsHTML() :

cflow(logDownloadURLNoArgs()) &&

call(* URLObject.isHTML());

pointcut logIsXML() :

cflow(logDownloadURLNoArgs()) &&

call(* URLObject.isXML());

pointcut logIsImage(URLToDownload url) :

cflow(logDownloadURL(url)) &&

call(* URLObject.isImage());

//**

before() : logThread() {

_logClass.info("Starting Spider thread");

}

before() : logWriteCheckPoint() {

_logClass.debug("writeCheckpoint()");

}

before(IOException e) : logWriteCheckPointException(e) {

_logClass.warn("IO Exception attempting checkpoint: " +

e.getMessage(), e);

}

Listing 14.11 The LoggerAspectSpider aspect. (continues)

Using AspectJ in the Real World392

before(IOException e) : logReadCheckPointException(e) {

_logClass.warn("IO Exception attempting checkpoint: " +

e.getMessage(), e);

}

after() : logThreadStop() {

_logClass.info("Spider thread stopping");

}

before(URLToDownload url) : logDownloadURL(url) {

_logClass.debug("downloadURL(" + url + ")");

}

after(URLToDownload url) : logQueue(url) {

_logClass.info("Q: " + url);

}

after() returning (boolean value) : logIsHTML() {

html = value;

}

after() returning (boolean value) : logIsXML() {

html = value;

}

after(URLToDownload url) returning (boolean value) :

logIsImage(url) {

if (!value && !html && !xml)

_logClass.warn("Unsupported content type received: ");

_logClass.info("URL was " + url);

}

}

Listing 14.11 The LoggerAspectSpider aspect. (continued)

Refactoring URLObject.java

The URLObject aspect is shown in Listing 14.12.

package weblech.spider;

import java.io.*;

import weblech.spider.SpiderConfig;

import java.net.URL;

Listing 14.12 The LoggerAspectURLObject aspect. (continues)

Refactoring Web Spider 393

public aspect LoggerAspectURLObject extends LoggerAspect {

pointcut LogURLObject(URL sourceURL) :

initialization(public URLObject.new(URL, SpiderConfig)) &&

args(sourceURL, ..);

pointcut LogIOExceptionInConstructor(IOException e, URL

sourceURL) :

handler(IOException) &&

args(e) &&

cflow(LogURLObject(sourceURL));

pointcut LogWrite(String filename) :

execution(public void writeToFile(String)) &&

args(filename);

pointcut LogIOExceptionInWrite(IOException e, String filename)

:

handler(IOException) &&

args(e) &&

cflow(LogWrite(filename));

//**

before(IOException e, URL sourceURL) :

LogIOExceptionInConstructor(e, sourceURL) {

_logClass.warn("IO Exception reading disk version of URL " +

sourceURL);

}

before(String filename) : LogWrite(filename) {

_logClass.debug("writeToFile(" + filename + ")");

}

before(IOException e, String filename) :

LogIOExceptionInWrite(e, filename) {

_logClass.warn("IO Exception writing to " + filename);

}

}

Listing 14.12 The LoggerAspectURLObject aspect. (continued)

Timings
The URLGetter class includes code for timing how long it takes to pull HTML
text from a provided URL. The time is used in a calculation to show the system’s

file-download speed in bytes per second. You could make the case that this tim-
ing and byte calculation should be part of the URLGetter object; but if you look
at the code, you will see that the calculation isn’t a major component of the
class. By pulling the timing code into an aspect, it can be potentially utilized in
other parts of the code.

Within the getURL() method, the timing of the URL download begins when the
connect() method is called. At this point, a call is made to the System.current-
TimeMillis() method to obtain the start time. Once the HTML text has been
pulled, another call is made to currentTimeMillis(), and the difference is calcu-
lated. The resulting aspect is shown in Listing 14.13.

Using AspectJ in the Real World394

package weblech.spider;

public aspect TimingAspectURLGetter extends LoggerAspect{

long startTime;

pointcut logGetURLNoArgs() :

execution(URLObject getURL(..));

pointcut logStartTime() :

call (public void java.net.HttpURLConnection.connect()) &&

cflow(logGetURLNoArgs());

pointcut logEndTime(URLGetter url) :

call(* java.net.HttpURLConnection.getContentLength()) &&

cflow(logGetURLNoArgs()) &&

this(url);

before() : logStartTime() {

startTime = System.currentTimeMillis();

}

before(URLGetter url): logEndTime(url) {

long timeTaken = System.currentTimeMillis() - startTime;

if(timeTaken < 100) timeTaken = 500;

int bytesPerSec = (int) ((double) url.content.length /

((double)timeTaken / 1000.0));

_logClass.info("Downloaded " + url.content.length + " bytes,

" + bytesPerSec + " bytes/sec");

}

}

Listing 14.13 The TimingAspectURLGetter aspect.

Because the timing aspect is really just a specialization of a logging aspect, it
inherits the LoggerAspect; thus it has the ability to log the timing information.
The aspect includes only three pointcuts:

■■ logGetURLNoArgs allows the getURL() method to be matched, but you
ignore all the arguments to the method because they aren’t needed.

■■ logStartTime uses a join point based on the method call to connect(), but
only in the execution of getURL(). When the pointcut triggers, the advice
records the current system time in milliseconds to an attribute of the
aspect for later use.

■■ logEndTime uses a join point based on the method call to getCon-
tentLength(). Before this method call, the advice calculates the ending sys-
tem time, determines the total time of the download, and displays the
results in the log.

Checkpointing
The Web spider can checkpoint the URLs in its download queue as well as read
from the checkpoint into the current queue. The code for checkpointing is
found in the Spider class. The aspect created to handle checkpointing is shown
in Listing 14.14.

Refactoring Web Spider 395

package weblech.spider;

import weblech.spider.Spider;

import java.io.FileOutputStream;

import java.io.ObjectOutputStream;

import java.io.IOException;

public aspect CheckpointAspect {

private void checkpointIfNeeded(Spider spider) {

SpiderConfig config = spider.getConfig();

long checkpointInterval = config.getCheckpointInterval();

if(checkpointInterval == 0) {

return;

}

if(System.currentTimeMillis() - spider.getLastCheckpoint() >

checkpointInterval) {

synchronized(spider.getQueue()) {

if(System.currentTimeMillis() - spider.getLastCheckpoint() >

checkpointInterval) {

writeCheckpoint(spider);

spider.setLastCheckpoint(System.currentTimeMillis());

}

}

}

Listing 14.14 The CheckpointAspect aspect. (continues)

Using AspectJ in the Real World396

}

private void writeCheckpoint(Spider spider) {

try {

FileOutputStream fos =

new FileOutputStream("spider.checkpoint", false);

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(spider.getQueue());

oos.writeObject(spider.getURLsDownloading());

oos.close();

} catch(IOException ioe) {}

}

pointcut spiderRun() :

execution(public void Spider.run());

pointcut checkPoint(Spider spider) :

call(* *.queueSize()) &&

cflow(spiderRun()) &&

this(spider);

after(Spider spider) : checkPoint(spider) {

checkpointIfNeeded(spider);

}

}

Listing 14.14 The CheckpointAspect aspect. (continued)

The original spider code included two methods called checkpointIfNeeded()
and writeCheckpoint(). The checkpointIfNeeded() method was called within a
while loop during each iteration. Unfortunately, no method call surrounded
the call to checkpointIfNeeded(). Upon analysis of the code, we found that
three calls were made to the downloadQueue’s queueSize() method. By chang-
ing the code a little, you can create a temporary variable to capture the size:

size = queue.queueSize();

Using this small code change, you can create a join point for the checkpointing.
When the call is made to queueSize(), the checkPoint join point is triggered.
The join point advice calls the checkpointIfNeeded() method, and subsequently
calls writeCheckpoint() if necessary.

This process seems simple, but you will probably encounter problems when
refactoring your own code. First, the checkpoint routines need access to attrib-
utes of the main Spider object. No accessor methods were originally written for
the attribute, so they were added. You will know private attributes are a prob-
lem if the AspectJ compiler indicates it cannot bind a variable you are using
within an advice or a method within an aspect. If you are comfortable with the

notion, you can set up your aspects to have privilege access and thus allow
them direct access to the private attributes. After you get beyond the private
attributes, you’ll have created a complete encapsulated and modular check-
point aspect.

What’s Next

That’s it! We have spent the past 397 pages introducing you to a new coding
paradigm. We hope you will take your new knowledge and begin writing
cleaner, much less tangled code. The team at AspectJ.org is dedicated to bring-
ing the community the best in aspect programming and constantly works to
expand the tools usable with aspects.

What’s Next 397

TE
AM
FL
Y

Team-Fly®

This appendix provides an overview of the major classes and interfaces
used in the development of AspectJ. Because AspectJ is a new language,
this information is more volatile and likely to change as the language

matures.

Interface Hierarchy

interface org.aspectj.lang.JoinPoint

interface org.aspectj.lang.JoinPoint.StaticPart

interface org.aspectj.lang.Signature

interface org.aspectj.lang.reflect.CatchClauseSignature

interface org.aspectj.lang.reflect.MemberSignature

interface org.aspectj.lang.reflect.CodeSignature

interface org.aspectj.lang.reflect.AdviceSignature

interface org.aspectj.lang.reflect.ConstructorSignature

interface org.aspectj.lang.reflect.InitializerSignature

interface org.aspectj.lang.reflect.MethodSignature

interface org.aspectj.lang.reflect.FieldSignature

interface org.aspectj.lang.reflect.SourceLocation

Class Hierarchy

class java.lang.Object

class java.lang.Throwable (implements java.io.Serializable)

class java.lang.Exception

AspectJ API

A P P E N D I X A

399

class java.lang.RuntimeException

class org.aspectj.lang.NoAspectBoundException

class org.aspectj.lang.SoftException

AspectJ API Descriptions

The following descriptions apply to AspectJ 1.06 through 1.x. We’ve created
appropriate examples where needed to help you better understand the code.

Interface: JoinPoint
Definition: org.aspectj.lang.JoinPoint

Description: The JoinPoint interface provides reflective access and static
information to a matched join point.

Attributes: None

Methods

Method Signature: java.lang.Object[] getArgs()

Description: This method returns an array of Objects representing the argu-
ments of the matched join point.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Object[] args = thisJoinPoint.getArgs();

for (int i = 0;i<args.length;++i)

System.out.println(args[i].toString());

}

Output:

4

test

Method Signature: java.lang.String getKind()

Description: This method returns a String representing the kind of join
point matched.

AspectJ API400

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

System.out.println(thisJoinPoint.getKind());

}

Output:

method-execution

Method Signature: Signature getSignature()

Description: This method returns a Signature object representing the signa-
ture where a join point has matched.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Signature sig = thisJoinPoint.getSignature();

System.out.println(sig.getName());

}

Output:

test

Method Signature: SourceLocation getSourceLocation()

Description: This method returns a SourceLocation object of the matched
join point.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

SourceLocation src = thisJoinPoint.getSourceLocation();

System.out.println(src.getColumn());

}

Method Signature: org.aspectj.lang.JoinPoint.StaticPart getStaticPart()

Description: This method returns a StaticPart object representing the static
parts of the matched join point.

AspectJ API Descriptions 401

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

StaticPart src = thisJoinPoint.getStaticPart();

}

Method Signature: java.lang.Object getTarget()

Description: This method returns the Target object of the matched join
point. This method is typically associated with the call designator.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Object this = thisJoinPoint.getTarget());

}

Method Signature: java.lang.Object getThis()

Description: This method returns the object where the currently matched
join point is executing.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Object this = thisJoinPoint.getThis());

}

Method Signature: java.lang.Object toLongString()

Description: This method returns a String representation of the matched
join point in a long format with extended information.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

System.out.println(thisJoinPoint.toLongString());

}

AspectJ API402

Output:

execution(public int example.test(int, java.lang.String))

Method Signature: java.lang.String toShortString()

Description: This method returns a String representation of the matched
join point in a short format.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

System.out.println(thisJoinPoint.toShortString());

}

Output:

execution(example.test(..)

Method Signature: java.lang.String toString()

Description: This method returns a String representation of the matched
join point.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

System.out.println(thisJoinPoint.toString());

}

Output:

execution(int example.test(int, String))

Interface: JoinPoint.StaticPart
Definition: org.aspectj.lang.JoinPoint.StaticPart

Description: The JoinPoint.StaticPart interface contains methods that
return information about the static part of the matched join point. Using this
interface through the JoinPoint.getStaticPart() method is a performance-
enhanced operation as opposed to using the full JoinPoint interface.

Attributes: None

AspectJ API Descriptions 403

Methods

The methods available in the JoinPoint.StaticPart interface have the same
signature and functionality as in the JoinPoint interface.

Interface: Signature
Definition: org.aspectj.lang.Signature

Description: The Signature interface is used to obtain signature informa-
tion about a matched join point. A Signature object is obtained using the
getSignature() method found in both the JoinPoint and JoinPoint.StaticPart
interfaces.

Attributes: None

Methods

Method Signature: java.lang.Class getDeclaringType()

Description: This method returns a Class object based on the class, inter-
face, or aspect that originally declared the member.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Signature sig = thisJoinPoint.getSignature();

System.out.println(sig.getDeclaringType());

}

Output:

class example

Method Signature: int getModifiers()

Description: This method returns all of the modifiers associated with this
signature as an integer.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Signature sig = thisJoinPoint.getSignature();

System.out.println(sig.getModifiers());

}

AspectJ API404

Method Signature: java.lang.String getName()

Description: This method returns the identifiers part of the signature.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Signature sig = thisJoinPoint.getSignature();

System.out.println(sig.getName());

}

Output:

test

Method Signature: java.lang.String toLongString()

Description: This method returns a string representation of the signature in
a long format.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Signature sig = thisJoinPoint.getSignature();

System.out.println(sig.toLongString());

}

Output:

public int example.test(int, java.lang.String)

Method Signature: java.lang.String toShortString()

Description: This method returns a string representation of the signature in
a short format.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Signature sig = thisJoinPoint.getSignature();

System.out.println(sig.toShortString());

}

Output:

example.test(..)

AspectJ API Descriptions 405

Method Signature: java.lang.String toString()

Description: This method returns a string representation of the signature.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

Signature sig = thisJoinPoint.getSignature();

System.out.println(sig.toString());

}

Output:

int example.test(int, String)

Interface: CatchClauseSignature
Definition: org.aspectj.lang.reflect.CatchClauseSignature, derived from
org.aspectj.lang.Signature

Description: This interface is derived from Signature and is used when the
signature of a matched join point is a catch statement.

Attributes: None

Methods

Method Signature: java.lang.String getParameterName()

Description: This method returns the name of the parameter associated
with the matched catch join point.

Method Signature: java.lang.String getParameterType()

Description: This method returns the type of the parameter associated with
the matched catch join point.

Interface: MemberSignature
Definition: org.aspectj.lang.reflect.MemberSignature, derived from
org.aspectj.lang.Signature

Description: This interface is derived from Signature and is used when the
signature of a matched join point is a member method of a class or interface.

Attributes: None

AspectJ API406

Methods

None

Interface: CodeSignature
Definition: org.aspectj.lang.reflect.CodeSignature, derived from
org.aspectj.lang.reflect.MemberSignature

Description: This interface is used when a join point is code-based.

Attributes: None

Methods

Method Signature: java.lang.Class[] getExceptionTypes()

Description: This method returns an array of the exception types found in
the code associated with the matched join point.

Method Signature: java.lang.String[] getParameterNames()

Description: This method returns an array of the parameter names found in
the code associated with the matched join point.

Method Signature: java.lang.String[] getParameterTypes()

Description: This method returns an array of the parameter types found in
the code associated with the matched join point.

Interface: AdviceSignature
Definition: org.aspectj.lang.reflect.AdviceSignature, derived from
org.aspectj.lang.reflect.CodeSignature

Description: This interface is used to return information associated with
advice code.

Attributes: None

Method

Method Signature: java.lang.Class getReturnType();

Description: This method returns the class associated with the advice code.

AspectJ API Descriptions 407

Interface: ConstructorSignature
Definition: org.aspectj.lang.reflect.ConstructorSignature, derived from
org.aspectj.lang.reflect.CodeSignature

Description: This interface is used when a matched join point is associated
with a Constructor.

Attributes: None

Methods

None

Interface: InitializerSignature
Definition: org.aspectj.lang.reflect.InitializerSignature, derived from
org.aspectj.lang.reflect.CodeSignature

Description: This interface is used when a matched join point is associated
with an Initializer.

Attributes: None

Methods

None

Interface: MethodSignature
Definition: org.aspectj.lang.reflect.MethodSignature, derived from
org.aspectj.lang.reflect.CodeSignature

Description: This interface is used when a matched join point is associated
with a method.

Attributes: None

Method

Method Signature: java.lang.Class getReturnType();

Description: This method returns the class associated with the method
code.

AspectJ API408

TE
AM
FL
Y

Team-Fly®

Interface: FieldSignature
Definition: org.aspectj.lang.reflect.FieldSignature, derived from
org.aspectj.lang.reflect.MemberSignature

Description: This interface is used when a matched join point is associated
with an attribute of a class or interface.

Attributes: None

Method

Method Signature: java.lang.Class getFieldType()

Description: This method returns the class associated with a field.

Interface: SourceLocation
Definition: org.aspectj.lang.reflect.SourceLocation

Description: This interface provides information about the class and loca-
tion within the source file of the matched join point.

Attributes: None

Methods

Method Signature: int getColumn()

Description: This method returns the column where the join point is
matched.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

SourceLocation src = thisJoinPoint.getSourceLocation();

System.out.println(src.getColumn());

}

Output:

3

Method Signature: java.lang.String getFileName()

AspectJ API Descriptions 409

Description: This method returns the filename where the join point is
matched.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

SourceLocation src = thisJoinPoint.getSourceLocation();

System.out.println(src.getFileName());

}

Output:

example.java

Method Signature: int getLine()

Description: This method returns the line number where the join point is
matched.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

SourceLocation src = thisJoinPoint.getSourceLocation();

System.out.println(src.getLine());

}

Output:

3

Method Signature: java.lang.Class getWithinType()

Description: This method returns the class or interface where the join point
is matched within.

Example:

pointcut test() :

execution(public int test(int, String));

before() : test() {

SourceLocation src = thisJoinPoint.getSourceLocation();

System.out.println(src.getWithinType().toString());

}

AspectJ API410

Output:

class example

Class: SoftException
Definition: org.aspectj.lang.SoftException

Description: This class is used to wrap Java exceptions declared as soft in
AspectJ.

Attributes: None

Methods

Method Signature: SoftException(java.lang.Throwable)

Description: This method is a Constructor for a SoftException object.

Method Signature: java.lang.Throwable getWrappedThrowable()

Description: This method returns the Throwable object associated with the
SoftException.

Class: NoAspectBoundException
Definition: org.aspectj.lang.NoAspectBoundException

Description: This exception can be thrown when a call is made to the
aspectOf() method and no aspect is currently bound.

Attributes: None

Method

Method Signature: NoAspectBoundException()

Description: This method is a Constructor for the class.

AspectJ API Descriptions 411

In this appendix, we’ve listed some of the major Web sites covering AspectJ
and Aspect-Oriented Programming.

Overview Sites

AspectJ Project home site (www.eclipse.org/aspectj)

Mastering AspectJ: Aspect-Oriented Programming in Java book Web

site (www.wiley.com/compbooks/gradecki)

Aspect-Oriented Software Development (www.aosd.net)

Research on Aspect-Oriented Programming

(www.emn.fr/sudholt/research/aop.html)

University of Washington—Gregor Kiczales Presentation

(http://murl.microsoft.com/LectureDetails.asp?185)

People

Gregor Kiczales, ApectJ team lead (www2.parc.com/csl/members/gregor/)

Concurrent Programming Research Group (www.iit.edu/~concur/)

Useful Web Sites

A P P E N D I XB

413

Tutorial in Nature

Improve Modularity with Aspect-Oriented Programming (www-
106.ibm.com/developerworks/java/library/j-aspectj/)

I Want My AOP! Part 1 (www.javaworld.com/javaworld/jw-01-2002/jw-0118-
aspect.html)

I Want My AOP! Part 2 (www.javaworld.com/javaworld/jw-03-2002/jw-0301-
aspect2.html)

I Want My AOP! Part 3 (www.javaworld.com/javaworld/jw-04-2002/jw-0412-
aspect3.html)

PowerPoint Presentation on Aspect-Oriented and Adaptive Program-

ming (www.ccs.neu.edu/research/demeter/talks/erfurt-keynote/erfurt-
talk.ppt)

Aspect-Oriented Programming in Java

(www.voelter.de/data/articles/aop/aop.html)

Aspect-Oriented Decomposition and Composition (www.prakinf.
tu-ilmenau.de/~czarn/aop/)

Three Examples of Aspect-Oriented Programming

(www.cse.ogi.edu/~black/3AspectExamples/)

Aspect-Oriented Programming with AspectJ (www.sauria.com/
presentations/Seajug-12-2001.pdf)

Aspect-Oriented Programming with C# and .NET (www.dcl.hpi.uni-
potsdam.de/folien/Net-Days/AOP-with-NET_files/frame.htm)

Aspect-Oriented Programming with AspectJ: A Short Introduction

(http://rzserv2.fhnon.de/~lg002556/basics/AspectOrientedProgramming.pdf)

Untangle Your Code with Aspect-Oriented Programming

(www.trcinc.com/knowledge/presentations/Untangle_Your_Code_with_
Aspect-Oriented_Programming_TRCInc.ppt)

Aspect-Oriented Programming (www.cs.tut.fi/~bitti/
generat-seminaari/aop.pdf)

Useful Web Sites 414

Papers

Aspect-Oriented Programming (www2.parc.com/csl/groups/sda/
publications/papers/Kiczales-ECOOP97/)

Untangling Code

(www.technologyreview.com/articles/tr10_kiczales0101.asp)

Emerging Technologies That Will Change the World (www.
technologyreview.com/articles/tr10_toc0101.asp)

Aspect-Oriented Programming Enables Better Code Encapsulation and

Reuse (http://msdn.microsoft.com/msdnmag/issues/02/03/AOP/AOP.asp)

Separation of Concerns

(ftp://www.ccs.neu.edu/pub/people/crista/papers/separation.ps)

Thoughts on Aspect-Oriented Programming

(http://openmap.bbn.com/~kanderso/aop/AOP-thoughts.html)

Gregor Kiczales’ Publications (www2.parc.com/csl/groups/sda/
publications.shtml)

Semantics of Aspect-Oriented Programming (www.cwi.nl/~ralf/saop/)

AOP Publications (www.emn.fr/sudholt/research/by_name.html)

An Initial Assessment of Aspect-Oriented Programming

(www.cs.ubc.ca/labs/se/papers/1999/icse99-aop.pdf)

Applying Aspect-Oriented Programming to Security

(www.viega.org/papers/aop-cutter.pdf)

The Impact of Aspect-Oriented Programming on Future Design

(www.inf.ethz.ch/vs/edu/WS0001/UI/slides/ui_08AspectOP.pdf)

Aspect-Oriented Programming with Reflection and Dynamism

(www.ai.mit.edu/~gregs/dyn-aop.html)

Can Aspect-Oriented Programming Lead to More Reliable Software?

(www.computer.org/software/so2000/s6019abs.htm)

Aspect-Oriented Programming with Model Checking (www.graco.c.
u-tokyo.ac.jp/~tamai/pub/aosd2002.pdf)

Treecc: An Aspect-Oriented Approach to Writing Compilers

(www.southern-storm.com.au/treecc_essay.html)

Papers 415

Other Paradigms

Multi-Dimensional Separation of Concerns: Software Engineering

using Hyperspaces (IBM) (www.research.ibm.com/hyperspace/)

IBM's Subject-Oriented Programming (www.research.ibm.com/sop/)

Software Development and Systems

Demeter: Aspect-Oriented Software Development

(www.ccs.neu.edu/research/demeter/)

Java Aspect Components (http://jac.aopsys.com/)

TransWarp and Python

(www.zope.org/Members/pje/Wikis/TransWarp/HomePage)

Aspect-Oriented Programming and the CLR

(www.iunknown.com/Weblog/fog0000000093.html)

Aspect-Oriented Modeling with UML

(http://lglwww.epfl.ch/workshops/aosd-uml/papers.html)

Events

Tutorial and Workshop on Aspect-Oriented Programming and

Separation of Concerns

(www.comp.lancs.ac.uk/computing/users/marash/aopws2001/)

Third International Conference on Metalevel Architectures and

Separation of Crosscutting Concerns (Reflection 2001)

(www.openjit.org/reflection2001/)

OOPSLA 2001 Workshop on Advanced Separation of Concerns in

Object-Oriented Systems (www.cs.ubc.ca/%7ekdvolder/Workshops/
OOPSLA2001/ASoC.html)

ETAPS 2002 Software Composition Workshop

(http://www.easycomp.org/sc2002/index.hei?&card=heises.8f16020fdfb773a08
7b31726d96698b0)

First International Conference on Aspect-Oriented Software Develop-

ment (http://trese.cs.utwente.nl/aosd2002.htm)

Useful Web Sites 416

Aspect-Oriented Software Development Conference 2003 in Boston

(http://aosd.net/conference)

Aspect-Oriented Programming Conference 1997

(http://trese.cs.utwente.nl/aop-ecoop99/aop97.html)

Aspect-Oriented Programming Conference 1998

(http://trese.cs.utwente.nl/aop-ecoop99/aop98.html)

Aspect-Oriented Programming Conference 1999

(http://trese.cs.utwente.nl/aop-ecoop99/)

Foundations of Aspect-Oriented Programming

(www.cs.wustl.edu/~cytron/FOAL/)

Universities

Aspect-Oriented Software Development (www.comp.lancs.ac.uk/
computing/aop/)

MIT Technology Review and Aspect-Oriented and Adaptive

Programming (www.ccs.neu.edu/research/demeter/aop/publicity/
mit-tech-review.html)

AOP at Northeastern University

(www.ccs.neu.edu/home/lorenz/center/aop.html)

Universities 417

TE
AM
FL
Y

Team-Fly®

Although this book specifically references the AspectJ language and its
implementation of aspect-oriented programming (AOP) principles,
bindings are available that allow you to directly use AOP in other pro-

gramming languages. This appendix provides a short introduction to the cur-
rent bindings. You can find a comprehensive collection for AOP bindings at
www.aosd.net. Consult this Web site from time to time if your favorite language
isn’t listed in this appendix.

AspectR

AspectR is a binding for AOP against the Ruby language. The primary location
for AspectR information is http://aspectr.sourceforge.net.

Description
AspectR handles the addition of advice code to the primary Ruby source by
wrapping the advice around specific methods. The wrap code is passed a num-
ber of arguments, including the arguments to the wrapped method, the name of
the wrapped method, the object receiving the method call, and the return value.
A subset of the functionality found in AspectJ is available in AspectR, but the
features continue to grow with each new release.

Other AOP Language Bindings

A P P E N D I X C

419

Requirements
AspectR requires version 2.0 of Ruby and can execute on any platform where
Ruby is available.

Example Code
require 'aspectr'

include AspectR

class Verify < Aspect

def log_enter(method, object, exitstatus, *args)

$stderr.puts "#{self.class}##{method}: args = #{args.inspect}"

end

def log_exit(method, object, exitstatus, *args)

$stderr.print "#{self.class}##{method}: exited "

end

end

class HelloWorldClass

def sayHelloWorld

puts "Hello World"

end

end

Verify.new.wrap(HelloWorldClass, :verify_enter, :verify_exit,

/say/)

HelloWorldClass.new.sayHelloWorld

end

AspectS

AspectS is a binding for AOP against Squeak/Smalltalk. The primary location
for AspectS information is www.prakinf.tu-ilmenau.de/~hirsch/Projects/
Squeak/AspectS/.

Description
Squeak is an open and portable version of Smalltalk available at
www.squeak.org. Squeak is based on a virtual machine and is available for
many platforms. AspectS, an implementation of AOP for Squeak, combines the
extensions used for AspectJ and the concept of a wrapper for adding the sec-
ondary concerns to the compiled Squeak code.

Other AOP Language Bindings420

Requirements
AspectS is designed to be used with Squeak.

Apostle

Apostle is a Master’s thesis project for incorporating AOP into Smalltalk. The
primary Web site for Apostle is www.cs.ubc.ca/labs/spl/projects/apostle/.

Description
Apostle is an implementation of AOP for Smalltalk designed as a project under
the supervision of Gregor Kiczales and is currently a port of AspectJ 0.8. At this
time, it appears to be behind the development put into AspectS.

Requirements
Apostle is designed to be used with IBM’s VisualAge for Smalltalk 4.5, which is
available for most major operating systems at www-3.ibm.com/software/
ad/smalltalk/?c=0035016165&n=befree_affiliate&t=aff.

AspectC

AspectC is an attempt to bring AOP to the C programming language. You can
find information on the extension at www.cs.ubc.ca/labs/spl/projects/
aspectc.html.

Description
Some of the original designers of AOP and AspectJ have been involved in the
development of AspectC. As of this writing, the AspectC system is being used
in-house by the developers and hasn’t been released for public use. Based on
the information available, it appears that AspectC works in the same prepro-
cessing method as AspectJ, where the primary and aspect code is parsed and
weaved into a final set of code.

Requirements
Not known.

AspectC 421

Example Code
Although we don’t have the language available, you can obtain information
about AspectC from a document found at www.cs.ubc.ca/labs/spl/
papers/2001/coady-psc.pdf. Based on the code in the paper, an aspect associ-
ated with a Hello World program written in C might look like the following:

aspect MainTest {

pointcut hello() : calls(void sayHello());

before() : hello() {

printf(–Before sayHello() call");

}

}

#include <stdio.h>

void sayHello() {

printf("Hello World!");

}

void main() {

sayHello();

}

AspectC++

AspectC++ brings AOP concepts to the C++ programming language. The Web
site for the language binding is http://www.aspectc.org.

Description
AspectC++ works in the same way as AspectJ in that it performs a preprocess-
ing of the source code and weaves the aspect code to form a final C++ source.
The source is compiled using an appropriate C++ compiler. The current system
supports Microsoft Windows, Linux, and Solaris.

Requirements
The current implementation of AspectC++ executes on Windows, Solaris, and
Linux. Under Windows, Borland C++ 5.5 (a free compiler is available from
www.borland.com) is supported. For Solaris and Linux, the gcc compiler is
used as the traditional compiler. The AspectC++ precompiler, called ac++, is
compiled with gcc 2.95.3 and statically linked in order to produce a stand-alone
compiler.

Other AOP Language Bindings422

Example Code
The following is an example of code (primary C++) for a Hello World program
and an aspect to catch calls to the sayHello() method of the HelloWorld class:

#include <iostream.h>

pointcut hello() =

call ("void HelloWorld::sayHello()");

aspect HelloWorldAspect {

public:

advice hello() : void after () {

cout << ("Saying Hello");

}

};

class HelloWorld {

public:

void sayHello() {

cout << "Hello";

}

};

int main () {

HelloWorld hello = new HelloWorld();

hello.sayHello();

}

This code would be precompiled with the AspectC++ compiler ac++. A C++ file
would then be generated combining the primary and aspect code for final com-
pilation by a traditional C++ compiler. If you become familiar with AspectJ,
moving to AspectC++ for those situations where C++ is required won’t be a
huge stretch.

Pythius

Pythius allows the Python language to use AOP. The Web site for Pythius is
http://sourceforge.net/projects/pythius/.

Description
Pythius is designed to add AOP concepts to Python. The distribution contains
lengthy documentation written into the code, complete with example code to
get you started.

Pythius 423

Requirements
Pythius requires Python 2.2.1 or higher and must be built when first installed.
Refer to the Install document of the download.

Example Code
The following is a simple example of using Pythius to add AOP functionality to
Python:

import aop

class Check(aop.Aspect):

def __init__(self):

aop.Aspect.__init__(self) # don't forget this!

self.after('getattr', 'area', self.log)

def log(self, cxt):

value = cxt['value']

name = cxt['name']

print 'Attribute %s (value of %s)' % (name, value)

class DoubleIt:

def __init__(self, x):

self.x = x*x

self.quad = x*x*x*x

check = Check()

DoubleIt = check.affect(DoubleIt)

doubleit = DoubleIt(4)

print 'Double Value = %d' % doubleit.x

print 'Quad Value = %d' % doubleit.quad

Other AOP Language Bindings424

Index

425

Symbols
&& (and) operator, 86
* (asterisk) character, 62
! (not) operator, 86
|| (or) operator, 62, 86

A
abstract aspects, building,

246–251
abstract methods, 201
access control, inter-type

declarations, 203–205
accessing aspects, 258–259
access types, aspects, 242, 261
advice, 16

before advice, 35, 147–150
unwanted join points,

150–154
after advice, 35, 147
after returning advice, 147,

162–165
after throwing advice, 147,

157–162
adding new error

conditions, 160–161
detecting errors, 161–162
FailedRaisePolicy

example, 158–159
passing thrown

exceptions, 159–160
around advice, 35, 147, 165

altering context with,
172–179

getProperty() call
example, 165–170

proceed(), 169–170,
178–179

replacing join points,
167–168

return values, 168–169,
170–171

defining, 132–137
AddSourceInfo aspect

listing, 135–136
advice body, 134–135
advice type, 133
formal syntax, 136–137
parameters, 133
pointcuts, 134
printIn() example,

132–133
exception restrictions,

145–146
Hello World example, 35–36
inter-type declarations and,

196–199
passing context to

Employee class example,
137–139

formal parameters,
139–144

reflective access, 144
precedence, 179

circular relationships, 182
importance of, 179
inter-aspect precedence,

180
intra-aspect precedence,

181–182
pseudo precedence, 184
runtime execution,

182–184
unqualified advice, 147
unqualified after advice,

154–157
adviceexecution designators,

86, 123
AdviceSignature interface, 407
after advice, 35, 147, 182

after returning advice, 147,
162–165

after throwing advice, 147,
157–162
adding new error conditions,

160–161
detecting errors, 161–162
FailedRaisePolicy example,

158–159
passing thrown exceptions,

159–160
ajdb (debugger), 303–304

command-line options,
303–304

command-line tutorial,
304–307

GUI tutorial, 307–309
AJDE for JBuilder, 282–288
ajdoc (documentation tool),

309–311
and (&&) operator, 86
anonymous classes,

within/withincode
designators, 121–122

anonymous pointcuts, 125
Ant, 302–303
AOP (aspect-oriented

programming), 1, 9
bindings

Apostle, 421
AspectC, 421–422
AspectC++, 422–423
AspectR, 419–420
AspectS, 420–421
Pythius, 423–424

design, 360–361
development process, 10–12,

13
goals, 9–10

language implementation,
16–18

language specification, 14–16
Apostle, 421
application development, 32
-argfile command-line option,

309
-argfile compiler option, 275
args designators, 43–44, 85, 104

combining with target
designators, 106

combining with this
designators, 106

limiting access with, 104
obtaining multiple

arguments, 105–106
obtaining single arguments,

104–105
wildcards, 106–109

argument checking, 148
around advice, 35, 147, 165

altering context with
arguments, 178
proceed(), 172–176
this, 177

execution order, 182
getProperty() call example,

165–170
proceed(), 169–170

parameters, 178–179
return values, 172

replacing join points,
167–168

return values, 168–171
AspectC, 421–422
AspectC++, 422–423
AspectJ

adopting, 263–264
backing out, 266
benefits of, 264–265
development process,

265–266
legacy applications, 266

development aspects
condition checks,

268–269
tracing, 266–268

downloading, 21–22
installing, 23–25

setting CLASSPATH, 28
setting PATH, 25–28

testing installation, 28–30
overview, 19–20
production aspects

authorization, 271–273
loggings, 269–270
timings, 269–270

requirements, 21
AspectJ browser, 277–281,

286–287
AspectJ-mode, 291–293
aspect keyword, 241
aspect language, 10
aspect libraries, 51
aspectOf() method, 258–259
aspect-oriented design, 360–361
aspect-oriented programming.

See AOP
-aspectpath compiler option, 276
AspectR, 419–420
AspectS, 420–421
aspects

abstract, building, 246–251
accessing, 258–259
access types, 242, 261
adding, Hello World example,

36
authorization example,

271–273
in classes, 126
condition checks example,

268–269
defined, 16
design patterns as, 349–360
domination, 257–258
extending

building abstract aspects,
246–251

inheritance, 251–252
granularity, 47–48
instantiating

per-control-flow aspects,
256–257

per-object aspects,
253–256

singleton aspects, 253
as inter-type declaration

targets, 202–203
logging example, 269–270
multiple concerns, 40–41
multiple joins, 47–48
precedence, 257–258

privileged modifier, 259–261
reusable. see reusing code
SimpleAspect example,

19–20
structure, 241–242
structure browser, 277–281,

286–287
timing example, 269–270
tracing example, 266–268
weaving, with JARs, 49–50
writing, 242–243

combining aspect and
source files, 244–245

embedding in source
classes, 245

separate aspect files,
243–244

asterisk (*) character, 62
attributes, 2. See also field-

related designators
authorization aspects, 271–273

B
backing out AspectJ, 266
before advice, 35, 147, 147–150

execution order, 182
unwanted join points,

150–153
exceptions, 153
increasing modularity,

154
logging failures, 153

behavior patterns, 340
behaviors, 2
bindings (AOP)

Apostle, 421
AspectC, 421–422
AspectC++, 422–423
AspectR, 419–420
AspectS, 420–421
Pythius, 423–424

Bodkin, Ron, 19
-bootclasspath command-line

option, 309
-bootclasspath compiler option,

276
Boxset class example, point-

cuts, 82
breakpoints

ajdb (debugger), 309
tracings comparison, 267

build files, 277

I n d e x426

C
C++ language binding

(AspectC++), 422–423
call designators, 85, 89–91

combining with this and tar-
get designators, 329–330

versus execution
designators, 329–330

Factory object example,
126–128

CatchClauseSignature interface,
406

catching exceptions, 322–323
catching methods (XML repre-

sentation example), 342–348
central abstraction, 340
cflowbelow designators, 85,

113–117, 126
cflow designators, 85, 109–110

class aspect example, 126
combining cflow parameters,

111–112
combining with other

designators, 112–113
Factory object example,

126–128
multiple cflow designators,

110–111
circularity (precedence),

230–231
C language binding (AspectC),

421–422
classes

adding code to, 45–47
adding interfaces to, 208–211
adding methods to, 188–196

coupling, 195–196
member introduction,

191–195
aspects in, 126
defined, 4
embedding aspects in, 245
hierarchy, 399–400
as inter-type declaration

targets, 202
class initialization designators,

118–119
class initialization join points,

60–61, 77
class model example, 3
-classpath command-line

option, 303, 309

-classpath compiler option, 276
CLASSPATH variable, setting,

28
close coupling, 340–341
CodeSignature interface, 407
code tangling, 6, 8–9
compilation errors

no Java compiler error, 316
out of memory, 315
unable to find

Aspectjtools.jar, 314–315
wrong compiler, 313–314
wrong JSDK error, 315–316

compile-time weaving, 17–18
compiling

aspect libraries, 51
aspects, 252–253

combining aspect and
source files, 244–245

separate aspect files,
243–244

build files, 277
compiler options, 275–276
constructor call join points,

75
filenames, 276–277
Hello World example, 36–37
impeding weaving, 51
incremental, 51–52
method call join points, 74
outputting to JARs, 50–51
specifying source

directories, 48–49
weaving with JARs, 49–50

component language, 10
components, writing, 32–33
concerns

defined, 32
Hello World example

logging returns, 38–41
returning text, 37–38

concrete methods, 200
condition checks, 268–269
conflicts (multiple inheritance),

216–220
diamond problem, 216–218
triangle problem, 218–219

constructor call execution join
points, 60–61, 74–75

constructor call join points, 59,
74–75

constructor methods, 201
ConstructorSignature interface,

408
context

altering with around advice
arguments, 177
proceed(), 172–176
this, 177

exposing, 43–44
passing to advice

Employee class example,
137–139

formal parameters,
139–144

reflective access, 144
control flow designators, 109

cflow, 85, 109–110
class aspect example, 126
combining cflow

parameters, 111–112
combining with other

designators, 112–113
Factory object example,

126–128
multiple cflow

designators, 110–111
cflowbelow, 113–117, 126

coupling, 195–196
crosscutting, 6, 9
custom compilation messages,

232–235

D
-d compiler option, 276
debugging (ajdb), 303–304

command-line options,
303–304

command-line tutorial,
304–307

GUI tutorial, 307–309
declare error syntax, 234–235
declare parents

extending new classes, 210
implementing new

interfaces, 209–210
type patterns, 211

declare warning syntax,
234–235

Department example
adding invalidation to,

348–349

Index 427

Observer pattern, 349
implementing in Java,

349–350
reusing, 350–360

XML representation, 342–348
DepartmentPersistence aspect

example, 337–338
design, 360–361
designators, 15

within, 86, 120–122, 330
adviceexecution, 86, 123
args, 43–44, 85, 104

combining with target
designators, 106

combining with this
designators, 106

limiting access with, 104
obtaining multiple

arguments, 105–106
obtaining single argu-

ments, 104–105
wildcards, 106–109

call, 85, 89–91, 126–128
cflow, 85, 109–110

class aspect example, 126
combining cflow

parameters, 111–112
combining with other

designators, 112–113
Factory object example,

126–128
multiple cflow

designators, 110–111
cflowbelow, 85, 113–117, 126
combining, 86, 98–99
differentiating between,

329–330
execution, 85–89
format, 84–85
get, 85, 94–95, 100
handler, 85, 92–94
if, 86, 122
initialization, 85, 91–92
matching exceptions, 130
preinitialization, 124
set, 85, 95–96, 100
staticinitialization, 86,

118–119
target, 85, 99

changing with around
advice, 172–176

combining with args
designators, 106

infinite loops, 102–103
limiting scope with, 100
multiple class target

objects, 101–102
multiple targets, 103–104
returning target object

with, 100–101
with set/get designators,

100
this, 85, 97–99, 106
withincode, 86, 119–122,

330
design patterns, 348–349

Observer pattern, 349
implementing in Java,

349–350
reusing, 350–360

determining pointcuts (Hello
World example), 34–35

developing applications, 32
development aspects

condition checks, 268–269
tracing, 266–268

development process, 265–266
Projectile Motion example,

364
design, 365–366
documentation, 374–376
features to add, 364–365
legacy code considera-

tions, 366–367
testing, 374
writing aspects, 367–374

Web spider example
(refactoring)
checkpointing, 395–397
logging, 378–393
timings, 393–395

diamond problem (inheritance
conflicts), 216–218

documentation
ajdoc tool, 309–311
UML class diagrams, 374–376

downloading AspectJ, 21–22
DVD class example, pointcuts,

80–81
DVDException class example,

pointcuts, 82–83
dynamic join point model, 53–58

dynamic property-based desig-
nators, 122

E
Eclipse, 293–301
Emacs, 290–293
-emacssym compiler option, 276
Employee Persistence aspect

example, 336–337
encapsulated coupling, 341
encapsulation, 3, 6
-encoding command-line option,

309
-encoding compiler option, 276
enforced thread safety, 232–234
error handling. See also

troubleshooting
compilation errors

no Java compiler, 316
out of memory, 315
unable to find Aspectj-

tools.jar, 314–315
wrong compiler, 313–314
wrong JSDK, 315–316

runtime errors
join point not matching,

317–322
stack overflow, 317

exception handler execution
join points, 60, 61, 77

exception-handling designators.
See handler designators

exceptions
advice exception

restrictions, 145–146
catching, 322–323
join point exception

restrictions, 146
matching, 130
passing, 159–160
softening, 235

IOExceptions, 235–237
selective softening,

239–240
stack traces, 238
syntax, 240
wrapper exceptions,

238–239
executing Hello World example,

36–37
execution designators, 85,

87–89

I n d e x428

TE
AM
FL
Y

Team-Fly®

versus call designators,
329–330

combining with this and tar-
get designators, 329–330

exposed interfaces, 3
exposing context, 43–44
-extdirs command-line option,

309
-extdirs compiler option, 276
extending aspects, 245–246

building abstract aspects,
246–251

inheritance, 251–252

F
factoring. See refactoring
Factory objects, creating,

126–128
field assignment join points,

return values, 164
field get join points, 60, 75–76

return values, 164
signatures, 61

field-related designators
get designators, 85, 94–95,

100
set designators, 85, 95–96,

100
fields, 201–202
field set join points, 60, 61,

75–76
FieldSignature interface, 409
filenames (compiler), 276–277
final attributes, 130
formal parameters

context available as, 140–141
defined, 140
left-right rule, 141
method parameter

comparison, 141–143
object boxing, 143–144
parameter-context

mismatches, 141
when to use, 145

Forte, 288–290

G
getArgs() method, 68, 400
getColumn() method, 409
getDeclaringType() method, 404
get designators, 85, 94–95, 100

getExceptionTypes() method,
407

getFieldType() method, 409
getFileName() method, 409–410
getKind() method, 69, 400–401
getLine() method, 410
getModifiers() method, 68–69,

404
getName() method, 68, 405
getParameterName() method,

406
getParameterNames() method,

407
getParameterType() method,

406
getParameterTypes() method,

407
getReturnType() method, 407,

408
getSignature() method, 68–69,

401
getSourceLocation() method,

69, 401
getStaticPart() method, 70,

401–402
getTarget() method, 68, 402
getThis() method, 67–68, 402

this designator comparison,
97–98

getWithinType() method,
410–411

getWrappedThrowable()
method, 411

Griswold, Bill, 19
-gui command-line option, 304

H
hacking features, 377
handler designators, 85, 92–94
handler join points, return

values, 165
handling errors. See also

troubleshooting
compilation errors

no Java compiler, 316
out of memory, 315
unable to find Aspectj-

tools.jar, 314–315
wrong compiler, 313–314
wrong JSDK, 315–316

runtime errors
join point not matching,

317–322
stack overflow, 317

Hello World example
advice code, 35–36
aspect code, 33
aspects, adding, 36
compiling, 36–37
concerns, 32

accepting name
parameter, 41–43

logging returns, 38–41
returning text, 37–38

executing, 36–37
exposing context, 43–44
inter-type declarations, 44–47
join points, 34
pointcut, 34–35
writing the component,

32–33
-help command-line option, 304,

309
Hilsdale, Erik, 19
Hugunin, Jim, 19

I
IDE extensions

Eclipse, 293–301
Emacs, 290–293
Forte, 288–290
JBuilder, 281–288
matching join points with,

321
NetBeans, 288–290

identifying join points (Hello
World example), 34

if designators, 86, 122
illegal matches, 165
impeding weaving, 51
-incremental compiler option,

276
incremental compiling, 51–52
inheritance

conflicts, 216–220
diamond problem,

216–218
triangle problem, 218–219

extending aspects, 251–252
inter-type declarations, 208

Index 429

mixin style inheritance,
222–226
LogService interface

example, 222–224
template methods,

225–226
initialization designators, 85,

91–92
InitializerSignature interface,

408
-injars compiler option, 276
inner classes, within/withincode

designators, 121–122
installing

AJDE for Eclipse, 295–296
AJDE for Forte, 288–289
AJDE for JBuilder, 282–284
AspectJ, 23–25

setting CLASSPATH, 28
setting PATH, 25–28
testing installation, 28–30

AspectJ-mode, 291–291
Eclipse, 295

instantiating aspects
per-control-flow aspects,

256–257
per-object aspects, 253–256
singleton aspects, 253

inter-aspect precedence, 180,
226–227
circularity, 230–231
declaring, 227–230
effects of, 231

interfaces
adding concrete members to,

212, 215–216
conflicts, 216–220
mixin style inheritance,

222–226
order of initialization, 220
Persistence aspect

example, 212–215
role definition, 220–222

adding to classes, 208–211
exposed, 3
hierarchy, 399
as inter-type declaration

targets, 202
marker interfaces, 229–230
pointcuts, 124–125

inter-type declarations, 44–47
access control, 203–205

adding interfaces to classes,
208–211

adding methods to classes,
188–196
coupling, 195–196
member introduction,

191–195
advice and, 196–199
custom compilation mes-

sages, 232–235
inheritance, 208
inter-aspect precedence, 180,

226–227
circularity, 230–231
declaring, 227–230
effects of, 231

interfaces with concrete
members, 212, 215–216
conflicts, 216–220
mixin style inheritance,

222–226
order of initialization, 220
Persistence aspect

example, 212–215
role definition, 220–222

members
abstract methods, 201
concrete methods, 200
conflicts between,

205–208
constructor methods, 201
fields, 201–202

statically determinable
pointcuts, 231–232

targets
versus aspect members,

207
aspects, 202–203
classes, 202
interfaces, 202
type patterns, 203

intra-aspect precedence,
181–182

introduction
advice and, 196–199
code structure, 192–195
tool support, 191–192

Introduction declarations, 44–47
invalidation (Department

example), 348–349
IOExceptions, softening,

235–237

Isberg, Wes, 19

J
JARs

specifying output to, 50–51
weaving with, 49–50

Java library calls, catching,
128–129

JBuilder, 281–288
JoinPoint.StaticPart interface,

403–404
JoinPoint interface, 400–403
join points, 15. See also point-

cuts
class initialization, 60, 77
combining, 62
constructor call, 59–60,

74–75
defining, 39
dynamic join point model,

53–58
exception handler execution,

60, 77
exception restrictions, 146
field get, 60, 75–76
field set, 60, 75–76
final attributes, 130
identifying, Hello World

example, 34
matching, Java library calls,

128–129
matching errors, 317–318

call() && execution()
use, 321

improper args() use, 321
misspelled names, 318
no package declaration,

319–320
using IDEs to match, 321

method call, 59–60, 70–74
multiple, 47–48
object initialization, 60
patterns, 61–62

subtype patterns, 65
throws pattern, 65–66
type name patterns, 62–64
type patterns, 66

reflection
thisJoinPoint class, 67–70
thisJoinPointStaticPart

class, 70
replacing, 167–168

I n d e x430

return values, 163–165,
170–171

signatures, 60–61
tracing, 323–329
unwanted, stopping, 150–153

exceptions, 153
increasing modularity,

154
logging failures, 153

wildcards, 40

K
Kersten, Mik, 19
Kiczales, Gregor, 9, 19

L
language implementation, 16–18
languages, AOP bindings

Apostle, 421
AspectC, 421–422
AspectC++, 422–423
AspectR, 419–420
AspectS, 420–421
Pythius, 423–424

language specification, 14–16
lazy initialization, 148–150
legacy applications, 266
limiting access, args

designators, 104
limiting scope, target

designators, 100
link-time weaving, 17, 18
load-time weaving, 17
-locale name command-line

option, 309
-log command-line option, 309
Logger class example, 5–6
loggings, 269–270
logical operators

changing pointcuts with, 39
combining designators with,

86
combining join points with,

66

M
marker interfaces, 229–230
Massol, Vincent, 235
match criteria, adding, 98
member introduction

advice and, 196–199
code structure, 192–195

tool support, 191–192
MemberSignature interface,

406–407
method call execution join

points, 59–60, 70–74
method call join points, 59,

70–74
method-related pointcuts

call designators, 85, 89–91
Factory object example,

126–128
execution designators, 85,

87–89
initialization designators, 85,

91–92
methods

abstract, 201
adding to classes, 188–196

coupling, 195–196
member introduction,

191–195
catching (XML representa-

tion example), 342–348
concrete, 200
constructor, 201
template methods, 225–226

MethodSignature interface, 408
mixin style inheritance, 222–226

LogService interface
example, 222–224

template methods, 225–226
modularity, 2

N
named pointcuts, 125
naming pointcuts, 84
NetBeans, 288–290
NoAspectBoundException()

method, 411
NoAspectBoundException

class, 411
no Java compiler error, 316
non-conflicting scopes, 205–206
-noweave compiler option, 276

O
object boxing, 143–144
object initialization join points,

60
return values, 164
signatures, 61

object-oriented programming.
See OOP

objects, 2
Observer pattern, 349

implementing in Java,
349–350

reusing, 350
extending ObserverProto-

col, 355–359
ObserverProtocol aspect,

350–355
ObserverProtocol aspect

example, 350–355
-O compiler option, 276
OOP (object-oriented

programming)
accomplishments of, 2–4
benefits, 1–2
class model example, 3
objects, 2
problems with, 4–9

code tangling, 6, 8–9
crosscutting, 6, 9
encapsulation, 6

or (||) operator, 86
-outjars compiler option, 276
out of memory error, 315
-overview file command-line

option, 309

P
-package command-line option,

310
package methods, matching on,

128–129
parameters

formal
context available as,

140–141
defined, 140
left-right rule, 141
method parameter

comparison, 141–143
object boxing, 143–144
parameter-context

mismatches, 141
when to use, 145

pointcuts, 84
PATH variable, setting, 25–28
patterns, 61–62, 340

Observer pattern, 349

Index 431

implementing in Java,
349–350

reusing, 350–360
subtype patterns, 65
throws pattern, 65–66
type name patterns, 62–64
type patterns, 66

PatternTesting project, 235
per-control-flow aspects,

256–257
per-object aspects, 253–256
persistence example, 332

aspect behavior, 338–339
close coupling, 340–341
encapsulated coupling, 341
patterns, 340
PersistenceProtocol aspect,

333–335
PersistenceProtocol

subaspects, 335–336
DepartmentPersistence,

337–338
EmployeePersistence,

336–337
roles, 340

PersistenceProtocol aspect
example, 333–335
aspect behavior, 338–339
subaspects, 335–336

DepartmentPersistence,
337–338

EmployeePersistence,
336–337

pointcuts, 15. See also join
points
access types, 83–84
adding, 40–41
advice definitions, 134
anonymous, 125
building, 83–84
changing

with join point wildcards,
40

with logical operators,
39–40

combining, 86
designators

within, 86, 120–122
adviceexecution, 86, 123
args, 43–44, 85, 104–109
call, 85, 89–91, 126–128

cflow, 85, 109–113, 126,
126–128

cflowbelow, 85, 113–117,
126

combining, 86
execution, 85, 87–89
format, 84–85
get, 85, 94–95, 100
handler, 85, 92–94
if, 86, 122
initialization, 85, 91–92
matching exceptions, 130
preinitialization, 124
set, 85, 95–96, 100
staticinitialization, 86,

118–119
target, 85, 99–104
this, 85, 97–99
withincode, 86, 119–120,

119–122
determining (Hello World

example), 34–35
exposing context, 43–44
interfaces, 124–125
method-related, 87
named, 125
naming, 84
parameters, 84
primitive, 84
statically determinable,

231–232
precedence, 179

advice
circular relationships, 182
importance of, 179
inter-aspect precedence,

180
intra-aspect precedence,

181–182
pseudo precedence, 184
runtime execution,

182–184
aspects, 257–258
inter-aspect precedence, 180,

226–227
circularity, 230–231
declaring, 227–230
effects of, 231

inter-type declarations,
206–207

pre-conditions, 148

preinitialization designators,
124

primitive pointcuts, 84
-private command-line option,

310
privileged modifier, 205,

259–261
proceed(), 169–170

altering context with,
172–176

parameters, 178–179
return values, 172

Product class example
with AOP, 10–12
join points, 53–58
with OOP, 4–8
pointcuts, 80

production aspects
authorization example,

271–273
loggings, 269–270
timings, 269–270

program text-based designators,
119
within, 120–122
withincode, 119–120,

119–122
Projectile Motion example, 364

design, 365–366
documentation, 374–376
features to add, 364–365
legacy code considerations,

366–367
testing, 374
writing aspects, 367–374

advice code, 373–374
Logger class, 368–370
LogIntermediate aspect,

371
PathLogging class, 368,

370–371
ProjectileListener class,

367–368
TimeAspect aspect,

372–373
protected access type, 261
-protected command-line

option, 310
-public command-line option,

310
Pythius, 423–424
Python language binding

(Pythius), 423–424

I n d e x432

R
-read command-line option, 304
refactoring

tangled code, 8–9
Web spider example

checkpointing, 395–397
logging, 378–393
timings, 393–395

when to use, 377
reflection (join points)

thisJoinPoint class, 67–70
thisJoinPointStaticPart class,

70
reflective access, 144
requirements for AspectJ, 21
resources, 413–417
return values, 163–165

before advice, 168–169
after advice, 168–169
around advice, join points

compatibility, 170–171
proceed(), 172

reusing code
Observer pattern, 350

extending ObserverProto-
col, 355–359

ObserverProtocol aspect,
350–355

persistence example, 332
aspect behavior, 338–339
close coupling, 340–341
encapsulated coupling,

341
patterns, 340
PersistenceProtocol

aspect, 333–335
PersistenceProtocol

subaspects, 335–338
roles, 340

roles, 340
Ruby language binding

(AspectR), 419–420
runtime errors

join point not matching,
317–318
call() && execution()

use, 321
improper args() use, 321
misspelled names, 318

no package declaration,
319–320

using IDEs to match, 322
stack overflow, 317

run-time weaving, 17, 18

S
selective softening

(exceptions), 239–240
set designators, 85, 95–96, 100
setup code, 148
Signature interface, 404–406
signatures (join points), 60–61
SimpleAspect example, 19–20
Simple class example, 19–20
singleton aspects, 253
Smalltalk language binding

Apostle, 421
AspectS, 420–421

softening exceptions, 235
IOExceptions, 235–237
selective softening, 239–240
stack traces, 238
syntax, 240
wrapper exceptions, 238–239

SoftException() method, 411
SoftException class, 411
-source 1.4 compiler option, 276
source directories, specifying,

48–49
SourceLocation interface, 409
-sourcepath command-line

option, 304
-sourcepath path command-line

option, 310
Squeak language binding

(AspectS), 420–421
stack overflow, 317
-standard command-line option,

310
state-based designators, 96–97

args, 104
combining with target

designators, 106
combining with this

designators, 106
limiting access with, 104
obtaining multiple

arguments, 105–106

obtaining single
arguments, 104–105

wildcards, 106–109
target, 85, 99

combining with args
designators, 106

infinite loops, 102–103
limiting scope with, 100
multiple class target

objects, 101–102
multiple targets, 103–104
returning target object

with, 100–101
with set/get designators,

100
this, 85, 97–99, 106

statically determinable
pointcuts, 231–232

static crosscutting. See

inter-type declarations
staticinitialization designators,

86, 118–119
structure browser, 277–281,

286–287
subaspects, 229
subtype patterns, 65
superaspects, 229
System.out.printIn() example,

132–137

T
tangling code. See code tangling
target designators, 85, 99

changing with around
advice, 172–176

combining with args
designators, 106

combining with call and
execution designators,
329–330

infinite loops, 102–103
limiting scope with, 100
multiple class target objects,

101–102
multiple targets, 103–104
returning target object with,

100–101
with set/get designators, 100

template methods, 225–226
this, altering, 177

Index 433

this designators, 85, 97–99
combining with args

designators, 106
combining with call and

execution designators,
329–330

thisEnclosingJoinPointStatic-
Part class, 144

thisJoinPoint class, 67–70, 144
thisJoinPointStaticPart class,

70, 144
ThreadSafe interface example,

232–234
throws pattern, 65–66
timings, 269–270
toLongString() method, 67,

402–403, 405
tools. See also compiling

ajdb (debugger), 303–304
command-line options,

303–304
command-line tutorial,

304–307
GUI tutorial, 307–309

ajdoc (documentation tool),
309–311

Ant, 302–303
IDE extensions

Eclipse, 293–301
Emacs, 290–293
Forte, 288–290
JBuilder, 281–288
NetBeans, 288–290

structure browser, 277–281,
286–287

toShortString() method, 67, 403,
405

toString() method, 67, 403, 406
tracing, 266–268, 323–329
triangle problem (inheritance

conflicts), 218–219

troubleshooting
compilation errors

no Java compiler, 316
out of memory, 315
unable to find Aspectj-

tools.jar, 314–315
wrong compiler, 313–314
wrong JSDK, 315–316

differentiating between des-
ignators, 329–330

exception catching, 322–323
runtime errors

join point not matching,
317–322

stack overflow, 317
TraceJoinPoints.java aspect,

323–329
type name patterns, 62–64
type patterns, 66

declare parents, 211
inter-aspect precedence,

228–229
marker interfaces,

229–230
multiple concrete aspects,

229
subaspects, 229
superaspects, 229

as inter-type declaration tar-
gets, 203

U
UML class diagrams, 374–376
unable to find Aspectjtools.jar

error, 314–315
unqualified after advice, 147,

154–157
-usejavac compiler option, 276

V
-v | verbose command-line

option, 304

-verbose command-line option,
310

-verbose compiler option, 276
-version compiler option, 276

W
weaving, 10

compile-time weaving, 17–18
impeding, 51
with JARs, 49–50

Web sites, 413–417
Web spider example

checkpointing, 395–397
logging concern, 378

DumbAuthenticator class,
379–382

HTMLParser class,
388–390

logger output, 378–379
Spider class, 390–392
URLGetter class, 382–388
URLObject class, 392–393

timings, 393–395
wildcards

args designators, 106–109
changing pointcuts with, 40

withincode designators, 86,
119–122, 330

within designators, 86, 120–122,
330

-workingdir command-line
option, 304

-workingdir compiler option,
276

wrong compiler error, 313–314
wrong JSDK error, 315–316

X
XML representation example,

342–348
-Xoption command-line option,

304

I n d e x434

	sample.pdf
	sterling.com
	Welcome to Sterling Software

