

Sams Teach Yourself EJB in 21 Days
Copyright © 2003 by Sams Publishing
All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission from the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-32423-7

Library of Congress Catalog Card Number: 2002102795

Printed in the United States of America

First Printing: October 2002

06 05 04 4 3 2

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quan-
tity for bulk purchases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
1-317-428-3341
international@pearsontechgroup.com

ASSOCIATE PUBLISHER

Michael Stephens

DEVELOPMENT EDITOR

Mark Renfrow

MANAGING EDITOR

Charlotte Clapp

ACQUISITIONS EDITOR

Carol Ackerman

PROJECT EDITOR

Andy Beaster

COPY EDITOR

Mike Henry

INDEXER

Aamir Burki

PROOFREADERS

Abby VanHuss
Julie Cook

TECHNICAL EDITORS

Chad Fowler
Mike Altarace

TEAM COORDINATOR

Lynne Williams

INTERIOR DESIGNER

Gary Adair

COVER DESIGNER

Aren Howell

PAGE LAYOUT

Susan Geiselman

GRAPHICS

Oliver Jackson
Tammy Graham

00 0672324237 FM 4/30/04 2:25 PM Page ii

Contents at a Glance
Introduction 1

WEEK 1 Enterprise Java Architecture 7

Day 1 Understanding EJB Architecture 9

2 Understanding EJB Types and Interfaces 31

3 Understanding Session Beans 49

4 Using JNDI for Naming Services and Components 65

5 Developing Stateless Session Beans 85

6 Developing Stateful Session Beans 123

7 Designing Web Applications 123

Week 2 Entity Beans and Message-Driven Beans 155

Day 8 Understanding Entity Beans 157

9 Using JDBC to Connect to a Database 179

10 Developing Bean-Managed Persistence Entity Beans 217

11 Developing Container-Managed Persistence Entity Beans 245

12 Developing Container-Managed Relationships 271

13 Understanding JMS and Message Driven Beans 303

14 Developing Message Driven Beans 333

Week 3 Advanced EJB Applicatins 351

Day 15 Understanding J2EE Architecture 353

16 Understanding J2EE Transactions 377

17 Building Container-Managed Transaction Beans 407

18 Building Bean-Managed Transaction Beans 435

19 Understanding Security 463

20 Implementing JavaMail in EJB Applications 489

21 Developing a Complete Enterprise Application 521

00 0672324237 FM 9/24/02 2:33 PM Page iii

Appendixes 539

A WebLogic Application Server 7.0 541

B JBoss Application Server 3.0 547

C Understanding XML 551

D Introduction to UML Notation 559

E Glossary of Terms 565

Index 591

00 0672324237 FM 9/24/02 2:33 PM Page iv

Contents
Introduction 1

How This Book Is Organized ..2
About This Book ..4
Who Should Read This Book ..4

WEEK 1 Enterprise Java Architecture 7

DAY 1 Understanding EJB Architecture 9

The Challenges of Developing Enterprise Applications10
What’s an EJB? ..11
EJB Architecture Overview ..13

Comparing EJB with JavaBeans Components ..14
Why EJB? ..16

EJB Design Goals ..19
Looking Inside an EJB ..19

EJB Server ..21
EJB Containers ..22

Essential EJB Container Services ..22
Common Vertical Services ..22
Common Horizontal Services ..23
Common Deployment Tools ..24

Understanding EJB Roles ..25
Application Development Roles ..25
Infrastructure Roles ..26
Deployment Roles ..26
Deployment Process ..28

The University Registration System ..28
Best Practices ..29
Summary ..29
Q&A ..29
Quiz ..29

Quiz Answers ..30
Exercises ..30

DAY 2 Understanding EJB Types and Interfaces 31

Enterprise JavaBean Types ..31
Session Beans ..32
Entity Beans ..33
Message-Driven Beans ..33

00 0672324237 FM 9/24/02 2:33 PM Page v

Enterprise JavaBean Under the Hood ..34
EJB Interfaces ..35

The Home Interface ..35
The Component Interface ..35
The Enterprise JavaBean Class ..36

Java Remote Method Invocation over Internet Inter-ORB Protocol
Technology ..38

Remote and Local Interfaces ..39
Remote Interfaces ..39
Local Interfaces ..40

Deployment Descriptors ..41
Standard ejb-jar.xml ..41
Vendor-Specific Deployment Descriptor ..42

Packaging and Deploying Enterprise JavaBeans ..43
Enterprise JavaBean Restrictions ..44
Best Practices ..44
Summary ..45
Q&A ..46
Quiz ..46

Quiz Answers ..47
Exercises ..47

DAY 3 Understanding Session Beans 49

What Is Conversational State? ..50
What Are Session Beans? ..50
Session Bean Files ..50
Characteristics of Session Beans ..51
Types of Session Beans ..51

Stateless Session Beans ..52
Stateful Session Beans ..54

Session Bean Methods ..58
Life Cycle of Session Beans ..59

Stateless Session Bean Life Cycle ..59
Life Cycle of a Stateful Session Bean ..60

Comparing Stateless and Stateful Session Beans ..62
Best Practices ..62
Summary ..63
Q&A ..63
Quiz ..64

Quiz Answers ..64
Exercises ..64

vi Sams Teach Yourself EJB in 21 Days

00 0672324237 FM 9/24/02 2:33 PM Page vi

DAY 4 Using JNDI for Naming Services and Components 65

Naming Services ..66
Directory Services ..67
What Is JNDI? ..68
JNDI API ..69
Context Operations ..69

Add an Entry—bind() ..70
Delete an Entry—unbind() ..71
Find an Entry—lookup() ..71
Example of Using JNDI Context Operations ..73
Specifying a JNDI Provider ..76
Using JNDI in User Authentication ..78

Using JNDI in J2EE Applications ..78
Looking Up EJB Components ..80
Looking Up JMS Factory and Destination ..81
Looking Up JDBC Connection Pool ..81
Looking Up JTA User Transaction ..82
Looking Up JavaMail Session ..82

Best Practices ..82
Summary ..83
Q&A ..83
Quiz ..84

Quiz Answers ..84
Exercises ..84

DAY 5 Developing Stateless Session Beans 85

Looking Under the Hood of a Stateless Session Bean ..86
Designing the Stateless Session Bean ..87
Implementing the Stateless Session Bean ..88

Defining the Home Interface ..88
Defining the Component Interface ..89
Implementing the Enterprise Bean Class ..90
Writing the Exception Class ..92
Declaring the Deployment Descriptors ..92

Packaging the Enterprise Bean ..94
Deploying the Enterprise Bean ..96

Writing a Client ..98
Running the Example ..99
Best Practices ..101
Summary ..101
Q&A ..102

Contents vii

00 0672324237 FM 9/24/02 2:33 PM Page vii

Quiz ..102
Quiz Answers ..102

Exercises ..103

DAY 6 Developing Stateful Session Beans 105

Looking Under the Hood of the Stateful Session Bean106
Designing the Stateful Session Bean ..107
Implementing the Stateful Session Bean ..109

Defining the Home Interface ..109
Defining the Remote Interface ..110
Implementing the Enterprise Bean Class ..110
Declaring the Deployment Descriptors ..112

Writing the Client ..116
Packaging and Deploying the Enterprise Bean ..118
Running the Example ..119
Best Practices ..121
Summary ..121
Q&A ..121
Quiz ..122

Quiz Answers ..122
Exercises ..122

DAY 7 Designing Web Applications 123

Understanding Web Applications ..124
Working with Servlets ..126

Creating a Simple Servlet ..126
Processing Client Requests ..129
Handling Both Static and Dynamic Content ..131

Tracking User Session by Servlets ..132
Working with Servlets as Delegates to EJBs ..135

Learning JavaServer Pages ..137
Writing a Simple JSP ..137
Learning JSP Basics ..140
Handling JSP Exceptions ..143

Using a JSP Tag Library ..144
Understanding the JavaBeans Java Class ..146
Using MVC in Designing Web Applications ..148

Working with a Servlet as a Controller ..149
Packaging Web Applications ..150
Best Practices ..151
Summary ..152
Q&A ..152

viii Sams Teach Yourself EJB in 21 Days

00 0672324237 FM 9/24/02 2:33 PM Page viii

Quiz ..153
Quiz Answers ..153

Exercises ..154

Week 2 Entity Beans and Message-Driven Beans 155

DAY 8 Understanding Entity Beans 157

What Are Entity Beans? ..158
Characteristics of Entity Beans ..158
Comparing Entity Beans and Session Beans ..159
Types of Entity Persistence ..159

Bean-Managed Persistence ..160
Container-Managed Persistence ..161
When to Use BMP or CMP ..164

Entity Bean Files ..166
Entity Bean Methods ..167

setEntityContext and unsetEntityContext Methods167
create Methods ..167
ejbPostCreate<method> Methods ..168
ejbActivate and ejbPassivate Methods ..168
Business Methods ..169
ejbLoad() and ejbStore() Methods ..170
finder Methods ..170
Home Methods ..171
remove Method ..171

Life Cycle of an Entity Bean ..174
Best Practices ..175
Summary ..176
Q&A ..176
Quiz ..176

Quiz Answers ..177
Exercises ..177

DAY 9 Using JDBC to Connect to a Database 179

Why JDBC? ..180
JDBC Architecture ..181

Choosing the Right JDBC Driver ..183
Introducing the JDBC API ..184

The java.sql Package ..184
The javax.sql Package ..185
Using Connection Pooling ..185

Contents ix

00 0672324237 FM 9/24/02 2:33 PM Page ix

Understanding DataSource Interface ..188
Declarative Approach ..188
Programmatic Approach ..189
Learning the Connection Interface ..189
Exception Handling ..190

Connecting to a Data Source ..191
Data Manipulation ..192
Optimized Queries to the Database ..195

Using a PreparedStatement ..195
Using a CallableStatement for Stored Procedures ..196

Using Local Transactions ..197
Using Batch Updates ..198
Working with Metadata ..199
Working with JDBC Through a Full Example ..201

Configuring the DataSource and the Connection Pool208
Compile and Run the Example ..208

Best Practices ..213
Summary ..214
Q&A ..215
Quiz ..216

Quiz Answers ..216
Exercises ..216

DAY 10 Developing Bean-Managed Persistence Entity Beans 217

Looking Under the Hood of a BMP Entity Bean ..218
Designing the BMP Entity Bean ..220

Data Access Objects ..221
Implementing the BMP Entity Bean ..222

Defining the Home Interface ..222
Predefined Exceptions for Entity Beans ..224
Defining the Component Interface ..224
Implementing the Enterprise Bean Class ..225
Declaring the Deployment Descriptor ..236

Writing a Client ..239
Packaging and Deploying the Enterprise Bean ..241
Running the Example ..241
Best Practices ..242
Summary ..243
Q&A ..243
Quiz ..243

Quiz Answers ..244
Exercises ..244

x Sams Teach Yourself EJB in 21 Days

00 0672324237 FM 9/24/02 2:33 PM Page x

DAY 11 Developing Container-Managed Persistence Entity Beans 245

Looking Under the Hood of a CMP Entity Bean ..246
Designing a CMP Entity Bean ..248
Implementing the CMP Entity Bean ..249

Defining the Home Interface ..249
Defining the Component Interface ..250
Implementing the Enterprise Bean Class ..251
Declaring the Deployment Descriptor ..254

Writing a Client ..264
Packaging and Deploying the Enterprise Bean ..265
Running the Example ..266
Best Practices ..266
Summary ..267
Q&A ..267
Quiz ..268

Quiz Answers ..268
Exercises ..269

DAY 12 Developing Container-Managed Relationships 271

Examining Container-Managed Relationships ..272
Cardinality ..272
Directionality ..273

Implementing Container-Manager Relationships ..273
Implementing One-to-One Relationships ..273
Implementing One-to-Many Relationships ..275
Implementing Many-to-Many Relationships ..278

Designing Container-Managed Relationships ..279
Defining the Home Interfaces ..281

Defining the Order Home Interfaces ..281
Defining the OrderLineItemLocalHome Home Interface282

Defining the Remote Interfaces ..282
Defining the Order Interfaces ..282
Defining the OrderLineItemLocal Local Interface284

Implementing the Enterprise Bean Classes ..284
Declaring the Deployment Descriptors ..289

Collection Member Declarations ..289
Declaring the Standard Deployment Descriptor ejb-jar.xml289
Declaring the Vendor-Specific Deployment Descriptors292

Writing a Client ..297
Packaging and Deploying the Enterprise Beans ..298
Running the Example ..299
Best Practices ..300

Contents xi

00 0672324237 FM 9/24/02 2:33 PM Page xi

Summary ..301
Q&A ..301
Quiz ..301

Quiz Answers ..302
Exercises ..302

DAY 13 Understanding JMS and Message-Driven Beans 303

Learning the JMS Fundamentals ..304
Understanding JMS Architecture ..305

Administered Objects ..306
Exploring Messaging Models ..307

Point-to-Point Messaging Model ..307
Publish-and-Subscribe Messaging Model ..307

Understanding JMS Interfaces and Classes ..309
Point-to-Point Concepts ..311
Exception Handling ..318
Synchronous and Asynchronous Message Receivers319

Designing Reliable Messaging Clients ..319
Specifying Message Persistence ..319
Message Acknowledgment, Priority, and Expiration320
Using Local Transactions ..321
Working with Temporary Destinations ..322

Anatomy of JMS Messages ..323
Message Headers ..324
Exploring Message Properties ..324
Message Body ..326

Message-Driven Beans ..327
Best Practices ..328
Summary ..329
Q&A ..329
Quiz ..330

Quiz Answers ..330
Exercises ..331

DAY 14 Developing Message-Driven Beans 333

Looking Under the Hood of an MDB ..334
Designing the Message-Driven Bean ..336
Implementing the Enterprise Bean Class ..336
Declaring the Deployment Descriptor ..339
Writing a Client ..341
Packaging and Deploying the Enterprise Bean ..343
Running the Example ..343
Examining the Life Cycle of a Message-Driven Bean347

xii Sams Teach Yourself EJB in 21 Days

00 0672324237 FM 9/24/02 2:33 PM Page xii

Best Practices ..348
Summary ..348
Q&A ..348
Quiz ..349

Quiz Answers ..349
Exercise ..349

Week 3 Advanced EJB Applicatins 351

DAY 15 Understanding J2EE Architecture 353

J2EE Overview ..354
The Evolution of J2EE Architecture ..355

Two-Tier Architecture ..356
Three-Tier Architecture ..356
Multitier J2EE Architecture ..357

Understanding the J2EE Container Model ..359
Applet Container (Web Browser) ..361
J2EE Client Application Container ..361
Web Container ..361
EJB Container ..361
Clustering of J2EE Components and Services ..361

Exploring J2EE Protocols ..363
Transport Control Protocol over Internet Protocol363
Hypertext Transfer Protocol ..364
Secure Sockets Layer ..364
Remote Method Invocation ..364
JavaIDL ..365
RMI/IIOP ..365

Understanding the J2EE Common Services APIs ..365
Java Naming and Directory Interface ..365
Java Database Connectivity ..366
Enterprise JavaBeans ..366
JavaServer Pages ..366
Java Servlet ..366
Java Message Service ..366
Java Authentication and Authorization Service ..366
JavaBeans Activation Framework ..367
Java Transaction API ..367
Java API for XML Parsing ..367
J2EE Connector Architecture ..368
Summary of the J2EE APIs ..369

Exploring the J2EE Data Formats ..370

Contents xiii

00 0672324237 FM 9/24/02 2:33 PM Page xiii

Packaging J2EE Applications ..370
Designing J2EE Applications ..371

Session Façade Design Pattern ..372
Service Locator Design Pattern ..373
Message Façade Design Pattern ..373
Value Object Design Pattern ..374

Best Practices ..374
Summary ..375
Q&A ..375
Quiz ..375

Quiz Answers ..376
Exercises ..376

DAY 16 Understanding J2EE Transactions 377

Understanding Transaction Fundamentals ..378
The ACID Properties ..378
Exploring the Transaction Models ..379

Types of Transactions ..379
Local Transactions ..379
Distributed Transactions ..384

Java Transaction API ..386
JTA Exception Handling ..389
Java Transaction Services ..390

Exploring Transactions Across the J2EE Tiers ..390
Learning Bean-Managed Transactions ..391
Container-Managed Transactions ..392

Example of Distributed Transactions ..394
Build and Run the Example ..403

Best Practices ..404
Summary ..404
Q&A ..404
Quiz ..405

Quiz Answers ..405
Exercise ..405

DAY 17 Building Container-Managed Transaction Beans 407

Understanding Container-Managed Transactions ..408
Using JDBC in CMT ..410
Using Isolation Levels with CMT ..410

Reviewing Transaction Attributes with CMT ..411
Setting Transaction Attributes ..413
Performing Nontransactional Execution ..415
Rolling Back a Container-Managed Transaction ..416

xiv Sams Teach Yourself EJB in 21 Days

00 0672324237 FM 9/24/02 2:33 PM Page xiv

Transaction Semantics for CMT ..417
Implementing Session Beans with CMT ..417
Synchronizing the State of a Session Bean ..418
Methods Not Allowed in CMT ..419
Message-Driven Beans with CMT ..420
Entity Beans ..420
Summary of Transaction Options for EJBs ..420
Setting WebLogic-Specific Transactions ..421

Example for Developing EJB with CMT ..421
Defining the Bean’s Remote Interface ..422
Defining the Bean’s Home Interface ..423
Implementing the Bean’s Class ..423
Developing Helper Classes ..426
Packaging the Beans into a JAR File ..427
Developing and Testing the Client ..429
Build and Run the Example ..430

Best Practices ..431
Summary ..432
Q&A ..432
Quiz ..432

Quiz Answers ..433
Questions ..433
Exercises ..433

DAY 18 Building Bean-Managed Transaction Beans 435

Why Bean-Managed Transactions? ..436
Using Local or Global Transactions in BMT ..437

Using JDBC Transactions in BMT ..437
Using JTA Transactions in BMT ..438
Setting Transaction Timeouts with BMT ..441

Which Types of EJBs Can Use BMT? ..441
Understanding Transaction Semantics in BMTs ..442
Session Beans with BMT ..442
Message-Driven Beans with BMT ..447
Handling Exceptions in BMT ..449

Developing an EJB with BMT ..450
Developing the Bean’s Remote Interface ..450
Developing the Bean’s Home Interface ..451
Developing the Bean’s Class ..451
Developing Helper Classes ..455
Packaging the Beans into a JAR File ..456
Developing the Testing Client ..457
Deploying and Running the Student EJB ..458

Contents xv

00 0672324237 FM 9/24/02 2:33 PM Page xv

Best Practices ..459
Summary ..460
Q&A ..460
Quiz ..460

Quiz Answers ..461
Exercises ..461

DAY 19 Understanding Security 463

Reviewing Security Fundamentals ..464
Security Concepts ..464
Learning Security Mechanisms ..466

Exploring J2EE Security Across All Tiers ..470
Client Tier Security ..470
Web Tier Security ..471
EJB Tier Security ..476
EIS Tier Security ..481

JAAS Security ..482
JAAS Concepts ..482

Security Responsibilities ..485
Best Practices ..485
Summary ..486
Q&A ..486
Quiz ..487

Answers ..487
Exercises ..487

DAY 20 Implementing JavaMail in EJB Applications 489

Understanding JavaMail ..490
JavaMail Architecture ..491
Comparing JavaMail and JMS ..491
JavaBeans Activation Framework ..492
Reviewing Basic Protocols ..492

Learning the JavaMail API ..494
Exploring the Core Classes ..494
The JavaBean Activation Framework ..500

Using the JavaMail API ..500
Sending Messages with JavaMail ..500
Reading Messages with JavaMail ..504
Deleting Messages and Flags ..505

Developing JavaMail Applications ..505
Developing the EJB Tier Components ..507
Developing the Web Tier Components ..510
Building the EAR File ..512

xvi Sams Teach Yourself EJB in 21 Days

00 0672324237 FM 9/24/02 2:33 PM Page xvi

Implementing the Client ..514
Configuring the Mail Session in WebLogic ..515

Running the JavaMail Application ..517
Best Practices ..518
Summary ..518
Q&A ..518
Quiz ..519
Answers ..519
Exercises ..520

DAY 21 Developing a Complete Enterprise Application 521

Understanding the Application ..522
Analyzing the Application ..523
Architecting the System ..524
Designing the Application ..525

Designing the Business Logic Tier Components ..526
Designing the Web Tier Components ..529
Designing the EIS Tier Database Schema ..530
Designing the Scenarios ..530

Packaging and Deploying the Application ..532
Running the Sample Application ..533
Best Practices ..536
Summary ..537
Q&A ..537
Quiz ..537

Quiz Answers ..537
Exercises ..538

Appendixes 539

APPENDIX A WebLogic Application Server 7.0 541

Downloading and Installing
WebLogic 7.0 ..541

Configuring WebLogic 7.0 ..542

APPENDIX B JBoss Application Server 3.0 547

Downloading and Installing JBoss 3.0 ..547
Configuring JBoss 3.0 ..548
Running and Testing JBoss 3.0 ..549

APPENDIX C Understanding XML 551

Exploring an XML Document ..552
Parts of an XML Document ..552

Contents xvii

00 0672324237 FM 9/24/02 2:33 PM Page xvii

Summary of XML Document Markups ..553
Building Elements ..553
Adding Attributes ..554
Adding Comments to Your Documents ..554
What’s in the CDATA Section ..554
Understanding Document Type Declaration ..554
Including Entity References ..555
XML Schema ..556

Characteristics of XML Documents ..556
Processing XML Documents with XML Parsers ..556
Supporting the Unicode Standard ..557

APPENDIX D Introduction to UML Notation 559

Class Diagrams ..559
Class Notation ..560
Stereotype Notation ..560
Generalization/Inheritance Relationship Notation ..560
Association Relationship Notation ..561
Aggregation/Composition Relationship Notation ..561
Realization Relationship Notation ..562

State Diagrams ..562
State Notation ..562
Transition Notation ..563

Sequence Diagrams ..563

APPENDIX E Glossary of Terms 565

Index 591

xviii Sams Teach Yourself EJB in 21 Days

00 0672324237 FM 9/24/02 2:33 PM Page xviii

About the Authors
RAGAE GHALY has more than 25 years of experience in both academic research and
industrial fields. He is an independent consultant, and he has worked in different capaci-
ties for large enterprises such as SHL Systemhouse, General Motors, Proxicom, and
WellPoint Health Network. He has been working with Java and J2EE since their
inception. His areas of interest include distributed systems, object-oriented modeling,
middleware, design patterns, enterprise architecture, and EAI. He gained a masters
degree in computer science from Florida International University. He has published a
handful of papers about real-time object-oriented databases and J2EE application servers.
Ragae lives in California, and in his free time he likes to study human languages. He also
likes to travel and spend precious time with his family.

KRISHNA KOTHAPALLI has 10 years of experience in the software industry in different roles
as a developer, consultant, and architect. He has worked in small, medium, and large
companies such as SHL Systemhouse, Sapient Corporation, Xerox Corporation, General
Motors, and CacheEdge. His areas of interest include distributed object-oriented systems,
Internet systems, and biotechnology. He gained a masters degree in computer science
from the Indian Institute of Technology, Madras. He has published articles in the areas of
distributed algorithms and Enterprise JavaBeans. In his free time, he plays with his
children, helps organize research for autoimmune diseases, and develops Web sites for
non-profit organizations. He believes that anything under the sun can be mastered in 21
days, with the exception of the GNU Emacs editor with its unlimited capabilities. Ever
since he dreamed of retiring rich at the age of 30, he has started to feel younger with
every passing year.

00 0672324237 FM 9/24/02 2:33 PM Page xix

Dedications
To my wife Mary, for all good reasons,

to Raymond, for his sparking thoughts,

to Rudy, for starting to do the right things,

to Laura, for her honesty and openness,

and to Lillian, for her compassion and love.

—Ragae

To my wife Sunitha for love, support, and understanding.

—Krishna

Acknowledgments
From Ragae Ghaly:

To those who inspired me and still ignite my mind with thoughts. To my parents for their
love, guidance, and support. To the memory of Raouf Ghaly, who is the source of inspi-
ration and human values. To the memory of Prof. Yakoub Gayed, who taught me how to
respect time. To Prof. Fatin Fahim and Prof. Rushdy Amer, who lit the candles in my
career path from engineering to computer science. To Prof. Tzilla Elrad, Prof. Prabu
Prabhakaran, and Prof. Naphtalie Rashe, who sparked my mind with new ideas. I would
also like to thank my wife Mary, and my daughters Laura and Lillian for their love and
support during the writing of this book.

From Krishna Kothapalli:

To my parents for lifetime care, affection, and support. To my young kids Abhiram
(age 4) and Tejasvi (age 2), for making life interesting and memorable with their cute lit-
tle acts, spilling water on my laptop, and teaching me the ABCs of life’s priorities.

00 0672324237 FM 9/24/02 2:33 PM Page xx

Special Thanks:

The authors would like to thank Carol Ackerman for her encouragement, support, and
guidance.

The authors would like to thank the following Sams editors: Mark Renfrow, Mike Henry,
Andy Beaster; reviewers Mike Altarace, Chad Fowler, and Mike Fogarty from Princeton
Solutions Group, and Keith Magnant from Element K for their insightful remarks on the
manuscript and for being patient in answering our queries.

Very special thanks to Raymond Ghaly and Raghava Kothapalli for helping us in writing
this book. Raymond and Raghava were instrumental in streamlining the code examples,
and had great insights for setting up and testing both the WebLogic and JBoss servers.
Without their help, this book would not have seen the light of day.

00 0672324237 FM 9/24/02 2:33 PM Page xxi

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As an associate publisher for Sams, I welcome your comments. You can email or write
me directly to let me know what you did or didn’t like about this book—as well as what
we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of this
book. We do have a User Services group, however, where I will forward specific techni-
cal questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens, Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

For more information about this book or another Sams title, visit our Web site at
www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book in
the Search field to find the page you’re looking for.

00 0672324237 FM 4/30/04 2:25 PM Page xxii

Introduction
With the introduction of Java in the mid-1990s, its portability was obvious on the client
side. Java has quickly become the language of choice for writing applications. Most
browsers support Java, and Java applets and Java applications can run on any machine or
operating system. But this is not enough for enterprise applications, which require server-
side Java support. Writing applications for the enterprise is usually a difficult task.
Enterprise applications must be scalable, portable, and secure. That’s what Java 2
Platform, Enterprise Edition (J2EE) is all about: a complete architecture and framework
for developing and deploying server-side Java components. Enterprise JavaBeans (EJB)
is the heart of the J2EE platform. It enables simplified development of distributed Java
applications. Other J2EE run-time services, such as JNDI, JDBC, and JMS, are vital in
completing the full picture of server-side component architecture.

Since the EJB 1.0 specification was introduced by Sun Microsystems in 1998, it quickly
gained industry momentum among application developers and vendors. Today, more than
25 application server vendors support EJB technology in their products. Charles Stack,
president and CEO of Flashline, states, “The EJB component architecture allows vendors
to simplify application development, [and] speed the delivery of high-quality products to
market…The market for commercial EJB technology-based components is rapidly grow-
ing as more corporations adopt the J2EE platform as their primary development architec-
ture.” More than 20 companies collaborated with Sun Microsystems to finalize the EJB
2.0 specification in 2001. This demonstrates the industry’s support of and commitment to
building enterprise applications using EJB technology.

This book focuses primarily on teaching the EJB technology, but it also covers other
J2EE technologies that are essential to understanding EJBs. You’ll be introduced to all
aspects of EJB development using the most current version of the specification.

The book helps you learn concepts and the reasoning behind them by using simple,
under-the-hood diagrams. In addition, it focuses on step-by-step instructions for develop-
ing components and then running them.

You’ll learn how to write portable applications that can run on multiple application
servers and databases. For demonstration purposes, we provide step-by-step instructions
for running the examples in two different application servers: WebLogic Server and
JBoss. WebLogic Server is the most widely used commercial application server today,
and JBoss is an emerging open source, small footprint, J2EE application server. We also
use multiple databases: Pointbase (a lightweight Java database to run the examples with
WebLogic Server) and Hypersonic (to run the same examples with JBoss).

01 0672324237 Intro 9/24/02 2:33 PM Page 1

2 Sams Teach Yourself EJB in 21 Days

This book does not depend on any Java development tools or IDEs. It requires only the
use of a text editor. You’ll be introduced to all aspects of developing, compiling, packag-
ing, deploying, and running your components and applications in easy and simple meth-
ods. By the time you’re done with this book, you’ll be acquainted with the reasons why
EJB is the choice of serious enterprise application developers.

How This Book Is Organized
During your 21-day journey to learn EJB, each day discusses a major EJB type or a
J2EE service used by an EJB. Each day’s concepts are illustrated with code fragments. A
real-life example is given in most of the days, and you’re provided with different scripts
to run on both WebLogic Server and JBoss. Each chapter ends with a “Best Practices”
section that helps you become more familiar with the subject matter. A few questions are
given at the end of each day for review purposes.

Examples in this book are based on an online university registration system. Each week
you’ll learn about and develop the components needed for the system. On Day 21, you
build the complete enterprise application using the components you built in previous
days.

In the first week, you’re introduced to the main concepts of EJB, and given a few exam-
ples to illustrate how to register and find your components. This week also explains how
to package and run your simple components in application servers. In summary, you’ll
learn the following:

• Day 1 gives you an overview of the EJB architecture, and discusses the benefits to
the enterprise of both EJB and the EJB container. You also learn about the roles
and responsibilities in developing enterprise applications.

• On Day 2, you look at the EJB fundamentals and explore all types of EJBs. You
examine the packaging mechanism used in deploying EJB applications.

• Day 3 covers the fundamentals and characteristics of session beans, both stateful
and stateless. Here you cover the life cycle, instance pool, and the concepts of acti-
vation and passivation.

• Day 4 fully explores the JNDI services. It covers the concepts of naming and direc-
tory services. You’re introduced to the JNDI API’s classes and interfaces, and
shown how to use JNDI to support other J2EE services.

• On Day 5, you start getting down to the details of developing a stateless session
bean. You learn how to develop, package, deploy, and run a real-life example.

• Day 6 focuses on the development of a stateful session bean example. You take a
closer look under the hood of this type of EJB.

01 0672324237 Intro 9/24/02 2:33 PM Page 2

Week 2 discusses the concepts of persistence and asynchronous messaging. It starts by
giving you an overview of Web applications, and ends with the development of a mes-
sage-driven bean.

• Day 7 sheds light on the MVC architecture pattern in designing Web applications.
You explore Web tier components such as servlets, JSPs, and tag libraries, which
are common clients to access EJBs.

• On Day 8, you explore the fundamentals and characteristics of entity beans and
how they are used in object persistence.

• Day 9 introduces the concept of JDBC, and how you can use both declarative and
programmatic approaches in connecting to any tabular databases.

• Day 10 focuses on developing a real-life example of bean-managed persistence
entity beans. You learn how to develop, package, deploy, and run the bean into two
application servers’ environments.

• On Day 11, you continue to learn about entity beans by developing a container-
managed persistence entity bean.

• Day 12 covers the development of relationships among entity beans using the
advanced feature of container-managed relationships.

• Day 13 explores the fundamentals of JMS, and discusses its two main paradigms:
point-to-point and publish-and-subscribe. You’re introduced to the message-driven
bean and how to use it as a JMS consumer.

• On Day 14, you develop a real-life example of a message-driven bean. You learn
how to package, deploy, and run the message-driven bean into two application
server environments.

Week 3 includes advanced topics, such as J2EE transactions, security, and JavaMail. It
starts with a full introduction to J2EE application and J2EE design patterns. It ends with
the discussion of the complete enterprise application: University Registration System.

• Day 15 covers aspects of J2EE architecture, and is an umbrella chapter for learning
about the J2EE tiers—specifically, the client, Web, EJB, and EIS tiers. It briefly
discusses the J2EE design patterns.

• Day 16 begins 3 days of coverage of J2EE transactions. It explores the fundamen-
tals of both local and distributed transactions. You learn about the JTA API and
how to use it in developing transactional applications through the development of a
real-life example.

• On Day 17, you learn by example how to develop an enterprise bean with
container-managed transaction, and how to set transactional properties into the
bean’s deployment descriptor.

Introduction 3

01 0672324237 Intro 9/24/02 2:33 PM Page 3

• Day 18 concludes the coverage of J2EE transactions with the study of bean-man-
aged transactions. You develop a step-by-step example of BMT and learn how to
package, deploy, and run it in two different application servers.

• Day 19 covers the concepts and mechanisms of J2EE security. You explore the
JAAS architecture and learn how to implement security into enterprise applica-
tions.

• On Day 20, you learn how to use the JavaMail API to send email messages from
enterprise applications. You develop a complete enterprise application with the pri-
mary focus on JavaMail.

• Day 21 finishes the development of a complete enterprise application. You spend
the day studying how to design, develop, deploy, and run the University
Registration System.

There are also a few appendices, which are vital in installing and configuring WebLogic
Server and JBoss application servers. Both UML and XML are used in the book, and an
appendix is dedicated to each subject. A glossary of terms is provided at the end of the
book to act as a quick reference to the many abbreviations used in the book.

About This Book
This book teaches you about Enterprise JavaBeans and Java 2 Enterprise Edition. Its pri-
mary focus is to show you how to create an EJB, and how to use EJBs in the context of
J2EE services. By the time you finish Sams Teach Yourself EJB in 21 Days, you’ll have a
good understanding of the EJB APIs and J2EE services, both classes and interfaces.
You’ll also have a well-rounded knowledge of how to deploy an enterprise application
into a J2EE-compliant application server. You’ll also learn how to configure EJB, JMS,
JDBC, and JavaMail to work under the WebLogic Server and JBoss application servers.

You learn by doing in this book. You develop EJBs and applications that demonstrate the
topics being introduced, and the usage of those concepts. The source code for all the
working examples, along with other supplemental material such as how to configure and
run each day’s example in the WebLogic Server and JBoss server environments, is avail-
able at http://samspublishing.com. Type 0672324237 in the search field to find the
page you are looking for.

Who Should Read This Book
This book teaches EJB to the following audience:

• Java programmers of all levels who want to know how to develop enterprise appli-
cations using EJB and the J2EE platform.

4 Sams Teach Yourself EJB in 21 Days

01 0672324237 Intro 9/24/02 2:33 PM Page 4

• Beginning-to-intermediate users of EJB, such as developers, technical managers,
and system integrators.

• Advanced EJB developers who want to know how to run their components and
applications on WebLogic Server and/or JBoss.

• Experienced component-based developers in other paradigms, such as CORBA or
.NET. A basic knowledge of the Java programming language is enough to under-
stand this book.

If you’re an experienced developer with knowledge of another object-oriented program-
ming language, such as C++, and have a little background of Java, you can grasp EJB
and learn each step from developing to running those examples in application servers.

Introduction 5

01 0672324237 Intro 9/24/02 2:33 PM Page 5

Enterprise Java
Architecture

1 Understanding EJB Architecture

2 Understanding EJB Types and Interfaces

3 Understanding Session Beans

4 Using JNDI for Naming Services and Components

5 Developing Stateless Session Beans

6 Developing Stateful Session Beans

7 Designing Web Applications

WEEK 1 1

2

3

4

5

6

7

02 0672324237 Part 01 9/24/02 2:33 PM Page 7

02 0672324237 Part 01 9/24/02 2:33 PM Page 8

DAY 1

WEEK 1

Understanding EJB
Architecture

Developing enterprise applications has become a daunting task. Enterprise
applications are complex, used by many users, developed by multiple teams,
and deployed on heterogeneous systems that might span multiple environments.
In addition, enterprise applications have to be distributed, secure, transactional,
reliable, scalable, flexible, expandable, reusable, and manageable. Moreover,
enterprise applications must be integrated with existing systems, and leveraged
against the existing infrastructure.

Enterprise JavaBeans (EJB) is a component-based architecture for developing,
deploying, and managing reliable enterprise applications in production environ-
ments. EJB architecture is at the heart of the Java 2 platform, Enterprise Edition
(J2EE). With the growth of the Web and the Internet, more and more enterprise
applications are now Web based, including both intranet and extranet applica-
tions. Together, the J2EE and EJB architectures provide superior support for
Web-based enterprise applications.

03 0672324237 CH01 9/24/02 3:49 PM Page 9

The following is a summary of today’s target in exploring both the EJB technology and
J2EE architecture. You’ll learn

• What EJB is, and its benefits in simplifying the writing of enterprise applications

• How EJB is different from ordinary JavaBeans

• About the big picture of the J2EE, and where EJB fits into it

• What flavors of beans are available, and the characteristics of each

• The importance of the EJB container, and the available common services provided
to your beans

• More about the roles and responsibilities in developing and deploying J2EE appli-
cations—who does what

The Challenges of Developing Enterprise
Applications

Enterprise applications are facing many challenges, such as portability, reusability, inter-
operability, and application integration. Since the inception of Java in 1995 as a simple
object-oriented and portable language, its main focus was on the development of portable
client-side applications. The challenges of developing portable Java enterprise applica-
tions remain due to the lack of server-side application development framework and tools.
By server-side computing, we imply the design of small, location-transparent compo-
nents that work together to fulfill enterprise service requirements. In many cases, these
lightweight components can work as both client and server.

Enterprise computing is rapidly changing in both hardware and software. New applica-
tions are required to meet with the emerging user demands, and are still required to inter-
face with existing applications. It’s not practical to throw out the huge investment in
applications written in older-generation languages that already work to maintain data in
legacy systems. This dictates a need to integrate new applications with the existing sys-
tems. Today, server-side software offers the corporate world many opportunities to
rethink its enterprise-wide computing infrastructure. With the acceptance and growth of
Java in recent years, software portability, reuse, and application integration have become
important and accepted for many client applications spread throughout the enterprise.

Enterprise applications are complex, and in many cases require the development of sev-
eral teams, which might span multiple domains. Today’s applications are required to have
faster time to market to compete and to fulfill user demands. Another challenge facing
the enterprise is interoperability with other environments, which might be heterogeneous
in hardware, software, or network architectures.

10 Day 1

03 0672324237 CH01 9/24/02 3:49 PM Page 10

Understanding EJB Architecture 11

1
In facing such challenges, enterprise application architectures have undergone an exten-
sive evolution. The first generation of enterprise applications was centralized mainframe
applications. In the late 1980s and early 1990s, most new enterprise applications fol-
lowed a two-tier architecture approach (also known as the client/server architecture).
Later, the enterprise architecture evolved to a three-tier, and then to a Web-based archi-
tecture.

One of the solutions for these challenges is the J2EE technology, which was developed
by Sun Microsystems. The following sections describe the J2EE architecture and, as a
major participant, the EJB technology of developing component-based enterprise appli-
cations.

What’s an EJB?
Let’s first understand the meaning of component and server component model, and then
examine the meaning of EJB. A component is a piece of code that implements well-
defined interfaces. Typically, it lives in a runtime environment and takes advantage of the
services offered by the environment. For the component to live in a runtime environment,
it must follow the rules of the runtime environment. This ensures the proper functioning
of the runtime environment and the portability and scalability of the component. A com-
ponent is not a complete application. An application consists of multiple components
working together.

Generally, developing server-side objects is more difficult than writing graphical user
interface (GUI) or client components. This is because in addition to writing business
application logic, the developers must also take care of system-level issues such as multi-
threading, access to databases, efficient management of resources, transactions, security,
access to legacy systems, and so on. A server component model or architecture provides
support for server-side components. This simplifies the development of server-side com-
ponents and allows developers to focus on developing business application logic.

An enterprise bean is a server-side component that implements the business logic of an
enterprise application and adheres to the rules of the Enterprise JavaBean architecture.
Enterprise beans live in an EJB container—a runtime environment within a J2EE server.
The EJB container provides multiple services to support the enterprise beans.

The Enterprise JavaBeans specification states, “The Enterprise JavaBeans
architecture is a component architecture for the development and deploy-
ment of component-based distributed business applications. Applications

Note

03 0672324237 CH01 9/24/02 3:49 PM Page 11

The following are the characteristics of EJBs:

• They contain business logic that operates on the enterprise’s data.

• They depend on a container environment to supply life-cycle services for them.
EJB instances are created and maintained by the container.

• They can be customized at deployment time by editing the deployment descriptor.

• System-level services, such as transaction management and security, are described
separately from the enterprise bean.

• A client never accesses an enterprise bean directly; the container environment
mediates access for the client. This provides component-location transparency.

• The EJB is designed to be portable across EJB servers provided by different ven-
dors.

• They can be included in an assembled application without requiring source code
changes or recompilation of them.

• Beans are always single threaded; you never have to write thread-safe code. You
design your threads as single-threaded components, and the EJB container handles
multiple client requests by load balancing and instantiating multiple instances of
the single-threaded components.

12 Day 1

written using the Enterprise JavaBeans architecture are scalable, transac-
tional, and multi-user secure. These applications may be written once, and
then deployed on any server platform that supports the Enterprise
JavaBeans specification. The Enterprise JavaBeans architecture will make it
easy to write applications: Application developers will not have to under-
stand low-level transaction and state management details, multi-threading,
connection pooling, and other complex low-level APIs.” The entire 500+
pages of the specification, meant for application server vendors to digest
and implement, can be accessed at
http://java.sun.com/products/ejb/docs.html.

EJB is an overloaded name. Depending on the context, it represents either a
server-side component, or component-based architecture. We’ll use the
terms EJB, Enterprise Bean, and Enterprise JavaBean interchangeably in this
book. Unless otherwise mentioned, we’ll use the term bean to mean EJB.

Note

03 0672324237 CH01 9/24/02 3:49 PM Page 12

Understanding EJB Architecture 13

1
EJB Architecture Overview

The J2EE architecture is a consolidation of standards, specifications, frameworks, and
guidelines to provide Java capability on the server side for the enterprise. These stan-
dards and frameworks consist of classes and interfaces to be implemented by both ser-
vice providers and developers. The EJB API is at the heart of the J2EE architecture. The
other APIs are used as services to the EJB API. Many middleware vendors have been
delivering implementations of the server-side APIs for the last few years.

A J2EE implementation can be obtained from many vendors today. The implementation
of the J2EE specification is realized through a Java application server, a product that
offers the infrastructure-base solutions to the enterprise needs. The most common appli-
cation servers today are BEA’s WebLogic Server, IBM’s WebSphere, and the open source
JBoss.

Figure 1.1 depicts how Java benefits both the client and the server. The Java Virtual
Machine (JVM) abstracts applications on the client from the underlying environment and
operating systems. On the server side, the J2EE application server offers common infra-
structure services to enterprise applications.

The J2EE technology addresses the following enterprise component types (which could
certainly be expanded in future releases of its specification):

• Application clients. These are standalone client-side Java applications, which are
hosted on client machines, and can use any relevant J2EE server-side functionality.

• Applets. These are tiny client-side components hosted by a Web browser, and are
mainly convenient to use in initiating services and then displaying the results to the
user.

J2EE offers enterprise applications a higher level of abstraction. Not only
does it offer portability of server-side component-based applications, but it
also offers built-in common services to support all aspects of an infrastruc-
ture.

Note

The company Flashline provides an application server comparison matrix for
an up-to-date look at the current and future releases of all application
servers. You can access the comparison matrix at
http://www.flashline.com/components/appservermatrix.jsp.

Tip

03 0672324237 CH01 9/24/02 3:49 PM Page 13

• Servlets and JavaServer Pages (JSP). Servlets are server-side Java components that
process requests on behalf of the users. Servlets invoke arbitrary services and
process the results through the generation of HTML output to be displayed on a
Web browser. JSP is a convenient API for embedding Java within HTML pages,
from which the JSP implementation generates servlets.

• Enterprise JavaBeans. EJBs are server-side components for encapsulating an appli-
cation’s business logic. An EJB can offer specific enterprise service either alone or
in conjunction with other EJBs. EJBs can be packaged together to be available to
deliver transactional and secure enterprise applications over the network to other
J2EE applications or services.

These components span multiple tiers, and a full coverage of multitier architecture and
the J2EE architecture will be discussed on Day 15, “Understanding J2EE Architecture.”
It’s worth noting here that the introduction of browser-based clients, such as applets and
form-based JSPs, has contributed to accessing application functionality that’s hosted on a
remote server through a unified form-based interaction. This shift from providing core
corporate functionality at the PC and workstation level to the server via remote access
has intensified the focus on server-side software.

14 Day 1

FIGURE 1.1
Java on the client and
on the server.

Solve portability of general
networking computing
environments.

Applications

Java Virtual Machine
(on client)

Operating Systems

Java Application Servers
solve portability of
enterprise computing
environments.

Applications

Java Application
Server

Java Virtual Machine
(on server)

Operating Systems

Web-based applications have contributed to increased portability from a
user-interface point of view. You can access your application functionality
and data using a unified client agent (Web browser).

Note

Comparing EJB with JavaBeans Components
The JavaBeans concept was developed to support reusable components in the Java pro-
gramming environment. Because JavaBeans are used to build GUI components,

03 0672324237 CH01 9/24/02 3:49 PM Page 14

Understanding EJB Architecture 15

1
JavaBeans components might be thought of as a client-side technology. However,
JavaBeans are not required to be visual and they can be used in server environments.

JavaBeans are Java classes that have the following characteristics:

• Support visual software development tools: The class must expose variables (called
properties), methods, and events.

• Customizable: This includes support for default property editors or provision for
unique custom routines. Customization permits developers to change the behavior
of a bean without changing the source code.

• Support introspection: This refers to disclosing properties, methods, and events to
other classes.

• Persistent: This permits a bean to be saved in its customized state.

JavaBeans are used in the J2EE applications as either a view bean or as a data bean. The
most common examples of a view beans are in designing a GUI. For example, a GUI
button widget could be developed as a JavaBean. Development tools can use introspec-
tion to examine the button bean’s properties such as label and color. You also can use
these tools to set the bean’s behavior to respond to the user event of clicking on the but-
ton. A data bean can be used as a data container to transfer data between a servlet and an
EJB. To process a user request, a servlet invokes an EJB with the request, and business
data is populated into a data bean to be displayed as a response to the user.

The only similarity between an EJB and a JavaBean is that both are components. An
EJB does not have the same structure as a JavaBean. An EJB consists of two interfaces
and two classes, whereas a JavaBean consists of only one Java class. A JavaBean is local
to a single process and can’t be shared by multiple users, while some types of EJB are
shareable.

JavaBeans are not part of the J2EE architecture. They’re being used for a
while as a data bean to transfer data from EJB components to Web compo-
nents. JavaBeans are also used in a few J2EE design patterns.

Note

It’s important to understand that Enterprise JavaBeans are different from
ordinary JavaBeans. Unfortunately, the use of the term JavaBeans causes
much confusion. EJBs, servlets, and JSP components have more in common
with each other than with JavaBeans.

Note

03 0672324237 CH01 9/24/02 3:49 PM Page 15

16 Day 1

Why EJB?
The EJB architecture allows enterprise applications to be portable by running on a J2EE-
compliant application server. An EJB application can be partitioned in a more usable,
flexible, and expandable fashion. For example, new clients to access legacy systems can
be easily built to meet user requirements. Moreover, the EJB architecture helps create a
service-based model in which services are location-transparent components that can be
delivered to their target clients. EJBs are highly reusable components, and represent the
next step in the progression of Java technology for the development of application plat-
forms capable of supporting mission-critical, component-based, enterprise applications.
EJB components allow the development of business logic to be used across enterprise
applications and to be portable across different platforms.

The EJB model is based on Java Remote Method Invocation (RMI) technology, which
supports the separation of executable components across multiple tiers. This separation
permits maximum implementation flexibility and high scalability. RMI allows access to
remote components to appear as if it were local to the invoking client. Moreover, the
introduction of infrastructure services provided by the container help to manage and
offer such services to the deployed EJBs. These runtime services make it possible for the
EJB developer to focus on writing robust and reliable applications.

The following summarizes the benefits gained by the enterprise and developers from
using EJB technology:

• Simplicity: The EJB architecture simplifies the development of complex enterprise
applications by providing built-in common services. This allows an EJB applica-
tion developer to access and utilize these services, and results in a reduction of the
overall development effort.

• Application portability: Portability can be accomplished by deploying an EJB
application on any J2EE-compliant application server. Many Java application
servers today implement all the services provided by J2EE-standard specifications.

• Component reusability: An EJB is a highly reusable building block. J2EE applica-
tions can be composed of custom-based EJBs, off-the-shelf EJBs, or both. In addi-
tion, the application business logic of a certain EJB can be reused through Java
subclassing of the EJB class.

• Application partitioning: The separation of an application’s business logic from its
presentation allows ease of development and helps business programmers to work
independently from Web page designers. Again, the separation of the application’s
business logic from its data helps manage each team independently. Any change of
a component hosted in one tier does not affect the other tiers.

03 0672324237 CH01 9/24/02 3:49 PM Page 16

Understanding EJB Architecture 17

1
• Distributed applications: The EJB architecture helps create distributed applications,

which can span multiple environments. Each subsystem can work independently of
the others, but still can interact with one another to deliver enterprise services to
the target users. A user transaction, for example, can be executed across multiple
servers within a single context, and will be perceived by the user as a single unit of
work.

• Application interoperability: The EJB architecture helps EJB components to access
other components written in other component-based models, such as CORBA and
.NET.

• Application integration: One of the main objectives of the EJB architecture is to
allow the integration of new applications with existing applications, such as legacy
systems. Today, Enterprise Application Integration (EAI) is a hot topic for the cor-
porate world. The related J2EE APIs, such as the J2EE Connector Architecture
(JCA) and the Java Message Service (JMS) specification, make it possible to inte-
grate enterprise bean applications with various non-Java applications, such as ERP
systems or mainframe applications, in a standard way.

• Availability of Java application servers: An enterprise has many J2EE-compliant
application servers to choose from. Each application server provides J2EE services
at a minimum, with the addition of other value-added services. A J2EE-compliant
server can be selected to meet the customer’s needs, which prevents vendor
lock-in.

The most significant value provided by the EJB architecture is the separation of business
logic programming from the challenge of integrating business logic with the complexities
of enterprise-class server-side runtime environments. If the containers in which EJB
components are deployed assume responsibility for managing runtime services such as
persistence, transactions, and concurrent database access, bean developers are free to
focus on developing software components that encapsulate business logic.

The EJB architecture is flexible enough to implement components such as the following:

• An object that represents a stateless service, which is modeled using a stateless ses-
sion bean.

• An object that represents a stateless service whose invocation is asynchronous and
driven by the arrival of enterprise messages. This is modeled by EJB with a
message-driven bean.

• An object that represents a conversational session with a particular client. Such
session objects automatically maintain their conversational state across multiple
client-invoked methods. This is modeled by EJB with a stateful session bean.

03 0672324237 CH01 9/24/02 3:49 PM Page 17

• An entity object that represents a business object that can be shared among multi-
ple clients, which is modeled with an entity bean.

• An entity object that represents a fine-grained persistent object that embodies the
persistent state of a coarse-grained business object. This is also modeled with an
entity bean.

EJB introduces the following flavors of beans (see Figure 1.2):

• Session beans, which are divided into stateless session beans and stateful session
beans

• Entity beans, which are divided into bean-managed persistence and container-man-
aged persistence

• Message-driven beans

Later in this book, you’ll be provided with a more detailed explanation of each bean
type. But for now, as a general rule, a session bean represents a user session (stateful or
stateless), and implements the workflow of an arbitrary business process. An entity bean,
on the other hand, represents a data row (record), in a database that can be accessed to
satisfy user requests. Although both session and entity beans are synchronous in nature,
message-driven beans are used to receive asynchronous messages, and process them
accordingly.

18 Day 1

FIGURE 1.2
Flavors of EJBs.

Enterprise
Bean

Message-Driven
Beans

Session
Beans

Entity
Beans

Container-
Managed

Persistence
Bean-Managed

Persistence

Stateful
Session
Beans

Stateless
Session
Beans

EJB Types

03 0672324237 CH01 9/24/02 3:49 PM Page 18

Understanding EJB Architecture 19

1
EJB Design Goals
Since its inception by Sun Microsystems in 1997, the EJB architecture has had the fol-
lowing goals:

• To be the standard component-based architecture for building distributed object-
oriented business applications in the Java programming language.

• To make it easy to write enterprise applications. Developers will not have to under-
stand low-level transaction and state management details, multi-threading, connec-
tion pooling, and other complex low-level APIs.

• To enable an EJB to be developed once, and then deployed on multiple platforms
without recompilation or source code modification.

• To address the development, deployment, and runtime aspects of an enterprise
application’s life cycle. Also, to define those contracts that enable tools from multi-
ple vendors to develop and deploy components that can interoperate at runtime.

• To be compatible with existing server platforms and with other Java programming
language APIs.

• To provide interoperability between EJBs and J2EE components as well as non-
Java programming language applications.

• To be compatible with the CORBA protocols.

Looking Inside an EJB
Generally, an EJB consists of two interfaces and one class. The interfaces are the home
and component interfaces, and the class is the bean class. Figure 1.3 illustrates what’s
inside an EJB, and how a client interfaces with it.

The home interface lists the available methods for creating, removing, and finding EJBs
in the container. The home object is the implementation of the home interface that’s gen-
erated by the container at deployment time. At runtime, the home object will be used by
the client in conjunction with a naming service to find the component and establish a
connection to its component interface.

The component interface defines the business methods offered by a bean class. Note that
the bean class does not directly implement this interface but, rather, uses an EJBObject
class that mediates the client’s calls to a bean object. The container provides the imple-
mentation of this interface, and the client (in conjunction with a naming service to find
the component and establish a connection to its component interface) will use it. The
component interface can be either remote or local, depending on the location of the EJB

03 0672324237 CH01 9/24/02 3:49 PM Page 19

client with respect to the EJB. This distinction is made to avoid network traffic due to
remote calls.

20 Day 1

FIGURE 1.3
Looking inside an EJB.

Bean Class

EJB and Container

EJB and Container

Application Server

Database

Existing
Systems

Home
Interface

Component
Interface

Common Services

EJB
Object

Home
Object

EJB
Client

create, remove, find

business methods

The bean class is the implementation of the business methods listed in the component
interface. It’s accessed by the client through the component interface; it’s not accessed
directly.

The primary key class (not shown in Figure 1.3) is used only for entity beans, and is pro-
vided only if the underlying data table has a segmented key.

The EJB client locates the EJB containers through the JNDI service, and it interfaces
with the EJB through the objects generated by the container. After an EJB client finds a
reference to an EJB home interface, it can retrieve the EJB component interface. It can
then issue business methods on the EJB component interface, which the container in turn
delegates to the bean itself. EJB clients can be servlets, JSPs, or Java application clients.

Additional interfaces defined in the EJB specification allow beans to interact with the
transaction service and control persistence if they are designed to do so. For simplicity,
these interfaces are not shown in Figure 1.3.

The EJB container hosts enterprise beans, providing life cycle management and services
such as caching, persistence, and transaction management.

03 0672324237 CH01 9/24/02 3:49 PM Page 20

Understanding EJB Architecture 21

1
EJB Server
The EJB server (also known as the J2EE application server) is the outermost container of
the various elements that make up an EJB environment. The EJB server manages one or
more EJB containers and provides required support services, such as transaction manage-
ment, persistence, and client access. A JNDI-accessible naming space can be used by
clients to locate the EJB. Figure 1.4 illustrates a J2EE application server.

The J2EE application server also provides operation resources, such as process and exe-
cution threads, memory, networking facilities, system resource management, connection
pooling and caching, load balancing, fail-over, and so on to the containers and the ele-
ments within them. The EJB server can offer further vendor-specific features, such as
optimized database access drivers, interfaces to backend systems, and CORBA accessi-
bility.

According to the current EJB specs, there’s no clear distinction between an
EJB container and an EJB server. An EJB server can run multiple containers of
different types.

Note

FIGURE 1.4
J2EE application
server. Container

Component

Component

Component

Container

Horizontal services

Application Server

Deployment
Tools

Object-
Relational

Mapping Tools

Monitoring
Tools

Persistence

Security

Lifecycle

Transaction

To
ol

s

V
er

tic
al

 s
er

vi
ce

s

JN
D

I

JT
A

JD
B

C

JM
S

JA
A

S

Ja
va

M
ai

l

JA
X

P

03 0672324237 CH01 9/24/02 3:49 PM Page 21

A number of J2EE application servers are available today, such as BEA’s WebLogic
Server, IBM’s WebSphere, and the open source JBoss.

EJB Containers
An EJB container is an abstract facility that manages instances of EJB components. The
EJB specification defines the contractual agreement between the EJB and its container to
provide both infrastructure and runtime services. Clients never access beans directly:
Access is gained through container-generated methods, which in turn invoke the beans’
methods. A container vendor may also provide additional services implemented in either
the container or the server.

Essential EJB Container Services
All EJB instances run within an EJB container. The container provides system-level ser-
vices to its EJBs and controls their life cycle. Because the container handles most
system-level issues, the EJB developer does not have to include this logic with the busi-
ness methods of the enterprise bean. In general, J2EE containers provide three main
types of services: common vertical services, common horizontal services, and common
deployment tools (refer to Figure 1.4).

In the next few sections, we’ll discuss the definition of these services. We’ll discuss some
of the services in detail in the following days.

Common Vertical Services
The common vertical services are inherent services that are provided by the EJB con-
tainer and are not specified explicitly by the J2EE architecture APIs. They contribute to
the performance and runtime aspects of the EJBs and the services provided to them. EJB
developers need not include any logic to manage these services. The following is a list of
these common services:

• Life cycle management: The container creates and destroys enterprise bean
instances based on client demand. This is done to maximize performance and mini-
mize resource usage such as memory. In addition, a container may transparently
multiplex a pool of instances to share among several clients.

• Security: The security services are designed to ensure that only authorized users
access resources. J2EE specifies a simple role-based security model for enterprise
beans and Web components. In addition, vendors typically provide integration with
third-party security providers such as LDAP.

22 Day 1

03 0672324237 CH01 9/24/02 3:49 PM Page 22

Understanding EJB Architecture 23

1
• Remote method invocation: The container transparently manages the communica-

tion between enterprise beans and other components. So, you do not have to worry
about low-level communication issues such as initiating the connections, and mar-
shalling/unmarshalling the method parameters. A bean developer simply writes the
business methods as if they’ll be invoked on a local platform.

• Transaction management: The transaction services relieve the enterprise bean
developer from dealing with the complex issues of managing distributed transac-
tions that span multiple enterprise beans and resources such as databases. The con-
tainer ensures that updates to all the databases occur successfully; otherwise, it
rolls back all aspects of the transaction.

• Persistence: Persistence services simplify the connection between the application
and database tiers. Container-managed persistence of entity beans simplifies the
coding effort for application developers.

• Passivation/activation: The mechanism that is used by the container to store an
inactive enterprise bean to disk, and restore its state when the bean is invoked. The
container uses this mechanism in support of both entity and stateful session beans.
This allows the servicing of more active clients by dynamically freeing critical
resources such as memory.

• Clustering: Supports replication of EJBs and services across multiple application
server instances installed on the same machine or in different environments.
Clustering involves load-balancing the requested services and EJBs among the
replicated instances. It also supports fail-over—should one instance fail, the load
will be picked up by another.

• Concurrency: Supports multithreading management. All components must be
developed as single-threaded, and the container manages the concurrency and seri-
alization access to the shared resources.

• Resource pooling: Supports the allocation of a pool of instances, and then assigns
them to the requesting clients. When an instance is free, it goes back to the pool.
This is applied for JDBC connections, stateless session beans, and entity beans.

Common Horizontal Services
Common horizontal services are the services specified in the J2EE architecture. They’re
commonly known as J2EE APIs, and are provided by the EJB server to all the containers
running on the server. Here’s the standard list of the J2EE APIs:

• Java Naming and Directory Interface (JNDI): Provides Java-technology-enabled
applications with a unified interface to multiple naming and directory services in
the enterprise.

03 0672324237 CH01 9/24/02 3:49 PM Page 23

• Java Database Connectivity (JDBC): Provides access to virtually any tabular data
source for J2EE applications.

• JavaServer Pages (JSP): Enables Web developers and designers to rapidly develop
and easily maintain information-rich, dynamic Web pages that leverage existing
business systems.

• Java Servlet: Provides Web developers with a simple, consistent mechanism for
extending the functionality of a Web server and for accessing existing business sys-
tems.

• Java Transaction API (JTA): The standard Java interfaces between a transaction
manager and the parties involved in a distributed transaction system: the resource
manager, the application server, and the transactional applications.

• Java Message Service (JMS): A common API and provider framework that enables
the development of portable, message-based enterprise applications.

• J2EE Connector Architecture (JCA): The key component for enterprise application
integration in the Java platform. In addition to facilitating enterprise application
integration, the JCA helps to integrate existing enterprise applications and informa-
tion systems with Web services and applications.

• Java API for XML Processing (JAXP): Enables applications to parse and transform
XML documents independent of a particular XML processing implementation.

• RMI over IIOP (RMI/IIOP): Delivers Common Object Request Broker
Architecture (CORBA) distributed computing capabilities to the J2EE platform.

• Java Authentication and Authorization Security (JAAS): Enables services to
authenticate and enforce access controls upon users.

• JavaMail: Provides a platform- and protocol-independent framework for building
Java-technology-based mail and messaging applications.

• JavaBean Activation Framework (JAF): Standard services used by JavaMail to
determine the type of an arbitrary piece of data, encapsulate access to it, discover
the operations available on it, and instantiate the appropriate bean to perform said
operation.

Common Deployment Tools
These are the deployment services and tools provided by the EJB server; they are also
available to the container. Here’s a list of these services:

• Deployment tools: These are used to compile and deploy J2EE applications. They
unpack the application package file and interpret all the runtime properties to
install the EJB and other components of the applications.

24 Day 1

03 0672324237 CH01 9/24/02 3:49 PM Page 24

Understanding EJB Architecture 25

1
• Object-relational mapping tools: A new generation of tools, such as TopLink, that

map relational data in a database to its object counterpart properties in memory.

• Monitoring tools: These are used to monitor applications while they are running.
Such tools are vital to checking the health of your application, and enable you to
provide solutions when issues arise.

Understanding EJB Roles
The EJB specification defines different roles in the development, assembly, and deploy-
ment of enterprise applications. The EJB architecture simplifies the development of com-
plex business systems by dividing this process into six distinct roles, each with a specific
task and objectives. These six roles address application development, infrastructure ser-
vices, and deployment issues. Figure 1.5 illustrates the different roles involved in devel-
oping and deploying EJB components and applications.

FIGURE 1.5
The EJB roles and
their responsibilities.

Container

Container

Application Server

EJB Container
Provider

(Systems expert)

Deployer
(Operation

environment
expert)

Container

Container

Application Server
Database

Existing
Systems

Bean Provider
(Domain expert)

EJB

DD

JAR file
JSP

EJB DD

Packaged
Application

Application
Assembler

(Domain expert)

System Administrator
(Administers and

monitors the
system)

In the next few sections, we will discuss these roles in more detail.

Application Development Roles
The task of building large component-based applications is typically divided into devel-
oping new components followed by the assembly of those components with existing

03 0672324237 CH01 9/24/02 3:49 PM Page 25

26 Day 1

reusable components. Some of the existing components could be components-off-the-
shelf (COTS). The EJB architecture makes a clear distinction between the EJB developer
(bean provider) and application assembler, even when, as in many cases, these two roles
are combined and performed by one person or team.

EJB Developer (Bean Provider)
The EJB developer is typically a domain expert with knowledge of the business rules,
such as the financial or pharmaceutical industry. The EJB developer implements the
business logic represented by the EJB’s business methods, and defines the EJB’s inter-
faces and deployment descriptor. The EJB developer defines a client view of an EJB.
The client view is unaffected by the container and server in which the EJB is deployed.
This ensures that both the EJBs and their clients can be deployed in multiple execution
environments without code changes or recompilation.

Application Assembler
The application assembler is a domain expert who assembles an application from many
building blocks (such as EJBs, servlets, JSP, applets, and Java clients) to complete the
application. An assembler is primarily concerned with the interfaces to EJBs (the home
and remote interfaces) and with the EJB’s deployment descriptor. The assembler is
responsible for configuring both the security and transactional aspects of the EJBs in the
deployment descriptor.

Infrastructure Roles
The infrastructure roles address the container, application server, and deployment tools.
These tasks are typically provided by a vendor with expertise in distributed infrastruc-
tures and services who implements a platform that facilitates the development of distrib-
uted applications and provides a runtime environment for these applications.

EJB Container and Server Provider
This is an expert in distributed systems, transactions, and security who provides deploy-
ment tools for EJBs and runtime support for these deployed instances. A container is a
runtime system for one or multiple EJBs that provide common services such as transac-
tion, security, and lifecycle management. A container includes code and a tool that gen-
erates code particular to a particular enterprise bean. It also provides tools to deploy an
EJB and a means for the container to monitor and manage the application.

Deployment Roles
The EJB specification makes a clear distinction between the deployment roles because
the cost of application deployment is much higher than application development.

03 0672324237 CH01 9/24/02 3:49 PM Page 26

Understanding EJB Architecture 27

1
Deployer
The deployer (a new word for most dictionaries) adapts an application, composed of a
number of EJBs, to a target operation environment by setting the properties and behav-
iors of the EJB. For example, the deployer sets properties in the deployment descriptor
that determine transaction and security policies. The deployer also integrates the applica-
tion with existing enterprise monitoring and management software. The deployer must be
familiar with both the application operational requirements and the application server
environment.

System Administrator
The system administrator configures and administers the enterprise applications and
infrastructure, including the application server, networking, databases, and Web servers.
The administrator monitors the running application and takes appropriate actions in the
event that the application behaves abnormally. Typically, an administrator uses enterprise
monitoring and management tools that are connected to the application by the deployer
through the hooks provided by the container.

A traditional application programmer now becomes an EJB developer and,
possibly, an application assembler. These tasks enable the programmer to
focus on the business problem and business logic. The deployer defines and
sets the deployment policies when installing the EJB. The complexity of
implementing mechanisms for executing the deployment policies is dele-
gated to the container provider. Although distributed applications remain
complex, the application programmer’s job becomes easier because much of
the complexity is addressed by EJB server and container providers.

Note

The various roles are not always performed by different people. In large applications,
different individuals or teams might execute each of the roles. In some scenarios, such as
small applications, a single person might perform multiple roles. During your 21-day
journey of learning EJB, you’ll execute multiple roles such as enterprise bean provider,
application assembler, deployer, and system administrator. You’ll use the EJB container
and server provided by BEA’s WebLogic Server or the JBoss organization’s open source
code application server, JBoss.

03 0672324237 CH01 9/24/02 3:49 PM Page 27

28 Day 1

Deployment Process
The efforts involved in developing and deploying an EJB require the following multi-
step process:

1. Define all business methods in the component interface. This can be either a
remote or local interface, depending on the design strategy you implement. A
remote interface enables you to make your applications distributed in nature. A
local interface allows access to the EJB from the same JVM.

2. Define the home interface of your EJB, which includes all the life-cycle manage-
ment methods of the EJB, such as creation, location, and removal of the EJB.

3. Implement the business methods in the bean class. Other callback methods might
be required for some types of EJB.

4. Create your EJB’s deployment descriptor, which allows for the declaration of the
EJB type, and transaction and security attributes.

5. Compile your EJB classes and interfaces.

6. Package the compiled EJB objects into a JAR file along with the deployment
descriptor.

7. Deploy the EJB into the EJB container.

For all the examples in this book, we provide a script to carry out all the steps from 5–7.
In addition, we provide a script to run the EJB client we develop in each day of our jour-
ney to learn EJB.

The University Registration System
This book is based on a complete system that demonstrates the use of all EJBs and com-
mon services discussed during the 21 days of your study. The University Registration
System (URS) is a hypothetical system (but it could be real), and will be our subject on
Day 21. URS is a business-to-consumer (B2C) e-commerce application, which enables
students to enroll and register in course offerings of a university. After a student is
logged in, she is offered a catalog of the available courses to choose from. After she
makes her decision, she’s registered in her courses and an e-mail notification is sent to
her.

Another part of the system is based on administering the university’s Web site, where a
JMS message will be sent to the registration office for enrollment approval. After the
decision is made, a notification of acceptance in the courses will be sent to the student.

03 0672324237 CH01 9/24/02 3:49 PM Page 28

Understanding EJB Architecture 29

1
Best Practices

You should consider using enterprise beans if you need to build business applications
that are scalable, transactional, and secure. On the other hand, enterprise beans are not an
appropriate choice for building systems applications, components on the client side of
applications (such as GUI), and two-tier client/server systems.

Summary
The EJB architecture simplifies enterprise applications by basing them on standardized,
modular, reusable components. The EJB architecture provides a complete set of services
to those components, and handles many details of application behavior automatically. By
automating many of the time-consuming and difficult tasks of application development,
J2EE technology enables enterprise developers to focus on adding value, which enhances
business logic, rather than building infrastructure.

Q&A
Q What is the EJB architecture and how is it related to the J2EE?

A The EJB architecture is a server-side component-based architecture that models
business logic of enterprise architecture. EJB is at the heart of the J2EE architec-
ture, which provides the big picture of enterprise applications. J2EE provides all
infrastructure services to EJB, such as JDBC, JNDI, JMS, and JTA.

Q What are the main types of beans offered by EJB architecture?

A The EJB types are session beans, entity beans, and message-driven beans.

Quiz
1. Which of the following is defined by EJB architecture?

A. Transactional components

B. Distributed object components

C. Server-side components

D. All of the above

2. What executes EJB components?

A. An EJB container

B. A Web server

03 0672324237 CH01 9/24/02 3:49 PM Page 29

C. An application server

D. A database server

3. The EJB’s deployment descriptor is

A. A format for accessing EJB at runtime

B. An XML file used by EJB clients to learn about the EJB’s settings, such as
transaction, security, and access control

C. An XML file for bundling EJBs for delivery to clients

D. An XML file format used by the container to learn about the EJB’s settings,
such as transaction, security, and access control

Quiz Answers
1. D

2. A

3. D

Exercises
1. What are the goals of the EJB architecture?

3. What are the main differences between EJBs and JavaBeans?

4. What are the common services available to the EJB container?

5. What are all the roles and responsibilities in developing and deploying J2EE appli-
cations?

30 Day 1

03 0672324237 CH01 9/24/02 3:49 PM Page 30

DAY 2

WEEK 1

Understanding EJB Types
and Interfaces

One challenge facing a new Enterprise JavaBeans (EJB) developer is to under-
stand EJB types and interfaces, and how the EJB container performs its func-
tionality behind the scenes.

Today, you’ll learn all the different types of Enterprise JavaBeans and their
interfaces. You’ll look under the hood of the Enterprise JavaBean, which will
help you get a better picture. You’ll also learn the fundamentals of packaging
and deploying Enterprise JavaBeans.

Enterprise JavaBean Types
The EJB 2.0 specification defines three types of Enterprise JavaBeans: the ses-
sion bean, the entity bean, and the message-driven bean. Figure 2.1 shows all
three types of Enterprise JavaBeans.

04 0672324237 ch02 9/24/02 2:34 PM Page 31

Session beans contain business-processing logic. Entity beans contain data-processing
logic. Message-driven beans allow clients to asynchronously invoke business logic. In the
following sections, you’ll learn about each type of Enterprise JavaBeans.

Session Beans
As its name suggests, session beans implement a conversation between a client and the
server side. Session beans execute a particular business task on behalf of a single client
during a single session. They implement business logic such as workflow, algorithms,
and business rules.

Session beans are analogous to interactive sessions. Just as an interactive session isn’t
shared among users, a session bean is not shared among clients. Like an interactive ses-
sion, a session bean isn’t persistent (that is, its data isn’t saved to a database). Session
beans are removed when the EJB container is shut down or crashes.

You can think of a session bean object as an extension of the client on the server side. It
works for its client, sparing the client from complexity by executing business tasks inside
the server.

Session beans typically contain business process logic and workflow, such as sending an
email, looking up a stock price from a database, and implementing compression and
encryption algorithms.

There are two types of session beans: stateless and stateful. A stateless session bean rep-
resents a conversation with the client without storing any state. On the other hand, a
stateful session bean represents a conversational session with a particular client. Such a
session object automatically maintains its conversational state, within its member vari-
ables, across multiple client-invoked methods.

In Day 3, “Understanding Session Beans,” we’ll scratch the surface of session beans and
look into more details of both of their subtypes. In Day 5, “Developing Stateless Session

32 Day 2

FIGURE 2.1
Enterprise JavaBean
types.

Session Bean Entity Bean

Enterprise JavaBean

Message Driven Bean

04 0672324237 ch02 9/24/02 2:34 PM Page 32

Understanding EJB Types and Interfaces 33

2

Beans,” we’ll take a hands-on approach to developing a stateless session bean. Day 6,
“Developing Stateful Session Beans,” is dedicated to stateful session beans with a practi-
cal example from our University Registration System.

Entity Beans
If you’ve worked with databases, you’re familiar with persistent data. The data in a data-
base is persistent; that is, it exists even after the database server is shut down.

Entity beans are persistent objects. They typically represent business entities, such as
customers, products, accounts, and orders. Typically, each entity bean has an underlying
table in a relational database, and each instance of the bean corresponds to a row in that
table.

The state of an entity bean is persistent, transactional, and shared among different clients.
It hides complexity behind the bean and container common services. Because the clients
might want to change the same data, it’s important that entity beans work within transac-
tions. Entity beans typically contain data-related logic, such as inserting, updating, and
removing a customer record in the database.

Two types of entity beans are relevant to persistence: container-managed persistence
(CMP) and bean-managed persistence (BMP). In a CMP entity bean, the EJB container
manages the bean’s persistence according to the data-object mapping in the deployment
descriptor. Any change in the entity bean’s state will be automatically saved to the data-
base by the container. No code is required in the bean to reflect these changes or to man-
age the database connection. On the other hand, a BMP entity bean has to manage both
the database connections and all the changes to the bean’s state.

In Day 8, “Understanding Entity Beans,” we’ll scratch the surface of entity beans and
look into more details of both of their subtypes. Day 10, “Developing Bean-Managed
Persistence Entity Beans,” is dedicated to developing a CMP entity bean. BMP is dis-
cussed with a hands-on example in Day 11, “Developing Container-Managed Persistence
Entity Beans.” We’ll also look into the container-managed relationship of entity beans, a
new enhancement to EJB 2.0.

Message-Driven Beans
In synchronous communication, the client blocks until the server-side object completes
processing. In asynchronous communication, the client sends its message and does not
need to wait for the receiver to receive or process the message. Session and entity beans
process messages synchronously.

04 0672324237 ch02 9/24/02 2:34 PM Page 33

Message-driven beans, on the other hand, are stateless components that are asynchro-
nously invoked by the container as a result of the arrival of a Java Message Service
(JMS) message. A message-driven bean receives a message from a JMS destination, such
as a queue or topic, and performs business logic based on the message contents, such as
logic to receive and process a client notification.

An example of a message-driven bean is when a shopper makes an online purchase
order; an order bean could notify a credit verification bean. A credit verification bean
could check the shopper’s credit card in the background and send a notification message
for approval. Because this notification is asynchronous, the shopper doesn’t have to wait
for the background processing to complete.

In Day 13, “Understanding JMS and Message-Driven Beans,” we’ll explore the JMS
architecture and highlight the use of message-driven beans. Developing a message-driven
bean will be the subject of Day 14, “Developing Messsage-Driven Beans,” when we’ll
choose an example from our University Registration System.

Enterprise JavaBean Under the Hood
Figure 2.2 shows the enterprise bean under the hood. The client looks up the EJB home
object of the installed enterprise bean via Java Naming and Directory Interface (JNDI)
services. The client then uses the home object to create an enterprise bean instance.
However, the client isn’t given a direct reference to the newly created enterprise bean
instance. Instead the client receives reference to an EJB object, an object of the compo-
nent interface. The client then calls the EJB object, which delegates calls to the enter-
prise bean instance.

34 Day 2

FIGURE 2.2
Enterprise JavaBean
under the hood.

Enterprise bean
instance

Client

EJB Home
object

EJB object

E
JB

 C
ontainer

A client never directly creates or accesses instances of the Enterprise
JavaBean instance. Only the container creates the Enterprise JavaBean
instances, and registers its home interface into the JNDI service.

Note

04 0672324237 ch02 9/24/02 2:34 PM Page 34

Understanding EJB Types and Interfaces 35

2

Because all method calls from a client to an Enterprise JavaBean are indirect (through
the EJB home object or EJB object), the EJB container can control how and when calls
to the Enterprise JavaBean class occur. This indirection allows the EJB container to pro-
vide functionality such as life cycle management, security, and transactions between
Enterprise JavaBean class method calls.

The material discussed in this section is applicable only to session and entity
beans. Clients access session beans and entity beans through interfaces.
However, clients don’t access message-driven beans through interfaces. A
message-driven bean contains only a bean class and doesn’t have interfaces
that define client access. The main access to a message-driven bean is
through the JMS provider using a JMS destination (queue or topic).

Caution

EJB Interfaces
Each session or entity bean has two interfaces (home and component) and a bean class.
A message-driven bean has only a bean class and defines no interfaces.

In the following sections, you’ll learn the fundamentals of the home interface, compo-
nent interface, and bean class.

The Home Interface
Clients use the home interface to create, remove, and find Enterprise JavaBean instances.
You can think of the home object as the Enterprise JavaBean factory; you write the inter-
face, the container tools generate the home class that corresponds to it, and the home
interface defines the creation methods for the Enterprise JavaBean.

For example, the home interface EnrollmentCartHome is defined as follows:

public interface EnrollmentCartHome extends EJBHome {
EnrollmentCart create() throws CreateException, RemoteException;

}

Therefore, to create an EnrollmentCart bean instance, you call the create() method
with no parameters.

The Component Interface
The component interface exposes an Enterprise JavaBean’s business methods to a client.
The client calls the methods defined in the component interface to invoke the business
logic implemented by the bean. You can think of the component object as a proxy to the

04 0672324237 ch02 9/24/02 2:34 PM Page 35

Enterprise JavaBean instance. You write this interface. The container tools generate the
component class corresponding to this interface.

The component interface EnrollmentCart is defined as follows:

public interface EnrollmentCart extends EJBObject {
public void addCourses(String[] courseIds) throws RemoteException;
public Collection getCourses() throws RemoteException;
public void empty() throws RemoteException;

}

Therefore, to add courses to the enrollment cart, you call the addCourses method on the
component interface and pass the proper parameters.

36 Day 2

You cannot assume that any particular implementation of classes will be
generated by the container tools. It is highly vendor-specific. The container
might or might not generate a class corresponding to each interface.

Caution

The component interface has only the methods that are callable by the
client. The Enterprise JavaBean may have other methods in it, but if they
aren’t listed in the component interface, clients cannot call them.

Note

When compiling both the home and component interfaces, a class may be generated for
each interface by using a vendor-specific EJB compiler.

The Enterprise JavaBean Class
The Enterprise JavaBean class is where you implement the business logic defined in the
component interface. Session beans implement the javax.ejb.SessionBean interface,
whereas entity beans implement the javax.ejb.EntityBean interface, and message-dri-
ven beans implement the javax.ejb.MessageDrivenBean interface.

For example, the EnrollmentCartEJB session bean is implemented as follows:

public class EnrollmentCartEJB implements javax.ejb.SessionBean {
private SessionContext ctx;
private HashSet cart;
/* callback methods */
public void setSessionContext(SessionContext ctx) {

this.ctx = ctx;
}
public void ejbCreate() throws CreateException {

cart = new HashSet();
}

04 0672324237 ch02 9/24/02 2:34 PM Page 36

Understanding EJB Types and Interfaces 37

2

public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbRemove() {}

/* Here you implement all business methods
as defined in the component interface...

*/
public void addCourses(String[] courseIds) {

if (courseIds == null) {
return;

}
for (int i = 0; i < courseIds.length ; i ++) {

cart.add(courseIds[i]);
}

}
public Collection getCourses() {

return cart;
}
public void empty() {

cart.clear();
}

}

First, the EnrollmentCartBean implements all the business methods it advertised in its
interfaces. Because it is a session bean, EnrollmentCartBean implements
javax.ejb.SessionBean. The javax.ejb.SessionBean interface provides few callback
methods to be implemented by any session bean. In the preceding example, the
EnrollmentCartEJB implements the callback methods setSessionContext() and
ejbCreate(). The EJB container calls these callback methods to perform some of its
functionality and also to notify the instance of important events. Clients will never call
such methods.

The Enterprise JavaBean class implements neither the home interface nor
the component interface. This is often a source of confusion for new devel-
opers.

Note

An Enterprise JavaBean may include other classes, or even other packages,
but the classes listed earlier are the minimum.

Note

04 0672324237 ch02 9/24/02 2:34 PM Page 37

Java Remote Method Invocation over
Internet Inter-ORB Protocol Technology

Java Remote Method Invocation (RMI) over CORBA’s Internet Inter-Orb Protocol (IIOP)
combines the best features of Java RMI technology with the best features of CORBA
technology. The Enterprise JavaBeans architecture adopted RMI/IIOP as its standard
communication protocol. Here we briefly discuss RMI and CORBA’s IIOP and their ben-
efits. This discussion will help you to better understand the next section, “Remote and
Local Interfaces.”

In the Java distributed object model, a remote object is one whose methods can be
invoked from another Java Virtual Machine (JVM), potentially on a different host. An
object of this type is described by one or more remote interfaces, which are Java inter-
faces that declare the methods of the remote object. A remote interface must at least
extend, either directly or indirectly, the interface java.rmi.Remote.

Remote method invocation is the action of invoking a method of a remote interface on a
remote object. RMI uses a standard mechanism for communicating with remote objects:
stubs and skeletons. A stub for a remote object acts as a client’s local representative or
proxy for the remote object. The caller invokes a method on the local stub, which is
responsible for carrying out the method call on the remote object. In RMI, a stub for a
remote object implements the same set of remote interfaces that the remote object imple-
ments.

When a stub’s method is invoked, it does the following:

• Initiates a connection with the remote JVM containing the remote object.

• Marshals (writes and transmits) the parameters to the remote JVM.

• Waits for the result of the method invocation.

• Unmarshals (reads) the return value or exception returned.

• Returns the value to the caller.

The stub hides the serialization of parameters and the network-level communication in
order to present a simple invocation mechanism to the caller.

In a remote JVM, each remote object may have a corresponding skeleton. A skeleton is
responsible for dispatching the call to the actual remote object implementation. When a
skeleton receives an incoming method invocation, it does the following:

• Unmarshals (reads) the parameters for the remote method.

• Invokes the method on the actual remote object implementation.

• Marshals (writes and transmits) the result (return value or exception) to the caller.

38 Day 2

04 0672324237 ch02 9/24/02 2:34 PM Page 38

Understanding EJB Types and Interfaces 39

2

RMI provides the benefit of location transparency. Clients aren’t aware of the location of
the remote object. From the client’s perspective, it makes no difference whether the
remote object is in the same JVM as the client, in a different JVM but on the same
machine as the client, or on a different machine from the client.

CORBA (Common Object Request Broker Architecture) is an industry-developed standard
for communication among objects. It includes a communication protocol for interobject
communication called Internet inter-orb protocol. A key feature of CORBA is its inter-
operability across platforms, languages, and vendors.

EJB adopted Java Remote Method Invocation (JRMI) over RMI/IIOP as the standard
communication protocol. This allows maximum flexibility such as location transparency
and interoperability. Other protocols are permitted, but IIOP is required for conforma-
tional EJB implementations to interoperate with one another.

You write the Enterprise JavaBean class itself, plus the bean’s home and component
interfaces. The client-side implementations of the home and component interfaces (the
home class and component class) are generated by deployment tools, and handle the
communication between the client and the EJB container. Clients can access an
Enterprise JavaBean only through the bean’s home and component interfaces.

Remote and Local Interfaces
During design, you need to decide on the kind of interfaces you will provide to your
enterprise bean. The interfaces you provide can be local or remote. Remote interfaces are
RMI interfaces that are provided to allow the clients of a bean to be location-indepen-
dent. EJB 2.0 introduced local interfaces to improve performance of client access to
enterprise beans.

Remote Interfaces
A remote client accesses a session bean or an entity bean through the bean’s remote
interface and remote home interface. The remote and remote home interfaces of the bean
provide the remote client view of the EJB.

• The remote interface extends the javax.ejb.EJBObject interface. Container tools
generate the corresponding EJB object implementing this interface.

• The remote home interface extends the javax.ejb.EJBHome interface. Container
tools generate the corresponding EJB home object implementing this interface.

Figure 2.3 shows a remote client can run in the same or a different JVM as that of the
Enterprise JavaBean. The remote client can be a Web component (such as a JSP or
servlet) or another Enterprise JavaBean, or an application client.

04 0672324237 ch02 9/24/02 2:34 PM Page 39

Local Interfaces
Local interfaces were first introduced in the EJB 2.0 specification. Local interfaces
improve the performance of client access to Enterprise JavaBeans that are located in the
same JVM. This optimization is achieved by making a direct local process call instead of
using remote invocation. Any RMI call is expensive compared to a local call. Local calls
don’t incur the communication overhead, such as connection initiation, and stubs and
skeletons marshalling and unmarshalling the call parameters, that is associated with
remote calls. Local calls are magnitude times faster compared to remote calls.

A local client accesses a session or entity bean through the bean’s local interface and
local home interface. A local client is located in the same JVM as the Enterprise
JavaBean.

• The local interface extends the javax.ejb.EJBLocalObject interface. Container
tools generate the corresponding EJB local object implementing this interface.

• The local home interface extends the javax.ejb.EJBLocalHome interface.
Container tools generate the corresponding EJB local home object implementing
this interface.

Figure 2.4 shows a local client must run in the same JVM as that of the Enterprise
JavaBean. Unlike a remote client, a local client is not location-transparent. A local client
can be a Web component (such as a JSP or servlet) or another Enterprise JavaBean.

40 Day 2

Enterprise bean
instance

EJB object

EJB Home
object

EJB container

Remote
Client

JVM

Remote
Client

JVM

FIGURE 2.3
Remote clients.

If you provide remote interfaces, you get maximum flexibility through loca-
tion transparency. Your clients can be located anywhere. If you provide local
interfaces to your Enterprise JavaBean, you get maximum performance, but
at the price of location transparency: Your clients must be located in the
same JVM as the Enterprise JavaBean instance. On the other hand, with
remote interfaces, you can improve the performance by distributing the
components among different servers.

Note

04 0672324237 ch02 9/24/02 2:34 PM Page 40

Understanding EJB Types and Interfaces 41

2

Deployment Descriptors
A deployment descriptor is an Extensible Markup Language (XML) document (with an
.xml extension) that describes a component’s deployment settings. Because deployment
descriptor information is declarative, it can be changed without modifying the Enterprise
JavaBean source code. For example, a deployment descriptor declares transaction attrib-
utes and security authorizations for an Enterprise JavaBean. You can create the deploy-
ment descriptors by hand or use vendor tools to generate them. At deployment time, the
J2EE server reads the deployment descriptor and acts on the component accordingly. The
following sections describe various deployment descriptors.

Standard ejb-jar.xml
This file is the standard deployment descriptor as specified by Sun, and it must contain
the Sun Microsystems–specific EJB document type definition (DTD).

The ejb-jar.xml describes the Enterprise JavaBean’s deployment properties, such as its
bean type and structure. The file also provides the EJB container with information about
where it can find, and then load, the home interface, remote interface, and bean class. It
declares its internal dependences and the application assembly information, which

FIGURE 2.4
Local clients.

Enterprise bean
instance

Local
Object

Local
Home
Object

EJB container

Local
Client

JVM

Remote
Client

JVM

The calling semantics of local interfaces are different from those of remote
interfaces. Remote interfaces pass parameters using call-by-value semantics,
whereas local interfaces use call-by-reference. For example, an Enterprise
JavaBean could pass a large document to the client. With remote interfaces,
the system would return a copy of the document to the client. On the other
hand, with local interfaces, the client would get a reference to the bean’s
document. So, the client could potentially change the Enterprise JavaBean’s
state without the bean’s knowledge. If this isn’t acceptable, your Enterprise
JavaBean must explicitly copy the data before returning to the client.

Caution

04 0672324237 ch02 9/24/02 2:34 PM Page 41

describes how the Enterprise JavaBean in the bundled ejb-jar file is assembled into an
application deployment unit.

Here is a sample ejb-jar.xml file:

<?xml version=”1.0”?>

<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>EnrollmentCart</ejb-name>
<home>EnrollmentCartHome</home>
<remote>EnrollmentCart</remote>
<ejb-class>EnrollmentCartEJB</ejb-class>
<session-type>Stateful</session-type>
...

</session>
</enterprise-beans>

</ejb-jar>

The prolog contains the declaration and the DTD for the validation. The document root
is the <ejb-jar> tag. The element <enterprise-beans> contains subelements to
describe the bean deployment properties. The remote and home interfaces and the bean
class name are described using their fully qualified names. The bean’s subtype is
declared as a stateful session bean.

42 Day 2

The Enterprise JavaBean type is differentiated by the interface implemented
and by the subtype declaration in the deployment descriptor.

Note

Vendor-Specific Deployment Descriptor
In addition to standard ejb-jar.xml, an application typically requires a certain amount
of additional environment-specific or vendor-specific binding information. In deploying
an EJB to a specific application server, you might be required to have a vendor-specific
deployment descriptor that provides information about how to map a package name to a
JNDI name, and how to handle both security and persistence. For example, jboss.xml is
specific to the JBoss server, and weblogic-ejb-jar.xml is specific to BEA WebLogic
Server.

04 0672324237 ch02 9/24/02 2:34 PM Page 42

Understanding EJB Types and Interfaces 43

2
Packaging and Deploying Enterprise
JavaBeans

The process of assembling components into modules, and modules into applications, is
known as packaging. The Java ARchive (JAR) file format enables you to bundle multiple
files into a single archive file. Enterprise beans use the JAR file format for packaging
Enterprise JavaBeans in a generic and portable way.

The ejb-jar file is the standard format for packaging Enterprise JavaBeans. Figure 2.5
shows sample contents of an ejb-jar file. It contains deployment descriptor(s), one or
more Enterprise bean classes, their home and component interfaces, and related files.

Vendor-specific deployment descriptors aren’t standardized. They are differ-
ent for different vendors. Also, they could potentially change for a given
vendor.

Caution

FIGURE 2.5
Standard ejb-jar file.

Home
interface

Enterprise bean
class

Component
interface

Deployment descriptors

Ejb-jar file

After you have packaged your Enterprise JavaBeans, you need to install and configure
them in an EJB container for loading and execution. This is known as deployment, which
makes the new functionality available as a service.

During deployment, you’ll make several decisions, such as how clients find the compo-
nents (naming, security, authorization), concurrency, data access (which component maps
to which database objects, vendor/type of databases, JDBC drivers), which component
lives where (partitioning), and which component participate in distributed transactions
and which ones don’t. Containers provide tools to help you with the deployment process.

04 0672324237 ch02 9/24/02 2:34 PM Page 43

Enterprise JavaBean Restrictions
The EJB container provides functionality such as life cycle management, threading, secu-
rity, and resource pooling. Enterprise bean instances may be distributed; that is, they may
run in separate JVMs or on separate machines. To efficiently manage resources such as
memory, the container can swap the instances from memory to disk.

To run properly, the container imposes certain restrictions on the components that live
within. This ensures the proper functioning of the container and the Enterprise
JavaBean’s portability and scalability.

The following are some of the restrictions imposed on Enterprise JavaBeans:

• Must not read/write static fields: It’s okay to use read-only static fields. It is bet-
ter to declare the static fields as final. Static fields are shared among all instances
of a particular class. Updating a static field works if all the instances are running in
the same JVM, but it doesn’t work if the instances are distributed in separate
JVMs.

• Must not use thread synchronization primitives to synchronize execution of
multiple instances: Thread synchronization works if all the instances are running
in the same JVM, but doesn’t work if the instances are distributed in separate
JVMs.

• Must not create or manage (start, stop, suspend, resume, change priority)
threads: The EJB container is responsible for creating and managing threads.
Allowing the Enterprise JavaBean instances to create and manage threads interferes
with the container functionality.

• Must not read or write files and directories or access file descriptors: Files,
directories, and file descriptors are typically local resources to a machine, and can’t
be distributed across machines in a portable way. Also, access to the file system is
a security hazard because the Enterprise JavaBean could potentially read and write
the contents of sensitive files.

• Must not listen or accept connections on a socket: This isn’t allowed because if
an Enterprise JavaBean is listening on a socket, it can’t be swapped to disk. It’s
okay for Enterprise JavaBeans to be network socket clients.

Best Practices
You should consider using a session bean if only one client has access to the bean
instance and the state of the bean is not persistent. An entity bean is best used if multiple
clients can access the bean and the state of the bean is persistent. You should consider

44 Day 2

04 0672324237 ch02 9/24/02 2:34 PM Page 44

Understanding EJB Types and Interfaces 45

2

using a message-driven bean when you want to develop loosely coupled systems and
process asynchronous messages.

Deciding on remote or local access depends on several factors. If your client runs on a
different JVM or machine, you must provide remote access. For example, in large pro-
duction systems, Web components might run on a different machine. On the other hand,
entity beans with container-managed relationships (CMR) with other entity beans (dis-
cussed on Day 11) must provide local access. In other situations, when in doubt, prefer
remote access. This gives you maximum flexibility to distribute the components across
machines to meet a higher load.

Summary
If today was your first exposure to EJB fundamentals, it probably seems theoretical and a
bit overwhelming. Don’t be alarmed. You’ll be using these concepts for the rest of this
book, and they will become familiar as you gain more experience using them.

Here is the summary of terms and concepts covered today.

A session bean executes a particular business task on behalf of a single client. An entity
bean is a persistent business object. A message-driven bean allows clients to asynchro-
nously invoke business logic.

Clients use the home interface to create, remove, and find Enterprise JavaBean instances.
A client calls the methods defined in the component interface to invoke the business
logic implemented by the Enterprise JavaBean.

The remote home interface is a location-transparent version of the home interface.
Container tools generate the corresponding EJB home object. The remote interface is the
location-transparent version of the component interface. Container tools generate the cor-
responding EJB object when implementing this interface.

The local home interface is a non-location-transparent, high-performance version of the
home interface. Container tools generate the corresponding EJB local home object when
implementing this interface. The local interface is a non-location-transparent, high-per-
formance version of the component interface. Container tools generate the corresponding
EJB local object when implementing this interface.

Packaging is the process of assembling components/modules into an application.
Deployment is the process of installing and configuring the packaged components and
applications in a container.

04 0672324237 ch02 9/24/02 2:34 PM Page 45

Q&A
Q Can a client directly create an Enterprise JavaBean?

A No, a client never directly creates or accesses instances of the Enterprise JavaBean
instance. Only the EJB container creates the Enterprise JavaBean instances.
Remember that the container tools generate the home object. This allows the con-
tainer to provide functionality such as life cycle management, security, transaction,
concurrency, and other common services.

Q Can I write both local and remote interfaces for my Enterprise JavaBean?

A Yes, you can write both local and remote interfaces to your Enterprise JavaBean.
This allows both remote and local clients to access your Enterprise JavaBean.
Typically, only either local or remote interfaces are provided.

Quiz
1. Which of the following Enterprise JavaBeans processes messages asynchronously?

A. Stateless session bean

B. Stateful session bean

C. Entity bean

D. Message-driven bean

2. Which one of the following can access the local client view of an Enterprise
JavaBean?

A. Servlet within the same JVM as the Enterprise JavaBean

B. Servlet in a different JVM than the Enterprise JavaBean

C. A non-EJB in a different JVM than the Enterprise JavaBean

D. An EJB in a different JVM than the Enterprise JavaBean

3. Which one of the following isn’t a programming restriction for an Enterprise
JavaBean?

A. Read/write static fields

B. Start a new thread

C. Open a socket client

D. Listen on a socket

46 Day 2

04 0672324237 ch02 9/24/02 2:34 PM Page 46

Understanding EJB Types and Interfaces 47

2

Quiz Answers
1. D

2. A

3. C

Exercises
1. Describe all the different types of Enterprise JavaBeans.

2. Describe the differences between a remote client and a local client.

04 0672324237 ch02 9/24/02 2:34 PM Page 47

04 0672324237 ch02 9/24/02 2:34 PM Page 48

DAY 3

WEEK 1

Understanding Session
Beans

Session beans were first introduced in March of 1998 when Sun Microsystems
published the EJB 1.0 specification.

A session bean is one type of enterprise bean that resides in EJB container.
Session beans model business processes. They provide a robust way for han-
dling sessions in a J2EE application.

Today’s road map:

• Learn the fundamentals of session beans, and their characteristics and
types

• Learn how the concepts of instance pooling, activation, and passivation
are applicable to session beans

• Learn session bean methods and examine their life cycle diagrams

05 0672324237 ch03 9/24/02 2:34 PM Page 49

What Is Conversational State?
Client/server interaction typically involves multiple request/response roundtrips. A ses-
sion is a single client’s interaction with a server. The session state is client-specific data
that is accumulated during the session. This session state is also known as conversational
state.

The conversational state can be maintained in the client, the server, or split between
them. For example, the contents of the temporary shopping cart can be maintained in the
client side or in the server object’s instance variables. The division of responsibility is
based on factors such as performance, security, and so on.

The use of session beans to maintain client interactions is the standard method in any
J2EE application. As their name implies, session beans were designed with this purpose
in mind. Services such as security, concurrency, and transactions are provided to session
beans by the container.

What Are Session Beans?
A session bean implements a conversation between a client and the server side. Session
beans execute a particular business task on behalf of a single client during a single ses-
sion. They implement business logic such as workflow, algorithms, and business rules.

You can think of a session object as extension of client on the server side. It works for its
client, sparing the client from complexity by executing business tasks inside the server.

For example, a session bean can send email, help in workflow management, and imple-
ment algorithms such as compression, encryption, and so on.

50 Day 3

Session bean clients can be from the EJB tier, as other session beans, from
the Web tier, as servlets and taglibs, or they can be from the client tier as a
J2EE client. The session bean by itself implements the business logic. The
container provides functionality for remote access, security, concurrency,
transactions, and so on.

Note

Session Bean Files
Like other enterprise beans, a session bean consists of the home interface, the component
interface, the bean class, and the deployment descriptor.

05 0672324237 ch03 9/24/02 2:34 PM Page 50

Understanding Session Beans 51

3

• The home interface is either a remote home interface or local home interface. A
remote home interface extends the javax.ejb.EJBHome interface, whereas a local
home interface extends javax.ejb.EJBLocalObject. The home interface is used as
the bean factory. The client uses the home interface to manage the life cycle of the
session bean.

• The component interface is either a remote interface or a local interface. The
remote interface extends the javax.ejb.EJBObject interface and the local inter-
face extends the javax.ejb.EJBLocalObject interface. The component interface
defines all the methods that are callable by the client.

• The bean class implements the javax.ejb.SessionBean interface. In addition, it
implements all business methods listed in the remote interface.

• The deployment descriptors define the session bean type, transaction, security, and
run-time properties.

Characteristics of Session Beans
Session beans typically have the following characteristics:

• Represent a conversation between client and server.

• Execute on behalf of single client. They cannot be shared by more than one client
at the same time. Also, they cannot be called by the same client using multiple
threads.

• Can be both transaction-aware and use security.

• Do not directly represent data in a database. However, they can access and update
data on behalf of the client.

• Are relatively short-lived. They are removed when the client removes them, or
when the EJB container shuts down or crashes.

Types of Session Beans
There are two types of session beans: stateless and stateful. Stateless session beans are
business objects that hold conversations that span a single client-invoked method call.
They do not maintain any conversational state associated with any client. Stateful session
beans are business objects that hold conversations that span multiple client-invoked
method calls. Stateful session beans provide an easy and robust way to handle conversa-
tional state.

05 0672324237 ch03 9/24/02 2:34 PM Page 51

Stateless Session Beans
Stateless session beans do not maintain the conversational state associated with any
client. The client is responsible for maintaining the conversational state, if any. The con-
tainer could reuse the same instance to serve multiple clients. This makes perfect sense
because the bean instance doesn’t maintain any client specific state.

An example of stateless session bean is a stock quote component that returns the current
price of a given stock symbol. Such a bean could look up the stock price from a database
that is updated by a real-time feed. Another example is a stateless session bean that
implements a compression algorithm. This bean accepts a plain text as a parameter and
returns a compressed buffer.

The sample university registration application uses a stateless session bean to model a
SignOn component to verify the user’s login and password. It also allows new users to
create a login and password in the system.

The remote interface SignOn is defined as follows:

public interface SignOn extends EJBObject {
public void addUser(String username, String password)

throws RemoteException;
public boolean validateUser(String login, String password)
throws InvalidLoginException, RemoteException;

}

This interface contains two business methods, addUser and validateUser, which are
callable by the client.

The home interface SignOnHome is defined as follows:

public interface SignOnHome extends EJBHome {
SignOn create()

throws CreateException, RemoteException;
}

So, to create a bean instance, you call the create() method on the home interface.
Notice that the create() method returns a remote interface instance (as opposed to the
enterprise bean class).

The bean class SignOnEJB is defined as follows:

public class SignOnEJB implements SessionBean {
private SessionContext ctx;
/* --- callback methods --- */
/* container calls this method to set the associated session context */
public void setSessionContext(SessionContext c) {

ctx = c;
}

52 Day 3

05 0672324237 ch03 9/24/02 2:34 PM Page 52

Understanding Session Beans 53

3

/* container calls this method so that you can
initialize your session bean instance

*/
public void ejbCreate() {}
/* container invokes this method before it

ends the life of the session object.
*/
public void ejbRemove() {}
/* ejbActivate and ejbPassivate are

not used by stateless session beans
*/
public void ejbActivate() {}
public void ejbPassivate() {}
/* ---here you implement all business methods
as defined in the component interface---

*/
public void addUser(String userName, String password) {
/* code to add a new user to the database */

}
public boolean validateUser(String userName, String password)

throws InvalidLoginException {
/* code to validate the user login and password from database */

}
}

The create() method of a stateless session bean should not accept any para-
meters. Because a stateless session bean does not maintain any conversa-
tional state, you must make sure that none of the client-passed parameters
are stored beyond the method call.

Caution

The deployment descriptor for the enterprise bean is specified as follows:

<session>
<ejb-name>SignOnEJB</ejb-name>
<home>SignOnHome</home>
<remote>SignOn</remote>
<ejb-class>SignOnEJB</ejb-class>
<session-type>Stateless</session-type>
...

</session>

The session element declares a session bean and an ejb-name element within the ses-
sion element, which defines the session bean’s name (SignOnEJB). The session element
also declares other things, such as the home interface (SignOnHome), remote interface
(SignOn), and bean’s class (SignOnEJB). The session-type element declares this is a
stateless session bean (as opposed to a stateful session bean).

05 0672324237 ch03 9/24/02 2:34 PM Page 53

Instance Pool
The creation and destruction of enterprise beans are expensive operations. To reduce this
cost, the EJB container maintains an instance pool for each type of stateless session
bean. At start up, the container creates instances as specified in the deployment descrip-
tor of the stateless session bean. The EJB container may reuse the same instance to serve
multiple client requests. This mechanism of multiplexing enhances the performance and
response time of client interaction. Using a small number of instances in a predefined
pool to satisfy a large number of clients has been proven to be a good practice for
increasing performance and managing resources. The instance pool is also called the
caching policy.

54 Day 3

Instance pooling is applicable only to stateless session beans, not to stateful
session beans.

Caution

Stateful Session Beans
Stateful session beans maintain the state associated with a client. Stateful session bean
fields contain a conversational state on behalf of the session object’s client. This state
describes the conversation represented by a specific client/session object pair. The con-
versational state is preserved across method invocations and transactions.

Unlike a stateless session bean, a stateful session object has a unique identity that is
assigned by the EJB container at create time.

An example of a stateful session bean is a shopping cart that represents the collection of
products selected by a particular customer for purchase during a session. The shopping
cart should not be shared because it represents a particular interaction with a particular
customer and is alive only for the customer’s session. Also, the shopping cart is not saved
into the database unless the customer is ready to place an order. Another example of a
stateful session object is a trader session component that allows a trader to interactively
add, remove, and place trades.

Two or more different clients cannot share a stateless session bean instance
concurrently. They can, however, reuse the same instance that comes from
the instance pool.

Note

05 0672324237 ch03 9/24/02 2:34 PM Page 54

Understanding Session Beans 55

3

Stateful session beans are useful in workflow management that requires the bean to
maintain client data over different method invocations. Behind the scenes, the bean man-
ages the workflow of several enterprise beans. The bean mediates between the client and
the other components of the application, presenting a simplified view to the client.

The sample university registration application uses stateful session beans to model
enrollment cart component. An enrollment cart is similar to a shopping cart. It represents
the collection of courses selected by a particular student for purchase during a session.

The remote interface EnrollmentCart is defined as follows:

public interface EnrollmentCart extends EJBObject {
public void addCourses(String[] courseIds) throws RemoteException;
public Collection getCourses() throws RemoteException;
public void empty() throws RemoteException;

}

The business methods callable by clients are defined in this interface. For example, the
EnrollmentCart interface defines three business methods: addCourses (to add courses to
the cart), getCourses (to retrieve the courses in the cart), and empty (to empty the enroll-
ment cart).

The home interface EnrollmentCartHome is defined as follows:

public interface EnrollmentCartHome extends EJBHome {
EnrollmentCart create() throws CreateException, RemoteException;

}

So, to create a enrollment cart instance, the client calls the create() method on the
home interface. The create() method returns a remote interface instance (as opposed to
the enterprise bean class).

The bean class EnrollmentCartEJB is defined as follows:

public class EnrollmentCartEJB implements SessionBean {
/* ctx and cart constitute the conversational state */

private SessionContext ctx;
private HashSet cart;

/* --- callback methods */
/* container calls this method to set the associated session context */

public void setSessionContext(SessionContext c) {
ctx = c;

}
public void ejbCreate() throws CreateException {

cart = new HashSet();
}
/* This method is called when the instance

05 0672324237 ch03 9/24/02 2:34 PM Page 55

is activated from its “passive” state.
*/
public void ejbActivate() {}
/*
This method is called when the container intends to
passivate the bean instance.

*/
public void ejbPassivate() {}
/* Container invokes this method before it

ends the life of the session object.
*/
public void ejbRemove() {}
/* ...here you implement all business methods

as defined in the component interface...
*/
public void addCourses(String[] courseIds) {

if (courseIds == null) {
return;

}
for (int i = 0; i < courseIds.length ; i ++) {

cart.add(courseIds[i]);
}

}
public Collection getCourses() {

return cart;
}
public void empty() {

cart.clear();
}

}

The EnrollmentCartEJB implements all the methods it defined in the EnrollmentCart
interface. In addition, it implements callback methods to be implemented by any session
bean.

The deployment descriptor for the enrollment cart session bean is specified as follows:

<session>
<ejb-name>EnrollmentCartEJB</ejb-name>
<home>EnrollmentCartHome</home>
<remote>EnrollmentCart</remote>
<ejb-class>EnrollmentCartEJB</ejb-class>
<session-type>Stateful</session-type>
...

</session>

The deployment descriptor for a stateful session bean is similar to that of a stateless ses-
sion bean except for the element session-type (which is stateful in this case).

56 Day 3

05 0672324237 ch03 9/24/02 2:34 PM Page 56

Understanding Session Beans 57

3

Passivation and Activation
The EJB container creates a separate stateful bean instance for each new connected
client. In large e-commerce applications, the number of clients connected concurrently to
a web site can be in the thousands. This can have an adverse effect on performance when
resources are used up. Passivation and activation are mechanisms that are provided by
the EJB container to manage these valuable resources, such as memory, in order to
reduce the number of stateful session bean instances required to service all concurrent
clients.

Passivation is the mechanism by which the EJB container stores the bean’s state into a
back store, such as the file system or a database. The container starts passivation as soon
as the number of allocated stateful session beans exceeds a certain threshold.

The passivation process serializes all non-transient member variables to a persistent
store. After serializing the enterprise bean state, the EJB container calls the
ejbPassivate() method on the instance. In this method, you would close any resources,
such as sockets, JDBC connections that you are holding.

Activation, on the other hand, is the process of restoring the bean state from the back
store. The EJB container activates a passivated instance when the bean’s client decides to
continue interactions with the bean instance. After restoring the bean’s state, the EJB
container calls the ejbActivate() method on the instance. In this method, you would
open any resources you need to service the client, such as sockets, JDBC connections,
and so on.

For example, you can specify the threshold (maximum number of beans in the cache) in
the deployment descriptor for the WebLogic server as follows:

<stateful-session-cache>
<max-beans-in-cache>1000</max-beans-in-cache>

</stateful-session-cache>

As new concurrent clients request the bean’s services, WebLogic creates new instances of
the bean. When the 1001st client requests the bean’s services, the server passivates some
of the idle beans (perhaps using an LRU [Least Recently Used] algorithm).

Passivation and activation are applicable only to stateful session beans and
not to stateless session beans.

Caution

05 0672324237 ch03 9/24/02 2:34 PM Page 57

Session Bean Methods
Table 3.1 provides summary of session bean methods.

TABLE 3.1 Summary of Session Bean Methods

Method Purpose What You Need to Do

setSessionContext The EJB container calls this You store the reference to the
(SessionContext) method to set the associated session context in an instance

session context. variable, if you need to query
it later. The session context
provides access to runtime
session context such as
identifying the caller, access or
change current transaction state,
and so on.

ejbCreate<method>(...) The container calls this You initialize the bean here.
method so that you can
initialize your session bean Each stateful session bean class
instance. must have at least one
A client creates a stateful ejbCreate<method>(...)

instance using the create and each one can take different
methods defined in the arguments.
session bean’s home interface.
The container calls the A stateless session bean can
corresponding ejbCreate have only one ejbCreate method,
method. with no parameters.

Business Methods The session bean’s component You write business logic in these
interface defines the business methods.
methods callable by a client.
The container delegates an
invocation of a business
method to the matching
business method that is
implemented in the session
bean class.

58 Day 3

05 0672324237 ch03 9/24/02 2:34 PM Page 58

Understanding Session Beans 59

3

ejbActivate() This method is called when For stateful session bean, open
the instance is activated from resources, if any. For example,
its passive state. open sockets, JDBC connections,

and so on.
For a stateless session bean, this
is empty because the container
never activates the bean instance.

ejbPassivate() This method is called when For a stateful session bean, close
the container intends to resources, if any.
passivate the bean instance. For example, close sockets, JDBC

connections, and so on.

For a stateless session bean, this
is empty because the container
never passivates the bean instance.

ejbRemove() A container invokes this Close resources, if any, and
method before it ends the assign corresponding instance
life of the session object. fields to null. For example, close
This happens as a result of a sockets, JDBC connections, and
client’s invoking a remove so on.For a stateless session bean,
operation, or when a this is empty because the
container decides to terminate container never passivates the
the session object after a bean instance.
timeout.

Life Cycle of Session Beans
Stateful and stateless session beans have different life cycles. The stages from the time
they are instantiated, ready to be used, and then destroyed vary from one type to another.
We will examine the life cycle of each stateless and stateful session bean in the following
sections.

Stateless Session Bean Life Cycle
Figure 3.1 shows the life cycle of a stateless session bean instance. If you are not famil-
iar with state diagrams, we recommend that you read Appendix D, “Introduction to UML
Notation,” before you read this section.

Method Purpose What You Need to Do

05 0672324237 ch03 9/24/02 2:34 PM Page 59

The following steps describe the life cycle of a stateless session bean instance:

• The bean instance’s life cycle starts when the container decides to instantiate a
bean instance. This decision is based on the caching policy and client demand. For
example, if more clients want the session bean services, the container instantiates
more beans. The container allows you to specify the caching policy in a vendor-
specific deployment descriptor.

• The container instantiates the bean using the newInstance method and then calls
the methods setSessionContext and ejbCreate. The container also sets the trans-
action context and security attributes (as set in the deployment descriptor). Now the
bean is ready to serve any client.

• The container calls a business method on the instance, based on the client call.
Note that container could use the same instance to serve multiple clients.

• The container decides to remove the bean instance. This could be because the con-
tainer wants to reduce the number of instances in the method-ready pool. This is
based on the caching policy and reduced demand.

• Container calls the ejbRemove() method of the bean instance.

Life Cycle of a Stateful Session Bean
Figure 3.2 shows the life cycle of a stateful session bean instance.

The following steps describe the lifecycle of a stateful session bean instance:

• The bean instance’s life cycle starts when a client invokes create<method>(...)
on the session bean’s home interface. The container instantiates a new session bean
using newInstance() and then calls the setSessionContext method, followed by
ejbCreate<method>(...).

60 Day 3

FIGURE 3.1
Stateless session bean
life cycle.

Instance
does not exist

Pool of
method-ready

instances

1. newInstance()
2. setSessionContext()
3. ejbCreate()

ejbRemove()

business method

Life Cycle of a Stateless Bean instance

05 0672324237 ch03 9/24/02 2:34 PM Page 60

Understanding Session Beans 61

3• The instance is now ready to serve the client’s business methods.

• The container decides to evict your instance from memory. This decision is based
on the container’s caching policy and reduced demand. The container invokes the
ejbPassivate() method on the instance and swaps it out to secondary storage.

• If a client invokes a session object whose session bean instance has been passi-
vated, the container will activate the instance. To activate the session bean instance,
the container restores the instance’s state from secondary storage and issues
ejbActivate() method on it. The session bean instance is again ready for client
methods.

• When the client calls remove on the home or component interface to remove the
session object, the container issues ejbRemove() on the bean instance. This ends
the lives of the session bean instance and the associated session object. Note that a
container can also invoke the ejbRemove() method on the instance without a client
call to remove the session object after the lifetime of the EJB object has expired.

FIGURE 3.2
Stateful session bean
life cycle.

Instance
does not exist

ReadyPassive

1. newInstance()
2. setSessionContext()
3. ejbCreate<method>()

ejbRemove()

timeout

ejbPassivate()

ejbActivate()

business
method

Life Cycle of a Stateful Session Bean

You cannot rely on the container calling the ejbRemove() method. The con-
tainer might not call ejbRemove() in the following scenarios: a) A timeout
due to client inactivity while the instance is in the passive state; b) A shut-
down or crash of the container; c) A system exception thrown from the
instance’s method. If your instance frees up resources in the ejbRemove()
method, those resources are not freed in the preceding scenarios.

You should provide some mechanism to periodically clean up the unreleased
resources. For example, if a shopping cart component is implemented as a
session bean, and the session bean temporarily stores the shopping cart con-
tent in a database, the application should provide a program that runs peri-
odically and removes abandoned shopping carts from the database.

Note

05 0672324237 ch03 9/24/02 2:34 PM Page 61

Comparing Stateless and Stateful Session
Beans

Stateless session beans do not maintain state associated with any client. Each stateless
session bean can server multiple clients.

Stateful session beans maintain the state associated with a client. Each stateful session
bean serves exactly one client.

Stateless session beans are intended to be simple and lightweight; that is, they are easy to
develop with low runtime resource requirements on the server. If required, any state is
maintained by the client, and thereby makes the server highly scalable. Because no state
is maintained in this enterprise bean type, stateless session beans aren’t tied to any spe-
cific client. Therefore, any available instance of a stateless session bean can be used to
service another client.

The container creates an implicit identity for a stateful session bean to manage its passi-
vation and activation phases. On the other hand, the container doesn’t create any identity
for a stateless session bean.

The number of stateful session beans is equal to the number of active clients, whereas a
small number of stateless session beans can be used to satisfy a large number of clients.

Stateful session beans provide easy and transparent state management on the server side.
Because state is maintained in this enterprise bean type, the application server manages
client-bean pairs. In other words, each instance of a given enterprise bean is created on
behalf of a client, and is intended to be a private resource to that client (although it could
be shared across clients using the enterprise bean instance’s handle). In essence, a state-
ful session bean is a logical extension of the client, except that some of the client’s load
is distributed between itself and the enterprise bean on the server. Any conversational
state-related data in the object’s variables doesn’t survive a server shutdown or crash,
although a vendor could provide an enhanced implementation to make shutdowns and
crashes transparent to the client by maintaining the enterprise bean’s state.

Best Practices
Stateless beans offer better performance than stateful beans. Activation and passivation
are expensive operations. The EJB container might occasionally write a stateful session
bean to secondary storage. However, stateless session beans are never written to sec-
ondary storage. To support the same number of clients, an application typically requires

62 Day 3

05 0672324237 ch03 9/24/02 2:34 PM Page 62

Understanding Session Beans 63

3

fewer stateless session beans than stateful session beans. Whenever possible, choose
stateless session beans instead of stateful session beans.

A client should explicitly remove a stateful session bean by calling the remove() method
of the component interface. Otherwise, the container keeps the stateful bean until it times
out. This wastes resources such as memory, secondary storage, and so on.

A client should be prepared to re-create a new session object if it loses the one it is
using. The client could lose the session bean because the container may terminate a ses-
sion bean instance’s life after a specified timeout or as a result of an EJB shutdown or
crash.

Stateless session beans are ideal components for clustering because they do not maintain
state. This provides high-availability to applications designed with stateless session
beans. Stateful session beans can be clustered with more effort and design considera-
tions.

Summary
Today you learned the fundamentals of session beans. Session beans execute a particular
business task on behalf of a single client during a single session. There are two types of
session beans: stateless and stateful. Stateless session beans do not maintain the conver-
sational state associated with any client. Stateful session beans maintain the conversa-
tional state associated with a client.

The EJB container maintains an instance pool for each type of stateless session bean.
The EJB container may reuse the same instance to serve multiple client requests.

Passivation and activation are mechanisms that are provided by the EJB container to
manage the valuable resources in order to reduce the number of stateful session bean
instances required to service all concurrent clients. Passivation is the mechanism by
which the EJB container stores the bean’s state into a back store. Activation is the
process of restoring the bean’s state from the back store.

Q&A
Q Can a stateless session bean maintain state?

A Yes. A stateless session beans can contain non-client specific state across client-
invoked methods. For example, states such as socket connection, database connec-
tions, reference to an EJBObject, and so on can be maintained. However, they
cannot have state specific to any client across client-invoked methods.

05 0672324237 ch03 9/24/02 2:34 PM Page 63

Q In which tier should client state be maintained?

A In a typical transactional J2EE application, client state should be maintained in the
EJB tier. A stateful session bean is used to manage workflow and maintain state
during client interactions.

Q How does the container recognize the session bean type?

A The EJB container recognizes the session bean type from the bean’s deployment
descriptor(ejb-jar.xml).

Quiz
1. Which of the following is true for a session bean?

A. It performs a task for a client

B. It performs a task for multiple clients

C. It represents shared data in a database

D. It survives an EJB server crash

2. Which of the following methods is invalid for a stateless session bean?

A. ejbCreate()

B. ejbCreate(...)

C. ejbRemove()

D. setSessionContext()

3. Which of the following is first called by the container on a stateless session bean?

A. ejbCreate();

B. newInstance();

C. ejbActivate();

D. setSessionContext()

Quiz Answers
1. A

2. B

3. B

Exercises
1. What are the types of session beans?

2. Which type of session bean can use instance pooling? Why?

64 Day 3

05 0672324237 ch03 9/24/02 2:34 PM Page 64

DAY 4

WEEK 1

Using JNDI for Naming
Services and Components

In today’s lesson, you will learn about JNDI (Java Naming and Directory
Interface), one of the commonly used services in any J2EE component-based
application. JNDI is a standard interface to naming and directory services for
enterprise applications. JNDI also can be used to access heterogeneous naming
and directory services from the same application by using the same API. The
following sections will explore the concepts of both naming and directory ser-
vices. Then you will start to learn about the JNDI API and its interfaces and
classes to access those services. We will also shed light on how JNDI can be
used to look up resources and components as the foundation for other J2EE
APIs.

Developers write J2EE components that use JNDI to locate both administrative
and declarative objects. In the following days, JNDI will be used in detail with
respect to each J2EE service. However, in today’s lesson, an understanding of
the concepts of JNDI is fundamental to Enterprise JavaBean (EJB) enterprise
applications. Clients use the JNDI API to locate EJB components (Days 6, 8,

06 0672324237 CH04 9/24/02 2:34 PM Page 65

10, and 11), Java Message Service (JMS) queues and topics (Day 13), and Java Database
Connectivity (JDBC) DataSources (Day 9).

• Learn the concepts of naming services

• Learn the concepts of directory services

• Explore the JNDI architecture

• Learn the JNDI API classes and interfaces

• Study the JNDI context and its operations

• Explore how to use the JNDI to support other J2EE services

Before you start, you must download and install an application server, either WebLogic
Server or JBoss Server. Appendix A, “WebLogic Application Server 7.0,” explains how
to install WebLogic Server. Appendix B, “JBoss Application Server 3.0,” contains the
instructions for installing the JBoss Server.

Naming Services
Generally, components in distributed systems must find one another to work together.
Naming is one of the common services of any distributed system. The names of objects
and components are added and stored in the naming service (also called the namespace),
and can then be located later by the clients of the system.

It’s easier for humans to remember the name www.samspublishing.com than the IP
address 165.193.123.117. Naming also adds a level of indirection, where the associated
IP can be changed without changing the name. The process of associating an object with
a name is called binding. An example of a pervasive naming service is DNS (Domain
Naming Service), which is used to refer to a host by its name instead of its numeric IP
address. COS (Common Object Services) is another naming service used for CORBA
(Common Object Request Broker Architecture) applications to register CORBA objects.
NDS (Novell Directory Services) is another product used as a naming service to store
user and group information for authentication purposes.

In each system, names are organized in a tree-like fashion, delimited with a special char-
acter, and follow a special syntax or naming convention (see Figure 4.1). As an example,
a DNS name is read from right to left, and is delimited by a dot (.). Therefore, the fully
qualified name www.samspublishing.com starts at the root com, followed by samspub-
lishing, and then www.

In the Windows and DOS file systems file names are read from left to right, starting from
the root directory and delimits its segments with a backslash “\”. For example, the file
myfile.doc, located in the directory c:\projects can be written as
c:\projects\myfile.doc.

LDAP (Lightweight Directory Access Protocol) has a different naming convention, in
which a name is read from right to left, and uses the comma “,” as a delimiter. For

66 Day 4

06 0672324237 CH04 9/24/02 2:34 PM Page 66

Using JNDI for Naming Services and Components 67

4

example, the LDAP name cn=Lillian Ghaly, o=Diamond, c=US, starts with c=US, fol-
lowed by o=Diamond, and ends with cn=Lillian Ghaly.

FIGURE 4.1
Some naming conven-
tions.

samspublishing

ftp filewww

com

www.samspublishing.com

jbossbea

DNS (Domain Name Services)

projects

myfile.doc sea.gifch4

c:\

c:\projects\myfile.doc

Naming Conventions

picturesapps

MS Windows/DOS

o=Diamond

cn=Lillian
Ghaly

cn=John
Smith

c=US

cn=Lillian Ghaly, o=Diamond, c=US

o=JBosso=BEA

LDAP

A name is used with a naming system to locate objects. A naming system is simply a col-
lection of objects with unique names. To look up an object in a naming system, you pro-
vide a name to the naming system, and the naming system returns the stored object with
that name.

A composite name is a sequence of names that spans multiple namespaces. An example
of a composite name is www.samspublishing.com:\books\styejb.doc, which spans the
DNS and the Windows file system namespaces. The name components of the composite
name are host (www.samspublishing.com), directory (books), and file (styejb.doc).

Directory Services
A directory service is a hierarchical database—a special type of database that stores
objects for fast retrievals, and has infrequent insertions, deletions, and updates. The quick
access of a directory service is achieved by different techniques of indexing, caching, and
disk access. Most directory services include naming services as well. An example of a
directory service is the yellow pages of your phone book. LDAP is the most popular
directory protocol and is used as a standard network directory service. Active Directory is
another directory service that is commonly used for Windows applications.

A directory service provides a way to manage the storage and distribution of shared
information. Such information can range from usernames, passwords, email addresses,
and phone numbers to the IP addresses, computers, and printers to the configuration
information for a group of applications or servers. Each entry in the directory service has
attributes associated with it. An attribute consists of a name as an identifier and one or
more values. The attributes describe the entry, and the exact set of attributes depends on
the type of the entry.

06 0672324237 CH04 9/24/02 2:34 PM Page 67

What Is JNDI?
JNDI is a unified Java API designed to standardized access to a variety of naming and
directory services. This abstract mechanism is what makes J2EE an attractive enterprise
architecture for Internet and intranet applications. Applications are written in a standard
way to use the JNDI API, which transparently calls the underlying naming or directory
service. A JNDI-compliant service must implement part of the JNDI API. Here is a brief
description of the two parts that make up the JNDI architecture:

• An application-level programming interface (API). APIs are used by the applica-
tion components to access naming and directory services.

• A service provider interface (SPI). This part of the API is used to plug in a
provider of a naming and directory service to the J2EE platform.

Figure 4.2 illustrates these APIs.

68 Day 4

FIGURE 4.2
JNDI architecture.

LDAP DNS NDS

JNDI SPI (Server Layer)

JNDI API (Client Layer)

Java Application

JNDI Architecture

Different JNDI
Implementations

The JNDI model defines a hierarchical namespace in which you name objects. Each
object in the namespace may have attributes that can be used to search for the object.

It’s important to remember that JNDI is an interface or an API, and not an
implementation, to abstract the access layer to naming and directory service
providers.

Note

06 0672324237 CH04 9/24/02 2:34 PM Page 68

Using JNDI for Naming Services and Components 69

4

Naming and directory services are intimate partners. In fact, most existing products pro-
vide both sets of functionality. Naming services provide name-to-object mapping, and
directory services provide information about the objects and tools for searching for them.

As part of the common J2EE services, JNDI enables seamless connectivity to heteroge-
neous enterprise naming and directory services. Developers can build powerful and
portable directory-enabled applications using the JNDI standard.

JNDI naming and directory services are best used in maintaining small
amounts of stable data that is accessible to all servers.

Note

JNDI API
The main JNDI API package is the javax.naming package, which contains one key class,
InitialContext, and two key interfaces, Context and Name.

In using JNDI, a client first establishes a connection to the JNDI service (sometimes
called the JNDI tree). After the client is connected, a context is created to facilitate the
access to system components and resources. Context is a fundamental concept in the
JNDI model. A context is a set of name-to-object bindings within a naming service that
all share the same naming convention.

All naming operations in JNDI are performed within a context. Therefore, establishing a
context is the initial step prior to any operation. The javax.naming.InitialContext
class implements the javax.naming.Context interface. Clients use this class to establish
a connection, and create a Context object as a result:

Context ctx = new InitialContext();

Some naming services provide a subcontext, which is similar to a subdirectory in a file
system. The tree-like structure of JNDI is a natural to support subcontexts. The Context
class also provides methods for creating and destroying subcontexts.

Context Operations
After a client connects to the JNDI service and obtains a JNDI context using
InitialContext(), it can apply any of the interface methods. The main operations of the
javax.naming.Context interface are the use of bind() to add an entry, rebind() to
replace an entry name, lookup() to find or locate an object, and unbind() to delete an
entry. Figure 4.3 illustrates these operations. Logically, the server is the application that
performs the binding, unbinding, and rebinding operations. Clients perform the lookup of
objects by providing the name.

06 0672324237 CH04 9/24/02 2:34 PM Page 69

70 Day 4

FIGURE 4.3
JNDI context opera-
tions.

Client Context

Server Context

Client Context Client Context

Name

Name

Object

Object

Naming Service

JNDI Context Operations

bind
rebind
unbind

lookup lookup

lookup

The next sections give more details about the Context operations.

Add an Entry—bind()
Servers add an object or a component into the JNDI tree by binding its name to its loca-
tion or reference. Here is a scenario of binding a new object to its name. First, a Context
object must be obtained by using

Context ctx = new InitialContext();

When InitialContext() is used with no parameters, the application is connected to the
default JNDI service provider. This can be set in the configuration files as explained later
today in the section “Selecting a JNDI Provider.” Using no parameters also indicates the
use of the default user or anonymous user. For a secure system, only certain components
or resources must be authenticated first. The section “Using JNDI in User
Authentication” later today gives an example of how to connect with a specific user.

Now, you can add a new name by using an example of binding a new object as imple-
mented as follows:

String name = “mary”;
String email = “mary@samspublishing.com”
ctx.bind(name, email);

If the name “mary” already exists, the exception NameAlreadyBoundException will be
thrown.

Applications and services can use JNDI service in different ways to store and look up
objects. For example, an application might store a copy of the object itself, a reference to

06 0672324237 CH04 9/24/02 2:34 PM Page 70

Using JNDI for Naming Services and Components 71

4

an object, or the attributes of the object. Objects that must be remotely accessed (through
the use of Remote Method Invocation or RMI) must be in a serialized form (that is,
implement the java.io.Serializable interface) that contains the object’s serializable
objects that can be marshalled and unmarshalled between remote servers.

RMI is a protocol that enables an object on one JVM (Java Virtual Machine)
to invoke methods on another object in different JVM. Any object whose
methods can be invoked in this way must implement the java.rmi.Remote
interface.

When such an object is invoked, its arguments are marshalled (converted to
a bit stream) and sent from the local JVM to the remote one, where the
arguments are unmarshalled and used. When the method terminates, the
results are marshalled from the remote machine and sent to the caller’s vir-
tual machine.

Note

Delete an Entry—unbind()
Applications can also delete entries by using unbind() of an object from the JNDI ser-
vice, provided that a context is already obtained. For example, the line

ctx.unbind(“mary”);

will remove the binding established in the previous section.

Find an Entry—lookup()
One of the most common operations of JNDI is the lookup() method, which is used to
locate or find an object. Provided that a context is already obtained, here is an example of
looking up an object:

String str = (String) ctx.lookup(“mary”);

The lookup() operation returns an java.lang.Object, which must be cast to the
required object’s class. In the previous example, lookup is cast to String, and the value
of str will be “mary@samspublishing.com”. If the name is not found, the exception
javax.naming.NamingException will be thrown.

To look up an object in the JNDI service, the name must be provided as a parameter to
the lookup() operation. The returned object is cast to the known object class. Now any
operation can be performed on that object. The following example illustrates the power
of the naming services as a method of dynamically binding a name to the real object:

try {
// Connect to JNDI and create the initial context

06 0672324237 CH04 9/24/02 2:34 PM Page 71

Context ctx = new InitialContext();
// Perform lookup and cast to target class
File f = (File) ctx.lookup(“myfile.txt”);
f.open();
// ...do something with the file...
f.close();
// Close the context when we’re done
ctx.close();

} catch (NamingException e) {
System.out.println(“Lookup failed: “ + e);

}

Table 4.1 summarizes the JNDI operations that can be applied to the context. These oper-
ations throw the javax.naming.NamingException that must be captured in a catch
clause. A class hierarchy for exceptions is defined as part of the JNDI API. These excep-
tions can be thrown in the course of performing naming operations. The root of this class
hierarchy is NamingException. Programs can catch generally the NamingException or,
specifically, any other exception in the class hierarchy.

Each of these methods accepts a name of type java.lang.String as a parameter, and
has an overloaded method with a name of type javax.naming.Name. For example, the
lookup() method has the following signatures:

lookup(java.lang.String name)

lookup(javax.naming.Name name)

The javax.naming.Name interface represents a generic name as an ordered sequence of
name components. It can be a composite name (one that spans multiple namespaces) or a
compound name (one that is used within a namespace).

TABLE 4.1 Summary of Context Operations

Method Purpose

Context InitialContext() Connects to the default JNDI service and estab-
lishes a new context

Context InitialContext(Properties p) Connects to the a specific JNDI service and
establishes a new context

void bind (Name name, Object obj) Binds or adds a new name/object association

void bind (String name, Object obj) Binds or adds a new string/object association

void rebind (String name, Object obj) Rebinds or replaces an existing string/object
association

void unbind (Name name) Unbinds or removes the binding of an object to
an associated name

72 Day 4

06 0672324237 CH04 9/24/02 2:34 PM Page 72

Using JNDI for Naming Services and Components 73

4

Object lookup(Name name) Looks up an object in the naming service using a
name

void rename Changes the name to which an object is bound
(String oldName, String newName)

NamingEnumeration listBindings Enumerates all the names bound in the context
(Name contextName) name, along with the objects bound to them.

NamingEnumeration listBindings Enumerates all the names bound in the context
(String contextName) name, along with the objects bound to them.

void close() Disconnects from the JNDI service, and is used
to free resources used by a context

Example of Using JNDI Context Operations
The following program demonstrates some of the operations listed in Table 4.1. Listing
4.1 creates an initial context from the default JNDI provider, lists the environment, adds
a new entry, and then finds it by looking up the entry. To query the existing environment,
you can use the getEnvironment() method of the Context interface. The
CommunicationException is thrown if the operation fails to connect to the JNDI service.

LISTING 4.1 The Full Text of day04/Client.java

package day04;

import java.util.*;
import java.rmi.*;
import java.io.*;
import javax.naming.*;
import javax.ejb.*;

// This client demonstrates a sample usage of the JNDI tree

public class Client{
public static InitialContext ctx;

public static void main(String[] argv) {
print("Demonstration of the usage of JNDI...");
if(argv.length < 1){

print("Usage : Client <JNDI root name>\n");
return;

}
try {
print("Connecting to a JNDI service...");
ctx = new InitialContext();
print(" Connected successfully. Initial context created.\n");

Method Purpose

06 0672324237 CH04 9/24/02 2:34 PM Page 73

print("Getting Environment Properties...");
print(" Properties: " + ctx.getEnvironment().toString() + "\n");
// Adding a binding
String name = "mary";
String email = "mary@hotmail.com";
print("Binding a new name: " + name + " to an object: "+email+"...");
ctx.bind(name, email);
print(" Object: "+ email+ " is bound to name: " + name + "\n");
// Lookup a binding
print("Looking up the name...");
String s = (String) ctx.lookup("mary");
print(" Found Name= mary, with email= " + s + "\n");
// Delete a binding
print("Unbinding the name...");
ctx.unbind("mary");
print(" Name is unbound successfully!\n");
print("Spanning JNDI context bindings...");
spanJNDI(argv[0]);
print("\n");
// Lookup a "deleted" binding
print("Lookup for the unbound name...error expected");
s = (String) ctx.lookup("mary");
print(" Found Name= mary, with email= " + s);

}
catch (CommunicationException e) {

print("**ERROR: Failed to connect with the JNDI server." +
"Startup the App Server, and run again.."+e);

}
catch (Exception e) {
print("**ERROR: An unexpected exception occurred..."+e);

}
finally {
if (ctx != null) {
try {
print("Unbinding the name...");
ctx.unbind("mary");
ctx.close();
print("Connection to JNDI is closed successfully.");

}
catch (NamingException e) {
print("**ERROR: Failed to close context due to: " + e);

}
}

}
}

static void spanJNDI(String name){
try{

74 Day 4

LISTING 4.1 continued

06 0672324237 CH04 9/24/02 2:34 PM Page 74

Using JNDI for Naming Services and Components 75

4

ctx = new InitialContext();
NamingEnumeration bindList = ctx.listBindings(name);
// Go through each item in list
while (bindList !=null && bindList.hasMore()) {

Binding bd = (Binding)bindList.next();
print(" " + bd.getName() + ": " + bd.getClassName() + ": " +

➥bd.getObject());
spanJNDI(bd.getName());

}
}catch (NamingException e) {

}
}
static void print(String s) {

System.out.println(s);
}
}

This example is made available to run on both the WebLogic and JBoss servers. To run
this example on either of the servers, you must have the server installed and set up your
environment to run the server and the example. The accompanying Readme.txt file will
help you perform these steps.

When you run this example on the WebLogic server, the output should look like the fol-
lowing:

> {java.naming.provider.url=t3://localhost:7001,
java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory}
> javax: weblogic.jndi.internal.WLContextImpl: WLContext (javax)
> weblogic: weblogic.jndi.internal.WLContextImpl: WLContext (weblogic)
> java:comp: weblogic.jndi.internal.WLContextImpl: WLContext (java:comp)

Binding name:maryto an object: mary@hotmail.com...
> Object: mary@hotmail.com is bound to name: mary
> Found Name= mary, with email= mary@hotmail.com
> Name is unbound sucessfully!

*ERROR: An unexpected exception occurred...
javax.naming.NameNotFoundException: Unable to resolve mary.
Resolved: ‘’ Unresolved:’mary’ ; remaining name ‘’

*ERROR: Connection to JNDI is close successfully.

The output lists the environment of the JNDI service (in this case, WebLogic) and all the
existing bindings. The error was produced when an exception was raised because we
tried to look up an entry that was not found. The error was captured and an error mes-
sage was displayed. For your convenience, the WebLogic Server environment provides a
JNDI browser, which you can access using the WebLogic Console. This is accomplished
by pointing with your Web browser to the URL http://localhost:7001/console,

LISTING 4.1 continued

06 0672324237 CH04 9/24/02 2:34 PM Page 75

76 Day 4

The last call establishes a connection to the default JNDI service and creates
an Enterprise Naming Context (ENC). Naming services usually reside on a
remote server on the network. Clients remotely access these services using
RMI protocol, which is more expensive than to access these services locally.

Caution

(provided that WebLogic Server is running). From the left pane, click on myserver, and
then on the right pane click on View JNDI Tree. A new window will pop up displaying a
list similar to the listing of the example output.

Running the same example on JBoss should produce a similar output, except that the
environment and the bindings will be specific to JBoss environment. You can also access
the JBoss JNDI tree by pointing to the URL http://localhost:8082 (if you are using
JBoss 3.0.0), or http://localhost:8080/jmx-console (if you are using JBoss 3.0.1 or
later). Click on the link service=JNDIView, and then invoke the list() operation.

Specifying a JNDI Provider
For clients to access a JNDI service, programs must specify the provider name and the
location of the JNDI service on the network. Programs can specify this environment set-
ting in either a programmatic or a declarative method.

Programmatic Method
Setting Context.INITIAL_CONTEXT_FACTORY specifies the JNDI provider, and setting
Context.PROVIDER_URL specifies the URL location. The following sample code illus-
trates the access to a JNDI service from inside your code:

// Set JNDI environment in the properties
Properties prop = new Properties();
// Set the JNDI provider as WebLogic
prop.put(Context.INITIAL_CONTEXT_FACTORY,

“weblogic.jndi.WLInitialContextFactory”);
// set the JNDI URL (host name and port) to access the service
prop.put(Context.PROVIDER_URL, “t3://localhost:7001”);
// Connect to the JNDI service as specified above
Context ctx = new InitialContext(prop);

The Properties object specifies both the JNDI provider (in this case, WebLogic Server)
and the location of the naming services on the network.

Declarative Method
The programmatic method is not a good practice in developing large projects. The
declarative method is convenient for setting these environment parameters, instead of

06 0672324237 CH04 9/24/02 2:34 PM Page 76

Using JNDI for Naming Services and Components 77

4

hard-coding them in the client code itself. Using the declarative approach avoids recom-
pilation, which results from changing the existing code, should you decide to switch
from one JNDI provider to another.

The environment parameters can be specified in an application resource file, or can be
passed as the -D command-line option to the Java interpreter. In the first case, the JNDI
provider parameters can be set in a special application resource file jndi.properties. It
contains a list of key/value pairs presented in the properties file format (which is typi-
cally mapped to java.util.Properties used inside the program). A sample of the con-
tent of jndi.properties file for the WebLogic server:

java.naming.factory.initial=weblogic.jndi.WLInitialContextFactory
java.naming.provider.url=t3://localhost:7001

In JBoss, environment properties are set in the following sample of jndi.properties:

java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming:org.jnp.interfaces

This simplifies the task of setting up the environment required by a JNDI application;
you may distribute application resource files along with application components and ser-
vice providers. The key is the name of the property (for example, java.naming.fac-
tory.object) and the value is a string in the format defined for that property.

The other option in setting these parameters is to pass them as system properties. These
properties can be made available to a Java program via the -D command-line option to
the Java interpreter. Here’s an example of the WebLogic server command line:

java -Djava.naming.factory.initial=weblogic.jndi.WLInitialFactory \
-Djava.naming.provider.url=t3://localhost:7001

When using JBoss, the command line looks like the following:

java -Djava.naming.factory.initial=org.jnp.interfaces.NamingContextFactory \
-Djava.naming.provider.url=localhost:1099 \
-Djava.naming.factory.url.pkgs=org.jboss.naming

If you use any of the declarative methods mentioned, the client application will use the
default InitialContext constructor to create a context (without specifying any parame-
ters). This makes your application more portable to any other application server.

Context ctx = new InitialContext();

Here, the JNDI automatically reads the application resource files from all defines in the
applications’ class paths and JAVA_HOME/lib/jndi.properties, where JAVA_HOME is the
file directory that contains your JRE (Java Runtime Environment). The JNDI then makes
the properties from these files available to the JNDI providers and other components that

06 0672324237 CH04 9/24/02 2:34 PM Page 77

need to use them. Therefore, these files should be considered world-readable and should
not contain sensitive information, such as clear text passwords.

Using JNDI in User Authentication
In addition to using JNDI as a naming service, it is common to use it to provide a secu-
rity mechanism for authenticating users to access system resources. User information and
credentials (passwords) can be stored as entries in the directory service. It worth pointing
out the fact that JNDI does not define a security model, but uses the security model that
is defined in the underlying naming/directory service.

As you learned earlier today, the default InitialContext (with no parameters specified),
creates a new Context used by an anonymous client.

// Connect to the default naming server as a default user
Context ctx = new InitialContext();

When authenticating a user, both user ID and password must be combined and passed as
a parameter to the InitialContext. If the password is not matched, the exception
javax.naming.NoPermission will be thrown to the client. Here is an example of authen-
ticating a user with the WebLogic default JNDI server:

// Set up the environment properties for the user
Properties prop = new Properties();
// Login use both user id, and password passed as Strings
prop.put(Context. SECURITY_PRINCIPAL, “Laura”);
prop.put(Context. SECURITY_CREDENTIALS, “whiskers”);
Context ctx = new InitialContext(prop);

System resources and components can be protected by Access Control Lists (ACLs),
which in turn can be accessed by the authorized user’s Context. By creating a context
for a particular user, the application server is responsible to verify the appropriate usage
of these resources by the correct user.

In the preceding code sample, Context.SECURITY_PRINCIPAL is a constant that specifies
the name of the user or program that is doing the authentication.
Context.SECURITY_CREDENTIALS is a constant that specifies the credentials of the user or
program doing the authentication.

A similar code can be established to authenticate users using the JBoss server. The only
changes will be in setting both Context.INITIAL_CONTEXT_FACTORY and
Context.PROVIDER_URL to the right values.

Using JNDI in J2EE Applications
JNDI is a fundamental service to all J2EE applications. One key target is the isolation of
the development of J2EE component code from the deployment environment. This

78 Day 4

06 0672324237 CH04 9/24/02 2:34 PM Page 78

Using JNDI for Naming Services and Components 79

4

allows an application component to be customized without the need to access or change
its source code.

JNDI defines a logical namespace (directory) that application components (such as EJBs,
servlets, JavaServer Pages [JSPs], and JDBC) can use to name resources, components,
and other data. The namespace is provided to a component by its container, which exe-
cutes the component. Typically, a component has a deployment descriptor that contains,
among other data, information about the logical names and types of resources that the
component references. Components of the Web tier are specified in the web.xml deploy-
ment descriptor, and those of the EJB tier are specified in the ejb-jar.xml deployment
descriptor.

Starting with EJB 1.1, all beans have a default JNDI context called the enterprise naming
context. The default context exists in the namespace called java:comp/env (based on a
URL context for the java: URL scheme) and its subdirectories. When a bean is
deployed, any beans it uses are mapped into the java:comp/env/ejb directory so that the
bean references can be obtained at runtime through a simple and consistent use of the
JNDI ENC. This eliminates network and implementation specific use of JNDI to obtain
bean references. For example, you might use a name such as
“java:comp/env/jdbc/myDB” from the initial context to name the myDB database. At the
root context of the namespace is a binding with the name “comp”, which is reserved for
component-related bindings.

In addition, the name “env” is bound to a subtree that is reserved for the component’s
environment-related bindings, as defined by its deployment descriptor. The J2EE specifi-
cations recommend that EJBs be placed under the “ejb” subtree. For example, an
EnrollmentCartHome EJB might be named
“java:comp/env/ejb/EnrollmentCartHome”.

Resource factory references are placed in subtrees differentiated by their resource man-
ager type. Table 4.2 shows some examples.

TABLE 4.2 Resource Factory Subcontexts

Subcontext Purpose

jdbc: JDBC DataSource references

jms: JMS connection factories

mail: JavaMail connection factories

ejb: EJB component factories (home interface)

Typical J2EE application clients that use the JNDI are Java applications, applets, servlets,
JSPs, TagLibs, and EJBs. Such clients locate services or components that are either local

06 0672324237 CH04 9/24/02 2:34 PM Page 79

on the same JVM or remote and reside on a different host. Clients can be calling from
the Web tier to the business-tier, or from the client tier to either the Web tier or to the
EJB tier.

Three main types of J2EE objects can be maintained in JNDI:

• Simple serializable JavaBeans (or Java objects)

• Distributed object references, such as EJB home and remote interfaces

• Common object services, such as transaction contexts

JNDI is used to declare a great deal of information to separate application code from its
environment. The JNDI name that the application component uses to access the informa-
tion is declared in the standard deployment descriptor. The following are the types of
information that may be stored in the deployment descriptors by deployers and retrieved
by developers using JNDI API:

• Environment entries as declared by the env-entry elements

• EJB references as declared by ejb-ref and ejb-local-ref elements

• Resource manager connection factory references as declared by the resource-ref
elements

• Resource environment references as declared by the resource-env-ref elements

These XML elements of the deployment descriptors help you create portable applications
across different environments. This is accomplished by specifying a logical name, to be
used by the application, in the standard deployment descriptor. You then map this logical
name to an environment-specific name. You specify this mapping in the server’s specific
deployment descriptor. Examples of this declarative concept will be illustrated in Day 9
and Day 16.

Each type of deployment descriptor element has a JNDI usage convention with regard to
the name of the JNDI context under which the information is bound.

In addition to the standard deployment descriptors, there are deployment descriptors spe-
cific to each application server. For example, WebLogic Server uses weblogic-ejb-
jar.xml, whereas JBoss uses jboss.xml as an additional EJB deployment descriptor that
maps the JNDI name as used by each of the specific JNDI providers.

The following are sample codes to access some of the resources typically used in J2EE
application. Details of these concepts will be covered in detail in the following days.

Looking Up EJB Components
The container is responsible for binding the home interfaces of its deployed enterprise
beans available to the client through JNDI. A client locates a session bean’s home

80 Day 4

06 0672324237 CH04 9/24/02 2:34 PM Page 80

Using JNDI for Naming Services and Components 81

4

interface using JNDI. For example, the remote home interface for the EnrollmentCart
session bean can be located using the following code segment:

// Connect to JNDI service provider, and obtain ENC context
Context ctx = new InitialContext();
// Perform JNDI lookup to obtain EJB Home interface factory
EnrollmentCartHome enrollmentCartHome =

(EnrollmentCartHome) ctx.lookup(“java:comp/env/ejb/EnrollmentCartHome”);

The deployment descriptor of the EJB is an XML file that specifies information (among
other things) such as the JNDI names of the application’s enterprise beans. The following
is the <jndi-name> tag:

<jndi-name>ejb/EnrollmentCartHome</jndi-name>

The client begins by obtaining the InitialContext for a bean’s home object. The
InitialContext remains valid while the client session is valid. The client provides the
JNDI registered name for the required object to obtain a reference to an administered
object. In the context of an EJB application, a typical administered object is an enterprise
bean’s home object. You’ll see more detail coverage of JNDI access to EJB in Days 6, 8,
10, and 11.

Looking Up JMS Factory and Destination
A client can locate the JMS Destination (Queue or Topic) to which it should send mes-
sages (that are to be delivered to a message-driven bean) by means of the standard JNDI
API:

// Connect to JNDI service provider, and obtain ENC context
Context ctx = new InitialContext();
// Perform JNDI lookup to obtain queue connection factory
QueueConnectionFactory qcf = (QueueConnectionFactory)

ctx.lookup(“java:comp/env/jms/QueueCF”);
// Perform JNDI lookup to obtain queue name
Queue q = (Queue) ctx.lookup(“java:comp/env/jms/StudentQueue”);

For JMS applications, the administered object can be a JMS ConnectionFactory (for a
Topic or a Queue) or a JMS Destination (a Topic or a Queue). A detailed explanation of
these concepts is provided in Day 13, “Understanding JMS and Message-Driven Beans.”

Looking Up JDBC Connection Pool
Administrators or deployers of J2EE application can specify external resources such as
JDBC pools. A resource file, such as a deployment descriptor, is used for this purpose:

// Connect to JNDI service provider, and obtain ENC context
Context ctx = new InitialContext();
// Perform JNDI lookup to obtain JDBC connection pool factory
DataSource ds = (DataSource) ctx.lookup (“java:/comp/env/jdbc/myDBPool”);

06 0672324237 CH04 9/24/02 2:34 PM Page 81

The following is the associated deployment descriptor to specify the resource:

<resource-ref>
<res-ref-name>jdbc/myDBPool</res-ref-name>
<res-type>java.sql.DataSource</res-type>

</resource-ref>

More detailed coverage of JDBC can be found in Day 9, “Using JDBC to Connect to a
Database.”

Looking Up JTA User Transaction
The JTA interface is used in distributed transactions to demarcate transaction boundaries
within EJB applications. Clients use it to look up the UserTransaction as a resource fac-
tory:

// Connect to JNDI service provider, and obtain ENC context
Context ctx = new InitialContext();
// Perform JNDI lookup to obtain User Transaction resource factory
UserTransaction tx = (UserTransaction) ctx.lookup(

“java:comp/UserTransaction”);
tx.begin();
//...perform the distributed transaction...
tx.commit();

More detailed coverage of JTA can be found in Day 18, “Building Bean-Managed
Transaction Beans.”

Looking Up JavaMail Session
The JavaMail interface is important in J2EE applications for sending mail from inside
EJBs or other components. Clients use it to obtain a Session object in order to send
email messages to the mail server:

// Connect to JNDI service provider, and obtain ENC context
InitialContext ctx = new InitialContext();
// Perform JNDI lookup to obtain Mail Session resource factory
Session session = (Session) ctx.lookup(“java:comp/env/mail/MailSession”);

More detailed coverage of JavaMail can be found in Day 20, “Putting It All Together.”

Best Practices
Every remote JNDI lookup is an expensive remote method call, and in order to perform
JNDI lookup, it is optimum for applications to do it once (usually at the component ini-
tialization). Therefore, caching the home handles improves the performance in such situ-
ations. Establishing a connection to a JNDI service is also an expensive task, and caching
such context references improves application performance.

82 Day 4

06 0672324237 CH04 9/24/02 2:34 PM Page 82

Using JNDI for Naming Services and Components 83

4

Use one class to abstract all JNDI usage and to hide the complexities of initial context
creation, EJB home object lookup, and EJB object re-creation. Multiple clients can reuse
such objects to reduce code complexity, provide a single point of control, and improve
performance by providing a caching facility.

An object stored in a JNDI tree must implement either the java.io.Serializable or
java.rmi.Remote interface. Both WebLogic and JBoss use nonpersistent JNDI service.
This in-memory caching technique increases the performance of retrievals. To increase
the reliability of these services, vendors rely on replicating them across all the nodes of a
cluster. This provides both fail-over and load balancing of the naming services. In a clus-
tered JNDI service, each node propagates the JNDI changes that occurred due to binding,
rebinding, and unbinding through IP multicast to other nodes of the cluster.

Summary
JNDI is one of the J2EE common services that provides naming and directory function-
ality to enterprise components. It provides applications with methods for performing
standard naming and directory operations, such as associating names with objects and
looking up objects using their names. Using JNDI, a J2EE application can store and
retrieve any type of named Java object. Because JNDI is independent of any specific
implementation, applications can use JNDI to access multiple naming and directory ser-
vices, including existing naming and directory services such as LDAP, NDS, DNS, and
NIS. This allows J2EE applications to coexist with other enterprise applications and sys-
tems.

For a thorough introduction and tutorial on JNDI, which covers both the
client and service provider APIs, see the Sun tutorial at
http://java.sun.com/products/jndi/tutorial/.

Note

Q&A
Q What are the main class and interface used in accessing a JNDI service?

A Clients access a JNDI service provider by establishing a Context using the
InitialContext interface. Clients look up objects in the JNDI service by using an
object name.

06 0672324237 CH04 9/24/02 2:34 PM Page 83

Q What are the required parameter(s) to specify in order to connect to a JNDI
service?

A Clients must specify both the provider name (by Context.INITIAL_CONTEXT_FAC-
TORY) and the JNDI URL (by Context.PROVIDER_URL) to connect to a JNDI ser-
vice provider.

Quiz
1. Which is the CORBA naming service equivalent of JNDI?

A. Interface Definition Language (IDL)

B. Common Object Services (COS) Naming

C. Lightweight Directory Access Protocol (LDAP)

D. Interoperable Inter-Orb Protocol (IIOP)

2. Which lookup service provides a unified interface to multiple naming and directory
services in the enterprise so that application components can access those services?

A. Domain Name Services (DNS)

B. Common Object Services (COS)

C. Lightweight Directory Access Protocol (LDAP)

D. Java Naming and Directory Services (JNDI)

3. By default, what is returned from a JNDI lookup() method call when accessing an
EJB?

A. Home interface

B. Remote interface

C. Session bean

D. Bean class

Quiz Answers
1. B

2. D

3. A

Exercises
Modify the sample day04/Client.java to bind more than one name. Try to use compos-
ite names such as the DNS name www.samspublishing.com and the Windows/DOS name
file://c:/projects/myfile.doc.

84 Day 4

06 0672324237 CH04 9/24/02 2:34 PM Page 84

DAY 5

WEEK 1

Developing Stateless
Session Beans

Today you’ll work on a complete example of developing an enterprise bean.
The sample university registration application enables an existing user to log in
to the system by verifying his login name and password. It also enables a new
user to register her login name and password. Such a component does not need
to maintain client-specific state information across method invocations, so the
same bean instance can be reused to service other client requests. This can be
modeled as a stateless session bean.

The SignOn component verifies the user’s login name and password. For the
sake of simplicity, the user’s login name and password are stored in the deploy-
ment descriptor, as environment entries. On Day 21, “Developing a Complete
Enterprise Application,” we’ll integrate the SignOn component with an entity
bean to store and retrieve the user’s login name and password from the data-
base.

07 0672324237 CH05 9/24/02 3:51 PM Page 85

The following is a summary of today’s activities:

• Learn the interactions between the client, EJB container, and the stateless session
bean by looking under the hood of the bean

• Define the home and component interfaces

• Implement the stateless session bean class

• Learn how to write the deployment descriptor for stateless session bean and declare
environment entries in it

• Learn how to compile, package, and deploy the bean in a container

• Write the client that accesses the stateless session bean

Looking Under the Hood of a Stateless
Session Bean

Figure 5.1 shows the interactions between the client, the EJB container, and the stateless
session bean.

86 Day 5

JNDI
Service

Client
EJB Container

EJBHome

EJBObject

Stateless session bean

1. register EJBs

Ca
llb

ac
k

M
et

ho
ds

2. create bean

call business method

6. ejbRemove

3. lookup home in JNDI

4. create

5. call business method

The following steps describe the sequence of interactions in detail:

1. At startup, the EJB container registers all the deployed enterprise beans, including
stateless session beans, with the Java Naming and Directory Interface (JNDI) ser-
vice, based on the JNDI name specified in the deployment descriptor.

2. The EJB container decides to instantiate a stateless session bean based on the
caching policy. In this example, the EJB container instantiates the SignOn bean
using the Class.newInstance(“SignOnEJB.class”) and then calls the methods

FIGURE 5.1
Under the hood of a
stateless session bean.

07 0672324237 CH05 9/24/02 3:51 PM Page 86

Developing Stateless Session Beans 87

5

setSessionContext() and ejbCreate() on the instance. Now the bean is ready to
serve any client.

3. The client looks up the home interface of the deployed enterprise bean via JNDI.
For example, the remote home interface for the SignOn stateless bean can be
located using the following code segment:
Context initialContext = new InitialContext();
Object obj = initialContext.lookup(“day05/SignOn”);
SignOnHome signOnHome = (SignOnHome)
javax.rmi.PortableRemoteObject.narrow(obj, SignOnHome.class);

4. The client uses the remote home interface to create a remote sign-on session
object. For example:

SignOn signOn = (SignOn)signOnHome.create();

5. The client calls a business method on the remote object. For example, the client
verifies the login name and password as follows:

signOn.validateUser(“student1”, “password1”);

The container assigns a stateless session bean from the instance pool to service the
client request. The container calls the appropriate business method on the stateless
session object instance. For example, the EJB container calls the validateUser()
method on the stateless session bean instance. After the bean services the client
method call, the container puts the session bean back into the instance pool.

6. The EJB container decides to terminate the session bean instance by calling the
ejbRemove() method of the bean instance.

Designing the Stateless Session Bean
Figure 5.2 shows the design of the SignOn component. The SignOn stateless session bean
implements the SessionBean interface. It implements the methods
setSessionContext(), ejbCreate(), ejbActivate(), ejbPassivate(), and
ejbRemove() as defined in the javax.ejb.SessionBean interface. In addition, it imple-
ments the validateUser() method, which accepts the user’s login name and password
as parameters and returns true if they are valid.

We also provide remote interfaces to our stateless session bean. They include a remote
home interface (SignOnHome) and a remote interface (SignOn). The SignOnHome home
interface extends the javax.ejb.EJBHome interface and defines a single create()
method. The SignOn remote interface extends the javax.ejb.EJBObject interface and
defines the validateUser() method. As you learned on Day 2, “Understanding EJB
Types and Interfaces,” EJB container tools generate the classes that correspond to the
home and remote interfaces.

07 0672324237 CH05 9/24/02 3:51 PM Page 87

Implementing the Stateless Session Bean
This section discusses the implementation of the remote home interface SignOnHome,
remote interface SignOn and the stateless session bean class SignOnEJB.

Defining the Home Interface
The home interface, SignOnHome, is defined in Listing 5.1.

LISTING 5.1 The Full Text of day05/SignOnHome.java

package day05;

import java.rmi.RemoteException;
import javax.ejb.*;

public interface SignOnHome extends EJBHome {
SignOn create()

throws CreateException, RemoteException;
}

So, to create a bean instance, you call the create() method on the home interface, and
receive a reference to the remote interface.

88 Day 5

FIGURE 5.2
SignOn stateless bean
design.

Legend

«interface»
SignOnHome

«interface»
EJBHome

create()

«interface»
SignOn

«interface»
EJBObject

validateUser()

SignOnEJB

«interface»
SessionBean

setSessionContext()
ejbCreate()
ejbActivate()
ejbPassivate()
ejbRemove
validateUser()

implements

extends

For a stateless session bean, the return parameter of create() method of
home interface must be remote interface instance. Also, a stateless session
bean can define a single create() method with no parameters. The throws

Note

07 0672324237 CH05 9/24/02 3:51 PM Page 88

Developing Stateless Session Beans 89

5

Defining the Component Interface
The SignOn remote interface is defined in Listing 5.2.

LISTING 5.2 The Full Text of day05/SignOn.java

package day05;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

public interface SignOn extends EJBObject {
public boolean validateUser(String login, String password)

throws InvalidLoginException, RemoteException;
}

This interface contains the one business method—validateUser—that is callable by the
client. The remote interface is a Java RMI interface. So, method arguments and return
types of a remote method must be legal types for RMI/IIOP and the method must include
java.rmi.RemoteException in its throws clause. InvalidLoginException is a cus-
tomized application exception thrown by the SignOn enterprise bean to report an unsuc-
cessful login attempt.

The remote home interface is a Java Remote Method Invocation (RMI) inter-
face. All RMI interfaces conform to certain rules. The method arguments and
return types of a remote method must be legal types for the RMI over
Internet Inter-Orb Protocol (RMI/IIOP), such as primitives, serializable objects,
and RMI/IIOP remote objects. Each method declared in the remote interface
must include java.rmi.RemoteException in its throws clause. This exception
is thrown when a remote invocation fails for some reason, such as network
failure, protocol errors, and so on.

Note

Enterprise JavaBeans define two types of exceptions: application exceptions
and system exceptions.

Note

clause of the create() method must include CreateException. This excep-
tion is thrown to the client, when there is a problem in creating or initializ-
ing the bean instance.

07 0672324237 CH05 9/24/02 3:51 PM Page 89

Implementing the Enterprise Bean Class
Listing 5.3 shows the SignOnEJB enterprise bean class implementation. The stateless ses-
sion bean implements the javax.ejb.SessionBean interface. It implements the methods
setSessionContext(), ejbCreate(), ejbActivate(), ejbPassivate(), and
ejbRemove(), as defined in the SessionBean interface. The ejbCreate() method creates
an instance of javax.naming.InitialContext and looks up the environment naming
context via the InitialContext under the name “java:comp/env”. In addition, it imple-
ments the validateUser method that accepts the user’s login name and password as
parameters and returns true if the login is successful. The method throws
InvalidLoginException if the login name and password are invalid. For simplicity, this
method uses environment entries to validate the user’s login name and password. On Day
21, we’ll integrate the SignOn bean with an entity bean to store and retrieve the user’s
login name and password from the database.

LISTING 5.3 The Full Text of day05/SignOnEJB.java

package day05;

import java.util.*;
import javax.ejb.*;
import javax.naming.*;

public class SignOnEJB implements SessionBean {
private SessionContext ctx;
private Context environment;

90 Day 5

Enterprise beans use application exceptions to signal an error in the business
logic to the client. There are two types of application exceptions: predefined
and customized. The javax.ejb package includes several predefined excep-
tions that are designed to handle common problems. For example,
javax.ejb.CreateException is a predefined exception. You can code your
own customized exceptions to indicate an error in business logic. For exam-
ple, the SignOn enterprise bean throws InvalidLoginException to report an
unsuccessful login attempt.

A system exception indicates a problem with the services that support an
application. Examples of these problems include remote invocation failure,
failure to obtain database connection, JNDI exceptions, and so on. If your
enterprise bean encounters a system-level problem, it should throw a
javax.ejb.EJBException. The EJB container logs system exception and
throws java.rmi.RemoteException if the client is a remote client, or
javax.ejb.EJBException if the client is a local client. If a system exception is
thrown, the EJB container might destroy the bean instance.

07 0672324237 CH05 9/24/02 3:51 PM Page 90

Developing Stateless Session Beans 91

5

public SignOnEJB() {
print(“The container created this instance.\n”);

}
/* --- Callback methods --- */
public void setSessionContext(SessionContext c) {

print(“The container called the setSessionContext method “);
print(“to associate session bean instance with its context.\n”);
ctx = c;

}
public void ejbCreate() throws CreateException {

print(“The container called the ejbCreate method\n”);
print(“so that we can initialize the bean instance.\n”);
try {

InitialContext ic = new InitialContext();
environment = (Context) ic.lookup(“java:comp/env”);

} catch (NamingException ne) {
throw new CreateException(“Could not look up context”);

}
}
/* Methods ejbActivate and ejbPassivate are

not used by stateless session beans
*/
public void ejbActivate() {}
public void ejbPassivate() {}

public void ejbRemove() {
print(“This instance is in the process of being removed “);
print(“by the container.\n”);

}

/* ---Here you implement all business methods
as defined in the component interface---

*/
public boolean validateUser(String userName, String password)
throws InvalidLoginException {
try {

String storedPassword = (String) environment.lookup(userName);
if (storedPassword.equals(password)) {

return true;
}
else {

throw new InvalidLoginException(“Invalid login/password”);
}

} catch(NamingException ne) {
throw new InvalidLoginException(“Invalid login/password”);

}
}
void print(String s) {

System.out.println(s);
}

}

LISTING 5.3 continued

07 0672324237 CH05 9/24/02 3:51 PM Page 91

Writing the Exception Class
Listing 5.4 shows the InvalidLoginException class. InvalidLoginException derives
from java.lang.Exception.

LISTING 5.4 The Full Text of day05/InvalidLoginException.java

package day05;

public class InvalidLoginException extends Exception {
public InvalidLoginException() {

super();
}
public InvalidLoginException(Exception e) {

super(e.toString());
}
public InvalidLoginException(String s) {

super(s);
}

}

As mentioned earlier, the SignOn enterprise bean throws InvalidLoginException if the
login name and password are invalid.

Declaring the Deployment Descriptors
As you learned on Day 2, the deployment descriptor describes a component’s deploy-
ment settings. Listing 5.5 shows the ejb-jar.xml deployment descriptor for the SignOn
enterprise bean. ejb-jar.xml describes the enterprise bean’s deployment properties, such
as its bean type and structure. The file also provides the EJB container with information
about where it can find, and then load, the home interface, remote interface, and bean
class.

LISTING 5.5 The Full Text of day05/ejb-jar.xml

<?xml version=”1.0”?>

<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

92 Day 5

Because the concepts of activation and passivation are not applicable to
stateless session beans, we provide empty implementations for the methods
ejbActivate() and ejbPassivate().

Note

07 0672324237 CH05 9/24/02 3:51 PM Page 92

Developing Stateless Session Beans 93

5

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>SignOnEJB</ejb-name>
<home>day05.SignOnHome</home>
<remote>day05.SignOn</remote>
<ejb-class>day05.SignOnEJB</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<env-entry>
<env-entry-name>student</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>password</env-entry-value>

</env-entry>
<env-entry>
<env-entry-name>student1</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>password1</env-entry-value>

</env-entry>
</session>

</enterprise-beans>
</ejb-jar>

The ejb-jar element is the root element of the EJB deployment descriptor. It contains
the structural information about all the included enterprise beans. The enterprise-beans
element contains the declarations of one or more enterprise beans. The session element
declares a session bean, and an ejb-name element within the session element defines
the session bean’s name (SignOnEJB). The session element also declares other things
such as the home interface (day05.SignOnHome), the remote interface (day05.SignOn),
and the bean’s class (day05.SignOnEJB). The session-type element declares that this is
a stateless session bean (as opposed to a stateful session bean).

The env-entry element defines an environment property that the enterprise bean can
access via JNDI. Each env-entry element describes a single environment entry. The
env-entry element consists of the environment entry name relative to the
java:comp/env context, the Java type of the environment entry value, the environment
entry value, and so on. For example, the value of the environment entry name student is
password, and its type is java.lang.String. The SignOn enterprise bean uses environ-
ment entries to validate the user’s login name and password.

As you learned on Day 2, in addition to the standard ejb-jar.xml, an application typi-
cally requires a certain amount of additional environment-specific or vendor-specific
binding information. Listing 5.6 shows a weblogic-ejb-jar.xml deployment descriptor
that is specific to WebLogic Server.

LISTING 5.5 continued

07 0672324237 CH05 9/24/02 3:51 PM Page 93

LISTING 5.6 The Full Text of day05/weblogic-ejb-jar.xml

<?xml version=”1.0”?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN’
‘http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>SignOnEJB</ejb-name>
<jndi-name>day05/SignOn</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

The jndi-name element declares the JNDI name of the enterprise bean. So, the JNDI
name of the SignOnEJB is day05/SignOn.

Listing 5.7 shows a jboss.xml deployment descriptor that is specific to JBoss.

LISTING 5.7 The Full Text of C:\styejb\examples\day05\jboss.xml

<?xml version="1.0" encoding="UTF-8"?>
<jboss>
<enterprise-beans>
<session>
<ejb-name>SignOnEJB</ejb-name>
<jndi-name>day05/SignOn</jndi-name>

</session>
</enterprise-beans>

</jboss>

The preceding file declares the JNDI name of SignOnEJB as day05/SignOn.

Packaging the Enterprise Bean
The next few sections show how to package and deploy the enterprise bean and run the
sample client in WebLogic Server. The corresponding steps for JBoss are presented later
today.

The following snippet shows the directory structure for the SignOn bean files for
WebLogic Server:

C:\styejb\examples\
day05\

SignOn.java
SignOnHome.java
SignOnEJB.java

94 Day 5

07 0672324237 CH05 9/24/02 3:51 PM Page 94

Developing Stateless Session Beans 95

5

InvalidLoginException.java
ejb-jar.xml
weblogic-ejb-jar.xml

For JBoss, replace the vendor-specific weblogic-ejb-jar.xml file with jboss.xml.

As you learned on Day 2, packaging is the process of assembling the enterprise bean
files into an ejb-jar file. To package the SignOn component, you must perform the fol-
lowing steps:

1. Set up the environment for the build in a new command window using the follow-
ing commands:

C:\>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day05

C:\styejb\examples\day05>

Getting the proper environment is necessary to run the example correctly.
You can verify the environment by using the env command as follows:

C:\styejb\examples\day05>env

APPLICATIONS=c:\bea\weblogic700\config\mydomain\applications

CLASSPATH=C:\bea\jdk131_03\lib\tools.jar;

c:\bea\weblogic700\server\lib\weblogic_sp.jar;

c:\bea\weblogic700\server\lib\weblogic.jar;

c:\bea\weblogic700\samples\server\eval\pointbase\lib\pbserver42ECF17
➥2.jar;

c:\bea\weblogic700\..;. . .

PATH=c:\bea\weblogic700\bin;C:\bea\jdk131_03\bin;. . .

Make sure that the environment variables PATH and CLASSPATH point to valid
directories.

Caution

2. Create a stating area for the build using the following commands:

C:\styejb\examples\day05>mkdir build build\META-INF

C:\styejb\examples\day05>copy %STYEJB_HOME%\day05\ejb-jar.xml build\
➥META-INF
C:\styejb\examples\day05>copy %STYEJB_HOME%\day05\weblogic-ejb-jar.xml
➥build\META-INF

The preceding commands create a build directory in which the compiled files and
deployment descriptors will be placed before they are packaged into an ejb-jar
file. The .xml files are placed under META-INF within the build directory.

07 0672324237 CH05 9/24/02 3:51 PM Page 95

3. Compile the Java files using the following commands:
C:\styejb\examples\day05>javac -g -d build SignOn.java SignOnHome.java
➥SignOnEJB.java InvalidLoginException.java

4. Package the enterprise bean files into an ejb-jar file using the following com-
mands:

C:\styejb\examples\day05>cd build

C:\styejb\examples\day05\build>jar cv0f tmp_day05_SignOn.jar META-INF day05

C:\styejb\examples\day05\build>cd ..

5. Generate the container classes using the WebLogic tool ejbc as follows:
C:\styejb\examples\day05>java weblogic.ejbc -keepgenerated -g
➥-deprecation build\tmp_day05_SignOn.jar build\day05_SignOn.jar

The ejbc tool generates and inserts the container classes into the ejb-jar file
day05_SignOn.jar. The ejbc tool is specific to WebLogic.

The day05_SignOn.jar file is now ready for deployment into WebLogic Server.

Deploying the Enterprise Bean
The process of installing and customizing the ejb-jar file in the EJB container is known
as deploying. To deploy the day05_SignOn.jar file into WebLogic Server, you must per-
form the following steps:

1. Start WebLogic Server in a new command window as follows:

C:\>cd styejb\examples

C:\styejb>setEnvWebLogic.bat

C:\styejb>startWebLogic.bat

96 Day 5

You must wait for the application server to completely start before proceed-
ing to the next step. For example, WebLogic Server displays the following
message when it is completely started and ready to accept client requests:

<Notice> <WebLogicServer> <Started WebLogic Admin Server “myserver”
for domain “mydomain” running in Development Mode>

Caution

2. Deploy the component by copying the ejb-jar file into the WebLogic applica-
tions directory. You can deploy the bean in the same command window you used
for packaging the bean by using the following command:
C:\styejb\examples\day05>copy build\day05_SignOn.jar
➥%APPLICATIONS%

We use the hot deployment feature of both WebLogic (version 6.1 and higher) and
JBoss (version 2.4 and higher). Deployment is performed by simply copying the
bean’s JAR file into the application deployment directory.

07 0672324237 CH05 9/24/02 3:51 PM Page 96

Developing Stateless Session Beans 97

5

The following shows the contents of the ejb-jar file:

META-INF/
ejb-jar.xml
vendor-specific deployment files

day05/
SignOn.class
InvalidLoginException.class
SignOnHome.class
SignOnEJB.class

The ejb-jar file includes the standard deployment descriptor ejb-jar.xml, and other
vendor-specific files such as weblogic-ejb-jar.xml, under the directory META-INF. In
addition, it contains the class files for each enterprise bean, such as home and component
interfaces, enterprise bean classes, and any dependent classes.

You can verify the bean deployment by using the WebLogic administrative
console (http://localhost:7001/console). When prompted, enter system as
the username and administrator as the password. In the left panel, click
mydomain->Deployments->EJB. If the day05_SignOn.jar is properly
deployed, you should see it under the EJB node. Click on day05_SignOn to
see more information about it. Figure 5.3 shows a corresponding screen
shot.

Note

FIGURE 5.3
Enterprise bean
deployment verifica-
tion in WebLogic
Server.

07 0672324237 CH05 9/24/02 3:51 PM Page 97

Writing a Client
Listing 5.8 demonstrates how a client accesses a stateless session bean.

LISTING 5.8 The Full Text of day05/Client.java

package day05;

import java.util.*;
import javax.naming.*;
import javax.ejb.*;

public class Client {

public static void main(String[] args) {
print(“Starting Client . . .\n”);
Context initialContext = null;
SignOnHome signOnHome = null;
SignOn signOn = null;

try {
print(“Looking up the sign on component via JNDI.\n”);
initialContext = new InitialContext();
Object object = initialContext.lookup(“day05/SignOn”);
signOnHome = (SignOnHome)
javax.rmi.PortableRemoteObject.narrow(object,SignOnHome.class);

print(“Creating an signOn object.\n”);
signOn = (SignOn) signOnHome.create();

print(“Testing a successful login/password\n”);
signOn.validateUser(“student”, “password”);

print(“Testing an invalid login/password\n”);
try {

signOn.validateUser(“student”, “invalidpassword”);
} catch(InvalidLoginException ile) {

System.err.println(ile);
}
print(“Removing the signOn object.\n”);
signOn.remove();

} catch (Exception e) {
e.printStackTrace();

}
}
static void print(String s) {
System.out.println(s);

}
}

98 Day 5

07 0672324237 CH05 9/24/02 3:51 PM Page 98

Developing Stateless Session Beans 99

5

The client locates the SignOnHome home interface of the deployed enterprise bean via
JNDI, and then uses the remote home interface to create a remote SignOn session object.
The client then calls the validateUser() business method with a valid login name and
password on the remote object. It also demonstrates the application-specific exception by
calling the validateUser() method with an invalid login name and password. Finally,
the client calls the remove() method on the remote interface. The container will destroy
the remote session object.

You can build the client in the same command window you used for packaging the enter-
prise bean by using the following command:

C:\styejb\examples\day05>javac -g -classpath %CLASSPATH%;.\build -d build

➥Client.java

For convenience, we provide a single script, buildWebLogic.bat, under the
c:\styejb\examples\day05 directory to package and deploy the enterprise bean. It also
builds the client.

Running the Example
You can run the client in the same window you used to build it by issuing the following
command:

C:\styejb\examples\day05>java -Djava.naming.factory.initial=
➥weblogic.jndi.WLInitialContextFactory -Djava.naming.provider.url=
➥t3://localhost:7001 -classpath %CLASSPATH%;.\build day05.Client

Running the client produces the following output:

Starting Client . . .
Looking up the sign on component via JNDI.
Creating an signOn object.
Testing a successful login/password
Testing an invalid login/password
day05.InvalidLoginException: Invalid login/password
Start server side stack trace:
day05.InvalidLoginException: Invalid login/password
at day05.SignOnEJB.validateUser(SignOnEJB.java:52)
at day05.SignOnEJB_keukm7_EOImpl.validateUser(SignOnEJB_keukm7_EOImpl.java:37)
at day05.SignOnEJB_keukm7_EOImpl_WLSkel.invoke(Unknown Source)
at weblogic.rmi.internal.BasicServerRef.invoke(BasicServerRef.java:298)
at weblogic.rmi.cluster.ReplicaAwareServerRef.invoke
➥(ReplicaAwareServerRef.java:93)
at weblogic.rmi.internal.BasicServerRef.handleRequest(BasicServerRef.java:267)
at weblogic.rmi.internal.BasicExecuteRequest.execute
➥(BasicExecuteRequest.java:22)
at weblogic.kernel.ExecuteThread.execute(ExecuteThread.java:139)
at weblogic.kernel.ExecuteThread.run(ExecuteThread.java:120)
End server side stack trace
Removing the signOn object.

07 0672324237 CH05 9/24/02 3:51 PM Page 99

For convenience, we provide the script runClientJBoss.bat under the c:\styejb\exam-
ples\day05 directory to run the sample client.

The following steps describe how to package, deploy the SignOn component and run the
sample client for the JBoss server:

1. Package and deploy the component in a new command window using the following
commands:
C:\>cd styejb\examples
C:\styejb\examples>setEnvJBoss.bat
C:\styejb\examples>cd day05
C:\styejb\examples\day05>buildJBoss.bat

The preceding steps package the enterprise bean files into an ejb-jar file
day05_SignOn.jar. In addition, they copy this ejb-jar file into the deployment
area of JBoss. They also build the sample client.

2. Start JBoss in a new command window using the following commands:
C:\>cd styejb\examples
C:\styejb\examples>setEnvJBoss.bat
C:\styejb\examples>startJBoss.bat

100 Day 5

You can verify the bean deployment by using the JBoss management con-
sole (http://localhost:8080/jmx-console). Look for day05_SignOn.jar in
the console. If the day05_SignOn.jar is properly deployed, you should see it
under the jboss.j2ee section as shown in Figure 5.4.

Note

FIGURE 5.4
Enterprise bean
deployment verifica-
tion in JBoss.

07 0672324237 CH05 9/24/02 3:51 PM Page 100

Developing Stateless Session Beans 101

5

3. You can run the sample client in the same window you used to package the bean
and build the client by using the following command:
C:\styejb\examples\day05>runClientJBoss.bat

Best Practices
Some best practices are already mentioned on Day 3, “Understanding Session Beans.”
Stateless beans offer better performance than stateful beans because they require fewer
resources. To support the same number of clients, an application typically requires fewer
stateless session beans than stateful session beans. Whenever possible, choose stateless
session beans instead of stateful session beans.

It’s useful to follow a naming convention for enterprise bean class names. For example,
use the suffix Home for a remote home interface (for example, SignOnHome); no suffix for
remote interface (for example, SignOn); the suffix LocalHome for a local home interface
(for example, SignOnLocalHome); the suffix Local for a local interface (for example,
SignOnLocal); and the suffix EJB for enterprise bean class (for example, SignOnEJB).

Summary
Today you wrote your first enterprise bean. You wrote the home interface, component
interface, enterprise bean class, and application exception for a stateless session bean.
The remote home interface extends the javax.ejb.EJBHome interface and contains a
single create method. The remote interface extends javax.ejb.EJBObject and contains
the business methods callable by the client. The enterprise bean class implements the
javax.ejb.SessionBean interface. In addition, it implements the ejbCreate method and
business methods defined in the remote interface. The deployment descriptor for a ses-
sion bean includes information such as the bean’s name, home interface, component
interface, bean class, and its subtype. You learned how to package and deploy the enter-
prise bean. You also wrote and ran a client that accesses the enterprise bean.

You learned about the types of exceptions: application exceptions and system exceptions.
Application exceptions, such as javax.ejb.CreateException, indicate an error in busi-
ness logic to the client. System exceptions, such as java.rmi.RemoteException, indicate
an error with the services that support an application and the EJB container may destroy
the bean instance.

The process of writing, packaging, and deploying enterprise bean files is similar for other
types of enterprise beans as well. You’ll use this procedure in the following days.

07 0672324237 CH05 9/24/02 3:51 PM Page 101

Q&A
Q What files do I need to write for a stateless session bean?

A Like other enterprise beans, stateless session beans consist of a home interface,
component interface, enterprise bean class, and deployment descriptor. You must
provide a session bean’s remote home interface and remote interface, if the session
bean provides a remote client view. If the session bean provides a local client view,
you must provide a local interface and local home interface. Your session bean may
provide both local and remote client views.

Q How do I specify the JNDI name for a stateless session bean?

A The JNDI name for a stateless session bean is specified in the vendor-specific
deployment descriptor, such as weblogic-ejb-jar.xml or jboss.xml.

Quiz
1. A stateless session bean implements which of the following interfaces?

A. javax.ejb.StatelessBean

B. javax.ejb.SessionBean

C. javax.ejb.EJBObject

D. javax.ejb.SignOnHome

2. Which of the following methods is not used by a stateless session bean?

A. ejbCreate()

B. ejbRemove()

C. setSessionContext()

D. ejbActivate()

3. Which of the following is true for a stateless session bean?

A. Maintains conversational state on behalf of a client

B. Activation and passivation are applicable

C. Can be pooled

D. Can’t open database connections

Quiz Answers
1. B

2. D

3. C

102 Day 5

07 0672324237 CH05 9/24/02 3:51 PM Page 102

Developing Stateless Session Beans 103

5

Exercises
To extend your knowledge of the subjects covered today, try the following exercise:

Define an addUser (String userName, String password) method in the remote inter-
face SignOn. Add a corresponding method in the enterprise bean class SignOnEJB.

For today, you can provide an empty implementation for the method. Later, you’ll extend
it to write to database using an entity bean.

07 0672324237 CH05 9/24/02 3:51 PM Page 103

07 0672324237 CH05 9/24/02 3:51 PM Page 104

DAY 6

WEEK 1

Developing Stateful
Session Beans

Today you’ll learn how to develop applications that maintain the conversational
state on behalf of the client. You’ll work on a complete example of developing
a stateful session bean.

The sample university registration application enables students to browse the
online course catalog. While browsing the catalog, the student can select the
course(s) she likes and place them in a temporary enrollment cart. The student
can view or delete courses from the cart, and may later decide to place an order
for the cart contents.

EnrollmentCart represents a collection of courses selected by a student in a
particular session. The cart should not be shared, because it represents a partic-
ular interaction with a particular student and is alive only for the student’s ses-
sion. Also, the cart is not saved into the database unless the student is ready to
place an order. The cart becomes a persistent order when the student decides to
purchase it. A cart must be allocated by the system for each student concur-
rently connected to the Web site. All these characteristics make

08 0672324237 CH06 9/24/02 2:35 PM Page 105

EnrollmentCart an ideal candidate for a stateful session bean. You will undertake each
of the following:

• Examine the interactions between the client, EJB container, and the stateful session
bean by looking under the hood of the bean

• Define the home and component interfaces for the stateful session bean

• Implement the stateful session bean class

• Learn how to write the deployment descriptors, and package and deploy the enter-
prise bean

• Write a sample client that accesses the stateful session bean

Looking Under the Hood of the Stateful
Session Bean

Figure 6.1 shows the interactions between the client, the EJB container, and the stateful
session bean.

106 Day 6

EJB Container

Stateful session
bean

EJBObject

EJBHome

5. remove

1. register EJBs

3. create

4. call business
method

JNDI
Service

2. lookup home in JNDI

3.1 bean creation

5.1 ejbRemove

ejbPassivate

ejbActivate

4.1 call business
methodClient

C
al

lb
ac

k
M

et
ho

ds

FIGURE 6.1
Under the hood of a
stateful session bean.

The following steps describe the sequence of interactions in detail:

1. At startup, the EJB container registers enterprise beans with the Java Naming and
Directory Interface (JNDI) service.

2. The client looks up the home interface of the installed enterprise bean via JNDI.
For example, the remote home interface for the enrollment cart session bean can be
located using the following code segment:
Context initialContext = new InitialContext();
Object obj = initialContext.lookup(“day06/EnrollmentCartHome”);

08 0672324237 CH06 9/24/02 2:35 PM Page 106

Developing Stateful Session Beans 107

6

EnrollmentCartHome eCartHome = (EnrollmentCartHome)
javax.rmi.PortableRemoteObject.narrow(obj, EnrollmentCartHome.class);

3. The client uses the remote home interface to create an enrollment cart session
object. For example,

EnrollmentCart eCart = (EnrollmentCart) eCartHome.create();

The container creates a session bean instance on behalf of the client. The creation
process involves setting the context and calling the appropriate
ejbCreate<method> method. For example, the container calls the
setSessionContext and the ejbCreate methods of the session bean instance.

4. The client calls business methods on the remote object For example, the client adds
courses to the enrollment cart as follows:
String[] courseIds = { “CS101”, “CS102”, “CS103”};
enrollmentCart.addCourses(courseIds);

The container calls the appropriate business method on the session bean. For exam-
ple, it calls session bean’s method:

addCourses(String[] courseIds).

5. The client calls the remove method of the remote object. For example, the client
removes the enrollment cart object as follows:

enrollmentCart.remove();

The container calls the ejbRemove method on the session bean instance.

A client never directly accesses instances of the session bean’s class.Note

During the life cycle of the stateful session bean, the container can passivate and activate
the session bean instance. This usually occurs when the number of instances reaches a
certain limit specified by the developer in the deployment descriptor. During this process,
the container calls the session bean’s ejbPassivate and ejbActivate methods.

Designing the Stateful Session Bean
Like other enterprise beans, stateful session beans consist of a home interface, compo-
nent interface, enterprise bean class, and deployment descriptor. The home and compo-
nent interfaces can be local, or remote, or both.

Figure 6.2 shows the design of the EnrollmentCart component. The EnrollmentCart
stateful session bean implements the SessionBean interface. It implements the methods

08 0672324237 CH06 9/24/02 2:35 PM Page 107

setSessionContext(), ejbCreate(), ejbActivate(), ejbPassivate(), and
ejbRemove() as defined in the javax.ejb.SessionBean interface. In addition, it imple-
ments the addCourses(String[] courseIds) method, which accepts an array of course
IDs and adds them to the cart. The getCourses() method returns a collection of course
IDs in the cart and the empty() method clears the contents in the cart.

108 Day 6

FIGURE 6.2
EnrollmentCart sam-
ple class diagram.

EnrollmentCartEJB

setSessionContext()
ejbCreate()
ejbActivate()
ejbPassivate()
ejbRemove()
addCourses()
getCourses()
empty()

«interface»
EnterpriseBean

«interface»
EJBObject

«interface»
SessionBean

«interface»
EJBHome

«interface»
EnrollmentCart

addCourses()
getCourses()
empty()

«interface»
EnrollmentCartHome

create()

implements

extends

Legend

We provide remote interfaces to our stateful session bean. They include a remote home
interface (EnrollmentCartHome) and a remote interface (EnrollmentCart). The
EnrollmentCartHome home interface extends the javax.ejb.EJBHome interface and
defines a single create() method. The EnrollmentCart remote interface extends the
javax.ejb.EJBObject interface and defines the methods addCourses(), getCourses()
and empty().

Both stateful and stateless session beans provide the following class files: a)
session bean class; b) session bean’s remote home interface and remote
interface, if the session bean provides a remote client view; c) session bean’s
local interface and local home interface, if the session bean provides a local
client view.

Your session bean may provide both local and remote client views.

Note

08 0672324237 CH06 9/24/02 2:35 PM Page 108

Developing Stateful Session Beans 109

6

Implementing the Stateful Session Bean
This section discusses the implementation of the remote home interface
EnrollmentCartHome, the remote interface EnrollmentCart, and the stateful session
bean class EnrollmentCartEJB.

Defining the Home Interface
Clients use home interface to create and remove session bean instances. Within the home
interface, we define one or more create<method>(...) methods. The container tools
generate the class that corresponds to this interface.

A stateful session bean may have more than one create() methods, and
some of them may have arguments. This is different, though, from the case
of a stateless session bean, which can only have one create() method with
no arguments.

Note

Listing 6.1 shows the home interface EnrollmentCartHome.

LISTING 6.1 The Full Text of day06/EnrollmentCartHome.java

package day06;

import java.rmi.RemoteException;
import javax.ejb.*;

public interface EnrollmentCartHome extends EJBHome {
EnrollmentCart create() throws CreateException, RemoteException;

}

The EnrollmentCartHome interface consists of a single create() method. To create the
bean instance, a client calls the create() method of the home interface.

The throws clause of the create() method must include CreateException. This excep-
tion is thrown when there is a problem in creating or initializing the bean instance.

The remote home interface EnrollmentCartHome is a Java Remote Invocation Method
(RMI) interface. So, the method arguments and return types of a remote method must be
legal types for the RMI over Internet Inter-ORB Protocol (RMI/IIOP), such as primitives,
serializable objects, and RMI/IIOP remote objects. Each method declared in the remote
interface must include java.rmi.RemoteException in its throws clause. This exception
is thrown when a remote invocation fails for some reason, such as network failure, proto-
col errors, and so on.

08 0672324237 CH06 9/24/02 2:35 PM Page 109

Defining the Remote Interface
This interface exposes a session bean’s business methods to the client. The client calls
the methods defined in the remote interface to invoke the business logic implemented by
the bean. The container tools generate the class corresponding to this interface.

As shown in Listing 6.2, our EnrollmentCart interface defines three business methods:
addCourses() for adding courses to the cart, getCourses() to get the currently selected
courses, and empty() to clear the enrollment cart.

LISTING 6.2 The Full Text of day06/EnrollmentCart.java

package day06;

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util.Collection;

public interface EnrollmentCart extends EJBObject {
public void addCourses(String[] courseIds) throws RemoteException;
public Collection getCourses() throws RemoteException;
public void empty() throws RemoteException;

}

The remote interface EnrollmentCart is a Java RMI interface. So, method arguments
and return types of a remote method must be legal types for RMI/IIOP and the method
must include java.rmi.RemoteException in its throws clause.

Implementing the Enterprise Bean Class
Listing 6.3 shows the EnrollmentCartEJB enterprise bean class.

LISTING 6.3 The Full Text of day06/EnrollmentCartEJB.java

package day06;

import java.util.*;
import javax.ejb.*;
import javax.naming.*;

public class EnrollmentCartEJB implements SessionBean {
private SessionContext ctx;
private HashSet cart;
public EnrollmentCartEJB() {

print(“The container created this instance.\n”);

110 Day 6

08 0672324237 CH06 9/24/02 2:35 PM Page 110

Developing Stateful Session Beans 111

6

}
public void setSessionContext(SessionContext ctx) {

print(“The container called the setSessionContext method “);
print(“to associate session bean instance with its context.\n”);
this.ctx = ctx;

}

public void ejbCreate() throws CreateException {
print(“The container called the ejbCreate method.\n”);
cart = new HashSet();

}
public void ejbActivate() {

print(“This instance has just been reactivated.\n”);
}
public void ejbPassivate() {

print(“The container intends to passivate the instance.\n”);
}
public void ejbRemove() {

print(“This instance is in the process of being removed “);
print(“by the container.\n”);

}
public void addCourses(String[] courseIds) {

print(“The container called addCourses method.\n”);
if (courseIds == null) {

return;
}
for (int i = 0; i < courseIds.length ; i ++) {

cart.add(courseIds[i]);
}

}
public Collection getCourses() {

print(“The container called getCourses method.\n”);
return cart;

}
public void empty() {

print(“The container called empty method.\n”);
cart.clear();

}
void print(String s) {

System.out.println(s);
}

}

The stateful session bean implements the javax.ejb.SessionBean interface. The mem-
ber variable cart constitutes the enterprise bean’s conversational state. The bean imple-
ments the methods setSessionContext(), ejbCreate(), ejbActivate(),

LISTING 6.3 continued

08 0672324237 CH06 9/24/02 2:35 PM Page 111

ejbPassivate(), and ejbRemove(), as defined in the javax.ejb.SessionBean interface.
The ejbCreate() method initializes the bean instance. The bean class implements the
business methods addCourses(), getCourses() and empty() defined in its remote inter-
face.

112 Day 6

The EJB container serializes calls to each stateful session bean instance. This
enables you to program a stateful bean as single-threaded, non-reentrant
code. If two clients attempt to simultaneously access a session bean instance,
the container throws an exception to the second client. The container
throws java.rmi.RemoteException if the client is a remote client and
javax.ejb.EJBException if the client is a local client.

The container does not serialize calls to a stateless session bean instance
because the container routes each client request to a different instance of
the session bean class.

Note

Optional SessionSynchronization Interface
The SessionSynchronization interface, when implemented by the stateful session
bean, allows the bean to be more transaction-aware. The container provides the bean
with three callback methods: afterBegin(), beforeCompletion(), and
afterCompletion(int). When the transaction begins, the container calls the
afterBegin() method. The beforeCompletion() and afterCompletion(int) methods
are used to manage resources before the transaction commits and aborts. We’ll explore
this interface on Day 16.

Declaring the Deployment Descriptors
Now it’s time to create the deployment descriptors. We need to create two deployment
descriptors before creating the bean’s JAR file (in our case,
day06_EnrollmentCart.jar), which is required to deploy the enrollment cart’s stateful
session bean into the WebLogic EJB container. These deployment descriptors are

• Standard deployment descriptor ejb-jar.xml, as specified by Sun Microsystems,
which is common to all EJBs

• Vendor-specific deployment descriptor; WebLogic uses weblogic-ejb-jar.xml
and JBoss uses jboss.xml

Declaring the Standard Deployment Descriptor ejb-jar.xml
This file is the standard descriptor as specified by Sun, and must contain the Sun
Microsystems–specific EJB DTD.

08 0672324237 CH06 9/24/02 2:35 PM Page 112

Developing Stateful Session Beans 113

6

The ejb-jar.xml describes the enterprise bean’s deployment properties, such as its type
and structure. As we learned on Day 2, this file provides the EJB container with informa-
tion where it can find, and then load, the home interface, remote interface, and bean
class. It declares its internal dependences and the application assembly information,
which describes how the enterprise bean in the ejb-jar file
(day06_EnrollmentCart.jar) is assembled into an application deployment unit.

Listing 6.4 shows the ejb-jar.xml file for the deployment descriptor of the
EnrollmentCart EJB.

LISTING 6.4 The Full Text of day06/ejb-jar.xml

<?xml version=”1.0”?>

<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>EnrollmentCart</ejb-name>
<home>day06.EnrollmentCartHome</home>
<remote>day06.EnrollmentCart</remote>
<ejb-class>day06.EnrollmentCartEJB</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>

</ejb-jar>

The prolog contains the declaration and the DTD for the validation. The document root
is the <ejb-jar> tag. It contains the structural information about all the included enter-
prise beans. The enterprise-beans element contains the declarations of one or more
enterprise beans. The session element declares a session bean, and an ejb-name ele-
ment within the session element defines the session bean’s name (EnrollmentCart).
The session element also declares other things such as the home interface
(day06.EnrollmentCartHome), the remote interface (day06.EnrollmentCart), and the
bean’s class (day06.EnrollmentCartEJB). The session-type element declares that this
is a stateful session bean.

The transaction-type element specifies that this bean uses container-managed transac-
tions. Container-managed transactions are discussed in detail on Day 18.

08 0672324237 CH06 9/24/02 2:35 PM Page 113

114 Day 6

The deployment descriptor element session-type is where the EJB container
recognizes a stateful or stateless session bean.

Tip

Declaring the Vendor-Specific Deployment Descriptor
As you learned on Day 2, in addition to standard ejb-jar.xml, an application typically
requires a certain amount of additional environment-specific or vendor-specific binding
information, such as naming, security, and persistence. The following sections describe
both the WebLogic and JBoss deployment descriptors.

Declaring the WebLogic Deployment Descriptor: weblogic-ejb-jar.xml

The weblogic-ejb-jar.xml file contains the WebLogic Server–specific EJB DTD that
defines the naming, caching, clustering, and performance behavior of the deployed EJBs.

Listing 6.5 shows the weblogic-ejb-jar.xml deployment descriptor.

LISTING 6.5 The Full Text of day06/weblogic-ejb-jar.xml

<?xml version=”1.0”?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN’
‘http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>EnrollmentCart</ejb-name>

<stateful-session-descriptor>
<stateful-session-cache>

<max-beans-in-cache>5</max-beans-in-cache>
</stateful-session-cache>

</stateful-session-descriptor>
<jndi-name>day06/EnrollmentCartHome</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

The jndi-name element declares day06/EnrollmentCart as the JNDI name of the
EnrollmentCart enterprise bean. The max-bean-in-cache element specifies the thresh-
old at which WebLogic Server starts to passivate inactive instances in the instance cache
to the back store. For demonstration purposes, we set the value to 5. As new concurrent
clients request the bean’s services, WebLogic Server creates new instances of the bean.

08 0672324237 CH06 9/24/02 2:35 PM Page 114

Developing Stateful Session Beans 115

6

When the sixth client requests the bean’s services, the server passivates some of the idle
beans, perhaps using the LRU (Least Recently Used) algorithm.

Declaring the JBoss Deployment Descriptor: jboss.xml

jboss.xml, the deployment descriptor that’s specific to the JBoss server, defines the
naming, caching, and other properties to control the behavior of the deployed EJBs.
Listing 6.6 shows the jboss.xml file.

LISTING 6.6 The Full Text of day06/jboss.xml

<?xml version="1.0" encoding="UTF-8"?>

<jboss>
<enterprise-beans>
<session>
<ejb-name>EnrollmentCart</ejb-name>
<jndi-name>day06/EnrollmentCartHome</jndi-name>

</session>
</enterprise-beans>

<container-configurations>
<container-configuration>
<container-name>Standard Stateful SessionBean</container-name>
<container-cache-conf>
<cache-policy>

<![CDATA[org.jboss.ejb.plugins.LRUStatefulContextCachePolicy]]>
</cache-policy>

<cache-policy-conf>
<max-capacity>100</max-capacity>
<max-bean-age>2</max-bean-age>
<overager-period>2</overager-period>

</cache-policy-conf>
</container-cache-conf>

</container-configuration>
</container-configurations>
</jboss>

In this deployment descriptor, the jndi-name element declares day06/EnrollmentCart
as the JNDI name of the EnrollmentCart enterprise bean. The max-capacity element
specifies the maximum capacity of the cache as 100. The element max-bean-age element
specifies the maximum period of inactivity in seconds that a bean can have before it will
be passivated by the container. The overager-period element specifies the period in
seconds at which the container scans the cache for inactive beans and passivates them.

08 0672324237 CH06 9/24/02 2:35 PM Page 115

For demonstration purposes, we specify the container look for inactive beans every two
seconds and the bean is considered inactive if it is not accessed for two seconds.

Writing the Client
Listing 6.7 demonstrates how a client accesses a stateful bean.

LISTING 6.7 The Full Text of day06/Client.java

package day06;

import java.util.*;
import javax.naming.*;
import javax.ejb.*;
public class Client {
public static void main(String[] args) {
print(“Starting Client . . .\n”);
Context initialContext = null;
EnrollmentCartHome enrollmentCartHome = null;
EnrollmentCart enrollmentCart = null;
print(“Demonstration of a simple client . . . \n”);
try {

// Looking up the enrollment cart home via JNDI
initialContext = new InitialContext();
Object object = initialContext.lookup(“day06/EnrollmentCartHome”);
enrollmentCartHome = (EnrollmentCartHome)
javax.rmi.PortableRemoteObject.narrow(object,

EnrollmentCartHome.class);
print(“Creating an enrollment cart.\n”);
enrollmentCart = (EnrollmentCart) enrollmentCartHome.create();
String[] courseIds = { “CS101”, “CS102”, “CS103”};
print(“Adding some courses to our enrollment cart.\n”);
enrollmentCart.addCourses(courseIds);
String[] moreCourseIds = { “CS201”, “CS202”, “CS203”};
print(“Adding some more courses to our enrollment cart.\n”);
enrollmentCart.addCourses(moreCourseIds);
print(“Getting the collection of courses in our enrollment cart.\n”);
Collection collection = enrollmentCart.getCourses();
print(“Removing our enrollment cart.\n”);
enrollmentCart.remove();

} catch (Exception e) {
e.printStackTrace();

}

print(“Demonstration of exceptions . . .\n”);

116 Day 6

08 0672324237 CH06 9/24/02 2:35 PM Page 116

Developing Stateful Session Beans 117

6

try {
print(“Now trying to access enrollment cart that was removed.\n”);
String[] courseIds = { “CS501” };
enrollmentCart.addCourses(courseIds);

} catch (Exception e) {
print(“Exception caught while trying to access “);
print(“ enrollment cart that was removed.\n”);
print(e.toString());

}
print(“Demonstration of Activation/Passivation . . .\n”);
try {

EnrollmentCart carts[] = new EnrollmentCart[15];
for (int i = 0; i < 15 ; i++) {

print(“Creating cart “ + i);
carts[i] = enrollmentCartHome.create();
String[] courseIds = { “CS601” };
carts[i].addCourses(courseIds);
Thread.sleep(1000);

}
for(int i = 0; i < 10; i++) {

print(“Removing cart” + i);
carts[i].remove();

}
}
catch(Exception e) {

e.printStackTrace();
}

}
static void print(String s) {

System.out.println(s);
}

}

The client locates the EnrollmentCartHome home interface of the deployed enterprise
bean via JNDI, and then uses the remote home interface to create a remote
EnrollmentCart session object. The client then calls the addCourses() business method,
followed by the getCourses() business method, and removes the cart by calling remove
method on the remote interface. Later, the client tries to access the session object that
was removed earlier. This results in a java.rmi.NoSuchObjectException exception.

The client also demonstrates the activation and passivation by creating multiple instances
of the bean. As you know, the container starts to passivate the instances when the number
of instances in the cache reaches the threshold set in the vendor-specific deployment
descriptor.

LISTING 6.7 continued

08 0672324237 CH06 9/24/02 2:35 PM Page 117

Packaging and Deploying the Enterprise
Bean

The following shows the directory structure for the EnrollmentCart bean files and client
for WebLogic Server:

C:\styejb\
examples\

day06\
EnrollmentCart.java
EnrollmentCartHome.java
EnrollmentCartEJB.java
ejb-jar.xml
weblogic-ejb-jar.xml
Client.java

For JBoss, replace the vendor-specific weblogic-ejb-jar.xml file with jboss.xml.

For JBoss, replace the vendor-specific weblogic-ejb-jar.xml file with jboss.xml.

To package and deploy the EnrollmentCart session bean for WebLogic Server, run the
following commands:

C:>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day06

C:\styejb\examples\day06>buildWebLogic.bat

You can run the script by entering the following commands:

C:>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

118 Day 6

The EJB container may remove the session object in the following scenarios:
a) A timeout due to client inactivity while the instance is in the passive state;
b) A shutdown or crash of the container; c) A system exception thrown from
the instance’s method. All the object references and handles for the session
object become invalid. If your client attempts to access the session object,
the container will throw a java.rmi.NoSuchObjectException exception if the
client is a remote client, or the javax.ejb.NoSuchObjectLocalException
exception if the client is a local client.

Caution

08 0672324237 CH06 9/24/02 2:35 PM Page 118

Developing Stateful Session Beans 119

6

C:\styejb\examples>cd day06

C:\styejb\examples\day06>buildWebLogic.bat

The corresponding script for JBoss is buildJBoss.bat. Here are the steps to run the
commands:

C:>cd styejb\examples

C:\styejb\examples>setEnvJBoss.bat

C:\styejb\examples>cd day06

C:\styejb\examples\day06>buildJBoss.bat

To deploy the EnrollmentCart bean, we used the hot deployment feature of both
WebLogic (version 6.1 and higher) and JBoss (version 2.4 and higher). Deployment is
performed simply by copying the bean’s JAR file into the application deployment direc-
tory.

Running the Example
The following steps describe how to run the example in either WebLogic Server or
JBoss:

The following steps describe how to run the example in either WebLogic Server or
JBoss:

1. Start the application server in a command window.

In the case of WebLogic Server, use the following steps:

C:>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>startWebLogic.bat

In the case of JBoss, use the following steps:

C:>cd styejb\examples

C:\styejb\examples>setEnvJBoss.bat

C:\styejb\examples>startJBoss.bat

2. Start the client program in another command window.

In the case of WebLogic Server, use the following steps:

C:>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day06

C:\styejb\examples\day06>runClientWebLogic.bat

08 0672324237 CH06 9/24/02 2:35 PM Page 119

In the case of JBoss, use the following steps:

C:>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day06

C:\styejb\examples\day06>runClientJBoss.bat

The output of the EnrollmentCart, on both the client window, and the server window,
should look like the following (see Figure 6.3). The correlation between both outputs is
depicted in the figure.

120 Day 6

FIGURE 6.3
Sample output from
running the example.

Client log

Demonstration of a simple client…

Demonstration of Activation/Passivation…

Creating cart 0

 •

 •

 •

Creating cart 8
 •

 •

 •

Removing cart 0
 •

 •

 •

Creating an enrollment cart.

Adding some courses to our
enrollment cart.

Adding some more courses to our
enrollment cart.

Getting the collection of courses
in our enrollment cart.

Removing our enrollment cart.

Demonstration of exceptions…
Now trying to access enrollment cart that was removed.
Exception caught while trying to access enrollment cart
that was removed.
java.rmi.NoSuchObjectException:

Server log

The container created this instance.
The container called the setSessionContext method
to associate a session bean instance with its context.
The container called the ejbCreate method.
 •

 •

 •

The container intends to passivate the instance.
 •

 •

 •
This instance has just been reactivated.
This instance is in the process of being removed by
the container.

 •

 •

 •

The container created this instance.
The container called the setSessionContext method
method to associate session bean instance with its
context.
The container called the ejbCreate method.

The container called addCourses method.

The container called addCourses method.

The container called getCourses method.

This instance is in the process of being removed by
the container.

08 0672324237 CH06 9/24/02 2:35 PM Page 120

Developing Stateful Session Beans 121

6

Best Practices
A client should explicitly remove a stateful session bean by calling the remove() method
of the component interface. Otherwise, the container keeps the stateful bean until it times
out. This wastes resources such as memory, secondary storage, and so on.

Stateful session beans cannot be shared among different clients. A multithreaded client
(such as a servlet or a Swing application) must serialize all its calls to the stateful session
bean. Simultaneous access to a stateful session bean results in a
java.rmi.RemoteException exception.

Consider tuning the stateful session bean’s instance cache size. For best performance, the
maximum number of beans in the cache should be equal to maximum number of concur-
rent clients. If the cache size is less than the number of concurrent clients, the container
triggers activation and passivation, which degrades performance.

Summary
Today you learned how to implement and deploy a stateful session bean. The home inter-
face extends javax.ejb.EJBHome interface and contains create method(s). The remote
interface extends javax.ejb.EJBObject and contains the business methods callable by
the client. The enterprise bean class implements the javax.ejb.SessionBean interface.
In addition, it implements the ejbCreate method(s) corresponding to the create meth-
ods defined in the home interface and business methods defined in the remote interface.
The container recognizes the session bean type from the bean’s deployment descriptor.

The EJB container serializes all calls to the stateful session bean instance and throws
exception if clients attempt to simultaneously access the same bean instance. Also, the
container throws an exception if the client attempts to access the session object that was
removed earlier.

Q&A
Q What are the classes and interfaces that make a stateful session bean?

A A stateful session bean is an EJB component, which extends two interfaces: a
home interface (EJBHome) and a remote interface (EJBObject), and a bean class that
implements the SessionBean interface.

Q How can the EJB container recognize a bean as being a stateful session bean?

A The EJB container distinguishes all types of beans from the standard deployment
descriptor ejb-jar.xml. The tag <session> and the subtag <session-type> are
used to set the stateful session bean in the deployment descriptor.

08 0672324237 CH06 9/24/02 2:35 PM Page 121

122 Day 6

Quiz
1. Which of the following are true about a stateful session bean:

A. An instance is created for each client connected to the server.

B. It can have a create() method that accepts arguments.

C. It has a state or member fields that can be initialized and changed by the
client with each business method invocation.

D. It can never be passivated or activated by the container.

2. Which of the following are true when a stateful session bean is passivated by the
container:

A. The bean instance is stored for later reactivation.

B. The bean instance is evicted from the application server memory.

C. The bean instance is created and becomes ready.

D. The bean state is serialized except for its transient member fields.

3. A stateful session bean is best used in which situation?

A. More than one caller is concurrently connected to use the service.

B. Persistence is a primary requirement.

C. Instance is required to be thread-safe.

D. You want to manage client state in a transactional and secure environment.

Quiz Answers
1. A, B, and C

2. A, B, and D

3. C

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Define a deleteCourses(String[] courseIds) method in the remote interface
EnrollmentCart. Add a corresponding deleteCourses(String[] courseId)
method in the enterprise bean class EnrollmentCartEJB.

2. Modify the sample client to make use of the method in exercise 1 by deleting some
of the courses in the EnrollmentCartEJB.

08 0672324237 CH06 9/24/02 2:35 PM Page 122

DAY 7

WEEK 1

Designing Web
Applications

Web applications consist of Web components that are responsible for process-
ing Web client requests, invoking the business logic tier, and delivering data in
response to client requests. Web components can be servlets, JavaServer Pages
(JSPs), JavaBeans, or JSP tag libraries (taglibs). Web applications are packaged
and deployed into the Web container using WAR (Web Archive) files. The Web
tier handles all communications between Web clients (browsers) and business
logic components in the EJB tier. The MVC (Model-View-Controller) architec-
ture pattern is used mainly to design Web applications. The Web tier typically
produces HTML (or XML) content in response to the client request, whereas
business logic is often implemented as EJB components in the EJB tier,
although it may also be implemented entirely within the Web tier using Web
components.

09 0672324237 CH07 9/24/02 3:52 PM Page 123

In learning about the Web container and the Web components today, you’ll

• Learn about Web applications, the Web container and its common services

• Learn about Java servlets as server-side components to process client requests

• Explore the JavaServer Pages technology to generate dynamic contents

• Learn how to develop a simple JSP tag library to hide application logic from its
presentation

• Study the MVC architecture pattern that can be applied to the design of scalable
Web applications

• Learn how to package and deploy a Web application using the Web tier deployment
descriptor

Understanding Web Applications
The Web tier manages the interactions between Web clients and the application business
logic. Typically, the Web tier generates dynamic content including HTML, XML,
images, sound, video, and Java applets as responses to a client’s HTTP requests. These
requests can be in the form of either HTTP PUT or GET actions that are processed by
the Web components to generate results back to the client. Normally, the Web container
can be configured to generate and serve any content type. Business logic, on the other
hand, is often implemented as EJB, which is managed by the EJB container. Web compo-
nents are not transactional by design; however, they might start the transactions, which
can be executed by the EJBs.

The Web tier separates application business logic from direct interaction by the client.
This allows more flexibility in designing enterprise applications with different types of
clients. Presentation logic is captured by Web components such as servlets, JSPs, JSP tag
libraries, and JavaBeans. These Web components are deployed to and managed by the
Web container.

The presentation logic is usually encapsulated into Web components that are separated
from the presentation itself (that is, the contents to be displayed). The presentation logic
is responsible for processing client requests, validating user input, and determining the
flow of the Web pages.

In designing Web applications, the Web container can be used to maintain the user ses-
sions, the application state, and the component’s life cycle. The Web container is part of
the Java 2 Enterprise Edition (J2EE) application server, therefore all common services
offered by the J2EE architecture are automatically available to the Web container.
Examples of such services are Java Naming and Directory Interface (JNDI), Java

124 Day 7

09 0672324237 CH07 9/24/02 3:52 PM Page 124

Designing Web Applications 125

7

Database Connectivity (JDBC), Java Message Service (JMS), and JavaMail. Figure 7.1
depicts the Web container, Web components, and J2EE common services.

As you learned in Day 6, using stateful session beans to maintain session
information is a better option in designing transactional and secure enter-
prise applications.

Caution

In the next few sections, you’ll learn how to work with four types of Web components:
servlets, JavaServer Pages, JSP tag libraries, and JavaBeans.

FIGURE 7.1
The Web container
and Web components.

Web Container
(Web Server)

Common Services

JVM

Servlet JavaBean

JSP TagLib

JC
A

JN
D

I

JM
S

JA
A

S

JTA

JD
B

C

JavaM
ail

Any of these components can access, in similar fashion, all the common ser-
vices we discuss in this book. So far, we’ve covered JNDI on Day 4, “Using
JNDI for Naming Services and Components.” JDBC will be covered on Day 9,
“Using JDBC to Connect to a Database,” JMS on Day 13, “Understanding
JMS and Message-Driven Beans,” and “Implementing JavaMail in EJB
Applications,” on Day 20. Above all, these Web components act as clients to
the EJB components. We’ll discuss some of the design consideration of
accessing EJB from the Web tier when we discuss the MVC pattern later
today.

Note

09 0672324237 CH07 9/24/02 3:52 PM Page 125

Working with Servlets
A servlet is a server-side component (Java class) that is deployed, executed, and man-
aged by a J2EE-compliant Web container (Web server). A servlet handles HTTP requests
and provides HTTP responses, usually in the form of an HTML, XML, or text document.

Servlets are most effectively used for implementing presentation logic and generating
binary content such as images. A servlet in the Web tier allows a Web client (browser) to
indirectly interact with EJB business logic.

Servlets are portable and non-transactional Java components, which run in servlet engine
(container) that can run on any operating system or hardware. They are analogous to the
applets that are used on the client container (Web browser). Servlets are the backbone of
any e-commerce application such as online shopping carts, financial services, and per-
sonalized content. They are mainly used to get and validate user input, authenticate user
identity, and generate dynamic Web content that responds to the user’s input.

Servlets are used to track a user session in Web applications, such as shopping carts.
They also can be used to access directory and naming services, databases, JMS messag-
ing services, and JavaMail. They can be used to build secure applications by using
Access Control Lists (ACLs) for authentication and Secure Sockets Layer (SSL) to pro-
vide encryption for secure communications. The most important use of servlets is to act
as controllers and delegates in accessing EJBs to encapsulate sessions, data from data-
bases, and other functionality.

The following few sections will give brief descriptions of the servlet API, accompanied
with few examples. Later today, we’ll demonstrate how servlets work as controllers and
are used to access EJBs as client delegates.

Creating a Simple Servlet
Servlets are defined in the javax.servlet package. To write a servlet, you must extend
the javax.servlet.http.HttpServlet class (which implements the
javax.servlet.Servlet interface). The Web container instantiates the servlet by calling
the init() method of the Servlet interface. All requests are dispatched by the container
to the service() method, which is the heart of servlet operations. Based on the request
type, the service() method dispatches calls to other specialized service methods. For
example, the service() method dispatches HTTP GET requests to be handled by the
service method doGet(), and HTTP POST requests to be handled by doPost() method,
and so on. To implement a servlet, you must override any of the service methods. Each
of the service methods runs on a separate thread of execution. Finally, the Web container
removes the servlet from memory after calling the destroy() method. The following is
the basic code to write a simple servlet:

126 Day 7

09 0672324237 CH07 9/24/02 3:52 PM Page 126

Designing Web Applications 127

7

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
public class SimpleServlet extends HttpServlet {
// The service method handles HTTP requests and response
public void service(HttpServletRequest request,

HttpServletResponse response)
throws IOException, ServletException {

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
out.print(“<html><head><title>” +

“Hello from my first Servlet!</title></head><body>” +
“<h3>Hello from my first Servlet!</h3></body></html>”);

}
public void init(ServletConfig config) throws ServletException{

super.init(config);
}

}

In the preceding example, the SimpleServlet extends the HttpServlet class and over-
rides only the generic service() method.

If you choose to implement the service() method, you cannot implement
the doPost() or doGet() method unless you call super.service() at the
beginning of your service() method.

Note

Any of the service methods accepts an HTTP request from the Web browser as input,
and returns an HTTP response as output, as defined by the HttpServletRequest and
HttpServletResponse classes, respectively.

HTTP request types can be GET, POST, PUT, HEAD, DELETE, OPTIONS, or
TRACE. The corresponding service methods are doGet(), doPost(), doPut(),
and so on. Each doXXX() method accepts the same parameters as the
service() method.

Note

In the response parameter, you first set the content type to “text/html”, get a reference
to a java.io.PrintWriter object to use for output, and then create some HTML using
the print() method of the PrintWriter object.

The init() method is called by the container before any service method. It accepts one
parameter as an object of the ServletConfig class, which contains configuration data set

09 0672324237 CH07 9/24/02 3:52 PM Page 127

by the Web container. The init() method must call the super.init() method. In some
Web applications, the init() method is used to establish a connection to external
resources, which can be cleaned up in the destroy() method before the servlet ends its
life cycle.

Our SimpleServlet can then be compiled and deployed to a J2EE-compliant Web con-
tainer. To run the servlet, you simply call it by its URI from your browser. Servlets and
other resources (such as JSPs and images) are packaged into a single unit (or module)
called a Web application. A Web application utilizes a specific directory structure to con-
tain its resources and a deployment descriptor web.xml file that defines how these
resources interact and how the Web application is accessed by a Web client. A Web
application may also be deployed as an archive file called a .war file. Figure 7.2 illus-
trates the directory structure of a sample Web application.

128 Day 7

FIGURE 7.2
Directory structure of
a sample Web applica-
tion.

welcome.jsp

logon.jsp

index.html

manifest.xml

META-INF

helloServlet.class

classes

utils.jar

lib

web.xml

WEB-INF

HelloWebApp

The servlet API has one exception, ServletException, which can be thrown when the
servlet encounters difficulty.

By default, the servlet architecture is multithreaded, which generally boosts
the application’s scalability. However, you can set your servlets to work in a
single-threaded model by implementing the SingleThreadModel interface.

Note

09 0672324237 CH07 9/24/02 3:52 PM Page 128

Designing Web Applications 129

7

Processing Client Requests
One of the major tasks of servlets is to process client requests to generate a result.
Servlets use the HttpServletRequest method to retrieve data from the request object.
Table 7.1 summarizes the methods of the HttpServletRequest.

TABLE 7.1 Summary of Methods of HttpServletRequest Class

Method Description

getMethod() Returns the name of the HTTP method; for example, GET, POST,
or PUT.

getQueryString() Enables you to access the query string (the remainder of the
requested URL, following the ? character) of the HTTP GET
method.

getParameter(String name) Returns the value of a parameter as a String.

getParameterNames() Returns an array of all the parameter names.

getParameterValues() Returns an enumeration of values for all the parameter.

getInputStream() Retrieves the body of the request as binary data.

Here is an example to illustrate how to extract the request parameters and display them
out on the screen. The following is the source of the FORM containing the login infor-
mation of Figure 7.3:

<HTML>
<HEAD>
<TITLE>University Registration Page</TITLE>
</HEAD>
<BODY>
<FORM METHOD=”POST” NAME=”RegistrationPage”

ACTION=”/servlet/DisplayParameters”>
<h3>Registration Form</h3>
Login name<input type=”text” size=20 name=”loginname” value=””>

Password : <input type=”password” size=20 name=”password” value=”” >

First Name:<input type=”text” size=20 name=”firstname” value=”” >

Last Name:<input type=”text” size=20 name=”lastname” value=”” >

<input type=”submit” value=”Register” name=”registerbutton”>

</FORM>
</BODY>
</HTML>

You’ll notice that the preceding form uses the POST method and targets the
DisplayParameters servlet, as displayed in the Action tag.

09 0672324237 CH07 9/24/02 3:52 PM Page 129

130 Day 7

There are two methods in submitting forms: POST and GET. The POST
method sends the action and the parameters as name/value pairs in the
body of the message. The GET method sends this data appended to the URL,
which is exposed to the user. Use GET if the length of your value strings is
not long (less than 8KB). POST is appropriate for long messages with more
private information.

Note

FIGURE 7.3
Logon form to the uni-
versity registration sys-
tem.

The following is the listing of the DisplayParameters servlet, which will display all the
parameters of the form and their values on the screen:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class DisplayParameters extends HttpServlet{
public void doPost(HttpServletRequest request,

HttpServletResponse response)
throws ServletException, IOException {

response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
Enumeration params = request.getParameterNames();
while(params.hasMoreElements()) {
String param = (String)params.nextElement();
out.println(param + “ : “);
String[] paramValues = request.getParameterValues(param);
if (paramValues.length == 1)

out.print(paramValues[0]);
else

09 0672324237 CH07 9/24/02 3:52 PM Page 130

Designing Web Applications 131

7

for(int i=0; i< paramValues.length; i++)
out.println(paramValues[i]);

}
}

When the preceding servlet is executed, the Web container directs the request to the
service() method, which in turn dispatches it to the doPost() method.

Handling Both Static and Dynamic Content
Servlets generate both dynamic and static content to construct a Web page. When deliv-
ering content, a good practice is to cache all static content in the init() method, which
reduces the creation time for every request. The following listing shows a technique you
can use when you want to use servlets to deliver both static data and dynamic data to the
client:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class CacheServlet extends HttpServlet{
byte[] header, footer, navbar;
byte[] staticContent;
public void init(ServletConfig config) throws ServletException{

super.init();
// Cache all the static content
StringBuffer tmp = new StringBuffer();
// Cache the header
tmp.append(“<html><head><title>”);
tmp.append(“University Registration</title></head><body>”);
header = tmp.toString().getBytes();
// Cache the footer, and navbar here

}
public void service(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException {
res.setContentType(“text/html”);
PrintWriter out = res.getWriter();
out.write(new String(header));
out.write(new String(navbar));
// write dynamic data here for the body
out.write(new String(footer));

}
}

This caching technique enhances your application performance because static data is
ready to be delivered in the response. Figure 7.4 depicts a site wire-frame in which
dynamic content is generated for the body part of the page outline.

09 0672324237 CH07 9/24/02 3:52 PM Page 131

132 Day 7

FIGURE 7.4
Static and dynamic
content generation.

Header (Static Content)

Footer
(Static Content)

Body
(Dynamic Contents)Menu

Navigation Bar
“Navbar”
(Static

Contents)

Tracking User Session by Servlets
HTTP is a stateless protocol, and a Web application, such as a shopping cart, needs a
mechanism of tracking user session over multiple HTML pages. A session is defined as a
series of related browser requests that come from the same client during a certain period
of time. Servlets provide the following mechanisms of tracking sessions. Notice that in
all these techniques, some form of token is passed between the client and the server.

• Hidden fields

• HTTP cookies

• HTTPSession object

• URL rewriting

In the following section, we’ll explore each technique.

Tracking User Session Using Hidden Fields
This mechanism tracks user session in a hidden field of an HTML page and passes the
data between the client and the server. The advantages of using this technique are its
easy implementation, and that session state is not saved on the server side. Using a large
amount of user data in the hidden fields will degrade application performance.
Additionally, hidden fields are limited to storing only string values, which can be
exposed in the generated HTML source unless encrypted to preserve user privacy. An
example of an HTML page with hidden fields is as follows:

<FORM METHOD=”POST” ACTION=”/servlet/SignOnServlet”>
...

09 0672324237 CH07 9/24/02 3:52 PM Page 132

Designing Web Applications 133

7

<INPUT TYPE=hidden NAME=”userid” VALUE=”mary”>
<INPUT TYPE=hidden NAME=”type” VALUE=”student”>
...
</FORM>

In this technique, no data is stored on the client disk storage; only hidden fields are
passed between the browser and the Web container.

Tracking User Session Using Cookies
This mechanism of session tracking is used for storing limited amount of user data on
the client side. A cookie is a piece of data that the server creates to store user information
and asks the Web browser to save locally on the user’s disk. A cookie is identified by the
URL it originated from. Each time a browser visits the same server (URL), it sends all
cookies relevant to that server with the HTTP request. Cookies are useful for identifying
clients as they return to the server.

Each cookie has a name and a value. A browser that supports cookies generally allows
each server domain to store up to 20 cookies of up to 4KB of ASCII data per cookie.
Cookies cannot store Unicode or binary values. Users can disable or enable cookies from
the browser.

The following listing creates a SignOnCookie, gives it the value “mary” as a user ID, and
adds it to the HttpServletResponse object of the service method:

// Create a cookie
Cookie myCookie = new Cookie(“SignOnCookie”, “mary”);
myCookie.setMaxAge(Integer.MAX_VALUE);
response.addCookie(myCookie);

When the Web browser receives the response, it stores all the cookies on the user’s disk,
provided that the user has enabled cookies. The following listing illustrates how a return-
ing client can be recognized by the Web application:

public class CheckServlet extends HttpServlet{
public void service(HttpServletRequest req, HttpServletResponse res){
Cookie myCookie = null;
HttpSession session = req.getSession(false);
if (session==null) {
// Try to retrieve the cookie from the request.
Cookie[] cookies = req.getCookies();
for(int i=0; i < cookies.length; i++) {
myCookie = cookies[i];
if (myCookie.getName().equals(“SignOnCookie”)) {
isFound = true;
break;
}

}
if (isFound == true) {

09 0672324237 CH07 9/24/02 3:52 PM Page 133

// Create a new session for this user.
//session = request.getSession (true);
session.setAttribute(“mary”, myCookie.getValue());
// Refresh cookie to live indefinitely.
myCookie.setMaxAge(Integer.MAX_VALUE);
// Add the cookie to the response
res.addCookie(myCookie);

}
}

}
}

The cookie in the preceding example is set not to expire. Because cookies accept only
string values, you should cast to and from the desired type that you want to store in the
cookie.

Tracking User Session Using HttpSession
This mechanism tracks the user session by storing all session information on the server
side. Only a small piece of data (session ID) is stored on the client side and passed
between the client and server for each request. According to the Servlet API, each servlet
can access a server-side session by using its HttpSession object. You access the
HttpSession object in the service() method of the servlet by using the
HttpServletRequest object as follows:

HttpSession session = request.getSession(true);

A session is associated automatically with a particular client. An HttpSession object is
created if one does not already exist for that client. Each client is matched with its partic-
ular session object by passing a session ID. The session object lives on the Web container
for the lifetime of the session, during which the session object accumulates data related
to that client. You can add or remove data from the session object as necessary, which
will be maintained in the servlet context. In the following example, the service()
method counts the number of hits that a client requests the servlet during one session:

public void service(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

// Get the client session associated with this request
PrintWriter out = res.getWriter();
HttpSession session = req.getSession(true);
Integer value = (Integer) session.getAttribute(“mySession.hits”);
if (value == null)

value = new Integer (1);
else

value = new Integer (value.intValue () + 1);
// Set the new name/value pair
session.setAttribute(“mySession.hits”, value);
// Output the HTML page
out.print(“<HTML><head></head><body>”);

134 Day 7

09 0672324237 CH07 9/24/02 3:52 PM Page 134

Designing Web Applications 135

7

out.print(“You have visited this page “);
out.print(value + “ times!”);
out.println(“
Session ID: “ + session.getId());
out.println(“
Session creation time: “ +

session.getCreationTime());
out.println(“
Last accessed time: “ +

session.getLastAccessedTime());
out.print(“</body></html>”);
}

The HttpSession mechanism gives better performance because it stores the session data
in memory and reduces network overhead. Only the session ID will be passed between
the client and the server. The HttpSession object can hold data such as shopping carts
and visit history, but it is not used to hold user profiles.

Tracking User Session Using URL Rewriting
This technique is used mainly if the users disable cookies from their browsers. URL
rewriting allows servlets to append a user session ID at the end of any generated link
(URL). URL rewriting resulted in moderate performance because the extra data must be
passed between the client and the server for each request. Nonetheless, only a limited
amount of user data can pass through URL rewriting. The Java servlet API provides two
methods in the HttpResponse interface to encode the URLs. The encodeURL() method
encodes the specified URL by appending the session ID to it. The following code shows
an example of how URL rewriting may be used:

HttpSession session = req.getSession(true);
res.setContentType(“text/html”);
PrintWriter out = res.getWriter();
...
// URL Rewriting
String url = res.encodeURL(“/servlet/SignOnServlet”);
// Make a link to the URL rewritten
out.println(“ Login ”);
...

The servlet will append the session ID to the URL. The new URL will look like this:

http://www.mysite.com/servlet/SignOnServlet;jsessionid=123456

All URLs generated by a servlet should be run through the encodeURL() method. URL
rewriting is a useful technique when users have disabled cookies in their browsers.

Working with Servlets as Delegates to EJBs
One of the primary tasks of servlets is to work as delegates for Web browsers to access
an EJB indirectly. The following example illustrates how to access the StudentFacade
EJB from our University Registration System (see Figure 7.5). Immediately after it cre-

09 0672324237 CH07 9/24/02 3:52 PM Page 135

ates the SignOnServlet instance, the Web container calls the instance’s init() method.
This method looks up the EJB home in the JNDI service, and then creates the bean:

public void init() throws ServletException {
InitialContext ic = new InitialContext();
StudentFacadeHome home = (StudentFacadeHome)

ctx.lookup(“day21/StudentFacade”);
StudentFacade studentFacade = null;
try {

studentFacade = (StudentFacade) home.create();
session.putValue(“StudentFacade”, studentFacade);

catch(Exception e) {
e.printStackTrace();

}
}

}

When the user clicks on the Submit button of the HTML form, the Web container calls
the doPost() method of the SignOnServlet. The doPost() method fetches the value of
the Login Name and Password fields (entered by the end user), and then invokes the
addUser() business method of the StudentFacade EJB:

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String loginName = req.getParameter(“Login name”);
String password = req.getParameter(“Password”);
try{
studentFacade.addUser(loginName, password);
res.setContentType(“text/html”);
PrintWriter out = res.getWriter();
...

}catch{
e.printStackTrace();
}

}

136 Day 7

Servlet

Web Container

Application Server

EJB

EJB Container

RMIrequest

response
Web-Client
(Browser)

FIGURE 7.5
Servlets work as dele-
gates of clients to
EJBs.

09 0672324237 CH07 9/24/02 3:52 PM Page 136

Designing Web Applications 137

7

Learning JavaServer Pages
Servlets provide an excellent mechanism for handling user requests for dynamic content,
but they lack a useful way of displaying the response. Servlets rely on hard-coding of the
presentation within the Java code. Any change in the look and feel of the presentation
requires change to the code. This also mixes the roles of Web designers and Java pro-
grammers, which leads to chaos in the development process. JSP was developed to
answer these concerns.

Servlets incorporate a tight coupling of content and logic, which reduces application
flexibility. With JSP, you don’t want to repeat the same issues. JSPs should be used with
static content templates and generate dynamic content by calling presentation logic out-
side the JSP. Such presentation logic can be encapsulated in JSP tag libraries. This sepa-
ration of the static content from the presentation logic makes the application more
flexible to change. With JSP, Web designers can focus on developing only the system
GUI with the required look and feel. On the other hand, Web developers can handle the
presentation logic in taglibs, JavaBeans, or scriptlets. We’ll talk more about these topics
later today.

JSP is a cross-platform API, and it brings the power of server-side Java technology with
static HTML pages. It provides an efficient method of delivering dynamic content
through the Web. You can create and maintain JSP pages with conventional HTML/XML
editors. A JSP page typically consists of the following elements:

• Static HTML/XML components

• Special JSP tags

• Scriptlets

Writing a Simple JSP
The JSP API is defined on top of the Servlet API. Each JSP page inherently implements
the HttpJspPage interface of the javax.servlet.jsp package. A JSP page is compiled
into, and run as, a servlet (see Figure 7.6). Therefore, whatever experience you’ve gained
about servlets thus far is applicable in developing JSPs. The main difference between
servlets and JSPs is that servlet programming requires significant developer expertise,
but JSP enjoys a much wider audience. JSP’s primary owner is the page designer, who is
responsible of proving contents to build the application’s presentation. JSP is also used
by the developer to provide the hooks and the references to the presentation logic. The
main advantage of the concept of JSP is its inherent separation of presentation logic
from content.

09 0672324237 CH07 9/24/02 3:52 PM Page 137

138 Day 7

FIGURE 7.6
A JSP is compiled and
run as a servlet.

Web Container

request

response

Web-Client
(Browser)

JSP

jspInit()
jspDestroy()
jspService()

…

init()
destroy()
service()

…

Java
Compiler

Here is an example of a JSP, which is stored in the file simple.jsp:

<!doctype html public “-//w3c/dtd HTML 4.0//en”>
<html>
<%@ page errorPage=”error.jsp” %>
<%@ page isThreadSafe=”true” %>
<!-- Standard HTML Comment-->

<head>
<title>Hello World from a JSP</title>

</head>
<body>
 <h2>Hello World from an HTML </h2>
<!-- An expression to print Hello World From a JSP to the out object -->
<% out.print(“<h2>Hello World from a JSP!</h2>”); %>

</body>
</html>

In this example, JSP tags are embedded into the HTML code (shown in bold). You are
already familiar with the comment symbols <!-- comments --> used in HTML markup.
The <%@ ... %> tag is used as a directive to the JSP container, and the <% exp %> tag is
used to execute the expression exp, which is also called a scriptlet.

When a JSP is compiled and translated into a Java servlet, all the implicit methods of the
HttpJspPage interface, such as _jspInt(), _jspDestroy(), and _jstService() are
translated into the underlying servlet methods init(), destroy(), and service(). You
don’t have to override any JSP methods unless you have to implement such logic, which
is what we’re trying to avoid.

Both JSPs and servlets typically run within multithreaded containers (see Figure 7.7).

09 0672324237 CH07 9/24/02 3:52 PM Page 138

Designing Web Applications 139

7

FIGURE 7.7
Multithreaded and
single-threaded models
of a servlet.

Servlet

Servlet

Servlet

Servlet

Web Container

Single-Threading Model

request

request/thread

request

request

Web-Client
(Browser)

Web Container

Multi-Threading Model

request

request/thread

request

request

Web-Client
(Browser) Servlet

All running servlets and JSPs on the same container must handle concurrent requests, so
you must be careful to synchronize access to any shared resources. Such shared
resources include database connections and JMS destinations. By default, the service
method of the JSP page is multithreaded. But if you need to change the default model
and run using a SingleThreadModel, you can use the following directive:

<%@ page isThreadSafe=”false” %>

This causes the JSP page implementation class to implement the SingleThreadModel
interface, which results in the synchronization of the service method, and causes multiple
instances of the servlet to be loaded in memory.

Try to avoid the single-threaded approach because it is not scalable, and it
has a negative impact on response time.

Tip

The next section summarizes the basic syntax of JSP.

09 0672324237 CH07 9/24/02 3:52 PM Page 139

140 Day 7

Learning JSP Basics
Learning JSP basic syntax is simple and can be classified into the following sections:
comments, directives, scripting tags, and standard JSP actions.

Comments
There are two types of comments in JSP. You can use the HTML comments <!-- ...
-->, as we did in the earlier example. This type of comment can be viewed in the page’s
source code. To avoid that, you can use the other type of JSP comments, the <%-- ...
--%> tag:

<%-- JSP comment. Only stays at the server side. Can’t be viewed by user --%>

As usual, comments are very powerful constructs for all programming languages.

Directives
JSP directives are messages to the Web container. They instruct the container what to do
with the rest of the JSP page. All JSP directives are enclosed within the <%@ ... %> tag.
The two main directives are page and include.

page Directive

The page directive is typically found at the top of almost all of your JSP pages. There
can be any number of page directives within a JSP page. Two examples of page direc-
tives were included in the previous section, but here’s another example:

<%@ page import=”java.util.*, javax.naming.*” buffer=”16k” %>

This imports the included packages for scripting and sets the page buffer to 16KB.

include Directive

The include directive performs a compile-time include. It enables you to separate your
presentation into more manageable files, such as those for including a common page
header, navbar, or footer. The included page can be any HTML, XML, or JSP page.
An example of an include directive is as follows:

<%@ include file=”header.html” %>

You can also use a fully qualified URL in the include directive.

Scripting Tags
All JSP tags start with <% and end with %>. Each scripting tag is recognized by an extra
special character. The following sections discuss these scripting tags.

09 0672324237 CH07 9/24/02 3:52 PM Page 140

Designing Web Applications 141

7

Declaring Variables and Methods

Like its Java parent, JSP is a strongly typed language. It requires all variables to be
declared before they are used in your JSP code. This helps to create more robust code.
When declaring a variable, you use the <%! ... %> tag. Remember to end your variable
declarations with a semicolon. Here’s an example of a declaration:

<%! float amount=0.0; %>

You can also declare methods using the same directive. For example, you can declare a
method as follows:

<%! public float getCelsius(float f) {
return (float) ((f - 32)/1.8);

}
%>

Executing Expressions

An expression is the assignment statement in JSP. You basically evaluate the expression
and assign the result to the page’s output stream. Typically, expressions are used to dis-
play simple values of variables or return values by invoking JavaBean or taglib methods.
JSP expressions use the <%= ... %> tags.

<H3><%= myJavaBean.getTitle() %></H3>
<p> The value of temperature in Celsius: <%= getCelsius(temp) %> </p>
<%= myTagLib.getWarning(temp) %>

The value of each expression is evaluated and printed to the output stream.

JSP expressions do not end with a semicolon.Caution

Executing Java Code with Scriptlets

Scriptlets are Java code fragments that can be embedded within the <% ... %> tags. The
Java code can be used to generate dynamic content. Any valid Java code snippet can be
used within a scriptlet. The following is an example of displaying the string Hello from
my JSP page! within different heading types:

<% for (int m=1; m<=4; m++) { %>
<H<%=m%>>Hello from my JSP page!</H<%=m%>>
<% } %>

This example combines both scriptlets and JSP expressions. Scriptlets are useful mecha-
nisms for dealing with synchronization issues, as described later today.

09 0672324237 CH07 9/24/02 3:52 PM Page 141

Summary of Scripting Tags

Each scripting element has a special type of tag syntax. All JSP tags start with <% and
end with %>. An extra character is used to recognize the type of scripting element. The @
is used for directives, ! for declaration, and = for evaluating expressions. Table 7.2 sum-
marizes the scripting tags used in authoring JSP pages and discussed in this section.

TABLE 7.2 Summary of Scripting Tags

Tag Purpose

<!-- ... --> HTML or XML comments; can be viewed by the client

<%-- ... --%> JSP comments; stays on the server side

<% ... %> Scriptlets executing Java code fragments

<%@ ... %> page and include directives

<%! ... %> Declaration of variables and methods

<%= ... %> Evaluation and output expressions

JSP Implicit Objects
Implicit objects are convenient tools that are automatically provided by the Web con-
tainer. They can be used within scriptlets and JSP expressions. You don’t have to instanti-
ate any of these objects. They are defined within the Servlet API. Table 7.3 lists a
summary of the JSP implicit objects.

TABLE 7.3 Summary of Implicit Objects

Object Purpose Scope

request Represents the HttpServletRequest. Request

response Represents HttpServletResponse. Not intended for use by page Page
authors.

pageContext Encapsulates implementation-dependent features in PageContext. Page

application Represents the ServletContext obtained from the ServletConfig Application
object.

out JspWriter object that writes into the output stream. Page

config Represents the ServletConfig for the JSP. Page

page Represents HttpJspPage. Synonym to the this operator. Not Page
intended for use by page authors.

session Represents HttpSession. Session

exception Represents Exception object. Page

142 Day 7

09 0672324237 CH07 9/24/02 3:52 PM Page 142

Designing Web Applications 143

7

Standard JSP Actions (Taglibs)
Standard JSP actions are types of extension of tag libraries available by default and pro-
vided by the JSP API. In the next section, we’ll introduce how to develop your own
taglib. While the Web container is compiling a JSP into a servlet and encounters a taglib
name, it generates all the classes required to perform such action. For example, the
action

<jsp:forward page=”register.jsp”>

allows the response to be forwarded to another JSP.

Table 7.4 lists all the standard JSP actions provided by the JSP API. In the next section,
you’ll learn how to develop your own taglib.

TABLE 7.4 Summary of Standard JSP Actions (Taglibs)

Standard Action Action Description

<jsp:useBean> Allows access to a JavaBean object, retrieved from a given scope or newly
instantiated, through a named identifier.

<jsp:setProperty> Sets the value of a JavaBean property.

<jsp:getProperty> Outputs a JavaBean property, converted to a String.

<jsp:include> Allows inclusion of static and dynamic content within the current JSP
page. Any HTML, JSP, servlet, image, or text can be included.

<jsp:forward> Forwards the responsibility for request handling to another static or
dynamic resource.

<jsp:plugin> Instructs the browser to enable use of the Java plug-in with applets or
JavaBeans.

<jsp:param> Used in connection with the include, forward, and plugin action tags to
supply parameters in key/value pairs. Can be used as a subaction for
<jsp:include>, <jsp:forward>, and <jsp:plugin>.

We’ll cover the <jsp:useBean> action in more detail in the “Understanding JavaBeans”
section later today.

Handling JSP Exceptions
The JSP architecture provides an elegant mechanism for handling runtime exceptions by
making use of the page directive and the errorPage attribute. For example,

<%@ page isErrorPage=”false” errorPage=”errorPage.jsp” %>

09 0672324237 CH07 9/24/02 3:52 PM Page 143

instructs the Web container to forward any uncaught exception to the errorPage.jsp
page. It is then necessary for errorPage.jsp to flag itself as an error-processing page by
using the following directive:

<%@ page isErrorPage=”true” %>

144 Day 7

Handling exceptions with this built-in routine is much more appropriate
than providing your own exception handler, which would be required in all
your JSP pages, and might not anticipate all cases that could be encountered
at run-time.

Note

Using a JSP Tag Library
JSP is an efficient mechanism for providing presentation content, which is mainly the
look-and-feel view of the application. Putting too much logic in a JSP makes your appli-
cation brittle and not easy to change. A custom tag library can be developed to provide a
clean separation of presentation logic (usually handled by Java developers) and presenta-
tion content (displaying the application’s data, which is usually handled by page design-
ers). To accomplish this goal, the JSP architecture provides a set of standard taglibs (refer
to the “Standard JSP Actions (Taglibs)” section earlier). In this section, you’ll learn how
to develop your own taglib to customize your application.

A taglib, or tag handler, is a Java class that either extends the TagSupport (or
BodyTagSupport) class, or implements the Tag (or BodyTag) interface of the
javax.servlet.jsp.tagext package. The taglib class must react to the Web container
callback methods. Therefore, it must implement the doStartTag(), which is called when
the tag starts, and the doEndTag() method, which is called when the tag ends.

You use a tag to produce output or to define new objects that can be referenced and used
as scripting variables in the JSP page. The following is a simple example of a JSP that
uses a taglib to display a personalized greeting message to the student after she has
logged in to enroll for courses:

<%@ taglib uri=”/welcome” prefix=”student” %>
<HTML>
<BODY>
<student:welcome userId=”remo”/>

</BODY>
</HTML>

This JSP will display a personalized message:

Welcome back <Full student name>. It’s <date and time>

09 0672324237 CH07 9/24/02 3:52 PM Page 144

Designing Web Applications 145

7

In the example, the tag name is identified by the prefix student and the suffix welcome.
No other attributes or scripting variables are used in this simple tag.

The following lists the supporting taglib class WelcomeTag.java, which extends the
TagSupport class and implements the callback methods doStartTag() and doEndTag():

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.TagSupport;
import java.util.Date;
import java.io.IOException;
public class WelcomeTag extends TagSupport {

public void setUserId (String userId) {
id=userId;

}
public String getUserId () {

return id;
}
public int doStartTag() throws JspException {

try {
JspWriter out = pageContext.getOut();
String dateStr = new Date().toString();
out.print(“Welcome back “+ getName(id));
out.println(“. It’s “ + dateStr);

} catch (Exception e) {
e.printStackTrace();
throw new JspException(e.getMessage());

}
return(EVAL_BODY_INCLUDE);

}
private String getName(String userId){

// this can call a data source to get the real name
return name;

}
private String id;
private String name = “Raymond Ghaly”;

}

The tag handler must implement setter and getter methods for each attribute, similar to
those found in a JavaBean component (see the next section). The setUserId() and
getUserId() methods are used to set and get the id attribute. The first letter of the
attribute is capitalized after the get/set word in the method name. The Web container uses
these methods to inform the tag handler instance of the attribute values before the
doStartTag() or doAfterBody() method is invoked.

In the preceding example, the Web container calls the doStartTag() method, and returns
a personalized welcome page for the userId “remo”. The doStartTag() returns the
EVAL_BODY_INCLUDE constant, meaning to evaluate the tag’s body content, and any sub-
tags. Other valid constants returned by the doStartTag() are SKIP_BODY (tag contents

09 0672324237 CH07 9/24/02 3:52 PM Page 145

will be ignored) and EVAL_BODY_TAG (evaluate the tag contents). Similarly, SKIP_PAGE
and EVAL_PAGE are valid constants for the doEndTag() callback.

In deploying a taglib, you need to write a Tag Library Descriptor (TLD) file
(WEB-INF/tlds/welcome.tld). A TLD is an XML file that declares each attribute for the
tag within the <tag> element using an <attribute> tag for each attribute. The tag attrib-
utes allow the JSP page to pass String values into the tag handler, which can be used to
configure the tag behavior.

<?xml version=”1.0” encoding=”ISO-8859-1” ?>
<!DOCTYPE taglib PUBLIC

“-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN”
“http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd”>

<taglib>
<tlib-version>1.0</tlib-version>
<jsp-version>1.2</jsp-version>
<short-name>student</short_name>
<description>Welcome Tag for Students. Author: Raymond Ghaly</description>
<tag>
<name>welcome</name>

<tagclass>WelcomeTag</tagclass>
<attribute>

<name>userId</name>
<required>true</required>
<rtexprvalue>true</rtexprvalue>

</attribute>
</tag>

</taglib>

As a part of a Web application, a taglib must be included in the Web deployment descrip-
tor file web.xml, as follows:

<web-app>
...
<taglib>
<taglib-uri>/welcome</taglib-uri>
<taglib-location>/WEB-INF/tlds/welcome.tld</taglib-location>

</taglib>
...

</web-app>

Understanding the JavaBeans Java Class
A JavaBean is a Java class that uses setter and getter methods, as a means of introspec-
tion of the class attributes. Introspection, like reflection, is the ability to query class
attributes by using getXXX(), where XXX is one of the class attributes. A JavaBean can

146 Day 7

09 0672324237 CH07 9/24/02 3:52 PM Page 146

Designing Web Applications 147

7

save its state through persistence. Therefore, all of its persistent properties must be serial-
izable. You use a JavaBean to encapsulate data mapping between a form’s parameters
and a database. It can be used as a data container (DataBean) to transfer information
between the Web tier and the EJB tier. A JavaBean can encapsulate data for display pur-
poses (ViewBean) and manage data flow between applets and applications. JavaBeans
use events to interact with other beans. The most powerful use of a JavaBean is to auto-
matically map and populate its properties from a form.

One example of a JavaBean is the StudentDataBean to transfer data between the
UserManager EJB and the Web tier:

import java.io.Serializable;
public class StudentDataBean implements java.io.Serializable {
private String userId;
private String password;
private String firstName;
private String lastName;
public StudentDataBean (String userId, String password,

String firstName, String lastName) {
this.userId = userId;
this.password = password;
this.firstName = firstName;
this.lastName = lastName;

}
public void setFirstName(String n){ firstName = n;}
public String getFirstName(){ return firstName;}
public void setLastName(String n){ lastName = n;}
public String getLastName(){ return lastName;}
public void setUserId(String n){ userId = n;}
public String getUserId(){ return userId;}
public void setPassword(String n){ password = n;}
public String getPassword (){ return password;}

}

JSP can use a JavaBean to automatically capture the form data of the client tier. Here, we
use the standard tag <jsp:useBean> to process the form:

<%@ page import=”day07.* %>
<jsp:useBean id=”myBean” scope=”session”

class=”day07.StudentDataBean” property=”*” />
<html>
<head>
<title>Using Student Bean</title> </head>

<body>
<h1> Using Automatic Mapping of Student Bean</h1>
<%
String userName = request.getParameter(“Login Name”);

09 0672324237 CH07 9/24/02 3:52 PM Page 147

out.print(userName + “ : “ + myBean.getUserId());
%>

</body>
</html>

In the preceding example, the <jsp:useBean> tag creates a JavaBean component by
instantiating the StudentDataBean class, and automatically populates all its properties, as
indicated by “*”.

Servlets can use JavaBeans as parameters passed to their method invocations when call-
ing an EJB. The EJB populates the JavaBean properties with result data after processing
the servlet’s request from a database or other entity EJBs. For example, the following
doPost() method displays all courses for which a student has enrolled:

public void doPost (HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

String studentId =req.getParameter(“Login name”);
PrintWriter out =res.getWriter();
try{

Collection coll = userManager.getCourses(studentId);
Iterator it1 = collection.iterator();
while (it.hasNext()){
EnrollmentDataBean enroll = (EnrollmentDataBean) it1.getNext();
out.write(“Course id: “ + enroll.getCourseId() + “
”);

}catch{
e.printStackTrace();
}

}

Using MVC in Designing Web Applications
A good strategy when designing your enterprise application is to have separate layers,
each of which is unaffected by changes done on the other layers. The Model-View-
Controller is a design pattern that is used to partition your Web applications into the fol-
lowing components (see Figure 7.8):

• Model: A set of objects that represent the business logic of the application. This
usually includes EJBs, JavaBeans, and other abstractions of real world entities.

• View: Represented by JSPs as the user interface, which is necessary to construct
the presentation. You can have multiple views for the same model.

• Controller: Represented by servlets, which contain the necessary logic to process
user events, manage screen flow, and select an appropriate response.

148 Day 7

09 0672324237 CH07 4/30/04 2:25 PM Page 148

Designing Web Applications 149

7

FIGURE 7.8
MVC design pattern
for Web applications.

Servlet
(Controller)

Web Container

Application Server

EJB
(Model)

EJB Container

JavaBean
HTTP requestWeb-Client

(Browser)

JSP
(View)

HTML/XML

Database

The advantage of the MVC strategy is that there is no application logic within the pre-
sentation component itself (JSPs). It is simply responsible for retrieving any objects or
JavaBeans that might have been previously created by the controller, and for generating
the dynamic content for insertion within its static templates. The separation of the pre-
sentation logic from its content helps divide the roles and responsibilities between page
designers and Java developers. Moreover, using the servlet as a controller presents a
central point of entry to the application, which makes the management of applications
more consistent and easier to maintain.

Working with a Servlet as a Controller
You learned earlier today how servlets work as delegates for the client tier to the busi-
ness logic of the application. A primary role of a servlet is to act as a controller. A
servlet is responsible for taking parameters from the client and then delegating those
parameters to the appropriate components, which handle the business logic. Finally, the
servlet takes the result back and uses it to provide a response to the user. The servlet usu-
ally forwards the response to a JSP to perform a presentation task (see Figure 7.9).
Servlets are the link between the client request and the model (EJB and JavaBeans).

The main target here is that the model be kept separate from the details of how the appli-
cation is structured (the controller) and how the information is presented to the user (the
view).

09 0672324237 CH07 9/24/02 3:52 PM Page 149

150 Day 7

FIGURE 7.9
Servlet as a controller.

URSController
Servlet

Web-Client
(Browser)

Home Page

SignOn

Select
Courses

Register
Courses

request
HTTP

response
HTML/XML

Packaging Web Applications
All Web components are packaged together into a standard file, a Web Archive (WAR)
file, which can be deployed into the Web container. A WAR file is a type of JAR file that
can be created using the jar utility. It contains both server-side classes, such as servlets,
JavaBeans, JSP, and taglibs, and client-side contents, such as applets, HTML, and
images. The directory structure of a WAR file looks like Figure 7.2 illustrated earlier
today.

When creating a WAR file, arrange the directory according to the structure in Figure 7.2,
and then issue the jar command from the application’s home directory:

jar -cvf mywebapp.war *

The web.xml file is the standard Web deployment descriptor, and weblogic.xml is the
vendor-specific deployment descriptor for the WebLogic Server. The subdirectory
classes is used to store server-side Java classes such as servlets, whereas the lib subdi-
rectory is used to store all the other JAR files, such as for JavaBeans.

The web.xml file describes each Web component used in the WAR file and the relation-
ships between them. Here’s an example of a web.xml that describes some of the compo-
nents developed today:

<!DOCTYPE web-app PUBLIC “-//Sun Microsystems, Inc.//
DTD Web Application 1.2//EN” “http://java.sun.com/j2ee/dtds/web-app_2_2.dtd”>
<web-app>
<servlet>
<servlet-name> URSControllerServlet</servlet-name>
<servlet-class>myWebApp.URSControllerServlet</servlet-class>

</servlet>
<servlet-mapping>
<servlet-name> URSControllerServlet </servlet-name>
<url-pattern>/URSControllerServlet </url-pattern>

09 0672324237 CH07 9/24/02 3:52 PM Page 150

Designing Web Applications 151

7

</servlet-mapping>
<welcome-file-list>
<welcome-file>welcome.html</welcome-file>

</welcome-file-list>
<error-page>
<error-code>404</error-code>
<location>/errorPage.jsp</location>

</error-page>
<!-- Tag Library Descriptor -->
<taglib>
<taglib-uri>/welcome</taglib-uri>
<taglib-location>/WEB-INF/tlds/welcome.tld</taglib-location>

</taglib>
</web-app>

When the Web container start deploying the WAR file, it first reads the contents of the
web.xml file and uses them as a road map to its target components.

In the preceding example of web.xml, each servlet must be defined by its name and full
class name (includes the package). Servlet mapping is the concept of mapping a servlet
name to a URL, which used by the container to translate requests to particular servlet.
For instance, in WebLogic, the URL
http://localhost:7001/mywebapp/URSControllerServlet will map the request to the
URSControllerServlet servlet. In JBoss, the request http://localhost:8080/
mywebapp/URSControllerServlet will have the same effect.

Best Practices
There are many options and various situations that Web components can be used for. In
general, the Web tier is used mainly for processing user input, server-side validation, and
building dynamic content. It’s not a good place to put application business logic, access
the database, or perform transactions. All Web components are not transactional. Use
EJBs to model your application business logic.

Don’t put too much logic in JSPs. Use taglibs to capture presentation logic, and
JavaBeans as data transfer objects between the Web tier and the EJB tier. Use servlets as
controllers as well as delegates on behalf of the client to the EJB tier.

When tracking user sessions, try to activate URL rewriting to avoid disabled cookies by
users. Use JSP error pages; they’re an elegant mechanism provided by the JSP architec-
ture.

Application servers provide persistence mechanisms for session data storage. You also
can choose to maintain the session information in a database. Persistent sessions are slow

09 0672324237 CH07 9/24/02 3:52 PM Page 151

compared to replication of session information across cluster nodes. Here, only serialiaz-
able objects can be replicated or persisted. Large data stored in collections, arrays, or
tables should not be replicated because it’s hard to detect changes to them.

One advantage of using servlets is that they can be used by different types of clients,
such as Web clients, Java clients, and even Visual Basic clients. This is not the case, how-
ever, with JSPs, which are used only by Web clients. Another advantage of servlets is
their ability to work with binary information, such as images.

When using EJBs, a common practice is to use the home handle of an EJB instance for
the cookie value and to store the user’s details in an EJB for later reference.

Summary
Today we explored the Web tier, Web container, and Web components, and how each
contributes to building Web applications. We briefly surveyed the four Web components:
servlets, JSPs, taglibs, and JavaBeans, with an example to demonstrate each API. We
scratched the surface of each Web component and its proper usage. Servlets were cov-
ered as delegates as well as controllers, in addition to handling user inputs. You learned
JSP’s main syntax and its scripting elements. JSP taglibs were explored as an extension
to JSP. You learned also about the packaging and deployment of Web applications.

On Day 20, you’ll learn how to create a complete Web application, and how to apply the
MVC pattern as part of the JavaMail exercise.

Q&A
Q What are the mechanisms used in tracking user session?

A You can use HttpSession and URL rewriting to track sessions on the server side,
and you can use HTTP cookies and hidden fields in tracking sessions on the client
side.

Q What role do servlets play in the J2EE architecture?

A Servlets are used mainly in processing user requests and delivering dynamic con-
tent. They also act as controllers in the MVC pattern. Moreover, they work as dele-
gates for the session façade pattern. This makes an elegant separation between the
Web tier for presentation logic and the EJB tier for business logic.

152 Day 7

09 0672324237 CH07 9/24/02 3:52 PM Page 152

Designing Web Applications 153

7

Quiz
1. The main function of a servlet is to

A. Read and write files to and from the server

B. Provide graphical user interfaces

C. Process HTTP requests and supply responses

D. Act as delegate to access EJBs

2. An HTTP cookie can contain

A. Any Unicode characters

B. Only ASCII characters

C. Any binary information about a user profile

D. Any field/value pairs of a user session

3. After a JSP page is compiled, it turned into a(n)

A. Applet

B. EJB

C. Servlet

D. JavaBean

4. The best way to call an EJB from the Web tier is

A. Call the EJB from a JavaBean embedded into a JSP

B. Look up and use the EJBs directly from a JSP

C. Look up the EJB in a taglib, which is called from JSP

D. Look up the EJBs from within a servlet, and delegate usage from within a
JSP

Quiz Answers
1. C, D

2. B

3. C

4. D

09 0672324237 CH07 9/24/02 3:52 PM Page 153

Exercises
1. Why and how should you avoid putting any logic in a JSP?

2. What mechanism of session tracking do you choose if you know that clients are
disabling cookies on their browsers?

3. What are the benefits of using the MVC pattern?

4. Which common services of containers are you allowed to use for Web compo-
nents?

154 Day 7

09 0672324237 CH07 9/24/02 3:52 PM Page 154

Entity Beans and
Message-Driven
Beans

8 Understanding Entity Beans

9 Using JDBC to Connect to a Database

10 Developing Bean-Managed Persistence Entity Beans

11 Developing Container-Managed Persistence Entity
Beans

12 Developing Container-Managed Relationships

13 Understanding JMS and Message-Driven Beans

14 Developing Message-Driven Beans

WEEK 2 8

9

10

11

12

13

14

10 0672324237 Part 02 9/24/02 2:35 PM Page 155

10 0672324237 Part 02 9/24/02 2:35 PM Page 156

DAY 8

WEEK 2

Understanding Entity
Beans

Today you’ll learn about entity beans that were first introduced in the EJB 1.0
specification. They were made mandatory in the EJB 1.1 specification and later
enhanced in EJB 2.0.

The EJB architecture greatly simplifies the connection between the application
and the database tiers. The EJB 2.0 specification takes this benefit to the next
level by enabling developers to develop portable applications that are database-
independent and free of database access code.

Entity beans are persistent objects. We’ll examine their characteristics and how
they differ from session beans.

Next, you’ll learn entity bean types bean-managed persistence and container-
managed persistence and explore why container-managed persistent beans are
portable and simpler to develop. Then we’ll examine the methods that you need
to implement for an entity bean class. Finally, we’ll look at the life cycle of the
entity bean instance.

11 0672324237 CH08 9/24/02 3:53 PM Page 157

What Are Entity Beans?
If you’ve worked with databases, you’re familiar with persistent data. Any change to the
data will exist even after the database server is shut down. Entity beans are persistent
objects. They typically represent business entities, such as customers, products, accounts,
and orders. Normally, each entity bean has an underlying table in a relational database,
and each instance of the bean corresponds to a row in that table. By persistence, we
mean that the state of the entity bean in memory is synchronized with the data it repre-
sents in the database.

Multiple clients can share entity beans. Because those clients might want to change the
same data, it’s important that entity beans work within transactions.

Entity beans typically contain data-related logic that performs a task such as inserting,
updating, or removing a customer record in the database.

158 Day 8

An entity bean is a server-side component that represents an object-oriented
view of entities stored in persistent storage, such as a database, or entities
that are implemented by an existing enterprise application.

Note

Characteristics of Entity Beans
Entity beans typically have the following characteristics:

• Provides an object view of data in the database. For example, as shown in Figure
8.1, the StudentEJB enterprise bean instance provides an object view of a record in
the student table in the database. The EJB container transparently synchronizes the
data between the server’s memory and the database.

FIGURE 8.1
An entity bean pro-
vides an object view of
data in the database.

Database
EJB Container

Client

Client

StudentEJB

• Represents long-lived data. Its lifetime is the same as data in the database. The
data of entity beans survives a crash of the EJB container.

• Allows shared access by multiple users.

11 0672324237 CH08 9/24/02 3:53 PM Page 158

Understanding Entity Beans 159

8
• Just as a relational database has the concept of a primary key, its primary key iden-

tifies an entity bean. A student entity bean, for example, might be identified by a
student ID.

• As with a table in a relational database, an entity bean may be related to other
entity beans. For example, as shown in Figure 8.2, in a college enrollment applica-
tion, StudentEJB and CourseEJB would be related because students enroll in
classes. This is an example of many-to-many bidirectional relationship.

FIGURE 8.2
An entity bean can be
related to other entity
beans.

StudentEJB CourseEJB

Comparing Entity Beans and Session Beans
Entity beans differ from session beans in several ways. Entity beans are persistent, allow
shared access, have primary keys, and may participate in relationships with other entity
beans. Table 8.1 shows the differences between session and entity beans.

TABLE 8.1 Differences Between Session and Entity Beans

Session Bean Entity Bean

Typically contains business process logic, such as Typically represents business entities,
sending an e-mail, looking up the stock price from such as customers, products, accounts,
a database, implementing compression and and orders.
encryption algorithms. They also implement
business logic such as workflow, algorithms, and
business rules.

Executes a particular business task on behalf of a Can be shared by multiple clients.
single client during a single session.

The state is not persistent. The state is persistent.

Usually does not correspond directly to data. Usually corresponds directly to data.

Types of Entity Persistence
Entity beans have two types of persistence: bean-managed persistence (BMP) and
container-managed persistence (CMP). These two types are based on who is responsible
for entity bean persistence bean provider or EJB provider.

11 0672324237 CH08 9/24/02 3:53 PM Page 159

Bean-Managed Persistence
With bean-managed persistence, the entity bean code that you write contains the calls
that access the database. The data access can be coded into the entity bean class or
encapsulated in a data access object that is part of the entity bean. Figure 8.3 depicts how
bean-managed persistence works with database access.

160 Day 8

FIGURE 8.3
Bean-managed persis-
tence contains the
calls that access the
database.

EJB Container
Database

Bean Managed
Persistence

EJB

JDBC/
SQLJ SQL

JDBC Driver

For example, as shown in the following snippet, the StudentEJB method ejbCreate con-
tains the JBDC code to insert a student record into the students table:

public class StudentEJB implements EntityBean {

private String studentId; // also the primary Key
private String firstName;
private String lastName;
private String address;

public String ejbCreate(String studentId, String firstName,
String lastName, String address) throws CreateException

{
this.studentId = studentId;
this.firstName = firstName;
this.lastName = lastName;
this.address = address;

Connection con = null;
PreparedStatement ps = null;

try {
con = getConnection();
ps = con.prepareStatement(“insert into students (student_id, “+
“ first_name, last_name, address) values (?, ?, ?, ?) “);

ps.setString(1, studentId);
ps.setString(1, firstName);
ps.setString(1, lastName);
ps.setString(1, address);

if (ps.executeUpdate() != 1) {
String error = “JDBC did not create any row”;
log(error);

11 0672324237 CH08 9/24/02 3:53 PM Page 160

Understanding Entity Beans 161

8
throw new CreateException (error);

}

return studentId;
} catch (SQLException sqe) {
...
} finally {
cleanup(con, ps);

}
}
...

}

Although writing this code is an additional responsibility, as an EJB developer, you’ll
have more control over how the entity bean accesses a database.

You’ll learn more about bean-managed persistence on Day 10, “Developing Bean-
Managed Persistence Entity Beans.”

Container-Managed Persistence
If your bean has container-managed persistence (CMP), the EJB container uses a persis-
tence manager and automatically generates the necessary database access calls. The code
that you write for the entity bean does not include these calls. The persistence manager is
responsible for persistence of the entity bean, including creating, loading, and removing
the entity bean instance in the database.

FIGURE 8.4
The persistence man-
ager is responsible for
persistence of CMP.

EJB Container
Database

Container
Managed

Persistence
EJB

JDBC/
SQLJ SQL

JDBC Driver
Persistence

Manager

For example, as shown in the following listing, the OrderEJB method ejbCreate does
not contain any JBDC code to insert order records into the orders table:

public abstract class OrderEJB implements EntityBean {

/* get and set methods for cmp fields */
public abstract String getOrderId();
public abstract void setOrderId(String id);

public abstract java.sql.Timestamp getOrderDate();
public abstract void setOrderDate(java.sql.Timestamp timestamp);

11 0672324237 CH08 9/24/02 3:53 PM Page 161

public abstract String getStatus();
public abstract void setStatus(String status);

public abstract double getAmount();
public abstract void setAmount(double amount);

/* get and set methods for relationship fields */
public abstract Collection getLineItems();
public abstract void setLineItems(Collection lineItems);

public abstract StudentLocal getStudent();
public abstract void setStudent(StudentLocal student);

public String ejbCreate(String orderId, StudentLocal student,
String status,double amount) throws CreateException {
setOrderId(orderId);
setOrderDate(new java.sql.Timestamp(System.currentTimeMillis()));
setStatus(status);
setAmount(amount);

return null;
}

...
}

You might question how the EJB container is able to generate the database access code.
The answer is that you specify the persistence fields, relationship fields, schema, and
queries in the deployment descriptor. Based on this information, the container tools gen-
erate data access calls corresponding to the underlying database, at deployment time.
We’ll examine each of them in the following sections.

Persistent Fields
A persistent field is designed to represent and store a single unit of data. Collectively,
these fields constitute the state of the bean. During deployment, the container typically
maps the entity bean to a database table and maps the persistent fields to the table’s
columns. At runtime, the EJB container automatically synchronizes this state with the
database.

An OrderEJB entity bean, for example, might have persistent fields such as orderId,
orderDate, status, and amount. In container-managed persistence, these fields are vir-
tual. You declare them in the abstract schema, but you do not code them as instance vari-
ables in the entity bean class. Instead, the persistent fields are identified in the code by
access methods (getters and setters).

162 Day 8

11 0672324237 CH08 9/24/02 3:53 PM Page 162

Understanding Entity Beans 163

8
Relationship Fields
A relationship field is designed to represent and store a reference to another entity bean.
This is analogous to a foreign key in a relational database table. Unlike a persistent field,
a relationship field does not constitute the state of an entity bean.

An OrderEJB entity bean, for example, might have relationship fields such as lineItems
and student.

Abstract Persistent Schema
The CMP entity bean’s deployment descriptor contains a description of the bean’s
abstract persistent schema. This schema is an abstract representation of an entity bean’s
persistent fields and relationship fields. The abstract schema is independent of the entity
bean’s implementation in a particular EJB container or particular database.

For example, the following snippet declares an abstract persistent schema named Order
in the deployment descriptor:

. . .
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Order</abstract-schema-name>
<cmp-field>

<field-name>orderId</field-name>
</cmp-field>
<cmp-field>
<field-name>orderDate</field-name>

</cmp-field>
<cmp-field>
<field-name>status</field-name>

</cmp-field>
<cmp-field>
<field-name>amount</field-name>

</cmp-field>
. . .

The cmp-version must be 2.x if you want to take advantage of EJB 2.0 container-
managed persistence. The schema declares four container-managed persistent fields
(cmp-field): orderId, orderDate, status, and amount. The names of these fields must
match the abstract get and set methods in your entity bean class. For example, your
entity bean class’s methods must be getOrderId, setOrderId, getOrderDate,
setOrderDate, getStatus, setStatus, getAmount, and setAmount.

The EJB Query Language
The EJB Query language (EJB QL) is new in EJB 2.0. EJB QL is similar to SQL. It
enables you to specify queries of entity bean methods in a database-independent,

11 0672324237 CH08 9/24/02 3:53 PM Page 163

portable way. For example, the following code line illustrates how the application uses an
EJB QL query of the method findOrdersByStatus(String status) to find orders of a
particular status, such as COMPLETE:

SELECT OBJECT(o) FROM Order AS o WHERE o.status = ?1

The preceding query returns Order objects, as indicated by the expression OBJECT(o).
The identifier o is analogous to an SQL correlation variable. The WHERE clause limits the
orders to those whose status matches the value of the first parameter passed to the query,
which is denoted by the expression ?1.

The container tools will translate such queries into the target language of the underlying
database. For example, in case of a relational database, the container translates an EJB
QL query into an SQL query.

164 Day 8

Entity beans with container-managed persistence are portable. Their code is
not tied to a specific database.

Note

You will learn more about container-managed persistence on Day 11, “Developing
Container-Managed Persistence Entity Beans,” and on Day 12, “Developing Container-
Managed Relationship Entity Beans.”

When to Use BMP or CMP
The choice between BMP and CMP is often decided by factors such as portability, avail-
ability of container tools, flexibility, and so on.

Using BMP
Typically, you would use bean-managed persistence in the following situations:

• When you want complete control of managing persistence, such as writing opti-
mized queries.

• When you’re writing persistence logic to a very proprietary legacy database system
for which container tools do not exist.

• When your persistent store is not a database, you might wrap an existing applica-
tion using an entity bean.

Using CMP
With container-managed persistence, the container takes responsibility for generating the
data access code. This simplifies the task of writing entity beans.

11 0672324237 CH08 9/24/02 3:53 PM Page 164

Understanding Entity Beans 165

8
The CMP entity bean’s code is not tied to a specific persistent storage mechanism (data-
base). Because of this flexibility, even if you redeploy the same entity bean on different
J2EE servers that use different databases, you won’t need to modify or recompile the
bean’s code. In short, your CMP entity beans are more portable than BMP entity beans.

Instance Pool and Instance Cache
Just as with stateless session beans, an EJB container may maintain an instance pool of
each type of entity bean. This saves the precious time of creating and destroying of
objects. At startup, the container creates instances as specified in the deployment descrip-
tor of the entity bean. While the instance is in the available pool, the instance is not asso-
ciated with any particular entity object identity. All instances in the pool are considered
equivalent; therefore, an instance can be assigned by the container to any entity object
identity. You can control the instance pool size in the vendor-specific deployment
descriptor.

For example, you can specify the pool size in the deployment descriptor weblogic-ejb-
jar.xml for WebLogic Server as follows:

<pool>
<max-beans-in-free-pool>100</max-beans-in-free-pool>
<initial-beans-in-free-pool>50</initial-beans-in-free-pool>

</pool>

Similarly, you can specify the pool size in the deployment descriptor jboss.xml for the
JBoss server as follows:

<instance-pool>org.jboss.ejb.plugins.EntityInstancePool</instance-pool>
<container-pool-conf>
<MaximumSize>100</MaximumSize>
<MinimumSize>10</MinimumSize>

</container-pool-conf>

Just as with stateful session beans, the EJB container can have an instance cache to man-
age all entity bean instances that are associated with an identity. In large applications, the
number of clients connected concurrently to a Web site can be in the thousands. This can
have an adverse effect on performance when resources are used up. Passivation and acti-
vation are mechanisms provided by the EJB container to manage valuable resources,
such as memory, in order to reduce the number of entity bean instances needed to service
all concurrent clients.

Whenever possible, you should use container-managed persistence beans
because they are portable and easier to develop than bean-managed persis-
tence beans.

Tip

11 0672324237 CH08 9/24/02 3:53 PM Page 165

Passivation is the mechanism by which the EJB container stores the bean’s state into the
database. The container starts passivation as soon as the number of allocated entity beans
exceeds a certain threshold. The EJB container provides the bean developer with
ejbPassivate() as a callback method to release any allocated resources. Activation, on
the other hand, is the process of restoring back the bean from the database. The EJB con-
tainer activates a passivated instance when the bean’s client references the bean instance.
The EJB container provides the bean developer with ejbActivate() as a callback
method to restore any connections and other resources.

For example, you can specify the instance cache size in deployment descriptor
weblogic-ejb-jar.xml for WebLogic Server as follows:

<entity-cache>
<max-beans-in-cache>1000</max-beans-in-cache>
</entity-cache>

Similarly, you can specify the instance cache size in deployment descriptor jboss.xml
for JBoss server as follows:

<instance-cache>
<container-cache-conf>
<cache-policy>
<cache-policy-conf>
<min-capacity>5</min-capacity>
<max-capacity>10</max-capacity>

</cache-policy-conf>
</cache-policy>
</container-cache-conf>
</instance-cache>

166 Day 8

Instance pooling is used to manage EJB instances that are not associated
with any identity. Instance caching is used to manage EJB instances that are
associated with an identity. Instance pooling is applicable to stateless ses-
sion, entity, and message-driven beans, whereas instance caching is applica-
ble to stateful session and entity beans.

Note

Entity Bean Files
Like other enterprise beans, an entity bean consists of a home interface, component
interface, enterprise bean class, and deployment descriptor. In addition, an entity bean
can have a primary key class.

11 0672324237 CH08 9/24/02 3:53 PM Page 166

Understanding Entity Beans 167

8
In most cases, your primary key class will be a String or an Integer, which belong to
J2SE standard libraries. For example, the primary key class for StudentEJB is
studentId, which is a String.

For some entity beans, you must define your own primary key class. For example, if your
primary key is composed of multiple fields (a composite primary key), you must define
your own primary key class.

Entity Bean Methods
The entity bean class implements the javax.ejb.EntityBean interface. Therefore, you
need to implement the setEntityContext, unsetEntityContext, ejbActivate,
ejbPassivate, ejbLoad, ejbStore, and ejbRemove methods defined in the
javax.ejb.EntityBean interface. The bean may implement ejbCreate<method>(...)
methods (and corresponding ejbPostCreate<method>(...) methods) used to initialize
the bean instance. In addition, the bean class can implement business methods, home
methods and remove methods. We’ll discuss each of them in detail in the following sec-
tions.

setEntityContext and unsetEntityContext Methods
The EJB container calls the setEntityContext method to set the associated entity con-
text. The entity context provides access to the runtime entity context, such as identifying
the caller, accessing or changing the current transaction state, or obtaining the primary
key associated with the instance. You can store the reference to the entity context object
in an instance variable, if you need it later. Also, it is here that you allocate any resources
to be held by the instance for its lifetime.

The EJB container calls the unsetEntityContext method before removing the instance.
This is the last method that the container invokes on the instance. The Java garbage col-
lector will eventually invoke the finalize() method on the instance. Here you free any
resources that are held by the instance.

create Methods
The container calls this method so that you can initialize your entity bean instance. When
a client invokes a create<method> method on the home interface, the EJB container
invokes the corresponding ejbCreate<method> method.

11 0672324237 CH08 9/24/02 3:53 PM Page 167

The following local home interface illustrates the create method:

public interface StudentLocalHome extends EJBLocalHome {
StudentLocal create(String studentId, String name, String password,
String address) throws CreateException;

...
}

Typically, the ejbCreate<method> of a BMP validates the client-supplied parameters,
inserts the entity state into the database, initializes the instance variables, and returns the
primary key. In contrast, the ejbCreate<method> of CMP typically initializes the entity
bean instance by assigning the input arguments to the persistent fields. After the
ejbCreate<method> completes, the container inserts the row into the database.

168 Day 8

The ejbCreate<method> of a BMP returns the primary key, whereas the
ejbCreate<method> of a CMP returns null.

Note

The following example illustrates how a client creates a new entity object:

StudentLocalHome home =
Student student =

home.create(“1,”, “Sam”, “password”, “123 Hollis Ave, Campbell, CA-95008”);

ejbPostCreate<method> Methods
This method enables you to complete any remaining initialization of entity bean
instances. For example, you may obtain the component interface of the associated entity
object and pass it to another enterprise bean as a method argument.

The container invokes the matching ejbPostCreate<method>(...) method on an entity
instance after it invokes the ejbCreate<method>(...) method with the same arguments.

ejbActivate and ejbPassivate Methods
The ejbActivate method enables you to acquire any resources (such as opening socket
connections and so on) needed to service a particular client. The EJB container calls this
method when it picks the entity instance from the instance pool and associates it to a spe-
cific entity object identity.

The ejbPassivate method enables you to release any resources you acquired in the
ejbActivate method, such as closing socket connections. The EJB container calls this
method when the container decides to disassociate the instance from an entity object
identity and to put it back into the instance pool.

11 0672324237 CH08 9/24/02 3:53 PM Page 168

Understanding Entity Beans 169

8

Business Methods
The business methods contain business logic that you want to encapsulate within your
entity bean. Typically, the business methods don’t access the database, which enables
you to separate the business logic from the database access code. You define the business
methods in the component interface and implement them in the entity bean class.

For example, the Account bean’s component interface defines the business methods
deposit() and withdraw() as follows:

public interface Account extends EJBObject {
public void deposit(double amount)
throws RemoteException;

public double withdraw(double amount)
throws AccountException, RemoteException;

...
}

The AccountEJB bean implements the business methods as follows:

abstract public class AccountEJB implements EntityBean {
/* container managed fields */
abstract public double getBalance();
abstract public void setBalance(double val);
...
public double deposit(double amount) {
setBalance(getBalance() + amount);
return getBalance();
}

public double withdraw(double amount)
throws ProcessingErrorException {
if (amount > getBalance()) {
throw new ProcessingErrorException(
“Request to withdraw “ + amount +
“; is more than balance “ + getBalance());

}
setBalance(getBalance() - amount);
return getBalance();
}
...

}

The instance should not use the ejbActivate() method to read the state of
the entity from the database. The instance should load its state only in the
ejbLoad() method. Also, the instance should not use the ejbPassivate()
method to write its state to the database. An instance should store its state
only in the ejbStore() method.

Note

11 0672324237 CH08 9/24/02 3:53 PM Page 169

ejbLoad() and ejbStore() Methods
The EJB container calls the ejbLoad() and ejbStore() methods when it needs to syn-
chronize the state of the entity bean instance with the corresponding values in the data-
base.

• ejbLoad()—The EJB container invokes this method to instruct the instance to syn-
chronize its state by loading it from the underlying database.

With BMP, the instance variables are refreshed by reading from the database. Also,
you recalculate the values of any instance variables that depend on refreshed vari-
ables; for instance, calculate transient fields, decrypt a text field, or decompress a
text field.

With CMP, the container loads the bean’s state from the database. You must recal-
culate the values of any instance variables that depend on persistent fields; for
instance, calculate transient fields, decrypt a text field, or decompress a text field.

• ejbStore()—The EJB container invokes this method to instruct the instance to
synchronize its state by storing it to the underlying database.

With BMP, any updates cached in the instance variables are written to the database.

With CMP, prepare the container-managed fields to be written to the database; for
example, encrypt a text field, decompress a text field, and so on.

finder Methods
Finder methods allow clients to locate entity beans. The arguments of a finder method
are used by the entity bean implementation to locate the requested entity objects. The
name of each finder method in the home interface starts with the prefix find.

In the following snippet, the client locates the student entity beans by using the finder
methods findByPrimaryKey and findByLastName:

public interface StudentLocalHome extends EJBLocalHome {

public StudentLocal findByPrimaryKey(String key) throws FinderException;
public Collection findByLastName(String lastName) throws FinderException;
...

}

In BMP, for every finder method defined in the home interface, you must implement a
corresponding method that begins with the prefix ejbFind. For example, StudentEJB
implements the method ejbFindByLastName, which corresponds to the findByLastName
method defined in the home interface.

In CMP, you do not write the ejbFind methods in your entity bean class. The finder
methods are generated by the container provider tools.

170 Day 8

11 0672324237 CH08 9/24/02 3:53 PM Page 170

Understanding Entity Beans 171

8
The following example illustrates how a client uses the findByPrimaryKey method:

StudentLocalHome home= ...;
StudentLocal student = home.findByPrimaryKey(“1”);

Home Methods
Home methods contain business logic that that is not specific to an entity bean instance.
These methods are analogous to static methods. Just as static methods can’t access
instance variables, home methods can’t access the bean’s state.

The following example shows the home method getStudentCount, which returns the
total number of students in a table:

public interface StudentLocalHome extends EJBLocalHome {
public int getStudentCount();
...

}

You write an ejbHome<method> method, in the entity bean class, for every home method
defined in the home interface. For example, you would implement
ejbHomeGetStudentCount() in the StudentEJB entity bean class.

The remote home interface includes the findByPrimaryKey(primaryKey)
method, which allows a client to locate an entity object by using a primary
key. The name of the method is always findByPrimaryKey. The
findByPrimaryKey(primaryKey) method is mandatory for all entity beans.

Note

Because the home method isn’t specific to an entity bean instance, the
entity instance isn’t associated with any unique identity during home
method invocation. So, the home method implementation cannot access the
entity bean’s state (persistent fields).

Note

remove Method
The javax.ejb.EJBHome interface defines several methods that allow the client to
remove an entity object:

public interface EJBHome extends Remote {
void remove(Handle handle) throws RemoteException,
RemoveException;

11 0672324237 CH08 9/24/02 3:53 PM Page 171

void remove(Object primaryKey) throws RemoteException,
RemoveException;

}

In BMP, the ejbRemove() method removes the entity state from the database and releases
any resources that you acquired to service a particular client. In CMP, the ejbRemove()
method releases any resources that you acquired to service a particular client. Table 8.2
summarizes the entity bean methods.

TABLE 8.2 Summary of Entity Bean Methods

Method Purpose What You Need to Do

SetEntityContext The EJB container calls Store the reference to the entity context
(EntityContext) this method to set the object in an instance variable, if you need

associated entity context. it later. You also allocate any resources
that are to be held for the lifetime of the
instance.

unsetEntityContext() The container invokes Free any resources that are held by the
this method before instance.
terminating the life of
the instance.

ejbCreate<method The EJB container Each entity class can have zero or more
>(...) invokes the corresponding ejbCreate<method>(...) methods and

ejbCreate<method> each one can take different arguments.
method when a client
invokes a create<method> In BMP, validate the client-supplied
method on the home parameters and insert a record into the
interface. database. The method also initializes the

instance’s variables.
In CMP, validate the client-supplied para-
meters and initialize the enterprise bean
state.

ejbPostCreate<method> The container invokes the For each ejbCreate<method>(...)
(...) matching ejbPostCreate method, you must have a matching

<method>(...) method ejbPostCreate<method>(...) method.
on an entity instance after
it invokes the ejbCreate This method enables you to complete any
<method>(...) method remaining initialization of entity bean
with the same arguments. instances.

172 Day 8

11 0672324237 CH08 9/24/02 3:53 PM Page 172

Understanding Entity Beans 173

8
ejbActivate() The EJB container calls Acquire any resources needed to service a

this method when it picks particular client; for example, open socket
the entity instance from connections.
the instance pools and
associates it to a specific
entity object identity.

ejbPassivate() The EJB container calls Release any resources that you acquired to
this method when the service a particular client; for example,
container decides to close socket connections.
disassociate the instance
from an entity object
identity and to put it back
into the instance pool.

Business methods The business methods Write business logic in these methods.
contain business logic
that you want to
encapsulate within your
entity bean.

ejbLoad() The EJB container invokes In BMP, refresh the instance variables by
this method to instruct the reading from the database. Also
instance to synchronize its recalculate any dependent values.
state by loading it from
the underlying database. In CMP, recalculate the values of any

instance variables that depend on the per-
sistent fields; for example, transient fields.

ejbStore() The EJB container invokes In BMP, write any updates cached
this method to instruct the in the instance variables to the data
instance to synchronize its base.
state by storing it to the
underlying database. In CMP, prepare the container-managed

fields to be written to the database.

ejbFind<method>(...) Finder methods allow In BMP, for every finder method defined
clients to locate entity in the home interface, you must implement
beans. a corresponding method that begins with

the ejbFind prefix.

With CMP, you do not write the ejbFind
methods in your entity bean class.

TABLE 8.2 continued

Method Purpose What You Need to Do

11 0672324237 CH08 9/24/02 3:53 PM Page 173

ejbHome<method>(...) Home methods contain Implement the business logic using other
business logic that that is methods or JDBC code.
not specific to an entity
bean instance.

ejbRemove() The container calls this In BMP, remove the entity state from the
method as a result of the database and release any resources that
client’s invocation of a you acquired to service a particular client.
remove method.

With CMP, release any resources that you
acquired to service a particular client.

Life Cycle of an Entity Bean
Figure 8.5 shows a simplified state diagram of an entity bean instance.

The following paragraphs describe the life cycle of an entity bean instance.

Initially, the bean instance does not exist.

Your bean instance’s life cycle starts when the container creates the instance using
Class.newInstance() and then calls the setEntityContext method. Now the instance
enters a pool of available instances. An instance in the pooled state is not associated with
any particular entity object identity. All instances in the pooled state are identical. While
the instance is in the pooled state, the EJB container may use the instance to execute any
of the entity bean’s finder methods or home methods.

Your bean instance moves from the pooled state to the ready state when the container
selects that instance to service a client call to an entity object. There are two paths from
the pooled stage to the ready stage. On the first path, the client invokes the create
method, causing the EJB container to call the ejbCreate and ejbPostCreate methods.
On the second path, the EJB container invokes the ejbActivate method.

While in the ready state, the instance is associated with a specific entity object identity.
The container calls business methods on the instance, based on the client call. The EJB
container also can synchronize the state of the instance with the database using methods
ejbLoad and ejbStore.

Eventually, the EJB container will transition the instance to the pooled state. This hap-
pens when the client calls the remove method, which causes the EJB container to call the
ejbRemove method. Second, the EJB container might call the ejbPassivate method.

174 Day 8

TABLE 8.2 continued

Method Purpose What You Need to Do

11 0672324237 CH08 9/24/02 3:53 PM Page 174

Understanding Entity Beans 175

8

At the end of the instance’s life cycle, the EJB container removes the instance from the
pool and invokes the unsetEntityContext method.

FIGURE 8.5
Simplified life cycle of
an entity bean
instance.

Instance
does not exist

Pool of available
instances

Ready
(unique identity)

unsetEntityContext()

ejbPassivate() ejbRemove()

1. Class newInstance()
2. setEntityContext(ec)

1. ejbCreate<method>
2. ejbPostCreate<method> ejbActivate()

Life cycle of an entity bean instance

In bean-managed persistence, when the EJB container moves an instance
from the pooled state to the ready state, it does not automatically set the
primary key. Therefore, the ejbCreate and ejbActivate methods must set
the primary key.

Note

Best Practices
Before the introduction of EJB 2.0 specification, developers often used BMP rather than
CMP because the previous EJB spec did not support important features such as
relationships. But the EJB 2.0 spec for CMP has good relationship support as well as
performance improvements.

One of the CMP performance improvement techniques in EJB 2.0 is that the container
can monitor a bean’s data (in-memory buffer) change. If any change happens in that data,
only the container will update the database. Because of this monitoring capability, CMP
gives better performance than BMP.

11 0672324237 CH08 9/24/02 3:53 PM Page 175

Another performance-limiting technique is when you call a finder method in BMP. It ini-
tially retrieves the primary key with the first call to the database, and then retrieves the
instance data by placing a second call to the database—it makes two calls to the data-
base. But for finder methods, CMP gets the data with a single call to the database. Thus,
CMP gives better performance techniques than BMP because the container has a good
hold on CMP.

Summary
Today you examined entity beans, and learned that they are server-side components that
represent back-store data in the middle tier. By design, entity beans are persistent and
survive any server crashes. They are transactional and share their state with multiple
clients. You also learned about both types of persistence: bean-managed and container-
managed persistence. You briefly explored the relationship between entity beans. Over
the next three days, you will examine the last three topics in more detail with full exam-
ples.

Q&A
Q What are the main characterizes of entity beans?

A Entity beans are persistent, transactional, and shared between multiple clients.

Q What are the two main types of entity beans?

A There are two main types of entity beans: bean-managed persistence and container-
managed persistence.

Quiz
1. An entity bean is identified by which of the following?

A. Primary key.

B. Persistent fields.

C. Relationship fields.

D. Home interface.

2. Which of the following statements is true of a bean-managed persistence entity
bean?

A. The container takes the responsibility of generating the data access code.

B. The entity bean takes the responsibility of generating the data access code.

176 Day 8

11 0672324237 CH08 9/24/02 3:53 PM Page 176

Understanding Entity Beans 177

8
C. The entity bean is portable.

D. The entity bean is transactional.

Quiz Answers
1. A

2. B, D

Exercises
To extend your knowledge of the subjects covered today, try the following exercises.

1. Design a student bean-managed persistence bean. The bean consists of the persis-
tent fields studentId, firstName, lastName, and address. Draw a class diagram
that shows the entity bean class and its interfaces along with their methods. In
addition, provide a method that calculates the total number of students.

2. Design an order container-managed persistence bean. The bean consists of persis-
tent fields orderId, studentId, orderDate, and amount. Draw a class diagram that
shows the entity bean class and its interfaces along with their methods. In addition,
provide a method that calculates the total amount for all orders.

11 0672324237 CH08 9/24/02 3:53 PM Page 177

11 0672324237 CH08 9/24/02 3:53 PM Page 178

DAY 9

WEEK 2

Using JDBC to Connect to
a Database

Today, you’ll learn how to use Java Database Connectivity (JDBC) to connect
components of an enterprise application to any data source. JDBC is the stan-
dard and unified API to access any data in a tabular form, whether it is a rela-
tional database, spreadsheet, or flat file. We’ll give a brief account of the JDBC
architecture and the different clients and components across all the J2EE tiers
that can use it. Using snippet of codes, the JDBC API will be explained. We’ll
wrap up with an example to highlight the main interfaces and classes of the
JDBC. We’ll emphasize the fact that JDBC is a vendor-neutral API by running
an example in two different environments of application servers, without
changes to the sample code.

We’ll also discuss features of JDBC such as connection pooling, data sources,
SQL queries and updates, and advanced concepts including prepared state-
ments, local transactions, metadata, and batch updates. Finally, we’ll explore
the built-in features of the API to optimize your access to data sources.

12 0672324237 CH09 9/24/02 3:55 PM Page 179

• Learn the rationale behind JDBC

• Explore the JDBC architecture

• Learn the JDBC API’s classes and interfaces

• Learn how to connect to a database using JDBC

• Learn how to perform local transactions using JDBC API

• Explore the data manipulation operations of databases using JDBC

• Study query optimization to databases

• Learn how to use batch updates for optimal operations

• Work with metadata for databases and query results

• Work with a practical example to apply what you learned today

Why JDBC?
JDBC is a standard API that lets you access virtually any data source in tabular format
from your J2EE applications. It provides cross-DBMS connectivity to a wide range of
SQL databases, spreadsheets, and flat files. SQL is the lingua franca of the standard
database language to separate application data from its logic.

JDBC enables developers to write enterprise applications that run on any J2EE-compliant
application server that requires access to enterprise data. It provides separation of appli-
cation logic from the underlying database operating environment. JDBC encapsulates the
connecting method, database vendor, security, and multiuser access. With a JDBC
technology–enabled driver, a developer can even connect all corporate data in a heteroge-
neous database environment.

JDBC is used by many components across all J2EE tiers. First, in the client tier, JDBC
can be accessed by Java applets or Java applications. Second, in the Web tier, it can be
accessed by JSP, servlet, or Taglib. Finally, all types of EJBs such as session, entity, and
message-driven beans can use JDBC from the EJB tier.

Later in this book, on Day 11 “Developing Container-Managed Persistence Entity
Beans,” you’ll learn about entity beans in a container-managed persistence (CMP) mode,
where application logic is separated from its persistence. JDBC is still being used behind
the scenes in the deployment descriptor and in a declarative manner, but is not used
directly by the code. However, this is different from the case of bean-managed persis-
tence (BMP) where entity beans use JDBC to manage database access, which will be
addressed on Day 10, “Developing Bean-Managed Persistence Entity Beans.”

180 Day 9

12 0672324237 CH09 9/24/02 3:55 PM Page 180

Using JDBC to Connect to a Database 181

9

JDBC Architecture
JDBC is designed using a two-tier approach. It’s a unified and standard API used by all
J2EE applications and components to access databases through a provider-specific driver.
Such clean separation of application logic and database-specific environment helps an
enterprise application to be portable and reusable across multiple databases.

Figure 9.1 illustrates the layered approach of the JDBC architecture. An application
client uses a unified JDBC API to access one or many databases, even in a heteroge-
neous environment. Many of the database products provide JDBC drivers, including
Oracle, SQLServer, DB2, Sybase, PointBase, Cloudscape, Hypersonic, Postgres, and
mySQL.

JDBC is similar in concept to ODBC (Open Database Connectivity), a C-based
standard to access databases. In fact, both JDBC and ODBC are interopera-
ble; that is, both access each other through the JDBC-ODBC Bridge. JDBC
provides enhanced services such as connection pooling, which will be cov-
ered later today.

Note

FIGURE 9.1
JDBC architecture.

Oracle JDBC
Driver

Oracle
RDBMS

Sybase JDBC
Driver

Sybase
RDBMS

Cloudscape JDBC
Driver

JDBC API

Application

Cloudscape
RDBMS

client
tier

vendor
specific

12 0672324237 CH09 9/24/02 3:55 PM Page 181

It’s possible that clients and components across all the J2EE tiers can access the database
through the JDBC API (see Figure 9.2). However, it’s recommended in practice that
JDBC connections should be near to the data source itself. This implies that components
in the EJB-tier are encouraged to use the JDBC to connect to databases. This not only
enhances the security aspect of your enterprise applications, but it also increases their
portability. Moreover, EJBs provide built-in mechanisms for transaction control, and
placing JDBC calls in well-designed EJBs frees you from programming local transac-
tions using JDBC or distributed transactions. Transactions will be covered in detail in
Day 16.

182 Day 9

FIGURE 9.2
JDBC clients.

Data Source

JDBC

Java
Application

Applet

Client tier

Applet

EJB tier

JSP

TagLib

Web tier

Servlet

JDBC Clients

At a minimum, JDBC assumes that all underlying database vendors support the SQL-2
database access language. Since its original inception in 1997, the JDBC specification
has focused on these issues:

• Offers vendor-neutral access to common functionality that most database server
vendors must implement in order to be JDBC-compliant.

• Supports advanced SQL data types (part of SQL3), such as Blobs (Binary Large
Object), Clobs (Character Large Object), and arrays and their mappings, to native
Java objects.

12 0672324237 CH09 9/24/02 3:55 PM Page 182

Using JDBC to Connect to a Database 183

9

• Provides implicit support for database reliability, availability, and scalability. The
Standard Extension API describes advanced support features, such as enhancement
of database performance and JNDI support.

Choosing the Right JDBC Driver
Different types of JDBC drivers are available for a J2EE application’s use. Two-tier dri-
vers provide direct access to databases from a Java application. Two-tier drivers are ven-
dor specific. Three-tier drivers provide access to databases through the middle tier, which
enables you to manage database resources centrally through the application server.
Three-tier JDBC drivers are vendor neutral, and make it easier to integrate off-the-shelf
components to your DBMS environment and to write more portable code. Moreover,
they help you to develop scalable, reliable, and available J2EE applications.

JDBC Driver Types
JDBC drivers are commonly identified by type. The following list provides a brief
description of each driver type, which will help you choose a JDBC driver type that fits
your application requirements:

• Type 1: Uses ODBC as the primary interface to the database. The client makes
JDBC calls that are converted to ODBC by the JDBC-ODBC Bridge, which is also
required on the client tier.

• Type 2: Uses a native database library as an interface to the database. The client
makes JDBC calls that are converted to the native code through a JDBC-native dri-
ver. The native library is a proprietary API, such as OCI (Oracle Client Interface).
This driver type is normally used for high-performance and large transaction vol-
ume requirements.

• Type 3: This is a multitier, vendor-neutral driver. No driver is required at the client
tier. Clients make JDBC calls through the network (RMI calls) to the JDBC driver
that resides in the middle tier (application server tier).

• Type 4: This is an all-Java driver. Clients make JDBC calls directly to the data-
base. Because it’s a native Java driver, it performs according to the underlying Java
Virtual Machine (JVM). It’s the most frequently used JDBC driver type.

Figure 9.3 depicts these drivers in a multi-tier approach.

12 0672324237 CH09 9/24/02 3:55 PM Page 183

Introducing the JDBC API
JDBC supports the development of both standard Java and enterprise Java applications.
The JDBC API consists of the two main packages: the java.sql package, which is part
of standard Java, and the javax.sql package, which is part of enterprise Java. The fol-
lowing two sections will briefly discuss these two main packages.

The java.sql Package
This is a client-side API that allows making connection to a data source, handling data-
base operations and queries, and providing security. The key interface to this package is
the Connection interface, which encapsulates all the database operations in the applica-
tion logic. Table 9.1 lists the JDBC interfaces and gives a brief description of each.

TABLE 9.1 Summary of JDBC Interfaces

JDBC Interface Description

DataSource Represents a particular database or other data source and its connection
pool. It’s used as a factory to establish a Connection with a data source.

Connection Represents a session to the database. It’s used as a factory for other types
of objects such as Statement. It handles all other database manipulation
and operations.

Statement Sends simple SQL statements, with no parameters, to a database. Created
from a Connection object.

184 Day 9

FIGURE 9.3
Types of JDBC dri-
vers.

Data Source

Type 1

ODBC
Driver

JDBC-ODBC
Bridge

Java Client

Client tier

Data Source

Type 2

Native
Library

JDBC-Native
Library

Java Client

Client tier

Data Source

Type 4

All Java
JDBC Driver

Java Client

Client tier

Data Source

Type 3

3-tier JDBC
Driver

App1 App2

App Server

Java Client

Client tier

Middle tier

12 0672324237 CH09 9/24/02 3:55 PM Page 184

Using JDBC to Connect to a Database 185

9

PreparedStatement Inherits from Statement. Used to execute a precompiled SQL statement
with or without parameters. Used for more efficient data access.

CallableStatement Inherits from PreparedStatement. Used to execute a call to a database
stored procedure.

ResultSet Contains the results of executing an SQL query. It contains the rows that
satisfy the conditions of the query.

ResultSetMetaData Provides information about the types and properties of the columns in a
ResultSet object.

DataBaseMetaData Provides information about database schema objects.

Clob A built-in data type that stores a Character Large Object as a column
value in a row of a database table. Part of SQL3 data types.

Blob A built-in data type that stores a Binary Large Object as a column value in
a row of a database table. Part of SQL3 data types.

Figure 9.4 summarizes the main classes and interfaces of the JDBC API and the main
methods used.

The javax.sql Package
The javax.sql package extends the functionality of the JDBC API from a client-side
API to a server-side API, and is an essential part of J2EE technology. The key interface
to this package is the DataSource interface, which is the factory for creating connections.
Other interfaces and classes of this package support distributed transactions, which are
commonly used by EJB container providers. As application and bean developers, our
main interface in this package is the DataSource interface.

Using Connection Pooling
JDBC supports the concept of connection pooling. A connection pool is a collection of
database connections maintained and managed by the application server. A J2EE applica-
tion reuses database connections from the connection pool. An application server assigns
a connection transparently to the application. A connection pool is represented as a
DataSource object.

TABLE 9.1 continued

JDBC Interface Description

12 0672324237 CH09 9/24/02 3:55 PM Page 185

The main reason for using a connection pool is to enhance the performance of running
applications. The task of establishing a connection to a database is usually slow because
it requires considerable time for the initialization process. With connection pools, con-
nections are established during application server startup and are available to be used by
all components. Both database servers and application servers run more efficiently with
dedicated connections than if they have to handle incoming connection attempts at run-
time. Using connection pools increases the scalability of the system, which can therefore
handle more number of users.

Another reason for using connection pools is to separate the application code from data-
base configuration. In setting up a connection pool, we use a declarative approach to
describe these configuration settings outside the application. Applications do not need to
know of or transmit the database username, password, and location. This separation
between application logic and database environment allows you to develop portable and
reusable code, which is an important factor in designing enterprise applications. A

186 Day 9

prepareCall
cre

ateStatement

ex
ec

ut
eQ

ue
ry

executeQ
uery

getX
X

X

Input In
pu

t/
Out

pu
t

DataSource

Lookup

ResultSet

ResultSetMetaData

getMetaData

extends

Connection

prepareS
tatem

ent

DataType

Statement
extends

PreparedStatement CallableStatement

executeQ
uery

JDBC Main Classes and InterfacesFIGURE 9.4
JDBC API main
classes and interfaces.

12 0672324237 CH09 9/24/02 3:55 PM Page 186

Using JDBC to Connect to a Database 187

9

connection pool, represented by a DataSource object, is created and registered by the
system administrators into the JNDI service using a logical name. Hence it becomes
available as a resource to be shared by all system components and users. Figure 9.5 illus-
trates how database connection pooling works.

FIGURE 9.5
Database connection
pool.

Data Source

Client 1

Client 2

1. A connection pool with 2 connected clients

Connection Pool

Data Source

Client 1

Client 2

Client 3

2. A new client #3 is assigned a free connection

Connection Pool

Data Source
Client 2

Client 3

3. Client #1 is disconnected, and free
a connection for use

Connection Pool

Data Source
Client 2

4. Client #3 is disconnected too free
another connection

Connection Pool

Configuring the Connection Pool
Connection pools are set in the application server configuration files. Depending on the
application, you can have more than one connection pool, with each being used by dif-
ferent components of the application. The following parameters are required to configure
a connection pool:

• Connection pool name: Used to identify and register the DataSource with the
JNDI service, and later used by the application to recognize the DataSource’s
name.

• Initial number of connections: The number of connections to be created in the pool
at startup.

• Maximum and minimum pool size.

• JDBC URL: Specifies the database location, database name, listening port, and the
hostname.

• JDBC driver class name.

• JDBC driver properties: Any properties required to connect to the data source.
They are name/value pairs, such as user ID and password.

12 0672324237 CH09 9/24/02 3:55 PM Page 187

A full guide to the JDBC API and its extensions can be found at
http://java.sun.com/products/jdbc/.

Understanding DataSource Interface
A DataSource object is a factory for Connection objects. An object that implements the
DataSource interface will typically be registered with a JNDI service provider. A
DataSource is a representation of a database and its connection pool. An application uses
the JNDI service provider to look up the connection pool name and creates a DataSource
object factory. An application can be directed to a different data source simply by chang-
ing the DataSource object’s properties; no change in the application code is needed.
Likewise, a DataSource implementation can be changed without changing the applica-
tion code that uses it, which enhances application portability.

To create a Connection object from a DataSource object, we can use either a declarative
or a programmatic approach. In the following sections, we will discuss both these
approaches.

Declarative Approach
One of the objectives of the J2EE architecture is to enhance the deployment of enterprise
applications. This is accomplished by separating the application code, from its deploy-
ment and configuration files. In the declarative approach, you set all configuration para-
meters of the databases and connection pools in a configuration file or deployment
descriptor.

Using the declarative approach, a Connection object is created from a DataSource object
by using the following method:

Connection Conn = datasource.getConnection()

This method has no parameters, and the container, behind the scenes, will use all the set-
tings in the deployment and configuration files as the default settings.

If the database location or settings must be changed, you change only the configuration
files without any modifications to the application code. This container-managed approach
is one of the attractive features for many of the common services provided by the J2EE
platform.

188 Day 9

Setting up both maximum and minimum pool size is of prime importance.
The impact of setting your maximum below the expected peak load of sys-
tem users will degrade performance at the time you need it most.

Note

12 0672324237 CH09 9/24/02 3:55 PM Page 188

Using JDBC to Connect to a Database 189

9

Programmatic Approach
The programmatic approach, on the other hand, enables you to control and manage the
database setting from inside the application code. The following method is used in mak-
ing a connection to the database using this approach:

Connection conn =
dataSource.getConnection

➥(String username, String password);

This method creates a Connection to the database by overriding the default user and
password. Both the username and password must be hard-coded in the application code,
which has a negative affect on application portability.

Another method of obtaining a database connection is the use of the
DriverManager. The DataSource concept was introduced in the JDBC 2.0
Extension package. The JDBC specification recommends the cleaner
DataSource method as the preferred method of obtaining a Connection for
a J2EE application. The current use of obtaining a Connection through hard-
coded parameters to the DriverManager method is deprecated.
DriverManager is a shared object with synchronized methods and therefore
it’s single threaded. This technique establishes a bottleneck for the applica-
tions trying to access databases. On the other hand, the DataSource object is
a multithreaded object than can handle the access of more than one concur-
rent user.

Caution

Learning the Connection Interface
A connection to a specific database represents a user session. Within the context of a
Connection, SQL statements are executed and results are returned to the client for more
processing. Connections are created from a DataSource object as described in the previ-
ous section. A connection is assigned transparently to the application by the JDBC dri-
ver. Table 9.2 summarizes the methods used for the Connection interface.

TABLE 9.2 Summary of Connection Methods

Method Purpose

Statement createStatement() Creates a Statement object for sending SQL statements
to the database

PreparedStatement Creates a PreparedStatement object for sending
prepareStatement(String sql) parameterized SQL statements to the database

void commit() Makes all changes made since the previous
commit()/rollback() permanent, and releases any data-
base locks currently held by the Connection

12 0672324237 CH09 9/24/02 3:55 PM Page 189

void rollback() Drops all changes made since the previous
commit()/rollback(), and releases any database locks
currently held by this Connection

void setAutoCommit(boolean ac) Sets this connection’s auto-commit mode

DatabaseMetaObject getMetaData() Get all database schema information

void close() Releases a Connection’s database and JDBC resources
immediately instead of waiting for them to be released
automatically

A Connection object to the database is able to provide connection parameters and
schema object information. This includes data tables, supported SQL grammar, stored
procedures, and the capabilities of this connection. This information can be obtained
with the getMetaData() method.

190 Day 9

TABLE 9.2 continued

Method Purpose

A Connection object manages transaction behavior. By default, the
Connection automatically commits changes after executing each statement.
If autoCommit has been disabled, an explicit commit() must be done or data-
base changes will not be saved.

Note

Exception Handling
A number of exceptions can be thrown as a result of connecting to a database or per-
forming any of the operations mentioned earlier. The main exception is SQLException,
which is thrown by most of the methods in the java.sql package. Other exceptions are
summarized in Table 9.3.

TABLE 9.3 Summary of Exceptions

Exception Purpose

SQLException Thrown by most methods when there is a problem accessing data and
by some methods for other reasons.

SQLWarning Queried from the Statement object to indicate a warning. It inherits
from SQLExecption.

12 0672324237 CH09 9/24/02 3:55 PM Page 190

Using JDBC to Connect to a Database 191

9

DataTruncation Thrown to indicate that data might have been truncated. It inherits
from SQLWarning.

BatchUpdateException Thrown to indicate that not all commands in a batch update executed
successfully. It inherits from SQLException.

TABLE 9.3 continued

Exception Purpose

SQLWarning objects are not thrown as other exceptions—you have to query
them. SQLWarning objects will build up due to multiple Statement method
calls (such as execute() and executeUpdate()) until you ask for each
Statement object with getWarning() and getNextWarning(). Statement
objects automatically clear warnings on the next execution.

Note

SQLExceptions must be handled in the catch clause. Information about errors can be
obtained by the getErrorCode(), which prints a vendor-specific error. The
getSQLState() method prints a standard SQL message. In addition, the method
getMessage() prints a message that describes the error.

Connecting to a Data Source
Applications must first be connected to a database before performing any database oper-
ation. As explained earlier, connections are made ready by the container, at startup,
through the creation of a connection pool.

Connections are created using the DataSource object. Applications need to locate a
DataSource object, before creating a Connection. Applications locate a DataSource
through the JNDI service. The following is an example of these steps:

// Connect to the default JNDI service and establish a context
Context ctx = new InitialContext();
// Lookup the DataSource for the configured database
javax.sql.DataSource ds = (javax.sql.DataSource)

ctx.lookup (“java:comp/env/jdbc/styejbDB”);
// Make a connection to the database
java.sql.Connection conn = ds.getConnection();

// do some work

// Release the connection after you are done
conn.close();

12 0672324237 CH09 9/24/02 3:55 PM Page 191

As recommended, JDBC DataSource references should always be declared in the
java:comp/env/jdbc subcontext. This is established by the system administrator when
the DataSource is being created.

Establishing a context to the JNDI service is an expensive operation, especially when
using an RMI call. Always connect to the JNDI service to obtain a DataSource object in
the initialization code of your application. This can be done once, and connection(s) can
be assigned by the DataSource to other parts of the application during its lifetime.

Applications rely on the container to manage the connection pool, but when building
scalable applications, releasing connections as soon as possible is the responsibility of
the developer.

The traditional way of getting a connection is by using the DriverManager. As men-
tioned early today, this is a deprecated method, and we recommend using the
DataSource method if possible. For the sake of completeness, the following snippet
shows how to make a connection using the DriverManager:

String sourceURL = “jdbc:cloudscape:styejbPool”;
String driverClass = “COM.cloudscape.core.JDBCDriver”
// Loading the JDBC driver
Class.forName(driverClass);
// Make a connection using the DriverManager
java.sql.Connection conn = DriverManager.getConnection(sourceURL);

Data Manipulation
After a connection is made to the data source, the JDBC API is furnished with compre-
hensive operations. Both DDL (Data Definition Language) and DML (Data Manipulation
Language) operations are available. Metadata (information about the database itself) or
the result set can also be queried.

192 Day 9

You must release the connection as soon as you have done work with it by
closing the connection. When the client virtually closes the connection with
close(), behind the scenes, the container returns the connection to the
pool, and makes it available for use by other clients.

Note

We assume that the reader is familiar with SQL fundamentals. For more cov-
erage of SQL, we recommend you to refer to the book, Sams Teach Yourself
SQL in 10 Minutes (ISBN: 0672321289).

Note

12 0672324237 CH09 9/24/02 3:55 PM Page 192

Using JDBC to Connect to a Database 193

9

A Statement object represents a SQL statement, and must be created from the
Connection object. A Statement sends simple SQL statements to the database:

// Create a Statement object
java.sql.Statement stmt = conn.createStatement();

One of the powerful methods of the Statement object is the execute() method. All
DDL and DML database operations can be performed using the execute() method.

All DDL operations, such as creating and dropping objects, can be per-
formed by the execute() method of the Statement object. However, creat-
ing a database instance is DBMS-specific, and is not available to all JDBC
drivers.

Caution

When creating a Statement, resources will be allocated to the application in
order to execute the SQL. It is vital to release these resources, by closing the
Statement when execution is complete, using the close() method.

Note

// Using the execute method for some DDL operations
try {

stmt.execute(“DROP TABLE Student “);
} catch (SQLException e) {

System.out.println(“Table Student already exists.”);
}
stmt.execute(“CREATE TABLE Student

(id integer, fname varchar(15), lname varchar(15), ssn varchar(12))”);
System.out.println(“Table Student is created...”);
// Using the execute method for some DML operations
stmt.executeUpdate
(“INSERT into Student values (1, ‘Lillian’, ‘Ghaly’ , ‘111-000-1111’)”);
stmt.executeUpdate
(“INSERT into Student values (2, ‘Raj’, ‘Talla’ , ‘222-000-2222’)”);
stmt.executeUpdate
(“INSERT into Student values (3, ‘Tony’, ‘Hunter’ , ‘333-000-3333’)”);
stmt.executeUpdate
(“INSERT into Student values (4, ‘John’, ‘Smith’ , ‘444-000-4444’)”);
// close statements when done
stmt.close();

The execute() method returns a boolean: true if the next result is a ResultSet object,
or false if it is an update count or there are no more results. The following code gets a
ResultSet object, which holds the result of the last query:

12 0672324237 CH09 9/24/02 3:55 PM Page 193

stmt.execute(“SELECT * from DAY09_STUDENTS”);
// Obtain the result of the last query
ResultSet rs = stmt.getResultSet();

The ResultSet is initially positioned before the first row. Table 9.4 gives a summary of
the ResultSet methods.

TABLE 9.4 Summary of ResultSet Methods

Method Purpose

Boolean next() Scrolls the cursor to the next available row

String getString(int columnIndex) Returns data at the current cursor, under a particular
column number or index

String getString(String columnName) Returns data at the current cursor, under a particular
column name

Boolean isFirst() Returns true if the cursor is at the first row

Boolean isLast() Returns true if the cursor is at the last row

int getFetchSize() Returns the default fetched number of rows

setFetchSize(int rows) Set the required number of rows to be fetched

ResultSetMetaData getMetaData() Returns data about the ResultSet, such as number of
columns and the properties of data elements

Now we can scroll through the ResultSet to display the retrieved data using
getString() method. From the earlier example, the ResultSet contains four columns
and four rows. Columns can be identified by column name or column number. This
example uses the column name:

// Display the ResultSet data on the screen using column name
while (rs.next())

System.out.println(rs.getString(“student_id”) + “ ,“ +
rs.getString(“first_name”) + “ ,“ +
rs.getString(“last_name”) + “ ,“ +
rs.getString(“address”));

When using the column number, you pass an integer value to getString() that starts
with 1, which represents the first column:

// Display the ResultSet data using column number
while (rs.next())

System.out.println(rs.getString(1) + “ ,” +
rs.getString(2) + “ ,” +
rs.getString(3) + “ ,” +

194 Day 9

12 0672324237 CH09 9/24/02 3:55 PM Page 194

Using JDBC to Connect to a Database 195

9

rs.getString(4));
// close the result set after done.
rs.close();

In both cases, the output of the last println should look like this:

1, LILLIAN, GHALY, 15 DIAMOND ST, BOSTON, MA
3, SAM, LE, 12 APPLEBEE RD, LOS ANGELES, CA

Much like the Statement object, the ResultSet object can be tuned to the optimum
number of fetched rows. To do this, use the getFetchSize() and setFetchSize() meth-
ods of ResultSet. This increases the performance when a large number of rows is
retrieved during search operations. Close the ResultSet object when you’re done to
release allocated resources.

Optimized Queries to the Database
A shortcut method of querying the database is to use the executeQuery() method of the
Statement object. This combines both execute() and getResultSet() in one method.
The preceding example can be written as

// Obtain the ResultSet directly
ResultSet rs = stmt.executeQuery(“SELECT * DAY09_STUDENTS”);

Both simple queries, such as the one specified in the preceding example, and more
sophisticated joins can be specified as a parameter String to the executeQuery()
method.

Another variant used with the INSERT, UPDATE, and DELETE operations is the
executeUpdate() method:

// Using the executeUpdate method instead of execute()
String sql = “INSERT into DAY09_STUDENTS values “ +

“(‘1’, ‘LILLIAN’, ‘GHALY’, ‘15 DIAMOND ST, BOSTON, MA’)”);
stmt.executeUpdate(sql);

The executeUpdate() method specializes in DML operations. DDL operations, such as
drop table, create table, and so on, are made available only through the execute()
method as explained in the previous section.

Using a PreparedStatement
In situations where the same statement is performed repeatedly, a more optimized way is
to use a PreparedStatement. This divides the operation into a creation phase and an
execution phase. When creating the statement, the database is instructed to be ready by

12 0672324237 CH09 9/24/02 3:55 PM Page 195

pre-parsing and compiling the statement, and preparing its buffers to assign variables to
the table elements. The execution phase requests the database to execute the operation
after the required elements filled up. Let’s illustrate this with the following code:

// Create a PreparedStatement
PreparedStatement pstmt =

conn.preparedStatement(“INSERT INTO DAY09_STUDENT values (?,?,?,?)”)

The database is now instructed to prepare the buffers for the operation. Each data ele-
ment is mapped to the wild card in sequence. We use setString() method to fill up the
holes:

// Fill up the data elements and execute
pstmt.setInt(1, 2);
pstmt.setString(2, “DOUG”);
pstmt.setString(3, “ZANDER”);
pstmt.setString(4, “11 ORANGE AVE, SACRAMENTO, CA”);
int rcount = pstmt.executeUpdate();

Other methods to pass these parameters depend on the parameter type, and take the pat-
tern setXXX(). For example, setInt() to pass in an int, setFloat() to pass in a float,
setBoolean() to pass in a boolean, and so on.

Using PreparedStatement saves time for a repeated statement, and hence enhances the
performance of your application. The return value of the last executeUpdate() indicates
the number of rows affected as a result of any INSERT, UPDATE, or DELETE operation. The
PreparedStatement inherits all its properties and methods from the Statement object.

Using a CallableStatement for Stored Procedures
The JDBC API provides support for calling a stored procedure. The CallableStatement
inherits from PreparedStatement, and is used to call a stored procedure. A stored proce-
dure is a group of SQL statements that can be called by name, and are stored in a file
and managed by the underlying Relational Database Management System (RDBMS).
Stored procedures, once written, can be compiled and then reused. They are executed on
the database server, which relieves the application server of performing the task. The
CallableStatement is created from the Connection method prepareCall().

The following snippet demonstrates how the stored procedure getStudentById is created
and sent to the RDBMS to compile and store under the name getStudentById:

// Create stored procedure
String storedPoc = “create procedure GetStudentById(Stid integer)” +

“as begin” +
“SELECT * FROM DAY09_STUDENT” +
“WHERE student_id = ‘Stid’” +

196 Day 9

12 0672324237 CH09 9/24/02 3:55 PM Page 196

Using JDBC to Connect to a Database 197

9

“end”;
Statement stmt = conn.createStatement();
stmt.executeUpdate(storedPoc);

The next code demonstrates the use of a CallableStatement that calls the previous
stored procedure getStudentById:

CallableStatement cstmt = conn.prepareCall(
“{call getStudentById(?)}”);

cstmt.setInt(1,4);
ResultSet rs = cstmt.executeQuery();

The variable cstmt contains a call to the stored procedure getStudentById, which has
one IN parameter, represented by the wildcard ? placeholder. Normally, stored procedure
parameter types can be one of type IN, OUT, or INOUT. Passing in any IN parameter values
to a CallableStatement object is done using the setXXX() methods inherited from
PreparedStatement. The JDBC type of each OUT parameter must be registered before
the CallableStatement object can be executed. Registering the JDBC type is done with
the method registerOutParameter() of the CallableStatement. After the statement
has been executed, CallableStatement’s getXXX() methods can be used to retrieve OUT
parameter values. An INOUT parameter requires both treatments of IN and OUT parameter.

Using Local Transactions
A transaction is a group of SQL statements that represents one unit of work. A transac-
tion executes all of its statements or none at all. JDBC handles both local and distributed
transactions. Today we’re covering only local transactions; distributed transactions are
deferred to Day 16, when you’ll study the concepts of the JTA (Java Transaction API).

A local transaction belongs only to the current process, and deals with only a single
resource manager that handles a DataSource. An RDBMS is an example of a resource
manager., A distributed transaction, on the other hand, manages multiple DataSources
across multiple processes. All database operations mentioned earlier today that use a
Statement object are implicitly transactional with auto-commit. That means the DBMS
commits the transaction as soon as any execute(), executeUpdate(), or
executeBatch() is done.

Care should be taken when writing stored procedures. Because it belongs to
the data layer, too much logic in a stored procedure violates the purpose of
separating data from the application logic. Be aware also that stored proce-
dures do not work the same way across all RDBMSes. In addition, all stored
procedures must be compiled again if you have to change just one of them.

Caution

12 0672324237 CH09 9/24/02 3:55 PM Page 197

Local transactions are managed by the Connection object, and not by the EJB container.
To change this implicit behavior, JDBC provides the method setAutoCommit(false) to
set the transaction mode on the Connection object. The commit() and rollback() meth-
ods also are used by the Connection object to control the transaction’s behavior. An
example of a local transaction is as follows:

// Create a Statement from Connection and its set transaction mode
conn.setAutoCommit(false);
Statement stmt = conn.createStatement();
try {
stmt.executeUpdate(“UPDATE DAY09_STUDENT set first_name=’Laura’ where

➥student_id =’5’”);
// assume something wrong happen here…..
stmt.executeUpdate(“UPDATE DAY09_STUDENT set last_name=’Smith’ where

student_id =’5’”);
conn.commit();

} catch (SQLException ex) {
conn.rollback();
stmt.close();

}

Disabling auto-commit using setAutoCommit(false) is required when a batch of SQL
statements must execute together, or the EJB container is managing the transaction.
Controlling transactions can increase performance because you commit a batch of SQL
statements instead doing so one at a time. JDBC architects realized this fact and have
built the concept of batch updates into the JDBC API. Batch updates will be covered in
the next section.

Another concept related to local transactions is handling concurrency by setting the
transaction isolation level, which will be covered during your study of transactions on
Day 16.

Using Batch Updates
Another aspect of enhancing performance of applications is the reduction of network
traffic between J2EE tiers, or applications that partitioned to run on different servers.
One way to reduce network traffic back and forth between components and enhance the
performance of the running application is to use bulk updates, which are coarse-grain
updates. This experience is reflected by the JDBC architects in the JDBC API, and is
implemented by using the addBatch() method of the Statement object to prepare the
batch before using the executeBatch() method. Batch updates use any of the INSERT,
UPDATE, and DELETE operations. To use batch updates, you must disable the auto-commit
mode.

try{
// Disable auto-commit

198 Day 9

12 0672324237 CH09 9/24/02 3:55 PM Page 198

Using JDBC to Connect to a Database 199

9

conn.setAutoCommit(false);
// Create a Statement from Connection
Statement stmt = conn.createStatement()
stmt.addBatch(“INSERT INTO DAY09_STUDENT ” +
“values(‘7’, ‘ERIC’, ‘CHRISTIAN’, ‘1 MEMORIAL DRIVE, CAMBRIDGE, MA’)”;
stmt.addBatch(“UPDATE DAY09_STUDENT set first_name=’Laura’ where id=’5’”);
int [] rc = stmt.executeBatch();
conn.commit();
conn.setAutoCommit(true);

} catch(BatchUpdateException sqlb) {
System.err.println(“SQL State: “ + sqlb.getSQLState());
System.err.println(“Message: “ + sqlb.getMessage());
System.err.println(“Vendor Error: “ + sqlb.getErrorCode());
System.err.print(“Update counts: “);
int [] updateCounts = sqlb.getUpdateCounts();
for (int i = 0; i < updateCounts.length; i++) {
System.err.print(updateCounts[i] + “ “);

}
System.err.println(“”);

}

The executeBatch() method returns an array of integers that specifies the row count of
each operation in the batch.

Batch updates throw BatchUpdateException, which inherits from SQLException, and
information can extracted about each update. Performance can be enhanced by tuning the
number of rows to be fetched at a runtime from database. By default, you can get the
default number of rows provided by the JDBC driver by using getFetchSize() on the
Statement object. You can tune the size by using the setFetchSize(int rows) method
of the Statement object.

Working with Metadata
Metadata is data about data, and in the context of our study of JDBC, it’s the information
provided about the properties of data sources and result sets. Querying metadata is very
powerful in creating tools for database manipulation and sophisticated database applica-
tions.

To find information about the connected database, we use the method getMetaData() of
the Connection object to retrieve a DatabaseMetaData object. You can get information
about schemas, tables, and properties of each table. The following sample queries data-
base metadata to display all the table names and properties of each table in the schema
“APP”:

// Finding MetaData about database

12 0672324237 CH09 9/24/02 3:55 PM Page 199

DatabaseMetaData dbmd = conn.getMetaData();
String[] types = {“TABLE”};
System.out.println(“Database Table Names for the Schema “APP”)
rs = dbmd.getTables(null, “APP”, null, types);
while (rs.next()){

String tableName = rset.getString(“TABLE_NAME”);
System.out.println(“Table Name: “ + tableName);
ResultSet rsc = dbmd.getColumns(null,null,tableName,”%”);
System.out.println(“Column Name” + “ Data Type” + “ Width”);
while (rsc.next()){
System.out.println(rsc.getString(“COLUMN_NAME”) + “...” +

rsc.getString(“TYPE_NAME”) + “...” +
rsc.getInt(“COLUMN_SIZE”));

}
}

When sending a SELECT statement to the database, you receive a ResultSet that holds
the records to satisfy your criteria. To find metadata information about a ResultSet
object, use the getMetaData() method of the ResultSet interface. This metadata will be
captured and retrieved by getMetaData() into a ResultSetMetaData object. Such meta-
data of a ResultSet is the number of columns and the database properties of each col-
umn, such as its name, type, width, and precision. An example of retrieving a
ResultSetMetaData object about a ResultSet is the following:

// Finding MetaData about result set
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(“select * from student”);
ResultSetMetaData rsmd = rs.getMetaData();
int cn = rsmd.getColumnCount();
// Printing column information
for (int i=1; i<= cn ; i++) {

if (i > 1) { System.out.print(“, “); }
System.out.print(rsmd.getColumnLabel(i));

}
System.out.print(“”)
// Printing the data
while (rs.next ()) {

for (int i=1; i<=cn; i++) {
if (i > 1) { System.out.print(“, “); }
System.out.print(rs.getString(i));

}
System.out.println(“”);

}

By combining ResultSetMetaData and DatabaseMetaData, toolmakers can build very
powerful database interactive tools to query and schema objects and data.

200 Day 9

12 0672324237 CH09 9/24/02 3:55 PM Page 200

Using JDBC to Connect to a Database 201

9

Working with JDBC Through a Full Example
Now it’s time for todayís example. Listing 9.1 gives a skeleton of code that performs the
following:

• Connects to a database

• Performs few of both DDL and DML statements

• Queries ResultSet metadata and database metadata

• Closes the statements and the connection

• Handles SQL exceptions

To demonstrate the strong aspect of JDBC as a vendor-neutral API, the same example
runs on two different application servers, without changing any line of code. The
QueryDB session bean is used to represent the client in query the database. Listings 9.1 to
9.3 are for the home interface, remote interface, and the bean class. Listings 9.4 to 9.7
are for the EJB client, standard deployment descriptor, WebLogic Server deployment
descriptor, and the JBoss deployment descriptor.

LISTING 9.1 The Home Interface day09/QueryDBHome.java

package day09;
import java.rmi.RemoteException;
import javax.ejb.*;

/*
QueryDBHome is the home interface for the stateless session bean.
*/
public interface QueryDBHome extends EJBHome{
QueryDB create() throws CreateException, RemoteException;

}

LISTING 9.2 The Remote Interface day09/QueryDB.java

package day09;
import java.util.*;
import javax.ejb.*;
import java.rmi.RemoteException;

/*
QueryDB is the remote interface for the stateless session bean.
*/
public interface QueryDB extends EJBObject{

public void initDB() throws RemoteException;
public void doDDL() throws RemoteException;

12 0672324237 CH09 9/24/02 3:55 PM Page 201

public void getMetaData() throws RemoteException;
}

LISTING 9.3 The Bean Class day09/QueryDBBean.java

package day09;

import java.util.*;
import javax.ejb.*;
import javax.naming.*;
import java.sql.*;

/**
* QueryDBEJB is stateless session bean to query database properties
*/
public class QueryDBBean implements SessionBean
{
public void initDB(){
try {
System.out.println(“\nDay 9: Demonstrate the use of JDBC...\n”);
System.out.println(“initDB: Get initial context from the JNDI service...”);
ctx = new InitialContext();
System.out.println(“Lookup the DataSource as configured by administra-

tor...”);
ds = (javax.sql.DataSource)ctx.lookup (“java:comp/env/jdbc/styejbDB”);
System.out.println(“Getting a Connection from the pool...”);
conn = ds.getConnection();
System.out.println(“Connection is obtained...”);
} catch (Exception e) {

System.out.println(“Exception was thrown: “ + e.getMessage());
} finally {

try {
if (stmt != null)

stmt.close();
if (conn != null)

conn.close();
} catch (SQLException sqle) {

System.out.println(“SQLException during close(): “ +
➥sqle.getMessage());

}
}

}
public void doDDL(){

System.out.println(“Run some DDL statements:”);
try{
conn = ds.getConnection();

202 Day 9

LISTING 9.2 continued

12 0672324237 CH09 9/24/02 3:55 PM Page 202

Using JDBC to Connect to a Database 203

9

stmt = conn.createStatement();
try {

System.out.println(“Trying to drop table DAY09_STUDENTS...”);
stmt.execute(“DROP TABLE DAY09_STUDENTS”);

} catch (SQLException e) {
System.out.println(“Table DAY09_STUDENTS already exists.”);

}
stmt.execute(“CREATE TABLE DAY09_STUDENTS (student_id varchar(12),”+

“first_name varchar(15),”+
“last_name varchar(15),”+
“address varchar(64))”);

System.out.println(“Table DAY09_STUDENTS is created...”);

System.out.println(“Run some DML statements:”);
stmt.executeUpdate(“INSERT into DAY09_STUDENTS values “ +

“(‘1’, ‘LILLIAN’, ‘GHALY’, ‘15 DIAMOND ST, BOSTON, MA’)”);
stmt.executeUpdate(“INSERT into DAY09_STUDENTS values “ +

“(‘2’, ‘DOUG’,’ZANDER’,’11 ORANGE AVE, SACRAMENTO, CA’)”);
stmt.executeUpdate(“INSERT into DAY09_STUDENTS values “ +

“(‘3’, ‘SAM’,’LE’, ‘12 APPLEBEE RD, LOS ANGELES, CA’)”);
stmt.executeUpdate(“DELETE from DAY09_STUDENTS where student_id = ‘2’”);
rs = stmt.executeQuery(“SELECT * from DAY09_STUDENTS”);
// Get some Metadata about result set
System.out.println(“Query ResultSet Metadata:”);
rsmd = rs.getMetaData();
cn = rsmd.getColumnCount();
for (i=1; i<= cn ; i++) {

if (i>1) System.out.print(“, “);
System.out.print(rsmd.getColumnLabel(i));

}
System.out.println(“”);
while (rs.next()) {

for (i=1; i<= cn ; i++) {
if (i>1) System.out.print(“, “);
System.out.print(rs.getString(i));

}
System.out.println(“”);

}
} catch (Exception e) {

System.out.println(“Exception was thrown: “ + e.getMessage());
} finally {

try {
if (stmt != null)

stmt.close();
if (conn != null)

conn.close();
} catch (SQLException sqle) {

System.out.println(“SQLException during close(): “ +
➥sqle.getMessage());

LISTING 9.3 continued

12 0672324237 CH09 9/24/02 3:55 PM Page 203

}
}
}
public void getMetaData() {
// Get some Metadata about database
System.out.println(“Query Database Metadata:”);
try{
conn = ds.getConnection();
dbmd = conn.getMetaData();
System.out.println(“ Product Name: “ + dbmd.getDatabaseProductName());
System.out.println(“ Driver Name: “ + dbmd.getDriverName());
rs = dbmd.getSchemas();
System.out.println(“Database Schemas:”);
rsmd = rs.getMetaData();
cn = rsmd.getColumnCount();
for (i=1; i<= cn ; i++) {

if (i>1) System.out.print(“, “);
System.out.print(rsmd.getColumnLabel(i));

}
System.out.println(“”);
while (rs.next()) {

for (i=1; i<= cn ; i++) {
if (i>1) System.out.print(“, “);
System.out.print(rs.getString(i));
if (schema == null)

schema = new StringBuffer(rs.getString(i));
}
System.out.println(“”);

}
String[] types = {“TABLE”};
System.out.println(“Printing All Data Tables for Schema: “ + schema);
rs = dbmd.getTables(null, schema.toString(), null, types);
while (rs.next()){

String tableName = rs.getString(“TABLE_NAME”);
System.out.println(“Table Name: “ + tableName);

ResultSet rsc = dbmd.getColumns(null,null,tableName,”%”);
rsmd = rsc.getMetaData();
cn = rsmd.getColumnCount();
for (i=1; i<= cn ; i++) {

if (i>1) System.out.print(“, “);
System.out.print(rsmd.getColumnLabel(i));

}
System.out.println(“”);
while (rsc.next()) {

for (i=1; i<= cn ; i++) {
if (i>1) System.out.print(“, “);
System.out.print(rsc.getString(i));

}

204 Day 9

LISTING 9.3 continued

12 0672324237 CH09 9/24/02 3:55 PM Page 204

Using JDBC to Connect to a Database 205

9

System.out.println(“”);
}

}
} catch (Exception e) {
System.out.println(“Exception was thrown: “ + e.getMessage());

} finally {
try {

if (stmt != null)
stmt.close();

if (conn != null)
conn.close();

} catch (SQLException sqle) {
System.out.println(“SQLException during close(): “ + sqle.getMessage());

}
}

}
public void setSessionContext(SessionContext ctx) {this.bctx = ctx;}
public void ejbCreate() throws CreateException {}
public void ejbRemove() {}
public void ejbActivate() {}
public void ejbPassivate() {}

private SessionContext bctx;
private Context ctx = null;
private StringBuffer schema = null;
private javax.sql.DataSource ds = null;
private java.sql.Connection conn = null;
private java.sql.Statement stmt = null;
private java.sql.ResultSet rs = null;
private java.sql.ResultSetMetaData rsmd = null;
private int cn, i;
private java.sql.DatabaseMetaData dbmd = null;

LISTING 9.4 The EJB Client Client.java

package day09;
import java.util.*;
import java.rmi.*;
import java.io.*;
import javax.naming.*;
import javax.ejb.*;

public class Client {
public static void main(String argv[]) {

Context initialContext = null;
QueryDBHome qdbHome = null;
QueryDB qdb = null;

LISTING 9.3 continued

12 0672324237 CH09 9/24/02 3:55 PM Page 205

System.out.print("\nDay 9: Demonstration the use of JDBC...\n ");
try
{

System.out.print("Looking up the QueryDB home via JNDI.\n");
initialContext = new InitialContext();
Object object = initialContext.lookup("day09/QueryDBHome");
qdbHome = (QueryDBHome)

javax.rmi.PortableRemoteObject.narrow(object, QueryDBHome.class);
System.out.print("Creating an Query DB.\n");
qdb = (QueryDB) qdbHome.create();
qdb.initDB();
qdb.doDDL();
qdb.getMetaData();

}catch (Exception e){
e.printStackTrace();
}

}
}

LISTING 9.5 The Standard Deployment Descriptor ejb-jar.xml

<?xml version="1.0"?>
<!DOCTYPE ejb-jar PUBLIC
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>QueryDB</ejb-name>
<home>day09.QueryDBHome</home>
<remote>day09.QueryDB</remote>
<ejb-class>day09.QueryDBBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref>
<res-ref-name>jdbc/styejbDB</res-ref-name>
<res-type>javax.sql.DataSource</res-type>
<res-auth>Application</res-auth>
</resource-ref>
<resource-env-ref>
<resource-env-ref-name>jdbc/styejbDB</resource-env-ref-name>
<resource-env-ref-type>javax.sql.DataSource</resource-env-ref-type>
</resource-env-ref>

</session>
</enterprise-beans>

</ejb-jar>

206 Day 9

LISTING 9.4 continued

12 0672324237 CH09 9/24/02 3:55 PM Page 206

Using JDBC to Connect to a Database 207

9

LISTING 9.6 The WebLogic Deployment Descriptor weblogic-ejb-jar.xml

<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd'>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>QueryDB</ejb-name>
<reference-descriptor>
<resource-description>

<res-ref-name>jdbc/styejbDB</res-ref-name>
<jndi-name>jdbc.styejbDB</jndi-name>

</resource-description>
<resource-env-description>

<res-env-ref-name>jdbc/styejbDB</res-env-ref-name>
<jndi-name>jdbc.styejbDB</jndi-name>

</resource-env-description>
</reference-descriptor>
<jndi-name>day09/QueryDBHome</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

LISTING 9.7 The JBoss Deployment Descriptor jboss.xml

<?xml version="1.0" encoding="UTF-8"?>

<jboss>
<enterprise-beans>
<session>
<ejb-name>QueryDB</ejb-name>
<jndi-name>day09/QueryDBHome</jndi-name>
<resource-ref>
<res-ref-name>jdbc/styejbDB</res-ref-name>
<jndi-name>java:/DefaultDS</jndi-name>

</resource-ref>
<resource-env-ref>
<resource-env-ref-name>jdbc/styejbDB</resource-env-ref-name>
<jndi-name>java:/DefaultDS</jndi-name>

</resource-env-ref>
</session>

</enterprise-beans>
</jboss>

Because each application server has its own way of referencing its own resources in the
JNDI services, your application needs to be written to avoid such dependency. In order to

12 0672324237 CH09 9/24/02 3:55 PM Page 207

make your application portable, you need to use the <resource-env-ref> element in the
standard deployment descriptor (ejb-jar.xml) to define a logical name, which is used
by the application. Then you need to map this logical name to a <reference-descrip-
tor> in your server-specific deployment descriptor, which is the physical reference to the
JNDI name. The lines of code (shown in bold) in the preceding example demonstrate the
use of such technique.

Configuring the DataSource and the Connection Pool
Before you run the example, you need first to create and configure the connection pool
styejbPool. You also need to create the DataSource styejbDB for the connection pool
and register it in the JNDI service. The accompanying day09/Readme.txt file explains
this process for both WebLogic and JBoss servers.

Compile and Run the Example
This section describes the steps to comoile and run the example for both WebLogic
Server and JBoss application servers.

To run the example in WebLogic Server, you must follow these steps:

1. Open a new command window.

Set up the environment for the appropriate application server, and then start the
server. Run the accompanying script, found at the root of the sample directory, to
set up an environment for either WebLogic Server or JBoss. The following are the
scripts for WebLogic Server, (follow Figures 9.6, 9.7, and 9.8 to assist you in set-
ting up the JDBC connection pool in the WebLogic Server environment):

2. Set up and start the PointBase database using the following steps:

c:\>cd c:\styejb\examples

c:\styejb\examples>startPointbase.bat

c:\styejb\examples>setEnvWebLogic.bat

c:\styejb\examples>setupPointbase.bat

The above steps start PointBase Server and create the tables in a PointBase server
named styejbPool.

3. Start WebLogic Server using the following steps:

c:\>cd c:\styejb\examples

c:\styejb\examples>setEnvWebLogic.bat

c:\styejb\examples>startWebLogic.bat

4. Open the WebLogic Administration Console using a Web browser such as Internet
Explorer, and point to the URL http://localhost:7001/console. When

208 Day 9

12 0672324237 CH09 9/24/02 3:55 PM Page 208

Using JDBC to Connect to a Database 209

9

prompted, enter the user name (system) and password you chose when you
installed WebLogic Server (see Appendix A, “WebLogic Application Server 7.0”).

5. Create a connection pool for the Pointbase Database by doing the following:

In the left pane, expand Services > JDBC.

Click Connection Pools.

In the right pane, click Configure a New JDBC Connection Pool.

Enter these values:

Name: styejbPool

URL: jdbc:pointbase:server://localhost:9092/styejbPool

Driver: com.pointbase.jdbc.jdbcUniversalDriver

Properties: user=PBPUBLIC

Password: PBPUBLIC

Leave both the fields ACLName and Open String Password blank.

Click Create.

Figure 9.6 shows the corresponding screen shot.

Click the Connections tab and change the Maximum Capacity to 10 and click the
Apply button.

Click the Targets tab.

Move myserver to the Chosen (right) column.

Figure 9.7 shows the corresponding screen shot.

Click Apply.

6. Create the JDBC data source.

Click the Home icon in the upper-right corner of the Administration Console.

In the left pane, expand Services > JDBC.

Click Tx Data Sources.

In the right pane, click Configure a New JDBC Data Source.

For Name, enter styejbDB

For JNDI Name, enter jdbc.styejbDB

For Pool Name, enter styejbPool

Figure 9.8 shows the corresponding screen shot.

Click Create.

Click the Targets tab.

12 0672324237 CH09 9/24/02 3:55 PM Page 209

210 Day 9

FIGURE 9.7
Configuring a JDBC
connection pool.

FIGURE 9.6
Configuring the con-
nection pool
styejbPool in
WebLogic Server.

Move myserver to the Chosen (right) column.

Click Apply.

To check the current list of data sources, click Home, and then click JDBC >
TXData Sources.

12 0672324237 CH09 9/24/02 3:55 PM Page 210

Using JDBC to Connect to a Database 211

9

7. Build the example for the appropriate application server. From the directory Day09,
run the build script. This creates a subdirectory with the name build, which con-
tains all the compiled code.

c:\>cd c:\styejb\examples

c:\styejb\examples>setEnvWebLogic.bat

c:\styejb\examples>cd day09

c:\styejb\examples\day09>buildWebLogic.bat

8. To run the example, use the appropriate script for each server. Set up the environ-
ment for the client in a new command window, and then use the run script in the
Day09 directory:

c:\styejb\examples>setEnvWebLogic.bat

c:\styejb\examples>cd day09

c:\styejb\examples\day09> runClientWebLogic.bat

Refer to the README.TXT file in the day09 directory to information to configure your
JBoss datasource. The following is the server-side output of the example:

Day 9: Demonstrate the use of JDBC...

initDB: Get initial context from the JNDI service...
Lookup the DataSource as configured by administrator...
Getting a Connection from the pool...
Connection is obtained...
Run some DDL statements:
Trying to drop table STUDENTS...

FIGURE 9.8
Configuring a JDBC
connection pool.

12 0672324237 CH09 9/24/02 3:55 PM Page 211

Table STUDENTS is created...
Run some DML statements:
Query ResultSet Metadata:
STUDENT_ID, FIRST_NAME, LAST_NAME, ADDRESS
1, LILLIAN, GHALY, 15 DIAMOND ST, BOSTON, MA
3, SAM, LE, 12 APPLEBEE RD, LOS ANGELES, CA
Query Database Metadata:
Product Name: PointBase
Driver Name: PointBase JDBC Driver

Database Schemas:
TABLE_SCHEM
PBPUBLIC
POINTBASE
Printing All Data Tables for Schema: PBPUBLIC
Table Name: COURSES
...

212 Day 9

If your output contains an exception such as Exception was thrown: Unable
to resolve jdbc.styejbDB. Resolved: ‘jdbc’ Unresolved:’styejbDB’,
your connection pool and data source configuration are incorrect. You must
correct the values as specified in the previous section, “Configuring the
DataSource and Connection Pool.”

Note

The following steps describe how to start JBoss server, run the sample client, and set up
the database tables required for the remaining days:

1. Start JBoss server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvJBoss.bat
C:\styejb\examples>startJBoss.bat

The JBoss server automatically starts the default HyperSonic database.

2. Build and run the example as follows:

c:\>cd c:\styejb\examples

c:\styejb\examples>setEnvJBoss.bat

c:\styejb\examples>cd day09

c:\styejb\examples\day09>buildJBoss.bat

C:\styejb\examples\day09>runClientJBoss.bat

3. Set up the database tables required for the remaining days by doing the following:

In the command window that you used to build and run the example, run the fol-
lowing command:

c:\styejb\examples>setupHypersonic.bat

12 0672324237 CH09 9/24/02 3:55 PM Page 212

Using JDBC to Connect to a Database 213

9

Best Practices
Some of the best practices are already built-in the JDBC API itself, such as connection
pooling, PreparedStatement, and batch updates. Still some of the widely known prac-
tices help when developing large and enterprise J2EE applications.

Some factors affecting the performance of your application with respect to database are
independent of JDBC or any other access method. Examples of such factors are writing

FIGURE 9.9
Connecting to the
HyperSonic Database
Manager.

FIGURE 9.10
Setting up the data-
base tables in
HyperSonic database.

This opens the HSQL Database Manager Connect window. Enter the value
jdbc:hsqldb:hsql://localhost:1476 for the URL field. Leave default values for
other fields. Figure 9.9 shows the corresponding screen shot. Click the Ok button.

Click the File\Open Script… menu item. When prompted, enter the filename
c:\styejb\examples\styejbhs.sql.

Click the Execute button on the right. Figure 9.10 shows the corresponding screen shot.

12 0672324237 CH09 9/24/02 3:55 PM Page 213

214 Day 9

optimized queries, and tuning the database using caching of often-used resources. Both
database tuning and query optimization are beyond the scope of this book. A simple
example such as using the query “SELECT * from Student” rather than “SELECT id
from Student” when you need only the student IDs, increases network traffic and the
allocated resources to handle such ResultSet. Performing an UPDATE row operation
rather than a DELETE on the row followed by an INSERT of new row, is another type of
good practice.

With respect to JDBC, performance gain can be established by obtaining a Context to
the DataSource in the initialization code. Use PreparedStatement to performing the
same query repeatedly. CallableStatement also gives better performance than
PreparedStatement and Statement when there is a requirement for single request to
process multiple complex statements. It parses and stores the stored procedures in the
database and optimizes the work at the database itself to improve its performance. Use
stored procedure and triggers for large operations, but use them with care. Stored proce-
dures are handled differently by database products. This has a negative affect on applica-
tion portability and makes you rely on vendor-specific stored procedures.

Use batch updates to perform batches of SQL statements. Release all resources appropri-
ately; that is, in the reverse order of how they were allocated. If possible, avoid transac-
tion auto-commit, and control your transaction behavior.

Tuning your connection pool is a prime factor in the overall system performance. Both
minimum and maximum size should be selected based on the expected user load.
Another factor is that the Connection must be returned to the pool as soon as you are
done working with it. Delaying the release of the connection has negative impact on an
application’s scalability. Disabling auto-commit to control batch operations through a
single transaction also helps improve application performance.

Summary
Today we covered JDBC as a standard and unified API to access many data sources in
tabular forms, such as relational tables, flat files, and spreadsheets. J2EE applications and
components use JDBC across all tiers. We examined the methods of connecting to a data
source, and showed how to construct and implement SQL statements, and the optimized
ways of handling them. We looked briefly at local transactions and stored procedures.
Metadata of both the DBMS and the ResultSet was discussed, and we ended by giving
a brief account of the best practices in dealing with database objects and queries using
JDBC.

12 0672324237 CH09 9/24/02 3:55 PM Page 214

Using JDBC to Connect to a Database 215

9

Tomorrow, you will learn how to develop a stateless session bean. You will see a full life
cycle example by writing, compiling, deploying, and running the bean.

Q&A
Q Which JDBC driver is best for my J2EE applications?

A Each JDBC driver has its usage environment and depends on the availability of the
driver. Type 2 is best used when high transaction rate is required because itís opti-
mized for the native DBMS API. Type 4 is all Java, and is attractive for most J2EE
applications because itís optimized with the underlying JVM technology.

Q What is the appropriate sequence to access a DataSource through JDBC?

A There are two important group of tasks to be performed: one by the administrator
and the other by the application developer.

The administrative tasks are

• Configure a DataSource and registered it in into the JNDI service provider.

• Configure a connection pool and map it to the defined DataSource.

The developer writes code in the following sequence:

• Connect to a JNDI service, and establish a Context by looking up a named
DataSource.

• Create a Connection object from the DataSource factory. A Connection is
assigned from the connection pool. A Connection represents a database ses-
sion.

• Create a Statement object from Connection (can be PreparedStatement or
CallableStatment).

• Perform SQL statements (both DDL and DML database operations) on the
Statement object, such as execute(), executeQuery(), updateQuery(), and
executeBatch().

• Retrieve output in a ResultSet object, and process it according to the appli-
cation’s needs.

• Close all allocated resources in proper sequence: First, close all Statement
objects in the reverse order of how they were allocated, then close the
Connection objects, and finally the Context object.

12 0672324237 CH09 9/24/02 3:55 PM Page 215

Quiz
1. Which of the following statement type should be used to call a stored procedure?

A. Statement

B. PreparedStatement

C. CallableStatement

D. Connection

2. From which object do you ask for DatabaseMetaData?

A. Connection

B. ResultSet

C. DriverManager

D. DataSource

3. Which of the following statements will get return the data from the first column of
ResultSet rs, returned by from executing the following SQL statement: ”SELECT
student_id, first_name, last_name, address FROM DAY09_STUDENT”?.

A. .rs.getString(0)

B. .rs.getString(“student_id”)

C. .rs.getString(1)

D. .rs.getInt(1)

Quiz Answers
1. C

2. A

3. B and C

Exercises
Modify the day’s example to perform few batch updates on the Student table. Batch
updates include only INSERT, UPDATE, or DELETE SQL statements.

216 Day 9

12 0672324237 CH09 9/24/02 3:55 PM Page 216

DAY 10

WEEK 2

Developing Bean-
Managed Persistence
Entity Beans

Today, you’ll work on a complete example of developing a bean-managed per-
sistence (BMP) entity bean. You might question why you need to learn bean-
managed persistence when container-managed persistence (CMP) is simpler to
write and is the preferred approach. The answer is that you should use bean-
managed persistence if you want complete control of managing persistence, if
you’re writing persistence logic to a very proprietary legacy database system, or
when your persistent store is not a database.

The concept of the student is central to the sample university registration appli-
cation. Multiple clients must share behavior, such as creating a student account,
verifying an existing account, and updating account information. Updates to the
state of a student object must be written to the persistent store. The student
object must live even when the client’s session with the server is over.
Therefore, in the sample application, a student object is modeled as an entity
bean. Today, we’ll model a student entity bean as bean-managed persistence
entity bean.

13 0672324237 CH10 9/24/02 2:35 PM Page 217

A BMP is responsible for managing its persistence. It consists of a home interface, a
component interface, and a bean class. First, we’ll examine the interaction between the
client, EJB container and the entity bean by looking under the bean’s hood. Next, we’ll
write each of the interfaces and implement the bean class.

Typically, a BMP contains calls to access the database. The data access calls can be
embedded in the entity bean class or encapsulated in a helper object, known as a Data
Access Object (DAO), that’s part of the entity bean. Today, we’ll learn about DAOs and
use them to encapsulate data access calls.

The BMP deployment descriptor specifies the bean’s name, the home and component
interfaces, and the bean class. In addition, it specifies the bean’s primary key. We’ll write
the BMP deployment descriptor. Finally, we’ll package and deploy the bean and also
write a client that accesses the BMP.

Looking Under the Hood of a BMP
Entity Bean

Figure 10.1 shows the interactions between the client, EJB container, bean-managed per-
sistence bean, and the database.

The following steps describe the sequence of interactions in detail:

1. At startup, the EJB container registers all the deployed enterprise beans, including
entity beans, with the JNDI service.

2. The client looks up the home interface of the deployed enterprise bean via the Java
Naming and Directory Interface (JNDI). For example, the remote home interface
for the Student bean can be located using the following code segment:
Context initialContext = new InitialContext();
Object obj = initialContext.lookup(“day10/Student”);
StudentHome studentHome = (StudentHome)
javax.rmi.PortableRemoteObject.narrow(obj, StudentHome.class);

3. The client uses the remote home interface to create a remote Student object. For
example, the client creates a new student as follows:
Student student=(Student)studentHome.create(“1”, “Raghava”,

“Kothapalli”, “1234, People Dr. Pleasonton, CA”);

When a client invokes a create<method> method on the home interface, the EJB
container invokes the corresponding ejbCreate<method> method, followed by the
ejbPostCreate<method> method on the bean instance.

4. The client calls a method on the remote object. For example, the client calls the
getStudentId() method on the remote object as follows:

String studentId = student.getStudentId();

218 Day 10

13 0672324237 CH10 9/24/02 2:35 PM Page 218

Developing Bean-Managed Persistence Entity Beans 219

10

The container calls the appropriate method on the entity bean instance. For exam-
ple, the EJB container calls the getStudentId() method on the entity bean
instance.

5. The client calls the remove() method of the remote object. For example, the client
removes the order object as follows:

student.remove();

The container then calls the ejbRemove() method on the entity bean instance.

The EJB container synchronizes the state of the instance with the database using the
ejbLoad() and ejbStore() methods. For example, to passivate the entity bean instance,
the container first calls ejbStore() to allow the instance to synchronize the database
state with the instance’s state, and then calls the ejbPassivate() method.

The bean-managed persistence bean contains calls to access the database. The data
access can be coded into the entity bean class or encapsulated in a data access object that
is part of the entity bean.

FIGURE 10.1
Under the hood of a
bean-managed persis-
tence bean.

JNDI
Service

JDBC Driver

EJB Container

1. register EJBs
2. lookup home in JNDI

4. call
business
method

3. create

5. remove

Entity bean

Client

3.1 create bean

4.1 call business method

5.1 ejbRemove

EJBHome

EJBObject
ejbLoad

ejbStore
ejbPassivate

ejbActivate C
al

lb
ac

k
M

et
ho

ds

JDBC/
SQLJ

SQL

Database

13 0672324237 CH10 9/24/02 2:35 PM Page 219

Designing the BMP Entity Bean
Figure 10.2 shows the design of the Student component. The StudentEJB bean-managed
entity bean implements the javax.ejb.EntityBean interface. It implements the methods
setEntityContext(), unsetEntityContext(), ejbActivate(), ejbPassivate(),
ejbLoad(), ejbStore(), and ejbRemove() as defined in the javax.ejb.EntityBean
interface. It also implements the ejbCreate() and ejbPostCreate() methods.

A StudentEJB entity bean class consists of the persistent fields studentId, firstName,
lastName, and address. You code them as instance variables in the entity bean class. A
Student entity bean is identified by its primary key, studentId.

The StudentEJB bean class also implements the home method
ejbHomeGetTotalNumberOfStudents().

220 Day 10

FIGURE 10.2
Student entity bean
design.

Legend

«interface»
StudentHome

«interface»
EJBHome

create()
findByPrimaryKey()
findByLastName()
getTotalNumberOfStudents()

getStudentId()
setStudentId()
getFirstName()
setFirstName()
getLastName()
setLastName()
getAddress()
setAddress()

«interface»
EJBOject

StudentEJB

«interface»
EntityBean

setEntityContext()
unsetEntityContext()
ejbActivate()
ejbPassivate()
ejbLoad()
ejbStore()
ejbRemove()
ejbCreate()
ejbPostCreate()
getStudentId()
setStudentId()
getFirstName()
setFirstname()
getLastName()
setLastName()
getAddress()
setAddress()
ejbHomeGetTotalNumberOfStudents()

implements

extends

«interface»
Student

We provide remote interfaces to our entity bean. They include a remote home interface
(StudentHome) and a remote interface (Student). The StudentHome home interface
extends the javax.ejb.EJBHome interface and defines a single create method, two finder
methods(findByPrimaryKey, findByLastName) and one getTotalNumberOfStudents
home method. The Student remote interface extends the javax.ejb.EJBObject interface
and defines the getters and setters for persistent fields. As you learned on Day 2,

13 0672324237 CH10 9/24/02 2:35 PM Page 220

Developing Bean-Managed Persistence Entity Beans 221

10

“Understanding EJB Types and Interfaces,” container tools generate the classes that cor-
respond to the home and remote interfaces.

The state of StudentEJB is stored in the students table of the relational database. The
Data Definition Language (DDL) to create the students table is as follows:

create table students (student_id varchar(64),
first_name varchar(64),
last_name varchar(64),
address varchar(64));

Today’s example uses the PointBase database server with WebLogic Server. In the case
of the JBoss server, we’ll use the HyperSonic database.

The StudentEJB bean class uses database access objects (DAOs) to access the database.
Data access objects are discussed in the following section.

Data Access Objects
A data access object is a helper object used to encapsulate access to databases. Data
access objects can encapsulate access to more than one database, more than one table
within one database, and different types of databases. By encapsulating data access calls,
DAOs allow the adaptation of data access to different schemas or even to different data-
base types. Both session beans and entity beans with bean-managed persistence can use
DAOs.

When an entity bean with bean-managed persistence or a session bean needs to access a
database within a method implementation, a corresponding method in the DAO imple-
ments the actual logic of fetching or updating data in the database. This removes the data
access logic from the enterprise bean class. The bean’s business logic is not cluttered
with data access calls, such as JDBC calls, which makes it much cleaner and readable.

As shown in Figure 10.3, the application uses the interface StudentDAO to access the
students table. The sample application contains the subclass StudentDAOPB, which is
used to access a PointBase database.

Many database vendors provide proprietary extensions to SQL to provide
additional functionality and to achieve higher performance. If the enterprise
bean contains data access logic in addition to business logic, it would be
difficult to modify it to use a different type of database. The DAO design
pattern is used to separate business logic from data access logic. The DAO
interface provides a well-defined API for accessing and manipulating the
data. The enterprise bean is coded to use this DAO interface. Typically, you
would write one DAO class for each database that you want to support. At

Note

13 0672324237 CH10 9/24/02 2:35 PM Page 221

Implementing the BMP Entity Bean
This section discusses the implementation of the remote home interface StudentHome,
remote interface Student, and the BMP bean class StudentEJB. We’ll also discuss how
to write the DAO and deployment descriptors in detail.

Defining the Home Interface
The home interface provides methods for creating and removing enterprise beans. In
addition, for entity beans, the home interface of an entity bean contains methods to find
the instances of a bean based on certain search criteria. The home interface for an entity
bean may also contain home business methods. Listing 10.1 shows the StudentHome
remote home interface.

LISTING 10.1 The Full Text of day10/StudentHome.java

package day10;

import javax.ejb.*;
import java.util.Collection;
import java.rmi.RemoteException;

public interface StudentHome extends EJBHome
{

/* Create methods */
Student create(String studentId, String firstName, String lastName,

222 Day 10

deployment time, the deployer would choose the DAO corresponding to the
database. This ensures the enterprise bean class is not modified to use a dif-
ferent database type.

FIGURE 10.3
Student data access
object.

StudentDAOPB

«interface»
StudentDAO

create()
remove()
findByPrimaryKey()
findByLastName()
load()
store()

13 0672324237 CH10 9/24/02 2:35 PM Page 222

Developing Bean-Managed Persistence Entity Beans 223

10

String address) throws CreateException, RemoteException;
/* Finder methods */
public Student findByPrimaryKey(String studentId)

throws FinderException, RemoteException;
public Collection findByLastName(String lastName)

throws FinderException, RemoteException;
/* Home methods */
public int getTotalNumberOfStudents() throws RemoteException;

}

To create the bean instance, a client calls the create() method of the home interface and
passes appropriate values for studentId, firstName, lastName, and address.

The StudentHome home interface provides two finder methods: findByPrimaryKey() and
findByLastName(). The findByPrimaryKey() method allows clients to locate a student
bean using the primary key. The single-object finder method findByPrimaryKey()
returns the Student remote interface. The findByLastName() method allows clients to
locate students with a given last name. The multi-object finder method
findByLastName() returns java.util.Collection. The container throws a
FinderException from the implementation of finder methods to indicate an application-
level error.

The remote home interface is a Java Remote Invocation Method (RMI) interface. So, the
method arguments and return types of a remote method must be legal types for
RMI/IIOP (RMI over Internet Inter-Orb Protocol) and the method must include
java.rmi.RemoteException in its throws clause.

LISTING 10.1 continued

Single-object finder methods (such as findByPrimaryKey()) are designed to
return one entity object at most. For single-object finders, the result type of
the method in the entity bean’s remote home interface is the entity bean’s
remote interface. Similarly, the result type of the method in the entity
bean’s local home interface is the entity bean’s local interface.

Multi-object finder methods (such as findByLastName()) are designed to
return multiple entity objects. For multi-object finders, the result type of the
method in the entity bean’s remote home interface is a collection of objects
implementing the entity bean’s remote interface. Similarly, the result type of
the method in the entity bean’s local home interface is a collection of
objects implementing the entity bean’s local interface. You use the
java.util.Collection interface to define the collection type for the result
type of a container-managed persistence entity bean.

Note

13 0672324237 CH10 9/24/02 2:35 PM Page 223

Predefined Exceptions for Entity Beans
Figure 10.4 shows the application exceptions for entity beans as defined in the Enterprise
JavaBeans 2.0 specification.

224 Day 10

FIGURE 10.4
Predefined exceptions
for entity beans.

java.lang.Exception

javax.ejb.FinderExceptionjavax.ejb.CreateException javax.ejb.RemoveException

javax.ejb.DuplicateKeyException javax.ejb.ObjectNotFoundException

The enterprise bean throws CreateException from the ejbCreate<method>(...) and
ejbPostCreate<method>(...) methods to indicate an application-level error from the
create or initialization operation.

The enterprise bean throws DuplicateKeyException from the ejbCreate<method>(...)
to indicate to the client that an entity object with the same key already exists.
DuplicateKeyException is a subclass of CreateException.

The enterprise bean throws FinderException from the ejbFind<method>(...) to indi-
cate to the client that an application-level error occurred in the finder method.

The enterprise bean throws ObjectNotFoundException from the ejbFind<method>(...)
to indicate to the client that the requested entity object does not exist.

The enterprise bean throws RemoveException from the ejbRemove() method to indicate
to the client that an application-level error occurred in the entity bean removal operation.

Only single-object finders should throw the ObjectNotFoundException excep-
tion. Multi-object finders should return an empty collection as an indication
that no matching objects were found.

Caution

Defining the Component Interface
The remote interface Student is defined as follows:

13 0672324237 CH10 9/24/02 2:35 PM Page 224

Developing Bean-Managed Persistence Entity Beans 225

10

LISTING 10.2 The Full Text of day10/Student.java

package day10;

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Student extends EJBObject
{

public String getStudentId() throws RemoteException;
public String getFirstName() throws RemoteException;
public void setFirstName(String firstName) throws RemoteException;
public String getLastName() throws RemoteException;
public void setLastName(String lastName) throws RemoteException;
public String getAddress() throws RemoteException;
public void setAddress(String address) throws RemoteException;

}

The remote interface contains business methods callable by the client. Note that the
Student interface does not contain setStudentId() method because we don’t allow
clients to modify the student ID after a student object is created.

The remote interface is a Java RMI interface. So, method arguments and return types of a
remote method must be legal types for RMI/IIOP and the method must include
java.rmi.RemoteException in its throws clause.

Implementing the Enterprise Bean Class
Using bean-managed persistence, the entity bean provider writes database access calls
(for example, using JDBC) directly in the entity bean component. The data access calls
can be coded directly into the entity bean class, or they can be encapsulated in a data
access component that is part of the entity bean.

Directly coding data access calls in the entity bean class might make it more
difficult to adapt the entity bean to work with a database that has a differ-
ent schema or a different type of database.

Caution

Listing 10.3 shows the StudentEJB entity bean class.

LISTING 10.3 The Full Text of day10/StudentEJB.java

package day10;

import java.sql.*;

13 0672324237 CH10 9/24/02 2:35 PM Page 225

import javax.naming.*;
import javax.ejb.*;
import java.util.*;

public class StudentEJB implements EntityBean {
protected EntityContext ctx;
/* persistent state */
private String studentId;
private String firstName;
private String lastName;
private String address;
/* Accessor methods for entity bean fields */
public String getStudentId() {

return studentId;
}
public void setStudentId(String id) {

studentId = id;
}
public String getFirstName() {

return firstName;
}
public void setFirstName(String firstName) {

this.firstName = firstName;
}
public String getLastName() {

return lastName;
}
public void setLastName(String lastName) {

this.lastName = lastName;
}
public String getAddress() {

return address;
}
public void setAddress(String address) {

this.address = address;
}
/* Callback methods */
public void setEntityContext(EntityContext ctx) {

System.out.println(“Student.setEntityContext called”);
this.ctx = ctx;

}
public void unsetEntityContext() {

System.out.println(“Student.unsetEntityContext called”);
this.ctx = null;

}
public void ejbActivate() {

System.out.println(“Student.ejbActivate() called.”);
studentId = (String) ctx.getPrimaryKey();

}

226 Day 10

LISTING 10.3 continued

13 0672324237 CH10 9/24/02 2:35 PM Page 226

Developing Bean-Managed Persistence Entity Beans 227

10

public void ejbPassivate() {
System.out.println(“Student.ejbPassivate () called.”);
studentId = null;

}
public void ejbLoad() {
try {
System.out.println(“Student.ejbLoad() called.”);
StudentDAO dao = getDAO();
StudentDetails student = dao.load(studentId);
firstName = student.getFirstName();
lastName = student.getLastName();
address = student.getAddress();
} catch(Exception ex) {
throw new EJBException(“ejbLoad: Unable to load Student “

+ studentId + “ from database”, ex);
}

}
public void ejbStore() {
try {
System.out.println(“Student.ejbStore() called.”);
StudentDAO dao = getDAO();
dao.store(studentId,firstName, lastName,address);
} catch(Exception ex) {

throw new EJBException(“Student “ + studentId +
“ failed to save to database”, ex);

}
}
public String ejbCreate(String studentId, String firstName,
String lastName, String address)
throws CreateException {
try {
System.out.println(“Student.ejbCreate() called.”);
StudentDAO dao = getDAO();
dao.create(studentId, firstName, lastName, address);
setStudentId(studentId);
setFirstName(firstName);
setLastName(lastName);
setAddress(address);
return studentId;
} catch(Exception ex) {

throw new CreateException(“Failed to create student “
+ studentId + ex.getMessage());

}
}
public void ejbPostCreate(String studentId, String firstName,
String lastName, String address) throws CreateException {
System.out.println(“Student.ejbPostCreate() called.”);

}

LISTING 10.3 continued

13 0672324237 CH10 9/24/02 2:35 PM Page 227

public void ejbRemove() throws RemoveException {
try {
System.out.println(“Student.ejbRemove() called.”);
StudentDAO dao = getDAO();
dao.remove(studentId);
} catch(Exception ex) {

throw new RemoveException(“Failed to remove student “
+ studentId + ex.getMessage());

}
}
/* Finder methods */
public String ejbFindByPrimaryKey(String studentId)

throws FinderException {
try {

StudentDAO dao = getDAO();
boolean result = dao.findByPrimaryKey(studentId);
if(!result) throw new ObjectNotFoundException
(“Student id “+ studentId+ “ not found”);

return studentId;
} catch(Exception ex) {

throw new ObjectNotFoundException
(“Student id “+ studentId+ “ not found”);

}
}
public Collection ejbFindByLastName(String lastName)

throws FinderException {
try {

StudentDAO dao = getDAO();
return dao.findByLastName(lastName);

} catch(Exception ex) {
throw new FinderException

(“FinderException:”+ lastName+ ex.getMessage());
}

}
/* Home methods */
public int ejbHomeGetTotalNumberOfStudents() {

try {
StudentDAO dao = getDAO();
return dao.findTotalNumberOfStudents();

} catch(Exception ex) {
throw new EJBException

(“ejbHomeGetTotalNumberOfStudents:” + ex.getMessage());
}

}
/* Helper methods */
private StudentDAO getDAO() {

228 Day 10

LISTING 10.3 continued

13 0672324237 CH10 9/24/02 2:35 PM Page 228

Developing Bean-Managed Persistence Entity Beans 229

10

try{
StudentDAO dao = null;
Context context = new InitialContext();
dao = (StudentDAO) Class.forName
((String)context.lookup(“java:comp/env/param/StudentDAOClass”))
.newInstance();

return dao;
} catch(Exception ex) {

throw new EJBException (“getDAO:” + ex.getMessage());
}

}
}

The StudentEJB entity bean implements the javax.ejb.EntityBean interface and is a
concrete class. The instance variables studentId, firstName, lastName, and address

constitute the bean’s persistent state. The bean class uses StudentDAO class to access the
database. It implements the methods setEntityContext(), unsetEntityContext(),
ejbActivate(), ejbPassivate(), ejbLoad(), ejbStore(), and ejbRemove() as defined
in the javax.ejb.EntityBean interface. In the ejbLoad() method, you refresh the
instance variables by reading from the database. The ejbStore() method updates the
instance variables to the database. The ejbCreate() method inserts the entity state into
the database, initializes the instance variables, and returns the primary key. The bean
implements the ejbPostCreate method that corresponds to the ejbCreate method. The
bean class implements the finder methods ejbFindByPrimaryKey() and
ejbFindByLastName(). The single-object finder method ejbFindByPrimaryKey() veri-
fies that the object exists in the database and returns the primary key. The multi-object
finder method ejbFindByLastName() returns a collection of primary keys that match the
search criteria.

In addition, the StudentEJB bean class implements the
ejbHomeGetTotalAmountOfAllOrders() home business method. This home business
method is independent of any particular student instance. It returns the total number of
students in the system.

LISTING 10.3 continued

The entity bean instance can discover its primary key by calling the
getPrimaryKey() method on its entity context object. This method can be
called when the entity object is associated with an identity in operations
such as ejbPostCreate, ejbRemove, ejbActivate, ejbPassivate, ejbLoad,

Note

13 0672324237 CH10 9/24/02 2:35 PM Page 229

TABLE 10.1 Summary of the SQL Statements in Entity Bean Methods

Entity Bean Method SQL Statement

ejbCreate() insert

ejbLoad() select

ejbStore() update

ejbFindByPrimaryKey() select

ejbFindByLastName() select

ejbHomeGetTotalNumberOfStudents() select

ejbRemove() delete

Listing 10.4 shows the StudentDAO interface. The StudentEJB class uses this interface to
access the database.

LISTING 10.4 The Full Text of day10/StudentDAO.java

package day10;
import java.util.Collection;

230 Day 10

ejbStore, and business methods from the component interface. The follow-
ing code snippet illustrates the getPrimaryKey method call:

EntityContext ctx;
String studentId;
...
public void ejbActivate() {

studentId = (String) ctx.getPrimaryKey();
}

The client can retrieve the primary key for an entity object by invoking the
getPrimaryKey() method on the EJBObject as follows:

Student student = ... ;
String studentId = (String)student.getPrimaryKey();

The data access calls are performed in ejbCreate<method>(...),
ejbRemove(), ejbFind<method>(...), ejbLoad(), and ejbStore() methods,
and/or in the business methods. Table 10.1 shows the summary of SQL state-
ments for the StudentEJB bean class.

Note

13 0672324237 CH10 9/24/02 2:35 PM Page 230

Developing Bean-Managed Persistence Entity Beans 231

10

public interface StudentDAO
{

public void create(String id, String firstName,
String lastName, String address)

throws StudentDAOSysException;
public void remove(String studentId)

throws StudentDAOSysException;
public boolean findByPrimaryKey(String studentId)

throws StudentDAOSysException;
public Collection findByLastName(String lastName)

throws StudentDAOSysException;
public int findTotalNumberOfStudents()

throws StudentDAOSysException;
public void store(String id, String firstName,

String lastName, String address)
throws StudentDAOSysException;

public StudentDetails load(String studentId)
throws StudentDAOSysException;

}

Listing 10.5 shows the implementation of the StudentDAOPB class. This class implements
the StudentDAO interface and is used to access a PointBase database. Methods in the
StudentDAOPB class implement the actual logic of inserting, fetching, or updating data in
the database. Note that, in each data access method, we acquire a connection, perform
data access, and release the connection. When the client virtually releases the connection
with close(), behind the scenes, the container returns the connection to the pool and
makes it available for use by other clients. The class throws StudentDAOSysException to
indicate a data access error.

LISTING 10.5 The Full Text of day10/StudentDAOPB.java

package day10;

import java.util.*;
import javax.naming.*;
import java.sql.*;
import javax.sql.*;

public class StudentDAOPB implements StudentDAO {
private Connection con;
public StudentDAOPB() {}
public void create(String id, String firstName,
String lastName, String address) throws StudentDAOSysException {
PreparedStatement stmt = null;
try {

LISTING 10.4 continued

13 0672324237 CH10 9/24/02 2:35 PM Page 231

getDBConnection();
stmt = con.prepareStatement

(“insert into students(student_id, first_name, last_name, “+
“ address) values (?, ?, ?, ?)”);

stmt.setString(1, id);
stmt.setString(2, firstName);
stmt.setString(3, lastName);
stmt.setString(4, address);
stmt.executeUpdate();

}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException:”+ ex.getMessage());
}
finally {

closeStatement(stmt);
closeDBConnection();

}
}
public void remove(String studentId)

throws StudentDAOSysException {
PreparedStatement stmt = null;
try {

getDBConnection();
stmt = con.prepareStatement

(“delete from students where student_id = ?”);
stmt.setString(1,studentId);
stmt.executeUpdate();
stmt.close();

}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException:”+ ex.getMessage());
}
finally {

closeStatement(stmt);
closeDBConnection();

}
}
public boolean findByPrimaryKey(String studentId)

throws StudentDAOSysException {
boolean result = false;
PreparedStatement stmt = null;
try {

getDBConnection();
stmt = con.prepareStatement

(“select student_id from students where student_id = ?”);
stmt.setString(1, studentId);
ResultSet rs = stmt.executeQuery();
result = rs.next();

232 Day 10

LISTING 10.5 continued

13 0672324237 CH10 9/24/02 2:35 PM Page 232

Developing Bean-Managed Persistence Entity Beans 233

10

rs.close();
}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException: “+ ex.getMessage());
}
finally {

closeStatement(stmt);
closeDBConnection();

}
return result;

}
public Collection findByLastName(String lastName)

throws StudentDAOSysException {
Collection students = new ArrayList();
PreparedStatement stmt = null;
try {

getDBConnection();
stmt = con.prepareStatement

(“select student_id from students where last_name = ?”);
stmt.setString(1, lastName);
ResultSet rs = stmt.executeQuery();
while(rs.next()){

String studentId = rs.getString(1);
students.add(studentId);

}
rs.close();

}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException: “+ ex.getMessage());
}
finally {

closeStatement(stmt);
closeDBConnection();

}
return students;

}
public int findTotalNumberOfStudents()

throws StudentDAOSysException {
int total = 0;
PreparedStatement stmt = null;
try {

getDBConnection();
stmt = con.prepareStatement

(“select count(student_id) from students”);
ResultSet rs = stmt.executeQuery();
rs.next();
total = rs.getInt(1);

}

LISTING 10.5 continued

13 0672324237 CH10 9/24/02 2:35 PM Page 233

catch(SQLException ex) {
throw new StudentDAOSysException(“SQLException:”+ ex.getMessage());

}
finally {

closeStatement(stmt);
closeDBConnection();

}
return total;

}
public StudentDetails load(String studentId)

throws StudentDAOSysException {
StudentDetails student = null;
PreparedStatement stmt = null;
try{

getDBConnection();
stmt = con.prepareStatement (“select first_name, last_name, “ +
“ address from students where student_id=?”);

stmt.setString(1, studentId);
ResultSet rs = stmt.executeQuery();
rs.next();
student = new StudentDetails(studentId,

rs.getString(1),
rs.getString(2),
rs.getString(3));

rs.close();
}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException:”+ ex.getMessage());
}
finally {

closeStatement(stmt);
closeDBConnection();

}
return student;

}
public void store(String id, String firstName, String lastName,
String address) throws StudentDAOSysException {
PreparedStatement stmt = null;
try{

getDBConnection();
stmt = con.prepareStatement (“update students set “+
“first_name=?,last_name = ?,address = ? where student_id=?”);

stmt.setString(1, firstName);
stmt.setString(2,lastName);
stmt.setString(3, address);
stmt.setString(4, id);
stmt.executeUpdate();

234 Day 10

LISTING 10.5 continued

13 0672324237 CH10 9/24/02 2:35 PM Page 234

Developing Bean-Managed Persistence Entity Beans 235

10

stmt.close();
}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException:”+ ex.getMessage());
}
finally {

closeStatement(stmt);
closeDBConnection();

}
}
private void getDBConnection()

throws StudentDAOSysException {
try {

Context context = new InitialContext();
DataSource ds = (DataSource) context.lookup(“jdbc/styejbDB”);
con = ds.getConnection();
if(con==null)

System.err.println(“Database Connection is null”);
}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException:”+ ex.getMessage());
}
catch(NamingException ex) {

throw new StudentDAOSysException(“NamingException:”+ex.getMessage());
}

}
private void closeDBConnection()

throws StudentDAOSysException {
try {

con.close();
}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException:”+ ex.getMessage());
}

}
private void closeStatement(PreparedStatement stmt)

throws StudentDAOSysException {
try {

stmt.close();
}
catch(SQLException ex) {

throw new StudentDAOSysException(“SQLException:”+ ex.getMessage());
}

}
}

Listing 10.6 shows the StudentDetails value object.

LISTING 10.5 continued

13 0672324237 CH10 9/24/02 2:35 PM Page 235

LISTING 10.6 The Full Text of day10/StudentDetails.java

package day10;

public class StudentDetails
{

String id;
String firstName;
String lastName;
String address;
StudentDetails(String id, String firstName,

String lastName, String address)
{

this.id = id;
this.firstName = firstName;
this.lastName = lastName;
this.address = address;

}
public String getFirstName() {return firstName; }
public String getLastName() {return lastName;}
public String getAddress() {return address; }

}

Listing 10.7 shows the StudentDAOSysException class. The StudentDAO interface throws
this exception to indicate a data access error.

LISTING 10.7 The Full Text of day10/StudentDAOSysException.java

package day10;

public class StudentDAOSysException extends RuntimeException {
public StudentDAOSysException (String str) {

super(str);
}
public StudentDAOSysException () {

super();
}

}

Declaring the Deployment Descriptor
The deployment descriptor describes a component’s deployment settings. Listing 10.8
shows the ejb-jar.xml deployment descriptor for the Student enterprise bean. ejb-
jar.xml describes the enterprise bean’s deployment properties, such as its bean type and
structure. The file also provides the EJB container with information about where it can

236 Day 10

13 0672324237 CH10 9/24/02 2:35 PM Page 236

Developing Bean-Managed Persistence Entity Beans 237

10

find and then load the home interface, remote interface, and bean class. In addition, the
entity bean’s deployment descriptor declares the persistent type and its primary key.

LISTING 10.8 The Full Text of day10/ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>StudentEJB</ejb-name>
<home>day10.StudentHome</home>
<remote>day10.Student</remote>
<ejb-class>day10.StudentEJB</ejb-class>
<persistence-type>Bean</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<env-entry>
<env-entry-name>param/StudentDAOClass</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>day10.StudentDAOPB</env-entry-value>

</env-entry>
<resource-env-ref>
<resource-env-ref-name>jdbc/styejbDB</resource-env-ref-name>

<resource-env-ref-type>javax.sql.DataSource</resource-env-ref-type>
</resource-env-ref>

</entity>
</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>
<ejb-name>StudentEJB</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

The ejb-jar.xml file declares StudentEJB as the name of the entity bean and specifies
the home interface, remote interface, and bean class. The persistence-type element
declares this as a bean-managed entity bean (as opposed to a container-managed persis-
tence bean). The primary-key-class element specifies the type of our primary key. The
reentrant element specifies whether an entity bean is reentrant. If an instance of a

13 0672324237 CH10 9/24/02 2:35 PM Page 237

nonreentrant entity bean executes a client request in a given transaction context, and
another request with the same transaction context arrives for the same entity object, the
container will throw an exception to the second request. This rule allows the bean
provider to program the entity bean as single-threaded, nonreentrant code. The Student
enterprise bean uses environment entries to find the implementation class for student data
access object.

Resource environment references are declared by the resource-env-ref elements. The
resource-env-ref-name element specifies the JNDI name of the reference relative to
java:comp/env. The resource-env-ref-type element specifies the fully qualified class
name of the referenced object. For example, we specified the class name of
jdbc/styejbDB data source as javax.sql.DataSource. In the vendor-specific deploy-
ment descriptor such as weblogic-ejb-jar.xml or jboss.xml we bind the resource envi-
ronment references to the actual administered object location. The assembly-descriptor
element contains application assembly information, and also includes specifying the
transaction attributes. The method-name element is assigned the value * (asterisk) to indi-
cate that all methods have the transaction attribute Required. The Required transaction
attribute specifies the bean will always be part of a transaction. On Day 16, we’ll learn
more about transactions.

Listing 10.9 shows the weblogic-ejb-jar.xml deployment descriptor that is specific to
WebLogic Server. The jndi-name element declares the JNDI name of the enterprise
bean. So, the JNDI name of the StudentEJB is day10/Student.

LISTING 10.9 The Full Text of day10/weblogic-ejb-jar.xml

<?xml version=”1.0”?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN’
‘http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>StudentEJB</ejb-name>
<reference-descriptor>

<resource-env-description>
<res-env-ref-name>jdbc/styejbDB</res-env-ref-name>
<jndi-name>jdbc.styejbDB</jndi-name>

</resource-env-description>
</reference-descriptor>

<jndi-name>day10/Student</jndi-name>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

238 Day 10

13 0672324237 CH10 9/24/02 2:35 PM Page 238

Developing Bean-Managed Persistence Entity Beans 239

10

Listing 10.10 shows the jboss.xml deployment descriptor that’s specific to the JBoss
server. Also, the jndi-name element declares the JNDI name of the StudentEJB as
day10/Student.

LISTING 10.10 The Full Text of day10/jboss.xml

<?xml version=”1.0” encoding=”UTF-8”?>

<jboss>
<enterprise-beans>
<entity>
<ejb-name>StudentEJB</ejb-name>
<jndi-name>day10/Student</jndi-name>
<resource-env-ref>
<resource-env-ref-name>jdbc/styejbDB</resource-env-ref-name>
<jndi-name>java:/DefaultDS</jndi-name>

</resource-env-ref>
</entity>

</enterprise-beans>
</jboss>

Writing a Client
Listing 10.11 demonstrates how a client accesses an entity bean.

LISTING 10.11 The Full Text of day10/Client.java

package day10;

import java.util.*;
import javax.naming.*;
import javax.ejb.*;

public class Client {
public static void main(String[] args) {

print(“Starting Client . . .”);
Context initialContext = null;
StudentHome studentHome = null;
Student student = null;
try {

print(“Looking up the student home via JNDI.”);
initialContext = new InitialContext();
Object object = initialContext.lookup(“day10/Student”);
studentHome = (StudentHome)

javax.rmi.PortableRemoteObject.narrow(object,StudentHome.class);

13 0672324237 CH10 9/24/02 2:35 PM Page 239

String studentId = “raghava”;
print(“Creating a new student id:” + studentId + “.”);
object=(Student)studentHome.create(studentId, “Raghava”,

“Kothapalli”, “1234, People Dr. Pleasonton, CA”);
student=(Student)javax.rmi.PortableRemoteObject.narrow

(object, Student.class);
print(“Locating the student id “ + studentId

+ “ using findByPrimaryKey method”);
student=studentHome.findByPrimaryKey(studentId);

print(“Locating all students with last name Kothapalli “
+ “ using findByLastName method.”);

Collection col=studentHome.findByLastName(“Kothapalli”);
Enumeration students=Collections.enumeration(col);
while(students.hasMoreElements()) {

student=(Student)javax.rmi.PortableRemoteObject.narrow
(students.nextElement(), Student.class);

print(“id:” + student.getStudentId() +
“ First name:”+ student.getFirstName());

}
print(“Finding the total number of students using “

+ “ getTotalNumberOfStudents method”);
int count = studentHome.getTotalNumberOfStudents();
print(“Count:”+ count);

}
catch(Exception ex) {

ex.printStackTrace();
}

}
static void print(String s) {

System.out.println(s);
}

}

In this code, the client locates the StudentHome home interface of the deployed enterprise
bean via JNDI. The client uses the remote home interface to create a remote Student
entity object, and then demonstrates the usage of finder and home methods.

240 Day 10

LISTING 10.11 continued

A client program that is portable to all EJB containers must use
javax.rmi.PortableRemoteObject.narrow(...) method to perform type-
narrowing of the remote and remote home interfaces. For example, the fol-
lowing code snippet is not portable:

Student student = ... ;

Caution

13 0672324237 CH10 9/24/02 2:35 PM Page 240

Developing Bean-Managed Persistence Entity Beans 241

10
Packaging and Deploying the Enterprise
Bean

This section describes the steps to package, deploy the Student entity bean and also
build the client for both the WebLogic Server and JBoss application servers.

The following are the steps for WebLogic Server:

C:\>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day10

C:\styejb\examples\day10>buildWebLogic.bat

The following are the steps for JBoss:

C:\>cd styejb\examples

C:\styejb\examples>setEnvJboss.bat

C:\styejb\examples>cd day10

C:\styejb\examples\day10>buildJboss.bat

Running the Example
The following steps describe how to start the PointBase database server, the WebLogic
Server, and run the sample client:

Enumeration students=Collections.enumeration(col);
while(students.hasMoreElements()) {

student=(Student)students.nextElement();
}

The following code snippet is portable:

Student student = ... ;
Enumeration students=Collections.enumeration(col);
while(students.hasMoreElements()) {

student= (Student)javax.rmi.PortableRemoteObject.narrow
(students.nextElement(),Student.class);

. . .
}

13 0672324237 CH10 9/24/02 2:35 PM Page 241

1. Start the PointBase server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvWebLogic.bat
C:\styejb\examples>startPointBase.bat

2. Start WebLogic Server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvWebLogic.bat
C:\styejb\examples>startWebLogic.bat

3. You can run the client in the same window you used to package the bean and build
the client by using the following command:
C:\styejb\examples\day10>runClientWebLogic.bat

Running the client produces the following output:

Starting Client . . .
Looking up the student home via JNDI.
Creating a new student id:raghava.
Locating the student id raghava using findByPrimaryKey method
Locating all students with last name Kothapalli using findByLastName method.
id:krishna First name:Krishna
id:raghava First name:Raghava
Finding the total number of students using getTotalNumberOfStudents method
Count:2

The following steps describe how to start JBoss server and run the sample client:

1. Start JBoss Server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvJBoss.bat
C:\styejb\examples>startJBoss.bat

2. You can run the client in the same window you used to package the bean and build
the client by using the following command:

C:\styejb\examples\day10>runClientJBoss.bat

Best Practices
Typically, you use bean-managed persistence if you want complete control of managing
persistence, you’re writing persistence logic to a very proprietary legacy database system,
or your persistent store is not a database.

Extra effort is required to achieve portability for an enterprise bean that uses bean-man-
aged persistence because the bean needs to ensure portability across all database as well
as JDBC drivers. The foremost factor affecting portability relates to the SQL language.
Many database vendors provide proprietary extensions to SQL to provide additional

242 Day 10

13 0672324237 CH10 9/24/02 2:35 PM Page 242

Developing Bean-Managed Persistence Entity Beans 243

10

functionality and to achieve higher performance. Consider using only standard SQL con-
structs to achieve portability. If you do need to use proprietary extensions, consider using
the data access object design pattern to encapsulate vendor-specific code.

Summary
Today you wrote a bean-managed persistence enterprise bean. The home interface con-
tains create, finder, and home methods, and the remote interface contains the business
methods callable by the client. The bean class contains the instance variables represent-
ing its persistent state. It implements the callback, finder, and home methods. The bean
delegated the data access calls to a data access object. You also learned how to package
and deploy the enterprise bean. Finally, you wrote and ran a client that accesses the
enterprise bean.

Q&A
Q What are the differences between a business method and a home method?

A The component interface defines the business methods. For entity beans, the home
interface defines home methods. Home methods contain business logic that is not
specific to an entity bean instance. These methods are analogous to static methods.

In contrast, the logic in a business method applies to a single entity bean, an
instance with a unique identity. Because a home method is not specific to an entity
bean instance, the entity instance is not associated with any unique identity during
home method invocation. So, a home method implementation cannot access an
entity bean’s persistence state (instance variables).

Quiz
1. An ejbCreate() method of an entity bean class returns which of the following

objects?

A. Primary key

B. null

C. EJBObject

D. EJBHome

2. Which one of the following statements is false for data access objects?

A. DAOs encapsulate data access calls.

B. Session beans can’t use DAOs.

13 0672324237 CH10 9/24/02 2:35 PM Page 243

C. Entity beans can use DAOs.

D. DAOs can be used to encapsulate database vendor-specific code.

3. A bean-managed persistence bean performs which of the following SQL state-
ments in ejbCreate<method>(...)?

A. select

B. update

C. insert

D. delete

Quiz Answers
1. A

2. B

3. C

Exercises
To extend your knowledge of the subjects covered today, try the following exercise:

1. Add the findAllStudents() method in StudentHome interface, and implement the
corresponding ejbFindAllStudents() method in the StudentEJB entity bean
class. In addition, package and deploy the entity bean.

244 Day 10

13 0672324237 CH10 9/24/02 2:35 PM Page 244

DAY 11

WEEK 2

Developing Container-
Managed Persistence
Entity Beans

Today you’ll learn how to develop portable applications that are database inde-
pendent and free of database access code. You’ll work on a complete example
of developing a container-managed persistence (CMP) entity bean.

In our sample University Registration System, a student selects items from the
course catalog, places them in an enrollment cart, and, when ready, places an
order for the cart contents. The order must live even when the student’s session
with the application is over. Therefore, in the sample application, the Order
component is modeled as an entity bean. The Order component provides data-
related logic, such as inserting, updating, and removing an order record in the
database.

Today, we’ll write the Order component as a container-managed persistence
entity bean. Tomorrow, on Day 12, “Developing Container-Managed
Relationship Entity Beans,” we’ll integrate the Order component with other
entity beans.

14 0672324237 CH11 9/24/02 2:36 PM Page 245

The EJB container is responsible for the persistence of a container-managed persistence
bean. We’ll examine how the container achieves this goal by looking under the hood of a
CMP bean. Just like BMP, a CMP bean consists of a home interface, a component inter-
face, and a bean class. We’ll write these interfaces and the bean class.

The CMP deployment descriptor is the interesting part of any CMP component. The
deployment descriptor has been significantly changed in EJB 2.0 to improve its portabil-
ity. The bean provider designs the abstract persistence schema and specifies queries with
respect to the entity bean’s abstract schema. At deployment time the deployer, using con-
tainer tools, maps the abstract persistent schema to a physical schema of the target data-
base. The container tools generate the necessary additional classes that enable the
container to manage the entity bean’s persistence. We’ll write the CMP deployment
descriptor. Finally, we’ll package and deploy the bean, and write a client that accesses
the CMP.

Looking Under the Hood of a CMP
Entity Bean

Figure 11.1 shows the interactions between the client, the EJB container, and the con-
tainer-managed persistence bean.

The following steps describe the sequence of interactions in detail:

1. At startup, the EJB container registers all deployed enterprise beans, including
entity beans, with the JNDI service.

2. The client looks up the home interface of the deployed enterprise bean via the Java
Naming and Directory Interface (JNDI). In this example, the remote home inter-
face for the Order bean can be located by using the following code segment:
Context initialContext = new InitialContext();
Object obj = initialContext.lookup(“day11/Order”);
OrderHome orderHome = (OrderHome)
javax.rmi.PortableRemoteObject.narrow(obj, OrderHome.class);

3. The client uses the remote home interface to create a remote Order object. In this
example, the client creates a new order as follows:

Order order = (Order)orderHome.create(“1”, “Submitted”, 200.00);

When a client invokes a create<method> method on the home interface, the EJB
container invokes the corresponding ejbCreate<method> method, followed by
ejbPostCreate<method> method on the bean instance.

4. The client calls a business method on the remote object. In this example, the client
calls the getOrderId() method on the remote object as follows:

String orderId = order.getOrderId();

246 Day 11

14 0672324237 CH11 9/24/02 2:36 PM Page 246

Developing Container-Managed Persistence Entity Beans 247

11

The container calls the appropriate method on the entity bean instance. For exam-
ple, the EJB container calls getOrderId() method on the entity bean instance.

5. The client calls the remove() method of the remote object. For example, the client
removes the order object as follows:

order.remove();

The container calls the ejbRemove() method on the entity bean instance.

The EJB container synchronizes the state of the instance with the database by using the
methods ejbLoad() and ejbStore(). For example, to passivate an entity bean instance,
the container first calls ejbStore() to allow the instance to prepare itself for the syn-
chronization of the database state with the instance’s state, and then calls the
ejbPassivate() method.

FIGURE 11.1
Under the hood of a
container-managed
persistence bean.

JNDI
Service

JDBC Driver

EJB Container

1. register EJBs
2. lookup home in JNDI

4. call
business
method

3. create

5. remove

Entity bean

Client

Persistence
Manager

3.1 create bean

4.1 call business method

5.1 ejbRemove

EJBHome

EJBObject
ejbLoad

ejbStore
ejbPassivate

ejbActivate C
al

lb
ac

k
M

et
ho

ds

JDBC/SQLJ

SQL

Database

14 0672324237 CH11 9/24/02 2:36 PM Page 247

Unlike a bean-managed persistence entity bean, a container-managed persistence bean
does not contain calls to access the database. The EJB container is responsible for persis-
tence of a CMP entity bean. The container may use a persistence manager for persistence
of entity beans. The persistence manager is responsible for performing the following
tasks:

• Creating an instance in a database

• Loading the state of an instance in a database

• Storing the state of an instance in a database

• Activating the state of an instance

• Passivating the state of an instance

• Removing an instance from a database

Designing a CMP Entity Bean
Figure 11.2 shows the design of the Order component. The OrderEJB container-
managed entity bean implements the javax.ejb.EntityBean interface. It implements the
methods setEntityContext(), unsetEntityContext(), ejbActivate(),
ejbPassivate(), ejbLoad(), ejbStore(), and ejbRemove() as defined in the
javax.ejb.EntityBean interface. It also implements the ejbCreate() and
ejbPostCreate() methods.

An OrderEJB entity bean class consists of the persistent fields orderId, studentId,
orderDate, status, and amount. You do not code them as instance variables in the entity
bean class. Instead, the persistent fields are identified in the code by access methods (get-
ters and setters). An Order entity bean is identified by its primary key, orderId.

The OrderEJB bean class also implements the ejbHomeGetTotalAmountOfAllOrders()
method and defines the select method ejbSelectAllOrderAmounts() method. We’ll dis-
cuss select methods later today.

We also provide remote interfaces to our entity bean. These include a remote home inter-
face (OrderHome) and a remote interface (Order). The OrderHome home interface extends
the javax.ejb.EJBHome interface and defines a single create() method, two finder
methods, and one getTotalAmountOfAllOrders() home method. The Order remote
interface extends the javax.ejb.EJBObject interface and defines the getters and setters
for persistent fields. As you learned on Day 2, “Understanding EJB Types and
Interfaces,” container tools generate the classes that correspond to the home and remote
interfaces.

248 Day 11

14 0672324237 CH11 9/24/02 2:36 PM Page 248

Developing Container-Managed Persistence Entity Beans 249

11

Implementing the CMP Entity Bean
This section discusses the implementation of the remote home interface OrderHome,
remote interface Order, and the CMP bean class OrderEJB. We’ll also discuss how to
write the deployment descriptors in detail.

Defining the Home Interface
The home interface provides methods for creating and removing enterprise beans. In
addition, for entity beans, the home interface also contains methods to find the instances
of bean based on certain search criteria. The home interface for an entity bean may con-
tain home business methods. Listing 11.1 shows the OrderHome remote home interface.

LISTING 11.1 The Full Text of day11/OrderHome.java

package day11;

import java.util.*;
import java.rmi.*;
import javax.ejb.*;

public interface OrderHome extends EJBHome {
/* Create methods */

FIGURE 11.2
Order entity bean
design.

Legend

«interface»
OrderHome

«interface»
EJBHome

create()
findByPrimaryKey()
findByStatus()
getTotalAmountOfAllOrders()

getOrderId()
getStudentId()
setStudentId()
getAmount()
setAmount()
getOrderDate()
setOrderDate()
getStatus()
setStatus()

«interface»
EJBObject

OrderEJB

«interface»
EntityBean

setEntityContext()
unsetEntityContext()
ejbActivate()
ejbPassivate()
ejbLoad()
ejbStore()
ejbRemove()
ejbCreate()
ejbPostCreate()
getOrderId()
setOrderId()
getStudentId()
setStudentID()
getOrderDate()
setOrderDate()
getStatus()
setStatus()
getAmount()
setAmount()
ejbHomeGetTotalAmountOfAllOrders()
ejbSelectAllOrderAmounts()

implements

extends

«interface»
Order

14 0672324237 CH11 9/24/02 2:36 PM Page 249

public Order create(String studentId,
String status, double amount) throws CreateException, RemoteException;
/* Finder methods */
public Order findByPrimaryKey(String key)

throws FinderException, RemoteException;
public Collection findByStatus(String status)

throws FinderException, RemoteException;
/* Home methods */
public double getTotalAmountOfAllOrders()

throws FinderException, RemoteException;
}

To create the bean instance, a client calls the create() method of that home interface
and passes appropriate values for studentId, status, and amount. The bean internally
generates the orderId primary key.

The OrderHome home interface provides two finder methods: findByPrimaryKey() and
findByStatus(). The findByPrimaryKey() method allows clients to locate an order
bean by using the primary key. The single-object finder method findByPrimaryKey()
returns the Order remote interface. The findByStatus() method allows clients to locate
orders that are of a particular status, such as SUBMITTED. The multi-object finder method
findByStatus()returns java.util.Collection. The container throws a
FinderException from the implementation of a finder method to indicate an application-
level error.

250 Day 11

LISTING 11.1 continued

With CMP beans, you do not write the ejbFind methods in your entity bean
class. The finder methods are generated by the container provider tools.

Note

The home interface also provides the home method getTotalAmountOfAllOrders().
This is a home method because it contains business logic that is not specific to an entity
bean instance.

The remote home interface is a Java Remote Method Invocation (RMI) interface. So,
method arguments and return types of a remote method must be legal types for the RMI
over Internet Inter-ORB Protocol (RMI/IIOP), and the method must include
java.rmi.RemoteException in its throws clause.

Defining the Component Interface
The remote interface Order is defined as shown in Listing 11.2.

14 0672324237 CH11 9/24/02 2:36 PM Page 250

Developing Container-Managed Persistence Entity Beans 251

11

LISTING 11.2 The Full Text of day11/Order.java

package day11;

import java.rmi.*;
import javax.ejb.*;

public interface Order extends EJBObject {
public String getOrderId()

throws RemoteException;
public String getStudentId()

throws RemoteException;
public void setStudentId(String studentId)

throws RemoteException;
public double getAmount()

throws RemoteException;
public void setAmount(double amount)

throws RemoteException;
public java.sql.Timestamp getOrderDate()

throws RemoteException;
public void setOrderDate(java.sql.Timestamp date)

throws RemoteException;
public String getStatus()

throws RemoteException;
public void setStatus(String status)

throws RemoteException;
}

The remote interface contains business methods callable by the client. The Order inter-
face contains access methods to the bean’s persistent fields. Note that the Order interface
does not contain the setOrderId() method because we don’t allow clients to modify the
order ID after an order is created.

The remote interface is a Java RMI interface. So, method arguments and return types of a
remote method must be legal types for RMI/IIOP, and the method must include
java.rmi.RemoteException in its throws clause.

Implementing the Enterprise Bean Class
Listing 11.3 shows the OrderEJB bean class.

LISTING 11.3 The Full Text of day11/OrderEJB.java

package day11;

import java.util.*;
import java.io.*;
import java.rmi.*;

14 0672324237 CH11 9/24/02 2:36 PM Page 251

import javax.naming.*;
import javax.ejb.*;

public abstract class OrderEJB implements EntityBean
{

protected EntityContext ctx;
public abstract String getOrderId();
public abstract void setOrderId(String orderId);
public abstract String getStudentId();
public abstract void setStudentId(String studentid);
public abstract java.sql.Timestamp getOrderDate();
public abstract void setOrderDate(java.sql.Timestamp timestamp);
public abstract String getStatus();
public abstract void setStatus(String status);
public abstract double getAmount();
public abstract void setAmount(double amount);
/* Callback methods */
public void setEntityContext(EntityContext ctx) {

print(“setEntityContext called”);
this.ctx = ctx;

}
public void unsetEntityContext() {

print(“unsetEntityContext called.\n”);
this.ctx = null;

}
public void ejbActivate() {

print(“ejbActivate() called.\n”);
}
public void ejbPassivate() {

print(“ejbPassivate() called.\n”);
}
public void ejbStore() {

print(“ejbStore() called.\n”);
}
public void ejbLoad() {

print(“ejbLoad() called.\n”);
}
public void ejbRemove() throws RemoveException {

print(“ejbRemove() called.\n”);
}
public String ejbCreate(String studentId,

String status, double amount) throws CreateException {
print(“ejbCreate() called.\n”);
String orderId = getUniqueId();
setOrderId(orderId);
setStudentId(studentId);
setStatus(status);
setAmount(amount);
setOrderDate(new java.sql.Timestamp(System.currentTimeMillis()));

252 Day 11

LISTING 11.3 continued

14 0672324237 CH11 9/24/02 2:36 PM Page 252

Developing Container-Managed Persistence Entity Beans 253

11

return null;
}
public void ejbPostCreate(String studentId,

String courseId, double amount) throws CreateException {
print(“ejbPostCreate() called.\n”);

}
/* Home methods */
public double ejbHomeGetTotalAmountOfAllOrders()

throws FinderException {
double totalAmount = 0.0;
Collection col = ejbSelectAllOrderAmounts();
Enumeration amounts=Collections.enumeration(col);
while(amounts.hasMoreElements()) {

Double amount= (Double)amounts.nextElement();
totalAmount += amount.doubleValue();

}
return totalAmount;

}
/* select methods. */
public abstract Collection ejbSelectAllOrderAmounts()

throws FinderException ;

void print(String s) {
System.out.println(s);

}
String getUniqueId(){

return new Long(System.currentTimeMillis()).toString();
}

}

The OrderEJB entity bean implements the javax.ejb.EntityBean interface and is
defined as an abstract class. It consists of abstract accessor methods for the persistent
fields orderId, studentId, orderDate, status, and amount. It implements the methods
setEntityContext(), unsetEntityContext(), ejbActivate(), ejbPassivate(),
ejbLoad(), ejbStore(), and ejbRemove(), as defined in the javax.ejb.EntityBean
interface. The ejbCreate() method initializes the entity bean instance by assigning the
input arguments to the persistent fields and generates a unique order ID. Note that the
ejbCreate() method returns NULL. The bean implements the ejbPostCreate() method
that corresponds to the ejbCreate() method.

The OrderEJB bean class uses the ejbSelectAllOrderAmounts() select method as a
helper method to compute the total order amount in the
ejbHomeGetTotalAmountOfAllOrders() home method. ejbSelectAllOrderAmounts()
is defined as an abstract method, and the corresponding EJB QL (Enterprise JavaBeans
Query Language) query is specified in the deployment descriptor.

LISTING 11.3 continued

14 0672324237 CH11 9/24/02 2:36 PM Page 253

254 Day 11

Select methods are query methods used within an entity bean instance. You
may define zero or more select methods in your bean class. Each select
method name starts with the prefix ejbSelect and is defined as an abstract
method in an entity bean class. Every select method must have a corre-
sponding EJB QL query string in the deployment descriptor. Select methods
are not exposed to the client via the bean’s home or component interface.

A select method is similar to a finder method. But unlike a finder method, a
select method can return values that correspond to any persistent field or
relationship field. Typically, select methods are used as helper methods
within a business method.

Note

Select methods are applicable only to container-managed persistence beans,
and not to bean-managed persistence entity beans.

Caution

Declaring the Deployment Descriptor
Prior to EJB 2.0, queries for finder methods were written in a container-specific, propri-
etary way in the deployment descriptor. EJB 2.0 introduced a portable query language,
based on the abstract schema, not on the more complex database schema. This portable
query language provides a database- and vendor-independent way to specify queries in
the deployment descriptor. In the following sections, we’ll discuss the abstract persistent
schema and EJB Query Language, and then we’ll present the full listing of order deploy-
ment descriptors.

Abstract Persistent Schema
The abstract persistent schema defines an entity bean’s persistent fields and relationship
fields and determines the method for accessing them. The abstract schema is indepen-
dent of the entity bean’s implementation in a particular EJB container or particular data-
base.

The following listing shows the abstract persistent schema for an Order entity bean:

<entity>
<ejb-name>OrderEJB</ejb-name>
. . .
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Order</abstract-schema-name>
<cmp-field>
<field-name>orderId</field-name>

</cmp-field>
<cmp-field>

14 0672324237 CH11 9/24/02 2:36 PM Page 254

Developing Container-Managed Persistence Entity Beans 255

11

<field-name>studentId</field-name>
</cmp-field>
<cmp-field>
<field-name>orderDate</field-name>

</cmp-field>
<cmp-field>
<field-name>status</field-name>

</cmp-field>
<cmp-field>
<field-name>amount</field-name>

</cmp-field>
. . .

</entity>

The entity element declares an entity bean, and an ejb-name element within the entity
element defines the entity bean’s name (OrderEJB). The cmp-version element must be
2.x to take advantage of EJB 2.0 container-managed persistence. The abstract-schema-
name declares the name of this abstract schema (Order). You’ll later use this abstract
schema name to specify EJB QL queries. The schema declares five container-managed
persistent fields (cmp-field): orderId, studentId, orderDate, status, and amount. The
names of these fields must match the abstract get and set methods in your entity bean
class. For example, your entity bean class’s methods must be getOrderId, setOrderId,
getStudentId, setStudentId, getOrderDate, setOrderDate, getStatus, setStatus,
getAmount, and setAmount.

Enterprise JavaBeans Query Language
EJB QL enables you to specify queries for entity beans with container-managed persis-
tence in a database-independent, portable way. EJB QL uses an object-oriented, SQL-like
syntax to specify queries for finder and select methods of a container-managed persis-
tence entity bean. EJB QL queries are written with respect to entity bean’s abstract
schema. For example, the following line illustrates how the application uses an EJB QL
query for the findOrdersByStatus(String status) method to find orders of a particu-
lar status, such as COMPLETE:

SELECT OBJECT(o) FROM Order AS o WHERE o.status = ?1

The preceding query returns Order objects, as indicated by the expression OBJECT(o) in
the SELECT clause. In the FROM clause, the identifier o is analogous to an SQL correlation
variable. The WHERE clause limits the orders to those whose status matches the value of
the first parameter passed to the query, denoted by the expression ?1.

The container tools will translate such queries into the target language of the underlying
database. For example, in case of a relational database, the container translates an EJB
QL query to an SQL query. This allows the execution of queries to be shifted to the
native language facilities provided by the database, instead of requiring queries to be

14 0672324237 CH11 9/24/02 2:36 PM Page 255

executed on the runtime representation of the entity bean’s state. As a result, query meth-
ods can be optimized as well as portable.

An EJB QL query consists of the following three clauses:

• The SELECT clause determines the type of objects or values to be selected.

• The FROM clause defines the scope of the query by declaring one or more identifica-
tion variables. These identification variables may be referenced in the SELECT and
WHERE clauses.

• The optional WHERE is a conditional expression that restricts the objects or values
retrieved by the query.

This section explains the details of EJB QL syntax. On Day 12, you’ll learn more about
EJB QL.

The FROM Clause The FROM clause declares identification variable(s), based on the
abstract schema, for navigating through the schema. These identification variables may
be referenced in the SELECT and WHERE clauses.

For example, the following query restricts the domain of the query to Order entity beans
only:

SELECT OBJECT(o) FROM Order AS o WHERE o.status = ?1

This query also declares an identification variable, o, whose type is the abstract schema
type, Order. This variable is used in the SELECT and WHERE clauses.

The WHERE Clause The WHERE clause consists of a conditional expression that is used
to select or values that satisfy the expression. Therefore, the WHERE clause restricts the
results of the query.

Input Parameters
You can use input parameters to base a query on the parameters supplied by the client.
An input parameter is designated by a question mark (?) followed by an integer. For
example, the first input parameter is ?1, the second is ?2, and so forth.

For example, the following query is used for the finder method findByStudent(String
studentId):

SELECT OBJECT(o) FROM Order AS o WHERE o.student = ?1

The preceding query retrieves the orders that belong a particular student identified by
studentId.

Note that the query specifies studentId as a java.lang.String as follows:

<query>
<query-method>

256 Day 11

14 0672324237 CH11 9/24/02 2:36 PM Page 256

Developing Container-Managed Persistence Entity Beans 257

11

<method-name>findByStudent</method-name>
<method-params>
<method-param>java.lang.String</method-param>
</method-params>

</query-method>
<ejb-ql>
<![CDATA[SELECT OBJECT(o) FROM Order AS o WHERE o.student = ?1
]]>
</ejb-ql>
</query>

If an input parameter is NULL, comparison operations or arithmetic opera-
tions involving input parameter will return an unknown value.

Caution

Conditional Expressions
A WHERE clause consists of a conditional expression, which is evaluated from left to right
within a precedence level.

You may change the order of evaluation with parentheses.Note

BETWEEN Expressions
A BETWEEN expression determines whether an arithmetic expression falls within a range
of values. For example, o.amount BETWEEN 100 and 200 is equivalent to o.amount >=
100 and o.amount <= 200. Similarly, o.amount NOT BETWEEN 100 and 200 is equiva-
lent to o.amount < 100 OR o.amount > 200.

If the value of an arithmetic expression used in a BETWEEN expression is null,
the value of the BETWEEN expression will be unknown.

Caution

IN Expressions
An IN expression determines whether a string belongs to a set of string literals. In the
following example, if the status is Submitted, the expression is TRUE. If the status is
Complete, it is FALSE.

o.status IN (‘Submitted’, ‘Verified’)

14 0672324237 CH11 9/24/02 2:36 PM Page 257

LIKE Expressions
A LIKE expression determines whether a wildcard pattern matches a string.

Some examples are

• address.phone LIKE ‘12%3’ is true for 12993 and false for 1234

• asentence.word LIKE l_se is true for lose and false for loose

NULL Comparison Expressions
A NULL comparison expression tests whether a single-valued expression has a NULL value.

In the following example, if the status is NULL, the expression is TRUE. Otherwise, the
expression is FALSE.

o.status is NULL

Functional Expressions
EJB QL includes the following built-in functions:

String Functions

• CONCAT(String, String) concatenates the two given Strings and returns a
String.

• SUBSTRING(String, start, length) returns the substring of the given String
beginning at position start and of length long.

• LOCATE(String, String [, start]) returns the index of the first occurrence of a
String within another String as an int. You can optionally specify the start
index of the search.

• LENGTH(String) returns an int indicating the length of the String.

Arithmetic Functions

• ABS(number) returns the absolute value of a number.

• SQRT(double) returns the square root of a number as a double.

The SELECT Clause The SELECT clause denotes the query result. The SELECT clause
determines the type of objects or values to be selected. The SELECT clause of an EJB QL
query defined for a finder method always corresponds to the abstract schema type of the
entity bean for which the finder method is defined.

For example, because Order bean defines the findAllOrders() method in the
OrderHome interface, the objects returned by the following query have the Order remote
interface type:

SELECT OBJECT(o) FROM Order AS o

258 Day 11

14 0672324237 CH11 9/24/02 2:36 PM Page 258

Developing Container-Managed Persistence Entity Beans 259

11

Filter for Duplicates The DISTINCT keyword eliminates duplicate return values. For
example, to receive a unique order list, you would specify the query as follows:

SELECT DISTINCT OBJECT(o) FROM Order AS o

If the method of the query returns a java.util.Collection, which allows
duplicates, you must specify the DISTINCT keyword to eliminate duplicates.
However, if the method returns a java.util.Set, the DISTINCT keyword is
redundant because a java.util.Set may not contain duplicates.

Note

EJB 2.1, which is currently work in progress at the time of writing the book,
provides enhancements to EJB QL. For CMP entity beans it supports new fea-
tures namely order by and aggregate operations.

For ordering of results returned by a query, you can use ORDER BY clause in
the SELECT statement. For example, the following query returns the list of
orders in the ascending order of order date.

SELECT OBJECT(o) FROM Order o ORDER BY o.orderDate ASC

Query statements can use aggregate operators to return the aggregate val-
ues of the results. The five aggregate operators available in EJB 2.1 are AVG,
SUM, COUNT, MIN, and MAX. These operators can be used in the SELECT clause of
the query statement. For example, the following query returns the amount
of all orders:

SELECT SUM(o.amount) FROM Order o

If DISTINCT keyword is used before an aggregate operator then the dupli-
cate values are removed first before aggregate operator is applied.

Note

Now that you have learned the fundamentals of the abstract persistent schema and EJB
QL, let’s examine the ejb-jar.xml deployment descriptor of our Order bean.

As shown in Listing 11.4, ejb-jar.xml declares OrderEJB as the name of the entity
bean and specifies the home interface, remote interface, and bean class. It also declares
the Order abstract persistent schema, and that orderId is the primary key using the
primkey-field element. In addition, ejb-jar.xml specifies the EJB QL queries for all
the finder and select methods (except the findByPrimaryKey() method). For example,
the EJB QL for the findByStatus(String status) method is <![CDATA[SELECT
OBJECT(o) FROM Order AS o WHERE o.status = ?1]]>.

14 0672324237 CH11 9/24/02 2:36 PM Page 259

LISTING 11.4 The Full Text of day11/ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>OrderEJB</ejb-name>
<home>day11.OrderHome</home>
<remote>day11.Order</remote>
<ejb-class>day11.OrderEJB</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Order</abstract-schema-name>
<cmp-field>
<field-name>orderId</field-name>

</cmp-field>
<cmp-field>
<field-name>studentId</field-name>

</cmp-field>
<cmp-field>
<field-name>orderDate</field-name>

</cmp-field>
<cmp-field>
<field-name>status</field-name>

</cmp-field>
<cmp-field>
<field-name>amount</field-name>

</cmp-field>
<primkey-field>orderId</primkey-field>
<query>
<query-method>
<method-name>findByStatus</method-name>
<method-params>
<method-param>java.lang.String</method-param>

</method-params>
</query-method>
<ejb-ql>
<![CDATA[SELECT OBJECT(o) FROM Order AS o
WHERE o.status = ?1]]>

</ejb-ql>
</query>
<query>
<query-method>
<method-name>ejbSelectAllOrderAmounts</method-name>

260 Day 11

14 0672324237 CH11 9/24/02 2:36 PM Page 260

Developing Container-Managed Persistence Entity Beans 261

11

<method-params>
</method-params>

</query-method>
<ejb-ql>
<![CDATA[SELECT o.amount FROM Order AS o
WHERE o.orderId IS NOT NULL]]>

</ejb-ql>
</query>

</entity>
</enterprise-beans>

</ejb-jar>

Listing 11.5 shows a weblogic-ejb-jar.xml deployment descriptor that is specific to
WebLogic Server. The jndi-name element declares the JNDI name of the enterprise
bean. So, the JNDI name of the OrderEJB is day11/Order.

LISTING 11.5 The Full Text of day11/weblogic-ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN’
‘http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>OrderEJB</ejb-name>
<entity-descriptor>

<persistence>
<persistence-use>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>6.0</type-version>
<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-storage>

</persistence-use>
</persistence>

</entity-descriptor>
<jndi-name>day11/Order</jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

Listing 11.6 shows the weblogic-cmp-rdbms.xml. It contains the WebLogic Server–
specific deployment descriptors that define the container-managed persistence services.
For example, you can define abstract schema to database element mapping. Typically the

LISTING 11.4 continued

14 0672324237 CH11 9/24/02 2:36 PM Page 261

container tools allow you to map abstract schema to database schema at deployment
time.

LISTING 11.6 The Full Text of day11/weblogic-cmp-rdbms-jar.xml

<!DOCTYPE weblogic-rdbms-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB RDBMS Persistence//EN’
‘http://www.bea.com/servers/wls700/dtd/weblogic-rdbms20-persistence-700.dtd’>
<weblogic-rdbms-jar>
<weblogic-rdbms-bean>
<ejb-name>OrderEJB</ejb-name>
<data-source-name>jdbc.styejbDB</data-source-name>
<table-map>
<table-name>orders</table-name>
<field-map>
<cmp-field>orderId</cmp-field>
<dbms-column>order_id</dbms-column>
</field-map>
<field-map>
<cmp-field>studentId</cmp-field>
<dbms-column>student_id</dbms-column>
</field-map>
<field-map>
<cmp-field>orderDate</cmp-field>
<dbms-column>order_date</dbms-column>
</field-map>
<field-map>
<cmp-field>status</cmp-field>
<dbms-column>status</dbms-column>
</field-map>
<field-map>
<cmp-field>amount</cmp-field>
<dbms-column>amount</dbms-column>
</field-map>
</table-map>
</weblogic-rdbms-bean>
</weblogic-rdbms-jar>

In the case of JBoss, you need to write the deployment descriptors jboss.xml and
jbosscmp-jdbc.xml. Listing 11.7 shows the deployment descriptor jboss.xml. It
declares the JNDI name of OrderEJB entity bean as day11/Order.

LISTING 11.7 The Full Text of day11/jboss.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<jboss>
<enterprise-beans>

262 Day 11

14 0672324237 CH11 9/24/02 2:36 PM Page 262

Developing Container-Managed Persistence Entity Beans 263

11

<entity>
<ejb-name>OrderEJB</ejb-name>
<jndi-name>day11/Order</jndi-name>

</entity>
</enterprise-beans>

</jboss>

Listing 11.8 shows the jbosscmp-jdbc.xml. It contains the abstract-schema-to-database-
element mapping. In each cmp-field element, you specify the name of the cmp-field
using the field-name element and the corresponding database column name using the
column-name element.

LISTING 11.8 The Full Text of day11/jbosscmp-jdbc.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jbosscmp-jdbc PUBLIC

“-//JBoss//DTD JBOSSCMP-JDBC 3.0//EN”
“http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_0.dtd”>

<jbosscmp-jdbc>
<defaults>

<datasource>java:/DefaultDS</datasource>
<datasource-mapping>Hypersonic SQL</datasource-mapping>
<create-table>false</create-table>
<remove-table>false</remove-table>
<pk-constraint>true</pk-constraint>
<preferred-relation-mapping>foreign-key</preferred-relation-mapping>

</defaults>
<enterprise-beans>

<entity>
<ejb-name>OrderEJB</ejb-name>
<table-name>orders</table-name>
<cmp-field>

<field-name>orderId</field-name>
<column-name>order_id</column-name>

</cmp-field>
<cmp-field>

<field-name>studentId</field-name>
<column-name>student_id</column-name>

</cmp-field>
<cmp-field>

<field-name>orderDate</field-name>
<column-name>order_date</column-name>

</cmp-field>
<cmp-field>

<field-name>status</field-name>
<column-name>status</column-name>

LISTING 11.7 continued

14 0672324237 CH11 9/24/02 2:36 PM Page 263

</cmp-field>
<cmp-field>

<field-name>order</field-name>
<column-name>amount</column-name>

</cmp-field>
</entity>

</jbosscmp-jdbc>

Writing a Client
Listing 11.9 demonstrates how a client accesses an entity bean.

LISTING 11.9 The Full Text of day11\Client.java

package day11;

import java.util.*;
import javax.naming.*;
import javax.ejb.*;

public class Client {
public static void main(String[] args) {

print(“Starting Client . . .\n”);
Context initialContext = null;
OrderHome orderHome = null;
Order order = null;

try {
print(“Looking up the order home via JNDI.\n”);
initialContext = new InitialContext();
Object object = initialContext.lookup(“day11/Order”);
orderHome = (OrderHome)

javax.rmi.PortableRemoteObject.narrow(object,OrderHome.class);

order = (Order)orderHome.create(“1”, “Submitted”, 100);
String orderId = order.getOrderId();
print(“Created a new order:” + orderId + “ .\n”);

print(“Locating the order “ + orderId
+ “ using findByPrimaryKey method.\n”);

order=orderHome.findByPrimaryKey(orderId);

print(“Locating all orders with status Submitted “
+ “ using findByStatus method.\n”);

Collection col=orderHome.findByStatus(“Submitted”);
Enumeration orders=Collections.enumeration(col);

264 Day 11

LISTING 11.8 continued

14 0672324237 CH11 9/24/02 2:36 PM Page 264

Developing Container-Managed Persistence Entity Beans 265

11

while(orders.hasMoreElements()) {
order=(Order)orders.nextElement();
print(“Order id:”+ order.getOrderId());

}

print(“Finding the total amount of all orders using \n”
+ “ getTotalAmountOfAllOrders home method.\n”);

double totalAmount = orderHome.getTotalAmountOfAllOrders();
print(“Total amount:”+ totalAmount);

} catch (Exception e) {
e.printStackTrace();

}
}
static void print(String s) {

System.out.println(s);
}

}

The client locates the OrderHome home interface of the deployed enterprise bean via
JNDI and then uses the remote home interface to create a remote Order entity object.
The client then demonstrates the use of the finder and home methods.

Packaging and Deploying the
Enterprise Bean

This section describes the steps to package and deploy the Order entity bean, and build
the client for both WebLogic Server and JBoss application servers.

You can run the following commands for WebLogic:

C:\>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day11

C:\styejb\examples\day11>buildWebLogic.bat

You can run the following commands for JBoss:

C:\>cd styejb\examples

C:\styejb\examples>setEnvJboss.bat

C:\styejb\examples>cd day11

C:\styejb\examples\day11>buildJboss.bat

LISTING 11.9 continued

14 0672324237 CH11 9/24/02 2:36 PM Page 265

Running the Example
The following steps describe how to start PointBase database server and WebLogic
Server, and run the sample client:

1. Start the PointBase server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvWebLogic.bat
C:\styejb\examples>startPointBase.bat

2. Start WebLogic Server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvWebLogic.bat
C:\styejb\examples>startWebLogic.bat

3. You can run the client in the same window you used to package the bean and build
the client by using the following command:
C:\styejb\examples\day11>runClientWebLogic.bat

Running the client produces the following output:

Starting Client . . .
Looking up the order home via JNDI.
Created a new order:1027793589262 .
Locating the order 1027793589262 using findByPrimaryKey method.
Locating all orders with status Submitted using findByStatus method.
Order id:1027793589262
Finding the total amount of all orders using
getTotalAmountOfAllOrders home method.
Total amount:100.0

The following steps describe how to start the JBoss server and run the sample client:

1. Start JBoss in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvJBoss.bat
C:\styejb\examples>startJBoss.bat

2. You can run the client in the same window you used to package the bean and build
the client by using the following command:

C:\styejb\examples\day11>runClientWebLogic.bat

Note that the JBoss server automatically starts the default HyperSonic database.

Best Practices
Whenever possible, you should use container-managed persistence as rather than bean-
managed persistence. A CMP entity bean is portable and easier to develop.

266 Day 11

14 0672324237 CH11 9/24/02 2:36 PM Page 266

Developing Container-Managed Persistence Entity Beans 267

11

Use input parameters to write general EJB QL queries. For example, the query SELECT
OBJECT(o) FROM Order AS o WHERE o.status = ?1 is preferable to the query SELECT
OBJECT(o) FROM Order AS o WHERE o.status = ‘SUBMITTED’.

Summary
Today you wrote a container-managed persistence enterprise bean. The container is
responsible for generating the database access code. Similar to BMP, the CMP contains
the home interface, the component interface, the bean class, and the deployment descrip-
tor. The bean class contains the abstract accessor methods for persistent fields and imple-
ments the callback methods and home methods. The bean class may contain select
methods, which are query methods used within an entity bean instance.

The CMP deployment descriptor contains the abstract persistence schema and EJB QL
queries for finder and select methods. At deployment time, the abstract schema is
mapped to the database schema allowing the container to generate the required data
access code. You learned how to package and deploy the enterprise bean, and then wrote
and ran a client that accesses it.

Q&A
Q What are the coding differences between a bean-managed persistence bean

and a container-managed persistence bean?

A The following are the coding differences between the two types of entity beans:

• With BMP, the developer is responsible for writing the database access calls.
With CMP, the container is responsible for database access.

• The BMP bean class is not defined as abstract class. The CMP bean class is
defined as an abstract class.

• The persistent state in a BMP is defined as instance variables. In CMP, you
write public abstract accessor methods for persistent and relationship fields.

• A BMP implements all the finder methods in the bean class. A CMP bean
class does not implement the finder methods. The queries for the finder
methods are specified in the deployment descriptor.

• A CMP bean class can define select methods, whereas a BMP bean class
cannot define select methods.

14 0672324237 CH11 9/24/02 2:36 PM Page 267

Q What are the similarities and differences between the finder and select meth-
ods of a container-managed persistence entity bean?

A Both finder and select methods use EJB QL to define the semantics of the method.
Finder methods are exposed to the clients in the home interface, whereas select
methods are used as internal helper methods of a bean class and are not exposed to
the clients. Finder methods can return only EJBObjects or EJBLocalObjects of the
same type as the entity bean. Select methods can return EJBObjects,
EJBLocalObjects, or persistent field types.

Quiz
1. An OrderEJB container-managed persistence entity bean implements which one of

the following interfaces?

A. javax.ejb.EntityBean

B. javax.ejb.ContainerManagedBean

C. javax.ejb.OrderHome

D. javax.ejb.Order

2. The container invokes the ejbPostCreate<method>(...) method on an entity
instance after it invokes which one of the following methods?

A. ejbCreate<method>(...)

B. ejbLoad()

C. ejbActivate()

D. ejbRemove()

3. Which one of the following is true for a select method?

A. A select method is specified in the entity bean’s home interface.

B. Every select method must have an EJB QL query in the deployment descrip-
tor.

C. A client invokes a select method via a component interface.

Quiz Answers
1. A

2. A

3. B

268 Day 11

14 0672324237 CH11 9/24/02 2:36 PM Page 268

Developing Container-Managed Persistence Entity Beans 269

11

Exercises
To extend your knowledge of the subjects covered today, try the following exercises:

1. Add the findAllOrders() method to the OrderHome interface, and specify the cor-
responding EJB QL query SELECT OBJECT(o) FROM Order AS o in the ejb-
jar.xml deployment descriptor. In addition, package and deploy the entity bean.

2. Define local interfaces for the OrderEJB bean. Define an OrderLocalHome local
home interface and OrderLocal local interface. We will use these local interfaces
on Day 21.

14 0672324237 CH11 9/24/02 2:36 PM Page 269

14 0672324237 CH11 9/24/02 2:36 PM Page 270

DAY 12

WEEK 2

Developing Container-
Managed Relationships

Today, you’ll learn how to develop relationships among container-managed per-
sistence entity beans by using the advanced feature of container-managed rela-
tionships.

In our sample university registration system, a student’s order consists of one or
more line items. Each line item represents a single course item the student has
ordered. So, there exists a one-to-many relationship between order and line
items. Another example is a student can enroll in many courses, and each
course can have many students enrolled in it. So, there exists a many-to-many
relationship between students and courses. These are good candidates for
container-managed relationships.

Today, we’ll write a complete code example of the order-line item relationship.

Today’s road map:

• Examine the concepts of cardinality and directionality that are applicable
to container-managed relationships. You’ll also learn how to implement
different kinds of relationships using code snippets.

15 0672324237 CH12 9/24/02 3:56 PM Page 271

• Learn how to define the home and component interfaces for entity beans that are
part of a relationship.

• Learn how to specify the container-managed persistent fields in the bean class and
deployment descriptor.

• Learn how to compile, package, and deploy the beans in a container, and write a
client that tests the container-managed relationships.

Examining Container-Managed Relationships
As with a table in a relational database, an entity bean may be related to other entity
beans. With BMP entity beans, you need to write code to manage the relationships. With
CMP, you declare the relationships in the deployment descriptor and the container gener-
ates the code to manage the relationships. An entity bean relationship field represents a
relationship to another entity bean. The EJB container provides automatic management
of both the persistent state of an entity bean and its relationships to other entity beans.

Local interfaces provide the foundation for container-managed relationships. An entity
bean uses its local interface to maintain its relationships to other entity beans. Also, the
bean provider creates a single ejb-jar file that contains a deployment descriptor describ-
ing the entity beans and their relationships.

272 Day 12

Container-managed relationships are applicable only to container-managed
persistence beans and not to bean-managed persistence entity beans. An
entity bean that is the target of a container-managed relationship must pro-
vide local interfaces.

Caution

Cardinality
Cardinality indicates how many instances of one class may be associated with a single
instance of another class. Cardinality is also known as multiplicity. Container-managed
relationships may be one-to-one, one-to-many, or many-to-many as described in the fol-
lowing list:

• One-to-one—Each entity bean is associated with a single instance of another
entity bean. For example, each student has a corresponding mailing address.

• One-to-many—Each entity bean is associated with many instances of another
entity bean. For example, each order is composed of many line items.

15 0672324237 CH12 9/24/02 3:56 PM Page 272

Developing Container-Managed Relationships 273

12

• Many-to-many—The entity bean instances may be related to multiple instances of
each other. For example, a student can enroll in many courses and each course can
have many students enrolled in it.

Directionality
Relationships may be either unidirectional or bidirectional as follows:

• Bidirectional—If a relationship is bidirectional, it can be navigated in both direc-
tions. For example, the one-to-many relationship between order and line items is
bidirectional because given an order, you need to find the associated line items;
given a line item, you need to find the corresponding order.

• Unidirectional—A unidirectional relationship can be navigated in only one direc-
tion. For example, a line item bean would have a relationship field that identifies
the associated course bean, but a course bean would not have a relationship field
for the line item bean. In other words, the line item bean knows about the course
bean, but the course bean doesn’t know which line item bean instances refer to it.

Implementing Container-Manager
Relationships

In this section, we examine the sample implementations of different kinds of relation-
ships. Later today, we’ll design and implement a complete example of one-to-many bidi-
rectional relationship between order and line items.

Implementing One-to-One Relationships
Figure 12.1 shows a StudentEJB entity bean with a one-to-one unidirectional relation-
ship to an AddressEJB entity bean. Student-Address is the name of the relationship.
Student-has-address is the role name of the StudentEJB, and Address-belongs-to-

student is the role name of the AddressEJB in this relationship.

FIGURE 12.1
One-to-one unidirec-
tional relationship.

StudentEJB AddressEJB
1 1

Student-has-address Address-belongs-to-student

Student-Address

The following code snippet shows the implementation of the relationship in Figure 12.1
using container-managed relationships:

public abstract class StudentEJB implements EntityBean{
...
public abstract AddressLocal getAddress();

15 0672324237 CH12 9/24/02 3:56 PM Page 273

public abstract void setAddress(AddressLocal address);
...
}

StudentEJB declares a public abstract get method, and sets the accessor methods for the
address relationship field. Also notice that the methods use the AddressLocal local inter-
face.

AddressEJB, as follows, contains no relationship fields:

public abstract class AddressEJB implements EntityBean{
...
/* no cmr-fields */
}

Because AddressEJB does not know about StudentEJB, there are no accessor methods in
AddressEJB for accessing StudentEJB.

274 Day 12

The accessor method for a container-managed relationship field must be
public and abstract. The get method of a single-valued container-managed
relationship field must return the local interface of the entity bean. The set
method for the relationship must take the entity bean’s local interface as an
argument.

Note

The relationship fields must be declared in the deployment descriptor. A single deploy-
ment descriptor describes both the entity beans and their relationships. The deployment
descriptor corresponding to the Student-Address relationship is written as follows:

<ejb-jar>
...
<enterprise-beans>
...
</enterprise-beans>
<relationships>

<ejb-relation>
<!--ONE-TO-ONE uni-directional : Student Address -->
<ejb-relation-name>Student-Address</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>
Student-has-address

</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>StudentEJB</ejb-name>

</relationship-role-source>

15 0672324237 CH12 9/24/02 3:56 PM Page 274

Developing Container-Managed Relationships 275

12

<cmr-field>
<cmr-field-name>address</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
Address-belongs-to-student

</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>AddressEJB</ejb-name>

</relationship-role-source>
</ejb-relationship-role>

</ejb-relation>
</relationships>
...
</ejb-jar>

The ejb-relation element declares a relationship. The name of the relation Student-
Address is declared using the ejb-relation-name element. Each ejb-relation element
contains a pair of ejb-relationship-role elements to describe the two roles in the rela-
tionship. Each ejb-relationship-role element describes a relationship role: its name,
its multiplicity, and its navigability within a relation. Each relationship role refers to an
entity bean by means of an ejb-name element contained in the relationship-role-
source element. For example, the student side of the relationship declares the Student-
has-address role name using the ejb-relationship-role-name element, cardinality of
One using the multiplicity element, and StudentEJB as the EJB name using the ejb-
name element in the relationship-role-source element. In addition, the student side of
the relationship also specifies the container-managed relationship field address using the
cmp-field-name element in the cmp-field element. Similarly, the deployment descriptor
contains the address side of the relationship. Because the address does not know about
the student, there is no cmr-field in address for accessing a student.

A unidirectional relationship is implemented with a cmr-field on the entity
bean instance from which navigation can take place, and no related cmr-
field on the entity bean instance that is the target of the relationship.

Note

Implementing One-to-Many Relationships
Figure 12.2 shows an OrderEJB entity bean with a one-to-many bidirectional relationship
to LineItemEJB entity beans. OrderEJB is composed of many LineItemEJBs.

15 0672324237 CH12 9/24/02 3:56 PM Page 275

Order-LineItems is the name of this relationship. Order-has-lineitems is the role
name of OrderEJB, and Lineitems-belongs-to-order is the role name of LineItemEJB
in this relationship.

276 Day 12

FIGURE 12.2
One-to-many bidirec-
tional relationship.

OrderEJB LineItemEJB
1 *

Order-has-lineItems LineItems-belongs-to-order
Order-LineItems

The following shows the code template for the OrderEJB class:

public abstract class OrderEJB implements EntityBean{
...
public abstract Collection getLineItems();
public abstract void setLineItems(Collection lineItems);
...
}

OrderEJB declares abstract get and set accessor methods for the line items relationship
field. You need to use a collection of local interfaces for a collection-valued container-
managed relationship field. The getLineItems() method returns a collection of
java.util.Collection of LineItemLocal local interfaces. The setLineItems()
method takes a collection of entity beans’ LineItemLocal local interfaces as an argu-
ment.

The get method of a collection-valued container-managed relationship field
must return a collection (either java.util.Collection or java.util.Set) of
local interfaces. The set method for the relationship must take a collection
of entity beans’ local interfaces as an argument.

Note

The following snippet shows the code template for the LineItemEJB class:

public abstract class LineItemEJB implements EntityBean{
...
public abstract OrderLocal getOrder();
public abstract void setOrder(OrderLocal order);
...
}

LineItemEJB declares abstract get and set accessor methods for the order relationship
field.

15 0672324237 CH12 9/24/02 3:56 PM Page 276

Developing Container-Managed Relationships 277

12

The deployment descriptor corresponding Order-LineItems relationship is written as
follows:

<ejb-jar>
...
<enterprise-beans>
...
</enterprise-beans>
<relationships>
<!--ONE-TO-MANY bi-directional : Order LineItem -->
<ejb-relation>
<ejb-relation-name>Order-LineItems</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
Order-has-lineitems

</ejb-relationship-role-name>
<multiplicity>one</multiplicity>
<relationship-role-source>
<ejb-name>OrderEJB</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>lineItems</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
LineItems-belongs-to-order

</ejb-relationship-role-name>
<multiplicity>many</multiplicity>
<relationship-role-source>
<ejb-name>LineItemEJB</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>order</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>
</relationships>
...
</ejb-jar>

The deployment descriptor declares the Order-LineItems relation using ejb-relation-
name. The order side of the relationship declares the Order-has-lineitems role name
with cardinality of One. It also declares StudentEJB as the EJB name using the ejb-name
element in the relationship-role-source element. It specifies the container-managed
relationship field lineItems using the cmp-field-name element in the cmp-field ele-
ment. Similarly, the deployment descriptor contains the line items’ side of the relation-
ship.

15 0672324237 CH12 9/24/02 3:56 PM Page 277

Implementing Many-to-Many Relationships
Figure 12.3 shows a StudentEJB entity bean with a many-to-many bidirectional relation-
ship to a CourseEJB entity bean.

278 Day 12

FIGURE 12.3
Many-to-many bidirec-
tional relationship.

StudentEJB CourseEJB
**

Student-register-in-courses Courses-have-registered-students
Student-Course

StudentEJB defines the abstract accessor methods for the course relationship field as fol-
lows:

public abstract class StudentEJB implements EntityBean{
...
public abstract Collection getCourses();
public abstract void setCourses(Collection courses);
...
}

CourseEJB defines the abstract accessor methods for the student relationship field as fol-
lows:

public abstract class CourseEJB implements EntityBean{
...
public abstract Collection getStudents();
public abstract void setStudents(Collection students);
...
}

The deployment descriptor is written as follows:

<ejb-jar>
...
<enterprise-beans>
...
</enterprise-beans>
<relationships>
<!--MANY-TO-MANY bi-directional: Student Course -->
<ejb-relation>
<ejb-relation-name>Student-Course</ejb-relation-name>
<ejb-relationship-role>
<ejb-relationship-role-name>
Students-register-in-courses

</ejb-relationship-role-name>
<multiplicity>many</multiplicity>
<relationship-role-source>
<ejb-name>StudentEJB</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>courses</cmr-field-name>

15 0672324237 CH12 9/24/02 3:56 PM Page 278

Developing Container-Managed Relationships 279

12

<cmr-field-type>java.util.Collection</cmr-field-type>
</cmr-field>

</ejb-relationship-role>

<ejb-relationship-role>
<ejb-relationship-role-name>
Courses-have-registered-students

</ejb-relationship-role-name>
<multiplicity>many</multiplicity>
<relationship-role-source>
<ejb-name>CourseEJB</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>students</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>
</relationships>
...
</ejb-jar>

The student side of the Student-Course relationship declares Students-register-in-
courses role name with cardinality of many. It also specifies the container-managed
relationship field courses. Similarly, the deployment descriptor also contains the course
side of the relationship.

FIGURE 12.4
Many-to-many bidirec-
tional relationship.

You can model a many-to-many relationship into two one-to-many relation-
ships using a new entity bean. For example, as shown in Figure 12.4, an
enrollment entity bean models the join relationship between students and
courses. This is a preferable design approach because it reduces the depen-
dency between entity beans.

Note

StudentEJB CourseEJBEnrollmentEJB
*1 * 1

Designing Container-Managed Relationships
Now that you understand the basics of container-manager relationships, let’s examine the
design of the order-line item relationship in detail and implement it. Figure 12.5 shows
an order entity bean with a relationship to line items. Each order is composed of multiple
line items. A composition relationship is shown as a solid line with a filled diamond at
one end. The order is composed of many line items, and the name of the composition

15 0672324237 CH12 9/24/02 3:56 PM Page 279

relationship is Order-LineItems. Order-has-lineitems is the role name of the
OrderEJB and Lineitems-belongs-to-order is the role name of the LineItemEJB in this
relationship.

An OrderEJB entity bean class consists of the persistent fields orderId, studentId,
orderDate, status, and amount, and of the container-managed persistent field,
lineItems. It also implements two business methods: addLineItem() and
getOrderLineItems(). It implements the methods setEntityContext(),
unsetEntityContext(), ejbActivate(), ejbPassivate(), ejbLoad(), ejbStore(), and
ejbRemove() as defined in the javax.ejb.EntityBean interface. It also implements the
ejbCreate() and ejbPostCreate() methods. An order entity bean is identified by its
primary key, orderId.

An OrderLineItemEJB entity bean class consists of the persistent fields
orderLineItemId, courseId, and fee, and of the container-managed persistent field,
order. It implements the methods setEntityContext(), unsetEntityContext(),
ejbActivate(), ejbPassivate(), ejbLoad(), ejbStore(), ejbRemove() as defined in
the javax.ejb.EntityBean interface. It also implements the ejbCreate() and
ejbPostCreate() methods. An OrderLineItem entity bean is identified by its primary
key, orderLineItemId.

280 Day 12

OrderEJB

getOrderId()
setOrderId()
getStudentId()
setStudentId()
getOrderDate()
setOrderDate()
getStatus()
setStatus()
getAmount()
setAmount()
getLineItems()
setLineItems()
addLineItem()
getOrderLineItems()
setEntityContext()
unsetEntityContext()
ejbActivate()
ejbPassivate()
ejbLoad()
ejbStore()
ejbRemove()
ejbCreate()
ejbPostCreate()

OrderLineItemEJB

getOrderLineItemId()
setOrderLineItemId()
getCourseId()
setCourseId()
getFee()
setFee()
getOrder()
setOrder()
setEntityContext()
unSetEntityContext()
ejbActivate()
ejbPassivate()
ejbLoad()
ejbStore()
ejbRemove()
ejbCreate()
ejbPostCreate()

1 *

Order-has-lineItems LineItems-belongs-to-order

Order-LineItems

FIGURE 12.5
Order-line item rela-
tionship.

15 0672324237 CH12 9/24/02 3:56 PM Page 280

Developing Container-Managed Relationships 281

12

In addition (but not shown in Figure 12.5), the order entity bean uses the line item inter-
nally, but does not expose it to remote clients. This is achieved as follows: The order
entity bean defines both a remote and a local component interface. The local interface is
presented only to the line item entity bean and the remote interface is presented to the
remote clients. Note that this satisfies the requirement that an entity bean that is the tar-
get of a container-managed relationship must provide local interfaces.

Also, the lifetime of the line items is coincident with the lifetime of the order. Because a
line item object should exist only when the parent order exists, you want to ensure that
when you delete an order, you also delete all the line items that belong to the order. This
is known as a cascade delete. We’ll discuss the cascade delete facility later today.

Defining the Home Interfaces
We define both local and remote home interfaces for the order entity bean, but only a
local home interface for the line item entity bean.

Defining the Order Home Interfaces
Both the local and remote home interfaces of the order provide methods for creating and
finding the instances of the bean based on the primary key.

Listing 12.1 shows the OrderHome remote home interface.

LISTING 12.1 The Full Text of day12/OrderHome.java

package day12;
import java.util.*;
import java.rmi.*;
import javax.ejb.*;
public interface OrderHome extends EJBHome {

/* Create methods */
public Order create(String studentId,
String status, double amount) throws CreateException, RemoteException;

/* Finder methods */
public Order findByPrimaryKey(String key)

throws FinderException, RemoteException;
}

Listing 12.2 shows the OrderLocalHome local home interface.

LISTING 12.2 The Full Text of day12/OrderLocalHome.java

package day12;
import java.util.*;

15 0672324237 CH12 9/24/02 3:56 PM Page 281

import java.rmi.*;
import javax.ejb.*;
public interface OrderLocalHome extends EJBLocalHome {

/* Create methods */
public OrderLocal create(String studentId,

String status, double amount) throws CreateException;
/* Finder methods */
public OrderLocal findByPrimaryKey(String key)

throws FinderException;
}

Defining the OrderLineItemLocalHome Home Interface
The local home interfaces of the line items provide methods for creating and finding the
instances of the bean based on the primary key. Listing 12.3 shows the
OrderLineItemLocalHome local home interface.

LISTING 12.3 The Full Text of day12/OrderLineItemLocalHome.java

package day12;
import javax.ejb.*;
import java.util.*;
public interface OrderLineItemLocalHome extends EJBLocalHome {

public OrderLineItemLocal create(String orderLineItemId,
String courseId, double fee) throws CreateException;

public OrderLineItemLocal findByPrimaryKey(String key)
throws FinderException;

}

Defining the Remote Interfaces
We define both local and remote interfaces for the order entity bean, but only the local
interface for the line item entity bean.

Defining the Order Interfaces
Both the local and remote home interfaces of the order entity bean provide methods for
accessing the bean’s persistent fields. In addition, they contain the business methods
addLineItem() and getOrderLineItems(). The addLineItem() method is used to add a
line item to the order. The getOrderLineItems() returns a collection of ClientLineItem
objects (as opposed to OrderLineItemLocal objects).

282 Day 12

LISTING 12.2 continued

15 0672324237 CH12 9/24/02 3:56 PM Page 282

Developing Container-Managed Relationships 283

12

Listing 12.4 shows the Order remote interface.

LISTING 12.4 The Full Text of day12/Order.java

package day12;
import java.util.*;
import java.rmi.*;
import javax.ejb.*;
public interface Order extends EJBObject{

public String getOrderId()
throws RemoteException;

public String getStudentId()
throws RemoteException;

public void setStudentId(String studentId)
throws RemoteException;

public double getAmount()
throws RemoteException;

public void setAmount(double amount)
throws RemoteException;

public java.sql.Timestamp getOrderDate()
throws RemoteException;

public void setOrderDate(java.sql.Timestamp date)
throws RemoteException;

public String getStatus()
throws RemoteException;

public void setStatus(String status)
throws RemoteException;

public void addLineItem(String courseId, double fee)
throws RemoteException;

public Collection getOrderLineItems()
throws RemoteException;

}

The Order remote interface does not provide accessor methods for the container-
managed persistent field line items.

The accessor methods for container-managed relationship fields must not be
exposed in the remote interface of the entity bean.

Caution

Listing 12.5 shows the OrderLocal local interface.

15 0672324237 CH12 9/24/02 3:56 PM Page 283

LISTING 12.5 The Full Text of day12/OrderLocal.java

package day12;
import java.util.*;
import java.rmi.*;
import javax.ejb.*;
public interface OrderLocal extends EJBLocalObject {

public String getOrderId();
public String getStudentId();
public void setStudentId(String studentId);
public double getAmount();
public void setAmount(double amount);
public java.sql.Timestamp getOrderDate();
public void setOrderDate(java.sql.Timestamp date);
public String getStatus();
public void setStatus(String status);
public void addLineItem(String courseId, double fee);
public Collection getOrderLineItems();

}

Defining the OrderLineItemLocal Local Interface
The local interface of the order line item entity bean provides methods for accessing the
bean’s persistent fields. In addition, it contains the accessor methods for the container-
managed persistent field order.

Listing 12.6 shows the OrderLineItemLocal local interface.

LISTING 12.6 The Full Text of day12/OrderLineItemLocal.java

package day12;
import javax.ejb.*;
public interface OrderLineItemLocal extends EJBLocalObject {

public String getOrderLineItemId();
public String getCourseId();
public void setCourseId(String courseId);
public double getFee();
public void setFee(double fee);
public OrderLocal getOrder();
public void setOrder(OrderLocal o);

}

Implementing the Enterprise Bean Classes
Listing 12.7 shows the OrderEJB bean class.

284 Day 12

15 0672324237 CH12 9/24/02 3:56 PM Page 284

Developing Container-Managed Relationships 285

12

LISTING 12.7 The Full Text of day12/OrderEJB.java

package day12;
import java.util.*;
import java.io.*;
import java.rmi.*;
import javax.naming.*;
import javax.ejb.*;
public abstract class OrderEJB implements EntityBean {
protected EntityContext ctx;
/* get and set methods for cmp fields */
public abstract String getOrderId();
public abstract void setOrderId(String orderId);
public abstract String getStudentId();
public abstract void setStudentId(String studentid);
public abstract java.sql.Timestamp getOrderDate();
public abstract void setOrderDate(java.sql.Timestamp timestamp);
public abstract String getStatus();
public abstract void setStatus(String status);
public abstract double getAmount();
public abstract void setAmount(double amount);
/* get and set methods for relationship fields */
public abstract Collection getLineItems();
public abstract void setLineItems(Collection lineItems);
/* business methods */
public void addLineItem(String courseId, double fee) {

try {
Context ctx = new InitialContext();
OrderLineItemLocalHome home = (OrderLineItemLocalHome)

ctx.lookup(“day12/OrderLineItemLocal”);
String lineItemId = getUniqueId();
OrderLineItemLocal item =

home.create(lineItemId, courseId, fee) ;
getLineItems().add(item);

} catch(Exception e) {
throw new EJBException(“Error adding line item:”, e);

}
}
public Collection getOrderLineItems() {

Vector clientLineItems = new Vector();
Collection lineitems = getLineItems();
java.util.Iterator iterator = lineitems.iterator();
ClientLineItem item;
while (iterator.hasNext()) {

OrderLineItemLocal litem = (OrderLineItemLocal)iterator.next();
item = new ClientLineItem(litem.getOrderLineItemId(),

litem.getCourseId(), litem.getFee());
clientLineItems.add(item);

}
return clientLineItems;

15 0672324237 CH12 9/24/02 3:56 PM Page 285

}
/* Callback methods */
public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;
}
public void unsetEntityContext() {

this.ctx = null;
}
public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbStore() {}
public void ejbLoad() {}
public void ejbRemove() throws RemoveException {

print(“Removing Order id:” + (String)ctx.getPrimaryKey());
}
public String ejbCreate(String studentId,

String status, double amount) throws CreateException {
String orderId = getUniqueId();
setOrderId(orderId);
setStudentId(studentId);
setStatus(status);
setAmount(amount);
setOrderDate(new java.sql.Timestamp(System.currentTimeMillis()));
print(“Creating Order id:” + orderId);
return null;

}
public void ejbPostCreate(String studentId,
String courseId, double amount) throws CreateException {}

String getUniqueId(){
return new Long(System.currentTimeMillis()).toString();

}
void print(String s) {

System.out.println(s);
}
}

The OrderEJB entity bean implements the javax.ejb.EntityBean interface and is
defined as an abstract class. It consists of abstract accessor methods for the persistent
fields orderId, studentId, orderDate, status, and amount, and the container-managed
persistent field, lineItems. The addLineItem() business method creates a new line item
and adds it to the persistent managed relationship. The getOrderLineItems() business
method retrieves the line items in this order using getLineItems() method, and creates a
collection of ClientLineItem objects. This method makes a view of the line items that
are in this order available to the client. It implements the methods setEntityContext(),
unsetEntityContext(), ejbActivate(), ejbPassivate(), ejbLoad(), ejbStore(), and

286 Day 12

LISTING 12.7 continued

15 0672324237 CH12 9/24/02 3:56 PM Page 286

Developing Container-Managed Relationships 287

12

ejbRemove() as defined in the javax.ejb.EntityBean interface. The ejbCreate()
method initializes the entity bean instance by assigning the input arguments to the per-
sistent fields. The ejbCreate() method returns null. The bean implements the
ejbPostCreate() method that corresponds to the ejbCreate() method.

Listing 12.8 shows the OrderLineItemEJB bean class.

LISTING 12.8 The Full Text of day12/OrderLineItemEJB.java

package day12;
import javax.naming.*;
import javax.ejb.*;
import java.util.*;
public abstract class OrderLineItemEJB implements EntityBean {
protected EntityContext ctx;
/* get and set methods for cmp fields */
public OrderLineItemEJB() {}
public abstract String getOrderLineItemId();
public abstract void setOrderLineItemId(String id);
public abstract String getCourseId();
public abstract void setCourseId(String courseId);
public abstract double getFee();
public abstract void setFee(double fee);
/* get and set methods for relationship fields */
public abstract OrderLocal getOrder();
public abstract void setOrder(OrderLocal order);
/* Callback methods */
public void setEntityContext(EntityContext ctx) {

this.ctx = ctx;
}
public void unsetEntityContext() {

this.ctx = null;
}
public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbStore() {}
public void ejbLoad() {}
public String ejbCreate(String orderLineItemId, String courseId,

double fee) throws CreateException {
setOrderLineItemId(orderLineItemId);
setCourseId(courseId);
setFee(fee);
print(“Creating OrderLineItem id:” + orderLineItemId);
return null;

}
public void ejbPostCreate(String orderLineItemId, String courseId,

double fee) throws CreateException {}
public void ejbRemove() {

print(“Removing OrderLineItem id:” + (String)ctx.getPrimaryKey());

15 0672324237 CH12 9/24/02 3:56 PM Page 287

}
void print(String s) {

System.out.println(s);
}
}

The OrderLineItemEJB entity bean implements the javax.ejb.EntityBean interface and
is defined as an abstract class. It consists of abstract accessor methods for the persistent
fields orderLineItemId, courseId, and fee, and the container-managed persistent field,
order. It implements the methods setEntityContext(), unsetEntityContext(),
ejbActivate(), ejbPassivate(), ejbLoad(), ejbStore(), and ejbRemove() as defined
in the javax.ejb.EntityBean interface. The ejbCreate() method initializes the entity
bean instance by assigning the input arguments to the persistent fields. The ejbCreate()
method returns null. The bean implements the ejbPostCreate() method that corre-
sponds to the ejbCreate() method.

ClientLineItem is a value class that is used in the client view. Listing 12.9 shows the
ClientLineItem class.

LISTING 12.9 The Full Text of day12/ClientLineItem.java

package day12;
public class ClientLineItem implements java.io.Serializable {

private String orderLineItemId;
private String courseId;
private double fee;
public ClientLineItem(String orderLineItemId,

String courseId, double fee) {
this.orderLineItemId = orderLineItemId;
this.courseId = courseId;
this.fee = fee;

}
public String getOrderLineItemId() {

return orderLineItemId ;
}
public double getFee() {

return fee;
}
public String getCourseId() {

return courseId;
}

}

288 Day 12

LISTING 12.8 continued

15 0672324237 CH12 9/24/02 3:56 PM Page 288

Developing Container-Managed Relationships 289

12

Declaring the Deployment Descriptors
EJB QL enables you to traverse entity bean relationships. In this section, we discuss how
to declare collection members in EJB QL and then present the full listing of the deploy-
ment descriptors.

Collection Member Declarations
In a one-to-many or a many-to-many relationship, the many side of the relationship con-
sists of a collection of entity beans. You can declare a collection of values, in the FROM
clause, using a collection member declaration. An identification variable of a collection
member declaration is declared using the IN operator. For example, a finder method
query to find all orders with pending line items can be written as follows:

SELECT DISTINCT OBJECT(o)
FROM Order AS o, IN(o.lineItems) as l
WHERE l.shipped = FALSE

In the preceding example, lineItems represents a collection of instances. In the FROM
clause declaration IN(o.lineItems) l, the identification variable l evaluates to any
LineItem value directly reachable from Order. This query navigates over the cmr-field
lineItems (of the abstract schema type Order) to find line items, and uses the cmp-
field shipped (of lineItem) to select those orders that have at least one line item that
has not yet shipped. Note that this query does not select orders that have no line items.
To find all orders with no associated line items, you can use the following query:

SELECT DISTINCT OBJECT(o)
FROM Order AS o
WHERE o.lineItems IS EMPTY

You can test whether a particular value is a member of the collection by using the MEMBER
OF comparison operator as follows:

SELECT OBJECT(l)
FROM ORDER o, LineItem l
WHERE l MEMBER of o.lineItems

The preceding query finds all the line items that are attached to orders. In other words, it
does not select line items that are not attached to any order.

Declaring the Standard Deployment Descriptor
ejb-jar.xml
Now let’s examine the ejb-jar.xml deployment descriptor shown in Listing 12.10. The
ejb-jar.xml declares OrderEJB as the name of the order entity bean and specifies the
home interface, remote interface, local home interface, local interface, and bean class. It

15 0672324237 CH12 9/24/02 3:56 PM Page 289

declares the Order abstract persistent schema and declares that orderId is the primary
key using the primkey-field element. Similarly, the deployment descriptor declares
OrderLineItemEJB as the name of the order line item entity bean and specifies the home
interface, remote interface, local home interface, local interface, and bean class. It
declares the Order abstract persistent schema and declares that orderId is the primary
key using the primkey-field element.

LISTING 12.10 The Full Text of day12/ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>OrderEJB</ejb-name>
<home>day12.OrderHome</home>
<remote>day12.Order</remote>
<local-home>day12.OrderLocalHome</local-home>
<local>day12.OrderLocal</local>
<ejb-class>day12.OrderEJB</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>Order</abstract-schema-name>
<cmp-field>
<field-name>orderId</field-name>

</cmp-field>
<cmp-field>
<field-name>studentId</field-name>

</cmp-field>
<cmp-field>
<field-name>orderDate</field-name>

</cmp-field>
<cmp-field>
<field-name>status</field-name>

</cmp-field>
<cmp-field>
<field-name>amount</field-name>

</cmp-field>
<primkey-field>orderId</primkey-field>

</entity>
<entity>
<ejb-name>OrderLineItemEJB</ejb-name>
<local-home>day12.OrderLineItemLocalHome</local-home>

290 Day 12

15 0672324237 CH12 9/24/02 3:56 PM Page 290

Developing Container-Managed Relationships 291

12

<local>day12.OrderLineItemLocal</local>
<ejb-class>day12.OrderLineItemEJB</ejb-class>
<persistence-type>Container</persistence-type>
<prim-key-class>java.lang.String</prim-key-class>
<reentrant>False</reentrant>
<cmp-version>2.x</cmp-version>
<abstract-schema-name>OrderLineitem</abstract-schema-name>
<cmp-field>
<field-name>orderLineItemId</field-name>

</cmp-field>
<cmp-field>
<field-name>courseId</field-name>

</cmp-field>
<cmp-field>
<field-name>fee</field-name>

</cmp-field>
<primkey-field>orderLineItemId</primkey-field>

</entity>
</enterprise-beans>
<relationships>
<ejb-relation>
<ejb-relation-name>Order-LineItems</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Order-has-lineitems</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>
<ejb-name>OrderEJB</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>lineItems</cmr-field-name>
<cmr-field-type>java.util.Collection</cmr-field-type>

</cmr-field>
</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>lineItem-belongsto-Order
➥</ejb-relationship-role-name>

<multiplicity>Many</multiplicity>
<cascade-delete/>
<relationship-role-source>
<ejb-name>OrderLineItemEJB</ejb-name>

</relationship-role-source>
<cmr-field>
<cmr-field-name>order</cmr-field-name>

</cmr-field>
</ejb-relationship-role>

</ejb-relation>
</relationships>

</ejb-jar>

LISTING 12.10 continued

15 0672324237 CH12 9/24/02 3:56 PM Page 291

The deployment descriptor also declares a relationship using ejb-relation. The deploy-
ment descriptor declares the Order-LineItems relation using ejb-relation-name. The
order side of the relationship declares the Order-has-lineitems role name with cardi-
nality of One. It also declares OrderEJB as the EJB name using the ejb-name element in
the relationship-role-source element. It specifies the container-managed relationship
field lineItems using the cmp-field-name element in the cmp-field element. Similarly,
the deployment descriptor also contains the line items’ side of the relationship.

Because a line item object should exist only when the parent order exists, you want to
ensure that when you delete an order, you also cascade delete all the line items that
belong to the order. This is declared using the cascade-delete element on the line item
side of the relationship.

292 Day 12

The cascade-delete element is used within a particular relationship to spec-
ify that the lifetime of one or more entity beans is dependent on the life-
time of another entity object. cascade-delete can be specified only for
one-to-one and one-to-many relationships.

Let’s examine how this works with an example. As shown in Figure 12.6,
entity instances a and b are related. Instance b is composed of instance c and
instance d is composed of c. Assume that the cascade-delete option was
specified for composition relationships. When the remove method is called
on an entity bean instance b, the EJB container performs the following:

1. Calls the ejbRemove() method on instance b.

2. Removes entity object b from all relationships, with instance a and
instance c, in which it participates.

3. Removes entity object b from the persistent store.

4. If the cascade-delete element is specified for a related entity bean,
removal is cascaded and any related entity bean instances are also
removed. So, the container removes instance c, which in turn triggers
the removal of instance d.

Note

FIGURE 12.6
Example of cascade-
delete.

a b c d

Cascade-
delete

Cascade-
delete

Declaring the Vendor-Specific Deployment Descriptors
In this section, we’ll examine the additional deployment descriptors that are specific to
WebLogic Server and JBoss. Each server needs a couple of deployment descriptors.

15 0672324237 CH12 9/24/02 3:56 PM Page 292

Developing Container-Managed Relationships 293

12

In the case of WebLogic Server, you need to write the deployment descriptors weblogic-
ejb-jar.xml and weblogic-cmp-rdbms-jar.xml. Listing 12.11 shows the weblogic-
ejb-jar.xml deployment. It specifies the JNDI names of the OrderEJB entity bean’s
remote home interface using the jndi-name element and local home interface using
local-jndi-name. The type-storage element specifies the full path (META-
INF/weblogic-cmp-rdbms-jar.xml) of the file that stores the data of this persistence
type. This file is stored in the META-INF subdirectory of the JAR file. Similarly, the ele-
ments local-jndi-name and so on are specified for the OrderLineItemEJB entity bean.

LISTING 12.11 The Full Text of day12/weblogic-ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN’
‘http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd’>
<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>OrderEJB</ejb-name>
<entity-descriptor>
<persistence>
<persistence-use>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>6.0</type-version>
<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-storage>

</persistence-use>
</persistence>

</entity-descriptor>
<jndi-name>day12/Order</jndi-name>
<local-jndi-name>day12/OrderLocal</local-jndi-name>

</weblogic-enterprise-bean>
<weblogic-enterprise-bean>
<ejb-name>OrderLineItemEJB</ejb-name>
<entity-descriptor>
<persistence>
<persistence-use>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>6.0</type-version>
<type-storage>META-INF/weblogic-cmp-rdbms-jar.xml</type-storage>

</persistence-use>
</persistence>

</entity-descriptor>
<local-jndi-name>day12/OrderLineItemLocal</local-jndi-name>

</weblogic-enterprise-bean>
</weblogic-ejb-jar>

Listing 12.12 shows the weblogic-cmp-rdbms-jar.xml. It contains the WebLogic
Server–specific deployment descriptors that define container-managed persistence

15 0672324237 CH12 9/24/02 3:56 PM Page 293

services. It specifies the abstract-schema-to-database-element mapping for both OrderEJB
and OrderLineItemEJB (the mapping for OrderLineItemEJB is not shown in the listing).
This file also specifies the relationship that is managed by WebLogic using the
weblogic-rdbms-relation element. This element specifies the mapping from the
order_id foreign key column in OrderLineItemEJB to the order_id primary key column
of OrderEJB.

LISTING 12.12 The Text of day12/weblogic-cmp-rdbms-jar.xml

<!DOCTYPE weblogic-rdbms-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB RDBMS Persistence//EN’
‘http://www.bea.com/servers/wls700/dtd/weblogic-rdbms20-persistence-700.dtd’>
<weblogic-rdbms-jar>
<weblogic-rdbms-bean>
<ejb-name>OrderEJB</ejb-name>
<data-source-name>jdbc/styejbDB</data-source-name>
<table-map>
<table-name>orders</table-name>
<field-map>
<cmp-field>orderId</cmp-field>
<dbms-column>order_id</dbms-column>

</field-map>
<field-map>
<cmp-field>studentId</cmp-field>
<dbms-column>student_id</dbms-column>

</field-map>
<field-map>
<cmp-field>orderDate</cmp-field>
<dbms-column>order_date</dbms-column>

</field-map>
<field-map>
<cmp-field>status</cmp-field>
<dbms-column>status</dbms-column>

</field-map>
<field-map>
<cmp-field>amount</cmp-field>
<dbms-column>amount</dbms-column>

</field-map>
</table-map>
</weblogic-rdbms-bean>
<weblogic-rdbms-bean>
<ejb-name>OrderLineItemEJB</ejb-name>
. . .

</weblogic-rdbms-bean>
<weblogic-rdbms-relation>
<relation-name>Order-LineItems</relation-name>
<weblogic-relationship-role>
<relationship-role-name>

294 Day 12

15 0672324237 CH12 9/24/02 3:56 PM Page 294

Developing Container-Managed Relationships 295

12

lineItem-belongsto-Order
</relationship-role-name>
<relationship-role-map>
<column-map>

<foreign-key-column>order_id</foreign-key-column>
<key-column> order_id </key-column>

</column-map>
</relationship-role-map>
<db-cascade-delete/>

</weblogic-relationship-role>
</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

In the case of JBoss, you need to write the deployment descriptors jboss.xml and
jbosscmp-jdbc.xml. Listing 12.13 shows the deployment descriptor jboss.xml. It speci-
fies the JNDI names of the OrderEJB entity beanís remote home interface using jndi-
name element, and local home interface using local-jndi-name. Also, it specifies the
JNDI names of the OrderLineItemEJB entity bean’s remote home interface using jndi-
name.

LISTING 12.13 The Full Text of day12/jboss.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<jboss>
<enterprise-beans>
<entity>
<ejb-name>OrderEJB</ejb-name>
<jndi-name>day12/Order</jndi-name>
<local-jndi-name>day12/OrderLocal</local-jndi-name>

</entity>
<entity>
<ejb-name>OrderLineItemEJB</ejb-name>
<local-jndi-name>day12/OrderLineItemLocal</local-jndi-name>

</entity>
</enterprise-beans>

</jboss>

Listing 12.14 shows the jbosscmp-jdbc.xml file. It contains the abstract-schema-to-
database-element mapping for both OrderEJB and OrderLineItemEJB (the mapping for
OrderLineItemEJB is not shown in the listing). This file also specifies the relationship
that is managed by JBoss using the ejb-relation element. This element specifies the
mapping from the order_id foreign key column in OrderLineItemEJB to the order_id
primary key column of OrderEJB.

LISTING 12.12 continued

15 0672324237 CH12 9/24/02 3:56 PM Page 295

LISTING 12.14 The Full Text of day12/jbosscmp-jdbc.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE jbosscmp-jdbc PUBLIC

“-//JBoss//DTD JBOSSCMP-JDBC 3.0//EN”
“http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_0.dtd”>

<jbosscmp-jdbc>
<defaults>

<datasource>java:/DefaultDS</datasource>
<datasource-mapping>Hypersonic SQL</datasource-mapping>
<create-table>false</create-table>
<remove-table>false</remove-table>
<pk-constraint>true</pk-constraint>
<preferred-relation-mapping>foreign-key</preferred-relation-mapping>

</defaults>
<enterprise-beans>

<entity>
<ejb-name>OrderEJB</ejb-name>
<table-name>orders</table-name>
<cmp-field>

<field-name>orderId</field-name>
<column-name>order_id</column-name>

</cmp-field>
<cmp-field>

<field-name>studentId</field-name>
<column-name>student_id</column-name>

</cmp-field>
<cmp-field>

<field-name>orderDate</field-name>
<column-name>order_date</column-name>

</cmp-field>
<cmp-field>

<field-name>status</field-name>
<column-name>status</column-name>

</cmp-field>
<cmp-field>

<field-name>amount</field-name>
<column-name>amount</column-name>

</cmp-field>
</entity>
<entity>

<ejb-name>OrderLineItemEJB</ejb-name>
. . .

</enterprise-beans>
<relationships>

<ejb-relation>
<ejb-relation-name>Order-LineItems</ejb-relation-name>
<foreign-key-mapping/>
<ejb-relationship-role>

296 Day 12

15 0672324237 CH12 9/24/02 3:56 PM Page 296

Developing Container-Managed Relationships 297

12

<ejb-relationship-role-name>Order-has-lineitems</ejb-relationship-role-name>
<key-fields>

<key-field>
<field-name>orderId</field-name>
<column-name>order_id</column-name>

</key-field>
</key-fields>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>lineItem-belongsto-Order
➥</ejb-relationship-role-name>

<key-fields/>
</ejb-relationship-role>

</ejb-relation>
</relationships>

</jbosscmp-jdbc>

Writing a Client
Listing 12.15 shows a client that is used to test the order-line item relationship.

LISTING 12.15 The Full Text of day12/Client.java

package day12;
import java.util.*;
import javax.naming.*;
import javax.ejb.*;
public class Client {
public static void main(String[] args) {

print(“Starting Client . . .\n”);
Context initialContext = null;
OrderHome orderHome = null;
Order order = null;
try {

print(“Looking up the order home via JNDI.\n”);
initialContext = new InitialContext();
Object object = initialContext.lookup(“day12/Order”);
orderHome = (OrderHome)
javax.rmi.PortableRemoteObject.narrow(object,OrderHome.class);
object = (Order)orderHome.create(“1”, “Submitted”, 100);
order = (Order)
javax.rmi.PortableRemoteObject.narrow(object,Order.class);
String orderId = order.getOrderId();
print(“Created a new order:” + orderId + “ .\n”);

LISTING 12.14 continued

15 0672324237 CH12 9/24/02 3:56 PM Page 297

print(“Adding some line items to the order.\n”);
order.addLineItem(“1”, 200);
order.addLineItem(“2”, 300);
order.addLineItem(“3”, 300);
print(“Retrieving line items of the order.\n”);
Collection collection = order.getOrderLineItems();
Iterator it = collection.iterator();
while (it.hasNext()) {
ClientLineItem item =(ClientLineItem)javax.rmi.PortableRemoteObject.narrow

(it.next(), ClientLineItem.class);
print(“Item id:” + item.getOrderLineItemId() +

“ Course id:” + item.getCourseId() +
“ Fee:” + item.getFee()

);
}
print(“Removing order:” + orderId + “ .\n”);
order.remove();

} catch (Exception e) {
e.printStackTrace();

}
}
static void print(String s) {
System.out.println(s);

}
}

The client locates the OrderHome home interface of the deployed enterprise bean via
JNDI. The client uses the remote home interface to create an Order entity object. The
client adds three line items to the order using the addLineItem() method and then
retrieves the orders using the getOrderLineItems() method of the Order interface. The
client finally removes the order. Because the cascade-delete element is specified on the
line items’ side of the Order-LineItems relationship, this should trigger the removal of
line items that are attached to the order.

Packaging and Deploying the
Enterprise Beans

This section describes the steps to package and deploy the entity beans and also build the
client for both WebLogic Server and JBoss application servers.

298 Day 12

LISTING 12.15 continued

15 0672324237 CH12 9/24/02 3:56 PM Page 298

Developing Container-Managed Relationships 299

12

You can run the following commands for WebLogic Server:

C:\>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day12

C:\styejb\examples\day12>buildWebLogic.bat

You can run the following commands for JBoss:

C:\>cd styejb\examples

C:\styejb\examples>setEnvJboss.bat

C:\styejb\examples>cd day12

C:\styejb\examples\day11>buildJboss.bat

Running the Example
The following steps describe how to start the PointBase database server and WebLogic
Server, and run the sample client:

1. Start PointBase server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvWebLogic.bat
C:\styejb\examples>startPointBase.bat

2. Start WebLogic Server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvWebLogic.bat
C:\styejb\examples>startWebLogic.bat

3. You can run the client in the same window you used to package the beans and
build the client, using the following command:

C:\styejb\examples\day12> runClientWebLogic.bat

The following steps describe how to start the JBoss server and run the sample client:

1. Start the JBoss server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvJBoss.bat
C:\styejb\examples>startJBoss.bat

The JBoss server automatically starts the default HyperSonic database. So, there is
no separate step for it.

15 0672324237 CH12 9/24/02 3:56 PM Page 299

2. You can run the client in the same window you used to package the beans and
build the client by using the following command:

C:\styejb\examples\day12>runClientJBoss.bat

Running the client produces the following client-side output similar to the following:

Starting Client . . .
Looking up the order home via JNDI.
Created a new order:1028476929797 .
Adding some line items to the order.
Retrieving line items of the order.
Item id:1028476929918 Course id:1 Fee:200.0
Item id:1028476929958 Course id:2 Fee:300.0
Item id:1028476929988 Course id:3 Fee:300.0
Removing order:1028476929797 .

The corresponding output on the server side is as follows:

09:02:09,797 INFO [STDOUT] Creating Order id:1028476929797
09:02:09,918 INFO [STDOUT] Creating OrderLineItem id:1028476929918
09:02:09,958 INFO [STDOUT] Creating OrderLineItem id:1028476929958
09:02:09,988 INFO [STDOUT] Creating OrderLineItem id:1028476929988
09:02:10,068 INFO [STDOUT] Removing Order id:1028476929797
09:02:10,088 INFO [STDOUT] Removing OrderLineItem id:1028476929958
09:02:10,098 INFO [STDOUT] Removing OrderLineItem id:1028476929918
09:02:10,098 INFO [STDOUT] Removing OrderLineItem id:1028476929988

Notice the cascade removal of line items corresponding to the removal of their parent
order.

Best Practices
It is preferable to implement relationships between entity beans using container-managed
persistence as opposed to bean-managed persistence for the following reasons:

• The code is simpler to write. With BMP, you need to write code to manage rela-
tionships. With CMP, you need to declare how the relationships are managed in the
deployment descriptor. The container generates all the relationship code.

• The container automatically handles referential integrity. For example, in a one-to-
one relationship, if you change one side of the relationship, the container automati-
cally drops the old relationship and replaces it with the newly formed one-to-one
relationship.

• Containers typically provide performance optimizations, such as optimizing the
SQL to load the entity bean and its relationships.

300 Day 12

15 0672324237 CH12 9/24/02 3:56 PM Page 300

Developing Container-Managed Relationships 301

12

Summary
The EJB container provides automatic management of both the persistent state of an
entity bean and its relationships to other entity beans. An entity bean that is the target of
a container-managed relationship must provide local interfaces. Container-managed rela-
tionships may be one-to-one, one-to-many, or many-to-many, and may be bidirectional or
unidirectional.

Relationships are implemented as container-managed relationship fields. Similar to per-
sistent fields, container-managed relationship fields are virtual fields that are defined and
accessed by public abstract get and set accessor methods in the CMP entity bean class.
The relationship fields are also declared in the deployment descriptor.

Container-managed relationships provide a cascade-delete facility that automatically
enables the lifetime of the dependent object to be dependent on the lifetime of its parent.

Q&A
Q What’s the difference between a container-managed persistent field and

container-managed relationship field?

A A persistent field is designed to represent or store a single unit of data. A relation-
ship field is designed to represent or store a reference to another entity bean.
Unlike a persistent field, a relationship field does not constitute the state of an
entity bean.

Q How do I implement a container-managed relationship field in the entity bean
class?

A Similar to container-managed persistent fields, container-managed relationship
fields are not defined in the entity bean class and are virtual fields only. The entity
bean class declares the public abstract get and set methods for each relationship
field. The implementation of these methods is provided by the EJB container at
deployment time.

Quiz
1. A CMP entity bean that is the target of a container-managed relationship must

implement which one of the following interfaces?

A. Local interfaces

B. Remote interfaces

15 0672324237 CH12 9/24/02 3:56 PM Page 301

C. Both local and remote interfaces

D. None of the above

2. Which of the following is a valid return type for a get method of a collection-
valued container-managed relationship field?

A. Collection of entity bean’s local interfaces

B. Collection of entity bean’s remote interfaces

C. Collection of entity bean’s home interfaces

D. Collection of entity bean’s local home interfaces

3. Which of the following statements is true for container-managed relationship
fields?

A. Container-managed relationship fields are virtual only.

B. The bean provider writes the implementation of container-managed persistent
fields.

C. The accessor methods for container-managed persistent fields are exposed in
the remote interface of the entity bean.

D. The accessor methods for container-managed persistent fields are exposed in
the home interface of the entity bean.

Quiz Answers
1. A

2. A

3. A

Exercises
To extend your knowledge of the subjects covered today, try the following exercise:

Add the deleteLineItem(String lineItemId) method to the OrderEJB class and its
remote and local interfaces. Also modify the client to use the newly added method.
Finally, package and deploy the entity bean.

302 Day 12

15 0672324237 CH12 9/24/02 3:56 PM Page 302

DAY 13

WEEK 2

Understanding JMS and
Message-Driven Beans

Today we’ll explore the Java Message Service (JMS) and give a brief account
of message-driven beans. JMS is the standard API used by J2EE applications to
access Message-Oriented Middleware (MOM) services. Messaging is the abil-
ity of applications to interact and communicate with each other asynchronously.
This is different from e-mail messaging, which takes place between humans.
Message-driven applications are designed to accomplish loose coupling and
portability. Each part of these enterprise applications can be developed as self-
contained business components, and then can be integrated into a reliable yet
flexible system. In general, messaging plays an important role in any large
enterprise, and is usually a major part in integrating legacy systems with B2B
and B2C applications.

Today’s road map is to learn the main concepts and models of JMS, and to give
an overview of message-driven beans, in particular:

• Learn about JMS architecture and its main objectives

• Study the API of both messaging models: point-to-point and publish/sub-
scribe, and know when to use them

16 0672324237 CH13 9/24/02 2:36 PM Page 303

• Learn how to write a JMS client—either a message consumer or a message pro-
ducer—in both messaging models

• Scratch the surface of message-driven beans, and learn how to use them as JMS
consumers

Learning the JMS Fundamentals
JMS provides a unified API for J2EE enterprise applications to create, send, receive, and
process messages using any MOM products. These MOM products, also known as JMS
providers, implement JMS API so that Java applications can use the JMS API (interfaces
and classes) in a vendor-neutral manner. This allows applications to communicate with
each other using messages through any JMS provider. Communications between applica-
tions occur in an asynchronous manner, which means that a sender sends a message and
does not wait for the response, but continues the flow of execution. This is similar to
sending an e-mail message, and you don’t have to wait for a reply. The difference
between JMS messages and e-mail messages is that JMS is used between applications,
whereas e-mail is between users or humans.

304 Day 13

The term messaging is broadly defined in computing. It’s used for describing
various concepts in operating systems, e-mail systems, and fax systems. With
JMS, it is used to describe asynchronous communication between enterprise
applications.

Note

Because messaging is peer-to-peer, all users of JMS are referred to as JMS clients. A
JMS application consists of a set of application-defined messages and a set of JMS
clients that exchange them. Each message consists of a header, which is used for routing
purposes, and a body that holds the message content. Messages contain formatted data
that describes specific business actions, and through the exchange of these messages,
each application tracks the progress of the enterprise.

A destination is a logical channel that encapsulates the addresses of both the sending and
receiving endpoints, like a queue or a topic. JMS providers either broadcast a message
from a destination to many clients, or send a message to a single client. Similar to our
local post office, a JMS provider optionally supports the guaranteed delivery of mes-
sages, but does not guarantee the order in which they are received. In many systems,
such as financial applications, messages are required to be delivered once and only once.
Messages can be delivered based on priority, expiration time, or whether acknowledg-
ment is required.

16 0672324237 CH13 9/24/02 2:36 PM Page 304

Understanding JMS and Message-Driven Beans 305

13

Understanding JMS Architecture
The JMS API is an abstraction of the interfaces and classes that JMS clients use to han-
dle messages when in communication with a JMS provider. This is analogous to the use
of JDBC as a unified API to access data sources, as you learned on Day 9, “Using JDBC
to Connect to a Database,” or JNDI to access naming and directory services, as you
learned on Day 4, “Using JNDI for Naming Services and Components.” JMS is not a
messaging system by itself; it’s an API to access an existing messaging system. The JMS
architecture is best illustrated by Figure 13.1.

FIGURE 13.1
JMS architecture.

Messaging
Server

IBM MQSeries

Messaging
Server

Sonic MQ

Messaging
Server

Fiorano MQ

JMS API

JMS Client

JMS Architecture

JMS Provider

JMS Messages

client tier

Figure 13.1 depicts all the layers that constitute JMS architecture, and the relationships
between them. The following is a brief description of each layer, and the function it per-
forms:

• JMS clients: Send and receive messages through a JMS provider.

• JMS messages: Applications define a set of messages that are used to communicate
information between its clients.

• JMS API: Unified interfaces and classes to be used by all JMS clients.

• JMS provider: The messaging system (MOM) that implements JMS in addition to
other administrative and control functionality required of a full-featured messaging
product.

• Administered objects: Administered objects are pre-configured JMS objects cre-
ated by the JMS provider’s administrator for the use of clients. Administered
objects are not shown in Figure 13.1.

16 0672324237 CH13 9/24/02 2:36 PM Page 305

JMS specification defines these architecture components to facilitate writing portable
enterprise applications. It does not address certain operational functionality such as

• Clustering. JMS does not address load balancing or fail-over; support is left to the
JMS provider.

• Security and administration. The JMS API does not provide control privacy and
integrity of JMS messages. Security is considered to be a JMS provider-specific
aspect.

• Error notification. MOM vendors (JMS providers) send proprietary notification
messages to clients. JMS does not attempt to standardize these messages.
Developers should be aware of these messages to avoid any portability issues.

A number of JMS providers offer products of varying JMS support. Some of these prod-
ucts are SonicMQ from Progress, FioranoMQ from Fiorano, WebLogic from BEA,
MQSeries from IBM, and the open source JBossMQ from JBoss.

Administered Objects
One of the objectives of the JMS architecture is writing portable and configurable appli-
cations. For JMS clients to be portable, they must be isolated from any proprietary
aspects of JMS providers. This is done by defining JMS-administered objects. These
objects are created and configured by a JMS provider’s administrator and then registered
in a JNDI namespace. Later, they are accessed by JMS clients through looking them up
in the JNDI service. Administrators create these objects using a JMS provider-specific
administrative tool.

There are two main two types of JMS administered objects:

• ConnectionFactory: The object a client uses to create a connection with a JMS
provider.

• Destination: The object a client uses to specify the destination of messages it
sends and the source of messages it receives.

Administered objects not only hide JMS provider-specific configuration details from
JMS clients, but they also abstract JMS administrative information into Java objects that
are easily organized and administered from a common management console.

306 Day 13

As you learned in Day 4, it is recommended that you use the
java:comp/env/jms environment as the standard context for JNDI name-
space lookups of the JMS administered objects ConnectionFactory and
Destination.

Tip

16 0672324237 CH13 9/24/02 2:36 PM Page 306

Understanding JMS and Message-Driven Beans 307

13

Exploring Messaging Models
In general, there are two main types of messaging models: point-to-point (PTP) and
publish-and-subscribe (Pub/Sub). JMS refers to these models as messaging domains. A
single JMS application can use both models; however, JMS focuses on applications that
use one or the other.

A JMS client that sends (or publishes) a message is called a producer, whereas a JMS
client that receives (or subscribes) to a message is called a consumer.

Point-to-Point Messaging Model
The PTP messaging model is intended for one-to-one delivery of messages, and is built
around the concept of a message queue. Each message is sent to a specific queue; clients
receive messages from the queue(s) established to hold their messages. They are point-
to-point in the sense that a client sends a message to a specific queue. Receivers must
either poll a queue periodically or listen to incoming events in order to extract their mes-
sages. Each message is consumed once and only once by a receiver. A message is auto-
matically removed from the queue when it’s consumed by a receiver. In PTP, a producer
is called a sender, and a consumer is called a receiver. Figure 13.2 illustrates a few sce-
narios of PTP messaging.

As you can see in Figure 13.2, a queue might have more than one sender and more than
one receiver, but only one receiver may consume each message. In the PTP model, a
JMS client can choose to be a message browser that is allowed to peek into a message
without consuming it.

Publish-and-Subscribe Messaging Model
The Pub/Sub messaging model is intended for one-to-many broadcast of messages and is
built around the concept of a message topic. Each message published to a topic is broad-
cast to all the clients that subscribe to this topic. A Topic object encapsulates a provider-
specific topic name. It is the way a client specifies the identity of a topic to JMS
methods. Many Pub/Sub providers group topics into hierarchies and provide various
options for subscribing to parts of the hierarchy. This is similar to the concept of news-
groups, in which a user subscribes to the newsgroup topic of interest. Each consumer
receives a copy of each message, which is pushed to the clients subscribed to it. In the
Pub/Sub model, a producer is called a publisher, and a consumer is called a subscriber.
Figure 13.3 illustrates a few scenarios of Pub/Sub messaging.

In the Pub/Sub model, a JMS client can choose to be a durable subscriber that can dis-
connect and later connect to get its messages that it subscribed to.

16 0672324237 CH13 9/24/02 2:36 PM Page 307

FIGURE 13.3
Publish-and-subscribe
messaging model.

308 Day 13

FIGURE 13.2
Point-to-point messag-
ing model. receiveSender

(Producer)
Receiver

(Consumer)

send

JMS Queue

Message

Receive

messages
in sequence

Sender
(Producer)

Receiver
(Consumer)

send

Sender
(Producer)

send

Sender
(Producer)

send
JMS Queue

Receive

Receive

Receive

Sender
(Producer)

send

JMS Queue

Receiver
(Consumer)

Receiver
(Consumer)

Receiver
(Consumer)

Point-2-Point Message Model

Subscribe

Subscribe

Subscribe

Publisher
(Producer)

Publish

JMS Topic

Subscriber
(Consumer)

Subscriber
(Consumer)

Subscriber
(Consumer)

Publish/Subscribe Message Model

Message

Subscribe

Subscribe

Subscribe

Publish

Publish

Publish
JMS Topic

Subscriber
(Consumer)

Subscriber
(Consumer)

Subscriber
(Consumer)

Publisher
(Producer)

Publisher
(Producer)

Publisher
(Producer)

16 0672324237 CH13 9/24/02 2:36 PM Page 308

Understanding JMS and Message-Driven Beans 309

13

Understanding JMS Interfaces and Classes
The main concepts of the JMS API (interfaces and classes) are included in the
javax.jms package. JMS interfaces are based on a set of common messaging concepts.
Both the PTP and the Pub/Sub JMS messaging models define a customized set of inter-
faces for these common (patent) concepts. Table 13.1 summarizes the JMS common
interfaces for both the PTP model and Pub/Sub model interfaces.

TABLE 13.1 Summary of PTP and Pub/Sub Interfaces

JMS Parent Interface PTP Specific Pub/Sub Specific

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Destination Queue Topic

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver, QueueBrowser TopicSubscriber

Table 13.2 provides a brief definition of these JMS interfaces, and whether they support
concurrent use.

TABLE 13.2 Summary of Common Interfaces

Interface Description Concurrent Use?

ConnectionFactory An administered object used by a client to create a Yes
Connection

Connection An active connection to a JMS provider Yes

Destination An administered object that encapsulates the Yes
identity of a message destination

Session A single-threaded context for sending and receiving No
messages

MessageProducer An object created by a Session that is used for No
sending messages to a destination

MessageConsumer An object created by a Session that is used for No
receiving messages sent to a destination

To write a JMS client, you must first import the javax.jms package and then, depending
on the JMS model you are using, work through the following outline of the basic steps

16 0672324237 CH13 9/24/02 2:36 PM Page 309

involved in developing a JMS client. The following steps replace the JMS parent inter-
face with the appropriate interface of the messaging model you chose from those listed in
Table 13.1:

1. Import the javax.jms package

2. Look up the ConnectionFactory using the JNDI Context

3. Create a Connection from the ConnectionFactory

4. Create a Session from the Connection object

5. Look up the Destination using the same JNDI Context

6. Create a MessageProducer or a MessageConsumer using the Session object

7. Create a Message by choosing an appropriate JMS message type

8. Send/receive the Message after starting the Connection

310 Day 13

Remember that the administered objects ConnectionFactory and
Destination are already created and registered into a JNDI namespace, as
discussed earlier in the “Administered Objects” section.

Note

The preceding steps are a generalized layout of the client code developed for any of the
JMS models. We stated the parent object, rather than the specific interface or class used
by a particular model. In the next section, you’ll learn how to apply these steps for both
the PTP and Pub/Sub models.

Not all JMS objects are multi-threaded. JMS imposes restrictions on the
Session object to be single-threaded. This means that a JMS provider must
serialize messages delivered to all consumers created from the Session
object. A Connection object can be shared by many Sessions because it’s
multi-threaded.

Caution

Figure 13.4 summarizes the main interfaces of the JMS API. Developing a JMS client
depends on which JMS model you are using (either PTP or Pub/Sub), and on the client
type (either producer or consumer).

16 0672324237 CH13 9/24/02 2:36 PM Page 310

Understanding JMS and Message-Driven Beans 311

13

Point-to-Point Concepts
Point-to-point concepts are about working with queues of messages. The main objects of
the PTP API are the administered objects: the QueueConnectionFactory and Queue inter-
faces, which act as factories for creating other objects. The JMS PTP model defines how
a client works with queues: how it finds them, how it sends messages to them, and how it
receives messages from them. The following are the main steps in developing JMS PTP
messaging clients:

1. Look up a QueueConnectionFactory in the JNDI namespace.

2. Create a QueueConnection.

3. Look up a message queue.

4. Create a QueueSession.

FIGURE 13.4
JMS main interfaces.

Message

create

Message Producer Session Message Consumer
create create

1:1

1:many

se
nd

/p
ub

lis
h

re
ce

iv
e/

su
bs

cr
ib

e

create

Connection

create

Destination
(queue/topic)

Interface
Administered

object

ConnectionFactory
Destination

(queue/topic)

lookuplooku
p lookup

JNDI namespace

Legend:

16 0672324237 CH13 9/24/02 2:36 PM Page 311

5. Create a QueueSender, QueueReceiver, or QueueBrowser.

6. Start sending, receiving, or browsing messages.

7. Close the connection.

We discuss these steps in more detail in the following sections.

Step 1: Look Up a QueueConnectionFactory in the JNDI
Namespace
A connection factory contains information about the JMS provider, the host, and the port
that the server is listening to. It is created and configured by an administrator, and the
client looks it up in the JNDI namespace. We assume that a QueueConnectionFactory
named qcFactory has been created for our use.

312 Day 13

import javax.naming.*;
import javax.jms.*;
// Establish a JNDI context
Context ctx = new InitialContext();
// Lookup the administered object qcFactory in the JNDI service
QueueConnectionFactory qcf = (QueueConnectionFactory)

ctx.lookup(“java:comp/env/jms/qcFactory”);

Step 2: Create a QueueConnection
After obtaining a QueueConnectionFactory, use it to create a QueueConnection. This
creates an active connection to the JMS provider with the default security credentials for
the JMS client.

QueueConnection qConn = qcf.createQueueConnection();

Alternatively, you can also create a connection using a user with a password:

String user = “john”;
String password = “1234”;
QueueConnection qConn = qcf.createQueueConnection(user, password);

Step 3: Look Up a Message Queue
An administrator has created, configured, and registered a queue named myQueue in the
JNDI for your use. Again, use JNDI to look it up:

Queue q = (Queue) ctx.lookup(“java:comp/env/jms/myQueue”);

You will learn how to configure these JMS administered objects on Day 14,
“Developing Message-Driven Beans,” for both WebLogic and JBoss, when
you study message-driven beans.

Note

16 0672324237 CH13 9/24/02 2:36 PM Page 312

Understanding JMS and Message-Driven Beans 313

13

Step 4: Create a QueueSession
Use the QueueConnection to create one or more QueueSession objects, which will be
used to create a QueueSender (if you want to send() messages) or a QueueReceiver (if
you want to receive() messages):

QueueSession qSession = qConn.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE);

The first parameter of the createQueueSession() method is a Boolean that indicates
whether this session will begin a local transaction (called a transacted session). In this
example, no transaction started. The second parameter indicates the mode of acknowl-
edging message receipt. Message acknowledgement is discussed later today.

A QueueConnection can be used to create more than one QueueSession. Each
of these sessions is used in producing or consuming messages, and it can be
transacted or not.

Note

Step 5: Create a QueueSender, QueueReceiver, or QueueBrowser
Three options are available to a JMS client: to become a sender, a receiver, or a browser
for a queue.

Step 5.1: Create a QueueSender If you will be sending messages to the Queue, use
the QueueSession to create a QueueSender:

QueueSender sender = qSession.createSender(q);

Step 5.2: Create a QueueReceiver Similarly, if you will be receiving messages from
the queue, use the QueueSession to create a QueueReceiver. After a message is received
and acknowledged, it will be removed automatically from the queue.

QueueReceiver receiver = qSession.createReceiver(q);

If messages have been received but not acknowledged when a QueueSession
terminates, they are retained and redelivered by the JMS provider when a
consumer next accesses the queue.

Note

16 0672324237 CH13 9/24/02 2:36 PM Page 313

Step 5.3: Create a QueueBrowser

If you need to look at pending messages in the queue without consuming them, use the
QueueSession to create a QueueBrowser. Queue browsing is useful for looking into
queue messages from monitoring tools.

QueueBrowser qBrowser = qSession.createBrowser(q);

314 Day 13

The QueueBrowser feature is unique to the PTP model.Note

Step 6: Start Delivering Messages
All previous steps are just to set up the connection to the appropriate queues.

Step 6.1: Sending Messages Before sending a message, a Message object must be
created and populated with its content:
TextMessage msg = qSession.createTextMessage();
msg.setText(“Hello World”);
sender.send(msg);

Step 6.2: Receiving Messages You must start the connection before receiving mes-
sages. It is implicitly started for either sending or browsing a queue.

qConn.start()

Receiving messages can be synchronous or asynchronous. In receiving synchronous mes-
sages, a JMS consumer uses the receive() method, which will be blocked indefinitely
until a message arrives on the destination. On the other hand, asynchronous messages are
received by using the onMessage() method of the MessageListener, where messages are
pushed by the container and processed by the consumer.

The receive() method is used in synchronous receivers. JMS offers two more variants:
receiveNoWait(), which is used for polling messages, and receive(long timeout),
which will wait for the timeout period before returning.

TextMessage msg = (TextMessage)receiver.receive();
System.out.println(msg.getText());

To receive messages asynchronously, you can use either message-driven beans or
MessageListener. First, you need to register your message listener with the receiver by
using the setMessageListener() method:

receiver.setMessageListener(this);

16 0672324237 CH13 9/24/02 2:36 PM Page 314

Understanding JMS and Message-Driven Beans 315

13

We assume that our current JMS receiver implements the MessageListener interface.
Now, implement the onMessage() method to listen to the incoming messages:

public void onMessage(Message message) {
// unpack and process the messages received
}

Some clients are designed with a message-based application triggering
mechanism. The trigger is typically a threshold of waiting messages. JMS
does not provide a mechanism for triggering the execution of a client. Some
providers might support such a triggering mechanism via their administra-
tive facilities.

Note

A Connection also can be stopped using the stop() method and closed using the
close() method.

Step 6.3: Browsing Messages Browsing messages returns a
java.util.Enumeration that is used to scan the queue’s messages. It may be an enumer-
ation of the entire content of a queue, or it may contain only the messages matching a
message selector.
for (Enumeration msgList = qBrowser.getEnumeration();

msgList.hasMoreElements();) {
System.out.println(mmsList.nextElement());

}

Step 7: Close the Connection
After all sending or receiving activities are finished, remember to close the Connection
object before ending the client:

QConn.close();

Publish-and-Subscribe Concepts
Publish-and-subscribe systems are about working with topics of messages. The main
object of the Pub/Sub API is the Topic interface. It is common for a client to have all its
messages broadcast to a single topic. Topics are created administratively and are treated
as named objects by their clients. The JMS Pub/Sub model defines how a client works
with topics: how it finds them, how it publishes messages to them, and how it subscribes
to them to extract their messages. JMS also supports durable subscribers that remember
the existence of topics while they are inactive.

The steps in developing a JMS Pub/Sub messaging client are similar to those in develop-
ing a JMS PTP client.

16 0672324237 CH13 9/24/02 2:36 PM Page 315

Step 1: Look Up a TopicConnectionFactory in the JNDI
Namespace
A TopicConnectionFactory named tcFactory has been registered in the JNDI name-
space. Both publisher and subscriber programs must access a tcFactory in order to cre-
ate a Connection.

import javax.naming.*;
import javax.jms.*;

// Establish a JNDI context
Context ctx = new InitialContext();
TopicConnectionFactory tcf = (TopicConnectionFactory)

ctx.lookup(“java:comp/env/jms/tcFactory”);

Step 2: Create a TopicConnection from TopicConnectionFactory
TopicConnection tConn = tcf.createTopicConnection();

You also can create a connection using a user and password:

String user = “john”;
String password = “1234”;
TopicConnection tConn = tcf.createTopicConnection(user, password);

Step 3: Look Up a Message Topic
An administered object myTopic has been created, configured, and registered in the JNDI
namespace:

Topic t = (Topic) ctx.lookup(“java:comp/env/jms/myTopic”);

Step 4: Create a TopicSession
Use the TopicConnection to create one or more TopicSession objects, which will be
used to create a TopicPublisher (if you want to publish() messages) or a
TopicSubscriber (if you want to subscribe() to messages):

TopicSession tSession = tConn.createTopicSession(false,
Session.CLIENT_ACKNOWLEDGE);

Step 5: Create a TopicPublisher or TopicSubscriber
Three types of options are available to a JMS client: to become a TopicPublisher, a
TopicSubscriber, or a durable subscriber.

Step 5.1: Create a TopicPublisher TopicPublisher publisher =

➥qSession.createPublisher (t);

316 Day 13

16 0672324237 CH13 9/24/02 2:36 PM Page 316

Understanding JMS and Message-Driven Beans 317

13

Step 5.2: Create a TopicSubscriber TopicSubscriber subscriber =

➥tSession.createSubscriber(t);

Step 5.3: Create a Durable Subscriber An ordinary subscriber is not durable, and
its session lasts for its lifetime. A durable subscriber registers with a unique identity that
is retained by the JMS provider. A subsequent subscriber with the same identity resumes
the subscription in the state it was left before. If there is no active subscriber for a
durable subscription, JMS retains the subscription’s messages until they are received by
the subscription or until they expire. Use the following to create a durable subscriber:
String durSubID = “Sub300”;
TopicSubscriber dSubscriber = tSession.createDurableSubscriber(t, durSubID);

The preceding statement is used as many times as the durable subscribers need to con-
nect to the JMS system to get their messages.

Step 6: Start Delivering Messages
All previous steps are just to set up the connection to the appropriate topic.

Step 6.1: Publishing a Message Before publishing a message, a Message object
must be created and populated with its content:
TextMessage msg = tSession.createTextMessage();
msg.setText(“Hello World”);
publisher.publish(msg);

Step 6.2: Subscribing to a Message You must start the TopicConnection before
subscribing to messages. This is implicitly started when publishing to a topic. A durable
subscriber becomes active when the connection is started.

tConn.start()

The receive() method is used in synchronous receivers:

TextMessage msg = (TextMessage)receiver.receive();
System.out.printline(msg.getText());

To receive messages asynchronously, use the following:

subscriber.setMessageListener(this);

public void onMessage(Message message) {
// unpack and process the messages received
}

16 0672324237 CH13 9/24/02 2:36 PM Page 317

Step 6.3: Durable Subscription to a Message Durable subscribers are treated the
same way as non-durable subscribers. You might want to close the durable subscriber:

dSubscriber.close();

To delete a durable subscription, first you close the subscriber, and then use the unsub-
scribe() method with the subscription name as the argument:

dSubscriber.close();
tSession.unsubscribe(durSubID);

Step 7: Close the Connection
When all sending and receiving activities are complete, remember to close the connec-
tion before ending the client:

try {
// do some stuff with JMS connection, and send/receive messages

} catch (JMSException e) {
System.out.println(“Exception occurred: “ +

e.toString());
} finally {

if (tConn != null) {
try {

tCon.close();
} catch (JMSException e) {}

}
}

Exception Handling
JMS defines JMSException as the root class for exceptions thrown by JMS methods.
JMSException must be handled in the catch clause of your JMS client. Information
about errors can be obtained by the getErrorCode(), which returns a vendor-specific
error. The method getMessage() returns a message that describes the error. The method
setLinkedException() references another exception that is a result of a lower-level
problem. If appropriate, this lower-level exception can be linked to the JMS exception.

318 Day 13

A more convenient way of implementing a JMS consumer to handle asyn-
chronous messages is to use a message-driven bean, which will be discussed
later today, and is the subject of Day 14.

Note

16 0672324237 CH13 9/24/02 2:36 PM Page 318

Understanding JMS and Message-Driven Beans 319

13

Synchronous and Asynchronous Message Receivers
In both JMS models, as discussed in the previous sections, receiving messages can be
synchronous or asynchronous. In receiving synchronous messages, a JMS consumer uses
the receive() method, which will be blocked indefinitely until a message arrives at the
destination. On the other hand, asynchronous messages are received by using the
onMessage() method of the MessageListener, where messages are pushed by the con-
tainer and processed by the consumer.

Designing Reliable Messaging Clients
JMS applications are loosely coupled components and modules that work together in a
flexible manner. There are some design considerations that can enhance the reliability
and the integrity of your JMS applications. The following sections discuss some of these:

• Message persistence to guarantee message delivery

• Acknowledgment, priority, and time-to-live

• Transaction support

• Temporary destination

Specifying Message Persistence
JMS supports two delivery modes for messages: persistent and non-persistent. The per-
sistent delivery mode, which is the default, is based on guaranteed delivery. The JMS
provider will take extra care to ensure that a message is not lost in case of a JMS
provider failure. A message sent with this delivery mode is logged to stable storage
before it is sent.

On the other hand, the non-persistent delivery mode does not require the JMS provider to
store the message to guarantee its delivery in case the provider fails.

You can specify the delivery mode in either of two ways:

• Using the setDeliveryMode() method of the QueueSender or the TopicPublisher
object to set a delivery mode for all messages sent by that producer:

sender.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

• Using an argument to the send() or publish() method to set the delivery mode
for a specific message. Here’s an example that sets the delivery mode for published
messages to NON_PERSISTENT:

publisher.publish(msg, DeliveryMode.NON_PERSISTENT);

16 0672324237 CH13 9/24/02 2:36 PM Page 319

Figure 13.5 illustrates persistent and non-persistent messages.

320 Day 13

Using the NON_PERSISTENT delivery mode might improve performance and
reduce storage overhead by the provider, but it provides no guarantee of
delivering the messages.

Caution

FIGURE 13.5
Persistent and non-
persistent messaging.

JMS Message Structure

Header
- JMSDestination
- JMSDeliveryMode
- JMSExpiration
- JMSPriority
- JMSMessageID
- JMSTimestamp
- JMSCorrelationID
- JMSReplyTo
- JMSType
- JMSRedelivered

Properties
- Application-specific
- JMS-specific: JMSX???
- Provider-specific: JMS_???

Body (Payload)

Message Acknowledgment, Priority, and Expiration
Another factor in designing a reliable JMS application is to control the acknowledgment,
priority, and expiration date of messages.

Acknowledgment is initiated either by the JMS provider or by the JMS client, depending
on the session acknowledgment mode. Establishing message acknowledgments enhances
application reliability. When a JMS client receives a message, it processes the message
and then acknowledges receiving it.

In transacted sessions, acknowledgment occurs automatically when a transaction is com-
mitted. In non-transacted sessions, message acknowledgment depends on the value spec-
ified as the second argument of the createQueueSession() or
createTopicConnection() method. Here’s an example of a non-transacted PTP session:

QueueSession qSession = qConn.createQueueSession(false,
Session.AUTO_ACKNOWLEDGE, 3, 5000);

16 0672324237 CH13 9/24/02 2:36 PM Page 320

Understanding JMS and Message-Driven Beans 321

13

In the preceding example, the first parameter specifies a non-transacted session, and the
second parameter specifies Session.AUTO_ACKNOWLEDGE to indicate the consumer’s
receipt of a message when the client has successfully returned from either the receive()
or onMessage() method.

The other possible settings are

• Session.CLIENT_ACKNOWLEDGE: When a client acknowledges a consumed message,
it automatically acknowledges the receipt of all messages that have been consumed
by its session.

• Session.DUPS_OK_ACKNOWLEDGE: This type is known as lazy acknowledgment, and
is performed by consumers that use duplicate messages. If the JMS provider rede-
livers a message, it must set the value of the JMSRedelivered message header to
true.

Message priority level is specified by the third parameter of the same method. You also
can set priority by using the setPriority() method of QueueSender or
TopicPublisher. Message priority levels values are 0–9 (where 0 is the lowest priority).
The default priority level for JMS is 4. A JMS provider tries to deliver higher-priority
messages first, but does not have to deliver messages in the exact order of priority.

Message expiration time (also called time to live or TTL) is specified by the fourth para-
meter, and is set to five seconds. By default, a message never expires. You also can set
the expiration time by using the setTimeToLive() method of QueueSender or
TopicPublisher. A JMS provider will delete undelivered messages after its expiration
time. This helps in optimizing storage and computing resources.

Using Local Transactions
As you learned in Day 9, a local transaction belongs only to the current process, and
deals with only a single resource manager. JMS handles both local and distributed trans-
actions. Today we’ll cover local transactions, but we defer JMS distributed transactions
to Day 16, “Understanding Transactions,” when you’ll study the concepts of Java
Transaction API (JTA).

JMS local transactions are managed by the Session object, and not by the EJB container.
To change this implicit behavior, JMS provides the concept of the transacted session. A
transacted session is created by setting the flag to true for the method
createQueueSession(true) in PTP or createTopicSession(true) in Pub/Sub. The
commit() and rollback() methods also are used by the Session object to control the
transaction’s behavior. An example of a local transaction in PTP is as follows:

QueueSession qSession = qConn.createQueueSession(true);
QueueSender sender = qSession.createSender(q);

16 0672324237 CH13 9/24/02 2:36 PM Page 321

TextMessage msg1 = qSession.createTextMessage();
msg.setText(“Enrollment is successful.”);
TextMessage msg2 = qSession.createTextMessage();
msg.setText(“Regsiteration is approved.”);
try{

sender.send(msg1);
sender.send(msg2);
qSession.commit();

}catch (JMSException e){
qSession.rollback();

}

Here both messages are sent to the JMS provider, but they will be delivered as a unit of
work to the queue only when the commit() method is issued. Also, acknowledgment
happens automatically when a transaction is committed.

322 Day 13

JMS local transactions have no explicit begin() method to start a transac-
tion. Therefore, transactions are chained and depend upon commit() or
rollback() method calls. Transactional messages are accumulated at the
JMS server until the transaction is committed or rolled back, which has nega-
tive impact on the JMS server’s performance.

Caution

Working with Temporary Destinations
As you learned, JMS destinations are normally created as administered objects. JMS also
enables you to create a temporary destination (TemporaryQueue and TemporaryTopic),
which becomes active only during the session’s connection. The JMS provider guaran-
tees that the temporary destination is unique across all connections. You create these des-
tinations dynamically using the createTemporaryQueue() and
createTemporaryTopic() methods of the corresponding session object. The following is
an example of creating a TemporaryQueue:

TemporaryQueue tempQ = qSession.createTemporaryQueue(“myTempQueue”);

Temporary destinations work in the same fashion as administered destinations.

If you close the connection that the temporary destination belongs to, the
destination is closed and its contents are lost.

Caution

When a producer and consumer agree to use a temporary destination, the producer first
creates it, and then passes its reference to the consumer. This is accomplished by setting

16 0672324237 CH13 9/24/02 2:36 PM Page 322

Understanding JMS and Message-Driven Beans 323

13

the JMSReplyTo message header field. At the other end, the consumer needs to extract the
reference from the message header before using this destination.

Anatomy of JMS Messages
JMS unifies the content format and structure among various messaging products. It also
supports messages containing Java objects. In this regard, it’s similar to RMI except that
the Java objects are exchanged asynchronously. JMS supports messages containing XML
data as well. As shown in Figure 13.6, all JMS messages are composed of the following
parts:

• Header: All message types support the same set of header fields, which contain
values used to identify and route messages.

• Properties (optional): These are optional header fields added to a message. These
properties can be user-defined, JMS standard, or JMS provider-specific.

• Body (optional): This indicates the type of message content used. The message
body is usually called the payload.

FIGURE 13.6
JMS message
structure.

Disk Storage/
Database

6. delete

2. receive/subscribe
Sender

(Producer)

1. send/publish

3. acknowledge4. acknowledge

Queue/Topic

Receiver
(Consumer)

JMS Provider

Non-Persistent Messages

4. receive/subscribe
Sender

(Producer)

1. send/publish

5. acknowledge3. acknowledge

Queue/Topic

Receiver
(Consumer)

JMS Provider

Persistent Messages

2. save

The following sections discuss each part of the message in more detail.

16 0672324237 CH13 9/24/02 2:36 PM Page 323

Message Headers
The message headers are a predefined set of header fields used for routing by the JMS
client and provider. Their names follow the pattern JMS<HEADER>. The getJMS<HEADER>()
and setJMS<HEADER>() methods of the Message are used as “getter” and “setter” for the
field value. Table 13.3 summarizes the header names and how they are set.

TABLE 13.3 Summary of JMS Headers

Header Fields Set By Description

JMSDestination send() or publish() method Includes the destination name to which
the message is sent.

JMSDeliveryMode send() or publish() method The value is either persistent or non-per-
sistent. Persistent messages are stored
and then forwarded.

JMSExpiration send() or publish() method Defines the message’s time to live. A
zero value means the message never
expires, which is the default.

JMSPriority send() or publish() method Specifies the priority level of messages.
It has a value of 0–9, 9 is the highest, 4 is
the default.

JMSMessageID send() or publish() method A string that uniquely identifies a mes-
sage. It’s generated by the JMS provider.

JMSTimestamp send() or publish() method A long value in milliseconds represents
the time when the message arrived at the
JMS server.

JMSCorrelationID JMS client An arbitrary string to group messages
together; --to an order, for example.

JMSReplyTo JMS client Represents a JMS destination that the
consumer uses to send a reply.

JMSType JMS client Associates the message to a message
type.

JMSRedelivered JMS provider A flag is set to redeliver the message if
the receiver fails to acknowledge.

Exploring Message Properties
In addition to the header fields, these optional headers are added to the message by the
application developer, the JMS provider, or JMS optional headers. They provide

324 Day 13

16 0672324237 CH13 9/24/02 2:36 PM Page 324

Understanding JMS and Message-Driven Beans 325

13

additional information that enhances the flexibility of the JMS API. Properties allow a
client, via message selectors (see the “Message Selection” section later today), to have a
JMS provider select messages on its behalf using SQL-like criteria. Property values are
set prior to sending a message, and cannot be changed by the client receiving it because
the client is in read-only mode.

The following sections will shed light on the different types of message properties, and
how to use the message selectors to filter only the messages you want to receive.

User-Defined Properties
Application developers are free to define their message properties. User-defined proper-
ties can have any name. Properties are created as name/value pairs. The type of the prop-
erty is used in the set/get method of the property. JMS provides these types to define
application-specific properties: Boolean, Byte, Short, Integer, Long, Float, Double,
String, and Object. Here is an example of defining the application property “password”
as a String property:

TextMessage msg = (TextMessage) qSession.createTextMessage();
msg.setStringProperty(“password”, password);
sender.send(msg);

You can use the method clearProperties() to delete all the message’s properties. The
method getPropertyNames() returns an Enumeration with the names used in the mes-
sage.

JMS-Defined Properties
JMS defines optional headers that start with the prefix “JMSX”. They are treated similarly
to the user-defined properties mentioned earlier, but are handled by the JMS provider.

JMS Provider-Specific Properties
JMS allows providers to define their own properties, and each property name must start
with the prefix “JMS_<vendor_name>”. This is the mechanism a JMS provider uses to
make its proprietary message services available to a JMS client.

Message Selection
Message selection allows clients to set criteria for receiving specific messages. This fil-
tering mechanism enhances performance and adds more flexibility to the applications.
This is done by putting the filtering criteria (called the selector) in the message header
when creating the consumer. This allows the JMS provider to handle the filtering and
routing that would otherwise need to be done by the application.

16 0672324237 CH13 9/24/02 2:36 PM Page 325

The following example defines a filter to deliver only messages that belong to the
enrollment of courses “CS310” and “CS320” to the registration queue “csQueue”:

String filter = new String(“(course = ‘CS310’) OR (course = ‘CS320’)”);
QueueReceiver receiver = qSession.createReceiver(csQueue, filter);

Similarly, for a Pub/Sub model, a subscriber can use the same filter:

TopicSubscriber subscriber = tSession.createSubscriber(csTopic, filter);

Message Body
JMS defines six message types; each type depends on the body of the message. Table
13.4 lists the definition of each message type.

TABLE 13.4 JMS Message Body Types

Message Type Definition

StreamMessage Message body contains a stream of Java primitive values.

MapMessage Message body contains a set of name/value pairs in which the name is a
String and its value is a Java primitive type.

TextMessage Message body contains a String. This is the base message type for XML mes-
sages. This will likely become the mechanism for representing the content of
JMS messages.

ObjectMessage Message body contains a Serializable Java object.

BytesMessage Message body contains a stream of uninterpreted bytes. This message type is
for literally encoding a body to match an existing message format, such as a
Unicode message.

Message Message body contains nothing. Composed of header fields and properties
only. This message type is useful when a message body is not required.

Many JMS providers support the XMLMessage type, which extends the TextMessage and
is not supported directly by JMS. XML is a natural fit into messaging, and adds powerful
semantics to message contents.

A message body can be cleared by using the method clearBody(). Clearing a message’s
body does not clear its properties. When a message is received, its body is read-only; any
attempt to change the body results in a MessageNotWriteableException being thrown.

Each message type must be unpacked to process its body information. Table 13.5 sum-
marizes how to unpack each message type.

326 Day 13

16 0672324237 CH13 9/24/02 2:36 PM Page 326

Understanding JMS and Message-Driven Beans 327

13

TABLE 13.5 Unpacking Message Body Types

Message Type How to Unpack

BytesMessage msg int length = msg.readBytes(studentInfo);

TextMessage msg String name = msg.getText();

MapMessage msg String course = msg.getString(“Course”);

StreamMessage msg String name = msg.readString();

ObjectMessage msg Student student = (Student) msg.getObject();

Message-Driven Beans
A message-driven bean (MDB) is, by design, an asynchronous message consumer. The
container invokes an MDB as the result of the arrival of a JMS message. An MDB has
neither a home nor a remote interface, and consists of only the message bean class and a
deployment descriptor. The bean class must implement both the MessageDrivenBean
interface and the MessageListener interface. An MDB is container managed, and all
configurable administered objects are specified declaratively in the deployment descrip-
tor. A client accesses a message-driven bean through JMS by sending messages to the
JMS Destination (Queue or Topic) for which the MDB class is the MessageListener.
The client has no direct interaction with MDBs (see Figure 13.7).

Message-driven bean instances are stateless, have no conversational state, and are also
anonymous, with no client-visible identity. This makes them an excellent candidate for
instance pooling. An MDB is simply a more convenient component to develop a JMS
consumer as part of an enterprise application.

The following is an example of an MDB. Note that the onMessage() method must be
implemented for the MessageListener interface. Other methods are implemented for the
MessageDrivenBean interface.

import javax.ejb.*;
import javax.jms.*;
public class RegistrarMDB implements MessageDrivenBean, MessageListener {

Other EJB types, such as session and entity beans, are synchronous by design.
When they issue an RMI call, they have to wait until they get back a reply. A
message-driven bean is designed to handle asynchronous message calls.

Note

16 0672324237 CH13 9/24/02 2:36 PM Page 327

protected MessageDrivenContext ctx;
public void setMessageDrivenContext(MessageDrivenContext ctx) {
this.ctx = ctx;
}
public void ejbCreate() {}
public void ejbRemove() {}
public void onMessage(Message message) {
try {

TextMessage msg = (TextMessage)message;
System.err.println(“Registrar received a new message: “ +

msg.getText());
} catch(JMSException e) {
e.printStackTrace();
}

}
}

328 Day 13

FIGURE 13.7
The client view of a
message-driven bean.

MDB

MDB

MDB

MDBs work as
JMS consumers

EJB Container

JMS Queue/Topic

JMS Client

Client View of Message-Driven Beans

The setMessageDrivenContext() method is called by the EJB container to associate a
message-driven bean instance with its context. Also, the onMessage() method is called
by the container when a message has arrived for the bean to service. The onMessage
method has one argument, which is the incoming message, and it contains the business
logic that handles the processing of the message.

Day 14 will discuss message-driven beans in more detail.

Best Practices
JMS is a versatile API to support the design of reliable, flexible, and high-performance
enterprise applications. One of the basic design guidelines is selecting which messaging

16 0672324237 CH13 9/24/02 2:36 PM Page 328

Understanding JMS and Message-Driven Beans 329

13

model the application will use. Another important decision is what type of message is
appropriate. Choosing the message size depends on the type of message you decide to
use, which in turn has an impact on application performance. Smaller size gives better
performance and vice versa. For example, ByteMessage takes less memory than
TextMessage and can support Unicode. ObjectMessage carries a serialized Java object,
and you need to specify the transient keyword for members that need not be exchanged
to reduce overhead.

In general, a good practice is closing all resources when you are finished with them. JMS
resources such as Connection, Session, and producer/consumer must be closed after you
are finished.

To enhance reliability, use persistent messages, transacted sessions, durable subscribers,
and consumer acknowledgment. In addition, set the TimeToLive value properly, and
receive messages asynchronously. Always remember that reliability works against perfor-
mance, and depending on your application requirements, you must find the balance
between them.

JMS clustering is a critical issue in selecting the right JMS provider. Clustering deals
with both load balancing and fail-over. This addresses both performance and reliability,
and not all JMS providers support clustering of JMS services.

Summary
Today you learned about JMS as a unified API to abstract all interfaces and classes to
access enterprise messaging requirements. You also learned about JMS architecture, and
the two main messaging models supported by JMS: PTP and Pub/Sub. More details were
given for the JMS API that supports both messaging models. You explored how to use to
use the JMS API to develop JMS clients in both models. You studied the anatomy of a
JMS message and explained its constituents. You learned about message types and their
usage in enterprise applications. Finally, a brief account of message-driven beans as an
asynchronous consumer of messages was given. In Day 14, we’ll develop a message-
driven bean through a working example.

Q&A
Q How is JNDI used to help make JMS applications more portable?

A JMS depends on two administered objects: Destination and ConnectionFactory.
They are created by the JMS provider administrator, and registered in the JNDI
namespace. Later, JMS clients look up the named object in the JNDI and

16 0672324237 CH13 9/24/02 2:36 PM Page 329

instantiate a resource. This separation between the JMS provider specifics and the
JMS API helps make your enterprise application more portable.

Q What messaging models are supported by JMS?

A Point-to-point (PTP) messaging and publish-and-subscribe (Pub/Sub) messaging.

Quiz
1. Which of the following are JMS administered objects?

A. Destination

B. Connection

C. ConnectionFactory

D. Session

2. Which are JMS messaging models?

A. Publish-and-subscribe

B. Point-to-point

C. Store-and-forward

D. Peer-to-peer

3. A JMS message is composed of which of the following parts:

A. Header

B. Properties

C. Footer

D. Body

4. Which following services are NOT provided by JMS?

A. Clustering: Load balancing and fail-over

B. Asynchronous message delivery

C. Error notifications

D. Security

Quiz Answers
1. A, C

2. A, B

3. A, B, D

4. A, C, D

330 Day 13

16 0672324237 CH13 9/24/02 2:36 PM Page 330

Understanding JMS and Message-Driven Beans 331

13

Exercises
1. What is JMS used for?

2. What are message-driven beans, and when do you use them?

3. Compare the PTP and Pub/Sub messaging models.

4. What are the types of JMS messages?

5. Is the JMS session object multithreaded? Why?

16 0672324237 CH13 9/24/02 2:36 PM Page 331

16 0672324237 CH13 9/24/02 2:36 PM Page 332

DAY 14

WEEK 2

Developing Message-
Driven Beans

Today, you’ll learn how to develop applications using asynchronous messaging.
You’ll work on a complete example of developing a message-driven enterprise
bean (MDB).

In our sample University Registration System, a student selects items from the
course catalog, places them in an enrollment cart, and, when she’s ready, places
an order for the cart contents. After the order is placed, we must verify the stu-
dent’s billing information, the classroom’s capacity, and so on. We would like
to enable the student to continue browsing the Web site and not require her to
wait for the background processing to complete. This asynchronous processing
can be best modeled using a message-driven bean. In the sample application,
after the student submits an order, a Java Message Service (JMS) message is
sent to a destination, where it will be processed by an OrderVerifier message-
driven bean. An OrderVerifier bean is responsible for verifying the order’s
facts, such as the billing information and so on.

17 0672324237 CH14 9/24/02 3:56 PM Page 333

To learn how to develop and deploy an MDB, the following are the activities we’ll
engage in today:

• Learn the interactions between the client, the JMS Server, the EJB container, and
the message-driven bean by looking under the hood of the bean

• Show you how to implement the message-driven bean class and write its deploy-
ment descriptor

• Explore how to compile, package, and deploy the bean in a container

• Learn how to write a client that sends a message to a JMS Destination for which
the message-driven bean is the consumer

• Examine the life cycle of a message-driven bean instance

Looking Under the Hood of an MDB
Figure 14.1 shows the interactions between the client, the JMS service, the EJB con-
tainer, and the message-driven bean.

334 Day 14

FIGURE 14.1
Under the hood of a
message-driven bean.

JNDI
Service

JMS Service

EJB Container

Topic

Queue/

1. Register JMS Destinations

4. Receive message

3. Lookup JMS destination via JNDI

4. Send message

Message driven bean

Client

2. create bean

4.1 onMessage

5. ejbRemove

17 0672324237 CH14 9/24/02 3:56 PM Page 334

Developing Message-Driven Beans 335

14

The following steps describe the sequence of interactions in detail:

1. At startup, the JMS service registers all JMS Destinations (Topic or Queue) with
the Java Naming and Directory Interface (JNDI) service. The EJB container also
registers the message-driven beans as JMS consumers with the JMS service.

2. The EJB container decides to instantiate a message-driven bean based on the
caching policy. For example, the EJB container instantiates the OrderVerifierMDB
bean using the Class.newInstance(“OrderVerifierMDB.class”) and then calls
the setMessageDrivenContext() and ejbCreate() methods on the instance. The
bean instance is now ready to accept and process a message. The instance enters
the pool of method-ready instances.

3. The client looks up the JMS Destination associated with a message-driven bean
by using JNDI. For example, the OrderVerifierTopic Topic associated with the
OrderVerifierMDB bean can be located using the following code segment:
Context initialContext = new InitialContext();
Topic topic = (javax.jms.Topic) initialContext.lookup

(“jms/OrderVerifierTopic”);

4. The client sends a message to the JMS Destination. For example, the client sends
a message to the Topic as follows:
TextMessage tm = session.createTextMessage();
tm.setText(“1234”);
publisher.publish(tm);

When a client sends a message to a Destination for which a message-driven bean
is the consumer, the EJB container selects one of its method-ready instances and
invokes the onMessage() method on the bean instance passing the client’s mes-
sage.

5. The EJB container decides to terminate the session bean instance by calling the
ejbRemove() method of the bean instance. This happens when the container needs
to reduce the number of instances in the method-ready pool.

According to EJB 2.0, message-driven beans support only JMS services, and
process standard JMS messages such as TextMessage and ByteMessage. With
the advent of Web Services, EJB 2.1 (which was a work in progress at the
time this book was written) extends the use of message-driven beans to sup-
port Java API for XML Messaging. This will allow message-driven beans to
process messages, which conform to Simple Object Access Protocol (SOAP)
1.1. Message-driven beans will also support one-way messages and the
blocking of request-response messages.

Note

17 0672324237 CH14 9/24/02 3:56 PM Page 335

Designing the Message-Driven Bean
Figure 14.2 shows the design of the OrderVerifier component. The OrderVerifierMDB
message-driven bean implements the javax.ejb.MessageDrivenBean and
javax.jms.MessageListener interfaces. It implements the methods
setMessageDrivenContext() and ejbRemove() as defined in the
javax.ejb.MessageDrivenBean and the onMessage() method, as defined in the
javax.jms.MessageListener interface. It also implements the ejbCreate() method.

336 Day 14

FIGURE 14.2
OrderVerifierMDB

message-driven bean
design.

Legend
OrderVerifierMDB

«interface»
MessageDrivenBean

«interface»
MessageListener

setMessageDrivenContext()
ejbCreate()
ejbRemove()
onMessage()implements

extends

The OrderVerifier bean expects the text message to contain the primary key of the
order. It locates the order in the database by using its primary key and checks the student
billing information and so on. After the order information is verified, it changes the
order’s status to “Verified.” For simplicity, we don’t write code to verify the student
information, but merely set the order status to Verified. The OrderVerifier component
uses the Order component that you developed and deployed on Day 11, “Developing
Container-Managed Persistence Entity Beans.”

Clients don’t access message-driven beans through interfaces. Unlike session
and entity beans, message-driven beans have neither a home nor a compo-
nent interface. A client accesses a message-driven bean through JMS by
sending messages to the JMS Destination (Queue or Topic) for which the
MDB class is the MessageListener.

Note

Implementing the Enterprise Bean Class
Table 14.1 shows a summary of message-driven bean methods.

17 0672324237 CH14 9/24/02 3:56 PM Page 336

Developing Message-Driven Beans 337

14

TABLE 14.1 Summary of Message-Driven Bean Methods

Method Purpose What You Need to Do

setMessageDrivenContext The EJB container calls this You must store the reference to the
(MessageDrivenContext) method to associate the bean message-driven context in an

instance with its context instance variable if you need to
maintained by the container. access the run-time context, such as

accessing or changing the transac-
tion context.

ejbCreate() The EJB container calls this You initialize the bean here. You
method so that you can also allocate any resources that are
initialize your bean instance. to be held for the instance’s life-

time.

Each message-driven bean must
have only one ejbCreate() method
with no arguments.

onMessage(Message) This method is called by the You must code the business logic
EJB container when a message that handles the processing of the
has arrived for the bean to message.
service.

ejbRemove() The EJB container calls this You must release any resources that
method before it ends the life the instance is holding.
cycle of the instance.

Listing 14.1 shows the OrderVerifierMDB bean class. The OrderVerifierMDB message-
driven bean implements the javax.ejb.MessageDrivenBean and
javax.jms.MessageListener interfaces. It implements the methods
setMessageDrivenContext(), ejbRemove(), and onMessage(). In the onMessage()
method, the bean retrieves the order ID from the text message. It uses the helper method
verifyOrder() to process the order. The verifyOrder() method locates the order by
using its primary key from the database, and sets the order’s status to Verified.

LISTING 14.1 The Full Text of day14/OrderVerifierMDB.java

package day14;

import javax.jms.*;
import javax.ejb.*;
import javax.naming.*;
import java.rmi.*;
import javax.rmi.*;

import day11.OrderHome;

17 0672324237 CH14 9/24/02 3:56 PM Page 337

import day11.Order;

public class OrderVerifierMDB implements
MessageDrivenBean, MessageListener {

private MessageDrivenContext ctx;
public void setMessageDrivenContext(MessageDrivenContext ctx) {

print(“setMessageDrivenContext called.\n”);
this.ctx = ctx;

}
public void ejbCreate() {

print(“ejbCreate() called.\n”);
}
public void ejbRemove() {

print(“ejbRemove() called.\n”);
}
public void onMessage(Message msg) {

print(“OrderVerifierMDB: onMessage() called.\n”);
if(!(msg instanceof TextMessage)){

throw new EJBException
(“OrderVerifierMDB handles only Text Messages.”);

}
try {

TextMessage tm = (TextMessage) msg;
String orderId = tm.getText();
verifyOrder(orderId);

} catch(Exception ex) {
ex.printStackTrace();
throw new EJBException(ex);

}
}
private void verifyOrder(String orderId) throws FinderException,

NamingException, RemoteException {
print(“Verifying order Id:” + orderId);
Context context = new InitialContext();
OrderHome orderHome = (OrderHome) PortableRemoteObject.narrow

(context.lookup(“day11/Order”),OrderHome.class);
Order order = orderHome.findByPrimaryKey(orderId);

/* Now we can verify things such as the class capacity,
students billing information etc.,
Here we merely set the order status to “verified”

*/
print(“Changing order status to Verified”);
order.setStatus(“Verified”);

}
void print(String s) {

System.out.println(s);
}

}

338 Day 14

LISTING 14.1 continued

17 0672324237 CH14 9/24/02 3:56 PM Page 338

Developing Message-Driven Beans 339

14

Note that the bean throws EJBException on encountering any error.

Message-driven bean methods, unlike the methods of session and entity
beans, do not throw application exceptions and can’t throw exceptions to
the client. The onMessage() method should not throw application exceptions
or the java.rmi.RemoteException.

Message-driven beans can throw only system exceptions from their methods.
In such situations, the EJB container performs the following: log the excep-
tion; on error, roll back the current transaction, if any; and discard the
instance.

However EJB 2.1 removed the restriction that the methods of a message lis-
tener interface must not throw application exceptions.

Note

Declaring the Deployment Descriptor
Listing 14.2 shows the ejb-jar.xml deployment descriptor for the OrderVerifier
enterprise bean. ejb-jar.xml describes the enterprise bean’s deployment properties,
such as its bean type and structure. The file also provides the EJB container with infor-
mation about where it can find and then load the bean class. Message-driven beans don’t
have home or component interfaces, so you don’t specify them in the deployment
descriptor. The deployment descriptor may specify the JMS Destination type (Queue or
Topic) to which the bean should be assigned.

LISTING 14.2 The Full Text of day14/ejb-jar.xml

<!DOCTYPE ejb-jar PUBLIC
“-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN”
“http://java.sun.com/dtd/ejb-jar_2_0.dtd”>

<ejb-jar>

In EJB 2.1, a JMS message-driven bean implements the
javax.jms.MessageListener interface and a JAXM message-driven bean
implements the javax.xml.messaging.OnewayListener or javax.xml.
messaging.ReqRespListener interface. Also, the message-driven bean can
implement more than one type of message listener interface.

In addition, in EJB 2.1, a message-driven bean can implement the
javax.ejb.TimedObject interface for time-based event notifications. The EJB
container invokes the bean instance’s ejbTimeout() method when the timer
for the bean has expired.

Note

17 0672324237 CH14 9/24/02 3:56 PM Page 339

<enterprise-beans>
<message-driven>
<ejb-name>OrderVerifierMDB</ejb-name>
<ejb-class>day14.OrderVerifierMDB</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>
<destination-type>javax.jms.Topic</destination-type>
<subscription-durability>NonDurable</subscription-durability>

</message-driven-destination>
</message-driven>

</enterprise-beans>
</ejb-jar>

The ejb-jar.xml declares OrderVerifierMDB as the name of the message-driven bean.
The transaction-type element specifies that this bean uses container-managed transac-
tions. Container-managed transactions are discussed in detail on Day 17. The
destination-type element within the message-driven-destination element specifies
that the bean consumes topic messages. The subscription-durability element speci-
fies that the message-driven bean’s subscription to the Topic is NonDurable. This means
the messages may be missed when the EJB server goes down for any period of time.

Listing 14.3 shows the weblogic-ejb-jar.xml deployment descriptor that is specific to
WebLogic Server. The destination-jndi-name element specifies that
OrderVerifierMDB subscribes to the OrderVerifierTopic Topic.

LISTING 14.3 The Full Text of day14/weblogic-ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN’
‘http://www.bea.com/servers/wls700/dtd/weblogic-ejb-jar.dtd’>
<weblogic-ejb-jar>

<weblogic-enterprise-bean>
<ejb-name>OrderVerifierMDB</ejb-name>
<message-driven-descriptor>
<pool>
<max-beans-in-free-pool>20</max-beans-in-free-pool>
<initial-beans-in-free-pool>5</initial-beans-in-free-pool>

</pool>
<destination-jndi-name>OrderVerifierTopic</destination-jndi-name>
</message-driven-descriptor>

<jndi-name>day14/OrderVerifier</jndi-name>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

340 Day 14

LISTING 14.2 continued

17 0672324237 CH14 9/24/02 3:56 PM Page 340

Developing Message-Driven Beans 341

14

Listing 14.4 shows the jboss.xml deployment descriptor specific to the JBoss server.
The destination-jndi-name element specifies that OrderVerifierMDB subscribes to the
topic/OrderVerifierTopic Topic.

LISTING 14.4 The Full Text of day14/jboss.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<jboss>
<enterprise-beans>
<message-driven>
<ejb-name>OrderVerifierMDB</ejb-name>

<destination-jndi-name>topic/OrderVerifierTopic</destination-jndi-name>
</message-driven>

</enterprise-beans>
</jboss>

Later today, you’ll learn how to configure a topic in both WebLogic Server and JBoss.

Writing a Client
Listing 14.5 demonstrates how a client sends a message to the JMS Destination.

LISTING 14.5 The Full Text of day14/Client.java

package day14;

import javax.jms.*;
import javax.naming.*;
import javax.ejb.*;
import java.util.*;

import day11.OrderHome;
import day11.Order;

public class Client {
public static void main(String[] args) {

print(“Starting Client . . .”);
try {

String orderVerifierJndiName = args[0];
String connectionFactoryJndiName = args[1];
print(“Looking up the JMS destination(Topic) via JNDI.”);
Context context = new InitialContext();
Topic topic = (Topic) context.lookup(orderVerifierJndiName);

print(“Locating connection factory.”);
TopicConnectionFactory connectionFactory = (TopicConnectionFactory)

context.lookup(connectionFactoryJndiName);

17 0672324237 CH14 9/24/02 3:56 PM Page 341

print(“Creating a connection and establishing a session.”);
TopicConnection connection =

connectionFactory.createTopicConnection();
TopicSession session = connection.createTopicSession

(false,Session.AUTO_ACKNOWLEDGE);
TopicPublisher publisher = session.createPublisher(topic);

print(“Creating an order with status:Submitted”);
Context initialContext = new InitialContext();
Object object = initialContext.lookup(“day11/Order”);
OrderHome orderHome = (OrderHome)

javax.rmi.PortableRemoteObject.narrow(object,OrderHome.class);
Order order = (Order)orderHome.create

(“1”, “Submitted”, 100);
String orderId = order.getOrderId();
print(“Order id “ + orderId + “ is created”);
print(“Creating a text message with order id and publishing it.”);
TextMessage tm = session.createTextMessage();
tm.setText(orderId);
publisher.publish(tm);
print(“Sleeping for 2 sec.”);
Thread.sleep(2000);
print(“Now the order status is:” + order.getStatus());

}
catch(Exception ex) {

System.err.println(ex);
ex.printStackTrace();

}
}
static void print(String s) {

System.out.println(s);
}
}

The client accepts two command-line arguments: the Topic JNDI name and the connec-
tion factory JNDI name. The client locates the Topic via JNDI. It locates the connection
factory in the JNDI name space, creates a TopicConnection, and establishes a
TopicSession. It then uses that TopicSession to create a TopicSubscriber so that we
can publish messages.

The code creates a sample order and marks its status as Submitted. Before publishing
the message, the client creates a text message and populates it with the order ID. The
client then publishes the message. As you know, the OrderVerifier bean receives the
message and changes the order status to Verified. Finally, the client prints the order
status.

342 Day 14

LISTING 14.5 continued

17 0672324237 CH14 9/24/02 3:56 PM Page 342

Developing Message-Driven Beans 343

14

Packaging and Deploying the Enterprise
Bean

This section describes the steps to package and deploy the OrderVerifier message-dri-
ven bean, and also to build the client for both WebLogic Server and JBoss application
servers. These steps assume that you packaged and deployed the Order entity bean that
we discussed on Day 11.

You can run the following commands for WebLogic Server:

C:\>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day14

C:\styejb\examples\day14>buildWebLogic.bat

You can run the following commands for JBoss:

C:\>cd styejb\examples

C:\styejb\examples>setEnvJboss.bat

C:\styejb\examples>cd day14

C:\styejb\examples\day14>buildJboss.bat

Running the Example
The following steps describe how to start the PointBase database server, WebLogic
Server, configure a JMS topic in WebLogic, and run the sample client:

1. Start PointBase server in a new command window as follows:

C:\>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>startPointBase.bat

2. Start WebLogic Server in a new command window as follows:

C:\>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>startWebLogic.bat

3. Open the WebLogic Administration Console by opening a Web browser and typing
the URL http://localhost:7001/console. When prompted, enter the username
and the password you have created when you installed the WebLogic Server (refer
to Appendix A, “Weblogic Application Server 7.0”).

17 0672324237 CH14 9/24/02 3:56 PM Page 343

Set up a JMS server as follows:

1. In the left pane, expand Services > JMS.

2. Click Servers.

3. In the right pane, click Create a New JMSServer.

4. Enter or select these values:

Name: styejbJMS

Store: (none)

Paging Store: (none)

Temporary Template: (none)

5. Click Create. Figure 14.3 shows the corresponding screenshot.

344 Day 14

FIGURE 14.3
Configuring a JMS
server in WebLogic
Server.

6. Click the Targets tab.

7. Select myserver in the Target combo box.

8. Click Apply. Figure 14.4 shows the corresponding screenshot.

Set up a JMS Destination as follows:

1. In the left pane, expand Services > JMS > Servers > styejbJMS.

2. Click Destinations.

17 0672324237 CH14 9/24/02 3:56 PM Page 344

Developing Message-Driven Beans 345

14

3. In the right pane, click the Configure a New JMSTopic link.

4. Enter or select these values:

Name: OrderVerifierTopic

JNDIName: OrderVerifierTopic

Enable Store: default

Template: (none)

5. Click Create. Figure 14.5 shows the corresponding screenshot.

You can run the client in the same window you used to package the bean and build the
client by using the following command:

C:\styejb\examples\day14>runClientWebLogic.bat

Running the client produces the following output:

Starting Client . . .
Looking up the JMS destination(Topic) via JNDI.
Locating connection factory.
Creating a connection and establishing a session.
Creating an order with status:Submitted
Order id 1029463968627 is created
Creating a text message with order id and publishing it.
Sleeping for 2 sec.
Now the order status is:Verified

FIGURE 14.4
Assigning the JMS
server to the target
server.

17 0672324237 CH14 9/24/02 3:56 PM Page 345

The following steps describe how to start JBoss server, configure a JMS Topic in JBoss,
and run the sample client:

1. Start the JBoss server in a new command window as follows:

C:\>cd styejb\examples

C:\styejb\examples>setEnvJBoss.bat

C:\styejb\examples>startJBoss.bat

2. Edit the file server\default\deploy\jbossmq-destinations-service.xml under
the JBoss home directory to create a new JMS Topic as follows:
<server>
. . .
<mbean code=”org.jboss.mq.server.jmx.Topic”

name=”jboss.mq.destination:service=Topic,name=OrderVerifierTopic”>
<depends

optional-attribute-name=
“DestinationManager”>jboss.mq:service=DestinationManager</depends>

</mbean>
. . .
</server>

Add the text shown in bold to the file. This creates an OrderVerifierTopic Topic

and binds it to the JNDI name topic/OrderVerifierTopic.

346 Day 14

FIGURE 14.5
Configuring a JMS
Destination in
WebLogic Server.

17 0672324237 CH14 9/24/02 3:56 PM Page 346

Developing Message-Driven Beans 347

14

3. You can run the client in the same window you used to package the bean and build
the client by using the following command:

C:\styejb\examples\day14>runClientJBoss.bat

Examining the Life Cycle of a Message-
Driven Bean

Figure 14.6 shows the life cycle of a message-driven bean instance.

FIGURE 14.6
Message-driven bean
life cycle.

1. newInstance()
2. setMessageDrivenContext

(MessageDrivenContext)
3. ejbCreate()

onMessage(Message)

Instance
does not exist

Pool of
method-ready

instances

ejbRemove()

The following sequence describes the life cycle of a message-driven bean instance:

• The bean instance’s life cycle starts when the container decides to instantiate a
bean instance. The container instantiates the bean using the newInstance()
method and then calls the setMessageDrivenContext() and ejbCreate() meth-
ods. Now the instance is ready to process a message sent to its Destination by
any client.

• When a client sends a message to a Destination, the container selects one of its
method-ready instances and calls the instance’s onMessage() method.

• The container decides to remove the bean instance. This could be because the con-
tainer wants to reduce the number of instances in the method-ready pool. The con-
tainer calls the ejbRemove() method of the bean instance.

You cannot rely on the container to call the ejbRemove() method. The con-
tainer might not call ejbRemove() in the following scenarios: a shutdown or
crash of the container, or a system exception thrown from the instance’s
method. If your instance frees up resources in the ejbRemove() method,
those resources are not freed in the preceding scenarios. You should provide
some mechanism to periodically clean up the unreleased resources.

Caution

17 0672324237 CH14 9/24/02 3:56 PM Page 347

Best Practices
As mentioned on Day 2, “Understanding EJB Types and Interfaces,” you should consider
using a message-driven bean when you want to develop loosely coupled systems and
process asynchronous messages.

Consider using message-driven beans, instead of standard JMS consumers, in situations
in which you need the power of EJBs, such as security and transaction management.
Another benefit is that the EJB container can create multiple instances of a message-
driven bean to process large volumes of messages concurrently. On the other hand, a
message-driven bean can be associated with a single JMS Destination (Topic or
Queue). So, if your application requires a single JMS consumer to process messages from
multiple Topics or Queues, you must use a standard JMS consumer or deploy multiple
message-driven bean classes.

Consider tuning the message-driven bean’s instance pool size. For best performance, the
maximum number of beans in the pool should be equal to the maximum number of con-
current messages. If the pool size is less than the number of concurrent messages, mes-
sages have to wait for an available bean, which degrades performance.

Summary
Today you wrote a message-driven enterprise bean that processes messages asynchro-
nously. The enterprise bean consists of bean class and deployment descriptors. When a
client sends a message to a Destination for which a message-driven bean is the con-
sumer, the EJB container calls the onMessage() method on the bean instance passing the
client’s message. The onMessage() method of the enterprise bean class contains business
logic to process the message. The enterprise bean doesn’t provide home and component
interfaces for client access. You also learned how to package and deploy the enterprise
bean, and then you wrote and ran a client that accessed the enterprise bean.

Q&A
Q What files do I need to write for a message-driven bean?

A Unlike other enterprise beans, message-driven beans consist of enterprise bean
class and deployment descriptors. They do not provide home or component inter-
faces.

Q Can a message-driven bean contain a state that’s specific to a client?

A A message-driven bean can’t contain a state that is specific to a client. However,
the instance variables of the message-driven bean instance can contain a state

348 Day 14

17 0672324237 CH14 9/24/02 3:56 PM Page 348

Developing Message-Driven Beans 349

14

across the handling of client messages. Examples of such a state include socket
connections, database connections, and references to EJBObject.

Quiz
1. A message-driven bean implements which of the following interface(s)?

A. javax.ejb.EnterpriseBean

B. javax.ejb.MessageDrivenBean and javax.ejb.MessageListener

C. javax.ejb.MessageDrivenBean and javax.jms.MessageListener

D. javax.ejb.MessageDrivenBean

2. Which one of the following statements is true for message-driven beans?

A. MDBs provide only local interfaces for client access.

B. MDBs provide only remote interfaces for client access.

C. MDBs can provide either local or remote interfaces for client access.

D. MDBs do not provide either local or remote interfaces for client access.

3. Which one of the following message-driven bean methods is called by the EJB
container when a message has arrived for the bean to service?

A. ejbCreate()

B. setMessageDrivenContext()

C. onMessage()

D. ejbRemove()

Quiz Answers
1. C

2. D

3. C

Exercise
To extend your knowledge of the subjects covered today, try the following exercise:

Modify the OrderVerifier message-driven bean to consume messages from a Queue
instead of a Topic. You need to configure a Queue in the server, and modify the
OrderVerifier deployment descriptor and the client scripts as part of this exercise.

17 0672324237 CH14 9/24/02 3:56 PM Page 349

17 0672324237 CH14 9/24/02 3:56 PM Page 350

Advanced EJB
Applications

15 Understanding J2EE Architecture

16 Understanding J2EE Transactions

17 Building Container-Managed Transaction Beans

18 Building Bean-Managed Transaction Beans

19 Understanding Security

20 Implementing JavaMail in EJB Applications

21 Developing a Complete Enterprise Application

WEEK 3 15

16

17

18

19

20

21

18 0672324237 Part 03 9/24/02 2:37 PM Page 351

18 0672324237 Part 03 9/24/02 2:37 PM Page 352

DAY 15

WEEK 3

Understanding J2EE
Architecture

In Day 1, “Understanding EJB Architecture,” you learned that Enterprise
JavaBean (EJB) technology is part of the J2EE architecture, and that it’s the
standard for developing and deploying enterprise applications and components.
Enterprise applications can be assembled from standard components and then
deployed on varieties of J2EE-compliant application servers. Today, you’ll
explore the big picture of the J2EE platform. We’ll cover the rationale behind
the Java 2 Platform, Enterprise Edition (J2EE), and the set of standard APIs
that constitute its framework. You’ll study the evolution of the multitier archi-
tecture as the basis for the J2EE platform. By the end of the day, you’ll have
learned how your projects can benefit from the J2EE design patterns. You’ll
also learn how J2EE applications are deployed in the appropriate container.

Today’s road map is to explore the J2EE architecture and platform; to that end,
you’ll

• Learn what J2EE is, and what its objectives are

• Learn the evolution of the J2EE architecture from two-tier to multitier

19 0672324237 CH15 9/25/02 9:21 AM Page 353

• Understand the container model and the types of containers used in the J2EE plat-
form

• Explore the J2EE standard common services

• Learn the different J2EE protocols and interactions between tiers

• Understand how J2EE applications are partitioned into modules and deployed into
containers

• Understand J2EE design patterns and best practices

J2EE Overview
Java is one of the most commonly used and mature programming languages for building
enterprise applications. Over the years, Java development has evolved from small applets
run on a Web browser to large enterprise distributed applications run on multiple servers.
Now, Java has three different platforms, or flavors, and each addresses certain program-
ming requirements:

• The Java 2 Platform, Standard Edition (J2SE) is the underlying base platform for
the J2EE. Therefore, a brief discussion on the J2SE platform is relevant to our dis-
cussion of the J2EE platform. The J2SE platform consists of the Java 2 Software
Development Kit (SDK) and the Java 2 Runtime Environment (JRE). J2SE
includes tools and application programming interfaces (APIs) for developing client
applications with graphical user interfaces (GUIs), database access, directory
access, Common Object Request Broker Architecture (CORBA), fine-grained secu-
rity, input/output functions, and many other functions. It’s the most widely used
Java platform.

• The Java 2 Platform, Enterprise Edition (J2EE) is a platform for building server-
side components and applications. It provides the infrastructure needed for these
applications through a set of common services.

• The Java 2 Platform, Micro Edition (J2ME) helps with building Java applications
for micro-devices with limited display and memory requirements (the entire API
fits into 1KB), such as wireless devices, PDAs, and network devices.

Today, our focus is on the J2EE platform and its common services offerings.

J2EE is a platform and an industry-accepted standard that enables solutions for develop-
ing and deploying multitier enterprise applications. It provides a unified platform for
building distributed, server-centric systems. J2EE is a set of standard APIs that is offered
by a vendor through products and tools to be used by the enterprise. It was developed to
meet recent enterprise requirements, such as diversity of both applications and data, in

354 Day 15

19 0672324237 CH15 9/25/02 9:21 AM Page 354

Understanding J2EE Architecture 355

15
addition to the complexity of business processes. The J2EE standard is defined through a
set of related specifications, such as the J2EE specification, the Enterprise JavaBeans
specification, the Java Servlet specification, and the JavaServer Pages (JSP) specification.

The J2EE platform offers the following benefits to the enterprise and to product vendors:

• Establishes standards for database connectivity, Web components, business logic
components, message-oriented middleware (MOM), communication protocols, and
interoperability.

• Provides a standard for avoiding vendor lock-in and building portable applications
and components that are flexible, expandable, and reliable. This also helps in
developing secure, scalable, and transactional applications.

• Decreases time-to-market because much of the infrastructure and common services
are provided by vendors’ products that are implemented according to the standard
J2EE specification. IT organizations can get out of the middleware business and
concentrate on building applications for their business.

• Increases developer productivity because Java programmers can relatively easily
learn J2EE technologies based on the Java language. All enterprise software devel-
opment can be accomplished under the J2EE platform, using Java as the pro-
gramming language.

• Promotes interoperability within existing heterogeneous systems, such as CORBA
and J2EE.

• Enables developers to focus on supporting business process requirements rather
than building the in-house application infrastructure. The application server han-
dles the complex tasks of multithreading, synchronization, transactions, resource
allocation, and life cycle management.

In general, the J2EE platform helps the enterprise to overcome certain issues such as pro-
gramming productivity, application reliability, availability, security, scalability, and inte-
gration with existing systems.

The Evolution of J2EE Architecture
The client/server application architecture, which was a two-tier architecture, evolved over
time to a multitier architecture. This natural progression occurred as additional tiers were
introduced between the end-user clients and back-end systems. Although a multitier
architecture brings greater flexibility of design, it also increases the complexity of build-
ing, testing, deploying, administering, and maintaining application components.

In the next few sections, we’ll discuss the evolution of the multitier architecture.

19 0672324237 CH15 9/25/02 9:21 AM Page 355

Two-Tier Architecture
The two-tier architecture is also known as the client/server architecture. It consists
mainly of two tiers: data and client (GUI). The application logic can be located in either
the client tier, which results in a fat client, or located in the data tier, which results in a
fat server (see Figure 15.1).

356 Day 15

FIGURE 15.1
Two-tier architecture.

Database

Data-Tier

Client Tier
(Fat Client)

Application
Logic

Database

Data-Tier
(Fat Server)

Client Tier
(Thin Client)

Application Logic
(Stored Procedure)

2-Tier Architecture
(Client/Server)

This type of architecture suffers from a lack of scalability because both the client and the
server have limited resources, in addition to the negative effect of network traffic to trans-
fer data to the fat client. Another issue is maintainability; you have to roll out the new
system version to all system users.

Three-Tier Architecture
To address the issues of the two-tier architecture, the application logic will be placed in
its own tier. Thus applications can be portioned into three tiers. The first tier is referred to
as the presentation layer, and consists of the application GUI. The middle tier, or the
business layer, consists of the business logic to retrieve data for the user requests. The
back-end tier, or data layer, consists of the data needed by the application. Figure 15.2
illustrates the three-tier architecture.

The decoupling of application logic from either presentation or data increases the flexi-
bility of the application design. Multiple views or a GUI can be added without changing
the existing application logic. Similarly, multiple applications can be created using the
same data model. Changing the components of one tier should not impact the other two
tiers. For example, any change to the data or GUI will not affect the application logic.

19 0672324237 CH15 9/25/02 9:21 AM Page 356

Understanding J2EE Architecture 357

15
FIGURE 15.2
Three-tier architecture.

RDBMS/
OODB

Data-Tier

Application Tier
(Application Logic, Middleware)

Client Tier
(GUI)

XML
Documents

LDAP
Services

3-Tier Architecture

The three-tier architecture is the basis for J2EE applications, in which EJBs
provide a mechanism to build application logic, while JSPs and servlets
abstract the presentation layer and allow interaction with the business layer.

Note

One important feature of the three-tier architecture is sharing system resources by all
clients, which results in highly efficient, scalable, secure, and reliable applications.

Multitier J2EE Architecture
Multitier (or n-tier) architecture differs from the three-tier architecture in viewing each
tier logically rather than physically. The application logic, for example, can be split into
more than one layer; the business logic tier and the presentation logic tier. Similarly, the
user interface is partitioned into the client tier and the presentation tier. A multitier archi-
tecture determines where the software components that make up a computing system are
executed in relation to each other and to the hardware, network, and users.

J2EE is a multitier architecture, which partitions the application into client, presentation
logic, business logic, and enterprise information tiers. Figure 15.3 depicts the J2EE as a
multitier architecture.

The following gives a brief summary of each tier of the J2EE architecture:

• Client tier—This tier interacts with the user and displays information from the sys-
tem to the user. J2EE supports different types of clients—both inside and outside

19 0672324237 CH15 9/25/02 9:21 AM Page 357

enterprise firewalls—including Web clients (HTML and Java applets) and Java
applications.

358 Day 15

FIGURE 15.3
Multitier J2EE archi-
tecture.

RMI

RMI RMI

RMI-IIOP

RMI

RMI-
IIOP

Applet Container
(Web Browser)

J2SE

Applet
HTTP/s

Fi
re

w
al

l

HTTP/s

HTTP/s

EJB Container

J2SE

Session
Bean

Entity
Bean

MDB

R
M

I/IIO
P

JTA

JC
A

JN
D

I

JM
S

JA
A

S

JA
X

P

JD
B

C

JavaM
ail

JA
F

JAXP XML
Document

JCA Main
Frame

JMS
MOM

JNDI Directory
Services
(LDAP)

JDBC

JavaMail/
JAF

Mail
Server

RMI/IIOPRMI CORBA
Application

RMI Java
Application

Database

Client Tier EIS TierPresentation-Logic Tier Business-Logic Tier

Multitier J2EE Architecture

J2EE Application ServerWeb Container
(Web Server)

J2SE

Servlet JavaBean

JSP Taglib

JTA

JC
A

JN
D

I

JM
S

JA
A

S

JA
X

P

JD
B

C

JavaM
ail

JA
F

J2EE App Container

J2SE

App Client

JN
D

I

JM
S

JA
A

S

JA
X

P

JD
B

C

JavaM
ail

JA
F

• Web tier—This tier accepts user requests and generates responses using the pre-
sentation logic. In the J2EE platform, servlets and JSPs in a Web container imple-
ment this tier, as explained on Day 7, “Designing Web Applications.”

• Business logic tier—This tier handles the core business logic of the application.
The business components are typically implemented as EJB components with sup-
port from an EJB container, which provides the component life cycle and manages
persistence, transactions, security, and resource allocation.

• EIS tier—This tier is responsible for the enterprise information systems, including
different database systems, transaction processing systems, legacy systems,
message-oriented middleware, and enterprise resource planning systems (ERPs).
The EIS tier is the point at which J2EE applications integrate with non-J2EE or
legacy systems.

The J2EE platform is designed not only to support a multitier architecture to
partition applications, but also to provide infrastructure common services to
reduce the complexity of developing and deploying these applications.

Note

Other than multitier, the J2EE architecture provides the enterprise with common infra-
structure services which help in developing and deploying portable, secure and

19 0672324237 CH15 9/25/02 9:21 AM Page 358

Understanding J2EE Architecture 359

15
transactional applications. The J2EE architecture partitions enterprise applications into
three fundamental parts: components, containers, and connectors. Components are the
key focus of application developers, whereas system vendors implement containers and
connectors to hide complexity and enhance portability. Enterprise Java applications can
run on any J2EE-compliant application server.

Containers transparently provide common services, including transaction, security, per-
sistence, and resource pooling, to both clients and components. A container allows the
configuration of applications and components at deployment, rather than hard-coding
them in program code. Connectors extend the J2EE platform by defining a portable
client service API to plug into existing enterprise vendor products. Connectors promote
flexibility by enabling a variety of implementations of specific services.

Understanding the J2EE Container Model
Containers are vital to J2EE components. Containers are the run-time environments that
provide standard common services to the deployed components. Containers are imple-
mented and offered by various vendors in the form of J2EE-compliant Application
Servers. Containers also provide unified access to enterprise information systems, such
as access to relational data through the Java Database Connectivity (JDBC) API, or to
legacy systems through J2EE Connector Architecture (JCA) API. In addition, containers
provide a declarative mechanism for configuring applications and components at assem-
bly or deployment time through the use of deployment descriptors. Features that can be
configured at deployment time include security authorization and validation, transaction
management, and other tasks. Figure 15.4 depicts the J2EE container model.

Each tier of the J2EE architecture may consist of more than one container. For example,
the Web tier may consist of a servlet container (or engine) and a JSP container, which
together make a Web container. Similarly, each EJB type runs on its own container,
which is commonly known as an EJB container. Some Application Servers are offered
with both a Web container and an EJB container.

Multitier distributed applications follow the Model-View-Controller (MVC)
paradigm, discussed earlier on Days 1 and 7. This design pattern provides
clean separation between tiers. Using this paradigm, the model (data tier) is
separated from the view (client and presentation tiers). Similarly, the con-
troller (the application logic tier) is separated from both the view and the
model.

Note

19 0672324237 CH15 9/25/02 9:21 AM Page 359

360 Day 15

FIGURE 15.4
J2EE container model.

Deployment DescriptorA

Application A

Deployment DescriptorB

Application B

Deployment DescriptorC

Application C

Container

Horizontal Services

Horizontal Services

J2EE Container Model

V
er

t ic
al

 S
er

vi
ce

s

V
er

tic
al

 S
er

vi
ce

s

A Java Application Server is a platform for developing and deploying multitier distrib-
uted J2EE-compiant enterprise applications. It centralizes application services such as
Web server functionality, business components, and access to back-end enterprise sys-
tems. It uses technologies such as caching and connection pooling to enhance resource
utilization and application performance. An Application Server also provides control
over performance, transaction, security, scalability, and reliability. Application Servers
provide infrastructure support to an enterprise, which not only reduces the cost of its
applications, but also reduces the time-to-market. Each Application Server has its own
advantages and disadvantages.

Some Application Servers, such as WebLogic Server, run all the Web compo-
nents in the Web container, which is different from the proxy server that’s
used as a gateway to pass requests and responses. All requests are processed
in the Web container using servlets and JSPs.

Note

No two Application Servers are completely alike. There are many factors in
selecting the appropriate Application Server that fits your enterprise needs.
Some of those factors are performance, scalability, and J2EE-compliance.
Some Application Servers are based on Java, CORBA, or different languages.

Note

The following sections discuss each container used in the J2EE multitier architecture.

19 0672324237 CH15 9/25/02 9:21 AM Page 360

Understanding J2EE Architecture 361

15
Applet Container (Web Browser)
Web browsers are standard clients for e-commerce applications. Web-based applications
built with standard Web technologies are flexible, maintainable, and portable. In Web-
based applications, the user interface is represented by HTML documents, images, form
fields, and Java applets. The Web browser contains the logic to render the Web page on
the user’s computer from the HTML description.

J2EE Client Application Container
This is a Java client program that cannot run on a Web browser, and must supply its own
code for rendering the user interface. Nonbrowser clients usually provide their own pre-
sentation and rendering logic. They depend on the Application Server for business logic
and access to back-end services. They are more difficult to develop and deploy than
Web-based clients. Any client applications written in Java can use an Application
Server’s common service over RMI (Remote Method Invocation).

RMI allows a client program to execute methods on an Application Server object the
same way it does locally. Java applications can use the Java Swing classes to create pow-
erful, portable, and sophisticated user interfaces. Java applications can be used effectively
in the enterprise behind firewalls to avoid network issues. They can be integrated with
CORBA-based applications by using the RMI/IIOP (Internet Inter-ORB Protocol)
protocol.

Web Container
Web containers provide runtime support for responding to HTTP requests. They process
requests by invoking JSP pages or a servlet, and returning results to the client. In addi-
tion, Web containers provide APIs to support user session management. Servlet contain-
ers and JSP containers, which collectively are called Web containers, host Web
components. You learned about Web containers on Day 7.

EJB Container
As you learned on Day 1, EJB containers host EJB components. EJB containers provide
automated support for transaction, security, persistence, and life cycle management of
deployed components. EJBs are the business logic components for J2EE applications.

Clustering of J2EE Components and Services
An Application Server cluster is a group of Application Server instances that work
together to provide scalable and reliable J2EE applications. A cluster of servers is
transparent to its clients and perceived as a single server in delivering its consolidated
services. The major two capabilities that a cluster provides are load balancing, and

19 0672324237 CH15 9/25/02 9:21 AM Page 361

fail-over. Load balancing provide services that result in higher application scalability,
while fail-over enhances the reliability and availability of the running applications.

All instances (also called nodes or members) of a cluster work together by replicating all
components and services across them. Not all components and common services can be
clustered. Each Application Server product provides unique capabilities for clustering
objects. Should one member of a cluster fails, another member takes over the load to pre-
serve the running services. This increases the availability of the application to its users.

Not all J2EE components and services are suitable for clustering. Some types of EJB,
such as stateless session beans, read-only entity beans are highly clusterable objects, and
can always be clustered. Services such as JMS and JNDI are suitable for clustering. On
the other hand, great care must be provided when clustering stateful session beans, which
are clustered using in-memory replication to provide failover. In-memory replication of
state is a technique used to have multiple instances (called replicas) of the same compo-
nent deployed across different nodes of the cluster. This is more efficient than replication
done using persistence through the database. Read-write entity beans are always
anchored to one member of the cluster on which they are instantiated. If this member
fails, the application responsibility has to create a new instance.

JDBC connection pools can be clustered across multiple servers in an Application Server
environment. When a client requests a connection from the pool, the cluster selects the
server that will provide the connection, allowing load balancing and protection against
server failure. After a client has a connection, the state maintained by the JDBC driver
makes it necessary to pin the client to the host Application Server.

Java Message Service (JMS) objects also can be clustered among the different members
of a cluster. Both JMS connection factories and JMS destinations (topic or queue) can be
deployed on multiple members of a cluster. Such distribution of JMS resources through-
out a cluster will enhance both load-balancing and fail-over of JMS services.

362 Day 15

J2EE doesn’t specify any rules for clustering Application Servers, and left this
feature to be offered by the J2EE application server provider. Such added
value is not part of the standard, but it provides tremendous capability and
a key differentiator to the application server when deployed in production
environments.

Note

Load Balancing
You can configure multiple Application Servers to share large volumes of user requests.
This is accomplished by using a proxy server (Web server) to perform load balancing by
distributing requests across the multiple nodes in the tier behind it.

19 0672324237 CH15 9/25/02 9:21 AM Page 362

Understanding J2EE Architecture 363

15The most commonly used proxy servers are Apache, Netscape, and Microsoft
Web server. The proxy server in this case affects the load balancing of both
the Web tier and the EJB tier.

Note

In large enterprise applications, multiple proxy servers (called a Web server farm) are
used. The load on the proxy servers is distributed by an external load balancer. The most
common load balancer is from Cisco.

Failover and Replication
Application Server provides session replication to ensure that a client’s session state
remains available. When the node managing the client session fails, the proxy server
sends subsequent requests to the replica in the cluster. Session replication is done behind
the scenes using the cluster software.

Session replication can be either in-memory or persistent replication. In-memory replica-
tion uses fewer resources and is more efficient than persistent replication, which is the
most commonly used. Persistence replication writes the session data to a database; there-
fore, it’s far less efficient and has a negative impact on the user’s response time.

Exploring J2EE Protocols
Client applications connect with a J2EE Application Server using standard networking
protocols over TCP/IP. Application Server listens for connection requests at a network
address that can be specified as part of a Uniform Resource Identifier (URI), which is a
standardized string that specifies a resource on a network, including the Internet.

Web-based clients communicate with Application Server using the Hypertext Transfer
Protocol (HTTP). Java clients connect using the Java RMI, which allows a Java client to
execute objects in Application Server. CORBA-enabled clients access Application Server
RMI objects using RMI/IIOP, which allows them to execute Application Server objects
using standard CORBA protocols.

The following sections summarize the protocols used by the J2EE platform to transfer
data between its multiple tiers.

Transport Control Protocol over Internet Protocol
TCP/IP, or Transport Control Protocol (TCP) over Internet Protocol (IP), provides reli-
able delivery of streams of data from one host to another. IP is the basic protocol of the
Internet, which enables the unreliable delivery of packets from one host to another. IP
makes no guarantees to deliver packets, or that packets will arrive in the order in which

19 0672324237 CH15 9/25/02 9:21 AM Page 363

they were sent. The TCP adds the notions of connection and reliability, which are
responsible for the guaranteed delivery of packets.

Hypertext Transfer Protocol
HTTP is the Internet protocol used to transfer hypertext objects from remote hosts to
requesting clients. It is a generic, stateless, object-oriented protocol that may be used for
many similar tasks, such as DNS and distributed object-oriented systems. HTTP mes-
sages consist of requests from the client to the HTTP server, and responses from the
server to the client. Application Server always responds to an HTTP request by executing
a servlet, a JSP, or static HTML, which returns results to the client. An HTTP servlet is a
Java class that can access the contents of an HTTP request received over the network and
return an HTTP-compliant result to the client. You learned about HTTP, JSP, and servlets
on Day 7.

Secure Sockets Layer
Secure Sockets Layer (SSL) is a security protocol that provides privacy over the Internet.
The protocol allows client/server applications to communicate in a way that cannot be
eavesdropped on or tampered with. Servers are always authenticated, and clients are
optionally authenticated. Data exchanged with the HTTP protocol can be encrypted with
the SSL protocol.

364 Day 15

Using SSL assures the client that it has connected with an authenticated
server and that data transmitted over the network is private. You’ll learn
more about SSL on Day 19, “Understanding Security,” when we study secu-
rity for J2EE applications.

Note

Remote Method Invocation
RMI is the standard Java facility for distributed applications. RMI allows one Java pro-
gram, called a server, to publish Java objects that another Java program, called a client,
can execute. In most applications, Application Server is the RMI server and a Java client
application is the client. But the roles can be reversed; RMI allows any Java program to
play the role of server. You learned about RMI on Day 2, “Understanding EJB Types and
Interfaces.”

19 0672324237 CH15 9/25/02 9:21 AM Page 364

Understanding J2EE Architecture 365

15
JavaIDL
JavaIDL (Java Interface Definition Language) provides a mechanism to Java clients in
defining interfaces to access methods on CORBA objects. JavaIDL consists of a
collection of CORBA classes and interfaces. An enterprise application developer uses the
IDL compiler to generate code for a Java client stub to access a CORBA object, which is
defined by the IDL. The Java client is then linked with the stub and uses the CORBA
interfaces to access the CORBA object.

RMI/IIOP
RMI/IIOP is basically a bridge between RMI (the Java native protocol) and IIOP (the
CORBA native protocol). IIOP is short for CORBA’s Internet Inter-ORB Protocol.
RMI/IIOP provides applications developer to write remote interfaces in the Java pro-
gramming language. The remote interface can then be converted to IDL and imple-
mented in any of the languages that are supported by CORBA mapping and an Object
Request Broker (ORB) for that language. This mapping translates objects and primitive
data types of one language to CORBA-compliant data types.

Clients and servers can be written in any language using IDL derived from the RMI
interfaces. When remote interfaces are defined as Java RMI interfaces, RMI over IIOP
provides interoperability with CORBA objects implemented in any language.

RMI is discussed in more details on Day 2, “Understanding the Fundamentals of
Enterprise JavaBeans.”

Understanding the J2EE Common
Services APIs

The J2EE architecture allows applications to access a wide range of services in a uniform
manner. This section describes the technologies that provide access to infrastructure ser-
vices such as databases, transactions, XML processing, naming and directory services,
and enterprise information systems. As such, many J2EE APIs are available for use by
developers and management by Application Server. Those of particular interest are sum-
marized in the following sections.

Java Naming and Directory Interface
The Java Naming and Directory Interface (JNDI) is an API that provides applications
with unified methods for performing standard naming and directory services. JNDI stan-
dardizes access to directory services, such as associating attributes with objects and
searching for objects using their attributes. With JNDI, an application can store and

19 0672324237 CH15 9/25/02 9:21 AM Page 365

retrieve any named Java object in a standard fashion. You learned about JNDI on Day 4,
“Using JNDI for Naming Services and Components.”

Java Database Connectivity
Java Database Connectivity (JDBC) is an API that provides database-independent con-
nectivity between the J2EE platform and a wide range of data sources. JDBC allows
J2EE applications to connect to databases and perform all required operations through a
standard set of APIs. You learned about JDBC on Day 9, “Using JDBC to Connect to a
Database.”

Enterprise JavaBeans
This is the component framework that allows the development and deployment of multi-
tier distributed enterprise applications. It provides a standard for building server-side
components and specifies rich run-time common services and infrastructure support of
deploying components.

JavaServer Pages
The JSP specification provides template-driven Web application development to deliver
dynamic content. You learned about JSP on Day 7.

Java Servlet
The Servlet API provides an object-oriented abstraction for building Web applications to
deliver dynamic content. You learned about the Servlet API on Day 7.

Java Message Service
The JMS API allows J2EE applications to access enterprise message-oriented middle-
ware systems such as IBM’s MQ Series and TIBCO’s Rendezvous. JMS messages con-
tain well-defined information that describes specific business actions.

Through the exchange of these messages, applications track the progress of enterprise
activities. The JMS API supports both point-to-point and publish-subscribe styles of mes-
saging. You learned about JMS on Day 13, “Understanding JMS and Message-Driven
Beans.”

Java Authentication and Authorization Service
The Java Authentication and Authorization Service (JAAS) API provides security-
checking mechanisms, such as authentication and authorization, to J2EE applications.
You’ll learn about JAAS on Day 19.

366 Day 15

19 0672324237 CH15 9/25/02 9:21 AM Page 366

Understanding J2EE Architecture 367

15
JavaMail
The JavaMail API provides a set of abstract classes and interfaces that comprise an elec-
tronic mail system. The abstract classes and interfaces support many different implemen-
tations of message stores, formats, and transports. Many simple applications will need to
interact with the messaging system only through these base classes and interfaces.

The abstract classes in the JavaMail API can be subclassed to provide new protocols and
add functionality when necessary. In addition, the JavaMail API includes concrete sub-
classes that implement widely used Internet mail protocols and conform to specifications
RFC822 and RFC2045. They are ready to be used in application development.
Developers can subclass JavaMail classes to provide implementations of particular mes-
saging systems, such as IMAP4 (Internet Message Access Protocol version 4), POP3
(Post Office Protocol version 3), and SMTP (Simple Mail Transfer Protocol). You’ll learn
about JavaMail on Day 21, “Developing a Complete Enterprise Application.”

JavaBeans Activation Framework
The JavaBeans Activation Framework (JAF) API integrates support for MIME
(Multipurpose Internet Mail Exchange) data types into the Java platform. JavaBeans
components can be specified for operating on MIME data, such as viewing or editing the
data. The JAF API also provides a mechanism to map filename extensions to MIME
types.

The JAF API is required by the JavaMail API to handle the data included in e-mail mes-
sages. Typical applications won’t need to use the JAF API directly, although applications
making sophisticated use of e-mail might need it.

Java Transaction API
The Java Transaction API (JTA) specification allows applications to perform distributed
transactions independent of specific implementations. JTA specifies standard Java inter-
faces between a transaction manager and all participants involved in a distributed trans-
action. Such participants are typically the J2EE application server, the resource
managers, and the application components sharing the transaction. You’ll learn about JTA
in Day 16, “Understanding Transactions.”

Java API for XML Parsing
The Java API for XML Parsing (JAXP) technology provides abstractions for XML
parsers and transformation APIs. It supports the processing of XML documents using the
Document Object Model (DOM) and Extensible Stylesheet Language Transformation
(XSLT) transformations. JAXP enables applications to parse and transform XML docu-
ments independent of a particular XML processing implementation.

19 0672324237 CH15 9/25/02 9:21 AM Page 367

368 Day 15

We won’t cover JAXP in this book, but a brief summary of XML can be
found in Appendix C, “Understanding XML.” More information about JAXP
can be found at http://java.sun.com/products/jaxp.

Note

J2EE Connector Architecture
The J2EE Connector Architecture (JCA) is a standard API for connecting the J2EE plat-
form to enterprise information systems (EIS), such as enterprise resource planning
(ERP), mainframe transaction processing, and database systems. The architecture
addresses the issues involved when integrating existing EIS, such as SAP, CICS, legacy
applications, and nonrelational databases, with an EJB server and enterprise applications.
The JCA defines a set of scalable, secure, and transactional mechanisms for integrating
an EIS with a J2EE platform.

The J2EE Connector Architecture is implemented both in Application Server and in an
EIS-specific resource adapter (RA). A resource adapter is a system library specific to an
EIS and provides an interface to the EIS. A resource adapter is analogous to a JDBC dri-
ver. The interface between a resource adapter and the EIS is specific to the underlying
EIS, and can be a native interface. The JCA comprises the system-level contracts
between Application Server and a given resource adaptor, a common interface for clients
to access the adaptor, and interfaces for packaging and deploying resource adaptors to
J2EE applications.

Web Services are new technology that allows applications to communicate
with each other over the Web. They typically communicate by passing mes-
sages. The XML-based SOAP 1.1 protocol over HTTP transport is becoming a
popular and standard way exchanging messages between these applications.
WSDL (Web Services Description Language) can be used to describe
abstractly a Web service and can bind it to a network endpoint. EJB 2.1 is
implementing Web services using stateless session beans. Session beans
define a Web service interface and implements that interface in the bean
class conforming to the JAX-RPC rules. The interface is specified as a service
endpoint in the deployment descriptor. The session bean can get the SOAP
message and the properties using the MessageContext interface available
from SessionContext interface. From the client’s point of view, the session
bean is completely hidden behind the Web service endpoint. Java clients,
including all enterprise beans, can locate an endpoint using JNDI and
accesses the interface by means of the JAX-RPC API.

Note

19 0672324237 CH15 9/25/02 9:21 AM Page 368

Understanding J2EE Architecture 369

15

Summary of the J2EE APIs
Table 15.1 summarizes the J2EE APIs and the container from which they can be used. It
also references the day in which the API is covered in this book (also refer to Figure 15.3).

TABLE 15.1 Summary of J2EE APIs and Containers

Applet Application
API Container Client Container Web Container EJB Container Day

JNDI - Y Y Y 4

JDBC - Y Y Y 9

JTA - - Y Y 16

JSP - - Y - 7

Servlet - - Y - 7

EJB - Y Y Y Many

RMI/IIOP - Y Y Y 3

JMS - Y Y Y 13

JavaMail - Y Y Y 20

JAF - Y Y Y 20

JAXP - Y Y Y -

JAAS - Y Y Y 19

JCA - - Y Y -

We don’t cover the JCA API in this book. More information about JCA can
be found at http://java.sun.com/products/jca.

Note

In EJB 2.1, EJB container provides timer services to enterprise beans for
scheduling business tasks based on time events. Both stateless session beans
and entity beans can utilize the timer services provided by the container.
The EJB container invokes the callback method of the enterprise bean at a
specified time or after a specified duration or in specified time intervals for
enterprise beans that register with the container. The timer method of an
enterprise bean implements the business logic to handle the timeout event.
The timer services, however, are not intended for modeling real-time events.
The EJB container provides reliable timer services that can survive container
crashes, activation/passivation, and load/store cycles of enterprise beans.
Further the containers manage timers that are part of transactions. The con-
tainers allow enterprise beans to create, locate, and cancel timers.

Note

19 0672324237 CH15 9/25/02 9:21 AM Page 369

Exploring the J2EE Data Formats
Data formats define the types of data that can be exchanged between different compo-
nents residing in different tiers. The J2EE architecture supports for the following data
formats:

• HTML documents—The markup language used to define hypertext documents
accessible over the Internet. HTML enables many display elements to be included
in a Web page, such as images, sounds, video, form fields, references to other
HTML documents, and basic ASCII data. HTML documents are located by URLs.

• Images—The J2EE platform supports both the GIF (Graphics Interchange Format),
and JPEG (Joint Photographic Experts Group) images.

• Class files—The format of a compiled Java file into a bytecode format.

• JAR files—A platform-independent file format (compressed files) that permits
many files to be aggregated into one file. Other types of JAR files are Web
Archives (WARs), Enterprise Archives (EARs), and Resource Archives (RARs).
(See the “Packaging J2EE Applications” section later today for more information.)

• XML documents—A well-formed text-based markup language that is used to
define data elements based on a schema. Unlike HTML, XML tags describe the
data, rather than the format for displaying it. XML is covered in Appendix C.

Packaging J2EE Applications
The J2EE platform simplifies the deployment of enterprise applications. This is accom-
plished by packaging applications and components into independent modules. Each mod-
ule contains all the components along with a deployment descriptor. The deployment
descriptor, as its name implies, describes each component’s properties, the relationship
between components, and the customized common services to be provided by the container
at runtime. Typically, all components of one tier are packaged into a separate module.

A J2EE application consists of one or more J2EE modules and one J2EE application
deployment descriptor. An application deployment descriptor contains a list of modules
and how to configure them. A J2EE application is represented by an EAR file, which
must contain at least one JAR file. In addition, an EAR file might contain any number of
WAR files and RAR files, or none at all (see Figure 15.5). The standard deployment
descriptor for the J2EE application is application.xml, and is located in the META-INF
directory of the EAR file.

Each J2EE module consists of one or more J2EE components for the same container
type and one component deployment descriptor of that type.

370 Day 15

19 0672324237 CH15 9/25/02 9:21 AM Page 370

Understanding J2EE Architecture 371

15

The three types of J2EE modules are

• Application client modules—Contain class files and a deployment descriptor.
Application client modules are packaged as JAR files with a .jar extension, which
will be deployed into the client application container. The standard deployment
descriptor for this module is application-client.xml, and is located in the
META-INF directory of the JAR file.

• Web modules—Consist of JSP files, class files for servlets, GIF and HTML files,
and a Web deployment descriptor. Web modules are packaged as JAR files with a
.war extension, which will be deployed into the Web container. The standard
deployment descriptor for this module is web.xml, and is located in the WEB-INF
directory of the WAR file.

• EJB modules—Consist of class files for all the deployed EJBs and a deployment
descriptor. EJB modules are packaged as JAR files with a .jar extension, which
will be deployed into the EJB container. The standard deployment descriptor for this
module is ejb-jar.xml, and is located in the META-INF directory of the JAR file.

• Resource adapter modules—Comprise all Java interfaces, classes, native libraries,
and the resource adapter deployment descriptor. Resource adapter modules are
packaged as RAR files with an .rar extension. The standard deployment descriptor
for this module is ra.xml, and is located in the META-INF directory of the JAR file.

Designing J2EE Applications
In designing J2EE applications, care must be taken to avoid many recurring problems,
most of which are related to optimizing remote calls between client and the requesting
service. For example, fulfilling a request by making one trip to the database is much
more efficient than making several trips. This enhances the network traffic and optimizes

FIGURE 15.5
J2EE application’s
deployment descrip-
tors.

J2EE Application (EAR file)

application.xml
(in META-INF dir)

Java Module Web Module EJB Module JCA Module

Java Module (JAR file)

application-client.xml
(in META-INF dir)

Java Java

Web Module (WAR file)

web.xml
(in WEB-INF dir)

Web Web

EJB Module (JAR file)

ejb-jar.xml
(in META-INF dir)

EJB EJB

Resource Adapter (RAR file)

ra.xml
(in META-INF dir)

EJB EJB

19 0672324237 CH15 9/25/02 9:21 AM Page 371

repeated resource allocations. These recurring problems and issues in designing applica-
tions are gathered and documented in a catalog of design patterns.

Patterns are typically written in a structured format. A design pattern is identified by a
name, problem statement, and the solution to that problem. Design patterns are devel-
oped to prevent reinventing the wheel; therefore, they are reusable artifacts. They exist at
different levels of abstraction, and they communicate designs and best practices. In enter-
prise applications, you can join design patterns together to solve a larger problem.

By now, you have already been introduced to the MVC design pattern. Today, you’ll
learn few more patterns that can be applied in designing J2EE applications.

372 Day 15

FIGURE 15.6
Session façade
pattern

Network
EJB

Client

Entity
Bean A

Entity
Bean B

Entity
Bean C

remote call local call

local call

local call

remote call

remote call

Business Tier

J2EE Client-Tier or
Presentation-Tier

Network
EJB

Client

Entity
Bean A

Entity
Bean B

Session
Facade

Entity
Bean C

remote call

Business Tier

J2EE Client-Tier or
Presentation-Tier

Session Facade Design Pattern

Avoid direct call to entity beans
by wrapping them with a
session bean (Facade).

An EJB client accesses the session bean (Façade) instead of entity beans through a
coarse-grained method call to accomplish a business process. Wrapping entity beans with
a Session Façade reduces network traffic, which is reflected in positive performance.

For more details about a large catalog of design patterns, refer to the classic
book, Design Patterns: Elements of Reusable Object-Oriented Software, by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (ISBN 0-201-
63361-2). These four authors are also known as the GOF (Gang of Four).

Note

Session Façade Design Pattern
The J2EE specification doesn’t restrict access to entity beans by any client components.
EJB clients, such as Java applications from the client tier, and servlets and JSP from the
Web tier, can have direct access to entity beans. Access of entity beans directly over the
network takes more remote calls and imposes network overhead. Again, in minimizing
remote calls, a session bean can be used as a façade in the EJB tier to mediate access on
behalf of the client (see Figure 15.6).

19 0672324237 CH15 9/25/02 9:21 AM Page 372

Understanding J2EE Architecture 373

15

Any lookup for a JNDI remote object is done only the first time; subsequent lookups
access the local cache of service objects.

Message Façade Design Pattern
Because methods of both session and entity beans are executed synchronously, a client
method call has to wait until a value is returned. Some e-commerce applications, such as
checking a customer’s credit, require waiting for an approval before proceeding. Using
synchronous session or entity beans in such situations will not be efficient because the
client has to wait for a reply. This situation can be resolved by using a message-driven
bean, waiting for a reply, and delivering it to the client through an e-mail (see Figure 15.8).

FIGURE 15.7
Service Locator
pattern. lookup

lookup

Network

EJB
Client

JMS
Client

EJB
Client

lookup

Session Locator Pattern

JNDI Network
lookup

lookup

lookup
JNDI

EJB
Client

JMS
Client

Service
Locator

EJB
Client

Maintains a cache of service objects and lookup
the JNDI only first time for each service object.

FIGURE 15.8
Message façade pat-
tern.

EJB
Client

1. request

8. response

Business Tier

J2EE Client-Tier or
Presentation-Tier

Message Facade Design Pattern

Session
Facade

Entity
Bean B

4. request

Entity
Bean A

3. response
2. request

7. response

6. request
5. response

Entity
Bean C

EJB
Client

1. request

2. acknowledge

JMS
Provider

3. request

10. acknowledge

Business Tier

J2EE Client-Tier or
Presentation-Tier

Avoid blocking of client by using
asynchronous MDBs, so that client

does not have to wait for a
return value.

MOB
Message
Facade

Entity
Bean B

6. request

Entity
Bean A

5. response
4. request

9. response

8. request
7. response

Entity
Bean C

Using message-driven beans implies the use of the JMS product, which is assumed as
part of the enterprise infrastructure.

Service Locator Design Pattern
The Service Locator pattern addresses the issue of the usage of JNDI to look up different
resources and services. These resources can be any of the EJBHome objects, DataSource
objects, or JMS ConnectionFactory objects. Each lookup is an expensive remote call in
terms of network traffic. To minimize remote calls, a service locator object is created
locally to maintain a cache of these service objects (see Figure 15.7).

19 0672324237 CH15 9/25/02 9:21 AM Page 373

Best Practices
J2EE has many best practices applied to designing applications and components. The
main keys in them are the design patterns covered in the previous section. Most best
practices focus on minimizing remote calls, which reduce network traffic and enhance
the performance of your applications. Both the Service Locator pattern and the Session
Façade pattern address remote calls by creating an object local to the service you’re try-
ing to access. Caching is another technique used to reduce network traffic in distributed
applications.

Not all solutions are synchronous; some elegant solutions use an asynchronous messag-
ing paradigm. Using message-driven beans to delivering solutions in which clients do not
have to wait for an immediate response is more efficient.

J2EE best practices is a subject by itself, and requires more study and architectural expe-
rience. Each component, application, and tier has its own design considerations, which
we try to cover across our journey of 21 days.

374 Day 15

FIGURE 15.9
Value object pattern.

Business Tier

J2EE Client-Tier or
Presentation-Tier

Create a Data Bean
object to carry bulky
information, and then

query them locally

Value Object Design Pattern

Student
BeanInfo

Student
Entity
Bean

Student
BeanInfo

Business Tier

Student
Entity
Bean

J2EE Client-Tier or
Presentation-Tier

3. getAddress()

1. create()

2. getName()

4. get(Phone)
Network

1. create()
NetworkEJB

Client

2. getName()

2. getPhone()

3. getAddress()
EJB

Client

Value Object Design Pattern
The Value Object design pattern is used to transfer remote, fine-grained data by sending
a coarse-grained or bulk view of that data.

We briefly discussed the concept of a data bean, during the discussion of
JavaBeans on Day 7. A data bean is a typical implementation of this pattern.

Note

The main advantage of this pattern is to make one trip to the remote EJB tier, and bring a
coarse-grained (bulky) object of data to the local machine. Again, this reduces network
traffic, and enhances your application performance (see Figure 15.9).

19 0672324237 CH15 9/25/02 9:21 AM Page 374

Understanding J2EE Architecture 375

15
Clustering of services and components across multiple tiers has great impact on the scal-
ability and availability of your applications. Both load balancing and failover are used in
clustering technology to meet heavy load situations.

Summary
Today, you explored the J2EE platform and the rationale behind its architecture. You
learned about different type of containers and the common services that are available for
use by the components hosted in that container. J2EE container is a runtime environment
and provides several levels of abstractions. You also learned a brief description of the
common services available in the J2EE platform. You recognized the J2EE modules nec-
essary to build and deploy J2EE applications. We covered some of the design patterns
used in the J2EE platform, such as the Session Façade and the Service Locator.

Q&A
Q What are the main tiers of the J2EE architecture?

A The J2EE architecture consists of four tiers: the client tier, presentation tier, busi-
ness logic tier, and the EIS tier.

Q Why should I use design patterns?

A Design patterns are reusable artifacts, and proven solutions that can be directly
applied to solve certain problems. Design patterns are gained by experience and
documented for use by architects and designers of enterprise applications.

Quiz
1. Which J2EE APIs are used to send an e-mail message to a user?

A. Java Message Service (JMS)

B. JavaMail

C. JavaBean Activation Framework (JAF)

D. JavaServer Pages (JSP)

2. Which container is most recommended to access a database?

A. Web container

B. EJB container

C. Web browser

D. Client application container

19 0672324237 CH15 9/25/02 9:21 AM Page 375

3. To minimize remote calls, which design patterns are recommended?

A. Session Façade

B. MVC

C. Message Façade

D. Service Locator

Quiz Answers
1. B, C

2. B

3. A, D

Exercises
1. What are the main components included in a WAR file?

2. What is the advantage of using the Session Façade pattern?

3. What is the main difference between a three-tier architecture and a multitier archi-
tecture, with respect to the MVC paradigm?

4. What are the common services available to the J2EE platform?

376 Day 15

19 0672324237 CH15 9/25/02 9:21 AM Page 376

DAY 16

WEEK 3

Understanding J2EE
Transactions

Today, we’ll cover both local and global J2EE transactions. On Day 9, “Using
JDBC to Connect to a Database,” you learned how to use local transactions to
handle JDBC calls, and on Day 13, “Understanding JMS and Message-Driven
Beans,” you learned local transaction to handle Java Message Service (JMS)
messages. Today, we will focus on both local and distributed transactions
through components and applications across all J2EE tiers. We will discuss the
Java Transaction API (JTA), and show how it abstracts transaction management
and makes this complex task completely transparent to developers. Concepts
such as transaction level of isolation, transaction attributes, and demarcation
managements will be highlighted. We will also shed light on both bean-
managed transactions and container-managed transactions, which are the sub-
jects of the next two days.

The following summarizes the activities that you’ll be learning today:

• Understand transaction fundamentals

• Understand the basic types of transactions: local and distributed

20 0672324237 CH16 9/24/02 2:37 PM Page 377

• Learn about the JTA, which manages transactions in J2EE applications

• Learn how to use transactions across all J2EE tiers

• Give a working example of distributed transactions using both JMS and JDBC
resources in one global transaction

Understanding Transaction Fundamentals
A transaction is a set of one or more SQL statements that are executed together as a unit
of work, so either all the statements are executed or none of the statements are executed.
In addition to grouping statements together for execution as a unit, a transaction becomes
the fundamental unit of recovery, consistency, and concurrency in reliable J2EE applica-
tions.

One of the primary objectives of EJB architecture is to provide transaction services
through the EJB container. This relieves the application programmer from dealing with
the complex issues of failure recovery, concurrency, and multi-user programming. The
transaction simplifies the task of building a sophisticated enterprise application, and it is
the foundation for dealing with complex B2B (Business-to-Business) and B2C
(Business-to-Consumer) applications.

The following two sections discuss transaction properties, and the transaction models
used in transactional applications.

The ACID Properties
Enterprise transactions share certain characteristics, commonly known as ACID proper-
ties, which are important for data integrity and consistency:

• Atomic: All operations of the transaction must be performed successfully or not at
all.

• Consistent: The transaction must transition the data from one consistent state to
another, preserving the data’s semantic and referential integrity. Access should not
be allowed to inconsistent data.

• Isolated: Transactions may run concurrently, but any changes made to data by a
transaction are invisible to other concurrent transactions until the transaction com-
mits. Isolation requires that several concurrent transactions must be repeatable,
(that is, they must produce the same results in the data as same transactions exe-
cuted serially, and in any order).

• Durable: After the transaction is committed, the resultant data should be perma-
nent. This implies that data for all committed transactions can be recovered after a
system crash or media failure.

378 Day 16

20 0672324237 CH16 9/24/02 2:37 PM Page 378

Understanding J2EE Transactions 379

16

In summary, an ACID transaction ensures the consistency and integrity of the persistent
data. It also assumes a stable set of inputs and working data, and that the data changes
are recoverable after system failure.

Exploring the Transaction Models
Generally, a transaction model describes the main entities that constitute a transaction,
and defines when a transaction starts, when it succeeds, and what to do in case of failure.
A transaction consists of group of statements, such as database SQL, logical operations,
or messages sent to a queue. There are two transaction models: flat and nested.

Flat Transactions
In this simple model, a transaction consists of a series of operations. It can be either local
or global (distributed). If all the operations succeed, the transaction is committed. If one
operation fails, the whole transaction rolls back to the same state before it started. The
EJB architecture supports flat transactions, which we will cover today.

Nested Transactions
This model allows new transactions to be spawned as children, inside another transac-
tion. This is similar to a tree of transactions: The root transaction contains sub-
transactions, and so on. Each sub-transaction can be rolled back individually. The whole
nested transaction commits if and only if all the sub-transactions succeed.

Currently, the EJB specification supports only flat transactions and not
nested transactions. As the EJB specification is a work in progress, future
versions of the EJB specification might support nested transactions.

Caution

Types of Transactions
Transactions can be either local (also called standard) or global (also called distributed),
depending on the resources and the data sources involved. Most enterprise applications
use some sort of transactions. J2EE applications and components are designed with
transactions in mind. In the following sections, we will cover both types of transaction
types with respect to JDBC and JMS applications.

Local Transactions
A local transaction deals with a single resource manager. Each resource manager pro-
vides access to a single external resource through a collection of configurations and
processes (see Figure 16.1). A resource manager enforces the ACID properties for a

20 0672324237 CH16 9/24/02 2:37 PM Page 379

specific external resource, such as an RDBMS or a JMS provider. J2EE applications
access the resource manager through a resource adapter. For example, a transaction-
aware JDBC API is a common resource adapter. A JMS API is another resource adapter
that provides access to a messaging system (JMS provider). The JCA (J2EE Connector
Architecture) is a common adapter that provides access to legacy systems (ERP or CRM
systems) through a JCA adapter.

380 Day 16

FIGURE 16.1
Local transactions.

Data Source

Resource
Manager

begin
…

commit

Client
Application

Resource
Adapter

Local transaction uses only one resource manager

Transaction demarcation denotes the events—such as the begin, commit, and rollback
events—that occur at each transaction boundary. J2EE applications and components pro-
vide two methods of transaction demarcation, either programmatically or declaratively.
In the programmatic description, the bean’s developer explicitly demarcates the transac-
tion boundary in the bean’s code. This type of transaction demarcation is called a bean-
managed transaction. The declarative approach is when the demarcation is specified in
the beanís deployment descriptor. The EJB container will manage all transaction demar-
cation, and will propagate the transaction context across different beans, and even across
EJB containers. This type of transaction demarcation is called a container-managed
transaction.

We will cover local transactions with respect to JDBC and JMS. JCA transactions are
beyond the scope of this book.

JDBC Local Transactions
As you learned on Day 9, JDBC controls local transactions through the Connection
object. Both transaction settings and transaction demarcations are performed on the
Connection object. By default, all database operations through the JDBC driver are
transactional. To change this behavior, you learned to use setAutoCommit(false) on the
Connection object to manage your transactions. You also learned to set other transaction
demarcations using the commit() or rollback() method on the Connection object.

20 0672324237 CH16 9/24/02 2:37 PM Page 380

Understanding J2EE Transactions 381

16

Transaction Levels of Isolation
To control concurrency among different transactions in accessing shared data, the DBMS
provides the concept of locking. Locking protects data integrity and consistency. On the
other hand, it is a costly operation and has a negative impact on overall performance.
Transaction levels-of-isolation is the concept by which components can be set to control
the multiple interactions with the shared resource. The transaction level of isolation is set
by the application server to control the application behavior. The levels of isolation
depend on the application, the nature of the data, and the frequency of updates.

Note that in auto-commit mode, in which each Statement is considered a
transaction, locks are held for only one Statement. After a lock is set, it will
remain until the transaction is committed or rolled back.

Note

Here are some of the issues related to transaction isolation:

• A dirty read occurs when the first transaction reads uncommitted changes made by
the second transaction. If the second transaction is rolled back, the data read by the
first transaction becomes invalid because the rollback undoes the changes.

• A phantom read occurs when new records added to the database are detectable by
transactions that started prior to the insert.

• A repeatable read is when the data read is guaranteed to look the same if read
again during the same transaction. This occurs when each transaction is
Serializable.

How locks are set is determined by the transaction isolation level, which can range from
not supporting transactions at all to supporting transactions that enforce very strict access
rules.

Table 16.1 summarizes the transaction isolation levels, from the least restrictive to the
most restrictive. It lists also how the transaction isolation level affects system perfor-
mance.

TABLE 16.1 Transaction Isolation Levels

Transaction Dirty Phantom Nonrepeatable Restriction Performance
Level Read Read

TRANSACTION_NONE N/A N/A N/A Lowest Fastest

TRANSACTION_UNCOMMITED Yes Yes Yes Low Faster

20 0672324237 CH16 9/24/02 2:37 PM Page 381

TRANSACTION_READ_ No Yes Yes High Fast
COMMITED

TRANSACTION_ No Yes No Higher Medium
REPEATABLE_READ

TRANSACTION No No No Highest Slow
_SERIALIZABLE

From Table 16.1, you can see that as the isolation levels become more restrictive, the
performance of the transaction decreases. A TRANSACTION_SERIALIZABLE isolation level,
for example, involves more locks in the database; therefore, it has a greater impact on the
transaction’s performance.

You can control the transaction isolation level using the method
setTransactionIsolation() of the Connection object. You also can examine the trans-
action level for a connection using the getTransactionIsolation() method. Here is an
example:

// Begin a new transaction by disable transaction
// auto-mode on the Connection object
conn.setAutoCommit(false);
// Set transaction isolation level on the Connection object
conn.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
// Create a Statement object using the Connection object
Statement stmt = conn.createStatement();
try {
stmt.executeUpdate(“UPDATE Student set fname=’Laura’ where id =5”);
conn.commit();

} catch (SQLException ex) {
conn.rollback();
stmt.close();

}

382 Day 16

TABLE 16.1 continued

Transaction Dirty Phantom Nonrepeatable Restriction Performance
Level Read Read

Transaction isolation level cannot be set during a transaction.Note

In EJB, for container-managed transactions, isolation levels are set in the bean’s deploy-
ment descriptor. However, in a bean-managed transaction, the bean’s developer sets the
transaction isolation level in the bean’s code. These approaches will be covered in next
two days (Days 17 and 18).

20 0672324237 CH16 9/24/02 2:37 PM Page 382

Understanding J2EE Transactions 383

16

JMS Local Transactions
As you learned on Day 13, JMS controls local transaction demarcation through the
Session object (QueueSession in PTP mode; TopicSession in Pub/Sub mode). By
default, a new session created from its corresponding connection is not transactional. To
change this behavior, create a transacted session by setting the transacted parameter to
true of the method createQueueSession(true) or createTopicSession(true). A
transaction will be committed only when you use the method commit() or rollback()
on the session object. In JMS, transactions are chained, which means that a new transac-
tion automatically starts as soon as the current transaction is committed or rolled back.

In JMS, local transactions are handled by a JMS producer or consumer, or, in some
cases, a JMS router (a combined producer and consumer). The following is an example
of a local transaction used by a JMS’s queue sender:

// Create a transacted session for a QueueSender
QueueSession qSession =

qCon.createQueueSession (true, Session.AUTO_ACKNOWLEDGE);
QueueSender qSender = qSession.createSender (myQueue);
qSender.send(msg);
qSession.commit();

In the preceding example, the message msg will not be delivered until the commit() is
completed. Here is another example of a QueueReceiver in a transacted session:

// Create a transacted session for a QueueReceiver
QueueSession qSession =

qCon.createQueueSession (true, Session.AUTO_ACKNOWLEDGE);
QueueReceiver qReceiver = qSession.createReceiver (myQueue);
TextMessage msg = (TextMessage) qRec.receive();
qSession.commit();

Different EJB containers allow different levels of granularity for setting iso-
lation levels; some containers defer this responsibility to the database. In
some containers, you might be able to set different isolation levels for dif-
ferent methods, whereas other products might require the same isolation
level for all methods in a bean or, possibly, all beans in the container.

Caution

If a JDBC Connection participates in a distributed transaction, the JTA trans-
action manager will ignore both the auto-commit mode and isolation level
settings during the distributed transaction. Distributed transactions will be
covered in the next section.

Note

20 0672324237 CH16 9/24/02 2:37 PM Page 383

A message router (sometimes called a message broker) is a common application used to
deliver messages between multiple producers and multiple consumers. Here is an exam-
ple of a transacted session in a message-router scenario:

// Create a transacted session for a message router
QueueSession qSession =

qCon.createQueueSession (true, Session.AUTO_ACKNOWLEDGE);
QueueReceiver qReceiver = qSession.createReceiver (myQueue);
TextMessage msg = (TextMessage) qReceiver.receive();
QueueSender qSender = qSession.createSender(myQueue);
qSender.send(msg);
qSession.commit();

Similarly, a transacted session can be created using a TopicSession in the Pub/Sub
model.

Distributed Transactions
A distributed transaction executes operations on different resources to accomplish its
workflow requirement. Database and middleware vendors have developed the X/Open
Distributed Transaction Protocol (DTP) model to define the rules and guidelines for dis-
tributed transactions.

Two-Phase Commit Protocol
To perform a distributed transaction, the transaction manager coordinates the transaction
execution across multiple resource managers. Because all participant resource managers
are not aware of each other, an algorithm has been established, as a standard protocol, to
control the interactions of all participants. The two-phase commit (2PC) protocol
enforces the ACID properties and is implemented into two phases:

• Phase 1: This is the preparation phase. The transaction manager, or coordinator,
asks each resource manager to prepare to commit (also called vote to commit). This
involves assigning locks to shared resources without actually writing data to per-
manent storage. Each resource manager replies with its readiness to execute.

• Phase 2: If all the resource managers reply with successful preparation, the transac-
tion manager requests all to commit their changes; otherwise, it tells them all to
roll back and indicates transaction failure to the application. The transaction will
succeed if and only if all resource managers commit successfully.

Some variants of the 2PC implementation allow for full transaction success, even if one
resource manager fails. The transaction manager saves the failed part to be recovered
later.

384 Day 16

20 0672324237 CH16 9/24/02 2:37 PM Page 384

Understanding J2EE Transactions 385

16
Distributed Transaction Model
A distributed transaction often spans multiple resource managers. Each resource manager
may be hosted on a heterogeneous processing node, manages its own threads of control,
and has a different resource adapter. According to DTP, a distributed transaction model is
more complex than a local one; more participants are involved in a distributed transac-
tion model. The following list describes the participants in a distributed transaction:

• Transaction Originator: The client initiates the transaction. It can be a Java applica-
tion in the client tier, a servlet in the Web tier, or a session bean in the EJB tier. It
also can be a JMS producer/consumer in the Web tier or the EJB tier.

• Transaction Manager: Manages transactions on behalf of the originator. It enforces
the transaction ACID properties by coordinating access across all participating
resource managers. When resource managers fail during transactions, transaction
managers help resource managers decide whether to commit or roll back pending
transactions. JTA implements the transaction manager in J2EE architecture.

• Recoverable Resource: Provides persistent storage for transaction data to ensure
durability of the transaction. In most cases, this is often a database or a flat file
resource.

• Resource Manager: One of the aforementioned transaction-aware types. This can
manage a DBMS, a JMS provider, or a JCA resource.

Figure 16.2 summarizes the protocols and interactions among all participants of a distrib-
uted transaction.

The transaction manager interacts with all participant resource managers through the XA
protocol (defined by X/Open to implement the 2PC algorithm). Each of the resource
adapters complies with the XA protocol by providing XA-compliant interfaces. Both
JDBC API and JMS API provide XA-compliant interfaces that are designed to be used
by the container vendor and not by the application developer. Application clients inter-
face with the transaction manager through the TX protocol (which includes all the trans-
action demarcation events).

In the case of local transactions, applications interact directly with the resource manager.
But in distributed transactions, applications are required to interface with the transaction
manager, which coordinates all transaction demarcations among multiple resource

If there is only one participant in the transaction, the transaction manager
avoids the 2PC, and uses the local transaction’s single-phase commit
protocol.

Note

20 0672324237 CH16 9/24/02 2:37 PM Page 385

managers. This decoupling of transaction management simplifies the task of writing
complex enterprise applications.

386 Day 16

FIGURE 16.2
Distributed transac-
tion model.

Resource
Manager

JMS Queue

Resource
Adapter
(JMS)

Data Source

Resource
Manager

begin
…

commit

Client
Application

A distributed
transaction using

two resource
managers

Resource
Adapter
(JDBC)

Transaction
Manager

XA Protocol

Java Transaction API
J2EE implements the DTP model using JTA, in which the transaction manager is repre-
sented by javax.transaction.UserTransaction. JTA enforces the transaction ACID
properties between multiple resource managers. The JTA transaction manager is imple-
mented by the EJB container vendor (application server vendor), and registered in the
JNDI namespace. A client creates a distributed transaction context by looking up the
JNDI namespace for the named resource UserTransaction, which acts as a factory of
distributed transactions. The UserTransaction interface abstracts all the classes and
interfaces of managing a J2EE distributed transactions. The application and component
developer needs only to use the begin(), commit(), and rollback() methods of the
UserTransaction context.

The begin() method explicitly starts a distributed transaction and associates the transac-
tion with a calling thread. The transaction manager transparently (that is, behind the
scenes) manages transactional access to any XA-compliant resource managers that the
application uses. This clean isolation of responsibilities makes it easer to develop
portable and complex enterprise applications.

20 0672324237 CH16 9/24/02 2:37 PM Page 386

Understanding J2EE Transactions 387

16The following code demonstrates how the named resource UserTransaction is looked
up in the default JNDI service, and a context is established for the transaction manager.
Applications and components of the Web tier use this context to control the behavior of
the distributed transaction. The body of the distributed transaction can be any code
designed to access one or more resource manager.

Context ctx = new InitialContext();
UserTransaction utx =

(UserTransaction) ctx.lookup(“java:comp/UserTransaction”);
utx.begin();
// use multiple resources, such as databases (JDBC),
// messaging (JMS), and integrations (JCA)
utx.commit();

To start a distributed transaction, developers issue an explicit begin()
method. This is somewhat different in a local transaction, where a transac-
tion is implicitly started in the method setAutoMode(false) of a JDBC
Connection, or createQueueSession(true) of a JMS Connection.

Note

The transaction manager interacts with the XA-compliant resource adapter
transparently. Implicitly, it uses a transaction ID to identify each transaction
thread of execution. Applications do not need to know about this transac-
tion ID.

Note

The previous code snippet demonstrates how to establish a UserTransaction context
from a Web tier component (a JSP or a servlet). A UserTransaction context is estab-
lished differently in the EJB tier, as explained later.

Three different types of resource manager are defined and supported by the J2EE archi-
tecture: JDBC-compliant databases, JCA adapters, and JMS providers. All three types of
resource managers may be used within the scope of a single distributed transaction.

We discuss only resource managers and resource adapters for JDBC and JMS.
The JCA adapter and resource manager are beyond the scope of this book.

Note

The main benefit of JTA is to combine multiple components and enterprise applications
into a single distributed transaction with minor programming effort. Transactions are

20 0672324237 CH16 9/24/02 2:37 PM Page 387

propagated automatically between multiple components and J2EE applications. As men-
tioned before, in a container-managed transaction, all demarcations are handled declara-
tively using the deployment descriptor. Bean-managed transactions use explicit
demarcation in the bean’s code.

388 Day 16

JTA can be used by an EJB to access a single resource. In this case, the JTA
driver is intelligent enough to switch to local transaction mode, and uses the
one-phase commit protocol.

Note

There are many scenarios in which JTA can be used to access multiple resources in a
single distributed transaction context. Here are the most commonly used scenarios in
enterprise applications. Figure 16.3 illustrates these scenarios.

FIGURE 16.3
Scenarios of distrib-
uted transactions.

Data
Source

EJB
“A”

J2EE Application Server

Client

Scenario 1

Data
Source

Data
Source JMS Queue

J2EE Application Server

Client

JD
BC

C
on

ne
ct

io
n1

JD
B

C

C
onnection2

Scenario 3

JD
B

C
C

onnection1

Data
Source

JD
B

C
C

onnection2

JM
S

C
onnection

EJB
“B”

EJB
“A”

EJB
“B”

Data
Source

EJB
“A”

J2EE Application Server

Client

Scenario 2

JMS Queue

J2EE Application
Server1

J2EE Application
Server2

Client

Scenario 4

JD
B

C
C

onnection

JM
S

C
onnection

Data
Source JMS Queue

JD
B

C
C

onnection

JM
S

C
onnection

EJB
“B”

EJB
“A”

EJB
“B”

20 0672324237 CH16 9/24/02 2:37 PM Page 388

Understanding J2EE Transactions 389

16

• Scenario 1: A distributed transaction spans two EJBs: A and B. Each has its JDBC
Connection to a DataSource. Each database instance has its own connection pool,
which is defined separately in the JNDI service. The JTA transaction context prop-
agates from EJB A to EJB B. This scenario is useful in updates of two databases
simultaneously, as one unit of work.

• Scenario 2: A distributed transaction spans two EJBs: A and B. The first has its
JDBC Connection to a DataSource, whereas the second has its connection to a
JMS provider. The JTA transaction context propagates from EJB A to EJB B. This
scenario is useful in updating a database, while ensuring the delivery of a JMS
message.

• Scenario 3: Similar to Scenario 2, except that EJB A has access to two data
sources; each has its connection pool. JTA transaction context propagates from
EJB A to EJB B.

• Scenario 4: The JTA transaction manager propagates the transaction context across
the EJB container (application server) boundary to another J2EE-compliant con-
tainer. These containers can be of the same vendor or of different vendors.

You see from these scenarios that the distributed transaction context is propagated from
one component to another. You need to keep in mind that JTA is working behind the
scenes through the EJB container to control transaction behavior.

While a JMS resource manager is participating in a distributed transaction,
the JTA driver will ignore a JMS transacted Session setting. This setting will
be resumed after the distributed transaction is completed. Similarly, a local
transaction setting of the JDBC resource manager will be ignored by the JTA
driver during the course of the distributed transaction, and will resume its
setting after the transaction is completed.

Note

JTA Exception Handling
Few JTA exceptions are required to be handled while processing a distributed transac-
tion. Table 16.2 summarizes JTA exceptions as part of the javax.transaction package.

TABLE 16.2 JTA Exceptions

Exception Description

RollbackException Thrown to indicate that the transaction has been rolled back
rather than committed.

20 0672324237 CH16 9/24/02 2:37 PM Page 389

HeuristicMixedException Thrown to indicate that a heuristic decision was made and that
some relevant updates have been committed, whereas others
have been rolled back.

HeuristicRollbackException Thrown to indicate that a heuristic decision was made and that
some relevant updates have been rolled back.

SystemException Thrown if the transaction manager encounters an unexpected
error condition.

390 Day 16

TABLE 16.2 continued

Exception Description

JTA transactions are automatically rolled back if a SystemException is
thrown from a bean method. Transactions are not automatically rolled back,
however, if an application exception is thrown.

Note

Java Transaction Services
The Java Transaction Service (JTS) API is a Java binding of the CORBA Object
Transaction Service (OTS) specification. JTS provides transaction interoperability using
the standard IIOP protocol for transaction propagation between servers. The JTS API is
intended for vendors who implement transaction-processing infrastructure for enterprise
middleware. For example, an EJB Server vendor may use a JTS implementation as the
underlying transaction manager.

EJB containers are not required to support the JTS interfaces; they are only required to
support the JTA and the Java Connector APIs. The JTS interfaces are low-level APIs
between a J2EE server and enterprise information system (EIS) resource managers, and
they are not intended for the use by application developers.

Exploring Transactions Across the J2EE Tiers
Distributed transactions in J2EE applications are supported by the EJB container (appli-
cation server). Both the Web tier, and the EJB tier can provide distributed transaction
capability, which means that they can access the UserTransaction interface. Applets and
J2EE client applications are not required to provide distributed transaction support (and
doing so is not recommended). We strongly recommend using distributed transactions
through the EJB tier. As explained on Day 9, placing all your JDBC calls in EJBs
ensures a high degree of server application portability. This relieves application

20 0672324237 CH16 9/24/02 2:37 PM Page 390

Understanding J2EE Transactions 391

16

developers from having to manage transaction control with explicit JDBC calls or JMS
messages.

In the Web tier, a client component (such as a JSP or servlet) can obtain a
UserTransaction using JNDI Context, as explained in the previous section. Transaction
demarcation should start and complete in the servlet’s service() method.

Learning Bean-Managed Transactions
Only session beans and message-driven beans can manage transactions programmati-
cally. All transaction demarcations are managed by the bean’s code. Session beans and
MDBs can establish a UserTransaction context from EJBContext. The bean then uses
the context in other transactional demarcation.

Few architects encourage the use of distributed transactions in the Web tier
through the use of a servlet or a JSP, which are not transactional by design.
On the other hand, EJBs are transactional components that can be managed
by the EJB container or by the bean code itself.

Caution

EJBs establish transaction context from EJBContext, and not through looking
up the JNDI service, as in the case of a JSP or servlet. The container passes
the bean’s transaction context secretly to the bean’s context.

public class UserManagerBean implements SessionBean {
SessionContext ctx = null;
public void setSessionContext(SessionContext ctx) {
this.ctx = ctx;}

// Implement other methods such as ejbCreate, ejbRemove,
...
public void connectUserManager(){
// Create a UserTransaction context from the EJB context
UserTransaction utx = ctx.getUserTranssaction();
utx.begin();
// Access multiple resources as one unit-of-work
utx.commit();
...

}
// other methods of the class
}

Only session beans and message-driven beans can use bean-managed trans-
action demarcation. Entity beans must always use a container-managed
transaction demarcation.

Note

20 0672324237 CH16 9/24/02 2:37 PM Page 391

To control the bean access performance, the transaction isolation level can be set pro-
grammatically using the setTransactionIsolation() method on the Connection
object. Full coverage of bean-managed transactions is in Day 17.

Container-Managed Transactions
In a container-managed transaction, the EJB container manages the transaction demarca-
tion for each method of the bean. Transaction behavior is described in the bean’s deploy-
ment descriptor. Transaction attributes determine how the EJB container handles
transactions with each bean’s method invocation. Each method can be associated with
only a single transaction. A transaction begins just before the method starts, and commits
just before it exits. Not all methods of the bean are associated with transactions, only
those specified in the bean’s deployment descriptor by transaction attributes. The follow-
ing section introduces the transaction attributes that are vital in configuring the bean’s
methods participating in a container-managed transaction.

Transaction Attributes
For a bean participating in a container-managed transaction, transaction attributes are set
in the bean’s deployment descriptor. It is possible to set a transaction attribute for the
whole bean or for only individual methods. A transaction attribute must be specified for
the methods in the remote interface of a session bean, and for the methods in the home
and remote interfaces of an entity bean. Transactional behavior of the bean can be con-
trolled declaratively by changing the transaction attributes in the deployment descriptor.
Table 16.3 summarizes the transaction attributes of a container-managed transaction.

TABLE 16.3 Container-Managed Transaction Attributes

Attribute Description

NotSupported The bean does not support transactions. Transactions will not be propagated
through the bean. If the client is associated with a transaction context, the con-
tainer will suspend the transaction before invoking the bean’s method. After the
method completes, the container resumes the suspended transaction association.

Supports If the client is associated with a transaction context, it will be propagated
through the bean’s method. If the client is not associated with a transaction con-
text, it will be suspended.

Required The bean will always be part of a JTA transaction. If the client is associated with
a JTA transaction, the context will be propagated to the bean’s method. If the
client is not associated with a transaction, the container begins a new transac-
tion, and commits when the method returns.

392 Day 16

20 0672324237 CH16 9/24/02 2:37 PM Page 392

Understanding J2EE Transactions 393

16

RequiresNew The EJB container always begins a new transaction before invoking the bean’s
method, and commits upon the method’s return. If the calling client is associated
with a transaction context, the container suspends the transaction with the cur-
rent thread before starting the new transaction. When the method and the trans-
action complete, the container resumes the suspended transaction.

Mandatory The calling client must be associated with a transaction; otherwise, invoking the
bean’s method will fail, throwing a TransactionRequiredException.

Never The calling client must not be associated with a transaction; otherwise, invoking
the bean’s method will fail, throwing a RemoteException.

The following is an example of a deployment descriptor of a stateful session bean with a
container-managed transaction demarcation:

<?xml version=”1.0”?>
<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>EnrollmentCart</ejb-name>
<home>EnrollmentCartHome</home>
<remote>EnrollmentCart</remote>
<ejb-class>EnrollmentCartBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

</session>
</enterprise-beans>
<assembly-descriptor>
<container-transaction>
<method>
<ejb-name>EnrollmentCart</ejb-name>
<method-intf>Remote</method-intf>
<method-name>getCourses</method-name>
<method-params/>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

Notice that only the getCourses() method is specified with the transaction attribute
Required.

It’s always recommended to use container-managed transactions in a J2EE application if
possible. Container-managed transactions are easy to implement. They keep your appli-
cations more portable and flexible in deployment. Container-managed transactions will
be covered in more detail in Day 18.

TABLE 16.3 continued

Attribute Description

20 0672324237 CH16 9/24/02 2:37 PM Page 393

394 Day 16

It is also recommended that an EJB component always access a data source
under the scope of a transaction because this provides some guarantee of
the integrity and consistency of the data.

Note

Example of Distributed Transactions
Today’s example is to implement a distributed transaction that accesses two resource
managers: a JDBC resource manager and a JMS provider. The example runs in both the
WebLogic and JBoss server environments. The PointBase database is used for the
WebLogic Server, and the HyperSonic database for JBoss server, whereas each server
provides JMS service separately.

The example consists of a stateless session bean, UserManager, which uses JTA’s distrib-
uted transaction to perform the following tasks as one unit of work:

• Updates the database with student information

• Sends a JMS message to the registration office

The registration office is modeled as a message-driven bean: RegistrarMDB.

Figure 16.4 depicts the components used in the example. Each component is described
later in a separate listing.

FIGURE 16.4
Example of the
UserManager EJB.

Data Source
(Cloudscape) JMS Queue

UserManager RegistrarMDB

J2EE Application Server

Client

JD
BC

C
on

ne
ct

io
n

JM
S

Sender

JM
S

R
ec

ei
ve

r

Example of accessing two resource
managers from the UserManager bean.

Listing 16.1 is for the remote interface UserManager, which lists all the business methods
used in our example.

20 0672324237 CH16 9/24/02 2:37 PM Page 394

Understanding J2EE Transactions 395

16

LISTING 16.1 The Remote Interface UserManager.java

package day16;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;
public interface UserManager extends EJBObject {
public void connectUserManager()

throws RemoteException;
public void addCourse(String studentID, String courseID)

throws RemoteException;
public void notifyRegistrar(String studentID, String courseID)

throws RemoteException;
public void disconnectUserManager()

throws RemoteException;
}

The home interface UserManagerHome in Listing 16.2 lists all the lifecycle methods used
to manage the bean.

LISTING 16.2 The Home Interface UserManagerHome.java

package day16;
import java.rmi.RemoteException;
import javax.ejb.*;
public interface UserManagerHome extends EJBHome {

UserManager create() throws RemoteException, CreateException;
}

Listing 16.3 is the bean class UserManagerBean, which implements all the business meth-
ods listed in the remote interface and the callback methods to manage the bean’s lifecy-
cle by the container.

LISTING 16.3 The SessionBean Class UserManagerBean.java

package day16;

import javax.ejb.*;
import javax.transaction.*;
import javax.sql.*;
import java.sql.*;
import javax.jms.*;
import javax.naming.*;

public class UserManagerBean implements SessionBean {
private SessionContext ctx = null;
private UserTransaction ut = null;

20 0672324237 CH16 9/24/02 2:37 PM Page 395

private java.sql.Connection conn = null;
private QueueSession qSession= null;
private QueueConnection qConn = null;
private Queue que = null;

// Prepares the UserManager for use by starting a
// new distributed transaction.
public void connectUserManager(){

try {
// Establish a UserTransaction context from EJBContext
ut = ctx.getUserTransaction();
// Begin the distributed transaction
System.out.println(“Begin JTA distributed transaction. . .”);
ut.begin();
// Setup database connection
InitialContext jndiCtx = new InitialContext();
// Create a handle to the DataSource
System.out.println(“ Connecting to JDBC data store...”);
DataSource ds =

(DataSource)jndiCtx.lookup(“java:comp/env/jdbc/styejbDB”);
// Obtain a connection from the pool

conn = ds.getConnection();

} catch(Exception e) {
try {

ut = ctx.getUserTransaction();
ut.rollback();

} catch(Exception e2) {
System.err.println(e2);

}
}

}

// Add a new course into the student account.
// This can be called several times within the same transaction.
public void addCourse(int studentID, String courseID){

try {
Statement stmt = conn.createStatement();
try {

System.out.println(“ Trying to drop table StudentCourse...”);
stmt.execute(“drop table StudentCourse”);
System.out.println(“ Table StudentCourse dropped successfully...”);

} catch (SQLException e) {
System.out.println(“ Table StudentCourse did not exist.”);

}
stmt.execute(“create table StudentCourse “ +

“ (id int, courseID varchar(6), is_registered varchar(1))”);

396 Day 16

LISTING 16.3 continued

20 0672324237 CH16 9/24/02 2:37 PM Page 396

Understanding J2EE Transactions 397

16

System.out.println(“ Created new StudentCourse table.”);
stmt.execute(“insert into StudentCourse values(“ +

studentID + “,’” + courseID + “‘,’F’)”);
System.out.println(“ A new record is inserted “ +

“into table StudentCourse. . .”);
} catch(Exception e) {

try {
ut = ctx.getUserTransaction();
ut.rollback();

} catch(Exception e2) {
System.err.println(e2);

}
}

}
// Notify registration office by sending a copy of the enrolled course.
// This can be called several times within the same transaction.
public void notifyRegistrar(int studentID, String courseID){

System.out.println(“ Notify registration...”);
try {

// Setup queue connection
System.out.println(“ Connecting to JMS destination...”);
InitialContext jndiCtx = new InitialContext();
QueueConnectionFactory qcf = (QueueConnectionFactory)

jndiCtx.lookup (“ConnectionFactory”);
qConn = qcf.createQueueConnection();
Queue que = (Queue)jndiCtx.lookup(“java:comp/env/jms/RegistrarQ”);
qSession = qConn.createQueueSession(true,

QueueSession.AUTO_ACKNOWLEDGE);
qConn.start();
Thread.sleep(1000);
QueueSender sender = qSession.createSender(que);
TextMessage message = qSession.createTextMessage();
message.setText(“Student id=” + studentID +

“ is enrolled in course=” + courseID);
sender.send(message);
System.out.println(“ Message sent: “ + message.getText());

} catch(Exception e) {
try {

ut = ctx.getUserTransaction();
ut.rollback();

} catch(Exception e2) {
System.err.println(e2);

}
System.err.println(e);

}
}

}
// Close and commit the transaction

LISTING 16.3 continued

20 0672324237 CH16 9/24/02 2:37 PM Page 397

public void disconnectUserManager(){
try {

// Get the UserTransaction instance
ut = ctx.getUserTransaction();
System.out.println(“Committing the transaction. . .”);
// Commit the distributed transaction
qConn.stop();
conn.close();
ut.commit();

} catch(Exception e) {
try {

ut = ctx.getUserTransaction();
ut.rollback();

} catch(Exception e2){
System.err.println(e2);

}
System.err.println(e);

}
}
// The following methods to implement the SessionBean
public void setSessionContext(SessionContext ctx) { this.ctx = ctx;}
public void ejbCreate() {};
public void ejbActivate() {};
public void ejbPassivate() {};
public void ejbRemove() {};

}

Listing 16.4 is the client to test the developed beans.

LISTING 16.4 The Client Code to Access UserManager Client.java

package day16;

import javax.naming.*;
import javax.rmi.PortableRemoteObject;

public class Client {
public static void main(String argv[]) {
// A simple client deligates the UserManager session bean
// to perform a JTA transaction. The JTA transaction will
// be started in one method, then the context will be
// propagated to other methods of the bean. Multiple resources:
// a JDBC and a JMS resource manager are invloved in the
// same distributed transaction.

System.out.print(“Demonstration the use of JTA \n”);
try {

InitialContext ctx = new InitialContext();

398 Day 16

LISTING 16.3 continued

20 0672324237 CH16 9/24/02 2:37 PM Page 398

Understanding J2EE Transactions 399

16

Object obj = ctx.lookup(“day16/UserManagerHome”);
UserManagerHome userHome = (UserManagerHome)

PortableRemoteObject.narrow(obj, UserManagerHome.class);
UserManager user = userHome.create();
// Delegate a UserManager to start a JTA transaction
System.out.println(“\nStart global transaction...”);
user.connectUserManager();
// Connect to a JDBC DataSource and add the enrolled course
System.out.println(“Adding courses to database...”);
user.addCourse(1, “CS310”);
// Connect to a JMS destination and send a message
System.out.println(“Notifying registrar queue...”);
user.notifyRegistrar(1, “CS310”);
// Commit the JTA transaction and release resources
Thread.sleep(1000);
System.out.println(“Committing transaction...”);
user.disconnectUserManager();

} catch(Exception e) {
System.err.println(e.toString());

}
}
}

Listing 16.5 is the JMS receiver, a simple message-driven bean to receive the message
and log it on the screen. This can be part of another distributed transaction, but we left
this as an exercise for you. See the “Exercises” section at the end of the day.

LISTING 16.5 The JMS Receiver RegistrarMDB.java

package day16;

import javax.ejb.MessageDrivenBean;
import javax.ejb.MessageDrivenContext;
import javax.ejb.EJBException;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageListener;
import javax.jms.Queue;
import javax.jms.QueueConnection;
import javax.jms.QueueConnectionFactory;
import javax.jms.QueueSender;
import javax.jms.QueueSession;
import javax.jms.TextMessage;
import javax.naming.InitialContext;
import javax.naming.NamingException;

LISTING 16.4 continued

20 0672324237 CH16 9/24/02 2:37 PM Page 399

public class RegistrarMDB implements MessageDrivenBean, MessageListener{
private MessageDrivenContext mctx =null;
public void setMessageDrivenContext(MessageDrivenContext ctx) {mctx = ctx;}
public void ejbCreate() {

System.out.println(“Instance of RegistrarMDB is created...”);
}
public void ejbRemove() {}

public void onMessage(Message message) {
System.out.println(“RegistrarMDB.onMessage: started..”);
try {

TextMessage msg = (TextMessage)message;
System.out.println(“RegistrarMDB: Registrar received message: “ +

msg.getText());
} catch(JMSException e) {

e.printStackTrace();
}

}
}

The deployment descriptor in Listing 16.6 combines the deployment information about
both the UserManager and the RegistrarMDB.

LISTING 16.6 Standard Deployment Descriptor ejb-jar.xml

<?xml version=”1.0”?>

<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>UserManager</ejb-name>
<home>day16.UserManagerHome</home>
<remote>day16.UserManager</remote>
<ejb-class>day16.UserManagerBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>
<resource-env-ref>

<resource-env-ref-name>jdbc/styejbDB</resource-env-ref-name>
<resource-env-ref-type>javax.sql.DataSource</resource-env-ref-type>

</resource-env-ref>
<resource-env-ref>

<resource-env-ref-name>jms/RegistrarQ</resource-env-ref-name>

400 Day 16

LISTING 16.5 continued

20 0672324237 CH16 9/24/02 2:37 PM Page 400

Understanding J2EE Transactions 401

16

<resource-env-ref-type>javax.jms.Queue</resource-env-ref-type>
</resource-env-ref>

</session>
<message-driven>
<ejb-name>RegistrarMDB</ejb-name>
<ejb-class>day16.RegistrarMDB</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination>
<destination-type>javax.jms.Queue</destination-type>

</message-driven-destination>
<resource-ref>
<res-ref-name>jms/QCF</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Container</res-auth>

</resource-ref>
</message-driven>

</enterprise-beans>
</ejb-jar>

The deployment descriptor for WebLogic Server and JBoss are listed in Listings 16.7
and 16.8.

LISTING 16.7 WebLogic Deployment Descriptor weblogic-ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN’
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>UserManager</ejb-name>
<reference-descriptor>
<resource-env-description>

<res-env-ref-name>jdbc/styejbDB</res-env-ref-name>
<jndi-name>jdbc.styejbDB</jndi-name>

</resource-env-description>
<resource-env-description>

<res-env-ref-name>jms/RegistrarQ</res-env-ref-name>
<jndi-name>RegistrarQ</jndi-name>

</resource-env-description>
</reference-descriptor>
<jndi-name>day16/UserManagerHome</jndi-name>

</weblogic-enterprise-bean>
<weblogic-enterprise-bean>
<ejb-name>RegistrarMDB</ejb-name>

LISTING 16.6 continued

20 0672324237 CH16 9/24/02 2:37 PM Page 401

<message-driven-descriptor>
<pool>
<max-beans-in-free-pool>5</max-beans-in-free-pool>
<initial-beans-in-free-pool>1</initial-beans-in-free-pool>
</pool>
<destination-jndi-name>RegistrarQ</destination-jndi-name>

</message-driven-descriptor>
<reference-descriptor>
<resource-description>
<res-ref-name>jms/QCF</res-ref-name>

<jndi-name>ConnectionFactory</jndi-name>
</resource-description>

</reference-descriptor>
<jndi-name>RegistrarQ</jndi-name>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

LISTING 16.8 JBoss Deployment Descriptor jboss.xml

<?xml version=”1.0” encoding=”UTF-8”?>

<jboss>
<enterprise-beans>
<session>
<ejb-name>UserManager</ejb-name>
<jndi-name>day16/UserManagerHome</jndi-name>
<resource-env-ref>
<resource-env-ref-name>jdbc/styejbDB</resource-env-ref-name>
<jndi-name>java:/styejbDB</jndi-name>

</resource-env-ref>
<resource-env-ref>
<resource-env-ref-name>jms/RegistrarQ</resource-env-ref-name>
<jndi-name>queue/RegistrarQ</jndi-name>

</resource-env-ref>
</session>
<message-driven>
<ejb-name>RegistrarMDB</ejb-name>
<destination-jndi-name>queue/RegisterQ</destination-jndi-name>
<resource-ref>
<res-ref-name>jms/QCF</res-ref-name>
<jndi-name>ConnectionFactory</jndi-name>

</resource-ref>
</message-driven>

</enterprise-beans>
</jboss>

402 Day 16

LISTING 16.7 continued

20 0672324237 CH16 9/24/02 2:37 PM Page 402

Understanding J2EE Transactions 403

16

Part of making your application portable is to use a <resource-env-ref> element in
your standard deployment descriptor (ejb-jar.xml) to define a logical name used by the
application. Then you need to map this logical name to a <reference-descriptor> in
your server-specific deployment descriptor. An example is the usage of the logical name
“jdbc/styejbDB” for the JDBC DataSource, which is shown above in bold in Listing
16.6, 16.7, and 16.8.

Build and Run the Example
To build the example, a build script is provided for WebLogic Server and the JBoss
server.

1. Configure both the connection pool styejbPool and the JDBC DataSource
styejbDB as described in Day 9.

2. Configure both the ConnectionFactory and the Destination Queue as described in
Day 14.

3. Build the example for the appropriate application server. From the directory Day16,
run the build script. This creates a subdirectory named build that contains all the
compiled code:
c:\>cd c:\styejb
c:\styejb>setEnvWebLogic.bat
c:\styejb>cd day16
c:\styejb\day16>buildWebLogic.bat

4. To run the example, use the appropriate script for each server. Set up the environ-
ment for the client in a new command window, and then use the run script in the
Day16 directory:

c:\styejb>setEnvWebLogic.bat
c:\styejb>cd day16
c:\styejb\day16> runClientWebLogic.bat

In order to run the example on the JBoss application server, use the appropriate scripts in
the same directory.

The following is the expected output of the example on the server side:

Begin JTA distributed transaction. . .
Connecting to JDBC data store...
Trying to drop table StudentCourse...

table StudentCourse dropped successfully...
Created new StudentCourse table.
A new record is inserted into table StudentCourse. . .
Notify registration...
Connecting to JMS destination...
Message sent: Student id=1 is enrolled in course=CS310

Committing the transaction. . .

20 0672324237 CH16 9/24/02 2:37 PM Page 403

On the client side, this is the expected output:

Start global transaction...
Adding courses to database.
Notifying registrar queue..
Committing transaction...

Best Practices
We always recommend using JTA’s UserTransaction context in accessing enterprise
data. This will ensure both data consistency and data integrity when multiple components
are accessing the same data. If the resource adapter doesn’t support JTA, local transac-
tions are recommended for accessing enterprise data.

Container-managed transactions are more optimized because they are handled by the
container. They are also easier to manage and deploy because transaction attributes are
set in the deployment descriptor. The default transaction attribute should be Required.
Using this attribute ensures that the methods of an enterprise bean are invoked under a
JTA distributed transaction.

Summary
Today you learned what transactions are, and why they are important in J2EE applica-
tions. Both local (standard) and distributed (global) transaction types were discussed with
the emphasis on distributed transactions. The JTA API was outlined, and you were shown
how it is used in managing distributed transactions among multiple resource managers.
We highlighted how transactions work across all J2EE tiers. Both bean-managed transac-
tion and container-managed transaction were explained. An example of distributed trans-
action was given, where two resource manager are used: a JDBC resource manager and a
JMS resource manager. The example used bean-managed transaction demarcation.

Q&A
Q How is a local transaction different from a distributed transaction?

A A local transaction manages only a single resource manager, such as a database or
a JMS provider. This is managed by setting methods of the JDBC Connection
object or the JMS Session object. On the other hand, a distributed transaction is a
global in a sense, and is used to access multiple resource managers. JTA is used to
coordinate and manage both local and distributed transaction through the
UserTransaction interface.

404 Day 16

20 0672324237 CH16 9/24/02 2:37 PM Page 404

Understanding J2EE Transactions 405

16

Q What are the main resource managers used in a J2EE distributed transac-
tion?

A Three types of resource-managers can participate in a J2EE distributed transaction:
JDBC, JMS, and JCA resource managers.

Quiz
1. Which of the following bean types can use bean-managed transaction demarcation?

A. Stateless session beans

B. Stateful session beans

C. Entity beans

D. Message-driven beans

2. Transaction isolation levels in EJBs are

A. Set by the bean developer for a bean-managed transaction

B. Set by the deployer for a container-managed transaction

C. Specified to the bean’s method level

D. Specified on the session to the database

3. Which transaction attribute is mostly recommended in an XA-compliant resource
manager?

A. RequiredNew

B. Required

C. Mandatory

D. Supported

Quiz Answers
1. A, B, D

2. A, D

3. B

Exercise
Modify today’s example to include a distributed transaction in the JMS consumer. This
requires modifying the message-driven bean RegistrarMDB by adding a JDBC connec-
tion to the database styejbDB. Updating the data element is_registered to be ‘T’ of
same record received in the table StudentCourse is also required.

20 0672324237 CH16 9/24/02 2:37 PM Page 405

20 0672324237 CH16 9/24/02 2:37 PM Page 406

DAY 17

WEEK 3

Building Container-
Managed Transaction
Beans

On Day 16, “Understanding Transactions,” you learned about both the pro-
grammatic and the declarative approaches to transaction management. Today,
we’ll focus on developing EJBs that use the declarative approach of transaction
demarcation. In this approach, the EJB container manages that transaction
boundary on behalf of the EJB, behind the scenes, according to the setting
found in the bean’s deployment descriptor. On Day 18, “Building Bean-
Managed Transaction Beans,” you’ll learn how to develop an EJB with bean-
managed transaction demarcation, which is a topic for advanced developers.
One of the powerful features of the Java 2 Enterprise Edition (J2EE) architec-
ture is to let the EJB container manage all the common services, such as trans-
action, security, and persistence. Doing so reduces your development efforts,
yet adds robustness and flexibility to your applications.

21 0672324237 CH17 9/24/02 2:37 PM Page 407

The following summarizes what you will be learning today to build applications with
container-managed transactions:

• Learn why you would use container-managed transactions

• Explore which EJB types can use container-managed transactions, and their restric-
tions

• Learn to define the home and component interfaces, and implement an EJB class
with a container-managed transaction

• Learn to write the deployment descriptor for an EJB with a container-managed
transaction

• Learn to compile, package, and deploy an EJB in a container

• Learn to write a client that accesses an EJB with a container-managed transaction

Understanding Container-Managed
Transactions

In an EJB with container-managed transactions (CMT), the EJB container sets the
boundaries of the transactions. This simplifies application development because the EJB
developer does not include code that begins, commits, and rolls back the transaction.
Implicitly, the container begins a transaction immediately before an EJB method starts,
and commits the transaction just before the method exits. Each method can be associated
with a single transaction. Nested or multiple transactions are not allowed within a
method. Container-managed transactions do not require all methods to be associated with
transactions. When deploying a bean, you specify which of the bean’s methods are asso-
ciated with transactions by setting the transaction attributes in the EJB’s deployment
descriptor.

408 Day 17

In an EJB with container-managed transactions, each business method can
be associated with only a single transaction.

Note

In an EJB with container-managed transaction, you must set the value of the
<transaction-type> of the standard deployment descriptor ejb-jar.xml to the value
Container. Here is an example:

<ejb-jar>
<enterprise-beans>
<session>
...

21 0672324237 CH17 9/24/02 2:37 PM Page 408

Building Container-Managed Transaction Beans 409

17

<transaction-type>Container</transaction-type>
</session>

</enterprise-beans>
</ejb-jar>

Bean-managed transaction demarcation, on the other hand, is the programmatic approach
in which the EJB code manages the transaction boundary (you’ll learn this approach on
Day 18). In developing enterprise applications, the container-managed transaction demar-
cation is the preferred approach of the J2EE platform for managing the transaction
boundary. This allows applications to be more flexible and portable, and easier to
develop, deploy, and maintain.

All EJB types can use container-managed transactions, but that is not true for bean-
managed transactions. Entity beans must use container-managed transactions. Session
and message-driven beans may use either container-managed transactions or bean-man-
aged transactions. Figure 17.1 summarizes the taxonomy of the various transaction
options available to each EJB type.

FIGURE 17.1
Taxonomy of transac-
tion options with EJB
types.

J2EE Transactions

Clients

Global/Distributed
(JTA UserTransaction)

Bean-Managed
Transactions

Container-Managed
Transactions

Local
(JDBC Connection,

JMS Session)

Servlets EJBs

Session
Beans

Message-Driven
Beans

Session
Beans

Message-Driven
Beans

Entity
Beans

Taxonomy of Transactions Options and EJB Types

In Figure 17.1, you can see that an EJB with bean-managed transactions may choose to
implement either Java Database Connectivity (JDBC) transactions or Java Transaction
API (JTA) transactions. JDBC transactions involve the use of the java.sql.Connection
interface (refer to Day 9, “Using JDBC to Connect to a Database”), whereas JTA

21 0672324237 CH17 9/24/02 2:38 PM Page 409

transactions involve the use of the javax.transaction.UserTransaction interface
(refer to Day 16). Again, the J2EE architecture strongly encourages the use of JTA trans-
action options.

Using JDBC in CMT
The following is an example of a business method in an EJB with CMT demarcation.
The business method updates two databases using JDBC connections. The container pro-
vides transaction demarcation per the assembler.

public class MySessionEJB implements SessionBean {
EJBContext ctx;
public void methodA(...) {

Connection conn;
Statement stmt;
conn = ...;
stmt = conn.createStatement();
// Perform some updates on conn. The Container
// automatically enlists conn with the container-
// managed transaction.
stmt.executeQuery(...);
// release connections
conn.close();

}
...

}

The preceding code uses no explicit transaction demarcation, such as commit() or
rollback().

Using Isolation Levels with CMT
As you learned on Day 16, the isolation level describes the degree to which access to a
resource manager can be controlled among concurrently executing transactions. Isolation
level is resource manager–specific, and the J2EE architecture does not define an API for
managing the isolation level. In EJB with bean-managed transactions, you set the trans-
action isolation level in the application code, or in programmatic fashion. Most resource
managers require that all access to the resource manager within a transaction be done
with the same isolation level.

For container-managed transactions, you set the transaction isolation level in the vendor-
specific deployment descriptor, or in declarative fashion. For example, in the WebLogic
Server environment, the <transaction-isolation> element of the weblogic-ejb-
jar.xml deployment descriptor is used to set these values, which correspond to the con-
stant values of the isolation level of the Connection interface (refer to the “Transaction

410 Day 17

21 0672324237 CH17 9/24/02 2:38 PM Page 410

Building Container-Managed Transaction Beans 411

17

Isolation Level” section on Day 16). The following code shows how you can set the
value of the <transaction-isolation> tag to Serializable:

<weblogic-ejb-jar>
<transaction-isolation>
<isolation-level>Serializable</isolation-level>
<method>

<ejb-name>...</ejb-name>
<method-intf>...</method-intf>
<method-name>...</method-name>
<method-params>...</method-params>

</method>
</transaction-isolation>

</weblogic-ejb-jar>

WebLogic passes this value to the underlying database. The behavior of the transaction
depends on both on the EJB’s isolation level setting and the concurrency control of the
underlying database.

The container uses the transaction isolation level attribute as follows:

• Session beans, message-driven beans, and entity beans with bean-managed persis-
tence (BMP): For each database connection used by the bean, the container sets
the transaction isolation level at the start of each transaction.

• Entity beans with container-managed persistence (CMP): The classes generated by
the application server manage transaction isolation. The application server respon-
sibility is to control the isolation level according to the setting in its configuration
files.

Reviewing Transaction Attributes with CMT
Transaction attributes were briefly covered on Day 16. Here you’ll learn more about
using transaction attributes to control the scope of a container-managed transaction.
When methodA of EJB1 invokes methodB of EJB2 (see Figure 17.2), the scope of the
transaction depends on the transaction attribute setting of methodB in the deployment
descriptor of EJB2.

Many database vendors provide limited support for detecting serialization
issues. Therefore, even if you set the isolation level to TRANSACTION_SERIAL-
IZABLE, you might experience serialization problems due to the limitations
of the database. Consult your DBMS documentation for more details about
isolation level support.

Note

21 0672324237 CH17 9/24/02 2:38 PM Page 411

Table 17.1 summarizes the effects of the transaction attribute of methodB on the scope of
the originated transaction. In this table, both T1 and T2 are transactions that are con-
trolled by the container. The T1 transaction is associated with EJB1, which calls methodB
in EJB2. The container starts the T2 transaction just before methodB executes. Depending
on the transaction attribute setting of methodB, the container will propagate the context of
transaction T1’s scope, or start a new T2 transaction. Notice that in some cases, methodB
does not execute within a transaction controlled by the container, as specified by N/A in
the table. EJB components inherit the transaction of the caller even if the caller is a dis-
tributed client. The EJB container propagates the transaction context across EJB compo-
nents and J2EE-compliant application servers.

TABLE 17.1 Transaction Attributes and Scope

Transaction
Attribute EJB1.method EJB2.methodB

Required None New transaction: T2
T1 T1

RequiresNew N/A New transaction: T2
T1 New transaction: T2

Mandatory N/A TransactionRequiredException

T1 T1

NotSupported N/A N/A
T1 N/A

Supports N/A N/A
T1 T1

Never N/A N/A
T1 TransactionRequiredException

412 Day 17

FIGURE 17.2
Transaction scope.

MethodA
{
…
…
EJB2.methodB()

}

EJB1

Deployment Descriptor ejb-jar.xml

MethodB
{
…
…

}

EJB2

Deployment Descriptor ejb-jar.xml

21 0672324237 CH17 9/24/02 2:38 PM Page 412

Building Container-Managed Transaction Beans 413

17

As you can see in Table 17.1, based on the transaction attribute settings, the EJB con-
tainer takes an appropriate action. For example, if the setting is Required, the EJB con-
tainer invokes the method within the existing transaction context (T1). But if the client
methodA calls without a transaction context, the EJB container begins a new transaction
(T2) before executing methodB. In another example, if the transaction attribute is
Mandatory, the EJB container invokes methodB within the existing transaction context
(T1). But if the client calls without a transaction context, the EJB container throws the
TransactionRequiredException exception of the UserTransaction interface.

Setting Transaction Attributes
Transaction attributes control the method behavior of an EJB, and are stored in the stan-
dard deployment descriptor ejb-jar.xml. They can be changed during several phases of
J2EE application development, application assembly, and deployment. As an EJB devel-
oper, it is your responsibility to specify these attributes when creating the bean. Only an
application developer who is assembling components into larger applications should
modify the attributes. The J2EE deployer is not expected to modify these attributes.

You can specify the transaction attributes for the entire EJB methods or just for individ-
ual methods. If you’ve specified one attribute for a method and another for the entire EJB
as a default, the attribute for the method takes precedence. When specifying attributes for
individual methods, the requirements for session and entity beans vary. Session beans
need the attributes defined for business methods, but do not allow them for the create
methods. Entity beans require transaction attributes for the business, create, remove, and
finder methods.

The assembler uses the <container-transaction> element to define the transaction
attributes for the methods of session and entity beans’ home and component interfaces,
and for the onMessage() methods of message-driven beans. Each <container-
transaction> element consists of a list of one or more <method> elements and the
<trans-attribute> element. The <container-transaction> element specifies that all
the listed methods must be assigned the specified transaction attribute value. It is
required that all the methods specified in a single <container-transaction> element be
methods of the same EJB. The <method> element uses the <ejb-name>, <method-name>,
and <method-params> elements to denote one or more methods of an EJB’s home and
component interfaces. In the following sections, you’ll learn three different styles of how
to compose the <method> element to specify a transaction attribute.

Specifying container-managed transactions with the Required transaction
attribute is the easiest way to handle transaction management in the appli-
cation, and works in most cases.

Tip

21 0672324237 CH17 9/24/02 2:38 PM Page 413

Setting Transaction Attributes for the Entire EJB
This style is used to specify a default value of the transaction attribute for all the meth-
ods of the EJB. The <method-name> tag is assigned the value * (asterisk) to indicate that
all methods have the transaction attribute Required:

<ejb-jar>
...
<assembly-descriptor>
...
<container-transaction>
<method>
<ejb-name> myEJB </ejb-name>
<method-name> * </method-name>
<trans-attribute>Required</trans-attribute>

</method>
...

</assembly-descriptor>
...

</ejb-jar>

Setting a Transaction Attribute for a Specific Method
This style is used for referring to a specific method of a home or component interface of
the specified EJB:

<ejb-jar>
...
<assembly-descriptor>
...
<container-transaction>
<method>
<ejb-name> myEJB </ejb-name>
<method-name> methodA </method-name>
<trans-attribute>Supports</trans-attribute>

</method>
...

</assembly-descriptor>
...

</ejb-jar>

Setting a Transaction Attribute for an Overloaded Method
If there are multiple overloaded methods (that is, the same method name with different
parameter types), this style uses the <method-params> tag to differentiate which method
to set:

<ejb-jar>
...
<assembly-descriptor>
...

414 Day 17

21 0672324237 CH17 9/24/02 2:38 PM Page 414

Building Container-Managed Transaction Beans 415

17

<container-transaction>
<method>
<ejb-name> myEJB </ejb-name>
<method-name> methodA </method-name>
<method-params>

<method-param> java.lang.Object </method-param>
...
<method-param> java.lang.String </method-param>

</method-params>
<trans-attribute>RequiredNew</trans-attribute>

</method>
...

</assembly-descriptor>
...

</ejb-jar>

The optional <method-intf> element can be used to differentiate between methods with
the same name and signature that are multiply defined across the component and/or
home interfaces:

<ejb-jar>
...
<assembly-descriptor>
...
<container-transaction>
<method>
<ejb-name>MyEJB</ejb-name>
<method-intf>Remote</method-intf>
<method-name>methodA</method-name>
<method-params>

<method-param>java.lang.String</method-param>
</method-params>

</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
...

</assembly-descriptor>
...

</ejb-jar>

Performing Nontransactional Execution
Some EJBs might need to access resource managers that do not support an external
transaction manager. The container cannot manage the transactions for such EJBs with

In specifying the data type in the <method-param> tag, use the fully qualified
class name; for example, java.lang.String.

Caution

21 0672324237 CH17 9/24/02 2:38 PM Page 415

CMT. Therefore, the EJB developer should assign the NotSupported transaction attribute
to all the EJB’s methods.

Rolling Back a Container-Managed Transaction
You might wonder how a container-managed transaction is rolled back. There are two
ways to roll back a CMT:

• When a System exception is thrown, the container automatically rolls back the
transaction, which means that it will try to call the associated method again.

• Application exceptions do not automatically cause a rollback. The EJB must
invoke the setRollbackOnly() method of the EJBContext interface to notify the
container to roll back the transaction.

The following example demonstrates both system- and application-level exception han-
dling in rolling back a CMT:

public class RegistrarEJB implements SessionBean{
SessionContext ctx;
...
public void registerForCourse(String courseID)
throws InsufficientRoomException {

try {
rs = updateCourse(courseID);
if (rs < 0) {
// Application-level exception

ctx.setRollbackOnly();
throw new InsufficientRoomException();

}
} catch (SQLException ex) {

// This is a system-level exception
throw new EJBException
(“Transaction rollback due to SQLException: “+ ex.getMessage());

}
}

...
}

The registerForCourse() method of the RegistrarEJB example illustrates the
setRollbackOnly() method. If the updateCourse() method returns with insufficient
room, the application exception InsufficientRoomException will be thrown. If the
updates fail for any reason, these methods throw a SQLException and the
registerForCourse() method throws an EJBException. Because the EJBException is a
system exception, it causes the container to automatically rollback the transaction.

There are special considerations for entity beans, session beans, and message-driven
beans in the event of a roll back of a CMT:

416 Day 17

21 0672324237 CH17 9/24/02 2:38 PM Page 416

Building Container-Managed Transaction Beans 417

17

• For a stateful session bean, the SessionSynchronization interface can be imple-
mented to explicitly reset a bean’s instance variables.

• For an entity bean, when a rollback occurs, the EJB container will invoke
ejbLoad(), which has the effect of reloading the bean’s instance variables from the
database.

Transaction Semantics for CMT
The J2EE architecture describes semantics that govern transaction-processing behavior
based on the EJB type (entity bean, stateless session bean, or stateful session bean) and
the transaction type (container-managed or bean-managed). These semantics describe the
transaction context at the time a method is invoked, and define whether the EJB can
access methods in the javax.transaction.UserTransaction interface. EJB applications
must be designed with these semantics in mind. For container-managed transactions,
transaction semantics vary for each bean type. The following sections discuss these trans-
action semantics with respect to each EJB type.

Implementing Session Beans with CMT
Stateless session beans can be pooled together and reused by different users. The dura-
tion of a container-managed transaction is tightly coupled with the duration of a single
method call.

Because stateful session beans are not shared between multiple users, they are not trans-
actional by design. Member variables (or the bean’s state) cannot be rolled back when a
transaction aborts. On the other hand, session beans can propagate transaction context to
other resources they interface with, such as a database or a Java Message Service (JMS)
queue. Only beans that manage their own transactions have access to the
UserTransaction via the EJBContext. EJBs that do not manage their transaction can
access only the setRollbackOnly() and getRollbackOnly() methods of the
EJBContext. In a stateful session bean, the life cycle of a container-managed transaction
is not tightly coupled with the life cycle of the EJB.

According to the EJB architecture, all methods on a stateful session bean
must support one of the following transaction attributes: RequiresNew,
Mandatory, or Required.

Note

21 0672324237 CH17 9/24/02 2:38 PM Page 417

Synchronizing the State of a Session Bean
The EJB architecture allows stateful session beans to optionally synchronize their state.
This is accomplished by implementing the SessionSynchronization interface (in the
package javax.transaction). The EJB container notifies the EJB with the beginning
and end of a transaction demarcation through the callback methods of the
SessionSynchronization interface. Any information that might have been cached in its
state by the EJB can be committed when the transaction completes. In addition, in the
case of a rollback, a stateful session bean might want to refresh any required instance
variables of its state from the database because the container will not perform this auto-
matically.

Use of the SessionSynchronization interface by an stateful session bean implies the
implementation of the callback methods afterBegin(), beforeCompletion(), and
afterCompletion(). Figure 17.3 summarizes the life cycle of a stateful session bean
implementing the SessionSynchronization interface. Refer to Day 6 for more details
about stateful session beans.

418 Day 17

FIGURE 17.3
Stateful session bean
life cycle with
SessionSynchron-

ization.

Not Exist

Ready
(No Transaction)

afterBegin()

afterCompletion()

beforeCompletion() Ready within
Transaction

Passivated
ejbpassivate()

ejbActivate()

ej
bR

em
ov

e(
)

C
on

st
ru

ct
or

se
tS

es
si

on
C

on
te

xt
()

ej
bC

re
at

e(
)

Stateful session Bean Life cycle with
SessionSynchronization

The afterBegin() method is called by the container after a new transaction is started
but before the business method is invoked, so it’s a good place to synchronize the
instance variables of the session bean with the state of the database. The session bean
also has a chance to roll back in the beforeCompletion() method. In the
afterCompletion() method, the session bean can check whether a rollback occurred

21 0672324237 CH17 9/24/02 2:38 PM Page 418

Building Container-Managed Transaction Beans 419

17

and respond accordingly. The following example demonstrates the use of the
SessionSynchronization interface with the stateful session bean MyStatefulEJB:

public class MyStatefulEJB implements SessionBean, SessionSynchronization {
private SessionContext ctx;
private boolean isFailed = false;

...
public void afterBegin() {}

public void beforeCompletion() {
if (isFailed) {

ctx.setRollbackOnly();
}

}
public void afterCompletion(boolean success) {

if (!success)
//rollback occurred

}
...
}

In the preceding example, the afterCompletion() method indicates that the transaction
has completed. It has a single boolean parameter, success, whose value is true if the
transaction was committed and false if it was rolled back. If a rollback occurs, the ses-
sion bean can refresh its instance variables from the database in the afterCompletion()
method.

Methods Not Allowed in CMT
As a general rule, you shouldn’t invoke any method that might interfere with the transac-
tion boundaries set by the container. Table 17.2 summarizes the methods that JB develop-
ers should avoid calling while developing an EJB with CMT.

TABLE 17.2 Summary of Prohibited Methods with CMT

Interface Methods

Java.sql.Connection commit(), setAutoCommit(), rollback()

javax.ejb.EJBContext getUserTransaction()

All methods javax.transaction.UserTransaction

Bean-managed transactions do not have these restrictions. You may, however, use these
methods to set boundaries in bean-managed transactions. For more information about
bean-managed transaction, see Day 18.

21 0672324237 CH17 9/24/02 2:38 PM Page 419

Message-Driven Beans with CMT
The EJB architecture allows message-driven beans (MDBs) with CMT to use either the
Required or the NotSupported transaction attribute:

• Required: The EJB container automatically starts a transaction, and a message
receipt from a JMS queue or topic is included in the transaction. The onMessage()
method is called automatically by the container within this transaction context.
When onMessage() returns, the EJB container automatically commits the transac-
tion. If the transaction fails, the message stays in the queue until it is delivered to
the message-driven bean. The container handles message acknowledgement auto-
matically on behalf of the MDB.

• NotSupported: The EJB container does not start a transaction before calling
onMessage(). MDBs rely on message acknowledgement mechanisms used by the
JMS provider. Refer to Day 13, “Understanding JMS and Message-Driven Beans,”
for more information about JMS.

Entity Beans
Entity beans are always container-managed. The ejbLoad() callback method loads the
current state of an entity row from the database. The ejbStore() method updates the
current state onto the database. Because an entity bean is a proxy representation of a
table row in a database, the ejbLoad() method is the first method that a container calls in
a transaction, and ejbStore() is the last method called before the end of a transaction.
The business methods are called inbetween. An entity bean cannot be a bean-managed
transaction because a bean cannot call either ejbLoad() or ejbStore() method to syn-
chronize its state.

420 Day 17

Both ejbLoad() and ejbStore() are callback methods and can be called only
by the container from within a transaction.

Note

Summary of Transaction Options for EJBs
Table 17.3 lists the types of transactions that are allowed for the different types of EJBs.
An entity bean must use container-managed transactions. With container-managed trans-
actions, you specify the transaction attributes in the deployment descriptor, and you roll
back a transaction with the setRollbackOnly() method of the EJBContext interface.

21 0672324237 CH17 9/24/02 2:38 PM Page 420

Building Container-Managed Transaction Beans 421

17

TABLE 17.3 Transaction Options for EJB Types

Bean Type Container-Managed Transaction Bean-Managed Transaction

JTA JDBC

Entity Yes No No

Session Yes Yes Yes

Message-driven Yes Yes Yes

Setting WebLogic-Specific Transactions
Because our examples use WebLogic, we must discuss a few parameters in respect to
WebLogic transactions. The following sections describe how to set these parameters in
the vendor-specific deployment descriptor weblogic-ejb-jar.xml.

Setting Transaction Timeouts
An EJB developer can specify the timeout period for transactions in enterprise applica-
tions. If the duration of a transaction exceeds the specified timeout setting, the transac-
tion manager rolls back the transaction automatically. In a bean-managed transaction,
this is done programmatically in the code. The transaction timeout is set before the trans-
action begins. See Day 18 for more information about bean-managed transactions.

In container-managed transactions, the EJB developer sets the transaction timeout in the
vendor-specific deployment descriptor. For WebLogic, the <trans-timeout-seconds>
tag of the weblogic-ejb-jar.xml deployment descriptor is used:

<weblogic-ejb-jar>
<transaction-descriptor>

<trans-timeout-seconds>5<trans-timeout-seconds>
</transaction-descriptor>

</weblogic-ejb-jar>

Only EJBs with container-managed transactions are affected by the <trans-timeout-
seconds> attribute. For EJB with BMT, you invoke the setTransactionTimeout()
method of the UserTransaction interface (in JTA transactions).

Example for Developing EJB with CMT
For EJB applications with container-managed transactions, a basic transaction works in
the following way:

1. In the EJB’s standard deployment descriptor, the EJB developer or assembler spec-
ifies the transaction type by setting the <transaction-type> tag with the value
Container (for CMT).

21 0672324237 CH17 9/24/02 2:38 PM Page 421

2. In the standard deployment descriptor, the EJB developer or assembler specifies
the transaction attribute by setting the value of the <trans-attribute> tag to one
of the following values: NotSupported, Required, Supports, RequiresNew,
Mandatory, or Never. This tag enables you to set a default value for all methods of
the entire EJB, or a value for each specific method of the EJB. Refer to the
“Setting Transaction Attributes” section earlier today for more information.

422 Day 17

On invoking a method in the EJB, the EJB container checks the <trans-
attribute> setting in the deployment descriptor for that method. If no set-
ting is specified for the method, the EJB uses the default <trans-attribute>
setting for that EJB.

Note

3. Depending on the <trans-attribute> setting, the EJB container takes the appro-
priate action (refer to Table 17.1).

4. During the execution of the business method, if it is determined (by the application
logic) that a rollback is required, the business method calls the
setRollbackOnly() method of the EJBContext. This will notify the EJB container
that the transaction is to be rolled back at the end of the business method.

Calling the setRollbackOnly() method of the EJBContext is allowed only for
EJB with CMT.

Note

5. At the end of the business method (and before it returns), the EJB container com-
pletes the transaction either by committing the transaction or rolling it back (if the
setRollbackOnly() method was called in step 4).

6. You can also control transaction timeouts by setting its attribute in the vendor-spe-
cific deployment descriptor.

Defining the Bean’s Remote Interface
For this example, the EnrollmentCart EJB is implemented as a stateful session bean
with container-managed transaction, the remote interface EnrollmentCart defines all
business methods, and is stored on disk in the file EnrollmentCart.java, as shown in
Listing 17.1.

21 0672324237 CH17 9/24/02 2:38 PM Page 422

Building Container-Managed Transaction Beans 423

17

LISTING 17.1 The Full Text of day17/EnrollmentCart.java

package day17;
import java.util.*;
import javax.ejb.*;
import java.rmi.RemoteException;
/**
EnrollmentCart is the remote interface for enrollment cart
stateful session bean.
*/
public interface EnrollmentCart extends EJBObject
{

public void addEnrollment(EnrollmentInfo enroll) throws RemoteException;
public void deleteEnrollment(int itemId) throws RemoteException;
public Collection getEnrollments() throws RemoteException;
public void emptyCart() throws RemoteException;
public void register() throws InsufficientRoomException, RemoteException;

}

The remote interface uses the EnrollmentInfo class as a helper class to transfer data
between the EJB tier and the client tier. The InsufficientRoomException is an applica-
tion exception to detect any failure to register for a course due to insufficient room in the
enrolled class.

Defining the Bean’s Home Interface
The home interface is stored in the file EnrollmentCartHome.java, and defines the life
cycle method of the EJB, as shown in Listing 17.2.

LISTING 17.2 The Full Text of day17/EnrollmentCartHome.java

package day17;
import java.rmi.RemoteException;
import javax.ejb.*;
/**
EnrollmentCartHome is the remote home interface for
the enrollment cart stateful session bean.
*/
public interface EnrollmentCartHome extends EJBHome
{
EnrollmentCart create() throws CreateException, RemoteException;

}

Implementing the Bean’s Class
The bean class implements all the methods in both the remote and home interfaces of
EnrollmentCart EJB, as shown in Listing 17.3.

21 0672324237 CH17 9/24/02 2:38 PM Page 423

LISTING 17.3 The Full Text of day17/EnrollmentCartEJB.java

package day17;

import java.util.*;
import javax.ejb.*;
import javax.naming.*;
import java.sql.*;
import java.rmi.RemoteException;

/**
EnrollmentCartEJB is stateful session bean, representing the
private conversation of a specific client. It keeps track of the
user’s current selection of courses.

*/

public class EnrollmentCartEJB implements SessionBean, SessionSynchronization
{

private SessionContext ejbCtx;
private HashSet cart;
private boolean isFailed = false;

public EnrollmentCartEJB(){}
// SessionSynchronization methods
public void afterBegin() {}
public void beforeCompletion() {

if (isFailed)
ejbCtx.setRollbackOnly();

}
public void afterCompletion(boolean committed) {

if (committed == false)
throw new EJBException(“Transaction afterCompletion failed”);

System.out.println(“afterCompletion: Transaction succeeds...”);
}

// Business methods
public void addEnrollment(EnrollmentInfo enroll) throws RemoteException {

cart.add(enroll);
}
public void register() throws InsufficientRoomException, RemoteException {

java.sql.Statement stmt = null;
java.sql.Statement stmt2 = null;
java.sql.Connection conn = null;
System.out.println(“register: started..”);
try{

InitialContext initCtx = new InitialContext();
javax.sql.DataSource ds = (javax.sql.DataSource)
initCtx.lookup (“java:comp/env/jdbc/styejbDB”);
conn = ds.getConnection();
stmt = conn.createStatement();
stmt2 = conn.createStatement();

} catch (Exception e){
e.printStackTrace();

424 Day 17

21 0672324237 CH17 9/24/02 2:38 PM Page 424

Building Container-Managed Transaction Beans 425

17

}
try{
Iterator it = cart.iterator();
while (it.hasNext()){
EnrollmentInfo enroll=(EnrollmentInfo)it.next();
ResultSet rs = stmt.executeQuery

(“SELECT * FROM COURSES WHERE COURSEID=’” +
enroll.getCourseId()+”’”);

while (rs.next()){
int mlimit = rs.getInt(“MAX_LIMIT”);
int curr = rs.getInt(“CURR”);
if (mlimit < curr + 1){
isFailed = true;
ejbCtx.setRollbackOnly();
throw new InsufficientRoomException();

}else{
curr++;
stmt2.executeUpdate(“UPDATE COURSES SET CURR =” + curr
+ “ WHERE COURSEID=’” + enroll.getCourseId()+”’”);

System.out.println(“register: Database updated for: “+
enroll.getCourseId());

}
}

}
System.out.println(“register: success..”);

}catch (SQLException ex){
// This is a system level exception
throw new EJBException
(“Transaction rollback due to SQLException: “+ ex.getMessage());

}
}
public Collection getEnrollments() throws RemoteException {

return cart;
}

public void emptyCart() throws RemoteException {
cart.clear();

}
public void deleteEnrollment(int itemId) throws RemoteException {

for(Iterator i = getEnrollments().iterator(); i.hasNext();) {
EnrollmentInfo tmpEnrol = (EnrollmentInfo) i.next();
if (tmpEnrol.getItemId() == itemId) {

getEnrollments().remove(tmpEnrol);
break;

}
}

}
// EJB methods
public void setSessionContext(SessionContext ctx){

this.ejbCtx = ctx;

LISTING 17.3 continued

21 0672324237 CH17 9/24/02 2:38 PM Page 425

}
public void ejbCreate() throws CreateException{

cart = new HashSet();
}
public void ejbRemove() {}
public void ejbActivate(){}
public void ejbPassivate(){}

}

In the preceding code, the business method register() of the EnrollmentCart is exe-
cuted within a transaction that is maintained by the container. The EJB implements the
SessionSynchronization interface to synchronize its state with the database. An appli-
cation exception will be raised if any course is out of room while registering all the
selected courses in the enrollment cart.

Developing Helper Classes
Listing 17.4 is the code of the helper class EnrollmentInfo, which is used as a data con-
tainer to transfer data between the EJB tier and the client tier. The EnrollmentInfo class
implements the java.io.Serializable interface in order to use it for transferring data
across tiers.

LISTING 17.4 The Full Text of day17/EnrollmentInfo.java

package day17;
public class EnrollmentInfo implements java.io.Serializable {
public int itemId = 0;
public int studentId = 0;
public String courseId = null;
public EnrollmentInfo (int itemId, int studentId, String courseId) {
this.itemId = itemId;
this.studentId = studentId;
this.courseId = courseId;

}
public int getItemId(){

return itemId;
}
public int getStudentId(){

return studentId;
}
public String getCourseId(){

return courseId;
}

}

426 Day 17

LISTING 17.3 continued

21 0672324237 CH17 9/24/02 2:38 PM Page 426

Building Container-Managed Transaction Beans 427

17

Listing 17.5 is the code for the InsufficientRoomException used as an application
exception.

LISTING 17.5 The Full Text of day17/InsufficientRoomException.java

package day17;
public class InsufficientRoomException extends Exception {

public InsufficientRoomException() {
super();

}
public InsufficientRoomException(Exception e) {

super(e.toString());
}
public InsufficientRoomException(String s) {

super(s);
}

}

Packaging the Beans into a JAR File
The deployment descriptor for the EnrollmentCart EJB is listed in Listing 17.6. The EJB
developer sets the <session> tag, with the <transaction-type> to be set to Container
for the EJB to manage its own state. There is no mechanism for an application assembler
to affect enterprise beans with bean-managed transaction demarcation. The application
assembler must define transaction attributes for an enterprise bean with container-
managed transaction demarcation. We use only the default Required transaction attribute
for all methods of the EJB. Listing 17.6 displays the ejb-jar.xml file.

LISTING 17.6 The Full Text of day17/ejb-jar.xml

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN'
'http://java.sun.com/dtd/ejb-jar_2_0.dtd'>

<ejb-jar>
<enterprise-beans>
<session>

<ejb-name>EnrollmentCart</ejb-name>
<home>day17.EnrollmentCartHome</home>
<remote>day17.EnrollmentCart</remote>
<ejb-class>day17.EnrollmentCartEJB</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Container</transaction-type>

<resource-env-ref>

21 0672324237 CH17 9/24/02 2:38 PM Page 427

<resource-env-ref-name>jdbc/styejbDB</resource-env-ref-name>
<resource-env-ref-type>javax.sql.DataSource</resource-env-ref-type>

</resource-env-ref>
</session>

</enterprise-beans>
<assembly-descriptor>
<container-transaction>

<description>no description</description>
<method>

<ejb-name>EnrollmentCart</ejb-name>
<method-name>*</method-name>

</method>
<trans-attribute>Required</trans-attribute>

</container-transaction>
</assembly-descriptor>

</ejb-jar>

For WebLogic Server, Listing 17.7 shows the vendor-specific weblogic-ejb-jar.xml
that is used to set the transaction timeout and isolation level.

LISTING 17.7 The Full Text of day17/weblogic-ejb-jar.xml

<?xml version=”1.0”?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN’
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>EnrollmentCart</ejb-name>

<stateful-session-descriptor>
<stateful-session-cache>

<max-beans-in-cache>5</max-beans-in-cache>
</stateful-session-cache>

</stateful-session-descriptor>
<transaction-descriptor>
<trans-timeout-seconds>60</trans-timeout-seconds>
</transaction-descriptor>
<reference-descriptor>
<resource-env-description>

<res-env-ref-name>jdbc/styejbDB</res-env-ref-name>
<jndi-name>jdbc.styejbDB</jndi-name>

</resource-env-description>
</reference-descriptor>

<jndi-name>day17/EnrollmentCartHome</jndi-name>
</weblogic-enterprise-bean>

<transaction-isolation>

428 Day 17

LISTING 17.6 continued

21 0672324237 CH17 9/24/02 2:38 PM Page 428

Building Container-Managed Transaction Beans 429

17

<isolation-level>TRANSACTION_SERIALIZABLE</isolation-level>
<method>

<ejb-name>EnrollmentCart</ejb-name>
<method-name>*</method-name>

</method>
</transaction-isolation>

</weblogic-ejb-jar>

Developing and Testing the Client
Listing 17.8 is the client program to test the EnrollmentCart EJB (as saved in the
Client.java file). The client adds the selected courses as enrollments, and then tries to
register all the courses. If one of the courses cannot be registered due to insufficient
room in the class, an exception will be raised by the EJB and printed by the client in the
catch clause.

LISTING 17.8 The Full Text of day17/Client.java

package day17;
import java.util.*;
import java.rmi.*;
import java.io.*;
import javax.naming.*;
import javax.ejb.*;

/*
This client demonstrates usage of stateful session bean with
CMT and SessionSynchronization
*/
public class Client
{

public static void main(String[] argv){
System.out.print(“Day 17: Demonstration the use of CMT\n”);

try{
Context initialContext = new InitialContext();
Object object = initialContext.lookup(“day17/EnrollmentCartHome”);
EnrollmentCartHome enrollmentCartHome = (EnrollmentCartHome)
javax.rmi.PortableRemoteObject.narrow(object, EnrollmentCartHome.class);
EnrollmentCart enrollmentCart = (EnrollmentCart)

enrollmentCartHome.create();
// Add enrollment courses
enrollmentCart.addEnrollment(new EnrollmentInfo(1, 15, “CS201”));
enrollmentCart.addEnrollment(new EnrollmentInfo(2, 15, “CS205”));
enrollmentCart.addEnrollment(new EnrollmentInfo(3, 15, “CS231”));
// register the courses
enrollmentCart.register();

LISTING 17.7 continued

21 0672324237 CH17 9/24/02 2:38 PM Page 429

print(“Following courses are registered successfully:”);
Collection coll = enrollmentCart.getEnrollments();
for (Iterator i = coll.iterator(); i.hasNext();){

EnrollmentInfo enroll = (EnrollmentInfo) i.next();
print(“Course id: “ + enroll.getCourseId());
}

enrollmentCart.remove();
}
catch (Exception e){

print(“Enrolled courses failed to register.\n”);
e.printStackTrace();
}

}
static void print(String s){

System.out.println(s);
}

}

Build and Run the Example
To build the example, a build script is provided for WebLogic Server and the JBoss
server.

1. Configure both the JDBC DataSource and connection pool as described on Day 9.

2. Build the example for the appropriate application server. From the directory Day17,
run the build script. This creates a subdirectory named build that contains all the
compiled code:

c:\>cd c:\styejb

c:\styejb>setEnvWebLogic.bat

c:\styejb>cd day17

c:\styejb\day17>buildWebLogic.bat

3. To run the example, use the appropriate script for each server. Set up the environ-
ment for the client in a new command window, and then use the run script in the
Day17 directory:

c:\styejb>setEnvWebLogic.bat

c:\styejb>cd day17

c:\styejb\day17> runClientWebLogic.bat

430 Day 17

LISTING 17.8 continued

21 0672324237 CH17 9/24/02 2:38 PM Page 430

Building Container-Managed Transaction Beans 431

17

Best Practices
The J2EE architecture encourages the use of container-managed transaction demarcation.
It’s the preferred approach over bean-managed transaction. Use container-managed trans-
action demarcation unless you have a specific need for bean-managed transactions. CMT
should be used wherever possible to minimize the overhead of writing code to a transac-
tion management service API. Not only will this result in less work for you as a pro-
grammer, but it will also reduce the possibility of errors in the final code. For example, it
will keep you from accidentally not committing a transaction or committing too early. It
also enables you to change the behavior without programmatic changes. Never demarcate
transactions from an EJB with container-managed transactions. Bean-managed transac-
tions will be covered on Day 18.

Do not invoke any resource-manager-specific transaction demarcation, such as commit()
and rollback() of the Connection interface, and avoid using the UserTransaction
interface.

The way to implement rollbacks is by calling the setRollBackOnly() method of the
EJBContext and then throwing an application exception. This enables you to handle
exceptions at the client code.

To optimize transaction use on your system, always follow an inside-out approach to
transaction demarcation. Transactions should begin and end at the inside (the database)
of the system where possible, and move outside (toward the client application) only as
necessary.

Many RDBMS provide high-performance locking systems for Online Transaction
Processing (OLTP) transactions. If your underlying database is capable of demarcating
transactions automatically, use them when possible.

A scenario in which you must use bean-managed transactions is when you define multi-
ple transactions from within a single method. An EJB container limits transactions
demarcation on a per-method basis. However, even in this scenario, you can still use
container-managed transaction demarcation by breaking the method into multiple
methods instead of using multiple transactions in a single method, and also using
container-managed transactions by setting the transaction attribute for each individual
method.

Generally, client applications are not guaranteed to stay active over long periods of time.
When a client starts a transaction and then exits before committing, it wastes valuable
transaction and connection resources in the EJB container. Moreover, even if the client
does not exit during a transaction, the duration of the transaction might be unacceptable
if it relies on user activity to commit or roll back data. Make your methods in an EJB

21 0672324237 CH17 9/24/02 2:38 PM Page 431

with CMT as short as possible and split large methods into smaller ones with distinct
functions. The primary purpose is that shorter transactions reduce contention in your
application because database locks are held for shorter time periods. Set transaction time-
out to a reasonable value for the application server you’re using.

Summary
Today we have covered the important aspects of the J2EE architecture: understanding
and developing an EJB with container-managed transactions (CMT). We explored all
EJB types that can use CMT with either JDBC or JTA. We explained how to configure
the transaction isolation level required by the application, and set its value in the vendor-
specific deployment descriptor of the EJB. We also have focused on how to configure an
EJB to work as a CMT, and set the fine-grained transaction attribute for each method of
the EJB. Some restrictions applied in using resource-manager specific transaction demar-
cation are discussed. The topic of using the SessionSynchronization interface by a
stateful session bean is covered.

Q&A
Q Which type of EJBs can use container-managed transactions? And with which

transaction option?

A All types of EJBs (session, message-driven, and entity beans) can use container-
managed transactions, with either the JDBC or JTA transaction option.

Q What are the acceptable values of the transaction attribute?

A There are six values that can be specified for the transaction attribute: Required,
RequiresNew, NotSupported, Mandatory, Never, and Supports.

Q How do you configure the EJB to be a CMT?

A You must set the <transaction-type> element in the standard deployment
descriptor ejb-jar.xml to the Container value. You must also specify the
<transaction-attribute> for either the entire EJB or for specific methods of
the EJB.

Quiz
1. Which of the following methods can be used only in CMT?

A. begin() and commit()

B. commit() and rollback()

C. getStatus() and getRollback()

432 Day 17

21 0672324237 CH17 9/24/02 2:38 PM Page 432

Building Container-Managed Transaction Beans 433

17

D. getRollbackOnly() and setRollbackOnly()

2. When using JTA for your transactions, which transaction attributes would you
require?

A. Supports

B. Never

C. RequiresNew

D. Mandatory

3. If a System exception is thrown from within an EJB with CMT, which of the fol-
lowing is handled automatically by the container?

A. Stateful session beans

B. Stateless session beans

C. Message-driven bean

D. Bean-managed persistence bean

Quiz Answers
1. D

2. C

3. A, B, C

Questions
1. Why is CMT used in enterprise applications?

2. How can you set the transaction isolation level for CMT?

3. Which methods and interfaces cannot be used within an EBJ with CMT?

4. Which EJB type can use the SessionSynchronization interface? Why?

Exercises
Change the client code of today’s example (Client.java) to start a JTA transaction to
call the EnrollmentCart EJB. Then change the <transaction-attribute> in the
ejb-jar.xml to Never. Rebuild and run the example using the same scripts. Comment on
the exceptions that you’re getting when running the code.

Where applicable, exercise solutions are offered on the book’s Web site at
www.ejb21days.com.

21 0672324237 CH17 9/24/02 2:38 PM Page 433

21 0672324237 CH17 9/24/02 2:38 PM Page 434

DAY 18

WEEK 3

Building Bean-Managed
Transaction Beans

On Day 17, “Building Container-Managed Transaction Beans,” we covered
EJBs with container-managed transactions (CMTs). Today we’ll closely exam-
ine the other type of transaction demarcation, the bean-managed transaction
(BMT), which is the programmatic approach of performing transaction demar-
cation on the Java 2 Enterprise Edition (J2EE) platform. This will be illustrated
through an example of how to develop, deploy, and run an EJB with bean-
managed transaction demarcation. We’ll explore the types of beans that can
perform bean-managed transactions and the transaction semantics of each
method that we use. We’ll discuss the situations in which you can use this type
of transaction and any restrictions you might encounter when using it. You’ll
also learn how to deploy such a bean into application servers and how to set its
deployment descriptors.

Toward the end of learning to implement bean-managed transactions in your
enterprise applications, the following is a summary of today’s activities:

• Learn when and why to use bean-managed transactions

• Review the type of transactions used in a bean-managed transaction

22 0672324237 CH18 9/24/02 4:00 PM Page 435

• Learn which types of EJBs support bean-managed transactions

• Work through a step-by-step example of developing an EJB with the bean-
managed transaction demarcation

• Deploy the example on our two application server environments

Why Bean-Managed Transactions?
EJB with bean-managed transactions is the programmatic approach in which the EJB
code invokes methods that mark the boundaries of the transaction. On Day 17, you
learned about container-managed transactions. CMT is the declarative approach in trans-
action demarcation in which the container manages the transaction behind the scenes on
behalf of the EJB, and according to the configuration of the EJB’s deployment descriptor.
You also learned that container-managed transaction is the approach that J2EE encour-
ages you to use.

You might ask yourself why you should study bean-managed transactions. The answer is
simple: Sometimes a container-managed transaction is not sufficient or adequate to per-
form certain transactional tasks you are trying to accomplish. For example, a method of
your EJB must be associated with either a single transaction or no transaction at all. In
this situation, due to the limitations of container-managed transactions to set these condi-
tions in the EJB’s deployment descriptor, you might consider using bean-managed trans-
actions.

Enterprise applications use BMT to perform fine-grained control of transaction bound-
aries in business methods. For situations in which distributed transactions are managing
multiple resources, bean-managed transaction may also be used. The following pseudo-
code illustrates the workflow of a business method controlling transaction boundaries
across multiple resource managers. Based on certain conditions, the code decides
whether to begin a new transaction or end different transactions within the same method.

businessMethod(...)
...
begin transaction
...
update database tableA
send message to a queueA
...
if (conditionA)

send message to dead-letter queue
commit transaction

else
rollback transaction
begin transaction

436 Day 18

22 0672324237 CH18 9/24/02 4:00 PM Page 436

Building Bean-Managed Transaction Beans 437

18

update database tableA
send another message to queueB
commit transaction

end if
....
end method

Traditionally, transactional applications are responsible for managing their transactions.
These applications demand a very skilled developer to perform tasks such as creating
transaction objects, explicitly starting a transaction, keeping track of the transaction con-
text, and committing the transaction when all updates have completed. The EJB architec-
ture provides the BMT for advanced developers to carry on the same traditions.

Using Local or Global Transactions in BMT
When coding a bean-managed transaction, you need to decide whether to use Java
Database Connectivity (JDBC) for local transaction or the Java Transaction API (JTA)
for distributed and global transactions. On Day 9, “Using JDBC to Connect to a
Database,” you learned how to use JDBC transactions, and on Day 16, “Understanding
J2EE Transactions,” you learned how to use JTA transactions. You also learned that JTA
is the approach recommended by the J2EE platform and should be used whenever possi-
ble. In the next sections, we’ll review both transaction management mechanisms, and
discuss the rationale behind using either mechanism for BMT.

Using JDBC Transactions in BMT
A JDBC transaction is controlled by the resource manager of the underlying DBMS.
With JDBC, you invoke the setAutoCommit(false) method of the
javax.sql.Connection interface before you start demarcating a transaction with the
commit() and rollback() methods. The beginning of the transaction is implicit; a new
transaction starts by the first SQL call following the most recent getConnection(),
commit(), or rollback() method.

The isolation level describes the degree to which a transaction’s access to a resource
manager is isolated from the access to the resource manager by other concurrently exe-
cuting transactions. The API for managing an isolation level is resource manager–
specific. That means the EJB architecture does not define an API for managing the isola-
tion level. For session beans and message-driven beans with bean-managed transaction
demarcation, the EJB developer can specify the desirable isolation level programmati-
cally in the enterprise bean’s methods by using the resource manager–specific API. For
example, you can use the setTransactionIsolation(int iLevel) method of the
Connection interface to set the appropriate isolation level for database access.

22 0672324237 CH18 9/24/02 4:00 PM Page 437

The following code illustrates a session bean that uses the Connection interface’s meth-
ods to demarcate bean-managed transactions:

public class MySessionBeanA implements SessionBean {
...
public void businessMethodA(...){
// Using JDBC to perform local transaction on connection
conn.setAutoCommit(false);
// Set transaction isolation level on the Connection object
conn.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);
// JDBC transaction begins implicitly here...
Statement stmt = conn.createStatement();
try {
...
conn.commit();

} catch (SQLException ex) {
conn.rollback();
stmt.close();

}
}

...
}

The method starts by invoking setAutoCommit() on the Connection object. This invoca-
tion tells the DBMS not to automatically commit every SQL statement. Next, the same
method calls routines that update the database tables. If the updates succeed, the transac-
tion is committed. But if an exception is thrown, the transaction is rolled back.

You might want to use JDBC transactions when wrapping legacy code inside a session
bean.

Using JTA Transactions in BMT
JTA implements global transactions for J2EE components and applications in which all
resource managers are registered with the global transaction manager that handles the
transactions. For a global transaction, the enterprise bean never makes calls directly on a
database connection or a JMS session. In JTA, transactions are demarcated by begin(),
commit(), and rollback() methods of the UserTransaction interface.

438 Day 18

While an EJB instance is in a transaction, the instance must not attempt to
use the resource manager–specific transaction demarcation API. That means
it must not invoke the commit() or rollback() method on the
java.sql.Connection interface or on the javax.jms.Session interface.

Caution

22 0672324237 CH18 9/24/02 4:00 PM Page 438

Building Bean-Managed Transaction Beans 439

18

The available methods of the UserTransaction interface support demarcation of a trans-
action, setting transaction timeout, and rolling back a transaction. A client program with
BMT can use explicit transaction demarcation to perform, throughout EJB, atomic
updates across multiple databases connected to multiple EJB containers, (see Day 16).
Table 18.1 lists a summary of the methods of the UserTransaction interface used by
BMT components to demarcate transaction boundaries.

TABLE 18.1 Summary of UserTransaction Methods

Method Description

void begin() Creates a new transaction and associates it with
the current thread.

void commit() Completes the transaction associated with the
current thread.

int getStatus() Obtains the status of the transaction associated
with the current thread. See Table 18.2 for the
status constants and their meanings.

void rollback() Rolls back the transaction associated with the
current thread.

void setRollbackOnly() Modifies the transaction associated with the cur-
rent thread such that the only possible outcome
of the transaction is to roll back the transaction.

void setTransactionTimeout(int seconds) Modifies the timeout value associated with trans-
actions started by subsequent invocations of the
begin method.

You should avoid calling the getRollbackOnly() and setRollbackOnly() methods of
the EJBContext interface for BMT. An EJB with BMT has no need to use these methods
because it can obtain the status of a transaction by using the getStatus() method, and
also can roll back a transaction using the rollback() method of the UserTransaction
interface if required.

As you learned on Day 17, the methods getRollbackOnly() and
setRollbackOnly() of the EJBContext interface are for the use of EJB with
CMT only.

Caution

22 0672324237 CH18 9/24/02 4:00 PM Page 439

When an application needs to know about the status of its transaction, it can query the
transaction manager by invoking the getStatus() method on the UserTransaction
object. A summary of the JTA transaction statuses is listed in Table 18.2, where each sta-
tus constant is represented as static int.

TABLE 18.2 Summary of JTA Transaction Status

Status Constant Meaning

STATUS_ACTIVE Transaction is in the active state.

STATUS_COMMITTED Transaction has been committed.

STATUS_COMMITTING Transaction is in the process of committing.

STATUS_MARKED_ROLLBACK Transaction has been marked for rollback. This could be a result of
using the setRollbackOnly() method.

STATUS_NO_TRANSACTION No transaction is currently associated with the target instance.

STATUS_PREPARED Transaction has been prepared.

STATUS_PREPARING Transaction is in the process of preparing.

STATUS_ROLLEDBACK Transaction manager determined that the transaction state is a roll-
back.

STATUS_ROLLING_BACK Transaction is in the process of rolling back.

STATUS_UNKNOWN Current status of transaction cannot be determined.

The following example demonstrates the use of a JTA transaction in an EJB with bean-
managed transaction demarcation:

SessionContext ctx;
...
// Using JTA for distributed transaction.
public void businessMethodB(){

try {
// Establish a UserTransaction context from EJBContext
UserTransaction ut = ctx.getUserTransaction();
// Begin the distributed transaction
ut.begin();
...
ut.commit();

} catch(Exception e) {
ut.rollback();

}
...

440 Day 18

22 0672324237 CH18 9/24/02 4:00 PM Page 440

Building Bean-Managed Transaction Beans 441

18

In the preceding example, the transaction context ut is obtained from the EJBContext (in
this case, the SessionContext) because the EJB container maintains such context for
transaction propagation across components and applications.

Setting Transaction Timeouts with BMT
The transaction timeout is a useful mechanism of specifying an expected period for a
transaction to execute. This gives application code more control over managing transac-
tions. EJB developers specify the timeout period for transactions in EJB with BMT by
calling the setTransactionTimeout() method of the UserTransaction interface. If the
duration of a transaction exceeds the specified timeout setting, the transaction manager
rolls back the transaction automatically. Here is an example of setting the transaction
timeout to 30 seconds:

// obtain user transaction context
ut = ejbContext.getUserTransaction();

// set transaction timeout before beginning a transaction
ut.setTransactionTimeout(30);

// start a transaction
ut.begin();
...

You must set the timeout before you begin the transaction. Setting a time-
out does not affect a transaction that has already started.

Note

Which Types of EJBs Can Use BMT?
An EJB with BMT must be either a session bean or a message-driven bean. Entity beans
use only container-managed transaction demarcation. Because the EJB architecture does
not support nested transactions, your EJB instance that starts a transaction must complete
that transaction before it starts a new transaction. Your transaction is completed when it
is either committed or rolled back. The EJB container manages client invocations to an
EJB with BMT. When writing code for a client, you invoke a business method via the
EJB’s home or component interface; the EJB container suspends any transaction that
might be associated with the client request. If a transaction is associated with the
instance, the container associates the method execution with this transaction. As you
learned from Day 16, the EJB container propagates transactions implicitly. That means

22 0672324237 CH18 9/24/02 4:00 PM Page 441

you don’t have to explicitly pass the transaction context as a parameter because the EJB
container handles this task for you transparently.

442 Day 18

You should keep in mind that clients such as JavaServer Pages (JSPs) and
servlets are not designed to be transactional components. Use EJBs to per-
form transactional work, and then you can invoke such EJBs from either a
servlet or a JSP.

Note

In the following sections, you’ll learn about the transaction semantics for methods spe-
cific to each type of bean using BMT. You’ll also learn the restrictions that are imposed
when an EJB of a certain type uses bean-managed transactions.

Understanding Transaction Semantics in BMTs
As you learned on Day 17, transaction semantics govern the behavior of transaction pro-
cessing, which are based on the EJB type and the transaction type. These semantics
describe the transaction context at the time a method is invoked, and define whether the
EJB can access methods in the UserTransaction interface. EJB applications must be
designed with these semantics in mind. For BMT, the transaction semantics differ
between stateful session, stateless session, and message-driven beans. For entity beans,
transactions are never bean-managed. Entity beans may choose to manage their own per-
sistence mechanism (CMP or BMP), but must leave transaction demarcation to the EJB
container.

Session Beans with BMT
Both stateful and stateless session beans can use bean-managed transaction demarcation.
In a session bean with BMT, it is a common practice to use either JDBC or JTA transac-
tions. As mentioned earlier, JTA transactions are recommended wherever possible.

You learned in the previous section that you must obtain the transaction context from the
EJBContext, which in turn is obtained by the setSessionContext() method of the EJB.

The EJB code starts a transaction using the begin() method of the UserTransaction
object. All operations in an EJB execute within the scope of a transaction. The commit()
method causes the EJB container to call the transaction manager to complete the transac-
tion. In case of failure, exceptions can be caught and the transaction can be rolled back
using the rollback() method of the UserTransaction object.

22 0672324237 CH18 9/24/02 4:00 PM Page 442

Building Bean-Managed Transaction Beans 443

18

Stateless Session Bean with BMT
In a stateless session bean with BMT, a business method must commit or roll back a
transaction before returning. The EJB container detects the case in which a transaction
was started but not completed, rolls back the transaction, and then throws the
java.rmi.RemoteException to the client if the client is a remote client, or throws the
javax.ejb.EJBException if the client is a local client.

In developing a stateless session bean with BMT, the EJB’s deployment descriptor must
be specified through a bean-managed demarcation, as follows:

<ejb-jar>
<enterprise-beans>

<session>
...
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>
...

</session>
</enterprise-beans>

</ejb-jar>

TABLE 18.3 Transaction Semantics for Stateless Session Beans

Method Can the Method Access UserTransaction?

create() No

setSessionContext() Yes

ejbCreate() Yes

ejbRemove() Yes

Business method Yes

Only the constructor create() of the stateless session bean is not allowed to access
methods on the UserTransaction interface.

Stateful Session Bean with BMT
In a stateful session bean with a JTA transaction, the association between the bean
instance and the transaction is retained across multiple client calls. Even if each business
method called by the client opens and closes the database connection, the association is
retained until the instance completes the transaction. There is no restriction that a busi-
ness method must commit or roll back a transaction before returning, as in the case of a
stateless session bean.

22 0672324237 CH18 9/24/02 4:00 PM Page 443

In a stateful session bean with a JDBC transaction, the JDBC connection retains the
association between the bean instance and the transaction across multiple calls. If the
connection is closed, the association is not retained. A stateful session bean instance may,
but is not required to, commit a started transaction before a business method returns. If a
transaction has not been completed by the end of a business method, the container retains
the association between the transaction and the instance across multiple client calls until
the instance eventually completes the transaction.

444 Day 18

Stateful session beans that implement the SessionSynchronization interface
cannot use bean-managed transaction demarcation. The reason for such a
restriction is that they are in full control of committing the transaction, and
thus would create a conflict between the container and the EJB.

Caution

In developing a stateful session bean with BMT, the EJB’s deployment descriptor must
be specified with a bean-managed demarcation, as follows:

<ejb-jar>
<enterprise-beans>

<session>
...
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>
...

</session>
</enterprise-beans>

</ejb-jar>

In the case of a stateful session bean, it is possible that the business method that started a
transaction can complete without committing or rolling back the transaction. In such a
case, the container must retain the association between the transaction and the instance
across multiple client calls until the instance commits or rolls back the transaction. When
the client invokes the next business method, the EJB container must invoke the business
method in this transaction context.

The following example illustrates a stateful session bean that retains the transaction con-
text across two data sources, using three client calls, invoked in the order methodA,
methodB, and methodC:

public class MySessionEJB implements SessionBean {
EJBContext ctx;
DataSource ds1;
DataSource ds2;

22 0672324237 CH18 9/24/02 4:00 PM Page 444

Building Bean-Managed Transaction Beans 445

18

Connection con1;
Connection con2;
methodA(...) {

Statement stmt;
InitialContext initCtx = new InitialContext();
// obtain distributed transaction context
ut = ctx.getUserTransaction();
// start transaction explicitly
ut.begin();
// do some work using con1 here
ds1 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/myDB1”);
con1 = ds1.getConnection();
stmt = con1.createStatement();
stmt.executeUpdate(...);
// The container retains the transaction associated with the
// instance to the next client call [which is methodB(...)]

}
methodB(...) {

Statement stmt;
InitialContext initCtx = new InitialContext();
// make some work using con2 here...
ds2 = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/myDB2”);
con2 = ds2.getConnection();
stmt = con2.createStatement();
stmt.executeUpdate(...);
// The container retains the transaction associated with the
// instance to the next client call [which is methodC(...)].

}
methodC(...) {

Statement stmt;
// obtain again the same transaction contex
ut = ctx.getUserTransaction();
// make some more work using con1 and con2
stmt = con1.createStatement();
stmt.executeUpdate(...);
stmt = con2.createStatement();
stmt.executeUpdate(...);
// commit the transaction
ut.commit();
// release connections
con1.close();
con2.close();

}
...
}

In this example, the transaction begin() in methodA and the container maintain the trans-
action context after the EJB returns from the method. The EJB calls commit() to commit

22 0672324237 CH18 9/24/02 4:00 PM Page 445

the transaction in methodC, where it restores the “same” transaction context from the
EJBContext.

Transactions are expensive and use critical resources; therefore, it is recommended that
an EJB open and close a database connection in each business method rather than hold
the Connection open until the end of the transaction. The following is an example of a
stateful session bean that starts a transaction in methodA and commits in methodC:

public class MySessionEJB implements SessionBean {
EJBContext ctx;
InitialContext initCtx;
methodA(...) {

Statement stmt;
// obtain distributed transaction context
ut = ctx.getUserTransaction();
// start a transaction
ut.begin();

}
methodB(...) {

DataSource ds;
Connection con;
Statement stmt;
// open connection
ds = (javax.sql.DataSource)

initCtx.lookup(“java:comp/env/jdbc/myDB”);
con = ds.getConnection();
// make some updates on con
stmt = con.createStatement();
stmt.executeUpdate(...);
// close the connection
stmt.close();
con.close();

}
methodC(...) {

// obtain same distributed transaction context
ut = ctx.getUserTransaction();
// commit the transaction
ut.commit();

}
...
}

In the preceding example, if the sequence of execution were methodA, methodB, methodB,
and methodC, and all the database updates were done by the multiple invocations of
methodB, these methods would be performed in the scope of the same transaction with
optimum resource usage.

Table 18.4 summarizes the transaction semantics of stateful session beans with bean-
managed transactions.

446 Day 18

22 0672324237 CH18 9/24/02 4:00 PM Page 446

Building Bean-Managed Transaction Beans 447

18

TABLE 18.4 Transaction Semantics for Stateful Session Beans

Method Can Access UserTransaction Methods?

create(...) No

setSessionContext() Yes

ejbCreate() Yes

ejbRemove() Yes

ejbActivate() Yes

ejbPassivate() Yes

Business method Yes

afterBegin() N/A

beforeCompletion() N/A

afterCompletion() N/A

Because a stateful session bean with bean-managed transaction cannot implement the
SessionSynchronization interface, the methods afterBegin(), beforeBegin(), and
afterCompletion() of the SessionSynchronization are not applicable.

Message-Driven Beans with BMT
As you learned on Day 14, “Developing Message-Driven Beans,” there is no direct com-
munication between a client and a message-driven bean, except through a JMS message.
Therefore, no client transaction context is available when a message-driven bean is
invoked because a distributed transaction context does not flow with a JMS message.
When a message-driven bean with BMT uses the UserTransaction interface to specify
transactions, the message receipt that causes the onMessage() method of the bean to be
invoked is not part of the transaction. A container-managed transaction with the
Required transaction attribute must be used if receipt of a message is to be part of a
transaction. A message-driven bean instance must commit a transaction before the
onMessage() method returns. The EJB container detects the case in which a transaction
was started, but not completed, in the onMessage() method, and rolls back the transac-
tion.

The EJB developer must not send a JMS message followed by synchronous
receipt of a reply to that message within a single transaction. Because a JMS
message is not delivered to its final destination until the transaction com-
mits, the receipt of the reply within the same transaction will never take
place.

Caution

22 0672324237 CH18 9/24/02 4:00 PM Page 447

The container makes the UserTransaction interface available to the EJB’s business
method or the onMessage() method via the EJBContext interface and under the environ-
ment entry “java:comp/UserTransaction”. When an instance uses the
UserTransaction interface to demarcate a transaction, the container must enlist all the
resource managers used by the instance between the begin() and commit() or
rollback() methods with the transaction. When the instance attempts to commit the
transaction, the container is responsible for global coordination of committing the trans-
action.

448 Day 18

In MDB with BMT, the acknowledge() method should not be used within a
transaction.

Caution

In developing a message-driven bean with BMT, the EJB’s deployment descriptor must
be specified with a bean-managed demarcation, as follows:

<ejb-jar>
<enterprise-beans>
...
<message-driven>
...
<transaction-type>Bean</transaction-type>
...

</message-driven>
...

</enterprise-beans>
</ejb-jar>

Table 18.5 describes the transaction semantics for message-driven beans in bean-
managed transactions.

TABLE 18.5 Transaction Semantics for Message-Driven Beans

Method Can Access UserTransaction Methods?

create() No

setMessageDrivenContext() Yes

ejbCreate() Yes

ejbRemove() Yes

onMessage() Yes

Business method Yes

22 0672324237 CH18 9/24/02 4:00 PM Page 448

Building Bean-Managed Transaction Beans 449

18

Handling Exceptions in BMT
EJB must catch and handle specific exceptions thrown during transactions. EJBs can
throw either application or system-level exceptions, or both, whenever they encounter
errors while handling transactions. Application-level exceptions arise from errors in the
business logic. The calling application must handle them. System-level exceptions, such
as runtime errors, transcend the application itself and can be handled by the application,
the enterprise bean, or the EJB container. An EJB must declare application-level excep-
tions and system-level exceptions in the throws clauses of its remote interface. You must
test for checked exceptions in your client application’s try-catch block before calling
the bean’s methods.

When an instance attempts to start a transaction using the begin() method of the
UserTransaction interface while the instance has not committed the previous transac-
tion, the container must throw the javax.transaction.NotSupportedException in the
begin() method.

The container must throw the java.lang.IllegalStateException if an instance of a
bean with BMT attempts to invoke the setRollbackOnly() or getRollbackOnly()
method of the EJBContext interface.

System-Level Exceptions
An EJB throws a system-level exception to indicate an unexpected system-level failure.
For example, it throws an exception if it can’t open a database connection. System-level
exceptions are usually a java.ejb.EJBException if the method is local and a
java.rmi.RemoteException is the method is remote.

System-level exceptions usually require the transaction to be rolled back. Often the con-
tainer managing the EJB does the rollback. Sometimes the client must roll back the
transaction, especially if the transactions are bean-managed.

Application-Level Exceptions
The bean’s business methods use application exceptions to report abnormal application
conditions, such as unacceptable input values or amounts beyond acceptable limits.
These are business logic errors, not system problems. Application-level exceptions are
exceptions other than java.ejb.EJBException. For example, a bean method that debits

java.ejb.EJBException is a runtime exception and it isn’t required to be
listed in the throws clause of the bean’s business methods.

Note

22 0672324237 CH18 9/24/02 4:00 PM Page 449

an account balance might throw an application exception to report that the account bal-
ance isn’t sufficient to permit a particular debit operation. When an application-level
exception occurs, the enterprise bean instance doesn’t automatically roll back the client’s
transaction. The client then has the knowledge and the opportunity to evaluate the error
message, take the necessary steps to correct the situation, and recover the transaction.

Developing an EJB with BMT
Today we’ll develop an EJB with BMT through an example adapted from our university
registration system. We’ll also demonstrate the use of servlets as controllers in the Web
tier, and use a JavaBean object to transfer data between the EJB tier and the Web tier.

The following are the main steps required in developing an EJB component with BMT:

1. In the EJB’s deployment descriptor, the bean developer sets the transaction type in
the <transaction-type> tag to the value Bean to specify a bean-managed demar-
cation.

2. The client application uses JNDI to obtain an object reference to the
UserTransaction object to establish a transaction context.

3. The client application begins a transaction using the begin() method of the
UserTransaction object, and issues a request to the EJB through the EJB con-
tainer. All operations on the EJB execute within the scope of a transaction. If a call
to any of these operations raises an exception (either explicitly or as a result of a
communication failure), the exception can be caught and the transaction can be
rolled back using the rollback() method of the UserTransaction object. If no
exceptions occur, the client application commits the current transaction using the
commit() method. This method ends the transaction and starts the processing of
the operation. The transaction is committed only if all the participants in the trans-
action agree to commit.

4. The commit() method causes the EJB container to call the transaction manager to
complete the transaction.

5. The transaction manager is responsible for coordinating with the resource man-
agers to update any databases.

Developing the Bean’s Remote Interface
For our example, you implement the Student EJB as a stateful session bean, where you
define all business methods in the Student remote interface. Listing 18.1 shows the
remote interface Student.java.

450 Day 18

22 0672324237 CH18 9/24/02 4:00 PM Page 450

Building Bean-Managed Transaction Beans 451

18

LISTING 18.1 The Remote Interface Student.java

package day18;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;
import java.sql.SQLException;

public interface Student extends EJBObject
{
public void setupDB() throws RemoteException;
public StudentInfo getStudent (String id)

throws RemoteException, SQLException;
public void addStudent (StudentInfo Student)

throws RemoteException, SQLException;
public void updateStudent (StudentInfo Student)

throws RemoteException, SQLException;
public void deleteStudent (String id)

throws RemoteException, SQLException;
}

The remote interface uses the StudentInfo JavaBean class as a helper class to transfer
data between the EJB tier and the Web tier.

Developing the Bean’s Home Interface
The home interface StudentHome defines the life cycle methods of the EJB (see Listing
18.2). The home interface is stored in the StudentHome.java file.

LISTING 18.2 The Home Interface StudentHome.java

package day18;
import javax.ejb.EJBHome;
import javax.ejb.CreateException;
import java.rmi.RemoteException;
public interface StudentHome extends EJBHome
{
public Student create () throws RemoteException, CreateException;

}

Developing the Bean’s Class
The bean class implements all the methods in both the remote and home interfaces.
Listing 18.3 displays the code to implement all business methods and life cycle methods.

22 0672324237 CH18 9/24/02 4:00 PM Page 451

LISTING 18.3 The Bean Class StudentBean.java

package day18;
import java.io.*;
import javax.ejb.*;
import java.sql.*;
import javax.sql.*;
import javax.naming.*;
import java.rmi.RemoteException;
import javax.transaction.*;

public class StudentBean implements SessionBean{
SessionContext ctx;
DataSource ds = null;
String id = null;
String fname = null;
String lname = null;
String address = null;

public void setupDB()
throws RemoteException

{
System.out.println(“Settingup Database...”);
try {
InitialContext ctx = new InitialContext();
ds = (DataSource)ctx.lookup(“java:comp/env/jdbc/styejbDB”);

}catch (Exception ex) {
ex.printStackTrace();

}
}

public StudentInfo getStudent(String id)
throws RemoteException, SQLException

{
try {

String sql = “SELECT * “ +
“FROM STUDENTS “ +
“WHERE STUDENT_ID =’”;

Connection conn = ds.getConnection();
System.out.println(“Conntected to DB...”);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql+id+”’”);
System.out.println(“Getting Result...”);
while(rs.next()){
id = rs.getString(1);
fname = rs.getString(2);
lname = rs.getString(3);
address = rs.getString(4);
}
conn.close();
System.out.println(“Returning Student Info...”);

452 Day 18

22 0672324237 CH18 9/24/02 4:00 PM Page 452

Building Bean-Managed Transaction Beans 453

18

return (new StudentInfo (id, fname, lname, address));

}catch (java.sql.SQLException e) {
throw new RemoteException(“SQL failed: “ + e.getMessage());

}catch (Exception ex) {
ex.printStackTrace();

}
return null;

}

public void addStudent(StudentInfo st)
throws RemoteException, SQLException

{
UserTransaction ut = ctx.getUserTransaction ();
try {
System.out.println(“addStudent: Starting new transaction...”);

ut.begin ();

String sql = “INSERT INTO STUDENTS VALUES(“ + st.id +
“,’” + st.fname +
“‘, ‘“ + st.lname +
“‘, ‘“ + st.address + “‘)”;

Connection conn = ds.getConnection();
Statement stmt = conn.createStatement();

stmt.executeUpdate(sql);
ut.commit ();
stmt.close();

conn.close();
System.out.println(“addStudent: transaction committed...”);

}catch (java.sql.SQLException e) {
try{
System.out.println(“addStudent: transaction rolled back...”);
ut.rollback();

} catch (SystemException ex) {
throw new RemoteException(“Rollback failed: “ + ex.getMessage());
}

}catch (Exception e) {
try{

ut.rollback();
} catch (SystemException ex) {
throw new RemoteException(“Rollback failed: “ + ex.getMessage());

}
}

}

public void updateStudent(StudentInfo st)
throws RemoteException, SQLException

{

LISTING 18.3 continued

22 0672324237 CH18 9/24/02 4:00 PM Page 453

UserTransaction ut = ctx.getUserTransaction ();
try {
System.out.println(“updateStudent: Starting new transaction...”);

ut.begin ();

String sql = “UPDATE STUDENTS SET FNAME =’” + st.fname +
“‘, LNAME =’” + st.lname +
“‘, ADDRESS =’” + st.address +

“‘ WHERE STUDENT_ID=”;
Connection conn = ds.getConnection();
Statement stmt = conn.createStatement();

stmt.executeUpdate(sql+st.id);
ut.commit ();
stmt.close();

conn.close();
System.out.println(“updateStudent: transaction committed...”);

}catch (java.sql.SQLException e) {
try{
System.out.println(“updateStudent: transaction rolled back...”);

ut.rollback();
} catch (SystemException ex) {
throw new RemoteException(“Rollback failed: “ + ex.getMessage());

}

}catch (Exception e) {
try{

ut.rollback();
} catch (SystemException ex) {
throw new RemoteException(“Rollback failed: “ + ex.getMessage());

}
}

}

public void deleteStudent(String id)
throws RemoteException, SQLException
{

UserTransaction ut = ctx.getUserTransaction ();
try {

System.out.println(“deleteStudent: Starting new transaction...”);
ut.begin ();
String sql = “DELETE FROM STUDENTS WHERE STUDENT_ID=”;
Connection conn = ds.getConnection();
Statement stmt = conn.createStatement();
stmt.executeUpdate(sql+id);
ut.commit ();
stmt.close();
conn.close();
System.out.println(“deleteStudent: transaction committed...”);

}catch (java.sql.SQLException e) {
try{

454 Day 18

LISTING 18.3 continued

22 0672324237 CH18 9/24/02 4:00 PM Page 454

Building Bean-Managed Transaction Beans 455

18

System.out.println(“deleteStudent: transaction rolled back...”);
ut.rollback();

} catch (SystemException ex) {
throw new RemoteException(“Rollback failed: “ + ex.getMessage());

}
}catch (Exception e) {

try{
ut.rollback();

} catch (SystemException ex) {
throw new RemoteException(“Rollback failed: “ + ex.getMessage());

}
}

}
public void ejbCreate () throws RemoteException, CreateException {}
public void ejbRemove() {}
public void setSessionContext (SessionContext ctx) {this.ctx = ctx;}
public void ejbActivate () {}
public void ejbPassivate () {}

}

In the preceding code, the EJB obtains the transaction context from the EJBContext
maintained by the container, and uses it across all methods of the bean.

Developing Helper Classes
The helper class StudentInfo implemented as a JavaBean, which is used as a data con-
tainer (data bean) to transfer data between the EJB tier and the Web tier, as shown in
Listing 18.4.

LISTING 18.4 Helper Class StudentInfo.java

package day18;

public class StudentInfo implements java.io.Serializable {
public String fname = null;
public String lname = null;
public String id = null;
public String address = null;
public StudentInfo (String ID, String fname, String lname, String address){
this.fname = fname;
this.lname = lname;
this.id = ID;
this.address = address;

}
}

LISTING 18.3 continued

22 0672324237 CH18 9/24/02 4:00 PM Page 455

Packaging the Beans into a JAR File
The deployment descriptor for the Student EJB is listed in the following code (see
Listing 18.5). The EJB developer sets the <session> tag with the <transaction-type>
to Bean so that the EJB will manage its own state. There is no mechanism for an applica-
tion assembler to affect enterprise beans with bean-managed transaction demarcation.
The application assembler must not define transaction attributes for an enterprise bean
with bean-managed transaction demarcation.

LISTING 18.5 Standard Deployment Descriptor ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>
<ejb-jar>

<enterprise-beans>
<session>

<ejb-name>Student</ejb-name>
<home>day18.StudentHome</home>
<remote>day18.Student</remote>
<ejb-class>day18.StudentBean</ejb-class>
<session-type>Stateful</session-type>
<transaction-type>Bean</transaction-type>
<resource-env-ref>
<resource-env-ref-name>jdbc/styejbDB</resource-env-ref-name>
<resource-env-ref-type>javax.sql.DataSource</resource-env-ref-type>

</resource-env-ref>
</session>

</enterprise-beans>
</ejb-jar>

Listing 18.6 displays the vendor-specific weblogic-ejb-jar.xml, which is required
when you deploy this component in WebLogic Server.

LISTING 18.6 Standard Deployment Descriptor weblogic-ejb-jar.xml

<?xml version=”1.0”?>
<!DOCTYPE weblogic-ejb-jar PUBLIC
‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN’
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd’>

<weblogic-ejb-jar>
<weblogic-enterprise-bean>
<ejb-name>Student</ejb-name>

<reference-descriptor>

456 Day 18

22 0672324237 CH18 9/24/02 4:00 PM Page 456

Building Bean-Managed Transaction Beans 457

18

<resource-env-description>
<res-env-ref-name>jdbc/styejbDB</res-env-ref-name>
<jndi-name>jdbc.styejbDB</jndi-name>

</resource-env-description>
</reference-descriptor>

<jndi-name>day18/MyStudentHome</jndi-name>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

Developing the Testing Client
To test the Student EJB, you need to develop the client application. The client code del-
egates the Student session bean to update data in the database. The Student EJB per-
forms these tasks through a bean-managed transaction demarcation. Listing 18.7
provides the code you need to use for the client.

LISTING 18.7 Client for Testing Code Client.java

package day18;
import javax.naming.Context;
import java.rmi.*;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class Client {
public final static String id = “100”;
public static StudentInfo info = null;
public static void main (String[] argv) {
System.out.print(“\nDay 18: Demonstration the use of BMT\n”);
try{
// get handle to the Student object
System.out.println (“Connecting to a Student EJB..”);
Context ctx = new InitialContext();
Object obj = ctx.lookup(“day18/MyStudentHome”);
StudentHome studentHome = (StudentHome)

javax.rmi.PortableRemoteObject.narrow(obj, StudentHome.class);
Student student = (Student) studentHome.create ();
student.setupDB();
try{
System.out.println (“Try deleting student with id=”+id);
student.deleteStudent(id);
}catch (Exception e){

System.out.println(“Record does not exist...”);
}

LISTING 18.6 continued

22 0672324237 CH18 9/24/02 4:00 PM Page 457

System.out.println (“Try adding a new student”);
info = new StudentInfo(id, “Snow”, “White”, “161 MAIN ST, ELK GROVE, CA”);
student.addStudent(info);
System.out.println (“Requesting the student info...”);
info = student.getStudent(id);
System.out.println (“Student Info = “ +

info.id + “, “ +
info.fname + “, “ +
info.lname + “, “ +
info.address);

// Modify student info
info.id = id;
info.fname = “John”;
info.lname = “Doe”;
info.address=”111 CASPER DR, SACRAMENTO, CA”;
// Update student in the database
System.out.println (“Updating the student info...”);
student.updateStudent (info);
info = student.getStudent (id);
System.out.println (“Student Info = “ +

info.id + “, “ +
info.fname + “, “ +
info.lname + “, “ +

info.address);
}catch (Exception e){

System.out.println(“Student transaction failed...”);
e.printStackTrace();

}
}
}

Deploying and Running the Student EJB
Before deploying the Student EJB, you must first build the example. Build scripts are
provided for both WebLogic Server and the JBoss server. The following are the steps
required to build and deploy the Student EJB with BMT in any of the servers.

1. Configure both the JDBC DataSource and connection pool as described on Day 9.

2. Build the example for the appropriate application server. From the directory day18,
run the build script. This creates a subdirectory named build that contains all the
compiled code. The following is an example for WebLogic:

c:\>cd c:\styejb

c:\styejb>setEnvWebLogic.bat

c:\styejb>cd day18

c:\styejb\day18>buildWebLogic.bat

458 Day 18

LISTING 18.7 continued

22 0672324237 CH18 9/24/02 4:00 PM Page 458

Building Bean-Managed Transaction Beans 459

18

3. To run the example, use the appropriate script for each server. Set up the environ-
ment for the client in a new command window, and then use the run script in the
day18 directory:

c:\styejb>setEnvWebLogic.bat

c:\styejb>cd day18

c:\styejb\day18> runClientWebLogic.bat

Similarly, to set the environment, build and deploy the code, and then run the client in
the JBoss server, you must use the scripts setEnvJboss.bat, buildJBoss.bat, and
runClientJboss.bat, respectively.

Best Practices
Bean-managed transaction demarcation is only used by more advanced users who want
more control over the application workflow. The J2EE architecture recommends manag-
ing transactions through container-managed demarcation. Declarative transaction man-
agement provides one of the major benefits of the J2EE platform, by freeing the EJB
developer from the burden of managing transactions.

Use JTA, where possible, in managing transaction boundaries in enterprise applications.
This guarantees data consistency and integrity, and ensures that work performed by mul-
tiple components through multiple resource managers is grouped as an atomic unit.

Only session beans and message-driven beans can use both bean-managed transaction
and container-managed transaction demarcation. Entity beans must use only container-
managed demarcation.

An EJB should not invoke resource manager-specific transition demarcation API meth-
ods, such as commit() and rollback() of the Connection interface, within a transaction.
It uses only the methods of the UserTransaction interface to manage transaction bound-
aries.

Stateless session beans should always either commit or roll back a transaction before the
business method returns. Stateful session beans do not have this requirement. EJBs with
BMT should not invoke the getRollbackOnly() and setRollbackOnly() methods of the
EJBContext interface. These methods should be used only in container-managed transac-
tions. For bean-managed transactions, you should invoke the getStatus() and
rollback() methods of the UserTransaction interface.

Servlets and JSP are used in nontransactional tasks, such as data presentation and user
interaction. Because transactions tend to be associated with business logic, database
access and other transactional work should be handled by a transactional EJB.

22 0672324237 CH18 9/24/02 4:00 PM Page 459

Summary
Today you learned how to use, develop, and deploy EJBs with bean-managed transaction
demarcation. This type of transaction management is the programmatic approach to con-
trolling transaction boundaries in the application code. Transaction demarcations are
embedded into the EJB code, whether you try to commit, roll back, or abort a transac-
tion. BMT is used mainly by advanced users who want to have more control over their
transactions. You can use either local or global transactions when developing an EJB
with BMT.

According to the EJB architecture, only session and message-driven beans can use bean-
managed transactions. Entity beans can use only container-managed transactions. A
working example was given to illustrate the use of a session bean (Student EJB) with
BMT. You also studied the restrictions imposed by the J2EE architecture on the use of
BMT, and the transaction semantics of each EJB method.

Q&A
Q Which types of EJBs can use bean-managed transactions?

A Stateful and stateless session beans, as well as message-driven beans, are the types
of EJBs that can use BMT. Entity beans can only use container-managed transac-
tion demarcation.

Q What type of beans can use the SessionSynchronization interface? Why?

A Stateful session beans with CMT can only use the SessionSynchronization inter-
face. EJBs with BMT cannot use the SessionSynchronization interface because
they control commitment of the transaction.

Quiz
1. A developer uses a bean-managed transaction in a stateful session bean when

A. Accessing legacy systems

B. Implementing the SessionSynchronization interface

C. Implementing JTA to control user transactions

D. Controlling transactions using the setRollBack() method

2. In which one of the following is it appropriate to implement
SessionSynchronization?

A. Stateful session beans

B. Session beans with container-managed transactions

460 Day 18

22 0672324237 CH18 9/24/02 4:00 PM Page 460

Building Bean-Managed Transaction Beans 461

18

C. Container-managed persistent entity beans

D. Session beans with bean-managed transactions

3. Transaction isolation levels in EJBs are

A. Set by the EJB developer for bean-managed transactions

B. Set by the deployer for container-managed transactions

C. Specified to the method level

D. Specified to the class level only

Quiz Answers
1. A, C

2. A

3. A

Exercises
Modify the earlier example to use a stateless session bean with BMT instead of the state-
ful session bean Student EJB. Perform any code change necessary to avoid the restric-
tions imposed by J2EE architecture with respect to a stateless session bean with BMT, as
you learned from today’s discussions.

22 0672324237 CH18 9/24/02 4:00 PM Page 461

22 0672324237 CH18 9/24/02 4:00 PM Page 462

DAY 19

WEEK 3

Understanding Security
Security is an important and sensitive aspect of protecting the enterprise from
malicious attacks and threats, such as disclosure of vital information and
destruction of assets, which have a negative effect on system availability and
integrity. In previous days, we briefly introduced some security aspects. We
explored how to use the Java Naming and Directory Interface (JNDI) services
to authenticate a user in Day 4, “Using JNDI for Naming Services and
Components.” Today, we’ll go into more detail.

First, we’ll explore security concepts that are used in developing applications.
Later, we’ll focus on Java 2 Enterprise Edition (J2EE) security mechanisms and
how they are used in the development and deployment of secure enterprise
applications. We’ll also explore how J2EE supports container-managed security
through a declarative approach and component-managed approach through a
programmatic approach. We’ll also investigate the Java Authentication and
Authorization Service (JAAS) API as a standard API for accessing pluggable
security mechanisms. Like other J2EE common services, JAAS allows the
development of component-based applications, which are adaptable to the exist-
ing security mechanism in place.

23 0672324237 CH19 9/24/02 2:38 PM Page 463

In learning the concepts of security in enterprise applications, the following are the main
highlights of today’s activities:

• Learn the concepts and mechanisms of security in the context of developing J2EE
applications

• Learn how security is implemented across all J2EE tiers

• Study the JAAS architecture and concepts

• Learn about the roles and responsibilities for developing and deploying J2EE appli-
cation

• Learn some of the best practices in applying J2EE security

Reviewing Security Fundamentals
To build secure enterprise applications, security mechanisms must be established to
ensure that enterprise assets and resources are protected from accidental and malicious
attacks. Enterprise security addresses data resources, applications, and components, but it
also deals with the secure communication between them. Security ensures that informa-
tion is neither modified nor disclosed except in accordance with the security policy
established by the enterprise. Most security measures involve proof material (such as
passwords) and data encryption, which is the translation of data into a form that cannot
be interpreted by an intruder.

We’ll start by highlighting the important concepts, entities, and mechanisms used in
enterprise security.

Security Concepts
A special jargon of terms and concepts is used in managing and developing enterprise
security. The following sections explore the concepts used in application security and
their definitions.

Resources, Users, and Groups
A resource is a critical entity that can be accessed by enterprise applications. Resources
can be shared, and their accesses are controlled using sets of permissions. In the context
of J2EE applications, the following resources require permissions:

• EJB and Web containers (application server)

• EJBs, servlets, JavaServer Pages (JSPs), HTML pages

• Java Database Connectivity (JDBC) connection pools

464 Day 19

23 0672324237 CH19 9/24/02 2:38 PM Page 464

Understanding Security 465

19

• Java Message Service (JMS) destinations

• JNDI contexts

A user is an entity that accesses resources. A user can be an application end user (such as
a consumer or customer), or it can be a client application (such as a browser or another
program). An administrator is a special type of user, who has certain capabilities to man-
age enterprise resources. When a user wants to access a resource, it presents a username
and a credential (either a password or a digital certificate) to the application server. If the
application server can prove the identity of the user Laura, it creates a security context
(or a thread) and associates Laura with that context. In the event of any further access to
resources, the server performs a security check to see whether Laura has the correct per-
missions to proceed.

A group is a collection of users. It is more efficient to manage a group than to manage a
large numbers of users individually. Group members usually have something in common,
such as similar permissions to access system resources. The system can be configured to
assign users to groups. A person can be defined as both an individual user and a group
member. Individual access permissions override any group member access permissions.
Groups are defined at the operating system level, and not at the application level.

Permissions, Access Control Lists, and Realms
Permissions represent the privileges given to users to access certain resources. For exam-
ple, permissions can be a combination of reading, writing, and executing files and direc-
tories. Other examples of permissions can be the ability to send and receive messages,
load servlets, or connect to a hostname and port of a data source. The system administra-
tor assigns permissions to both users and groups. This administration task is quite com-
plex and prone to errors.

To reduce the complexity of administering security in an enterprise, an administrator pro-
tects shared resources by creating lists of users and groups that have the required permis-
sions to access those resources. Such lists are called access control lists (ACLs). ACLs
were first introduced to manage security of the Unix platform. ACLs are configured in
the access control properties of the security policy.

A security realm is a logical domain of users, groups, permissions, and ACLs defined to
protect resources. A user must belong to a realm in order to access resources defined in
that realm. Some application servers use local disk storage or a database for storing secu-
rity realms, but other security realms can use Windows NT, Unix, and Lightweight
Directory Access Protocol (LDAP) for storage.

23 0672324237 CH19 9/24/02 2:38 PM Page 465

Principals and Roles
A principal is a logical entity that is associated with an identity (user, group, program, or
organization) as a result of authentication. An identity can be mapped to a different prin-
cipal based on the security context defined for the application. Thus, a role can have mul-
tiple principals when accessing enterprise resources.

A role is a logical grouping of users who have similar permissions, at the application
level, to access resources. Roles are similar to groups, but roles are defined at the appli-
cation layer. Roles are mapped to real-world groups and users (defined at the operating
system layer) when the bean is deployed. J2EE security authorization is role-driven, and
each principal is mapped to a unique role for the purposes of access control.

Figure 19.1 depicts the security concepts discussed so far. A client first must be identi-
fied and authenticated by the system before it is allowed access to the authorized
resources.

466 Day 19

FIGURE 19.1
Security concepts.

HTML JSP

Permissions

Security
Context

Client Container

Authorization

Authentication

Security Concepts

Security Realm

Resources

EJB

Users Groups ACLs

Learning Security Mechanisms
Security mechanisms provide answers to the following concerns in regard to protecting
enterprise resources:

• Identity: Who is supposed to grant access to resources?

• Authority: After the user is identified, what access control is allowed?

• Integrity: How confidential is the data? Are passwords and credit-card numbers
protected from being stolen?

• Validity: How can we validate the true identity?

• Audit: How can we discover a security breach?

23 0672324237 CH19 9/24/02 2:38 PM Page 466

Understanding Security 467

19

Building a highly secure system is always costly, but is even harder to define, develop,
and deploy. The next few sections answer the preceding list of questions and concerns.

Authentication
Authentication is the mechanism of verifying the identity of the security entity before
completing a connection to the resource. The principal is the party whose identity is veri-
fied. Associated with a principal is a set of credentials, or proof materials such as pass-
words or digital certificates. More sophisticated credentials include smart cards and
biometrics (fingerprint and retinal/iris scans). When the proof is two-way, it is referred to
as mutual authentication. Authentication is the first layer of a security environment, as
depicted in Figure 19.1.

After the user is authenticated, an initial security context is established and maintained
by the container, and is associated with that user. Among the possible policies and mech-
anisms for controlling access to a security context is the Secure Sockets Layer (SSL)
protocol (or HTTP over SSL [HTTPS]), which is used to encrypt passwords. This pro-
vides an additional level of security to password authentication.

The authentication process can be initiated for Web clients in the Web tier, and also can
be started at the EJB container for J2EE client applications. In both cases, the corre-
sponding container for allowing access control to resources will assess security checks.
Figure 19.2 depicts the authentication for the two different clients accessing the applica-
tion server.

FIGURE 19.2
J2EE client authenti-
cation.

Principal
Realm

WAR

JSP

Web Container

JAR

EJB Container

EJB

EJB EJB

requests

Security Checks

requests

User/password

Authentication

authentication

Authentication

User/password

J2EE Authentication

Security
Context

Client Application
Container

Servlet

Security
Context

Client Container

23 0672324237 CH19 9/24/02 2:38 PM Page 467

Authentication validates the identity of the user, usually via JNDI or JAAS. We explored
JNDI authentication in Day 4, and we’ll explore authentication across J2EE tiers later
today.

Authorization
Authorization is the mechanism that ensures only authenticated principals with the right
permissions can access application components. It is a fine-grain security that allows
authenticated users and groups (through access control lists) to access the assigned
resources.

Roles that are allowed to access a given component are specified in the EJB’s deploy-
ment descriptor. The deployer maps the roles to actual users using the J2EE server’s
deployment descriptors. After a user is authenticated, the container maintains a security
context of that user. Whenever an attempt is made to access a protected component, the
container applies security checks on the roles specified in the deployment descriptor to
either grant or deny access to the user.

Encryption
Encryption is the mechanism used to translate data into a form that cannot be interpreted
by an intruder. This ensures that data transmitted over the network is intelligible to only
the intended recipient. Encryption is useful for securing critical data during communica-
tion between applications.

Most J2EE application servers address secure communications through SSL encryption
for data integrity and confidentiality across the network. Clients can establish SSL ses-
sions using the Hypertext Transfer Protocol (HTTP) or Remote Method Invocation
(RMI) over Internet Inter-ORB Protocol (IIOP). SSL is also used to provide an additional
level of security to password authentication in e-commerce applications. Optionally, SSL
can be used in mutual authentication between two parties or applications.

Digital Signing
Digital signing is the mechanism of protecting the true identity of the authenticated
entity. This is achieved through the use of digital certificates. A digital certificate is a
statement that is digitally signed from one entity, which could be a person or a company,
indicating that the public key of some other entity has some particular value. This is sim-
ilar to the notary public concept used by banks and lawyers. Certificate interfaces enable
developers to build tools for parsing certificates, enforcing their own site-specific certifi-
cate policies, and managing local databases of certificates.

The Java 2 Standard Edition (J2SE) Security API introduces certificate interfaces and
classes for parsing and managing certificates, and provides an X.509 implementation of

468 Day 19

23 0672324237 CH19 9/24/02 2:38 PM Page 468

Understanding Security 469

19

the certificate interfaces. The purposes of some of the certificate-related classes are
described in Table 19.1.

TABLE 19.1 Certificate-Related Classes

Class Purpose

Certificate A parent class for certificates that have different formats but
important common uses. Subclasses are used for X.509 and
Pretty Good Privacy (PGP), share general certificate functional-
ity, such as encoding and verifying, and some types of informa-
tion, such as a public key.

CertificateFactory A class used to generate certificate and certificate revocation list
(CRL) objects from their encoding.

X509Certificate A subclass of Certificate for X.509 certificates. It provides a
standard way to access all the attributes of an X.509 certificate.

Policy A class that specifies the permissions available for code from
various sources.

Auditing and Filtering
Auditing is the mechanism that allows you to establish watchdog activities and maintain
logs of sensitive actions taken for later analysis. Events such as failed login attempts,
authentication requests, rejected digital certificates, and invalid ACLs are logged.
Auditing is a fundamental mechanism in accountability, which assists in detect intrusion
attempts and any security breaches. It helps in detecting errors associated with the appli-
cation’s code or their configurations.

Filtering is the mechanism of allowing you to configure your firewall in accepting or
rejecting the client request based upon the origin (hostname or IP address) or the proto-
col used during the client connections. The J2EE platform does not standardize the audit-
ing mechanism, and itís up to the container providerís implementation.

Administration
Administration is the most complex and costly aspect of application security. As a secu-
rity administrator, you’ll be involved in managing user security realms, repositories, and
security policies. Other functions include delegation of administrative privileges, allow-
ing users self-registration, and testing and deployment of new systems. J2EE does not
support a standard for administration, and it’s up to the J2EE container provider to pro-
vide the tools used.

23 0672324237 CH19 9/24/02 2:38 PM Page 469

Exploring J2EE Security Across All Tiers
The J2EE architecture supports secure deployment of applications and components. It
provides you with both programmatic and declarative security approaches. Software
problems are magnitudes of times more costly to find and repair after deployment. J2EE
emphasizes the cost-effective declarative approach, in which application code is driven
and managed according to the security policies. This enhances the portability and flexi-
bility of deploying enterprise applications. Similar to transactions and persistence, J2EE
expresses and manages security requirements (roles and access control) outside the appli-
cation code in XML-based deployment descriptors.

The programmatic security approach explicitly allows you to add security rules and
checks to the application code. This is particularly useful in situations in which special
security rules across EJB or JSP components’ call chains cannot be implemented using
the declarative approach. For example, an application might make authorization deci-
sions based on certain factors, such as user information stored in a database.

The J2EE architecture provides an end-to-end global security that spans multiple tiers. It
supports the propagation of the security context for components along a call chain,
across components that are hosted in different tiers. This eliminates the need for the user
information to be passed as parameters in the business method calls, thereby providing
reliability and ease of programming. It also supports the concept of a single sign-on
(SSO) to access applications. The security context can be propagated across multiple
J2EE servers that use different security realms in the production environment. It also
propagates the security context to Common Object Request Broker Architecture
(CORBA)-based applications over the IIOP protocol through the EJB to CORBA map-
ping. Figure 19.3 illustrates security context propagation across multiple J2EE compo-
nents, tiers, and servers.

The following sections will help you examine how the authentication and authorization
security mechanisms work across the J2EE tiers. You’ll explore each type of applications
in each tier, and the recommended security mechanisms.

Client Tier Security
Security on the client tier is applied to either a standalone Java application or to a J2EE
client application that runs on its own container. The other type of client is a Web-based
client that runs within the browser container, which will be discussed in the section on
Web tier security.

470 Day 19

23 0672324237 CH19 9/24/02 2:38 PM Page 470

Understanding Security 471

19

J2EE Client Application
A J2EE client application is a J2EE component that’s deployed in the J2EE client con-
tainer. When a J2EE client application is launched, a login window provided by the EJB
container pops up and asks the user to input his user ID and password. After the user is
authenticated, the application is started and its components become functional. The
authenticated user security context is established at the EJB tier and propagated across
other tiers or servers as needed. The J2EE architecture encourages the use of a J2EE
client application rather than a standalone Java application. This method of authentica-
tion is best used in highly customized Intranet applications. A J2EE client application
can use JAAS authentication, which will be discussed later today.

Standalone Java Application
J2EE does not specify how to authenticate users with standalone Java applications.
However, some J2EE container providers use the JNDI authentication mechanism, as dis-
cussed in Day 4, to authenticate standalone users.

Web Tier Security
J2EE supports both authentication and authorization for Web tier components. The Web
tier is probably the first entry point for most browser-based applications, and is where
user authentication takes place. In the next few sections, we’ll explore the methods of
authentication at the Web tier, and we’ll highlight the use of the declarative and program-
matic approaches in authorization.

FIGURE 19.3
J2EE security context
propagation.

J2EE Application Server

Scenario 1: Propagation across components

Userid, password
Security
Context

Client Container

EJB
“A”

EJB
“B”

Web Container

Scenario 2: Propagation across tiers

Security
Context

Client Container

Servlet/JSP

EJB container

EJB
“A”

EJB
“B”

EJB
“B”

J2EE Application
Server1

Scenario 3: Across J2EE servers

Security
Context

Client Container

J2EE Application
Server2

Scenarios of Propagation of J2EE Security Context
Across Components, Tiers, and Applications

EJB
“B”

EJB
“A”

J2EE Server

Scenario 4: Across J2EE and CORBA applications

Security
Context

Client Container

CORBA
Application

CORBA
Component

EJB
“A”

IOP/RMI

Represents Security Checks

23 0672324237 CH19 9/24/02 2:38 PM Page 471

HTTP BASIC Authentication
This is the simplest type of authentication. The keyword BASIC is used in the <auth-
method> element. When a user attempts to access any secure resource, the Web container
uses the browserís login screen to solicit the user ID and password from the user in order
to perform authentication. This is also considered to be a part of the client tier authenti-
cation mechanism for a Web-based client application.

<web-app>
. . .
<login-config>

<auth-method>BASIC</auth-method>
<realm-name>default</realm-name>

</login-config>
. . .
</web-app>

Form-Based Authentication
Form-based authentication is another declarative authentication approach available to the
Web tier for configuring a login method. In the web.xml deployment descriptor of the
WAR file, the value of the <auth-method> subelement is set to FORM. Here’s an example
of the <login-config> element of the web.xml file:

<web-app>
. . .
<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>login.jsp</form-login-page>
<form-error-page>error.jsp</form-error-page>

</form-login-config>
</login-config>

. . .
</web-app>

In the preceding example, the user will be automatically presented with the login.jsp
page for authentication, if not already authenticated.

Form-based authentication is used if an application requires a special login screen. The
web.xml deployment descriptor must specify the login form page using the <form-
login-page> element, and the error page using <form-error-page> element, as speci-
fied in the FORM authentication shown earlier. When a user attempts to access a secure
resource, the Web container presents the login form as specified in the deployment
descriptor. The following is an example of a JSP page incorporating form-based security
authentication:

<form method=”POST” name=”Login” action=”j_security_check”>

472 Day 19

23 0672324237 CH19 9/24/02 2:38 PM Page 472

Understanding Security 473

19

<input type=”text” name=”j_username”>
<input type=”password” name=”j_password”>
<input type=”submit” value=”Login” name=”Submit”>

</form>

HTTPS Authentication
The HTTP over SSL protocol can be used for authentication purposes. SSL is a powerful
mechanism, which requires the user’s public key to encrypt passwords. This is com-
monly used for Web-based e-commerce applications as well as single sign-on require-
ments. This is accomplished by simply running an instance of the HTTPS server for
authentication purposes.

Hybrid Authentication
In both BASIC and form-based authentication, passwords are not encrypted. This defi-
ciency can be overcome by running HTTP BASIC and form-based authentication mecha-
nisms over SSL. In general, the use of the CONFIDENTIAL flag in the
<transport-guarantee> element of the web.xml ensures the use of SSL for data trans-
mission.

<web-app>
. . .
<security-constraint>
. . .

<user-data-constraint>
<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>
</security-constraint>
. . .
</web-app>

In the preceding form-based authentication example, the form named Login
must contain fields named precisely j_username and j_password to represent
the username and password, respectively.

Note

Neither HTTP BASIC authentication nor form-based authentication is
secure—the content of the user dialog is sent as plain text, and the target
server is not authenticated.

Caution

23 0672324237 CH19 9/24/02 2:38 PM Page 473

Most Web container providers support the concept of a single sign-on, so that one login
session can propagate across multiple applications. A flag of NONE means that the appli-
cation does not require any transport guarantee, whereas a flag of INTEGRAL means that
transmitted data cannot be changed in transit.

Web Component Declarative Authorization
In a Web application, authorization is performed by defining roles, and then specifying
how these roles are allowed accessing to the protected resources (such as JSPs and
servlets). The role is defined using the <role-name> element of the web.xml deployment
descriptor:

<web-app>
. . .
<security-role>
<role-name>Registrar</role-name>

</security-role>
. . .
</web-app>

Resources are protected by using one or more <web-resource-collection> elements.
Each <web-resource-collection> element contains an optional series of
<url-pattern> elements followed by an optional series of <http-method> elements. The
<url-pattern> element value specifies a URL pattern, which must match for the request
to access the protected resource. The <http-method> element value specifies a type of
HTTP request to allow (GET or POST). The following is an example of declarative autho-
rization to the welcomeServlet resource:

<web-app>
. . .

<security-constraint>
<web-resource-collection>
<web-resource-name>Welcome Servlet</web-resource-name>
<url-pattern>/welcomeServlet</url-pattern>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>
<role-name>Registrar</role-name>

</auth-constraint>
. . .

474 Day 19

This technique is different from HTTPS authentication, which is based on
running a separate instance of the HTTPS server. The hybrid technique is
based on the deployment descriptor setting, which will be enforced by the
Web container.

Note

23 0672324237 CH19 9/24/02 2:38 PM Page 474

Understanding Security 475

19

</security-constraint>
. . .
</web-app>

Developers may declare one or more <security-role-ref> elements to protect their
Web components in the application’s deployment descriptors. These elements are used to
reference an existing <role-name> value set by the application assembler.

A more flexible approach of deploying secure Web applications, the <role-name> ele-
ment value can be linked (by the deployer) to an already defined <security-role> ele-
ment through the <role-link> element. The following is an example of a web.xml
deployment descriptor to illustrate these concepts:

<web-app>
. . .
<servlet>
<servlet-name>HelloServlet</servlet-name>

</servlet>
...

<security-role-ref>
<role-name>Registrar</role-name>
<role-link>AdminRole</role-link>

</security-role-ref>
...
</web-app>

Web Component Programmatic Authorization
This section discusses the programmatic approach to use for cases in which the declara-
tive approach is not sufficient. The getRemoteUser(), getUserPrincipal(), and
isUserInRole() methods are available in the HttpServletRequest interface to provide
servlets and JSPs with access to security context information.

The getRemoteUser() method obtains the name of the authenticated user, whereas the
getUserPrincipal() method returns the principal object associated with the authenti-
cated user. The isUserInRole(String roleName) queries the underlying security realm
to determine whether the authenticated caller belongs to a given security role. This may
be useful for dynamically verifying that a Registrar role, for example, should be able to
update or delete data.

In the HelloServlet code that follows, we use the HttpServletRequest to access
CallerPrincipal. Also, to perform sensitive operations, we check on the user role as
specified in the web.xml.

// Obtain the principal from the HTTPServletRequest object
CallerPrincipal callerPrincipal = request.getCallerPrincipal();
// obtain the caller principal’s name
out.println(“User name :” + callerPrincipal.getName());

23 0672324237 CH19 9/24/02 2:38 PM Page 475

// Check if the caller belongs to <role-name>
if (request.isUserInRole(“Registrar”)) {

// do things only allowed to the Registrar
}

476 Day 19

The preceding example uses both the declarative and programmatic
approaches of security authorization.

Note

EJB Tier Security
The EJB container supports both declarative and programmatic authorization
approaches. When an EJB business method invokes another EJB using the other bean’s
home or component interface, the EJB container propagates the security context, includ-
ing the principal and roles, from the invoking EJB to the invoked EJB. In the following
sections, you will learn how to declare security rules in the EJB deployment descriptor
ejb-jar.xml file. First, you’ll learn how to define a security role, and reference it from
your code. You also will learn how to link roles and how to secure EJB methods.

Defining Security Roles
The application assembler can optionally define one or more security roles in the ejb-
jar.xml deployment descriptor. This definition uses the <role-name> element of the
deployment descriptor. In the following snippet, the role name Registrar is defined as
part of the <assembly-descriptor> tag:

<ejb-jar>
. . .
<assembly-descriptor>
<security-role>
<description>
This role is only allowed to Registrar

</description>
<role-name>Registrar</role-name>

</security-role>
<assembly-descriptor>

. . .
</ejb-jar>

The description tag is optional in all elements of deployment descriptors.Note

23 0672324237 CH19 9/24/02 2:38 PM Page 476

Understanding Security 477

19

The deployer then maps the physical groups and user accounts defined in the operational
environment to the security roles defined by the application assembler. This is performed
using the vendor-specific deployment descriptor. For example, WebLogic Server uses the
weblogic-ejb-jar.xml deployment descriptor to map the role named Registrar to the
principal Laura:

<weblogic-ejb-jar>
. . .
<security-role-assignment>

<role-name>Registrar</role-name>
<principal-name>Laura</principal-name>

</security-role-assignment>
</weblogic-ejb-jar>

As your learned earlier today, multiple principals can be assigned to the same role (in
case one is on vacation!), as illustrated by following examples:

<weblogic-ejb-jar>
. . .
<security-role-assignment>

<role-name>Registrar</role-name>
<principal-name>Laura</principal-name>
<principal-name>Lillian</principal-name>
<principal-name>Rudy</principal-name>

</security-role-assignment>
</weblogic-ejb-jar>

Declaring Security Role References
The EJB developer is responsible for setting the <security-role-ref> elements of the
deployment descriptor and the security role names used in the EJB code. Here’s an
example:

<ejb-jar>
<enterprise-beans>
...
<session>
<ejb-name>UserManagerEJB</ejb-name>
...
<security-role-ref>
<description>

This security role should be assigned to the
Registrar of the registration office.

</description>
<role-name>Registrar</role-name>
</security-role-ref>

</session>
...

</enterprise-beans>
...
</ejb-jar>

23 0672324237 CH19 9/24/02 2:38 PM Page 477

Linking Security Role References to Security Roles
Declaring the security role references in the preceding code allows the assembler or the
deployer to link the names of the security roles used in the code to the security roles
defined for an assembled application through the defined <security-role> elements.

The application assembler links each security role reference to a security role using the
<role-link> element. The value of the <role-link> element must be the name of one
of the security roles defined in a <security-role> element. The following deployment
descriptor example shows how to link the security role reference named Registrar to
the security role named registration-office:

<ejb-jar>
...
<enterprise-beans>
...
<session>
<ejb-name>UserManagerEJB</ejb-name>
...
<security-role-ref>
<description>
This role should be assigned to the
Registrar of the registration office.
The role has been linked to the
Registration-office role.

</description>
<role-name>Registrar</role-name>
<role-link>registration-office</role-link>

</security-role-ref>
...
</session>
...
</enterprise-beans>
...
</ejb-jar>

Securing EJB Methods
The EJB container authorizes access to EJB components based on the user’s security
context, in conjunction with the permissions configured in the ejb-jar.xml deployment
descriptor. The assembler is responsible for setting the method permissions, which is

478 Day 19

The declared name must be the security role name that is used as a parame-
ter to the isCallerInRole(String roleName) method.

Note

23 0672324237 CH19 9/24/02 2:38 PM Page 478

Understanding Security 479

19

achieved by using both the <role-name> and <method-permission> elements of the
<assembly-descriptor> tag.

The following ejb-jar.xml fragment grants permissions to an authenticated user in the
role of Registrar for all the methods (indicated by the *) of the home and remote inter-
faces of the UserManagerEJB bean:

<ejb-jar>
...
<assembly-descriptor>
. . .
<method-permission>
<role-name>Registrar</role-name>
<method>
<ejb-name>UserManagerEJB</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

</assembly-descriptor>
. . .
</ejb-jar>

You can selectively specify certain methods when granting access. The following exam-
ple grants permissions to only the enrollStudent() method of the same
UserManagerEJB:

<method-permission>
<role-name>student</role-name>
<method>
<ejb-name>UserManagerEJB</ejb-name>
<method-name>enrollStudent</method-name>

</method>
</method-permission>

A more fine-grained level, when you need to grant access to a certain overloaded method
(which has the same name but different parameters), is to specify the parameter types of
the method in a group of the <method-param> elements:

<method-permission>
<role-name>student</role-name>
<method>

<ejb-name>UserManagerEJB</ejb-name>
<method-name>enrollStudent</method-name>
<method-params>

<method-param> java.lang.String </method-param>
<method-param> java.lang.Integer </method-param>

</method-params>
</method>

</method-permission>

23 0672324237 CH19 9/24/02 2:38 PM Page 479

Using <run-as> to Delegate Security
The application assembler can use the <run-as> element to define a run-as identity for
an EJB in the deployment descriptor. This applies to all the methods of the EJB or to the
onMessage() method of a message-driven bean, and all internal methods of the invoked
beans.

Because the application assembler does not, in general, know the security environment of
the operational environment, the run-as identity is designated by a logical <role-name>,
which is delegated to one of the security roles defined by the application assembler in the
deployment descriptor. The deployer then assigns a security principal defined in the oper-
ational environment to be used as the principal for the run-as identity.

The <run-as> element in the following example is used to provide access to only the
Registrar role. This type of exclusionary access is useful in situations in which you
want to protect internal EJBs from external user access.

<ejb-jar>
...
<enterprise-beans>

...
<session>

<ejb-name>UserManagerEJB</ejb-name>
...
<security-identity>
<run-as>
<role-name>Registrar</role-name>

</run-as>
</security-identity>
...

</session>
...

</enterprise-beans>
...

EJB Component Programmatic Authorization
Similar to Web components, EJB components can perform programmatic authorization.
The EJBContext provides EJB components access into the security and transaction con-
texts. EJBContext provides two methods to allow programmatic authorization:
getCallerPrincipal() and isCallerInRole().

480 Day 19

You must specify the full class name for each parameter of the method.Caution

23 0672324237 CH19 9/24/02 2:38 PM Page 480

Understanding Security 481

19

getCallerPrincipal() allows the EJB component to obtain the principal object associ-
ated with the caller. getCallerPrincipal() is commonly used from within a session
bean to access another entity bean using the principal as the primary key. This approach
allows sensitive data for retrieval purposes to be obtained from the EJBContext. The
method isCallerInRole(String roleName) is used in the same fashion as in the “Web
Component Programmatic Authorization” section earlier today. The following example
illustrates the use of the getCallerPrincipal() method:

// Obtain the default initial JNDI context.
Context ctx = new InitialContext();
// Look up the remote home interface of the StudentEJB
Object ojb = ctx.lookup(“java:comp/env/ejb/StudentEJB”);
// Convert obj to the proper type.
StudentHome student = (StudentEJBHome)

javax.rmi.PortableRemoteObject.narrow(obj, StudentEJBHome.class);
// obtain the caller principal, and name
CallerPrincipal callerPrincipal = ejbContext.getCallerPrincipal();
String callerKey = callerPrincipal.getName();
// use the name as primary key to StudentEJB finder
StudentEJB myStudent = student.findByPrimaryKey(callerKey);
// update the studentís phone number
myStudent.changePhoneNumber(...);

The preceding code fragment obtains the principal name of the current caller by using
the ejbContext to locate the student, and updates the student’s phone number.

Although J2EE emphasizes the use of declarative authorization, we
explained programmatic authorization for completeness.

Note

EIS Tier Security
J2EE supports both declarative and programmatic approach in the EIS tier. In the declar-
ative approach, the application component requests a connection to an EIS resource
using JNDI authentication (the JNDI access mechanism was covered in Day 4). With this
approach, the container manages the authentication of the EIS resource. The container
determines the username and password for establishing a connection to an EIS instance
from the configuration files or from the command line.

With the programmatic approach, the component manages the authentication to the EIS
resource. We explored the programmatic approach to accessing a JDBC resource in Day
4, in the section “Using JNDI in User Authentication.” The programmatic approach to
accessing a JMS resource is explained in Day 13, “Understanding JMS and Message-
Driven Beans,” in the section “Step 2: Create a QueueConnection.”

23 0672324237 CH19 9/24/02 2:38 PM Page 481

JAAS Security
The Java Authentication and Authorization Service, as its name implies, consists of two
main components: authentication and authorization components. The authentication is
performed in a pluggable fashion because JAAS implements the standard Pluggable
Authentication Module (PAM) framework, which is common on Unix platforms. This
allows application code to be independent from the underlying security realm in the
physical environment. Therefore, any new authentication mechanism can be plugged in
as a module (similar to a driver) into the JAAS framework. Sample authentication mech-
anisms exist today for JNDI, Unix, and Windows NT.

After the user executing the code has been authenticated, the JAAS authorization compo-
nent uses the access control model to protect access to sensitive resources. JAAS autho-
rization is a user-based authorization with fine-grain permissions. Figure 19.4 illustrates
JAAS architecture components.

482 Day 19

FIGURE 19.4
JAAS architecture.

Principal
AccessController
AccessControlContext
Policy
ProtectionDomain

Java 2

Subject
LoginContext
LoginModule
Policy

JAAS

Java 2 Security API

Java Application

JAAS Architecture

JAAS provides a means to enforce access controls based on where code came from and
who signed it. JAAS is applied to all the Java 2 platform including applets, servlets, and
EJBs.

JAAS Concepts
The JAAS API is provided by the javax.security package. The key JAAS class is
Subject, which represents a grouping of related information for a single entity such as a
person, organization, or a program. It encompasses the entity’s principals, public

23 0672324237 CH19 9/24/02 2:38 PM Page 482

Understanding Security 483

19

credentials, and private credentials. The LoginContext interface is used to authenticate a
Subject. Table 19.2 summarizes the interfaces and classes used in the java.security
package.

TABLE 19.2 Main JAAS Interfaces and Classes

Interface Description

Subject Represents the principal source of the request and can be any entity. A
Subject object is created at the completion of a successful user authentica-
tion or login.

LoginContext Represents the security context and is used to initiate login, logout, and
acquire the authenticated Subject for the purpose of authorization checking.

Configuration Provides the getConfiguration() method for the purpose of obtaining a
list of LoginModules provided in a particular implementation.

LoginModule Implements different authentication mechanisms, such as the JNDI
LoginModule or the Unix LoginModule.

Callback Collects input, such as a password, from the user and passes it to the client.

CallbackHandler A method that the LoginModule calls to communicate with a Subject to
obtain authentication information.

The LoginContext represents the initial security context established in the application
code, and encapsulates the underlying security realm. The main methods of the
LoginContext interface are login(), logout(), and getSubject(). The main exception
of the security package is LoginException.

The LoginModule class abstracts the authentication mechanism, and is similar to the dri-
ver or adapter that the JAAS API uses to access a particular authentication mechanism or
realm. The EJB developer does not usually interface directly with the LoginModule
unless it’s required to develop a customized module for a new mechanism. The container
provider is usually responsible for providing a LoginModule for each supported security
realm.

After the Subject is authenticated, the access controls can be placed on that Subject by
invoking the doAs() method of the Subject class. The doAs() method associates the
specified Subject with the current security context. If the Subject has the necessary
access controls, the action is completed; however, if the Subject does not have the nec-
essary access controls, a security exception is raised.

During authentication, the Subject is populated with associated identities, or principals.
A Subject may have many principals. For example, a student may have the name princi-
pal Laura Ghaly, the Social Security number principal 11-222-3333, and the user ID
principal lghaly, all of which help distinguish this Subject from other Subjects. The

23 0672324237 CH19 9/24/02 2:38 PM Page 483

Subject class provides a method getPrincipals() to query all of them.

484 Day 19

FIGURE 19.5
JAAS pluggable
authentication.

JNDI SmartCard NT

LoginModule LoginModule LoginModule

LoginContext

Java Application

Security
Policy

JAAS Pluggable Authentication

The following example utilizes the doAs() method. We assume that a LoginContext has
authenticated a Subject with the principal named Laura Ghaly.

// JAAS Authentication and Authorization
import java.security.*;
public class JAASClient extends Object {

public static void main(){
// Establish an initial security context

LoginContext logCtx = new LoginContext(“Laura Ghaly”);
// Authenticate the subject by try to login

try{
logCtx.login();
System.out.println(“Login succeeded”);

} catch (LoginException le) {
System.out.println(“Login failed”);

}
// Retrieve the authenticated subject from the context
Subject laura = logCtx.getSubject();
Subject.doAs(laura, new SimpleAction());
// Perform the SimpleAction as the authenticated subject: laura

// Try to logout after finish
try{

logCtx.logout();
System.out.println(“Logout succeeded”);

} catch (LoginException le) {
System.out.println(“Logout failed”);

}
}

23 0672324237 CH19 9/24/02 2:38 PM Page 484

Understanding Security 485

19

In the preceding example, the security context will be propagated from the current code
to the instantiated Java class SimpleAction on behalf of the principal Laura Ghaly.

Security Responsibilities
The goal of security in the J2EE architecture is to reduce the effort required by the EJB
developer to secure the application by allowing greater coverage from more qualified
EJB roles. The EJB container provides the implementation of the security infrastructure,
whereas the deployer and the system administrator define the security policies. This
eliminates any hard-coded security in the EJB code, and allows portability across multi-
ple EJB servers that use different security mechanisms.

The application assembler (which could be the same party as the EJB developer) defines
the security roles for an application composed of one or more EJBs, JSPs, and/or
servlets. The assembler defines (declaratively in the deployment descriptor) method per-
missions for each security role. Method permissions are the permissions to invoke a
specified group of methods of the EJB’s home and component interfaces. The assembler
also sets delegated security using the run-as identity.

The deployer is responsible for mapping the principals and groups of principals defined
in the target operational environment to the security roles defined by the application
assembler for the EJBs in the deployment descriptor. The deployer is also responsible for
mapping principals for the run-as identities specified by the application assembler. The
deployer is also responsible for configuring other aspects of the security management of
the enterprise beans, such as the principal mapping for inter-EJB calls, and the principal
mapping for resource manager access, such as JMS and JDBC access. At runtime, a
client will be allowed to invoke a business method only if the deployer has assigned the
principal associated with the client call to at least one security role.

The container provider is responsible for enforcing the security policies at runtime, pro-
viding the tools for managing security at runtime, and providing the tools used by the
deployer to manage security during deployment.

Best Practices
In this section, we’ll summarize the best practices mentioned throughout the day:

• Use the declarative approach when it is sufficient; otherwise, use the programmatic
approach for business rules.

• Component developers should neither implement security mechanisms nor hard-
code security policies in the EJBís business methods. Rather, developers should

23 0672324237 CH19 9/24/02 2:38 PM Page 485

rely on the security mechanisms provided by the container, and should let the
application assembler and deployer define the appropriate security policies for the
application.

• Use encryption (SSL and digital certificates) to secure sensitive data such as pass-
words and credit-card numbers.

• Use auditing, filtering, and monitoring of your enterprise applications to prevent
any security breaches.

• Use the JAAS API in authentication and authorization whenever possible.

Summary
Today, you learned the concepts and mechanisms of J2EE security, and how to apply
both programmatic and declarative approaches. J2EE emphasizes a role-based, declara-
tive security mechanism that can be propagated from one component to another, or
across multiple tiers and multiple J2EE application servers. This container-managed and
cost-effective approach increases the flexibility and portability of deploying secure enter-
prise applications. You also explored the JAAS security API as the forthcoming standard
for authentication and authorization.

Q&A
Q What is the main difference between the declarative and programmatic secu-

rity approaches?

A The declarative security approach is a container-managed approach in which secu-
rity rules are configured outside application code, in the deployment descriptor.
This helps make the application more portable and flexible. J2EE emphasizes the
declarative approach because it reduces the cost of deploying enterprise applica-
tions. On the other hand, the programmatic approach is a component-managed
approach in which EJBs, JSPs, and servlets maintain the security rules in the com-
ponent’s code. This is useful in applying business rules when the declarative
approach is not adequate.

Q What is the main purpose of the JAAS API?

A The JAAS API extends the security architecture of standard Java with additional
support to authenticate and enforce access controls upon users. JAAS enables
developers to authenticate users and enforce access controls on those users in their
applications. It simplifies application development by serving as a building block
for developers. By abstracting the complex underlying authentication and

486 Day 19

23 0672324237 CH19 9/24/02 2:38 PM Page 486

Understanding Security 487

19

authorization mechanisms, JAAS minimizes the risk of creating dangerous but sub-
tle security vulnerabilities in application code. JAAS is considered the upcoming
standard in securing Java applications.

Quiz
1. When a user is authenticated using JAAS security, which of the following state-

ments are true?

A. An initial context is established

B. A Subject object is created and mapped to a principal

C. A principal is mapped to the user

D. A LoginModule is created

2. In the programmatic approach, which of the following methods are used to check
user authorization?

A. isCallerInRole() of the HttpServletRequest in the Web container

B. isCallerInRole() of the EJBContext in the EJB container

C. login()

D. LoginContext()

Answers
1. A, B

2. A, B

Exercises
1. What is the difference between groups and roles?

2. What is the key class, and what are its methods in the JAAS API?

3. Why does J2EE emphasize the security declarative approach?

4. What are the main responsibilities of the application assembler in enterprise secu-
rity?

5. Briefly describe the concept of single sign-on in the context of J2EE security.

6. Explain the concept of security context propagation.

23 0672324237 CH19 9/24/02 2:38 PM Page 487

23 0672324237 CH19 9/24/02 2:38 PM Page 488

DAY 20

WEEK 3

Implementing JavaMail in
EJB Applications

JavaMail is one of the common services of the J2EE architecture that is respon-
sible for reading, composing, and sending e-mail messages from enterprise
applications. JavaMail enables you to implement a Mail User Agent (MUA),
similar to the familiar Microsoft Outlook, Pine, and Eudora. Today you’ll
explore the benefits and features that the JavaMail API offers, and how you can
use them in a simple EJB: the Emailer EJB. First, you’ll be exposed to the main
concepts (classes and interfaces) of the JavaMail API. JavaMail basically pro-
vides a set of classes that model a mail system. The API provides a platform-
and protocol-independent framework to build Java-technology-based mail and
messaging applications. At the end of the day, you’ll apply this to some of the
scenarios we use in our university registration system. JavaMail is implemented
as a Java platform optional package and is also available as part of the J2EE.

Today you’ll explore the JavaMail API and use it to develop a sample full J2EE
application that includes components in the EJB tier, Web tier, and client tier.

24 0672324237 CH20 9/24/02 3:59 PM Page 489

Throughout today’s activities, you’ll learn

• What JavaMail is, and the different protocols it can handle

• What the JavaMail API is, and the concepts it implements

• How to compose, send, and read e-mail messages with different scenarios (for-
ward; reply; nontext messages; multilingual messages; messages with attachments)
that are similar to a real e-mail system

• How to develop and deploy a full portable J2EE enterprise application based on the
MVC pattern to demonstrate the use of the JavaMail API

• How to deploy the J2EE application on both the WebLogic Server and the JBoss
server environments, and configure each server’s environment to run the portable
application

Understanding JavaMail
JavaMail is a unified service for abstracting an electronic mail (e-mail) system. It has
pre-built implementations of some of the most popular protocols for mail transfer and
provides an easy way to use them. The JavaMail API is designed to provide protocol-
independent access for sending and receiving messages. However, it does not include any
facilities for adding, removing, or changing user accounts. There are no standards to
accomplish these tasks, and every e-mail system handles them differently.

You probably already know the most common e-mail agents (clients), such as Eudora,
Outlook, Netscape, and other modern e-mail clients, which let you send both text and
HTML e-mails. E-mail messages were originally limited to plain text and they did not
support bold, italics, or hyperlinks. Modern e-mail agents recognize HTML, so you can
now send either plain text messages or rich-content documents languages that aren’t
Latin based, such as Japanese and Chinese.

The JavaMail API provides a set of abstract classes and interfaces that comprise an elec-
tronic mail system. The abstract classes and interfaces support many different implemen-
tations of message stores, formats, and transports. Many simple applications will need to
interact with the messaging system only through these base classes and interfaces.

490 Day 20

JavaMail helps create an e-mail agent (or mail client), and does not provide
any mail server functionality. So, you must have access to a mail server
before you try using JavaMail.

Note

24 0672324237 CH20 9/24/02 3:59 PM Page 490

Implementing JavaMail in EJB Applications 491

20

The abstract classes in the JavaMail API are expandable, and they can be subclassed to
provide new protocols and add new functionality when necessary. In addition, JavaMail
API includes concrete subclasses that implement the most widely used Internet mail pro-
tocols, such as Internet Message Access Protocol (IMAP), Post Office Protocol (POP),
and Simple Mail Transfer Protocol (SMTP). They are ready to be used in application
development. Developers can subclass JavaMail classes to provide the implementations
of particular messaging systems, other than these protocols.

JavaMail Architecture
JavaMail is designed to standardized access to a variety of e-mail services. The JavaMail
architecture provides a protocol-independent access for sending and receiving messages.
This abstract mechanism is similar to other J2EE APIs, such as JDBC, JNDI, and JMS.
Similarly, the JavaMail API is divided into two main parts: an application-independent
part, and a service-dependent part. Your applications are written in a standard way to use
the application-independent part of the JavaMail API, which transparently calls the
underlying protocol or e-mail service. A JavaMail-compliant service must implement
part of the JavaMail API. Here is a brief description of the two parts that comprise the
JavaMail architecture:

• An application-programming interface (API): This API is used by the application
components to send and receive mail messages, independent of the underlying
provider or protocol used.

• A service provider interface (SPI): This part of the API speaks the protocol-specific
languages, such as SMTP, POP, IMAP, and Network News Transfer Protocol
(NNTP). It is used to plug in a provider of an e-mail service to the J2EE platform.

Figure 20.1 illustrates the JavaMail architecture and the interaction of the two main APIs.

As you learned from Day 15, “Understanding J2EE Architecture,” JavaMail can be used
from within components of either the Web tier or the EJB tier. It can’t be used from
J2EE client applications or applets.

Comparing JavaMail and JMS
JavaMail and JMS have something in common: both Both are used for delivering asyn-
chronous messaging in J2EE applications. However, there are many differences between
the two APIs, including the purpose and the implementations.

Java JMS is used as a unified API to access a MOM (Message-Oriented Middleware)
provider, whereas JavaMail is used to access an e-mail system provider. JMS is designed
to produce and consume messages by applications, and not by users, as is the case in
JavaMail.

24 0672324237 CH20 9/24/02 3:59 PM Page 491

Both JMS and JavaMail are used to design loosely coupled applications, which is differ-
ent from those tightly coupled applications built using RMI/IIOP. In asynchronous com-
munication, users or components send messages, and they do not have to wait for an
immediate response. You’ve covered JMS in detail on Day 13, “Understanding JMS and
Message-Driven Beans.”

JavaBeans Activation Framework
The JavaBeans Activation Framework (JAF) API integrates support for MIME
(Multipurpose Internet Mail Extensions) data types into the Java platform. This means
that you are not limited to using only plain text e-mail messages. You can use many dif-
ferent content types, such as HTML, images, sound, and video. JavaBeans components
can be specified for particular MIME data operations, such as viewing or editing the
data. The JAF API also provides a mechanism to map filename extensions to MIME
types, which is useful in sending messages with attachments.

The JAF API is used by the JavaMail API to handle the data included in e-mail mes-
sages. Typical applications will not need to use the JAF API directly, although applica-
tions making sophisticated use of e-mail might need it. Later today, you’ll learn how to
use JAF in conjunction with JavaMail to process HTML e-mail messages and messages
with attachments.

Reviewing Basic Protocols
The JavaMail API is designed to use the most common protocols for exchanging e-mail
messages. Each of the following subsections briefly discusses one of these protocols. A
good understanding of the basics of these protocols will help you grasp how to use the

492 Day 20

FIGURE 20.1
The JavaMail architec-
ture.

JavaMail Architecture

Java Application

IMAP POPSMTP

JavaMail API (Client Layer)

JavaMail SPI (Server/Protocol Layer)

Different protocol
implementations

24 0672324237 CH20 9/24/02 3:59 PM Page 492

Implementing JavaMail in EJB Applications 493

20

JavaMail API. Although the API is designed to be protocol-independent, you can’t over-
come the limitations of the underlying protocols. Certain protocols support more capabil-
ities than others.

Simple Mail Transfer Protocol
SMTP is the mechanism for delivery of e-mail. This protocol is used for sending outgo-
ing messages from your applications. Your JavaMail-compliant client will communicate
with the SMTP server of your company or a particular ISP to deliver e-mail messages to
the specified destinations. JavaMail uses the term transport for the service of sending an
e-mail message. The SMTP server relays the message to the SMTP server at the destina-
tion, and the recipients retrieve the messages through the use of POP, IMAP, or other
protocols, as described in the next two sections.

Post Office Protocol
Also known as POP3, this protocol is used to store and retrieve mail to and from an
SMTP server. Similar in concept to the U.S Post Office, it defines support for a single
mailbox for each user. JavaMail applications connect to a mailbox to retrieve, read, and
delete e-mail messages using POP. Other functionality, such as counting unread mes-
sages, can also be accomplished from the application. With POP3, the server provides a
folder that stores messages as they arrive. When a client connects to a POP3 server, it
specifies the folder from which it retrieves the messages and transfers them to a message
store on the client.

Internet Message Access Protocol
IMAP (currently in version 4 and called IMAP4) is a more advanced protocol than POP
for storing and retrieving e-mail messages. It can access messages from more than one
computer, which has become extremely important as reliance on e-mail messaging and
use of multiple computers have increased. Additionally, JavaMail applications can take
advantage of the fact that users can have multiple folders on the server and multiple users
can share those folders. With IMAP, message folders are stored on the mail server,
including folders that contain incoming messages and folders that contain archived mes-
sages.

Multipurpose Internet Mail Extensions
MIME is not a mail transfer protocol, per se. Instead, it defines the content of the mes-
sages to be handled, such as the format and the attachments. As a user of the JavaMail
API, you usually don’t need to worry about these formats. However, these formats do
exist and are used by your programs. To handle non-plain text mail content, the
JavaBeans Activation Framework is required, as we discussed earlier today.

24 0672324237 CH20 9/24/02 3:59 PM Page 493

NNTP and Others
The JavaMail architecture provides support for new mechanisms and protocols to be
added to the existing family of protocols. This is due to the separation of the JavaMail
API into application-specific and provider-specific APIs. Some of the newly added proto-
cols are the S/MIME (Secure Multipurpose Internet Mail Extensions) protocol, NNTP
(which is used for newsgroups), and more.

Learning the JavaMail API
The JavaMail API consists of some interfaces and classes used to send, read, and delete
e-mail messages. The javax.mail and javax.mail.internet packages contain all the
JavaMail core classes. The javax.mail.activation package represents the JavaBean
Activation Framework.

Exploring the Core Classes
The JavaMail core classes, which belong to the javax.mail package, are Session,
Message, Address, Authenticator, Transport, Store, and Folder. Table 20.1 gives a
brief description of each core class.

TABLE 20.1 Summary of JavaMail Core Classes

Class Description

Session The key class of the API. A multithreaded object represents the connection fac-
tory.

Message An abstract class that models an e-mail message. Subclasses provide the actual
implementations.

Address An abstract class that models the addresses (from and to addresses) in a mes-
sage. Subclasses provide the specific implementations.

Authenticator An abstract class used to protect mail resources on the mail server.

Transport An abstract class that models a message transport mechanism for sending an e-
mail message.

Store An abstract class that models a message store and its access protocol, for stor-
ing and retrieving messages. A Store is divided into Folders.

Folder An abstract class that represents a folder of mail messages. It can contain sub-
folders.

494 Day 20

24 0672324237 CH20 9/24/02 3:59 PM Page 494

Implementing JavaMail in EJB Applications 495

20

In the following sections, you’ll learn these core classes in more detail. After that, you’ll
learn how to use those classes to perform e-mail system agent functionality, such as
sending, reading, and deleting messages.

Session

The Session class is the primary class of the JavaMail API. It defines a basic mail ses-
sion. The Session object acts as the connection factory for the JavaMail API, which han-
dles both configuration setting and authentication. It is through the Session object that
everything else works. To create a Session object, you look up the administered object
stored in the JNDI service, as mentioned on Day 4, “Using JNDI for Naming Services
and Components.”

InitialContext ctx = new InitialContext();
Session session = (Session) ctx.lookup(“ursMailSession”);

In the preceding snippet, ursMailSession is the JNDI name object used as the adminis-
tered object for the Session object. ursMailSession can be created and configured with
the required parameters as name/value pairs, including information such as the mail
server hostname, the user account sending the mail, and the protocols supported by the
Session object. Using this declarative approach as the default method when creating a
Session object helps makes your application portable by not hardcoding any parameters
inside your applications. Later today, we’ll explain how to configure this administered
Session object, in the WebLogic Server and JBoss server environments.

As you learned on Day 4, the J2EE specification recommends that all
resource manager connection factory references be organized in the subcon-
texts of the application component’s environment, using a different subcon-
text for each resource manager type. According to Table 4.2, connection
factories of JavaMail should be declared in the java:comp/env/mail subcon-
text.

Note

The other method of creating the Session object is based on the programmatic approach
in which you can use a java.util.Properties object to override some of the default
information, such as the mail server name, username, password, and other information
that can be shared across your entire application. As you learned, J2EE promotes porta-
bility, and always recommends the declarative approach over the programmatic approach
to avoid hardcoding parameters.

24 0672324237 CH20 9/24/02 3:59 PM Page 495

Because the constructors for the Session class are private, you can get a single default
Session that can be shared with other components using the getDefaultInstance()
method:

Properties props = new Properties();
// Override props with your customized data
props.put(“mail.transport.protocol”, “smtp”);
props.put(“mail.host”, “acme”);
Session session = Session.getDefaultInstance(props, null);

Similarly, to create a unique Session object (not shared), you use the getInstance()
method:

Session session = Session.getInstance(props, null);

In both cases, the null argument is an Authenticator object. More information about
the Authenticator object will be given shortly.

In most cases, it’s sufficient (also efficient) to use a shared Session, even if you’re work-
ing with mail sessions for multiple user mailboxes. You can add the username and pass-
word combination at a later step in the communication process and keep everything
separate.

Message

The Message object is the container for all parts of the e-mail message. After you’ve cre-
ated a Session object, you can start composing messages to send. This is accomplished
by using a concrete subclass of Message. Because Message is an abstract class, you must
work with a subclass; in most cases, you’ll use a MimeMessage (in javax.mail.

internet). A MimeMessage is an e-mail message that understands MIME types and
headers. Message headers are restricted to ASCII characters only, although non-ASCII
characters can be encoded in certain header fields. MimeMessage acts as a container to
hold all the parts of the message.

To create a Message, you pass the Session object as an argument to the MimeMessage
constructor:

MimeMessage msg = new MimeMessage(session);

After you’ve created a new MimeMessage, you can start filling its parts. The Message
class implements the Part interface (with MimeMessage implementing MimePart). To set
the content, you use the setContent() method with arguments for the content and the
MIME type. Here’s an example of setting the message body with a plain text message:

msg.setContent(“Hello World”, “text/plain”);

496 Day 20

24 0672324237 CH20 9/24/02 3:59 PM Page 496

Implementing JavaMail in EJB Applications 497

20

The special method setText() is used to set the text content (with MIME type of
text/plain):

msg.setText(“Hello World”);

The setContent() method is used to set other kinds of MIME types, such as HTML
e-mail messages.

The method setSubject() is used to set the subject of the message:

message.setSubject(“Just Say Hello”);

Other methods used to set various message properties will be discussed in the next sec-
tions.

Address
Address is an abstract class that represents an e-mail address, such as
john.doe@acme.com. This represents any sender address (from) or recipient address (to).
To create an Address object, you pass the e-mail address as a parameter to the
InternetAddress subclass constructor:

Address address = new InternetAddress(“john.doe@acme.com”);

If you want the name to appear next to the e-mail address, you can pass that name along
to the constructor:

Address address = new InternetAddress(“john.doe@acme.com”, “John Doe”);

This method is used to create a valid e-mail address, whether you need to create address
objects for the message’s from field or the to field.

You use the setFrom() method to set the sender address, and the setReplyTo() method
to set the address to which the reply should be directed (where from and to are of type
Address):

msg.setFrom(from);

msg.setReplyTo(to);

You can send a message that appears to be from anyone, unless the mail
server prevents you from doing so for security reasons.

Note

24 0672324237 CH20 9/24/02 3:59 PM Page 497

You can send a message from multiple senders simply by creating the following:

Address address[0] = address1;
Address address[1] = address1;
...
msg.addFrom(address);

To set the message recipients, you use the addRecipient() method. This method
requires a Message.RecipientType in addition to the address.

message.addRecipient(type, address)

The three predefined address types are objects with one of these values:

• Message.RecipientType.TO for a primary recipient

• Message.RecipientType.CC for a carbon copy recipient

• Message.RecipientType.BCC for a blind carbon copy recipient

For example, to send a message to our friend John Doe and carbon copy
support@acme.com, the following would be appropriate:

Address toAddress = new InternetAddress(“john.doe@acme.com”);
Address ccAddress = new InternetAddress(“support@acme.com”);
message.addRecipient(Message.RecipientType.TO, toAddress);
message.addRecipient(Message.RecipientType.CC, ccAddress);

The JavaMail API provides no mechanism to check for the validity of an e-mail address.
This is left to the e-mail server provider.

Authenticator

The JavaMail API can use an Authenticator object to access the e-mail server by using
a username and password. Because it’s an abstract class, you create a subclass
PasswordAuthentication, passing a username and password to its constructor. You must
register the Authenticator with the session when you create it, by replacing the null in
the example shown in the “Session” section earlier today. Here’s an example with the
user jDoe and his pswrd:

Properties props = new Properties();
// Override props with any customized data
PasswordAuthentication auth = new PasswordAuthentication(“jDoe”, “pswrd”)
Session session = Session.getDefaultInstance(props, auth);

498 Day 20

Not all message types allow the setReplyTo() method to be specified sepa-
rately from the sender of the message.

Caution

24 0672324237 CH20 9/24/02 3:59 PM Page 498

Implementing JavaMail in EJB Applications 499

20

Transport

The last task in sending an e-mail message is to use the Transport class. This class nor-
mally uses the SMTP protocol to send a message. An easy way to send a message is to
use the default version of the class by calling the static send() method:

Transport.send(msg);

Here the static send() method makes a separate connection to the e-mail server for each
method call. To enhance your application performance, we recommended keeping your
connection to the mail server alive when sending multiple messages. To do so, you need
to create a specific instance of the Transport object and not the default object. You pass
the protocol along with the hostname, username, and password, send the messages, and
then close the connection, as shown here:

MimeMessage msg1, msg2;
// ... Create and populate messages ...
Transport trans = session.getTransport(“smtp”);
trans.connect(“mail.acme.com”, “jDore”, “pswrd”);
trans.sendMessage(msg1, msg1.getAllRecipients());
trans.sendMessage(msg2, msg2.getAllRecipients());
trans.close();

To monitor your mail server while sending messages, you turn on your debug flag by
using the setDebug() method of the Transport class:

session.setDebug(true);

The default parameter value is false, which turns off debugging.

Store and Folder

When you store and retrieve messages from your e-mail server, you must connect to a
Store. A Store holds messages in different Folders on your server. After you create a
Session object, you connect to a Store, and identify the e-mail server host, user ID, and
password. Both the Transport and Store classes extend the Service class, which
defines the connect() and close() methods. You need to tell the Store what protocol to
use:

Store store = session.getStore(“pop3”);
store.connect(host, userid, password);

After you connect to a Store, you can get a Folder, open it, and start reading messages.
The following is an example of how to read messages from the (reserved name) INBOX
folder:

Folder folder = store.getFolder(“INBOX”);
folder.open(Folder.READ_ONLY);
Message message[] = folder.getMessages();

24 0672324237 CH20 9/24/02 3:59 PM Page 499

The folder name is case sensitive. You open a folder in a read only or read/write mode.
The latter mode enables you to delete messages. To create a new folder under the current
folder, use the create() method. The delete() and the exists() methods delete and
check whether a folder exists, respectively.

To read the contents of a message, use the getContent() method (without the message’s
header). The writeTo() method writes the message, including the message header, to a
stream.

System.out.println(((MimeMessage)message).getContent());

After you’ve finished reading your e-mail, close the connection to the folder and store:

folder.close(true);
store.close();

In the preceding snippet, the true parameter value of the close() method indicates the
removal of all deleted messages. Expunge is another term used to describe the deletion of
messages.

The JavaBean Activation Framework
The JAF API is used by the JavaMail API to manage MIME data. The DataSource inter-
face provides the JAF with an abstraction of some arbitrary collection of data. The
FileDataSource class implements a simple DataSource object that encapsulates a file.
This helps you include attachments of different file types in your messages. The follow-
ing section demonstrates the use of these interfaces and classes to send messages with
attachments.

Using the JavaMail API
The previous section summarizes all the main classes of the JavaMail API, and in this
section, you’ll learn how to connect all the pieces together to perform the regular opera-
tions of e-mail services. You’ll explore how to send, reply, and forward messages, in
addition to finding out how to read or retrieve and delete them.

Sending Messages with JavaMail
Sending an e-mail message can vary between sending a plain text message and a rich-
content message. The next sections shed light on how to send messages in languages that

500 Day 20

The only folder available in POP3 is INBOX. If you’re using IMAP, you can
have other folders available.

Note

24 0672324237 CH20 9/24/02 3:59 PM Page 500

Implementing JavaMail in EJB Applications 501

20

aren’t Latin based. Forwarding and replying to messages are also implemented by send-
ing messages. You’ll learn how to send messages with attachments.

Sending a Text Message
This is the most common method of sending e-mail messages. Here are the steps to send
a message with JavaMail from within you application components in the Web tier or the
EJB tier:

1. Import the JNDI (naming), JavaBean activation, and JavaMail packages. You’ll also
need to import java.util.Properties:
import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the mail session in the JNDI service by using the default context:
InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup(“ursMailSession”);

3. Use the properties to override the default Session by creating a Properties object
and adding the properties you want to override. Then call getInstance() to get a
new Session object with the new properties.

4. Construct a MimeMessage with the recipient’s address, subject, and body parts of
the message. Create an Address for each recipient of the message:
String body = “Welcome to the new world of JavaMail”;
Message msg = new MimeMessage(session);
Address to = new InternetAddress(“john.doe@acme.com”);
msg.setFrom();
meg.addRecipient(Message.RecipientType.TO, to);
msg.setSubject(“Hello”);
msg.setSentDate(new Date());
msg.setText(body);

In the setFrom() method, the value of the attribute is obtained implicitly from the
mail.user property, which is set during the configuration of the mail Session. If
this property is absent, the system property user.name is used.

5. Send the message.

Transport.send(msg);

If the JNDI lookup fails, the NamingException will be thrown; if JavaMail transport
fails, the MessagingException will be thrown. You must put your code in a try block
and catch these exceptions.

24 0672324237 CH20 9/24/02 3:59 PM Page 501

Replying to Messages
To reply to a message, you must create a new message from the original by using the
reply() method. You also need to set the new Message with the proper recipient and
subject, and add the “Re: “ if it isn’t already there. The reply() method copies the from
or reply-to header to the new recipient. It doesn’t add any content to the original mes-
sage, so you need to set the body of the new message. The method also takes a Boolean
parameter indicating whether to reply to only the sender (false) or reply to all the recip-
ients (true). The following is an example of replying only to the sender:

MimeMessage reply = (MimeMessage) msg.reply(false);
reply.setFrom(new InternetAddress(“john.doe@acme.com”));
reply.setText(“Have Fun!”);
Transport.send(reply);

To set the reply-to address when sending a message, use the setReplyTo() method.

Forwarding Messages
To forward a message to a new recipient, you must construct a new message and then
populate its parts. An e-mail message can be made up of multiple parts. Each part is a
MimeBodyPart, and the different body parts are combined into a container called a
MimeMultipart. To forward a message, you create one part for the text of your message
and a second part with the message to forward, and then combine the two into a multi-
part message. Then you add the multipart message to a properly addressed message and
send it. Here’s an example of forwarding a message:

Address to = new InternetAddress(“john.doe@acme.com”);
Message forward = new MimeMessage(session);
forward.setSubject(“Fwd: “ + msg.getSubject());
forward.setFrom(new InternetAddress(msg.getFrom()));
forward.addRecipient(Message.RecipientType.TO, new InternetAddress(to));
// Construct the message part of the text
BodyPart mbp1 = new MimeBodyPart();
mbp.setText(“fyi”);
// Create a multi-part to combine the parts
Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp1);
// Construct the message part of the forwarded content
BodyPart mbp2 = new MimeBodyPart();
mbp2.setDataHandler(msg.getDataHandler());
mp.addBodyPart(mbp2);
// Associate the multipart with the message
forward.setContent(mp);
// Send the message
Transport.send(forward);

502 Day 20

24 0672324237 CH20 9/24/02 3:59 PM Page 502

Implementing JavaMail in EJB Applications 503

20

Sending a Message with Attachments
Resources can be attached to and detached from messages using the JavaMail API.
Attachments are resources that are associated with a mail message, and are usually kept
outside of that message; for example, a text file, a Word document, or an image. A mes-
sage with attachments is represented as a MIME multipart message in which the first part
is the main body of the message and the other parts are the attachments. Sending a mes-
sage with an attachment is similar to forwarding a message; here’s an example:

Message msg = new MimeMessage(session);
String filename=”c:\myfiles\notes.doc”;
Multipart mp = new MimeMultipart();
// Construct the message text part
mp.addBodyPart(“Attached find my document.”);
// Construct the attachment part
MimeBodyPart mbp = new MimeBodyPart();
DataSource source = new FileDataSource(filename);
mbp.setDataHandler(new DataHandler(source));
mbp.setFileName(filename);
mp.addBodyPart(mbp);
msg.setContent(mp);
Transport.send(msg);

The FileDataSource is part of the Java Activation Framework, and its constructor
accepts a String that indicates the full filename on the disk.

Sending Messages as HTML and Images
New e-mail systems support HTML and image content. To send an HTML file, you use
the more generic setContent() method, and set the MIME type to text/html, as fol-
lows:

String html = “<HTML><H1> Welcome to the new world of JavaMail</H1></HTML>”;
Message msg = new MimeMessage(session);
msg.setContent(html, “text/html”);

On the other hand, if you want your HTML content message to be complete with embed-
ded images included as part of the message, you must treat those images as attachments
and reference each one with a special content ID (CID) URL, where the CID is a refer-
ence to the Content-ID header of the image attachment:

Message msg = new MimeMessage(session);
BodyPart mbp = new MimeBodyPart();
String html = “<H1>Welcome to the world of JavaMail</H1>” +

“”;
mbp.setContent(html, “text/html”);
// Create a related multi-part to combine the parts
MimeMultipart mp = new MimeMultipart(“related”);
mp.addBodyPart(mbp);

24 0672324237 CH20 9/24/02 3:59 PM Page 503

// Create part for the image
mbp = new MimeBodyPart();
// Fetch the image and associate to part
DataSource img = new FileDataSource(“images/logo.gif”);
mbp.setDataHandler(new DataHandler(img));
mbp.setHeader(“Content-ID”,”img1”);
// Add part to multi-part
mp.addBodyPart(mbp);
// Associate multi-part with message
msg.setContent(mp);

Sending Message Content Based on Locale
Situations sometimes arise in which you need to send a message in a language other than
a Latin-based script (char set). This is common in internationalization (i18n) efforts of
enterprise applications. To accomplish this, you must set the message to the right locale
for the language. The following example is set to send an e-mail message based on the
Japanese locale (ISO-2022-JP):

Message msg = new MimeMessage(session);
msg.setSubject(subject, “ISO-2022-JP”);
msg.setText(body, “iso-2022-jp”);

504 Day 20

Some Web servers are familiar only with the ISO-8859-1 (Western European)
char set, and they can’t decode messages written in other char sets. You
might need to check the Web server documentation before sending mes-
sages using different char sets.

Note

Reading Messages with JavaMail
Reading mail messages involves fetching the messages from the message store. The
JavaMail API enables you to connect to a message store, which could be an IMAP
server or POP3 server. The JavaMail API provides several options for reading messages,
such as reading a specified message number or range of message numbers, or prefetch-
ing specific parts of messages into the folder’s cache. Here’s an example of reading
incoming messages on a POP3 server:

Store store = session.getStore(“POP3”);
store.connect(host, userid, password);
Folder mbox = store.getFolder(“INBOX”);
mbox.open(Folder.READ_ONLY);
Message msg[] = mbox.getMessages();
//...process each message according to requirements...
mbox.close(false);
store.close();

24 0672324237 CH20 9/24/02 3:59 PM Page 504

Implementing JavaMail in EJB Applications 505

20

Each message in the preceding snippet is processed according to your business require-
ments.

Deleting Messages and Flags
To delete a message, you must connect to the message store and open the message folder
using READ_WRITE mode. You must flag the message with the Flags.Flag.DELETED flag
(too many flags!). When you’ve processed all the messages, close the folder, and pass in
a true value to expunge the deleted messages. The following code snippet demonstrates
how to delete a message:

mbox.open(Folder.READ_WRITE);
Message msg = mbox.getMessage(1);
msg.setFlag(Flags.Flag.DELETED, true);
mbox.close(true);

The setFlag() method does not delete the message, it only marks the message for dele-
tion. The close() method with the true parameter value is where messages are deleted
or expunged.

Developing JavaMail Applications
Today you’ll develop the Emailer EJB, which is responsible in our university registration
system for sending e-mails to students when they submit courses at enrollment time, and
for notifying them again when they are approved for registration.

Our example today uses the Model-View-Controller (MVC) architecture pattern to
design a JavaMail application. The servlet component in the Web tier represents the con-
troller, which acts as a client to the EJB tier. The Emailer EJB in the EJB tier represents
the model, which handles business logic (primarily sending an e-mail message). The
view is represented by an HTML form (which could be a JSP) that interacts with the
servlet. Figure 20.2 illustrates the use of the MVC pattern in designing our JavaMail
application.

Reading messages from an IMAP server is similar to reading messages from a
POP3 server. With IMAP, however, the JavaMail API provides methods to cre-
ate and manipulate folders and transfer messages between them. If you use
an IMAP server, you can implement a full-featured, Web-based mail client
with much less code than if you use a POP3 server.

Note

24 0672324237 CH20 9/24/02 3:59 PM Page 505

The example also partitions the application into a Web tier module (packaged into a
WAR file) as well as an EJB module (packaged into a JAR file). You’ll learn how to cre-
ate and deploy an EAR file, which combines both the JAR file and the WAR file into an
enterprise application.

Figure 20.3 summarizes the sequence diagram of the sample application in sending an
e-mail message. The student interacts with the EmailerServlet using the emailer.html
HTML form. The EmailerServlet, on behalf of the client, relays the request to the
Emailer EJB, which sends the e-mail to the recipient through the e-mail server.

506 Day 20

FIGURE 20.2
Using the MVC pat-
tern in the JavaMail
application.

MVC pattern and the EmailerEJB Example

Browser

emailer.html
(View)

Web Container EJB Container

EMailerServlet
(Controller)

EMailerEJB
(Stateless SB)

(Model)

FIGURE 20.3
The sequence diagram
for sending an e-mail
message.

:emailer.html :EmailerServlet

click send button

:EmailerEJB

sendmail()

lookup()

MimeMessage

setHeader()

setSubject()

setContent(),

addRecipient()

send()

:IntialContext

OID for Sending a Message

:Session :Message :Transport

Here’s a summary of the steps required to develop your JavaMail application of today’s
example:

1. Develop the EJB tier components. You need to develop only one component: the
Emailer session bean.

2. Package the EJB tier into an EJB module (JAR file).

24 0672324237 CH20 9/24/02 3:59 PM Page 506

Implementing JavaMail in EJB Applications 507

20

3. Develop the Web tier components. You need to develop the EmailerServlet.

4. Package the Web tier components into a Web module (WAR file).

5. Package the modules into an application (EAR file).

6. Develop an HTML form (this could be a JSP) as a GUI to make requests to the
Web tier.

7. Create and configure the JavaMail Session on both the WebLogic Server and
JBoss server environments.

8. Deploy and run the application on each server.

The following sections give you more details about performing each of the steps men-
tioned in this list. As usual, the full application code listing, and scripts for compiling
and deploying into the WebLogic Server and JBoss server environments can be down-
loaded from our Web site.

Developing the EJB Tier Components
The EJB tier contains only the Emailer EJB, and we selected a stateless session bean to
model its activities. The main business method is the sendMail() method, which sends
e-mail messages to students. To optimize the Emailer EJB, you can cache the mail
Session object so that you don’t have to look it up every time you send a message.

As you learned on previous days, we need to develop the remote interface, home inter-
face, and the bean class. The following listings provide the code for these components.

Listing 20.1 is for the remote interface Emailer, which lists all the business methods
used in our example.

LISTING 20.1 The Remote Interface Emailer.java

package day20;
import java.rmi.RemoteException;
import javax.ejb.EJBObject;
// Provides a method to send mail messages
public interface Mailer extends EJBObject {

public void sendMail(String to, String body)
throws RemoteException, URSMailerException;

}

Listing 20.2 shows the home interface EmailerHome, which lists all the life cycle meth-
ods used to manage the bean.

24 0672324237 CH20 9/24/02 3:59 PM Page 507

LISTING 20.2 The Home Interface EmailerHome.java

package day20;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;
// The Home interface for MailerEJB
public interface MailerHome extends EJBHome {

public Mailer create() throws RemoteException, CreateException;
}

Listing 20.3 is the bean class EmailerEJB, which implements all the business methods
listed in the remote interface and the callback methods to manage the bean’s life cycle by
the container.

LISTING 20.3 The Bean Class EmailerEJB.java

package day20;
import java.util.Date;
import java.util.Locale;
import java.util.Properties;
import javax.naming.InitialContext;
import javax.activation.DataHandler;
import javax.mail.Message;
import javax.mail.MessagingException;
import javax.mail.Transport;
import javax.mail.Session;
import javax.mail.Multipart;
import javax.mail.internet.MimeMultipart;
import javax.mail.internet.MimeBodyPart;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.InternetAddress;
import java.rmi.RemoteException;
import javax.ejb.EJBException;
import javax.ejb.FinderException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;

// Session Bean implementation of MailerEJB.
// Used to send a mail message confirmation such as an email
// to a student after a registration into courses is completed.

public class MailerEJB implements SessionBean {
private Session mailSession = null;
public void sendMail(String to, String body)throws URSMailerException {
try {

508 Day 20

24 0672324237 CH20 9/24/02 3:59 PM Page 508

Implementing JavaMail in EJB Applications 509

20

MimeMessage msg = new MimeMessage(mailSession);
msg.setFrom();
InternetAddress dest = new InternetAddress(to);
msg.setSubject(“Testing STYEJB JavaMail”);
msg.setRecipient(Message.RecipientType.TO, dest);
msg.setSentDate(new Date());
msg.setHeader(“X-Mailer”, “JavaMailer”);
msg.setContent(body, “text/plain”);
Transport.send(msg);

} catch (Exception e) {
e.printStackTrace();
throw new URSMailerException(“Failure while sending email”);

}
}

public void ejbCreate() {
try {

InitialContext ctx = new InitialContext();
mailSession = (Session) ctx.lookup(“java:comp/env/mail/Mail”);

} catch (javax.naming.NamingException e) {
e.printStackTrace();

}
}
public void ejbPostCreate() {}
public void ejbActivate() {}
public void ejbPassivate() {}
public void ejbRemove() {}
public void setSessionContext(javax.ejb.SessionContext ec) {}

}

Notice that we’ve created the Session object in the ejbCreate() method, and cached it
into the session instance variable. This will enhance the application’s performance, and
can handle a larger number of students.

Packaging the Emailer EJB into an EJB Module
For large applications, all the components of the EJB tiers are packaged into one JAR
file, along with its deployment descriptors. For our example today, you need to package
only one component.

To build the example for the appropriate application server, you need to be in the Day20
directory, and then run the build script provided for this server. This will create a build
subdirectory that contains all the compiled code. The script will then package the EJBs
with the deployment descriptor (see Listing 20.4) into an EJB module (JAR file).

LISTING 20.3 continued

24 0672324237 CH20 9/24/02 3:59 PM Page 509

LISTING 20.4 The Deployment Descriptor ejb-jar.xml

<?xml version=”1.0”?>

<!DOCTYPE ejb-jar PUBLIC
‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 2.0//EN’
‘http://java.sun.com/dtd/ejb-jar_2_0.dtd’>

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>MailerEJB</ejb-name>
<home>day20.MailerHome</home>
<remote>day20.Mailer</remote>
<ejb-class>day20.MailerEJB</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-env-ref>

<resource-env-ref-name>mail/Mail</resource-env-ref-name>
<resource-env-ref-type>javax.mail.Session</resource-env-ref-type>

</resource-env-ref>
</session>

</enterprise-beans>
</ejb-jar>

You must provide a server-specific deployment descriptor for each application server;
they are included in your download (jboss.xml for the JBoss server and weblogic-ejb-
jar.xml for the WebLogic Server). For the sake of making your application portable,
you must specify the <resource-env-ref> element in your ejb-jar.xml deployment
descriptor, as you learned on Day 4.

Developing the Web Tier Components
This example includes a servlet component in the Web tier to act as a client to the
Emailer EJB in the EJB tier. Students first interact with the servlet (through the HTML
form discussed in the next section), and requests are relayed back to the EJB tier to exe-
cute the required business logic. Listing 20.5 is the EmailerServlet.

LISTING 20.5 The Servlet EmailerServlet.java

package web;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Hashtable;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

510 Day 20

24 0672324237 CH20 9/24/02 3:59 PM Page 510

Implementing JavaMail in EJB Applications 511

20

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import day20.*;

// This Servlet will call the MailerEJB with the email address.
public class MailerServlet extends HttpServlet
{

private MailerHome mailerHome = null;
// Looks up the MailerHome interface and saves it for use in doGet().
public void init() throws ServletException{

try{
InitialContext jndiCtx = new InitialContext();
Object ref = jndiCtx.lookup(“day20/Mailer”);
mailerHome = (MailerHome)

PortableRemoteObject.narrow(ref, MailerHome.class);
}
catch(Exception e){

throw new ServletException(“Failed to lookup Mailer”, e);
}

}

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException{
String title = “Servlet client to Mailer EJB”;
String toAddress = request.getParameter(“toAddress”);
String mailMsg = request.getParameter(“message”);
response.setContentType(“text/html”);
PrintWriter out = response.getWriter();
out.println(“<HTML><HEAD><TITLE>”);
out.println(title);
out.println(“</TITLE></HEAD><BODY>”);
out.println(“<H1>” + title + “</H1>”);
out.println(“<H2>Calling EJB...</H2>”);
try{

Mailer bean = mailerHome.create();
bean.sendMail(toAddress, mailMsg);
out.println(“Mail Message is sent....”);

}
catch(Exception e){

out.println(e.toString());
}
finally{

out.println(“</BODY></HTML>”);
out.close();

}
}

}

LISTING 20.5 continued

24 0672324237 CH20 9/24/02 3:59 PM Page 511

Packaging the EmailerServlet into a WAR File Module
All components in the Web tier (such as JSP, servlets, and TagLibs), along with a
web.xml deployment descriptor, should be packaged into a Web module (WAR file). You
must also provide a server-specific Web deployment descriptor. The jboss-web.xml file
is included for the JBoss server, and weblogic.xml is provided for WebLogic Server.

The script provided for each server will create a web subdirectory that contains all the
compiled code. It will then package the EmailerServlet component and the deployment
descriptor web.xml into a Web module (WAR file).

Listing 20.6 provides the web.xml deployment descriptor.

LISTING 20.6 The Web Deployment Descriptor web.xml

<?xml version=”1.0” encoding=”ISO-8859-1”?>

<!DOCTYPE web-app
PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN”
“http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
<servlet>

<servlet-name>MailerServlet</servlet-name>
<servlet-class>MailerServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>MailerServlet</servlet-name>
<url-pattern>/MailerServlet</url-pattern>

</servlet-mapping>
<welcome-file-list>
<welcome-file>index.html</welcome-file>

</welcome-file-list>
</web-app>

Building the EAR File
The modules created in the previous sections—one for the Web tier and one for the EJB
tier—can be combined into an application file (EAR file). For the sake of convenience,
both scripts are also combined into one script to package the application into an EAR
file. Listing 20.7 shows the application.xml deployment descriptor that will combine
both WAR and JAR files into an enterprise application.

512 Day 20

24 0672324237 CH20 9/24/02 3:59 PM Page 512

Implementing JavaMail in EJB Applications 513

20

LISTING 20.7 The EAR Deployment Descriptor application.xml

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE application PUBLIC

‘-//Sun Microsystems, Inc.//DTD J2EE Application 1.3//EN’
‘http://java.sun.com/dtd/application_1_3.dtd’>

<application>
<display-name>STYEJB JavaMail Application</display-name>
<module>
<web>

<web-uri>mailer.war</web-uri>
<context-root>day20</context-root>

</web>
</module>
<module>

<ejb>mailer.jar</ejb>
</module>

</application>

Listing 20.8 provides the build script for the WebLogic Server application server. The
script for JBoss is included in the downloaded files.

LISTING 20.8 The Build Script for WebLogic Server buildWebLogic.bat

@echo Compiling EJB tier files...
rem “Cleaning previous build (if any)”
rmdir /s/q build build1

rem “Creating a staging area for the build”
mkdir build build\META-INF

rem “Copying deployment files to META-INF directory”
copy %STYEJB_HOME%\day20\ejb-jar.xml build\META-INF
copy %STYEJB_HOME%\day20\weblogic-ejb-jar.xml build\META-INF

rem “Compiling EJB classes and interfaces”
javac -g -d build URSMailerException.java \

Mailer.java MailerHome.java MailerEJB.java

rem “Creating the EJB’s deployment Jar file”
cd build
jar cv0f tmp_mailer.jar META-INF day20
cd ..

rem “Compiling the container classes”
java weblogic.ejbc -keepgenerated -g \

-deprecation build\tmp_mailer.jar build\mailer.jar

@echo Compiling Web tier files...

24 0672324237 CH20 9/24/02 3:59 PM Page 513

rem “Cleaning previous build (if any)”
rmdir /s/q web
mkdir web web\WEB-INF web\WEB-INF\classes

copy GUI\MailerServlet.java web\.
copy GUI*.html web\.
javac -g -d web\WEB-INF\classes -classpath %CLASSPATH%;build \

URSMailerException.java Mailer.java MailerHome.java MailerEJB.java
javac -g -d web\WEB-INF\classes \

-classpath %CLASSPATH%;web\WEB-INF\classes;build web*.java

rem Copying Web Deployment Descriptor...
copy web.xml web\WEB-INF
copy weblogic.xml web\WEB-INF

jar cf mailer.war -C web .
mkdir build1 build1\META-INF
move mailer.war build1

@echo Creating Enterprise Archive (EAR) file ...
copy application.xml build1\META-INF
copy build\mailer.jar build1\
jar cf mailer.ear -C build1 .

@echo Moving Enterprise archive file in to build directory...
move mailer.ear build1
rem “Deploying the war file”
copy build1\mailer.ear %APPLICATIONS%

Implementing the Client
The Web client for the EmailerServlet is an HTML form (see Listing 20.9) for testing
our JavaMail application. The HTML form (see Figure 20.4) makes a request with the
recipient’s e-mail address and the body of the message to be sent.

LISTING 20.9 The HTML Form index.html

<html>
<head>

<title>JavaMailer EJB Form</title>
</head>
<body>

<h1>Send Message Using JavaMail Form</h1>
<form method=”POST” action=”MailerServlet”>

<table cellspacing=”2” cellpadding=”2” border=”0”>
<tr><td>To:</td>

514 Day 20

LISTING 20.8 continued

24 0672324237 CH20 9/24/02 3:59 PM Page 514

Implementing JavaMail in EJB Applications 515

20

<td><input type=”text” name=”toAddress” size=”40”></td>
</tr>
<tr><td>Message:</td>

<td>
<textarea name=”message” cols=”50” rows=”10”></textarea>

</td>
</tr>
<tr><td><input type=”submit” name=”Send” value=”Send”></td>

<td><input type=”Reset”></td>
</tr>

</table>
</form>

</body>
</html>

Configuring the Mail Session in WebLogic
Before running the JavaMail application, you must create and configure a JavaMail
Session into a JNDI service in the WebLogic Server Administration Console
(http://localhost:7001/console). This allows server-side components and applica-
tions to access JavaMail services with JNDI. In our example, you create a mail Session
by specifying the default mail user, mail host, transport, and store protocols in the
Administration Console so that components that use JavaMail do not have to set these
properties (see Figure 20.4).

LISTING 20.9 continued

FIGURE 20.4
WebLogic Server
Administration
Console.

24 0672324237 CH20 9/24/02 3:59 PM Page 515

Applications that are heavy e-mail users benefit because WebLogic Server creates a sin-
gle Session object and makes it available via JNDI to any component that needs it.

1. In the Administration Console, click on the Mail node in the left pane.

2. Click Create a New Mail Session.

3. In the Name field, enter a name for the new session. Enter MailSession.

4. In the JNDIName field, enter a JNDI lookup name. Use ursMailSession. Your
code uses this string to look up the javax.mail.Session object.

5. In the Properties field, enter properties to configure the Session. Use Table 20.2 to
set the required fields. In our example, you set the protocol, mail server host, and
username as shown in Figure 20.4.

TABLE 20.2 Summary of Mail Session Property Fields

Property Description

mail.store.protocol The protocol to use to retrieve e-mail. The default is IMAP.

mail.transport.protocol The protocol to use to send e-mail. SMTP is the default.

mail.host The name of the mail host machine.

mail.user The name of the default user for retrieving e-mail.

mail.protocol.host The mail host for a specific protocol. For example, you can set
mail.SMTP.host and mail.IMAP.host to different machine names.

mail.protocol.user The protocol-specific default user name for logging in to a mailer
server. For example, mail.smtp.user=styejb.

mail.from The default return address.

mail.debug Set to True to enable JavaMail debug output.

516 Day 20

You can override any properties set in the mail Session in your code by cre-
ating a Properties object that contains the properties you want to override.
Then, after you look up the mail Session object in JNDI, call the
Session.getInstance() method with your Properties to get a customized
Session.

Note

To configure the JBoss environment, you must customize the entries in the mail-
service.xml file in the <JBOSS_HOME>/server/default/deploy directory. The
README.TXT file provides more information about how to configure these parameters.

24 0672324237 CH20 9/24/02 3:59 PM Page 516

Implementing JavaMail in EJB Applications 517

20

Running the JavaMail Application
To run the JavaMail application, you must deploy the emailer.ear file into the appropri-
ate application server. The following steps show you how to deploy the EAR file into
WebLogic Server:

c:\styejb>setEnvWebLogic.bat

c:\styejb>cd day20

c:\styejb\day20> runWebLogic.bat

Similarly, you can deploy the application into the JBoss server using the runJboss.bat
script.

After you deploy the application on WebLogic Server, you can run the client from your
Web browser by putting the following URL in the address field: http://
localhost:7001/day20/index.html. On the JBoss server, you need to use the URL
http://localhost:8080/day20/index.html.

As shown in Figure 20.5, fill the e-mail address with your e-mail address, and a message
of your choice, and then click on the Send button. Check your e-mail for the delivered
message.

FIGURE 20.5
HTML form to send
e-mail messages.

24 0672324237 CH20 9/24/02 3:59 PM Page 517

Best Practices
Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and manipu-
late folders and transfer messages between them. If you use an IMAP server, you can
implement a full-featured, Web-based mail client with much less code than if you use a
POP3 server. With POP3, you must provide code to manage a message store through
your application server, possibly using a database or file system to represent folders.

One of J2EE’s objectives is portability, and it always recommends a declarative approach
over a programmatic approach to avoid hardcoding parameters. Avoid the programmatic
approach as much as possible. Create and configure the Session object in a JNDI service
as an administered object, so that you can tune it or change its parameters without chang-
ing any code.

It’s always more efficient to use a shared Session object among all your components,
even if you’re working with mail sessions for multiple user mailboxes.

Summary
Today you explored the JavaMail API classes and their use. You started by learning the
protocol used in e-mail systems, and the difference between sending an e-mail message
and a JMS message. You also learned how to send, read, and delete e-mail messages,
using the JavaMail and JAF APIs. Through a working example, you explored how to
develop a simple JavaMail application. You also found out how to develop a complete
enterprise application by portioning the application into a Web module (WAR file) and a
EJB module (JAR file), and then combining them into an EAR file. You learned how to
test your application from your browser through the use of an HTML form.

Q&A
Q What are the main differences among SMTP, POP, and IMAP?

A SMTP is a protocol used to send outgoing messages, whereas POP and IMAP are
used to retrieve and read incoming messages.

Q What are the steps involved in sending an e-mail message through the
JavaMail API?

A The main steps involved in sending an e-mail message are as follows:

1. Create a Session object, usually by looking it up in JNDI services.

2. Create a MimeMessage from the session, as a container to your contents.

518 Day 20

24 0672324237 CH20 9/24/02 3:59 PM Page 518

Implementing JavaMail in EJB Applications 519

20

3. Set the to, subject, and content using the addRecipient(), setSubject(),
and setContent() methods respectively.

4. Send the message using Transport.send().

Quiz
1. When sending mail, which of the following is the proper sequence of working with

classes?

A. Session, Authenticator, Message, Transport

B. Authenticator, Message, Session, Transport

C. Authenticator, Session, Message, Transport

D. Session, Transport, Message, Authenticator

2. When forwarding a message, you need to

A. Create a new message from the original message, and copy over its content.

B. Create a multipart message, and construct two parts—one for the text mes-
sage and one for the original message—and combine them together.

C. Create a blank message and copy the original content over.

D. Use the original message object and set its new recipients.

3. When retrieving an e-mail message, which of the following is the proper order of
working with classes?

A. Store, Folder, Message

B. Session, Store, Folder, Message, Transport

C. Session, Folder, Message, Transport

D. Session, Store, Folder, Message

4. Which of the following are part of the JavaBeans Activation Framework (JAF)?

A. Transport

B. DataSource

C. FileDataSource

D. Session

Answers
1. A

2. A

24 0672324237 CH20 9/24/02 3:59 PM Page 519

3. D

4. B, C

Exercises
In today’s example, modify the index.html file to add the following fields to the form:
From, CC, BCC, and Subject. Also add Read, Forward, Reply, and Delete buttons.
Modify the EmailerServelet and Emailer EJB accordingly. The read function will
retrieve the next unread message, which can then be forwarded to a recipient, replied to
the sender, or deleted using the appropriate button.

520 Day 20

24 0672324237 CH20 9/24/02 3:59 PM Page 520

DAY 21

WEEK 3

Developing a Complete
Enterprise Application

Today, you’ll develop a complete enterprise application. You’ll apply different
concepts you learned in the previous days to build an application that consists
of Web components (JSPs and servlets), EJB components (session, entity, and
message-driven enterprise beans), and the EIS tier (database tables).

The sample university registration system is an end-to-end application that han-
dles the online course registration and enrollment process in a transactional
e-commerce environment.

Today you’ll see how to perform analysis, design, implementation, and deploy-
ment of the sample application. You’ll undertake each of the following:

• Understand the application requirements

• Perform use case analysis

• Decide on a system architecture that meets the application requirements

• Identify the components in the multitier architecture and the interactions
among these components

• Implement the components, and package and deploy the application

25 0672324237 Ch21 9/24/02 2:39 PM Page 521

Understanding the Application
The university registration system is a typical e-commerce application. The application
has a Web site that enables students to browse the course catalog and register for courses
online. Figure 21.1 shows an overview of the system.

522 Day 21

FIGURE 21.1
University registration
system.

Student

Approval

Pending
orders

Web site

Web site

Cart

Catalog

E-mail

Administrator

Order
verification

The application provides the following functionality:

• Student registration—This functionality enables new students to create and main-
tain their account information. The account information includes the student’s first
name, last name, address, e-mail, login name, and password.

• Student authentication—This module handles the student login process, such as
verifying the login name and password. This ensures that only registered students
browse the course catalog and purchase courses for enrollment.

• Course catalog browsing—The Web site displays the current course offerings in
the university and their details. The course details include the course title and fee.

• Enrollment cart—The enrollment cart module enables students to place their
course selection in a shopping cart while browsing the course catalog, and later to
view the cart contents before placing an order.

• Order processing—The order module enables students to place their orders, and
performs the necessary verification before approving them.

25 0672324237 Ch21 9/24/02 2:39 PM Page 522

Developing a Complete Enterprise Application 523

21

• Administrator interface—This functionality allows the administrator to view and
approve orders for enrollment.

• Notification—This functionality causes the system to send e-mail to students when
they have enrolled for a course.

Analyzing the Application
Use case analysis is the standard technique for analyzing the requirements of an applica-
tion. A use case diagram shows the interaction between the system and actors. An actor
is a role that human and/or nonhuman users of the system play when interacting with use
cases. Figure 21.2 shows a high-level use case diagram of the university registration
system.

FIGURE 21.2
Use case diagram.

University registration system

Register into the
system

Sign-on to the
system

Add course(s)
to enrollment

cart

Place order for
course enrollment

View pending
orders

Approve order
/enroll student

Receive
enrollment

status e-mail

Browse course
catalog

Verify order

Student

Order
verification

system

Administrator

25 0672324237 Ch21 9/24/02 2:39 PM Page 523

The use case diagram in this case consists of actors, such as student, administrator, and
order verification system. The following describes the use cases:

• New students register with the system.

• Existing students log on to the system and can browse the course catalog.

• A student can select courses and add them to the enrollment cart.

• A student places an order for the enrollment cart contents.

• The system verifies the order in the background.

• An administrator can view the verified orders that need approval for enrollment.

• An administrator approves the order and enrolls the student in the courses.

• The system notifies the student of enrollment via e-mail.

Architecting the System
Architecting consists of deciding what tiers are needed for the application, what services
are required at each tier, and how the application logic will be spread across different
tiers. As you learned on Day 15, “Understanding J2EE Architecture,” the J2EE architec-
ture is designed for multitier applications. In a multitier architecture, the business logic
can be split into more than one layer. In the sample application, logic is partitioned into
the business logic tier and the presentation logic tier. The user interface is partitioned into
the client tier and the presentation tier. The application-persistent data is stored in the
EIS tier. Figure 21.3 shows the architecture of the system.

524 Day 21

FIGURE 21.3
Architecture diagram.

J2EE Application Server

Client Tier Web Tier Business-Logic Tier EIS Tier

Database

Web Container
(Web Server)

Servlet

JSP

EJB Container

Session
Bean

Entity
Bean

MDB

RMI/IIOPHTTP JDBCJDBC
Web
Client
(Web

browser)

25 0672324237 Ch21 9/24/02 2:39 PM Page 524

Developing a Complete Enterprise Application 525

21

The sample architecture consists of the following tiers:

• Client tier—Students and administrators use the client tier to interact with the sys-
tem. The client tier is provided by a Web browser, such as Internet Explorer or
Netscape Navigator. The client tier communicates with the Web tier by using the
HTTP protocol.

• Web tier—This tier accepts user requests and generates responses using the presen-
tation logic. The sample application uses both servlets and JSPs in a Web con-
tainer. The Web tier communicates with the business logic tier using RMI/IIOP
protocol.

• Business logic tier—This tier handles the core business logic of the application.
The business components are implemented as EJB components with support from
an EJB container.

• EIS tier—The EIS tier consists of the database in which the sample application’s
permanent data is stored. The business-logic tier communicates with the EIS tier
using JDBC.

J2EE offers flexibility in partitioning the application logic across tiers. For
example, you have a choice between Web-centric and EJB-centric design. In
the Web-centric design, the Web tier components are responsible for most
of the application’s functionality. The Web tier components communicate
directly with the EIS tier using container services such as the JDBC API. In the
EJB-centric design, the enterprise beans encapsulate the core application
logic. Web tier components communicate with EJB tier components instead
of accessing the EIS tier directly.

The decision between the Web-centric and EJB-centric approaches depends
on factors such as application functionality and scalability requirements. The
Web-centric approach offers a quick start for small applications, but can
rapidly become complex and difficult to maintain for large applications. The
EJB-centric approach offers advantages such as automatic handling of trans-
actions, distributed processing, security, and so on, and can stay manageable
as applications grow more complex. The sample application uses the EJB-
centric approach.

Note

Designing the Application
Next, you must decide what components are needed in each tier and how they interact
with each other to achieve the required functionality.

25 0672324237 Ch21 9/24/02 2:39 PM Page 525

Figure 21.4 shows the high-level design of the application. Please note that this diagram
does not show all the components and their interactions. The diagram shows JSPs,
servlets, enterprise beans, and database tables. The following sections discuss the various
components in detail.

526 Day 21

FIGURE 21.4
Application design.

URSController
Servlet

URSController
Servlet

StudentFacade
(Stateful Session)

SignOn
(Stateless
Session)

User
(CMP)

Course
(CMP)

Order
(CMP)

OrderLineItem
(CMP)

OrderVerifier
(MDB)

registration.
jsp

login.jsp

catalog.jsp

cart.jsp

order.jsp

USERS

COURSES

ORDERS

ORDER_LINE_ITEMS

ENROLLMENTS

Student
(CMP) STUDENTS

AdminFacade
(Stateful Session)

Enrollment
(CMP)

Order
(CMP)

Mailer
(Stateless
Session)

admin.jsp

Designing the Business Logic Tier Components
The following discusses the key enterprise beans in the business logic tier:

• The concept of the student is central to the university registration application.
Multiple clients must share behavior, such as creating a student account, verifying
an existing account, and updating account information. Updates to the state of a
student object must be written to the persistent store. The student object must live

25 0672324237 Ch21 9/24/02 2:39 PM Page 526

Developing a Complete Enterprise Application 527

21

even when the client’s session with the server is over. Therefore, the Student com-
ponent is modeled as a container-managed persistence entity bean.

• SignOn is the authentication component that verifies the user login name and pass-
word. This component uses the User component to retrieve and store the user’s
login name and password. Such a component doesn’t need to maintain client-
specific state information across method invocations, so the same bean instance can
be reused to service other client requests. This can be modeled as a stateless ses-
sion bean.

• The Course component models the courses offered by the university. Because
courses are persistent objects, Course is modeled as a container-managed persis-
tence entity bean.

• EnrollmentCart models the shopping cart concept in a typical e-commerce Web
site. While browsing the course catalog, a student can add courses to and remove
courses from the EnrollmentCart. A cart must be allocated by the system for each
student concurrently connected to the Web site. All the selected courses of a stu-
dent will be added to the temporary cart. This cart is not a persistent object because
the student can choose to abandon the cart. Therefore, in the application,
EnrollmentCart is modeled as a stateful session bean. Alternatively, if you want
the enrollment cart to survive a client machine or server crash, you must model it
as an entity bean.

• A student places an order when he/she is ready to purchase the enrollment cart
contents. The Order component must live even when the student’s session with the
application is over. Therefore, the Order component is modeled as a container-
managed persistence entity bean.

• A student’s order consists of one or more line items. Each line item represents a
single course item that the student has ordered. This is modeled as the
OrderLineItem component. Similar to Order, OrderLineItem must persist even
when the student’s session with the application is over. Therefore, OrderLineItem
is modeled as a container-managed persistence entity bean. Also, the Order entity
bean has a one-to-many bidirectional relationship with OrderLineItem. This rela-
tionship is modeled as a container-managed relationship.

• The OrderVerifier component is responsible for verifying the order’s facts, such
as the student’s billing information, the classroom’s capacity, and so on. We would
like to enable the student to continue browsing the Web site and not require her to
wait for the background processing to complete. This asynchronous processing can
be best modeled using a message-driven bean. In the sample application, after the
student submits an order, a Java Message Service (JMS) message is sent to a desti-
nation, where it will be processed by an OrderVerifier message-driven bean.

25 0672324237 Ch21 9/24/02 2:39 PM Page 527

• A student can enroll in multiple courses and each course can have many students
enrolled in it. The Enrollment CMP component models the join relationship
between the students and the courses. The Student entity bean has a one-to-many
relationship with Enrollment and the Course has a one-to-many relationship with
Enrollment.

• The Mailer component is the stateless session bean responsible for sending e-mail
messages. The AdminFacade component uses Mailer to send an e-mail confirma-
tion to the student when the administrator approves the order for enrollment.

• The StudentFacade component provides a unified interface to student functional-
ity. Instead of communicating directly with enterprise beans such as Student and
Order, clients go through the simpler interface of StudentFacade. StudentFacade
is modeled as a stateful session bean.

• The AdminFacade component provides a unified interface to the administrator func-
tionality. Web components use a single AdminFacade component to access the
administrator functionality. This component is modeled as a stateful session bean.

528 Day 21

The sample application uses the following approach for the business logic
tier design.

Note

• Provides a simple interface to complex functionality by using session bean
façades.

The session bean façades front the entity beans. For example, the StudentFacade
session bean provides a simple interface to student functionality and fronts entity
beans such as Order.

• For portability and ease of development, container-managed entity beans are used
instead of bean-managed persistence entity beans. Also, all entity beans provide
local interfaces for efficient access due to co-location.

• Uses distributed islands of local components. For example, as shown in Figure
21.5, one such island is composed of components such as StudentFacade, SignOn,
Course, and Order. All the components within this island communicate with each
other by using local interfaces. This offers the benefit of higher performance. An
island communicates with a remote island by using remote interfaces, which offers
the benefit of scalability.

25 0672324237 Ch21 9/24/02 2:39 PM Page 528

Developing a Complete Enterprise Application 529

21

Designing the Web Tier Components
The following section discusses the Web tier components in the sample application:

• The primary role of URSControllerServlet servlet is to act as a controller. This
component is responsible for receiving parameters from the client and then invok-
ing the calls to the EJB tier, which handles the business logic. Finally, the servlet
receives the result and uses it to provide a response to the user. This servlet usually
forwards the response to a JSP to perform a presentation task.

• The application contains the JSP pages, such as the registration page, login page,
course catalog page, enrollment cart page, and order confirmation page. These
components contain the presentation logic for student-related functionality. In addi-
tion, the admin page contains the presentation logic for administrator-related func-
tionality.

FIGURE 21.5
Distributed islands of
local components.

registration.jsp

URSController
Servlet

SignOn

CourseStudentFacade

OrderOrderVerifier

Enrollment

OrderAdminFacade

…

…

The sample application uses the MVC (Model-View-Controller) design pat-
tern discussed on Day 7, “Designing Web Applications.” The model layer
contains the enterprise bean components that handle the core business
logic. The view layer contains the JSP pages, whose job is to format and pre-
sent responses to the client. The controller layer provides the
URSControllerServlet servlet, which is responsible for receiving the client
request, managing screen flow, and selecting an appropriate response.

Note

25 0672324237 Ch21 9/24/02 2:39 PM Page 529

Designing the EIS Tier Database Schema
Figure 21.6 shows the database tables and the relationships between them. Each table is
shown as a solid rectangle with two compartments. The top compartment holds the table
name and the bottom compartment holds a list of column names. The primary key col-
umn(s) uniquely identifies a row in the table. We use the abbreviation PK for the primary
key. The foreign key column of a table identifies a row in a different table. We use the
abbreviation FK for the foreign key.

530 Day 21

FIGURE 21.6
Database schema of
the sample applica-
tion.

courses

course_id(PK)
course_name
fee
max_limit
curr_enroll
one

order_line_items

id(PK)
order_id(FK)
course_id(FK)
fee

orders

order_id(PK)
student_id(FK)
order_date
amount
status

users

login_name(PK)
password

enrollments

enrollment_id(PK)
student_id(FK)
course_id(FK)

students

student_id(PK,FK)
first_name
last_name
address
email_address

one one many one

one

many

manymany

one many one

For example, the enrollments table consists of the columns enrollment_id (primary
key), student_id (foreign key to student_id in the students table), and course_id
(foreign key to course_id in the courses table).

Designing the Scenarios
This section examines the interactions between components for key use case scenarios.

Student Logs On to the System
Figure 21.7 shows the sequence diagram for the use case Student Logs On to the
System. The student enters a login name and password, and clicks the submit button in
the login page. The browser sends an HTTP GET request to the Web server. The
URSControllerServlet servlet receives the client request and invokes the
validateUser() method of the StudentFacade enterprise bean. The façade delegates the
method call of the SignOn authentication component, which uses the User entity bean to
look up and validate the login name and password. Finally, the controller servlet for-
wards the request to the catalog page, which displays the course catalog.

Student Places Order
As shown in Figure 21.8, when the student clicks the Place Order button in the enroll-
ment cart page, the URSControllerServlet receives the request and invokes the
placeOrder() method of StudentFacade. The façade first creates a new order using the

25 0672324237 Ch21 9/24/02 2:39 PM Page 530

Developing a Complete Enterprise Application 531

21

Order entity bean. The façade then creates multiple line items using the OrderLineItem
entity bean and associates the line items with the order. Finally, the façade sends a JMS
message to the Destination using the MessageSender component for order verification
purposes.

FIGURE 21.7
Student Logs On to the
System sequence dia-
gram.

Student Browser catalog.jsp URSControllerServlet StudentFacade SignOn User Database

Student types login
name and password

and hits submit button

Send a HTTP/GET
request with

parameters, login
name, and password

forward
request

validateUser(loginName,
password)

validateUser
(loginName,
 password)

findByPrimaryKey
(loginName)

select*from
users where

login_name =
‘<loginName>’

display
catalog page

FIGURE 21.8
Student Places Order
sequence diagram.

URSControllerServlet StudentFacade Order OrderLineItem MessageSender

placeOrder

create

setLineItems
(lineItems)

create

*

sendAMessage(orderId)

Administrator Approves Order and Enrolls Student in Courses
Figure 21.9 shows the sequence diagram corresponding to the use case Administrator
Approves Order and Enrolls Student in Courses. When the administrator approves an
order placed by the student, he or she clicks the Approve Order button on the

25 0672324237 Ch21 9/24/02 2:39 PM Page 531

administrator page. The URSControllerServlet receives the corresponding request and
invokes the method approvedOrder of AdminFacade. The façade retrieves the order by
using its primary key, order_id, and changes the order status to Approved. The façade
then enrolls the student in all the courses that are part of the order by using the enroll-
ment component. Finally, the façade sends an e-mail to the student confirming the
approval.

532 Day 21

FIGURE 21.9
Administrator
Approves Order and
Enrolls Student
sequence diagram.

URSControllerServlet AdminFacade Order Enrollment Mailer

approveOrder(orderId)

findByPrimaryKey
(orderId)

getLineItems

setStatus
(“Approved”)

*
create

sendMail(to, body)

Packaging and Deploying the Application
This section describes the steps to package and deploy the application for both
WebLogic Server and JBoss application servers. These steps assume that you configured
OrderVerifierTopic as discussed on Day 14, “Developing Message-Driven Beans,” and
ursMailSession as discussed on Day 20, “Implementing JavaMail in EJB Applications.”

You can run the following commands for WebLogic:

C:\>cd styejb\examples

C:\styejb\examples>setEnvWebLogic.bat

C:\styejb\examples>cd day21

C:\styejb\examples\day21>buildWebLogic.bat

You can run the following commands for JBoss:

C:\>cd styejb\examples

C:\styejb\examples>setEnvJboss.bat

25 0672324237 Ch21 9/24/02 2:39 PM Page 532

Developing a Complete Enterprise Application 533

21

C:\styejb\examples>cd day21

C:\styejb\examples\day21>buildJBoss.bat

Running the Sample Application
The following steps describe how to start the PointBase database server and WebLogic
Server, and run the sample application:

1. Start PointBase server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvWebLogic.bat
C:\styejb\examples>startPointBase.bat

2. Start WebLogic Server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvWebLogic.bat
C:\styejb\examples>startWebLogic.bat

3. Open the university registration system URL, http://localhost:7001/urs, using
a Web browser. This will display the main page as shown in Figure 21.10.

FIGURE 21.10
Sample application
main page.

25 0672324237 Ch21 9/24/02 2:39 PM Page 533

4. Register a new student by clicking the New students register here link. Enter tom
for the login name and tom for the password. Enter a first name, last name, address,
and email for the student. Figure 21.11 shows the corresponding screenshot. Click
the Register button.

534 Day 21

FIGURE 21.11
Sample application
registration page.

5. Figure 21.12 shows the course catalog page. Add a couple of courses to the enroll-
ment cart by clicking the Add to cart link that corresponds to each course. Click
the View your enrollment cart link to view the enrollment cart.

6. Figure 21.13 shows the enrollment cart page. Click the Place Order link to pur-
chase the cart contents.

7. Now we’ll explore the administrator functionality. Open the URL http://
localhost:7001/urs. Click the Administrator click here link. Figure 21.14 shows
the administrator page displaying the verified order(s). Click the Approve link to
approve the order and enroll the student in the courses.

25 0672324237 Ch21 9/24/02 2:39 PM Page 534

Developing a Complete Enterprise Application 535

21

FIGURE 21.12
Sample application
course catalog page.

FIGURE 21.13
Sample application
enrollment cart page.

25 0672324237 Ch21 9/24/02 2:39 PM Page 535

The following steps describe how to start the JBoss server and run the sample applica-
tion:

1. Start the JBoss server in a new command window as follows:
C:\>cd styejb\examples
C:\styejb\examples>setEnvJBoss.bat
C:\styejb\examples>startJBoss.bat

2. Open the university registration system URL, http://localhost:8080/urs, using
a Web browser. This will display the main page as shown in Figure 21.10. The
remaining steps are similar to those listed for WebLogic Server’s steps 4 through 7.

Best Practices
Local architecture is implemented with local enterprise beans. Distributed architecture is
implemented with remote enterprise beans. Local architecture offers the benefit of higher
performance for the same hardware, but it’s harder to scale and cluster. On the other
hand, distributed architecture is easier to scale and cluster, but results in reduced perfor-
mance for the same hardware. One possible solution is to create distributed islands of
local components as in the sample application.

536 Day 21

FIGURE 21.14
Sample application
administrator page.

25 0672324237 Ch21 9/24/02 2:39 PM Page 536

Developing a Complete Enterprise Application 537

21

Summary
Today, you worked on a complete sample application. We explored the requirements of
the sample university application and analyzed them using a use case approach. We
decided to use the multitier architecture that J2EE offers. We also decided to use an EJB-
centric design in which the enterprise beans encapsulate the core application logic. We
identified those components and their interactions. Finally, we packaged, deployed, and
ran the sample application.

Q&A
Q In which tier should I implement the referential integrity constraints?

A It’s generally best to implement referential integrity constraints logic in the EIS tier
rather than the EJB tier. Implementing the constraints in the EIS tier means that
they can be used by non-J2EE applications and offer greater performance and relia-
bility. Implementing such constraints in the EJB tier duplicates logic and makes
maintenance difficult. On the other hand, EIS tier constraints such as database pro-
cedural triggers are not portable across database vendors.

Quiz
1. Which of the following approaches is best for building large-scale enterprise appli-

cations?

A. Web-centric approach

B. EJB-centric approach

C. EIS-centric approach

2. Which of the following approach is true?

A. Local architecture offers best performance for the same hardware.

B. Distributed architecture offers best performance for the same hardware.

C. Local architecture is easier to scale and cluster.

Quiz Answers
1. B

2. A

25 0672324237 Ch21 9/24/02 2:39 PM Page 537

Exercises
To extend your knowledge of the subjects covered today, try the following exercise:

Add functionality so that a student can view his or her course enrollments. Add a View
Course Enrollments link to the catalog page, and develop an enrollment.jsp that dis-
plays the student enrollments. In addition, add a Collection getStudentEnrollments()
method to the Student component. This method invokes the method Collection
findStudentEnrollment(String studentId) of the Enrollment component. Package,
deploy, and run the application.

538 Day 21

25 0672324237 Ch21 9/24/02 2:39 PM Page 538

Appendixes
A WebLogic Application Server 7.0

B JBoss Application Server 3.0

C Understanding XML

D Introduction to UML Notation

E Glossary of Terms

A

B

C

D

E

26 0672324237 Part 04 9/24/02 2:39 PM Page 539

26 0672324237 Part 04 9/24/02 2:39 PM Page 540

APPENDIX A
WebLogic Application
Server 7.0

For the WebLogic Server examples in this book, you’ll need to download,
install, and configure BEA WebLogic Server version 7.0. This appendix is pro-
vided to help you do so.

Downloading and Installing
WebLogic 7.0

You can download WebLogic Server from the BEA site at www.bea.com. BEA
provides you with a fully functional trial version of this server for 30 days
(from the installation date), which provides ample time for running the exam-
ples within this book at the suggested pace of 21 days. BEA also provides thor-
ough online documentation for WebLogic Server and its services at
www.weblogic.com. BEA also provides a suite of examples included when you
download the server. We advise you to learn the examples in this book before
you run other examples.

27 0672324237 AppA 9/24/02 2:39 PM Page 541

At www.bea.com, click on the Download link to download BEA WebLogic Server 7.0. If
you aren’t a registered user, you must register first, and then log in to the site. You pro-
ceed by choosing the platform that you’ll be installing the WebLogic Server under from
the Choose A Platform drop-down list. In this appendix, we’ll cover an installation for
the Microsoft Windows 2000 platform. For other platforms, please follow the installation
instructions provided by BEA (for which a link will be provided on the download page).
With that mentioned, please proceed by picking Microsoft Windows NT/2000 from the
Choose A Platform list.

Click on the NET INSTALLER link, and when requested, save the file
net_platform701_win32.exe to your hard drive. You may select the directory of your
choice. However, we recommend using the c:\temp\ directory of your computer as a
temporary holding ground. When the download is complete, work through the following
list to complete the installation process:

1. Double-click on the downloaded file net_platform701_win32.exe; the Installer
will prompt you to select the BEA home directory, and the components you want
to install. Select c:\bea as the BEA home directory, which we call BEA_HOME direc-
tory. Check only on the “WebLogic Server” components to be installed. (If you’ve
previously installed any BEA product, you already have a BEA home directory; in
that case, you should use the same home directory for this server’s installation.
Otherwise, create a new BEA home directory.)

2. Later, the installer will ask you where you would like to keep the installation tem-
porary files. Use the same directory as before (c:\temp\). When you are presented
with the option of whether to perform a typical installation or a custom installation,
elect to perform the typical installation and resume by clicking the Next button.
When downloading the archives is completed, the Installer will prompt you to enter
the server installation directory. You choose c:\bea\weblogic701, which we call the
WEBLOGIC_HOME directory.

3. Next, the file installation will begin. When it completes, you’ll be presented with
the Run Configuration Wizard, to start configuring your server.

Configuring WebLogic 7.0
When the installation is complete, you must configure the WebLogic Server environ-
ment. From the Start menu, select Programs, BEA WebLogic Platform 7.0, and choose
the Configuration Wizard application. You’ll be presented with the screen in Figure A.1.

Select the WLS Domain template and give it the name mydomain. Choose the Single
Server (Standalone Server) server type and click Next. Notice that for the purpose of the
examples in this book, you’re using a single server configuration. However, for

542 Appendix A

27 0672324237 AppA 9/24/02 2:39 PM Page 542

WebLogic Application Server 7.0 543

A
real-world enterprise applications in a production environment, you would probably
install the clustered version, where load-balancing and failover capability can be utilized
for high performance and fully redundant services (see Figure A.2).

FIGURE A.1
Domain selection dia-
log.

FIGURE A.2
Server type dialog.

The screen in Figure A.3 will prompt you for the location of your domain. Input the fol-
lowing path <bea-home>\weblogic701\config. So, if your BEA home directory were
c:\bea, the domain location would be c:\bea\weblogic701\config.

Next, you’ll be presented with the server configuration parameters. You shouldn’t change
the default parameters provided because they are the most common and safest configura-
tion for the listen ports. The listen address is not provided with a default value, and if
you leave it blank, you’ll be able to access your server through the URL http://
localhost:7001/. Your configuration should look like the one shown in Figure A.4.

27 0672324237 AppA 9/24/02 2:39 PM Page 543

Now you’ll be prompted for a username and password. Choose a username and password
that you’ll remember—you won’t be able to run or administer the server without them.
We recommend using the username system, and the password administrator for this
installation or WebLogic. After you’ve entered that information, proceed by clicking
Next. When prompted to choose whether you would like to run the server as a Windows
service, you may choose No for the purposes of running the examples in this book.
Proceed by clicking Next.

Now you’ll be prompted to choose whether to install this server on the Windows Start
menu. You may choose No for the purposes of this book. Proceed by clicking Next.
Finally, you’re presented with the Configuration Summary page shown in Figure A.5,
which contains the information that you have previously entered.

Click the Create button to proceed. Configuration is now complete for the domain and
server you’ll use to run examples in this book. Now you can choose End Configuration
Wizard, and click the Next button to finish.

544 Appendix A

FIGURE A.3
Domain location dia-
log.

FIGURE A.4
Server type selection
dialog.

27 0672324237 AppA 9/24/02 2:39 PM Page 544

WebLogic Application Server 7.0 545

A

Congratulations! After you’ve entered your server’s configuration parameters in the
setEnvWeblogic.bat file located in the examples’ root directory (as per the instructions
contained in README.txt located in the same directory), you can start running the exam-
ples provided with this book.

FIGURE A.5
Configuration
Summary screen.

If you choose a different installation directory than the one we suggested
earlier (c:\bea), you must set the environment variable WEBLOGIC_HOME (in
the setEnvWebLogic.bat script) to the new location. Other parameters, such
as STYEJB_HOME (location of your examples root directory), WLS_USER (for the
username) and WLS_PW (for the password) also must be set.

Note

27 0672324237 AppA 9/24/02 2:39 PM Page 545

27 0672324237 AppA 9/24/02 2:39 PM Page 546

APPENDIX B
JBoss Application
Server 3.0

JBoss is an open-source, J2EE-compliant application server, which is currently
distributed for free. For the JBoss server examples in this book, you’ll need to
download, install, and configure JBoss version 3.0. This appendix is provided
to help you do so.

Downloading and Installing JBoss 3.0
You can download JBoss from http://sourceforge.net/projects/jboss.
JBoss provides you with a fully functional, free version of this server. JBoss
also provides thorough online documentation for the JBoss server and its ser-
vices for nominal fees. If you encounter difficulties in running any of the exam-
ples, or you would like to learn more specifics about the JBoss server, we
recommend that you consult this suite of documentation.

At the Web site http://sourceforge.net/projects/jboss, click on the Files
menu link to download JBoss 3.0.1. Select the version that is integrated with
Tomcat Web server: jboss-3.0.1_tomcat-4.0.4.zip. You proceed by

28 0672324237 AppB 9/24/02 2:39 PM Page 547

selecting the mirror site that is geographically nearest to you. In this appendix, we’ll
cover the installation of JBoss for the Microsoft Windows 2000 platform. For other plat-
forms, please follow the installation instructions provided by JBoss.

After you’ve downloaded jboss-3.0.1_tomcat-4.0.4.zip, you can unzip it into the
directory of your choice. However, we recommend that you use the c:\ directory of your
computer as the installation or home directory for JBoss. We also recommend to rename
the directory to a shorter name, such as “c\jboss3.0.1” directory to be the
<JBOSS_HOME>, which you’ll use to set up your sample scripts.

By uncompressing the downloaded file, the installation step is completed. Let’s now con-
figure the JBoss server.

548 Appendix B

The installation step will install not only the JBoss application server, but
also the Tomcat Web server under the catalina subdirectory.

Note

Configuring JBoss 3.0
After the installation is completed, you must edit a few configuration parameters before
you start running the JBoss server. The main configuration parameter you need to edit is
where JBoss can find the Java 1.3 installation directory. Here are the steps required to
add the Java installation directory to the JBoss server environment:

We assume that you already have Java 1.3 installed on your machine. If you
have not already done so, download and install the Java SDK 1.3 from
http://java.sun.com/j2se/1.3/download.html, and select Windows (all lan-
guages).

Note

1. Open the file <JBOSS_HOME>\bin\run.bat using a text editor such as Notepad.

2. Set your Java home directory by inserting the following line at the beginning of
the file (where c:\java131 is the directory of Java home on your drive):

set JAVA_HOME=c:\java131

3. Save the file with the new setting.

By identifying where Java is located on your machine, you’ve completed the configura-
tion steps.

28 0672324237 AppB 9/24/02 2:39 PM Page 548

JBoss Application Server 3.0 549

B

Running and Testing JBoss 3.0
To run and test JBoss, go to the directory <JBOSS_HOME>, and type run. For example, if
your <JBOSS_HOME> is c:\jboss30, you should open a command window and type the
following commands:

C:\cd \jboss30\bin>

C:\jboss30\bin>run

The command window will display all the actions on the screen.

To test the JBoss server, open your browser and enter the URL http://
localhost:8080/jmx-console, which will connect to the JBoss server, and should
display something similar to Figure B.1.

FIGURE B.1
Testing JBoss.

Congratulations! After you have entered your server’s configuration parameters in the
setEnvJBoss.bat file located in the examples root directory (as per the instructions con-
tained in the README.txt located in the same directory), you can start running the exam-
ples provided with this book. For your convenience, we also provide the
startJBossServer.bat script from the same examples directory to run the JBoss server.

28 0672324237 AppB 9/24/02 2:39 PM Page 549

28 0672324237 AppB 9/24/02 2:39 PM Page 550

APPENDIX C
Understanding XML

Extensible Markup Language (XML) is a markup language for describing and
defining structured data independent from application logic. XML is a subset of
the more versatile Standard Generalized Markup Language (SGML), which has
been the standard, vendor-independent way to maintain repositories of struc-
tured documents for more than a decade. Due to its complexity, SGML is not
well suited to serving documents over the Internet. XML was developed to
include all the important features of SGML, but to leave behind all the draw-
backs. Thus, XML retains the power and flexibility of SGML without any of
SGML’s complexity.

XML is a project of the World Wide Web Consortium (W3C), and the develop-
ment of the specification is being driven by the XML Working Group. XML is
not a single, predefined markup language; rather, it’s a meta language in the
sense that it enables you to design your own markup. A markup language is a
mechanism to identify structures in a document, such as HTML and RTF.

XML, like HTML, is descended from SGML, and both consist of tags. Unlike
HTML, however, XML itself doesn’t predefine any tags, rather it provides a
way to create user-defined tags and the structural relationships between them.

29 0672324237 AppC 9/24/02 2:39 PM Page 551

The semantics of an XML document either will be defined by the applications that
process them or by stylesheets. The elements of HTML are used for presentation and dis-
play purposes, whereas elements of XML are used to describe structured data and con-
tents. This appendix covers the fundamentals of XML to help you understand the
deployment descriptors of EJBs and applications, which were discussed earlier in the
book. For more details, we recommend that you refer to the book, Sams Teach Yourself
XML in 24 Hours (ISBN: 0672322137).

Exploring an XML Document
The XML specification defines a standard way to add markup to documents. XML users
can create their own tags, which relate to their content. Here is an example of an address
book, which shows a complete XML document with user-defined tags:

<?xml version=”1.0”?>

<classlist>
<student gender=”m”>
<name>
<firstname>John</firstname>
<middleinitial>M</middleinitial>
<lastname>Doe</lastname>
</name>
<address>
<street>10 Main St.</street>
<city>Sacramento</city>
<state>CA</state>
<zip>95814</zip>

</address>
<phone areacode=”916”>123-4567</phone>
<email>john.doe@acme.com</email>

</student>
</classlist>

The preceding XML document contains data about a class list, marked up with tags that
describe their contents. The <classlist> tag is the root tag, and the <name>, <address>,
<phone>, and <email> tags are used to describe different properties of the <student>’s
tag. For example, the <name> tag consists of the <firstname>, <middleinitial>, and
<lastname> tags, which contain the person’s first name, middle initial, and last name,
respectively.

Parts of an XML Document
An XML document consists of a prolog and a body. The prolog is used for declarations,
and it consists of two internal blocks: the XML version and Document Type Declaration

552 Appendix C

29 0672324237 AppC 9/24/02 2:39 PM Page 552

Understanding XML 553

C

(DTD). The XML version is an optional block, which defines the version of the XML
specification used in the document. The XML version is the first line of the document.
Here’s an example of a version declaration:

<?xml version = “1.0” ?>

The second block declares the data type declaration used. The DTD block is also
optional; it defines a set of rules to which the XML document conforms. DTD will be
covered in more detail later in this appendix.

The body of an XML document contains the root element tag that encompasses all other
markup used for other contents in the document. The earlier listing is an example of the
body section, with the <classlist> as the root tag. Figure C.1 depicts all the parts of a
XML document.

FIGURE C.1
The parts of an XML
document.

XML Document

<root>
...
 Body
...
</root>

Prolog

Version Declaration

DTD

Parts of XML Document

Summary of XML Document Markups
XML documents are composed of markup and content. Six kinds of markup can occur in
an XML document: elements, attributes, comments, marked sections, entity references,
and document type declarations. The following sections introduce each of these markup
concepts. All the markups are case-sensitive; that means, for example, the tag
<FirstName> is different from <firstname>.

Building Elements
Elements are the building blocks of an XML document. The content of an element is
surrounded by a start tag and an end tag. Some elements may be empty; in which case,

29 0672324237 AppC 9/24/02 2:39 PM Page 553

they have no content. If an element is not empty, it begins with the start tag, <element>,
and ends with the end tag, </element>. An empty element, however, is represented with
a one-tag format, such as <element/>. The <name>. . .</name> tags, in the earlier list-
ing, are an example of an element that contains subelements.

Adding Attributes
Attributes are name-value pairs that occur inside the start tags of the element. Attributes
are additional information to the element. For example, in the start tag <student
gender=”m”>, the attribute gender with the value “m” is added to the student element. In
XML, all attribute values must be quoted.

Adding Comments to Your Documents
Comments begin with “<!--” and end with “-->”. Comments can contain any data
except the literal string “--”. You can place comments anywhere in your document.
When an XML document is processed by a parser, comments are ignored. Here’s an
example of a comment:

<!-- This is just a comment -->

What’s in the CDATA Section
In a document, a CDATA section instructs the parser to ignore markup characters within
the section; in effect, markup characters within a CDATA section look like comments to
the parser. CDATA stands for (unparsed) character data.

Consider a mathematical equation, or source code, as content in an XML document. It
might contain characters that the XML parser would ordinarily recognize as markup (>
and &, for example). To prevent this, a CDATA section can be used. Consider the follow-
ing example:

<![CDATA[
if (a>5) (b = 3);

]]>

All character data between the start of the section, <![CDATA[, and the end of the section,
]]>, is passed directly to the application without parsing.

Understanding Document Type Declaration
As mentioned earlier, the DTD defines the rules of the XML document. A DTD has a
different syntax from that of an XML document.

554 Appendix C

29 0672324237 AppC 9/24/02 2:39 PM Page 554

Understanding XML 555

C

A DTD can be either an internal or an external file. It can be declared internally within
the XML document type declaration block. An externally declared DTD can be stored in
a file (here we’re using a file named student.dtd), as in the following example:

<!DOCTYPE classlist [
<!ELEMENT student (name, address?, phone?, email?)>
<!ELEMENT name (firstname, middleinitial?, lastname)>
<!ELEMENT address (street, city, state, zipcode)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zipcode (#PCDATA)>
<!ATTLIST student gender CDATA #REQUIRED>
<!ATTLIST phone areacode CDATA #REQUIRED>
]>

Elements are declared using the <!ELEMENT > tag. Special characters play an important
role in DTD syntax. For example, parentheses () are used to group names, and the ?
character indicates that the middleinitial name is optional, and can appear once or not
at all. PCDATA stands for parsed character data. Here’s how to use this file in the declara-
tion block of an XML document:

<!DOCTYPE classlist SYSTEM “student.dtd”>
<classlist>

Including Entity References
In XML, entities are used to represent special characters, which are used to refer to
repeated or varying text and to include the content of external files.

Every entity must have a unique name. You can define your own entity in the document
declaration section. Here’s an example of an entity definition:

<!DOCTYPE state[
<!ENTITY ca “California”>
]>

To use an entity, you simply reference it by name. Entity references begin with an
ampersand and end with a semicolon. The following is an example of using the defined
entity ca:

<state> &ca; </state>

The preceding line is equivalent to writing

<state> California </state>

29 0672324237 AppC 9/24/02 2:39 PM Page 555

XML also uses predefined entities, such as > (for the greater than character, >), <
(for the less than character, <), and & (for the ampersand, &).

XML Schema
A DTD is not a typed language because every element is specified as text, and its syntax
is not XML-based. An XML schema, on the other hand, is a strongly typed language in
which each element can be specified with a type, such as string or integer. It also enables
users to define their own types as structures of other types.

An XML schema follows the same syntax as the XML standard. This gives XML more
power to handle more data semantics, but without the burden of having to learn a new
language’s syntax. The trend in the industry today is to use XML schemas instead of
DTDs.

Characteristics of XML Documents
An XML document must be well formed and valid. For a document to be well formed, it
must contain a root element, which is unique and surrounds the whole document, and all
other elements must be within the root element with no overlapping. There should be no
unclosed tags. Every start tag must have an end tag. The address book example earlier is
a well-formed document.

A valid document, on the other hand, must be not only well formed, but also have a DTD
to which the well-formed document conforms. This means that the XML document must
use only the elements that have been declared in the DTD.

Some advantages of XML technology are that it is platform and system independent;
enables you to define your own tags; allows multiple displays for the same XML docu-
ment; supports the Unicode standard; and is easy to understand even for people who
don’t have any prior knowledge of it. The main disadvantages of XML are the time and
expense required in converting the existing information to XML, and that only newer
software will be able to read and understand XML.

Processing XML Documents with XML Parsers
A parser is a piece of software that processes the XML document and checks whether it
is valid or at least well formed. Several parsers are available today, including Microsoft’s
MSXML and IBM’s XML4J (same as Apache’s Xerces).

556 Appendix C

29 0672324237 AppC 9/24/02 2:39 PM Page 556

Understanding XML 557

C

Supporting the Unicode Standard
XML supports documents written and authored in languages that aren’t Latin-based.
Like Java, XML supports the Unicode standard ISO 10646. Unicode is a standard to sup-
port most languages on the globe, which some of them have very large character sets.
This means you can include structured contents in an XML document using either a sin-
gle-byte character set (such as English, French, or Hebrew) or a double-byte character set
(such as Japanese, Chinese, or Korean). The following declaration is used for documents
with the Latin-1 character set (Western European languages):

<?xml version = “1.0” encoding=”ISO-8859-1”?>

For the full XML 1.0 specification, see http://www.w3.org/XML/.

29 0672324237 AppC 9/24/02 2:39 PM Page 557

29 0672324237 AppC 9/24/02 2:39 PM Page 558

APPENDIX D
Introduction to UML
Notation

UML stands for Unified Modeling Language. UML is a widely used notation
for describing the analysis, design, and architecture of software systems. It’s the
modeling language used in visualizing, specifying, building, and documenting
software components and applications.

In this appendix, we present the fundamentals of class diagrams, sequence dia-
grams, and state transition diagrams, which are needed to understand the UML
notation used in the book. For more details, we recommend that you to refer to
Sams Teach Yourself UML in 24 Hours (ISBN: 0672322382).

Class Diagrams
A class diagram describes the static structure of the system, and provides the
domain view of the real-world entities. It consists of classes, their structure, and
their relationships to other classes. The following sections describe the notation
of a class and the type of relationships that can exist between classes.

30 0672324237 AppD 9/24/02 2:39 PM Page 559

Class Notation
A class represents both the properties (attributes) and the behavior (operations) of a
domain entity. In UML, a class is modeled as a solid rectangle with three compartments.
The top compartment holds the class name and other general properties of the class. The
middle compartment holds a list of attributes. The bottom compartment holds a list of
operations.

For example, Figure D.1 shows the EnrollmentCartEJB class. It consists of the attributes
ctx (of type SessionContext) and cart (of type HashSet). The class also contains the
operations addCourses and getCourses. The parameters and return type can be shown
for operations. For example, the method addCourses accepts the input parameter
courseIds and returns void.

560 Appendix D

FIGURE D.1
Class example.

addCourses(in courseIds : String[]) : void
getCourses() : Collection
empty() : void

ctx : SessionContext
cart : HashSet

EnrollmentCartEJB

The attribute and operation compartments can be suppressed to reduce detail in an
overview.

Stereotype Notation
A stereotype is an extension of the vocabulary of the UML that enables you to create a
new kind of building block. It represents the subclassification of a model element.

A stereotype is shown in angle brackets (<<name>>). For example, an interface is dis-
played by using class notation with the stereotype <<interface>>. Figure D.2 shows
SessionBean is an interface.

FIGURE D.2
Stereotype example.

«interface»
SessionBean

Generalization/Inheritance Relationship Notation
A generalization relationship between classes shows that the subclass shares the structure
or behavior defined in superclasses. A generalization relationship is drawn as a solid line
with an arrowhead pointing to the superclass. For example, Figure D.3 shows that
EnrollmentCart inherits from EJBObject.

30 0672324237 AppD 9/24/02 2:39 PM Page 560

Introduction to UML Notation 561

D

Association Relationship Notation
An association represents a semantic connection between two classes. Associations are
bidirectional. Figure D.4 shows the association between the Person and Company classes.

The association name describes the nature of the relationship. You can also show the
direction in which to read the name. Figure D.4 shows the name of the association is
works for and also shows the direction in which to read the association.

Association roles describe the “faces” that classes present to each other within an associ-
ation. Figure D.4 shows the role of the Person is employee and the role of the Company is
employer for this association.

Multiplicity indicates how many instances of one class may be associated with a single
instance of another class. Multiplicity values are specified in the format lower-
bound..upper-bound. An unlimited multiplicity value is denoted by an *. Figure D.4
shows that a Person is employed by one Company; a Company employs one or more
Persons.

FIGURE D.3
Generalization rela-
tionship example.

«interface»
EJBObject

«interface»
EnrollmentCart

FIGURE D.4
Association relation-
ship example.

Person Company
employee works for employer

1..* 1

Aggregation/Composition Relationship Notation
An aggregation relationship is used to show a whole or partial relationship within which
one class represents a larger thing that consists of smaller things.

An aggregation relationship is shown as a solid line with a diamond at one end. The dia-
mond end designates the whole thing.

Composition is a special form of aggregation within which the parts are inseparable from
the whole. The lifetime of the part is coincident with the lifetime of the whole. A compo-
sition relationship is shown as a solid line with a filled diamond at one end.

For example, Figure D.5 shows that OrderEJB is composed of many LineItemEJBs, and
that the name of the composition relationship is Order-LineItem.

30 0672324237 AppD 9/24/02 2:39 PM Page 561

FIGURE D.5
Composition relation-
ship example.

562 Appendix D

Realization Relationship Notation
A realization is a relationship between an interface and the class that provides the inter-
face’s services. A realized interface is represented by a dashed line with an arrowhead
pointing to the interface.

Figure D.6 shows that the class EnrollmentCartEJB implements the interface
SessionBean.

OrderEJB

LineItemEJB

1

*

Order-Line Item

FIGURE D.6
Realization relation-
ship example.

«interface»
SessionBean

EnrollmentCartEJB

State Diagrams
A state diagram describes the life history of objects of a given class.

A state diagram is used to show the following:

• The state space of a given class

• The events that cause a transition from one state to another

• The actions that result from a state change

A state diagram is a directed graph of states connected by transitions.

State Notation
A state is a condition in which an object can reside during its lifetime while it satisfies
some condition, performs an activity, or waits for an event. A state icon is a rounded rec-
tangle with a name and a compartment.

30 0672324237 AppD 9/24/02 2:39 PM Page 562

Introduction to UML Notation 563

D

For example, Figure D.7 shows the state diagram of a stateful session bean instance. It
consists of three states: Instance does not exist, Ready, and Passive.

FIGURE D.7
State diagram
example.

Instance does
not exist

ReadyPassive

ejbRemove()

business
method

timeout

ejbPassivate()

ejbActiivate()

1. newInstance()
2. setSessionContext()
3. ejbCreate<method>()

Transition Notation
A transition is a relationship between two states. It indicates that an object in the first
state will perform certain actions, and will then enter the second state when a given event
occurs. The icon for a state transition is a line with an arrowhead pointing toward the
next state. For example, Figure D.7 shows that the object in the Ready state enters the
Passive state when the ejbPassivate() event occurs.

Sequence Diagrams
A sequence diagram describes the dynamic aspects of the software system. A sequence
diagram, (also known as an object interaction diagram or OID) consists of objects (not
classes) and their interactions, which are arranged in time sequence. In particular, it
shows the objects participating in the interaction and the sequence of the method calls
between them.

As shown in Figure D.8, users (also called actors) interact with the system through send-
ing a message (method call) to Object1, which in turn interacts with other objects in a
chain reaction. The vertical dotted lines mark the lifelines that are stemmed from each
object. Horizontal arrows represent the messages (method calls) including parameters, if
any. A sequence diagram always represents a use case or a scenario of the system.

30 0672324237 AppD 9/24/02 2:39 PM Page 563

FIGURE D.8
Sequence diagram
example.

564 Appendix D

Message3()

Message2()

Actor1

ClassA : Object1 ClassB : Object2 ClassC : Object3

Message1()

30 0672324237 AppD 9/24/02 2:39 PM Page 564

APPENDIX E
Glossary of Terms

abort An operation to terminate a transaction in such a way that the values
assigned to all protected resources are unchanged from the beginning of the
transaction.

Access Control List (ACL) The methods by which interactions with
resources are limited to collections of users or programs for the purpose of
enforcing integrity, confidentiality, or availability constraints.

ACID properties The acronym for the four properties guaranteed by transac-
tions: atomicity, consistency, isolation, and durability.

activation The process of transferring an enterprise bean from secondary
storage to memory. See passivation.

adapter A software component that provides an interface from the enterprise
application to an enterprise information system (EIS), such as database or
legacy system.

applet A Java program that can be downloaded over the network and exe-
cuted by a browser. In contrast to Java applications, which are loaded from a
disk and running on an operating system shell, Java applets are programs that
are loaded from a Web site to run on a Web browser.

31 0672324237 AppE 9/24/02 2:40 PM Page 565

applet container A container that includes support for the applet programming model,
such as a Web browser.

application assembler An EJB role that composes components and modules into
larger deployable application units.

application client A client-tier component that executes in its own Java Virtual
Machine. Application clients have access to some J2EE platform APIs (JNDI, JDBC,
RMI/IIOP, JMS).

application client container A container that supports application clients and provides
a federated view of the J2EE platform APIs.

application client module A software unit that consists of one or more classes and an
application client deployment descriptor.

application component A server-side component, such as an EJB, JSP, or servlet, that
is deployed, managed, and executed on an application server. It can also be a client-side
component such as a Java applet.

Application Programming Interface (API) A set of classes and interfaces that spec-
ify a particular functionality; for example, the JDBC API.

application server A server that shares and processes application logic and connec-
tions to back-end resources. It provides infrastructure with common services to access
resources such as databases, ERP applications, and traditional mainframe applications. It
also provides a mechanism to deploy J2EE applications.

asynchronous An event that occurs at a time that is unrelated to the time at which
another event occurs. The relationship between the times at which they occur is unpre-
dictable.

atomicity A property of a transaction in which all changes made to a database are
made permanent; otherwise, all changes are rolled back.

authentication The process used by a server to verify the identity of an entity, such as
a user, a process, or a computer.

authorization The process of determining which services may be accessed by a partic-
ular entity, such as a user, a process, or a computer, and giving that entity permission to
access those services.

base class A class from which other classes or beans are derived. A base class may
itself be derived from another base class.

566 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 566

Glossary of Terms 567

E

bean-managed persistence (BMP) A relationship in which the transfer of data
between an entity bean instance’s variables and the underlying resource manager is man-
aged by the entity bean.

bean-managed transaction (BMT) A transaction in which an Enterprise JavaBean
(EJB) controls the transaction boundaries. In a bean-managed transaction, controls can
be specified using JTA.

Binary Large Object (BLOB) An advanced SQL data type, which is part of SQL-3.

browser An Internet-based tool that enables users to browse Web sites.

business logic The code that implements the functionality of an application. In the EJB
architecture, this logic is implemented by the methods of an EJB.

business method A method of an EJB that implements the business logic of an appli-
cation. Usually defined in the component interface and implemented by the bean class of
an EJB.

bytecode The compiled format for Java programs that can be run (interpreted) on any
computer with a Java virtual machine (JVM).

callback method The method in a component called by the container to notify the
component of important events in its life cycle.

caller principal A principal that is associated with an application component instance
during a method invocation. For example, an EJB instance can call the
getCallerPrincipal() method to get the principal associated with the current security
context.

certificate A digital statement that associates a particular public key with a name or
other attributes. The statement is digitally signed by a certificate authority (CA).

certificate authority (CA) A well-known and trusted entity that issues public key cer-
tificates. A certificate authority attests to a user’s real-world identity, somewhat like a
notary public.

Character Large Object (CLOB) An advanced SQL data type that is part of SQL-3.

cipher In cryptography, a coding system used to create encrypted messages.

cipher text In cryptography, text that is encrypted.

class A category of objects used in object-oriented programming. A class defines
instances and class variables and methods, and specifies the interfaces and class imple-
mentations and the immediate super class of the class.

31 0672324237 AppE 9/24/02 2:40 PM Page 567

class hierarchy The relationships between classes that share a single inheritance. All
Java classes inherit from the Object class.

class method A method that is invoked without reference to a particular object. Class
methods affect the class as a whole, not a particular instance of the class. Also called a
static method.

class variable A data item associated with a particular class as a whole—not with par-
ticular instances of the class. Also called a static field.

CLASSPATH An environmental variable that tells the Java virtual machine where to find
the class libraries, including user-defined class libraries.

client A process that remotely accesses resources of a server, which has larger comput-
ing power and memory capacity.

client certificate authentication An authentication mechanism in which a client uses
an X.509 certificate to establish its identity.

client/server The model of interaction in distributed data processing in which a pro-
gram at one location sends a request to a program at another location and awaits a
response. The requesting program is called the client, and the responding program is
called the server.

client-side program A Java program, usually embedded in an HTML page and viewed
with a Web browser.

cluster A group of servers that work together to provide an application platform with
more powerful and reliable services than a single server. A cluster appears to its clients
as a single server but it is, in fact, a group of servers acting as one. Cluster includes both
load-balancing and fail-over capabilities.

commit The operation that ends a transaction and updates the database so that other
processes can access any changes made.

Common Object Request Broker Architecture (CORBA) A standard from the
Object Management Group (OMG) for communicating between distributed objects.
CORBA uses IDLs (interface definition languages) and ORBs (object request brokers),
and communicates with IIOP (Internet Inter Operability Protocol).

compiler A program to translate source code into code to be executed by a computer.
The Java compiler translates source code written in Java into bytecode to run on the
JVM.

component contract The contract between a component and its container. The contract
includes life cycle management of the component, a context interface that the instance

568 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 568

Glossary of Terms 569

E

uses to obtain various information and services from its container, and a list of services
that every container must provide for its components.

components-off-the-shelf (COTS) Components that are provided by EJB providers to
be integrated or assembled together into enterprise applications.

concurrency A concept that refers to multiple users or programs simultaneously shar-
ing the same database. Transactions and locks are used to give each of these a consistent
view of the database.

connection A session with a database opened by a JDBC application program, so-
called because it represents a connection between the program and a (usually remote)
database. At any one time, only one transaction can be associated with a connection.

connector A standard extension mechanism for containers to provide connectivity to
enterprise information systems (EIS). A connector is specific to an EIS and consists of a
resource adapter and application development tools for EIS connectivity.

consistency A successful transaction transforms a database from a previous valid state
to a new valid state.

constructor A special class method that has the same name as the class and is used to
construct and possibly initialize objects of its class type.

container An entity that provides life cycle management, security, deployment, and
runtime services to components. Each type of container (EJB, Web, JSP, servlet, applet,
and application client) also provides component-specific services.

container-managed relationship (CMR) A declarative relationship between an entity
bean and another entity bean to map the join relationship of data records in a database.

container-managed persistence (CMP) Data transfer between an entity bean’s vari-
ables and a resource manager managed by the entity bean’s container.

container-managed transaction (CMT) A transaction whose boundaries are defined
by an EJB container. An entity bean must use container-managed transactions.

conversational state The set of all values of members of a session bean that can be
stored by serializing the bean instance.

cookie A piece of data that the server creates to store user information on the user’s
disk.

credentials The information describing the security attributes of a principal, such as a
password. Credentials can be acquired only through authentication or delegation.

31 0672324237 AppE 9/24/02 2:40 PM Page 569

cursor A cursor is used to reference the current position in a result set of a SQL opera-
tion using JDBC connection.

Customer Information Control System (CICS) An IBM-licensed program that
enables transactions entered at remote terminals to be processed concurrently by user-
written application programs.

data abstraction A data type with a private representation and a public set of opera-
tions. The Java language uses the concept of classes to implement data abstraction.

data bean A type of JavaBean component used to transfer data between the EJB tier
and the Web tier. It’s also a common design pattern called Value Object.

Data Definition Language (DDL) A subset of SQL commands dealing with database
objects. The most common DDL commands are CREATE TABLE and DROP TABLE.

Data Manipulation Language (DML) A subset of SQL commands dealing with data-
base objects. The most common DML commands are SELECT, DELETE, and UPDATE.

database A collection of interrelated or independent data items stored together without
redundancy to serve one or more applications.

database management system (DBMS) A program or set of programs that enables
users to structure and manipulate the data in the tables of a database. A DMBS ensures
privacy, recovery, and integrity of data in a multiuser environment.

database system A shorter term for a database management system (DBMS).

data type A programming classification indicating the type of data in a variable. Some
commonly used data types are various forms of integers, character, and Boolean.

deadlock A condition that can occur when two or more users are waiting for each
other to give up locks. Advanced DBMSs can detect deadlocks and abort one of the user
transactions when this happens.

declaration A statement that establishes an identifier and associates attributes with it,
without necessarily reserving its storage (for data) or providing the implementation (for
methods).

decryption The process of taking cipher text (encrypted data) and a cryptographic key
and producing plain text (the original unencrypted data).

default The value of a variable assumed by a program if a value is not supplied by the
user.

delegation The act by which a specific principal authorizes another principal to use its
identity or privileges. Such authorization can be granted with restrictions.

570 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 570

Glossary of Terms 571

E

Denial of Service (DoS) attack A security attack in which an organization’s Web site
is deprived of the services it offers, caused by an overwhelming false user requests. For
example, an enterprise Web site could be forced to cease operation, thus causing the
enterprise a great deal of time and money.

deployer An EJB role that installs modules and J2EE applications into an operational
environment.

deployment The process of placing an application into a distributed environment and
making the application available for use. Deployment can include such tasks as installa-
tion, configuration, and administration of various parts of the application.

deployment descriptor An XML file provided with each J2EE module that describes
all the runtime properties of components and how they should be deployed into a specific
container. The deployment descriptor is processed by the application server’s deployment
tool before starting to deploy each component with its supplied parameters.

deprecation Refers to an entity that is no longer recommended by the current specifi-
cation, and it may no longer exist in a future release.

digital signature A string of bits that is computed from the signed data and private key
of an entity. A digital signature can be used to verify that the data came from the entity
and was not modified in transit.

dirty read A dirty read occurs when a transaction reads data from a database that has
been modified by another transaction, and that data has not yet been committed.

distributed application An application made up of distinct components running in
separate runtime environments, usually on different platforms connected via a network.
Typical distributed applications are two tier, three tier, and multitier.

distributed computing An application design and implementation strategy that sepa-
rates an application into units that are executed on different computers and communicate
through a network. For example, an application can be separated into three distributed
units: a user interface unit, a processing unit, and a storage unit.

distributed object An object that can be located anywhere on a network. Distributed
objects are packaged as independent units of code that can be accessed by remote clients
via method invocations.

distributed transaction Transactions that are demarcated and coordinated by an exter-
nal transaction manager via the two-phase commit protocol across multiple resource
managers. Also known as a global transaction.

31 0672324237 AppE 9/24/02 2:40 PM Page 571

distributed transaction processing (DTP) A form of processing in which multiple
application programs update multiple resources (such as databases) in a coordinated
manner. Programs and resources can reside on one or more computers across a network.

document type definition (DTD) A file that defines how the markup tags in SGML
and XML documents should be interpreted by the application presenting the document.

domain A collection of servers, services, interfaces, machines, and associated resource
managers defined by a single configuration file.

double-byte character set (DBCS) A set of characters in which each character is rep-
resented by two bytes, commonly called Unicode. Languages such as Japanese and
Chinese, which contain more symbols than can be represented by 256 code points,
require double-byte character sets. Compare with single-byte character set.

durability Changes that a transaction makes to a database will survive future system or
media failures.

EIS resource An entity that provides EIS-specific functionality to its clients. Examples
are a record or set of records in a database system, a business object in an ERP system,
and a transaction program in a transaction processing system.

EJB container A container that implements the EJB component contract of the J2EE
architecture. This contract specifies a runtime environment for enterprise beans that
includes security, concurrency, life cycle management, transaction, deployment, and
other services. An EJB container is provided by an EJB or J2EE server.

EJB container provider A vendor that supplies an EJB container.

EJB context An object that allows an enterprise bean to invoke services provided by
the container and to obtain the information about the caller of a client-invoked method.

EJB home object An object that provides the life cycle operations (create, remove,
find) for an enterprise bean.

EJB module A software unit that consists of one or more enterprise beans and an EJB
deployment descriptor.

EJB object An object whose class implements the enterprise bean’s remote interface.
A client never references an enterprise bean instance directly; a client always references
an EJB object. The class of an EJB object is generated by the container’s deployment
tools.

EJB Query Language (EJB-QL) A subset of SQL that is used to write declarative
queries of a CMP’s methods in the bean’s deployment descriptor.

572 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 572

Glossary of Terms 573

E

EJB server Software that provides services to an EJB container. The J2EE architecture
does not specify the contract between EJB server and container. An EJB server may host
one or more EJB containers.

EJB server provider A vendor that supplies the EJB server.

encapsulation The hiding of a software object’s internal representation. The object
provides an interface that queries and manipulates the data without exposing its underly-
ing structure.

encryption The process of scrambling data to prevent unauthorized disclosure, while
still preserving access to the original data by authorized users.

encryption key pair An encryption key pair consists of the public key used to encrypt
information and a private key used to decipher the information.

Enterprise Application Archive (EAR) file A JAR archive that contains a J2EE appli-
cation.

Enterprise Application Integration (EAI) A concept in which all services, applica-
tions, and products in an enterprise can be integrated to work together.

enterprise applications Applications written using the Enterprise JavaBeans architec-
ture are scalable, transactional, and secure.

enterprise bean provider An application programmer who produces EJB classes,
component and home interfaces, and deployment descriptor files, and packages them in
an EJB .jar file.

enterprise information system (EIS) The applications that comprise an enterprise’s
existing system for handling enterprise-wide information. These applications provide an
information infrastructure for an enterprise. An EIS offers a well-defined set of services
to its clients. Examples of EIS include enterprise resource planning (ERP) systems,
mainframe transaction processing systems, and legacy database systems.

Enterprise JavaBeans (EJB) A component architecture for the development and
deployment of object-oriented, distributed, enterprise applications. Applications written
using the Enterprise JavaBeans architecture are scalable, transactional, and secure.

enterprise resource planning (ERP) A business management system that integrates
all facets of the business, including planning, manufacturing, sales, and marketing.

entity bean A type of EJB that represents persistent data maintained in a database. An
entity bean can manage its own persistence or it can delegate this function to its con-
tainer. An entity bean is transactional, and is identified by a primary key. The main two
categories of an entity bean are BMP and CMP.

31 0672324237 AppE 9/24/02 2:40 PM Page 573

environment variable A string of specific value that controls a certain attribute of an
application. An environment variable is made available to the application as it starts.

exception An event during program execution that prevents the program from continu-
ing normally; generally, an error. The Java programming language supports exceptions
with the try, catch, and throw keywords.

exception handler A block of code that reacts to a specific type of exception. If the
exception is for an error that the program can recover from, the program can resume exe-
cuting after the exception handler has executed.

Extensible Markup Language See XML.

failover The ability to transparently handle failure of a service invocation by handing
the request off to another service provider.

firewall A firewall monitors traffic between an internal network and the Internet and
regulates the type of network traffic that can pass through it.

foreign key A foreign key is an attribute of a table that is used to refer to rows of
another table. The attribute value is the primary key value of the other table.

form-based authentication An authentication mechanism in which a Web container
provides an application-specific form for logging in.

garbage collection (GC) The automatic detection and freeing of memory that is no
longer in use. The Java runtime system performs garbage collection so that programmers
never explicitly free objects.

global transaction See distributed transaction.

graphical user interface (GUI) Refers to the techniques involved in using graphics,
along with a keyboard and a mouse, to provide an easy-to-use interface to some program.

group A set of users that share some characteristics. An ACL can assign permissions to
a group, which are applied by default to each user of that group.

home handle An object that can be used to obtain a reference of the EJB’s home inter-
face. A home handle can be serialized and stored to stable storage and deserialized to
obtain the reference.

home interface One of two interfaces (the home interface and the component inter-
face) for an enterprise bean. The home interface defines zero or more methods for creat-
ing and removing an enterprise bean.

host A computer that is attached to a network and provides services other than acting
as a communication switch.

574 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 574

Glossary of Terms 575

E

HTTPS HTTP layered over the SSL protocol.

Hypertext Markup Language (HTML) The basic language that is used to build
hypertext documents on the World Wide Web. It is used in basic, plain ASCII-text docu-
ments, but when those documents are processed by a Web browser, the document can
display formatted text, color, a variety of fonts, graphics images, special effects, hyper-
text jumps to other Internet locations, and information forms.

Hypertext Transfer Protocol (HTTP) The Internet protocol, based on TCP/IP, used to
fetch hypertext objects from remote hosts.

infrastructure A set of hardware, software, components, and services that support
enterprise computing and applications needs.

inheritance A mechanism by which a class can use the attributes and methods defined
in its base (super) classes.

instance method Any method that is invoked with respect to an instance of a class.
Also called simply a method. See also class method.

instance variable A data item that is associated with a particular object. Each instance
of a class has its own copy of the instance variables defined in the class. See also class
variable.

integrated development environment (IDE) A programming environment integrated
into an application. Examples include JBuilder, Visual Age, and Visual Cafe.

integration The ability of applications to share information or to process indepen-
dently by requesting services and satisfying service requests. In a well-integrated system,
all the parts have a purpose, and the parts combine effectively to achieve the purpose of
the overall system.

interface A set of methods defined (declared with its signatures) to be accessed by any
class in the class hierarchy.

Interface Definition Language (IDL) APIs written in Java that provide standards-
based interoperability and connectivity with CORBA.

internationalization The preparation of software for proper behavior in multiple
locales and foreign languages.

Internet A network of networks, consisting of literally millions of hosts around the
world. This network uses the TCP family of protocols to communicate.

Internet Interoperability Protocol (IIOP) The protocol used by CORBA clients to
communicate with ORBs over the Internet.

31 0672324237 AppE 9/24/02 2:40 PM Page 575

Internet Protocol (IP) One of the protocols in the TCP family. IP specifies the format
of messages (called packets) and the addressing scheme.

interpreter A module that alternately decodes and executes every statement in some
body of code. The Java interpreter decodes and executes bytecode for the Java virtual
machine. See also compiler.

intranet A private network, inside a company or organization, that uses the same kinds
of software that you would find on the public Internet.

invocation The process of performing a method call on a distributed object, with or
without knowledge of the object’s location on the network.

IP multicast A network protocol used in sending out data to distributed servers sharing
one subnet. An unreliable packet delivery service supported by all operating systems and
most routers, and used in clustering services.

isolation Changes that a transaction makes to a database are not visible to other opera-
tions until the transaction completes its work.

isolation level See transaction isolation level.

J2EE application Any deployable unit of J2EE functionality. This can be a single
module or a group of modules packaged into an .ear file with a J2EE application deploy-
ment descriptor. J2EE applications are typically engineered to be distributed across mul-
tiple computing tiers.

J2EE architecture Enterprise architecture, based on Java 2, that is used to develop,
deploy, and manage enterprise applications. It provides a component-based framework,
and infrastructure services through a set of unified APIs.

J2EE connector architecture (JCA) An architecture for integration of J2EE products
with enterprise information systems (EISs).

J2EE product provider A vendor that supplies a J2EE product.

J2EE server The runtime portion of a J2EE product. A J2EE server provides Web con-
tainer and/or EJB container.

J2EE tool provider An organization or software vendor that provides tools used for
the development, packaging, and deployment of J2EE applications.

JAR Java Archive (JAR) file A platform-independent file format that permits many
files to be aggregated into one file.

Java An object-oriented programming language developed by Sun Microsystems, Inc.
A write-once, run-anywhere programming language.

576 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 576

Glossary of Terms 577

E

Java 2 Platform, Enterprise Edition (J2EE platform) An environment for develop-
ing and deploying enterprise applications. The J2EE platform consists of a set of ser-
vices, application programming interfaces (APIs), and protocols that provide the
functionality for developing multi-tiered, Web-based applications.

Java 2 Platform, Micro Edition (J2ME) J2ME is the Java platform technology devel-
oped for consumer wireless devices.

Java 2 Platform, Standard Edition (J2SE platform) The core Java technology plat-
form.

Java API for XML Processing (JAXP) A Java package that is used to parse XML
documents in Java applications.

Java Authentication and Authorization Service (JAAS) A Java package that enables
services to authenticate and enforce the use of access controls upon users.

Java Database Connectivity (JDBC) An industry standard for database-independent
connectivity between the Java platform and a wide range of databases.

Java Development Kit (JDK) A software development environment for writing
applets and applications in the Java programming language.

Java Management Extensions (JMX) Java standard API for application management.

Java Message Service (JMS) The Java standard API used to access message-oriented
middleware (MOM) by enterprise applications. Includes messaging products such as
IBM’s MQ Series.

Java Naming and Directory Interface (JNDI) The Java standard API for accessing
directory services, such as LDAP, COS Naming, and others.

Java Remote Method Invocation (RMI) A distributed object model for Java program
to Java program, in which the methods of remote objects written in the Java program-
ming language can be invoked from other Java virtual machines, possibly on different
hosts.

Java Runtime Environment (JRE) A runtime version of the Java Development Kit
(JDK) for end users and developers who want to redistribute only the runtime environ-
ment. It consists of the JVM, the Java core classes, and supporting files.

Java Security Manager Works with the Java API to define security boundaries and
enabling programmers to establish a custom security policy for their Java applications.

Java Transaction API (JTA) A high-level application transaction interface and a Java
mapping to XA. Allows an application to control user transaction boundaries through the
use of the two-phase commit protocol.

31 0672324237 AppE 9/24/02 2:40 PM Page 577

Java Transaction Service (JTS) Specifies the implementation of a transaction man-
ager that supports JTA and implements the Java mapping of the OMG Object Transaction
Service (OTS) 1.1 specification at the level below the API.

Java Virtual Machine (JVM) A software execution engine that safely and compatibly
executes the bytecodes in Java class files on a microprocessor (whether in a computer or
in another electronic device).

Java Web Server A secure, platform-independent HTTP server to speed and simplify
the deployment and management of Internet and intranet Web sites.

JavaBean Activation Framework (JAF) A Java package to support for MIME
(Multipurpose Internet Mail Exchange) data types. It’s required by the JavaMail API.

JavaBeans JavaBeans is a portable, platform-independent component model written in
Java.

Javadoc A tool that generates API documentation in HTML format from comments in
Java source code.

JavaMail An API for sending and receiving email, used by Java applications.

JavaServer Pages (JSP) An extensible Web technology that uses template data, cus-
tom elements, scripting languages, and server-side Java objects to return dynamic content
to a client. Typically, the template data is HTML or XML elements; in many cases, the
client is a Web browser.

JDBC driver A Java program that implements the JDBC interface. It is loaded by the
JDBC driver manager.

JDBC-ODBC bridge General database connectivity through the ODBC client library,
created as a joint project between Intersolve and JavaSoft. Allows Java connectivity to
any relational database.

JMS queue A simple data structure to send/receive asynchronous messages from one
client to another. See point-to-point.

JMS topic A simple data structure to publish/subscribe asynchronous delivery of mes-
sages from one client to another. See point-to-point.

JSP See JavaServer Pages.

JSP action A JSP element that can act on implicit objects and other server-side objects
or can define new scripting variables.

JSP application A Web application, written using the JSP technology, that can contain
JSP pages, servlets, HTML files, images, applets, and JavaBeans components.

578 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 578

Glossary of Terms 579

E

JSP container A container that provides the same services as a servlet container and
an engine that interprets and processes JSP pages into a servlet.

JSP declaration A JSP scripting element that declares methods, variables, or both, in a
JSP file.

JSP directive A JSP element that gives an instruction to the JSP container and is inter-
preted at translation time.

JSP element A portion of a JSP page that is recognized by a JSP translator. An ele-
ment can be a directive, an action, or a scripting element.

JSP expression A scripting element that contains a valid scripting language expression
that is evaluated, converted to a string, and placed into the implicit out object.

JSP file A file named with a .jsp extension that contains standard HTML tags, core
JSP tags, custom JSP tags, and scripting language statements in order to display dynamic
pages in a Web browser.

JSP page A text-based document using fixed template data and JSP elements that
describes how to process a request to create a response.

JSP scripting element A JSP declaration, scriptlet, or expression, whose tag syntax is
defined by the JSP specification, and whose content is written according to the scripting
language used in the JSP page.

JSP scriptlet A JSP scripting element containing any code fragment that is valid in the
scripting language used in the JSP page.

JSP tag A piece of text between a left angle bracket and a right angle bracket that is
used in a JSP file as part of a JSP element.

JSP tag library A collection of tags identifying custom actions described via a tag
library descriptor (TLD) and Java classes. It can be imported into any JSP file and used
with various scripting languages.

just-in-time (JIT) compiler A compiler that converts all the bytecode into native
machine code just as a Java program is run. This results in run-time speed improvements
over code that is interpreted by a Java virtual machine.

legacy application An application, often internally developed, on which an organiza-
tion has invested considerable time and money. Legacy applications may exist with many
other similar legacy applications in a centralized environment. While most legacy appli-
cations run on mainframes; minicomputers and some large Unix systems can be consid-
ered legacy systems using internally developed legacy applications.

31 0672324237 AppE 9/24/02 2:40 PM Page 579

Lightweight Directory Access Protocol (LDAP) A set of protocols for accessing
information directories. These directories can be physically distributed across multiple
systems for access by many applications within an enterprise. LDAP is based on the
standards contained within the X.500 standard, but is significantly simpler.

load balancing A mechanism to distribute processing and communications activity
evenly across a computers sharing the same load. It is part of clustering technology
offered by application server vendors.

local interface One of two interfaces for an EJB. The local interface defines the busi-
ness methods callable by a local client. See remote interface.

local transaction A transaction that accesses a single database or file and is controlled
by a single, local resource manager as a transaction participant.

lock Locks allow a database transaction to mark data (for example, rows or tables) it is
using to exclude a concurrent user from performing certain operations on the same data.

man-in-the-middle attack An attack in which an enemy inserts a machine into a net-
work, and then captures, possibly modifies, and retransmits all messages between two
parties.

message A formula for sending data and values across applications. It consists of a
header, containing message ID data, and a body containing user-defined information.

message-driven bean (MDB) A type of EJB that handle asynchronous messages
received from JMS destination. The message-driven bean selects an instance from a pool
to process the message.

message-oriented middleware (MOM) A product used to deliver asynchronous mes-
sages from one application to another.

metadata Data about data. It describes, for example, the types of data in the database
schema.

method A procedure associated with a class or interface, defining one of the legal
operations on instances of the class or interface.

method call A communication from one object to another that requests the receiving
object to execute a method. It consists of a method name that indicates the requested
method and the arguments to be used in executing the method.

method permission An authorization rule that determines who is permitted to execute
one or more EJB methods. It can be specified in the EJB’s deployment descriptor.

580 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 580

Glossary of Terms 581

E

Model-View-Controller (MVC) An architecture pattern that provides separation of
application parts into more independent layers, which can be separately developed, and
managed.

module A software unit that consists of one or more J2EE components of the same
container type and one deployment descriptor of that type.

multithreading The ability of an operating system to execute different parts of an
application, called threads, at the same time, allowing the application to perform multiple
tasks simultaneously.

multitier An application architecture that includes clients (one tier), middleware (one
or more tiers), and brokers, application servers, and other kinds of resources suppliers
(one or more tiers).

mutual authentication An authentication mechanism employed by two parties for the
purpose of proving each other’s identity to one another.

name binding The association of a name with an object reference. Name bindings are
stored in a naming context.

naming context A set of associations between distinct, atomic, human-readable identi-
fiers and objects.

nonrepeatable read Data returned by a SQL query that would be different if the query
were repeated within the same transaction. Nonrepeatable reads can occur when other
users are updating the same data you’re reading.

object The building blocks of object-oriented programs. An object is a programming
unit consists of data (instance variables) and functionality (instance methods). See also
class.

object request broker (ORB) A CORBA term designating the means by which
objects transparently make requests and receive responses from objects, whether they are
local or remote.

Object Transaction Service (OTS) A definition of the interfaces that permit CORBA
objects to participate in transactions.

object-oriented programming (OOP) A programming approach based on the con-
cepts of data abstraction, inheritance, and polymorphism.

online transaction processing (OLTP) A method of assuring the integrity of each
database transaction, usually through a process called two-phase commit.

31 0672324237 AppE 9/24/02 2:40 PM Page 581

Open Database Connectivity (ODBC) A Microsoft-developed C database API that
allows access to database management systems using SQL.

open system A system that implements specified common standards across different
computer vendors. Implementing open system standards for communication allows com-
puters from different vendors to communicate with each other.

operation A method or service that can be requested of an object.

overloading An object-oriented programming technique that allows redefinition of
methods when the methods are used with class types.

overriding Providing a different implementation of a method in a subclass of the class
that originally defined the method.

package A program element that contains related classes and interfaces.

parametric authorization The ability to perform authorization decisions on protected
resources taking the context and target of the business request into account.

parent class Same as base class or super class.

passivation The process of transferring an enterprise bean from memory to secondary
storage. See activation.

permission Defines access to a system resource. In order to allow access to a resource,
the corresponding permission must be explicitly granted to the principal attempting
access. This is ability to carry out certain operations on certain objects, as defined in an
access control list.

persistence The protocol for transferring the state of an entity bean between its
instance variables and an underlying data elements in a database.

phantom read A condition occurs when your program fetches a record that has been
inserted by another user’s transaction, and the other transaction subsequently aborts,
erasing the record you fetched.

platform The combination of system hardware and software that supports an applica-
tion.

plug-in A software module that adds functionality to a larger application.

point-to-point (PTP) A JMS messaging paradigm or model that send and receive
asynchronous messages, which are exchanged through a queue. See JMS queue.

portability To transfer a program from one hardware or software environment to
another by rewriting sections of the code that are machine dependent, and then recompil-
ing the program on the new environment.

582 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 582

Glossary of Terms 583

E

primary key An attribute or set of attributes that are unique among rows of a table. A
table’s primary key is used to refer to rows of the table.

principal The identity assigned to an entity as a result of authentication.

private key An encryption/decryption key known only to the party or parties that
exchange secure messages.

privilege A security attribute that does not have the property of uniqueness and that
may be shared by many principals.

process A collection of code, data, and other system resources, including at least one
thread of execution, that performs a data processing task.

protocol A set of rules that govern the format and timing of messages sent and
received over a communication link. For example, TCP/IP, RMI, and IIOP are protocols.

proxy To transfer data processing tasks to another program or device.

proxy server A proxy server sends requests to another server for processing, which is
invisible to the end user.

pub/sub A JMS messaging paradigm or model that publish and subscribe asynchro-
nous messages, which are exchanged through a topic. See JMS topic.

public key A value provided by a certificate authority that, combined with a private
key, can be used to encrypt and decrypt messages.

public key algorithm An algorithm for encrypting or decrypting data with a public or
private key. A private key is typically used to encrypt a message digest; in such an appli-
cation, the public key algorithm is called a message digest encryption algorithm. A pub-
lic key is typically used to encrypt a content-encryption key, or session key; in such an
application, the public key algorithm called a key-encryption algorithm. An example of a
public key algorithm is RSA.

query A SQL SELECT statement.

realm A domain for a set of security attributes. The realm organizes security informa-
tion and defines its range of operations. A realm has its own idea of principals and per-
missions.

record A row of a table or a row of the result set returned by a query. Also called
tuple.

recovery In transaction systems, after a failure, the ability to restore the system to the
most recently committed, and therefore consistent, state.

31 0672324237 AppE 9/24/02 2:40 PM Page 583

re-entrant EJB An enterprise bean that can handle multiple simultaneous, interleaved,
or nested invocations that will not interfere with each other.

reference A data element whose value is an address.

referential integrity Correctness of foreign keys among table of a database. A DBMS
maintains referential integrity by ensuring that there exists a row in the referenced table
for every reference to the table.

relation A table, the basic data structure of the relational model.

relational database management system (RDBMS) DBMS for a relational database
model.

reliability The extent to which a system produces the correct output on repeated trials
while meeting the performance requirement.

remote interface One of two interfaces for an EJB. The remote interface defines the
business methods callable by a remote client. See local interface.

remote method invocation (RMI) A technology that allows an object running in one
Java virtual machine to invoke methods on an object running in a different Java virtual
machine.

remote procedure call (RPC) Executing what looks like a normal procedure call (or
method invocation) by sending network packets to some remote host.

remove method Method defined in the home interface and invoked by a client to
destroy an enterprise bean.

resource adapter (RA) A system-level software driver that is used by an EJB con-
tainer or an application client to connect to an EIS. A resource adapter is typically spe-
cific to an EIS. It is available as a library and is used within the address space of the
server or client using it.

Resource Adapter Archive (RAR) A compressed .rar file used to load classes and
other files required to run a resource adapter on a resource manager. An interface and
associated software that provides access to a collection of information and processes; for
example, a database management system.

resource manager Provides access to a set of shared resources. A resource manager
participates in transactions that are controlled and coordinated by a transaction manager.
A resource manager is typically in different address space or on a different machine from
the clients that access it.

resource manager connection An object that represents a session with a resource
manager.

584 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 584

Glossary of Terms 585

E

resource manager connection factory An object used for creating a resource manager
connection.

RMI/IIOP A version of RMI implemented to use the CORBA IIOP protocol. RMI
over IIOP provides interoperability with CORBA objects.

role (development) The function performed by a party in the development and deploy-
ment phases of an application developed using J2EE technology.

role (security) An abstract logical grouping of users that is defined by the application
assembler. When an application is deployed, the roles are mapped to security identities,
such as principals or groups, in the operational environment.

role mapping The process of associating the groups and/or principals recognized by
the container to security roles specified in the deployment descriptor. Security roles have
to be mapped by the deployer before the component is installed in the server.

rollback The point in a transaction when all updates to any resources involved in the
transaction are reversed.

scalability The extent to which developers can apply a solution to problems of differ-
ent sizes. Ideally, a solution should work well across the entire range of complexity. In
practice, however, there are usually simpler solutions for problems of lower complexity.

schema A description of the tables in a database, their attributes, and their relation-
ships. Every database is an instance of some schema.

Secure Sockets Layer (SSL) A protocol that allows communication between a Web
browser and a server to be encrypted for privacy.

security attributes A set of properties associated with a principal. Security attributes
can be associated with a principal by an authentication protocol and/or by a J2EE prod-
uct provider.

security context An object that encapsulates the shared state information regarding
security between two entities.

security permission A mechanism, defined by J2SE, used by the J2EE platform to
express the programming restrictions imposed on application component providers.

security policy The data that defines what protection a system’s security service must
provide. There are many kinds of security policies. For example, access control policy
and audit policy.

serialize A way to pass objects from one JVM to another. Objects must be serialized
before they are sent.

31 0672324237 AppE 9/24/02 2:40 PM Page 585

servlet A server-side Java component that is usually executed in response to an HTTP
request and produces its output in a browser.

servlet container A container that provides the network services over which requests
and responses are sent, decodes requests, and formats responses. All servlet containers
must support HTTP as a protocol for requests and responses, but may also support addi-
tional request-response protocols, such as HTTPS.

servlet context An object that contains a servlet’s view of the Web application within
which the servlet is running. Using the context, a servlet can log events, obtain URL ref-
erences to resources, and set and store attributes that other servlets in the context can use.

session An object used by a servlet to track a user’s interaction with a Web application
across multiple HTTP requests.

session bean A session bean is a transient EJB instance that serves a single client.
Session beans tend to implement procedural logic.

Simple API for XML (SAX) An event-driven, serial-access mechanism for accessing
XML documents.

Simple Object Access Protocol (SOAP) SOAP provides a way for applications to
communicate with each other over the Internet, independent of platform. Unlike OMG’s
IIOP, SOAP uses XML over HTTP in order to penetrate server firewalls. SOAP relies on
XML to define the format of the information and then adds the necessary HTTP headers
to send it.

single-byte character set A set of characters in which each character is represented by
a one-byte code, commonly called ASCII.

skeleton A server-side representation of a remote object that takes serialized requests
from a stub, deserializes and unpacks it, and submits it as a method call to be invoked on
the object’s implementation. The server-side skeleton is responsible for deserializing and
unpacking the request from its companion client-side stub.

socket A low-level endpoint of communication to which a name may be bound. The
logical endpoint of a TCP/IP connection. An application accesses a TCP/IP connection
through a socket.

SQL/J A set of standards that includes specifications for embedding SQL statements in
methods in the Java programming language and specifications for calling Java static
methods as SQL stored procedures and user-defined functions.

SQL-93 The version of SQL standardized by ANSI in 1993. Sometimes called SQL-3.

586 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 586

Glossary of Terms 587

E

stack trace Java exceptions can be logged to a stack trace file that can be used for
debugging.

Standardized Generalized Markup Language (SGML) An ISO/ANSI/ECMA stan-
dard that specifies a way to annotate text documents with information about types of sec-
tions of a document.

stateful session bean This Java bean maintains state on behalf of a specific client. It
can be used to manage a process through multiple interactions.

stateless session bean A session bean with no conversational state. All instances of a
stateless session bean are identical.

stored procedure A procedure that is part of a relational database.

Structured Query Language (SQL) The standardized relational database language for
defining database objects and manipulating data.

stub A client-side representation of a remote object that is used to invoke methods on
the implementation of the remote object. Defines the interface to the remote object
implementation of an object. The stub is responsible for packaging up the client request,
serializing it, and shipping it to the companion skeleton on the server side.

subclass A class that is derived from a particular class, perhaps with one or more
classes in between. See also base class, parent class, and superclass.

subject Represents a grouping of related information for a single entity, such as a per-
son. Such information includes the subject’s identities as well as its security-related
attributes (for example, passwords and cryptographic keys). Subjects may potentially
have multiple identities.

superclass A class from which a particular class is derived, perhaps with one or more
classes in between. See also subclass and subtype.

system administrator An EJB role that is responsible for configuring and administer-
ing the enterprise’s computers, networks, and software systems.

thin client A system that runs a very light operating system with no local system
administration and executes applications delivered over the network.

thread The basic unit of program execution. A process can have several threads run-
ning concurrently, each performing a different job, such as waiting for events or perform-
ing a time-consuming job that the program doesn’t need to complete before going on.

three-tier JDBC driver A driver that implements the JDBC API by making calls to a
middle-tier server that translates the calls into DBMS-specific protocols and makes the
calls to the DBMS server.

31 0672324237 AppE 9/24/02 2:40 PM Page 587

throws A Java programming language keyword used in method declarations that spec-
ify which exceptions are not handled within the method but rather passed to the next
higher level of the program.

time-to-live (TTL) An attribute of a JMS message that specifies how long the message
will survive, before it expires, and then will be removed from the system.

transaction A complete unit of work that transforms a database from one consistent
state to another.

transaction attribute A value specified in an EJB’s deployment descriptor that is used
by the EJB container to control the transaction scope when the enterprise bean’s methods
are invoked. A transaction attribute can have the following values: Required,
RequiresNew, Supports, NotSupported, Mandatory, Never.

transaction isolation level The degree to which the intermediate state of the data being
modified by a transaction is visible to other concurrent transactions and data being modi-
fied by other transactions is visible to it.

transaction manager Provides the services and management functions required to
support transaction demarcation, transactional resource management, synchronization,
and transaction context propagation, among different resource managers using XA two-
phase commit protocol (2PC).

Transmission Control Protocol based on IP (TCP/IP) This is an Internet protocol
that provides for the reliable delivery of streams of data from one host to another. See
also IP.

two-phase commit (2PC) A method of coordinating a single transaction across more
than one resource manager. 2PC guarantees data integrity by ensuring that transactional
updates are committed in all the participating databases, or are fully rolled back out of all
the databases, reverting to the state prior to the start of the transaction.

two-tier architecture A client/server relationship in which the user interface runs on
the client and the database is stored on the server. The actual application logic can run on
either the client or the server.

two-tier JDBC driver A JDBC driver that translates JDBC calls directly into a DBMS
vendor’s specific protocol.

Unicode A 16-bit character encoding scheme used to display, process, and exchange
text written in most of the world’s languages. In Java, strings are Unicode by default.

Unified Modeling Language (UML) A widely used notation for analysis, design,
implementation, and test of object oriented software.

588 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 588

Glossary of Terms 589

E

uniform resource identifier (URI) A compact string of characters for identifying an
abstract or physical resource. A URI is either a URL or a URN.

uniform resource locator (URL) Used for identifying and locating resources over the
Internet.

uniform resource name (URN) A unique identifier that identifies an entity but doesn’t
tell where it is located. A system can use a URN to look up an entity locally before try-
ing to find it on the Web.

unit of work (UOW) Synonym of transaction.

Universal Description Discovery and Integration (UDDI) Provides a global, public,
XML-based, online business registry where businesses register and advertise their web
services. UDDI defines an Internet version of the white and yellow pages in a telephone
directory.

university registration system (URS) Sample J2EE application provided on Day 21
of this book. Excerpts from URS are used to demonstrate the examples written for some
lessons.

View bean A type of JavaBean component used to transfer data between the Web tier
and the Client tier.

warning An exceptional condition that does not interrupt execution of an application
program, such as truncation of data values. JDBC provides a getWarnings() method to
obtain this information.

Web application An application written for the Internet, including HTML, and those
built with Java technologies such as JavaServer Pages and servlets.

Web Archive (WAR) file A JAR archive that contains a Web module.

Web component A component that provides services in response to requests; either a
servlet, a JSP page, or a Tag Library.

Web container A container that implements the Web component contract of the J2EE
architecture. This contract specifies a runtime environment for Web components that
includes security, concurrency, life cycle management, transaction, deployment, and
other services.

Web module A unit that consists of one or more Web components and a Web deploy-
ment descriptor.

Web server Software that provides services to access the Internet, an intranet, or an
extranet. A Web server hosts Web sites, provides support for HTTP and other protocols,

31 0672324237 AppE 9/24/02 2:40 PM Page 589

and executes server-side programs (such as CGI scripts or servlets) that perform certain
functions. In the J2EE architecture, a Web server provides services to a Web container.

Web Services Loosely coupled software components capable of collaborating with
each other over multiple networks to deliver a specific result to an end user. In the
process, they leverage an emerging group of standards that govern their description and
interaction, including SOAP (Simple Object Access Protocol), UDDI (Universal
Discovery and Description Initiative), XML (Extensible Markup Language), and WSDL
(Web Services Description Language).

Web Services Description Language (WSDL) An XML-based specification to
describe Web services.

World Wide Web (WWW) The web of systems and the data in them that is the
Internet. See also Internet.

X.509 A standard that specifies the format of certificates, which provide a way to
securely associate a name to a public key, providing strong authentication.

XA interface The XA interface is the bi-directional interface between a transaction
manager and resource managers. The XA interface within JTA allows a transaction man-
ager to control transaction boundaries for operations performed by multiple resource
managers using the two-phase commit X/Open XA protocol.

XML (Extensible Markup Language) A markup language that allows you to define
the tags (markup) needed to identify the data and text in XML documents. J2EE deploy-
ment descriptors are expressed in XML.

XML schema A document that defines valid contents for an XML document. A
schema definition is more specific than a DTD, and provides much finer-grained control
over content.

590 Appendix E

31 0672324237 AppE 9/24/02 2:40 PM Page 590

accessor methods
(container-managed rela-
tionships), 274

ACID properties, 378
atomic, 378
consistent, 378
durable, 378

ACID properties, isolated,
378

ACLs (Access Control
Lists), 78, 465

activation, 57
entity beans, 166

adding JNDI entries, 70
Address class (JavaMail),

494, 497
administered objects (JMS)

ConnectionFactory, 306
Destination, 306

administration
approving orders, 532
permissions, 465
security, 469

aggregation/composition
relationship notation
(UML), 561

algorithms (session beans),
32, 52

analyzing enterprise appli-
cations, 524

API (application-level pro-
gramming), 68

J2EE, 365
JavaMail, 494
JNDI, 68

Applet container (J2EE),
361

applets, 13
application assembler, 26
application client modules

(J2EE), 371
application development

roles, 26

Symbols

2PC protocol (two-phase
commit protocol), 384-386

A

abstract persistent schema,
163

CMP entity beans, 254
Access Control Lists.

See ACLs
accessing

EJB (servlets), 136
entity beans (clients),

239-240
MDB, 336
stateless session beans, 98

INDEX

32 0672324237 Index 9/24/02 2:40 PM Page 591

application exceptions, 90
BMT, 450

application implicit object
(JSP), 142

application servers, 152
JBoss, 547

applications
analyzing, 524
architecture example, 524
clients, 13
communication, 304
components, 526
designing, 526
developing with CMT,

430
distributed, 17
enterprise, 10-11
enterprise example,

521-534
integrating, 17
interoperability, 17
J2EE, 372

packaging, 370-371
JavaMail, 504-514

testing, 514
JDBC, 180
JMS, 319-320
logging on, 530
partitioning, 16, 525
performance, 185, 187
running, 533
security, 463
Web, 123
Web tier components, 529

approving orders, 532
architecture, 9-13

applications, 524
goals, 19

J2EE, 353
JavaMail, 491, 505-514
JDBC, 181
JMS, 305
JNDI, 68
portability, 16
security responsibilities,

485
three-tier, 356
transactions, 391

archiving files, 43
Arithmetic functions (EJB

QL), 258
associating IPs to names,

66
association relationship

notation (UML), 561
asynchronous communica-

tion, 304
asynchronous message

receivers, 319
atomic property (ACID

properties), 378
attachments (JavaMail

messages), 503
attacks (security), 463
attributes

CMT, 411, 413-415
methods, 414-415

overloaded, 414
auditing, 469
authentication, 466-467

HTTP, 472
hybrid, 473
J2EE, 467

Web tier, 471-473
JAAS, 484
mutual, 467

authentication functionality
(University Registration
System example),
522-523, 528, 532, 534

Authenticator class
(JavaMail), 494, 498

authorization
J2EE, 468

Web tier, 471-473
Web components, 474

B

batch updates, 198
BatchUpdateException

(JDBC), 191
bean class, 20

BMT, 451
implementing methods

(BMT), 451
bean classes (container-

managed relationships),
284-287

bean providers, 26
bean-managed transac-

tions, 380, 391. See also
BMT

beans, 18
choosing type, 45
container-managed,

407-408
entity, 31
message-driven, 31, 33
session, 31, 49
transactions, options, 409

BETWEEN expressions
(EJB QL), 257

592 application exceptions

32 0672324237 Index 9/24/02 2:40 PM Page 592

bidirectional relationships,
273

implementing, 276-279
binary content, generating,

126-128
binding, 66
Blob interface (JDBC), 185
BMP (bean-managed per-

sistence), 33, 160-161,
217-219

calls, 161
client access, 239-240
component interface, 224
DAO, 218, 221, 235
deploying, 241
deployment descriptors,

237-238
BMP, 237-238

designing, 220
entity beans, 164
home interface, 222
implementing, 225,

227-229
interactions, 218
isolation levels, 411
packaging, 241
predefined exceptions,

224
remote interfaces,

221-223
running, 242
SQL statements, 230
value object, 235-236
WebLogic Server, 241
writing clients, 239-240

BMT (bean-managed
transactions), 435

bean class, 451
business methods, 451
demarcating, 438

deploying, 458
examples, 450, 458
exceptions, 449

application-level, 450
system-level, 449

global transactions, 437
helper classes, 455
home interface, 451
isolation levels, 437
JAR files, 456
JDBC, 437
JTA, 438
life cycle methods, 451
local transactions, 437
message-driven beans,

442, 447
deployment descrip-

tors, 448
JMS, 447

packaging beans, 456
remote interface, 450
running, 458
semantics, 442
session beans, 442
stateful session beans,

443
deployment descrip-

tors, 444-446
semantics, 447

stateless session beans,
443

testing clients, 457
timeouts, 441

body (JMS messages), 323,
326-327

body (XML documents),
553

boundaries, transactions,
409

browsing functionality
(University Registration
System example), 522-534

building
container-managed trans-

actions, 407-408
secure architecture, 485

business logic components
(University Registration
System example), 527

business layers, 356
business logic program-

ming, 17
business logic tier (J2EE),

358
business methods, 58, 169

BMT, 451
exposing, 36

business rules (session
beans), 32

business tasks (session
beans), 50

business-processing logic
(session beans), 32

C

cache (instance), 165-166
caching content, 131
caching policy. See instance

pools
CallableStatement (JDBC),

196-197
interface, 185

calling stored procedures
(JDBC), 196-197

calling stored procedures 593

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 593

calls
BMP, 161
CMP, 161-162
serializing, 112

cardinality, 272
cascade delete, 281, 292
case diagrams, 524
CDATA (XML character

data), 554
certificate-related classes

(security), 469
character data (XML), 554
choosing

bean type, 45
drivers (JDBC), 183-184
local access, 45
remote access, 45

class diagrams (UML), 559
class notations (UML), 560
classes, 19, 36-37

JAAS, 483
clauses (EJB QL), 256
client tiers

J2EE, 357
security, 470

client/server architecture,
356

clients
accessing stateless session

beans, 98
application, 13

security, 471
BMP access, 239-240
CMP entity beans, 246,

264-265
component interface, 36
container-managed rela-

tionships, 297-298

conversational state, 50
EJB instances, 34
entity objects, 168
JDBC, 182
JMS, 304-305
JMS Pub/Sub messaging,

315-318
MDB, 336, 341-342
requests, processing,

129-130
server interaction, 50-51
session beans, 62
stateful session beans,

105, 116-117
testing (CMT), 429
Web applications, 123

Clob interface (JDBC), 185
closing connections, 192
clustering

common vertical services,
23

J2EE, 362
JMS, 306, 362
replicas, 362
with stateless session

beans, 63
CMP entity beans (contain-

er-managed persistence),
33, 161, 246

abstract persistent
schema, 254

calls, 161-162
client access, 264-265
clients, 246
component interface, 250
deploying, 265
deployment descriptor,

254, 259-263
designing, 248

EJB containers, 246
EJB QL, 255-256
entity element, 255
finder methods, 250
home interface, 246-250
interactions, 246
isolation levels, 411
OrderEJB bean classes,

248, 251-253
packaging, 265
query methods, 254
remote interfaces, 250
removing, 249-250
running clients, 266

CMT (container-managed
transactions), 408. See
also transactions

attributes, 413-415
boundaries, 409
developing example,

421-430
entity beans, 420
helper class, 426
home interface, 423
implementing session

beans, 417
isolation levels, 410-411
JAR files, 427
JDBC, 410
message-driven beans,

420
methods, prohibited, 419
NotSupported transaction,

416
performance, 431
remote interface, 422
rolling back, 416
semantics, 417
synchronizing session

beans, 418-419

594 calls

32 0672324237 Index 9/24/02 2:40 PM Page 594

testing clients, 429
timeouts, 421
transaction attributes,

411, 413
comments (JSP), 140

tags, 142
common horizontal ser-

vices (J2EE), 23-24
servlets, 24

Common Object Request
Broker Architecture. See
CORBA

common vertical services
clustering, 23
concurrency, 23
life cycle management,

22
passivation/activation, 23
persistence, 23
remote method invoca-

tion, 23
resource pooling, 23
security, 22
transaction management,

23
common vertical services

(containers), 22
communication (JMS), 304
comparing

EJB to JavaBeans, 15
entity beans and session

beans, 159
JavaMail and JMS, 491
local and remote inter-

faces, 40
servlets and JSP, 137
stateful and stateless ses-

sion beans, 62

component interface, 20
BMP, 224
CMP entity beans, 250
example, 36
session beans, 51
stateless session bean, 89

components
business-logic, 527
designing, 526
enterprise, 13
implementing, 17
Web tier, 529

compression algorithms,
session beans, 52

concurrency, common ver-
tical services, 23

Config implicit object
(JSP), 142

configuring
connection pools, 187
WebLogic Server, 542

connecting databases
(JDBC), 179, 191

Connection interface
(JDBC), 184, 189-192

Connection object
local transactions, 198
metadata, 199-200

connection pools, 185-187
configuring, 187, 208
connections, 187
example, 208
JDBC, 185-187
naming, 187

consistent property (ACID
properties), 378

consumers (JMS), 307
container-managed rela-

tionships, 271
accessor method, 274
bean classes, 284-287

bidirectional, 276-279
cardinality, 272
deploying, 298
deployment descriptors,

289-296
designing, 280-281
directionality, 273
home interface, 281-282
implementing, 273
local interfaces, 284
multiplicity, 272
order interface, 283
remote interface, 282-283
testing, 297-298
unidirectional, 273-275

container-managed trans-
actions, 380, 392-393

example, 393
container-managed trans-

actions. See CMT
containers, 22, 218

common vertical services,
22

J2EE, 359
JSP, 139
restrictions, 44
servlets, 139
stateful session beans,

60-61
stateless session beans, 60

context, JNDI, 69
examples, 73-75
operations, 72

controllers (servlets), 149
controlling transactions,

436
conventions, naming, 67
conversational state, 50
cookies (tracking users),

133-134

cookies 595

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 595

CORBA (Common Object
Request Broker
Architecture), 38-39

IIOP, 39
COS (Common Object

Services), 66
create methods, 167
create() method, 52, 88
creating servlets, 126-128
credentials (permissions),

465
credentials (security), 467

D

DAO (Data Access Object),
218-221

example, 222
interface, 231-235

data bean, 374
data containers (helper

classes), 455
Data Definition Language.

See DDL
data encryption, 464
data formats, J2EE, 370
data layers, 356
Data Manipulation

Language. See DML
data storage, 152
DataBaseMetaData inter-

face (JDBC), 185
databases

BMP, 160-161
CMP, 161-162
connections, 192
directory service, 67
EIS tier, 530

EJB QL, 164
entity beans, 158
JDBC, 179
persistence, 158
persistent data, 33
querying, 195-196

DataSource interface
(JDBC), 184, 188

DataSource object (JDBC),
191

DataTruncation exception
(JDBC), 191

DBMS, locking, 381-382
DDL (Data Definition

Language), 192-195
declarative approach

(JDBC), 188
declarative methods, JNDI

providers, 77
declaring

deployment descriptors,
92-94, 254

container-managed
relationships,
289-296

WebLogic Server, 114
methods (JSP), 141
variables (JSP), 141

defining
home interface (CMT),

423
remote interface (CMT),

422
delegating security, 480
deleting

JNDI entries, 71
messages (JavaMail), 505

delivering
dynamic content

(servlets), 131
JMS messages, 304

messages (JMS), 319
static content (servlets),

131
demarcation, 380

BMT, 438
deploying, 45

BMP, 241
BMT, 458
CMP entity beans, 265
container-managed rela-

tionships, 298
EJB, 28
MDB, 343
secure Web applications,

475
stateful session beans,

118-119
stateless session bean,

96-97
deployment descriptors, 41

BMT, 450
CMP, 246
CMP entity beans, 254,

259-263
container-managed rela-

tionships, 289-296
container-managed trans-

action, 393
deploying, 92-94
ejb-jar element, 93-94,

112-114
ejb-jar.xml file, 41-42
information held, 41-42
JavaMail, 510
J2EE, 371
JBoss, 115
MDB, 339-341
message-driven beans

(BMT), 448

596 CORBA

32 0672324237 Index 9/24/02 2:40 PM Page 596

security roles, 477-480
session beans, 51, 53
stateful session beans, 56,

112-114
BMT, 444-446

stateless session beans,
92-94

vendor-specific, 42
WebLogic Server, 94, 114

deployment tools, 24
designing

applications, 526
BMP, 220
CMP entity beans, 248
container-managed rela-

tionships, 280-281
EJB, 19
J2EE applications, 372
JMS applications,

319-320
MDB, 336
stateful session beans,

107
stateless session beans, 87
Web applications, 123

destinations (JMS), 304
destroy() method, 126
developing

BMP, 217
EJB with BMT, 450
enterprise application

example, 521-534
enterprise applications,

10-11
JavaMail application,

507-512, 514
JMS PTP messaging

model clients, 311-315
Pub/Sub messaging

clients, 315-318

stateless session beans, 85
with CMT example,

421-430
digital certificates, 468
digital signing, 468
directionality, 273
directives (JSP), 140
directory service, 67
dirty read (transactions),

381
distributed applications, 17
distributed transactions,

384
2PC protocol, 384-386
examples, 394-401
models, 385-386
scenarios, 388
testing developed beans,

398
distributed transactions.

See global transactions
DML (Data Manipulation

Language), 192, 194-195
document type definition.

See DTD
doGet() method, 126
Domain location dialog box

(WebLogic Server), 544
Domain selection dialog

box (WebLogic Server),
543

domains (JMS), 307
doPost() method, 126
doStartTag() method,

144-146
downloading

JBoss, 547
WebLogic Server, 541

drivers (JDBC), 183-1844

DTD (document type defin-
ition), 41-42, 555

DTP model (Distributed
Transaction Protocol),
384

duplicates (EJB QL), 259
durable property (ACID

properties), 378
durable subscriber (JMS),

317
dynamic content

JSP, 137
servlets, 131

E

e-commerce applications,
example, 522-534

EAR files, JavaMail, 512
EIS tier, security, 481
EIS tier database schema

(University Registration
System example), 530

EIS tiers (J2EE), 358
EJB (Enterprise

JavaBeans), 11-14, 31
architecture, 9, 11, 13
benefits, 16
class, 20
comparing to JavaBeans,

15
components, 17
containers, 22
design goals, 19
developing, 26
entity beans, 31
interfaces, 20
message-driven beans, 31

EJB 597

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 597

resource factory subcon-
texts, 79

reusability, 16
roles, 25
server, 21
servlets as delegates, 136
session beans, 31

EJB containers
CMP entity beans, 246
J2EE, 361

EJB modules (J2EE), 371
EJB QL (Enterprise

JavaBeans Query
Language), 164, 255-256

Arithmetic functions, 258
BETWEEN expressions,

257
clauses, 256
CMP entity beans, 256
conditional expressions,

257
entity beans, 164
FROM clause, 256
IN expressions, 257
input parameters, 256
LIKE expressions, 258
NULL comparison

expressions, 258
SELECT clause, 258
String functions, 258
WHERE clause, 256

EJB tier
programmatic authoriza-

tion, 480
security, 476-480

methods, 479
setting roles, 477-480

EJB-centric design, 525
ejb-jar element (deploy-

ment descriptor), 93-94,
112-114

ejb-jar files, 94
ejb-jar.xml file, 41-42
installing, 96-97

ejbActivate() method, 57,
59, 168

ejbc tool (WebLogic
Server), 96

ejbCreate() method, 58,
337

ejbLoad() method, 170
ejbPassivate() method,

57-59, 168
ejbPostCreate method, 168
ejbRemove() method, 59,

337
ejbStore() method, 170
email

addresses, 497
attachments, 503
comparing with JMS

messages, 304
deleting, 505
flags, 505
forwarding, 502
HTML, 503
JavaMail, 490-491
messages, 498
replying, 502
sending, 499, 501
session beans, 32

ENC (Enterprise Naming
Context), 76

encryption
J2EE, 468
SSL, 468

enrolling functionality
(University Registration
System example), 522-534

enrollment cart example
(stateful session beans),
55-56

enterprise applications,
10-13. See also applica-
tions

example, 521-534
multitier, 355

enterprise architecture,
challenges, 11

enterprise bean class,
implementing, 110-112

enterprise components, 13
Enterprise JavaBean class.

See classes
Enterprise JavaBeans. See

EJB
enterprise naming context,

79
entities (XML), 555
entity beans, 31, 33, 45,

157-158
abstract persistent

schema, 163
activation, 166
BMP (bean-managed per-

sistence), 159-164, 219,
230

business methods, 169
clients, 168
CMP (container-managed

persistence), 33,
159-164, 246

CMT, 420
comparing with session

beans, 159
create methods, 167
files, 167
finder method, 170
home method, 171
instance pools, 165-166
life cycles, 174-175
methods, 167-173

598 EJB

32 0672324237 Index 9/24/02 2:40 PM Page 598

object view, 158
passivation, 166
persistent fields, 162
queries, 164
relational databases, 159
relationship fields, 163
removing, 171
sharing, 158
SQL statements, 230
synchronizing, 170

environment parameters
(JNDI), 77

errors (JMS), 306
examples

abstract persistent
schema, 163

architecting applications,
524

BMP deployment descrip-
tors, 237-238

BMT, 458
client accessing entity

beans, 264-265
CMP entity beans, 250,

259-263
CMT rollbacks, 416
component interface, 36
components, 527
container-managed rela-

tionships, 299
container-managed trans-

actions, 393
creating university enroll-

ment cart (stateful ses-
sion beans), 55-56

DAO, 222, 231-235
developing with BMT,

450
developing with CMT,

421-430

distributed transactions,
388, 394-401

ejb-jar.xml file, 42
enterprise application,

521-534
Enterprise JavaBean

classes, 36-37
entity bean business

logic, 169
entity bean methods,

172-173
home interface, 35
implementing EJB bean

classes, 251-253
JAAS (Java

Authentication and
Authorization Service),
484

JavaBeans, 147
JavaMail application,

507-512, 514
JDBC skeleton code, 201,

208
JMS body types, 326
JMS headers, 324
JMS local transactions,

321
JNDI context operations,

73, 75
JSP, 137-138
JSP taglibs, 143
local transaction, 198
looking up EJB compo-

nents (JNDI), 81
looking up JavaMail ses-

sions (JNDI), 82
looking up JDBC connec-

tion pools (JNDI), 81
looking up JMS destina-

tion (JNDI), 81

looking up JTA user
transactions (JNDI), 82

MDB, 327, 343-346
MDB deployment

descriptor, 339-341
message-driven beans, 34
PTP messaging models,

307
running BMP, 242
servlets, 126-128
session bean algorithms,

52
stateful session beans, 54,

107, 119
University Registration

System application, 28,
530-533

user authentication
(JNDI), 78

verifying orders, 337-339
XML tags, 552

exception handling
JDBC, 190
JMS, 318
JTA, 389

exception implicit object
(JSP), 142

exceptions (JSP), 143
application exceptions, 90
BMT, 449

system-level, 449
handling, 143
predefined, 224
stateless session beans, 92
system exceptions, 90

execute() method, 193
executeQuery() method,

195-196
expressions, executing, 141
Extensible Markup

Language. See XML

Extensible Markup Language 599

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 599

F

failover, 363
files

ejb-jar, 112-114
entity beans, 167
JAR, 43
naming conventions, 66
session beans, 50
WAR, 123, 150

filtering, 469
duplicates (EJB QL), 259

finder methods, 170
finding JNDI entries, 71-72
flat transactions, 379
Folder class (JavaMail),

494
folders (JavaMail), 499-500
forms, submitting, 130
forwarding JavaMail mes-

sages, 502
FROM clause (EJB QL),

256
functionality (University

Registration System
example), 522-534

G

generating binary content,
126-128

Get() method, 130
getInputStream() method,

129
getMetaData() method,

199-200
getMethod() method, 129

getParameter() method,
129

getParameterNames()meth
od, 129

getParameterValues()
method, 129

getQueryString() method,
129

global transactions, 379
BMT, 437

groups, permissions, 465

H

handling exceptions (JSP),
143

headers (JMS messages),
323-324

help, JNDI Web tutorial, 83
helper classes

BMT, 455
CMT, 426

hidden fields, tracking user
sessions, 132

home interfaces, 20, 35
BMP, 222
BMT, 451
CMP entity beans, 246,

249-250
container-managed rela-

tionships, 281-282
examples, 35
JavaMail, 508
session beans, 51
stateful session beans,

109
stateless session bean, 88

home methods, 171

hot deployment (WebLogic
Server), 96

HTML
JavaMail, 503
JSP tags, 142

HTTP
authentication, 472
J2EE, 364

HttpJspPage interface,
137-138

HttpServletRequest meth-
ods, 129-130

HTTPSession, tracking
user sessions, 134

hybrid authentication, 473

I

IIOP (Internet Inter-ORB
Protocol), 38

images (JavaMail), 503
IMAP (Internet Message

Access Protocol), 493
JavaMail, 493

implementing
2PC protocol, 384-386
bidirectional relation-

ships, 276-279
BMP, 225, 227-229
components, 17
container-managed rela-

tionships, 273
conversations (session

beans), 50
distributed transactions,

394-401
DTP model, 386-387

600 failover

32 0672324237 Index 9/24/02 2:40 PM Page 600

EJB bean classes, 251,
253

enterprise bean class,
110-112

J2EE, 13
javax.ejb.SessionBean

interface, 90-92
session beans (CMT), 417
stateful session beans,

109
stateless session beans,

90-92
implicit objects (JSP), 142
IN expressions (EJB QL),

257
include directive (JSP), 140
infrastructure roles, 26
init() method, 131
installing

ejb-jar files, 96-97
JBoss, 547
WebLogic Server, 541

instance cache, 165-166
instance pools, 54, 165-166

session beans, 54
size, 165

instances, clients, 34
int getStatus() method, 439
integrating applications, 17
interacting

BMP, 218
client/servers, 50
MDB, 335

interfaces, 19
BMT, 450
CMP entity beans,

249-250
CMT, 423
component, 36

container-managed rela-
tionships, 281-282

DAO, 231-235
home, 35
JAAS, 483
JDBC, 184
JMS, 309-310
JNDI, 68
local, 40
remote, 38-39
SessionSynchronization,

112
stateful session beans,

106
stateless session bean, 88

Internet Inter-ORB
Protocol. See IIOP

introspection, 147
invoking

methods from JVM, 38
remote interface methods,

38
skeleton methods, 38
stub methods, 38

isolated property (ACID
properties), 378

isolation levels, 381-382
BMT, 437
CMP, 411
CMT, 410-411

J

J2EE, 21, 377
API, 365

containers, 369
Applet container (Web

browsers), 361

application client mod-
ules, 371

architecture, 353
authorization, 468
benefits, 355
BMT, 436
business logic tier, 358
client application contain-

er, 361
client tier, 357
clustering, 362
common horizontal ser-

vices, 23
container model, 359
data formats, 370
deployment descriptors,

371
designing applications,

372
EIS tier, 358
EJB, 366

containers, 361
modules, 371

encryption, 468
enterprise applications, 13
failover, 363
HTTP, 364
implementing, 13
JAAS (Java

Authentication and
Authorization Service),
366

JAF (JavaBeans
Activation Framework),
367

JavaIDL, 365
JavaMail, 367, 490
JCA (J2EE Connector

Architecture), 368

J2EE 601

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 601

JDBC (Database connec-
tivity), 366

JMS, 366
JNDI, 79, 366

JavaBeans, 80
object references, 80
object services, 80

JSP, 366
JTA, 367
JTS, 367
load balancing, 362
Message Facade pattern,

373
modules, 371
multitier architecture,

355-357
packaging applications,

370-371
patterns, 372
performance optimizing,

372
platforms, 354
protocols, 363
replicas, 362
resource adapter modules,

371
RMI, 361, 364-365
security, 470, 485

authentication, 467
client applications,

471
EIS tier, 481
EJB tier, 476-480
Web tier, 471-473

Service Locator pattern,
373

servlets, 366
Session Facade pattern,

372

SSL, 364
TCP/IP, 364
three-tier architecture,

357
transactions, 379, 391
Value Object design pat-

tern, 374
Web containers, 361
Web modules, 371
Web tier, 358

J2EE Connector
Architecture. See JCA

J2SE, digital signing, 468
JAAS (Java Authentication

and Authorization
Service), 24, 366, 482-484

classes, 483
interfaces, 483
J2EE, 366
PAM, 482-484
sample authentication,

484
security, 482, 484

JAF (JavaBeans Activation
Framework), 24, 367

J2EE, 367
JavaMail, 492

JAR (Java Archive), 43
files, 427, 456

Java Application Server,
360

Java Archive. See JAR
Java Authentication and

Authorization Service.
See JAAS

Java Message Service. See
JMS

Java Naming and Directory
Interface service. See
JNDI

Java Remote Method
Invocation. See RMI

Java Transaction API. See
JTA

Java Transaction Service.
See JTS

Java Virtual Machine. See
JVM

java.rmi.RemoteException,
89

java.sql package (JDBC),
184

JavaBeans, 147
characteristics, 15
comparing to EJB, 15
example, 147
J2EE, 15
JSP examples, 147

JavaBeans Activation
Framework. See JAF

JavaIDL (Java Interface
Definition Language), 365

J2EE, 365
JavaMail, 24, 490-491. See
also email

Address class, 494-497
API, 491-500
application

running, 517
testing, 514

applications, 505-514
architecture, 491
attachments, 503
Authenticator class, 494,

498
deployment descriptor,

510
EAR files, 512
flags, 505
Folder class, 494

602 J2EE

32 0672324237 Index 9/24/02 2:40 PM Page 602

folders, 499-500
HTML, 503
images, 503
IMAP, 493
J2EE, 367
JAF (JavaBeans

Activation Framework),
492

JBoss, 514
JMS, 491
looking up, 82
Message class, 494, 496
messages, 499-504

deleting, 505
forwarding, 502
replying, 502
sending, 501

MIME, 493
MVC architecture,

505-514
naming, 500
POP3, 493
property fields, 516
protocols, 493
resource factory subcon-

texts, 79
sending, 499, 503
Session class, 494-496
SMTP, 493
SPI, 491
Store class, 494
text messages, 501
Transport class, 494, 499
Web tier, 510
WebLogic Server, 514

JavaServer Pages. See JSP
javax.ejb.EJBObject inter-

face, 39
javax.ejb.SessionBean

interface, 51, 90-92

javax.naming (JNDI API
package), 69

javax.sql package, 185
JBoss, 547

CMP entity beans, 262
configuring, 548
container-managed rela-

tionships, 293-296
deployment descriptors,

115
downloading, 547
installing, 547
JavaMail, 514
MDB, 343
stateful session beans,

115
testing, 549
University Registration

System example, 532
JCA (J2EE Connector

Architecture), 24, 368
JDBC (Java Database

Connectivity), 24,
179-180, 366

advantages, 180
API, 184
architecture, 181
batch updates, 198
BatchUpdateException,

191
BMT, 437
CallableStatement,

196-197
calling stored procedures,

196-197
clients, 182
clustering, 362
CMT, 410
Connection methods,

189-192

connection pooling,
185-187, 208

URL, 187
connections, 189
data manipulation,

192-195
DataSource object, 191
DataTruncation excep-

tion, 191
DDL (Data Definition

Language), 192-195
declarative approach, 188
distributed transactions,

394-401
DML (Data Manipulation

Language), 192-195
drivers, 183, 187

types, 183-184
EJB tier, 182
exception handling, 190
interfaces, 184

Blob, 185
CallableStatement,

185
Clob, 185
Connection, 184-192
DataBaseMetaData,

185
DataSource, 184
PreparedStatement,

185
ResultSet, 185
ResultSetMetaData,

185
Statement, 184

J2EE, 366
java.sql package, 184
javax.sql, 185
JNDI, 183
local transactions, 197,

380

JDBC 603

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 603

looking up connection
pool, 81

metadata, 199-200
performance, 185-187,

198, 214
permissions, 464
Programmatic approach,

189
querying, 195-196

PreparedStatement,
196

resource factory subcon-
texts, 79

ResultSet methods, 194
sample skeleton code,

201, 208
SQL data, 182
SQLException, 190
SQLWarning exception,

190
Statement objects, 193
transactions, 197
vendor-neutrality, 182

JMS (Java Message
Service), 24, 34, 303-304

acknowledgement, 320
administered objects,

305-306
API, 305
architecture, 305

layers, 305
clients, 304-305, 315-318
clustering, 306, 362
consumers, 307
delivery, 304
designing, 319-320
destinations, 304, 322
distributed transactions,

394-401

domains, 307
durable subscribers, 317
error notification, 306
exception handling, 318
expiration, 304, 320
interfaces, 309-310
J2EE, 366
JavaMail, 491
local transactions, 321,

383-384
MDB, 327-342
message persistence, 319
message routers, 384
message-driven beans, 34
messages, 305, 314

body, 323, 326-327
delivering, 319
headers, 323-324
properties, 323-325

messaging models, 307
permissions, 465
priority, 304, 320
providers, 304-305
PTP messaging model,

307, 311-315
Pub/Sub messaging

model, 307, 315-318
publishers, 307
queues, 311-315
receivers, 307
resource factory subcon-

text, 79
security, 306
selectors, 325
senders, 307
subscribers, 307
topics, 307
transacted session, 313

JNDI (Java Naming and
Directory Interface ser-
vices), 23, 34, 65, 68

adding entries, 70
API, 68

javax.naming package,
69

architecture, 68
bind(), 69-70
CMP entity beans, 246
context, 69

operations, 72
sample operations,

73-75
deleting entries, 71
ENC, 76
enterprise naming con-

text, 79
examples

looking up EJB com-
ponents, 81

looking up JavaMail
sessions, 82

looking up JDBC con-
nection pools, 81

looking up JMS desti-
nation, 81

looking up JTA user
transactions, 82

finding entries, 71-72
InitialContext(), 70
J2EE, 366
J2EE applications, 79
lookup() method, 69-72
naming service, 66
permissions, 465
providers, 76

declarative method, 77
programmatic methods,

76

604 JDBC

32 0672324237 Index 9/24/02 2:40 PM Page 604

rebind(), 69
security, 78
setting environment para-

meters, 77
SPI, 68
stateful session beans,

106
stateless session beans, 86
unbind(), 69
user authentication, 78

example, 78
Web tutorial, 83

JRMI (Java Remote
Method Invocation), 39

JSP (JavaServer Pages), 14,
24, 137, 151

comments, 140
comparing with servlets,

137
directives, 140

include, 140
page, 140
tags, 142

example, 137-138
exception handling, 143
expressions

executing, 141
tags, 142

implicit objects, 142
J2EE, 366
JavaBeans, 147
methods

declaring, 141
tags, 142

MVC strategy, 149
permissions, 464
scripting tags, 140
scriptlets, 141

tags, 142

SingleThreadModel, 139
syntax, 140
tag library, 144-146

examples, 145
TLD files, 146

taglibs, 143
tags, 142
variables

declaring, 141
tags, 142

writing, 137-138
JTA (Java Transaction

API), 197, 367
BMT, 438
exception handling, 389
J2EE, 367
looking up user transac-

tions, 82
transaction status, 440
transactions, 386-387
UserTransaction, 404

JTS (Java Transaction
Service), 367

J2EE, 367
transactions, 390

JVM (Java Virtual
Machine), 38

local interfaces, 40

L

layers (MVC), 148
LDAP (Lightweight

Directory Access
Protocol), 66

life cycle management
(common vertical ser-
vices), 22

life cycles
BMT, 451
MDB, 347
session beans, 59

stateful, 60-61
stateless, 59-60

Lightweight Directory
Access Protocol. See
LDAP

LIKE expressions (EJB
QL), 258

load balancing (J2EE), 362
local interfaces, 40

calling semantics, 41
comparing with remote,

40
container-managed rela-

tionships, 284
javax.ejb.EJBLocalObject

interface, 40
local transactions, 197,

379-380
BMT, 437
JMS, 321, 383-384
sample code, 198

locking transactions,
381-382

lookup() method, 71-72

M

managing
shared information, 67
workflow (stateful session

beans), 55
manipulating data (JDBC),

192-195

manipulating data 605

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 605

many-to-many bidirectional
relationship, 278-279

mapping tools, 24
MDB (message-driven

beans), 31-33, 327, 333
benefits, 348
BMT, 447

deployment descrip-
tors, 448

client access, 336
clients, 341-342
CMT, 420
deploying, 343
deployment descriptors,

339-341
designing, 336
interactions, 335
JMS, 34, 327, 335,

341-342
life cycles, 347
methods, 337
order verification,

337-339
packaging, 343
performance, 348
running, 343-346
transactions, 391, 448

members, 362
Message class (JavaMail),

494-496
Message Facade pattern

(J2EE), 373
message routers, 384
message-driven beans. See

MDB
Message-Oriented

Middleware (MOM), 303
messages. See email,

JavaMail
attachments, 503
body, 323, 326-327

deleting, 505
forwarding, 502
headers, 323-324
HTML, 503
images, 503
JavaMail, 504
JMS, 303, 305, 498
MDB, 341-342
priority, 321
properties, 323, 325
replying, 502
sending, 501, 503
storing, 499-500

messaging, 303
messaging models (JMS),

307
metadata

JDBC, 199-200
querying, 199-200

method calls, 35
methods

attributes, 414-415
BMT, 451
business, 58
CMT, prohibited, 419
create(), 52
declaring (JSP), 141
destroy(), 126
doGet(), 126
doPost(), 126
ejbActivate(), 57, 59, 168
ejbCreate(), 58, 337
ejbLoad(), 170
ejbPassivate(), 57-59, 168
ejbPostCreate(), 168
ejbRemove(), 59, 337
ejbStore(), 170
entity beans, 167,

172-173
finder, 170

HttpServletRequest class,
129

invoking from JVM, 38
MDB, 337
multi-object finder, 223
newInstance, 60
onMessage(Message),

337
remote interfaces, 38
remove, 171
SBL statements, 230
security, 479
service(), 126
setSessionContext, 58
session bean list, 58
setEntityContext, 167
setMessageDrivenContext

(MessageDrivenContext
), 337

single-object finder, 223
transaction attributes,

413-415
unbind(), 71
unsetEntityContext, 167
UserTransaction, 439

MIME (Multipurpose
Internet Mail Extensions),
493

JavaMail, 493
Model-View-Controller. See

MVC
models (J2EE containers),

359
modules

J2EE, 371
packaging, 43

MOM (Message-Oriented
Middleware), 303

monitoring tools, 24
MUA (Mail User Agent),

490

606 many-to-many bidirectional relationship

32 0672324237 Index 9/24/02 2:40 PM Page 606

multi-object finder meth-
ods, 223

multiplicity, 272
multithreaded servlets, 139
multitier architecture, 355-

357
multitier enterprise appli-

cations (J2EE), 355
mutual authentication, 467
MVC (Model-View-

Controller), 148, 505-514

N

naming
connection pools, 187
conventions, 67
COS, 66
declarative method, 77
DNS, 66
folders, 500
J2EE, 80
JNDI, 65
JNDI context example,

73-75
NDS (Novell Directory

Services), 66
stateless session beans,

101
naming service, 66
NDS (Novell Directory

Services), 66
nested transactions, 379
newInstance() method, 60
nodes, 362
notification functionality

(University Registration
System example), 523

NotSupported transaction,
416

NULL comparison expres-
sions (EJB QL), 258

O

object interaction diagram
(UML), 563

object models, 38
object view, entity beans,

158
object-relational mapping

tools, 24
objects, binding, 66
one-to-many bidirectional

relationship, 276-277
online purchases (message-

driven bean example), 34
onMessage(Message)

method, 337
options, transactions, 420
order entity beans, 283
order processing function-

ality (University
Registration System
example), 523, 528, 532,
534

order-line item relation-
ships, 280-281

OrderEJB bean classes,
implementing, 248-253

Out implicit object (JSP),
142

overloaded methods, attrib-
utes, 414

P

packaging, 43, 45
BMT, 456
BMP, 241
CMP entity bean, 265
container-managed rela-

tionships, 298
J2EE applications,

370-371
MDB, 343
modules, 43
SignOn component,

94-96
stateful session beans,

118-119
stateless session bean,

94-96
University Registration

System example, 532
Web applications, 150

page directive (JSP), 140
Page implicit object (JSP),

142
pageContext implicit object

(JSP), 142
PAM (Pluggable

Authentication Model),
482, 484

parsers (XML), 556
partitioning, 16

applications, 525
passivation, 57

entity beans, 166
passivation/activation

(common vertical ser-
vices), 23

patterns (J2EE), 372
payload (JMS messages),

323, 326-327

payload 607

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 607

performance
batch updates, 198
CMT, 431
connection pools,

185-187
J2EE applications, 372
JDBC, 185, 187, 214
session beans, 63

permissions, 465
administrators, 465
credentials, 465
groups, 465
JDBC, 464
JMS, 465
JNDI, 465
JSP, 464
servlets, 464
users, 465
Web containers, 464

persistence, 158
common vertical services,

23
persistent data, 33
persistent fields, 162
persistent messages (JMS),

319
phantom read (transac-

tions), 381
platforms, Java, 354
Pluggable Authentication

Model. See PAM
POP3 (Post Office

Protocol), 493
JavaMail, 493

portability, code, 240
portable applications, 16
POST method, 130
predefined exceptions, 224
PreparedStatement, query-

ing databases, 196

PreparedStatement inter-
face (JDBC), 185

presentation layers, 356
presentation logic, 126-128
primary key class, 20
principals, 466
processing

client requests, 129-130
orders, 337-339

Programmatic approach
(JDBC), 189

programmatic authoriza-
tion, 475

programmatic methods,
JNDI providers, 76

prohibited methods (CMT),
419

prolog (XML), 553
properties (JMS messages),

323, 325
protecting

J2EE, 470
systems, 463

protocols (J2EE), 363-364
providers

JMS, 305
JNDI, 76

declarative method, 77
PTP messaging model

(JMS), 307
concepts, 311-315
interfaces, 309-310

Pub/Sub messaging model
(JMS), 307

concepts, 315-318
interfaces, 309-310

Publish-and-Subscribe
messaging model. See
Pub/Sub messaging model

publishers, JMS, 307

Q

queries, 258. See also EJB
QL

CMP, 254
databases, 164

JDBC, 195-196
duplicates, 259
input parameters, 256
metadata, 199-200
specifying, 255-256

queues
JMS clients, 311-315

R

RDBMS (Relational
Database Management
System), 196-197

local transactions, 198
realization relationship

notation (UML), 562
realms, 465
registering beans, 86
registration functionality,

University Registration
System example, 522-534

Relational Database
Management System. See
RDBMS

relationship fields, 163
relationships

bidirectional, 273-279
directionality, 273
unidirectional, 273

releasing connections, 192
remote clients, 40

608 performance

32 0672324237 Index 9/24/02 2:40 PM Page 608

remote interfaces, 38-39
BMP, 221-223
BMT, 450
calling semantics, 41
CMP entity beans, 250
CMT, 422
comparing with local, 40
container-managed rela-

tionships, 282-283
javax.ejb.EJBObject inter-

face, 39
stateful session beans,

108-110
stateless session beans, 89

remote method invocation
(common vertical ser-
vices), 23

remote objects (RMI), 38
remove method, 171
removing

entity beans, 171
servlets, 126
session beans, 32
stateful session beans, 63,

121
repeatable read (transac-

tions), 381
replication, 363
replying (JavaMail mes-

sages), 502
Request implicit object

(JSP), 142
resource adapter modules

(J2EE), 371
resource factory, subcon-

texts, 79
resource managers (trans-

actions), 387
resource pooling, common

vertical services, 23

resources (security), 464
Response implicit object

(JSP), 142
restoring beans, 57
restrictions

containers, 44
ResultSet interface

(JDBC), 185
ResultSet methods, 194
ResultSetMetaData inter-

face (JDBC), 185
RMI (Java Remote Method

Invocation), 16, 38, 361
interfaces, 89, 110
invoking remote methods,

38
J2EE, 364
skeletons, 38
stubs, 38

RMI/IIOP (RMI over
IIOP), 24

J2EE, 365
roles, 25, 466

application development,
26

container and server
provider, 26

deployer, 27
deployment, 26
infrastructure, 26
system administrator, 27

rolling back, CMT, 416
running

applications, 533
BMP, 242
BMT, 458
clients (stateless session

beans), 99
JavaMail applications,

517
JBoss, 549
MDB example, 343-346

S

schema (XML), 556
scripting tags (JSP), 140
scriptlets (JSP), 141

tags, 142
security, 463

ACLs, 465
administration, 469
auditing, 469
authentication, 466
building sound architec-

ture, 485
certificate-related classes,

469
common vertical services,

22
credentials, 467
delegating, 480
digital signing, 468
EIS tier, 481
EJB tier, 476-480
filtering, 469
J2EE, 470, 485

client tier, 470
Web tier, 471-473

JAAS, 482-484
JMS, 306
JNDI, 78
PAM (Pluggable

Authentication Model),
482-484

permissions, 464
principals, 466
realms, 465
resources, 464
roles, 466, 477-480
servlets, 126
Web applications, 475

security 609

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 609

SELECT clause (EJB QL),
258

semantics
BMT

stateful session beans,
447

stateless session beans,
443

CMT, 417
message-driven beans,

448
transactions, 442

sending
email, 499, 503
JavaMail messages, 501
messages (MDB),

341-342
separating business logic

programming, 17
sequence diagram (UML),

563
serializing

calls, 112
variables, 57

server component model,
11

Server type selection dialog
box (WebLogic Server),
544

server-side computing,
10-11

servers, 17
application, 152
client interaction, 50-51
EJB, 21
J2EE, 21
JBoss, 547
JNDI context operations,

75

Service Locator pattern
(J2EE), 373

service provider interface.
See SPI

service() method, 126
servlets, 14, 24, 126-128,

137, 152
as controllers, 149
comparing with JSP, 137
delegates to EJB, 136
dynamic content, 131

caching, 131
HttpServletRequest,

129-130
J2EE, 366
multithreaded, 139
permissions, 464
processing client requests,

129-130
removing, 126
sample code, 126-128
security, 126
service() method, 126
single-threaded, 139
static content, 131

caching, 131
tracking user sessions,

132
cookies, 133-134
hidden fields, 132
HTTPSession, 134
URL rewriting, 135

session beans, 31-32, 45,
49-50

algorithms, 32, 52
BMT, 442
business-processing logic,

32
client/server interaction,

51

CMT, 417
comparing with entity

beans, 159
component interface, 51
conversational state, 50
create() method, 52
databases, 51
deployment descriptors,

51-53
email, 32
executing tasks, 50
files, 50
home interface, 51
instance pool, 54
interfaces, 35
javax.ejb.SessionBean

interface, 51
life cycles, 59
methods, 58

business, 58
performance, 63
security, 51
sharing, 32
stateful, 32, 54, 105
stateless, 32, 52
stock price look-up, 52
synchronizing, 418-419
transactions, 391
workflow, 32

Session class (JavaMail),
494-496

session elements, 53
Session Facade pattern

(J2EE), 372
session implicit object

(JSP), 142
sessions, tracking users,

132
SessionSynchronization

interface, 112

610 SELECT clause

32 0672324237 Index 9/24/02 2:40 PM Page 610

setEntityContext() method,
167

setMessageDrivenContext(
MessageDrivenContext)
method, 337

setSessionContext method,
58

setting
isolation levels, 410-411
transaction attributes,

413-415
sharing

entity beans, 158
session beans, 32
stateful session beans,

121
shopping carts (stateful ses-

sion beans), 54
SignOn component

packaging, 94-96
stateless session beans, 87

single-object finder meth-
ods, 223

single-threaded servlets,
139

SingleThreadModel
JSP, 139
negatives, 139

skeletons (RMI), 38
invoking, 38

SMTP (Simple Mail
Transfer Protocol), 493

JavaMail, 493
specifying queries, 255-256
SPI (service provider inter-

face), 68
JNDI, 68

SQL
entity bean methods, 230
JDBC support, 182
transactions, 378

SQLException, 190
SQLWarning exception

(JDBC), 190
SSL (Secure Sockets

Layer), 364
J2EE, 364, 468

standard transactions. See
local transactions

state diagram (UML), 562
state notation (UML), 563
stateful session beans, 32

BMT, 443
deployment descrip-

tors, 444, 446
clients, 116-117
comparing to stateless

session beans, 62
containers, 60-61
deploying, 118-119
deployment descriptors,

112-114
designing, 107
ejb-jar files, 112-114
enrollment cart example,

55-56
enterprise bean class,

110-112
example, 119
home interface, 109
implementing, 109
interfaces, 106
JBoss, 115
JNDI, 106
life cycles, 60-61
managing workflow, 55
packaging, 118-119
passivation, 57
remote interface, 110
remote interfaces, 108
removing, 63, 121
RMI interfaces, 110

SessionSynchronization
interface, 112

sharing, 121
shopping carts, 54
transaction semantics,

447
WebLogic Server, 114

stateless session beans, 32,
52, 85-86

activation, 57
BMT, 443
client access, 98
clients, 99
clustering, 63
comparing to stateful ses-

sion beans, 62
component interfaces, 89
containers, 60
create() method, 52
deploying, 96-97
deployment descriptor,

92-94
designing, 87
exceptions, 92
implementing, 90-92
instance pools, 54
interfaces, 88
JNDI, 86
life cycles, 59-60
naming, 101
packaging, 94-96
registering, 86
remote interface, 89
RMI interfaces, 89
SignOn component, 87
transaction semantics,

443
Statement interface

(JDBC), 184

Statement interface 611

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 611

Statement objects (JDBC),
193

static content
init() method, 131
servlets, 131

status, JTA transactions,
440

stereotype notation (UML),
560

stock prices
finding, 32
session bean example, 52

Store (JavaMail), 499-500
Store class (JavaMail), 494
stored procedures, 196-197

calling, 196-197
storing JavaMail messages,

499-500
String functions (EJB QL),

258
stubs (RMI), 38

invoking, 38
student logons (University

Registration System
example), 530

submitting forms, 130
subscribers (JMS), 307
synchronizing

entity beans, 170
session beans (CMT),

418-419
synchronous message

receivers, 319
system administrators, 27
system exceptions, 90

BMT, 449
system integrity, 463

T

tag library (JSP), 144-146
tags

JSP
comments, 142
directives, 142
examples, 145
expressions, 142
HTML/XML, 142
scriptlets, 142
variables and methods,

142
XML, 552, 554

TCP/IP, J2EE, 364
temporary destinations,

JMS, 322
testing

clients (CMT), 429
container-managed rela-

tionships, 297-298
JavaMail application, 514
JBoss, 549

testing clients, BMT, 457
text messages (JavaMail),

501
three-tier architecture, 356

layers, 356
timeouts

BMT, 441
transactions, 421, 441

TLD files (Tag Library
Descriptors), 146

tools
deployment, 24
mapping, 24
monitoring, 24

topics (JMS), 307
tracking

servlets, 132
user sessions

cookies, 133-134
hidden fields, 132
HTTPSession, 134
URL rewriting, 135

transacted sessions, 313
transaction attributes (con-

tainer-managed transac-
tions), 392-393

transaction demarcation,
380, 435

transactions, 197, 378
ACID Properties, 378
attributes, 413-415
B2B, 378
B2C, 378
bean-managed, 380, 391,

436
CMT, 380, 392-393

attributes, 411, 413
example, 421-430
semantics, 417

controlling, 436
dirty reads, 381
distributed, 384
exception handling, 389
flat, 379
isolation levels, 381-382,

437
JTA, 386-387, 390, 440
local, 380, 383-384
locking, 381-382
managing, 23
message-driven beans,

391, 448
nested, 379
options, 409, 420
phantom read, 381
repeatable read, 381
resource managers, 387
semantics, 442
session beans, 391

612 Statement objects

32 0672324237 Index 9/24/02 2:40 PM Page 612

stateful session beans,
446-447

timeouts, 421, 441
Web tier, 391
WebLogic Server, 421

transition notation (UML),
563

Transport class (JavaMail),
494, 499

two-phase commit protocol.
See 2PC protocol

two-tier architecture, 11,
356

U

UML (Unified Modeling
Language), 559

aggregation/composition
relationship notation,
561

association relationship
notation, 561

class diagrams, 559
class notations, 560
generalization/inheritance

relationship notation,
560

realization, 562
sequence diagram, 563
state diagram, 562
state notation, 563
stereotype notation, 560
transition notation, 563

unbind() method, 71
Unicode, XML, 556
unidirectional relation-

ships, 273
implementing, 273-275

Unified Modeling
Language. See UML

University Registration
System sample applica-
tion, 522-534

analyzing, 524
architecting, 524
business logic compo-

nents, 527
EIS tier database schema,

530
enrollment cart (stateful

session beans), 55-56
running, 533
student logons, 530
Web tier components, 529

unsetEntityContext()
method, 167

URL rewriting, tracking
users, 135

user authentication, JNDI,
78

user sessions, 151
tracking, 132

cookies, 133-134
hidden fields, 132
HTTPSession, 134
URL rewriting, 135

users, permissions, 465
UserTransaction (JTA), 404
UserTransaction() method,

439

V

Value Object design pat-
tern (J2EE), 374

value objects, 235-236
variables (JSP), 141

verifying
deployment, 97
orders, 337-339

void begin() method, 439
void commit() method, 439
void rollback() method, 439
void setRollbackOnly()

method, 439
void

setTransactionTimeout(in
tseconds) method, 439

W

WAR files (Web archive),
123, 150

Web applications, 123
designing, 123
directory structure, 128
MVC components, 148
packaging, 150
presentation logic,

126-128
security, 475
servlets, 126-128
WAR files, 150

Web components, 123
authorization, 474-475

Web containers
J2EE, 361
permissions, 464
servlets, 126-128

Web modules (J2EE), 371
Web resources, JNDI tutor-

ial, 83
Web server farms, 363
Web site, JBoss, 548

Web site 613

How can we make this index more useful? Email us at indexes@samspublishing.com

32 0672324237 Index 9/24/02 2:40 PM Page 613

Web tier
J2EE, 358
JavaMail, 510
security, 471-473
transactions, 391
University Registration

System example, 529
Web-centric design, 525
WebLogic Server

BMP, 241
CMP entity beans, 262
configuring, 542
container-managed rela-

tionships, 293-296
deployment descriptors,

114
Domain location dialog

box, 544
Domain selection dialog

box, 543
downloading, 541
installing, 541
JavaMail, 514
MDB, 343
Server type selection dia-

log box, 544
servers

deployment descrip-
tors, 94

ejbc tool, 96
stateful session beans,

114
transactions, 421
University Registration

System example, 532
WHERE clause (EJB QL),

256
workflow, session beans, 32

writing
clients, 239-240

stateful session beans,
116-117

stateless session beans,
98

JSP, 137-138
JavaBeans, 147

X

XML (Extensible Markup
Language), 41, 551

address book example,
552

attributes tags, 554
building elements tags,

554
CDATA, 554
comments tags, 554
deployment descriptors,

41
documents, 552-553
DTD, 553, 555
entities, 555
JSP tags, 142
parsers, 556
schema, 556
tags, 554
Unicode, 556

614 Web tier

32 0672324237 Index 9/24/02 2:40 PM Page 614

	Cover
	Copyright
	Contents at a Glance
	About the Authors
	Acknowledgments
	Introduction
	Week 1 - Enterprise Java Architecture
	DAY 1: Understanding EJB Architecture
	DAY 2: Understanding EJB Types and Interfaces
	DAY 3: Understanding Session Beans
	DAY 4: Using JNDI for NamingServices and Components
	DAY 5: Developing StatelessSession Beans
	DAY 6: Developing Stateful Session Beans
	DAY 7: Designing Web Applications

	Week 2 - Entity Beans and Message-Driven Beans
	DAY 8: Understanding Entity Beans
	DAY 9: Using JDBC to Connect to a Database
	DAY 10: Developing Bean-Managed Persistence Entity Beans
	DAY 11: Developing Container-Managed Persistence Entity Beans
	DAY 12: Developing Container-Managed Relationships
	DAY 13: Understanding JMS and Message-Driven Beans
	DAY 14: Developing Message-Driven Beans

	Week 3 - Advanced EJB Applications
	DAY 15: Understanding J2EE Architecture
	DAY 16: Understanding J2EE Transactions
	DAY 17: Building Container-Managed Transaction Beans
	DAY 18: Building Bean- Managed Transaction Beans
	DAY 19: Understanding Security
	DAY 20: Implementing JavaMail in EJB Applications
	DAY 21: Developing a Complete Enterprise Application

	Appendixes
	APPENDIX A: WebLogic Application Server 7.0
	APPENDIX B: JBoss Application Server 3.0
	APPENDIX C: Understanding XML
	APPENDIX D: Introduction to UMLNotation
	APPENDIX E: Glossary of Terms

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

