EJB 3RD EDITION - Richard Monson-Haefel

Authors Note

In the winter of 1997 | was working on a distributed object project using Java
RMI. Not surprisingly, the project failed miserably because Java RMI didn’'t
address performance, scalability, fail-over, security, and transactions; qualities of
service that are so vital in a production environment. Although that lesson was
not new for me—I had seen the same thing happen with CORBA—the timing of
the project was especialy interesting. It was at that same time Enterprise
JavaBeans was first introduced by Sun Microsystems — had Enterprise
JavaBeans been available earlier, that same project probably would have
succeeded.

At the time | was working on that ill-fated Java RMI project, | was also writing a
column for JavaReport Online called the “The Cutting Edge”. The column

covered what were then, new Java technologies like Java Naming and Directory

Interface (INDI) and the JavaMail API. | was actually looking for a new topic for
the 3" edition of “The Cutting Edge”, when | discovered the first public draft of
Enterprise JavaBeans, version 0.8. | had first heard about this technology in 1996,

but this was the first time anything public has been available. Having worked on
CORBA, Java RMI and other distributed object technologies, | knew a good
thing when | saw it and immediately began writing an article about this new
“Enterprise JavaBeans’. Although the article in question has long since been
lost in the ether of the Internet, it was at that time the first article ever written on
Enterprise JavaBeans.

That seems like eons ago. Since | published that article in March 1998, literally
hundreds of articles have been written on Enterprise JavaBeans and several
books have come and gone on the subject. Over the past three years this book
has kept pace with three versions of the EJB specification and in its 3¢ edition is
considered by many, to my enormous satisfaction, to be the best book on
Enterprise JavaBeans. As the newest version of the specification takes flight
and a slew of new books on the subject daybew | can’'t help but remember the
days when the words “Enterprise JavaBeans’ drew blank looks from just about
everyone. I’m glad those days are over.

Copyright (c) 2001 O'Reilly & Associates 1

What |s Enterprise JavaBeans?

When Java™ was first introduced in the summer of 1995, most of the I T industry
focused on its graphical user interface characteristics and the competitive
advantage it offered in terms of distribution and platform independence. Those
were interesting times. The Applet was king, and only a few of us were
attempting to use it on the server side. | reality we spent about half our time
coding and the other half trying to convince management that Java was not a
fad.

Today, the focus has broadened considerably: Java has been recognized as an
excellent platform for creating enterprise solutions, specifically for developing
distributed server-side applications. This shift has much to do with Java's
emerging role as auniversal language for producing implementation-independent
abstractions for common enterprise technologies. The JDBC™ API is the first
and most familiar example. JDBC provides a vendor-independent Java interface
for accessing SQL relational databases. This abstraction has been so successful
that it’s difficult to find arelational database vendor that doesn’t support JDBC.
Java abstractions for enterprise technologies have expanded considerably to
include JNDI (Java Naming and Directory Interface™) for abstracting directory
services, JTA (Java Transaction API) for abstracting access to transaction
managers, IMS™ (Java Messaging Service) for abstracting access to different
message-oriented middleware products, and so on.

Enterprise JavaBeans™ was first introduced as a draft specification in late 1997
and has since established itself as one of the most important Java enterprise
technologies provided by Sun Microsystems. Enterprise JavaBeans (EJB)
provides an abstraction for component transaction monitors (CTMs).
Component transaction monitors represent the convergence of two technologies:
traditional transaction processing monitors, such as CICS, TUXEDO, and Encina,
and distributed object services, such as CORBA (Common Object Request
Broker Architecture), DCOM, and native Java RMI. Combining the best of both
technologies, component transaction monitors provide a robust, component-
based environment that simplifies distributed development while automatically
managing the most complex aspects of enterprise computing, such as object
brokering, transaction management, security, persistence, and concurrency.

Enterprise JavaBeans (EJB) defines a server-side component model that allows
business objects to be developed and moved from one brand of EJB container to
another. A component (an enterprise bean) presents a simple programming model
that allows the developer to focus on its business purpose. An EJB server is
responsible for making the component a distributed object and for managing
services such as transactions, persistence, concurrency, and security. In
addition to defining the bean’ s business logic, the developer defines the bean’s
runtime attributes in a way that is similar to choosing the display properties of
visual widgets. The transactional, persistence, and security behaviors of a
component can be defined by choosing from alist of properties. The end result is

Copyright (c) 2001 O'Reilly & Associates 2

that Enterprise JavaBeans makes devel oping distributed component systems that
are managed in a robust transactional environment much easier. For developers
and corporate | T shops that have struggled with the complexities of delivering
mission-critical, high-performance distributed systems using CORBA, DCOM, or
Java RMI, Enterprise JavaBeans provides a far simpler and more productive
platform on which to base development efforts.

When Enterprise JavaBeans 1.0 was finalized in 1998, it quickly become a de
facto industry standard. Many vendors announced their support even before the
specification was finalized. Since that time Enterprise JavaBeans has been
enhanced twice: The specification was first updated in 1999 to version 1.1, which
was covered by the 2 edition. The most recent revision to the specification,
version 2.0, is covered by this, the 3¢ edition of O'Reilly’s EJB book. This 3¢
edition also covers EJB 1.1, which is for the most part a subset of functionality
offered by EJB 2.0.

Products that conform to the EJB standard have come from every sector of the IT
industry, including the TP monitor, CORBA ORB, application server, relational
database, object database, and web server industries. Some of these products are
based on proprietary models that have been adapted to EJB; many more
wouldn’t even exist without EJB.

In short, Enterprise JavaBeans 2.0 and 1.1 provides a standard distributed
component model that greatly simplifies the development process and allows
beans that are developed and deployed on one vendor’'s EJB server to be easily
deployed on a different vendor’s EJB server. This book will provide you with the
foundation you need to devel op vendor-independent EJB solutions.

Who Should Read This Book?

This book explains and demonstrates the fundamentals of the Enterprise
JavaBeans 2.0 and 1.1 architecture. Although EJB makes distributed computing
much simpler, it is still a complex technology that requires a great deal of time to
master. This book provides a straightforward, no-nonsense explanation of the
underlying technology, Java classes and interfaces, component model, and
runtime behavior of Enterprise JavaBeans. It includes material that is backward
compatible with EJB 1.1 and provides special notes and chapters when there are
significant differences between 1.1 and 2.0.

Although this book focuses on the fundamentals, it's no “dummies’ book.
Enterprise JavaBeans embodies an extremely complex and ambitious enterprise
technology. While using EJB may be fairly simple, the amount of work required
to truly understand and master EJB is significant. Before reading this book, you
should be fluent with the Java language and have some practical experience
developing business solutions. Experience with distributed object systemsis not
a must, but you will need some experience with JDBC (or at least an

Copyright (c) 2001 O'Reilly & Associates 3

understanding of the basics) to follow the examples in this book. If you are
unfamiliar with the Java language, | recommend that you pick up a copy of
Learning Java™ by Patrick Neimeyer and Jonathan Knudsen, formerly
Exploring Java™, (O'Reilly). If you are unfamiliar with JDBC, | recommend
Database Programming with JDBC™ and Java™, 2™ Edition by George Reese
(O'Reilly). If you need a stronger background in distributed computing, |
recommend Java™ Distributed Computing by Jm Farley (O’ Reilly).

Organization

Here's how the book is structured. The first three chapters are largely
background material, placing Enterprise JavaBeans 2.0 and 1.1 in the context of
related technologies, and explaining at the most abstract level how the EJB
technology works and what makes up an enterprise bean. Chapters 4 through 13
go into detail about developing enterprise beans of various types. Chapters 14
and 15 could be considered “advanced topics,” except that transactions
(Chapter 14) are essential to everything that happens in enterprise computing,
and design strategies (Chapter 15) help you deal with a number of rea-world
issues that influence bean design. Chapter 16 describes in detail the XML
deployment descriptors used in EJB 2.0 and 1.1. Finally, Chapter17 is an
overview of the Java™ 2, Enterprise Edition (J2EE) includes Servlets, JSP and
EB.

Chapter 1, Introduction
This chapter defines component transaction monitors and explains how they
form the underlying technology of the Enterprise JavaBeans component
model.

Chapter 2, Architectural Overview
This chapter defines the architecture of the Enterprise JavaBeans
component model and examines the difference between the three basic types
of enterprise beans:. entity beans, session beans, and message-driven beans.

Chapter 3, Resource Management and the Primary Services
This chapter explains how the EJB-compliant server manages an enterprise
bean at runtime.

Chapter 4, Developing Y our First Enterprise Beans

This chapter walks the reader through the development of some simple
enterprise beans.

Chapter 5, The Client View
This chapter explains in detail how enterprise beans are accessed and used
by aremote client application.

Chapter 6, EJB 2.0 CMP: Basic Persistence
This chapter provides an explanation of how to develop basic container-
managed entity beansin EJB 2.0

Copyright (c) 2001 O'Reilly & Associates 4

Chapter 7, EJB 2.0 CMP: Entity Relationships
This chapter picks up where Chapter 6 left off, expanding your
understanding of container-managed persistence to complex bean-to-bean
relationships

Chapter 8, EJB 2.0 CMP: EJB QL
This chapter addresses the Enterprise JavaBeans Query Language (EJB QL),
which is used to query EJBs and locate specific entity beans in EJB 2.0
container-managed persistence.

Chapter 9, EJB 1.1: Container-Managed Persistence
This chapter covers EJB 1.1 container-managed persistence, which is
supported in EJB 2.0 for backward compatibility. Read this chapter only if
you need to support legacy EJB applications.

Chapter 10, Bean-Managed Persistence
This chapter covers the development of bean-managed persistence beans
including when to store, load, and remove data from the database.

Chapter 11, Entity-Container Contract
This chapter covers the general protocol between an entity bean and its
container at runtime and applies to container-managed persistencein EJB 2.0
and 1.1, aswell as bean-managed persistence.

Chapter 12, Session Beans
This chapter shows how to develop statel ess and stateful session beans.

Chapter 13, Message-Driven Beans
This chapter shows how to devel op message-driven beansin EJB 2.0.

Chapter 14, Transactions
This chapter provides an in-depth explanation of transactions and describes
the transactional model defined by Enterprise JavaBeans.

Chapter 15, Design Strategies
This chapter provides some basic design strategies that can simplify your
EJB development efforts and make your EJB system more efficient.

Chapter 16, XML Deployment Descriptors
This chapter provides an in-depth explanation of the XML deployment
descriptorsused in EJB 1.1 and 2.0.

Chapter 17, Java 2, Enterprise Edition

This chapter provides an overview of the Java 2, Enterprise Edition 1.3 and
explains how 2.0 fitsinto this new platform.

Appendix A, The Enterprise JavaBeans API
This appendix provides a quick reference to the classes and interfaces
defined in the EJB packages.

Appendix B, State and Sequence Diagrams
This appendix provides diagrams that clarify the life cycle of enterprise
beans at runtime.

Appendix C, EJB Vendors
This appendix provides information about the vendors of EJB servers.

Copyright (c) 2001 O'Reilly & Associates 5

Software and Versions

This book covers Enterprise JavaBeans version 2.0 and version 1.1, including al
optional features. It uses Java language features from the Java 1.2 platform and
JDBC. Because the focus of this book is to develop vendor-independent
Enterprise JavaBeans components and solutions, | have stayed away from
proprietary extensions and vendor- dependent idioms. Any EJB-compliant server
can be used with this book; you should be familiar with that server’s specific
installation, deployment, and runtime management procedures to work with the
examples.

This book covers both EJB 2.0 and EJB 1.1. These two versions have a lot in
common, but when they differ, chapters, or text with in a chapter, that specific to
each version is clearly marked. Feel free to skip version-specific sections that do
not concern you. Unlessindicated, the source code in this book has been written
for bothEJB 2.0and 1.1

Examples developed in this book are available from
ftp://ftp.oreilly.com/pub/examples/java/ejb. The examples are organized by
chapter.

Example Workbooks

Although EJB applications themselves are portable, the manor in which you
install and run EJB products vary wildly from one vendor to the next. For this
reason its nearly impossible to cover all the EJB products available, so we have
chosen a radical but very effective way to address these differences:
Workbooks.

To help you deploy the book examples in different EJB products, the author will
publish several free “workbooks” which are used along with this book to run the
examples on specific commercia and non-commercial EJB servers. The workbook
for a specific product will address that products most advanced server. So for
example, if the vendor supports EJB 2.0, then the examples in the workbook will
address EJB 2.0 features. If, on the other hand, the vendor only supports EJB 1.1,
then the examples in the workbook will be specific to EJB 1.1.

Although there are plans to publish workbooks for as many different EJB server,
at least two workbooks will be made available immediately. These workbooks are
free on-line in PDF format. The workbooks are all available at
http://mww.or eilly.com/catal og/entjbeans3/ or http://www.monson-haefel.com.

Copyright (c) 2001 O'Reilly & Associates 6

Conventions

Italicisused for:

Filenames and pathnames
Hostnames, domain names, URLS, and email addresses

New terms where they are defined
Const ant wi dt h isusedfor:

Code examples and fragments
Class, variable, and method names, and Java keywords used within the text
SQL commands, table names, and column names

XML elements and tags

Const ant wi dt h bol d isused for emphasisin some code examples.

Constant width italic is usedtoindicate text that is replaceable. For
example, in BeanNanePK, you would replace BeanNane with a specific bean
name.

An Enterprise JavaBean consists of many parts; it's not a single object, but a
collection of objects and interfaces. To refer to an Enterprise JavaBean as a
whole, we use the name of its business name in Roman type followed by the
acronym, EJB (Enterprise JavaBean). For example, we will refer to the Customer
EJB when we want to talk about the enterprise bean in general. If we put the
name in a constant width font, we are referring explicitly to the bean’s remote
interface. So Cust oner Renot e is the remote interface that defines the
business methods of the Customer EJB.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

Y ou can a'so send us messages electronically. To be put on our mailing list or to
reguest a catalog, send email to:

Copyright (c) 2001 O'Reilly & Associates 7

info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we'll list errata and any plans for future
editions. Y ou can access this page at:

http://mwww.or eilly.convcatal og/entjbeans2/
For more information about this book and others, seethe O’ Reilly web site at:
http://www.oreilly.com/

The author maintains aweb site for the discussion of EJB and related distributed
computing technologies (http://www.ejbnow.com). EJBNow.com provides news
about this book as well as code tips, articles, and an extensive list of linksto EJB
resources.

Acknowledgments

While there is only one name on the cover of this book, the credit for its
development and delivery is shared by many individuals. Michael Loukides, my
editor, was pivotal to the success of every edition of this book. Without his
experience, craft, and guidance, this book would not have been possible.

Many expert technical reviewers helped ensure that the material was technically
accurate and true to the spirit of Enterprise JavaBeans. Of special note are David
Chappell of David Chappell & Associates, Jm Farley, author of Java™
Distributed Computing (O’ Reilly, 1998), Greg Nyberg of ObjectPartners, Prasad
Muppirala and Shannon Pieper of BORN Information Services, They
contributed greatly to the technical accuracy of this book and brought a
combination of industry and real-world experience to bear, helping to make this
one of the best books on Enterprise JavaBeans published today.

Special thanks also go to Sriram Srinivasan of BEA, Anne Thomas of Sun
Microsystems, and lan McCalion of IBM Hursley, Tim Rohaly of jGuru.com,
James D. Frentress of ITM Corp., Andrzej Jan Taramina of Accredo Systems,
Marc Loy, co-author of Java™ Swing (O Reilly, 1998), Don Weiss of Step 1,
Mike Slinn of The Dialog Corporation, and Kevin Dick of Kevin Dick &
Associates. The contributions of these technical experts were critical to the
technical and conceptual accuracy of earlier editions of this book. Others | would
like to thank include Maggie Mezquita, Greg Hartzel, John Klug and Jon Jamsa of
BORN Information who all suffered though the first draft of the first edition so
long ago to provide valuable feedback.

Thanks also to Vlad Matenaand Mark Hapner of Sun Microsystems, the primary
architects of Enterprise JavaBeans; Linda DeMichiel, EJB 2.0 specification lead;

Copyright (c) 2001 O'Reilly & Associates 8

and Bonnie Kellett 2EE Program Manager — they were al willing to answer
several of my most complex questions. Thanks to all the participants in the EJB-
INTEREST mailing list hosted by Sun Microsystems for their interesting and
sometimes controversial, but always informative, postings over the past four
years.

Finally, the most sincere gratitude must be extended to my wife, Hollie, for
supporting and assisting me through three years of painstaking research and
writing which were required to produce three editions of this book. Without her
unfailing support and love, this book would not have been compl eted.

Copyright (c) 2001 O'Reilly & Associates 9

1

| ntroduction

This book is about Enterprise JavaBeans 1.1 and 2.0 the second and third versions of the
Enterprise JavaBeans specification. Just as the Java platform has revolutionized the way
we think about software development, Enterprise JavaBeans has revolutionized the way
we think about developing mission-critical enterprise software. It combines server-side
components with distributed object technologies and asynchronous messaging to greatly
simplify the task of application development. It automatically takes into account many of
the requirements of business systems. security, resource pooling, persistence,
concurrency, and transactional integrity.

This book shows you how to use Enterprise JavaBeans to develop scalable, portable
business systems. But before we can start talking about EJB itself, we'll need a brief
introduction to the technologies addressed by EJB, such as component models,
distributed objects, component transaction monitors (CTMs), and asynchronous
messaging. It's particularly important to have a basic understanding of component
transaction monitors, the technology that lies beneath EJB. In Chapters 2 and 3, we'll start
looking at EJB itself and see how enterprise beans are put together. The rest of this book
is devoted to developing enterprise beans for an imaginary business and discussing
advanced issues.

It is assumed that you're already familiar with Java; if you're not, Exploring Java™ by
Patrick Niemeyer and Josh Peck is an excellent introduction. This book also assumes that

Copyright (c) 2001 O'Reilly & Associates

you're conversant in the JDBC API, or at least SQL. If you're not familiar with JDBC, see
Database Programming with JDBC™ and Java™, 2™ Edition, by George Reese.

One of Java's most important features is platform independence. Since it was first
released, Java has been marketed as “write once, run anywhere.” While the hype has got-
ten alittle heavy-handed at times, code written with Sun’s Java programming language is
remarkably platform independent. Enterprise JavaBeansisn't just platform independent—
it's also implementation independent. If you’ ve worked with JDBC, you know alittle about
what this means. Not only can the JDBC API run on a Windows machine or on a Unix
machine, it can also access relational databases of many different vendors (DB2, Oracle,
Sybase, SQL Server, etc.) by using different JDBC drivers. You don’t have to code to a
particular database implementation; just change JDBC drivers and you change databases.
It's the same with Enterprise JavaBeans. Ideally, an Enterprise JavaBeans component, an
enterprise bean, can run in any application server that implements the Enterprise
JavaBeans (EJB) specification.' This means that you can develop and deploy your EJB
business system in one server, such as Orion , and later move it to a different EJB server,
such as Pramati, BEA’s WebLogic, IBM’s WebSphere, or open source projects like
OpenEJB, JONAS, and JBoss. Implementation independence means that your business
components are not dependent on the brand of server, which means there are more
options before you begin development, during development, and after deployment.

Setting the Stage

Before defining Enterprise JavaBeans more precisely, let’s set the stage by discussing a
number of important concepts: distributed objects, business objects, and component
transaction monitors and asynchronous messaging.

Distributed Objects

Distributed computing allows a business system to be more accessible. Distributed sys-
tems allow parts of the system to be located on separate computers, possibly in many dif-
ferent locations, where they make the most sense. In other words, distributed computing
allows business logic and data to be reached from remote locations. Customers, business
partners, and other remote parties can use a business system at any time from almost any-
where. The most recent development in distributed computing is distributed objects. Dis-

1 Provided that the bean components and EJB servers comply with the specification and no
proprietary functionality is used in development.

Copyright (c) 2001 O'Reilly & Associates

tributed object technologies such as Java RMI, CORBA, and Microsoft's .NET allow
objects running on one machine to be used by client applications on different computers.

Distributed objects evolved from alegacy form of three-tier architecture, which is used in
TP monitor systems such as IBM’s CICS or BEA's TUXEDO. These systems separate the
presentation, business logic, and database into three distinct tiers (or layers). In the past,
these legacy systems were usually composed of a “green screen” or dumb terminals for
the presentation tier (first tier), COBOL or PL/1 applications on the middle tier (second
tier), and some sort of database, such as DB2, as the backend (third tier). The introduction
of distributed objects in recent years has given rise to a new form of three-tier
architecture. Distributed object technologies make it possible to replace the procedural
COBOL and PL/1 applications on the middle tier with business objects. A three-tier dis-
tributed business object architecture might have a sophisticated graphical or web based
interface, business objects on the middle tier, and a relational or some other database on
the backend. More complex architectures are often used in which there are many tiers:
different objects reside on different servers and interact to get the job done. Creating
these n- tier architectures with Enterprise JavaBeansisrelatively easy.

Server-Side Components

Object-oriented languages, such as Java, C++, and Smalltalk, are used to write software
that isflexible, extensible, and reusable—the three axioms of object-oriented development.
In business systems, object-oriented languages are used to improve development of
GUIs, to simplify accessto data, and to encapsul ate the business logic. The encapsulation
of business logic into business objects has become is a fairly recent focus in the infor-
mation technology industry. Business is fluid, which means that a business's products,
processes, and objectives evolve over time. If the software that models the business can
be encapsulated into business objects, it becomes flexible, extensible, and reusable, and
therefore evolves as the business evolves.

A server-side component model may define an architecture for developing distributed
business objects. They combine the accessibility of distributed object systems with the
fluidity of objectified business logic. Server-side component models are used on the
middle-tier application servers, which manage the components at runtime and make them
available to remote clients. They provide a baseline of functionality that makes it easy to
develop distributed business objects and assembl e them into business solutions.

Server-side components can also be used to model other aspects of a business system,

such as presentation and routing. The Java Servlet for example is a server-side
component that is used to generate HTML and XML data for presentation layer of a
three-tier architecture. The EJB 2.0 message-driven beans, which are discussed later, are a

Copyright (c) 2001 O'Reilly & Associates

server-side components that is used for routing asynchronous messages from one source
to another.

Server-side components, like other components, can be bought and sold as independent
pieces of executable software. They conform to a standard component model and can be
executed without direct modification in a server that supports that component model.
Server-side component models often support attribute-based programming, which allows
the runtime behavior of the component to be modified when it is deployed, without having
to change the programming code in the component. Depending on the component model,
the server administrator can declare a server-side component’ s transactional, security, and
even persistence behavior by setting these attributes to specific values.

As an organization's services, products and operating procedures evolve, server-side
components can be reassembled, modified, and extended so that the business system
reflects those changes. Imagine a business system as a collection of server-side
components that model concepts like customers, products, reservations, and warehouses.
Each component islike aLego block that can be combined with other components to build

abusiness solution. Products can be stored in the warehouse or delivered to a customer;

acustomer can make areservation or purchase a product. Y ou can assemble components,
take them apart, use them in different combinations, and change their definitions. A
business system based on server-side components is fluid because it is objectified, and it

is accessible because the components can be distributed.

Component Transaction Monitors

A new breed of software called application servers has recently evolved to manage the
complexities associated with developing business systems in today’s Internet world. An
application server is often made up of some combination of several different technologies,
including web servers, ORBs, MOM (message-oriented middleware), databases, and so
forth. An application server can also focus on one technology, such as distributed
objects. Application servers that are based on distributed objects vary in sophistication.
The simplest facilitate connectivity between the client applications and the distributed
objects and are called object request brokers (ORBs). ORBs alow client applications to
locate and use distributed objects easily. ORBs, however, have frequently proven to be
inadeguate in high-volume transactional environments. ORBs provide a communication
backbone for distributed objects, but they fail to provide the kind of robust infrastructure
that is needed to handle larger user populations and mission-critical work. In addition,
ORBs provide a fairly crude server-side component model that places the burden of
handling transactions, concurrency, persistence, and other system-level considerations
on the shoulders of the application developer. These services are not automatically

Copyright (c) 2001 O'Reilly & Associates

supported in an ORB. Application developers must explicitly access these services (if
they are available) or, in some cases, devel op them from scratch.

Early in 1999, Anne Manes? coined the term component transaction monitor (CTM) to
describe the most sophisticated distributed object application servers. CTMs evolved asa
hybrid of traditional TP monitors and ORB technologies. They implement robust server-
side component models that make it easier for developers to create, use, and deploy
business systems. CTMs provide an infrastructure that can automatically manage
transactions, object distribution, concurrency, security, persistence, and resource
management. They are capable of handling huge user populations and mission-critical
work, but also provide value to smaller systems because they are easy to use. CTMs are
the ultimate application server. Other terms for these kinds of technology include object
transaction monitor (OTM), component transaction server, distributed component server,
COMware, and so forth. This book uses the term “component transaction monitor”
because it embraces the three key characteristics of this technology: the use of a
component model, the focus on transactional management, and the resource and service
management typically associated with monitors.

Enter prise JavaBeans. Defined

Sun Microsystems' definition of Enterprise JavaBeansis:

The Enterprise JavaBeans architecture is a component architecture for the development
and deployment of component-based distributed business applications. Applications
written using the Enterprise JavaBeans architecture are scalable, transactional, and multi-
user secure. These applications may be written once, and then deployed on any server
platform that supports the Enterprise JavaBeans specification.

Wow! Now that’s a mouthful and not atypical of how Sun defines many of its Java tech-
nologies—have you ever read the definition of the Java language itself? It s about twice
aslong. Thisbook offers ashorter definition:

2 At the time that Ms. Manes coined the term she worked for the Patricia Seybold Group under her
maiden name, Anne Thomas. Ms. Manes is now the Directory of Business Strategy for Sun
Microsystems, Sun Software division.

3 Sun Microsystems Enterprise JavaBeans™ Specification, v2.0, Copyright 2001 by Sun
Microsystems, Inc.

Copyright (c) 2001 O'Reilly & Associates

Enterprise JavaBeans is a standard server-side component model for component transac-
tion monitors.

We have aready set the stage for this definition by briefly defining the terms distributed
objects, server-side components, and component transaction monitors. To provide you
with a complete and solid foundation for learning about Enterprise JavaBeans, this chap-
ter will now expand on these definitions.

If you already have a clear understanding of distributed objects, transaction monitors,
CTMs, and asynchronous messaging feel free to skip the rest of this chapter an move on
to chapter 2.

Distributed Object Architectures

EJB is a component model for component transaction monitors, which are based on dis-
tributed object technologies. Therefore, to understand EJB you need to understand how
distributed objects work. Distributed object systems are the foundation for modern three-
tier architectures. In athree-tier architecture, as shown in Figure 1-1, the presentation logic
resides on the client (first tier), the business logic on the middle tier (second tier), and
other resources, such as the database, reside on the backend (third tier).

[FGURE]
Figure 1-1: Three-tier architecture

All distributed object protocols are built on the same basic architecture, which is designed
to make an object on one computer look like it's residing on a different computer. Dis-
tributed object architectures are based on a network communication layer that is really
very simple. Essentially, there are three parts to this architecture: the business object, the
skeleton, and the stub.

The business object is the business object that resides on the middle tier. It's an instance
of an object that models the state and business logic of some real-world concept, like
person, order, account. Every business object class has matching stub and skeleton
classes built specifically for that type of business object. So, for example, a distributed
business object called Person would have matching Person_Stub and
Per son_Skel et on classes. As shown in Figure 1-3, the business object and skeleton
reside on the middletier, and the stub resides on the client.

The stub and the skeleton are responsible for making the business object, which lives on
the middle tier, look asif it is running locally on the client machine. This is accomplished

Copyright (c) 2001 O'Reilly & Associates

through some kind of remote method invocation (RMI) protocol. An RMI protocol is
used to communicate method invocations over a network. CORBA, Java RMI, and
Microsoft .NET all use their own RMI protocol.* Every instance of the business object on
the middle tier is wrapped by an instance of its matching skeleton class. The skeleton is
set up on a port and |IP address and listens for requests from the stub, which resides on
the client machine and is connected via the network to the skeleton. The stub acts as the
business object’ s surrogate on the client and is responsible for communicating requests
from the client to the business object through the skeleton. Figure 1-3 illustrates the
process of communicating a method invocation from the client to the server object and
back. The stub and the skeleton hide the communication specifics of the RMI protocol
from the client and the implementation class, respectively.

[FGURE]
Figure 1-2: RMI loop

The business object implements a public interface that declares its business methods. The
stub implements the same interface as the business object, but the stub’s methods do not
contain business logic. Instead, the business methods on the stub implement whatever
networking operations are required to forward the request to the business object and
receive the results. When a client invokes a business method on the stub, the request is
communicated over the network by streaming the name of the method invoked, and the
values passed in as parameters, to the skeleton. When the skeleton receives the incoming
stream, it parses the stream to discover which method is requested, and then invokes the
corresponding business method on the business object. Any value that is returned from
the method invoked on the business object is streamed back to the stub by the skeleton.
The stub then returns the value to the client application as if it had processed the
businesslogic locally.

Rolling Your Own Distributed Object

The best way to illustrate how distributed objects work isto show how you can implement
adistributed object yourself, with your own distributed object protocol. Thiswill give you
some appreciation for what a true distributed object protocol like CORBA does. Actual
distributed object systems such as DCOM, CORBA, and Java RMI are, however, much
more complex and robust than the simple example we will develop here. The distributed
object system we develop in this chapter is only illustrative; it is not a real technology,

4 The acronym RMI isn't specific to Java RMI. This section uses the term RMI to describe distributed
object protocols in general. Java RMI is the Java language version of a distributed object protocol.

Copyright (c) 2001 O'Reilly & Associates

nor is it part of Enterprise JavaBeans. The purpose is to provide you with some
understanding of how a more sophisticated distributed object system works.

Here' s avery simple distributed business object called Per sonSer ver that implements
the Per son interface. The Per son interface captures the concept of a person business
object. It hastwo business methods: get Age() and get Name() . In area application,
we would probably define many more behaviorsfor the Per son business object, but two
methods are enough for this example:

public interface Person {
public int getAge() throws Throwabl e;
public Sring get Nane() throws Throwabl e;

}

The implementation of this interface, Per sonSer ver, doesn’t contain anything at all
surprising. It definesthe business logic and state for aPer son:

public class PersonServer inpl enents Person {
int age;
Sring nang;

publ i ¢ PersonServer (Sring nane, int age){
this.age = age;
thi s. nane = nang;

}

public int getAge(){
return age;

}

public Sring get Nane(){
return nane;

}

}

Now we need some way to makethe Per sonSer ver available to aremote client. That's
the job of the Person_Skel eton and Person_St ub. The Per son interface
describes the concept of a person independent of implementation. Both the Per son-
Ser ver and the Per son_St ub implement the Per son interface because they are both
expected to support the concept of a person. The Per sonServer implements the
interface to provide the actual business logic and state; the Per son_St ub implements
the interface so that it can look like a Per son business object on the client and relay
requests back to the skeleton, which in turn sends them to the object itself. Here’'s what
the stub looks like:

inport java.io.jectQuitputStream
inport java.io.yjectlnputSXream

Copyright (c) 2001 O'Reilly & Associates

inport java. net. Socket;

public class Person_ Sub inplenents Person {
Socket socket ;

public Person Sub() throws Throwabl e {
/* Qreate a network connection to the skel eton.
Wse "l ocal host" or the |P Address of the skel et on
if it's onadfferent nachine. */
socket = new Socket ("1 ocal host", 9000) ;
}
public int getAge() throws Throwabl e {
// Wen this nethod is i nvoked, streamthe nethod nane to the
/1 skel eton.
oj ect Qut put S reamout S ream =
new (bj ect Qut put S r eanf{socket . get Qut put Sreant)) ;
out Sreamw iteCj ect ("age");
out Sreamfl ush();
(oj ect I nput S reaminS ream=
new (oj ect | nput S r ean{socket . get | nput S reant));
return inSreamreadint();
}
public Sring get Nane() throws Throwabl e {
/1 V¥en this nethod is invoked, streamthe nethod nane to the
/1 skel eton.
(hj ect Qut put St ream out Sream=
new Cbj ect Qut put St r eang socket . get Qut put Sreant)) ;
out Sreamw itej ect ("nane");
out Sreamfl ush();
(oj ect | nput S reaminS ream=
new (bj ect | nput S r ean{ socket . get I nput Sreang));
return (Sring)inSreamreadject();

}

When a method is invoked on the Person_St ub, a String token is created and
streamed to the skeleton. The token identifies the method that was invoked on the stub.
The skeleton parses the method-identifying token, invokes the corresponding method on
the business object, and streams back the result. When the stub reads the reply from the
skeleton, it parses the value and returns it to the client. From the client’s perspective, the
stub processed the request locally. Now let’ slook at the skeleton:

inport java.io.(ojectQutput Xream
inport java.io.yjectlnputStream
inport java. net. Socket ;

Copyright (c) 2001 O'Reilly & Associates

inport java. net. Server Socket ;

public class Person_Skel eton extends Thread {
Per sonServer nyServer;

publi ¢ Person_Skel et on(Per sonSer ver server){
Il Get a reference to the business object that this skel eton waps.
this.nyServer = server;
}
public void run(){
try {
// Qeate a server socket on port 9000.
Server Socket server Socket = new Server Socket (9000) ;
/1 Vit for and obtain a socket connection from st ub.
Socket socket = server Socket . accept () ;
vhil e (socket !'= null){
/]l Greate an input streamto recei ve requests fromstub.
(oj ect I nput S reaminS ream=
new C(bj ect | nput & r eanf{socket . get | nput S reant)) ;
/1 Read next nethod request fromstub. Bl ock until request is
/1 sent.
Sring nethod = (Sring)i nSreamreadject();
/1 Bval uate the type of nethod request ed.
if (nethod. equal s("age")){
/1 I'nvoke busi ness net hod on server obj ect.
int age = nyServer. get Age();
/]l Qreate an output streamto send return val ues back to
/1 stub.
(bj ect Qut put St reamout S ream =
new (bj ect Qut put St r eang socket . get Qut put S reant)) ;
/1 Send results back to stub.
out Sreamw i tel nt (age);
out Sreamfl ush();
} el se if(nethod. equal s("nane")){
/1 I'nvoke busi ness net hod on server obj ect.
Sring nane = nyServer. get Nane();
/]l Qreate an output streamto send return val ues back to
/1 the stub.
(pj ect Qut put S reamout Sream=
new (hj ect Qut put St r eanf socket . get Qut put Sreant)) ;
/1 Send results back to stub.
out Sreamw it e(j ect (nane) ;
out Sreamfl ush();

Copyright (c) 2001 O'Reilly & Associates

}
} catch(Throwabl e t) {t.printSackTrace(); Systemexit(0); }

}

public static void nain(Sring args []){
/1 btain a uni que i nstance Person.
Per sonSer ver person = new Per sonServer ("R chard", 36);
Person_Skel et on skel = new Per son_Skel et on(person);
skel . start();

}

ThePer son_Skel et on routes requests received from the stub to the business object,
Per sonSer ver . Essentially, the Per son_Skel et on spends all its time waiting for
the stub to stream it arequest. Once arequest isreceived, it is parsed and delegated to the
corresponding method on the Per sonSer ver. The return value from the business
object isthen streamed back to the stub, which returnsit asif it was processed locally.

Now that we've created all the machinery, let's look at a simple client that makes use of
the Per son:

public class Persondient {
public static void nmain(Sring [] args){

try {
Per son person = new Person_Stub();
int age = person. get Age();
Sring nane = person. get Nane() ;
Systemout. printl n(nane+" is "+age+' years ol d");

} catch(Throwabl e t) {t.printSackTrace();}

}

This client application shows how the stub is used on the client. Except for the instantia-
tion of the Per son__St ub at the beginning, the client is unaware that the Per son busi-
ness object is actually a network proxy to the real business object on the middle tier. In
Figure 1-5, the RMI loop diagram is changed to represent the RMI process as applied to
our code.

[FGURE]
Figure 1-3: RMI Loop with Person business object
Asyou examine Figure 1-5, notice how the RMI loop was implemented by our distributed
Per son object. RMI is the basis of distributed object systems and is responsible for

making distributed objects location transparent. Location transparency means that a
server object’s actual location—usually on the middle tier—is unknown and unimportant

Copyright (c) 2001 O'Reilly & Associates

to the client using it. In this example, the client could be located on the same machine or
on adifferent machine very far away, but the client’s interaction with the business object
isthe same. One of the biggest benefits of distributed object systemsislocation transpar-
ency. Although transparency is beneficial, you cannot treat distributed objects as local
objectsin your design because of the performance differences. This book will provide you
with good distributed object design strategies that take advantage of transparency while
maximizing the distributed system’ s performance.

When this book talks about the stub on the client, we will often refer to it as a remote ref-
erence to the business object. This allows us to talk more directly about the business
object and its representation on the client.

Distributed object protocols such as CORBA, DCOM, and Java RMI provide a lot more
infrastructure for distributed objects than the Per son example. Most implementations of
distributed object protocols provide utilities that automatically generate the appropriate
stubs and skeletons for business objects. This eliminates custom development of these
constructs and allows alot more functionality to beincluded in the stub and skeleton.

Even with automatic generation of stubs and skeletons, the Per son example hardly
scratches the surface of a sophisticated distributed object protocol. Real world protocols
like Java RMI and CORBA 110P provide error and exception handling, parameter passing,
and other services like the passing of transaction and security context. In addition,
distributed object protocols support much more sophisticated mechanisms for connecting
the stub to the skeleton; the direct stub-to-skeleton connection in the Per son example is
fairly primitive.

Real distributed object protocols, like CORBA, also provide an Object Request Broker
(ORB), which allows clients to locate and communicate with distributed objects across the
network. ORBs are the communication backbone, the switchboard, for distributed objects.
In addition to handling communications, ORBs generally use a naming system for locating
objects and many other features such as reference passing, distributed garbage collection,
and resource management. However, ORBs are limited to facilitating communication
between clients and distributed business objects. While they may support services like
transaction management and security, use of these servicesis not automatic. With ORBs,
most of the responsibility for creating system-level functionality or incorporating services
falls on the shoulders of the application developer.

Copyright (c) 2001 O'Reilly & Associates

Component Models

The term “component model” has many different interpretations. Enterprise JavaBeans
specifies a server-side component model. Using a set of classes and interfaces from the
j avax. ej b package, developers can create, assemble, and deploy components that
conform to the EJB specification.

The original JavaBeans™, is also a component model, but it's not a server-side
component model like EJB. In fact, other than sharing the name “JavaBeans,” these two
component models are completely unrelated. In the past, alot of the literature had referred
to EJB as an extension of the original JavaBeans, but this is a misrepresentation. Other
than the shared name, and the fact that they are both Java component models, the two
APIs serve very different purposes. EJB does not extend or use the original JavaBeans
component model.

JavaBeansisintended to be used for intraprocess purposes, while EJB is designed to be
used for interprocess components. In other words, the original JavaBeans was not
intended for distributed components. JavaBeans can be used to solve a variety of
problems, but is primarily used to build clients by assembling visual (GUI) and nonvisual
widgets. It's an excellent conponent model, possibly the best component model for
intraprocess development ever devised, but it's not a server-side component model. EJB
is designed to address issues involved with managing distributed business objectsin a
three-tier architecture.

Given that JavaBeans and Enterprise JavaBeans are completely different, why are they
both called component models? In this context, a component model defines a set of
contracts between the component developer and the system that hosts the component.
The contracts express how a component should be developed and packaged. Once a
component is defined, it becomes an independent piece of software that can be
distributed and used in other applications. A component is developed for a specific
purpose but not a specific application. In the original JavaBeans, a component might be a
push button or spreadsheet that can be used in any GUI application according to the rules
specified in the original JavaBeans component model. In EJB, a component might be a
customer business object that can be deployed in any EJB server and used to develop
any business application that needs a customer business object. Other types of Java
component modelsinclude Servlets, JSPs, and Applets.

Copyright (c) 2001 O'Reilly & Associates

Component Transaction Monitors

The CTM industry grew out of both the ORB and the transaction processing monitor (TP
monitor) industries. The CTM isreally a hybrid of these two technologies that provides a
powerful, robust distributed object platform. To better understand what a CTM is, we will
examine the strengths and weakness of TP monitors and ORBs.

TP Monitors

Transaction processing monitors have been evolving for about 30 years (CICS was intro-
duced in 1968) and have become powerful, high-speed server platforms for mission-critical
applications. Some TP products like CICS and TUXEDO may be familiar to you. TP
monitors are operating systems for business applications written in languages like
COBOL. It may seem strange to call a TP monitor an “operating system,” but because they
control an application’s entire environment, it’s a fitting description. TP monitor systems
automatically manage the entire environment that a business application runsin, including
transactions, resource management, and fault tolerance. The business applications that
run in TP monitors are written in procedural programming languages (e.g. COBOL and C)
that are often accessed through network messaging or remote procedure calls (RPC).
Messaging allows a client to send a message to a TP monitor requesting that some
application be run with certain parameters. It’s similar in concept to the Java event model.
Messaging can be synchronous or asynchronous, meaning that the sender may or may
not be required to wait for aresponse. RPC, which is the ancestor of RMI, is a distributed
mechanism that allows clients to invoke procedures on applications in a TP monitor as if
the procedure was executed locally. The primary difference between RPC and RMI is that
RPC is used for procedure-based applications and RMI is used for distributed object
systems. With RMI, methods can be invoked on a specific object identity, a specific
business entity. In RPC, a client can call procedures on a specific type of application, but
thereis no concept of object identity. RMI is object oriented; RPC is procedural.

TP monitors have been around for along time, so the technology behind them is as solid
as arock; that is why they are used in many mission-critical systems today. But TP moni-
tors are not object oriented. Instead, they work with procedural code that can perform
complex tasks but has no sense of identity. Accessing a TP monitor through RPC is like
executing static methods; there’s no such thing as a unique object. In addition, because
TP monitors are based on procedural applications, and not objects, the businesslogicin a
TP monitor is not as flexible, extensible, or reusable as business objects in a distributed
object system.

Copyright (c) 2001 O'Reilly & Associates

Object Request Brokers

Distributed object systems allow unique objects that have state and identity to be
accessed across a network. Distributed object technologies like CORBA and Java RMI
grew out of RPC with one significant difference: when you invoke a distributed object
method, it's on an object instance, not an application procedure. Distributed objects are
usually deployed on some kind of ORB, which is responsible for helping client
applications find distributed objects easily.

ORBs, however, do not define an “operating system” for distributed objects. They are
simply communications backbones that are used to access and interact with unique
remote objects. When you develop a distributed object application using an ORB, all the
responsibility for concurrency, transactions, resource management, and fault tolerance
falls on your shoulders. These services may be supported by an ORB, but the application
developer is responsible for incorporating them into the business objects. In an ORB,
there is no concept of an “operating system,” where system-level functionality is handled
automatically. The lack of implicit system-level infrastructure places an enormous burden
on the application developer. Developing the infrastructure required to handle
concurrency, transactions, security, persistence, and everything else needed to support
large user populations is a Herculean task that few corporate development teams are
equipped to accomplish.

CTMs:. TheHybrid of ORBsand TP Monitors

As the advantages of distributed objects became apparent, the number of systems
deployed using ORBs increased very quickly. ORBs support distributed objects by
employing asomewhat crude server-side component model that allows distributed objects
to be connected to a communication backbone, but don’t implicitly support transactions,
security, persistence, and resource management. These services must be explicitly
accessed through APIs by the distributed object, resulting in more complexity and,
frequently, more development problems. In addition, resource management strategies
such as instance swapping, resource pooling, and activation may not be supported at all.
These types of strategies make it possible for a distributed object system to scale, improv-
ing performance and throughput and reducing latency. Without automatic support for
resource management, application developers must implement homegrown resource
management solutions, which requires a very sophisticated understanding of distributed
object systems. ORBs fail to address the complexities of managing a component in a high-
volume, mission-critical environment, an areawhere TP monitors have always excelled.

Copyright (c) 2001 O'Reilly & Associates

With three decades of TP monitor experience, it wasn't long before companies like IBM
and BEA began developing a hybrid of ORBs and TP monitor systems, which we refer to
as component transaction monitors. These types of application servers combine the fluid-
ity and accessibility of distributed object systems based on ORBs with the robust
“operating system” of a TP monitor. CTMs provide a comprehensive environment for
server- side components by managing concurrency, transactions, object distribution, load
balancing, security, and resource management automatically. While application
developers still need to be aware of these facilities, they don’t have to explicitly implement
them when usingaCTM.

The basic features of aCTM are distributed objects, an infrastructure that includes trans-
action management and other services, and a server-side component model. CTMs sup-
port these features in varying degrees; choosing the most robust and feature-rich CTM is
not always as critical as choosing one that best meets your needs. Very large and robust
CTMs can be enormously expensive and may be overkill for smaller projects. CTMs have
come out of several different industries, including the relational database industry, the
application server industry, the web server industry, the CORBA ORB industry, and the
TP monitor industry. Each vendor offers products that reflect their particular area of
expertise. However, when you're getting started, choosing a CTM that supports the
Enterprise JavaBeans component model may be much more important than any particular
feature set. Because Enterprise JavaBeans is implementation independent, choosing an
EJB CTM provides the business system with the flexibility to scale to larger CTMs as
needed. We will discuss the importance of EJB as a standard component model for CTMs
later in this chapter.

Analogiesto Relational Databases

This chapter spent alot of time talking about CTMs because they are essential to the defi-
nition of EJB. The discussion of CTMs s not over, but to make things as clear as possible
before proceeding, we will use relational databases as an analogy for CTMs.

Relational databases provide a simple development environment for application develop-
ers, in combination with a robust infrastructure for data. As an application developer
using arelational database, you might design the table layouts, decide which columns are
primary keys, and define indexes and stored procedures, but you don’t devel op the index-
ing algorithm, the SQL parser, or the cursor management system. These types of system-
level functionality are left to the database vendor; you simply choose the product that
best fits your needs. Application developers are concerned with how business data is
organized, not how the database engine works. It would be waste of resources for an
application developer to write a relational database from scratch when vendors like
Microsoft, Oracle, and others already provide them.

Copyright (c) 2001 O'Reilly & Associates

Distributed business objects, if they are to be effective, require the same system-level
management from CTMs as business data requires from relational databases. System-
level functionality like concurrency, transaction management, and resource management is
necessary if the business system is going to be used for large user populations or mis-
sion-critical work. It is unrealistic and wasteful to expect application developers to rein-
vent this system-level functionality when commercial solutions already exist.

CTMs are to business objects what relational databases are to data. CTMs handle al the
system-level functionality, allowing the application developer to focus on the business
problems. With a CTM, application developers can focus on the design and development
of the business objects without having to waste thousands of hours developing the infra-
structure that the business objectsoperatein.

EJB 2.0: Asynchronous M essaging

An asynchronous messaging system alows two or more applications to exchange
information in the form of messages. A message, in this case, is a self-contained package
of business data and network routing headers. The business data contained in a message
can be anything—depending on the business scenario—and usually contains information
about some business transaction. In enterprise messaging systems, messages inform an
application of some event or occurrence in another system.

Messages are transmitted from one application to another on a network using message-
oriented middleware (MOM). MOM products ensure that messages are properly
distributed among applications. In addition, MOMs usually provide fault tolerance, load
balancing, scalability, and transactional support for enterprises that need to reliably
exchange large quantities of messages.

MOM vendors use different message formats and network protocols for exchanging
messages, but the basic semantics are the same. An API is used to create a message, give
it a payload (application data), assign it routing information, and then send the message.
The same API is used to receive messages produced by other applications.

In al modern enterprise messaging systems, applications exchange messages through

virtual channels called destinations. When sending a message, it's addressed to a
destination, not a specific application. Any application that subscribes or registers an

interest in that destination may receive that message. In this way, the applications that

receive messages and those that send messages are decoupled. Senders and receiversare

not bound to each other in any way and may send and receive messages as they seefit.

Copyright (c) 2001 O'Reilly & Associates

Java M essage Service

Each MOM vendor implements its own networking protocols, routing, and administration
facilities, but the basic semantics of the developer API provided by different MOMs are
the same. It'sthis similarity in APIsthat makes the Java Message Service possible.

The Java Message Service (JMS) is a vendor-agnostic Java APl that can be used with
many different MOM vendors. IMS isvery similar to JDBC in that application developer
reuses the same API to access many different systems. If a vendor provides a compliant
service provider for IMS, then the IMS API can be used to send and receive messages to
that vendor. For example, you can use the same JMS APl to send messages using
Progress’ SonicMQ as you do IBM’sMQSeries.

M essage-Driven Beans

All JMS vendors provide application developers with the same API for sending and
receiving messages, and sometimes they provide a component model for developing
routers that can receive and send messages. These component models, however, are
proprietary and not portable across MOM vendors.

Enterprise JavaBeans 2.0 introduces a new kind of component, called a message-driven
bean, which is akind of standard JMS bean. It can receive and send asynchronous JMS
messages, because it’'s co-located with other kinds of RMI beans (entity and session
beans) it can also interact with RMI components.

Message-driven beans in EJB 2.0 act as an integration point for a EJB application,
allowing other applications to asynchronous messages which can be captured and
processed by an EJB application. Thisisan extremely important feature that will allow EJB
applicationsto better integrate with legacy and other proprietary systems.

Message-driven beans are al so transactional and required all the infrastructure associated
with other RMI based transactional server-side components. Like other RMI based
components, message-driven beans are considered business objects, which full fill an
important role of routing and interpreting requests and coordinating the application of
those requests against other RMI based components, namely enterprise beans. Message-
driven beans are a good fit for the component transaction manager landscape and are an
excellent addition to the Enterprise JavaBeans platform.

Copyright (c) 2001 O'Reilly & Associates

CTMsand Server-Side Component Models

CTMs require that business objects adhere to the server-side component model imple-
mented by the vendor. A good component model is critical to the success of a develop-
ment project because it defines how easily an application developer can write business
objects for the CTM. The component model is a contract that defines the responsibilities
of the CTM and the business objects. With a good component model, a devel oper knows
what to expect from the CTM and the CTM understands how to manage the business
object. Server-side component models are great at describing the responsibilities of the
application developer and CTM vendor.

Server-side component models are based on a specification. As long as the component
adheres to the specification, it can be used by the CTM. The relationship between the
server-side component and the CTM islike the relationship between a CD-ROM and a CD
player. As long as the component (CD-ROM) adheres to the player’s specifications, you
can play it.

A CTM'’s relationship with its component model is also similar to the relationship the
railway system has with trains. The railway system manages the train’s environment, pro-
viding alternate routes for load balancing, multiple tracks for concurrency, and a traffic
control system for managing resources. The railway provides the infrastructure that trains
run on. Similarly, a CTM provides server-side components with the entire infrastructure
needed to support concurrency, transactions, load balancing, etc.

Trains on the railway are like server-side components: they all perform different tasks but
they do so using the same basic design. The train, like a server-side component, focuses
on performing atask, such as moving cars, not managing the environment. For the engi-
neer, the person driving the train, the interface for controlling the train is fairly simple: a
brake and throttle. For the application developer, the interface to the server-side compo-
nent issimilarly limited.

Different CTMs may implement different component models, just as different railways
have different kinds of trains. The differences between the component models vary, like
railway systems having different track widths and different controls, but the fundamental
operations of CTMs are the same. They all ensure that business objects are managed so
that they can support large populations of usersin mission-critical situations. This means
that resources, concurrency, transactions, security, persistence, load balancing, and
distribution of objects can be handled automatically, limiting the application developer to
a simple interface. This allows the application developer to focus on the business logic
instead of the enterpriseinfrastructure.

Copyright (c) 2001 O'Reilly & Associates

Microsoft’'s .NET Framework

Microsoft was the first vendor to ship a CTM. Originally called the Microsoft Transaction
Server (MTYS), it was later renamed COM+. Microsoft’s COM+ is based on the Component
Object Model (COM), originally designed for use on the desktop but eventually pressed
into service as a server-side component model. For distributed access, COM+ clients use
DCOM (Distributed Component Object Model).

When MTS was introduced in 1996, it was exciting because it provided a very
comprehensive environment for business objects. With MTS, application developers
could write COM components without worrying about system-level concerns. Once a
business object was designed to conform to the COM model, MTS (and nhow COM+)
would take care of everything else, including transaction management, concurrency,
resource management—everything!

Recently, COM+ has become part of Microsoft's new .NET Framework. The core
functionality provided by COM+ services remains essentially the same in .NET, but the
way it’'s appears to a developer changes significantly. Rather than writing components as
COM objects, applications written for the .NET Framework are built as managed objects.
All managed objects, and in fact al code written for the .NET Framework, depends on a
Common Language Runtime (CLR). For Java-oriented developers, the CLR is much like a
Java VM, and a managed object is very analogous to an instance of aJavaclass, i.e., to a
Java object.

Although .NET Framework provides many interesting features, as an open standard, it
falls short. The COM+ servicesin the .NET Framework are Microsoft’s proprietary CTM,
which means that using this technology binds you to the Microsoft platform. This may
not be so bad, because .NET promises to work well, and the Microsoft platform is
pervasive. In addition, the .NET Framework’s support for SOAP (Simple Object Access
Protocol) will enable business objects in the NET world to communicate with objects on
any other platform written in any language. This can potentially make business objectsin
.NET universally accessible, afeature that is not easily dismissed.

If, however, your company is expected to deploy server-side components on a non-
Microsoft platform, .NET is not a viable solution. In addition, the COM+ services in the
.NET Framework are focused on stateless components; there’'s no built-in support for
persistent transactional objects. Although stateless components can offer higher
performance, business systems need the kind of flexibility offered by CTMs that include
stateful and persistent components.

Copyright (c) 2001 O'Reilly & Associates

EJB and CORBA CTMs

Until the fall of 1997, non-Microsoft CTMs were pretty much nonexistent.
Promising products from IBM, BEA, and Hitachi were on the drawing board,
while MTS was aready on the market. Although the non-M TS designs were only
designs, they al had one thing in common: they all used CORBA as a distributed
object service.

Most non-Microsoft CTMs were focused on, what was at the time, the more
open standard of CORBA so that they could be deployed on non-Microsoft
platforms and support non-Microsoft clients. CORBA is both language and
platform independent, so CORBA CTM vendors could provide their customers
with more implementation options’. The problem with CORBA CTM designs was
that they all had different server-side component models. In other words, if you
developed a component for one vendor’s CTM, you couldn’t turn around and
use that same component in another vendor's CTM. The component models
weretoo different.

With Microsoft’'s MTS far in the lead by 1997 (it had already been around a
year), CORBA-based CTM vendors needed a competitive advantage. One
problem CTMs faced was a fragmented CORBA market where each vendor's
product was different from the next. A fragmented market wouldn't benefit
anyone, so the CORBA CTM vendors needed a standard to rally around.
Besides the CORBA protocol, the most obvious standard needed was a
component model, which would allow clients and third-party vendors to develop
their business objects to one specification that would work in any CORBA CTM.
Microsoft was, of course, pushing their component model as a standard—which
was attractive because MTS was an actual working product—but Microsoft
didn’t support CORBA. The OMG (Object Management Group), the same people
who developed the CORBA standard, were defining a server-side component
model. This held promise because it was sure to be tailored to CORBA, but the
OMG was slow in developing a standard—at least too slow for the evolving
CTM market’.

5 Recently, the introduction of SOAP (Simple Object Access Protocol) brings into
question the future of the CORBA 11OP protocol (Internet-InterOperability Protocol).
It's obvious that these two protocols are competing to become the standard language-
independent protocol for distributed computing. [1OP has been around for severa years
and is therefore far more mature, but as a late entry SOAP may quickly catch up by
leveraging lessons learned in the development of 11OP.

% Eventually, CORBA’s CTM component model was released and called CCM, for
CORBA Component Model. It has seen lackluster acceptance is general, and was forced
to adopt Enterprise JavaBeans as part of its component model just to be viable and
interesting.

21

In 1997, Sun Microsystems was developing the most promising standard for
server-side components called Enterprise JavaBeans. Sun offered some key
advantages. First, Sun was respected and was known for working with vendors
to define Java-based and vendor-agnostic APIs for common services. Sun had a
habit of adopting the best ideas in the industry and then making the Java
implementation an open standard—usually successfully. The Java database
connectivity API, caled JDBC, was a perfect example. Based largely on
Microsoft’s own ODBC, JDBC offered vendors a more flexible model for plugging
in their own database access drivers. In addition, developers found the JDBC
APl much easier to work with. Sun was doing the same thing in its newer
technologies like the JavaMail™ APl and the Java Naming and Directory
Interface (JNDI). These technologies were till being defined, but the
collaboration among vendors was encouraging and the openness of the APls
was attractive.

Although CORBA offered an open standard, it attempted to standardize very
low-level facilities like security and transactions. Vendors could not justify
rewriting existing products such as TUXEDO and CICS to the CORBA standards.
EJB got around that problem by saying it doesn’t matter how you implement the
low-level services;, all that matters is al the facilities be applied to the
components according to the specification—a much more pal atable solution for
existing and prospective CTM vendors. In addition, the Java language offered
some pretty enticing advantages, not all of them purely technical. First, Javawas
a hot and sexy technology and simply making your product Java-compatible
seemed to boost your exposure in the market. Java also offered some very
attractive technical benefits. Java was more or less platform independent. A
component model defined in the Java language would have definite marketing
and technical benefits.

Asit turned out, Sun had not been idle after it announced Enterprise JavaBeans.
Sun’'s engineers had been working with several leading vendors to define a
flexible and open standard to which vendors could easily adapt their existing
products. This was a tall order because vendors had different kinds of servers
including web servers, database servers, relational database servers, application
servers, and early CTMs. It's likely that no one wanted to sacrifice their
architecture for the common good, but eventually the vendors agreed on a model
that was flexible enough to accommodate different implementations yet solid
enough to support real mission-critical development. In December of 1997, Sun
Microsystems released the first draft specification of Enterprise JavaBeans, EJB
1.0, and vendors have been flocking to the server-side component model ever
since.

Benefits of a Standard Server-Side Component
M odel

So what does it mean to be a standard server-side component model? Quite
simply, it means that you can develop business objects using the Enterprise
JavaBeans (EJB) corrponent model and expect them to work in any CTM that
supports the complete EJB specification. This is a pretty powerful statement
because it largely eliminates the biggest problem faced by potential customers of
CORBA-based CTM products: fear of vendor “lock-in.” With a standard server-
side component model, customers can commit to using an EJB-compliant CTM
with the knowledge that they can migrate to a better CTM if one becomes
available. Obviously, care must be taken when using proprietary extensions
developed by vendors, but this is nothing new. Even in relational database
industry— which has been using the SQL standard for a couple of decades—
optional proprietary extensions abound.

Having a standard server-side component model has benefits beyond
implementation independence. A standard component model provides a vehicle
for growth in the third- party products. If numerous vendors support EJB, then
creating add-on products and component libraries is more attractive to software
vendors. The IT industry has seen this type of cottage industry grow up around
other standards like SQL, where hundreds of add-on products can be purchased
to enhance business systems whose data is stored in SQL-compliant relational
databases. Report generating tools and data warehouse products are typical
examples. The GUI component industry has seen the growth of its own third-
party products. A healthy market for component libraries already exists for GUI
component models like Microsoft's ActiveX and Sun’s original JavaBeans
component models.

There are many examples of third-party product for Enterprise JavaBeans today
Add-on products that provide services to EJB-compliant systems like credit card
processing, legacy database access, and other business services have been
introduced. These types of products make development of EJB systems simpler
and faster than the aternatives, making the EJB component model attractive to
corporate IS and server vendors alike. The industry has market grow for
prepackaged EJB components in several domains including sales, finance,
education, web content management, collaboration and other areas.

Titan Cruises. An Imaginary Business

To make things a little easier, and more fun, we will attempt to discuss al the
concepts in this book in the context of one imaginary business, a cruise line
called Titan. A cruise line makes a particularly interesting example because it
incorporates several different businesses: a cruise has cabins that are similar to

hotel rooms, serves meads like a restaurant, offers various recreational
opportunities, and needs to interact with other travel businesses.

This type of business is a good candidate for a distributed object system
because many of the system’s users are geographically dispersed. Commercial
travel agents, for example, who need to book passage on Titan ships, will need to
access the reservation system. Supporting many—possibly hundreds—of travel
agents requires arobust transactional system to ensure that agents have access
and reservations are completed properly.

Throughout this book we will build a fairly simple slice of Titan's EJB system
that focuses on the process of making areservation for acruise. Thiswill give us
an opportunity to develop enterprise beans like Ship, Cabin, TravelAgent,
ProcessPayment, and so forth. In the process, you will need to create relational
database tables for persisting data used in the example. It is assumed that you
arefamiliar with relational database management systems and that you can create
tables according to the SQL statements provided. EJB can be used with any kind
of database or legacy application, but relational databases seem to be the most
commonly understood database so we have chosen this as the persistence layer.

What' s Next?

In order to devel op business objects using EJB, you have to understand the life
cycle and architecture of EJB components. This means understanding
conceptually how EJB’s components are managed and made available as
distributed objects. Developing an understanding of the EJB architecture is the
focus of the next two chapters.

24

2

Architectura Overview

As you learned in Chapter 1, Enterprise JavaBeans is a component model for
component transaction monitors, the most advanced type of business
application server available today. To effectively use Enterprise JavaBeans, you
need to understand the EJB architecture, so this book includes two chapters on
the subject. This chapter explores the core of EJB: how enterprise beans are
distributed as business objects. Chapter 3 explores the services and resource
management techniques supported by EJB.

To be truly versatile, the EJB component design had to be smart. For application
developers, assembling enterprise beans is simple, requiring little or no expertise
in the complex system-level issues that often plague three-tier development
efforts. While EJB makes it easy for application developers, it also provides
system developers (the people who write EJB servers) with a great deal of
flexibility in how they support the EJB specification.

The similarities among different component transaction monitors (CTMs) allow
the EJB abstraction to be a standard component model for all of them. Each
vendor’'s CTM is implemented differently, but they all support the same primary
services and similar resource management techniques. The primary services and
resource management techniques are covered in more detail in Chapter 3, but
some of the infrastructure for supporting them is addressed in this chapter.

Copyright (c) 2001 O'Reilly & Associates 1

The Enterprise Bean Component

Enterprise JavaBeans server-side components come in three fundamentally
different types. entity, session, and message-driven beans Both session and
entity beans are RMI based server-side components that are accessed using
distributed object protocols. The message-driven bean, which is new to EJB 2.0,
is an asynchronous server-side component that responds to JMS asyncrhonous

messages.

A good rule of thumb is that entity beans model business concepts that can be
expressed as nouns. For example, an entity bean might represent a customer, a
piece of equipment, an item in inventory, or even a place. In other words, entity
beans model real-world objects; these objects are usually persistent records in
some kind of database. Our hypothetical cruise line will need entity beans that
represent cabins, customers, ships, etc.

Session beans are an extension of the client application and are responsible for
managing processes or tasks. A Ship bean provides methods for doing things
directly to a ship but doesn’t say anything about the context under which those
actions are taken. Booking passengers on the ship requires that we use a Ship
bean, but also requires alot of things that have nothing to do with the Ship itself:
we'll need to know about passengers, ticket rates, schedules, and so on. A
session bean is responsible for this kind of coordination. Session beans tend to
manage particular kinds of activities, for example, the act of making areservation.
They have alot to do with the relationships between different enterprise beans.
A Travel Agent session bean, for example, might make use of a Cruise, a Cabin,
and a Customer—all entity beans—to make a reservation.

Similarly, the message-driven beans in EJB 2.0 are responsible for coordinating
tasks involving other session and entity beans. The major difference between a
message-driven bean and a session bean is how they are accessed. While a
session bean provides a remote interface that defines which methods can be
invoked, a message-driven bean does not. Instead, the message driven bean
subscribes or listens for specific asynchronous messages to which it responds
by processing the message and managing the activities of other beans in
response to those messages. For example, a Travel Agent message-driven bean
would receive to a asynchronous messages—perhaps from a legacy reservation
system—from which it would coordinate the interactions of the Cruise, Cabin,
and Customer beans to make a reservation.

The activity that a session or message-driven bean represents is fundamentally
transient: you start making a reservation, you do a bunch of work, and then it’'s
finished. The session and message-driven beans do not represent things in the
database. Obviously, session and message-driven beans have lots of side effects
on the database: in the process of making a reservation, you might create a new
Reservation by assigning a Customer to a particular Cabin on a particular Ship.
All of these changes would be reflected in the database by actions on the

2 Copyright (c) 2001 O'Reilly & Associates

respective entity beans. Session and message-driven beans like Travel Agent,
which are responsible for making a reservation on a cruise, can even access a
database directly and perform reads, updates, and deletes to data. But there’s no
Travel Agent record in the database—once the bean has made reservation is, it
waits to process another.

What makes this distinction difficult is that it's extremely flexible. The relevant
distinction for Enterprise JavaBeans is that an entity bean has persistent state;
the session and message-driven beans model interactions but do not have
persistent state.

Classes and I nterfaces

A good way to understand the design of enterprise beans is to look at how
you'd go about implementing one. To implement entity and session enterprise
beans, you need to define the component interfaces, a bean class, and a primary

key:

There are basically two kinds of component interfaces, remote and local. The
remote interfaces are supported by both EJB 2.0 and 1.1 while the local
component interfaces are new in EJB 2.0 and are not supported by EJB 1.1.

Remote interface

The remote interface for an enterprise bean defines the bean’'s business
methods that can be accessed from applications outside the EJB container:
the business methods a bean presents to the outside world to do its work. It
enforces conventions and idioms that are well suited for distributed object
protocols. The remote interface extends j avax. ej b. EJBObj ect , which
in turn extendsj ava. r mi . Renpt e. The remote interface is one of the
bean’s component interfaces and is used by session and entity beans in
conjunction with the remote home interface.

Remote Home interface

The home interface defines the bean’'s life cycle methods that can be
accessed from applications outside the EJB container: the life-cycle methods
for creating new beans, removing beans, and finding beans. It enforces
conventions and idioms that are well suited for distributed object protocols.
The home interface extendsj avax. ej b. EJBHone, which in turn extends
java.rm . Renot e. The remote home interface is one of the bean's
component interfaces and is used by session and entity beans in
conjunction with the remote interface.

EJB 2.0: Locd interface
The local interface for an enterprise bean defines the bean’s business
methods that can be used by other beans co-located in the same EJB
container: the business methods a bean presents other beans in the same
address space. It allows beans to interact without the overhead of a
distributed object protocol, which makes them more performant. The local

Copyright (c) 2001 O'Reilly & Associates 3

interface extends j avax. ej b. EJBLocal Obj ect . The local interface is
one of the bean’s component interfaces and is used by session and entity
beans in conjunction with the local home interface.

EJB 2.0: Local Homeinterface

The home interface defines the bean’s life cycle methods that can be used
by other beans co-located in the same EJB container: that is, the life-cycle
methods a bean presents to other beans in the same address space. It allows
beans to interact without the overhead of a distributed object protocol,
which improves their performance. The local home interface extends
j avax. ej b. EJBLocal Horme. The local home interface is one of the
bean’s component interfaces and is used by session and entity beans in
conjunction with the local interface.

Bean class

The session and entity bean classes actually implement the bean’ s business
and life-cycle methods. Note, however, that the bean class for session and
entity beans usually does not implement any of the bean’s component
interfaces directly. However, it must have methods matching the signatures
of the methods defined in the remote and local interfaces and must have
methods corresponding to some of the methods in the both the remote and
local home interfaces. If this sounds perfectly confusing, it is. The book will
clarify this as we go aong. An entity bean must implement
javax.ejb.EntityBean; a session bean must implement
j avax. ej b. Sessi onBean. The EntityBean and Sessi onBean
extendj avax. ej b. Ent er pri seBean.

The message-driven bean in EJB 2.0 does not use any of the component
interfaces, because it is never accessed by method calls from other
applications or beans. Instead, the message-driven bean contains a single
method, onMessage(), which is called by the container when a new
message arrives. So the message-driven bean does not have a component
interface as does the session and entity beans, it only needs the bean class
to operate. The message-driven bean class implements the
j avax. ej b. MessageDri venBean and
j avax. j ms. Messageli st ener interfaces. The JMS
Messageli st ener interface is what makes a message-driven bean
specific to IMS, instead of some other protocol. EJB 2.0 requires the use of
JMS, but future versions may allow other messaging systems. The
MessageDri venBean, like the EntityBean and Sessi onBean,
extendsthej avax. ej b. Ent er pri seBean interface.

Primary key
The primary key is a very simple class that provides a pointer into the
database. Only entity beans need a primary key; the only requirement for
thisclassisthat it implementsjava.io.Seriaizable.

EJB 2.0 adds the crucia distinction between remote and local interfaces. Local
interfaces provide a way for beans in the same container to interact efficiently;
calls to methods in the local interface don't involve RMI; the methods in the

4 Copyright (c) 2001 O'Reilly & Associates

local interfaces don’t need to declare that they throw Renpt eExcept i on, and
so on. An enterprise bean isn’t required to provide alocal interface, if you know
when you' re developing the enterprise bean that it will only interact with remote
clients. Likewise, an enterprise bean doesn't need to provide aremote interfaceif
it knows it will only be called by enterprise beans in the same container. You can
provide local or remote component interface or both.

The complexity—particularly all the confusion about classes implementing the
methods of an interface but not implementing the interface itself—comes about
because enterprise beans exist in the middle between some kind of client
software and some kind of database. The client never interacts with a bean class
directly; it always uses the methods of the entity or session bean’s component
interfaces to do its work, interacting with stubs that are generated automatically.
(For that matter, a bean that needs the services of another bean is just another
client: it uses the same stubs, rather than interacting with the bean class directly.)

Although the local component interfaces (local and local home) in EJB 2.0
represent session and entity beans in the same address space and do not use
distributed object protocols, they still represent a stub or proxy to the bean class.
While there is no network between co-located beans, the stubs allow the
container to monitor the interactions between co-located beans and apply
security and transactions as appropriate.

Its important to note, that EJB 2.0's message-driven bean doesn’'t have any
component interfaces, but it may become the client of other session or entity
beans and interact with those beans through their component interfaces. The
entity and session beans with which the message-driven bean interacts may be
co-located, in which caseit uses their local component interfaces, or they may be
located in a different address space and EJB container, in which case the remote
component interfaces are used.

There are also lots of interactions between an enterprise bean and its server.
These interactions are managed by a “container,” which is responsible for
presenting a uniform interface between the bean and the server. (Many people
use the terms “container” and “server” interchangeably, which is understandable
because the difference between them isn't clearly defined.) The container is
responsible for creating new instances of beans, making sure that they are stored
properly by the server, and so on. Tools provided by the container’s vendor do a
tremendous amount of work behind the scenes. At least one tool will take care of
creating the mapping between entity beans and records in your database. Other
tools generate a lot of code based on the component interfaces and the bean
class itself. The code generated does things like create the bean, store it in the
database, and so on. This code (in addition to the stubs) is what actually
implements the component interfaces, and is the reason your bean class doesn’t
have to.

Copyright (c) 2001 O'Reilly & Associates 5

Before going on, let’ sfirst establish some conventions. When we speak about an
enterprise bean as awhole, its component interfaces, bean class, and so forth, we
will call it by its common business name, followed by the word “bean.” For
example, an enterprise bean that is developed to model a cabin on a ship will be
called the “Cabin EJB.” Notice that we didn’t use a constant width font for
“Cabin.” We do this because we are referring to all the parts of the bean (the
component interfaces, bean class, etc.) as a whole, not just one particular part
like the remote interface or bean class. The term enterprise bean denotes any
kind of bean including entity, session, or message-driven beans. Similarly, entity
bean denotes a entity type enterprise bean; session bean a session type
enterprise bean; and message-driven bean a message-driven type enterprise
bean. It's popular to use the acronym EJB for enterprise bean, a style adopted in
this book to distinguish an enterprise bean as awhole from its component parts.

We will also use suffixes to distinguish between local component interfaces and
remote component interfaces. When we are talking about the remote interface of
the Cabin EJB we will use combine the common business name with the word
Remote. For example, the remote interface for the Cabin EJB is caled the
Cabi nRenot e interface. In EJB 2.0, the local component interface of the Cabin
EJB would be the Cabi nLocal interface. The home interfaces follow the
convention by adding the word Home to the mix. The remote and local home
interfaces for the Cabin EJB would be Cabi nHoneRenote and
Cabi nHoneLocal respectively. The bean class is aways the common
business name followed by the word Bean. For example, the Cabin EJB’s bean
class would be named Cabi nBean.

Theremoteinterface

Having introduced the machinery, let’s ook at how to build an entity or stateful
enterprise bean with remote component interfaces. In this section, we will
examine the Cabin EJB, an entity bean that models a cabin on a cruise ship. Let’s
start with its remote interface.

We'll define the remote interface for a Cabin bean using the interface called
Cabi nRenot e, which defines business methods for working with cabins. All
remote-interface types extend thej avax. ej b. EJBObj ect interface.

inport java.rm. Renot eExcepti on;

public interface Cabi nRenote extends javax. ej b. EJBMj ect {
public Sring get Nane() throws Renot eExcepti on;
public void setNane(Sring str) throws RenoteBxception;
public int getDeckLevel () throws RenoteExcepti on;
public voi d set DeckLevel (int |evel) throws RenoteException;

}

These are methods for naming the cabin and methods for setting the cabin’s
deck level; you can probably imagine lots of other methods that you' d need, but
this is enough to get started. All of these methods declare that they throw

6 Copyright (c) 2001 O'Reilly & Associates

Renot eExcept i on, which is required of all methods on remote component
interfaces, but not EJB 2.0’s local component interfaces. EJB requires the use of
Java RMI-1IOP conventions with remote component interfaces, although the
underlying protocol can be CORBA 110P, Java Remote Method Protocol (JRMP),
or some other protocol. Java RMI-I1OP will be discussed in more detail in the next
chapter.

Theremote homeinterface

The remote home interface defines life-cycle methods used by clients of entity
and session bean for locating enterprise beans. The remote home interface
extends | avax. ej b. EJBHone. WE'll call the home interface for the Cabin
bean Cabi nHomeRenot e and defineit like this:

inport java.rm.Renot eException;
inport javax.ej b. O eat eExcepti on;
i nport | avax. ej b. A nder Excepti on;

public interface Cabi nHoneRenot e ext ends j avax. e b. EJIBHone {
public Gabin create(lnteger id)
throws O eat eException, RenoteException;
publ ic Gabi n findByPrinaryKey(lnteger pk)
throws H nder Exception, RenoteException;

}

The creat e() method will be responsible for initializing an instance of our
bean. If your application needs it, you can provide other cr eat e() methods,
with different arguments.

In addition to the findByPrimaryKey(), you are free to define other
methods that provide convenient ways to look up Cabin beans—for example,
you might want to define a method called f i ndBy Shi p() that returns al the
cabins on a particular ship. Find methods like these are only used in entity beans
and are not used in session beans -- and obviously not message-driven beans.

EJB 2.0: The bean class

EJB 2.0: The bean class

Now let’slook at an actual entity bean. Here' sthe code for the Cabi nBean; it's
asparse implementation, but it will show you how the pieces fit together:

inport javax.ejb. BntityContext;

public abstract class Cabi nBean inpl enents javax. g b. EntityBean {

// BEJB1.0: return void
publ i c Gabi nPK €] bQreat e(I nteger id){
setld(id);

Copyright (c) 2001 O'Reilly & Associates 7

return nul l;

}
public void ej bPost Qeate(int id){
/1 do not hing

}

public abstract Sring get Nane();
public abstract void setNane(Sring str);

public abstract int getDeckLevel ();
public abstract voi d setDeckLevel (int |evel);

public abstract Integer getld();
public abstract void setld(Integer id);

public void setEntityContext(EntityCQntext ctx){
/1 not inplenented

}
publ i c voi d unset EntityGont ext (){
/1 not inplenented

}
public void ej bActivate(){

/1 not inpl enent ed

}
public voi d e bPassi vat e(){

/1 not inplenented

}
publ i c voi d ej bLoad(){
/1 not inplenented

public void ej bSore(){
/1 not inplenented

publ i ¢ voi d ej bRenove(){
/1 not inplenented

Y ou will have noticed that the Cabi nBean class is declared as abstract, as are
several of its methods that access or update the EJB’s persistent state. Also
notices that there are no instance fields that hold the state information that these
methods access. This is because we are working with a container-managed
entity bean, which has its abstract methods implemented by the container system
automatically—this will be explained in detail later in the book. EJB 2.0 container-
managed entity beans are the only beans that are declared as abstract with
abstract accessor methods. You won’'t see abstract classes and methods with
other types of entity beans, session beans, or message-driven beans.

8 Copyright (c) 2001 O'Reilly & Associates

EJB 1.1: Thebean class

Here' sthe code for the Cabi nBean inEBJ1.1:
inport javax.ejb. BntityContext;

public class Cabi nBean i npl enents j avax. gj b. EntityBean {

public Integer id;
public Sring nane;
public int decklLevel;

// BB 1.0: return void

public Integer e bGeate(lnteger id){
setld(id);
return nul | ;

}

publ i ¢ voi d ej bPost O eat e(| nteger id){
/1 do nothing

}

public Sring get Nane(){
return nang,

} public void setNane(Sring str){
nane = str;

}

public int getDeckLevel (){
return deckLevel ;

}
publ i c voi d setDeckLevel (int |evel){
deckLevel = |evel;

}

public Integer getld(){
return id,

}

public void setld(Integer id){
this.id =id;

}

public void set EntityContext(EntityContext ctx){
/1 not inpl enented

}
publ i ¢ voi d unset EntityGont ext (){

/1 not inplenented

}
public void ej bActivate(){
/1 not inplenented

}
publ i c voi d ej bPassi vat e() {

/1 not inplenented
}

Copyright (c) 2001 O'Reilly & Associates

public voi d e bLoad(){
/1 not inplenented

public void ej bSore(){
/1 not inpl enent ed

publ i ¢ voi d ej bRenove(){
/1 not inplenented

EJB 2.0and 1.1: Thebean class

The set and get methods for the cabin’s name and deck level are the
Cabi nBean’s business methods; they match the business methods defined by
the EJB’s remote interface, Cabi nRenpt e. The Cabi nBean class has state
and business behavior that models the concept of a cabin. The business
methods are the only methods that are visible to the client application; the other
methods are visible only to the EJB container or the bean class itself. For
example, theset | d() /get | d() methods are defined in the bean class but not
the remote interface, which means they can not be called by the entity bean’s
client. The other methods are required by the EJB component model and are not
really part of the bean class's public business definition.

Theej bCreat e() and ej bPost Cr eat e() methods initialize the instance
of the bean class when a new cabin record is to be added to the database. The
last seven methods in the CabinBean are defined in the
j avax. ej b. Enti t yBean interface. These methods are state management
callback methods. The EJB container invokes these callback methods on the
bean class when important state management events occur. The ej bRenove()
method, for example, notifies an entity bean that its data is about to be deleted
from the database. The ej bLoad() and ej bSt or e() methods notify the
bean instance that its state is being read or written to the database. The
ej bActivat e() and ej bPassi vat e() methods notify the bean instance
that it is about to be activated or deactivated, a process that conserves memory
and other resources. set EntityContext () provides the bean with an
interface to the EJB container that allows the bean class to get information about
itself and its surroundings. unset Entit yCont ext () is caled by the EJB
container to notify the bean instance that it is about to be dereference for
garbage collection.

All these callback methods provide the bean class with notifications of when an
action is about to be taken, or was just taken, on the bean class's behalf by the
EJB server. These notifications simply inform the bean of an event, the bean
doesn’t have to do anything about it. The callback notifications tell the bean
where it is during its life cycle, when it is about to be loaded, removed,
deactivated, and so on. Most of the callback methods pertain to persistence,
which can be done automatically for the bean class by the EJB container.

10 Copyright (c) 2001 O'Reilly & Associates

Because the callback methods are defined in the j avax. ej b. Enti t yBean
interface, the entity bean class must implement them, but it isn't required to do
anything meaningful with the methods if it doesn’'t need to. Our bean, the
Cabi nBean, won't need to do anything when these callback methods are
invoked, so these methods are empty implementations. Details about these
callback methods, when they are called and how a bean should react, are covered
in Chapter 116.

Theprimary key

The primary key is a pointer that helps locate data that describes a unigue record
or entity in the database; it is used in the f i ndByPri mar yKey() method of
the home interface to locate a specific entity. Primary keys are defined by the
bean devel oper and must be some type of serializable object. The Cabin EJB uses
asmplej ava. | ang. | nt eger type as its primary key. Its also possible to
define custom primary keys, called compound primary keys, which represent
complex primary keys consisting of several different fields. Primary keys are
covered in detail in Chapter 110.

What about session beans?

Cabi nBean isan entity bean, but a session bean wouldn’t be all that different.
It would extend Sessi onBean instead of EntityBean; it would have an
ej bCreat e() method that would initialize the bean's state, but no
ej bPost Creat e(). Session beans don't have an ejblLoad() or
ej bSt or e() because session beans are not persistent. While session beans
have a setSessionContext() method, they don't have an
unset Sessi onCont ext () method. Finally, a session bean would provide
an ej bRenove() method, which would be called to notify the bean that the
client no longer needs it. However, this method wouldn’t tell the bean that its
data was about to be removed from the database, because a session bean
doesn’t represent datain the database.

Session beans don't have a primary key. That’s because session beans are not
persistent themselves, so there is no need for key that maps to the database.
Session beans are covered in detail in Chapter 12.

EJB 2.0: What about message-driven beans?

M essage-driven beans do not have component interfaces so there would not be
aremote, local, or home interface defined for a message-driven bean. Instead the
message-driven bean would define only a few callback methods, and not
business methods. The callback methods include the ej bCr eat e() method
which is called when the bean classisfirst created, the ej bRenove() method
when the bean instance is about to be discarded from the system—usally when
the container doesn’t need it any longer—the
set MessageDri venBeanCont ext () and the onMessage() method.

Copyright (c) 2001 O'Reilly & Associates 11

The onMessage() method is called every time a new asynchronous message
is delivered to the message-driven bean. The message-driven bean doesn't
define ej bPasi vat e() /ej bActi vate() or ej bLoad()/ej bStore()
methods because it doesn’t need them.

Message-driven beans don’t have a primary key, for the same reason that
session beans don’t. They are not persistent, so there is no need for akey to the
database. Message-driven beans are covered in detail in Chapter 13.

Deployment Descriptorsand JAR Files

Much of the information about how beans are managed at runtime is not
addressed in the interfaces and classes discussed previously. You may have
noticed, for example, that we didn’t talk about how beans interact with security,
transactions, naming, and other services common to distributed object systems.
Asyou know from prior discussions, these types of primary services are handled
automatically by the EJB CTM server, but the EJB container still needs to know
how to apply the primary services to each bean class at runtime. To do this, we
use deployment descriptors.

Deployment descriptors serve a function very similar to property files. They
allow us to customize behavior of software (enterprise beans) at runtime without
having to change the software itself. Property files are often used with
applications, but deployment descriptors are specific to a class of enterprise
bean. Deployment descriptors are also similar in purpose to property sheets used
in Visual Basic and PowerBuilder. Where property sheets allow us to describe
the runtime attributes of visual widgets (background color, font size, etc.),
deployment descriptors allow us to describe runtime attributes of server-side
components (security, transactional context, etc.). Deployment descriptors allow
certain runtime behaviors of beans to be customized, without altering the bean
classor itsinterfaces.

When a bean class and its interfaces have been defined, a deployment descriptor
for the bean is created and popul ated with data about the bean. Frequently, IDEs
(integrated development environments) that support development of Enterprise
JavaBeans will allow developersto graphically set up the deployment descriptors
using visual utilities like property sheets. After the developer has set all the
properties for a bean, the deployment descriptor is saved to a file. Once the
deployment descriptor is complete and saved to afile, the bean can be packaged
inaJAR file for deployment.

JAR (Javaarchive) filesare ZIP files that are used specifically for packaging Java
classes (and other resources such as images) that are ready to be used in some
type of application. JARs are used for packaging applets, Java applications,
JavaBeans, Web applications (Servlets & JSPs), and Enterprise JavaBeans. A
JAR file containing one or more enterprise beans includes the bean classes,

12 Copyright (c) 2001 O'Reilly & Associates

component interfaces, and supporting classes for each bean. It also contains one
deployment descriptor, which is used for all the beans in the JAR files. When a
bean is deployed, the JAR’s path is given to the container’s deployment tools,
which read the JAR file. The container uses the deployment descriptor to learn
about the beans contained in the JAR file.

When the JAR file is read at deployment time, the container tools read the
deployment descriptor to learn about the bean and how it should be managed at
runtime. The deployment descriptor tells the deployment tools what kind of
beans are in the JAR file (Sessi onBean or Ent i t yBean), how they should
be managed in transactions, who has access to the beans at runtime, and other
runtime attributes of the beans. The person who is deploying the bean can alter
some of these settings, like transactional and security access attributes, to
customize the bean for a particular application. Many container tools provide
property sheets for graphically reading and altering the deployment descriptor
when the bean is deployed. These graphical property sheets are similar to those
used by bean developers.

The deployment descriptors help the deployment tools to add beans to the EJB
container. Once the bean is deployed, the properties described in the deployment
descriptors will continue to be used to tell the EJB container how to manage the
bean at runtime.

When Enterprise JavaBeans 1.0 was released serializable classes were used for
the deployment descriptor. Starting with Enterprise JavaBeans 1.1, the
serializable deployment descriptor classes used in EJB 1.0 were dropped in favor
of amore flexible file format based on XML (Extensible Markup Language). The
XML deployment descriptors are text files structured according to a standard
EJB DTD (Document Type Definition) that can be extended so the type of
deployment information stored can evolve as the specification evolves.
Chapter 16 provides a detailed description of EJB 2.0 deployment descriptors.
This section provides abrief overview of XML deployment descriptors.

EJB 2.0: Deployment Descriptor

<?xnh version="1.0"?>

<IDOCTYPE ej b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID
Ent erpri seJavaBeans 2.0//EN' "http://java. sun. contj 2ee/ dt ds/ ej b-
jar_2 0.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Cabi nEIB</ €] b- nane>
<hone>Cabi nHoneRenot e</ hone>
<r enot e>Cabi nRenot e</ r enot e>
<l ocal - hone>Cabi nHonelLocal </ | ocal - hone>
<l ocal >Cabi nLocal </ | ocal >

Copyright (c) 2001 O'Reilly & Associates 13

<ej b-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<per si st ence- t ype>Qont ai ner </ per si st ence-t ype>
<reentrant >Fal se</reentrant >
<entity>
</ ent erpri se- beans>
<ejb-jar>

EJB 1.1: Deployment Descriptor

The following deployment descriptor might be used to describe the Cabin bean:

<?xnh version="1.0"?>

<IDOCTYPE €] b-jar PLBLIC "-//Sun Mcrosystens, Inc.//DID
Enterpri seJavaBeans 1. 1//EN' "http://java. sun. contj 2ee/ dt ds/ ej b-
jar_1 1.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Cabi nEIB</ €] b- nane>
<hone>Cabi nHoneRenot e</ hone>
<r enot e>Cabi nRenot e</ r enot e>
<gj b- cl ass>Cabi nBean</ €] b- cl ass> <pri mKkey-
cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence- t ype>
<reentrant >Fal se</reent rant >
<Jentity>
</ enterpri se- beans>
<eb-jar>

EJB 2.0 and 1.1: Elements of the XML Deployment Descriptor

The deployment descriptor for a real bean would have a lot more information;
this example simply illustrates the type of information that you'll find in an XML
deployment descriptor.

The second element in any XML document is ! DOCTYPE. This element
describes the organization that defined the DTD for the XML document, the
DTD’s version, and a URL location of the DTD. The DTD describes how a
particular XML document is structured.

All the other elementsin the XML document are specific to EJB. They do not
represent all the elements used in deployment descriptors, but they illustrate the
types of elementsthat are used. Here’' s what the elements mean:
ej b-jar
The root of the XML deployment descriptor. All other elements must be
nested below this one. It must contain one ent er pri se- beans element
aswell as other optional elements.

14 Copyright (c) 2001 O'Reilly & Associates

enterprise-beans

Contains declarations for all the enterprise beans described by this XML
document. It may contain entity, session or nessage-driven
(EJB 2.0) elements, which describe entity, session and message-driven
entrprise beans respectively.

entity

Describes an entity bean and its deployment information. There must be one
of these elements for every entity bean described by the XML deployment
descriptor. The sessi on element is used in the same way to describe a
session bean. The nessage- dri ven element is different as it does not
define any component interfaces.

ej b- nane
The descriptive name of the enterprise bean. It's the name we use for the

enterprise bean in conversation, when talking about the bean component as
awhole.

home
The fully qualified class name of the remote home interface. This is the

interface that defines the life-cycle behaviors (create, find, remove) of the
enterprise bean to its clients outside the container system.

renot e
The fully qualified class name of the remote interface. This is the interface

that defines the enterprise bean’s business methods to its clients outside
the container system.

EB 20:1 ocal - hone
The fully qualified class name of the local home interface. This is the
interface that defines the life-cycle behaviors (create, find, remove) of the
enterprise bean to other co-located enterprise beans.

EB 20:1 ocal

The fully qualified class name of the local interface. Thisis the interface that
defines the enterprise bean’s business methods to other co-located
enterprise beans.

ej b-cl ass
The fully qualified class name of the bean class. This is the class that
implements the business methods of the bean.

pri mkey-cl ass
The fully qualified class name of the enterprise bean’s primary key. The
primary key isused to find the bean datain the database.

The last two elements in the deployment descriptor, the persistence-type and
reentrant elements, express the persistence strategy and concurrency policies of
the entity bean. These elements are explained in more detail later in the book.

Copyright (c) 2001 O'Reilly & Associates 15

As you progress through this book, you will be introduced to the elements that
describe concepts we have not covered yet, so don’t worry about knowing all of
the things you might find in a deployment descriptor.

EJB objectsand EJB home

The entity and session beans both declare the component interfaces that their
clients will use to access them. Clients outside the container system, like
Servlets or Java applications, will always use the enterprise bean’s remote
component interfaces, while clients that are other enterprise beans in the same
container system will usually use local component interfaces to interact. This
section explains in logical terms how the component interfaces are connected to
instances of the bean class at runtime.

While this discussion helps you understand entity and session beans, it doesn’t
apply to EJB 2.0's message-driven beans at all, because they do not declare
component interfaces. Message-driven beans are avery different kind of animal
and afull description of message-driven beansis|eft to Chapter 13.

Now that you have a basic understanding of some of the enterprise beans parts
(component interfaces, bean class, and deployment descriptor) it'stime to talk a
little more precisely about how these parts come together inside an EJB container
system. Unfortunately, we can't talk as precisely aswe'd like. There are a number
of ways for an EJB container to implement these relationships; we'll show some
of the possibilities. Specifically, we'll talk about how the container implements
the component interface of entity and session beans, so that clients, applications
outside the container or other co-located enterprise beans, can interact with and
invoke methods on the bean class.

The two missing pieces are the EJB object itself and the EJB home. You will
probably never see the EJB home and EJB object classes because their class
definitions are proprietary to the vendor’s EJB implementation and are generally
not made public. This is good because it represents a separation of
responsihilities along areas of expertise. As an application developer, you are
intimately familiar with how your business environment works and needs to be
modeled, so you will focus on creating the applications and beans that describe
your business. System-level developers, the people who write EJB servers, don't
understand your business, but they do understand how to develop CTMs and
support distributed objects. It makes sense for system-level developers to apply
their skills to mechanics of managing distributed objects but leave the business
logic to you, the application developer. Let's talk briefly about the EJB object
and the EJB home so you understand the missing pieces in the big picture.

The EJB object

This chapter has said a lot about a bean’s remote and local interfaces, which
extends the EJBObj ect and, for EJB 2.0, the EJBLocal Obj ect interfaces

16 Copyright (c) 2001 O'Reilly & Associates

respectively. Who implements these interfaces? Clearly, the stub: we understand
that much. But what about the server side?

On the server side, an EJB object is an object that implements the remote and/or
local interfaces of the enterprise bean. Local interface are only available to EJB
2.0 container systems. It wraps the enterprise bean instance—that is, the
enterprise bean class you' ve created (in our example, the Cabi nBean)—on the
server and expands its functionality to include j avax. ej b. EJBObj ect
and/or j avax. e] b. EJBLocal Obj ect behavior.

You will have noticed that “and/or” is used a lot when talking about which
interface the EJB object implements. That’s because enterprise beansin EJB 2.0
can declare either the local interface, remote interface, or both! Local interfaces
dot apply to EJB 1.1, so if you are working with that version, ignore references to
them; they are only relevant to EJB 2.0 container systems.

In EJB 2.0, regardless of which interfaces the bean implements, we can think of
the EJB object as implementing both. In reality there may be a special EJB object
for the remote interface and another special EJB object for the local interface of
each enterprise bean; that depends on the how the vendor choose to implement
it. For our purposes the term EJB object will be used to talk about the
implementation of either local or remote interfaces or both. The functionality of
these interfaces is so similar from the EJB object’s perspective that discussing
separate EJB object implementations wouldn’ t be beneficial.

The EJB object is generated by the utilities provided by the vendor of your EJB
container and is based on the bean classes and the information provided by the
deployment descriptor. The EJB object wraps the bean instance and works with
the container to apply transactions, security, and other system- level operations
to the bean at runtime. Chapter 3 talks more about the EJB object’s role with
regard to system-level operations.

There are a number of strategies that a vendor can use to implement the EJB
object; Figure 2-1 illustrates three possibilities using the Cabi nRenote
interface. The same implementation strategies apply to the Cabi nLocal and
j avax. e] b. EJBLocal Obj ect interfaces.

[FIGURE]
Figure 2-1: Three ways to implement the EJB object

In Figure 2-1(a), the EJB object is a classic wrapper because it holds a reference
to the bean class and delegates the requests to the bean. Figure 2-1(b) shows
that the EJB object class actually extends the bean class, adding functionality
specific to the EJB container. In Figure 2-1(c), the bean class is no longer
included in the model. In this case, the EJB object has both a proprietary
implementation required by the EJB container and bean class method
implementations that were copied from the bean class' s definition.

Copyright (c) 2001 O'Reilly & Associates 17

The EJB object design that is shown in Figure 2-1(a) & perhaps the most
common. Throughout this book, particularly in the next chapter, we will explain
how EJB works with the assumption that the EJB object wraps the bean class
instance as depicted in Figure 2-1(a). But the other implementations are used,; it
shouldn’t make a difference which one your vendor has chosen. The bottom line
isthat you never really know much about the EJB object: itsimplementation is up
to the vendor. Knowing that it exists and knowing that its existence answers alot
of questions about how enterprise beans are structured, should be sufficient.
Everything that any client (including other enterprise beans) really needs to
know about any bean is described by the remote and home interfaces.

The EJB home

The EJB home is a lot like the EJB object. It's another class that’s generated
automatically when you install an enterprise bean in acontainer. It implements all
the methods defined by the home interfaces (local and remote) and is responsible
for helping the container in managing the bean’s life cycle. Working closely with
the EJB container, the EJB home is responsble for locating, creating, and
removing enterprise beans. This may involve working with the EJB server's
resource managers, instance pooling, and persistence mechanisms, the details of
which are hidden from the devel oper.

For example, when a create method isinvoked on a home interface, the EJB home
creates an instance of the EJB object which references a bean instance of the
appropriate type. Once the bean instance is associated with the EJB object, the
instance’s matching ej bCr eat e() method is called. In the case of an entity
bean, a new record is inserted into the database. With session beans the
instance is simply initialized. Once the ej bCr eat e() method has completed,
the EJB home returns aremote or local reference (i.e., astub) for the EJB object to
the client. The client can then begin to work with the EJB object by invoking
business methods using the stub. The stub relays the methods to the EJB object;
in turn, the EJB object delegates those method calls to the bean instance.

In EJB 2.0, how does the EJB home know which type of EJB object reference
(local or remote) to return? It depends on which home interface is being used. If
the client invokes a cr eat e() method on the remote home interface, the EJB
home will return a remote interface reference. If the client is working with a local
home interface, the EJB home will return a reference implementing the local
interface. EJB 2.0 requires that the return type of remote home interface methods
be remote interfaces, and that the return type of the local home interface methods
belocal interfaces.

/1 The Gabin EIB s renote hone interface
public interface Cabi nHoneRenot e ext ends j avax. ej b. EJBHone {
publ i ¢ Gabi nRenot e creat e(| nteger id)
throws O eat ebException, RenoteException;
publ i ¢ Cabi nRenot e fi ndByPri nar yKey(I nt eger pk)
throws H nder Exception, RenoteException;

18 Copyright (c) 2001 O'Reilly & Associates

/1 The Gabin EIJB s |ocal hone interface
public interface Cabi ntbneLocal extends javax. ej b. EJBrbne {
publ i ¢ Gabi nLocal create(lnteger id)
throws O eat eException, RenoteException;
publ i ¢ Gabi nLocal fi ndByPri naryKey(I nt eger pk)
throws H nder Exception, RenoteException;

}

Figure 2-3 illustrates the architecture of EJB with the EJB home and EJB object
implementing the home interface and remote or local interface respectively. The
bean class is also shown as being wrapped by the EJB object.

[FGURE]
Figure2-1: EJB architecture

Deploying a bean

The EJB objects and EJB homes are generated during the deployment process.
After the files that define the bean (the component interfaces, and the bean
classes) have been packaged into a JAR file, the bean is ready to be deployed:
that is, added to an EJB container so that it can be accessed as a distributed
component. During the deployment process, tools provided by the EJB container
vendor generate the EJB object and EJB home classes by examining the
deployment descriptor and the other interfaces and classesin the JAR file.

EJB 2.0: Local vs. Remote Support

Throughout this book we will consider the EJB object and EJB home as
constructs that support both the remote and local component interfaces. In
reality, we have no idea how the vendor chose to implement the EJB object and
EJB home since they are only logical constructs and may not have equivalent
software counterparts. It'simportant to remember that EJB object and EJB home
are simply terms to describe the EJB container’s responsibilities for supporting
the component interfaces. We have chosen to give them a more concrete
description in this book purely for instructional purposes, the EJB object and EJB
home implementations discussed throughout this book are to be considered
illustrative and a true representation of how these terms may be implemented.

Using Enterprise Beans

Let's look at how a client would work with an enterprise bean to do something
useful. We'll start with the Cabin EJB that was defined earlier. A cabin is athing
or place whose description is stored in a database. To make the example a little

Copyright (c) 2001 O'Reilly & Associates 19

bit more real, imagine that there are other entity beans, including a Ship, Cruise,
Ticket, Customer, Employee, and so on.

Getting Information from an Entity Bean

Imagine that a GUI client needs to display information about a particular cruise,
including the cruise name, the ship name, and alist of cabins. Using the cruise ID
obtained from atext field, we can use some of our beansto populate the GUI with
data about the requested cruise. Here’ s what the code would ook like:

Q ui seHoneRenot e crui setone = ... use JNO to get the hone
/l Get the cruise id froma text field.

Sring cruisel D = textH el dsl. get Text();

/l Geate an BEIB prinmary key fromthe cruise id.

Integer pk = new java.lang. | nteger. parselnt(cruiselD;
/1 Wse the prinary key to find the cruise.

Q ui seRenot e crui se = crui serone. fi ndByPri nar yKey(pk) ;
Il Set text field 2 to show the cruise nane.

text F el d2. set Text (crui se. get Nane()) ;

/l Get arenote reference to the ship that wll be used
/1 for the cruise fromthe crui se bean.

Shi pRenot e ship = crui se. get Ship();

/] Set text field 3 to showthe ship' s nane.

text H el d3. set Text (shi p. get Nane()) ;

/1 Gt alist of all the cabins on the ship as remote references
/1 to the cabin beans.

@l I ection cabins = ship. get Gabi ns();

Iterator cabinltr = cabins.iterator();

/1 lterate through the enuneration, adding the nane of each cabin
/1 to a list box.
wvhi [e(cabinltr. hasNext())

Cabi nRenot e cabi n = (CGabi nRenot €) cabi nitr. next();

|'i st Box1. addl t enf cabi n. get Nane()) ;

}

Let’'s start by getting a remote reference to the EJB home for an entity bean that
represents a cruise. We are using a remote reference instead of a local one,
because the client is a GUI Java application located outside the EJB container. In
EJB 1.1, we don’'t have a choice because only remote component interfaces are
supported anyway. It's not shown in the example, but references to the EJB
home are obtained using JNDI. Java Naming and Directory Interface (JNDI) is a
powerful API for locating resources, such as remote objects, on networks. It's a
little too complicated to talk about here, but rest assured that it will be covered in
subsequent chapters.

We read acruise ID from atext field, use it to create a primary key, and use that
primary key together with the EJB hometo get a Cr ui seRenot e reference, the

20 Copyright (c) 2001 O'Reilly & Associates

object that implements the business methods of our bean. Once we have the
appropriate Cruise EJB, we can ask the Cruise EJB to give us a remote reference
to a Ship EJB that will be used for the cruise. We can then get a Col | ecti on
of remote Cabin EJB references from the Ship EJB and display the names of the
Cabin EJBsin the client.

Entity beans model data and behavior. They provide a system with a reusable
and consistent interface to data in the database. The behavior used in entity
beans is usually focused on applying business rules that pertain directly to
changing data. In addition, entity beans can model relationships with other
entities. A ship, for example, has many cabins. We can get alist of cabins owned
by the ship by invoking theshi p. get Cabi ns() method.

Entity beans are shared by many clients. An example is the Ship EJB. The
behavior and data associated with a Ship EJB will be used concurrently by many
clients on the system. There are only three shipsin Titan's fleet, so it’s easy to
imagine that several clients will need to access these entities at the same time.
Entity beans are designed to service multiple clients, providing fast, reliable
access to data and behavior while protecting the integrity of data changes.
Because entity beans are shared, we can rest assured that everyone is using the
same entity and seeing the same data as it changes. In other words, we don’t
have duplicate entities with different representations of the same data.*

Modeling Wor kflow with Session Beans

Entity beans are useful for objectifying data and describing business concepts
that can be expressed as nouns, but they’'re not very good at representing a
process or atask. A Ship bean provides methods and behavior for doing things
directly to a ship, but it does not define the context under which these actions
are taken. The previous exampl e retrieved data about cruises and ships; we could
also have modified this data. And if we had gone to enough effort, we could
have figured out how to book a passenger—perhaps by adding a Customer bean
to a Cruise bean or adding a customer to alist of passengers maintained by the
ship. We could try to shove methods for accepting payment and other tasks
related to booking into our GUI client application, or even into the Ship or Cabin
beans, but that's a contrived and inappropriate solution. We don't want
business logic in the client application—that’'s why we went to a multitier
architecture in the first place. Similarly, we don't want this kind of logic in our
entity beans that represent ships and cabins. Booking passengers on a ship or
scheduling a ship for a cruise are the types of activities or functions of the
business, not the Ship or the Cabin bean, and are therefore expressed in terms of
aprocess or task.

1 Thisis dependent on the isolation level set on the bean’s data, which is discussed in more
detail in Chapter 8.

Copyright (c) 2001 O'Reilly & Associates 21

Session beans act as agents for the client managing business processes or tasks;
they’ re the appropriate place for business logic. A session bean is not persistent
like an entity bean; nothing in a session bean maps directly into a database or is
stored between sessions. Session beans work with entity beans, data, and other
resources to control workflow. Workflow is the essence of any business system
because it expresses how entities interact to model the actual business. Session
beans control tasks and resources but do not themselves represent data.

The following code demonstrates how a session bean, designed to make cruise
line reservations, might control the workflow of other entity and session beans to
accomplish this task. Imagine that a piece of client software, in this case a user
interface, obtains a remote reference to a Travel Agent session bean. Using the
information entered into text fields by the user, the client application books a
passenger on acruise:

/1l Get the credit card nunber fromthe text field.
Sring creditCard = textF el dl. get Text ();

int cabinlD = Integer.parselnt(textH el d2. get Text());
int cruiselD = Integer.parselnt(textH el d3.getText());

/]l Qreate a new Reservation session passing in a reference to a
/] custoner entity bean.
Travel Agent travel Agent = Travel Agent Hone. cr eat e(cust oner);

/1 Set cabin and cruise |Ds.
travel Agent . set Cabi nl) cabi nl D) ;
travel Agent. set ui sel O(crui sel D ;

/1 Wsing the card nunber and price, book passage.
/1 This nethod returns a Ticket object.
Ticket ticket = travel Agent.bookPassage(creditCard, price);

Thisisafairly coarse-grained abstraction of the process of booking a passenger
on a cruise. Coarse-grained means that most of the details of the booking
process are hidden from the client. Hiding the fine-grained details of workflow is
important because it provides us with more flexibility in how the system evolves
and how clients are allowed to interact with the EJB system.

The following listing shows some of the code included in the
Travel Agent Bean. The bookPassage() method actually works with
three entity beans, the Customer, Cabin, and Cruise beans, and another session
bean, the ProcessPayment bean. The ProcessPayment bean provides several
different methods for making a payment including check, cash, and credit card. In
this case, we are using the ProcessPayment session to make a credit card
purchase of a cruise ticket. Once payment has been made, a serializable Ti cket
object is created and returned to the client application.

public class Travel Agent Bean i npl enents j avax. ej b. Sessi onBean {

publ i c Qustoner custoner;

22 Copyright (c) 2001 O'Reilly & Associates

public G uise cruise;
publ i ¢ Gabi n cabin;

public voi d ej bQ eat e(Qust oner cust) {
cust oner = cust;

}

publ i c Ticket bookPassage(QeditCard card, double price)
throws | nconpl et eConversational Sate {

if (custoner = null || cruise = null || cabin = null) {
t hrow new | nconpl et eConver sati onal S at e() ;

}

try {

Reser vat i ontHoneRenot e resHone = (Reser vat i onHone)

get Hone(" Reser vat i onHbne", Reser vat i onHone. cl ass) ;
Reser vat i onRenot e reservation =

restone. creat e(cust oner, cruise, cabin, price);
Pr ocessPaynent HoneRenot e ppHone =

(ProcessPaynent Hone) get Hone(" Pr ocessPaynent Hone",

Pr ocessPaynent Hone. cl ass) ;

Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

Ticket ticket =
new Ti cket (cust oner, crui se, cabi n, price);
return ticket;
} catch(Exception €e){
t hr ow new EJBExcepti on(e);
}
}

/1 More business net hods and EJB state nanagenent nethods fol | ow

}

This example leaves out some details, but it demonstrates the difference in
purpose between a session bean and an entity bean. Entity beans represent the
behavior and data of a business object, while session beans model the workflow
of beans. The client application uses the TravelAgent EJB to perform a task
using other beans. For example, the TravelAgent EJB uses a ProcessPayment
EJB and a Reservation EJB in the process of booking a passage. The
ProcessPayment EJB processes a credit card and the Reservation EJB records the
actual reservation in the system. Session beans can also be used to read, update,
and delete data that can't be adequately captured in an entity bean. Session
beans don't represent records or data in the database like entity beans but can
access data in the database.

All the work performed by Travel Agent session bean could have been coded in
the client application. Having the client interact directly with entity beans is a
common but troublesome design approach because it ties the client directly to
the details of the business tasks. This is troublesome for two reasons: any

Copyright (c) 2001 O'Reilly & Associates 23

change in the entity beans and their interaction require changes to the client, and
it'svery difficult to reuse the code that models the workflow.

Session beans are coarse-grained components that allow clients to perform tasks
without being concerned with the details that make up the task. This alows
developers to update the session bean, possibly changing the workflow, without
impacting the client code. In addition, if the session bean is properly defined,
other clients that perform the same tasks can reuse it. The ProcessPayment
session bean, for example, can be reused in many other areas besides
reservations, including retail and wholesale sales. For example, the ship’s gift
shop could use the ProcessPayment EJB to process purchases. Asaclient of the
ProcessPayment EJB, the TravelAgent EJB doesn’t care how ProcessPayment
works; it's only interested in the ProcessPayment EJB’ s coarse-grained interface,
which validates and records charges.

Moving workflow logic into a session bean also helps to thin down the client
applications and reduce network traffic and connections. Excessive network
traffic is actually one of the biggest problems in distributed object systems.
Excessive traffic can overwhelm the server and clog the network, hurting
response times and performance. Session beans, if used properly, can
substantially reduce network traffic by limiting the number of requests needed to
perform a task. In distributed objects, every method invocation produces
network traffic. Distributed objects communicate requests using an RMI loop.
This requires that data be streamed between the stub and skeleton with every
method invocation. With session beans, the interaction of beansin aworkflow is
kept on the server. One method invocation on the client application results in
many method invocations on the server, but the network only sees the traffic
produced by one method call on the session bean. In the Travel Agent EJB, the
client invokes bookPassage(), but on the server, the bookPassage()
method produces several method invocations on the component interfaces of
other enterprise beans. For the network cost of one method invocation, the client
gets severa method invocations. In EJB 2.0 we would have used the local
component interfaces because they are much more efficient.

In addition, session beans reduce the number of network connections needed by
theclient. The cost of maintaining many network connections can be very high,
so reducing the number of connections that each client needs is important in
improving the performance of the system as a whole. When session beans are
used to manage workflow, the number of connections that each client has to the
server is substantially reduced, which improves the EJB server’s performance.
Figure 2-5 compares the network traffic and connections used by a client that
only uses entity beans to that used by aclient that uses session beans.

[FIGURE]

Figure 2-3: Session beans reduce network traffic and thin
down clients

24 Copyright (c) 2001 O'Reilly & Associates

Session beans also limit the number of stubs used on the client, which saves the
client memory and processing cycles. This may not seem like a big deal, but
without the use of session beans, a client might be expected to manage hundreds
or even thousands of remote references at one time. In the Travel Agent EJB, for
example, the bookPassage() method works with several remote references,
but the client is only exposed to the remote reference of the Travel Agent EJB.

Stateless and stateful session beans

Session beans can be either stateful or stateless. Stateful session beans maintain
conversational state when used by aclient. Conversational state is not written
to a database; it's state that is kept in memory while a client uses a session.
Maintaining conversational state allows a client to carry on a conversation with
an enterprise bean. As each method on the enterprise bean is invoked, the state
of the session bean may change, and that change can affect subsequent method
calls. The Travel Agent session bean, for example, may have many more methods
than the bookPassage() method. The methods that set the cabin and cruise
IDs are examples. These set methods are responsible for modifying
conversational state. They convert the IDs into remote references to Cabin and
Cruise EJBsthat are later used inthe bookPassage() method. Conversational
state is only kept for as long as the client application is actively using the bean.
Once the client shuts down or releases the Travel Agent EJB, the conversational
state is lost forever. Stateful session beans are not shared among clients; they
are dedicated to the same client for the life of the enterprise bean.

Statel ess session beans do not maintain any conversational state. Each method
is conmpletely independent and uses only data passed in its parameters. The
ProcessPayment EJB is a perfect example of a stateless session bean. The
ProcessPayment EJB doesn’t need to maintain any conversational state from one
method invocation to the next. All the information needed to make a payment is
passed into the byCr edi t Car d() method. Stateless session beans provide
the highest performance in terms of throughput and resource consumption
compared to entity and stateful session beans because only a few stateless
session bean instances are needed to serve hundreds, possibly thousands of
clients. Chapter 12 talks more about the use of statel ess session beans.

EJB 2.0: Accessing EJB with Message-Driven Beans

Message-driven beans are integration points for other applications interested in
working with EJB applications. Java applications or legacy systems that need to
access an EJB application can send messages via JM S to message-driven beans.
The message-driven beans can then process those messages and perform tasks
using other entity and session beans.

In many ways, message-driven beans fulfill the same role as session beans by
managing the workflow of entity and session beans to complete a given task.

Copyright (c) 2001 O'Reilly & Associates 25

The task to be completed is initiated by an asynchronous message, which has
been sent by an application using IMS. Unlike session beans, which respond to
business methods invoked on their component interfaces, a message-driven
bean responds to asynchronous messages, which are delivered to the message-
driven bean through itsonMessage() method. The fact that the messages are
asynchronous means the client that send message doesn't expect and is not
waiting for areply. The messaging client simply sends the message and forgets
about it.

As an example, we can recast the TravelAgent EJB developed earlier as a
message-driven bean:

public class Travel Agent MBean
i npl enent s j avax. gj b. Messagelxi venBean, j avax.] ns. Messageli st ener {

Qust oner HoneLocal cust oner Hone,

Q ui setbnelocal cr ui setbne;

Cabi ntbneLocal cabi nHone;

Reser vat i ontbneLocal reservat i onHone;
Pr ocessPaynent HoneLocal paynent Hone;

public voi d onMessage(Message nsg) {

try {

MipMessage nessage = (MapMessage) nsg;
I nteger custoner|D =

(I'nteger) nessage. get Qyj ect (“custoner_id”");
Integer cruiselD=

(I'nteger) nessage. get (oj ect(“cruise id’);
I nteger cabinlD =

(I'nt eger) nessage. get (oj ect (“cabin_id");
doubl e price = nessage. get Doubl e(“price”);

Qust oner Local cust oner =
cust oner Hone. fi ndByPr i nar yKey(cust oner | D) ;
Q ui seLocal cruise=
crui setone. fi ndByPri nar yKey(crui sel D ;
Cabi nLocal cabi n = cabi nHone. fi ndByPri nar yKey(cabi n_id);

ReservationLocal reservation =
reservat i ontone. creat e(cust oner, cruise, cabin, price);

ProcessPaynent Local process = paynent Hone. creat e();
process. byQredi t (custoner, card, price);

} catch(Exception e){
t hr ow new EJBExcepti on(e);

}

26 Copyright (c) 2001 O'Reilly & Associates

/1 More business nethods and EJB state nanagenent nethods fol | ow

}

Notice that all the information about the reservation is obtained from the
message delivered to the message-driven bean. In JM S messages can take many
forms, one of which isthe j avax. j ns. MapMessage used in this example,
which carries name-value pairs. Once the information is obtained from the
message and the enterprise bean references are obtained, the reservation is
processed the same as it was in the session bean. The only difference is that a
Ti cket isnot returned to the caller, because message-driven beans don’'t have
to respond to the caller, the process is asynchronous.

Message-driven beans, like stateless session beans, do not maintain any
conversational state. The processing of each new message is independent from
the previous for subsequent messages.

As was mentioned before the message-driven bean is very different in many
respects from entity and session beans, so it’sabit unclear don’t worry it will be
explained in detail in Chapter 13, Message-Driven Beans

The Bean-Container Contract

The environment that surrounds the beans on the EJB server is often referred to
as the container. The container is more a concept than a physical construct.
Conceptually, the container acts as an intermediary between the bean class and
the EJB server. The container manifests and manages the EJB objects and EJB
homes for a particular type of bean and helps these constructs to manage bean
resources and apply primary services like transactions, security, concurrency,
naming, and so forth at runtime. Conceptually, an EJB server may have many
containers, each of which may contain one or more types of enterprise beans. As
you will discover a little later, the container and the server are not clearly
different constructs, but the EJB specification defines the component model in
terms of the container’ s responsibilities, so we will follow that convention here.

Enterprise beans components interact with the EJB container through a well-
defined component model. The EntityBean, SessionBean, and
MessageDri venBean (EJB 2.0) interfaces are the bases of this conmrponent
model. As we learned earlier, these interfaces provide callback methods that
notify the bean class of state management eventsinitslife cycle. At runtime, the
container invokes the callback methods on the bean instance when appropriate
state management events occur. When the container is about to write an entity
bean instance’s state to the database, for example, it first calls the bean
instance’s ej bSt or e() method. This provides the bean instance with an
opportunity to do some clean up on its state just before it's written to the
database. The ej bLoad() method is called just after the bean’'s state is

Copyright (c) 2001 O'Reilly & Associates 27

populated from the database, providing the bean developer with an opportunity
to manage the bean’s state before the first business method is called? Other
callback methods can be used by the bean classin asimilar fashion. EJB defines
when these various callback methods are invoked and what can be done within
their context. This provides the bean developer with a predictable runtime
component model.

While al the callback methods are declared in bean interfaces, a meaningful
implementation of the methods is not mandatory. In other words, the method
body of any or al of the callback methods can be left empty in the bean class.
Beans that implement one or more callback methods are usually more
sophisticated and access resources that are not managed by the EJB system.
Enterprise beans that wrap legacy systems often fall into this category. The only
exception to this is the onMessage() method, which is defined in the
MessageDri venBean interface. This method must be implemented if the
message-driven bean is to do anything useful.

javax. ej b. EJBCont ext is an interface that is implemented by the
container and is also a part of the bean-container contract. Entity beans use a
subclass of j avax. ej b. EJBCont ext called
javax. ej b. EntityCont ext. Session beans use a subclass caled the
j avax. ej b. Sessi onCont ext . Message-driven beans use the subclass
j avax. ej b. MessageDri venCont ext. These EJBContext types
provide the bean class with information about its container, the client using the
enterprise bean, and the bean itself. They also provide other functionality that is
described in more detail in Chapters 119, 12 and 13. The important thing about
the EJBCont ext types is that they provide the enterprise bean with
information about the world around it, which the enterprise bean can use while
processing requests from both clients and callback methods from the container.

In addition to the EJBCont ext , EJB 1.1 and 2.0 have expanded the enterprise
bean’'s interface with the container to include a JNDI name space, called the
environment context, which provides the bean with a more flexible and extensible
bean-container interface. The JINDI environment context is discussed in detail
later in this book.

The Container-Server Contract

The container-server contract is not defined by the Enterprise JavaBeans
specification. This was done to facilitate maximum flexibility for vendors defining
their EJB server technologies. Other than isolating the beans from the server, the

2Theej bLoad() andej bSt or e() behavior illustrated here is for container-managed
persistence. With bean-managed persistence the behavior is slightly different. This is
examined in detail in Chapter 9.

28 Copyright (c) 2001 O'Reilly & Associates

container’s responsibility in the EJB system is a little vague. The EJB
specification only defines a bean-container contract and does not define the
container-server contract. It is difficult to determine, for example, exactly where
the container ends and the server begins when it comes to resource management
and other services.

In thefirst few generations of EJB servers this ambiguity has not been a problem
because most EJB server vendors also provide EJB containers. Since the vendor
provides both the container and the server, the interface between the two can
remain proprietary. In future generations of the EJB specification, however, some
work may be done to define the container-server interface and delimit the
responsibilities of the container.

One advantage of defining a container-server interface is that it allows third-

party vendors to produce containers that can plug into any EJB server. If the
responsibilities of the container and server are clearly defined, then vendors who

specialize in the technologies that support these different responsibilities can

focus on developing the container or server as best matches their core

competency. The disadvantage of a clearly defined container-server interface is

that the plug-and-play approach could impact performance. The high level of

abstraction that would be required to clearly separate the container interface from
the server, would naturally lead to looser binding between these large
components, which could result in lower performance. The following rule of

thumb best describes the advantages and disadvantages associated with a
container-server interface: the tighter the integration, the better the performance;

the higher the abstraction, the greater the flexibility. The biggest deterrent to

defining a container-server interface is that it would require the definition of low-

level facilities, which was one of the problems that established CTM vendors had

with CORBA. Allowing vendorsto implement low-level facilities like transactions
and security asthey seefit is one of EJB’s biggest attractions for vendors®.

Many EJB-compliant servers actually support several different kinds of
middleware technologies. It's quite common, for example, for an EJB server to
support the vendor’ s proprietary CTM model aswell asEJB, Servlets, web server
functionality, JMS provider, and other server technologies. Defining an EJB
container concept is useful for clearly distinguishing that part of the server that
supports EJB from all the other servicesit provides.

This said, we could define the responsibilities of containers and servers based
on current implementations of the EJB specification. In other words, we could
examine how current vendors are defining the container in their servers and use

3 0Of all the commercial and open source EJB servers available today only one has
experimented with defining a container-server interface, OpenEJB. OpenEJB is an open
source EJB container system developed by Richard Monson-Haefel, the author of this
book.

Copyright (c) 2001 O'Reilly & Associates 29

this as a guide. Unfortunately, the responsihilities of the container in each EJB
server largely depend on the core competency of the vendor in question.
Database vendors, for example, implement containers differently from TP monitor
vendors. The strategies for assigning responsibilities to the container and server
are so varied that it would provide little value in understanding the overall
architecture to discuss the container and server separately. Instead, this book
addresses the architecture of the EJB system as if the container and server were
one component.

The remainder of this book treats the EJB server and the container as the same
thing and refers to them collectively as the EJB server, container, system, or
environment.

Summary

This chapter covered alot of ground describing the basic architecture of an EJB
system. At this point you should understand that beans are business object
components. The home interfaces define life-cycle methods for creating, finding,
and destroying beans and the remote and local interfaces define the public
business methods of the bean. Message-driven beans do not have component
interfaces. The bean class is where the state and behavior of the bean are
implemented.

There are three basic kinds of beans: entity, session, and message-driven. Entity
beans are persistent and represent a person, place, or thing. Session beans are
extensions of the client and embody a process or a workflow that defines how
other beans interact. Session beans are not persistent, receiving their state from
the client, and they live only as long as the client needs them. Message-driven
beans in EJB 2.0 are integration points that allow other applications to interact
with EJB applications using JMS asynchronous messaging. Message-driven
beans, like stateless session beans, are not persistent and do not maintain
conversational state.

The EJB object and EJB home are conceptual constructs that delegate method
invocations to session and entity beans from the client and help the container to
manage the enterprise bean at runtime. The clients of entity and session beans
do not interact with the instances of the bean class directly. Instead, the client
software interacts with EJBCObj ect and EJBHone stubs, which are connected
to the EJB object and EJB homes respectively. The EJB object implements the
remote interface and expands the bean class's functionality. The EJB home
implements the home interface and works closely with the container to create,
locate, and remove beans.

Beans interact with their container through the well-defined bean-container

contract. This contract provides callback methods, the EJBCont ext , and the
JNDI environment context. The callback methods notify the bean class that it is

30 Copyright (c) 2001 O'Reilly & Associates

involved in state management event. The EJBCont ext and JNDI environment
context provides the bean instance with information about its environment. The
container-server contract is not well defined and remains proprietary at this time.
Future versions of EJB may specify the container-server contract.

Copyright (c) 2001 O'Reilly & Associates 31

3

Resource Management and the
Primary Services

Chapter 2 discussed the basic architecture of Enterprise JavaBeans (EJB),
including the rel ationship between the bean class, component interfaces, the EJB
object and EJB home, and the EJB container. These architectural components
define a common model for distributed server-side components in component
transaction monitors (CTMSs).

One of the reasons CTMs are such great distributed object platformsis that they
do more than just distribute objects: they manage the resources used by
distributed objects. CTMs are designed to manage thousands, even millions, of
distributed objects simultaneously. To be this robust, CTMs must be very smart
resource managers, managing how distributed objects use memory, threads,
database connection, processing power, etc. EJB recognizes that some of the
resource management techniques employed by CTMs are very common, and it
defines interfaces that help developers create beans that can take advantage of
these common practices.

EJB CTMsare also great distributed object brokers. Not only do they help clients
locate the distributed objects they need, they also provide many services that
make it much easier for a client to use the objects correctly. CTMs commonly
support six primary services: concurrency, transaction management, persistence,
object distribution, naming, and security. These services provide the kind of
infrastructure that is necessary for a successful three-tier system.

With the introduction of message-driven beans in EJB 2.0, Enterprise JavaBeans
goes beyond most CTMs by expanding the platforms responsibility to include

Copyright (c) 2001 O'Reilly & Associates 1

managing asynchronous messaging components. CTMs have historically been
responsible only for managing RMI-based distributed objects. While the method
of access is different for message-driven beans, EJB is still responsible for
managing the primary services for message-driven beans just as it does for
session and entity beans.

This chapter discusses both the resource management facilities and the primary
servicesthat are available to Enterprise JavaBeans.

Resour ce M anagement

One of the fundamental benefits of using EJB servers is that they are able to
handle heavy workloads while maintaining a high level of performance. A large
business system with many users can easily require thousands of objects—even
millions of objects—to be in use simultaneously. As the number of interactions
among these objects increase, concurrency and transactional concerns can
degrade the system’s response time and frustrate users. EJB servers increase
performance by synchronizing object interactions and sharing resources.

There is a relationship between the number of clients and the number of dis-
tributed objects that are required to service them. As client populations increase,
the number of distributed objects and resources required increases. At some
point, the increase in the number of clients will impact performance and diminish
throughput. EJB explicitly supports two mechanisms that make it easier to
manage large numbers of beans at runtime: instance pooling and activation.

| nstance Pooling

The concept of pooling resources is nothing new. A commonly used technique
is to pool database connections so that the business objects in the system can
share database access. This trick reduces the number of database connections
needed, which reduces resource consumption and increases throughput. Pooling
and reusing database connectionsis less expensive than creating and destroying
connections as needed. Some CTMs also apply resource pooling to server-side
components; this technique is called instance pooling. Instance pooling reduces
the number of component instances, and therefore resources, needed to service
client requests. In addition, it is less expensive to reuse pooled instances than to
frequently create and destroy instances.

Asyou already know, EJB clients of session and entity beans interact with these
types of enterprise beans through the remote, and for EJB 2.0, the local interfaces
that areimplemented by EJB objects. Client applications never have direct access
to the actual session or entity bean. Instead, they interact with EJB objects,
which wrap bean instances. Similarly, IMS clients in EJB 2.0 never interact with
message-driven beans directly. They send messages which are routed to the EJB

2 Copyright (c) 2001 O'Reilly & Associates

container system. The EJB container then delivers these messages to the proper
message-driven bean.

Instance pooling leverages indirect access to enterprise beans to provide better
performance. In other words, since clients never access beans directly, there’ sno
fundamental reason to keep a separate copy of each enterprise bean for each
client. The server can keep a much smaller number of enterprise beans around to
do the work, reusing enterprise bean instance to service different requests.
Although this sounds like a resource drain, when done correctly, it greatly
reduces the resources actually required to services all the client requests.

Theentity bean lifecycle

To understand how instance pooling works for RMI components (session and
entity beans), let’s examine the life cycle of an entity bean. EJB defines the life
cycle of an entity bean in terms of its relationship to the instance pool. An entity
bean existsin one of three states:

No state

When a bean instance is in this state, it has not been instantiated yet. We
identify this state to provide a beginning and an end for the life cycle of a
bean instance.

Pooled state

When an instance is in the pooled state, it has been instantiated by the
container but has not yet been associated with an EJB object.

Ready State

A bean instance in this state has been associated with an EJB object and is
ready to respond to business method invocations.

Overview of statetransitions

Each EJB vendor implements instance pooling for entity beans differently, but all
instance pooling strategies attempt to manage collections of bean instances so
that they are quickly accessible at runtime. To create an instance pool, the EJB
container creates several instances of a bean class and then holds onto them
until they are needed. As clients make business method requests, bean instances
from the pool are assigned to the EJB objects associated with the clients. When
the EJB object doesn’t need the instance any more, it’s returned to the instance
pool. An EJB server maintains instance pools for every type of bean deployed.
Every instance in an instance pool is equivalent; they are al treated equally.
Instances are selected arbitrarily from the instance pool and assigned to EJB
objects as needed.

Soon after the bean instance is instantiated and placed in the pool, it’s given a

reference to a j avax. ej b. EJBCont ext provided by the container. The
EJBCont ext provides an interface that the bean can use to communicate with

Copyright (c) 2001 O'Reilly & Associates 3

the EJB environment. This EJBCont ext becomes more useful when the bean
instance moves to the Ready State. Enterprise beans also have a JNDI context
called the environment naming context. The function of the environment naming
context is not critical to this discussion and will be addressed in more detail |ater
in the chapter.

When a client uses an EJB home to obtain a remote or local interface to a bean,
the container responds by creating an EJB object. Once created, the EJB object is
assigned a bean instance from the instance pool. When a bean instance is
assigned to an EJB object, it officially enters the Ready State. From the Ready
State, a bean instance can receive requests from the client and callbacks from the
container. Figure 3-1 shows the sequence of events that result in an EJB object
wrapping abean instance and servicing aclient.

[FIGURE]

Figure 3-1: A bean moves fromtheinstance pool to the
Ready State

When a bean instance movesinto the Ready State, the Ent i t yCont ext takes
on new meaning. The Ent i t yCont ext provides information about the client
that is using the bean. It also provides the instance with access to its own EJB
home and EJB object, which is useful when the bean needs to pass references to
itself to other instances, or when it needs to create, locate, or remove beans of its
own class. SotheEnt i t yCont ext isnot astatic class; it is an interface to the
container and its state changes as the instance is assigned to different EJB
objects.

When the client is finished with a bean’s remote reference, either the remote
reference passes out of scope or one of the bean’s remove methods is called.
Once a bean has been removed or is no longer in scope, the bean instance is
disassociated from the EJB object and returned to the instance pool. Bean
instances can also be returned to the instance pool during lulls between client
requests. If a client request is received and no bean instance is associated with
the EJB object, an instance is retrieved from the pool and assigned to the EJB
object. Thisis calledinstance swapping.

After the bean instance returns to the instance pool, it is again available to
service a new client request. Figure 3-3 illustrates the life cycle of a bean
instance.

[FIGURE]
Figure 3-2: Lifecycle of abean instance

1 The EJBHome, EJBLocal Hone, EJBObj ect ,and EJBLocal Obj ect interfacesall
define methods that can be used to remove a bean.

4 Copyright (c) 2001 O'Reilly & Associates

The number of instances in the pool fluctuates as instances are assigned to EJB
objects and returned to the pool. The container can also manage the number of
instances in the pool, increasing the count when client activity increases and
lowering the count during less active periods.

I nstance swapping

Stateless session beans offer a particularly powerful opportunity to leverage
instance pooling. A stateless session bean does not maintain any state between
method invocations. Every method invocation on a stateless session bean
operates independently, performing its task without relying on instance
variables. This means that any stateless session instance can service requests
for any EJB object of the proper type, allowing the container to swap bean
instances in and out between method invocations made by the client.

Figure 3-5 illustrates this type of instance swapping between method
invocations. In Figure 3-5(a), instance A is servicing a business method
invocation delegated by EJB object 1. Once instance A has serviced the request,
it moves back to the instance pool (Figure 3-5(b)). When a business method
invocation on EJB object 2 is received, instance A is associated with that EJB
object for the duration of the operation (Figure 3-5(c)). While instance A is
servicing EJB object 2, another method invocation is received by EJB object 1
from the client, which is serviced by instance B (Figure 3-5(d)).

[FGURE]
Figure 3-3: Stateless session beansin a swapping strategy

Using this swapping strategy allows a few stateless session bean instances to
serve hundreds of clients. Thisis possible because the amount of timeiit takes to
perform most method invocations is substantially shorter than the pauses
between method invocations. The periods in a bean instance’ s life when it is not
actively servicing the EJB object are unproductive; instance pooling minimizes
these inactive periods. When a bean instance is finished servicing a request for
an EJB object, it isimmediately made available to any other EJB object that needs
it. This allows fewer stateless session instances to service more requests, which
decreases resource consumption and improves performance.

Stateless session beans are declared stateless in the deployment descriptor.
Nothing in the class definition of a session bean is specific to being stateless.
Once a bean class is deployed as stateless, the container assumes that no
conversational state is maintained between method invocations. So a stateless
bean can have instance variables, but because bean instances can be servicing
several different EJB objects, they should not be used to maintain conversational
state.

Implementations of instance pooling vary, depending on the vendor. One way
that instance pooling implementations often differ is in how instances are

Copyright (c) 2001 O'Reilly & Associates 5

selected from the pool. Two of the common strategies are FIFO and LIFO. The
FIFO (first in, first out) strategy places instances in a queue, where they wait in
line to service EJB objects. The LIFO (last in, first out) uses more of stack
strategy, where the last bean that was added to the stack is the first bean
assigned to the next EJB object. Figure 3-5 usesa LIFO strategy.

EJB 2.0: Message-Driven Beans and | nstance Pooling

Message-driven beans, like stateless session beans, do not maintain state
specific to a client request, which makes them an excellent component for
instance pooling.

In most EJB containers a pool of each type of message-driven bean is used to
service incoming messages, each type of message-driven bean has its own
instance pool. Message-driven beans subscribe or listen to a specific message
destination, which is a kind of address used when sending messages. When a
JMS client sends an asynchronous message to a specific destination, it is
delivered to EJB container. The EJB container will first determine which message-
driven bean subscribes to that destination, and then it will choose an instance of
that type from the instance pool to process the message. Once the message-
driven bean instance has finished processing the message (when the
onMessage() method returns) the EJB container will return the instance to
itsinstance pool. An EJB container can process hundreds, possibly thousands,
of messages concurrently by leveraging instance pools. Figure 3-X illustrates
how client requests are processed by an EJB container.

FIGURE 3-X
Figure 3-x: Message-Driven bean instance pooling

In Figure 3-X A the top IMS client delivers a message to Destination A and the
bottom JMS client delivers a message to Destination B. The EJB container
chooses an instance of MessageDrivenBean 1 to process the message intended
to Destination A, and an instance of MessageDrivenBean_2 to process the
message intended for Destination B. The bean instances are removed from the
pool and assigned and used to process the messages.

A moment later the middle JM S client sends a message to Destination B, at this
point the first two messages have already been processed and the container is
returning the instances to their respective pools. Asthe new message comesin
the container choose a new instance of MessageDrivenBean 2 to process the

message.

Message driven beans are always deployed to process messages from a specific
destination. In the above example, instances of MessageDrivenBean 1 only
process messages for Destination A, while instances of MessageDrivenBean_2
only processes messages for Destination B. Several messages for the same
destination can be processed at the same time. If, for example, a hundred

6 Copyright (c) 2001 O'Reilly & Associates

messages for Destination A al arrived at the same time from a hundred different
JMS clients, the EJB container would simply choose a hundred instances of
MessageDrivenBean_1 to process the incoming messages; each instance is
assigned a message.

The ability to concurrently process messages makes the message-driven bean an
extremely powerful enterprise bean on the same playing field with session and
entity beans. They aretruly first class components, and an important addition to
the Enterprise JavaBeans platform.

The Activation M echanism

Unlike the other type of enterprise beans, stateful session beans maintain state
between method invocations. This is called conversational state because it
represents the continuing conversation with the stateful session bean’s client.
The integrity of this conversational state needs to be maintained for the life of
the bean’s service to the client. Stateful session beans do not participate in
instance pooling like stateless session, entity, and message-driven beans.
Instead, activation is used with stateful session beans to conserve resources.
When an EJB server needs to conserve resources, it can evict stateful session
beans from memory. This reduces the number of instances maintained by the
system. To passivate the bean and preserve its conversational state, the bean’s
state is serialized to a secondary storage and maintained relative to its EJB
object. When a client invokes a method on the EJB object, a new stateful
instanceisinstantiated and populated from the passivated secondary storage.

Passivation is the act of disassociating a stateful bean instance from its EJB
object and saving its state. Passivation requires that the bean instance’ s state be
held relative to its EJB object. After the bean has been passivated, it is safe to
remove the bean instance from the EJB object and evict it from memory. Clients
are completely unaware of the deactivation process. Remember that the client
uses the bean’s remote interface, which is implemented by an EJB object, and
therefore does not directly communicate with the bean instance. As aresult, the
client’s connection to the EJB object can be maintained while the bean is
passivated.

Activating a bean is the act of restoring a stateful bean instance’s state relative
to its EJB object. When a method on the passivated EJB object is invoked, the
container automatically instantiates a new instance and sets its fields equal to
the data stored during passivation. The EJB object can then delegate the method
invocation to the bean as normal. Figure 3-7 shows activation and passivation of
a stateful bean. In Figure 3-7(a), the bean is being passivated. The state of
instance B is read and held relative to the EJB object it was serving. In
Figure 3-7(b), the bean has been passivated and its state preserved. Here, the
EJB object is not associated with a bean instance. In Figure 3-7(c), the bean is
being activated. A new instance, instance C, has been instantiated and
associated with the EJB object, and is in the process of having its state

Copyright (c) 2001 O'Reilly & Associates 7

populated. The instance C is populated with the state held relative to the EJB
object.

[FGURE]
Figure 3-4: The activation process

The exact mechanism for activating and passivating stateful beans is up to the
vendor, but all stateful beans are serializable and thus provide at least one way of
temporarily preserving their state. While some vendors take advantage of the
Java seridization mechanism, the exact mechanism for preserving the
conversational state is not specified. As long as the mechanism employed
follows the same rules as Java serialization with regard to transitive closure of
serializable objects, any mechanism is legal. Because Enterprise JavaBeans also
supports other ways of saving a bean’s state, the transient property is not
treated the same when activating a passivated bean as it is in Java serialization.
In Java serialization, transient fields are always set back to the initial value for
that field type when the object is deserialized. Integers are set to zero, Booleans
to f al se, object references to nul |, etc. In EJB, transient fields are not
necessarily set back to their initial values but can maintain their original values,
or any arbitrary value, after being activated. Care should be taken when using
transient fields, since their state following activation isimplementation specific.

The activation process is supported by the state-management callback methods
discussed in Chapter2. Specificaly, the ejbActivate() and
ej bPassi vat e() methods notify the stateful bean instance that it is about to
be activated or passivated, respectively. The ej bActi vat e() method is
called immediately following the successful activation of abean instance and can
be used to reset transient fields to an initial value if necessary. The
ej bPassi vat e() method is called immediately prior to passivation of the
bean instance. These two methods are especially helpful if the bean instance
maintai ns connections to resources that need to be manipulated or freed prior to
passivation and reobtained following activation. Because the stateful bean
instance is evicted from memory, open connections to resources are not
maintained. The exceptions are remote references to other beans and the
Sessi onCont ext , which must be maintained with the serialized state of the
bean and reconstructed when the bean is activated. EJB also requires that the
references to the JNDI environment context, component interfaces, and the
UserTransaction be maintained through passivation.

Entity beans do not have conversational state that needs to be serialized like
stateful beans; instead, the state of entity bean instances is persisted directly to
the database. Entity beans do, however, leverage the activation callback methods
(ej bActivat e() and ej bPassi vat e()) to notify the instance when it's
about to be swapped in or out of the instance pool. The ej bActi vat e()
method is invoked immediately after the bean instance is swapped into the EJB
object, and the ej bPassi vat e() method is invoked just before the instance
is swapped out.

8 Copyright (c) 2001 O'Reilly & Associates

Primary Services

There are many value-added services available for distributed applications. The
OMG (the CORBA governing body), for example, has defined 13 services for use
in CORBA-compliant ORBs. This book looks at seven value-added services that
are called the primary services, because they are required to complete the
Enterprise JavaBeans platform. The primary services include concurrency,
transactions, persistence, distributed objects, asynchronous messaging (EJB
2.0), naming, and security.

The seven primary services are not new concepts; the OMG defined interfaces
for these services specific to the CORBA platform some time ago. In most
traditiona CORBA ORBSs, services are add-on subsystems that are explicitly
utilized by the application code. This means that the server-side component
developer has to write code to use primary service APIs right alongside their
business logic. The use of primary services becomes complicated when they are
used in combination with resource management techniques because the primary
services are themselves complex. Using them in combination only compounds
the problem.

As more complex component interactions are required, coordinating these
services becomes a difficult task, requiring system-level expertise unrelated to
the task of writing the application’s business logic. Application developers can
become so mired in the system-level concerns of coordinating various primary
services and resource management mechanisms that their main responsibility,
modeling the business, is all but forgotten.

EJB servers automatically manage all the primary services. This relieves the
application developers from the task of mastering these complicated services.
Instead, developers can focus on defining the business logic that describes the
system, and leave the system-level concernsto the CTM. The following sections
describe each of the primary services and explain how they are supported by
EJB.

Concurrency

The issue of concurrency isimportant to all the bean types, but it has a different
meaning when applied to EJB 2.0 message-driven beans than it does with the
RMI based session and entity beans. This because of the difference in context:
with RMI-based beans, concurrency refers to multiple clients accessing the same
bean simultaneously; in message-driven beans, concurrency refers to the
processing of multiple asynchronous messages simultaneously. For this reason
we will discuss the importance of concurrency as primary services separately for
these different types of beans.

Copyright (c) 2001 O'Reilly & Associates 9

Concurrency with Session and Entity beans

Session beans do not support concurrent access. This makes sense if you
consider the nature of both stateful and statel ess session beans. A stateful bean
is an extension of one client and only servesthat client. It doesn’t make sense to
make stateful beans concurrent if they are only used by the client that created
them. Stateless session beans don’t need to be concurrent because they don’t
maintain state that needsto be shared. The scope of the operations performed by
a stateless bean is limited to the scope of each method invocation. No
conversational stateis maintained.

Entity beans represent data in the database that is shared and needs to be
accessed concurrently. Entity beans are shared components. In Titan's EJB
system, for example, there are only three ships: Paradise, Utopia, and Valhalla.
At any given moment the Ship entity bean that represents the Utopia might be
accessed by hundreds of clients. To make concurrent access to entity beans
possible, EJB needs to protect the data represented by the shared bean, while
allowing many clients to access the bean simultaneously.

In a distributed object system, problems arise when you attempt to share
distributed objects among clients. If two clients are both using the same EJB
object, how do you keep one client from writing over the changes of the other?
If, for example, one client reads the state of an instance just before a different
client makes a change to the same instance, the data that the first client read
becomesinvalid. Figure 3-9 shows two clients sharing the same EJB object.

[FGURE]
Figure 3-5: Clients sharing access to an EJB object

EJB has addressed the dangers associated with concurrency in entity beans by
implementing a simple solution: EJB, by default, prohibits concurrent access to
bean instances. In other words, several clients can be connected to one EJB
object, but only one client thread can access the bean instance at a time. If, for
example, one of the clients invokes a method on the EJB object, no other client
can access that bean instance until the method invocation is complete. In fact, if
the method is part of a larger transaction, then the bean instance cannot be
accessed at all, except within the same transactional context, until the entire
transaction is complete.

Since EJB servers handle concurrency automatically, a bean’s methods do not
have to be made thread-safe. In fact, the EJB specification prohibits use of the
synchroni zed keyword. Prohibiting the use of the thread synchronization
primitives prevents developers from thinking that they control synchronization
and enhances the performance of bean instances at runtime. In addition, EJB
explicitly prohibits beans from creating their own threads. In other words, as a
bean developer you cannot create a thread within a bean. The EJB container has
to maintain complete control over the bean to properly manage concurrency,
transactions, and persistence. Allowing the bean developer to create arbitrary

10 Copyright (c) 2001 O'Reilly & Associates

threads would compromise the container’ s ability to track what the bean is doing,
and thus would make it impossible for the container to manage the primary
services.

Reentrance

When talking about concurrency in entity beans, we need to discuss the related
concept of reentrance. Reentrance is when athread of control attempts to reenter
abean instance. In EJB, entity bean instances are nonreentrant by default, which
means that loopbacks are not allowed. Before | explain what a loopback is, it is
important that you understand a very fundamental concept in EJB: entity and
session beans interact using each other’s remote references and do not interact
directly. In other words, when bean A operates on bean B, it does so the same
way an application client would, by using B’s remote or local interface as
implemented by an EJB object. This allows the EJB container to interpose
between method invocations from one bean to the next to apply security and
transaction services.

While most bean-to-bean interactions in EJB 2.0 will take place using local
interfaces of co-located enterprise beans, occasionally beans may interact using
remote interfaces. Remote interfaces enforce complete location transparency.
When interactions between beans take place using remote references, the beans
can be relocated—possibly to a different server—uwith little or no impact on the
rest of the application.

Regardless of whether remote or local interfaces are used, from the perspective of
the bean servicing the call, al clients are created equal. Figure 3-11 shows that,
from a bean’s point of view, only clients perform business method invocations.
When a bean instance has a business method invoked, it cannot tell the
difference between aremote application client and abean client.

[FIGURE modified version of figure 3-6]
Figure 3-6: Beans access each other through EJB objects

A loopback occurs when bean A invokes a method on bean B that then attempts
to make a call back to bean A. Figure 3-13 shows this type of interaction. In
Figure 3-13, client 1 invokes a method on bean A. In response to the method
invocation, bean A invokes a method on bean B. At this point, there is no
problem because client 1 controls access to bean A and bean A is the client of
bean B. If, however, bean B attempts to call a method on bean A, it would be
blocked because the thread has already entered bean A. By calling its caler,
bean B is performing a loopback. Thisisillegal by default because EJB doesn’t
allow athread of control to reenter a bean instance. To say that beans are non-
reentrant by default isto say that loopbacks are not allowed.

[FGURE]
Figure 3-7: Aloopback scenario

Copyright (c) 2001 O'Reilly & Associates 11

The nonreentrance policy is applied differently to session beans and entity
beans. Session beans can never be reentrant, and they throw a
Renpt eExcepti on if a loopback is attempted. The same is true of a
nonreentrant entity bean. Entity beans can be configured in the deployment
descriptor to allow reentrance at deployment time. Making an entity bean
reentrant, however, is discouraged by the specification. The question of
reentrancy is not relevant to EJB 2.0’s message-driven beans because they do
not respond to RMI calls like session and entity beans.

As discussed previously, client access to a bean is synchronized so that only
one client can access any given bean at one time. Reentrance addresses a thread
of control—initiated by a client request—that attempts to reaccess a bean
instance. The problem with reentrant code is that the EJB object—which
intercepts and delegates method invocations on the bean instance—cannot
differentiate between reentrant code and multithreaded access within the same
transactional context. (More about transactional context in Chapter 148.) If you
permit reentrance, you also permit multithreaded access to the bean instance.
Multithreaded access to a bean instance can result in corrupted data because
threads impact each other’ swork trying to accomplish their separate tasks.

It's important to remember that reentrant code is different from a bean instance
that simply invokes its own methods at an instance level. In other words, method
foo() on a bean instance can invoke its own public, protected, default, or
private methods directly as much asit wants. Here is an example of intra-instance
method invocation that is perfectly legal:

publ i ¢ Hypot heti cal Bean extends EntityBean {
public int Xx;

publ i ¢ doubl e foo() {
int i =this.getX);
return this. boo(i);

}

public int getX) {
return x;

}

private doubl e boo(int i) {
double value =i * Math.P;
return val ue;

}

In the previous code fragment, the business method, f oo(), invokes another
business method, get X(), and then a private method, boo(). The method
invocations made within the body of f oo() areintra-instance invocations and
are not considered reentrant.

12 Copyright (c) 2001 O'Reilly & Associates

EJB 2.0: Concurrency with M essage-Driven Beans

When we are talking about concurrency in message-driven beans we are
referring to the processing of more then one message at a time. As mentioned
aready in this chapter, concurrent processing of messages makes message-
driven beans a powerful asynchronous component model. If message-driven
beans could only process a single message at time, they would be practically
useless in areal-world application because they couldn’t handle heavy message
loads.

Many JM S clients may be sending messages to the same destination. The ability
to process all the messages by a single message-driven bean at the same timeis
concurrency. If five messages are delivered to a specific destination, then five
instances of a message driven bean that subscribes or listens to that destination
can be used to process the messages simultaneously. Figure 3-y illustrates.

[Figure 3-y]

Figure 3-y: Concurrent processing with Message-driven
beans

In Figure 3-y, the same message-driven bean provides instances to process three
messages from three different clients at the same time. This is concurrent
processing.

There is actually alot more to concurrent processing in message-driven beans.
There are topic and queue type destinations and these are processed differently,
but the basic value of concurrent processing is the same. The book will explore
the details behind of the topic and queue type destinations in Chapter 13,
Message-Driven Beans.

Transactions

Component transaction monitors (CTMs) were developed to bring the robust,
scal able transactional integrity of traditional TP monitors to the dynamic world of
distributed objects. Enterprise JavaBeans, as a server-side component model for
CTMs, provides robust support for transactions for both all the bean types
(session, entity and message-driven).

A transaction is a unit-of-work or a set of tasks that are executed together.
Transactions are atomic; in other words, all the tasks in a transaction must be
completed together to consider the transaction a success. In the previous
chapter we used the Travel Agent bean to describe how a session bean controls
the interactions of other beans. Here is a code snippet showing the
bookPassage() method described in Chapter 2:

public Ticket bookPassage(QeditCard card, double price)
throws | nconpl et eConversational S ate {

Copyright (c) 2001 O'Reilly & Associates 13

/1 EIB 1.0: also throws RenoteException

if (custoner = null || cruise = null || cabin = null) {
t hrow new | nconpl et eConver sati onal S at e() ;

}

try {

Reser vat i ontHoneRenot e resHne = (Reser vat i onHbneRenot e)
get Hone(" Reser vat i onHone", Reser vat i onHoneRenot e. ¢l ass) ;
Reser vat i onRenot e reservation =
resHone. creat e(cust oner, cruise, cabin, price);
Pr ocessPaynent HoneRenot e ppHone = (Pr ocessPaynent HoneRenot €)

Pr ocessPaynent Renot e process = ppHone. create();
process. byQedi t (custoner, card, price);

Ti cket ticket = new Ticket (custoner, cruise, cabin, price);
return ticket;
} catch(Exception e) {
// EIB 1.0: throw new Renot eException("",e);
t hr ow new EJBExcepti on(e);

}

The bookPassage() method consists of two tasks that must be completed
together: the creation of a new Reservation bean and processing of the payment.
When the Travel Agent bean is used to book a passenger, the charges to the
passenger’s credit card and the creation of the reservation must both be
successful. It would be inappropriate for the ProcessPayment bean to charge the
customer’s credit card if the creation of a new Reservation bean fails. Likewise,
you can’t make a reservation if the customer credit card is not charged. An EJB
server monitors the transaction to ensure that all the tasks are conpleted
successfully.

Transactions are managed automatically, so as a bean developer you don’t need
to use any APIs to explicitly manage a bean’s involvement in a transaction.
Simply declaring the transactional attribute at deployment time tells the EJB
server how to manage the bean at runtime. EJB does provide a mechanism that
allows beans to manage transactions explicitly, if necessary. Setting the
transactional attributes during deployment is discussed in Chapter 148, as is
explicit management of transactions and other transactional topics.

Per sistence

Entity beans represent the behavior and data associated with real-world people,
places, or things. Unlike session and message-driven type beans, entity beans
are persistent. That means that the state of an entity is stored permanently in a
database. This allows entities to be durable so that both their behavior and data

14 Copyright (c) 2001 O'Reilly & Associates

get Hone(" Pr ocessPaynent Hone" , Pr ocessPaynent HoneRenot e. cl ass) ;

can be accessed at any time without concern that the information will be lost
because of asystem failure.

When a bean’s state is automatically managed by a persistence service, the
container is responsible for synchronizing an entity bean’s instance fields with
the datain the database. This automatic persistence is called container-managed
persistence. When beans are designed to manage their own state, asis often the
case when dealing with legacy systems, it is called bean-managed persistence.

Each vendor gets to choose the exact mechanism for implementing container-
managed persistence, but the vendor’s implementation must support the EJB
callback methods and transactions. The most common mechanisms used in
persistence by EJB vendors are object-to-relational persistence and object
database persistence.

Object-to-relational persistence

Object-to-relational persistence is perhaps the most common persistence
mechanism used in distributed object systems today. Object-to-relational
persistence involves mapping entity bean state to relational database tables and
columns.

In EJB 2.0 the abstract accessor methods represents the entity bean’s container-
managed fields, which we will just call fields. When an entity bean is deployed
the container will implement these virtual fields for the bean, so its convient to
think of the abstract accessor methods as describing persistent fields. For
example, when we are taking about the state represented by the
set Nane() /get Nane() abstract accessor method, we will refer to as the
nanme fied. Simularly, the get1d()/setld() is the id field, and the
get DeckLevel () /set DeckLevel () isthedeckLevel field.

In Titan's system, for example, the Cabi nBean models the business concept of
aship’scabin. The CabinBean defined three fields: St ri ng type nane, ai nt
type deckLevel , and an | nt eger type i d. The following code shows an
abbreviated definition of the Cabi nBean:

EB 2.0: CabinBean
public abstract class Cabi nBean i npl enents javax. g b. EntityBean {

public abstract Sring getNane();
public abstract void setNane(Sring str);

public abstract int getDeckLevel ();
public abstract void set DeckLevel (int |evel);

public abstract Integer getld();
public abstract void setld(Integer id);

Copyright (c) 2001 O'Reilly & Associates 15

}

EJB 1.1: CabinBean

publ i c class Gabi nBean i npl enents j avax. ej b. EntityBean {
public int id;

public Sring nane;
public int deckLevel;

}

With object-to-relational database mapping, the fields of an entity bean corre-
spond to columns in a relational database. The Cabin’s nane fi el d, for
example, maps to the column labeled NAME in a table called CABI N in Titan's
relational database. Figure 3-15 shows a graphical depiction of this type of
mapping.

[FIGURE 3-8 modified]
Figure 3-8: Object-to-relational mapping of entity beans

Really good EJB systems provide wizards or administrative interfaces for
mapping relational database tables to the fields of entity bean classes. Using
these wizards, mapping entitiesto tablesis afairly straightforward process and is
usually performed at deployment time. Figure 3-17 shows WebL ogic’s object-to-
relational mapping wizard.

[FGURE]
Figure 3-9: Object-to-relational mapping wizard

Once a bean’s fields are mapped to the relational database, the container takes
over the responsibility of keeping the state of an entity bean instance consistent
with the corresponding tables in the database. This process is called
synchronizing the state of the bean instance. In the case of Cabi nBean, bean
instances at runtime will map one-to-one to rows in the CABI N table of the
relational database. When a change is made to a Cabin EJB, it is written to the
appropriate row in the database. Frequently, bean types will map to more than
one table. These are more complicated mappings, often requiring an SQL join.
Good EJB deployment tools should provide wizards that make multitable

mappingsfairly easy.

In addition, EJB 2.0 container-managed persistence defines entity bean
relationships fields, which allow entity beans to have one-to-one, one-to-many,
and many-to-many relationships with other beans. Entity beans can maintain
collections of other entity beans or single references. The persistence of entity
beansin EJB 2.0 isagreat deal more complex and powerful then was supported in
previous versions of the specification. The new EJB 2.0 container-managed
persistence model is covered in Chapters 6, 7 and 8.

16 Copyright (c) 2001 O'Reilly & Associates

In addition to synchronizing the state of an entity, EJB provides mechanisms for
creating and removing entities. Calls to the EJB home to create and remove
entities will result in a corresponding insertion or deletion of records in the
database. Because entities store their state in database tables, new records (and
therefore bean identities) can be added to tables from outside the EJB system. In
other words, inserting a record into the CABI N table— whether done by EJB or
by direct access to the database—creates a new Cabin entity. It’s not created in
the sense of instantiating a Java object, but in the sense that the data that
describes a Cabin entity has been added to the system.

Object database persistence

Object-oriented databases are designed to preserve object types and object
graphs and therefore are a much better match for components written in an
object-oriented language like Java. They offer a cleaner mapping between entity
beans and the database than a traditional relational database. However, this is
more of an advantage in EJB 1.1 thanitisin EJB 2.0. EJB 2.0 container-managed
persistence provides a programming model that is expressive enough to
accommodate both object-to-relational mapping aswell as object databases.

While object databases perform well when it comes to very complex object
graphs, they are still fairly new to business systems and are not as widely
accepted as relational databases. As a result, they are not as standardized as
relational databases, making it more difficult to migrate from one database to
another. In addition, fewer third-party products exist that support object
databases, like products for reporting and data warehousing.

Several relational databases support extended features for native object
persistence. These databases allow some objects to be preserved in relational
database tables like other data types and offer some advantages over other
databases.

L egacy persistence

EJB is often used to put an object wrapper on legacy systems, systems that are
based on mainframe applications or nonrelational databases. Container-managed
persistence in such an environment requires a special EJB container designed
specifically for legacy data access. Vendors might, for example, provide mapping
tools that allow beansto be mapped to IMS, CICS, b-trieve, or some other legacy
application.

Regardless of the type of legacy system used, container-managed persistence is
preferable to bean-managed persistence. With container-managed persistence,
the bean’s state is managed automatically, which is more efficient at runtime and
more productive during bean development. Many projects, however, require that
beans obtain their state from legacy systems that are not supported by the EJB
vendor. In these cases, developers must use bean-managed persistence, which

Copyright (c) 2001 O'Reilly & Associates 17

means that the developer doesn’t use the automatic persistence service of the
EJB server. Chapters 6-11 describes both-container-managed and bean-managed
persistencein detail.

Distributed Objects

Three main distributed object services are available today: CORBA II10P, Java
RMI, and Microsoft's .NET. Each of these platforms uses a different RMI
network protocol, but they al accomplish basically the same thing: location
transparency. Microsoft’s .NET platform, which relies on DCOM, is used in the
Microsoft Windows environment and is not supported by other operating sys-
tems. Its tight integration with Microsoft products makes it a good choice for
Microsoft-only systems. This may change with the growing support for SOAP
(Simple Object Access Protocol), an XML-based protocol that is quickly
becoming popular and offers interoperability with non-Microsoft applications.
CORBA |10P is neither operating-system specific nor language specific and has
been traditionally been considered the most open distributed object service of
the three. It's an ideal choice when integrating systems developed in multiple
programming languages. Java RMI is a Java language abstraction or
programming model for any kind of distributed object protocol. In the same way
that the JDBC API can be used to access any SQL relational database, Java RM|
is intended to be used with almost any distributed object protocol. In practice,
Java RMI has traditionally been limited to the &iva Remote Method Protocol
(JRMP)—known as Java RMI over JRMP—which can only be used between
Java applications. Recently an implementation of Java RMI over 11OP (Java RMI-
I10P), the CORBA protocol, has been developed. Java RMI-IIOP is a CORBA-
compliant version of Java RMI, which alows developers to leverage the
simplicity of the Java RMI programming model, while taking advantage of the
platform- and language-independent CORBA protocol, [IOP.?

When we discuss the component interfaces, and other EJB interfaces and
classes used on the client, we are talking about the client’s view of the EJB
system. The EJB client view doesn’t include the EJB objects, the EJB container,
instance swapping, or any of the other implementation specifics. As far as a
remote client is concerned, a bean is defined by its remote interface and home
interface. Everything elseisinvisible. Aslong asthe EJB server supports the EJB
client view, any distributed object protocol can be used. However, EJB 2.0
requires that every EJB server support Java RMI-I1OP—but it doesn’t limit the
protocols a EJB server can support to Java RMI-110P.

Regardless of the protocol used, the server must support Java clients using the
Java EJB client API, which means that the protocol must map to the Java RMI-

2 Java RMI-IIOP is interoperable with CORBA ORBs that support the CORBA 2.3.1
specification. ORBs that support an older specification cannot be used with Java RMI-110P
because they do not implement the Object by Value portion of the 2.3.1 specification.

18 Copyright (c) 2001 O'Reilly & Associates

I1OP programming model. Using Java RMI over DCOM seems alittle far-fetched,
but Java RMI over SOAP is possible. Figure 3-19 illustrates the Java language
EJB API supported by different distributed object protocols.

[FIGURE modified 3-10]

Figure 3-10: Java EJB client view supported by various
protocols

EJB also allows servers to support access to beans by clients written in
languages other than Java. An example of this is the EJB-to-CORBA mapping
defined by Sun.? This document describes the CORBA IDL (Interface Definition
Language) that can be used to access enterprise beans from CORBA clients. A
CORBA client can be written in any language, including C++, Smalltalk, Ada, and
even COBOL. The mapping also includes details about supporting the Java EJB
client view as well as details on mapping the CORBA naming system to EJB
servers and distributed transactions across CORBA objects and beans.
Eventually, a EJB-to-SOAP mapping may be defined that will allow SOAP client
applications written in languages like Visua Basic, Delphi, PowerBuilder, and
others to access beans. Figure 3-11 illustrates the possibilities for accessing an
EJB server from different distributed object clients.

[FGURE]
Figure 3-11: EJB accessed from different distributed clients

As amature, platform-independent and language-independent distributed object
protocol, CORBA is currently regarded by many as the superior of the three
protocols discussed here. For al its advantages, however, CORBA suffers from
some limitations. Pass-by-value, a feature easily supported by Java RMI-110P,
was only recently introduced in the CORBA 2.3 specification and is not well
supported. Another limitation of CORBA is with casting remote proxies. In Java
RMI-JRMP, you can cast or widen a proxy’s remote interface to a subtype or
supertype of the interface, just like any other object. This is a powerful feature
that allows remote objects to be polymorphic. In Java RMI-110P, you have to call
a special narrowing method to change the interface of a proxy to a subtype,
which is curmbersome.

However, JRMP is hasits own limitations. While JRMP may be a more natura fit
for Java-to-Java distributed object systems, it lacks inherent support for both
security and transactional services—support that is a part of the CORBA [10P
specification. This limits the effectiveness of JRMP in heterogeneous
environments where security and transactional contexts must be passed between
systems.

3 Sun Microsystems' Enterprise JavaBeans™ to CORBA Mapping, Version 1.1, by Sanjeev
Krishnan, Copyright 1999 by Sun Microsystems.

Copyright (c) 2001 O'Reilly & Associates 19

EJB 2.0: Asynchronous Enterprise Messaging

In past versions of Enterprise JavaBeans, support for asynchronous enterprise
messaging and specifically the Java Message Service was not considered a
primary service because it wasn’'t necessary in order to have a complete
Enterprise JavaBeans platform. However, with the introduction of message-
driven beans to Enterprise JavaBeans, asynchronous enterprise messaging has
become so important that its status must be elevated to aprimary service.

Support for this service is complex, but basicaly it requires that the EJB
container system reliably route messages from JMS clients to message-driven
beans. Thisinvolves more than the simple delivery semantics you associate with
e-mail or even the IMS API. With enterprise messaging, messages must be
reliably delivered which means that a failure to deliver the message should
require the EJB container system to attempt redelivery. What's more, enterprise
messages may be persistent, which means they are stored to disk or a database
until it can be properly delivered to its intended clients. Persistent messages
must survive system failures, if the EJB server crashes the persistent messages
must still be available for delivery when the server comes back up.

Most importantly, enterprise messaging is transactional messaging. That means
if for any reason a message-driven bean fails while processing a message, that
failure will abort the transaction and force the EJB container to redeliver the
message to another message-driven bean instance.

In addition to message-driven beans, any stateless, entity, or message-driven
bean can also send JMS messages. Support for sending messages is not as
critical in Enterprise JavaBeans as delivery of messages to message-driven
beans, but support for these facilities tends to go hand in hand. In other words,
its unlikely that an EJB server would go to the trouble of supporting the
consumption of JMS messages by message-driven beans without also
supporting the sending of messages by all different types of enterprise beans.

It's interesting to note that the semantics of supporting message-driven beans
requires light coupling between the EJB container system and the JM S message
router, so that many EJB container systems will support alimited number of IMS
providers. This means that message-driven beans can’t consume messages from
any arbitrary JMS provider or MOM product. Only the JM S providers supported
explicitly by the EJB vendor will be able to deliver messages to message-driven
beans.

Naming

All distributed object services use a haming service of some kind. Java RMI-
JRMP and CORBA use their own naming services. All naming services do

20 Copyright (c) 2001 O'Reilly & Associates

essentially the same thing regardless of how they are implemented: they provide
clients with amechanism for locating distributed objects or resources.

To accomplish this, a naming service must provide two things. object binding
and alookup API. Object binding is the association of adistributed object with a
natural language name or identifier. The Cabi nHomeRenot e object, for
example, might be bound to the name “cabin.Home” or “room.” A binding is
really a pointer or an index to a specific distributed object, which is necessary in
an environment that manages hundreds of different distributed objects. A
lookup API provides the client with an interface to the naming system. Simply
put, lookup APIs allow clients to connect to a distributed service and request a
remote reference to a specific object.

Enterprise JavaBeans mandates the use of the Java Naming and Directory
Interface (JNDI) as alookup API on Java clients. JINDI supports just about any
kind of naming and directory service. A directory service is a very advanced
naming service that organizes distributed objects and other resources—printers,
files, application servers, etc.—into hierarchical structures and provides more
sophisticated management features. With directory services, metadata about
distributed objects and other resources are also available to clients. The
metadata provides attributes that describe the object or resource and can be
used to perform searches. You can, for example, search for al the laser printers
that support color printing in a particular building.

Directory services also allow resources to be linked virtually, which means that a
resource can be located anywhere you choose in the directory services
hierarchy. INDI allows different types of directory services to be linked together
so that a client can move between different types of services seamlessly. It's
possible, for example, for a client to follow a directory link in a Novell NetWare
directory into an EJB server, alowing the server to be integrated more tightly
with other resources of the organization it serves.

There are many different kinds of directory and naming services, EJB vendors
can choose the one that best meets their needs, but all EJB 2.0 platforms must
support the CORBA Naming service in addition to any other directory service
they choose to support.

A Java client application would use JNDI to initiate a connection to an EJB
server and to locate a specific EJB home. The following code shows how the
JNDI API might be used to locate and obtain a reference to the EJB home
Cabi nHone:

j avax. namng. Gont ext j ndi Gontext =
new j avax. naming. | ni tial Cont ext (properties);
oj ect ref = jndi Gontext. | ookup("cabin. Hone");
Cabi nHone cabi nHne = (Gabi nHone)
Por t abl eRenot e(hj ect . narrow(ref, Gabi nHone. cl ass) ;

Copyright (c) 2001 O'Reilly & Associates 21

Cabi n cabi n = cabi nHone. creat (382, "Cabin 333", 3);
cabi n. set Nane(" Gabi n 444");
cabi n. set DeckLevel (4);

The properties passed into the constructor of | ni ti al Cont ext tell the INDI
APl where to find the EJB server and what JNDI service provider (driver) to load.
TheCont ext . | ookup() method tells the INDI service provider the name of
the object to return from the EJB server. In this case, we are looking for the home
interface to the Cabin EJB. Once we have the Cabin EJB’s home interface, we can
useit to create new cabins and access existing cabins.

Enterprise JavaBeans requires the use of the
Port abl eRenpt eObj ect . narrow() method to cast remote references
obtained from JNDI into the Cabi nHoneRenpt e interface type. This is
addressed in more detail in Chapters 4 and 5 and is not essential to the content
covered here — the use of this facility is not required when enterprise beans use
the local component interfaces of other co-located enterprise beans.

Security

Enterprise JavaBeans servers might support as many as three kinds of security:
authentication, access control, and secure communication. Only access control is
specifically addressed by Enterprise JavaBeans.

Authentication

Simply put, authentication validates the identity of the user. The most
common kind of authentication is a simple login screen that requires a
username and a password. Once users have successfully passed through
the authentication system, they are free to use the system. Authentication
can also be based on secure ID cards, swipe cards, security certificates, and
other forms of identification. While authentication is the primary safeguard
against unauthorized access to a system, it isfairly crude because it doesn’t
police an authorized user’ s access to resources within the system.

Access control

Access control (a.k.a. authorization) applies security policies that regulate
what a specific user can and cannot do within a system. Access control
ensures that users only access resources for which they have been given
permission. Access control can police a user’s access to subsystems, data,
and business objects, or it can monitor more general behavior. Certain users,
for example, may be allowed to update information while others are only
allowed to view the data.

Secure communication

Communication channels between a client and a server are frequently the
focus of security concerns. A channel of communication can be secured by
physical isolation (like a dedicated network connection) or by encrypting the
communication between the client and the server. Physically securing

22 Copyright (c) 2001 O'Reilly & Associates

communication is expensive, limiting, and pretty much impossible on the
Internet, so we will focus on encryption. When communication is secured by
encryption, the messages passed are encoded so that they cannot be read or
manipulated by unauthorized individuals. This normally involves the
exchange of cryptographic keys between the client and the server. The keys
allow thereceiver of the message to decode the message and read it.

Most EJB servers support secure communications—usually through SSL (secure
socket layer)—and some mechanism for authentication, but Enterprise
JavaBeans only specifies access control in their server-side component models.
Authentication may be specified in subsequent versions, but secure
communications will probably never be specified. Secure conmunications is
really independent of the EJB specification and the distributed object protocol.

Although authentication is not specified in EJB, it is often accomplished using
the INDI API. In other words, a client using JNDI can provide authenticating
information using the JINDI API to access a server or resources in the server.
Thisinformation is frequently passed when the client attempts to initiate a INDI
connection to the EJB server. The following code shows how the client’s
password and username are added to the connection properties used to obtain a
JNDI connection to the EJB server:

properties. put (Context. SEQUR TY_ PR N PAL, user Nane);
properties. put (Cont ext . SEOUR TY_CRECENTI ALS, user Passwor d) ;

j avax. namng. Gont ext j ndi Gontext =

new j avax. naming. | ni tial Cont ext (properties);
oj ect ref=jndi Gontext. | ookup("titan. Cabi nHone");
Cabi nHone cabi nHne = (Gabi nHone)

Por t abl eRenot e(hj ect . narrow(ref, Gabi nHone. cl ass) ;

EJB specifies that every client application accessing an EJB system must be
associated with a security identity. The security identity represents the client as
either auser or arole. A user might be a person, security credential, computer, or
even asmart card. Normally, the user will be a person whose identity is assigned
when he or she logs in. A role represents a grouping of identities and might be
something like “manager,” which isagroup of user identities that are considered
managers at acompany.

When a remote client logs on to the EJB system, it is associated with a security
identity for the duration of that session. The identity is found in a database or
directory specific to the platform or EJB server. This database or directory is
responsible for storing individual security identities and their memberships to
groups.

Once aremote client application has been associated with a security identity, itis
ready to use beans to accomplish some task. The EJB server keeps track of each
client and itsidentity. When a client invokes a method on a component interface,
the EJB server implicitly passes the client’ s identity with the method invocation.

Copyright (c) 2001 O'Reilly & Associates 23

When the EJB object or EJB home receives the method invocation, it checks the
identity to ensure that the client is allowed to invoke that method.

Role-driven access control

In Enterprise JavaBeans, the security identity is represented by a
java.security.Principle object. As a security identity, the
Pri nci pl e acts as a representative for users, groups, organizations, smart
cards, etc., to the EJB access control architecture. Deployment descriptors
include tags that declare which logical roles are allowed to access which bean
methods at runtime. The security roles are considered logical roles because they
do not directly reflect users, groups, or any other security identities in a specific
operational environment. Instead, security roles are mapped to real-world user
groups and users when the bean is deployed. This allows a bean to be portable;
every time the bean is deployed in a new system the roles can be mapped to the
users and groups specific to that operational environment. Here is a portion of
the Cabin EJB’s deployment descriptor that defines two security roles,
ReadOnl y and Admi ni strator:

<security-rol e>
<descri pti on>
This role is allowed to execute any nethod on the bean.
They are allowed to read and change any cabi n bean dat a.
</ descri pti on>
<r ol e- nane>
Admini strat or
</rol e- nane>
</security-rol e>

<security-rol e>
<descri ption>
This role is allowed to locate and read cabin info.
This role is not allowed to change cabi n bean data.
</ descri pti on>
<rol e- nane>
Readnl y
</rol e- nane>
</security-rol e>

The role names in this descriptor are not reserved or special names, with some
sort of predefined meaning; they are simply logical names chosen by the bean
assembler. In other words, the role names can be anything you want as long as
they are descriptive.

4 For a complete understanding of XML, including specific rules for tag names and data, see
XML Pocket Reference, by Robert Eckstein (O’ Reilly).

24 Copyright (c) 2001 O'Reilly & Associates

How are roles mapped into actions that are allowed or forbidden? Once the
security-rol e tags are declared, they can be associated with methods in
the bean using net hod- per m ssi on tags. Each net hod- perm ssi on
tag contains one or more net hod tags, which identify the bean methods
associated with one or more logical roles identified by the r ol e- nane tags.
Ther ol e- name tags must match the names defined by the security-role tags
shown earlier.

<net hod- per ni ssi on>
<r ol e- nane>Adni ni strat or </ r ol e- nane>
<net hod>
<ej b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>
</ net hod- per m ssi on>
<r ol e- nane>Readnl y</ r ol e- nane>
<net hod>
<ej b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>get Nane</ net hod- nane>
</ net hod>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>get DeckLevel </ net hod- nane>
</ net hod>
<net hod>
<ej b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>f i ndByPr i nar yKey</ net hod- nane>
</ net hod>
</ net hod- per ni ssi on>

In the first met hod- per m ssi on, the Adni ni strat or role is associated
with all methods on the Cabin EJB, which is denoted by specifying the wildcard
character (*) in the net hod- nane of the net hod tag. In the second
nmet hod- per m ssi on the ReadOnl y role is limited to accessing only three
methods: get Nanme(), get DeckLevel (), and fi ndByPri maryKey().
Any attempt by a ReadOnl y role to access a method that is not listed in the
met hod- per mi ssi on will result in an exception. This kind of access control
makes for afairly fine-grained authorization system.

Since an XML deployment descriptor can be used to describe more than one
enterprise bean, the tags used to declare method permissions and security roles
are defined in a specia section of the deployment descriptor, so that several
beans can share the same security roles. The exact location of these tags and
their relationship to other sections of the XML deployment descriptor will be
covered in more detail in Chapter 16.

When the bean is deployed, the person deploying the bean will examine the
security-rol e information and map each logical role to a corresponding

Copyright (c) 2001 O'Reilly & Associates 25

user group in the operational environment. The deployer need not be concerned
with what roles go to which methods; he can rely on the descriptions given in
thesecuri ty-rol e tags to determine matches based on the description of
the logical role. This unburdens the deployer, who may not be a developer, from
having to understand how the bean works in order to deploy it.

Figure 3-23 shows the same enterprise bean deployed in two different
environments (labeled X and Z). In each environment, the user groups in the
operational environment are mapped to their logical equivalent rolesin the XML
deployment descriptor so that specific user groups have access privileges to
specific methods on specific enterprise beans.

[FIGURE]

Figure 3-12: Mapping rolesin the operational environment
to logical rolesin the deployment descriptor

Asyou can see from the figure, the ReadOnl y role is mapped to those groups
that should be limited to the get accessor methods and the find method. The
Admi ni strator role is mapped to those user groups that should have
privileges to invoke any method on the Cabin EJB.

The access control described here is implicit; once the bean is deployed the
container takes care of checking that users only access methods for which they
have permission. This is accomplished by propagating the security identity, the
Pri nci pl e, with each method invocation from the client to the bean. When a
client invokes a method on a bean, the client’sPr i nci pl e is checked to see if
it isamember of arole mapped to that method. If it’s not, an exception is thrown
and the client is denied permission to invoke the method. If the client is a member
of a privileged role, the invocation is allowed to go forward and the method is
invoked.

If abean attempts to access any other enterprise beans while servicing aclient, it
will pass along the client’s security identity for access control checks by the
other beans. In this way, aclient's Pri nci pl e is propagated from one bean
invocation to the next, ensuring that a client’s access is controlled whether or
not it invokes a bean method directly. In EJB 2.0 this propagation can be
overridden by specifying that the enterprise bean executes under a different
security identity called the runAs security identity.

EJB 2.0: TherunAs Security I dentity

In addition to specifying the Pri nci pal s that have access to an enterprise
bean’s methods, the deployer can also specify the runAs Pri nci pal for the
entire enterprise bean. The runAs security identity was originally specified in
EJB 1.0, but was abandoned in EJB 1.1. It has been reintroduced in EJB 2.0 and
modified so that itsis easier for vendors to implement.

26 Copyright (c) 2001 O'Reilly & Associates

While the net hod- perm ssi on elements specify which Princi pal s
have access to the bean's methods, the security-identity element
specifies under which Pri nci pal the method will run. In other words, the
runAs Pri nci pal is used as the enterprise bean’s identity when it tries to
invoke methods on other beans—this identity isn’t necessarily the same as the
identity that’s currently accessing the bean.

For example, the following deployment descriptor elements declare that the
creat e() method can only be accessed by “JmSmith”, but that Cabin EJB
always runs under an “Administrator” Pri nci pal role.

<ent er pri se- beans>

<entity>
<ej b- nane>Enpl oyeeSer vi ce</ €] b- nane>

<security-identity>
<run-as>
<rol e- nane>Adm ni strat or </ r ol e- nane>
</run-as>
</security-identity>

<entity>

</ ent erpri se- beans>
<assenbl er >
<security-rol e>

<rol e- nane>Adm ni st rat or </ r ol e- nane>
</security-rol e>
<security-rol e>

<r ol e- nane>Ji ngm t h</r ol e- nane>
</security-rol e>

<net hod- per ni ssi on>
<rol e- nane>Ji nBmt h</ r ol e- nane>
<net hod>
<ej b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>cr eat e</ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

</ assenbl er >

This is kind of configuration is useful when the enterprise beans or resources
accessed in the body of the method requirea Pri nci pal that is different from
the one used to gain access to the method. The cr eat e() method might call a
method in enterprise bean X that requires the Administrator’s Pri nci pal . If
we want to use enterprise bean X in the cr eat e() method, but we only want
Jim Smith to create new cabins, we would use the security-identity and

Copyright (c) 2001 O'Reilly & Associates 27

met hod- per m ssi on elements together to give us this kind of flexibility: the
met hod- per m ssi on forcreat e() would specify that only Jim Smith can
invoke the method, and the security-identity element would specify
that the enterprise bean always runs under the Administrator’sPr i nci pal .

In order to specify that an enterprise bean execute under the caller’ sidentity, the
security-identity role contains a single empty element, the use-cal | er -
i dentity element. For example, the following declarations specify that the
Cabin EJB always execute under the callers identity, so if JimSmith invokes the
creat e() method, the bean will run under the imSmith security identity.

<ent er pri se- beans>

<entity>
<ej b- nane>Enpl oyeeSer vi ce</ €] b- nane>

<security-identity>
<use-cal l er-identity/>

</security-identity>

<entity>

</ ent erpri se- beans>

Figure 3-27 illustrates how the runAs Pri nci pal can change in a chain of
method invocations. Notice that the runAs Pri nci pal isthe Princi pal
used to test for accessin subsequent method invocations.

[FIGURE modified figure 3-14]
Figure 3-14: runAsldentity

1. Theclient, who isidentified as “Bill Jones’, invokes the method f oo() on
enterprise bean A.

2. Before servicing the method, enterprise bean A is checked to see if “Bill
Jones” isincluded in the method-permissionsfor f oo() . Itis.

3. The security-identity of enterprise bean A is declared as use-cal | er -
identity, so the foo() method executes under the caler's
Princi pal , inthiscase“Bill Jones’.

4. Whilef oo() isexecuting, it invokes method bar () on enterprise bean B
using the “Bill Jones” security identity.

5. Enterprise bean B checks method foo()’s Principal (“Bill Jones’)
against the allowed identities for method bar () . “Bill Jones” is included in
the method-permissions, so the method bar () of enterprise bean B is
allowed to execute.

28 Copyright (c) 2001 O'Reilly & Associates

6. The enterprise bean B specifies the security-identity to be the run-as
Pri nci pal of “Administrator”.

7. Whilebar () isexecuting, enterprise bean B invokes the methodboo() on
enterprise bean C.

8. Enterprise bean C is checked and it's determined that bar ()’'s runAs
Pri nci pal (“Administrator”) is included in the method-permissions for
method boo() .

9. The security-identity for the enterprise bean C specifies a runAs
Princi pal of the“System”, which istheidentity that the boo() method
executes under.

This protocol applies equally to entity and stateless session beans. However,

message-driven beans only have a runAs identity, the will never execute under

the caller identity, because there is no “caller”. Message-driven beans process

asynchronous JM S messages. These messages are not considered “calls’ and

the JMS client that sent them is not associated with the message. Once a
message is sent by a M S client, is autonomous and is no longer associated with

the sending client. So incoming messages do not have a“caller”. With no caller

security identity to propagate, message-driven beans must always have arunAs

security identity specified, and it will always execute under that runAs

Princi pal .

What’'s Next?

The first three chapters gave you a foundation on which to develop Enterprise
JavaBeans components and applications. You should have a better
understanding of CTMs and the EJB component model.

Beginning with Chapter 4, you will develop your own beans and learn how to
apply them in EJB applications.

Copyright (c) 2001 O'Reilly & Associates 29

A

Developing Y our First Enterprise
Beans

Choosing and Setting Up an EJB Server

One of the most important features of EJB is that enterprise beans should work
with containers from different vendors. That doesn’t mean that selecting a server
and installing your enterprise beans on that server aretrivial processes.

The EJB server you choose should be compliant with the EJB 2.0 specification.
The first example in this chapter—and most of the examples in this book—
assumes that your EJB server supports entity beans and EJB 2.0 container-
managed persistence.? The EJB server you choose should also provide a utility
for deploying an enterprise bean. It doesn't matter whether the utility is

1 To help you work with different vendor’s products, free workbooks have been created
for specific EJB servers. Each workbook shows you how to download, install, and run
the examples in this book for a specific product. We are trying to create a library that
covers as many major vendors as possible, though with over 30 EJB servers on the
market, we won't be able to cover al of them. The workbook examples cover EJB 2.0,
unless the product supports only EJB 1.1. The workbooks are available in PDF form
from http://Amww.oreilly.com/catal og/entjbeans3/ or - http://www.monson-haefel.com. If
there is sufficient demand, we may make the workbooks available in a printed version.

2 Chapter 11 discusses EJB 1.1 container-managed persistence, which you can use if

your server doesn’t support EJB 2.0 container-managed persistence.

Copyright (c) 2001 O'Reilly & Associates 1

command-line oriented or graphical, as long as it does the job. The deployment
utility should allow you to work with prepackaged enterprise beans, i.e.,
enterprise beans that have already been developed and archived in a JAR file.
Finally, the EJB server should support an SQL-standard relational database that
isaccessible using JDBC. For the database, you should have privileges sufficient
for creating and modifying afew simple tablesin addition to normal read, update,
and delete capabilities. If you have chosen an EJB server that does not support
an SQL standard relational database, you may need to modify the examples to
work with the product you are using.

This book does not say very much about how to install and deploy enterprise
beans. That task islargely server-dependent. We give some general ideas about
how to organize JAR files and create deployment descriptors, but for a complete
description of the deployment process, you'll have to refer to your vendor’'s
documentation, or look at the workbook for your vendor (if one is available).

This Chapter provides you with your first opportunity to use a workbook.
Throughout the rest of this book you will see these callouts which direct you to
an exercise in the workbook. A callout will look something like the following.

L Exercise 4.2, Develop and Deploy the Travel Agent EJB

As was mentioned in the Preface, the workbooks can be downloaded in PDF
format for free from http://www.oreilly.com/catalog/entjbeans3/ or
http://www.monson-haefel.com — some workbooks may even be available in
paper book form and can be ordered direct from the http://www.monson-
haefel.com.Setting Up Y our Java IDE

To get the most from this chapter, it helps to have an IDE that has a debugger
and alows you to add Java files to its environment. Several Java IDEs, like
Symantec’s Visua Cafe, IBM’s VisualAge, Inprise’s JBuilder, and Sun’'s Forte,
fulfill this simple requirement. Some EJB products, like IBM’s WebSphere, are
tightly coupled with an IDE that makes life a lot easier when it comes to writing,
deploying and debugging your applications.

Once you have an IDE set up, you need to include the Enterprise JavaBeans
package, j avax.ejb. You aso need the JNDI packages, including
j avax. nam ng, j avax. nam ng. directory, and
j avax. nam ng. spi . In addition, you will need the javax.rm and
j avax.] ms packages. All these packages can be downloaded from Sun’s Java
site (http://www:. javasoft.com) in the form of ZIP or JAR files. They may also be
accessible in the subdirectories of your EJB server, normaly under the lib
directory.

Copyright (c) 2001 O'Reilly & Associates 2

Developing an Entity Bean

There seems to be no better place to start than the Cabin EJB, which we have
been examining throughout the previous chapters. The Cabin EJB is an entity
bean that encapsulates the data and behavior associated with a cruise ship cabin
in Titan's business domain.

Cabin: The Remote Interface

When developing an entity bean, we first want to define the enterprise bean’s
remote interface. The remote interface defines the enterprise bean’s business
purpose; the methods of this interface must capture the concept of the entity.
We defined the remote interface for the Cabin EJB in Chapter 2; here, we add two
new methods for setting and getting the ship 1D and the bed count. The ship ID
identifies the ship that the cabin belongs to, and the bed count tells how many
people the cabin can accommodate.

package comtitan. cabin;
inport java.rm.Renot eException;

public interface Cabi nRenote extends j avax.) b. EJB(bj ect {
public Sring get Nane() throws RenoteBException;
public void setNane(Sring str) throws Renot eException;
public int getDeckLevel () throws RenoteException;
publ i c voi d set DeckLevel (int |evel) throws RenoteBException;
public int getShipld() throns RenoteBxception;
public void set Shipld(int sp) throws RenoteException;
public int getBed@unt () throws RenoteException;
public voi d set BedGunt (int bc) throws Renot eException;

}

The Cabi nRenot e interface defines four properties: the nane, deckLevel ,
shi p, and bedCount . Properties are attributes of an enterprise bean that can
be accessed by public set and get methods. The methods that access these
properties are not explicitly defined in the Cabi nRenot e interface, but the
interface clearly specifies that these attributes are readable and changeable by a
client.

Notice that we have made the Cabi nRenpt e interface a part of a new package
named com ti t an. cabi n. Place al the classes and interfaces associated
with each type of bean in a package specific to the bean.? Because our beans are

3 The examples, which can be downloaded from www.oreilly.com, provide a good guide
for how to organize your code; the code is organized in a directory structure that’ s typical

Copyright (c) 2001 O'Reilly & Associates 3

for the use of the Titan cruise line, we place these packagesinthe com ti t an
package hierarchy. We also create directory structures that match package
structures. If you are using an IDE that works directly with Java files, create a
new directory somewhere called dev (for development) and create the directory
structure shown in Figure 4-1. Copy the Cabi nRenpt e interface into your IDE
and save its definition to the cabin directory. Compile the Cabi nRenot e
interface to ensure that its definition is correct. The CabinRemote.class file,
generated by the IDE’s compiler, should be written to the cabin directory, the
same directory as the CabinRemote. java file The rest of the Cabin bean's
classes will be placed in this same directory.

[FIGURE]
Figure4-1: Directory structure for the Cabin bean

CabinHome: The Home Interface

Once we have defined the remote interface of the Cabin EJB, we have defined the
remote view of this simple entity bean. Next, we need to define the Cabin EJB’s
remote home interface, which specifies how the enterprise bean can be created,
located, and destroyed by remote clients; in other words, the Cabin EJB’s life-
cycle behavior. Here is a complete definition of the Cabi nHomeRenot e home
interface:

package comtitan. cabin;

inport java.rm.Renot eException;
inport javax.ej b. O eat eExcepti on;
i nport | avax. ej b. H nder Excepti on;

public interface Cabi nHoneRenot e ext ends j avax. € b. EJIBHone {

publ i ¢ Cabi nRenot e creat e(l nteger id)
throws O eat eException, RenoteException;

publ i ¢ Gabi nRenot e fi ndByPri naryKey(| nteger pk)
throws H nder Exception, RenoteException;

}

The Cabi nHonmeRenot e interface extends the j avax. ej b. EJBHone and
defines two life- cycle methods: create() and fi ndByPri maryKey() .
These methods create and locate remote references to Cabin EJBs. Remove
methods (for deleting enterprise beans) are defined in the
j avax. ej b. EJBHone interface, so the Cabi nHoneRenot e interface
inherits them.

for most products. The workbooks provide additional help for organizing your
development projects, and will point out any vendor-specific requirements.

Copyright (c) 2001 O'Reilly & Associates 4

CabinBean: The Bean Class

You have now defined the complete client-side APl for creating, locating,
removing, and using the Cabin EJB. Now we need to define Cabi nBean, the
class that provides the implementation on the server for the Cabin EJB. The
Cabi nBean class is an entity bean that uses container-managed persistence,
so its definition will befairly simple.

In addition to the callback methods discussed in Chapters 2 and 3, we must also
define abstract accessor methods for the methods defined in the Cabi nRenot e
interface and an implementation of the create method defined in the
Cabi nHonmeRenot e interface.

EJB 2.0: The Cabin Bean

Here isthe complete definition of the Cabi nBean class:

package comtitan. cabin;

public abstract class Cabi nBean
i npl enent s javax. gj b. EntityBean {

public Integer ef bQeate(lnteger id){
this.setld(id);

}
public voi d ej bPost O eate(Sring nane){

}

public abstract void setld(Integer id);
public abstract Integer getld();

public abstract void setShipld(int ship);
public abstract int getShipld();

public abstract void setNane(String nane);
public abstract Sring get Name();

public abstract void setBedCount (int count);
public abstract int getBedQunt();

public abstract voi d setDeckLevel (int |evel);
public abstract int getDeckLevel ();

public void setEntityContext(EntityContext ctx) {
/1 Not inplenented.

}
publ i c voi d unset EntityGontext() {
/1 Not inplenented.

}

Copyright (c) 2001 O'Reilly & Associates 5

public void e bActivate() {
/1 Not inplenented.

public void ej bPassivate() {
/1 Not inplenented.

public voi d ej bLoad() {
/1 Not inplenented.

public void ejbSore() {
/1 Not inplenented.

publ i c voi d ej bRenove() {
/1 Not inplenented.

The Cabi nBean class can be divided into four sections for discussion:
declarations for the container-managed fields, the ej bCr eat e() methods, the
callback methods, and the remote interface implementations.

The Cabi nBean defines several abstract accessor methods that appear in pairs.
For example, the abstract methods set Nane() and get Name() are a pair of
abstract accessor methods. These methods will be responsible for setting and
getting the entity bean’s name field. When the bean is deployed, the EJB
container automatically implements all the abstract accessor methods so that the
bean state can be synchronized with the database. These implementations map
the abstract accessor methods to fieldsin the database. Although all the abstract
accessor methods have corresponding methods in the remote interface,
Cabi nRenpt e, it’s not necessary that they do so. Some accessor methods are
for the entity bean’s use only and are never exposed to the client through the
remote or local interfaces.

It's customary in EJB 2.0 to consider the abstract accessor methods as providing
access to virtual fields and to refer to those fields by their method name, less the
get or set prefix. For example, the get Nanme() / set Nane() abstract accessor
methods define a virtual container-managed persistence field called nane — the
first letter is aways changed to lower case The
get DeckLevel () /set DecklLevel () abstract accessor methods define a
virtual container-managed persistence field calleddeckLevel , and so on.

The nane, decklLevel, shi p, and bedCount virtual container-managed
persistence fields represent the Cabin EJB’s persistent state. They will be
mapped to the database at deployment time. These fields are also publicly
available through the entity bean's remote interface. Invoking the
get BedCount () method on a Cabi nRenpt e EJB object at runtime causes
the container to delegate that call to the corresponding get BedCount ()
method on the Cabi nBean instance. The abstract accessor methods do not

Copyright (c) 2001 O'Reilly & Associates 6

throw the Renpt eExcepti on like the matching methods in the remote
interface.

There is no requirement that CMP fields must be exposed. Thei d field is another
container-managed field, but its abstract accessor methods are not exposed to
the client through the Cabi nRenot e interface. Thisfield isthe primary key of
the Cabin EJB; it's the entity bean’s index to its data in the database. It's bad
practice to expose the primary key of an entity bean so that it can be modified by
aclient. You don't want client applications changing that index.

EJB 1.1: The Bean Class

Here isthe complete definition of the Cabi nBean classin EJB 1.1:

package comtitan. cabin;
inport javax.ejb. EntityContext;
public class Cabi nBean i npl enents j avax. gj b. EntityBean {

public Integer id;
public Sring nane;
public int deckLevel;
public int shipld;
public int bedGount;

public Integer e bQeate(lnteger id) {
this.id =id,
return null;

}

public void ej bPost O eate(lnteger id) {
/1 Do nothing. Required.

}

public Sring get Nane() {
return nang,

}

public void setNane(Sring str) {
nane = str;

}

public int getShipld() {
return shipld;

}

public void setShipld(int sp) {
shipld = sp;

}

public int getBedQunt() {
return bedCount ;

}

publ i c voi d set BedGount (int bc) {
bedCount = bc;

Copyright (c) 2001 O'Reilly & Associates 7

}
public int getDeckLevel () {
return deckLevel ;

}

publ i c voi d setDeckLevel (int level) {
deckLevel = |evel;

}

public void setEntityQontext(EntityQontext ctx) {
/1 Not inplenented.

}
public void unset EntityGontext () {

/1 Not inplenented.

}
public void ej bActivate() {

/1 Not inplenented.

publ i c voi d ej bPassivate() {
/1 Not inplenented.

public void ej bLoad() {
/1 Not inplenented.

public void e bSore() {
/1 Not inplenented.

publ i c voi d ej bRenove() {
/1 Not inpl enent ed.

Declared fields in a bean class can be persistent fields and property fields. These
categories are not mutually exclusive. The persistent field declarations describe

the fields that will be mapped to the database. A persistent field is often a
property (in the JavaBeans sense): any attribute that is available using public set

and get methods. Of course, a bean can have any fields that it needs; they need

not all be persistent, or properties. Fields that aren’t persistent won't be saved in

the database. In Cabi nBean, all thefields are persistent.

Thei d field is persistent, but it is not a property. In other words, i d is mapped
to the database but cannot be accessed through the remote interface.

The nane, deckLevel , shi p, and bedCount fields are persistent fields.

They will be mapped to the database at deployment time. These fields are also
properties because they are publicly available through the remote interface.

EJB 2.0and 1.1: Thecallback methods

In the case of the Cabin EJB, therewasonly one cr eat e() method, so there is
only one correspondingej bCr eat e() method and one ej bPost Cr eat e()

Copyright (c) 2001 O'Reilly & Associates 8

method. When a client invokes the cr eat e() method on the remote home
interface, it is delegated to a matching ej bCr eat e() method on the entity
bean instance. The ej bCr eat e() method initializes the fields; in the case of
the Cabi nBean, it setsthe name virtua field.

The ej bCr eat e() method aways returns the primary key type; with con-
tainer-managed persistence, this method returns the nul | value. It's the
container’s responsibility to create the primary key. Why does it return null?
Simply put, it makes it easier for a bean-managed enterprise bean to extend a
container-managed enterprise bean. This is valuable for EJB vendors who
support container-managed persistence beans by extending them with bean-
managed persistence beans implementations — it's a technique that was more
common in EJB 1.1. Bean-managed persistence beans, which are covered in
Chapter 10, always return the primary key type.

Once the ej bCreat e() method has executed, the ej bPost Creat e()

method is called to perform any follow-up operations. The ej bCr eat e() and
ej bPost Cr eat e() methods must have signatures that match the parameters
and (optionally) the exceptions of the home interface’scr eat e() method. The
ej bPost Creat e() method is used to perform any post processing on the
bean after its created, but before it can be used by the client. Both methods will
execute, one right after the other, when the client invokes the create()

method on the remote home interface.

The fi ndByPri maryKey() method is not defined in container-managed
bean classes. Instead, find methods are generated at deployment and
implemented by the container. With bean-managed entity beans (entity beans
that explicitly manage their own persistence), find methods must be defined in
the bean class. In Chapter 10, when you develop bean-managed entity beans,
you will define the find methods in the bean classes you devel op.

The Cabi nBean classimplementsj avax. ej b. Ent i t yBean, which defines
five callback methods: setEntityContext(),
unset EntityContext (), ejbActivate(), ej bPassi vate(),
ej bLoad(), ej bStore(), and ej bRenmove(). The container uses these
callback methods to notify the Cabi nBean of certain events in its life cycle.
Although the callback methods are implemented, the implementations are empty.
The Cabi nBean is simple enough that it doesn’'t need to do any special
processing during its life cycle. When we study entity beans in more detail in
Chapters 6 through 11, we will take advantage of these callback methods.

The Deployment Descriptor

Y ou are now ready to create a deployment descriptor for the Cabi n EJB. The
deployment descriptor performs afunction similar to a propertiesfile. It describes

Copyright (c) 2001 O'Reilly & Associates 9

which classes make up a enterprise bean and how the enterprise bean should be
managed at runtime. During deployment, the deployment descriptor is read and
its properties are displayed for editing. The deployer can then modify and add
settings as appropriate for the application’s operational environment. Once the
deployer is satisfied with the deployment information, he or she uses it to
generate the entire supporting infrastructure needed to deploy the enterprise
bean in the EJB server. This may include adding the enterprise bean to the
naming system and generating the enterprise bean’s EJB object and EJB home,
persistence infrastructure, transactional support, resolving enterprise bean
references, and so forth.

Although most EJB server products provide a wizard for creating and editing
deployment descriptors, we will create ours directly so that the enterprise bean is
defined in a vendor-independent manner.* This requires some manual labor, but it
gives you a much better understanding of how deployment descriptors are
created. Once the deployment descriptor is finished, the enterprise bean can be
placed in aJAR file and deployed on any EJB-compliant server of the appropriate
version.

An XML deployment descriptor for every example in this book has already been
created and is avail able from the download site.

Here's a quick peek at the deployment descriptor for the Cabin EJB, so you can
get afeel for how an XML deployment descriptor is structured and the type of
information it contains:

EJB 2.0: The Cabin EJB’s Deployment Descriptor

<?xnh version="1.0"?>

<IDOXCTYPE gj b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1. 1//BEN' "http://java. sun.contj2ee/ dtds/ejb-jar_2 0.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Cabi nEJB</ €] b- nane>
<hone>comti t an. cabi n. Gabi nHbneRenot e</ hone>
<renot e>comti t an. cabi n. Cabi nRenot e</ r enot e>
<gj b-cl ass>comtit an. cabi n. Cabi nBean</ €j b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey- cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<reent rant >Fal se</reent rant >
<abst r act - schena- nane>Cabi n</ abst r act - schena- nane>
<cnp-fiel d><fi el d- nane>i d</ fi el d- nane></ cnp-fi el d>

4 The workbooks show you how to use the vendor's tools for creating deployment
descriptors.

Copyright (c) 2001 O'Reilly & Associates 10

<cnp-fi el d><fi el d- nane>nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- name>deckLevel </fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>shi pl d</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>bedCount </ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ pri nkey-fiel d>
<security-identity><use-cal |l ers-identity/><security-identity>
<Jentity>
</ enterpri se- beans>
<assenbl y- descri pt or >

</ assenbl y- descri pt or >
<ejb-jar>

EJB 1.1: The Cabin EJB’s Deployment Descriptor
<?xmh version="1.0"?>

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1. 1//BN'" "http://java. sun.conij2ee/dtds/ejb-jar 1 1.dtd">

<gjb-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Cabi NEJB</ €] b- nane>
<hone>com ti t an. cabi n. Gabi nHoneRenot e</ hone>
<renot e>comtitan. cabi n. Gabi nRenot e</ r enot e>
<gj b-cl ass>comti t an. cabi n. Cabi nBean</ gj b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence-t ype>
<pri mkey- cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</reentrant >
<cnp-fi el d><fi el d-name>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- name>nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>deckLevel </ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>shi pl d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>bedCunt </ fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ prinkey-fiel d>
<entity>
</ enterpri se-beans>
<assenfbl y- descri pt or >

</ assenbl y- descri pt or >
<ejb-jar>

EJB 2.0and 1.1: Defining the XML elements

The <! DOCTYPE> element describes the purpose of the XML file, its root
element, and the location of its DTD. The DTD is used to verify that the
document is structured correctly. This element is discussed in detail in
Chapter 16. One important distinction between EJB 2.0 and EJB 1.1 is that they
use different DTD for deployment descriptors. EJB 2.0 specifies the ej b-
jar_2_0.dtd whileEJB 1.1 specifiestheej b-jar_1_1. dtd.

Copyright (c) 2001 O'Reilly & Associates 11

Therest of the XML elements are nested one within the other and are delimited
by a beginning tag and ending tag. The structure is really not very complicated.
If you have done any HTML coding you should already understand the format.
An element always starts with <name of tag> tag and ends with </name of tag>
tag. Everything in between—even other elements—is part of the enclosing
element.

The first major element is the <ej b-j ar > element, which is the root of the
document. All the other elements must lie within this element. Next is the
<enterprise- beans> element. Every bean declared in an XML file must
be included in this section. This file only describes the Cabin EJB, but we could
define several beansin one deployment descriptor.

The<ent i t y> element shows that the beans defined within this tag are entity
beans. Similarly, a <sessi on> element describes session beans; since the
Cabin EJB is an entity bean, we don’t need a <sessi on> element. In addition
to adescription, the<ent i t y> element provides the fully qualified class names
of the remote interface, home interface, bean class, and primary key. The <cnp-
fi el d> elements list all the container-managed fields in the entity bean class.
These are thefields that will be persisted in the database and are managed by the
container at runtime. The <ent i t y> dement also includes a <r eentr ant >
element that can be set as Tr ue or Fal se depending on whether the bean
allows reentrant loopbacks or not.

EJB 2.0 specifiesa nanme which is used in EJB QL to identify the entity bean in
queries. This isn't important right now. The 2.0 deployment descriptor also
specifies <security-identity> as <use-callers-identity>,
which simply means the bean will propagate the calling clients security identity
when access resources or other beans. Thiswas covered in detail in Chapter 3.

The next section of the XML file, after the <ent er pri se- bean> eement, is
enclosed by the <assenbl y-descri pt or> element, which describes the
security roles and transactional attributes of the bean. This section is the same
for both EJB 2.0 and EJB 1.1 in thisexample.

<gjb-jar>
<ent er pri se- beans>

<ent er pri se- beans>
<assentl y- descri pt or >
<security-rol e>
<descri ption>
This role represents everyone who is allowed full access
to the Gabin EIB
</ descri pti on>
<r ol e- nane>ever yone</r ol e- nane>
</security-rol e>

Copyright (c) 2001 O'Reilly & Associates 12

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Cabi NEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner-transacti on>
<net hod>
<gj b- nane>Cabi nEIB</ €j b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y-descri pt or >
<ejb-jar>

It may seem odd to separatethe <assenbl y- descri pt or > information from
the<ent er pri se- beans> information, since it clearly applies to the Cabin
EJB, but in the scheme of thingsit’s perfectly natural. A single XML deployment
descriptor can describe several beans, which might all rely on the same security
roles and transactional attributes. To make it easier to deploy several beans
together, all this common information is separated into the <assenbl y-

descri pt or> element.

There is another reason (perhaps a more important reason) for separating
information about the bean itself from the security roles and transactional
attributes. The Enterprise JavaBeans defines the responsibilities of different
participants in the development and deployment of beans. We don’t address
these development roles in this book because they are not critical to learning the
fundamentals of EJB. For now, it's enough to know that the person who
develops the bean and the person who assembles the beans into an application
have separate responsibilities and therefore separate parts of the XML
deployment descriptor. The bean developer is responsible for everything within
the <ent er pri se- beans> element; the bean assembler is responsible for
everything within the <assenbl y- descri pt or >. Throughout this book we
will play both roles, developing the beans and assembling them. But in a real
project, you might buy a set of beans developed by a third-party vendor, who
would have no idea how you intend to use the beans, what your security
requirements are, etc. Thereisalso the role of deployer, which isthe person who
actually loads the enterprise bean into the EJB container; and the Administrator
who isresponsible for tuning the EJB server and managing it at runtime. In some
projects al these roles may be filled by on or two people, or by several different
individuals or even teams. Again, you'll be assuming all these roles when
reading this book, which is only practical since you can read a book as a team,
but its also practical since you learn the responsibilities of each role anyway.

Copyright (c) 2001 O'Reilly & Associates 13

The <assenbly-descriptor> contains the <security-role>
elements and their corresponding <net hod- per ni ssi on> elements, which
were described in Chapter 3 under “Security.” In this example, there is one
security role, ever yone, which is mapped to al the methods in the Cabin EJB
using the <net hod- per mi ssi on> element. (The* inthe <net hod- nanme>
element means “all methods’). As aready mentioned, for EJB 2.0 you'll have to
specify asecurity-identity; in this caseit’sthe caller’ sidentity.

The container-transaction element declares that all the methods of the Cabin EJB
haveaRequi r ed transactional attribute. Transactional attributes are explained
in more detail in Chapter 14, but for now it means that al the methods must be
executed within a transaction. The deployment descriptor ends with the
enclosing tab of the<ej b-j ar > element.

Copy the Cabin EJB’ s deployment descriptor into the same directory as the class
files for the Cabin EJB files (Cabin.class, CabinHome.class, CabinBean.class,
and CabinPK. class) and save it asgb-jar.xml. Y ou have now created al thefiles
you need to package your EJB 1.1 Cabin EJB. Figure 4-3 shows al the files that
should bein the cabin directory.

[FIGURE]
Figure 4-2: The Cabin EJB files (EJB 1.1)

cabin.jar: The JAR File

The JAR file is a platform-independent file format for compressing, packaging,
and delivering several files together. Based on ZIP file format and the ZLIB
compression standards, the JAR (Java archive) packages and tool were originally
developed to make downloads of Java applets more efficient. As a packaging
mechanism, however, the JAR file format is a very convenient way to “shrink-
wrap” components and other software for delivery to third parties. The original
JavaBeans component architecture depends on JAR files for packaging, as does
Enterprise JavaBeans. The goal in using the JAR file format in EJB is to package
al the classes and interfaces associated with a bean, including the deployment
descriptor into one file. The process of creating an EJB JAR file is dlightly
different between EJB 1.1 and EJB 1.0.

Creating the JAR file for deployment is easy. Position yourself in the dev
directory that is just above the com/titan/cabin directory tree, and execute the
command:

\dev %jar cf cabin.jar comtitan/cabin/*.class META I N+ e b-jar.xm

F\..\dev>jar cf cabin.jar comtitan\cabin*.class META-INR\gj b-jar.xm

Y ou might have to create the META-INF directory first and copy ejb-jar.xml into
that directory. The c option tells the jar utility to create a new JAR file that

Copyright (c) 2001 O'Reilly & Associates 14

contains the files indicated in subsequent parameters. It also tells the jar utility
to stream the resulting JAR file to standard output. The f option tells jar to
redirect the standard output to a new file named in the second parameter
(cabin.jar) . It's important to get the order of the option letters and the
command-line parameters to match. Y ou can learn more about the jar utility and
thej ava. util. zi p packagein Java™ in a Nutshell by David Flanagan, or
Learning Java™ (formerly Exploring Java™), by Pat Niemeyer and Jonathan
Knudsen (both published by O’ Reilly).

Thejar utility createsthefile cabin.jar in the dev directory. If you'reinterested in
looking at the contents of the JAR file, you can use any standard ZIP application
(WinZip, PKZIP, etc.), or you can use the command jar tvf cabin.jar.

Creating a CABIN Tablein the Database

One of the primary jobs of a deployment tool is mapping entity beans to
databases. In the case of the Cabin EJB, we must map its i d, nane,
deckLevel , shi p, and bedCount container-managed fields to some data
source. Before proceeding with deployment, you need to set up a database and
create a CABI N table. You can use the following standard SQL statement to
create a CABI N table that will be consistent with the examples provided in this
chapter:

create table CABIN
(
IDint prinary key,
SHPIDint,
BED GANT i nt,
NAME char (30),
CECK LEVEL i nt

)

This statement creates a CABI N table that has five columns corresponding to
the container-managed fields in the Cabi nBean class. Once the table is created
and connectivity to the database is confirmed, you can proceed with the
deployment process.

Deploying the Cabin EJB

Deployment is the process of reading the bean’s JAR file, changing or adding
properties to the deployment descriptor, mapping the bean to the database,
defining access control in the security domain, and generating vendor-specific
classes needed to support the bean in the EJB environment. Every EJB server
product has its own deployment tools, which may provide a graphical user
interface, a set of command-line programs, or both. Graphical deployment
“wizards’ are the easiest deployment toolsto work with.

Copyright (c) 2001 O'Reilly & Associates 15

A deployment tool reads the JAR file and looks for the gb-jarxml file. In a
graphical deployment wizard, the deployment descriptor elements will be
presented in a set of property sheets similar to those used to customize visual
components in environments like Visual Basic, PowerBuilder, JBuilder, and
Symantec Café. Figure 4-7 shows the deployment wizard used in the REE
Reference Implementation.

[FIGURE]

Figure4-4: J2EE Reference Implementation’ s deployment
wizard

The J2EE Reference Implementation’s deployment wizard has fields and panels
that match the XML deployment descriptor. Y ou can map security roles to users
groups, set the JNDI look up name, map the container-managed fields to the
database, etc.

Different EJB deployment tools will provide varying degrees of support for
mapping container-managed fields to a data source. Some provide very robust
and sophisticated graphical user interfaces, while others are simpler and less
flexible. Fortunately, mapping the Cabi nBean’s container-managed fields to
the CABI Ntableisafairly straightforward process. The documentation for your
vendor’s deployment tool will show you how to create this mapping. Once you
have finished the mapping, you can complete the deployment of the Cabin EJB
and prepareto access it from the EJB server.

Creating a Client Application

Now that the Cabin EJB has been deployed in the EJB server, we want to access
it from aremote client. When we say remote, we are usally talking about a client
application that is located on a different computer, or a different process on the
same computer. In this section, we will create a remote client that will connect to
the EJB server, locate the EJB remote home for the Cabin EJB, and create and
interact with several Cabin EJBs. The following code shows a Java application
that is designed to create a new Cabin EJB, set its nanme, deckLevel , shi p,
and bedCount properties, and then locate it again using its primary key:

package comtitan. cabin;

inport comtitan. cabi n. Gabi nHoneRenot €;
inport comtitan. cabi n. Cabi nRenot €;

inport javax. naming. I nitial Context;

i nport j avax. naning. Gont ext ;

i nport j avax. nam ng. Nam ngExcept i on;
inport java.rnm . Renot eExcepti on;
inport java.util.Properties;

inport javax.rm. Portabl eRenot e(hj ect ;

Copyright (c) 2001 O'Reilly & Associates 16

public class Qient_1 {
public static void main(Sring [] args) {
try {
Gontext jndi Gntext = getlnitia Gntext();
(pj ect ref = jndi Gontext. | ookup("Cabi nHone") ;
Cabi nHoneRenot e hone = (Gabi nHoneRenot e)
Por t abl eRenot e(oj ect . narrow(r ef , Cabi nHoneRenot e. ¢l ass) ;
Cabi nRenot e cabin_1 = hone. create(new I nteger(1));
cabin_1. set Nane("Master Suite");
cabi n_1. set DeckLevel (1);
cabi n_1. set Shi pl d(1);
cabi n_1. set BedGount (3);

Integer pk = new Integer(1);

Cabi nRenot e cabi n_2 = hone. fi ndByPri nar yKey(pk) ;
Systemout. println(cabi n_2. get Nang());
Systemout . println(cabi n_2. get DeckLevel ());
Systemout . println(cabin_2. get Shipld());
Systemout . println(cabi n_2. get BedGunt ());

} catch (java.rni.RenoteException re){re.print SackTrace();}
cat ch (j avax. nam ng. Nam ngExcepti on ne){ne. pri nt S ackTrace();}
catch (javax. g b. O eat eException ce){ce. printSackTrace();}
catch (javax. ej b. A nder Exception fe){fe.printSackTrace();}

}

public static Gontext getlnitial Gontext()
throws j avax. nani ng. Nami ngException {

Properties p = new Properties();
/1 ... Specify the JNO properties specific to the vendor.
return new javax. namng. I nitial Gontext (p);

}

To access an enterprise bean, a client starts by using the INDI package to obtain

a directory connection to a bean’s container. JNDI is an implementation-
independent API for directory and naming systems. Every EJB vendor must
provide directory services that are INDI-compliant. This means that they must
provide a JNDI service provider, which is a piece of software analogous to a
driver in JDBC. Different service providers connect to different directory

services—not unlike JDBC, where different drivers connect to different relational

databases. The method get I ni ti al Cont ext () contains logic that uses

JNDI to obtain a network connection to the EJB server.

The code used to obtain the INDI Cont ext will be different depending on

which EJB vendor you are using. Consult your vendor’s documentation to find
out how to obtain aJNDI Cont ext appropriate to your product. The code used

Copyright (c) 2001 O'Reilly & Associates 17

to obtain a INDI Cont ext in WebSphere, for example, might look something
like the following:

public static Gontext getlnitial Context()
t hrows j avax. nanmi ng. Nam ngExcepti on {

java. util.Properties properties = newjava. util.Properties();
properties. put (j avax. naming. Gntext . PROVDER LR, "iiop:///");
properties. put (j avax. nami ng. Gont ext . | N Tl AL_GONTEXT_FACTCRY,

"comibmejs.ns.jndi.ONnitial GontextFactory");
return new I nitial Gontext (properties);

}
The same method devel oped for BEA’s WebL ogic Server would be different:

public static Gontext getlnitial Gontext()throws javax. nam ng. Nam ngException {

Properties p = new Properties();
p. put (Gont ext. | N TI AL_GONTEXT_FACTCRY,

"webl ogi c. j ndi . Tengahl ni ti al Cont ext Fact ory");
p. put (Cont ext . PROADER LR, "t 3://l ocal host : 7001");
return new j avax. naming. I ni tial Gontext(p);

}

Once a JNDI connection is established and a context is obtained from the
get I ntial Cont ext () method, the context can be used to look up the EJB
home of the Cabin EJB:

The Client_1 application uses the
Port abl eRenpt eCbj ect . narr ow() method as prescribed in EJB 1.1:

(pj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;
Cabi nHone hone = (Gabi nHoneRenot €)
Por t abl eRenot eChj ect . narrow(r ef , Gabi nHoneRenot e. cl ass) ;

The Por t abl eRenpt eCbj ect . narrow() method was first introduced in
EJB 1.1 and continues to be used on remote clients in EJB 2.0. It is needed to
support the requirements of RMI over [IOP. Because CORBA supports many
different languages, casting is not native to CORBA (some languages don’'t have
casting). Therefore, to get a remote reference to Cabi nHoneRenpt e, we must
explicitly narrow the object returned from | ookup() . This has the same effect
as casting and is explained in more detail in Chapter 5.

The name used to find the Cabin EJB’s EJB home is set by the deployer using a
deployment wizard like the one pictured earlier. The INDI name is entirely up to
the person deploying the bean; it can be the same as the bean name set in the
XML deployment descriptor or something completely different.

Copyright (c) 2001 O'Reilly & Associates 18

Creating anew Cabin EJB

Once we have a remote reference to the EJB home, we can use it to create a new
Cabin entity:

|Ca1bi nRenot e cabin_1 = hone. creat e(new I nteger(1));

We create a new Cabi n entity using the create(l nteger id) method
defined in the remote home interface of the Cabin EJB. When this method is
invoked, the EJB home works with the EJB server to create a Cabin EJB, adding
its data to the database. The EJB server then creates an EJB object to wrap the
Cabin EJB instance and returns a remote reference to the EJB object to the client.
The cabi n_1 variable then contains a remote reference to the Cabin EJB we
just created.

We don't need to use the Por t abl eRenpt eObj ect . narr ow() method to
get the EJB object from the home reference, because it was declared as returning
the Cabi n type; no casting was required. We don’'t need to explicitly narrow
remote references returned by f i ndBy Pr i mar yKey () for the same reason.

With the remote reference to the EJB object, we can update the nane,
deckLevel ,shi p, andbedCount of the Cabin EJB:

Cabi nRenot e cabin_1 = hone. create(new I nteger(1));
cabin_1. set Nane(" Master Suite");

cabi n_1. set DeckLevel (1);

cabin 1.setShipld(l);

cabi n_1. set BedGount (3);

Figure 4-11 shows how the relational database table that we created should look
after executing this code. It should contain one record.

[FIGURE]
Figure 4-6: CABIN table with one cabin record

After an entity bean has been created, a client can locate it using the
fi ndByPri maryKey() method in the home interface. First, we create a
primary key of the correct type, in this case | nt eger. When we invoke the
finder method on the home interface using the primary key, we get back a remote
reference to the EJB object. We can now interrogate the remote reference
returned by findByPrimryKey() to get the Cabin EJB’s nane,
deckLevel ,shi p,andbedCount :

Integer pk = new Integer(1);

Cabi nRenot e cabi n_2 = hone. fi ndByPr i nar yKey(pk) ;
Systemout . println(cabi n_2. get Nane());
Systemout . printl n(cabi n_2. get DeckLevel ());
Systemout. println(cabin_2. getShipld());
Systemout . println(cabi n_2. get BedGunt ());

Copyright (c) 2001 O'Reilly & Associates 19

You are now ready to create and run the Cl i ent _1 application against the
Cabin EJB you deployed in earlier. Compile the client application and deploy the
Cabin EJB into the container system. Thenrunthe Cl i ent _1 application.

Exersize 4.1, Developing and deploying the Cabin EJB

When you run the Cl i ent _1 application, your output should look something
like the following:

Master Quite
1
1
3

Congratulations! You just created and used your first entity bean! Of course, the
client application doesn’'t do much. Before going on to create session beans,
create another client that adds some test data to the database. Here we'll create
Cl i ent _2 asamodification of Cl i ent _1 that populates the database with a
large number of cabins for three different ships:

package comtitan. cabin;

inport comtitan. cabi n. Gabi nHbneRenot e;
inport comtitan. cabi n. Gabi nRenot €;

inport javax.naming.Initial Gontext;

i nport j avax. nam ng. Cont ext ;

i nport | avax. nam ng. Nam ngExcept i on;

i nport javax. ej b. O eat eExcepti on;
inport java.rnm.Renot eException;
inport java.util.Properties;

inport javax.rm. Portabl eRenot e(hj ect ;

public class dient_2 {

public static void nain(Sring [] args) {

try {
Qontext jndi Gontext = getlnitial Gntext();

(oj ect ref =

j ndi Gont ext . | ookup(" Cabi nHone™) ;
Cabi nHoneRenot e hone = (Gabi nHoneRenot €)

Por t abl eRenot eChj ect . nar r ow(r ef , Gabi nHoneRenot e. ¢l ass) ;

/1 Add 9 cabins to deck 1 of ship 1.
nakeCabi ns(hone, 2, 10, 1, 1);
/1 Add 10 cabins to deck 2 of ship 1.
nakeCabi ns(hone, 11, 20, 2, 1);
// Add 10 cabins to deck 3 of ship 1.
nakeCabi ns(hone, 21, 30, 3, 1);

/1 Add 10 cabins to deck 1 of ship 2

Copyright (c) 2001 O'Reilly & Associates 20

nakeCabi ns(hone, 31, 40, 1, 2);
/1 Add 10 cabins to deck 2 of ship 2
nakeCabi ns(hone, 41, 50, 2, 2);
/1 Add 10 cabins to deck 3 of ship 2.
nakeCabi ns(hone, 51, 60, 3, 2);

/1 Add 10 cabins to deck 1 of ship 3.
nakeCabi ns(hone, 61, 70, 1, 3);
/1 Add 10 cabins to deck 2 of ship 3.
nakeCabi ns(hone, 71, 80, 2, 3);
/1 Add 10 cabins to deck 3 of ship 3.
nakeCabi ns(hone, 81, 90, 3, 3);
/1 Add 10 cabins to deck 4 of ship 3.
nakeCabi ns(hone, 91, 100, 4, 3);

for (int i =1; i <=100; i++){
Integer pk = new Integer(i);
Cabi nRenot e cabi n = hone. fi ndByPri nar yKey(pk) ;
Systemout. println("PK = "+ +', Ship = "+cabi n. get Shi pl d()
+ ", Deck = "+cabi n. get DeckLevel ()
+ ", BedQunt = "+cabi n. get BedCount ()
+ ", Nane = "+cabin. get Nane());
}

} catch (java.rni. RenoteException re) {re.printSackTrace();}
cat ch (j avax. nanmi ng. Nami ngException ne) {ne.printSackTrace();}
catch (j avax. e b. O eat eException ce) {ce.printSackTrace();}
catch (j avax. € b. FH nder Exception fe) {fe.printSackTrace();}

}

public static javax. namng. Gontext getlnitial Context()
throws j avax. nam ng. Nam ngExcept i on{
Properties p = new Properties();
Il ... Specify the JND properties specific to the vendor.
return new javax. namng. I nitial Gontext (p);

}

public static void makeCabi ns(Gabi nHbneRenot e hone,
int fromd, int told,
int deckLevel , int shipNunber)
throws Renot eException, O eateBxception {

int bc =3
for (int i =fromd; i <=told; i++) {
CGabi nRenot e cabi n = hone. create(new I nteger(i));
int suiteNunber = deckLevel *100+(i-fronid);
cabi n. set Nane(" Sui te "+sui t eNunber) ;
cabi n. set DeckLevel (deckLevel);
bc = (bc==3)72: 3;
cabi n. set BedGunt (bc) ;
cabi n. set Shi pl d(shi pNuriber) ;

Copyright (c) 2001 O'Reilly & Associates 21

}
}
}

Create and runthe Cl i ent _2 application against the Cabin EJB you deployed
inearlier. Cl i ent 2, produces alot of output that lists all the new Cabin EBs
you just added to the database.

PK=1, Ship=1, Deck =1, BedQunt =3, Nane = Master Suite
PK=2 Ship=1, Deck =1, BedGunt =2, Nane = Suite 100
PK=3, Ship=1, Deck =1, BedGunt =3, Nane = Suite 101
PK=4, Ship=1, Deck =1, BedGunt =2, Nane = Suite 102
PK=5 &Ship=1 Deck =1, BedGunt =3, Nane = Suite 103
PK=6, Ship=1, Deck =1, BedGunt =2, Nane = Suite 104
PK =7, Ship=1, Deck =1, BedGunt =3, Nane = Suite 105

You now have 100 cabin records in your CABI N table, representing 100 cabin
entities in your EJB system. This provides a good set of test data for the session
bean we will create in the next section, and for subsequent examples throughout
the book.

Developing a Session Bean

Session beans act as agents to the client, controlling workflow (the business
process) and filling the gaps between the representation of data by entity beans
and the business |ogic that interacts with that data. Session beans are often used
to manage interactions between entity beans and can perform complex
manipul ations of beans to accomplish some task. Since we have only defined one
entity bean so far, we will focus on a complex manipulation of the Cabin EJB
rather than the interactions of the Cabin EJB with other entity beans. In
Chapter 12, after we have had the opportunity to develop other entity beans, the
interactions of entity beans within session beans will be explored in greater
detail.

Client applications and other beans use the Cabin EJB in a variety of ways. Some

of these uses were predictable when the Cabin EJB was defined, but many were

not. After all, an entity bean represents data—in this case, data describing a
cabin. The uses to which we put that data will change over time—hence the
importance of separating the data itself from the workflow. In Titan's business
system, for example, we may need to list and report on cabins in ways that were

not predictable when the Cabin EJB was defined. Rather than change the Cabin

EJB every time we need to look at it differently, we will obtain the information we

need using a session bean. Changing the definition of an entity bean should

only be done within the context of a larger process—for example, a major
redesign of the business system.

Copyright (c) 2001 O'Reilly & Associates 22

In Chapters 1 and 2, we talked hypothetically about a Travel Agent EJB that was
responsible for the workflow of booking a passage on a cruise. This session
bean will be used in client applications accessed by travel agents throughout the
world. In addition to booking tickets, the TravelAgent EJB also provides
information about which cabins are available on the cruise. In this chapter, we
will develop the first implementation of this listing behavior in the Travel Agent
EJB. The listing method we develop in this example is admittedly very crude and
far from optimal. However, this example is useful for demonstrating how to
develop a very simple stateless session bean and how these session beans can
manage other beans. In Chapter 12, we will rewrite the listing method. This “list
cabins” behavior is used by travel agents to provide customers with a list of
cabins that can accommodate the customer’s needs. The Cabin EJB does not
directly support the kind of list, nor should it. The list we need is specific to the
TravelAgent EJB, soit’sthe Travel Agent EJB’ sresponsibility to query the Cabin
EJBs and produce thelist.

You will need to create a development directory for the Travel Agent EJB, as we
did for the Cabin EJB. We name this directory travelagent and nest it below the
com/titan directory, which also contains the cabin directory (see Figure 4-13).

[FIGURE]
Figure4-7: Directory structure for the Travel Agent EJB

You will be placing all the Java files and XML deployment descriptor for the
Travel Agent EJB into this directory.

TravelAgentRemote: The Remote I nterface

As before, we start by defining the remote interface so that our focus is on the
business purpose of the bean, rather than its implementation. Starting small, we
know that the Travel Agent EJB will need to provide a method for listing al the
cabins available with a specified bed count for a specific ship. We'll call that
method | i st Cabi ns() . Since we only need a list of cabin names and deck
levels, we'll definel i st Cabi ns() to return an array of St ri ngs. Here's the
remote interfacefor Tr avel Agent Renpt e:

package comtitan.travel agent;

inport java.rm.Renot eException;
i nport | avax. ej b. A nder Excepti on;

public interface Travel Agent Renot e extends j avax. € b. EJB(pj ect {
Il Sring elements followthe format "id, nane, deck |evel"

public Sring [] listGabins(int shiplD int bedGunt)
throws Renot eExcepti on;

Copyright (c) 2001 O'Reilly & Associates 23

TravelAgentHomeRemotee The Remote Home
Interface

The second step in the development of the Travel Agent EJB bean isto create the
remote home interface. The remote home interface for a session bean defines the
create methods that initialize a new session bean for use by aclient.

Find methods are not used in session beans; they are used with entity beans to
locate persistent entities for use on a client. Unlike entity beans, session beans
are not persistent and do not represent data in the database, so a find method
would not be meaningful; there is no specific session to locate. A session bean
is dedicated to aclient for the life of that client (or less). For the same reason, we
don’t need to worry about primary keys; since session beans don’t represent
persistent data, we don’'t need akey to access that data.

package comtitan.travel agent;

inport java.rm.Renot eException;
inport javax.ej b. O eat eExcepti on;

public interface Travel Agent HoneRenot e ext ends j avax. ej b. EJBrone {
publ i c Travel Agent Renot e create()
throws Renot eException, Q eateException;

}

In the case of the TravelAgent EJB, we only need asimple cr eat e() method
to get a reference to the bean. Invoking this creat e() method returns a
TravelAgent EJB’s remote reference that the client can use for the reservation
process.

TravelAgentBean: The Bean Class

Using the remote interface as a guide, we can define the Tr avel Agent Bean
class that implements the | i st Cabi ns() method. The following code
contains the complete definition of Tr avel Agent Bean for thisexample.

package comtitan. travel agent;

inport comtitan. cabi n. Gabi nRenot €;
inport comtitan. cabi n. Gabi nHbneRenot e;
inport java.rn . Renot eExcepti on;

inport javax.naming. I nitial Gontext;

i nport j avax. nam ng. Cont ext ;

inport java.util.Properties;

inport java. util.Vector;

i nport javax.rm. Portabl eRenot e(hj ect ;
inport j avax. ej b. EJBExcepti on.

Copyright (c) 2001 O'Reilly & Associates 24

public class Travel Agent Bean i npl enents j avax. €j b. Sessi onBean {

public void ejbGeate() {

/1 Do not hi ng.
}
public Sring [] listGabins(int shiplD int bed®unt) {
try {
javax. naning. Gntext jndi Gntext = new Initial Gntext();
(oj ect obj =

j ndi Gont ext . | ookup("j ava: conp/ env/ gj b/ Cabi nHong") ;

Cabi nHoneRenot e hone = (Gabi nHoneRenot e)
Por t abl eRenot e(hj ect . nar r ow(obj , Cabi nHoneRenot e. cl ass) ;

Vector vect = new Vector();
for (int i =1; ; i+H) {
Integer pk = new Integer(i);
CGabi nRenot e cabi n;
try {
cabi n = hone. fi ndByPri nar yKey(pk) ;
} catch(j avax. ej b. FH nder Exception fe) {
br eak;
}
/1 Check to see if the bed count and ship I D natch.
if (cabin.getshipld() = shiplD &
cabi n. get BedGount () = bed@unt) {
Sring details =
i +', "+cabi n. get Nang() +*, " +cabi n. get DeckLevel ();
vect . addH enent (detai |l s);
}
}

Sring [] list = new Sring[vect.size()];
vect . copylnto(list);
return list;

} catch(BException €) {throw new EJBException(e);}
}

private javax. naming. Gontext getlnitial Gontext()

throws j avax. nam ng. Nam ngBxcepti on {
Properties p = new Properties();
[l ... Specify the JND properties specific to the vendor.
return new j avax. naming. I ni tial Gontext(p);

}

publ i c voi d ej bRenove(){}
public void e bActivate(){}
public voi d ej bPassi vate(){}

Copyright (c) 2001 O'Reilly & Associates 25

public voi d set Sessi onQont ext (] avax. €] b. Sessi onCont ext cnt x) {}

}

Examining the |i st Cabi ns() method in detail, we can address the
implementation in pieces, starting with the use of JNDI to locate the
Cabi nHoneRenot e:

javax. namng. Gontext jndi Gontext = new Initial Gontext();
(pj ect obj = jndi Gontext. | ookup("java: conp/ env/ ej b/ Gabi nHone") ;

Cabi nHoneRenot e hone = (Gabi nHoneRenot €)
javax. rni. Port abl eRenot ehj ect . narrow(obj , Cabi nHbneRenot e. cl ass) ;

Beans are clients to other beans, just like client applications. This means that
they must interact with other beans in the same way that client applications
interact with beans. In order for one bean to locate and use another bean, it must
first locate and obtain a reference to the bean’s EJB home. This is accomplished
using JNDI in exactly the same way we used JNDI to obtain a reference to the
CabinEBintheCl i ent _1 andCl i ent _2 applications we developed earlier.

All beans have a default INDI context called the environment context, which was
discussed a little in Chapter 3. The default context exists in the name space
(directory) caled" j ava: conp/ env" and its subdirectories. When the bean is
deployed, any beans it uses are mapped into the subdirectory
"java: conp/ env/ ej b", so that bean references can be obtained at runtime
through a simple and consistent use of the JNDI default context. We'll come
back to this when we take a look at the deployment descriptor for the
Travel Agent EJB below.

In the case of the Cabin and Travel Agent EJBs we are working exclusively with
there remote component interfaces. As you learned in Chapter 2, enterprise
beans may have remote and/or local component interfaces. However, to keep
things simple with this first set of examples, we are working with only the remote
component interfaces — Chapter 5 will explain how this example may have been
implemented with local interfaces.

Once the remote EJB home of the Cabin EJB is obtained, we can useit to produce
a list of cabins that match the parameters passed. The following code loops
through all the Cabin EJBs and produces a list that includes only those cabins
with the ship and bed count specified:

Vector vect = new \Vector();
for (int i =1; ; i+H) {
Integer pk = new Integer(i);
Cabi nRenot e cabi n;
try {
cabi n = hone. fi ndByPri nar yKey(pk) ;
} catch(j avax. e b. F nder Exception fe){
br eak;

Copyright (c) 2001 O'Reilly & Associates 26

}
/1 Check to see if the bed count and ship I D natch.

i f (cabin.getShipld() = shiplD & cabin. get Bed®unt () = bedCGount) {
Sring details = i+","+cabi n. get Nane() +", " +cabi n. get DeckLevel ();
vect . addH enent (detai |l s);

}

}

This method simply iterates through all the primary keys, obtaining a remote
reference to each Cabin EJB in the system and checking whether itsshi pl d and
bedCount match the parameters passed in. The f or loop continues until a
Fi nder Except i on is thrown, which would probably occur when a primary
key is used that isn’t associated with a bean. (This isn’t the most robust code
possible, but it will do for now.) Following this block of code, we simply copy the
Vect or ’scontentsinto an array and return it to the client.

While this is a very crude approach to locating the right Cabin EJBs—we will
define a better method in Chapter 12—it is adequate for our current purposes.
The purpose of this exampleistoillustrate that the workflow associated with this
listing behavior is not included in the Cabin EJB nor is it embedded in a client
application. Workflow logic, whether it's a process like booking a reservation or
obtaining alist, isplaced in a session bean.

TravelAgent EJB’s Deployment Descriptor

The TravelAgent EJB uses an XML deployment descriptor similar to the one
used for the Cabin entity bean. Here is the gb-jar.xml file used to deploy the
TravelAgent. In Chapter 12, you will learn how to deploy several beans in one
deployment descriptor, but for now the TravelAgent and Cabin EJBs are
deployed separately.

EJB 2.0: Deployment Descriptor
<?xmh version="1.0"?>

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN'" "http://java. sun.conij2ee/ dtds/ejb-jar_2 0.dtd">
<ej b-jar>
<ent er pri se- beans>
<sessi on>
<gj b- nane>Tr avel Agent EJB</ g] b- nane>
<hone>comtitan.travel agent . Tr avel Agent HoneRenot e</ hone>
<renot e>comtitan. travel agent . Tr avel Agent Renot e</ r enot e>
<ej b-cl ass>comtitan. travel agent. Tr avel Agent Bean</ gj b- cl ass>
<sessi on-type>S at el ess</ sessi on-t ype>
<transaction-type>ont ai ner </ transacti on-t ype>
<gj b-ref>
<gj b- r ef - nane>ej b/ Gabi nHone</ gj b-r ef - nane>
<gj b-ref-type>Entity</ g b-ref-type>

Copyright (c) 2001 O'Reilly & Associates 27

<hone>Cabi nHoneRenot e</ hone>
<r enot e>Cabi nRenot e</ r enot e>
</ ¢ b-ref>
<security-identity><use-cal | ers-identity/><security-identity>
</ sessi on>
</ enterpri se-beans>
<assentl y- descri pt or >

</ assenbl y-descri pt or >
<ejb-jar>

EJB 1.1: Deployment Descriptor
<?xnh versi on="1.0"?>

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij2ee/dtds/ejb-jar_1 1.dtd">
<gjb-jar>
<ent er pri se- beans>
<sessi on>
<gj b- nane>Tr avel Agent EJB</ g] b- nane>
<horme>comtitan. travel agent . Travel Agent HoneRenot e</ hone>
<renot e>comtitan. travel agent. Tr avel Agent Renot e</ r enot e>
<gj b-cl ass>comtitan. travel agent. Tr avel Agent Bean</ gj b- cl ass>
<sessi on-type>S at el ess</ sessi on-type>
<transacti on-type>ont ai ner </ transacti on-t ype>
<ej b-ref>
<ej b-r ef - nane>ej b/ Cabi nHone</ j b-r ef - nane>
<ej b-ref-type>Entity</ e b-ref-type>
<hone>com ti t an. cabi n. Cabi nHoneRenot e</ hone>
<renot e>comtitan. cabi n. Cabi nRenot e</ r enot e>
< ejb-ref>
</ sessi on>
</ enter pri se- beans>
<assenbl y- descri pt or >

</ assenbl y- descri pt or >
<ejb-jar>

EJB 2.0and 1.1: Definingthe XML elements

The only significant difference between the 2.0 and 1.1 deployment descriptorsis
the name of the DTD and the addition of a <security-identity> element
in EJB 2.0, which simply propagates the caller’ sidentity.

Other than the <session-type> and <ej b-ref> elements, the XML

deployment descriptor should make sense since it uses many of the same
elements as the Cabin EJB’'s. The <session-type> element can be

Copyright (c) 2001 O'Reilly & Associates 28

St at ef ul or St at el ess to indicate which type of session bean is used. In
this case we are defining a statel ess session bean.

The<ej b-r ef > element isused at deployment time to map the bean references
used within the TravelAgent EJB. In this case, the <ej b-ref > eement
describes the Cabin EJB, which we already deployed. The <ej b-r ef - nane>
element specifies the name that must be used by the Travel Agent EJB to obtain a
reference to the Cabin EJB’shome. The <ej b-r ef -t ype> tells the container
what kind of bean itis, Entity or Sessi on. The <honme> and <r enot e>
elements specify the fully qualified interface names of the Cabin’s home and
remote bean interfaces.

When the bean is deployed, the <ej b- r ef > will be mapped to the Cabin EJB in
the EJB server. Thisis avendor-specific process, but the outcome should always
be the same. When the Travel Agent does a INDI lookup using the context name
"java: conp/ env/ ej b/ Cabi nHone" it will obtain a remote reference to
the Cabin EJB’s home. The purpose of the <ej b- r ef > element is to diminate
network specific and implementation specific use of JINDI to obtain remote bean
references. This makes a bean more portable because the network location and
JNDI service provider can change without impacting the bean code or even the
XML deployment descriptor.

However, as you learn in Chapter 5, with EJB 2.0 it's always preferable to use
local references instead of remote references when beans are access each other
with the same server. Local references are specified using the <ej b- | ocal -

r ef > element, which looks just like the <ej b-r ef > element except it is for
local references.

The assenbl y- descri pt or section of the deployment descriptor is the
samefor EJB 2.0and EJB 1.1.

<assentbl y- descri pt or >
<security-rol e>
<descri pti on>
This role represents everyone who is allowed full access
to the Gabin EIB
</ descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<ej b- nane>Tr avel Agent EJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

Copyright (c) 2001 O'Reilly & Associates 29

<cont ai ner-transacti on>
<net hod>
<gj b- nane>Tr avel Agent EJB</ g] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y-descri pt or >
<eb-jar>

Deploying the TravelAgent EJB

Once the XML deployment descriptor is defined you are ready to place the
Travel Agent EJB initsown JAR file and deploy it into the EJB server.

To make your Travel Agent EJB available to a client application, you need to use
the deployment utility or wizard of your EJB server. The deployment utility reads
the JAR file to add the Travel Agent EJB to the EJB server environment. Unless
your EJB server has specia requirements, it is unlikely that you will need to
change or add any new attributes to the bean. You will not need to create a
database table for this example, since the TravelAgent EJB is using only the
Cabin EJB and is not itself persistent. However, you will need to map the <ej b-

r ef > element in the Travel Agent EJB’ s deployment descriptor to the Cabin EJB.

You EJB server's deployment tool will provide a mechanism for doing this.
Deploy the Travel Agent EJB and proceed to the next section.

Use the same process to JAR the Travel Agent EJB as was used for the Cabin
EJB. We shrink-wrap the Travel Agent EJB class and its deployment descriptor
into aJAR file and save to the com/titan/travelagent directory:

\dev %jar cf cabin.jar conmititan/travel agent/*.class META- I N+ g] b-j ar. xnh

F\..\dev>jar cf cabin.jar comtitan\travel agent*.class META- | NR\ gj b-j ar. xn

Y ou might have to create the META-INF directory first, and copy eb-jar.xml into
that directory. The TravelAgent EJB is now complete and ready to be deployed.
Next use your EJB containers proprietary tools to deploy the Travel Agent EJB
into the container system.

Creating a Client Application

To show that our session bean works, we'll create asimple client application that
usesit. This client simply produces alist of cabins assigned to ship 1 with abed
count of 3. Itslogic issimilar to the client we created earlier to test the Cabin EJB:
it creates a context for looking up Tr avel Agent HomeRenot e, creates a
TravelAgent EJB, and invokes| i st Cabi ns() to generate alist of the cabins
available. Here' s the code:

Copyright (c) 2001 O'Reilly & Associates 30

inport comtitan. cabi n. Cabi nHoneRenot €;
inport comtitan. cabi n. Cabi nRenot €

inport javax.nanming. | nitial Gontext;

i nport j avax. naning. Gont ext ;

i nport j avax. nam ng. Nam ngExcept i on;
inport javax.ej b. O eat eExcepti on;
inport java.rm.Renot eExcepti on;
inport java. util.Properties;

inport javax.rm. Portabl eRenot e(hj ect ;

public class Qient_3 {
public staticint SHPID=1;
public static int BED GONT = 3;

public static void main(Sring [] args) {

try {
Gontext jndi Gontext = getlnitia Gontext();

(pj ect ref = jndi Gontext. | ookup("Travel Agent Hone") ;
Travel Agent HoneRenot e hone = (Travel Agent HoneRenot e)
Por t abl eRenot e(oj ect . narrow(r ef , Tr avel Agent HoneRenot e. cl ass) ;

Travel Agent Renot e travel Agent = hone. create();

/] Get alist of all cabins on ship 1 wth a bed count of 3.
Sring list [] = travel Agent.|istCabi ns(SH P_| D BED GONT);

for(int i =0; i <list.length; i++){
Systemout. printin(list[i]);
}

} catch(java. rm . Renot eException re){re.printSackTrace();}
catch(Throwabl e t){t. print SackTrace();}
}
static public Context getlnitial Gontext() throws Exception {
Properties p = new Properties();
/1 ... Specify the JND properties specific to the vendor.
return new I nitial Context(p);

}
}

When you have successfully runCl i ent _3, the output should look like this:

1, Master Quite 1
3, ite 101 1
5, Quite 103 1
7,ite 105 1
9, ite 107 ,1
12, Suite 201 , 2
14, Suite 203 , 2
16, Suite 205 ,2

Copyright (c) 2001 O'Reilly & Associates 31

18, Suite 207 2
20, Suite 209 ,2
22, uite 301 , 3
24, uite 303 .3
26, Suite 305 ,3
28, Suite 307 ,3
30, Suite 309 ,3

You have now successfully created the first piece of the TravelAgent session
bean: a method that obtains alist of cabins by manipulating the Cabin EJB entity.

L) Exercise 4.2, Develop and Deploy the Travel Agent EJB

Copyright (c) 2001 O'Reilly & Associates 32

5

The Client View

Developing the Cabin EJB and the TravelAgent EJB should have raised your
confidence, but it should also have raised a lot of questions. So far, we have
glossed over most of the details involved in developing, deploying, and access-
ing these enterprise beans. In this chapter and the ones that follow, we will
slowly peel away the layers of the Enterprise JavaBeans onion to expose the
details of EJB application development.

This chapter focuses specifically on the client’s view of an EJB system. The
client, whether it is an application or another enterprise bean, doesn’t work
directly with the beans in the EJB system. Instead, clients interact with a set of
interfaces that provide access to beans and their business logic. These interfaces
consist of the INDI API and an EJB client-side API. INDI alows us to find and
access enterprise beans regardless of their location on the network; the EJB
client-side API is the set of interfaces and classes that a developer uses on the
client to interact with enterprise beans.

The best approach to this chapter isto read about a feature of the client view and
then try working with some of the examples to see the feature in action. This will
provide you with hands-on experience and a much clearer understanding of the
concepts. Have fun, experiment, and you'll be sure to understand the
fundamentals.

L ocating Beans with JNDI

In Chapter 4, the client application started by creating an | ni ti al Cont ext,
which it then used to get a remote reference to the homes of the Cabin and
TravelAgent EJBs. The | ni ti al Cont ext is part of a larger API called the

Copyright (c) 2001 O'Reilly & Associates 1

Java Naming and Directory Interface (INDI). We use JNDI to look up an EJB
home in an EJB server just like you might use a phone book to find the home
number of afriend or business associate.

JNDI is a standard Java optional package that provides a uniform APl for
accessing a wide range of services. In this respect, it is somewhat similar to
JDBC, which provides uniform access to different relational databases. Just as
JDBC lets you write code that doesn't care whether it's talking to an Oracle
database or a Sybase database, JNDI lets you write code that can access
different directory and naming services, like LDAP, Novell Netware NDS,
CORBA Naming Service, and the naming services provided by EJB servers. EJB
servers are required to support INDI by organizing beans into a directory
structure and providing a JNDI driver, called a service provider, for accessing
that directory structure. Using JNDI, an enterprise can organize its beans,
services, data, and other resources in a large virtual directory structure, which
can provide a very powerful mechanism for binding together normally disparate
systems.

The great thing about JNDI is that it is virtual and dynamic. JNDI is virtual
because it allows one directory service to be linked to another through simple
URLs. The URLs in JNDI are analogous to HTML links. Clicking on a link in
HTML alows a user to load the contents of a web page. The new web page
could be downloaded from the same host as the starting page or from a
completely different web site—the location of the linked page is transparent to
the user. Likewise, using JNDI, you can drill down through directories to files,
printers, EJB home objects, and other resources using links that are similar to
HTML links. The directories and subdirectories can be located in the same host
or can be physically hosted at completely different locations. The user doesn’t
know or care where the directories are actually located. As a developer or
administrator, you can create virtual directories that span a variety of different
services over many different physical locations.

JNDI is dynamic because it allows the INDI drivers (a.k.a. service providers) for
specific types of directory services to be loaded at runtime. A driver maps a
specific kind of directory service into the standard JNDI class interfaces. Drivers

have been created for LDAP, Novell NetWare NDS, Sun Solaris NIS+, CORBA

Naming Service, and many other types of naming and directory services. When a
link to adifferent directory service is chosen, the driver for that type of directory

service is automatically loaded from the directory’s host, if it is not aready

resident on the user’s machine. Automatically downloading JNDI drivers makes

it possible for a client to navigate across arbitrary directory services without

knowing in advance what kinds of servicesitislikely to find.

JNDI allows the application client to view the EJB server as a set of directories,
like directories in a common filesystem. After the client application locates and
obtains a remote reference to the EJB home using JNDI, the client can use the
EJB home to obtain an EJB object reference to an enterprise bean. In the
Travel Agent EJB and the Cabin EJB, which you worked with in Chapter 4, you

2 Copyright (c) 2001 O'Reilly & Associates

used the methodget | ni ti al Cont ext () togetaJNDI I ni ti al Cont ext
object, which looked as follows:

public static Gontext getlnitial Gontext() throws javax. nam ng. Nam ngException {
Properties p = new Properties();
Il ... Specify the JND properties specific to the vendor.
return new javax. namng. I nitial Gontext (p);

}

An initial context is the starting point for any JNDI lookup—it's similar in
concept to the root of a filesystem. The way you create an initial context is
peculiar, but not fundamentally difficult. You start with a properties table of type
Properti es. Thisisessentially a hash table to which you add various values
that determine the kind of initial context you get.

Of course, as mentioned in Chapter 4, this code will change depending on how
your EJB vendor has implemented JINDI. For WebSphere,
get I ni ti al Cont ext () might look something like this:

public static Gontext getlnitial Gontext()
throws j avax. nam ng. Nani ngExcepti on {

java. util.Properties properties = new java. util.Properties();
properties. put (j avax. nam ng. Gont ext . PROADER WRL, “iiop:///");
properties. put (j avax. naming. Gont ext . | N TI AL GONTEXT _FACTCRY,

"comibmejs.ns.jndi.ONnitial GontextFactory");
return new I nitial Gontext (properties);

}
For BEA's WebL ogic Server, this method would be coded as:

public static Gontext getlnitial Context() throws Exception {
Properties p = new Properties();
p. put (Gontext . | N TI AL_GONTEXT_FACTCRY,
"webl ogi c.jndi. T3l nitial GontextFactory");
p. put (Context . PROADER LR, "t 3://l ocal host : 7001");
return new I nitial Context(p);

}

For a more detailed explanation of JNDI, see O'Reilly’s Java™ Enterprise in a
Nutshell, by David Flanagan, Jim Farley, William Crawford, and KrisMagnusson.

The Remote Client API

Enterprise bean developers are required to provide a bean class, component
interfaces, and for entity beans, a primary key. Of these types, the only the
component interfaces and primary key class ae visible to the client, while the
bean class is not. The component interfaces and primary key contribute to the
client-side APl in EJB. The methods defined in component interfaces as well as

Copyright (c) 2001 O'Reilly & Associates 3

the methods of their supertypes provide the mechanisms that clients use to
interact with an EJB business system.

In EJB 1.1, all clients, whether they are in the same container system or not, must
use the Remote Client API, which means they must use the remote interface and
remote home interface and Java RMI is al their interactions. In EJB 2.0, remote
clients must continue to use the Remote Client API, but enterprise beansthat are
located in the same EJB container system have the option of using the Local
Client API. The Local Client API provideslocal component interfaces and avoids
the restrictions and overhead of the remote client API.

This section examines in more detail the remote component interfaces and the
primary key, as well as other types that make up EJB’s remote client-side API.
This will provide you with a better understanding of how the remote client-side
API is used and its relationship with the bean class on the EJB server. In the
next major section, The Local Client API, the use of local component interfaces
will be examined.

Java RMI-110P

Enterprise JavaBeans 2.0 and 1.1 define an EJB’s remote interfaces in terms of
Java RMI-110P, which enforces compliance with CORBA. In other words, the
underlying protocol used by remote clients to access enterprise beans can be
anything that the vendor wants as long as it supports the types of interfaces and
arguments that are compatible with Java RMI-IIOP. EJB 1.1 only required that
the wire protocol used by vendors utilize types that would be compatible with
Java RMI-11OP. In other words, the interface types and values used in remote
references had to be compliant with the types allowed for Java RMI-11OP. This
ensured that early Java RMI-110OP adopters were supported and makes for a
seamless transition for other vendors who wanted to use real Java RMI-I1OP in
EJB 20. In EJB 2.0, vendor can dtill offer other Java RMI-11OP-compatible
protocols, but in addition to any propritary protocols they support, they must
also support the CORBA I10P 1.2 protocol as defined in the CORBA 2.3.1.

To be compliant with Java RMI-110P types, the EJB vendors have to restrict the
definition of interfaces and argumentsto types that map nicely to IlOP 1.2. These
restrictions are really not all that bad, and you probably won’t even notice them
while developing your beans, but it’simportant to know what they are. The next
few paragraphs discuss the Java RMI-I10OP programming model for both EJB 2.0
andEJB 1.1.

EJB 2.0's local component interfaces are not Java RMI interfaces and do not
have to support 11OP 1.2 or use types compliant with the Java RMI-11OP
protocol. Local component interfaces are discused after remote component
interfaces.

4 Copyright (c) 2001 O'Reilly & Associates

Java RMI Return Types, Parameters, and Exceptions

The supertypes of the remote home interface and remote interface,
javax. ej b. EJBHone and javax.ejb. EJBObject, both extend
java. rm . Renot e. As Renot e interface subtypes, they are expected to
adhere to the Java RM|I specification for Renot e interfaces.

Parameters and return types

As subtypes of the java.rni . Renote interface, the remote component
interfaces must follow several guidelines, some of which apply to the return
types and parameters that are allowed. To be compatible with Java RMI, the
actual return types and parameter types used in the j ava.rm . Renote
interfaces must be primitives, St ri ng types, j ava. rm . Renpt e types, or
serializable types.

Thereis a difference between declared types, which are checked by the compiler,
and actual types, which are checked by the runtime. The types that may be used
in Java RMI are actual types, which are either primitive types, object types
implementing (even indirectly) java.rni.Renote, or object types
implementing (even indirectly)] ava.io. Serializable. The
java.util.Collection type for example, which does not explicitly
extends j ava. i 0. Seri al i zabl e, is a perfectly valid return type for a
remote finder methods, provided that the concrete class implementing
Col | ecti on doesimplement j ava. i 0. Seri al i zabl e. So Java RMI has
no special rules regarding declared return types or parameter types. At runtime, a
typethatisnotaj ava. r m . Renpt e typeisassumed to be seriaizable; if itis
not, an exception is thrown. The actual type passed cannot be checked by the
compiler, it must be checked at the runtime.

Hereis alist of the types that can be passed as parameters or returned in Java
RMI:

Primitives: byte, boolean, char, short, int, long, double, float.

Java serializable types: any class that implements or any interface that
extendsj ava. i o. Seri al i zabl e.

Java RMI remote types. any class that implements or any interface that
extendsj ava. r m . Renot e.

Serializable objects are passed by copy (a.k.a. passed by value), not by reference,
which means that changes in a serialized object on one tier are not automatically
reflected on the others. Objects that implement Renote, like
Cust oner Renot e or Cabi nRenot e, are passed as remote references—
whichisalittle different. A remote referenceis a Renot e interface implemented
by adistributed object stub. When aremote reference is passed as a parameter or
returned from a method, it is the stub that is serialized and passed by value, not
the object server remotely referenced by the stub. In the home interface for the

Copyright (c) 2001 O'Reilly & Associates 5

Travel Agent EJB, thecr eat e() method takes areference to a Customer EJB as
itsonly argument.

public interface Travel Agent HoneRenot e ext ends j avax. ej b. EJBrone {
publ i c Travel Agent Renot e cr eat e(Qust oner Renot e cust oner)
throws Renot eException, O eateException;

}

Thecust oner argument is aremote reference to a Customer EJB that is passed
into the cr eat e() method. When a remote reference is passed or returned in
Enterprise JavaBeans, the EJB object stub is passed by copy. The copy of the
EJB object stub pointsto the same EJB object as the original stub. Thisresultsin
both the enterprise bean instance and the client having remote references to the
same EJB abject. So changes made on the client using the remote reference will
be reflected when the enterprise bean instance uses the same remote reference.
Figure 5-1 and Figure 5-3 show the difference between a serializable object and a
remote reference argument in Java RMI.

[FGURE]
Figure5-1: Serializable argumentsin Java RMI

[FIGURE]
Figure 5-2: Remote reference argumentsin Java RMI

Exceptions

The Java RM| specification states that every method defined in a Renot e inter-
face must throw a java.rm .RenpteException. The
Renot eExcept i on is used when problems occur with the distributed object
communications, like a network failure or inability to locate the object server. In
addition, Renot e interface types can throw any application-specific exceptions
(exceptions defined by the application developer) that are necessary. The
following code shows the remote interface to the Travel Agent EJB discussed in
Chapter 2. This remote interface is similar to the one defined in Chapter 4.
Travel Agent Renote has several remote methods, including
bookPassage(). The bookPassage() method can throw a
Renot eExcepti on (as required), in addition to an application exception,
I nconpl et eConver sati onal St at e.

public interface Travel Agent Renote extends javax. ej b. EJBbj ect {

public void setQuisel 0int cruise)
t hrows Renot eException, H nder Excepti on;
public int getQuisel) throws RenoteException;

publ i ¢ voi d set Gabi nl (i nt cabi n)
throws Renot eException, H nder Excepti on;
public int getCabinlX) throws RenoteBException;

6 Copyright (c) 2001 O'Reilly & Associates

public int getQustonerl () throws RenoteBException;

publ i c Ticket bookPassage(C editCardRenote card, doubl e price)
throws Renot eExcepti on, | nconpl et eGonver sat i onal S at e;

public Sring [] |istAvailabl eCabi ns(int bedGount)
throws Renot eException, | nconpl et eConversati onal S at e;

}
Java RMI-I1OP typerestrictions

In addition to the Java RMI programming model discussed earlier, Java RMI-110P
imposes additional restrictions on the remote interfaces and value types used in
the Remote Client API. These restrictions are born of limitations inherit in the
Interface Definition Language (IDL) upon which CORBA 110P 1.2 is based. The
exact nature of these limitationsis outside the scope of this book. Here are two of
the restrictions; the others, like IDL name collisions, are so rarely encountered
that it wouldn’ t be constructive to mention them.*

Method overloading is restricted; a remote interface may not directly extend
two or more interfaces that have methods with the same name (even if their
arguments are different). A remote interface may, however, overload its own
methods and extend a remote interface with overloaded method names.
Overloading is viewed, here, as including overriding. Figure 5-3 illustrates
both of these situations.

[FIGURE]
Figure 5-3: Overloading rulesfor Remote interface
inheritance in Java RMI-110P

Seridlizable types must not directly or indirectly implement the
j ava. rm . Renot e interface.

Explicit narrowing using PortableRemoteObj ect

In Java RMI-IIOP remote references must be explicitly narrowed using the
javax. rm . Portabl eRenot eObj ect. narrow() method. The typical
practice in Java would be to cast the reference to the more specific type, as
follows:

j avax. namng. Gnt ext j ndi Gont ext ;

Cabi nHoneRenot e hone = (Gabi nHoneRenot) j ndi Gont ext . | ookup(" Cabi nHone") ;

1 To learn more about CORBA |IDL and its mapping to the Java language consult
The Common Object Request Broker: Architecture and Specification and The Java
Language to IDL Mapping available at the OMG site (www.omg.org).

Copyright (c) 2001 O'Reilly & Associates 7

Thej avax. nam ng. Cont ext . | ookup() method returns an Obj ect . In
EJB 2.0's Loca Client API, we can assume that it is legal to cast the return
argument. However, the Remote Client APl must be compatible with Java RMI-
I1OP, which means that clients must adhere to limitations imposed by the [1OP 1.2
protocol. To accommodate all languages, many of which have no concept of
casting, 110OP 1.2 does not support stubs that implement multiple interfaces. The
stub returned in 11OP implements only the interface specified by the return type
of the remote method that was invoked. If the return type is Obj ect , asis the
remote reference returned by the | ookup() method, the stub will only
implement methods specific to the Obj ect type.

Of course, some means for converting a remote reference from a more general
type to a more specific type is essential in an object-oriented environment, so
Java RMI-110OP provides a mechanism for explicitly narrowing references to a
specific type. The javax.rm . Portabl eRenot eObj ect. narrow()
method abstracts this narrowing to provide narrowing in 11OP as well as other
protocols. Remember while the Remote Client API requires that you use Java
RMI-110P reference and argument types, the wire protocol need not be 110OP 1.2.
Other protocols besides 1IOP may also require explicit narrowing. The
Por t abl eRenpt eCbj ect abstracts the narrowing process so that any
protocol can be used.

To narrow the return argument of the Cont ext .| ookup() method to the
appropriate type, we must explicitly ask for a remote reference that implements
the interface we want:

inport javax.rm. Portabl eRenot e(hj ect ;
j avax. namng. Gnt ext j ndi Gont ext ;
(pj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;

Cabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. cl ass) ;

When the nar r ow() method has successfully executed, it returns a stub that
implements the Renot e interface specified. Because the stub is known to
implement the correct type, you canthen use Java's native casting to narrow the
stub to the correct Renot e interface. The narrow() method takes two
arguments: the remote reference that is to be narrowed and the type it should be
narrowed to. The definition of thenar r ow() method is?

package j avax. rni;
public class Portabl eRenot e(hj ect extends j ava. | ang. (pj ect {

public static java.lang. oj ect narrow(java.lang. (oj ect narrowH om

2 Other methods included in the Port abl eRenmpt eObj ect class are not
important to EJB application developers. They are intended for Java RM| devel opers.

8 Copyright (c) 2001 O'Reilly & Associates

java.lang. d ass narrowlo)
throws java.lang. d assCast Excepti on;

}

The nar r ow() method only needs to be used when a remote reference to an
EJB home or EJB object is returned without a specific Renpt e interface type.
Thisoccursin six circumstances:

When a remote EJB home reference is obtained using the
j avax. nam ng. Cont ext . | ookup() method:

(pj ect ref = jndi Gontext. | ookup("Cabi nHone") ;
Cabi nHoneRenot e hone = (Gabi nHoneRenot e)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. ¢l ass) ;

When a remote EJB object reference is obtained using the
j avax. ej b. Handl e. get EJBObj ect () method:

Handle handle = // get handl e

(pj ect ref = handl e. get EJB(pj ect () ;

Cabi nRenot e cabi n = (Cabi nRenot €)

Por t abl eRenot eChj ect . narrow(r ef , Gabi nRenot e. cl ass) ;

When a remote EJB home reference is obtained using the
j avax. ej b. HomeHandl e. get EJBHome () method:

HoneHandl e honeHdle = ... // get hone handl e
EJB+bne ref = honeHll e. get EJBHone() ;
Cabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hoj ect . narrow(ref, Cabi nHoneRenot e. ¢l ass) ;

When a remote EJB home reference is obtained using the
j avax. ej b. EJBMet aDat a. get EJBHone() method:

EJBMet aDat a net alDat a = honeHdl e. get EJIBMWet alDat a() ;
EJB+one ref = net abat a. get EJBHone() ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. ¢l ass) ;

When a remote EJB object reference is obtained from a collection returned
by aremote home interface finder method:

Shi pHoneRenot e shipHone = ... // get ship hone
Enuner ati on enum = shi pHone. f i ndByCapaci t y(2000) ;
vhi | e(enum hasMor eBH enent s()) {
(pj ect ref = enumnext H enent ();
Shi pRenot e ship = (Shi pRenot €)
Por t abl eRenot eChj ect . narrow(ref, Shi pRenot e. cl ass);
/1 do sonething with Ship reference

}

When a wide remote EJB object type is returned from any business method.
Hereis ahypothetical example:

/1 Gficer extends Q ewnan
Shi pRermot e ship = // get Ship renote reference

Copyright (c) 2001 O'Reilly & Associates 9

Q ewnanRenot e crew = shi p. get G ewnan("Burns”, "John", "1st Lieutenant");

GficerRenote burns = (G fi cer Renot e)
Port abl eRenot eChj ect. narrow(crew, G ficer Renot e. cl ass) ;

ThePor t abl eRenpt eCbj ect . narr ow() method is not required when the
remote type is specified in the method signature. Thisistrue of the cr eat e()

methods and find methods in remote home interfaces that return a single bean.
For example, thecr eat e() and f i ndByPri mar yKey() methods defined in
the Cabi nHomeRenot e interface (Chapter4) do not require the use of
nar r ow() method because these methods already return the correct EJB object
type. Business methods that return the correct type do not need to use the
nar r ow() method either, asthe following code illustrates:

/* The Cabi nHoneRenot e. creat e() net hod speci fies
* the Gabin renmote interface as the return type
* so explicit narrowng i s not needed. */

Cabi nRenot e cabi n = cabi nHone. creat e(12345) ;

/* The Cabi nHoneRenot e. fi ndByPri naryKey() nethod specifies
* the Gabin renote interface as the return type

* so explicit narrowing i s not needed.*/

Cabi nRenot e cabi n = cabi nHone. fi ndByPri nar yKey(12345) ;

/* The Shi pRenot e. get O ewnan() busi ness net hod speci fi es
* the Gewran renote interface as the return type
* so explicit narrowng i s not needed. */

The Remote Home I nterface

The remote home interface provides life-cycle operations and metadata for the
bean. When you use JNDI to access a bean, you obtain a remote reference, or
stub, to the bean’s EJB home, which implements the remote home interface.
Every bean type may have one home interface, which extends the
j avax. ej b. EJBHon® interface.

Hereisthe EJBHone interface:

public interface javax.ej b. EJB-bne extends java.rm . Renote {
public abstract EIJBWetaData get EJBMet aDat a()
throws Renot eExcepti on;
publ i ¢ HoneHandl e get HoneHandl e() /l newin 1.1
throws Renot eExcepti on;
public abstract void renove(Handl e handl e)
throws Renot eExcepti on, RenoveExcepti on;
public abstract voi d renove(ject prinaryKey)
throws Renot eExcepti on, RenoveExcepti on;

10 Copyright (c) 2001 O'Reilly & Associates

G ewnanRenot e crew = shi p. get @ ewnan("Burns", "John", "1st Lieutenant");

Removing beans

The EJBHome. r enove() methods are responsible for deleting an enterprise
bean. The argument is either the j avax. ej b. Handl e of the enterprise bean
or, if it'san entity bean, its primary key. The Handl e will be discussed in more
detail later, but it is essentially a serializable pointer to a specific enterprise bean.
When either of the EJBHome. r enove() methods are invoked, the remote
reference to the enterprise bean on the client becomes invalid: the stub to the
enterprise bean that was removed no longer works. If for some reason the
enterprise bean can’'t be removed, aRenpveExcept i on isthrown.

The impact of the EJBHome. r enove() on the enterprise bean itself depends
on the type of bean. For session beans, the EJBHome. r enove() methods
end the session’s serviceto the client. When EJBHone. r enove() isinvoked,
the remote reference to the session beans becomes invalid, and any
conversational state maintained by the session bean is lost. The Travel Agent
EJB you created in Chapter 4 is stateless, so no conversational state exists (more
about thisin Chapter 7).

When ar enove() method isinvoked on an entity bean, the remote reference
becomes invalid, and any data that it represents is actually deleted from the
database. This is a far more destructive activity because once an entity bean is
removed, the data that it represents no longer exists. The difference between
using a renove() method on a session bean and using renove() on an
entity bean is similar to the difference between hanging up on a telephone
conversation and actually killing the caller on the other end. Both end the
conversation, but the end results are alittle different.

The following code fragment is taken from the mai n() method of a client
application that is similar to the clients we created to exercise the Cabin and
TravelAgent EJBs. It shows that you can remove enterprise beans using a
primary key (entity only) or ahandle. Removing an entity bean deletes the entity
from the database; removing a session bean results in the remote reference
becoming invalid.

Qontext jndi Gontext = getlnitial Gontext();
// htain alist of all the cabins for ship 1 wth bed count of 3.

oj ect ref = jndi Gontext. | ookup(”Travel Agent Hone");
Travel Agent HoneRenot e agent Hone = (Travel Agent HoneRenot €)
Por t abl eRenot e(oj ect . narrow(r ef , Travel Agent HoneRenot e. cl ass) ;

Travel Agent Renot e agent = agent Hone. create() ;
Sring list [] = agent.listGbins(1,3);
Systemout . printIn("1st List: Before del eting cabi n nunber 30");
for(int i =0; i <list.length; i++){
Systemout. printIn(list[i]);
}

Copyright (c) 2001 O'Reilly & Associates 11

// (btain the hone and renove cabin 30. Rerun the sane cabin |ist.

ref = jndi Gontext. | ookup("Cabi nHone");
Cabi nHoneRenot e ¢_hone = (CGabi nHoneRenot €)
Por t abl eRenot eCj ect . narrow(ref, Cabi nHoneRenot e. ¢l ass) ;

Integer pk = new I nteger(30);
c_hone. renove(pk) ;
list = agent.listCabins(l,3);
Systemout. printin("2nd List: After del eting cabin nunber 30");
for (int i =0, i <list.length;, i++) {
Systemout. printIn(list[i]);

}

First, the application creates alist of cabins, including the cabin with the primary
key 30. Then it removes the Cabin EJB with this primary key and creates the list
again. The second time the iteration is performed, cabin 30 will not listed.
Because it wasremoved, thel i st Cabi n() method was unable to find a cabin
with a primary key equal to 30, so it stopped making the list. The bean, including
its data, is no longer in the database.

Y our output should look something like the following:

1st List: Before del eting cabi n nunber 30
1, Master Quite .1
3, Suite 101
5 Suite 103
7,Suite 105
9, Suite 107
12, Suite 201
14, uite 203
16, Suite 205
18, uite 207
20, Suite 209
22,Suite 301
24, Suite 303
26, Suite 305
28, Suite 307
30, Suite 309 ,3
2nd List: After del eting cabin nunber 30
1, Master Quite .1
3, Suite 101 1
5 Suite 103 1

1

1

e

WWWWNNDNDNDN

7, uite 105 :

9, Quite 107 ,

12, Quite 201 2
14, uite 203)
16, uite 205)
18, Quite 207 2
20, Qi te 209 2
22, Suite 301 3

12 Copyright (c) 2001 O'Reilly & Associates

24, Suite 303 ,3

26, Suite 305 ,3
28, Quite 307 , 3
Bean metadata
EJBHone. get EJBMet aDat a() returns an instance of

j avax. ej b. EJBMet aDat a that describes the remote home interface, remote
interface, and primary key classes, plus whether the enterprise bean is a session
or entity bean®. This type of metadata is valuable to Java tools like IDEs that
have wizards or other mechanisms for interacting with an enteprise bean from a
client’s perspective. A tool could, for example, use the class definitions provided
by the EJBMet aDat a with Java reflection to create an environment where
deployed enterprise beans can be “wired” together by developers. Of course,
information such as the JNDI names and URLSs of the enterprise beans is also
needed.

Most application developers rarely use the EJBMet aDat a. Knowing that it's
there, however, is valuable when you need to create automatic code generators
or some other automatic facility. In those cases, familiarity with the Reflection
APl is necessary.! The following code shows the interface definition for
EJBMet aDat a. Any class that implements the EJBMet aDat a interface must
be serializable; it cannot be a stub to a distributed object. This dlows IDEs and
other toolsto save the EJBMet aDat a for later use.

public interface javax.ejb. EJBMet abat a {
publ i c abstract EJBrbne get EJB-bne();
public abstract dass getHonel nterfaced ass();
public abstract dass getPrinarykeyd ass();
public abstract dass get Renotel nterfaced ass();
public abstract bool ean i sSession();

}

The following code shows how the EJBMet aDat a for the Cabin EJB could be
used to get more information about the enterprise bean. Notice that there is no
way to get the bean class using the EJBMet aDat a; the bean class is not part
of the client API and therefore doesn’t belong to the metadata.

Gontext jndi Gntext = getlnitia Gntext();
oj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;

Cabi nHoneRenot e ¢_hone = (CGabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. ¢l ass) ;

3 Message-driven beansin EJB 2.0 don’t have component interfaces and can’t be accessed
by Java RMI-110P.

4 The Reflection API is outside the scope of this book, but it is covered in
Java™ in a Nutshell, by David Flanagan (O’ Reilly).

Copyright (c) 2001 O'Reilly & Associates 13

EJBWet aDat a neta = ¢_hone. get EJBMVet alat a() ;

Systemout . printl n(net a. get Honel nt er f aced ass() . get Nang()) ;
Systemout . printl n(net a. get Renot el nt er f aced ass() . get Nane()) ;
Systemout . println(neta. get Pri nar yKeyd ass() . get Nane()) ;
Systemout. println(neta.isSession());

This application creates output like the following:

comtitan. cabi n. Gabi nHone
comtitan. cabi n. Gabi n
comtitan. cabi n. Gabi nPK
fal se

In addition to providing the class types of the enterprise bean, the
EJBMet aDat a also makes available the remote EJB home for the bean. By
obtaining the remote EJB home from the EJBMet aDat a, we can obtain
references to the remote EJB object and perform other functions. In the following
code, we use the EJBMet aDat a to get the primary key class, create a key
instance, obtain the remote EJB home, and from it, get a remote reference to the
EJB object for a specific cabin entity:

A ass prinkeyType = neta. get Pri naryKeyd ass();
I f (prinket Type instanceof java.lang.|nteger){
Integer pk = new Integer(1);

(pj ect ref = neta. get EJB-bne() ;
Cabi nHoneRenot e ¢_hone2 = (CGabi nHoneRenot e)
Por t abl eRenot e(oj ect . nar row(r ef , Cabi nHoneRenot e. ¢l ass) ;

Cabi nRenot e cabi n = ¢_hone2. fi ndByPri nar yKey(pk) ;
Systemout . print| n(cabin. get Nane()) ;

}
TheHomeHandle

EJB 1.1 provides a new object called a HoneHandl e, which is accessed by
calling the EJBHone. get HonmeHandl e() method. This method returns a
j avax. ej b. HonmeHandl e object that provides a serializable reference to an
enterprise bean’s remote home. The HonmeHandl e alows a remote home
reference to be stored and used later. It is similar to the j avax. ej b. Handl e
and is discussed in more detail alittle later.

Creating and finding beans

In addition to the standard j avax. ej b. EJBHone methods that all remote
home interfaces inherit, remote home interfaces also include special create and
find methods for the bean. We have already talked about create and find
methods, but a little review will solidify your understanding of the remote home
interface’s role in the Remote Client API. The following code shows the remote
home interface defined for the Cabin EJB:

14 Copyright (c) 2001 O'Reilly & Associates

public interface Cabi nHoneRenot e extends j avax. ej b. EJBHone {
publ i ¢ Cabi nRenot e creat e(l nteger id)
throws O eateException, RenoteException;

publ i ¢ Gabi nRenot e fi ndByPri naryKey(| nteger pk)
throws H nder Exception, RenoteException;

}

Create methods throw a Cr eat eExcept i on if something goes wrong during
the creation process; find methods throw a Fi nder Exception if the
requested bean can’t be located. Since these methods are defined in an interface
that subclasses Renpte, they must aso declare that they throw
Renot eExcept i on.

The create and find methods are specific to the enterprise bean, so it is up to the
bean developer to define the appropriate create and find methods in the remote
home interface. Cabi nHoneRenot e currently has only one create method that
creates a cabin with a specified ID and a find method that 1ooks up an enterprise
bean given its primary key, but it's easy to imagine methods that would create
and find a cabin with particular properties—for example, a cabin with three beds,
or adeluxe cabin with blue wallpaper.

Only entity beans have find methods; session beans do not. Entity beans
represent unique identifiable data within a database and therefore can be found.
Session beans, on the other hand, do not represent data: they are created to
serve a client application and are not persistent, so there is nothing to find. A
find method for a session bean would be meaningless.

In EJB 2.0, the create methods were expanded so that a method name could be
used as suffix. In other words, all create methods may take the form
creat e<SUFFI X>() . For example, the Customer EJB might define a remote
home interface with several create methods, each of which take a different String
type parameters, but have different methods names.

public interface QustonerHone extends javax. ej b. EJB-one {

publ i ¢ Qust oner Renot e creat eWt hSSN(I nteger id,
Sring soci al SecurityNunier)
throws O eat eException, RenoteException;

publ i ¢ Qust oner Renot e creat eWt hPl N[I nt eger per sonal | dN\ubner)
throws O eat eException, RenoteException;

publ i ¢ Qust oner Renot e creat eWt hBLN(I nt eger id,
Sring busi nessLi censeNunber)
throws O eateException, RenoteException;

public Qustoner findByPrinaryKey(lnteger id)
throws H nder Exception, RenoteException;

Copyright (c) 2001 O'Reilly & Associates 15

While the use of asuffix in the create method namesin EJB 2.0 isalowed itis not
required. EJB 1.1 doesn’t support the use of suffixesin create method names.

The create and find methods defined in the remote home interfaces are
straightforward and can be easily employed by the client. The create methods on
the home interface have to match the ej bCr eat e() methods on the bean
class. create() and ej bCreate() match when they have the same
parameters, when the arguments are of same type and in the same order, and
when their method names are the same.

This way, when a client calls the create method on the home interface, the call
can be delegated to the corresponding ej bCr eat e() method on the bean
instance. The find methods in the home interface work similarly for bean-
managed entities in EJB 2.0 and 1.1. Every fi nd<SUFFI X>() method in the
home interface must correspond to an ej bFi nd<SUFFI X>() method in the
bean itself. Container-managed entities do not implement ej bFi nd() methods
in the bean class; the EJB container supports find methods automatically. You
will discover more about how to implement the ebj Create() and
ej bFi nd() methodsin the bean in Chapters 6 and 8.

The Remote I nterface

The business methods of an enterprise bean can be defined by the remote
interface provided by the enterprise bean developer. The
j avax. e] b. EJBObj ect interface, which extendsthe j ava. r m . Renot e
interface, isthe base classfor all remote interfaces.

The following code is the remote interface for the TravelAgent bean that we
developed in Chapter 4:

public interface Travel Agent Renote extends javax. ej b. EJB(bj ect {

public Sring [] listGabins(int shiplD int bedCunt)
throws Renot eBExcepti on;

}

Figure 5-7 showsthe Tr avel Agent Renot e interface' sinheritance hierarchy.

[FIGURE see modified figure 5-4]
Figure 5-4: Enterprise bean interface inheritance hierarchy

Remote interfaces are focused on the business problem and do not include
methods for system-level operations such as persistence, security, concurrency,
or transactions. System-level operations are handled by the EJB server, which
relieves the client developer of many responsibilities. All remote interface
methods for beans must throw, a the very least, a
java.rm . Renot eExcepti on, which identifies problems with distributed
communications. In addition, methods in the remote interface can throw as many
custom exceptions as needed to indicate abnormal business-related conditions or

16 Copyright (c) 2001 O'Reilly & Associates

errors in executing the business method. You will learn more about defining
custom exceptionsin Chapters 12 and 14.

Exercise 5.1, The remote component interfaces

EJBODbject, Handle, and Primary Key

All remote interfaces extend the j avax. ej b. EJBObj ect interface, which
provides a set of utility methods and return types. These methods and return
types are valuable in managing the client’s interactions with beans. Here is the
definition for the EJBObj ect interface:

public interface javax. e b. EJB(bj ect extends java.rni.Renote {
publ i c abstract EJBrone get EJB-bne()
throws Renot eExcepti on;
publ i c abstract Handl e get Handl e()
throws Renot eExcepti on;
public abstract (pject getPrinaryKey()
throws Renot eExcept i on;
public abstract bool ean isldentical (EJBOj ect obj)
throws Renot eExcepti on;
publ i c abstract void renove()
t hrows Renot eException, RenoveExcepti on;

}

When the client obtains a reference to the remote interface, it is actualy
obtaining a remote reference to an EJB object. The EJB object implements the
remote interface by delegating business method calls to the bean class; it
providesits own implementations for the EJBObj ect methods. These methods
return information about the corresponding bean instance on the server. As
discussed in Chapter2, the EJB object is automatically generated when
deploying the bean in the EJB server, so the bean developer doesn’t need to
write an EJBObj ect implementation.

Getting the EJBHome

The EJBObj ect . get EJBHome () method returns a remote reference to the
EJB home for the bean. The remote reference is returned as a
j avax. e] b. EJBHone object, which can be narowed to the specific
enterprise bean’s remote home interface. This method is useful when an EJB
object has left the scope of the remote EJB home that manufactured it. Because
remote references can be passed as references and returned from methods, like
any other Java object on the remote client, a remote reference can quickly find
itself in a completely different part of the application from its remote home. The
following code is contrived, but it illustrates how a remote reference can move
out of the scope of its home and how get EJBHome() can be used to get a new
reference to the EJB home at any time:

|pub|ic static void main(Sring [] args) {

Copyright (c) 2001 O'Reilly & Associates 17

try {
Qontext jndi Gontext = getlnitial Gntext();

(oj ect ref = jndi Gontext. | ookup(" Travel Agent HoneRenot €") ;
Travel Agent HoneRenot e hone = (Tr avel Agent HoneRenot e)
Por t abl eRenot e(hj ect . narrow(ref , Travel Agent HoneRenot e. cl ass) ;

/1l Get arenote reference to the bean (EJB object).
Travel Agent Renot e agent = hone. create();

/1 Pass the renote reference to sone net hod.

get TheEJBHone(agent) ;

} catch (java.rni.RenoteException re){re.print SackTrace();}
catch (Throwabl e t){t. printSackTrace();}
}

public static void get TheEIB-bne(Tr avel Agent Renot e agent)
throws Renot eException {

/] The hone interface is out of scope in this nethod,
/1 so it nust be obtained fromthe EIB object.
/1 BEJB 1.0: Wse native cast instead of narrow()
(oj ect ref = agent. get EJB-bne() ;
Travel Agent HoneRenot e hone = (Tr avel Agent HoneRenot e)
Por t abl eRenot e(hj ect . narrow(r ef , Tr avel Agent HoneRenot e. cl ass) ;
/1 Do sonething useful wth the hone interface.

}
Primary key

EJBObj ect . get Pri mar yKey () returns the primary key for an entity bean.
This method is only supported by EJB objects that represent entity beans. Entity
beans represent specific data that can be identified using this primary key.
Session beans represent tasks or processes, not data, so a primary key would be
meaningless. To better understand the nature of a primary key, we need to ook
beyond the boundaries of the client’s view into the EJB container’s layer, which
wasintroduced in Chapters 2 and 3.

The EJB container is responsible for persistence of the entity beans, but the
exact mechanism for persistence is up to the vendor. In order to locate an
instance of abean in apersistent store, the data that makes up the entity must be
mapped to some kind of unique key. In relational databases, data is uniquely
identified by one or more column values that can be combined to form a primary
key. In an object-oriented database, the key wraps an object ID (OID) or some
kind of database pointer. Regardless of the mechanism—which isn't really
relevant from the client’s perspective—the unique key for an entity bean’s data
is encapsulated by the primary key, which is returned by the
EJBObj ect . get Pri mar yKey() method.

The primary key can be used to obtain remote references to entity beans using
thefi ndByPri mar yKey() method on the remote home interface. From the

18 Copyright (c) 2001 O'Reilly & Associates

client’s perspective, the primary key object can be used to identify a unique
entity bean. Understanding the context of a primary key's uniqueness is
important, as the following code shows:

Qontext jndi Gontext = getlnitial Gontext()

(oj ect ref = jndi Gontext . | ookup(" Cabi nHoneRenot e") ;
Gabi nHoneRenot e hone = (Gabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Gabi nHoneRenot e. cl ass) ;

Cabin cabin 1 = hone. creat e(101);
Integer pk = (Integer)cabin 1. get PrinaryKey();
CGabi n cabi n_2 = hore. fi ndByPri nar yKey(pk) ;

In this code, the client creates a Cabin EJB, retrieves its primary key and then
uses the key to get a new reference to the same Cabin EJB. Thus, we have two
variables, cabi n_1 and cabi n_2, which are remote references to EJB objects.
These both reference the same Cabin bean, with the same underlying data,
because they have the same primary key.

The primary key must be used for the correct bean in the correct container. While
this seems fairly obvious, the primary key’s relationship to a specific container
and home interface is important. The primary key can only be guaranteed to
return the same entity if it is used within the container that produced the key. As
an example, imagine that a third-party vendor sells the Cabin EJB as a product.
The vendor sells the Cabin EJB to both Titan and to a competitor. Both
companies deploy the entity bean using their own relational databases with their
own data. Anl nt eger primary key with value of 20 in Titan's EJB system will
not map to the same Cabin entity in the competitor’s EJB system. Both cruise
companies have a Cabin bean with a primary key equal to 20, but they represent
different cabins for different ships. The Cabin EJBs come from different EJB
containers, so their primary keys are not equivalent. Every entity EJB object has
a unique identity with its EJB home. If two EJB objects have the same home and
same primary key, they are considered identical.

A primary key must implement the j ava. i 0. Seri al i zabl e interface. This
means that the primary key, regardless of its form, can be obtained from an EJB
object, stored on the client using the Java serialization mechanism, and
deserialized when needed. When a primary key is deserialized, it can be used to
obtain a remote reference to that entity using fi ndByPri maryKey(),
provided that the key is used on the right remote home interface and container.
Preserving the primary key using serialization might be useful if the client
application needs to access specific entity beans at alater date.

Thefollowing code shows aprimary key that is serialized and then deserialized to
reobtain aremote reference to the same bean:

/] btain cabin 101 and set its nane.
Gontext jndi Gntext = getlnitia Gntext();

Copyright (c) 2001 O'Reilly & Associates 19

oj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Cabi nHoneRenot e. ¢l ass) ;

Integer pk_1 = new I nteger(101);
Cabin cabin_1 = hone. fi ndByPri nar yKey(pk_1);
cabin 1. setName("Presidential Suite");

/1l Serialize the prinary key for cabin 101 to a file.

F leQitputSreamfos = new F | eQut put S rean{" pk101. ser");
(oj ect Qut put St ream out Sream = new (bj ect Qut put S reangfos);
out SreamwiteQj ect (pk_1);

out Sreamfl ush();

out S reamcl ose();

pk_ 1 =null;

/1 Deserialize the prinary key for cabin 101.
FlelnputSreamfis = new F | el nput & reang " pk101. ser");
(pj ect I nput SreaminSream= new (oj ect | nput S rean{fis);
Integer pk_2 = (Integer)inSreamreadject();
inSreamcl ose();

/!l Re-obtain a renote reference to cabin 101 and read its nane.
Cabi n cabin 2 = hone. fi ndByPri nar yKey(pk 2);
Systemout . println(cabi n_2. get Nane());

Comparing beansfor identity

TheEJBObj ect . i sl denti cal () method compares two EJB object remote
references. It’s worth considering why Obj ect . equal s() isn't sufficient for
comparing EJB objects. An EJB object is a distributed object stub and therefore
contains a lot of networking and other state. As a result, references to two EJB
objects may be unequal, even if they both represent the same unique bean. The
EJBObj ect . i sldentical () method returns true if two EJB object
references represent the same bean, even if the EJB object stubs are different
object instances.

The following code shows how this might work. It starts by creating two remote
references to the Travel Agent EJB. These remote EJB objects both refer to the
same type of enterprise bean; comparing them with i sl denti cal () returns
t r ue. Thetwo Travel Agent EJBs were created separately, but because they are
stateless they are considered to be equivalent. If TravelAgent EJB had been a
stateful bean (which it becomes in Chapter 12) the outcome would have been
very different. Comparing two stateful beans in this manner will resultinf al se
because stateful beans have conversational state, which makes them unique.
When we use Cabi nHone. fi ndByPri maryKey() to locate two EJB
objects that refer to the same Cabin entity bean, we know the entity beans are
identical, because we used the same primary key. In this case,
i sldentical () aso returns true because both remote EJB object
references point to the same entity.

20 Copyright (c) 2001 O'Reilly & Associates

Qontext ctx = getlnitial Gntext();

(oj ect ref = ctx. | ookup("Travel Agent HoneRenot €") ;
Travel Agent HoneRenot e agent Hone =(Tr avel Agent HoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Travel Agent HoneRenot e. cl ass) ;

Travel Agent Renot e agent _1 = agent Hone. creat e() ;
Travel Agent Renot e agent _2 = agent Hone. creat e() ;

bool ean x = agent _1.isldentical (agent_2);

/Il x wll equal true; the two EIB objects are equal .

ref = ctx. | ookup(" Cabi nHoneRenot ") ;
Cabi nHoneRenot e ¢_hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, GCabi nHoneRenot e. cl ass) ;

Integer pk 1 = new I nteger(101);

Integer pk 2 = new I nteger(101);

Gabi n cabin 1 = c_hone. fi ndByPri nar yKey(pk_1);

Gabi n cabin 2 = c_hone. fi ndByPri nar yKey(pk_2);

X = cabin_1.isldentical (cabin_2);

/1 x wll equal true; the two EIB objects are equal .

The Integer primary key used in the Cabin bean is simple. More complex custom
defined primary keys require us to override Obj ect.equal s() and
Obj ect . hashCode() in order for the EJBObj ect.i sl dentical ()

method to work. Chapter9 discusses this the development of more complex
custom primary keys, which are called compound primary keys.

Removing beans

The EJBCbj ect . remove() method is used to remove the session or entity
bean. The impact of this method is the same as the EJBHone. r enove()
method discussed previously. For session beans, renove() causes the
session to be released and the remote EJB object reference to become invalid. For
entity beans, the actual entity data is deleted from the database and the remote
reference becomes invalid. The following code shows the
EJBCbj ect . renmove() methodin use:

Gontext jndi Gntext = getlnitia Gntext();

oj ect ref = jndi Gontext. | ookup(" Cabi nHone") ;
Cabi nHoneRenot e ¢_hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Cabi nHoneRenot e. cl ass) ;

Integer pk = new | nteger(101);
CGabi nRenot e cabi n = ¢_hone. fi ndByPri nar yKey(pk);
cabi n. renove();

Ther enove() method throws a RenoveExcept i on if for some reason the
reference can't be deleted.

Copyright (c) 2001 O'Reilly & Associates 21

Theenterprisebean handle

The EJBObj ect . get Handl e() method returns a j avax. ej b. Handl e
object. The Handl e is a serializable reference to the remote EJB object. This
means that the client can save the Handl e object using Java serialization and
then deserialize it to reobtain a reference to the same remote EJB object. Thisis
similar to serializing and reusing the primary key. The Handl e alows us to
recreate a remote EJB object reference that points to the same type of session
bean or the same unique entity bean that the handle came from.

Hereistheinterface definition of the Handl e:

public interface javax.ejb. Handl e {
public abstract EIJBObj ect get EJIBMj ect ()
throws Renot eExcepti on;

}

The Handl e interface specifies only one method, get EJBObj ect () . Cdling
this method returns the remote EJB object from which the handle was created.
Once you' ve gotten the object back, you can narrow it to the appropriate remote
interface type. The following code shows how to serialize and deserialize the EJB
Handl e onaclient:

/] btain cabin 100.
Gontext jndi Gntext = getlnitia Gntext();

(pj ect ref = jndi Context. | ookup("Cabi nHone") ;
Cabi nHoneRenot e hone = (CGabi nHoneRenot €)
Por t abl eRenot e(oj ect . narrow(r ef , Cabi nHoneRenot e. ¢l ass) ;

Integer pk_1 = new I nteger(101);
Gabi nRenot e cabin_1 = hone. fi ndByPri nar yKey(pk_1);

/1 Serialize the Handle for cabin 100 to a file.

Handl e handl e = cabi n_1. get Handl e();

FHleQutputSreamfos = new FH | eQut put S reang " handl €100. ser™);
j ect Qut put S ream out S ream = new (bj ect Qut put S reangf os);
out Sreamw it el ect (handl e);

out Sreamfl ush();

fos. cl ose();

handl e = nul | ;

/] Deserialize the Handl e for cabin 100.

FHlelnput Sreamfis = new F | el nput S r eang " handl e100. ser");
j ect | nput S reaminS ream= new (bj ect | nput Srean{fis);
handl e = (Handl €)i nS reamreadj ect ();

fis.close();

// Reobtain a renote reference to cabin 100 and read its nane.

ref = handl e. get EJBOyj ect () ;
Cabi nRenot e cabin 2 = (Cabi nRenot e)

22 Copyright (c) 2001 O'Reilly & Associates

Por t abl eRenot eChj ect . narrow(ref, Cabi nRenot e. cl ass) ;

if(cabin_1.isldentical (cabin 2))
/1 this wll always be true.

At first glance, the Handl e and the primary key appear to do the same thing,
but in truth they are very different. Using the primary key requires you to have
the correct remote EJB home—if you no longer have a reference to the EJB
remote home, you must look up the container using JNDI and get a new home.
Only thencanyoucall f i ndByPri mar yKey() to locate the actual enterprise
bean. The following code shows how this might work:

/1 btain the prinary key froman input stream
Integer prinarykey = (Integer)inSreamreadject();

/1 The JNO APl is used to get aroot directory or initial context.
javax. namng. Gntext ctx = new javax. naming.lnitia Gntext();

/1 Wsing the initial context, obtain the EJB-bne for the Gabin bean.
yj ect ref = ctx. | ookup(" Cabi nHone") ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)

Por t abl eRenot e(oj ect . nar row(r ef , Gabi nHoneRenot e. cl ass) ;

/l htain a reference to an EJB object that represents the entity instance.
Cabi nRenot e cabi n_2 = Cabi ntone. fi ndByPri nar yKey(pri nar ykey) ;

The Handl e object is easier to use because it encapsulates the details of doing
a JNDI lookup on the container. With a Handl e, the correct EJB object can be
obtained in one method call, Handl e. get EJBObj ect (), rather than using
the three method calls required to look up the context, get the home, and find the
actual bean.

Furthermore, while the primary key can be used to obtain remote references to
unique entity beans, it is not available for session beans; a handle can be used
with either type of enterprise bean. This makes using a handle more consistent
across bean types. Consistency is, of course, good in its own right, but it isn’t
the whole story. Normally, we think of session beans as not having identifiable
instances because they exist for only the life of the client session, but thisis not
exactly true. We have mentioned (but not yet shown) stateful session beans,
which retain state information between method invocations. With stateful
session beans, two instances are not equivalent. A handle allows you to work
with a stateful session bean, deactivate the bean, and then reactivate it at a later
time using the handle.

A client could, for example, be using a stateful session bean to process an order
when the process needs to be interrupted for some reason. Instead of losing all
the work performed in the session, a handle can be obtained from the EJB object
and the client application can be closed down. When the user is ready to
continue the order, the handle can be used to obtain a reference to the stateful

Copyright (c) 2001 O'Reilly & Associates 23

session EJB object. Note that this process is not as fault tolerant as using the
handle or primary key of an entity object. If the EJB server goes down or crashes,
the stateful session bean will be lost and the handle will be usdess. It's also
possible for the session bean to time out, which would cause the container to
remove it from service so that it is no longer available to the client.

Changes to the container technology can invalidate both handles and primary
keys. If you think your container technology might change, be careful to take
this limitation into account. Primary keys obtain EJB objects by providing unique
identification of instances in persistent data stores. A change in the persistence
mechanism, however, can impact the integrity of the key.

HomeHandle

The javax.ejb. HoneHandl e is similar in purpose to
j avax. ej b. Handl e. Just as the Handl e is used to store and retrieve
referencesto remote EJB objects, the HoneHand| e is used to store and retrieve
references to remote EJB homes. In other words, the HoneHandl e can be
stored and later used to access an EJB home's remote reference the same way
that aHandl e can be serialized and later used to access an EJB object’s remote
reference. The following code shows how the HoneHandl e can be obtained,
serialized, and used.

/1 btain cabin 100.
Qontext jndi Gontext = getlnitial Gntext();

(pj ect ref = jndi Gontext. | ookup(" Cabi nHong") ;
Cabi nHoneRenot e hone = (Cabi nHoneRenot €)
Por t abl eRenot e(hj ect . nar row(r ef , Gabi nHoneRenot e. ¢l ass) ;

/1 Serialize the HoneHandl e for the cabin bean.

HoneHandl e honeHandl e = hone. get HoneHandl e() ;
FleQuitputSreamfos = new F | eQut put St reant"handl e. ser");
(oj ect Qut put St ream out Sream = new (bj ect Qut put S reangfos);
out Sreamw it e ect (honeHandl e) ;

out Sreamfl ush();

fos. cl ose();

hometHandl e = nul | ;

/] Deserialize the HoneHandl e for the cabin bean.
FlelnputSreamfis = new F | el nput S reang"handl e. ser");
(pj ect I nput SreaminSream= new (oj ect | nput S reanffis);
honeHandl e = (HoneHandl)i nS ream read)j ect () ;
fis.close();

EJB+-bne hone = honeHandl e. get EJBHone() ;
Cabi nHoneRenot e hone2 = (CGabi nHoneRenot €)
Por t abl eRenot e(oj ect . nar r ow(hone, Cabi nHoneRenot e. ¢l ass) ;

24 Copyright (c) 2001 O'Reilly & Associates

InsdetheHandle

Different vendors define their concrete implementations of the EJB handle

differently.

However, thinking about a hypothetical implementation of handles

will give you a better understanding of how they work. In this example, we define
the implementation of a handle for an entity bean. Our implementation
encapsulates the INDI lookup and use of the home'sf i ndByPr i mar yKey ()
method so that any change that invalidates the key invalidates preserved
handles that depend on that key. Here's the code for our hypothetical
implementation of aHandl e:

i nport
i nport
i npor t
i nport
i nport
i nport
i npor t
i npor t

}

}

publ i ¢ Vendor X Cabi nHandl e(1 nteger pk, Sring hn, Properties p)

package comtitan. cabin;

javax. namng. I nitial Gontext;

j avax. nani ng. Gont ext ;

j avax. nan ng. Nani ngExcept i on;

j avax. €] b. EJB(pj ect ;

j avax. ej b. Handl €;

j ava. rm . Renot eExcept i on;
java. util.Properties;

j avax. rm . Port abl eRenot eChj ect

publ i ¢ class Vendor X Cabi nHandl e
inpl enents javax. ej b. Handl e, java.io. Serializable {

private Integer prinary key;
private Sring hone_nang;
private Properties jndi_properties;

{
primary_key = pk;

hone_nane = hn;

jndi _properties = p;

publ i ¢ EJBMyj ect get EJBDj ect () throws Renot eException {
try {

Qontext ctx = new Initial Gntext(jndi _properties);
(pj ect ref = ctx. | ookup(hone_nane) ;
Gabi nHoneRenot e hone =(Cabi nHbneRenot e)
Por t abl eRenot eCoj ect . nar row(r ef , Gabi nHoneRenot e. ¢l ass) ;

return hone. fi ndByPri maryKey(prinary_key);

} catch (javax. g b. FH nder Exception fe) {

t hr ow new Renot eExcepti on(" Cannot | ocate EIB obj ect”, fe);

} catch (j avax. nani ng. Nanmi ngException ne) {

t hr ow new Renot eExcepti on(" Cannot | ocat e EIB obj ect"”, ne);

Copyright (c) 2001 O'Reilly & Associates 25

The Handl e is less stable than the primary key because it relies on the
networking configuration and naming—the | P address of the EJB server and the
JNDI name of the bean’s home—to remain stable. If the EJB server’s network
address changes or the name used to identify the home changes, the handle
becomes usel ess.

In addition, some vendors choose to implement a security mechanism in the
handle that prevents its use outside the scope of the client application that
originally requested it. How this mechanism would work is unclear, but the
security limitation it implies should be considered before attempting to use a
handle outside the client’ s scope.

[Exercise5.2, The EJBObject, Handles and Primary Key

EJB 2.0: TheLocal Client API

26 Copyright (c) 2001 O'Reilly & Associates

6

EJB 2.0 CMP; Basic Persstence

Overview

In Chapter 4, we started devel oping some simple enterprise beans, skipping over
alot of the details about developing enterprise beans. In this chapter, we'll take a
thorough look at the process of developing entity beans. On the surface, some of
this material may look familiar, but it is much more detailed and specific to entity
beans.

Entity beans model business concepts that can be expressed as nouns. Thisisa
rule of thumb rather than a requirement, but it helps in determining when a
business concept is a candidate for implementation as an entity bean. In grammar

school you learned that nouns are words that describe a person, place, or thing.

The concepts of “person” and “place” are fairly obvious. a person EJB might

represent a customer or a passenger, and a place EJB might represent a city or a
port-of-call. Similarly, entity beans often represent “things’: real-world objects

like ships, credit cards, and so on. An EJB can even represent a fairly abstract

“thing,” such as a ticket or a reservation. Entity beans describe both the state

and behavior of real-world objects and allow developers to encapsul ate the data
and business rules associated with specific concepts; a Customer EJB

encapsul ates the data and business rules associated with a customer, and so on.

This makes it possible for data associated with a concept to be manipulated

consistently and safely.

In Titan’s cruise ship business, we can identify hundreds of business concepts
that are nouns and therefore could conceivably be modeled by entity beans.
We've already seen asimple Cabin EJB in Chapter 4, and we'll develop Customer
and Address EJBsin this chapter. Titan could clearly make use of a Cruise EJB, a

Copyright (c) 2001 O'Rellly & Associates 1

Reservation EJB, and many others. Each of these business concepts represents
data that needs to be tracked and possibly manipulated. Entities really represent
data in the database, so changes to an entity bean result in changes to the
database.

There are many advantages to using entity beans instead of accessing the
database directly. Utilizing entity beans to objectify data provides programmers
with a simpler mechanism for accessing and changing data. It is much easier, for
example, to change a customer’s name by callingCust onmer . set Nane() than
to execute an SQL command against the database. In addition, objectifying the
data using entity beans also provides for more software reuse. Once an entity
bean has been defined, its definition can be used throughout Titan’s system in a
consistent manner. The concept of customer, for example, is used in many areas
of Titan’s business, including booking, scheduling, and marketing. A Customer
EJB provides Titan with one complete way of accessing customer information,
and thus it ensures that access to the information is consistent and simple.
Representing data as entity beans makes development easier and more cost
effective.

When anew EJB is created, a new record must be inserted into the database and
a bean instance must be associated with that data. Asthe EJB is used and its
state changes, these changes must be synchronized with the data in the
database: entries must be inserted, updated, and removed. The process of
coordinating the data represented by a bean instance with the database is called
persistence.

There are two basic types of entity beans, and they are distinguished by how
they manage persistence. Container-managed persistence beans have their
persistence automatically managed by the EJB container. The container knows
how a bean instance’s persistent fields and relationships map to the database
and automatically takes care of inserting, updating, and deleting the data
associated with entities in the database. Entity beans using bean-managed
persistence do all this work explicitly: the bean developer must write the code to
manipulate the database. The EJB container tells the bean instance when it is
safe to insert, update, and delete its data from the database, but it provides no
other help. The bean instance does all the persistence work itself. Bean-managed
persistenceis covered in Chapter 10.

Container-managed persistence has undergone a dramatic change in EJB 2.0,
which is so different that it's not backward compatible with EJB 1.1. For that
reason, EJB 2.0 vendors must support both EJB 2.0's container-managed
persistence model and EJB 1.1 container-managed persistence model. TheEJB 1.1
model is supported purely so that application developers can migrate their
existing applications to the new EJB 2.0 platform as painlessly as possible. It's
expected that all new entity beans and new applications will use the EJB 2.0
container-managed persistence and not EJB 1.1 version. Although EJB 1.1
container-managed persistence is covered in this book, it should be avoided

Copyright (c) 2001 O'Rellly & Associates 2

unless you have alegacy EJB 1.1 system that you maintain. EJB 1.1 container-
managed persistenceis covered in Chapter 9.

The next three chapters focus on developing entity beans that use EJB 2.0
container-managed persistence. In EJB 2.0, the data associated with an entity
bean can be much more complex than was possiblein EJB 1.1 or EJB 1.0. In EJB
2.0, container-managed persistence entity beans can have relationships with
other entity beans, which wasn’t well supported in the older version. In addition,
container-managed persistence entity beans can be finer in granularity so that
they can easily model things like Address, Lineltem, or Cahin.

This chapter develops two very simple entity beans, the Customer and Address
EJBs, which will be used to explain how Enterprise JavaBeans 2.0 container-
managed persistence entity beans are defined and operate at runtime. The
Customer EJB has relationships with other several entities including address,
phone, credit card, cruise, ship, cabin, and reservation EJBs. In the next few
chapters, you'll learn how to leverage EJB 2.0’ s powerful support for entity bean-
to-bean relationships as well as understanding their limitations. In addition, you
will learn about the Enterprise JavaBeans Query Language (EJB QL) in Chapter 8,
which is used to define how the find methods and the new select methods
should behave at runtime.

It is common to refer to Enterprise JavaBeans 2.0 container-managed persistence
assimply CMP 2.0. In the chapters that follow, we will use this abbreviation to
distinguish between CMP 2.0 and CMP 1.1 (Enterprise JavaBeans 1.1 container-
managed persistence).

The abstract programming model

In CMP 2.0, entity beans have their state managed automatically by the
container. The container will take care of enrolling the entity bean in
transactions and persisting its state to the database. The enterprise bean
developer describes the attributes and relationships of an entity bean using
virtual persistent fields and relationship fields. They are called virtual fields
because the bean developer does not declare these fields explicitly; instead,
abstract assessor (get and set) methods are declared in the entity bean class. The
implementations of these methods are generated at deployment time by EJB
vendor's container tools. So it's important to remember that the terms
relationship field and persistent field are referring to the abstract accessor
methods and not to actual fields declared in the classes. This use of terminology
isaconvention in EJB 2.0 that you should become confortable with.

In Figure 6-1, the Customer EJB has four sets of accessor methods. The first two
read and update the last and first names of the customer. These are examples of
persistent fields; simple direct attributes of the entity bean. The other accessor
methods obtain and set references to the Address EJB through itslocal interface,
Addr ess. Thisisanexample of arelationship field calledtheaddr ess field.

Copyright (c) 2001 O'Rellly & Associates 3

[FIGURE (note 7-1 and 6-1 are the same figure) |

Lusiomer
o alsEract =

Atring il aseeamct b
il e TSy

Hirdng profirmfamyi
il re i vt M S wring B

JAdBemsn gauidireis] |
ikl crtubl il Addreas alidr)

Adliiress

o

RO |
T T
aiChy)

e bt mag il
prfmie §

ST e)
EnEIE b
meitpEing 1p1

Figure 6-1 Class Diagram of Customer and Address EJBs

Abstract persistence schema

The CMP 2.0 entity bean classes are defined using abstract accessor methods
that represent virtual persistent and relationship fields. As already mentioned,
the actual fields themselves are not declared in the entity classes. Instead, the
characteristics of these fields are described in detail in the XML deployment
descriptor used by the entity bean. The abstract persistence schemais the set of
XML elements in the deployment descriptor that describe the relationship fields
and the persistent fields. Together with the abstract programming model (the
abstract accessor methods) and some help from the deployer, the container tool
will have enough information to map the entity and its relationships with other
entity beansin the database.

Container Tools & Persistence

One of the responsihilities of the vendor's container deployment tool is
generating concrete implementations of the abstract entity beans. The concrete
classes generated by the container tool are called persistent classes. |nstances
of the persistent classes will be responsible for working with the container to
read and write data between the entity bean and the database at run time. Once
the persistent classes are generated, they can be deployed into the EJB
container. The container informs the persistent instances (instances of persistent

Copyright (c) 2001 O'Rellly & Associates 4

classes) when it's a good time to read and write data to the database. The
persistent instances perform the reading and writing in away that is optimized for
the database being used.

The persistent classes will include database access logic tailored to a particular
database. For example, an EJB product might provide a container that can map an
entity beans to a specific database like the Oracle relational database or the
POET object database. This specificity allows the persistent classes to employ
native database optimizations particular to a brand or kind of database, schema,
and configuration. Persistent classes may employ other optimizations like lazy
loading and optimistic locking to further improve performance.

The container tool generates all the database access logic at deployment time,
which it imbeds in the persistent classes. This means that the bean developers
do not have to write this database access logic themselves, saving them alot of
work, and can also results in better performing entity beans because they are
optimized implementations. As an entity bean developer, you will never have to
deal with any database access code when working with CMP 2.0 entities. In
fact, you won’t have access to the persistent classes that contain that logic
because they are generated by container tool automatically. In most cases, the
source code is not available to the bean devel oper.

Figures 7-2 and 7-3 show different container tools both of which are being used
to map the Customer entity bean to arelational database.
[Figure 7-2 need screen shot]
BEA’sWeblogic deployment tool
[Figure 7-3 need screen shot]
Sun Microsystem’s J2EE RI deployment tool

The Customer EJB

In the following example we will develop a smple CMP 2.0 entity bean, the
Customer EJB. The Customer EJB models the concept of a cruise customer or
passenger, but its design and use is applicable across many commercial domains.

As the chapter progresses the Customer EJB will be expanded and its complexity
will increase to illustrate concepts discussed in each section. So this section
serves only to introduce you to the entity bean and some basic concepts
regarding its development, packaging and deployment. To simply things, we will
skim over some concepts that are discussed in detail later in the chapter.

Copyright (c) 2001 O'Rellly & Associates 5

The Customer Table

Although CMP 2.0 is database independent, the examples through out this book
assume that you are using arelational database. For arelational database we will
need a CUSTOVER table from which we get our customer data. The relational
database table definition in SQL isasfollows:

CREATE TABLE AQSTOMER

(
I'D INT PRINARY KEY,

LAST NAME GHAR(20),
FI RST_NAME GHAR(20)
)

The Customer Bean

The Cust oner Bean class is an abstract class that will be used by the
container tool for generating concrete implementation, the persistent entity class,
which will run in EJB container. The mechanism used by the container tool for
generating a persistent entity class varies, but most vendors will generate a
subclass of the abstract class provide by bean devel oper.

javan.ejh.EntityBean
= Emarfca ==

Tuulunu.u

Custssearosn
o

Abairact ciaan with ok irect reethods

aBined iy tha Necis Provider i abatract fia g ol

pubiic albriracy void 2eLadhhn Sy
i AbAITIO: Buring pAFirellere)

T oments

PM CistomserBenn

PRL- emtiny ey with £ oiwncs mont i |

penarnied by Persivienoe Manager prablic Strine artloat o

pablic veid prtlart Hame S tring inane]
[rablic Strirg getFlctName) |

Figure 6-4

The container tool typically extends the bean class

Copyright (c) 2001 O'Rellly & Associates 6

The bean class must declare accessor (set and get) methods for each persistent
and relationship field defined in the abstract persistence schema of the
deployment descriptor. In truth, it's somewhat of a chicken-and-egg scenario,
since the container tool needs both the abstract accessor methods (defined in
the entity bean class) and the XML elements of the deployment descriptor to
fully describe the bean’ s persistence schema. In this book, the entity bean class
is aways defined before the XML elements, because it’s a more natural approach
to developing entity beans.

Here is a very simple definition of the Cust oner Bean class which is
developed and packaged for deployment by the bean devel oper.

inport javax.ejb. EntityContext;
public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

public Integer e bCGeate(lnteger id){

setld(id);

return nul | ;
}
publ i c voi d ej bPost O eat e(| nteger id){
}

/] abstract accessor nethods

public abstract Integer getld();
public abstract void setld(Integer id);

public abstract Sring getlLast Nane();
public abstract void setlLastNane(String | nane);

public abstract Sring getF rstNane();
public abstract void setFrstNane(Sring fnane);

/] standard call back nethods

public void setEntityQontext(EntityContext ec){}
public voi d unset EntityContext(){}

public voi d e bLoad(){}

public void e bSore(){}

public void ej bActivate(){}

publ i c voi d ej bPassi vate(){}

publ i c voi d ej bRenove(){}

}

The Cust onmer Bean class is defined as an abstract class. Thisis required by
CMP 2.0 toreinforce the ideathat the Cust oner Bean is not deployed directly
into the container system. Since abstract classes cannot be instantiated, the bean
class must be subclassed by a persistence class generated by the deployment
tool in order to be deployed. Also, the accessor methods are themselves

Copyright (c) 2001 O'Rellly & Associates 7

declared as abst r act , which necessitates that container tool implement them
and that the bean class declared abst r act .

The Custoner Bean extends the | avax.e] b. EntityBean interface,
which defines several callback methods including set Enti t yCont ext (),
unset EntityCont ext (), ej bLoad(), ej bStore(),
ej bActivate(),e] bPassivate(),ande] bRemove(). These methods
are important for notifying the bean instance about events in its life cycle, but
they are not important to us at this point. We will discuss these methods in detail
in Chapter 11.

The first method in the entity bean class is e] bCreat e(), which takes a
reference to an | nt eger object as its only argument. The e] bCreat e()
method is called when the remote client invokes the cr eat e() method on the
entity bean’s home interface. This concept should be familiar, sinceit’s the same
way e bCreat e() worked in the cabin bean developed in Chapter 4. The
ej bCreat e() methodisresponsiblefor initializing any persistent fields before
the entity bean is created. In this first example, the e] bCr eat e() method is
used to initialize the i d persistent field, which is represented by the
setld()/getld() accessor methods.

The return type of the ej bCr eat e() method isan | nt eger type, which is
the primary key of the entity bean. The primary key is a unique identifier that
can take a variety of forms, including wrappers for primitive types and custom-
defined classes. The primary key inthiscaseisan | nt eger, which is mapped
tothe| Dfieldinthe CUSTOVER table. This will become more evident when we
define the XML deployment descriptor. Although the return type of the
e] bCr eat e() method isthe primary key, the value that is actually returned by
thee] bCreat e() method isnul | . The EJB container and persistence class
will take care to extract the primary key from the bean when needed. The reason
e bCreat e() hasareturn type is the result of a decision in EJB 1.1 that is
explained in the side bar, Why ejbCreate() returns null.

Copyright (c) 2001 O'Rellly & Associates 8

Why ejbCreate() returns null

In EJB 1.0, the first release of EJB, the ej bCreate() method in
container managed persistence was declared as returning voi d, but it
was changed to the primary key typesin EJB 1.1 with an actua return
valueof nul | .

EJB 1.1 changed its return value from voi d to the primary key type to
facilitate subclassing; the change was made so that it's easier for a
bean-managed entity bean to extend a container-managed entity bean.
In EJB 1.0, this is not possible because Java doesn’'t allow you to
overload methods with different return values. By changing this
definition so that a bean-managed entity bean can extend a container-
managed entity bean, the EJB 1.1 allowed vendors to support container-
managed persistence by extending the container-managed bean with a
generated bean-managed bean—a fairly simple solution to a difficult
problem.

With the introduction of CMP 2.0, thislittle trick is not as useful to EJB
vendors as it once was. The abstract persistence schema of EJB CMP
2.0 beans is, in many cases, too complex for a simple BMP container.
However, it remains a part of the programming model for backward
compatibility and to facilitate bean-managed persistence subclassing if
needed.

The ej bPost Creat e() method is used to perform initialization after the
entity bean is created, but before it services any requests from the client.
Usually this method is used to perform work on the entity bean’s relationship
fields, which can only occur after thebean’sej bCr eat e() method is invoked
and it’ s added to the database. For eache] bCr eat e() method there must be a
matching e] bPost Cr eat e() method that has the same method name and
arguments, but returns a voi d. This pairing of ej bCreate() and
e] bPost Creat e() ensures that the container calls the correct methods
together. We'll explore the use of the ej bPost Cr eat e() in more detail later,
for now it’ s not needed, so itsimplementation is left empty.

The abstract accessor methods represent the persistent fields in the
Cust onmer Bean class. These methods are defined as abstract without
method bodies. As was aready mentioned, when the bean is processed by a
container tool, these methods will be implemented by a persistence class based
on the abstract persistence schema (XML deployment descriptor elements), the
particular EJB container and the database used. Basically these method fetch

Copyright (c) 2001 O'Rellly & Associates 9

and update values in the database and are not implemented by the bean
developer.

The Remote I nterface

For the Customer EJB we will need a Cust onmer Renot e remote interface,
because the bean will be accessed by clients outside the container system. The
remote interface defines the business methods that clients will use to interact
with the entity bean. The remote interface should define methods that model the
public aspects of the business concept being modeled—those behaviors and
data that should be exposed to client applications. Here is the remote interface
for Cust oner Renot e:

inport java. rm. Renot eExcepti on;
public interface Qustoner Renote extends javax. ej b. EJBOj ect {

public Sring getlLast Nane() throws RenoteBxception;
public voi d setLastNane(Sring | nane) throws RenoteException;

public Sring getH rstName() throws RenoteException;
public void setHrstNane(String fnane) throws RenoteException;

}

Any methods defined in the remote interface must match the signatures of
methods defined in the bean class. In this case, several accessor methods in the
Cust omer Renot e interface match persistent field accessor methods in the
Cust omer Bean class. When the remote interface methods match the
persistent field methods, the client has direct access to the entity bean's
persistent fields.

You are not required to match abstract accessor methods in the bean class with
methods in the remote interface. In fact, it's recommended that the remote
interface be as independent of the abstract programming model as possible.
Notice that the remote interface does not define get | d() and setld()

methods, as does the Cust onmer Bean class. While remote methods can match
persistent fields in the bean class, the specification prohibits the remote methods
from matching relationship fields, which access other entity beans.

The Remote Home interface

The remote home interface of any entity bean is used to create, locate, and
remove entities from the EJB container. Each entity bean type may have its own
remote home interface, or a local home interface or both. As you learned in
chapter 5, the remote and local home interfaces perform essentially the same
function. The home interfaces define three basic kinds of methods: home
business methods, zero or more cr eat e() methods and one or more find

Copyright (c) 2001 O'Reilly & Associates 10

methods. Thecr eat e() methods act like remote constructors and define how
new entity beans are created. In our remote home interface, we only provide a
single cr eat e() method, which matches the corresponding ej bCr eat e()
method in the bean class. The find method is used to locate a specific Customer
EJB using the primary key as aunique identifier.

The following code contains the complete definition of the
Cust onmer HomreRenot e interface:

inport java.rm.Renot eException;
inport javax.ej b. O eat eExcepti on;
i nport | avax. ej b. A nder Excepti on;

public interface Qustoner HoneRenot e extends j avax. ej b. EJBrbne {

publ i c Qustoner create(lnteger id)
throws O eat eException, RenoteException;

publ i c Qustoner findByPrinaryKey(lnteger id)
throws H nder Exception, RenoteException;

}

A creat e() method may be suffixed with a name in order to further qualify it
when overloading method arguments. Thisisuseful if you havetwocr eat e()
methods that take different arguments of the same type. For example, we could
declaretwocr eat e() methods for Customer which both declare an | nt eger
argument. The | nt eger argument might be a social security number (SSN) in
one case and a tax identification number (TIN) in another—individuals have
social security numbers while corporations have tax identification number.

public interface Qustoner HoneRenot e extends j avax. e b. EJBrbne {

publ i c Qustoner createWthSSNInteger id,
Sring social SecurityNunier)
throws O eat eException, RenoteException;

publ i ¢ Qustoner createWthTl NI nteger id,
Sring taxldentificati onNunber)
throws O eat eException, RenoteException;

publ i c Qustoner findByPrinaryKey(lnteger id)
throws H nder Exception, RenoteException;

}

The use of suffixes is useful when you need cr eat e() methods to be more
descriptive, or need to further qualify them for method overloading. Each

1 Chapter 15 explains when you should not define any create methods in the home
interface.

Copyright (c) 2001 O'Reilly & Associates 11

creat e<SUFFI X>() method must have a corresponding
e bCreat e<SUFFI X>() in the bean class. For example, the
Cust ormer Bean class would need to define a e] bCr eat eW t hSSN() and
e] bCreat eWt hTI N() methods. We are keeping this example simple, so we
only needonecr eat e() method and therefore, no suffix.

Enterprise JavaBeans specifies that cr eat e() methods in the remote home
interface must throw the j avax. ej b. Cr eat eExcepti on. In the case of
container-managed persistence, the container needs a common exception for
communicating problems experienced during the create process.

Entity remote home interfaces must definea f i ndByPri nar yKey() method
which takes the entity bean’s primary key type as its only argument, but a
matching method is not defined in the entity bean class. The implementation of
the fi ndByPri maryKey() is generated automatically by the deployment
tool. Atruntimethefi ndByPri mar yKey() method will automatically locate
and return aremote reference to the entity bean with the matching primary key.

Other find methods can also be declared by the bean developer. For example, the
Cust onmer HomeRenot e interface could define a
findByLast Nane(String | nam method, which locates all the Customer
entities with the specified last name. These types of finder methods are
implemented by the deployment automatically based on the method signature
and an EJB-QL statement, which is similar to SQL but is specific to EJB. Custom
finder methods and EJB-QL are discussed in detail in Chapter 8.

The XML Deployment Descriptor

All CMP 2.0 entity beans must be packaged for deployment with an XML
deployment descriptor that describes the bean and its abstract persistence
schema. In most cases the bean developer is not directly exposed to the XML
deployment descriptor, but will use container’s visual deployment tools to
package beans. It is convention in this book, however, to describe the
declarations of the deployment descriptor in detail so that you have a full
understanding of their content and organization.

The XML deployment descriptor, for our simple Customer EJB, contains many
elements that are familiar to you from chapter 4. The elements specific to entity
beans and persistence are most important to us in this chapter. The following is
the complete XML deployment descriptor for the Customer EJB.

<IDOCTYPE €j b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java.sun.conidtd/ ejb-jar_2 0.dtd">

<ej b-jar>
<ent er pri se- beans>
<entity>

Copyright (c) 2001 O'Reilly & Associates 12

<ej b- nane>Qust oner EIJB</ €] b- nane>
<honme>comti t an. cust oner . Qust oner HoneRenot e</ hone>
<renot e>com ti t an. cust oner . Qust oner Renot e</ r enot e>
<gj b-cl ass>comti t an. cust oner . Qust oner Bean</ €] b- ¢l ass>
<per si st ence-t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey- cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</reent r ant >
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fiel d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>l ast Nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>first Nanme</ fi el d- nane></ cnp-fi el d>
<prinkey-fi el d> d</ pri nkey-fi el d>
<security-identity><use-cal |l er-identity/></security-identity>
<Jentity>
</ ent erpri se- beans>
<assenbl y- descri pt or >
<security-rol e>
<r ol e- nane>Enpl oyees</ r ol e- nane>
</security-rol e>
<net hod- per ni ssi on>
<r ol e- nane>Enpl oyees</ r ol e- nane>
<net hod>
<ej b- nane>Qust oner EIB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>
<cont ai ner - transacti on>
<net hod>
<gj b- nane>Qust oner EIB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attri but e>
<cont ai ner -t ransact i on>
</ assenbl y-descri pt or >
<ejb-jar>

The first few elements, which declare the Customer EJB name, (Cust oner EJB)
as well as its home, remote, and bean class, should already be familiar to you
from Chapter 4. The<securi ty-i dentit y> element was covered in Chapter
3.

The <assenbl y-descri pt or > elements, which declare the security and
transaction attributes of the bean, were also covered briefly in chapter 4.
Basically all employees can accessany Cust oner EJB method and all methods
usethe Requi r ed transaction attribute.

Container managed persistence entities also need to declare their persistence

type, version, and whether they are reentrant. These elements are declared under
the entity element.

Copyright (c) 2001 O'Reilly & Associates 13

The <per si st ence-t ype> tells the container system whether the bean will
be a container-managed persistence entity or a bean-managed persistence entity.
In this case it’s container-managed, so we use Cont ai ner . Had it been bean-
managed persistence, the value would have been Bean.

The <cnp-ver si on> tells the container system which version of container-
managed persistence is being used. Enterprise JavaBeans 2.0 containers must
support the new container-managed persistence model as well as the old one
defined in Enterprise JavaBeans 1.1. This is required for backward compatibility,
so that organizations can migrate to EJB 2.0 without having to redefine all their
established container-managed persistence entity beans at once. The value of
the <cnp- ver si on> element can be either 2. x or 1. x for versions EJB 2.0
and EJB 1.1 respectively. The <cnp- ver si on> element is optional. If its not
declared, the default valueis?2. x, so its not really needed here but it’s specified
as an aid to other devel opers who are reading the deployment descriptor.

The<r eent r ant > element indicates whether reentrant behavior or loop-backs
are alowed. In this case the value is Fal se, which indicates that the
Cust omer EJB is not reentrant. A value of True would indicate that the
Cust onmer EJBisreentrant. Reentrant behavior was covered in chapter 3.

The entity bean will also declare its container managed persistence fields and its
primary key.

<entity>
<ej b- nane>Qust oner EIB</ €] b- nane>
<horme>com ti t an. cust oner . Qust oner HoneRenot e</ g b- hone>
<renot e>comtit an. cust oner . Qust oner Renot e</ ej b- r enot e>
<gj b-cl ass>comti t an. cust oner . Qust oner Bean</ €] b- ¢l ass>
<per si st ence- t ype>Qont ai ner </ per si st ence-t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<reentrant >Fal se</ reent rant >
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>l ast Nane</ f i el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>first Nane</fi el d- nane></ cnp-fi el d>
<prinkey-fiel d> d</ pri nkey-fi el d>

<Jentity>

The container-managed persistent fields are the id, | ast Nane, and
firstNanme as indicated by the <cnp-fi el d> elements. The <cmp-
field> elements must have matching accessor methods in the
Cust oner Bean class. As you can see from the following table, the values
declaredinthe<cnp- f i el d> match the names of abstract accessor methods
we declared in the Cust onmer Bean class—the get and set part of the
method names are ignored when matching methods to <cnp-fiel d>
declarations.

Copyright (c) 2001 O'Reilly & Associates 14

Cmp-field Abstract accessor method

id public abstract Integer getld()
public abstract void setld(lnteger id)

| ast Nane public abstract String getlLastName()
public abstract void setlLastNanme(String
| nane)

firstName public abstract String getFirstName()

public abstract void setFirstName(String
| name)

CMP 2.0 requires that the <cnp- f i el d> values start with a lower case letter
while its matching accessor methods take the form get <cnp-field
val ue>(),set<cnp-field val ue>() wherethefirstletter of the <cnp-
fi el d>iscapitalized. The return type of the get method and the parameter of
theset method determine the type of the <cnp-fi el d>. It's the convention
of this book, but not a requirement of CMP 2.0, that field names with multiple
words are declared using “camel case”, where each new word starts with a capital
letter (e.g. | ast Nane).

Finally, we declare the primary key using two fields, the <pr i m key- cl ass>
and the <pri nkey-fi el d> The<pri m key-cl ass> indicates the type
of the primary key and the <pr i nkey-f i el d> indicates which of the <cnp-
fi el ds> elements designates the primary key. This is an example of single-
field primary key, where only one field of the entity beans container managed
fields describes a unique identifier for the bean. In many cases a compound
primary key, which uses more then one of the persistent fields as a key, is used.
In addition, an unknown primary key may be defined; unknown keys use afield
that may not be declared in the bean at all. The different types of primary keys
are covered in more detail in Chapter 11, Entity-Container Contract.

The EJB JAR file

Now that you have created the interfaces, bean class, and deployment
descriptor, you' re ready to package the bean for deployment. Asyou learned in
Chapter 4, the JAR file provides a way to “shrink-wrap” a component so that it
can be sold and or deployed in an EJB container. The examples available from
http://www.oreilly.com contain a properly prepared JAR file that includes the
Customer EJB’ s interfaces, bean class, and deployment descriptor. You may use
these files or develop them yourself. The command for creating a new EJB JAR
fileis:

\dev %jar cf custoner.jar conititan/custoner/*.class
conititan/ cust oner/ META | NF/) b-j ar. xnh

Copyright (c) 2001 O'Reilly & Associates 15

F\..\dev> ar cf cabin.jar comtitan\custoner*.class comtitan\ custoner

\ META-I NR\ €] b-j ar. xnh

Most EJB servers provide graphical or command line tools that will create the
XML deployment descriptor and package the enterprise bean into a JAR file
automatically. Some of these tools will even create the home and remote
interfaces automatically, based input from the developer. If you prefer to use
these tools, the workbooks will step you through the process of deploying an
entity bean using specific vendor’ s container deployment tools.

Deployment

Oncethe Cust oner EJB is packaged in a JAR file, it's ready to be processed
by the deployment tools. For most vendors these tools will be combined into
one graphical user interface used at deployment time. The point is to map the
container-managed persistence fields of the bean to fields of data objects in the
database. Figures 7-2 and 7-3 show visual tools used to map the Customer EJB’s
persistent fields.

In addition, the security roles need to be mapped to the subjects in the security
realm of the target environment and the bean needs to be added to the naming
service and given a JNDI lookup name (name binding). These tasks are aso
accomplished using the deployment tools provided by your vendor. The
workbooks provide step-by-step instructions for deploying the Cust oner EJB
in specific vendor environments.

The Client application

The client application is aremote client to the Cust oner EJ B, which will create
several customers, find them, and then remove them. The following is the
complete definition of the Cl | ent application.

inport javax. naming. |l nitial Context;
inport javax.rni. Portabl eRenot ej ect ;
i nport j avax. naning. Gont ext ;

i nport j avax. nani ng. Narmi ngExcept i on;
inport java.util.Properties;

public class Aient {
public static void nain(Sring [] args) throws Exception {
/1 obtai n Qustoner Hne
Qontext jndi Gontext = getlnitial Gontext();
(hj ect obj =j ndi Cont ext . | ookup(" Qust oner EIB') ;
Qust oner HoneRenot e hone = (Qust oner HoneRenot)
j avax. rni . Port abl eRenot ehj ect . narr ow(obj ,
Qust oner HoneRenot e. cl ass) ;

/] create Qustoners

Copyright (c) 2001 O'Reilly & Associates 16

for(int i =0; i <args.length;i++){
Integer prinaryKey = new I nteger(args[i]);
Sring firstNane = args[++] ;
Sring lastNane = args[++];
Qust oner Renot e cust oner = hone. creat e(pri nar ykey) ;
cust oner . set H r st Nane(first Nane) ;
cust oner . set Last Nane(| ast Nane) ;
}
/1 find and renove Qustoners
for(int i =0; i <args.length;){
Integer prinarykey = new I nteger(args[i]);
Qust oner Renot e cust oner
= hone. fi ndByPri nar yKey(pri naryKey);
Sring | ast Nane = cust oner. get Last Nang();
Sring firstName = custoner. getH rstNane();
Systemout . print (prinarykey+' =");
Systemout . printl n(firstNane+" "+ ast Nane) ;

/1 renove Qust oner
cust oner . renove() ;

}

public static Gontext getlnitial Context()
throws j avax. nam ng. Nam ngExcepti on {
Properties p = new Properties();
/1 ... Specify the JND properties specific to the vendor.
//return new javax. namng. I nitial Gontext(p);
return nul | ;

}

The client application creates several Customer EJBs, sets their first and last
names, prints out the persistent field values, and then removes the entities from
the container system, and effectively the database.

Exercise 6.1, Deploying the Customer EJB

Persistent Fields

Container-managed persistent fields are those virtual fields whose values map
directly to the database. Persistent fields can be Java serializable types and Java
primitive types.

The Java serializable types can be any class that implements the
java.io. Serializabl e interface. Most deployment tools will handle
java.lang. String,java. util . Dat e andthe primitive wrappers (Byt e,
Bool ean, Short, | nteger, Long, Doubl e, and Fl oat) easily, because

Copyright (c) 2001 O'Reilly & Associates 17

these types of objects are part of the Java core and map naturally to fields in
relational and other databases. The Cust onmer EJB declares three serializable
fieldsi d, | ast Nane, and f i r st Nane, which map naturally to the | NT and
CHARfields of the CUSTOVER table in the database.

Y ou can also define your own serializable types, called dependent values classes,
and declare them as container-managed persistent fields. However, arbitrary
dependent values classes usually will not map naturally to database types, so
they must be stored in their serializable form in some type of binary database
field. Serializable objects are always returned as copies and not references, so a
change to a serializable object will not impact its database value. The entire value
must be updated using the abstract set <FI ELD- NAVE> method. This is
normally not an issue with St ri ng, Dat e, and the primitive wrappers types
since they are immutable objects. This book recommends that you don’t use
custom serializable objects as persistent field types unless it's absolutely
necessary.

The primitive types (byte, short, int, | ong, double, float and
bool ean) are also alowed to be container-managed persistence fields. These
types are easily mapped to the database and are supported by all deployment
tools. As an example, the Cust oner EJB might declare a bool ean that
represents a customer’ s credit worthiness.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

public Integer e bGeate(lnteger id){
setld(id);
return nul | ;

}

/] abstract accessor nethods
publ i ¢ abstract bool ean get Has@odCedit();
publ i c abstract voi d set HasGodQ edi t (bool ean credit Rating);

Dependent value classes

As discussed in the previous section, dependent values classes are custom
serializable objects, which can be used as persistent fields -- although its not
recommended. However, dependent values classes are valuable for packaging
data and moving it between an entity bean and its clients. Dependent values
classes can separate the client's view of the entity bean from its abstract
persistent model, which makes it easier for the entity bean class to change
without impacting existing clients.

Copyright (c) 2001 O'Reilly & Associates 18

The remote and local interface methods of an entity bean should be defined
independently of the anticipated abstract persistent schema. In other words, you
should design the remote interfaces to model the business concepts, not the
underlying persistent programming model. Dependent value classes can help
separate the client’s view from the persistence model by providing objects that
fill the gaps in these perspectives. Dependent value classes are used a lot in
remote interfaces where packaging data together can reduce network traffic, but
they are also useful in local interfaces.

For example, the Cust onmer EJB could be modified so that its | ast Nane and
firstNanme fields are not exposed directly to remote clients through their
accessor methods. This is a reasonable design approach, since most clients
access the entire name of the customer at once. In this case, the remote interface
might modified to look asfollows:

inport java.rm.Renot eExcepti on;
public interface Qustoner Renote extends javax. e b. EJBbj ect {

publ ic Nane get Nane() throws RenoteException;
publ i c voi d set Nane(Nane nane) throws RenoteException;

}

The remote interface here is simpler than the one we saw earlier. It allows the
remote client to get all the name information in one method call instead of two—
this reduces network traffic and improves performance for remote clients. The
use of the Nane dependent value is also semantically more consistent with how
the client interacts with the Customer EJB, which is useful in both remote and
local interfaces.

To implement these interfaces, the Cust oner Bean class adds a business
method that matches the remote interface methods. The set Nanme() method
updatesthel ast Nanme andf i r st Nane fields, whiletheget Nane() method
constructs aName object from thesefields.

inport javax.ejb. BntityQontext;
public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

public Integer e bCGeate(lnteger id){

setld(id);

return null;
}
publ i ¢ voi d ej bPost reat e(l nteger id){
}

/1" busi ness net hods

public Nane get Nange(){
Nane nane = new Nane(get Last Nane(), get H rst Nane()) ;
return nane;

Copyright (c) 2001 O'Reilly & Associates 19

}
public voi d set Nane(Nane nane) {
set Last Nane(nane. get Last Nane()) ;
set H rst Nane(nane. get H rst Nane()) ;
}

/] abstract accessor nethods

public abstract Sring getlLast Nane();
public abstract voi d setlLastNane(Sring | nane);

public abstract Sring getH rstNane();
public abstract void setHrstNane(String fnane);

Thisis agood example of how dependent value classes can be used to separate
the client’ s view from the abstract persistence schema.

The get Nane() and set Nanme() methods are not abstract persistence
methods, they are business methods. Entity beans can have as many business
methods as needed. Business methods introduce business logic to the Customer
EJB; otherwise the bean would only be a data wrapper. For example, validation
logic could be added to the set Nanme() method to ensure that the data is
correct before applying the update. In addition, the entity bean class can use
other methods that help with processing data—these are just instance methods
and may not be exposed as business methods in the remote interface.

How dependent value classes are defined is important to understanding how
they should be used. The Nane dependent values classis defined as follows:

public class Nane i npl enents java.io. Serializable {
private Sring | ast Nang;
private Sring firstNang;

public Name(Sring | nane, Sring fnane){
| ast Nane = | nang;
firstNane = fnang;
}
public Sring getlLast Name() {
return | ast Nane;
}
public Sring getH rstNane() {
return firstNang;

}

}

You'll notice that Nane dependent values class has get accessor methods but
not set methods. It's immutable. This is a design strategy used in this book

and is not a requirement of the specification; CMP 2.0 does not specify how
dependent value classes are defined.

Copyright (c) 2001 O'Reilly & Associates 20

We make dependent values immutable so that clients cannot change the Nanme
object’s fields. The reason is quite simple: the Nane object is a copy, not a
remote reference. Changes to Nane objects are not reflected in the database.
Making the Narme immutable helps to ensure that clients do not mistake this
dependent value for a remote object reference, thinking that a change to the
Nanme object is automatically reflected on the database. To change the
customer’s name, the client is required to create a new Nane object and use the
set Nanme() method to update the Customer EJB.

The following code listing from illustrates how a client would modify the name of
acustomer using the Nane dependent values class.

/1 find Qustoner

custoner = hone. fi ndByPri nar yKey(pri nar yKey) ;

nane = cust oner. get Nane() ;

Systemout. print (prinarykey+' =");

Systemout . print| n(nane. get F rst Nang()+ "-+nane. get Last Nang());

/1 change custoner's nane

nane = new Nane("Mbnson- Haefel ", "R chard");

cust oner . set Nane(nane) ;

nane = cust oner. get Nane() ;

Systemout. print (prinarykKey+' =");

Systemout . println(nane. get H rst Nang()+ "+nane. get Last Nane());

The output will look asfollows:

1 = Rchard Mbnson
1 = R chard Mbnson- Haef el

Defining the bean’s interfaces according to the business concept and not the
underlying data is not always reasonable, but you should try to employ this
strategy when the underlying data model doesn’t clearly map to the business
purpose or concept being modeled by the entity bean. The bean’ s interfaces may
be used by developers who know the business, and not the abstract
programming model. It is important to them that the entity beans reflect the
business concept. In addition, defining the interfaces independent of the
persistence model enables the component interfaces and persistence model to
evolve separately. This is important because it allows the abstract persistent
programming model to change over time; it also allows for new behavior to be
added to the entity bean as needed.

While the dependent values classes serve a purpose, they should not be used
indiscriminately. In many cases it would be foolish to use dependent values
classes when the container-managed persistent field will do just fine. For
example, checking a client’s credit worthiness before processing an order can be
accomplished easily using the get HasGoodCr edi t () method directly. In
this case a dependent object class would serve no purpose.

[J Exercise 6.2, Using Dependent value classes

Copyright (c) 2001 O'Reilly & Associates 21

Relationship Fields

Entity beans can form relationships with other entity beans. In figure 6-1, at the
beginning of this chapter, the Customer EJB is shown to have a one-to-one
relationship with the Address EJB. The Address EJB is a fine-grained business
object that should always be accessed in the context of another entity bean,
which means it should only have local interfaces and not remote interfaces. An
entity bean can have relationships with many different entity beans at the same
time. For example, we could easy add relationship fields for Phone, CreditCard
and other entity beans. At this point, however, we choose to keep the Customer
EJB smple.

Following Figure 7-1 as guide we define the Address EJB asfollows.
public abstract class AddressBean

extends javax. ej b. EntityBean {

publ ic (hject e bQ eat eAddr ess
(Sring street, Sring city,
Sring state, Sring zip)

{
setSreet(street);
setdty(city);
setSate(state);
setZip(zip);
return nul | ;

}

publ i ¢ voi d ej bPost O eat eAddr ess
(Sring street, Sring city,
Sring state, Sring zip){
}

/] persistent fields

public abstract Sring getSreet();

public abstract void setSreet(Sring street);
public abstract Sring getdty();

public abstract void setdty(Sring city);
public abstract String getSate();

public abstract void setSate(Sring state);
public abstract Sring getZp();

public abstract void setZip(Sring zip);

/] standard cal | back nethods

public void setEntityQntext(EntityContext ec){}
public voi d unset EntityContext(){}

public voi d e bLoad(){}

public void e bSore(){}

public void ej bActivate(){}

Copyright (c) 2001 O'Reilly & Associates 22

public voi d e bPassi vate(){}
publ i ¢ voi d ej bRenove(){}

}

The Addr essBean class definesan e bCr eat eAddr ess() method that is
called when anew Address EJB is created as well as several persistent fields
(street,city,state,and zi p). The persistent fields are represented by
the abstract accessor methods, which istheidiom required for persistent fieldsin
al entity bean classes. These abstract accessor methods are matched with their
own set of XML deployment descriptor elements which define the abstract
persistent schema of the Address EJB. At deployment time the container's
deployment tool will map the Customer EJB’s persistent fields and the Address
EJB’s persistent fields to the database. This means that there must be atable in
our relational database that contains columns that match the persistent fields in
the Address EJB. In this example we will use a separate ADDRESS table for
storing address information, but the data could just as easily been declared in
other table.

CREATE TABLE ACCRESS
(
ID INT PR NARY KEY,
STREET GHAR 40),
aTY GAR20),
STATE GHAR(2),
ZIP GR 10)

)

You'll have noticed that the table includes a column that has no corresponding
persistent field in the Address EJB, the | D column. Entity beans do not have to
define all of the columns from corresponding tables, as persistent fields. In fact,
an entity bean may not even have a single corresponding table; it may be
persisted to several tables. The bottom line is that the container’s deployment
tool allows the abstract persistence schema of entity beans to be mapped to a
database in avariety of ways, allowing a clean separation between the persistent
classes and the database. In this casethe | D column is an auto-increment field,
which is created automatically by the database or container system. It servesthe
primary key of the Address EJB and is not part of the bean’s abstract persistence
schema. It'sinvisible.

In addition to the bean class, we will also define the local interface for the
Address EJB, which allows it to be accessed by other entity beans (namely the
Customer EJB) within the same address space or process.

/1 Address EIB s local interface
public interface AddressLocal extends javax.ejb. EJBLocal (bj ect {
public Sring getSreet();
public void setSreet(Sring street);
public Sring getdty();
public void setdty(Sring city);

Copyright (c) 2001 O'Reilly & Associates 23

public Sring getSate();
public void setSate(Sring state);
public Sring getZ p();
public void setZip(Sring zip);
}

/1 Address EIB s | ocal hone interface
public interface AddressLocal Hone extends javax. e b. EJBLocal Hone {
public AddressLocal create(String street, Sring city,
Sring state, Sring zip)
throws javax. ej b. O eat eExcepti on;
publ i c AddressLocal findByPrinaryKey(Qj ect prinaryKey)
throws j avax. ej b. FH nder Excepti on;

}

Y ou may have noticed that the e] bCr eat e() method of the Addr essBean
class and the i ndByPri maryKey() method of the home interface both
define the primary key type as |ava.lang. Cbject instead of
java.l ang. | nteger. When a primary key type is defined as an Object
type, it's said to be undefined, which means the exact type of key used is not
known until the bean is deployed. In this case, an undefined type allows us to
use the auto-increment facilities of the native database. If we were to define the
primary key type, then we would have to set the primary key value in the
e] bCreat e() method, which would make it impossible to use auto-increment
for thei d field. Thisisaconcept that is explored in detail in Chapter 11.

The relationship field for the Address EJB is defined in the Cust oner Bean
class using an abstract accessor method, the same way that persistent fields are
declared. In the following code the Cust oner Bean has been modified to
include the Address EJB as arelationship field.

inport javax.ejb. EntityContext;
i nport javax. ej b. O eat eExcepti on;

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

/1 persistent relationships
publ i c abstract AddressLocal get HoneAddress();
public abstract voi d set HoneAddr ess(AddressLocal address);

/] persistent fields
public abstract bool ean get HasGodQ edit();
public abstract void set HisGodQ edit (bool ean creditRating);

The get HomeAddr ess() and set HonmeAddr ess() accessor methods are
self-explanatory; they allow the bean to access and modify its honeAddr ess
relationship. These accessor methods represent a relationship field, which is a

Copyright (c) 2001 O'Reilly & Associates 24

virtual field that references another entity bean. The name of the accessor
method is determined by the name of the relationship field, as declared in the
XML deployment descriptor. In this case we have named the customer’ s address
honmeAddr ess, so the corresponding accessor method names will be
get HoneAddr ess() andset HoneAddr ess() .

To accommodate the relationship between the Customer EJB and the home
address aforeign key, ADDRESS | D, will be added to the CUSTOVER table that
points to the ADDRESS record. In practice this schemais actually the reverse of
what is usually done, where the ADDRESS table contains a foreign key to the
CUSTOMER table. However, the schema used here is useful in demonstrating
aternative database mappings and is utilized again in Chapter 7.

CREATE TABLE OSTOMER
(
IDINT PR MARY KEY,
LAST NAME CHAR(20),
FI RST_NAME CHAR 20) ,
ACDRESS | D | NT

)

When a new Address EJB is created and set as the Customer EJB’'s
honmeAddr ess relationship, the Address EJB’ s primary key will be placed in the
ADDRESS | D column of the CUSTOVER table creating a relationship in the
database. In other words, it’s the act of setting the relationship field that creates
the relationship between the beans.

/1 get local reference
AddressLocal address = ...

/] establish the rel ationship
set HoneAddr ess(addr ess) ;

To give the Customer a home address we will need to deliver the address
information to the Customer. This appears to be a simple matter of declaring
matching set HoneAddr ess() /get HonmeAddress() in the remote
interface, but it'snot! Whileit’s valid to make persistent fields directly available
to clients, persistent rel ationships are more complicated.

The remote interface of a bean is not alowed to expose its relationship fields if
the relationship references another bean’s local interface. In the case of the
honmeAddr ess field we have declared the type to be Addr essLocal , which
is a loca interface, so the set HoneAddress()/ get HonmeAddr ess()
assessors cannot be declared in the remote interface of the Customer EJB.

Remote interfaces may, however, expose relationship fields that use remote
interface types. So, for example, if we had declared thehoneAddr ess fieldasa
remote interface (an interface that extends | avax. ej b. EJBObj ect), we
could expose that relationship field in the remote interface of the Customer EJB.

Copyright (c) 2001 O'Reilly & Associates 25

The reason for this restriction on remote interfaces is fairly simple: The
EJBLocal Obj ect, which implements the local interface, is optimized for use
within the same address space or process as the client, and is not capable of
being used across the network. In other words, references that implement the
local interface of a bean cannot be passed across the network, so it cannot
declared as areturn type of aparameter of aremote interface.

We take advantage of the EJBLocal Cbj ect optimization for better
performance, but that same advantage limits location transparency; we must only
use it within the same address space.

Local interfaces (an interface that extends | avax. e] b. EJBLocal Obj ect)
on the other hand, can expose any kind of relationship field regardliess of
whether it's a remote or local interface. With local interfaces, the caller and the
enterprise bean being called are located in the same address space, so they can
pass around local references without a problem. So for example, if we had
defined a local interface for the Customer EJB, it could include a method that
allowslocal clientsto accessits Address relationship directly.

public interface QustonerlLocal extends javax.ejb. EJBLocal (bj ect {
publ i ¢ AddressLocal get HoneAddress();
public voi d set HoneAddr ess(AddressLocal addr ess) ;

}

Unlike local interfaces, remote interfaces can be used as return values or
parameters in the methods of both remote and local interfaces because remote
interfaces are location transparent. The networking capabilities of a remote
interface reference work within the same address space as easily as across
address spaces.

When it comes to the Address EJB, it's better to define a local interface only
because it's such a fine-grained bean. To get around remote interface
restrictions, the business methods in the bean class exchange address data
instead of Address references. For example, we can declare a method that allows
the client to send address information to create a home address for the Customer.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

public Integer e bCGeate(lnteger id){

setld(id);

return nul | ;
}
public voi d e bPost G eat e(l nteger id){
}

/1 busi ness net hod

public void set Address(String street,String city,
Sring state, Sring zip)
throws Q eat eException {

AddressLocal addr = this. get HoneAddress();

Copyright (c) 2001 O'Reilly & Associates 26

if(addr = null){
/1 Qustoner doesn’t have an address yet. Qreate a new one.
Initial Gontext cntx = new Initia Gontext();
Addr esstbnelLocal addr Hone =
(Addr essHoneLocal) cnt x. | ookup(“ honeAddr ess”) ;
addr = addr Hone. creat eAddress(street, city, state, zip);
thi s. set HoneAddr ess(addr) ;
}el se{
/1 Qustoner already has an address. Change its fields
addr. set Sreet(street);
addr.setdty(city);
addr.setSate(state);
addr. set Z p(zip);

The set Addr ess() business method in the Cust oner Bean class is aso
declared in the remote interface of the Customer EJB, so that it can be called by
remote clients.

public interface Qustoner extends javax.ej b. EJBOj ect {

public voi d set Adddress(Sring street,Sring city,
Sring state, Sring zip)
throws O eat eBException;

publ ic Nane get Nane() throws RenoteException;
publ i c voi d set Nane(Nane nane) throws RenoteException;

publ i ¢ bool ean get HasGodQ edit() throws Renot eException;
publ i ¢ voi d set HasGodQ edi t (bool ean credi t Rati ng)
throws Renot eExcepti on;

}

When the Cust oner Renpt e. set Addr ess() business method is invoked
on the Cust onmer Bean, the method’s arguments are used to create a new
Address EJB and set it as the honeAddr ess relationship field if one doesn’'t
aready exist. If the Customer EJB aready hasa honmeAddr ess relationship,
that Address EJB is modified to reflect the new address information.

When creating anew Addr ess EJB, the home object is obtained from the INDI
ENC. anditscr eat eAddr ess() method is called. This results in the creation
of anew Address EJB and the insertion of a corresponding ADDRESS record
into the database. After the Address EJB is created, it's used in the
set HomeAddr ess() method. The Cust onmer Bean class must explicitly call

Copyright (c) 2001 O'Reilly & Associates 27

the set HoneAddr ess() method, otherwise the new address will not be
assigned to the customer. In fact, simply creating an Address EJB, without
assigning it to the customer using theset Hone Addr ess() method, will result
in a disconnected Address EJB. More precisely, it will result in an ADDRESS
record in the database that is not referenced by any CUSTOVER records.
Disconnected entity beans are fairly normal and even desirable in many cases. In
this case, however, we want the new Address EJB to be assigned to the
honeAddr ess relationship field of the Customer EJB.

The viability of disconnected entities depends, in part, on the
referential integrity of the database. If the database requires
that a foreign key contain a pointer to an existing record, then
creating a disconnected entity would result in a database error.

When the set HonmeAddr ess() method is invoked, the container links the
ADDRESS record to the CUSTOVER record automatically. In this case, it places
the ADDRESS primary key in the CUSTOVER record’s ADDRESS | D field and
creates areference from the CUSTOVER record to the ADDRESS record.

If the Customer EJB already has a honeAddr ess, then we want to change its
values instead of creating a new one. Once the values of the existing Address
EJB have been updated, we don’t need to use set HoneAddr ess() since the
Address EJB we modified already has arelationship with the entity bean.

The Addr essHone. creat eAddr ess() method is declared as throwing a
Creat eException, as are al create methods. This requires that the
set Addr ess() businessmethod either wrapthe cr eat eAddr ess() cdl in
atry/catch block or propagate the exception to the client. In the above example,
we choose to propagate the exception because it's more expedient. As an
aternative you could catch the Creat eException and throw a new
application exception. Either approach is perfectly acceptable.

We will also want to provide clients with a business method for obtaining a
Customer EJB’ s home addressinformation. Since we are prohibited from sending
an instance of the Address EJB directly to the client (because it's a local
interface), we must package the address data in some other form and send that
the client. There are two solutions to this problem: acquire the remote interface
of the Address EJB and return that; or return the data as a dependent value
object.

We can only obtain the remote interface for the Address EJB if one was defined.
Entity beans can have a set of local interfaces or remote interfaces or both. In
this situation the Address EJB is too fine-grained to justify creating a remote
interface, but in many other circumstances a bean may indeed want to have a
remote interface. If for example, the Customer EJB referenced a SalesPerson EJB,
the Cust onmer Bean would need to convert the local reference into a remote

Copyright (c) 2001 O'Reilly & Associates 28

reference. This would be done by accessing the local EJB object, getting its
primary key (EJBLocal Object.getPrimaryKey()), obtaining the
SalesPerson EJB’ s remote home from the INDI ENC, and then using the primary
key and remote home reference to find aremote interface reference.

public Sal esRenot e get Sal esRep() {
Sal esLocal | ocal = get Sal esPerson();
Integer prinkey = local . getPrinarykey();

(pj ect ref = jndi Enc. | ookup(“ Sal estbneRenot e”) ;
Sal estoneRenot e hone = (Sal esHneRenot €)
Por t abl eRenot e(hj ect . narrow(ref, Sal estHbneRenot e. cl ass) ;

Sal esRenot e renot e = hone. fi ndByPri naryKey(prinikey);
return renote;

}

The other option is to use a dependent value to pass the Address EJB’s data
between remote clients and the Customer EJB. This is the approach
recommended for fine-grained beans like the Address EJB—in general we don’t
want to expose these beans directly to remote clients.

The following shows how the dependent values class, Addr essDO, is used in
conjunction with the local component interfaces of the Address EJB. The DOin
Addr essDO s a convention used in this book; it's a qualifier that stands for
Dependent Object.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

public Integer e bGeate(lnteger id){

setld(id);

return null;
}
publ i c voi d ej bPost Oreat e(| nteger id){
}

/1 busi ness net hod

publ i ¢ AddressDO get Address(){
AddressLocal addrLocal = get HoneAddress();
Sring street = addrLocal .getStreet();
Sring city = addrLocal . getdty();
Sring state = addrLocal . get S ate();
Sring zip = addrLocal . get 2 p();
Address addr Val ue = new Address(street,city,state, zip);
return addrVal ue;

}

public voi d set Addr ess(Addr essDO addr Val ue)

throws Q eat eException {

Sring street = addrVal ue. getSreet();
Sring city = addrVal ue. getdty();
Sring state = addrVal ue. get S ate();

Copyright (c) 2001 O'Reilly & Associates 29

Sring zip = addrVal ue. get Zi p();
Addr essDO addr = get AddressDY)) ;

if(addr == null){
/] Qustoner doesn’t have an address yet. Qreate a new one.
Initial Context cntx = new Initial Gontext();

addr = addr Hone. creat eAddress(street, city, state, zip);
t hi s. set HoneAddr ess(addr) ;
}el se{
/1 Qustoner already has an address. Change its fields
addr.set Sreet(street);
addr.setdty(city);
addr.setSate(state);
addr. set Z p(zip);

Here is the definition for an Addr ess DO dependent value class, which is used
by the enterprise bean to send address information to the client.

public class AddressDO i npl enents java.io. Serializable {
private String street;
private Sring city;
private Sring state;
private Sring zip;

public AddressDQ Sring street, Sring city,
Sring state, Sring zip) {
this.street = street;
this.city = city;
this.state = state;
this.zip = zip;
}
public Sring getXreet(){
return street;

}

public Sring getdty(){
return city;

}

public Sring getSate(){
return state;

}

public Sring getZ p(){
return zip;

}

Copyright (c) 2001 O'Reilly & Associates 30

Addr esstone addr Hone = (Addr essHone) cnt x. | ookup(“ honeAddr ess”) ;

The Addr ess DO dependent value follows the conventions laid out in this book.
It's immutable, which means it cannot be altered once its created. As stated
earlier, immutability helps to reinforce that fact that the dependent values classis
acopy and is not aremote reference.

Y ou can now use a client application to test the Customer EJBs relationship with
the Address EJB. The following code shows the client code that creates a new
Customer, gives it an address, then changes the address using the method
defined above.

inport javax. naming. |l nitial Context;

i nport javax.rm. Portabl eRenot e(hj ect ;
i nport j avax. naning. Gont ext ;

i nport j avax. nami ng. Nam ngExcept i on;
inport java. util.Properties;

public class Aient {
public static void main(Sring [] args) throws Exception {
/1 obtai n Qustoner Hne
Gontext jndi Gontext = getlnitia Gontext();
(bj ect obj 5 ndi Gont ext . | ookup(" Qust oner EJB") ;
Qust oner Hone hone = (Qust oner Hone)
javax. rni. Port abl eRenot ehj ect . narrow(obj ,
Qust oner Hone. cl ass) ;

/] create a Qustoner
Integer prinarykey = new I nteger(1);
Qust oner custoner = hone. creat e(pri nar ykey) ;

/] create an address

Addr essDO addr ess = new Addr ess(" 1010 Gol orado",
"Austin","Texas", "78701");

/] set address

cust oner . set Addr ess(addr ess) ;

address = cust oner. get Address();
Systemout. print (prinaryKey+' =");
Systemout . println(address. getSreet());
Systemout . println(address.getdty()+, "+
address. get Sate()+" "+
address. getZ p());

/1 create a new address
address = new Address(" 1600 Pennsyl vani a Avenue NN/,
"DC, "W, "20500"):

/1 change custoner's address
cust oner . set Addr ess(addr ess) ;

Copyright (c) 2001 O'Reilly & Associates 31

address = cust oner. get Address() ;
Systemout . print (prinarykey+' =");
Systemout. println(address. getSreet());
Systemout . println(address. getdty()+',"+
address.getSate()+' "+
address. getZ p());

/1 renove Qustoner
cust oner . renove() ;

}

public static Gontext getlnitial Gontext()
throws j avax. nan ng. Nam ngExcepti on {
Properties p = new Properties();

Il ... Specify the JND properties specific to the vendor.
/lreturn new javax. naming. I ni tial Gontext (p);
return nul l;

}

The following listing shows the deployment descriptor for Customer EJB and
Address EJB. To avoid confusion we will not discuss this deployment
descriptor in detail in this chapter because its covered in detail in Chapter 7.
Don’t be too concerned about the details until they are explained in the next
chapter.

Exercise 6.3, Relationships Fields

<IDOXCTYPE gj b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java.sun.comdtd/ e b-jar_2 0.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Qust oner EJB</ €] b- nane>
<honme>comti t an. cust oner . Qust oner HoneRenot e</ hone>
<renot e>com ti t an. cust oner . Qust oner Renot e</ r enot e>
<gj b-cl ass>comti t an. cust oner . Qust oner Bean</ €] b- ¢l ass>
<per si st ence-t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey- cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</reent r ant >
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fiel d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>l ast Nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>first Nanme</ fi el d- nane></ cnp-fi el d>
<prinkey-fi el d> d</ pri nkey-fi el d>

<Jentity>
<entity>
<ej b- nane>Addr essEIB</ €] b- nane>
<l ocal - hone>comti t an. addr ess. Addr essHoneLocal </ hone>

Copyright (c) 2001 O'Reilly & Associates 32

<security-identity><use-cal |l er-identity/><security-identity>

<l ocal >comti t an. addr ess. Addr essLocal </ r enot e>
<gj b-cl ass>comtit an. addr ess. Addr essBean</ gj b-cl ass>
<per si st ence- t ype>Qont ai ner </ per si st ence-t ype>
<pri mkey- cl ass>j ava. | ang. (bj ect </ pri m key- cl ass>
<reentrant >Fal se</reentrant >
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>street </ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>ci ty</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d-nane>st at e</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>zi p</fi el d- nane></ cnp-fi el d>
<security-identity><use-caller-identity/><Jsecurity-identity>
<entity>
</ ent erpri se- beans>
<rel ati onshi ps>
<ej b-rel ati on>
<ej b-rel ati on- nane>Qust oner - Addr ess
</ €j b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- a- Addr ess
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Qhe</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Qust oner EJB</ €] b- nane>
</rel ati onshi p-rol e-sour ce>
<cmm-field>
<cnm - fi el d- nane>addr ess
</ cm-fiel d- nane>
</ cm-field>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Addr ess- bel ongs-t o- Qust oner
</ €j b-rel ati onshi p-rol e- nane>
<mul tiplicity>One</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Addr essEIB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati on>
<rel ati onshi ps>
<assentl y- descri pt or >
<security-rol e>
<r ol e- nane>Enpl oyees</ r ol e- nane>
</security-rol e>
<net hod- per nm ssi on>
<r ol e- nane>Enpl oyees</ r ol e- nane>
<net hod>
<gj b- nane>CQust oner EJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>

Copyright (c) 2001 O'Reilly & Associates 3

<net hod>
<gj b- nane>Addr essEIB</ ¢] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>
<cont ai ner-transact i on>
<net hod>
<ej b- nane>Addr essEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<net hod>
<gj b- nane>Qust oner EJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attri bute>
<cont ai ner-transact i on>
</ assenbl y-descri pt or >
<ejb-jar>

Copyright (c) 2001 O'Reilly & Associates

v

EJB 2.0 CMP: Entity
Relationships

In Chapter 6 you learned about basic EJB 2.0 container-managed persistence.
This included coverage of container-managed persistence fields and an
introduction to a basic container-managed relationship field. In this chapter we
will continue to develop the Customer EJB and discuss in detail each of seven
possible relationships that entity beans can have with each other.

In order for entity beans to model real world business concepts they must be
capable of forming complex relationships with each other. This was difficult to
accomplish in EJB 1.1 container-managed persistence because of the simplicity of
the programming model. In EJB 1.1, entity beans could have persistent fields but
not relationship fields.

Relationship fields in EJB 2.0 can model very complex relationships between
entity beans. In Chapter 6 you created a one-to-one relationship between the
Customer and AddressEJBs. This relationship was unidirectional; the Customer
had areference to the Address, but the Address did not have areference back to
the Customer. This is a perfectly legitimate relationship between these entities,
but other more complicated relationships are also possible. Each Address could
also reference its Customer. Thisis an example of bi-directional navigation, where
both participants in the relationship maintain references to each other. In
addition to one-to-one relationships, entity beans can also have one-to-many,
many-to-one and many-to-many relationships. For example, the Customer EJB
may have many phone numbers, but each phone number belongs to only one
Customer (a one-to-many relationship). A Customer may also have been on
many Cruises in the past and each Cruise will have had many Customers (a
many-to-many relationship).

Copyright (c) 2001 O'Reilly & Associates 1

The Seven Relationship Types

Seven types of relationships can exist between EJBs. This chapter examines
those relationships and how the beans’ code and deployment descriptor work
together to define the relationships. First, let's look at the different types of
relationships that are possible. There are four different types of cardinality: one-
to-one, one-to-many, many-to-one, and many-to-many. On top of that, each
relationship can be either unidirectional or bidirectional. That yields eight
possihilities, but if you think about it, you'll realize that one-to-many bidirectional
and many-to-one bidirectional relationships are actually the same thing, yielding
7 distinct relationship types.

To understand the relationships, it helps to think about some simple examples.
WEe'll expand on these examplesin the course of the chapter.

one-to-one, unidirectional
The relationship between a customer and an address. Y ou clearly want to be
able to look up a customer’s address, but you probably don't care about
looking up an address' s customer.

one-to-one, bidirectional
The relationship between a customer and a credit card number. Given a
customer, you obviously want to be able to look up his or her credit card
number. And, given a credit card number, it is also conceivable that you
would want to look up the customer who owns the credit card.

one-to-many, unidirectional
The relationship between a customer and a phone nubmer. A customer can
have many phone numbers (business, home, cell, etc.). You probably
wouldn’t want to look up a customer given his phone number.

one-to-many, bidirectional
The relationship between a cruise and a reservation. Given a reservation,
you want to be able to look up the cruise that the reservation is for. And
given acruise, you want to be able to look up all reservations for that cruise.
Note that a many-to-one bidirectional relationship is just another
perspective on the same concept.

many-to-one, unidirectional
The relationship between a cruise and a ship. Y ou obviously want to look
up the ship that will be used for a particular cruise, and many cruises share
the same ship, though at different times. It's less useful to be able to look
up the cruises that are associated with the given ship, though if you want
this relationship, you can implement a many-to-one bidirectional
relationship.

many-to-many, unidirectional
The relationship between areservation and a cabin. It’'s possible to make a
reservation for multiple cabins, and you clearly want to be able to look up
the cabin assigned to areservation. But you're not likely to want to look up

2 Copyright (c) 2001 O'Reilly & Associates

the reservation associated with a particular cabin. (If you think you need to
do so, you'd implement it as a bidirectional relationship.)

many-to-many, bidirectional
The relationship between a cruise and a customer. A customer can make
reservations on many cruises, and each cruise has many customers. You
clearly want to be able to look up both the cruises on which a customer has
abooking, and the customers that will be going on any given cruise.

Abstract Persistence Schema

In Chapter 6 you learned how to form a basic relationship between the Customer
and Address entity beans using the abstract programming model. In reality, the
abstract programming model is only half the equation. In addition to declaring
abstract accessor methods, a bean developer must further describe the
cardinality and direction of the entity-to-entity relationships in the bean’s
deployment descriptor. Thisis handled in the relationships section of the XML
deployment descriptor. Aswe discuss each type of relationship in the following
sections, both the abstract programming model and the XML elements will be
examined. It’'sthe purpose of this section to introduce you to the basic elements
used in the XML deployment descriptor to better prepare you for subsequent
sections on specific relationship types.

In this book we always refer to the Java programming idioms used to describe
relationships, specifically the abstract accessor methods, as the abstract
programming model. When referring to the XML deployment descriptor
elements we use the term abstract persistence schema. In the EIBB 2.0
specification, the term abstract persistence schema takes on a more general
meaning referring to both the Java idioms and the XML elements, but this book
separate these concepts so that they can be discussed more easily.

The abstract persistence schema of an entity bean is defined in the
<rel ati onshi ps> section of the XML deployment descriptor for that bean.
The <rel ati onshi ps section falls between the <ent er pri se- beans>
section and the<assenbl y- descri pt or > section. Within the relationships
element each entity-to-entity relationship is defined in separate <ej b-
rel ati on>elements.

<gjb-jar>

<ent er pri se- beans>

</ ent erpri se- beans>
<rel ati onshi ps>
<ej b-rel ati on>

</ ejb-rel ation>
<gj b-rel ati on>

Copyright (c) 2001 O'Reilly & Associates 3

</ejb-relati on>
</rel ati onshi ps>
<assenbl y- descri pt or >

</ assenbl y- descri pt or >

Defining relationship fields requires that an <ej b-rel ati on> element be
added to the XML deployment descriptor for each entity-to-entity relationship.
These <ej b-rel ati on> elements complement the abstract programming
model. For each pair of abstract accessor methods that defined a relationship
field, thereisan<ej b-r el at i on> element in the deployment descriptor. EJB
2.0 requires that the entity beans that participate in a relationship be defined in
the same XML deployment descriptor.

Here is a partial listing of the deployment descriptor for the Customer and
Address EJBs with the emphasis on the elements that define the relationship.

<gjb-jar>

<ent er pri se- beans>
<entity>
<ej b- nane>Qust oner EIB</ €] b- nane>
<l ocal - hone>comti t an. cust oner . Qusont er Local Hone</ | ocal - hone>
<l ocal >comtitan. cust oner. Qust oner Local </ | ocal >

<entity>

<entity>
<gj b- nane>Addr essEIB</ €] b- nane>
<l ocal - home>comti t an. addr ess. Addr essLocal Hone</ | ocal - hone>
<l ocal >comtitan. addr ess. Addr essLocal </ | ocal >

<Jentity>
</ enter pri se- beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Qust oner - Addr ess
</ ej b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- a- Addr ess
</ ej b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Oe</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Qust oner EJB</ €j b- nane>
</rel ati onshi p-rol e-sour ce>
<cnr-fiel d>
<cnm-fi el d- nane>honeAddr ess
</ cni-fi el d- name>
< cm-field>

4 Copyright (c) 2001 O'Reilly & Associates

</ ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Addr ess- bel ongs-t o- Qust oner
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>ne</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Addr essEIB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

All relationships between the Customer EJB and other entity beans, such as
CreditCard, Address, and Phone EJBs will require that we define a <ej b-
rel ati on> element to complement the abstract accessor methods.

Every relationship may, optionally, have arelationship name, which isdeclared in
the<ej b-rel ati on- nane> element. This servesto identify the relationship
for individuals reading the deployment descriptor or for deployment tools, but
it'snot required.

Every <ej] b-rel ati on> element has exactly two <ej b-rel ati onshi p-
rol e> elements, one for each participant in a relationship. In the previous
example, thefirst<ej b-rel at i onshi p-r ol e> declares the Customer EJB’s
role in the relationship. We know this because the <r el ati onshi p-rol e-
source> element specifies the <ejb-name> as CustonerEJB.
Cust oner EJB is the <ej b-nane> used in the Customer EJB’s original
declaration inthe <ent er pri se- beans> section. The <r el ati onshi p-
rol e-source> element's <ej b- name> must aways match an <ej b-
nane> element in the enterprise-beans section.

The <e] b-rel ati onshi p-rol e> element aso declares the cardinality, or
multiplicity of therole. The <nul ti pli city> element can either be One or
Many. In the case of the Customer EJB’s <ej b-rel ati onshi p-rol e>
element, the<nul t i pl i city> element hasavalue of One, which means that
every Address EJB has a relationship with exactly one Customer EJB. The
Address EJB’s <ej b-rel ati onshi p-rol e> specifies One aso, which
means that every Customer EJB has exactly one Address EJB. If the Customer
had a relationship with many Address EJBs, the Address EBJS
<mul tiplicity>wouldbelMany.

In Chapter 6, we defined the Customer EJB has having abstract accessor
methods for getting and setting the Address EJB in the honeAddr ess fidd,
but the Address EJB did not have abstract accessor methods for the Customer
EJB. Inthis casethe Customer EJB maintains areference to the Address EJB, but
the Address EJB doesn’t maintain areference back to the Customer EJB. Thisisa

Copyright (c) 2001 O'Reilly & Associates 5

unidirectional relationship, which means that only one of the entity beansin the
relationship maintains a contai ner-managed relationship field.

If the bean that is described by the <ej b-rel ati onshi p-rol e> element
maintains references to the other bean in the relationship, then that reference
must be declared as a container-managed relationship field in the <cnr -
field>eement. The <cnr-fiel d> element is declared under the <ej b-
rel ationship-rol e>eement.

<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- a- Addr ess
</ ¢j b-rel ati onshi p-rol e- nane>
<mul tiplicity>Qne</ nul tiplicity>
<rel ati onshi p-r ol e- sour ce>
<gj b- nane>Qust oner EJB</ €j b- nane>
</rel ati onshi p-rol e-sour ce>
<cnr-fiel d>
<cnt-fi el d- nane>honeAddr ess</ crm-f i el d- nane>
< cm-fiel d>
</ ejb-rel ati onshi p-rol e>

Thefield name declared inthe<cnr - f i el d- name> element must match a pair
of abstract accessor methods in the bean class. In above example, the <cnr -
field-name>ishonmeAddr ess, which corresponds to the pair of abstract
accessor methods get HoneAddr ess() and set HoneAddr ess() defined
inthe Cust orrer Bean class. EJB 2.0 requires that the <cnr - f i el d- name>
begin with alower case letter. For every relationship field defined by a <cnr -
fi el d> element, there must be a pair of matching abstract accessor methods in
the bean class. One method in this pair must be defined with the method name
set<cnr-field-nane>() where the first letter of the <cnr-field-
nanme> value is changed to upper case. The other method is defined as
get<cnr-field-name>() with the first letter of the <cnr-fiel d-
name> value in upper case. So, for example, the <cnr - f i el d- nane> value
of honeAddr ess would have a corresponding abstract accessor methods
get HoneAddr ess() andset HonmeAddr ess() .

/1 bean class code
publ i c abstract voi d set HoneAddr ess(AddressLocal address);
publ i c abstract AddresslLocal get HoneAddress();

/1 XML depl oynent descriptor declaration
<cnm-field>

<cmm - fi el d- nane>honeAddr ess</ cni - fi el d- nane>
</cn-field>

Thereturn type of theget <cnr - f i el d- nane>() method and the parameter
type of the set <cnv - fi el d- nane>() must be exactly the same type. The
type must be either the remote or local interface of the bean that is referenced or

6 Copyright (c) 2001 O'Reilly & Associates

one of two java.util.Collection types. In the case of the
honmeAddr ess relationship field, we are using the Address EJB’s local
interface, Addr essLocal . Collection types are discussed in more detail in one-
to-many, many-to-one and many-to-many relationships later in the chapter.

Having established a basic understanding of how elements are declared in the
abstract persistence schema, you are now ready to discuss each of the seven
types of relationships in more detail. In the process we will be introducing
additional entity beans that have relationships with the Customer EJB including
the CreditCard, Phone, Ship, and Reservation EJBs.

It’simportant to understand that although entity beans may have both local and
remote interfaces, a container-managed relationship field may only use the entity
bean’s local interface when persisting a relationship. So for example, it would be
illegal to define abstract accessor methods that have an argument type of
j avax. e] b. EJBObj ect (remote interface type). All container-managed
relationships are based on | avax. e] b. EJBLocal Cbj ect (loca interface)

types.

Database M odeling

This chapter discusses several Fhroughout thischapter different database table
schemas-arediscussed. These schemas are intended purely ilustrative and are
used-only toto demonstrate possible manifestationsof relationships between
entities in the database; they are not prescriptive. For example, the Address-
Customer relationship is manifested by having ADDRESS table maintain foreign
keysinto the CUSTOVER table. Thisisnot how most databases will be organized
—instead they will use alink table or have the ADDRESS table maintain a foreign
key to the CUSTOVER.—_hHowever, this schema shows is-usefulin-showing
2 EB 2.0's container-
managed persi stence can support dlfferent database organizations.

Hsassumed-tThrough-out this chapter, we assume that the database tables are
created before the EJB application.--—in other words, that the EJB application is
mapped to alegacy database. Some vendors wil-offer tools that generate tables
automatically according to the relationships defined among entity beans. These
tools may create schemas that are very different from the ones explored here. In
other cases, vendors that support established database schemas may not have
the flexibility to support the schemas illustrated in this chapter. As an EJB
developer, you must be flexible enough to adapt to the facilities provided by |
your EJB vendor.

Copyright (c) 2001 O'Reilly & Associates 7

One-to-one Unidirectional Relationship

An example of a one-to-one unidirectional relationship is the relationship
between the Customer EJB and the Address EJB defined in Chapter 6. In this
case, a Customer has exactly one Address and every Address has exactly one
Customer. Which bean references which determines the direction of navigation.
While the Customer has a reference to the Address, the Address doesn’t
reference the Customer. This is a unidirectional relationship because you can
only go from the Customer to the Address, and not the other way around. In
other words, an Address EJB has no idea who owns it. Figure 7-1 shows this
relationship.

LCustomer
o alsEract =

| Airing pril asaiem:i b
sl e o g

Hirlag prifFir Plaset)
il el it Mo S ring B

Adevan gaubdbirered |
ikl st bl sl Addieas alily)

1
Auliliress |

= =abammcge =

ERE D |

i e Sl FET
i Ty

i byt miag Aty
prmie’ §

T e AT
EnElp §
meidipEeng ap0

[Figure 8-1 figure 7-1 and 6-1 are the same]
Figure 7-1: One-to-one Unidirectional Relationship

Relational Database Schema

One-to-one unidirectional relationships normally use afairly typical schemain
relational databases where one table contains aforeign key (pointer) to another
table. The CUSTOVER table contains aforeign key to the ADDRESS table, but

the ADDRESS table doesn’t contain aforeign key to the CUSTOVER table. This
allows recordsin the ADDRESS table to be shared by other tables, a scenario
explored in section Many-to-many Unidirectional Relationships.FigureHolder

Figure 7-2: One-to-one Unidirectional Relationshipin
RDBMS

8 Copyright (c) 2001 O'Reilly & Associates

Abstract Programming Mode

Asyou learned in Chapter 6, the abstract accessor methods are used to define
relationship fields in the bean class. When an entity bean maintains a reference
to another bean, it defines a pair of abstract accessor methods to model that
reference. In unidirectional relationships, only one of the enterprise beans will
define abstract accessor methods. It's called unidirectional because you can
only navigate the relationship one-way. Inside the Cust oner Bean class you
can cal the get HoneAddress()/set HomeAddress() to access the
Address EJBs, but inside the Addr essBean class there are no methods to
access the Customer EJB.

Although the relationship is unidirectional, the Address EJB can be shared
between relationship fields of the same enterprise bean, but it may not be shared
between Customer EJBs. If, for example, the Customer EJB defined two
relationship fields, bi | | i ngAddress and honeAddr ess, as one-to-one
unidirectional relationships with the Address EJB, these two fields could
conceivably reference the same Address EJB.

public class QustonerBean i npl enents javax. €j b. EntityBean {
public voi d set Address(Sring street,Sring city,

Sring state, Sring zip)
throws Q eat eException {

address = addr esstHone. cr eat eAddr ess
(street, city, state, zip);

t hi s. set HoneAddr ess(addr ess) ;
this.setB |1ingAddress(address);

AddressLocal bil | Addr, honeAddr;

i f(billAddr.isldentical (honeAddr))
/1 always true

}

It's possible for two fields in a bean to reference the same relationship if the
relationship type is the same. In this case, both the honmeAddress and

bi I l'ingAddress have to be defined as one-to-one unidirectional
relationships that utilize the Address EJB’s local interface. At any time, if you
want to make the bi | | i ngAddr ess different from the homeAddr ess, you

could be simply set it equal to a different Address EJB. Sharing a reference to

Copyright (c) 2001 O'Reilly & Associates 9

another bean between two relationship fields in the same entity is sometimes
very convenient. In order to support this type of relationship a new billing
address field might be added to the CUSTOMER table.

CREATE TABLE QUSTOMER
(
IDINT PR MARY KEY,
LAST NAMVE CHAR(20),

FI RST_NAME CHAR 20) ,
ACDRESS | D I NT,

Bl LLI NG ADDRESS | D | NT

}

However, it would not be possible to share the Address EJB between two
different Customer EJBs. If, for example, the home Address of Customer A were
assigned as the home Address of Customer B, the Address would be moved, not
shared, so that Customer A wouldn’'t have a home Address any longer. Asyou
can seein Figure 7-3, Address 2 isinitially assigned to Customer B, but becomes
disconnected when Address 1 isre-assigned to Customer B.

Cuztomer & 2 Addrezs 1
Cuzstomer B >, Address 2

Addresslocal addr_1 = customerA.getHome Address|);
customerB.setHome Address(addr_1);

Addrese 1
Address 2

FigureHolder

Customer &

Customer B

Figure 7-3: Exchanging referencesin a One-to-One
Unidirectional Relationship

This seemingly strange side affect is simply a natural result of how the
relationship is defined. The Customer-to-Address EJB relationship was defined

10 Copyright (c) 2001 O'Reilly & Associates

as one-to-one, so the Address EJB is alowed to be referenced by only one
Customer EJB.

Abstract Persistence Schema

The XML elements for the Customer-Address relationship were already defined
in the Abstract Persistence Schema section, so we won't go over them again.
The <ej b-rel ati on> element used in that section declared a one-to-one
unidirectiona relationship. If, however, the Customer EJB did maintain two
relationship fields with the Address EJB, honeAddress, and
bi I'I'il ngAddr ess, each of these relationships would have to be described in
itsown<ej b-rel at i on> element.

<rel ati onshi ps>
<ej b-rel ati on>
<ej b-rel ati on- nane>Qust oner - HoneAddr ess
</ ej b-rel ati on- nanme>
<ej b-rel ati onshi p-rol e>

<crm-fiel d>
<cnm - f i el d- nane>honeAddr ess
</ cm-fi el d- nane>
</ cm-field>
</ ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>

</ ej b-rel ati onshi p-rol e>
<ej b-rel ati on>
<gj b-rel ati on>
<gj b-rel ati on- nane>Qust oner - B | | i ngAddr ess
</ €j b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>

<cnm-field>
<cnm-fiel d-nane>bi | |ing
</ cni-fi el d- nane>
< cm-field>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>

</ ¢ b-rel ati onshi p-rol e>
<ej b-rel ati on>
<rel ati onshi ps>

One-to-one Bi-directional Relationship

We can expand our Customer EJB to include a reference to a CreditCard EJB,
which maintains credit card information. The Customer EJB will maintain a
reference to its CreditCard EJB and the CreditCard EJB will maintain a reference

Copyright (c) 2001 O'Reilly & Associates 11

back to the Customer—this makes good sense, since a CreditCard should be
aware of who owns it. When each CreditCard has a reference back to one
Customer, and each Customer references one CreditCard, we have a one-to-one
bi-directional relationship.

Relational Database Schema

The CreditCard EJB will have a corresponding CREDI T_CARD table and we
neeed to add a CREDIT_CARD foreign key to the CUSTOMER table:

CREATE TABLE CREDI T_CARD
(
I'D INT PRINARY KEY,
EXP_DATE DATE,
NUMBER CHAR(20)
NAME GHAR(40) ,
CRGAN ZATI ON GHER 20) ,
QUSTOMER | D | NT
}

CREATE TABLE QUSTOMER
(
IDINT PR MARY KEY,
LAST NAMVE CHAR(20),
FI RST_NAME CHAR 20) ,
HOME_ACDRESS | D | NT,

ACDRESS | D INT,
CREDIT_CARD I D INT

)

One-to-one bi-directional relationships may model relational database schemas
where the two tables each hold aforeign key for the other table. Specifically, two
rows in different tables point to each other. Figure 7-4 illustrates how this
schema would be implemented for rows in the CUSTOVER and CREDI T_CARD
tables.

FigureHolder

Figure 7-4: One-to-one Bi-directional Relationshipin
RDBMS

Its also possible for a one-to-one bi-directional relationship to be established
through a linking table where each foreign key column in the table must be
unique, this is convenient when you do not want to impose relationship on the
original tables. We will use linking tables in one-to-many and many-to-many
relationships later in the chapter.

12 Copyright (c) 2001 O'Reilly & Associates

Abstract Programming Mode

To model the relationship between the Customer and CreditCard, we'll need to
declare arelationship field namedcust orer inthe Cr edi t Car dBean class.

public abstract class QeditCardBean extends javax.ejb. EntityBean {

/1 relationship fields
publ i c abstract QustonerLocal getQustoner();
public abstract void set Qust oner (CQust onerLocal | ocal);

/1 persistent fields

public abstract Date get ExpirationDate();

publ i c abstract void setExpirationDate(Date date);
public abstract Sring get Nunier();

public abstract voi d set Nunber (Sring nunier);

public abstract Sring get NamehCard();

public abstract voi d set NanehCard(Sring nane);

public abstract Sring getQeditQganization();

public abstract void setGeditQganization(Sring org);

/1 standard cal | back nethods

}

In this case, we use the Customer EJB’s local interface (assume one has been
created) because relationship fields require local interfaces types. All the
relationships explored in the rest of this chapter assume local interfaces. Of
course, the limitation of using local interfaces instead of remote interfaces is that
you don’t have location transparency. All the entity beans must be located in the
same process or Java Virtual Machine. Although relationships fields using
remote interfaces are not supported in EJB 2.0, it’s likely that support for remote
relationship fields will be added in a subsequent version of the specification.

We can also add a set of abstract accessor methods in the Cust onmer Bean
classforthecr edi t Car d relationship field.

publ i c class QustonerBean inpl enents javax. ej b. EntityBean {

public abstract voi d setGeditCard(QeditCardLocal card)
public abstract GeditCardLocal getQeditCard();

}

Although a set Cust oner () method is available in the Cr edi t Car dBean,
we do not have to set the Customer reference on the CreditCard EJB explicitly.
When a CreditCard EJB reference is passed into the set Credit Card()
method on the Cust oner Bean class, the EJB Container will automatically

Copyright (c) 2001 O'Reilly & Associates 13

establish the customer relationship on the Address EJB to point back to the
Customer EJB.

public class QustonerBean i npl enents j avax. €j b. EntityBean {
public void setQeditCard(Date exp, Sring nunb,
Sring nane, Sring org)
throws Q eat eException {

card = credi t Car dHone. cr eat e(exp, nunb, nane, or g) ;

// the Address EIB's custoner field will be set automatical ly
this.setQeditCrd(card);

Qust oner custoner = card. get Qustoner();

i f(custoner.isldentical (ej bGontext. get EJBLocal (yj ect ())
/1 always true

}

Attempting to share a CreditCard in a one-to-one hi-directional relationship has
the same affect as in one-to-one unidirectional relationships. While the
CreditCard EJB may be shared between relationship fields of the same entity
identity, the CreditCard entity can’t be shared between different Customer EJBs.
Assigning the CreditCard of Customer A to Customer B disassociates that
CreditCard from A, and movesit to B.

14 Copyright (c) 2001 O'Reilly & Associates

Cusztomer A < S CreditCard X
Cuzstomer B < CreditCard T

CreditCardLocal cardX = customerA.getCreditCard(J;
customerB.setCreditCard(cardX J;

CreditCard X
CreditCard ¥

i

Customer &

Customer B

Figure holder

Figure 7-5: Exchanging referencesin a One-to-One Bi-
idirectional Relationship

Abstract Persistence Schema

The <ej b-rel ation> element that defined the Customer-to-CreditCard
relationship is very similar to the one used for the Customer-to-Address
relationship, except for one important difference: both ej b-rel ati onshi p-

rol e elementshaveacnr -fi el d.

<rel ati onshi ps>
<ej b-rel ati on>
<ej b-rel ati on- nane>Qust oner - G edi t Card
</ ej b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has-a- G edi t Card
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Qne</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Qust oner EIB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
<cnr-fiel d>
<cn-fi el d-nane>credit Card
</ cni-fi el d- name>
< cm-fiel d>

Copyright (c) 2001 O'Reilly & Associates

15

</ ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Q edi t Car d- bel ongs- t o- Qust oner
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>ne</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Q edi t Gar dEIB</ gj b- nane>
</rel ati onshi p-rol e- sour ce>
<cn-fiel d>
<cnt-fi el d- nane>cust oner
</ cnr-fi el d- name>
< cm-field>
</ ej b-rel ati onshi p-rol e>
<ej b-rel ati on>
<rel ati onshi ps>

The fact that both participants in the relationship define <cnr-fiel d>
elements (relationship fields) tells up immediately that the relationship is bi-
directional.

One-to-many Unidirectional Relationship

Entity beans can also maintain relationships with multiplicity. This means that
one entity bean can aggregate or contain many other entity beans. For example,
the Customer EJB may have many Phone EJBs, each of which represents a phone
number. Thisis very different from the simple one-to-one relationship. One-to-
many and many-to-many relationships require the developer to work with a
collection of references when accessing the relationship field, instead of asingle
reference.

Relational Database

To illustrate a one-to-many unidirectional relationship, we will use a new entity
bean, the Phone EJB, for which we must define atable, the PHONE table.

CREATE TABLE PHONE
(
ID INT PR NARY KEY,
NUVBER GHAR(20)
TYPE INT,
QUSTOMER | D | NT

}

One-to-many unidirectional relationships between the CUSTOVER and PHONE
tables could be manifested in arelational database in a variety of ways. For this
example, we chose to have the PHONE table include a foreign key to the
CUSTOVER table

16 Copyright (c) 2001 O'Reilly & Associates

The table of aggregated data can maintain a column of non-unique foreign keys
to the aggregating table. In the case of the Customer and Phone EJBs, the
PHONE table maintains a foreign key for the CUSTOVER table; one or more
PHONE records may contain foreign keys the same CUSTOVER record. Here the
pointer is reversed in the database, so that the PHONE records point to the
CUSTOVER records. Although the database has the PHONE records pointing to
the CUSTOVER records, the abstract programming model would have the
Customer EJB pointing to the Phone EJBs. The two schemas are reversed, so
how can it work? The container system will hide this reverse pointer so that it
appears as if the Customer is aware of the Phone number and not the other way
around. When you ask the container to return a Col | ect i on of Phone EBs
(invoking the get PhoneNunger s() method), it will query the PHONE table
for al the records with aforeign key matching the Customer EJB’ s primary key.

FigureHolder

Figure 7-6: One-to-many Unidirectional Relationshipin
RDBMSusing reverse pointers

This database schema, with reverse pointers, illustrates that the structure and the
relationships of the database can be very different than the relationships as
defined in the abstract programming model. In this case the tables are set up
somewhat in reverse, but the EJB container system will manage the beansto meet
the specification of the bean developer. This isn't always possible; in some
cases, the database schema is incompatible with a desired relationship field.
When dealing with legacy databases, databases that were established before the
EJB application, a reverse pointer scenario like the one illustrated here is very
common, so supporting this kind of relationship mapping isimportant.

A simpler implementation could use alink table that maintains two columns with
foreign keys pointing to both the CUSTOVER and PHONE records. In this case
we can constrain the link table so that the PHONE foreign key column requires
unigue entries, ensuring that every phone has only one customer, while the
Customer foreign key column may have duplicates. The advantage of the link
table is that it doesn’t impose the relationship between the CUSTOVER and the
PHONE onto either of the tables.

Abstract Programming Model

In the abstract programming model, we represent multiplicity by defining a
relationship field that can point to many entity beans. This is accomplished by
employing the same abstract accessor methods used for one-to-one
relationships, except the field type is either a j ava. uti| . Col | ecti on or
java. uti| . Set. The collection maintains a homogeneous group of local EJB
object references, which means it contains many references to one kind of entity
bean. The Col | ecti on type may contain duplicate references to the same
entity bean, whilethe Set type may not.

Copyright (c) 2001 O'Reilly & Associates 17

For example, the Customer EJB may have many different phone numbers: a home
phone, work phone, cell phone, fax, etc. Instead of having a single relationship
field for each of these different Phone EJBs, the Customer EJB keeps all the
Phone EJBs in a Col | ecti on relationship field, which can be accessed
through abstract accessor methods:

public abstract class QustonerBean i npl enents javax. ej b. EntityBean {

/1 relationship fields
public java. util.@l | ection get PhoneNunbers();
publ i ¢ voi d set PhoneNunber s(j ava. util. @l | ection phones);

publ i ¢ AddressLocal get HoneAddress();
publ i c voi d set HoneAddr ess(AddressLocal |ocal);

The Phone EJB, like other entity beans, has a bean class and local interface as
shown in the next listing. Notice that the PhoneBean doesn’'t provide a
relationship field for the Customer EJB. It's a unidirectional relationship; the
Customer maintains a relationship with many Phone EJBs, but the Phone EJBs do
not maintain arelationship field back to the Customer. Only the Customer EJB is
aware of the relationship.

/1 The local interface for the Phone EIB
public interface PhoneLocal
extends j avax. €] b. EJBLocal (j ect {
public Sring get Nunber ();
publ i c voi d set Nunber (S ring nuniber);
public byte get Type();
public voi d set Type(byte type);
}
/1 The bean class for the Phone EIB
public class PhoneBean

i npl enent s javax. gj b. EntityBean {

public Integer e bQeate(Sring nunber, byte type){

set Nunber (nunioer) ;

set Type(type);
}
publ i c voi d ej bPost O eate(Sring nunber, byte type)
{}

/] persistent fields

public abstract Sring get Nunber();

public abstract voi d set Nunber (Sring nuniber);
public abstract byte get Type();

public abstract voi d set Type(byte type);

18 Copyright (c) 2001 O'Reilly & Associates

/1 standard cal | back net hods

}

To illustrate how an entity bean uses a collection-based relationship field, we will
define a method in the Customer EJB class that allows clients to add new phone
numbers. The method, addPhoneNunber (), uses the phone number
arguments to create a new Phone EJB and then add that Phone EJB to a
Col | ecti on namedphoneNumnber s.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

/1" busi ness net hods
publ i ¢ voi d addPhoneNunber (S ring nunber, Sring type){

Initial Context jndi Enc = new Initial Gontext();
PhoneHoneLocal phonetbne = j ndi Enc. | ookup(“ PhoneNunter ") ;
PhonelLocal phone = phonetHbone. cr eat e(nunier , t ype) ;

@l | ection phoneNuntbers = thi s. get PhoneNunbers() ;
phoneNunber s. add(phone) ;

}

/1 relationship fields
public java. util. @l ection get PhoneNunbers();
publ i ¢ voi d set PhoneNunber s(j ava. util. ol |l ecti on phones);

What is important with the above example is that the Phone EJB isfirst created,
and then added to the phoneNunber s Collection. The phoneNunbers
Col | ecti on is obtained from the get PhoneNunmber s() accessor method
and then the new Phone number EJB is added to the Col | ect i on just as you
would add any object to a collection. The simple act of adding the Phone EJB to
the Col | ect i on causes the EJB container to set the foreign key on the new
PHONE record so that it points back to the Customer EJB’'s CUSTOVER record.
If alink table had been used, a new link record would have been created. From
this point forward, the new Phone EJB will be available from the
phoneNunmber s Collection.

Referencesina Col | ect i on-based relationship field can also be updated or
removed from the relationship using the relationship field accessor method. For
example, the following code defines two methods in the Cust orrer Bean class
that allow clients to remove or update phone numbers in the bean's
phoneNunmber s relationship field.

public abstract class QustonerBean inpl enents javax. ej b. EntityBean {

/] busi ness net hods

Copyright (c) 2001 O'Reilly & Associates 19

public voi d renovePhoneNunber (St ring typeToRenove) {

@l I ection phoneNuntbers = t hi s. get PhoneNunbers() ;
Iterator iterator = phoneNunbers.iterator();
vhi | e(iterator. hasNext ()){
PhoneLocal phone = (Phonelocal)iterator. next();
i f (phone. get Type() . equal s(typeToRenove)) {
i terator.renmove(phone);
br eak;

}
}
publ i ¢ voi d updat ePhoneNunier (String nunber, Sring typeTolUodat e) {
@l | ection phoneNunbers = this. get PhoneNunbers();
Iterator iterator = phoneNunbers.iterator();
vhi | e(iterator. hasNext ()){
PhoneLocal phone = (PhoneLocal)iterator. next();
i f (phone. get Type() . equal s(typeTolbdat €)){
phone. set Nunier (nunber) ;
br eak;

}

/1 relationship fields
public java. util.@l | ection get PhoneNunbers();
publ i ¢ voi d set PhoneNunber s(j ava. util. ol |l ecti on phones);

In the renbvePhoneNunber () business method, a Phone EJB with the
matching type was found and then removed from the collection. This has the
effect of actually disassociating the phone number from Customer EJB so that its
not referenced by any Customer. The phone number is not deleted from the
database, it’sjust not referenced by a Customer.

20 Copyright (c) 2001 O'Reilly & Associates

Collection phones = customerA.getPhone Numbers(J;
Phonel.ocal phoned = ... loop through collection and find Phone 4
phonesremove(phoned);

Phone 1

FigureHolder

Figure 7-9: Removing a bean reference from a relationships
field collection

The updat ePhoneNunber () method actually modifies an existing Phone
EJB, changing its state in the database. The Phone EJB is still referenced by the
Col | ecti on, but its data has changed.

Bothr enbvePhoneNunber () andupdat ePhoneNunber () illustrate that
a collection-based relationship can be accessed and updated just like any other
Col | ecti on object. Inaddition, aj ava. util.|terator can beobtained
from the Col | ecti on for looping operations. However, caution should be
exercised while using an iterator over a collection-based relationship. You must
not add or remove elementsfromthe Col | ect i on while using its iterator. The
only exception to thisruleisthat the | t er at or . renove() method may be
called to remove an entry. Although the Col | ection.add() and
Col l ection.renmove() methods can be used in other circumstances,
caling these methods while an iterator is in use will result in a
java.util.l1l egal St ateExcepti on exception.

If the phoneNunber s relationship field has never had any beans added to it,
the get PhoneNunbers() method will return an empty Col | ecti on.
Multiplicity relationship fields never return nul | . The Col | ecti on object
used with the relationship field is implemented by the container system and is
proprietary to the vendor and tightly coupled with the inner workings of the
container. This alows the EJB container to implement performance

Copyright (c) 2001 O'Reilly & Associates 21

enhancements like lazy loading or optimistic concurrency seamlessly, without
exposing those proprietary mechanisms to the bean developer. Because the
Col | ection is implemented and tightly coupled to the vendor's EJB
container, its illegal to use application defined Col | ecti on objects in
relationship fields. For example, itisillegal to createanew Col | ect i on object
and then attempt to add that Col | ect i on object to the Customer EJB using
theset PhoneNunber s() method.

publ i ¢ voi d addPhoneNunber (Sring nunber, Sring type){

PhoneLocal phone = phonetbne. creat e(nunber, t ype) ;

@l | ection phoneNunbers = java. util.Vector();
phoneNuner s. add(phone) ;

[/ thisisillegal. An exception wll be thrown
t hi s. set PhoneNunber s(phoneNunter s) ;

}
/1 relationship fields

public java.util.@l | ection get PhoneNunbers();

publ i ¢ voi d set PhoneNunber s(j ava. util. @l | ection phones);

We have used the get PhoneNunber s() method extensively but have not
yet used the set PhoneNunber s(). In most cases, this method will not be
used, because it updates an entire collection of phone numbers. However, in
some scenarios it can be very useful for exchanging like relationships between
entity beans.

If two Customer EJBs want to exchange phone numbers, they can do so in a
variety of ways. The most important thing to keep in mind is that a Phone EJB,

as the subject of the one-to-many unidirectional relationship, may only reference

one Customer EJB. So a Phone EJB cannot be shared between Customer EJBs. It

can be copied, so that both Customers have Phone EJBs with similar data, but

the Phone EJB itself cannot be shared.

Imagine, for example, that Customer A wants to transfer all of its phone numbers
to Customer B. It can accomplish this by using the set PhoneNunber s()

method of Customer B as shown in the listing below. (We assume the Customer
EJBs are interacting through their local interfaces.)

Qustoner custoner A = ...get Qustoner A
Qustoner custonerB = ...get Qustoner B

@l [ection phonesA = cust oner A get PhoneNunber s() ;
cust oner B. set PhoneNunber s(phonesA) ;

i f(custoner A get PhoneNunbers(). isEwty())
/1 this wll be true

22 Copyright (c) 2001 O'Reilly & Associates

i f(cust oner B. get PhoneNunier s() . equal s(phonesA))
/1 thiswll be true

As the previous code and Figure 7-10 illustrate, passing one collection-based
relationship to another actually disassociates those relationships from the first
bean and associates them with the second. In addition, if the second already had
aCol | ecti on of Phone EJBsinits phoneNunber s relationship field, those
beans are bumped out of the relationship and disassociated from the bean.

FPhone 1

Cusb\:!mer A Phone 2
Phone 3

Phone 4

Cush:\mer E PthE 2
Phone]

Collection phonesA = customerA.getPhone Numbers|);

customerB.setPhoneNumbers(phonesA);

Jlethenss - (howa 1)
=
=l

Phone 4 st
T, Phone 5 } Mot Azzociated swith any
[j Phone & Customer

FlgureHoI der

Figure 7-10: Exchanging a relationship collection in a One-
to-One unidirectional Relationship

Theresult of this exchange may be counterintuitive, but it is necessary to uphold
the unidirectional aspect of the relationship, which says that the Phone EJB may
only have one Customer EJB. This, at least, explains why Phone EJBs 1,2 and 3
don’t reference both Customer A and B, but it doesn’t explain why Phone EJBs 4,
5 and 6 disassociated from Customer B. Why isn’t Customer B associated with all
the Phone EJBS? The reason is purely a matter of semantics, since the relational
database schema wouldn’t technically prevent this from occurring. The act of
replacing one Col | ection with another by calling
set PhoneNunber s(Col | ection collection) impliesthat B’s initia
Col | ecti on object isno longer referenced, and is therefore not referenced by
any Customer.

Copyright (c) 2001 O'Reilly & Associates 23

In addition to moving whole collection-based relationships between beans, it's
also possible to move individual Phone EJBs between Customers, but again they
cannot be shared. For example, if a Phone EJB aggregated by Customer A is
added to the relationship collection of Customer B, that Phone EJB changes so
that it’ sreferenced by Customer B, and not A, as Figure 7-11 illustrates.

Fhone 2
Fhone 4
Customer B, _‘.J-’I\ Ehsiel
Phone &
Collection phonesA = customer A.getPhone Numbers|);

Phonel.ocal phonel = (Phonel.ocal) phonesA.iterator().next();
Collection phonesB = customerB.getPhone Numbers();

|

phonesB.add(phonel);

Fhone 2
_
Fhone 4

] Phone 5

i Fhone &

FigureHolder

!

Figure 7-11: Exchanging a bean in a One-to-One
unidirectional Relationship

Oneagain, it sthe unidirectional aspect of the relationship that prevents Phone 1
from referencing both Customer A and B.

Abstract Persistence Schema

The abstract persistence schema for one-to-many unidirectional relationships
has a couple of significant changes when compared to the <ej b-rel ati on>
elements seen so far, but these changes are easy to understand.

<rel ationshi ps>
<ej b-rel ati on>
<ej b-rel ati on- nane>Qust oner - Phones
</ ej b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- nany- Phone- nunier s

24 Copyright (c) 2001 O'Reilly & Associates

</ ej b-rel ati onshi p-r ol e- nane>
<mul tiplicity>One</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Qust oner EJB</ €j b- nane>
</rel ati onshi p-rol e-sour ce>
<cnm-fiel d>
<cnt-fi el d- nane>phoneNunber s
</ cm-fiel d- nane>
<crm-field-type>java. util.@llection
</ cmm-fiel d-type>
</ cm-field>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e- nane>
Phone- bel ongs-t o- Qust oner
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</mul tiplicity>
<rel ationshi p-rol e- sour ce>
<gj b- nane>PhoneEIB</ €j b- nane>
</rel ati onshi p-rol e-sour ce>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

Inthe <ej b-rel ati on> eement, the multiplicity for the Customer EJB is
declared as One, while the multiplicity for the Phone EJB's <ej b-
rel ationship-role>isNVany. Thisobviously establishes the relationship
as one-to-many. The fact that the <ej b-rel ati onshi p-rol e> for the
Phone EJB doesn't specify a <cnt - f i el d> element indicates that the one-to-
many relationship is unidirectional; the Phone EJB doesn't contain a
reciprocating reference to the Customer EJB.

The most interesting change is the addition of the <cnr-field-type>
element in the Customer EJB’s <cnr-fiel d> declaration. The <cnr -
field-type> must be specified for the bean that has a collection-based
relationship field (in this case the phoneNunber s field maintained by the
Customer EJB). The <cnr-fiel d-type> can have one of two values,
java.util.Collection or java.util.Set, which are the alowed
collection-based relationships types. In afuture specification, the allowed types
for collection-based relationships may be expanded to include
java.util.List andj ava. util . Map, butthese are not supported yet.

[Exercise 7.1, Customer Relationships

Copyright (c) 2001 O'Reilly & Associates 25

The Cruise, Ship, and Reservation EJBs

To make things more interesting, we are going to introduce some more entity
beans so that we can model the remaining four relationships: Many-to-one
unidirectional, One-to-many bi-directional, and many-to-many unidirectional and
finally, many-to-many bi-directional.

In Titan's reservation system every customer (a.k.a. passenger) can be booked
on one or more cruises. Each booking requires areservation. A reservation may
be for one, or more passengers (usually 2). Each cruise requires exactly one ship,
but each ship may be used for many cruises through out the year. The following
diagram illustrates these rel ationships.

Bhi
Bip, |
Y. .
Many iy
Cruisa Cabdir
Cpbammey e <~y bwimar- -
- L]

Customer
iy T TILEY
4

FigureHolder
Figure 7-12: Cruise, Ship & Customer Class Diagram

In the next four sections the relationships investigated will each refer back to the
above diagram and show how these relationships are manifested in EJB 2.0
container managed persistence.

M any-to-one Unidirectional Relationships

Many-to-one unidirectional relationships result when many entity beans
reference a single entity bean, but the referenced entity bean is unaware of the

26 Copyright (c) 2001 O'Reilly & Associates

relationship. In the Titian Cruise business, for example, the concept of a cruise
can be captured by a Cruise EJB. As shown in figure 7-12, each cruise has a
many to one relationship with a ship. This relationship is unidirectional; the
Cruise EJB will maintain a relationship with Ship EJB, but the Ship EJB is not
going to keep track of which Cruisesit used for.

Relational Database Schema

Therelational database schemafor the cruise-to-ship relationship isfairly simple;
it requires that the CRUI SE table maintain a foreign key column for the ship
table, where each row in the CRUI SE table points to arow in the SHI P table.
The CRUI SE and SHI P tables are defined below; Figure 7-13 shows the
relationship between these tablesin the database.

An enormous about of data would be required to adequately describe an ocean
ship liner, but for the purposes of this book we will keep the definition of the
SHI P table very simply.

CREATE TABLE SHP

(
ID INT PRINARY KEY,

NAVE CHAR(30),
TOWAGE DEQ ML (8, 2)

}

The CRUI SE table maintains data on each cruise’s name, ship, and other
information that is not germaine to this discussion. (Other tables such as
RESERVATI ONS, SCHEDULES, CREW etc. would have relationships with the
CRUI SE table through linking tables.) For our purposes we'll keep it simple and
focus on adefinition that useful for the examplesin this book.

CREATE TABLE CGRU SE

(
IDINT PR MARY KEY,

NAVE CHAR(30),
SHPIDINI

}

FigureHolder

Figure 7-13: Many to One Unidirectional Relationshipin
RDBMS

Abstract Programming M odel

In the abstract programming model, the relationship field is of type Shi pLocal
and is maintained by the Cruise EJB. Thisis not particularly interesting, as the
abstract accessor methods are similar to those defined in other examples.

public abstract class Q ui seBean
i npl enent s j avax. ej b. Enti tyBean {

Copyright (c) 2001 O'Reilly & Associates 27

public Integer e bGreate(Sring nane,
Shi pLocal ship) {
set Nane(nane) ;

}
public void ej bPost O eate(Sring nane,

Shi p shi pLocal){
set Shi p(shi p);

}
public abstract void setNane(Sring nane);

public abstract Sring getNange();
public abstract voi d setShi p(Shi pLocal ship);
publ i c abstract ShipLocal getShip();

/1 EIB cal | back net hods

}

Notice that the Cruise EJB requires that a Shi pLocal reference be passed as
an argument when the Cruise is created; this is perfectly natural since a cruise
cannot exist without a ship. According to the EJB 2.0 specification, relationship
fields cannot be modified or set in the ej bCr eat e() method. They must be
modifed in the e] bPost Create(), a constraint that is followed in the
Cr ui seBean class.

The reason relationships are set in ej bPostCreate() and not
e] bCreat e() issimple: Inmany casesit’s simpler for the EJB container to link
two beans together in a relationship after they both exist. Once the
e] bCreat e() method executes, the CRUI SE record has been inserted to the
database so that its relationship with the SHI P table can be established. Thisis
especially important when, for example, a link table is used to model
relationships. In that case, the link table may have referential integrity constraints
that require both records to exist before they are linked".

The Ship EJB is even simpler then the Cruise EJB. The relationship between the
Cruise and Ship EJB in unidirectional, so the Ship EJB doesn't define any
relationship fields, just persistent fields.

public abstract class Shi pBean
i npl enent s j avax. g b. Enti tyBean {

public Integer e bQeate(lnteger prinarykKey, Sring nane,
doubl e tonnage) {
set 1 d(pri naryKey);
set Nane(nane) ;
set Tonnage(t onnage) ;

! The database insert that occurs between the ej bCr eat e() and ej bPost Cr eat e()
would be done within the same transactional context as updates to the relationship field.

28 Copyright (c) 2001 O'Reilly & Associates

}

public void e bPost Oeate(lnteger prinaryKey, Sring nane,
doubl e tonnage) {

}

public abstract void setld(Integer id);

public abstract Integer getld();

public abstract voi d setNane(String nane);

public abstract String get Nane();

public abstract void set Tonnage(doubl e t onnage);

publ i c abstract doubl e get Tonnage();

/1 EIB cal | back net hods

}

This should all be fairly mundane for you now. The impact of exchanging Ship
references between Cruise EJBs is equally obvious. Each Cruise may only
reference a single Ship, but each Ship may have many Cruise EJBs. If you take
the Ship A, which is referenced by some Cruise EJB, and pass set it to some
other Cruise, then both Cruise EJBs will reference the same Ship.

Niise 2

Cruize 4

N ize 5
I“Cn;iseE'

ShipLocal ship B = eruise_4.getShip();
cruise_1.setShip(ship_B);

Ship B

&E &

Cruizse 2
1se 3

ﬁ

Ship A

Cruize 4

= Craize 5
l\[Chruaize &]

FigureHolder

Figure 7-14: Sharing a bean reference in a many-to-one
Unidirectional Relationship

Copyright (c) 2001 O'Reilly & Associates 29

Abstract Persistence Schema

The abstract persistence schema is very simple in a many-to-one unidirectional
relationship. It uses everything you have learned up until now, and should not
contain any surprises.

<gjb-jar>

<ent er pri se- beans>
<entity>
<ej b- nane>Q ui seEIB</ gj b- nane>
<l ocal - hone>comti t an. crui se. G ui seLocal Hone</ | ocal - hone>
<l ocal >comtitan. crui se. @ ui seLocal </| ocal >

<entity>

<entity>
<gj b- nane>shi pEJB</ gj b- nane>
<l ocal - hone>comti t an. shi p. Shi pLocal Hone</ | ocal - hone>
<l ocal >comti t an. shi p. Shi pLocal </ | ocal >

<entity>
</ ent erpri se- beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Q ui se- Shi p
</ ej b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>
<ej b-rel ati onshi p-r ol e- nane>
Q ui se-has-a- Shi p
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Mny</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Q ui seEJB</ g b- nane>
</rel ati onshi p-rol e-sour ce>
<cnr-fiel d>
<cnm-fi el d- nane>shi p
</ cni-fi el d- nane>
< cm-fiel d>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Shi p- has- nany- G ui ses
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Qhe</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Shi pEIB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
</ ej b-rel ati onshi p-rol e>
<ej b-rel ati on>

30 Copyright (c) 2001 O'Reilly & Associates

| <rel ati onshi ps>

The <ej b-rel ati onshi p-rol e> of the Cruise EJB defines its multiplicity
as Many and declares ship as its relationship field. The <ej b-
rel ationshi p-rol e> of the Ship EIJB defines its multiplicity as Many and
contains no <cnr-field> declaration, because it's a unidirectional
relationship.

One-to-many Bi-directional Relationships

One-to-many and many-to-one bi-directional relationships are the same thing, so
they are both covered in this section. A one-to-many bi-directional relationship
occurs when one entity bean maintains a collection-based relationship field with
another entity bean, and each entity bean referenced in the collection maintains a
single reference back to its aggregating bean. For example, in the Titan Cruise
system, each Cruise EJB maintains a reference to al the passenger reservations
made for that Cruise, and each Reservation EJB maintains asingle referencetoits
Cruise. The relationship is a many-to-one bi-directional relationship from the
perspective of the Cruise EJB, and a one-to-many bi-directional relationship from
the perspective of the Reservation EJB.

Relational Database Schema

The first table we need is the RESERVATI ON table, which is defined in the
following listing. Notice that the RESERVATI ON table contains, among other
things, a column that serves as aforeign key to the CRUI SE table.

CREATE TABLE RESERVATI ON
(
IDINT PR MARY KEY,
CRUSEIDINT,
AMOLNT_PAI D DEQ MAL (8, 2),
DATE_RESERVED DATE

}
Whilethe RESERVATI ONtable contains aforeign key to the CRUI SE table, the
CRUI SE table doesn’'t maintain foreign keys back to the RESERVATI ON table.
The EJB container system can realize the relationship between the Cruise and
Reservations EJBs by querying the RESERVATI ON table. Explicit pointers from
the CRUI SE table to the RESERVATI ON table are not required. This illustrates
once again the separation between the entity bean’s view of its persistent
relationships and the database’ s actual implementation of those rel ationships.

The relationship between the RESERVATI ON and CRUI SE tables is illustrated
in Figure 7-15.

FigureHolder

Copyright (c) 2001 O'Reilly & Associates 31

Figure 7-15: One-to-many/ many-to-one Bi-directional
Relationship in RDBMS

As an alternative, we could have used a link table that would declare foreign
keys to both the CRUI SE and RESERVATI ON table. This link table would
probably impose a unique constraint on the RESERVATI ON foreign key to
ensure that each RESERVATI ON record had only one corresponding CRUI SE
record.

Abstract Programming M odel

To model the relationship between cruises and reservations, we'll first define the
Reservation EJB, which maintains arelationship field to the Cruise EJB.

public abstract class Reservati onBean
i npl enent s j avax. g b. Enti tyBean {

public Integer e bQ eate(C uiseLocal cruise){

}
publ i ¢ voi d ej bPost O eat e(Q ui seLocal crui se){
set O ui se(cruise);

}

publ i c abstract void setQ ui se(Q ui seLocal cruise);
publ i c abstract G uiselLocal getQuise();

publ i c abstract voi d set Anount Pai d(fl cat anount);
public abstract float getAnountPaid();

public abstract void setDate(Date date);

public abstract Date getDate();

/1 EIB cal | back net hods

}

When a Reservation EJB is created, a reference to the Cruise for which it is
created must be passed to the create() method. Notice that the
Crui seLocal reference is set in the e bPost Creat e() and not the
ej bCreat e() method. As in many-to-one unidirectional relationships, the
ej bCreat e() method is not allowed to update relationship fields; that is the
job of thee] bPost Cr eat e() method.

The Cruise EJB needs to have a collection-based relationship field added so that
it can reference all the Reservation EJBs that were created for it.

public abstract class Q ui seBean
i npl enent s j avax. gj b. EntityBean {

public abstract void setReservations(Qollection res);

32 Copyright (c) 2001 O'Reilly & Associates

public abstract ollection getReservations();

public abstract voi d setNane(Sring nane);
public abstract Sring getName();

public abstract voi d set Shi p(Shi pLocal ship);
public abstract ShipLocal getShip();

/1 EIB cal | back net hods

}

The interdependency between the Cruise and Reservation EJBs produces some
interesting results when creating a relationship between these beans. For
example, the act of creating a Reservation EJB automatically adds that entity
bean to the collection-based relationship of the Cruise EJB.

Qui selLocal cruise = ...get QuiselLocal reference
ReservationLocal reservation = ReservationLocal Hone. create(cruise);
@l [ection collection = crui se. get Reservations();

i f(collection.contains(reservation))
/1 always returns true

Thisisaside effect of the bi-directional relationship. Any Cruise referenced by a
specific reservation has a reciprocal reference back to that reservation. |If
Reservation X references Cruise A, Cruise A must automatically have areference
to Reservation X. When you create a new Reservation EJB and set the Cruise
reference on that bean, the Reservation is automatically added to the Cruise
EJB’sreservation field.

Sharing references between beans has some of the ugly side affects we learned
about earlier. For example, passing a collection of reservations referenced by
Cruise A to Cruise B actually moves those relationships to Cruise B, so Cruise A
has no more Reservations.

Copyright (c) 2001 O'Reilly & Associates 3

Cd

L rration &

Collection reservationsA = cruise A.getReservations()
cruiseB.setReservations| reservationsd)

Reﬁerv‘ati.on 4 s
Feskrwaton 5 Mot Aszociated with any
Fe = Craze hean

FigureHolder

Figure 7-16: Sharing an entire Collection in a one-to-many
bi-directional relationship

As was the case with Customer and Phone (Figure 7-10), this effect is usually
undesirable and should be avoided, as it displaces the set of Reservation EBs
formerly associated with Cruise B.

You can move an entire collection from one bean and combine it with the
collection of another bean if you usethe Col | ecti on. addAl | () method as
shown in the following figure?’. The effect is that Cruise A does not reference
any Reservation EJBs, while Cruise B references all of the Reservation EJBs—
those it referenced before the exchange as well as Cruise B’ s Reservation EJBs.

2The addAl | () method must be supported by collection-based relationship fields in
EJB 2.0.

A Copyright (c) 2001 O'Reilly & Associates

L rration &

Collection reservationsA = cruise A.getReservations|)
Colleciton reservationsB = cruiseB.getReservations();
reservationsB.addAll(reservationsAa);

FigureHolder

Figure 7-17: Using Collection.addAll() in a one-to-many bi-
directional relationship

The impact of moving individual Reservation EJBs from one Cruise to ancther is
similar to what we have seen with other one-to-many relationships: the
Reservation EJB is effectively moved from one Cruise to another. The result is
the same as was shown in one-to-many unidirectional relationships when a
Phone was moved from one Customer to another. Seefigure 7-11. It'sinteresting
to note that the net affect of using Col | ecti on. addAl | () inthisscenariois
the same as using Col | ecti on. add() on the target collection for every
element in the source collection. In other words, you move every element from
the source collection to the target collection.

Once again, container-managed relationship fields, collection-based or otherwise,
must always use the | avax. ej b. EJBLocal Obj ect (local interface) of a
bean and never the | avax. e] b. EJBObj ect (remote interface). It would be
illegal, for example, to try and add the remote interface of the Reservation EJB (if
it has one) to the Cruise EJB’s reservation Collection. Any attempt to add a
remote interface type to a collection-based relationship field will result in a
java.lang. ||| egal Argunent Excepti on.

Abstract Persistence Schema

The abstract persistence schema for the Cruise-Reservation relationship doesn’t
introduce any new concepts. The Cruise and Reservation <ej b-

Copyright (c) 2001 O'Reilly & Associates 35

rel ationshi p-rol e> elements both have <cnr - fi el d> elements. The
Cruise specifiesOne asitsmultiplicity, while Reservation specifiesVany.

<gj b-jar>

<ent er pri se- beans>
<entity>
<gj b- nane>Q ui seEIB</ gj b- nane>
<l ocal - home>comti t an. crui se. O ui seLocal Hone</ | ocal - hone>
<l ocal >comtitan. crui se. O ui seLocal </ | ocal >

<Jentity>
<entity>
<ej b- nane>Reser vat i onEJB</ €] b- nane>
<l ocal - hone>
comtitan. reservations. Reservati onLocal Hone
</ | ocal - hone>
<l ocal >comtitan. reservation. ReservationLocal </| ocal >

<entity>
</ ent erpri se- beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Q ui se- Reservati on
</ €j b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Q ui se- has- nany- Reser vat i ons
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Qhe</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Q ui seEJB</ gj b- nane>
</rel ati onshi p-rol e-sour ce>
<cmm-field>
<cnm - f i el d- nane>r eser vat i ons
</ cm-fi el d- nane>
<cnm-fiel d-type>
java. util.Qoll ection
</ cmm-field-type>
<cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Reser vat i on- has- a- O ui se
</ ¢ b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Miny</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Reser vat i onEIB</ gj b- nane>

36 Copyright (c) 2001 O'Reilly & Associates

</rel ati onshi p-rol e- sour ce>

<crm-fiel d>
<cnm - fi el d- nane>cr ui se
</ cm-fi el d- nane>

</ cm-field>

</ ejb-rel ati onshi p-rol e>
<ej b-rel ati on>
<rel ati onshi ps>

M any-to-many Bi-directional Relationship

Many-to-many bi-directional relationships occurs when many beans maintain a
collection-based relationship field with another bean, and each bean referenced
in the Collection maintains a collection-based relationship fields back to the
aggregating beans. For example, in Titan Cruises every Reservation EJB may
reference many Customers (a family can make a single reservation) and each
Customer may have many reservations (a person may make more than one
reservation in a year). This is an example of a many-to-many bi-directional
relationship; the customer keeps track of al of its reservations and each
reservation may be for many customers.

Relational Database Programming

The RESERVATI ON and CUSTOVER tables have already been established. In
order to establish a many-to-many bi-directional relationship, the
RESERVATI ON_CUSTOVER_ LI NK table is created. This table maintains two
columns: A foreign key column for the RESERVATI ON table and another foreign
key column for the CUSTOVER table.

CREATE TABLE RESERVATI QN OUSTOMER LI NK

(
RESERVATI QNI D I NT,

QUSTOMRR | D I NT,
}

The relationship between the CUSTOVER, RESERVATION and
CUSTOVER _RESERVATI ON_LI NK tableisillustrated in the following diagram.

FigureHolder

Figure 7-18: Many-to-many Bi-directional Relationshipin
RDBMS

Many-to-many bi-directional relationships will aways require a link in a
normalized relational database.

Copyright (c) 2001 O'Reilly & Associates 37

Abstract Programming Mode

To model the many-to-many bi-directional relationship between the Customer
and Reservation EJBs, we need to modify both bean classes to include
collection-based relationship fields.

public abstract class ReservationBean
i npl enent s j avax. gj b. EntityBean {

public Integer e bQ eate(Q uiseLocal cruise
@l I ection custoners){
}
publ i ¢ voi d ej bPost O eat e(C ui seLocal crui se
@l I ection cust oners){

set O ui se(crui se);

@l [ection nyQustoners = this. getQustoners();

nyQust oner s. addAl | (cust oners);

}

public abstract void setQustoners(Set custoners);
public abstract Set getQustoners();

}

The abstract accessor methods defined for the cust oner s relationship field
declare the Collection typeasj ava. ut i | . Set . The Set type should contain
only unique Customer EJBs, and no duplicates. Duplicate customers would
introduce some interesting but undesirable side effects in Titan's reservation
system. To maintain a valid passenger count, and to avoid over-charging
customers, Titan requires that a customer only be booked once in the same
reservation. The Set collection type expresses this restriction. The
effectiveness of the Set collection type depends largely on referential integrity
constraints established in the underling database. Referential integrity of the
database and its affect on relationships fields is explored at the end of this
chapter.

In addition to adding the get Cust oners()/set Cust oners() abstract
accessors, theej bCreat e() /ej bPost Cr eat e() methods were modified to
takea Col | ect i on of Customer EJBs. When a Reservation EJB is created, it
must be provided with alist of Customer EJBsthat it will add to its own Customer
EJB collection. As is aways the case, container-managed relationships field
cannot be modified in the ej bCreate() method. It's the job of the
e] bPost Creat e() method to modify container-managed relationships fields
when abean is created.

The Customer EJB is also modified to maintain a collection-based relationship

with all of its reservations. While the idea of a Customer having multiple
reservations may seem odd, it's possible for someone to book more than one

33 Copyright (c) 2001 O'Reilly & Associates

cruise in advance. In order to capture this possibility, the Customer EJB is
enhanced toincludear eser vat i ons relationship field:

public abstract class QustonerBean
i npl enent s javax. gj b. EntityBean {

/1 relationship fields
publ i ¢ abstract
voi d set Reservati ons(Qol | ection reservations);

public abstract ollection getReservations();

When a Reservation EJB is created, it is passed references to both its Cruise and
a collection of Customers. Because the relationship is defined as bi-directional,
the EJB container will automatically add the Reservation EJB to the reservations
relationship field of the Customer EJB. The following code fragment
illustratesthis:

ol lection custoners = .. get |local Qustoner EJBs
Quiselocal cruise =.. get alocal Guise EIB
ReservationLocal Hone = .. get local Reservation hone

Reservat i onLocal nyReservation =
resHone. create(cruise, custoners);

Iterator iterator = custoners.iterator();
vhi [e(iterator. hasNext ()){
Qust oner Local custoner = Qust oner Local)iterator. next();
@l | ection reservations custoner. get Reservations();
i f(reservations.contains(nyReservation))
/1 this will always be true

}

Exchanging bean reference between many-to-many bi-directional relationships
results in true sharing, where each relationship maintains a reference to the
transferred collection. Thisisillustrated in figure 7-19.

Copyright (c) 2001 O'Reilly & Associates 39

Cusbomer 1
Regervation Pl ush:!mer 2
Customer 4
) J—Wf[f[ws]
Customer 6

Collection customersA =reservationf.getCustomers();
Collection customersB =reservationB.getCustomers();
customersA.addAll(customersB);

=

Customer |

ush:\mer Q\I

@

Fe

E=

e

FigureHolder

Figure 7-19: Using Collection.addAll() in many-to-many bi-
directional relationship

Of course, using the set Cust oners() or set Reservati ons() method
will end up displacing the references of the target collection, but it doesn’t
impact the original relationship of the source collection. Figure 7-20 illustrates.

40 Copyright (c) 2001 O'Reilly & Associates

=
=
=
——

Collection customesA = reservationA.getCustomers();

reservationD.setCustomers(customersa J;

/_/4/7
o)

R
R ’

Customer & Mot r\efer.enced by a
Fazervation bean

FigureHolder

Figure 7-20: Sharing an entire Collection in a many-to-many
bi-directional relationship

Aftertheset Cust oner s() method isinvoked on Reservation D, Reservation
D’s customers change to Customer EJBs 1, 2, and 3. Customer EJBs 1, 2, and 3
were also referenced by Reservation A before the sharing operation and remain
referenced after it's complete. In fact, only the relationships between
Reservation D and Customers 4, 5 and 6 are impacted. The relationship between
Customer EJBs 4,5 and 6 and other Reservation EJBs are not affected by the
sharing operation. This is a unique property of many-to-many relationships
(both bi-directional and unidirectional); operations on the relationship fields only
affect those specific relationships, they do not impact either party’ s relationships
with other beans of the same relationship type.

Copyright (c) 2001 O'Reilly & Associates 41

Abstract Persistence Schema

The abstract persistence schema of a many-to-many bi-directional relationship
introduces nothing new and so it should have no surprises. Each ej b-
rel ationship-rol e specifiesMany asitsnul ti plicity anddeclaresa
cnr -fiel dofaspecificCol | ecti on type.

<ej b-jar>

<ent er pri se- beans>
<entity>
<gj b- nane>Qust oner EJB</ €j b- nane>
<l ocal - hone>comti t an. cust oner . Qust oner Local Hone</ | ocal - hone>
<l ocal >comti t an. cust oner. Qust oner Local </ | ocal >

<entity>
<entity>
<gj b- nane>Reser vat i onEJB</ g] b- nane>
<l ocal - hone>
comtitan. reservation. Reservati onLocal Hone
</ I ocal - hone>
<l ocal >comtitan. reservation. ReservationLocal </| ocal >

<Jentity>
</ enterpri se- beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Qust oner - Reser vat i on
</ ¢ b-rel ati on- nane>
<ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has- nany- Reser vat i ons
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Mny</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Qust oner EJB</ €] b- nane>
</rel ati onshi p-rol e-sour ce>
<cnm-fiel d>
<cnt-fi el d- nane>r eservat i ons
</ cni-fi el d- name>
<cnr-fiel d-type>
java. util. ol | ection
</ cmi-fiel d-type>
< cm-field>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Reser vat i on- has- nany- Qust oner s

12 Copyright (c) 2001 O'Reilly & Associates

</ ej b-rel ati onshi p-r ol e- nane>
<mul tiplicity>Mny</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Reser vat i onEJB</ g] b- nane>
</rel ati onshi p-rol e-sour ce>
<cnm-fiel d>
<cnt-fi el d- nane>cust oner s
</ cni-fi el d- name>
<cnr-fiel d-type>
java. util. Set
</ cmi-field-type>
< cm-field>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati on>
<rel ati onshi ps>

M any-to-many Unidirectional Relationship

Many-to-many unidirectional relationships occur when many beans maintain a
collection based relationship with another bean, but the beans referenced in the
Col I ection do not maintain a collection-based relationship back to the
aggregating beans. In Titan’s reservation system, every reservation is assigned
acabin on the ship. This allows customers to reserve a specific cabin (a deluxe
suite or cabin with sentimental significance) on the Ship. In this case, each
reservation may be for more then one cabin, since each reservation can be for
more then one customer. An example is a family that makes a reservation for five
for two adjacent cabins (one for the kids and the other for the parents).

While the reservation will want to keep track of the cabins it reserves, it's not
necessary for the cabins to track all the reservations made by all the cruises, so
the relationship is unidirectional. The Reservation EJBs reference a collection of
Cabin beans, but the Cabin beans do not maintain references back to the
Reservations.

Relational Database Schema

Ouir first order of businessisto declare a CABI Ntable.

CREATE TABLE CABI N
(
ID INT PR NARY KEY,
SHPIDINT,

NAME GHAR(10)
DECK LEVEL I NT,
BED QOUNT | NT

}

Notice that the CABI N table maintains a foreign key for the SHI P table. While
this relationship is important, it's not explored because the relationship type

Copyright (c) 2001 O'Reilly & Associates 43

(one-to-many bi-directional) is already covered. The relationship is included in
Figure 8-12, however, for completeness. Another interesting aspect of the
CABI Ntableisitsprimary key.

In order to accommodate the many-to-many unidirectional relationship between
the RESERVATION and CABIN tablee we will need a
RESERVATI ON_CABI N_LI NK table.

CREATE TABLE RESERVATI ON CABI N LI NK

(
RESERVATI NI D I NT,

CABINID INT,
}

The relationship between the CABIN records and the RESERVATION records
through the RESERVATI ON_CABI N_LI NK tableisillustrated in Figure 7-21.

FigureHolder

Figure 7-21: Many-to-many Unidirectional Relationship in
RDBMS

Abstract Programming M odel

In order to model this relationship need to add a collection-based relationship
field for Cabin beansto the Reservation EJB.

public abstract class Reservati onBean
i npl enent s javax. gj b. EntityBean {

public abstract voi d setCabi ns(Set custoners);
public abstract Set get Gabins();

}

In addition, we need to define a Cabin bean. Notice that the Cabin bean doesn’t
maintain a relationship back to the Reservation EJB. The lack of a container-
managed relationship field for the Reservation EJB tells us the relationship is
unidirectional.

public abstract class Cabi nBean
i npl enent s j avax. gj b. EntityBean {

public Integer e bQ eate(Shi pLocal ship,
Sring nane){
t hi s. set Nane(nane) ;
}
publ i ¢ voi d ej bPost O eat e(Shi pLocal shi p,
Sring nane){
thi s. set Shi p(ship);

4 Copyright (c) 2001 O'Reilly & Associates

}
publ i c abstract voi d set Shi p(Shi pLocal ship);

public abstract ShipLocal getShip();

public abstract voi d setNane(String nane);
public abstract Sring getName();

publ i c abstract voi d setBedCount (int count);
public abstract int getBedQunt();

public abstract void setDeckLevel (int |evel);
public abstract int getDeckLevel ();

/1 EIB cal | back net hods

}

Although the Cabin bean doesn’t define a relationship field for the Reservation
EJB, it does define a one-to-many bi-directional relationship for the Ship EJB.

The effect of exchanging relationship fields in a many-to-many unidirectional
relationship is basically the same as with many-to-many bi-directional
relationships. Use of the Col | ection. addAl | () operation and sharing
entire collections has the same net effect as we noted in the section on many-to-
many bi-directional relationships. The only difference is that the arrows only
point one way.

If areservation removes a Cabin bean from its collection-based relationship field,

the operation doesn’t affect other Reservation EJBs that reference that same
Cabin bean. Thisisillustrated in Figure 7-22.

Copyright (c) 2001 O'Reilly & Associates 45

/ @

)
| Customer 5

=

Collection customersA = reservationA.getCustomers|);

Iterator iterator = customersd.iterator();

while(iterator.hasNext())
iterator remowe(J;

Cusbomer 2

=
>< e

=

E semﬁon A

FigureHolder

Figure 7-22: Removing beans in many-to-many
unidirectional relationship

If you performed this exact same operation on the many-to-many bi-directional
relationship, the result would be the same except the arrows would point both
ways.

Abstract Persistence Schema

The abstract persistence schema for the Reservation-Cabin relationship holds no
surprises whatsoever. The multiplicity of both ej b-rel ati onshi p-rol e
elements is Vany, but only the Reservation EJB’'s €] b-rel ati onshi p-
rol e definesacnr -fi el d.

| <ej b-j ar>

46 Copyright (c) 2001 O'Reilly & Associates

<ent er pri se- beans>
<entity>
<gj b- nane>Cabi nEIB</ €j b- nane>
<l ocal - home>comti t an. cabi n. Gabi nLocal Hone</ | ocal - hone>
<l ocal >comtitan. cabi n. Gabi nLocal </ | ocal >

<Jentity>
<entity>
<gj b- nane>Reser vat i onEJB</ g] b- nane>
<l ocal - hone>
comtitan. reservation. Reservati onLocal Hone
</ | ocal - hone>
<l ocal >comtitan. reservation. ReservationLocal </| ocal >

<Jentity>
</ enterpri se- beans>

<rel ati onshi ps>
<gj b-rel ati on>
<gj b-rel ati on- nane>Cabi n- Reser vat i on
</ ej b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Cabi n- has- nany- Reser vat i ons
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</mul tiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Cabi nEJB</ €j b- nane>
</rel ati onshi p-rol e-sour ce>
</ ¢ b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Reser vat i on- has- nany- Qust oner s
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Many</multiplicity>
<rel ati onshi p-rol e- sour ce>
<gj b- nane>Reser vat i onEJB</ g] b- nane>
</rel ati onshi p-rol e-sour ce>
<cmm-field>
<cnm - fi el d- nane>cabi ns
</ cm-fi el d- nane>
<cnm-fiel d-type>
java. util. Set
</ cmm-field-type>
<cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati on>
<rel ati onshi ps>

Copyright (c) 2001 O'Reilly & Associates

47

L0 Exercise 7.2, Reservation relationships

Collocation and the Deployment Descriptor

Only entity beans that are deployed together with the same deployment
descriptor can have relationships with each other. When deployed together, the
entity beans are seen as a single deployment unit or application, in which all the
entities are using the same database and are co-located in the same Java virtual
machine. This restriction makes it possible for the EJB container system to use
lazy loading, optimistic concurrency, and other performance optimizations.
While it would be technically possible to support relationships across
deployments, or even container systems, the difficulty of doing so combined
with the expected degradation in performance was reason enough to limit the
relationship fields to those entity beans that are deployed together. In the
future, entity relationships may be expanded to include remote reference to
entities deployed in other containers or other JARS in the same container, but
remote references are not allowed as relationship types in Enterprise JavaBeans
20.

Cascade Delete and Remove

As you learned in Chapter 5, invoking the renove() operation on the EJB
home or EJB object of an entity bean deletes that entity bean’s data from the
database. This, of course, has an impact on the relationships that the entity has
with other entity beans.

When an entity bean is deleted, the EJB container first removes it from any
relationships it maintains with other entity beans. Consider, for example, the
relationship between the entity beans we have created in this chapter as shown
in Figure 7-23.

[Figure 7-23 (note thisis the same figure as figure 8-1)]
Figure 7-23: Titan Cruises Class Diagram

If an EJB application invokes renove() on a CreditCard EJB, then the
Customer EJB that referenced it would now have a value of nul | for its
credi t Car d relationshipsfield, as the following code fragment illustrates.

Qust oner Local custoner = ...get Qustoner EIB
QeditCardLocal creditCard = custoner.getGeditCard();
creditCard. renove();
if(custsoner.getQeditCard() = null)

[l This will always be true;

48 Copyright (c) 2001 O'Reilly & Associates

Themoment the r enove() operation isinvoked on the CreditCard EJB’s local
reference, the bean is disassociated from the Customer bean and is deleted. The
impact of removing abean is even more interesting when it participatesin several
relationships. For example, invoking r enove() on aCustomer EJB will impact
the relationship fields of Reservation, Address, Phone, and CreditCard EJBs.
With single EJB object relationship fields, such asthe CreditCard EJB’ sreference
to the Customer EJB, the field is set to nul | for the entity bean that was
removed. With collection-based relationship fields, the entity that is removed is
no longer a part of the collection. This was shown in Figure 7-9 of the One-to-
many Unidirectional Relationship section, where a Phone EJB was removed.

In some cases, you want the removal of an entity bean to cause a cascade of
deletions. For example, if a Customer EJB is removed, we would want the
Address EJBs referenced in its bi |l | i ngAddress and honeAddress
relationships field to be deleted. This would avoid the problem of disconnected
Address EJBs in the database. The <cascade- del et e> element requests
cascade deletion; it can be used with one-to-one or one-to many relationships.
Here's how to modify the relationship declaration for the Customer and Address
EJBsto obtain cascade delete:

<rel ati onshi ps>
<gj b-rel ati on>
<ej b-rel ati onshi p-rol e>
<mul tiplicity>Qhe</ multiplicity>
<rol e- sour ce>
<ej b- nane>Qust oner EJB</ €] b- nane>
</rol e-sour ce>
<cni-fiel d>
<cnm - f i el d- nane>honeAddr ess</ cni-fi el d- nane>
< cm-fiel d>
</ ejb-rel ati onshi p-rol e>
<ej b-rel ati onshi p-rol e>
<mul tiplicity>Qne</ nul tiplicity>
<cascade- del et e/ >
<rol e- sour ce>
<dependent - nane>Addr ess</ dependent - nane>
</rol e-sour ce>
</ ¢ b-rel ati onshi p-rol e>
</ ejb-relation>
</rel ati onshi ps>

Without specifying a cascading delete, the ADDRESS record associated with the
Address EJB will not be removed when the CUSTOVER record is deleted. This
can result in adisconnected dependent object class, which means that the datais
not linked to anything. In some cases we want to specify a cascading delete to
ensure that there are no detached entities following a removal. In other cases,
however, we do not want to use a cascading delete. If, for example, the
ADDRESS record associated with an entity bean is shared by other CUSTOVER

Copyright (c) 2001 O'Reilly & Associates 49

records, then we probably do not want it deleted when the CUSTOMER record is
deleted. It's easy to imagine two different customers residing at the same
residence—sharing address records can be useful.

Cascade delete can only be specified on an entity bean that has a single
reference to the entity that is being deleted. For example, the <ej b-
relationship-role> for the Phone EJB in the Customer-Phone
relationship can have a cascade deleted specified if the Customer is deleted,
because each Phone EJB is referenced by only one Customer. However, the
Customer EJB cannot have a cascade delete specified in the Customer-Phone
relationships, because a Customer maybe referenced by many Phone EJBs. The
entity bean that causes the cascade delete must have a multiplicity of onein the
relationships.

Cascade delete only affects the relationship for which it is specified. So for
example, if cascade delete is specified for the Customer-Phone relationships but
not the Customer-HomeAddress relationships, then detecting a Customer will
cause all the Phone EJBs to be deleted but not the Address EJBs. The Address
EJBs must specify their own cascade-del ete element if they want to be del eted.

Cascade deletes can propagate through relationships in a chain reaction. For
example, if the Ship-Cruise relationships specifies cascade-delete on the Cruise
relationships field and the Cruise-Reservation relationships specifies cascade-
delete on the Reservation relationship field, then when a Ship isremoved al of its
Cruises and Reservations for those cruises will be removed.

Cascade delete can be avery powerful tool, but it’s also dangerous. It should be
handled with care. The effectiveness of a cascade delete depends in large part
on the referential integrity of the database. For example, the database may be set
up so that aforeign key must point to an existing record, which could result in a
transaction rollback if deleting an entity’ s datawould violate that restriction.

[Exercise 7.3, Cascade Deletes

50 Copyright (c) 2001 O'Reilly & Associates

8

EJB 2.0 CMP: EJB-QL

Find methods have been a part of EJB since EJB 1.0. These methods are defined
on the entity bean’s local and remote home interfaces and are used for locating
one or more entity beans. All entity beans must have a
findByPrimaryKey() find method, which takes the primary key of the
entity bean as an argument and returns a reference to an entity bean. For
example, the Cruise EJB defines the standard primary key find method in its home
interface:

publ i ¢ G ui seLocal Hone ext ends j avax. €] b. EJBLocal Hone

{
public Integer create(Sring nane, Shi pLocal ship);

public Quiselocal findByPrinaryKey(lnteger key);

}

In addition to the mandatory f i ndByPri mar yKey() methods, entity bean
developers may also define as many custom find methods as they like. For
example, the Cruise EJB might define a method (e.g., fi ndByNane()) for
locating a Cruise with a specific name.

publ i ¢ O ui seLocal Hone extends j avax. j b. EJBLocal Hone

{
public Integer create(Sring nane, Shi pLocal ship)
throws O eat eBException;

publ ic QG uiseLocal findByPrinaryKey(lnteger key)
throws H ndExcepti on;

publ ic GuiseLocal findByNane(String crui seNane)
throws F ndExcepti on;

Copyright (c) 2001 O'Reilly & Associates 1

[}

The option of defining custom find methods is nothing new, but until EJB 2.0
there was no standard way of defining how the find methods should work. The
behavior of the f i ndByPri mar yKey() method is obvious: Find the entity
bean with the same primary key. However, the behavior of the custom find
methods is not obvious, so addition information is needed to tell the container
how these custom find methods should behave. EJB 1.1 didn't provide any
standard mechanism for declaring how custom find methods should behave, so
vendors came up with their own query languages and methods. This resulted in
non-portability and basically guesswork on the part of the deployer in
determining how to execute queries of find methods. EJB 2.0 introduces EJB QL,
which provides a standard query language for declaring the behavior of custom
find methods, and adds new select methods. Select methods are similar to find
methods, but they are more flexible and are visible to the bean class only—like
private find methods. Find and select methods are collectively referred to as
guery methodsin EJB 2.0.

EJB QL is a declarative query language that is similar to the Structured Query
Language (SQL) used in relational databases, but it is tailored to work with the
abstract persistence schema of entity beansin EJB 2.0.

EJB QL queries are defined in terms of the abstract persistence schema of entity
beans and not the underlying data store, so they are portable across databases
and data schemas. When an entity bean’s abstract bean class is deployed by
the container, the EJB QL statements are typically examined and translated into
data access code optimized for that container’s data store. At run time, query
methods defined in EJB QL typically execute in the native language of the
underlying data store. For example, a container that uses arelational database for
persistence might translate EJB QL statements into standard SQL 92, while an
object-database container might translate the same EJB QL statements into an
object query language.

EJB QL makes it possible for bean developers to describe the behavior of query
methods in an abstract fashion, making queries portable across databases and
EJB vendors. The EJB QL language is easy for developers to learn, yet precise
enough to be interpreted into native database code. Itisafairly rich and flexible
query language that empowers developers at development time, while executing
in fast native code at run time. However, EJB QL isnot asilver bullet and its not
without its problems, aswe' |l see later in this chapter.

Declaring EJB QL

EJBB QL statements are declared in <query> elements of entity bean's
deployment descriptor. In the following listing, you see that the

Copyright (c) 2001 O'Reilly & Associates 2

fi ndByNanme() method defined in the Customer bean local home interface has
its own query element and EJB QL statement.

<ejb-jar>
<ent er pri se- beans>
<entity>
<gj b- nane>Q ui seEJB</ g b- nane>

<reent rant >Fal se</reent rant >
<abst r act - schena- nane>Q ui se</ abst r act - schena- nane>
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fiel d>
<fi el d- nane>nane</ fi el d- nane>
</ cnp-fiel d>
<prinkey-fiel d>i d</ pri nkey-fi el d>
<query>
<quer y- net hod>
<net hod- nane>f i ndByNane</ net hod- nane>
<net hod- par ans>j ava. | ang. St ri ng</ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
SH ECT BJECT(c) FROM Qrui se ¢ WERE c. nane = ?1
<ejb-ql >
</ query>
<Jentity>
</ enterpri se- beans>

The <query> element contains two primary elements. The <query-
nmet hod> element identifies the find method of the remote and/or local home
interface, and the <ej b- gl > element declares the EJB QL statement. The
<query> element bindsthe EJB QL statement to the proper find method. Don’t
worry too much about the EJB QL statement just yet; we'll cover that in detail
starting in the next section.

Every entity bean that will be referenced in an EJB QL statement must have a
special designator called the abstract schema name, which is declared by the
<abstract-schema- name> element. The <abstract-schema- nane>
elements must have unique names; no two entity beans may have the same
abstract schema name. In the entity element that describes the Cruise EJB, the
abstract schema name is declared as Crui se. The <ej b-ql > eement
contains an EJB QL statement that uses thisidentifier in itsFROViclause.

In Chapter 7 you learned that the abstract persistence schema of an entity bean
isdefined by its<crnp-fi el ds>and <cnr - fi el d> elements. The abstract
schema name is also an important part of the abstract persistence schema. EJB
QL statements are always expressed in terms of the abstract persistence schema
of entity beans. It uses the abstract schema names to identify entity bean types,
and the container-managed persistence (CMP) fields to identify specific entity

Copyright (c) 2001 O'Reilly & Associates 3

bean data and container-managed relationship (CMR) fields to create paths for
navigating from one entity bean to another.

The Query Methods

Find Methods

Find methods are invoked by EJB clients (applications or beans) in order to
locate and obtain remote or local EJB object reference of a specific entity bean.
For example, you might call the fi ndByPri mar yKey() method on the
Customer EJB’ s home interface to obtain areference to a specific Customer bean.

Find methods are always declared in the local and remote home interfaces of an
entity bean. As you have already learned, every home interface must define a
findByPrimaryKey() method; this is a type of single-entity find method.
Specifying a single remote or local return type for a find method indicates that
the method only locates one bean. f i ndByPr i mar yKey () obviously returns
one remote reference because there is a one-to-one relationship between a
primary key’s value and an entity. Other single-entity find methods can also be
declared. For example, the Customer EJB could declare several single-entity find
methods, each of which supports adifferent query.

public interface QustonerHne extends javax. e b. EJB-bne {
publ ic Qustoner findByPrinaryKey(|Integer prinarykey)
throws j avax. e b. H ndBxcepti on;

public Qustoner findByNane(Sring |astNane, Sring firstNane)
throws javax. ej b. H ndBxcepti on;

public Qustoner findBySSN String social SecurityNunber)
throws javax. € b. FH ndExcepti on;

}

Bean developers can aso define multi-entity find methods, which return a
collection of EJB objects. The following listing shows a couple of multi-find
methods:

public interface QustonerLocal Hone extends javax. e b. EJBLocal Hone {
publ i ¢ QustonerLocal findByPrinaryKey(|Integer prinaryKey)
throws javax. €j b. FH ndExcepti on;

public Qllection findBydty(Sring city, Sring state)
throws javax. e b. F ndExcepti on;

public Set findByGodGedit()
throws javax. e b. H ndBxcepti on;

Copyright (c) 2001 O'Reilly & Associates 4

To return several references from a find method, you must use the
java.util.Collectionor java.util.Set collection types'. A find
method that uses a j ava. uti| . Set return type will not have duplicate
values, whilea | ava. uti | . Col | ecti on return type may have duplicates.
Multi-entity finds return an empty Col | ect i on or Set if no matching beans
can be found.

Enterprise JavaBeans specifies that all query methods (find or select) must be
declared as throwing the | avax. ej b. Fi ndExcept i on. Find methods that
return a single remote reference throw a Fi ndExcepti on if an application
error occurs and a | avax. e] b. Obj ect Not FoundException if a
matching bean cannot be found. The Obj ect Not FoundExcepti on is a
subtype of Fi ndExcept i on andisonly thrown by single-entity find methods.

Every find method declared in the local or remote home interface of a CMP 2.0
entity bean must have a matching query declaration in the bean’s deployment
descriptor. The following snippet from the Customer EJB’s deployment
descriptor shows declarations two of find methods, fi ndByNanme() and
findByGoodCredit(),fromthe examplesabove.

<query>
<quer y- net hod>
<net hod- nane>f i ndByNane</ net hod- nane>
<net hod- i nt f >Hone</ net hod- i nt f >
<net hod- par ans>
<net hod- par ans>j ava. | ang. &t ri ng</ net hod- par ans>
<net hod- par ans>j ava. | ang. S ri ng</ net hod- par ans>
</ net hod- par ans>
</ quer y- net hod>
<ej b-ql >
SH ECT (BJIECT(c) FROM Qust oner ¢
WHERE c.lastNane = ?1 AND c.firstNane = ?1
</ ¢ b-q >
</ query>
<query>
<quer y- net hod>
<net hod- nane>f i ndByGodQ edi t </ net hod- nane>
<net hod- i nt f >Local Hone</ net hod-i nt f >
<net hod- par ans></ net hod- par ans>
</ quer y- net hod>
<ej b-ql >
SH ECT (BJIECT(c) FROM Qust oner ¢
WHERE c. has®@odC edit = TRE

1 As of EJB 2.0, these are the only collection types supported for multi-entity query
methods. Others, like java. util.List and java.util.NMap, may be added in
future versions.

Copyright (c) 2001 O'Reilly & Associates 5

</ejb-q >
</ query>

The query elements in the deployment descriptor allow the bean developer to
associate EJB QL query statements with specific find methods. When the bean
is deployed, the container attempts to match the find method declared in each of
the query elements with find methods in entity bean’s local and home interfaces.
Thisis done by matching the values of the <net hod- nane> and <net hod-
parans> elements with method names and parameter types (ordering is
important) in the home interfaces.

The<net hod- i nt f > element specifies which home interface (local or remote)
the method is defined in. If the find method is declared in the local home
interface, then the value Local Hone is used. If the find method is declared in
the remote home interface, then the value Hone is used. This element is only
needed when two find methods collide, i.e., two find methods in the local and
remote home interfaces have the same method name and parameters. Using the
nmet hod- 1 nt f element alows the bean developer to specify different EJB QL
statements for each method. If <net hod- i nt f > not specified, and there is a
collision, the query declaration will apply to both of the colliding methods. The
container will take care of returning the proper type for each colliding query
method. The remote home will return a one or more remote EJB objects, and the
local home will return one or more local EJB objects. This allows you to define
the behavior of colliding local and remote home find methods using a single
query element, which is convenient if you want local clients to have access to
the same find methods as remote clients.

The <ej b- gl > element specifies the EJB QL statement for a specific find
method. You may have noticed that the EJB QL statement can use input
parameters (?1, 7?2, ..?n), which are mapped to the <net hod- par ans> of
the find method, aswell asliterals (e.g. TRUE). The use of input parameters and
literalswill be discussed in more detail through out this chapter.

All single-entity and multi-entity find methods must be declared in <query>
elements in the deployment descriptor, except for fi ndByPri maryKey()
methods. Query declarations for fi ndByPri maryKey() methods are not
necessary, and in fact, are forbidden. It's obvious what this method should do,
and you may not try to change its behavior.

Select Methods

Select methods are very similar to find methods, but they are more versatile and
can only be used internally by the bean class. In other words, select methods are
private query methods; they are not exposed to entity bean’s clients through the
home interfaces.

Copyright (c) 2001 O'Reilly & Associates 6

Select methods are declared as abstract methods using the nhaming convention
ej bSel ect <METHOD- NAME>. The following code shows four select methods
declared inthe Addr essBean class.

public class AddressBean inpl enents javax.ejb. EntityBean {

public abstract String e bSel ect Mbst Popul ard ty()
throws H ndExcepti on;

public abstract Set ej bSel ectZi pGodes(String state)
throws H ndExcepti on;

public abstract Qollection e bSelectAl ()
throws H ndExcepti on;

publ i c abstract QustonerLocal ej bSel ect Qust oner (AddressLocal addr)
throws H ndExcepti on;

Select methods can return the value of CMP fields. The
ej bSel ect Most Popul arCi ty() select, for example, returns a single
St ri ng value, the name of the city referenced by the most Address EJBs. The
ej bSel ect Zi pCodes() method returnsa | ava. uti | . Set of String
values, which is a unique collection of all the zip codes declared for Address
EJB’sfor aspecific state.

Select methods can also return EJB objects, just like find methods. The
ej bSel ect Al'l () method, for example, returns a
java.util.Collection of EJB objects representing all the Address EBs
in the system. However, unlike find methods, select methods can return any type
of EJB object, and are not limited to the type of bean they are declared in. The
e] bSel ect Cust orrer () method, for example, returns the remote EJB object
representing the Customer bean assigned to the specified Address EJB. Notice
that the bean typereturned isCust ormer Local , not Addr essLocal .

Like find methods, select methods can declare zero or more arguments, which are
used to limit the scope of the query. The e] bSel ect Zi pCodes() and the
ej bSel ect Cust ormer () methods both declare arguments used to limit the
scope of the results. These arguments will be used as input parameters in the
EJB QL statements assigned to the select methods.

Select methods can return local or remote EJB objects. For single-entity select
methods, the type is determined by the return type of the e] bSel ect method.
Theej bSel ect Cust oner () method, for example, returns alocal EJB object,
the Cust onmer Local . This method could have easily been defined to return a
remote EJB object by changing the return type to the Customer bean’'s remote
interface Cust onmer Renot e). Multi-entity select methods, which return a
collection of EJB objects, return a collection of local EJB objects by default.

Copyright (c) 2001 O'Reilly & Associates 7

However, the bean provider can override this default behavior using a special
element, the <result-type-mappi ng> element, in select method's
<quer y> element.

The following portion of an XML deployment descriptor declares two of the
select methods from the above example. Notice that they are exactly the same as
the find method declarations. Find and select methods are declared in the same
part of the deployment descriptor, withinan<ent i t y> bean element, within the
same <quer y> element.

<query>
<quer y- net hod>
<net hod- nane>ej bSel ect Zi pGodes</ net hod- nane>
<net hod- par ans>
<net hod- par an®j ava. | ang. S ri ng</ net hod- par an»
</ net hod- par ans>
</ quer y- net hod>
<gj b-ql >
SH ECT a. honeAddress. zi p FROM Address AS a
WHRE a. honeAddress. state = ?1
</ ejb-q >
</ query>
<query>
<quer y- net hod>
<net hod- nane>ej bSel ect Al | </ net hod- nane>
<net hod- par ans></ net hod- par ans>
</ quer y- net hod>
<resul t-type- mappi ng>Renot e</ r esul t - t ype- nappi ng>
<gj b-ql >
SH ECT (BJECT(a) FROM Address AS a
</ej b-qgl >
</ query>

The name given in each <net hod- nane> element must match one of the
ej bSel ect <METHOD- NAME>() methods defined in the bean class. This is
different from find methods of CMP 2.0 beans, which do not have a
corresponding ej bFi nd method in the bean class. For find methods we use the
method name in the local or remote home interface. Select methods, on the other
hand, are not declared in the local or remote home interface so we use the
e] bSel ect method namein the bean class.

If a select method returns a collection of EJB objects, then the <result -
type- mappi ng> can be used to declare if it should return local or remote EJB
objects. The value Local indicates that a method should return loca EJB
objects; Renpt e indicates remote EJB objects. If the <resul t-type-
mappi ng> element is not declared, the default isLocal . In the query element
fortheej bSel ect Al | method, the<r esul t -t ype- mappi ng> isdeclared

Copyright (c) 2001 O'Reilly & Associates 8

as Renot e, which means the query should return remote EJB object types;
remote references to the Address EJB.

Select methods are not limited to the context of any specific entity bean. They
can be used to query across all the entity beans declared in the same deployment
descriptor. Select methods may be used by the bean class from its ej bHone
methods or any business methods or the e] bLoad and e] bSt or e methods.
The ej bHone, e] bLoad and e] bSt or e methods are covered in more detail
in Chapter 11.

The most important thing to remember about select methods is that they can do
anything find methods can and more, but they can only be used by the entity
bean class that declares them, not by the entity bean’s clients.

EJB QL Examples

EJB QL is expressed in terms of the abstract persistence schema of an entity
bean; its abstract schema name, container-managed persistence fields, and
container-managed relationship fields. EJB QL uses the abstract schema names
to identify beans, the container-managed persistence fields to specify values and
container-managed relationship field names to navigate across relationships.

To discuss EJB QL, we will make use of the relationships among the Customer,
Address, CreditCard, Cruise, Ship, Reservation, and Cabin defined in Chapter 7.
Figure 8-1 is a class diagram that shows the direction and cardinality
(multiplicity) of the relationships among these beans.

[Figure 8-1(note thisis the same figure as figure 7-23)]

Copyright (c) 2001 O'Reilly & Associates 9

]
Crudsa Waor Cabdin

b SE——

Regarvation : Customer y CraditCard
< cabryirappr :IJ\...I. LEFT LR Chs = wakummors =

Figure 8-1: Titan Cruises Class Diagram

Simple Queries

The simplest EJB QL statement has no VWHERE clause and only one abstract
schema type. For example, a query method might be defined to select al
Customer beans.

|SELECT (BIECT(¢) FROM Qustoner AS c

The FROM clause determines which entity bean types will be included in the
select statement. It provides the scope of the select. In this case the FROM
clause declaresthe typeto be Cust oner , which is the abstract schema name of
the Customer EJB. The“AS c” part of the clause assigns ¢ as the identifier of
the Customer EJB. This is similar to SQL, which allows an identifier to be
associated with atable. Identifiers can be any length and follow the same rules
that are applied to field names in the Java programming language. The following
isalso perfectly legal.

|SELECF RIECT(custoner) FROM Qustoner AS cust oner

The AS operator is optional, but its used in this book to help make the EJB QL
statements more clear. The following statement is equivalent:

|SELECF QBIECT(custoner) FROM Qustoner cust oner

The SELECT clause determines the type of values returned. In this case, it’s the
Customer entity bean asindicated by thecust oner identifier.

Copyright (c) 2001 O'Reilly & Associates 10

The OBJECT() operator is required when the SELECT type is an abstract
schema identifier (entity bean identifier). The reason for this requirement is
pretty vague (and in the author’s opinion, the specification would have been
better off without it), but it's required whenever the SELECT type is an entity
bean identifier.

Simple Queries with Paths

EJB QL alows SELECT clauses to return any container-managed persistence
(CMP) or single container-managed relationship (CMR) field. For example, a
simple select statement can be defined to return all the last names of all the
customers asfollows.

| SELECT c. | ast Nane FROM Qust oner AS ¢

The SELECT clause uses a simple path to select the Customer bean’s
| ast Nanme CMP field as the return type. EJB QL uses the CMP and CMR field
names declared in <cnp-field> and <cnr-field> elements of the
deployment descriptor. This navigation leverages the same syntax as the Java
programming language, specifically the dot (“.”) navigation operator. For
example, compare the above EJB QL statement with the following snippet from
the Customer EJB’ s deployment descriptor:

<gjb-jar>
<ent er pri se- beans>
<entity>
<ej b- nane>Qust oner EIB</ €] b- nane>
<hone> Qust oner HoneRenot e</ gj b- hone>
<r enot e>QAust oner Renot e</) b- r enot e>
<gj b- cl ass>Qust oner Bean</ gj b- ¢l ass>
<per si st ence- t ype>Qont ai ner </ per si st ence-t ype>
<pri mkey- cl ass>j ava. | ang. | nt eger </ pri m key- cl ass>
<reentrant >Fal se</reent rant >
<abst r act - schenma- nane>Qust oner </ abst r act - schena- nane>
<cnp- ver si on>2. x</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp-fiel d><fi el d- nane>l ast Nane</ fi el d- nane></ cnp-fi el d>
<cnp-fiel d><fi el d-nane>fi r st Nane</ fi el d- nane></ cnp-fi el d>

CMR field types may also be used in simple select statements. For example, the
following EJB QL statement selects all the CreditCard EJBs from all the Customer
EJBs.

|SELECT c.creditCard FROM Qust oner ¢

In this case, the EJB QL statement uses a path to navigate from the Customer
EJBstotheir cr edi t Car d relationship fields. The cr edi t Car d identifier is
obtained from the <cnr - f i el d> name used in the relationship element that
describes the Customer-CreditCard relationship.

| <ent er pri se- beans>

Copyright (c) 2001 O'Reilly & Associates 11

<entity>
<gj b- nane>CQust oner EJB</ €] b- nane>

<abst r act - schena- nane>Qust oner </ abst r act - schena- nane>
<entity>
</ ent erpri se- beans>

<rel ati onshi ps>
<ej b-rel ati on>
<ej b-rel ati on- nane>Qust oner- O edi t Car d
</ ej b-rel ati on- nane>
<gj b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e- nane>
Qust oner - has-a-Gedi t Gard
</ ej b-rel ati onshi p-rol e- nane>
<mul tiplicity>Qhe</ multiplicity>
<rel ati onshi p-rol e- sour ce>
<ej b- nane>Qust oner EJB</ €] b- nane>
</rel ati onshi p-rol e- sour ce>
<cni-fiel d>
<cnt-fi el d- nane>credi t Gard</ cni-fi el d- nane>
<cm-fiel d>
</ ej b-rel ati onshi p-rol e>
<gj b-rel ati onshi p-rol e>

Paths can be as long as required. It's common to use paths that navigate over
one or more CMR fields to end at either a CMR or CMP field. For example, the
following EJB QL statement selects all the ci t y CMP fields of all the Address
EJBs of every Customer EJB.

|SELECT c. honeAddress. city FROM Qust oner ¢

In this case, the path uses the abstract schema name of the Customer EJB, the
Customer EJB’shoneAddr ess CMRfidd and finally the Address EJB'sci ty
CMP field. Using paths in EJB QL is similar to navigating through object
referencesin the Javalanguage.

To illustrate more complex paths, we'll need to expand the class diagram. Figure

8-2 shows that CreditCard EJB isrelated to a CreditCompany EJB that hasits own
Address EJB.

Copyright (c) 2001 O'Reilly & Associates 12

Customer - CreditCard |

i — = | e prirplink ey

O |

w T

Credi tCampany

e ahddadis s

+ s
Address |

<ot i e

Figureholder
Figure 8-2: Expanded Class Diagram for CreditCard

Using these rel ationships, a more complex path could be specified that navigates
from the Customer EJB to the CreditCompany EJB’s Address EJB. The following
EJB QL selectsall the addresses of all the credit companies.

| SH ECT c. credit Card. credi t Gonpany. address FROM Qust oner AS ¢

The EJB QL statement could also navigate all the way to the Address bean’s
CMP fields. For example, the following EJB QL selects all the cities for all the
credit card companies for those credit cards used by Titan’ s customers.

|SELECI’ c.creditCard. credi t Gonpany. addr ess. city FROM Qust oner AS ¢

It's interesting to note that these EJB QL statements would only return
address CMR fields or Address ci ty CMP fields for credit companies of
cards owned by Titan's customers. If there are any credit companies whose
cards are not currently used by Titan's customers, their address information
won’'t beincluded in the result.

Paths cannot navigate beyond CMP fields. For example, imagine that the
AddressEJB usesa Zi pCode classasitszip CMPfield.

public class Z pCode i npl enents java.io. Serializabl ef
public int nmai nCode;
public int codeSuffix;

Copyright (c) 2001 O'Reilly & Associates 13

It would beillegal to attempt to navigate to one of the Zi pCode class' instance
fields.

/1 thisisillegal
SH ECT c. honeAddr ess. zi p. nai nGode FROM Qust oner AS ¢

CMP fields cannot be further decomposed and navigated by paths. All CMP
fields are considered opaque.

The paths used in a SELECT clause of an EJB QL must always end with asingle
type. They may not end in a collection-based relationship field. For example, the
following is not legal because the CMR field r eser vat i ons is a collection-
based relationship field.

/1 thisisillegal
SH ECT c.reservati ons FROM Qust oner AS ¢

In fact, it's illegal to navigate across a collection-based relationship field. The
following EJB QL statement is also illegal, even though the path endsin a single
relationships field.

|SE_ECT c.reservations. crui se FROM Qustoner AS ¢

If you think about it, this limitation makes sense. Y ou cannot use a navigation
operator (“. ") in Java to access elements of a j ava. uti|. Col |l ection
object either. For example, you can't do the following (assume

get Reservations() returnsaj ava. util . Col | ecti on type).

/1l thisisillegal in the Java programming | anguage.
cust oner . get Reservati ons() . get G ui se()

Referencing the elements of a collection-based relationship field is possible in
EJB QL, but it require the use of an| N operator and an identification assignment
in the FROVIclause, which are discussed next.

Simple Queriesthe IN operation

Many relationships between entity beans are collection-based relationships;
being able to access and select from these relationships is important. We've
seen that it is illega to select elements directly from a collection-based
relationship. To overcome this limitation, EJB QL introduces the | N operation,
which allows an identifier to represent individual elements in a collection-based
relationship field.

The following query uses the | N operation to select the elements from a
collection-based relationship. It returnsall the reservations of all the customers.

SH ECT GBIECT(1)
FRM Qustoner ASc, |IN c.reservations) ASr

Copyright (c) 2001 O'Reilly & Associates 14

The| N operation assigns the individual elementsinthe r eser vat i ons CMR
field to the identifier r . Once we have an identifier to represent the individual
elements of the collection, we can reference them directly and even select themin
the EJB QL statement. The element identifier can also be used in path
expressions. For example, the following EJB QL statement will select every cruise
for which Titan’ s customers have made reservations.

SHECT r.cruise
FROM Qustoner ASc, IN c.reservations) ASr

Theidentifiers assigned in the FROVIclause of EJB QL are evaluated from left to
right. Once an identifier has been declared it can be used is subsequent
declarationsin the FROM clause. Notice that theidentifier c, which was declared
first, was subsequently used in the | N operation to define theidentifier r .

The OBJECT() operation is used for single identifiers in the
select statement and not for path expressions. While this
convention makes little sense, it is none-the-less required by
the EJB 2.0 specification. A rule of thumb: If the select typeisa
solitary identifier, then it must be wrapped in an OBJECT()
operation. If the select typeisapath expression then it is not.

Identification chains, in which subsequent identifications depend on previous
identifications, can become very long. The following EJB QL statement uses two

| N operations to navigate two collection-based relationships and a single CMR
relationship. While not necessarily useful, this statement demonstrates how a
query can use | N operations across many relationships.

SHECT cabi n. ship
FRM Qustoner ASc, IN(c.reservations) ASr,
IN r.cabins) AS cabin

Exercise 8.1, Smple EJB QL Statements

The WHERE clause and Literals

Literal values can also be used in the EJB QL to narrow the scope of the elements
selected. This is accomplished through the VVHERE clause, which behaves in
much the same way as the V\HERE clausein SQL.

For example, an EJB QL statement can be defined to select all the Customer EBs
that use a specific brand of credit card. The literal in this case is a string literal.
Literal strings are enclosed by single quotes. Literal values that include a single
quote, like the restaurant name “Wendy’s”, use two single quotes to escape the
quote: ‘Wendy’’s'. The following statement returns customers that use the
American Express credit card:

|SELECI’ IECT(¢) FROM Qustoner AS c

Copyright (c) 2001 O'Reilly & Associates 15

|WERE c.creditCard. organi zation = * Areri can Express’

Path expressions are always used in the V\HERE clause in the same way that
they’re used in the SELECT clause. When making comparisons with aliteral, the
path expression must evaluate to a CMP field; you can’t compare a CMR field
with aliteral.

In addition to literal strings, literal can also be exact numeric values (long types)
and approximate numerical values (double types). Exact numerical literal values
are expressed using the Java integer literal syntax (321, -8932, +22).
Approximate literal values are expressed using Java floating point literal syntax in
scientific (5E3, - 8. 932E5) or decimal (5. 234,38282. 2) notation.

For example, the following EJB QL statement selects al the ships that weigh
100,000.00 metric tons.

SHECT GBIECT(s)
FRMShip AS s
WERE s. tonnage = 100000. 00

Boolean literal values use TRUE and FAL SE. Here' s an EJB QL statement selects
all the customers who have good credit.

SH ECT BIECT(¢) FRAM Qustoner AS ¢
WHERE c. has@odCQ edit = TRE

The WHERE clause and Input Parameters

Query methods (find and select methods) that use EJB QL statements may
specify method arguments. Input parameters allow those method arguments to
be mapped to EJB QL statements and are used to narrow the scope of the query.
For example, the e] bSel ect ByCi t y() method is designed to select all the
customersthat reside in a particular city and state.

public abstract class Qustoner Bean
i npl enent s j avax. gj b. EntityBean {

public abstract Qollection e bSelectBydty(Sring city, Sring state)
throws H ndExcepti on;

}

The EJB QL statement for this method would use the city and state arguments as
input parameters.

SH ECT (BIECT(¢) FRAM Qustoner AS ¢
WHERE c. honeAddress. state = ?2
AND c. honeAddress. city = ?21

Input parameters use a ? prefix followed by the argument’s position, in order of
the query method’ s parameters. Inthiscase, st at e isthe second argument and

Copyright (c) 2001 O'Reilly & Associates 16

ci tyisthefirstargument listedintheej bSel ect ByCi t y() method. When
a query method declares one or more arguments, the associated EJB QL
statement may use some or all of the arguments as input parameters.

Input parameters are not limited to simple CMP field types; they can also be EJB
object references. For example, the following find method f i ndBy Shi p() is
declared in the Cruise bean’slocal interface.

public interface G uiseLocal extends javax.ejb. EJBLocal (bj ect {
public Qollection findByShi p(ShipLocal custoner)
throws H ndExcepti on;

}

The EJB QL statement associated with this method would use the shi p
argument to locate all the cruises scheduled for the specified Ship bean.

SH ECT (BIECT(cruise) FRMQuise AS crui se
WHERE cruise.ship =21

When an EJB object is used as an input parameter, the container bases the
comparison on the primary key of the EJB object. In this case, it searches
through all the Cruise EJBs looking for references to a Ship EJB with same
primary key value that the Ship EJB passed to the query method.

The WHERE clause and Operator Precedence

The VV\HERE clause is composed of conditional expressions that reduce the scope
of the query and limit the number of items selected. A number of conditional and
logical operators can be used in expressions; they are listed below in the order of
precedence. The operators at the top of the list have the highest precedence;
they are evaluated first.

Navigation operator (.)

Arithmetic operators:

+, - Unary

* I multiplication and division

+, - addition and subtraction

Comparison operators:

=, >, >=, <, <=, <> (not equal),

LI KE, BETVEEN, I N, I SNULL, | SEMPTY, MEMBER OF
Logical operators:

NOT, AND, OR

Copyright (c) 2001 O'Reilly & Associates 17

If you've been working as a programmer for longer than a month, most of these
operators will be familiar to you.

EJB QL statements are declared in XML deployment descriptors. XML uses the
greater than (‘>') and less than (‘<’) characters as delimiters for tags, so using
these symbolsin the EJB QL statementswill cause parsing errors unless CDATA
sections are used. For example, the following EJB QL statement causes a parsing
error, because the XML parser cannot distinguish the use of the ‘>’ symbol from
adelimiter toaXML tag:

<query>
<quer y- net hod>
<net hod- nane>f i ndWt hPaynent G eat er Than</ net hod- nang>
<net hod- par ans>j ava. | ang. Doubl e</ net hod- par ans>
</ quer y- net hod>
<ej b-qgl >
SHECT BIECT(r) FROMReservation r
WERE r.anountPaid > 71
</ e b-ql >
</ query>

To avoid this problem, the EJB QL statement should be placed in a CDATA
section:

<query>
<quer y- net hod>
<net hod- nane>f i ndWt hPaynent G eat er Than</ net hod- nane>
<net hod- par ans>j ava. | ang. Doubl e</ net hod- par ans>
</ quer y- net hod>
<ej b-ql >
<! [CDATA
SHECT BIECT(r) FROMReservation r
WHERE r. anount Pai d > 300. 00
11>
</ g b-ql >
</ query>
The CDATA section takes the form <! [CDATA[literal-text |] >. When an
XML processor encounters a CDATA section it doesn’t attempt to parse the

contents enclosed by the CDATA section, instead the parser treats it as literal
text”.

2To learn more about XML and the use of CDATA Sections, see XML in a Nutshell by
Elliotte Rusty Harold and W. Scott Means published by O’ Reilly & Associates 2001.

Copyright (c) 2001 O'Reilly & Associates 18

The WHERE clause and Arithmetic Operators

The arithmetic operators allow a query to perform arithmetic in the process of
doing a comparison. In EJB QL, arithmetic operators can only be used in the
VWHERE clause and not in the SELECT clause. The following EJB QL statement
returns references to all the Reservation EJBs that will be charged a port tax of
more than $300.00.

SHECT BIECT(r) FROMReservation r
WHERE (r.amountPaid * . 01) > 300. 00

The rules applied to arithmetic operations are the same as those used in the Java
programming language, where numbers are widened or promoted in the process
of performing a calculation. For example, multiplying a doubl e and an i nt

valuerequiresthat thei nt first be promotedtoa doubl e value. The result will
always be that of the widest type used in the calculation, so multiplying an i nt

andadoubl e resultsinadoubl e value.

String, bool ean, and EJB object types cannot be used in arithmetic
operations. For example, using the addition operator with two St r i ng valuesis
considered an illegal operation. There is a specia function for concatenating
String vaues, which is covered in The WHERE clause and FUNTIONS
section.

The WHERE clause and L ogical Operators

Logical operators such as AND, OR, and NOT operate the same as their
corresponding logical operatorsin SQL.

Logical operators evaluate only boolean expressions, so each operand (each side
of the expression) must evaluateto t r ue or f al se. Thisis why the logical
operators have the lowest precedence: so that all the expressions can be
evaluated before they are applied.

The AND and OR operations may not, however, behave like their Java language
counterparts &% and | | . Specifically, EJB QL does not specify whether the right-
hand operands are evaluated conditionally. For example, the && operator in Java
evaluatesits right-hand operand only if the left hand operandist r ue. Similarly,
the | | logical operator evaluates the right-hand operand only if the left-hand
operand isf al se. We can’'t make the same assumption for the AND and OR
operators in EJB QL. Whether these operators evaluate right-hand operands
depends on the native query language into which it's translated. It’s best to
assume that both operands are evaluated on all logical operators.

NOT simply reverses the boolean result of its operand; expressions that evaluate
to the boolean value of t r ue becomef al se, and visaversa.

Copyright (c) 2001 O'Reilly & Associates 19

The WHERE clause and Comparison Symbols

Comparison operators, which use the symbols =, >, >=, <, <=, and <>, should be
familiar to you. The following statement selects all the Ship EJBs whose tonnage
CMPfield is greater than or equal to 80,000 tons but less than or equal to 130,000
tons.

SHECT BIECT(s) FRMShip s
WHERE s. tonnage >= 80000. 00 AND s. tonnage <= 130000. 00

Only the = and <> (not equal) operators may be used on St ri ng, bool ean,
and EJB object references. The greater-than and less-than symbols (>, >=, <, <=)
can only be used on numerical values. It would beillegal, for example, to use the
greater-than, or less-than symbols to compare two Strings. There is no
mechanism to compare St r i ngsinthisway in EJB QL.

The WHERE clause and Equality semantics

Whileit's legal to compare an exact numerical value (short,int,| ong) toan
approximate numerical value (doubl e, f | oat) al other equality comparisons
must compare the exact same types. You cannot, for example, compare a
St ri ng valueof ‘123’ to theinteger literal 123.

EJB objects can also be compared for equality, but they too must be of the same
exact type. To be more specific, they must both be EJB object references to
beans of the same deployment. As an example, the following method finds all the
Reservation EJBs made by a specific Customer EJB:

public interface ReservationtoneLocal extends EJBLocal (bj ect {
public Gl lection findByQust oner (Qust oner Local cust oner)
throws H ndExcepti on;

The matching EJB QL statement uses the customer argument as an input
parameter.

SHECT GBIECT(r)
FROM Reservation r, IN(r.custoners) custoner
WERE custoner = 71

It’s not enough for the EJB object that’ s used in the comparison to implement the
Cust onmer Local interface; it must be the same bean type as the Customer EJB
used in the Reservation’s customers CMR Field. In other words, they must be
from the same deployment. Once it’ s determined that the bean is the correct type,
the actual comparison is performed on the bean’s primary keys. If they have the
same primary keys, they are considered equal.

Copyright (c) 2001 O'Reilly & Associates 20

java. uti| . Dat e objects cannot be used in equality comparisons. In order to
compare dates, the long millisecond value of the date must be used, which means
that the date must be persisted in a long CMP field and not a
java.util.Date CMP. Theinput valueor litera must also beal ong value.

The WHERE clause and BETWEEN

The BETVAEEN clause is an inclusive operation specifying a range of values. It
can be used to select all ships between 80,000 and 130,000 tons.

SELECT GBIECT(s) FRMShip s
WERE s. t onnage BETVEEN 80000. 00 AND 130000. 00

The BETV\EEN clause may only be used on numeric primitives (byt e, short,
int,l ong,doubl e,fl oat) and their corresponding j ava. | ang. Nunmber
types Byt e, Short, | nteger, etc.). It may not be used on String,
bool ean, or EJB object references.

Using the NOT logical operator in conjunction with BETVAEEN excludes the range
specified. For example, the following EJB QL statement selects all the Ship EBs
that are less than 80,000 tons or greater then 130,000 tons but excludes
everything in-between.

SHECT BIECT(s) FRMShip s
WHERE s. tonnage NOT BETVEEEN 80000. 00 AND 130000. 00

The net effect of this query is the same as if it had been executed with
comparative symbols:

SHECT BIECT(s) FRMShip s
WHERE s. tonnage < 80000.00 (R s.tonnage > 130000. 00

The WHERE clauseand IN

The | N conditional operator used in the WVHERE clause is not the same asthe | N
operator used in the FROM clause. In the WHERE clause, | N tests for membership
inalist of literal string values, and can only be used with operands that evaluate
to string values. For example, the following EJB QL statement uses the | N
operator to select all the customers who reside in a specific set of states:

SH ECT (BIECT(¢) FROM Qust oner ¢
WHERE c. honeAddress. state IN(“FL', ‘TX, ‘M’, ‘W', "MN)

Applying the NOT operator to this expression reverses the selection, excluding
al customerswho reside in the list of states:
SH ECT (BIECT(¢) FROM Qust oner ¢

WHERE c. honeAddress. city
NOT IN (A, “TX, “M’, “W', “MN)

Copyright (c) 2001 O'Reilly & Associates 271

If the field tested is nul | , the value of the expression is “unknown”, which
means it cannot be predicted.

The WHERE clauseand ISNULL

The |'S NULL comparison operator alows you to test whether a path
expressionisnul | . For example, the following EJB QL statement selects al the
customers who do not have a home address.

SH ECT BIECT(¢) FROM Qustoner ¢
WHERE c. honeAddress |'S NULL

Using the NOT logical operator, we can reverse the results of this query,
selecting all the customers that do have a home address.

SH ECT BIECT(¢) FROM Qustoner ¢
WHERE c. honeAddress |S NOT' NULL

When nul | fields appear in comparison operations such as | N and BETV\EEN,
they can have pretty serious side affects. In most cases, evaluatinga nul | fied
in a comparison operation (other than | S NULL) produces in an UNKNOVN
result. Unknown evaluations throw the entire EJB QL results set into question;
since we cannot predict the outcome the EJB QL statement, it is unreliable. One
way to avoid this situation is to require that fields used in the expressions have
values. This requires careful programming. To ensure an entity bean field is
never nul | , you must initialize the field when the entity is created. For primitive
values this not aproblem, since they cannot be nul | ; they have default values.
For other fields, such as single CMR fields and object based CMP fields, like
String, the fields must be initiaized in the ejbCreate() and
e] bPost Creat e() methods.

The WHERE clauseand ISEMPTY

The |'S EMPTY operator alows the query to test if a collection-based
relationship is empty. Remember from Chapter 7 that a collection-based
relationship will never be nul | . If a collection-based relationship field has no
elements, it will return an empty Col | ect i on or Set .

Testing whether a collection-based relationship is empty has the same purpose
astesting whether single CMR field or CMPfieldisnul | : it can be used to limit
the scope of the query and items selected. For example, the following query
selects all the cruises that have not booked any reservations:

SH ECT (BJECT(cruise) FRMQuise cruise
WHERE crui se.reservations | S BMPTY

The NOT operator reversestheresult of | S ENVPTY. Thefollowing query selects
all the cruisesthat have at least one reservation.

Copyright (c) 2001 O'Reilly & Associates 2

SH ECT (BIECT(cruise) FRMQuise ¢
WHERE cruise.reservations 1S NOT BMPTY

Interestingly, it's illegal to use |S EMPTY against collection-based
relationships that have been assigned an identifier in the FROVIclause.

/1 illegal query

SHECT GBIECT(1)

FROM Reservation r, IN r.custoners) c
WHERE

r.custoners 1S NOI BEMPTY AND
c.address.city = ‘ Boston'

While this query appears to be good insurance against unknown results, it's not.
Infact, it sanillegal EJB QL statement, becausethel S ENMPTY operator cannot
be used on a collection-based relationship identified in an | N operation in the
FROM clause. Because the relationship is specified in the IN clause, only those
Reservation EBs that have a non-empty cust oner s field will be included in
the query; any Reservation EJB that has an empty CMR field will be excluded
because its customers elements cannot be assigned the c identifier.

The WHERE clauseand MEMBER OF

The VEMBER OF operator is a powerful tool for determining whether an EJB
object is a member of a specific collection-based relationship. The following
query determines whether a particular Customer (specified by the input
parameter) isamember of any of the Reservation-Customer relationships.

SH ECT (BJECT(cruise)
FROM G ui se crui se, Qustoner c
WERE

c=71

AND

¢ MBMBER CF crui se. reservations

Applying the NOT operator to VEVBER OF will have the reverse effect, select all
the cruises on which the specified customer doesn’t have areservation.

SH ECT (BJECT(cruise)
FROM Qrui se crui se, Qustoner c
WERE
c="71
AND
¢ NOr MEMBER CF crui se. reservations

Checking whether an EJB object is a member of an empty collection aways
returnsf al se.

Copyright (c) 2001 O'Reilly & Associates 23

The WHERE clauseand LIKE

The LI KE comparison operator allows the query to select St ri ng type CMP
fields that match a specified pattern. For example, the following EJB QL
statement selects all the customers with hyphenated names, like “Monson-
Haef el " and “Ber ner s- Lee”.

SH ECT BIECT(¢) FROM Qust oner ¢
WHERE c. | ast Nane LI KE * %%

Two specia characters can be used when establishing a comparison pattern:
‘0% (percent) stands for any sequence of characters, and * ' (underscore)
stands for any single character. %and _ characters can be used at any location
within a string pattern. The escape character \ can be used if a %or _ actualy
occurs in the string. The NOT logical operator reverses the evaluation so that
matching patterns are excluded.

The following examples show how the LIKE clause would evaluate St r i ng type
CMPfields.

phone. number LIKE ‘ 617%

truefor ‘617-322-4151’

felsefor *415-222-3523

cabin.name LIKE ‘Suite _100
truefor ‘ Suite A100’

falsefor ‘ Suite A233

phone. number NOT LI KE ‘ 608%
truefor ‘415-222-3523'

falsefor ‘' 608-233-8484’

soneFi el d. underscored LIKE ‘_%
truefor*_xyz

falsefor ‘abc’

soneFi el d. percentage LIKE '\ %%
truefor ‘% XYZ’

fasefor ‘ABC’

Copyright (c) 2001 O'Reilly & Associates 24

The WHERE clause and Functional Expressions

EJB QL has six functiona expressions that allow for simple String
manipulation and a couple of basic numerical operations. The String
functions are listed below:

CONCAT(Stringl, String2)
returns the String that results from concatenating Stringl and
String2.

SUBSTRI NG(Stringl, start, |ength)
returns the String consisting of | ength characters taken from
St ringl, starting at the position given by st ar t .

LOCATE(Stringl, String2 [, start])
returns an i nt indicating the position at which St ri ngl is found within
String2. If it's present, start indicates the character position in
St ri ng2 at which the search should start.

LENGTH(Stri ng)
returnsani nt indicating thel engt h of the string.

Thestart and| engt h parameters indicate positionsina St r i ng as integer
values. These expressions can be used in the WHERE clause to help refine the
scope of the items selected. Here is an example of how the LOCATE and
L ENGT H functions might be used:

SH ECT GRIECT(¢)

FROM Qust oner ¢

WHERE

LENGIH c. | ast Nang) > 6

AND
LOCATH c.lastNane, ‘Mnson') > -1

This EJB QL statement selects all the customers with ‘Vbnson’ somewhere in
their last name, but the name must be longer than 6 characters. Therefore,
‘Monson- Haef el ” and ‘Monson- Ar es’ evaluate to t r ue, but ‘Vonson’
returnsf al se becauseit hasonly 6 characters.

The arithmetic functions are ABS and SORT.

ABS(nunber)
returns the absolute value of anumber (i nt ,f | oat,ordoubl e)

SQRT(doubl e)
returns the square root of adoubl e

[l Exercise 8.2, Complex EJB QL statements

Copyright (c) 2001 O'Reilly & Associates 25

Problemswith EJB QL

EJB QL is a powerful new tool that promises to improve performance, flexibility,
and portability of the entity beans in container-managed persistence, but it has
some design flaws and omissions.

The OBJECT () operation

The use of the OBJECT() operation is unnecessary, cumbersome, and provides
little or no value to the bean developer. It s trivial for EJB vendors to determine
when an abstract schema type is the return value, so the OBJECT() operation
provides little real value during query translation. In addition, the OBJECT()
operation is applied haphazardly. It' s required when the return type is an abstract
schemaidentifier, but not when a path expression of the SELECT clause ends in
aCMR field. Both return an EJB object reference, so the use of OBJECT() in
one scenario and not the other isillogical and confusing.

When questioned about this, Sun replied that several vendors had requested the
use of the OBJECT() operations because it will be included in the next major
release of the SQL programming language. EJB QL was designed to be similar to
SQL because it’ s the query language that is most familiar to developers, but this
doesn’t mean it should include functions and operations that have no real
meaning in Enterprise JavaBeans.

The missing ORDER BY clause

Soon after you begin using EJB QL you will quickly realize that it’'s missing a
major component, the ORDER BY clause. Requesting ordered lists is extremely

important in any query language; most major query languages including SQL and

object query languages support this concept.

The ORDER BY clause has a couple of big advantages: it clearly communicates
the bean developer’s intentions; and it gives the application server vendors the
option of delegating ordering to the database:

The ORDER BY clause would provide a very clear mechanism for the bean
developer to communicate his intentions to the EJB QL interpreter. The
ORDER BY clause is unambiguous; it states exactly how a collection should
be ordered (the attributes to order by, ascending, decending, etc.). Given
that it's the purpose of EJB QL to clearly describe the behavior of the find
and select operations in a portable fashion, ORDER BY is clearly a
significant omission.

With an ORDER BY clause, EJB QL interpreters used by EJB vendors could,
in most cases, choose an ordering mechanism that is optimized for a

Copyright (c) 2001 O'Reilly & Associates 26

particular database. Allowing the resource to perform the ordering is more
efficient than having the container do it after the data is retrieved. It was
suggested that EJB vendors could provide ordering mechanically, by having
the collection sorted after it's obtained. This is a rather ridiculous
expectation, since it would require collections to be fully manifested after the
query completes, eliminating the advantages of lazy loading.

However, even if the application server vendor chooses to have the container do
the ordering, the ORDER BY clause still provides the EJB vendor with a clear
indication of how to order the collection. It's up to the vendor to choose how to
support the ORDER BY clause. For databases and other resources that support
it, ordering could be delegated to the resource. For those resources that don't
support ordering, it can be performed by container. Without an ORDER BY
clause, the deployer will have to manipulate collections manually or force the
container’ s collection implementations to do the ordering. These two options are
untenable in real world applications where performanceis critical.

When pressed, Sun explained that the ORDER BY clause was not included in
this version of the specification because of problems dealing with the mismatch
in ordering behavior between the Java language and databases. The example
give was string values. The semantics of ordering strings in a database may be
different than that of the Java language. For example, Javaorders St r i ng types
according to character sequence and case (upper case vs. lower case). Different
databases may or may not consider case while ordering or discount leading or
trailing white space. In light of these possible differences, it seamslike Sun hasa
reasonable argument, but only for limiting the portability of ORDER BY, not for
eliminating its use all together. EJB developers can live with less than prefect
portability of the ORDER BY clause, but they cannot live without the ORDER
BY clause.

Finally, contrary to popular belief, the ORDER BY clause would not necessitate
theuseof thej ava. uti | . Li st asareturntype. Althoughthe Li st typeis
supposed to be used for ordered lists, it also allows developers to place itemsin
a specific location of the list, which in EJB would mean a specific location of the
database. This is nearly impossible to support, and so appears to be a
reasonable argument against using the ORDER BY clause. However, this
reasoning is flawed, because there is nothing preventing EJB from using the
simpleCol | ect i on typefor ordered queries. The understanding would be that
the items are ordered, but only as long as the collection is not modified after it is
obtained. In other words, elements are not added or removed. Ancther option is
to require that EJB QL statements that use the ORDER BY clause return a
java. util . Enumerati on type. This seems perfectly reasonable, since the
Col | ecti on received by a select or find operation shouldn’t be manipulated
anyway.

Copyright (c) 2001 O'Reilly & Associates 27

Lack of support for Date

EJB QL doesn’t provide native support for the j ava. uti | . Dat e class. This

is not acceptable. The | ava. uti| . Dat e class should be supported as a
natural type in EJB QL. It should be possible, for example, to do comparisons
with Dat e CMP fields and literal and input parameters. It should be possible to

use comparison symbols (=, >, >=, <, <=, <>) with Dat e CMP fields. It should

also be possible to introduce common date functions so that comparisons can be

done at different levels, like comparing the day of the week DOW) or month

(MONTH()), etc. Of course, including the Dat e as a supported type in EJB QL

is not trivial and problems with interpretation of dates and locals would need to

be considered, but the failure to address Dat e as a supported type is a
significant omission.

Limited Functional Expressions

While the functional expressions provided by EJB QL will be valuable to
developers there are many other functions that should have been included. For
example, COUNT() isused alot in real world applications. Other functions that
would be useful include (but are not limited to): CAST() useful for comparing
different types; MAX() and M N() ; SUM) ; UPPER() and perhaps others. In
addition, if support for j ava. uti | . Dat e wasincluded in EJB QL, other date
functions could be added, like DOA() , MONTH() , etc.

Copyright (c) 2001 O'Reilly & Associates 28

9

EJB 1.1: Container-Managed
Persistence

A Notefor EJB 2.0 Readers

Container-managed persistence has undergone a dramatic change in EJB 2.0,
which is not backward compatible with EJB 1.1. For that reason, EJB 2.0 vendors
must support both EJB 2.0’ s contai ner-managed persistence model and EJB 1.1's
container-managed persistence model. The EJB 1.1 model is supported purely for
backward compatibility, so that application developers can migrate their existing
applications to the new EJB 2.0 platform as painlessly as possible. It's expected
that al new entity beans and new applications will use the EJB 2.0 container-
managed persistence, not the EJB 1.1 version. Although EJB 1.1 container-
managed persistence is covered in this book, avoid it unless you maintain a
legacy EJB 1.1 system. EJB 2.0 container-managed persistence is covered in
Chapters 6 thru 8.

In EJB 2.0, EJB 1.1 container-managed persistence is limited in other ways. For
example, EJB 1.1 CMP beans can only have remote component interfaces; they
are not allowed to have local or local home interfaces. Other subtle differences
adso make EJB 1.1 CMP more limiting the EJB 20. For example, the
e] bCreat e() and ej bPost Creat e() methods in EJB 1.1 do not support
the <METHOD- NAVE> sauffix dlowed in EJB 2.0, which makes method
overloading more difficult.

Copyright (c) 2001 O'Reilly & Associates 1

Overview for EJB 1.1 Readers

The following overview of EJB 1.1 container-managed persistence is pretty much
duplicated in Chapter 6, but for EJB 1.1 readers who have not read Chapter 6, the
overview is important to understanding the context of entity beans and
container-managed persistence.

In Chapter 4, we started devel oping some simple enterprise beans, skipping over
alot of the details about developing enterprise beans. In this chapter, we'll take a
thorough look at the process of developing entity beans. On the surface, some of
this material may look familiar, but it is much more detailed and specific to entity
beans.

Entity beans model business concepts that can be expressed as nouns. Thisisa
rule of thumb rather than a requirement, but it helps in determining when a
business concept is a candidate for implementation as an entity bean. In grammar

school you learned that nouns are words that describe a person, place, or thing.

The concepts of person and place are fairly obvious: a person EJB might

represent a customer or a passenger, and a place EJB might represent a city or a
port-of-call. Similarly, entity beans often represent things: real-world objects like

ships, credit cards, and so on. An EJB can even represent afairly abstract thing,

such as a ticket or a reservation. Entity beans describe both the state and

behavior of real-world objects and allow developers to encapsulate the data and

business rules associated with specific concepts; a Ship EJB encapsulates the

data and business rules associated with a ship, and so on. This makesit possible

for data associated with a concept to be manipulated consistently and safely.

In Titan's cruise ship business, we can identify hundreds of business concepts
that are nouns and therefore could conceivably be modeled by entity beans.
WEe've aready seen asimple Cabin EJB in Chapter 4, and we'll develop Ship EJB
in this chapter. Titan could clearly make use of a Customer EJB, Cruise EJB, a
Reservation EJB, and many others. Each of these business concepts represents
data that needs to be tracked and possibly manipulated. Entities really represent
data in the database, so changes to an entity bean result in changes to the
database.

There are many advantages to using entity beans instead of accessing the
database directly. Utilizing entity beans to objectify data provides programmers
with a simpler mechanism for accessing and changing data. It is much easier, for
example, to change a customer’s name by calling Shi pRenpt e. set Name()

than to execute an SQL command against the database. In addition, objectifying
the data using entity beans also provides for more software reuse. Once an entity
bean has been defined, its definition can be used throughout Titan's systemin a
consistent manner. The concept of customer, for example, is used in many areas
of Titan's business, including booking, scheduling, and marketing. A Ship EJB
provides Titan with one complete way of accessing ship information, and thus it

2 Copyright (c) 2001 O'Reilly & Associates

ensures that access to the information is consistent and simple. Representing
data as entity beans makes devel opment easier and more cost effective.

When anew EJB is created, a new record must be inserted into the database and
a bean instance must be associated with that data. As the EJB is used and its
state changes, these changes must be synchronized with the data in the
database: entries must be inserted, updated, and removed. The process of
coordinating the data represented by a bean instance with the database is called
persistence.

There are two basic types of entity beans, and they are distinguished by how
they manage persistence. Container-managed persistence beans have their
persistence automatically managed by the EJB container. The container knows
how a bean instance’s persistent fields and relationships map to the database
and automatically takes care of inserting, updating, and deleting the data
associated with entities in the database. Entity beans using bean-managed
persistence do all this work explicitly: the bean developer must write the code to
manipulate the database. The EJB container tells the bean instance when it is
safe to insert, update, and delete its data from the database, but it provides no
other help. The bean instance does all the persistence work itself. Bean-managed
persistenceis covered in Chapter 10.

Container-Managed Persistence

When you deploy an EJB 1.1 CMP entity bean, you identify which fields in the
entity are managed by the container and how they map to the database. Once
you have defined the fields that will be automatically managed and how they map
to the database, the container generates the logic necessary to save the bean
instance’ s state automatically.

Fields that are mapped to the database are called container-managed fields—EJB
1.1 doesn’t support relationship fields, as does EJB 2.0. Container- managed
fields can be any Java primitive type or serializable objects. Most beans will use
Java primitive types when persisting to a relational database, since it’'s easier to
map Java primitives to relational datatypes.

EJB 1.1 also allows references to other beans to be container-managed fields. The
EJB vendor must support converting bean references (remote or home interface
types) from remote references to something that can be persisted in the database
and converted back to a remote reference automatically. Vendors will normally
convert remote references to primary keys, Handl e or HonmeHand| e objects,
or some other proprietary pointer type, which can be used to preserve the bean
reference in the database. The container will manage this conversion from remote
reference to persistent pointer and back automatically. This feature was
abandoned in EJB 2.0 CMP in favor of container-managed relationship fields.

Copyright (c) 2001 O'Reilly & Associates 3

The advantage of container-managed persistence is that the bean can be defined
independently of the database used to store its state. Container-managed beans
can take advantage of a relational database or an object-oriented database. The
bean state is defined independently, which makes the bean more reusable and
flexible.

The disadvantage of container-managed beansis that they require sophisticated
mapping tools to define how the bean’s fields map to the database. In some
cases, this may be a simple matter of mapping each field in the bean instance to a
column in the database, or of serializing the bean to afile. In other cases, it may
be more difficult. The state of some beans, for example, may be defined in terms
of a complex relational database join or mapped to some kind of legacy system
suchas CICSor IMS.

In this chapter, we will create a new container-managed entity bean, the Ship EJB,
which we will examinein detail. A Ship EJB is also used in both Chapter 7, when
discussing complex relationships in EJB 2.0, and Chapter 10, when discussing
bean-managed persistence. When you are done with this chapter you may want
compare the Ship EJB developed here with the ones created in Chapter 7 and 10.

Let’s start by thinking about what we're trying to do. An enormous amount of
data would go into a compl ete description of a ship, but for our purposes we will
limit the scope of the datato a small set of information. For now, we can say that
a ship has the following characteristics or attributes: its name, passenger
capacity, and tonnage (i.e., size). The Ship EJB will encapsulate this data; we'll
need to create a SHI P table in our database to hold this data. Here is the
definition for the SHI P table expressed in standard SQL:

CREATE TABLE SHP (1D INT PR MRY KEY, NAVE GHAR(30), CAPAQITY INT,
TONNAGE CEQ MAL(8, 2))

When defining any bean, we start by coding the remote interfaces. This focuses
our attention on the most important aspect of any bean: its business purpose.
Once we have defined the interfaces, we can start working on the actual bean
definition.

The Remote I nterface

For the Ship EJB we will need a remote interface. This interface defines the busi-
ness methods that clients will use to interact with the bean. When defining the
remote interface, we will take into account all the different areasin Titan's system
that may want to use the ship concept. Here is the remote interface,
Shi pRenot e, for the Ship EJB:

package comtitan. ship;

inport javax. ej b. EJBMyj ect ;
inport java.rm.Renot eExcepti on;

4 Copyright (c) 2001 O'Reilly & Associates

public interface Shi pRenote extends javax. ej b. EJBOpj ect {
public Sring getName() throws Renot eException;
publ i c voi d setNane(Sring nange) throws RenoteException;
publ i ¢ voi d set Gapacity(int cap) throws RenoteException;
public int getCapacity() throws RenoteException;
publ i ¢ doubl e get Tonnage() throws RenoteException;
publ i ¢ voi d set Tonnage(doubl e tons) throws Renot eException;

}

The Remote Home Interface

The remote home interface of any entity bean is used to create, locate, and
remove objects from EJB systems. Each entity bean type has its own home
interface. The home interface defines two basic kinds of methods: zero or more
create methods and one or more find methods.! The create methods act like
remote constructors and define how new Ship EJBs are created. (In our home
interface, we only provide asingle cr eat e() method.) The find method is used
to locate a specific ship or ships.

The following code contains the complete definition of the Shi pHoneRenot e
interface:

package comtitan. ship;

inport javax. ej b. EJBHneg;

i nport javax. ej b. O eat eException;
i nport javax. ej b. H nder Excepti on;
inport java.rnm.Renot eException;
inport java.util.Enuneration;

public interface Shi pHhneRenote extends j avax. ej b. EJBrbone {

public ShipRenote create(lnteger id, Sring nane,
int capacity, doubl e tonnage)

t hrows Renot eExcept i on, O eat eExcepti on;

public ShipRenote create(lnteger id, Sring nane)
throws Renot eExcepti on, O eat eExcept i on;

publ i ¢ Shi pRenot e findByPri naryKey(lnteger prinaryKey)
throws H nder Exception, RenoteException;

publ i ¢ BEnuneration findByCapacity(int capacity)
throws H nder Exception, RenoteException;

}

Enterprise JavaBeans specifies that create methods in the home interface must
throw the j avax. ej b. Creat eException. In the case of container-

1 Chapter XX explains when you should not define any create methods in the home
interface.

Copyright (c) 2001 O'Reilly & Associates 5

managed persistence, the container needs a common exception for
communicating problems experienced during the create process.

Thefind methods

EJB 1.1 CMP only supports find methods, not EJB 2.0's select methods. In
addition, find methods are supported by only the remote home interface; local
component interfaces are not supported by EJB 1.1 entity beans.

With EJB 1.1 container-managed persistence, implementations of the find
methods are generated automatically at deployment time. Different EJB container
vendors employ different strategies for defining how the find methods work.
Regardless of the implementation, when you deploy the bean, you'll need to do
some work to define the rules of the find method. f i ndByPr i mar yKey() isa
standard method that all home interfaces for entity beans must support. This
method locates beans based on the attributes of the primary key. In the case of
the Ship EJB, the primary key isthe | nt eger class, which mapsto the i d fied
of the Shi pBean. With relational databases, the primary key attributes usually
map to a primary key in atable. In the Shi pBean class, for example, the i d
attribute maps to the | D primary key column in the SHI P table. In an object-
oriented database, the primary key’s attributes might point to some other unique
identifier.

EJB 1.1 alows you to specify other find methods in the home interface, in
additionto f i ndByPri nar yKey() . All find methods must have names that
match the pattern f i nd<SUFFI X>() . So, for example, if we were to include a
find method based on the Ship EJB’'s capacity, it might be called
findByCapaci ty(i nt capaci ty).Incontainer-managed persistence, any
find method included in the home interface must be explained to the container. In
other words, the deployer needs to define how the find method should work in
terms that the container understands. Thisis done at deployment time, using the
vendor’ s deployment tools and syntax specific to the vendor.

Find methods return either the remote-interface type appropriate for that bean, or
aninstanceof j ava. uti| . Enunmerationorjava.util.Collection
type. Unlike EJB 2.0 CMP, EJB 1.1 CMP doesn’t support the j ava. uti | . Set
as areturn type from finder methods.

Specifying a remote-interface type indicates that the method only locates one
bean. The fi ndByPri maryKey() method obviously returns one remote
reference because there is a one-to-one relationship between a primary key’'s
value and an entity. The fi ndByCapacity(int capacity) method,
however, could return several remote references, one for every ship that has a
capacity equal to the parameter capaci t y. The possibility of retuming several
remote references requires the use of the Enuneration type or a
Col | ecti on type. Enterprise JavaBeans specifies that any find method used
in a home interface must throw the | avax. e] b. Fi nder Excepti on. Find

6 Copyright (c) 2001 O'Reilly & Associates

methods that return asingle remote reference throw aFi nder Excepti onifan
application error occurs, and aj avax. e] b. Cbj ect Not FoundExcepti on
if a matching bean cannot be found. The Obj ect Not FoundExcepti onisa
subtype of Fi nder Exception and is only thrown by find methods that
return single remote references.

Find methods that return an Enuner at i on or Col | ect i on type (multi-entity
finders) return an empty collection (not anull reference) if no matching beans can
befound, or throw aFi nder Except i on if an application error occurs.

How find methods are mapped to the database for container-managed
persistence is not defined in the EJB 1.1 specification—it is vendor-specific.
Consult the documentation provided by your EJB vendor to determine how find
methods are defined at deployment time. Unlike EJB 2.0 CMP, there is no
standard query language for expressing the behavior of find methods at runtime.

ThePrimary Key

A primary key is an object that uniquely identifies an entity bean according to
the bean type, homeinterface, and container context from which it is used.

In container-managed persistence, a primary key can be a serializable object
defined specifically for the bean by the bean developer, or its definition can be
deferred until deployment. The primary key defines attributes that can be used to
locate a specific bean in the database. In this case, we need only one attribute,
i d, but in other cases, a primary key may have several attributes, all of which
uniquely identify abean’s data. We will examine primary keysin detail in Chapter
11; for now, we specify that the Ship EJB use asimple single-value primary key of
typej ava. | ang. | nt eger.

The ShipBean Class

No bean is complete without its implementation class. Now that we have defined
the Ship EJB’s remote interfaces and primary key, we are ready to define the
Shi pBean itself. The Shi pBean will reside on the EJB server. When a client
application or bean invokes a business method on the Ship EJB’s remote
interface, that method invocation is received by the EJB object, which then
delegatesit to the Shi pBean instance.

When developing any bean, we have to use the bean’s remote interfaces as a
guide. Business methods defined in the remote interface must be duplicated in
the bean class. In container-managed beans, the create methods of the home
interface must also have matching methods in the bean class according to the
EJB 11 specification. Finally, callback methods defined by the
j avax. e] b. EntityBean interface must be implemented. Here is the code
for the Shi pBean class.

Copyright (c) 2001 O'Reilly & Associates 7

package comtitan. ship;
inport javax.ejb. BntityContext;

public class ShipBean inpl enents javax. e b. EntityBean {
public Integer id;
public Sring nane;
public int capacity;
publ i ¢ doubl e tonnage;

public EntityQontext context;

public Integer ef bGeate(Integer id, String nane,
int capacity, double tonnage) {
this.id =id;
thi s. nane = nang;
this.capacity = capacity;
thi s. tonnage = tonnage;
return nul l;
}
public Integer efbCQeate(Integer id, Sring nane) {
this.id =id;
thi s. nane = nang;
capacity = 0;
tonnage = 0;
return null;

public void ej bPost Qeate(lnteger id, Sring nane, int capacity,
doubl e t onnage) {
Integer pk = (Integer)context.getPrinarykey();
/1 Do sonething useful with the prinary key.
}

public void ejbPost Qeate(int id, Sring nane) {
Shi pRenot e nysel f = (Shi pRenot e) cont ext . get EJBOj ect () ;
/1 Do sonething useful wth the EIJBOj ect reference.

}

public void setEntityContext(EntityContext ctx) {
context = ctx;

}

publ i c voi d unset EntityGontext() {
context = null;

}

public void e bActivate() {}

public void ej bPassivate() {}

public void ej bLoad() {}

public void ejbSore() {}

public voi d e bRenove() {}

public Sring getNane() {

Copyright (c) 2001 O'Reilly & Associates

return nang,

}

public void setNange(Sring ny {
nane = n;

}

publ i c voi d setGapacity(int cap) {
capacity = cap;

}

public int getCapacity() {
return capacity;

}

publ i ¢ doubl e get Tonnage() {
return tonnage;

}

publ i ¢ voi d set Tonnage(doubl e tons) {
tonnage = tons;

}

}

The Ship EJB defines four persistent fields: i d, nane, capacity, and
t onnage. No mystery here: these fields represent the persistent state of the
Ship EJB; they are the state that defines a unique ship entity in the database. The
Ship EJB aso defines another field, cont ext, which holds the bean's
EntityCont ext.We'll have moreto say about thislater.

The set and get methods are the business methods we defined for the Ship EJB;
both the remote interface and the bean class must support them. This means that
the signatures of these methods must be exactly the same, except for the
j avax. e] b. Renot eExcept i on. The bean class's business methods aren’t
reguired to throw the Renot eExcept i on. This makes sense because these
methods aren’t actually invoked remotely— they’ re invoked by the EJB object. If
a communication problem occurs, the container will throw the
Renot eExcept i on for the bean automatically.

| mplementing the javax.g b.EntityBean Interface

To make the ShipBean an entity bean, it must implement the
j avax. e] b. EntityBean interface. The Ent i t yBean interface contains a
number of callback methods that the container uses to alert the bean instance of
various runtime events:

public interface javax.ejb. EntityBean extends javax. e b. Enterpri seBean {

public abstract void ej bActivate() throws RenoteException;

public abstract void ej bPassivate() throws RenoteException;

public abstract void ej bLoad() throws RenoteException;

public abstract void ejbSore() throws RenoteBException;

publ i c abstract voi d ej bRenove() throws Renot eException;

public abstract voi d setEntityQontext(EntityContext ctx)

throws Renot eExcepti on;

Copyright (c) 2001 O'Reilly & Associates 9

public abstract void unset EntityContext() throws RenoteException;
}

Each callback method is caled at a specific time during the life cycle of a
Shi pBean. In many cases, container-managed beans (like the Shi pBean)
don't need to do anything when a callback method is invoked. Container-
managed beans have persistence managed automatically, so many of the
resources and logic that might be managed by these methods are already
handled by the container.

Thisversion of the Ship EJB has empty implementations for its callback methods.
It is important to note, however, that even a container-managed bean can take
advantage of these callback methods if needed; we just don’'t need them in our
Shi pBean at thistime. The callback methods are examined in detail in Chapter
11. You should read the chapter to learn more about the callback methods and
when they are invoked.

The Create Methods

When a create method is invoked on the home interface, the EJB home delegates
it to the bean instance in the same way that business methods on the remote
interface are handled. This meansthat we need anej bCr eat e() method inthe
bean class that correspondsto eachcr eat e() method in the home interface.

The ej bCreat e() method returns a nul | value of type | nt eger for the
bean’s primary key. The return value of the ej bCreat e() method for a
container-managed bean is actually ignored by the container.

EJB 1.1 changed its return value from voi d, which was the
return type in EJB 1.0, to the primary key type to facilitate
subclassing; the change was made so that it's easier for a
bean-managed bean to extend a container-managed bean. In
EJB 1.0, thisis not possible because Java won't alow you to
overload methods with different return values. By changing
this definition so that a bean-managed bean can extend a
container-managed bean, the EJB 1.1 specification alows
vendors to support container-managed persistence by
extending the container-managed bean with a generated bean-
managed bean—a fairly simple solution to a difficult problem.
Bean developers can also take advantage of inheritance to
change an existing CMP bean into a BMP bean, which may be
needed to overcome difficult persistence problems.

For every cr eat e() method defined in the entity bean’s home interface, there
must be a corresponding ej bPost Creat e() method in the bean instance
class. In other words, ej bCreate() and ej bPost Create() methods

10 Copyright (c) 2001 O'Reilly & Associates

occur in pairs with matching signatures; there must be one pair for each
creat e() method defined in the home interface.

g bCreate() and g bPostCreate

In a container-managed bean, the ej bCr eat e() method is called just prior to
writing the bean’ s contai ner-managed fields to the database. Values passed in to
theej bCreat e() method should be used to initialize the fields of the bean
instance. Once the ej bCr eat e() method completes, a new record, based on
the container-managed fields, iswritten to the database.

The bean developer must ensure that the ej bCreat e() method sets the
persistent fields that correspond to the fields of the primary key. When a primary
key is defined for a container-managed bean, it must define fields that match one
or more of the container- managed (persistent) fieldsin the bean class. The fields
must match with regard to type and name exactly. At runtime, the container will
assume that fields in the primary key match some or al of the fields in the bean
class. When a new bean is created, the container will use those container-
managed fields in the bean class to instantiated and populate a primary key for
the bean automatically.

Once the bean’'s state has been populated and its EntityCont ext
established, anej bPost Cr eat e() method isinvoked. This method gives the
bean an opportunity to perform any post-processing prior to servicing client
requests.

The bean identity isn’'t available to the bean during the call to ej bCreat e(),
but is available in the ej bPost Cr eat e() method. This means that the bean
can access its own primary key and EJB object, which can be useful for
initializing the bean instance prior to servicing business method invocations.
You can use the ej bPost Creat e() method to perform any additional
initialization. Eachej bPost Cr eat e() method must have the same parameters
as its corresponding e] bCreat e() method. The ej bPost Create()
method returnsvoi d.

Chapter 11 provides more details about the e] bCreate() and
ej bPost Creat e() method and how they relate to the life cycle of entity
beans. Consult that chapter for more details about these methods.

Using gbLoad() and efbStore() in container-managed beans

The process of ensuring that the database record and the entity bean instance
are equivalent is called synchronization. In container-managed persistence, the
bean’'s container- managed fields are automatically synchronized with the
database. In most cases, we will not need the ej bLoad() and e] bSt ore()

methods because persistence in contai ner- managed beansis uncomplicated.

Copyright (c) 2001 O'Reilly & Associates 11

Deployment Descriptor

Whether you are using an EJB 2.0 or EJB 1.1 platform, EJB 1.1 CMP entity beans
must use the EJB 1.1 deployment descriptor format. Y ou do not use the EJB 2.0
deployment descriptor for deploying EJB 1.1 container-managed persistence
entitiesin a 2.0 platform.

With a complete definition of the Ship EJB, including the remote interface and the
home interface, we are ready to create a deployment descriptor. The following
listing shows the bean’s XML deployment descriptor. The <cnp-fi el d>
element is particularly important. These elements list the fields that are managed
by the container; they have the same meaning as they do in EJB 2.0 container-
managed persistence.

<?xnh version="1.0"?>

<IDOCTYPE ej b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij2ee/dtds/ejb-jar_1 1.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>
<descri pti on>
Thi s bean represents a crui se ship.
</ descri pti on>
<gj b- nane>shi pEJB</ €] b- nane>
<hone>comtit an. shi p. Shi pHoneRenot e</ hone>
<renot e>comt it an. shi p. Shi pRenot e</ r enot e>
<gj b-cl ass>comti tan. shi p. Shi pBean</ gj b- cl ass>
<per si st ence- t ype>Cont ai ner </ per si st ence- t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reentrant >Fal se</reentrant >
<cnp- ver si on>1. X</ cnp- ver si on>
<cnp-fi el d><fi el d-nane>i d</fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>nane</ fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>capaci t y</fi el d- nane></ cnp-fi el d>
<cnp- fi el d><fi el d- nane>t onnage</ fi el d- nane></ cnp-fi el d>
<entity>
</ enterpri se-beans>

<assentl y- descri pt or >
<security-rol e>
<descri ption>
This rol e represents everyone who i s al lowed full access
to the Ship EIB
</ descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>

12 Copyright (c) 2001 O'Reilly & Associates

<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<gj b- nane>Shi pEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner-transacti on>
<net hod>
<gj b- nane>Shi pEIB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner-transacti on>
</ assenbl y- descri pt or >
<ejb-jar>

The <cnp-fi el d> elements list all the container-managed fields in the entity
bean class. These are the fields that will be persisted in the database and are

managed by the container at runtime.

Exercise 9.1, CMP 1.1 Entity Bean

Copyright (c) 2001 O'Reilly & Associates

13

10

Bean-Managed Persistence

Bean-M anaged Per sistence

Bean-managed persistence is more complicated than container-managed
persistence because you must explicitly write the persistence logic into the bean
class. In order to write the persistence handling code into the bean class, you
must know what type of database is being used and the how the bean class's
fields map to that database.

Given that container-managed persistence saves a lot of work, why would
anyone bother with bean-managed persistence? The advantage of bean-
managed persistence is that it gives you more flexibility in how state is managed
between the bean instance and the database. Entity beans that use data from a
combination of different databases or other resources such as legacy systems
can benefit from bean-managed persistence. Essentially, bean-managed
persistence is the alternative to container-managed persistence when the
container tools are inadequate for mapping the bean instance’s state to the
backend databases or resource.

The disadvantage of bean-managed persistence is obvious: more work is
required to define the bean. You have to understand the structure of the
database or resource, the APIs that access them, and develop the logic to create,
update, and remove data associated with an entity. This requires diligence in
using the EJB callback methods such as ej bLoad() and e] bStore()
appropriately. In addition, you must explicitly develop the find methods defined
in the bean’ s home interfaces.

Copyright (c) 2001 O'Reilly & Associates 1

The select methods used in EJB 2.0 container-managed
persistence are not supported in bean-managed persistence.

Another disadvantage of bean-managed persistence is that it ties the bean to a
specific database type and structure. Any changes in the database or in the
structure of data require changes to the bean instance's definition; these
changes may not be trivial. A bean-managed entity is not as database-
independent as a container-managed entity, but it can better accommodate a
complex or unusual set of data.*

To understand how bean-managed persistence works, we will create a new Ship
EJB that is similar to the one used in Chapters 7 and 11. For bean-managed
persistence, we need to implement the ej bCreate(), ejblLoad(),
ej bStore(), and ej bRenove() methods to handle synchronizing the
bean’ s state with the database.

The Remote I nterface

We will need a remote interface for the Ship EJB. This interface is basically the
same as any other remote or local interface. It defines the business methods used
by clientsto interact with the bean:

package comtitan. ship;

inport javax. ej b. EJBMyj ect ;
inport java.rm . Renot eExcepti on;

public interface Shi pRenote extends javax. ej b. EJBOpj ect {
public Sring get Name() throws Renot eExcepti on;
publ i c voi d setNane(Sring nane) throws RenoteException;
publ i ¢ voi d set Gapacity(int cap) throws RenoteException;
public int getCapacity() throws RenoteException;
publ i ¢ doubl e get Tonnage() throws RenoteException;
publ i ¢ voi d set Tonnage(doubl e tons) throws Renot eBxception;

}

In this chapter, we will not develop alocal interface for the bean-managed Ship
bean; however, in EJB 2.0, bean-managed entity beans can have either local or
remote component interfaces, just like CMP.

Set and get methods

The Shi pRenot e definition uses a series of accessor methods whose names
begin with set and get . Thisis not a required signature pattern, but it is the

1 Containers that use object-to-relational mapping tools in bean-managed persistence
can mitigate this disadvantage.

Copyright (c) 2001 O'Reilly & Associates 2

naming convention used by most Java developers when obtaining and changing
the values of object attributes or fields. These methods are often referred to as
setters and getters (ak.a. mutators and accessors) and the attributes that they
manipulate can be called properties® These properties should be defined
independently of the anticipated storage structure of the data. In other words,
you should design the remote interface to model the business concepts, not the
underlying data. Just because there'sa capaci t y property doesn't mean that
there has to be a capacity field in the bean or the database; the
get Capaci t y() method could conceivably compute the capacity from a list
of cabins, by looking up the ship’s model and configuration, or with some other
agorithm.

Defining entity properties according to the business concept and not the
underlying data is not always possible, but you should try to employ this
strategy whenever you can. The reason is two-fold. First, the underlying data
doesn’t always clearly define the business purpose or concept being modeled by
the entity bean. Remote interfaces will be used by developers who know the
business, not the database configuration. It is important to them that the entity
bean reflect the business concept. Second, defining the properties of the entity
bean independent of the data allows the bean and data to evolve separately. This
is important because it allows a database implementation to change over time; it
also allows for new behavior to be added to the entity bean as needed. If the
bean’s definition is independent of the data source, the impact of these
evolutionsis limited.

The Remote Home I nterface

The home interfaces (local and remote) of any entity bean are used to create,
locate, and remove objects from EJB systems. Each entity bean has its own
remote or local home interface. The home interface defines two basic kinds of
methods: zero or more create methods, and one or more find methods? The create
methods act like remote constructors and define how new Ship EJBs are created.
(In our home interface, we only provide asingle cr eat e() method.) The find
method is used to | ocate a specific ship or ships.

The following code contains the complete definition of the Shi pHoneRenot e
interface:

package comtitan. ship;

2 Although EJB is different from its GUI counterpart, JavaBeans, the concepts of
accessors and properties are similar. You can learn about this idiom by reading Developing
Java Beans™ by Rob Englander (O’ Reilly).

3 Chapter XX explains when you should not define any create methods in the home
interface.

Copyright (c) 2001 O'Reilly & Associates 3

inport javax. ej b. EJB-bne;

inport javax. ej b. O eat eExcepti on;
inport j avax. ej b. F nder Excepti on;
inport java.rn . Renot eExcepti on;
inport java. util.@l | ection;

public interface Shi pHneRenote extends j avax. ej b. EJBrbne {

public ShipRenote create(lnteger id, Sring nane,
int capacity, double tonnage)
throws Renot eExcepti on, O eat eExcepti on;
public ShipRenote create(Integer id, Sring nane)
t hrows Renot eExcept i on, O eat eBExcept i on;
publ i c Shi pRenot e findByPri maryKey(lnteger prinaryKey)
throws H nder Exception, RenoteExcepti on;
public Qollection findByCapaci ty(int capacity)
throws H nder Exception, RenoteException;

}

Enterprise JavaBeans specifies that create methods in the home interface must
throw thej avax. ej b. Creat eExcept i on. This provides the EJB container
with a common exception for communicating problems experienced during the
create process.

The Renot eExcepti on is thrown by all remote interfaces and is used to
communicate network problems that occurred while processing invocations
between aremote client and the EJB container system.

ThePrimary Key

In bean-managed persistence, a primary key can be a serializable object defined
specifically for the bean by the bean developer. The primary key defines
attributes that can be used to locate a specific bean in the database. For the
Shi pBean, we need only one attribute, i d, but in other cases, a primary key
may have several attributes, which taken together uniquely identify a bean’'s
data.

We will examine primary keysin detail in Chapter 11; for now, we specify that the
Ship EJB uses a simple singlevalue primary key of type
java.l ang. | nteger. The actua persistence field in the bean class is an
I nt eger namedi d.

The ShipBean

The Shi pBean defined for this chapter uses JDBC to synchronize the bean’s
state to the database. In reality, an entity bean that is this simple could easily be
deployed as a contai ner-managed persistence bean. The purpose of this chapter,

Copyright (c) 2001 O'Reilly & Associates 4

however, is to illustrate exactly where the resource access code goes for bean-
managed persistence and how to implement it. The fact that we are
synchronizing the bean state against arelational database is not important to the
example. The bean could be persisted to some legacy system, or an ERP
application, or some other resource that is not supported by your vendor’s EJB
container-managed persistence, like LDAP or some hierarchical database.

So when learning about bean-managed persistence you should focus on when
and where the resource is accessed to synchronize the bean with the database,
and not be overly concerned with the fact that this example use JDBC and a
relational database.

Here isthe complete definition of the Shi pBean:

package comtitan. ship;

i nport j avax. naning. Gont ext ;

inport javax.nanming.|nitial Gontext;
i nport j avax. nani ng. Narm ngExcept i on;
inport javax.ejb. EntityContext;
inport java.rm.Renot eException;
inport java.sql . SQException;

inport java.sqgl.Qhnnection;

inport java.sql.PreparedS at enent ;
inport java.sdl.DriverManager;
inport java.sql.ResultSet;

inport javax. sql . Dat aSour ce;

inport javax. ej b. O eat eExcepti on;
inport javax. ej b. EJBExcepti on;
inport javax. ej b. FH nder Excepti on;

i nport javax. ej b. (bj ect Not FoundExcept i on;
inport java. util.Enuneration;

inport java.util.Properties;

inport java.util.\Vector;

inport java. util.@l | ection;

public class ShipBean inpl enents javax. ej b. EntityBean {
public Integer id;
public Sring naneg;
public int capacity;
publ i ¢ doubl e tonnage;

public EntityQontext context;

public Integer e bQeate(lnteger id, Sring nane,
int capacity, doubl e tonnage)
throws O eateBException {
if ((idintValue() <1) || (nane == null))
t hrow new O eat eException("Inval id Parangeters");
this.id =id;

Copyright (c) 2001 O'Reilly & Associates 5

this. nane = nane;
this.capacity = capacity;
thi s. tonnage = tonnage;

Gonnection con = nul | ;
PreparedSatenent ps = null;
try {
con = this.getGnnection();
ps = con. prepar e at enent (
"insert into Ship (id, nane, capacity, tonnage) " +
"values (2,?2,2,?7");
ps.setint(1, id.intValue());
ps.setSring(2, nane);
ps.setInt (3, capacity);
ps. set Doubl e(4, tonnage);
if (ps.executelpdate() '=1) {
t hrow new O eat eException ("Failed to add Ship to database");
}

return id;
}

catch (SQ.Exception se) {
t hrow new EJBException (se);
}
finally {
try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print S ackTrace();
}
}
}
public void ej bPost Oeate(lnteger id, Sring nane,
int capacity, doubl e tonnage) {
/1 Do sonething useful with the prinary key.
}
public Integer e bQeate(lnteger id, Sring nane)
throws Q eateException {
return e bQ eate(id, nane, 0, 0);
}
public void ejbPostQeate(int id, Sring nane) {
/1 Do sonething useful wth the EJBOpj ect reference.
}
public Integer e bA ndByPrinaryKey(lnteger prinaryKey)
throws H nder Exception {
Gonnection con = nul | ;
PreparedSatenent ps = null;
ResultSet result = null;
try {
con = this.getGnnection();
ps = con. prepar e at enent (

Copyright (c) 2001 O'Reilly & Associates 6

}

"select id fromShip where id =?");
ps.setint (1, prinaryKey.intValue());
result = ps. execut eQuery();

/] Does ship id exist in database?
if (result.next()) {
t hr ow new (oj ect Not FoundExcept i on(
"Gannot find Shipwthid ="+d);
}
} catch (SQException se) {
t hr ow new EJBExcept i on(se);
}
finaly {
try {
if (result '=null) result.close();
if (ps !=null) ps.close();
if (conl=null) con.close();
} cat ch(SQ.Exception se){
se. print S ackTrace();
}
}

return prinarykey;

public Qollection e bH ndByCapaci ty(int capacity)

throws H nder Exception {
@onnection con = nul | ;
PreparedSatenent ps = nul |l ;
Result Set result = null;
try {
con = this.get@nnection();
ps = con. prepar et at enent (
"select id fromShip where capacity = ?");
ps.setlnt (1, capacity);
result = ps. execut eQiery();
Vector keys = new Vector();
vhi l e(result.next()) {
keys. addH enent (resul t. get (oj ect ("i d"));
}

return keys;

}
catch (SQException se) {

t hrow new EJBException (se);
}
finally {
try {
if (result '=null) result.close();
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQException se) {
se. print S ackTrace();

Copyright (c) 2001 O'Reilly & Associates

}

}
public void setEntityContext (EntityGontext ctx) {

context = ctx;
}
public voi d unset EntityGontext() {
context = null;
}
public void ej bActivate() {}
public void ej bPassivate() {}
public void ej bLoad() {

Integer prinarykey = (Integer)context.getPrinarykey();
Gonnection con = nul | ;
PreparedSatenent ps = null;
ResultSet result = null;
try {
con = this.getCGnnection();
ps = con. prepar et at enent (

"sel ect nane, capacity, tonnage fromShip where id = ?");
ps.setInt (1, prinaryKey.intVal ue());
result = ps. execut eQiery();
if (result.next()){

id = pk.intVal ue();
nane = resul t.get Sring("nane");
capacity =result.getlnt("capacity");
tonnage = resul t. get Doubl e("t onnage") ;
} else {
t hr ow new EJBExcepti on();
}
} catch (SQ.Exception se) {
t hr ow new EJBExcepti on(se);
}
finally {
try {
if (result !'=null) result.close();
if (ps!=null) ps.close();
if (conl=null) con.close();
} catch(SQException se) {
se. print SackTrace();
}
}

}
public void ejbSore() {

Gonnection con = nul | ;
PreparedSatenent ps = null;
try {
con = this. getGnnection();
ps = con. prepar e at enent (
"update Ship set nane = ?, capacity =?, " +
"tonnage = ? where id = ?");

Copyright (c) 2001 O'Reilly & Associates 8

ps.set Xring(1, nane);
ps.setlnt (2, capacity);
ps. set Doubl (3, t onnage) ;
ps.setint(4,id.intValue());
if (ps.executelpdate() !'=1) {

t hrow new EJBExcepti on("ej bSore");
}

}
catch (SQ.Exception se) {

t hrow new EJBExcepti on (se);
}
finaly {
try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQException se) {
se. print SackTrace();
}
}
}
publ i c voi d ej bRenove() {
Gonnection con = nul | ;
PreparedStatenent ps = nul | ;
try {
con = this. getCGnnection();
ps = con. prepareSatenent ("del ete fromShip where id = ?");
ps.setint(1, id.intValue());
if (ps.executelpdate() !'=1) {
t hrow new EJBExcept i on(" ej bRenove") ;
}

}
catch (SQException se) {

t hrow new EJBException (se);
}
finally {
try {
if (ps!=null) ps.close();
if (conl=null) con.close();
} catch(SQException se) {
se. print S ackTrace();
}
}

}
public Sring getNane() {
return nane,

}

public void setNane(Sring n) {
nane = n;

}

publ i ¢ voi d set Capacity(int cap) {

capacity = cap;

Copyright (c) 2001 O'Reilly & Associates 9

}
public int getCapacity() {
return capacity;
}
publ i ¢ doubl e get Tonnage() {
return tonnage;
}
publ i c voi d set Tonnage(doubl e tons) {
tonnage = tons;
}
private Gonnection get Gnnection() throws SQException {
/1 Inplenentations for EJB 1.0 and EJB 1.1 shown bel ow

}

}
Obtaining a Resour ce Connection

In order for a BMP entity bean to work, it must have access to the database or
resource that it will persist itself to. To get access to the database, the bean
usually obtains a resource factory from the INDI ENC. The JINDI ENC is covered
in detail in chapter 12, Session beans, but an overview here will be helpful since
thisis the first time its actually used. To get access to the database we simply
request a connection from a Dat aSour ce, which we obtain from the JNDI
environment naming context:

private Gonnection get Gnnection() throws SQException {

try {
Gontext jndi itx = new I nitia Gontext();
Dat aSource ds =

(Dat aSour ce) j ndi Ot x. | ookup("j ava: conp/ env/ j dbc/ titanDB');

return ds. get Gonnection();

}

cat ch (Nam ngBxception ne) {
t hrow new EJBExcept i on(ne) ;

}

}

In EJB, every enterprise bean has access to itsJNDI environment naming context
(ENC), which is part of the bean-container contract. The bean's deployment
descriptor maps resources such as the JDBC DataSource, JavaMail, and Java
Message Service to a context (name) in the ENC. This provides a portable model
for accessing these types of resources. Here's the relevant portion of the
deployment descriptor that describes the JIDBC resource:

<ent er pri se- beans>
<entity>
<gj b- nane>Shi pEJB</ €] b- nane>

<resour ce-ref >
<descri pti on>Dat aSource for the Titan dat abase</ descri pti on>
<res-ref-nanme>j doc/ titanDB</ res-r ef - nane>

Copyright (c) 2001 O'Reilly & Associates 10

<res-type>j avax. sql . Dat aSour ce</ r es-t ype>
<res- aut h>Cont ai ner </ r es- aut h>
<resour ce-ref >
<entity>

<ent er pri se- beans>

The <resour ce-ref > tag is used for any resource (JDBC, JMS, JavaMail)
that is accessed from the ENC. It describes the JNDI name of the resource
(<res-ref-nane>), the factory type (<res-type>), and whether
authentication is performed explicitly by the bean or automatically by the
container (<r es- aut h>). In this example, we are declaring that the JINDI name
"jdbc/titanDB"referstoaj avax. sql . Dat aSour ce resource manager,
and that authentication to the database is handle automatically by the container.
The JNDI name specifiedinthe<r es- r ef - nane> tag is always relative to the
standard INDI ENC context name, " | ava: conp/ env".

When the bean is deployed, the deployer maps the information in the
<resource-ref> tag to a live database. This is done in a vendor-specific
manner, but the end result is the same. When a database connection is requested
using the INDI name "j ava: conp/ | dbc/titanDB", a Dat aSour ce for
the Titan database is returned. Consult your vendor’s documentation for details
on how to map the Dat aSour ce to the database at deployment time.

The get Connecti on() method provides us with a simple and consistent
mechanism for obtaining a database connection for our Shi pBean class. Now
that we have amechanism for obtaining a database connection, we can use it to
insert, update, delete, and find Ship EJBsin the database.

Exception Handling

Exception handling is particularly relevant in our discussion of bean-managed
persistence because, unlike container-managed persistence, the bean developer
is responsible for throwing the correct exceptions at the right moments. For this
reason we'll take a moment to discuss different types of exceptions in bean-
managed persistence. Thisdiscussion will be useful when we get into the details
of database access and implementing the callback methods.

There are three types of exceptions thrown from a bean: application exceptions,
which indicate business logic errors, runtime exceptions, and checked subsystem
exceptions, which are thrown from subsystems like JDBC or JNDI.

Application exceptions

Application exceptions include standard EJB application exceptions and
custom application exceptions. The standard EJB application exceptions are
Cr eat eExcepti on, Fi nder Excepti on,

Copyright (c) 2001 O'Reilly & Associates 11

bj ect Not FoundExcepti on, Dupli cateKeyException, and
RenpoveExcept i on. These exceptions are thrown from the appropriate
methods to indicate that a business logic error has occurred. Custom
exceptions are exceptions you develop for specific business problems. You
will develop custom exceptions in Chapter 12, Session beans.

Runtime exceptions

Runt i meExcepti on types are thrown from the virtual machine itself and
indicate that a fairly serious programming error has occurred. Examples
include Nul | Poi nt er Excepti on and
I ndexQut OFf BoundsExcept i on. These exceptions are handled by the
container automatically and should not be handled inside a bean method.

You will notice that all the callback methods (ej bLoad, ej bSt or e,
ej bActivate, ejbPassivate, and ejbRenobve) throw an
EJBExcept i on when a serious problem occurs. All EJB callback methods
declare the EJBExcept i on and Renpt eExcept i on intheir t hr ows
clause. If you need to throw an exception from one of the callback methods,
it must be an EJBExcepti on or a subclass. The Renpt eExcepti on
type is included in the method signature to support backward compatibility
with EJB 1.0 beans. Its use has been deprecated since EJB 1.1.
Renot eExcept i ons should never be thrown by callback methods of EJB
1.1 or EJB 2.0 beans.

Subsystem exceptions

Checked exceptions thrown by other subsystems should be wrapped in an
EJBExcepti on or application exception and re-thrown from the method.
Several examples of this can be found in the previous example, in which an
SQLExcept i on that was thrown from JDBC was caught and rethrown as
an EJBExcept i on. Checked exceptions from other subsystems, such as
those thrown from JNDI, JavaMail, IMS, etc., should be handled in the same
fashion. The EJBExcept i on is a subtype of the Runt i neExcepti on,
so it doesn’t need to be declared in the method’'s t hr ows clause. If the
exception thrown by the subsystem is not serious, you can opt to throw an
application exception, but this is not recommended unless you are sure of
the cause and affect of the exception on the subsystem. In the majority of
cases, throwing an EJBExcept i on isprefered.

Exceptions have an impact on transactions and are fundamental to transaction
processing. Exceptions are examined in greater detail in Chapter 14, Transactions

The g bCreate() Method

Thee] bCr eat e() methods are called by the container when a client invokes
the corresponding cr eat e() method on the bean’ s home. With bean-managed
persistence, the e] bCr eat e() methods are responsible for adding the new
entity to the database. This means that the new version of ej bCreat e() will
be much more complicated than the equivalent methods in container-managed

Copyright (c) 2001 O'Reilly & Associates 12

entities, with container-managed beans, e] bCr eat e() doesn’t have to do
much more than initialize a few fields. The EJB specification also states that
e] bCreat e() methods in bean-managed persistence must return the primary
key of the newly created entity. This is another difference between bean-
managed and container-managed persistence; in our container-managed beans,
ej bCreat e() isrequiredtoreturnvoi d.

Thefollowing code containsthee] bCr eat e() method of the Shi pBean. Its
return type is the Ship EJB’s primary key, | nt eger . Furthermore, the method
uses the JDBC API to insert a new record into the database based on the
information passed as parameters.

public Integer e bQeate(lnteger id, Sring nane,
int capacity, doubl e tonnage)
throws O eat eException {
if ((idintValue() <1) || (nane = null))
t hrow new Q eat eException("lnval i d Paraneters");
this.id =id;
thi s. nane = nane;
this.capacity = capacity;
this.tonnage = tonnage;

Gonnection con = nul | ;
PreparedStatenent ps = nul | ;
try {
con = this. get Gnnection();
ps = con. prepar e at enent (
"insert into Ship (id, nane, capacity, tonnage) " +
"values (?2,2,2,?7");
ps.setlnt (1, id.intValue());
ps.setSring(2, nane);
ps.setlnt (3, capacity);
ps. set Doubl e(4, tonnage);
if (ps.executelpdate() '=1) {
throw new G eat eException ("Failed to add Ship to database");
}
return id;
}
catch (SQException se) {
t hr ow new EJBException (se);

}

finally {
try {
if (ps!=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print SackTrace();
}

}

Copyright (c) 2001 O'Reilly & Associates 13

At the beginning of the method, we verify that the parameters are correct, and
throw a Cr eat eException if the i d isless than 1, or the nane is nul | .
This shows how you would typically use a Cr eat eExcepti on to report an
application logic error.

The Shi pBean instancefields are still initialized using the parameters passed to
e] bCreat e() by setting the instance fields of the ShipBean. These values will
be used to manually insert the datainto the SHI P table in our database.

To perform the database insert, we useaJDBC Pr epar edSt at enent for SQL
requests because it makes it easier to see the parameters being used.
Alternatively, we could have used a stored procedure through a JDBC
Cal | abl eSt at enent or asimple JDBC St at enent object. We insert the
new bean into the database using a SQL | NSERT statement and the values
passed into ej bCreate() parameters. If the insert is successful (no
exceptions thrown), we create aprimary key and return it to the container.

If the insert operation is unsuccessful, we throw a new Cr eat eExcepti on,
which illustrates its use in more ambiguous situation. Failure to insert the record
could be construed as an application error or a system failure. In this situation,
the JDBC subsystem hasn't thrown an exception, so we shouldn’t interpret the
inability to insert a record as a failure of the subsystem. Therefore, we throw a
Creat eException instead of an EJBException. Throwing a
Cr eat eExcept i on provides the application the opportunity to recover from
the error, a transactional concept that is covered in more detail in Chapter 14,
Transactions

After the insert operation is successful, the primary key is returned to the EJB
container from the ej bCr eat e() method. In this case we simply return the
same | nt eger object passed into the method, but in many cases a new key
might be derived from the method arguments. This is especially true when using
compound primary keys, which are discussed in Chapter 11. Behind the scenes,
the container uses the primary key and the Shi pBean instance that returned it
to provide the client with a reference to the new Ship entity. Conceptudly, this
means that the Shi pBean instance and primary key are assigned to a newly
constructed EJB object, and the EJB object stub isreturned to the client.

Our home interface requires usto provide asecondej bCr eat e() method with
different parameters. We can save work and write more bulletproof code by
making the second method call thefirst:

public Integer efbGeate(lnteger id, Sring nane)
throws O eateBException {
return ej bQeate(id, nang, 0,0);

}

Copyright (c) 2001 O'Reilly & Associates 14

The gbLoad() and gbStore() Methods

Throughout the life of an entity, its data will be changed by client applications.
In the Shi pBean, we provide accessor methods to change the nane,
capacity,andt onnage of the Ship EJB after it has been created. Invoking
any of these accessor methods changes the state of the Shi pBean instance,
which must be reflected in the database.

In container-managed persistence, synchronization between the entity bean and
the database takes place automatically; the container handles it for you. With
bean-managed persistence, you are responsible for synchronization: the entity
bean must read and write to the database directly. The container works closely
with the bean-managed persistence entities by advising them when to
synchronize their state through the use of two callback methods. ej bSt or e()
andej bLoad().

Theej bSt or e() method is called when the container decides that it is a good
time to write the entity bean’s data to the database. The container makes these
decisions based on all the activities it is managing, including transactions,
concurrency, and resource management. Vendor implementations may differ
slightly astowhenthe ej bSt or e() method is called, but this is not the bean
developer’s concern. In most cases, the ej bSt or e() method will be caled
after a business method has been invoked or at the end of atransaction. Here is
theej bSt or e() method for the Shi pBean:

public void e bSore() {
Gonnection con = nul | ;
PreparedS atenent ps = nul | ;
try {
con = this.getGnnection();
ps = con. prepar eX at enent (
"update Ship set nane = ?, capacity =?, " +
"tonnage = ? where id = ?");
ps. set Sring(l, nane);
ps. setlnt (2, capacity);
ps. set Doubl e(3, t onnage) ;
ps.setint(4,id.intVal ue());
if (ps.executelpdate() '=1) {
t hr ow new EJBException("ej bStore");
}
}
catch (SQException se) {
t hrow new EJBException (se);
}
finaly {
try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {

Copyright (c) 2001 O'Reilly & Associates 15

se. print SackTrace();

}

}

Except for the fact that we are doing an update instead of an insert, this method
is similar to the e] bCreat e() method we examined earllier. A JDBC
Prepar edSt at enent is employed to execute the SQL UPDATE command,
and the entity bean’ s persistent fields are used as parametersto the request. This
method synchronizes the database with the state of the bean.

EJB aso provides an ej bLoad() method that synchronizes the state of the
entity with the database. This method is usually called prior to a new transaction
or business method invocation. The idea is to make sure that the bean always
represents the most current data in the database, which could be changed by
other beans or other non-EJB applications. Hereistheej bLoad() method for a
bean-managed Shi pBean class:

public void € bLoad() {

Integer prinarykey = (Integer)context.get PrinaryKey();
Gonnection con = nul | ;
PreparedSatenent ps = null;
ResultSet result = null;
try {
con = this.getGonnection();
ps = con. prepar eX at enent (
"sel ect nane, capacity, tonnage fromShip where id = ?");
ps.setlnt (1, prinaryKey.intVal ue());
result = ps.executeQiery();
if (result.next()){
id = prinaryKkey;
nane = result.getSring("nane");
capacity =result.getlnt("capacity");
tonnage = resul t. get Doubl e("t onnage");
} else {
t hr ow new EJBException();
}
} catch (SQException se) {
t hr ow new EJBExcept i on(se);

}
finaly {
try {
if (result '=null) result.close();
if (ps!=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print SackTrace();
}
}

Copyright (c) 2001 O'Reilly & Associates 16

To execute the e] bLoad() method we need a primary key. To get a primary
key, we query the bean’sEnt i t yCont ext . Note that we don’'t get the primary
key directly from the Shi pBean’si d field because we cannot guarantee that
this field is always valid—the ej bLoad() method might be populating the
bean instance’ s state for the first time, in which case the fields would all be set to
their default values. This situation would occur following bean activation. We
can guarantee that the Ent i t yCont ext for the Shi pBean is valid because
the EJB specification requires that the bean instance EntityCont ext

reference is valid before the ej bLoad() method can be invoked. The
EntityCont ext will bediscussedin detail in Chapter 11.

Y ou may want to jump to Chapter 11 and read the section titled EntityContext so
that you have a better understanding of its purpose and usefulness in entity
beans.

The g bRemove() Method

In addition to handling their own inserts and updates, bean-managed entities
must also handle their own deletions. When a client application invokes the
remove method on the EJB home or EJB object, that method invocation is
delegated to the bean-managed entity by calling e] bRenove() . It is the bean
developer’s responsibility to implement an ej bRenove() method that deletes
the entity’ s data from the database. Here's the e bRenove() method for our
bean-managed Shi pBean:

publ i c voi d ej bRenove() {

Gonnection con = nul | ;

PreparedStatenent ps = nul | ;

try {
con = this. getGnnection();
ps = con. prepareSatenent ("del ete fromShip where id = ?");
ps.setInt(1, id.intVal ue());
if (ps.executelpdate() '=1) {

t hr ow new EJBExcept i on(" ej bRenove") ;

}

}

catch (SQException se) {
t hrow new EJBException (se);

}

finally {
try {
if (ps !=null) ps.close();
if (conl=null) con.close();
} cat ch(SQ.Exception se) {
se. print SackTrace();
}

}

Copyright (c) 2001 O'Reilly & Associates 17

ejbFind() Methods

In bean-managed persistence, the find methods in the remote or loca home
interface must match the ej bFi nd methods in the actual bean class. In other
words, for each method named f i nd<SUFFI X>() in a home interface, there
must be a corresponding ej bFi nd<SUFFI X>() method in the entity bean
class with the same arguments and exceptions. When a find method is invoked
on an EJB home, the container delegates the f i nd method to a corresponding
e] bFi nd method on the bean instance. The bean-managed entity is responsible
for locating records that match the find requests. In Shi pHoneRenot e, there
are two find methods:

public interface Shi ptHbneRenote extends j avax. e b. EJBrbne {

publ i c Shi pRenot e findByPri maryKey(lnteger prinaryKey)
throws H nder Excepti on, Renot eExcepti on;

publ i ¢ Enuneration findByCapacity(int capacity)
throws H nder Exception, RenoteException;

}

And here are the signatures of the corresponding ej bFi nd methods in the
Shi pBean:

public class ShipBean extends javax.ejb. EntityBean {

public Integer e bA ndByPrinaryKey(lnteger prinaryKey)
throws H nder Exception, RenoteException {}

public Qllection e bFH ndByCapaci ty(int capacity)
throws H nder Excepti on, Renot eException {}

}

Aside from the names, there's one difference between these two groups of
methods. The find methods in the home interface return either an EJB object
implementing the bean’s remote interface—in this case, Shi pRenot e—or a
collection of EJB objects in the form of a | ava. uti|. Enuneration or
java.util.Collection.Theej bFi nd methodsin the bean class, on the
other hand, return either a primary key for the appropriate bean—in this case,
I nt eger —or a collection of primary keys. The methods that return a single
value (whether a remote/local interface or a primary key) are used whenever you
need to look up a single reference to a bean. If you are looking up a group of
references (for example, al ships with a certain capacity), you have to use the
method that returns either the Col | ect i on or Enunmer at i on type. In either
case, the container intercepts the primary keys and converts them into remote
references for the client.

The EJB 2.0 specification recommends that EJB 2.0 bean-
managed persistence beans use the Col | ection type
instead of the Enuner at i on type. This recommendation is
probably made so that bean-managed persistence beans are

Copyright (c) 2001 O'Reilly & Associates 18

more consistent with EJB 2.0 container-managed persistence
beans, which use the Col | ecti on type. However, unlike
EJB 2.0 container-managed persistence beans, bean-managed
persistence beans do not support java.util. Set as a
return type.

It shouldn’t come as a surprise that the type returned—whether it's a primary
key or aremote (or local in EJB 2.0) interface—must be appropriate for the type of
bean you’ re defining. For example, you shouldn’t put find methods in a Ship EJB
to look up and return Cabin EJB objects. If you need to return collections of a
different bean type, use a business method in the remote interface, not a find
method from one of the home interfaces.

In EJB 2.0, the EJB container takes care of returning the proper (local or remote)
interface to the client. For example, the Ship EJB may define both a local and
remote home interface both of which haveaf i ndByPri mar yKey() method.
When f i ndByPri mar y() isinvoked on the local or remote interface, it will be
delegated to the same ej bFi ndByPrinmary() key method. After the
ej bFi ndByPri mar yKey () method executes and returnsthe primary key, the
EJB container takes care of returning a Shi pRenot e or Shi pLocal reference
to the client, depending on which home interface (local or remote) was used. The
EJB container also handles this for multi-entity find methods, returning a
collection of remote references for remote home interfaces and local references
for local home interfaces.

Both find methods defined in the ShipBean class throw a
Fi nder Except i on if afailure in the request occurs when an SQL exception
condition is encountered. The findByPrinmaryKey() throws the
Obj ect Not FoundExcepti on if there are no records in the database that
match the | d argument. This is exception should always be thrown by single-
entity find methodsif no entity isfound.

The fi ndByCapaci ty() method returns an empty collection if no SHI P
records were found with a matching capacity; multi-entity find methods do not
throw an Cbj ect Not FoundExcepti on if no entities are found. Find
methods also throw Fi nder Excepti on and EJBExcept i on, in addition to
any application-specific exceptions that the bean developer considers
appropriate.

It is mandatory that all entity remote and local home interfaces include the
method f i ndByPri mar yKey (). This method returns the remote interface
type, Shi p. The method declares one parameter, the primary key for that bean
type. With local home interfaces, the return type of any single-entity finder
method is always the bean’s local interface. With remote home interfaces, the
return type of any single-entity find method is always the remote interface. Y ou

Copyright (c) 2001 O'Reilly & Associates 19

cannot deploy an entity bean that doesn’t include a f i ndByPr i mar yKey ()
method in its home interfaces.

Following the rules outlined earlier, we can define two e] bFi nd methods in
Shi pBean that match the two find methods defined in the Shi pHomne:

public Integer e bA ndByPrinmaryKey(lnteger prinaryKey)
throws H nder Exception, {
Gonnection con = nul | ;
PreparedSatenent ps = nul |l ;
Resul tSet result = null;
try {
con = this.getGnnection();
ps = con. prepar eX at enent (

"select id fromShip where id = ?");
ps.setint (1, prinarykey.intVal ue());
result = ps. execut eQiery();

/1 Does ship id exist in database?
if ('result.next()) {
t hr ow new (j ect Not FoundExcept i on(

"CGannot find Ship wthid = "+d);

}
} catch (SQException se) {
t hr ow new EJBExcept i on(se);

}
finally {
try {
if (result '=null) result.close();
if (ps!=null) ps.close();
if (conl=null) con.close();
} cat ch(SQ.Exception se){
se. print S ackTrace();
}
}

return prinarykey;
}
public Qollection e bFH ndByCapaci ty(int capacity)
throws H nder Exception {
Gonnection con = nul | ;
PreparedStatenent ps = nul | ;
ResultSet result = null;
try {
con = this. getGnnection();
ps = con. prepar e at enent (
"select id fromShip where capacity = ?");
ps.setInt(1, capacity);
result = ps. execut eQiery();
Vector keys = new Vector();
vhile(result.next()) {
keys. addH enent (resul t. get (oj ect ("id"));

}

Copyright (c) 2001 O'Reilly & Associates 20

return keys

}

catch (SQ.Exception se) {
t hrow new EJBException (se);

}

finaly {
try {
if (result '=null) result.close();
if (ps !=null) ps.close();
if (conl=null) con.close();
} catch(SQ.Exception se) {
se. print SackTrace();
}

}

}

The mandatory fi ndByPri nmaryKey() method uses the primary key to
locate the corresponding database record. Once it has verified that the record
exists, it simply returns the primary key to the container, which then uses the key
to activate a new instance and associate it with that primary key at the
appropriate time. If there is no record associated with the primary key, the
method throws an Obj ect Not FoundExcepti on.

The e] bFi ndByCapaci ty() method returns a Col | ecti on of primary
keys that match the criteria passed into the method. Again, we construct a
prepared statement that we use to execute our SQL query. Thistime, however, we
expect multiple results so we use the | ava. sql . Resul t Set to iterate
through the results, creating a vector of primary keys for each SHI P_| D
returned.

Find methods are not executed on bean instances that are currently supporting a
client application. Only bean instances that are not assigned to an EJB object
(instances in the instance pool) are supposed to service find requests, which
means that the e] bFi nd() methods in the bean instance have somewhat
limited use of the EntityContext. The EntityContext methods
get PrimaryKey() and get EJBObj ect () will throw exceptions because
the bean instance is in the pool and is not associated with a primary key or EJB
object whentheej bFi nd method iscalled.

Where do the objects returned by a finder method come from? This seems like a
simple enough question, but the answer is surprisingly complex. Remember that a
finder method isn’t executed by a bean instance that is actually supporting the
client; the container selects an idle bean instance from the instance pool to
execute the method. The container isresponsible for creating the EJB objects and
local or remote references for the primary keysreturned by theej bFi nd method
in the bean class. Asthe client accesses these remote references, bean instances

Copyright (c) 2001 O'Reilly & Associates 21

are swapped into the appropriate EJB objects, loaded with data, and made ready
to servicetheclient’ srequests.

Deployment Descriptor

With a complete definition of the Ship EJB, including the remote interface, home
interface, and primary key, we are ready to create a deployment descriptor. Here
are the XML deployment descriptors for EJB 1.1 and 2.0. These deployment
descriptors are alittle different from the descriptors we created for the container-
managed entity beansin Chapters 6, 7, and 10. In this deployment descriptor, the
persistence-type is Bean and there are no container-managed or
relationship field declarations. We also must declare the Dat aSour ce resource
factory that we use to query and update the database.

Here isthe deployment descriptor for EJB 2.0:

<?xnh version="1.0"?>

<IDOCTYPE gj b-jar PUBLIC "-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 2.0//BN' "http://java. sun.conij2ee/ dtds/ejb-jar_2 O.dtd">

<gj b-jar>
<ent er pri se- beans>
<entity>
<descri ption>
This bean represents a cruise ship.

</ descri pti on>
<gj b- nane>Shi pEJB</ €] b- nane>
<hone>comti t an. shi p. Shi pHoneRenot e</ hone>
<renot e>comt it an. shi p. Shi pRenot e</ r enot e>
<gj b-cl ass>com it an. shi p. Shi pBean</ €] b- cl ass>
<per si st ence-t ype>Bean</ per si st ence- t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reent r ant >Fal se</reent rant >
<security-identity><use-call ers-identity/><security-identity>
<resour ce-r ef >

<res-ref-nane>j doc/ titanCB</ res-ref - nane>
<res-type>j avax. sql . Dat aSour ce</ r es- t ype>
<res- aut h>Cont ai ner </ r es- aut h>

</resour ce-ref >

<entity>
</ enterpri se-beans>

<assentl y- descri pt or >
<security-rol e>
<descri pti on>
This role represents everyone who is allowed full access

Copyright (c) 2001 O'Reilly & Associates 22

<descri ption>Dat aSource for the Titan dat abase</ description>

to the Ship BEIB
</ descri pti on>
<r ol e- nane>ever yone</ r ol e- nane>
</security-rol e>

<net hod- per m ssi on>
<r ol e- nane>ever yone</ r ol e- nane>
<net hod>
<ej b- nane>Shi pEJB</ €] b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
</ net hod- per m ssi on>

<cont ai ner-transacti on>
<net hod>
<ej b- nane>Shi pEJB</ gj b- nane>
<net hod- nane>* </ net hod- nane>
</ net hod>
<trans-attribute>Requi red</trans-attribute>
</ cont ai ner -t ransact i on>
</ assenbl y- descri pt or >

<Jejb-jar>

The EJB 1.1 deployment descriptor is exactly the same except for two things: the
<! DOCTYPE> element references EJB 1.1 instead of 2.0:

<IDACTYPE ej b-jar PUBLIC"-//Sun Mcrosystens, Inc.//DID Enterprise
JavaBeans 1.1//BN' "http://java. sun.conij2ee/dtds/ejb-jar_1 1.dtd">

Andthe <security-identity> element is specific to EJB 2.0 and would
not bein the EJB 1.1 deployment descriptor.

| <security-identity><use-call ers-identity/><security-identity>

Exercise 10.1, Bean-Managed Persistence

Copyright (c) 2001 O'Reilly & Associates 23

11

Entity-Container Contract

Although each of the three entity type components (EJB 2.0 CMP, EJB 1.1 CMP,
and BMP) are programmed differently, their relationships to the container system
at runtime are very similar. This chapter covers the relationship between EBs
and their containers, which includes areas like primary keys, callback methods,
and the entity bean lifecycle. When differences between the bean types are
important, they will be noted.

ThePrimary Key

A primary key is an object that uniquely identifies a specific type of entity bean.
A primary key can be any serializable type including primitive wrappers
(I nt eger, etc.) or custom classes defined by the bean developer. In the Ship
EJB (Chapters 7, 9, and 10) we used the | nt eger type asaprimary key. Primary
keys can be declared by the bean developer, or the primary key type can be
deferred until deployment. We will talk about deferred primary keys later.

Because the primary key may be used in remote invocations, it must adhere to
the restrictions imposed by Java RMI-11OP. These are addressed in Chapter 5,
but for most cases, you just need to make the primary key serializable. In
addition, the primary key must be avalid Java RMI-11OP value type; and it must
implement equal s() andhashCode() appropriately.

EJB alows two types of primary keys. compound and single-field keys. Single-
field primary keys map to a single persistent field defined in the bean class. The
Customer and Ship EJBs, for example, usea j ava. | ang. | nt eger primary
key that maps to the container-managed persistence (CMP) field named i d. A

Copyright (c) 2001 O'Reilly & Associates 1

compound primary key is a custom defined object that contains several instance
variables that map to more than one persistent field in the bean class.

Single-field key

The St ri ng class and the standard wrapper classes for the primitive data types
(ava. |l ang. | nteger,java. | ang. Doubl e, etc.) can be used as primary
keys. These are referred to as single-field primary keys because the primary key
is atomic; it maps only to one of the bean’s persistent fields. A compound
primary key, discussed next, maps a primary key to two or more persistent fields.
In the case of the Ship EJB, we specified an| nt eger type asthe primary key in
the finder methods

public interface Shi pHoneRenote extends j avax. ej b. EJBrbne {

public Ship findByPrinmaryKey(java.lang. | nteger prinarykey)
throws F nder Exception, RenoteException;

}

In this case, there must be a single persistent field in the bean class with the
same matching type as the primary key. For the Shi pBean, the i d CMP field is
of type j ava. | ang. | nt eger, so it maps well to the | nt eger primary key

type.

In EJB 2.0 container-managed persistence, the primary key type must map to one
of the CMP fields. The abstract accessor methods for the i d field in the
Shi pBean classfit this description.

public class ShipBean inpl enents javax.ejb. EntityBean {
public abstract Integer getld();
public abstract void setld(Integer id);

}

In bean-managed persistence (Chapter 10) and EJB 1.1 container-managed
persistence (Chapter 9) the single-field primary key maps to a contai ner-managed
persistent field. For the Shi pBean defined in Chapters 9 and 10, the | nt eger
primary key would map to thei d instancefield.

public class ShipBean inpl enents javax. e b. EntityBean {
public Integer id;
public Sring nane;

}
With single-field types, you identify the matching persistent field in the bean
class using the prinkey-fiel d element in the deployment descriptor to
specify one of the bean’s CMP fields as the primary key. The pri m key-
cl ass element specifies the type of object used for the primary key class. The

2 Copyright (c) 2001 O'Reilly & Associates

Ship EJB uses both of these elements when defining the | d persistent field as
the primary key.

<entity>
<ej b- nane>Shi pEIB</ €j b- nane>
<hone>com tit an. Shi pHoneRenot e</ ej b- hone>
<renot e>comtitan. Shi pRenot e</ €] b- r enot e>
<ej b-cl ass>comti t an. Shi pBean</ €] b- cl ass>
<per si st ence-t ype>Cont ai ner </ per si st ence-t ype>
<pri mkey-cl ass>j ava. | ang. | nt eger </ pri mkey- cl ass>
<reent rant >Fal se</ reent r ant >
<cnp-fi el d><fi el d-name>i d</fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>nane</ fi el d- nane></ cnp-fi el d>
<cnp-fi el d><fi el d- nane>t onnage</ fi el d- nane></ cnp-fi el d>
<pri nkey-fiel d> d</ pri nkey-fi el d>

<Jentity>

Although primary keys can be primitive wrappers (nt eger, Doubl e, Long,
etc.), primary keys cannot be primitive types (i nt , doubl e, | ong, etc.); some
of the semantics of EJB interfaces prohibit the use of primitives. For example, the
EJBOhj ect . get PrimaryKey() method returns an Obj ect type, thus
forcing primary keys to be Obj ect s. Primitives also cannot be primary keys
because primary keys must implement the equal s() and hashcode()
methods, so they can be managed in collections. Primitives are not objects and
do not haveequal s() orhashcode() methods.

Compound primary keys

A compound primary key is a class that implements
java.io. Serializable and contains one or more public fields whose
names and types match a subset of persistent fields in the bean class. These
types of primary keys are classes defined by the bean developer for a specific
entity bean.

For example, if a Ship EJB didn't have an i d field, we might uniquely identify
ships by their name and registration number. (We are adding the
regi strati on CMP to the Ship EJB for this example.) In this case the nane
and regi stration CMP fields would become our primary key fields. To
accommodate multiple fields as a primary key we need to define a primary key
class.

In this book, it’s a convention to define all compound primary keys as serializable
classes with names that match the pattern BeanNanePK. In this case we can
construct a new class called Shi pPK, which serves as the compound primary
key for our Ship EJB.

public class ShipPK inpl enents java.io. Serializable {
public Sring nane;

Copyright (c) 2001 O'Reilly & Associates 3

public Sring registration;

publ i ¢ Shi pPK(){

}

public ShipPK(Sring nane, Sring registration){
thi s. nane = nang;
this.registration = registration;

}

public Sring getNane() {
return nang;

}

public Sring getRegistration() {
return registration;

}
publ i ¢ bool ean equal s((pj ect obj){

if (obj == null || !'(obj instanceof ShipPK))

return fal se;

Shi pPK ot her = (Shi pPK) obj ;

i f(this. nane. equal s(ot her. nane) andand
this.registration. equal s(other.registration))
return true;

el se
return fal se;

}

public int hashGode(){
return nane. hashCde() ~regi strati on. hashGode() ;

}

public Sring toSring(){
return nane+' "+registration;

}

}

To make the Shi pPK class work as a compound primary key we must make its
fields public. This alows the container system to use reflection when
synchronizing the values in the primary key class with the persistent fieldsin the
bean class. In addition, we must define an equal s() and hashCode()
method so that the primary key can be easily manipulated within collections,
which is often needed by container systems and application developers alike.

It's important to make sure that the variables declared in the primary key have
corresponding CMP fields in the entity bean with matching identifiers (names)
and datatypes. Thisisrequired so that the container, using reflection, can match
the variables declared in the compound key to the correct CMP fields in the bean
class. Inthiscase, the nane and r egi strati on instance variables declared
in the Shi pPK class correspond to nane and r egi st rati on CMP fiddsin
the Ship EJB, so it’s agood match.

4 Copyright (c) 2001 O'Reilly & Associates

We have also overridden the t oSt ring() method to return a meaningful
value. The default implementation defined in Obj ect returns the class name of
the object appended to the