PROFESSIONAL MINDWARE é

UNLIMITED EDITION

.
N
O
LL]
L
o =
—
c
O
(C
=
Q
.

o
L* ]
T
o
=
3
Q
!

0
v
—
)
o0
£
LL]




EJB & JSP: Java On The Edge, Unlimited Edition

EIE & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge ]

Your Guide to Cutting-Edge J2EE Programming Techniques.

Back Cover

Enterprise Java Beans and JavaServer Pages deliver the tools you need to
develop state-of-the-art multi-tier applications for the Internet or an intranet. But
how do you create robust components for these two APIs--and get them to work
together with each other and the rest of the containers in Java 2 Enterprise
Edition? This unique guide delivers the answers. With lucid explanations and
lots of sample code illustrating the development of a hotel reservation system,
Lou Marco shows you step by step how to harness the power of JSP and EJB--
and create cutting-edge J2EE applications.

Make JSP, EJB, and J2EE Work Together

. Get the lowdown on J2EE N-tier application development

. Work with JSP objects, standard actions, and Web sessions

. Use JavaBeans or JSP tags to access a database with JDBC

. Understand how JSP works with Java servlets

. Take control of JSP errors, exceptions, and debugging

. Master EJB basics, from clesses to session and entity Beans

. Harness EJB tools to secure your application

. Manage transactions using EJB with JDBC, JTS, and JTA

. Build Bean- or container-managed persistence in EJB components

. Learn the ins and outs of JSP and EJB as you create a fully functional
hotel reservation system

About the Authors

Lou Marco is a consultant, writer, and the owner of Lou Marco and Associates,
a firm that designs Web sites and writes custom software. An IT professional
with more than two decades of experience, he contributes frequently to
Enterprise Systems Journal and is the author of ISPF/REXX Development for



Experienced Programmers.



EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part I: EJB & JSP—Java On the Edge

Chapter List

Chapter 1: Enterprise Computing Concepts

Chapter 2: J2EE Component APIs




EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 1. Enterprise Computing Concepts

JavaServer Pages (JSPs) and Enterprise JavaBeans (EJBs) are part of a server-side application development
specification called the Java 2 Platform, Enterprise Edition (J2EE). Before you jump into the specifics of JSPs or
EJBs, some background on enterprise application development, J2EE, and how JSP and EJB fit into J2EE is in order.

This chapter sets the stage with information on the characteristics of a typical computing environment found in a
modern corporation. Next, you read about two significant advancements in computer science that provide application
developers with the means to satisfy their customers’ demands for computing services. You get a high-level look at
J2EE and see how J2EE addresses the needs of application developers. You read about the components of J2EE,
which include JSP and EJB. The chapter closes with a short discussion on the roles that JSPs and EJBs play in
developing enterprise applications with the J2EE specification.

The Enterprise Computing Environment

Today'’s corporate computing environment is a different animal from its ancestors. Typically, enterprise computing
environments are:

. Data-Obsessed: These days, the modern company is addicted to its data. With storage costs low, companies are
less likely to purge data stores today than in years past. Some industries, such as brokerage and insurance, keep
decades’ worth of data and subject their data to intense analysis. The astute corporate mavens realize that
corporate data is an asset worth exploiting. Those in charge look to their computing professionals to provide tools
that exploit this valuable asset.

. Distributed: Today’s enterprise computing environment has grown beyond the scenario of a single machine in an
air-conditioned room, with rows and rows of storage devices, serving hundreds or thousands of dumb green
screens. The more likely scenario for today’s environment is one of networked servers in diverse geographical
locations that serve data to hundreds or thousands of comparatively smart GUI clients.

. Secure: A good deal of corporate data must be kept from the prying eyes of the pesky, prying employee itching to
know who got the biggest raise in the department, the dementedly disgruntled employee looking to vend
proprietary information, and the capriciously curious employee trying to learn about various systems and
applications.

. Scalable: The environment that serves the needs of one hundred may be inadequate to serve the needs of one
thousand. As the number of users increases, resources, such as bandwidth or database connections, have a bad
habit of thinning out to unacceptable levels or simply running out.

. Fault tolerant: With the computing environment distributed among many parts, the possibility of any single part
failing increases with the number of parts. The company cannot afford to have its systems crash and burn every
time a server winks out or a data store goes offline.

. Heterogeneous: The days of a company using products from a single vendor are gone. More likely, a company
uses a mix of hardware and software from several competing vendors. Today, everything from the physical disk



packs to the video card on the desktop may be purchased from different vendors.

The modern computing environment clearly shares the characteristics of today’s diverse corporation doing business in
today’s diverse world.

The challenges facing systems professionals tasked with developing enterprise applications are legion. How have
today’s systems folk risen to the challenge? Two powerful technologies developed over the past few decades have
proven instrumental in developing applications that allow the modern corporation to conduct its business. These
technologies are client-server architectures and object technologies.

Client-server architectures describe how to partition the major functions of an application in layers. Object
technologies deal with constructing software systems as groups of communicating objects; each object has a set of
well-defined behaviors (called methods) and comes with its own data (called properties).

Developing Applications in Layers

In the days of bell-bottoms and disco music, companies used networks primarily to connect mainframes using
dedicated hardware and proprietary software and protocols. In the 1980s, companies started to use UNIX servers and
the TCP/IP protocol, which quickly became an industry standard. In response to servers’ not adequately scaling to
meet the needs of ever-increasing numbers of users, those in charge of the shop began to shift processing power
from centralized servers to the network. The era of client-server computing had begun.

Developing client-server applications is different from developing applications that run on green-screen, glass house
systems. The distributing of processing power between client and server demands that client-server software be
developed to reflect this division.

One strategy devised to develop client-server applications is to write the software in layers. A layer is a logical level
that deals with related application tasks. The basic idea is to develop the software to implement the layer’s functions
independently of features in other layers.

By partitioning software into layers, application developers could concentrate on the features and problems peculiar to
a particular layer. Division of application features among layers meant division of development responsibility. In
addition, the marketplace started to offer tools to support this software development strategy.

The layers commonly used to abstract a software system these days are a presentation layer, an application logic
layer, and a data layer. Each layer is responsible for functions not found in the other layers:

. The presentation layer is responsible for user interface tasks. These tasks include accepting user input, performing
various edit checks on input, and displaying relevant application output.

. The application logic layer is responsible for tasks that execute the algorithms that solve business problems. These
tasks include performing calculations, handling security, and accessing data. The application logic layer contains
most of the code for the application.

. The data layer is responsible for tasks that maintain permanent data stores in the form of one or more databases.
These tasks include data locking, data integrity support, and transaction support.

Code that implements tasks within a layer communicates with code in adjacent layers only. For example, code within
the presentation layer communicates with code within the application logic layer but does not communicate with code
within the data layer.

To implement a layered application, you need an architecture that describes the physical boundaries between the
above layers. The components that reside within the physical boundaries of the layers are called tiers. A summary of
two common client-server architectures, called two-tier and three-tier (or n-tier) architectures, follows.

Note The term architecture as used throughout this chapter refers to a partitioning strategy and a coordination
strategy. The partitioning strategy leads to dividing the entire system in discrete, non-overlapping parts or
components. The coordination strategy leads to explicitly defined interfaces between those parts.



Two-Tier Architectures in Brief

Some two-tier architectures combine most of the application logic layer tasks with the presentation layer, while others
combine most of the application logic layer with the data layer.

A two-tier architecture could have one tier consisting of client PCs containing application logic code and database
access routines and the other tier consisting of one or more databases. This arrangement is often referred to as a fat
client.

Another way to implement the two-tier architecture is placing the application logic layer with the data layer to form a
tier and having the presentation layer in the other tier. Here, the database would rely on stored procedures and
triggers to implement most of the application logic. This arrangement is often referred to as a thin client.

Figure 1-1 shows the differences between fat and thin client arrangements.

Presentation, Presentation
App Logic Layer Layer

FAT Client With THIM Client
Application Logic With Mo App
Cade Logic Code

Data Stores,
Data Stores, Stared Procediures,
Mo Stored Procedures Triggers
Data Layer Application Logic,
Data Layer

Figure 1-1: Fat and thin clients compared and contrasted

As you can see in Figure 1-1, the fat client architecture containing application logic code is a combination of the
functionality of the presentation and application logic layers. The thin client architecture has the application logic code
buried within the DBMS in the form of stored procedures (code stored within the database that performs some
application-specific task) and triggers (a feature of a DBMS that executes stored procedures based on one or more
conditions). Most two-tier architectures fall somewhere in between these extremes. The dashed line represents the
tier boundary.

Conventional wisdom these days is that two-tier architectures can satisfactorily handle a hundred or so users. For
larger numbers of users, performance may start to degrade because of the client’s need to maintain a connection to
the server. These constant connections drain network bandwidth and use scarce database connections. This problem
is more severe in the fat client than in the thin client scenario. For the fat client implementation, every request for data
requires reaching across the network, dipping into the database, and returning data to the client. For the thin client
implementation, one request for data can trigger a DBMS stored procedure that executes on the server. This stored
procedure could return the same data that a fat client would need multiple requests for. Although using stored
procedures helps alleviate the bandwidth problem, the thin client still requires the database connection.



More bad news for adopters of a two-tier architecture follows. In the fat client scenario, any change to the application
logic (and you know that there will be changes) involves compiling and installing the changed code on all the clients —
an expensive proposition. In the thin client scenario, the enterprise usually relies on vendor-specific databases and the
vendor’s implementation of triggers and stored procedures. Typically, proprietary implementations of DBMS features
are not portable to different platforms and usually will not work with different vendor products.

Every strain of technology solves some old problems while introducing new ones. Two-tier architectures are certainly
no exception; although applications developed with a two-tier architecture achieve some benefits by isolating tasks
into separate tiers, the disadvantages of the architecture remain. A sensible question is: Are there ways of exploiting
the advantages of these architectures while taking the sting out of their problems?

N-tier Architectures in Brief

Perhaps | can shed some light on a possible answer to the $64,000 question posed in the previous section by posing
another question: What are the root causes of the deficiencies of the two-tier architectures? One cause is the
architecture’s failure to give the application logic layer its own tier. By trying to divvy up the functionality of the
application logic layer, the resulting architecture ties applications to high-maintenance clients, proprietary and
nonportable databases, and clogged networks. Why not give the application logic layer its very own tier?

You don't have to be a rocket scientist to guess what the architecture is called when the presentation, application
logic, and data layers have their own tier. The “n” in n-tier means that a particular layer (the application logic layer,
really) may have more than one physical tier. Whether you're talking about three-tier (a specific case of the more
general n-tier) or n-tier, the basic concepts are the same — to encapsulate the application logic from the presentation
and data layers.

What does this buy you? With the computations, business logic code, and other application logic layer tasks isolated
in one or more separate tiers, these tasks do not reside in the client, nor do they reside in the database. Put another
way, n-tier architectures typically deploy thin clients and DBMSs devoid of application code.

There are several paths to the road of three-tier architecture implementation. A popular implementation places the
application logic layer on one or more application servers. These servers provide many essential services to a three-
tier application, such as transaction management, resource pooling, and security.

Rather than allow a fat client or stored procedure—laden database to handle transactions (when to commit one or
more transactions or when to rollback, for example), a three-tier architecture implementation delegates this vitally
important function to the application server. Because business logic dictates what constitutes a transaction, support
services dealing with transaction management belong on the application server because the business logic is
implemented there.

As previously mentioned, a shortcoming of two-tier architectures is the consumption of resources, such as database
connections, even when such resources are not needed. A characteristic of two-tier architectures is that each client
needs a connection to the databases. Three- or n-tier architecture implementations allow a client to request data from
one or more databases by communicating with code in the application logic layer tier. This code can dynamically
connect to a database to fetch and return the requested data to the client. Also, this code can queue the data request
until a database connection becomes available, and then fetch and return the requested data to the client.

Application servers — both hardware and software — are more secure than desktop client PCs. The hardware that
houses the application server usually resides in a physically protected space. Rarely would you worry about stumbling
over a power cord for the hardware that houses an application server! On the software side, most server software is
built with security in mind unlike client desktop operating systems, such as Windows or Mac OS.

Do three-tier architectures solve the problems of two-tier architectures cited above? For the most part, they do. The
problems caused by fat clients simply do not apply to n-tier architectures. Thin clients are relatively inexpensive to
install and maintain. Application changes will not have much of an impact on thin clients; the application servers take
the brunt of the changes.

Pulling application logic out of the DBMS by not using stored procedures places less reliance on proprietary stored
procedure implementations. Three-tier implementations have a wider choice of DBMS products for use in the data



layer than two-tier, thin-client implementations.

In general, the isolation of functions in discrete layers, implemented in discrete tiers, means that each tier can be
tweaked by using best-of-breed products without much impact on the remaining tiers.

As previously mentioned, any technology worth its salt solves old problems while introducing new ones. Some
problems caused by implementing applications that follow the n-tier architecture are described below.

N-tier architectures are flexible. One result of this flexibility is that the three- or n-tier implementer has to cope with
more hardware and software components than its two-tier counterpart. The addition of the application server opens up
new system configuration possibilities. While selecting best-of-breed products to implement the system’s layers is a
good thing, the problems with having a multiple vendor environment, replete with finger pointing, persist. As you might
imagine, maintenance costs for a large n-tier system are high.

Imagine a large n-tier application, such as a banking/ATM system, with thousands of clients dispersed all over the
world securely reading and writing terabytes of data to multiple data stores. The activity between tiers necessary to
get the job done must be staggering! The overhead produced by transmitting and receiving all this data across
networks that connect hardware and software components that implement the multiple tiers can slow down things, to
be sure.

The problems I've mentioned can be solved for the most part by spending more money for additional hardware — not
exactly the favorite solution!

We've talked about the benefits of developing software in layers, or tiers. As we’'ll see here and throughout
subsequent chapters, J2EE provides an architecture for constructing n-tier applications. Before we move on to discuss
J2EE particulars, we need to take a look at another essential technology instrumental to J2EE application
development that has proved its worth in theory and practice: object technology.

Top <

| <= Prov_ | Noxt =



Presentation, Presentation

App Logic Layer Layer

FAT Client With THIN Client

Application Logic With No App

Code Logic Code
)

Y Data Stores,
Data Stores Stored Procedures,
No Stored Procedures Triggers

Data Layer Application Logic,
Data Layer



EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 2: J2EE Component APIs

This chapter provides an overview of the J2EE component APIs. As mentioned in Chapter 1, J2EE is a collection of
approximately 12 application programming interfaces (APIs) for developing enterprise applications. These APIs define
a complete set of services that software engineers use to develop software components. J2EE simplifies the work of
an application development team by providing a rich set of services that manage many application details without
programming.

J2EE API Classifications

The J2EE APIs provide numerous services to n-tier application developers. We may group the J2EE APIs into three
classifications corresponding to the category of service, or function, the APIs provide to the application development
team. The classifications are as follows:

. Application components: These include applets, which are Java programs that execute in the client browser;
servlets, which execute on the server; and JSP pages, which provide dynamic content to Web pages. J2EE also
enables clients to run applications that can access data (by using a database API) without going to a Web server.

. Resource managers: These enable customer components to connect to an external component. These external
components can be another piece of J2EE, such as JavaMail (for mail messaging) or an IBM mainframe
transaction processor (such as IMS or CICS).

. Database access: J2EE database access relies on the Java Database Connectivity APl or JDBC, which enables
a customer container to issue industry-standard SQL. Relational database access in Java also relies heavily on
Java Transaction Services, or JTS, and the Java Transaction API.

The J2EE APIs work in concert to provide the services mentioned in the aforementioned classifications. For example,
a developer would use an application component API, such as JSP, to create a Web interface for an application that
accesses data from a relational database using JDBC. In the following section, we'll take a look at J2EE APIs that fall
within the preceding classifications.

Top <

| <= Prov | Noxt =



EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

J2EE APIs

Sun Microsystems provides a list of technologies that developers use in creating J2EE applications. Most of these
technologies have an associated API. A few, notably XML, are used in several J2EE APIs. Here is a list of the J2EE
APIs with a brief description:

. JavaServer Pages (JSP): Enables developers to dynamically generate Web pages with HTML, XML, and Java
code. JSP pages execute on the Web server.

. Java Servlets: Enables developers to dynamically create Web content as well as provide additional functionality to
a Web server. Java servlets execute on the Web server.

. Enterprise JavaBeans (EJB): Defines an architecture that enables developers to create reusable, server-side
components called enterprise beans.

. Java Messaging Services (JMS): A set of APIs that invoke asynchronous messaging services such as broadcast
and point-to-point (client-to-client) messages.

. Java Transaction API (JTA): Provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

. Java Transaction Services (JTS): Provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources.

. JavaMail: Enables a J2EE application to send and receive e-mail.

. Java Naming and Directory Interface (JNDI): Provides an interface for accessing name and directory services,
such as LDAP directory services and Domain Name Service (DNS).

. Java Database Connectivity (JDBC): Provides the J2EE application with a standard interface to databases
(usually relational databases).

. Remote Method Invocation (RMI/IIOP): Enables a Java application to invoke methods on different Java Virtual
Machines.

. Interface Definition Language (IDL): Enables J2EE-based applications to use CORBA objects.

In the following sections of this chapter, we explore the APIs in the preceding list in greater detail.

CORBA at a Glance

CORBA, the Common Object Request Broker Architecture, defines a standard for creating distributed object request
systems. The CORBA standard is the result of the collaboration of well over a hundred companies. The end result is a
standard that is language, platform, and vendor neutral.



CORBA enables the enterprise to use existing software by providing features that developers can use to wrap existing
software as CORBA objects. With CORBA, applications written in several languages can happily coexist and
communicate with each other.

A great deal of Enterprise JavaBeans was derived from CORBA. Indeed, a cursory look at EJB could lead one to think
that EJB is a slimmed-down, Java-centric version of CORBA. EJB and CORBA can be used together, specifically
when an enterprise bean needs access to code written in another language, or code written in another language
needs access to an enterprise bean.

Because CORBA is the brainchild of numerous companies, no single company controls CORBA. A committee (the
Object Management Group, or OMG) must agree upon changes made to the CORBA specification, which has both
positive and negative consequences. On the plus side, you are fairly assured that you are not tied to a single vendor,
product, or architecture when using a CORBA implementation. On the minus side, you may have to wait years for the
OMG to make decisions on CORBA-related issues.

The OMG Interface Definition Language (IDL) defines the interface to objects in the CORBA universe. Although IDL is
a language, you, the application programmer, do not necessarily execute IDL code. Rather, you write IDL code and
use a code generator to transform IDL into a specific programming language. Java programmers use an IDL-to-Java
translator to generate a representation of their IDL as Java. If you're curious, you can take a look at how IDL
translates to Java by examining f t p: / / www. ong. or g/ pub/ docs/ f or mat . 98- 02- 29. pdf .

JavaServer Pages

You've already read some of the skinny on JavaServer Pages (JSP). Some call JSP the front door to enterprise
applications, and with good reason. JSPs enable the enterprise application developer to separate presentation code
from business logic code on the server, thereby providing the application with a robust presentation layer.

Java Servlets

As with JSP, servlets enable developers to dynamically create Web content as well as provide additional functionality
to a Web server.

If a JSP gets translated into a servlet, why are JSPs important in the J2EE arena? JSP pages are easier to code and
maintain than servlets because servlets require the Java programmer to explicitly write out HTML statements to a
response object, whereas the Web page developer using JSP merely codes HTML.

cross-reference Please refer to Chapter 3, “A First Look at JavaServer Pages” and Chapter 8, “JSP

Pages and Servlets Revisited,” for more detailed discussions of servlets and their
relationship to JSP pages.

For example, assuming you is the current Web page viewer below, the following code is a JSP that generates an
HTML page that displays the string Yes, it’ s concatenated with the current user.

Listing 2-1: Your first JSP page

<htm >

<body>

<%@ page | anguage="java" %

<p> Yes, it'’s,

<% String you = (String) session.getAttribute(‘you);
out.println(you); %

</ p>

</ body>




</htm >

The code in Listing 2-1 is the functional equivalent to the servlet code shown in Listing 2-2.
Note Recall that JSP pages get translated into servlets. However, the servlet code shown in Listing 2-2 is not the
result of translating the JSP in Listing 2-1 into a servlet. The JSP translator generates a servlet that performs

the same function as the servlet shown in Listing 2-2 but with different Java code .

Listing 2-2: A servlet functionally equivalent to the JSP page in listing 2-1

i mport java.io.*;

i mport javax.servlet.*;
public class HeyltsYou extends HttpServlet {
public void doGet(HttpServl et Request req,
Ht t pServl et Response res) throws Servl et Exception, | CException {
res.set Content Type("text/htm");

Ht t pSessi on session = req. get Session( false ) ;
PrintWiter out = res.getWiter();
out.println("<htm >");
out. println("<body>");
out.println ("<p> Hey, it’'sey, it’'s,");
out.print("String you = ");
out.println((String) session.getAttribute(‘you’));
out.println(user);
out.println("</p>");
out.println("</body>");
out.println("</htm>");

The JSP page is smaller than the servlet, and most users agree that the JSP is easier to understand and maintain.
Many others also agree that writing out HTML (or XML, of course) by way of out . pri ntl n() statements is a major

drag because a large page can have hundreds of out . pri ntl n() statements.

Hence, the bottom line is that, while JSPs and servlets often accomplish the same task, you'll still need servlets from
time to time to do what JSPs cannot.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) define an architecture that enables developers to create reusable, server-side
components called enterprise beans. Enterprise beans typically reside on the application server or may have their own
dedicated server. Of course, you can read much more about EJB in the following chapters.

Please note that enterprise beans are not JavaBeans! One difference is that calling a JavaBean (from a servlet or JSP
page) involves intra-process communication, whereas calling an EJB (from a servlet or JSP page) involves inter-
process communication. You can read about other differences in the following chapters.

Java Messaging Services

Java Messaging Services (JMS) is an API that invokes asynchronous messaging services such as broadcast and
point-to-point (client-to-client) messages.



JMS is an API for using networked messaging services. A messaging system accepts messages from "producer”
clients and delivers them to "consumer"” clients. Data sent in a message is often intended as a sort of event notification
(for example, an e-mail-handling process may need to be notified when a request is queued). Another common use
for messaging (thus, JMS) is for interfacing with remote legacy applications. It can be complex and sometimes risky to
use Remote Procedure Call (RPC) or a Java variant such as Remote Method Invocation (RMI) to directly invoke
remote applications while a messaging solution can provide an easier and more reliable interconnection. In short, why
write remote procedure calls when you have access to an API specifically designed for sending messages across a
network from one object to another?

JMS calls frequently rely on the Java Naming and Directory Interface (JNDI) to locate message recipients. JNDI is
discussed later in this chapter.

Java Transaction API

Java Transaction API (JTA) provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

JTA is used for managing distributed transactions (e.g., updates to multiple databases that must be handled in a
single transaction). JTA is a low-level APl and associated coding is complex and error-prone — not in the spirit of
J2EE!

Fortunately, EJB containers or application servers generally provide support for distributed transactions using JTA.
For this reason, the EJB developer is able to gain the benefit of distributed transactions, leaving the complex
implementation details to the provider of the EJB container. Now, that's more in the J2EE spirit!

Java Transaction Services

The Java Transaction Service (JTS) provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources. Of course, JTS provides high-level support for JTA as well as other
transaction services.

The Java Transaction Service plays the role of an intermediary for all the constituent components of the EJB
architecture. In JTS terminology, the director is called the transaction manager. The participants in the transaction that
implement transaction-protected resources such as relational databases are called resource managers. When an
application begins a transaction, it creates a transaction object that represents the transaction. You would use JNDI
(Java Naming and Directory Interface) to access this transaction object. The application invokes the resource
managers to perform the work of the transaction. As the transaction progresses, the transaction manager keeps track
of each of the resource managers enlisted in the transaction. Often, JTS assists in managing the activities involved in
a two-phase commit.

JavaMail

The JavaMail API offers a standard Java extension API to talk to all your favorite standard Internet mail protocols. The
API provides a platform-independent and protocol-independent framework to build Java technology—based mail and
messaging applications. Put differently, JavaMail represents a standardized, extensible platform for communicating,
presenting, and manipulating all current and future Multipurpose Internet Mail Extension (MIME) types. The JavaMalil
APl is implemented as a Java platform standard extension.

Say goodbye to writing your own classes for talking to mail protocols! Say goodbye to learning yet another unique
third-party or in-house class library for dealing with e-mail or newsgroups! JavaMail was designed to communicate
with popular protocols and MIME types.



Java Naming and Directory Interface

Java Naming and Directory Interface (JNDI) provides an interface for accessing name and directory services, such as
LDAP directory services and Domain Name Service (DNS). JNDI enables Java programs to use hame servers and
directory servers to look up objects or data by name. This important feature enables a client object to locate a remote
server object or data.

JNDI is a generic API that can work with any name or directory server. As such, JNDI was not designed to replace
existing technology, but instead it provides a common interface to existing naming services. For example, JNDI
provides methods to bind a name to an object, enabling that object to be located, regardless of its location on the
network.

Server providers have been implemented for many common protocols (e.g., NIS, LDAP, and NDS) and for CORBA
object registries. Of particular interest to users of J2EE, JNDI is used to locate Enterprise JavaBean (EJB)
components on the network.

Again, the thrust of J2EE technology is to provide enterprise application developers with much-needed services in the
distributed realm. It's hard to think of a more valuable service than a naming service. JNDI provides the Java
application developer with this much-needed service.

Java Database Connectivity

Java Database Connectivity (JDBC) provides the J2EE application a standard interface to databases (usually
relational databases). In principle, JDBC serves the same purpose as Open Database Connectivity (ODBC). JDBC
provides a database-independent protocol for accessing relational databases from Java. JDBC supports Data
Manipulation Language (DML) statements such as i nsert, updat e, del et e, and sel ect . It also includes Data

Definition Language (DDL) statements such as Cr eat e Tabl e, Al ter Tabl e, and so on.

Database vendors usually provide a JDBC driver that enables a Java program to access the vendor's RDBMS
product. As of this writing, Sun has 154 JDBC drivers listed in its driver database

Note Seehttp://industry.java.sun. conm products/jdbc/drivers for a listing of available drivers for
use with JDBC.

JDBC was included in core Java starting with version 1.1. With JDBC, the SQL is always dynamically generated at
runtime and sent to the database. Many have griped about the inefficiencies of applying dynamically created SQL
against databases. In response, another standard for Java database access has emerged and is called SQLJ. SQLJ
enables static SQL to be used and it requires less cumbersome syntax than JDBC. One SQLJ advantage over JDBC
is better code quality because SQL is checked at compile-time. Also, SQLJ usually shows better performance than
JDBC because access paths to the database are generated once and reused for subsequent executions of the static
SQL.

We speak of levels for JDBC drivers; the slowest are level 1 drivers and the quickest are level 4 drivers. In addition,
some drivers serve as a bridge between JDBC and ODBC, mostly as an easy way to access ODBC databases (MS-
something or other databases, usually).

A type 1 driver provides JDBC access using a JDBC-ODBC bridge. This bridge provides JDBC access to most ODBC
drivers. Disadvantages of this type of JDBC driver include additional performance overhead of the ODBC layer, and
the requirement to load client code on each client machine.

A type 2 driver is a partial Java driver that converts JDBC calls into the native client database API. As with the type 1
driver, this driver requires some client code to be loaded on each client machine.

A type 3 driver is a pure Java driver that translates JDBC calls into a database-independent network protocol. The
database-independent protocol is implemented using a middleware server. The middleware server translates the
database-independent protocol into the native database server protocol. Middleware vendors typically offer a type 3



driver. Because the driver is written purely in Java, it requires no configuration on the client machine other than telling
the application the location of the driver.

A type 4 driver is a pure Java driver that uses a native protocol to convert JDBC calls into the database server network
protocol. Using this type of driver, the application can make direct calls from a Java client to the database. A type 4
driver, such as Informix JDBC Driver, is typically offered by the database vendor. Because the driver is written purely
in Java, it requires no configuration on the client machine other than telling the application where to find the driver.

As you might imagine, JDBC relies on a host of other J2EE API sets, such as JTA and JTS, to get the job done.

Remote Method Invocation and IIOP

Remote Method Invocation (RMI) enables a Java application to invoke methods on different Java Virtual Machines.
RMI is an important API used for supporting distributed computing and has been supported in core Java since version
1.1. RMI enables a Java client application to communicate with a Java server application by invoking methods on that
remote object. With RMI, the client gets a reference to a server object, and then it can invoke methods on that object
as if it were a local object within the same virtual machine.

For server objects developed in other languages, you must employ other technigues such as using Java IDL with
CORBA or RMI/IIOP (the Internet Inter-ORB Protocol) to access the server object.

Java Interface Definition Language

By using the Java Interface Definition Language (IDL), the Java programmer has access to CORBA objects. As
previously mentioned, the Java programmer uses the “IDL to Java” compiler, called idlj, to generate Java code to
interact with CORBA objects.

Listing 2-3 is an example of CORBA IDL taken from the CORBA Document Object Model specification.

Note The Document Object Model (DOM) is the recommendation of the Worldwide Web Consortium (W3C) for
expressing a document as a set of related nodes. A common use of DOM is to model XML documents. See
Appendix D for an overview on XML. Refer to ht t p: / / ww. w3c. or g/ DOMfor the definitive specification of

the Document Object Model.

Listing 2-3: Example IDL code from the W3C DOM

interface El ement : Node {

readonly attribute DOVString t agNane;
DOVBt ri ng getAttribute(in DOVString nane);
voi d setAttribute(in DOVString nane,

in DOVBtring val ue)
rai ses( DOVExcepti on);

voi d renoveAttribute(in DOVString nane)
rai ses( DOVExcepti on);

Attr get Attri but eNode(in DOVString nane);
Attr set AttributeNode(in Attr newAttr)

rai ses( DOVExcepti on);
Attr renoveAttri but eNode(in Attr ol dAttr)

rai ses( DOVExcepti on);
NodelLi st get El enent sByTagNane(in DOVt ri ng nane);
voi d normal i ze();

1

The idlj compiler produces Listing 2-4, the Java language binding for the IDL shown above.



Listing 2-4: Java code from the W3C DOM

public interface El enent extends Node {

public String get TagNane() ;
public String getAttribute(String nane);
public void setAttribute(String nane,

String val ue)
t hrows DOVExcepti on;

public void renoveAttribute(String nane)
t hrows DOVExcepti on;
public Attr get Attri but eNode(String nane);
public Attr set Attri buteNode(Attr newAttr)
t hrows DOVExcepti on;
public Attr renoveAttri but eNode(Attr ol dAttr)
t hrows DOVExcepti on;
publ i ¢ Nodeli st get El enent sByTagNane( String nane);
public void normal i ze();
}

J2EE Connector

The J2EE Connector provides a Java solution to the problem of connectivity among the many application servers and
Enterprise Information Systems (EIS) already in existence. By using the J2EE Connector architecture, EIS vendors no
longer need to customize their product for each application server. Application server vendors who conform to the
J2EE Connector architecture do not need to add custom code whenever they want to add connectivity to a new EIS.

Before the J2EE Connector architecture was defined, no specification for the Java platform addressed the problem of
providing a standard architecture for integrating heterogeneous EISs. Most EIS vendors and application server
vendors use nonstandard vendor-specific architectures to provide connectivity between application servers and
enterprise information systems.

Top <

| <= Prov | Noxt =



EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 3: A First Look at JavaServer Pages

This chapter provides you with a bird's eye view of JavaServer Pages (JSP). You can read how to execute JSP and
how JSP is intimately related to Java servlets. You can also see a couple of simple JSPs and read about what
happens during the execution of these JSPs. This chapter continues with a brief discussion on the advantages and
disadvantages of using JSP over several competing technologies and is followed by a recap of the material presented.

JavaServer Pages

JavaServer Pages (JSP) is one solution to providing dynamic Web content. The days of displaying the same old
HTML page to all customers, or to the same customer, who has visited the site several times, is rapidly becoming a
thing of the past. Today, Web pages need to display different content customized according to user input or relevant
events.

Customers want and expect some sort of personalization from sites. A return customer does not want to be forced to
reenter the same information when revisiting the site. Also, a Web page displaying data relevant to your inputs may
need to differ from pages displayed for other users. Imagine an online banking site where you enter your password
and see not only information on your accounts, but information for other bank customers as well!

Sites that change based on relevant events also provide a good example of dynamic content. Sites with stock market
quotes or weather information need to be refreshed at regular intervals to be useful. News sites must also refresh
content to stay on top of what's happening in the world. Stores that have online catalogs that often change inventory
and prices should not contain static content. Today’s Internet-related technologies, such as JavaServer Pages, give
the Web application developer the means to create pages with dynamic content.

JSP combines static text with special JSP tags. The static text represents invariant parts of the Web page, typically
but not necessarily HTML.

Note JSP pages mostly use HTML and XML for the static, template portion. Rather than constantly writing “HTML
or XML,” I've taken the liberty of writing “HTML” in this chapter and trusting you to know if “HTML or XML” or
“HTML” applies.

The JSP tags represent parts of the page that can change depending on the factors the page designer deems
appropriate. The basic mechanics are that the static text and the JSP tags are eventually sent to a Java-enabled
server that generates HTML from both the static part and the JSP tag. Once done, the server sends the generated
HTML back to the browser for display and continued user interaction.

This approach of mixing static text with tags is not unique to JSP. Indeed, several competing technologies employ this
approach. However, JSP enables you to leverage the full power of the Java programming language to make your
pages very flexible. The pros and cons of JSP are discussed later in this chapter, in the section “JSP Versus the

Competition.”




Creating and Using JSP Pages

A special IDE is not required to create JSP pages. You don't develop JSP pages as you would a Java application or
servlet. You don't have to wrap JSP pages in packages or deal with system settings (such as CLASSPATH). You don't
even have to (but you could) compile JSP pages! All you need is a good Web page editor that enables you to easily
enter the various JSP tags.

A site development team using JSP pages can have part of the team develop the static HTML portion, while others
develop the dynamic portion. The HTML developers need not know how to code JSP pages, or know anything about
programming in Java. But, as you might imagine, the JSP developer needs to be adept in coding HTML. When you
recall that the end result of a JSP is a Web page containing generated HTML, how could any self-respecting JSP
developer not be HTML-fluent?

It's simple to use a JSP page. The JSP page user must have access to a server that understands JSP tags, or a JSP-
enabled server. To use a JSP page with such a server, you enter the name of the page as you would any Web page
in the location area of your browser. A file representing a JSP page has a . j sp extension, which a JSP-enabled

server recognizes as a JSP page and, in turn, processes the special tags as JSP tags.

Note The term “JSP page,” although redundant, enjoys widespread use among the JSP development community.
Hence, the term is used throughout this book.

For Web pages that submit a JSP page to the server with a GET or POST service, the customer may never realize that
JSP pages are in play on the site. The ACTI ON attribute of an HTML form may specify that the action upon submitting

the form is to send the name of a JSP page with one or more parameters to the server. Again, the JSP-enabled server
recognizes the . j sp extension and takes appropriate action.

The Relationship Between JSP Pages and Java Servlets

The simple mechanics of creating and using JSP pages masks the complexity of the under-the-covers activity. JSP
pages actually are compiled into Java servlets. All those environment issues dealing with compiling and executing
servlets come into play. Whereas you don't compile JSPs, your Java-enabled server performs the compilation from
JSP page into a Java servlet for you. Although you, the JSP developer, need not care about CLASSPATH and other
settings, your server needs to know these settings. Your server needs access to the Java compiler and various
classes required for servlet and JSP compilation.

The first time you request a JSP page, the server translates the page into a Java class. Recall from Chapter 1 the

concept of J2EE containers. The JSP-enabled server has a JSP container that provides the environment necessary
for this translation. Sometimes, the JSP container is called the JSP engine; both terms are used interchangeably in
this book.

The server compiles the class generated by the JSP engine into a servlet. This servlet contains Java pri ntl n
statements that write the static text to the output stream, and Java code that implements the functionality of your JSP
tags. Depending on the amount of Java code generated by the JSP and the speed of the server, you may notice a
slight delay during the JSP-to-servlet compilation. However, subsequent requests of the JSP page do not cause a
page retranslation and recompilation. The JSP request accesses the already compiled servlet in memory.

As an aside, some servers enable you to establish file aliases. You can avoid the delay caused by the first-time JSP
translation and compilation by requesting your JSP page (causing translation and servlet generation), followed by
creating an alias of your JSP page to the generated servlet. Now, when your customer requests your JSP page, the
server references the previously generated servlet, which is already compiled and in memory.

Top

| <= Prov | Noxt =



EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Versus the Competition

As previously mentioned, JSP is not the only technology available to the Web application developer that generates
dynamic Web output. As with any technology, JSP has its advantages and disadvantages. This section describes
what JSPs can offer that competing technologies cannot.

Separating Logic from Presentation

As you read previously, coding business logic apart from presentation is a good design feature. Do you recall reading
about multitier architectures from Chapter 1? When properly separated, the code that implements the business logic

can be changed without affecting the code that implements the presentation, and vice-versa. JavaServer Pages give
the Web developer the ability to cleanly separate the logic from look-and-feel.

JSP enables Web developers to encapsulate the business logic in custom JSP tags (discussed in Chapter 7, “JSP

Tag Extensions”) and Java software components, such as JavaBeans and Enterprise JavaBeans. The code,
implementing the logic, is tied together with JSP scriptlets, expressions, and other JSP tags, which haven’'t been
discussed yet, and is sent to the Web server for execution.

This separation enables developers to practice their particular specialty; the skilled HTML author has no need to learn
JSP and the JSP author doesn’t need to be an HTML maven. The HTML author can concentrate on coding HTML
(presentation) tags and the JSP developer can concentrate on coding JSP (logic) tags.

The Strength of Java

Because JSP pages eventually are translated and compiled into Java servlets, you can use JSP pages on any server
that supports Java. You are not tied to any particular vendor or platform when you go the JSP route.

Of course, you have full command and control of the Java programming language when you use JSP. JSP make
extensive use of Java Beans and can communicate with other J2EE technologies, such as JDBC and, of course,
Enterprise JavaBeans.

JSP Versus Java Servlets

Before the advent of JSP, the most-used Java technology that could generate dynamic Web page content was Java
servlets. Because JSPs eventually are compiled into Java servlets, you can do as much with JSPs as you can do with
Java servlets. However, coding JSPs is easier than coding Java servlets. With JSPs, you place static text by coding
HTML tags as opposed to Java servlets, in which you place static text by coding a plentitude of pri nt | n statements.
With JSPs, you change static text by changing HTML; and with Java servlets, you change static text by modifying a
Java servlet (don't forget the compile/debug cycle!).



JSP Versus Active Server Pages

Active Server Pages (ASP) is the Microsoft solution for providing dynamic Web content. Actually, ASP looks very
similar to JSP; both use custom tags to implement business logic and text (HTML) for invariant Web page parts.
However, the devil is in the details, as described in the following:

. ASP uses VBScript or JScript, a Microsoft flavor of JavaScript, as its scripting language, whereas JSP uses Java,
a more powerful language than VBScript or JScript.

. The ASP developer typically uses a Microsoft Web server platform or requires a third-party product that permits
ASP execution on non-Microsoft platforms. The JSP developer has a wide variety of Web server platforms
available for use.

Note These third parties must port Microsoft software components, such as ActiveX, to different platforms in order
for ASP to be used on these platforms.

. An ASP is interpreted every time the page is invoked, whereas a JSP is interpreted only the first time the page is
invoked (or when the page is changed).

However, Microsoft has overcome the previously mentioned limitations of ASP with its release of ASP.NET. ASP.NET,
formerly ASP+, promises to be a serious contender against JSP. As of this writing, you may download the ASP.NET
Beta-2 release from htt p: / / wwv. asp. net /.

JSPs Versus Client-Side Scripting

Client-side scripting with JavaScript or VBScript is certainly handy and useful, but it does present several problems,
including the following:

. You must count on the customer’s browser to have scripting enabled, which, of course, you can't.

. Different customers may use different browsers. And coding client-side scripts that work on different browsers can
be a headache.

. Scripting languages used on the client side cannot match the strength and versatility of Java.

. Client-side scripting languages have very limited access to server-side resources, such as databases. JavaServer
pages have access to all server-side resources within the well-defined architecture of J2EE.

. You have the usual problems of maintaining software on the client that caused your organization to thin the client
in the first place.

In short, the advantages of using JSP over competing technologies are as follows:

. JSP enables a clean separation of business logic from presentation.
. JSP, by using Java as the scripting language, is not limited to a specific vendor’s platform.

. JSP, as an integral part of the J2EE architecture, has full access to server-side resources. Because JSP pages
execute on the server, you need not require the client to use a particular browser or have a fixed configuration

Disadvantages of Using JSP

What technology doesn’t have problems? Certainly, JSP technology has room for improvement. That said, what one
Web application developer views as a weakness, another may view as a strength (remember “bug” versus
“features”?). Here is a (short) list of real or perceived shortcomings of JavaServer Pages:



. JSP implementations typically issue poor diagnostics. Because JSP pages are translated, and then compiled into
Java servlets, errors that creep in your pages are rarely seen as errors arising from the coding of JSP pages.
Instead, such errors are seen as either Java servlet errors or HTML errors. You could look at this as an example of
a perceived strength of JSP — that of not needing to compile them — as opposed to a weakness. For example, a
JSP developer coding a scriptlet where a JSP declaration is called for would have to interpret a Java compile error.
The JSP developer would need access to the generated source to properly diagnose the error. Of course,
generated code is rarely a thing of beauty, and often, not easily understood.

. The JSP developer needs to know Java. Again, one developer’s asset is another’s liability. Whereas Java is
certainly more full-featured and flexible than other page scripting languages, no one can argue that the learning
curve for Java is far steeper than other scripting languages. If you already know Java (you do, right?), this is not an
issue. However, if a corporation is short on Java mavens but wants to use a dynamic Web technology, JSP may
not be the route to go. (Another way to look at the need to know Java is that if you had to train a rookie in using
either JSP or, say, ASP, and you had two days to produce half a dozen pages, which technology would you opt
for?)

. JSP pages require about double the disk space to hold the page. Because JSP pages are translated into class
files, the server has to store the resultant class files with the JSP pages.

. JSP pages must be compiled on the server when first accessed. This initial compilation produces a noticeable
delay when accessing the JSP page for the first time. The developer may compile JSP pages and place them on
the server in compiled form (as one or more class files) to speed up the initial page access. The JSP developer
may need to bring down the server to make the changed classes corresponding to the changed JSP page.

All'in all, it's a pretty short list.

Top

| <= Prov | Noxt =



EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 7. JSP Tag Extensions

Overview

At this point, you've been introduced to JSPs containing Java code in the form of scriptlets and expressions, custom
JSP constructs such as directives, and JSP action tags, which include other JSP pages or which enable your JSPs to
access JavaBeans. It certainly looks as if JSPs have covered all the bases for enabling JSP authors to generate
dynamic Web content.

You may recall that one goal of using JSPs is to clearly delineate presentation details from business logic. As you
write more scriptlet code in your JSPs, the delineation begins to blur. If you're not careful, your JSPs may contain
more business logic code than presentation details. This needs to be avoided for two reasons. First, JSP authors may
not be Java experts and hence won't be able to maintain the Java code contained in these constructs. Second, the
coupling of business code and presentation code makes it harder to change either independently.

JSP tag extensions allow you to add functionality to JSP pages without having to add many Java scriptlets to your
pages. In this chapter you will learn what JSP tag extensions are, what you can do with them, and how to create them.

[tad

Previous Next




EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you examined the code for a simple JavaBean and saw how this bean is used in some JSP pages. In
addition, you also explored several JSP statements that you can use to transfer data between beans and JSP pages,
and you learned that you can create and share beans among several JSPs.

By now, you have a good understanding of a powerful feature of JavaServer Pages — the feature of using software
components within your pages.

Top




EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Bean Usage Odds and Ends

A few points about using beans in JSP pages haven't been discussed yet. You probably surmised that you can use
more than one bean instance from the same or different bean classes in your JSPs. All you need to do is code an
appropriate jsp:useBean action for each bean instance.

When the JSP engine encounters a j sp: useBean action, the JSP engine searches for a bean with the same i d and
scope as the bean cited in the j sp: useBean action. If such a bean is not found, the JSP engine generates code to
create the bean. If such a bean is found, the JSP engine makes that bean available to the page containing the

j sp: useBean action. Beans may have the same i d but be instantiated from different classes. If so, the JSP engine
generates code to do a cast. If the cast is illegal, the generated servlet throws a O assCast Except i on.

As a result of this bean usage, multiple visits to the same page containing a j sp: useBean action during the same
session will not create multiple beans. Another consequence of this use involves conditionally executing JSP
commands, as explained in the following.

The examples of j sp: useBean you've seen use the empty tag XML syntax form. However, you can code the
j sp: useBean construct by using separate opening and closing tags as follows:

<j sp: useBean i d=soneBeanNane...>
Static HTM., JSP commands, whatever ...
</ sp: useBean>

The virtue of using separate opening and closing tags is that the code sandwiched between the tags is executed only
if the bean instance does not exist. If you want to share a bean among several pages, you can place the same code in
every page, knowing that the code gets executed once, depending on where the bean gets created. Remember, JSP
knows the bean by the values of the j sp: useBean attributes i d and cl ass. Different beans (objects) may be the
"same" bean to JSP.

Top

[ <= Prov_ | Next —_



EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JavaBeans in Multiple JSPs

The syntax of the j sp: useBean action has a couple of additional parameters, as follows, which have not been
mentioned:

<j sp: useBean i d="beanl nst anceNane"
cl ass="cl assNane"
scope="beanScope"
type="cl assType" />

The scope attribute is the focus of our discussion. The value of the scope attribute governs the bean’s visibility.
Different values for the scope attribute place instantiated beans within different contexts. Refer to Table 4-3 in
Chapter 4 for a list of scope attribute values and the relevant contexts.

The default scope attribute value is page. Page scope means that bean instances are accessible on the existing JSP,
or the JSP containing the j sp: useBean action. Stated differently, other JSPs within your application cannot use
instantiated bean objects without containing a j sp: useBean action.

Trying with page Scope

To bring the point home, here’s the JSP page cal cul at e. ] sp with a few changes. The following lines of code are
the substantial change:

<j sp: useBean i d="Cal cBean" cl ass="chean. Cal cBean" scope="page"/>

Because scope="page" is the default, this code really doesn’t change the JSP’s behavior. The next line invokes
another JSP, coded remarkably similar to cal cul ate. j sp.

<a href=cal cul ate2.jsp>Click Here for Next JSP Page</a>

Figure 6-3 shows cal cpage. ht nl , the page that calls cal cul at e. j sp, and the revised cal cul at e. j sp:



B S5P Sampls Page - Cabiulatei Bean |uull _I:!_F_.?_ W Shm Lkt Aty o - i ot it rorl H.EI-E_-:

P g ™ AgewifE oy e 7] ctie LR | P D8 Ve Tpwte fen v L]
ﬁ o FI; A i wled ML v Irr.j i
. X = : : =
A Simple AP s 2 A
Calculator e S o 3
s el
Ervter Dparandl ard Operand? (Tribegsrs)
i o ceseraiion Freem i Pull i"'."'-."-i _I_."'I'-'-_: "' _"., -I-- .
Arncrt

[atere
u, Uy Chck: Calowlabe: bo Conbinos
Updrandl HEdHEny

Crperaned? F2F323

Jparaticn f

Fasul®t B
= £
Figure 6-3: The calcpage.html and the revised calculate.jsp that contain a link to calculate2.jsp

Keep in mind that cal cul at e. j sp has the j sp: useBean action coded such that bean instances are known only
within the page. Listing 6-4 contains the code for cal cul at e2. j sp.

Listing 6-4: Accessing CalcBean in a second JSP page

<% - Tell JSP that this page renders HTM. --%

<%@ page content Type="text/htm" %

<% - Tell JSP to nap Cal cBean properties to |ike-naned variables --%

<j sp: set Property nane="Cal cBean" property="*" />

<htm >

<head>

<title>Calculate 2 Page</title>

</ head>

<body bgcol or ="#dddddd" >

Here's what was entered from <i >cal cpage. html </i > <p>

<P>The next 4 |lines show using the jsp:getProperty action to fetch bean properties
<% - jsp:getProperty wites the value of the bean property where coded --%
<p>QCper andl <b><jsp: get Property nane="Cal cBean" property="operandl" /></b>
<p>QCper and2 <b><j sp: get Property nane="Cal cBean" property="operand2" /></b>
<p>QCperati on <b><j sp: get Property nane="Cal cBean" property="operation" /></b>
<p>Resul t <b><jsp: get Property nanme="Cal cBean" property="result" /></b>

</ body>

</htm >

The cal cul at e2. j sp file refers to the bean instance Cal cBean. However, cal cul at e2. j sp does not contain a
j sp: useBean action. Because the instance of bean Cal cBean created in cal cul at e. j sp has page scope, you
would expect problems to occur when cal cul at e2. j sp attempts to access properties of the bean. Figure 6-4
illustrates what Tomcat indicates when you click the link and tell the JSP translator to process cal cul at e2. j sp.



ol SEEEL  0 armpi o hras cabimieled rop . B i Brteeant | aplmieg

Fla D& Yew Fpeied  Jook [Hep [k

H"I'lllv!_'llm--’n—cdl-ﬂ-ﬂm-m Rars e dodesl on ﬂ o
Sy S A Ry e | e
Baci Lz Flpip i, iy Gamoh gy Lz, g

Error: 500
Location: fexamples/jsp/cbean/calculated.jsp

Intesmal Serddet Erroe:

G o i B ok T - SR g T DRl O
BE B0 MpACES . JRERAr. ruse s Jeplan asslbrsry. ten respact ke i par | Arplunn sl ibrary. S
»E prg.spache  jerper cusd s JepTa asel ibcwr y, inf roepact | Jrpliued sewl ibrea s Sevar 152
a4 Jap. plaas. OS0LE pep G500 folbens. G050 Fealoulane 03500 GbEdeiepaeliulanel_dew_14._ 40
B 0. MpECES | JRERT . CULE LSS el epBase  parvacs |Bocpdepbaes . pevacd LF
ot jeesr prrvlst hitpoFitplervirt eecyece| Bt pRerviet . favm 1 8351
B . e Rl B DG JEEER Y AL S SR PR SR W T B R SRR LR, e b T
[
L3

SO MERCEE , RN . By LEG , Jopdarviet . secvicel sl o Le | AepSe oy et e 5 18]

£y mpacha ; Jarpar . pervlet  Jeplerviet  secvice ddepliery lat  Jevna FI1D u_‘l
=

Figure 6-4: Tomcat tells you off.

You do not need the entire stack trace; the essential message is (as usual) on the first line of the trace.

Trying with application Scope

We saw in the previous section, "Trying with page Scope", that if we set the value of scope to page in
cal cul at e. j sp, CalcBean is no longer accessible when we attempt to access it in cal cul at e2. j sp. Let's change
the value of scope from page to appl i cati on as follows:

<j sp: useBean i d="Cal cBean" cl ass="chean. Cal cBean" scope="application"/>

Using the appl i cat i on scope places the instantiated beans in the Servlet Context, which makes the bean
accessible to any servlet running on the server. Figure 6-5 shows what you see after shutting down Tomcat, restarting
Tomcat, displaying cal cpage. ht il , entering some numbers, and clicking "Calculate."”

(357 Sampi Page_Catcuiaie ean i MBS
[l [8 Yow gl Jook Hep [ |
Hﬂll-llll_: ser DML g o i T i 'IHj ol ’*"lﬁh"c--'h'-lh\-ﬂ T e 'r-r\-'i-n'_"'l -
SISOy BT | | R s ey
Bmi Firmamit i Firtrds Bk ke L
- = Hong's what wes entered fom A
A Simple cakpage.himi
Calculator T et < lines Shiow Using the
|sp:gebProperty acthon to fetch bean
gt i

Enter Opsrand] ard Operand?
(Integars)
and Select an operation From thae Pull
Dermis iy
hare, then Click Caloulaie to Contings Opsranadl 11

Opseranufll XTI

Opsaaration +

g
:

Enkgr O ared] | Faersult F22X33.0
Solect Operation: [- = | |

o | o o

Figure 6-5: Running the calculator again with application scope

No news here. You may recall that the JSP page cal cul at e. j sp has its j sp: useBean action coded to enable
application access to bean instances in general and the bean instance named in the useBean action in particular.
When you click the link for the next (cal cul at e2. j sp) JSP page, Figure 6-6 is what you see.



1 Calciilate 2 Page - Miciosoll Intéimel Exploia:

| B E® Vew Fagoder ok Heb ([ |
| | Address [@] rip ocabast B ke cheancakculate? o x| G
' - w

- T
=

Here's what was entered from calcpage. himi:

The next 4 lines show using the jspogetProperty
action to fetch bean properties

Dperanal 22222
Operand? 11
Cperation +

Result 22233.0

=

Figure 6-6: Accessing a bean instance from a page that didn’t create the instance

Refresh your memory by glancing at Listing 6-4 to note that cal cul at e2. j sp does not contain aj sp: useBean
action.

Other scope Attribute Values

The scope attribute of the j sp: useBean action may also have a value of session or request. When you code
scope="sessi on", you are telling the JSP engine to store your bean instance in the sessi on object. You can turn
off sessions with a JSP page directive containing a sessi on attribute with the value of "false." A useBean scope
value of sessi on is incompatible with a page directive sessi on value of false.

The remaining scope value is r equest . You've seen input data access with the r equest implicit object. Coding a
bean with scope of r equest stores the bean instance within this implicit object.

Coding a bean scope of r equest accomplishes little. You get the same access to the r equest object with the
default scope of page.

Top



EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP : by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming

Techniques.
i | ‘.E';‘ .‘:

Coding JSP Standard Actions

Actions cause something to happen. In JSP, you have two categories of actions at your disposal: custom actions and standard actions.
You implement custom actions with tag libraries. You'll have to wait until you get to Chapter 7 for the nitty-gritty on tag libraries. You don’t
implement standard actions; these actions are instead provided to you, the JSP developer, free of charge. Please note that a server
provider may provide vendor-specific actions above and beyond the standard set.

Table 4-2 shows the JSP standard actions, an example of the syntax, and a brief description of each action.

Table 4-2: Short Descriptions of JSP Standard Actions

Short

Action Name Syntax Example Description

j sp: param <j sp: par am name=@lppar anmNanme @2lp This action
val ue=@@ppar anval ue@p /> works with
other standard
j sp: par ans action tags

(i ncl ude,
forward, and
pl ugi n tags)
to provide a
value to a
named
parameter.

and

jsp:forward <j sp: forward page=@apsonmeURL@alp> This action
provides a
convenient
</jsp: forward> mechanism to
forward a
request to
another JSP or
servlet.




j sp: get Property

<j sp: get Property

name=@@pbeanl| nst anceNane@@p

property=@@ppr opert yNane@ip />

The JSP
author uses
the

get Property
action to
access the
properties of a
bean coded in
auseBean
action. The
get Property
action is the
compliment to
the

set Property
action.

j sp:include

<j sp:include page=@@lppageName@lp fl|ush=@@ptrue@p />

The JSP
author codes
the i ncl ude
action to direct
the engine to
include a
resource at
request time.
Do not confuse
this action with
the JSP

i ncl ude
directive.

jsp:plugin

<j sp: pl ugi n type=@@ipappl et @ip

code=@Ripj avaCode @Rip

codebase=@@pj avad asses@p

al i gn=@alpal i gnnent @p

ar chi ve=@apj ar Fi | es@lp

hei ght =@@Ippi xel sH gh@@ip

wi dt h=@@ppi xel sW de@ap

jreversi on=@@pl. 2@@lp
nane=@@pconponent Nane @@ p

titl e=@pconponent Tit | e@@p
vspace=@@ppaddi ngAr ound@lp

nspl ugi nurl =@ pwher eNSPI ugi nsAr e@lp
i epl ugi nurl =@ pwher el EPI ugi nsAr e@p

Show Thi s When Applet or Bean Fails to Load

<j sp: fal | back>
</jsp:fall back>
</jsp: plugi n>

The JSP
author codes
the pl ugi n
action when he
or she needs
to generate
client-specific
HTML OBJECT
or EMBED tags
that ensure
that a
particular
object is
available and
to invoke that
bean or object.
Most of the
attributes are
identical in
function and
coding to the
HTML
attributes for
the OBJECT

tag.




j sp: set Property

j sp: useBean

<j sp: set Property nane=@pbeanNane@p
property=@@ppr opertyNane@@p
par anF@@ppar anNane@ip / >

<j sp: set Property nane=@@pbeanNane@ip
property=@@ppropertyName@dlp

val ue=@@lpscriptl et O Stri ngVal ue@lp
/>

<j sp: useBean i d=@@lpbeanl nst anceNane@lp
scope=@Rlppage@@p
cl ass=@lpcl assName@lp
t ype=@lpcl assType@@p />

The JSP
author uses
the

set Property
action with the
useBean
action to set
the values of
properties in
the beans
named in the
nane attribute.
The bean
properties are
coded in the
property
attribute; the
value can be a
string or
scriptlet coded
in the val ue
attribute.

This action
allows the JSP
author to use
objects
instantiated
from a
JavaBean. The
scope
attribute may
be page,
request,
sessi on, or
appl ication.
The useBean
action works
with other
actions
described
earlier.

The standard action commands are coded as tags following XML syntax rules. (See Appendix D for information on XML syntax.) In the
sections that follow, you learn more about the set of standard actions available to the JSP developer on any JSP Web server.

The param and params Action

The par amaction provides other tags with parameter data. Use par amto get data to the f or war d, pl ugi n, and i ncl ude actions. The

syntax for the par amaction is as follows:

<j sp: param

If you have a need to create more than one parameter name-value pair for use in another action, you need to enclose the multiple par am

name="par anet er Nane" val ue="par anet er Val ue" />

actions inside a par ans action, as follows:

<j sp: par ans>
<j sp: param

<j sp: param

<j sp: param
</j sp: parans>

name="par anet er Nanel" val ue="par anet er Val uel" />
nanme="par anet er Nane2" val ue="par anet er Val ue2" />
nanme="par anet er Nane3" val ue="par anet er Val ue3" />




The forward Action

The f or war d action causes processing to immediately redirect to the indicated page. For example, when processing hits the following
statement:

<j sp: forward page="t henext page. htm " />
t henext page. ht m is immediately displayed.

Before displaying the forwarded page, the output stream buffer (if one exists) will be cleared. If you want to make a name-value parameter
known to the forwarded page, you use the par amaction as follows:

<j sp: forward page="t henext page. ht i " >
<j sp: param nane="par anNang" val ue="par anval ue" />
</jsp: forward>

Using the f or war d action enables you to direct categories of activities to specific pages.

The getProperty and setProperty Actions

The get Property action accesses one or more properties of a JavaBean used by the JSP page. The get Pr oper t y action accesses
the value of pr oper ty from a JavaBean, converts the value to a string, and writes the string representation to output.

The get Pr operty action has the following syntax:

<j sp: get Property nane="beanl nst anceNane"
property="propertyName />

As you might imagine, set Pr oper ty is how the bean gets the property value set in the first place. The syntax for the set Property
action has several forms, as shown here:

<j sp: set Property nane="beanl nst anceNanme" property="*" />

<j sp: set Property name=" beanl nst anceNang"
property="propertyNane" />

<j sp: set Property nane=" beanl nst anceNane"
property="propertyNanme"
par ane" par anet er Nane" />

<j sp: set Property nane=" beanl nst anceNane"

property="propertyNanme"
val ue="propertyVval ue" />

The attribute pr oper t yNane is the name of the bean property you want to set.
The attribute pr opert yVal ue is a string or JSP expression that, of course, represents the value of the property you wish to set.
The attribute par amNane is the value of a parameter that replaces the existing value of the property coded in the set Pr oper ty action.

You cannot code both par amand val ue in the same set Pr operty action.

The include Action

The i ncl ude action enables you to include content in your JSP page. Before you think that the i ncl ude action is the same thing as the
<%@ i ncl ude % directive, recall that the i ncl ude directive brings in the external content at translation time whereas the i ncl ude
action is processed at runtime (or page request time).

The syntax of the i ncl ude action is straightforward, as shown here:

<j sp:include page="rel ativeURL" flush="true" />



When considering the i ncl ude action, it's important to note that the value of the page attribute can be a JSP expression or some other
dynamically generated expression.

The f | ush attribute must be coded as true.

You can code par amtags with the i ncl ude action, as shown here:

<j sp:include page="incl uded. ht " flush="true" >
<j sp: param nane="par anNane" val ue="par anval ue" />
</jsp:include>

The plugin and fallback Actions

You use the pl ugi n action to generate HTML tags for embedding Java applets in the generated output page to ensure that the browser
contains an appropriate Java runtime, and that it executes the applet properly.

All but 4 of the 13 attributes of the pl ugi n action have the same meaning as the HTML counterparts. The parameters that have different
meaning are:

. type: Identifies the type of the component; a bean or an applet

. jreversion: Java runtime required to execute the component

. nspl ugi nurl : Location of the Netscape JRE download, as a URL

. i epluginurl: Location of the Internet Explorer JRE download, as a URL
The pl ugi n action takes an optional par amaction as well.

You may code af al | back action to provide information when the pl ugi n fails to load. Basically, the f al | back action provides
alternate text that performs the same function as the ALT attribute.

The useBean Action

The useBean action is used to make a JavaBean known to your JSP. You read more about bean use with your JSPs in Chapter 6, "JSP,
JavaBeans, and JDBC." In this section, you get exposure to the syntax for the useBean action.

There are several forms for coding the useBean action, as shown here:

<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
cl ass="cl assNane" />

<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
cl ass="cl assNane" type="typeNane" />
<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"

beanNane="beanNane" type="typeNane" />
<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
type="t ypeNanme" />
The attributes coded for useBean have the following meaning:
. i d: The name of the bean object instance.
. scope: A context in which the bean reference is known. The different scope contexts are represented by implicit objects, covered

more fully in the next section. Think of the bean object as having a different life cycle for different scope values. Table 4-3 lists the
values and meaning of the scope attribute of the useBean action.



. cl ass: The fully qualified class name of the bean being associated with the JSP.

. beanNane: The same name you would use to instantiate the bean, or the name you would supply to the i nst ant i at e method of
j ava. beans. Beans.

. type: Defaults to the value of the cl ass attribute but can be a valid superclass or interface implemented by the bean class.

Table 4-3: Values of the Scope Attribute Used in the JSP useBean Action

| Scope | Description
| page | The bean object dies after the servlet completes its ser vi ce() invocation.
request The bean lives for as long as the HTTP request lives, even if the HTTP request object is passed
among different JSP pages.
| sessi on | The bean object lives as long as the session exists.
| application | The bean object lives for the duration of the application’s execution.

As you might imagine, the useBean action enables you to load JavaBeans for use in your JSP pages, thereby opening your JSP pages to
the full power of the Java programming language. Also, you can take advantage of using software components, something that you
cannot easily do with other products.

Top



EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix D: XML Overview

Throughout this book, you've read about JSP elements and EJB files coded in XML syntax. Although the examples of
such elements and files presented in the book convey the essential flavor of XML syntax, a more thorough
presentation is called for. Thus, the purpose of this appendix is to present the essentials of XML syntax.

This appendix provides an overview of XML, or Extensible Markup Language, a universal document format for
structuring data for presentation on the Web. The appendix starts with an overview of XML features that overcome
existing problems with HTML. Next, an extremely simple XML document is provided along with a discussion of XML
document components. The important XML terms, well-formed documents and valid documents, are covered, as are
XML Document Type Definitions (DTDs). Finally, a brief description of related technologies wraps up this appendix.

XML Features

XML does not have a fixed set of markup tags, overcoming HTML'’s greatest deficiency, according to some experts.
XML is not a markup language per se; XML is a meta-markup language that enables document authors to define their
own tags. As a result, authors can create markup languages peculiar to their particular industries, and XML document
authors can use this markup language to encode data in industry-specific terminology.

XML requires document authors to follow certain rules in creating what is known as well-formed XML documents. If
these rules are not followed, the XML document is useless. This XML specification prohibits XML tools from trying to
fix problems with the document. The intent is to stop the browser madness prevalent in HTML, in which different
browsers attempt to “fix” broken HTML and, of course, parse and display this HTML differently. For example, an HTML
document author can write HTML with missing end tags, which the major browsers parse and display. Such
foolishness cannot fly with XML; if an XML document is broken, the document cannot be rendered. Therefore, an XML
author can confidently create XML documents, knowing that these documents are parsed identically with different
pieces of compliant software.

XML stresses the separation of data content from data presentation. Over time, HTML has blurred the distinction
between organizing document content and displaying the content. A typical HTML document has tags that describe
relationships among document content (such as <LI > tags) and tags that govern the display of this content (<U>,
<B>, and so on). XML describes document content structure and semantic relationships, not the content formatting.
The XML author uses a related style sheet technology, such as CSS (Cascading Style Sheets) or XSL (Extensible
Style Language), to govern the display of the document. One upshot of this clean separation of structure and display
is that the same XML document can be displayed in various ways by using different style sheets, or the same style
sheet can govern the display of similarly structured XML documents.

The nonproprietary nature of XML, combined with its ease of writing, makes XML an ideal format for data exchange
among applications.

Top

| <= Prov | Noxt =



EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

There are many JSP engines on the market today, and you may or may not use Tomcat in your JSP projects. Since
Tomcat is the reference JSP implementation endorsed by Sun Microsystems, it will support new JSP specifications
more quickly than most other JSP engines. For this reason you will want to become familiar with Tomcat whether you
use it regularly or not because it will be a valuable tool for both regular use and for examining new JSP releases now
and in the future.

Top




EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix C: Configuring the Tomcat Web Server

This appendix discusses Tomcat and provides advice on how to get the Tomcat release 3.2 Web server. Tomcat is
the Reference Implementation for the Java Servlet 2.2 and JavaServer Pages 1.1 Technologies. In other words,
Tomcat is a Web server that implements the most current release of JSP and Java Servlets.

The Tomcat Web Server

Tomcat is a Web server that contains a JSP container. Tomcat is quick and easy to install and to use, and offers the
following advantages:

. Tomcat is free.

. You can download the source code for Tomcat as well as the binaries. If you really want to learn about server
internals, the Tomcat source is a great resource.

. Mailing lists about Tomcat are available to one and all. These lists are devoted to disseminating information,
including posted questions and answers.

Tomcat is designed to work as both a standalone Web server or in conjunction with application servers, such as
Apache or JBoss. For your purposes here, it is more interesting to run Tomcat as a standalone Web server because it
offers a straightforward way to learn about JSPs. However, in the real world, if you opt to use Tomcat, you may want
to integrate Tomcat with another Web application server.

Tomcat was, and currently is, developed by a community of dedicated individuals under the umbrella of the Jakarta
Project. You are encouraged to learn about the Jakarta Project by taking a look at
http://jakarta.apache. org/i ndex. ht m . From this site, you can get to the page where you can download the

Tomcat Web server.

As of this writing, the latest release of Tomcat is release 3.2.

Note By the time you read this book, it is very likely that the Jakarta folk will have a more recent version of Tomcat
available, probably release 4.0. Be advised that the description of Tomcat given here applies to release 3.2.
Several details and particulars may change between successive releases.

Downloading Tomcat Release 3.2

You can get to the download page for Tomcat from the Jakarta URL or go to
http://jakarta.apache. org/site/binindex. htn . (If you prefer, you can get to the source code download

from here as well.)




The Tomcat download site classifies downloads into release builds, milestone builds, and nightly builds. The release
builds are the stable versions of the Tomcat product. Once you get to the download site, scroll to the release builds
section and select “Tomcat 3.2.1” (or whatever is the most current release being offered). Figure C-1 shows the

screen containing the download files.

T Feip fubarin. mpan ke peey baday | b sty dmrs o e be ase )P 1 Bin - Blcioga brirese B aplaie
[l [8 e Fpeie [k ek |
“ o, = : : § - -
Bk n'?p n.“-'.;l.-. IEI.. l.Em r...—._' H:njnq. i
L T T L T r———————— T ] e
=

Index of /builds/jakarta-
tomcat/release/v3.2.1/bin

T Lat el L Ji0E  EERRi L L

- S REARLALY -dns-5o01 4153
|:' Jmicwrre: pepyinsap; Rar §2-Bec-BB00 K148 ATk Emr sechive
Ll RN R PR G [0S g 15-See-P080 pEian  SEIW GEEF suspaessdd T1iE
l:' AmiaTL s pRpy Lata M o] i A3
4
]| SR a- et =1, . 1, B *-dar 5501 1] a
) canrinvmmcns-3 2 1oaen . SF-dan-beEl S35 42N
.
£ S w- et =10, 1, s 15 -Paa-D000 J4idd B0 naw ssekive
LN snrsrcscoipmosr-) Bl tar.gn  l-Sec-bEOO GiiES BT GEIF compresssd fils
L] quiaptm-f opeat LuiiiE JicPer-3900 B4l B.0m .
™M
= s FLEET]
|
I 1= Pee=3000 11140
=
i [ - SITT § =}
el L BT

Figure C-1: Tomcat release 3.2 download page

From this page you can select a Tomcat version for Windows 9x, Windows NT, or Windows 2000, or for various UNIX
flavors.

Assuming you are using some version of Windows, select j akart a-t ontat - 3. 2. 1. zi p to commence the

download. After a successful download, you should have a zip file called j akart a-t ontat - 3. 2. 1. zi p on your
hard drive.

Installing Tomcat

Installing Tomcat is a straightforward process. Just open the zip file and extract all contained files in the archive.

Note You need a copy of PKZIP to extract the contained files. You can get a copy at
http: //ww. pkwar e. com . This site has compression/extraction tools for several operating systems.

You may want to create a directory at your disk root; for example, use d: \ t ontat 32 to hold all the Tomcat files. After
extracting the files, your directory structure should resemble that shown in Figure C-2.



B8 Exploving - My Computer M= E

e
i
B

Figure C-2: Tomcat directory structure

As you can see, several directories shown in the figure have subdirectories. Not all the subdirectories within Tomcat
can be shown here because of space limitations. Throughout this appendix we will examine different directories in the
Tomcat installation that are relevant to the Tomcat configuration and JSP processing.

Assuming you see something similar to Figure C-2 on your screen, you are almost ready to check whether your

Tomcat installation was successful. However, first you need to set up a few environment variables, as described in the
following section.

Setting Your Tomcat Environment Variables
Tomcat uses a script located in the bi n directory called, appropriately enough, st ar t up. bat , which requires several

environment variables to be set on your system for proper execution. Table C-1 lists these variables and their
purpose.

Table C-1: Tomcat Environment Variables

| Variable Name | Purpose
| JAVA HOVE ’ Points to the root directory of your Java installation.
Points to the root directory of your Tomcat

TOMCAT _HOVE
installation.

If you are running Windows 9x, you can assign these environment variables in your aut oexec. bat file as follows:



set JAVA HOVE=d:\j dkl. 3
set TOMCAT HOMVE=d: \tontat 32

After you code the assignments, you need to restart your machine or execute your aut oexec. bat file to make the
variable assignments.

If you are running Windows 2000 or Windows NT, you can use the System Properties control panel to set these
environment variables. From your Start button, select Settings @ @> Control Panel @ @> System @ @> Environment.
Figure C-3 shows the Environment control panel.

Ganeisl | Metwork [dentiication | Hadware | Use Profles  Advanced |
Ermvironmant Varlables K E

Wl i Syetem Variahle

Varisbla Mama: | tomest_homa

Yariabls valse: | d:\pomea 3z

[ ] o |

ot warishled
Warabaly T |-
ComSpec TN sy stem X ] e
HUMEER _OF PR... |
o ‘Wiradows_ T
D2 bPath oI sy sten 2 sl
Ptk AT i 2 s 'I_'k‘."i'-l'ﬁT CTWIN. .. _I

mewo, | B | D |

e | |
L ]

Figure C-3: The Windows NT Environment control panel

If you find existing entries for environment variables in the control panel, you may click the entry to view and edit its
value as necessary. Click OK or Apply to set the variables.

Caution Be careful when setting environment variables in command windows. Windows starts a separate process
for each command window opened. Therefore, if you issue a SET command to assign environment

variables values in one window, the variables have these values when executing programs from within
this command window only. Placing your SET commands in your aut oexec. bat file or setting variable

values in the control panel makes the values known to all processes.

Okay, you're almost home. With the Tomcat environment variables set, you are ready to test your Tomcat installation.

Testing Your Tomcat Installation

The directory TOMCAT _HOVE\ bi n contains several startup and shutdown files. The files you are interested in are
called st art up. bat and shut down. bat . First, run the startup file by double-clicking its icon or running the file from
a command window. Once you execute the startup file, you should see two windows that resemble those shown in
Figure C-4.



Figure C-4: What you should see when executing startup.bat

The windows in Figure C-4 are stacked for display purposes, so your display will differ. If you see two command
windows such as the ones shown, you can be pretty sure that your Tomcat installation was successful.

You want to display Web pages in your Web server, right? Although the command windows shown in Figure C-4 show

Tomcat executing, you need to call up a Web page and check out some servlets and JSPs. This process is covered in
the following sections.

Displaying Web Pages in Tomcat

Open a browser and enter the following URL:
http://1 ocal host: 8080/

Figure C-5 shows what you should see on your screen.

e [& Yo P Jas B

Tomcat

: README, 1l FAG) .
BT
« JEPEsenies
« Serdet Eamples
« AP docs lor Serdet snd 15 Packages

#l L enaw




Figure C-5: The Tomcat greeting screen

If you see this screen, congratulations! You have a working version of the Tomcat Web server installed on your
system.

Try out the JSP and servlet examples next. Figure C-6 shows the page of JSP examples.

B [# e P Qe B ﬁ

e, SN - K F | a @ 9 | @

Bk T Famapr. . gt Pge e Ty bl
w'm"ﬁ'hdvimﬂ" i made L _'.'] &
JSP Samples

This is a collection of samples demonsirates the uvsage of different parts of the lava Serear
Pages (5P specificakion

Tharse gxamides will only work when hess pages ane being served by tha ServietRunres. T

Friry
il Pl el (T Wil B0 vidwingg Thaas DbgeE vib & il LR
Ty Pl ol oo wilry Theough tFe axarmndles, the Mollowineg iKord will Fedp
h Endcli sl ax il
¥ Look of the source code for the sxample
ohy Rt o Hhis soreen
Tigp Foor gdeition doopsid Dhaarsd 0o wirk, P cook g rea il Beb dsnuahl sl This cam bed dorsd ol
bevrerser opdkors
Pk gumsss Q:L ead L
Dk *-‘_ L &
=

T

Figure C-6: The Tomcat JSP example page
The page in Figure C-6 contains 15 JSP examples, of which two are shown.

You have not seen a JSP execute yet. Click on the link labeled "Execute" next to the Date example. If you see a
screen such as Figure C-7, you have a working, JSP-enabled Web server!



'illlr.p'. Mocalbost:BIH0 e x ampletjep'd sles dale.jsp Micia... M=l E1
B G Yww Fovostes Dok el ' |

e o A | B A
Eack CRop Fedresh Mo
e

Address F-l'_] it locatho: BV examplesipfdster/dabe p

[
=

« Day of month: is 16
Year: is 2001
Month: is May
Time: is 9:15:19

« Date: is 5/16/2001
« Day: is Wednasday
Day Of Year: is 136
Weelk Of Year: is 20
era: is 1

« DST Offset: Is 1

« Zona Offsak: s -6

L]

L]

L]

L]

- - -
£] Dore Iy Local infraret 5
Figure C-7: The Date JSP executing in Tomcat

Tomcat Directories and JSP Processing

The documentation contained in TOMCAT_HOVE\ doc covers nearly everything you need to know about using Tomcat.
In this section, you can see a quick rundown on placement of JSP files in Tomcat.

You have two options for running JSPs in Tomcat: You can create your own Web application or use the example
directory to run your JSP pages. This section describes how to use the example directory. Consult the documentation
for configuring Tomcat for your own Web application.

You have to place your JSP and HTML files in one directory and your class files from JavaBeans in another directory.
First, let's look at the directories and read about where you'll place JSP and HTML files.

To run a set of related JSPs, you need to create a directory in the TOMCAT _HOVE\ Webapps directory. For example,
let's create the directory TOMCAT _HOVE\ Webapps\ exanpl es\ | sp.

Caution Do not be misled by looking at the URLs in the browser. Notice that the URL shown in Figure C-7,
http://1 ocal host: 8080/ exanpl es/j sp/ dat esdat e. j sp, does not include the Webapps
directory. When placing your JSPs, remember that the directory shown in the URL is really found in
TOMCAT_HOVE\ Webapps.

Put your JSP files and static HTML files in your directory. For example, the series of JSPs for the Hotel Reservation
System are stored in the directory TOMCAT _HOVE\ Webapps\ exanpl es\ j sp\ hot el res.

Caution Do not invoke your JSPs or static HTML files by clicking their icons. You must invoke JSPs or HTML
pages from the browser from the ht t p: / /| ocal host : 8080 address. If you click HTML page icons,

you see the pages in the browser (of course), but you cannot invoke any JSPs from the pages.

As for your class files representing your JavaBeans, Tomcat understands that the directory
TOMCAT_HOVE\ Webapps\ exanpl es\ cl asses holds class files. Because you are a sharp Java programmer, you've



already coded your bean classes within a package, which corresponds to a directory within the classes directory cited
above. For example, beans created for the Hotel Reservation System are stored in
TOMCAT _HOVE\ Webapps\ exanpl es\ cl asses\ hot el res.

Once again, store your JSPs and HTML pages together in a directory located in the JSP subdirectory and your bean
classes in a directory (package) located in the cl asses subdirectory.

More Information on Tomcat

As previously mentioned, mailing lists are dedicated to disseminating information about Tomcat. If you have a
question, you can post it to the Web site for this book, of course, or join one of the Tomcat mailing lists.

Tip To join the Tomcat mailing list, visitht t p: / /| akart a. apache. or g/ t ontat and follow the directions

found there.

Top <

| <= Prov_ | Noxt =



EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix B: The EJB API

This appendix lists the classes and interfaces that comprise Sun Microsystems’ Enterprise JavaBeans API for quick
reference.

The EJB API

Here, you can read about the EJB 1.1 API and Sun’s proposed changes for the upcoming EJB 2.0 release.

The entire EJB APl is contained within the following two packages:

. javax.ejb
. javax. ej b.spi (2.0 only)

Before examining the contents of these two packages, let’s take a quick look at the class and interface hierarchies for
the j avax. ej b package.

Class and Inheritance Hierarchies for Package javax.ejb

The proposed classes and interfaces introduced with release 2.0 are noted in the following list. Notice that EJB works
with interfaces; the classes in the javax.ejb package are representations of exceptions.

cl ass java.l ang. Obj ect
class java.l ang. Throwabl e (inplenments java.io. Serializable)
cl ass java.l ang. Excepti on
cl ass javax. ejb. Creat eException
cl ass javax. ejb. Duplicat eKeyException
cl ass javax. ejb. Fi nder Excepti on
cl ass javax. ej b. Obj ect Not FoundExcepti on
cl ass javax. ej b. RenoveExcepti on
cl ass java.l ang. Runti neException
cl ass javax. ej b. EJBException
cl ass javax. ejb. AccessLocal Excepti on
cl ass javax.ejb. NoSuchEntityException
cl ass javax. ej b. NoSuchObj ect Local Excepti on (2.0)
cl ass javax.ejb. Transacti onRequi r edLocal Exception (2. 0)
cl ass javax.ejb. Transacti onRol | edbackLocal Excepti on (2.0)

Interface Hierarchy



Here is the interface hierarchy:

i nterface javax. ej b. EJBCont ext
interface javax.ejb. EntityContext
i nterface javax.ejb. MessageDrivenContext (2.0)
i nterface javax. ejb. Sessi onCont ext
i nterface javax.ejb. EJBLocal Hone (2.0)
i nterface javax.ejb. EJBLocal Object (2.0)
i nterface javax.ejb. EJBMet abDat a
interface java.rm . Renote
i nterface javax. ejb. EJBHone
i nterface javax. ejb. EJIBObj ect
interface java.io. Serializable
interface javax.ejb. EnterpriseBean
interface javax.ejb. EntityBean
interface javax.ejb. MessageDri venBean (2.0)
i nterface javax. ejb. Sessi onBean
i nterface javax.ejb. Handl e
i nterface javax. ejb. HoneHandl e
i nterface javax. ejb. Sessi onSynchroni zati on

Because the javax.ejb.spi package (new with release 2.0, remember?) contains a single interface, let's go ahead and
discuss it.

The javax.ejb.spi Package and Its Interface

The j avax. ej b. spi package contains a single interface called Handl eDel egat e, which is implemented by the
EJB container. This interface is used by portable implementations of j avax. ej b. Handl e and

j avax. ej b. HoneHandl e. Handl eDel egat e is not used by EJB components or by client components. It provides
methods to serialize and deserialize EJBObj ect and EJBHone references to streams. Table B-1 lists the methods
available in the Handl eDel egat e interface.

Table B-1: Methods of the HandleDelegate Interface

Method Signature Description
EJBHone readEJBHome( Cbj ect I nput Stream Invoked by the EJB container to deserialize the
i stream EJBHone reference corresponding to a
HoneHandl e.
EJBOhj ect readEIJBObj ect ( Invoked by the EJB container to deserialize the
oj ect I nput Stream i stream EJBObj ect reference corresponding to a Handl e.
void witeEJBHome( EJBHome hone, Serializes the EJBHone reference corresponding to
bj ect Qut put Stream ostream ) a HomeHandl e.
void witeEIJBObj ect( EJBObj ect object, Serializes the EJBObj ect corresponding to a
bj ect Qut put St ream ostream) Handl e.

The vast bulk of the EJB API is contained in the j avax. ej b package. Let's take a look at j avax. ej b now.

The javax.ejb Package

Enterprise JavaBeans work with remote interfaces. Hence, the majority of the methods defined in the EJB spec are



contained within interfaces. EJB classes are limited to exception classes. Later in this appendix, you can examine a
list of all available methods from the interfaces contained in j avax. ej b. For now, let’s look at the exception classes,

which are listed in Table B-2. These exception classes inherit the "usual" methods, such as pri nt St ackTrace, and
use the "usual” constructors.

Table B-2: Exception Classes of the javax.ejb Package

Class Name Description

AccesslLocal Exception An AccesslLocal Excepti on is thrown to indicate

that the caller does not have permission to call the
method.

Cr eat eExcepti on The Cr eat eExcept i on exception must be included

in the throws clauses of all create methods defined
in an enterprise bean's hone interface.

Dupl i cat eKeyExcepti on The Dupl i cat eKeyExcept i on exception is

thrown if an entity EJB object cannot be created
because an object with the same key already exists.

EJBExcepti on The EJBExcept i on exception is thrown by an
enterprise bean instance to its container to report
that the invoked business method or callback
method could not be completed because of an
unexpected error (for example, the instance failed to
open a database connection).

Fi nder Excepti on The Fi nder Except i on exception must be included
in the throws clause of every f i ndMETHOD( )
method of an entity bean's homne interface.

NoSuchEnt i t yExcepti on The NoSuchEnt i t yExcept i on exception is
thrown by an entity bean instance to its container to
report that the invoked business method or callback
method could not be completed because the
underlying entity was removed from the database.

NoSuchChj ect Local Excepti on A NoSuchnj ect Local Except i on is thrown if an

attempt is made to invoke a method on an object
that no longer exists (new with release 2.0).

hj ect Not FoundExcept i on The Obj ect Not FoundExcept i on exception is
thrown by a f i nder method to indicate that the
specified EJB object does not exist.

RenoveExcepti on The RenoveExcept i on exception is thrown at an
attempt to remove an EJB object when the
enterprise bean or the container does not enable the
EJB object to be removed.

Transacti onRequi r edLocal Excepti on This exception indicates that a request carried a null
transaction context, but the target object requires an
activate transaction (new with release 2.0).

Transacti onRol | backLocal Excepti on This exception indicates that the transaction
associated with processing of the request has been
rolled back, or marked to roll back (new with release
2.0).

As you see, the new exception classes in release 2.0 deal with exceptions thrown by local objects.



The j avax. ej b package defines no other classes than the exception classes listed in Table B-2; the remainder of
the package consists of interfaces. Table B-3 lists the interfaces available in the j avax. ej b package. The interfaces
newly available with the release 2.0 are noted.

Table B-3: Interfaces of the javax.ejb Package

Interface Name | Description

EJBCont ext The EJBCont ext interface provides an instance
with access to the container-provided runtime
context of an enterprise bean instance.

EJBHone The EJBHone interface must be extended by all

enterprise bean’s remote home interfaces.

EJBLocal Hone

The EJBLocal Hone interface must be extended by

all enterprise bean’s local home interfaces (new with
release 2.0).

EJBLocal Obj ect

The EJBLocal Obj ect interface must be extended
by all enterprise bean'’s local interfaces.

EJBMet aDat a The EJBMet aDat a interface enables a client to
obtain the enterprise bean’s metadata information.
EJBhj ect The EJBObj ect interface is extended by all

enterprise bean’s remote interfaces.

Ent er pri seBean

The Ent er pri seBean interface must be
implemented by every enterprise bean class.

Entit yBean

The Ent i t yBean interface is implemented by every
entity enterprise bean class.

Enti t yCont ext

The Ent i t yCont ext interface provides an instance

with access to the container-provided runtime
context of an entity enterprise bean instance.

Handl e The Handl e interface is implemented by all EJB
object handles.
HomeHandl e The HoneHandl e interface is implemented by all

home object handles.

MessageDri venBean

The MessageDr i venBean interface is implemented
by every message-driven enterprise bean class (new
with release 2.0).

MessageDri venCont ext

The MessageDri venCont ext interface provides
access to the runtime message-driven context that
the container provides for a message-driven
enterprise bean instance (new with release 2.0).

Sessi onBean

The Sessi onBean interface is implemented by
every session enterprise bean class.

Sessi onCont ext

The Sessi onCont ext interface provides access to
the runtime session context that the container
provides for a session enterprise bean instance.

Sessi onSynchroni zati on

The Sessi onSynchr oni zat i on interface enables

a session bean instance to be notified by its
container of transaction boundaries.




Note that all of the new interfaces available with release 2.0 deal with the MessageDr i venBean and local objects.
The rest of the interfaces in the j avax. ej b package existed in the previous EJB specification release. All of these
interfaces are discussed in this appendix.

The EJBContext Interface
The EJBCont ext interface provides a bean with the context of the EJB container. As such, the methods available

through EJBCont ext enable a bean to glean information about the container and the beans contained within. Table B-
4 lists the methods from the EJBCont ext interface.

Table B-4;: Methods of the EJBContext Interface

| Method Signature | Description

Princi pal getCallerPrincipal() Returns the security Principal that identifies the
method caller.

| EJBHone get EJBHome() Returns the bean’s (remote) home interface.

EJBLocal Hone get EJBLocal Home() Returns the bean’s local home interface (new with
release 2.0).

| bool ean get Rol | backOnl y() Determines if the transaction is marked for rollback.

User Transacti on get User Tr ansacti on() Returns a reference to the current transaction
demarcation interface.

bool ean i sCall erl nRol e() Determines if the method caller has a given security
role.

voi d set Rol | backOnl y() ’ Sets the current transaction for rollback.

The EJBCont ext interface is extended by the Sessi onCont ext and Ent i t yCont ext interfaces, which contain
methods peculiar to the two bean types.

The EJBHome Interface

The EJBHone interface must be extended by all remote home interfaces. With release 2.0, EJB draws a distinction

between a remote home interface and a local home interface. Later in this appendix you'll read about the methods in
the EJBLocal Honre interface. All methods contained in the EJBHone interface throw (minimally) a

Renot eExcept i on. The proposed 2.0 release does not add new methods, or deprecate existing ones. Table B-5
lists the methods in the EJBHone interface.

Table B-5: Methods of the EJBHome Interface

| Method Signature | Description

’ EJBMet aDat a get EJBMet aDat a() ’ Returns th_e metadata for the be'an..The bean’s
metadata is rarely used by application developers.

| HormeHandl e get HoneHandl e() ’ Returns a handle for the (remote) home object.

| voi d renmove( Handl e handle ) ’ Removes an EJB object referenced by its handle.

voi d renmove( Object primaryKey) ’ Removes an EJB object referenced by its primary
key.



get EJBHome() Returns the bean’s (remote) home interface.

The EJBLocalHome Interface

The EJBLocal Hone interface is conceptually similar to the EJBHone interface except that the EJBLocal Home
interface should be extended for all local clients of enterprise beans. This interface, new with release 2.0, contains one
method, r enove, which has the following signature:
voi d renove( Object prinmaryKey )

t hrows RenpbveException, EJBException ;

The r enove method can be called only by local clients of an entity bean. Recall that session beans do not have

methods that rely on the existence of a primary key (such as finder methods). The implementation of this interface is
the responsibility of the EJB container.

The EJBLocalObject Interface

The EJBLocal Obj ect interface, new with release 2.0, serves the same function as the EJBObj ect interface, but for

local clients. An enterprise bean's local interface provides the local client view of an EJB object. An enterprise bean's
local interface defines the business methods callable by local clients. The implementation of this interface is the
responsibility of the EJB container. Table B-6 lists the methods available from a class that implements the

EJBLocal Obj ect interface.

Table B-6: Methods of the EJBLocalHome Interface

| Method Signature | Description

| EJBLocal Hone get EJBLocal Home() ’ Returns the bean’s local home interface.

| hj ect get Pri mar yKey() ’ Returns the primary key for the EJB local object.
bool ean isldentical ( EJBLocal Obj ect Determines if the given EJB local object is identical
[ obj ) to the invoking EJB local object.

| voi d remove() ’ Removes the EJB local object.

The EJBMetaData Interface

The EJBMet aDat a interface enables a client to obtain the enterprise bean's metadata information. The metadata is

intended for development tools used for building applications that use deployed enterprise beans, and for clients using
a scripting language to access the enterprise bean. Table B-7 shows the methods available by a class that
implements the EJBMet aDat a interface.

Table B-7: Methods of the EJBMetaData Interface

| Method Signature | Description
| EJBHone get EJBHome() ’ Returns the bean’s remote home interface.
Cl ass get Horel nt erfaced ass() Returns the class for the enterprise bean’s remote

home interface.

Cl ass getRenotel nterfaced ass() Returns the class for the enterprise bean’s remote
interface.




bool ean i sSessi on() Determines if the bean’s type is session as opposed

to entity, or (with release 2.0 only) message driven.

| bool ean i sSt at el essSessi on() ’ Determines if the bean’s type is “stateless session.”

| obj ect getPri maryKey() ’ Returns the primary key for the EJB local object.

The EJBObject Interface

The EJBObj ect interface is extended by all enterprise bean’s remote interfaces. An enterprise bean's remote

interface provides the remote client view of an EJB object. An enterprise bean's remote interface defines the business
methods callable by a remote client. Table B-8 shows the methods available by a class that implements the

EJBObj ect interface.

Table B-8: Methods of the EJBObject Interface

| Method Signature | Description

| EJBHone get EJBHone () ’ Returns the bean’s remote home interface.

| Handl e get Handl e() ’ Returns a handle for the invoking EJB object.
| hj ect get Pri mar yKey() ’ Returns the primary key of the EJB object.

bool ean isldentical ( EJBOhject eobj ) Determines if a given EJB object is identical to the

invoking EJB object.

| voi d remove() ’ Removes the EJB object.

The EnterpriseBean Interface

The Ent er pri seBean interface contains no method signatures or constants. Interface Ent er pri seBean serves as
the superinterface for the Ent i t yBean, Sessi onBean, and MessageDr i venBean interfaces.

The EntityBean Interface
The Ent i t yBean interface must be extended by any class that implements an entity EJB. The container uses the

methods defined in the entity bean class to notify the bean instances of various events in the bean’s life cycle. Table B-
9 lists the methods available in an entity bean class that implements the Ent i t yBean interface.

Table B-9: Methods of the EntityBean Interface

Method Signature | Description

voi d ej bActivate() The container invokes ej bAct i vat e when the

bean instance is loaded from the bean pool to
become associated with a particular EJB object.

voi d ej bLoad() The container invokes ej bLoad to synchronize the

entity bean’s state by refreshing the bean with data
from the underlying database.




voi d ej bPassi vat e() The container invokes ej bPassi vat e before the
bean instance becomes disassociated with a specific
EJB object, possibly by placing the bean instance
into the instance pool.

voi d ej bRenmove() The container invokes ej bRenove before it
removes the EJB object associated with the bean
instance.

void ej bStore() The container invokes ej bSt or e to synchronize the

bean’s state by storing the bean data to the
underlying database.

voi d setEntityContext() Sets the entity context for the newly created entity
bean.
voi d unset EntityContext () Unsets the entity context immediately before

removing the bean instance.

The EntityContext Interface

The Ent i t yCont ext interface, a subinterface of EJBCont ext , provides an instance with access to the container-
provided runtime context of an entity enterprise bean instance. The container passes the Ent i t yCont ext interface
to an entity enterprise bean instance after the instance has been created. The Ent i t yCont ext of an entity bean
stays associated with the bean for the bean’s entire life. Table B-10 lists the methods available from the Ent i t yBean
interface.

Table B-10: Methods of the EntityContext Interface

Method Signature | Description

EJBLocal Obj ect get EJBLocal Obj ect () Returns a reference to the EJB local object currently
associated with the bean’s instance (new with
release 2.0).

EJBObj ect get EJBObj ect () Returns a reference to the EJB object currently

associated with the bean instance.

hj ect get Pri mar yKey() Returns the primary key of the EJB object currently
associated with this bean instance.

voi d ej bLoad() The container invokes ej bLoad to synchronize the

entity bean’s state by refreshing the bean with data
from the underlying database.

The Handle Interface

The Handl e interface is implemented by all EJB object handles. A handle is an abstraction of a network reference to
an EJB object. A handle is used as a "robust" persistent reference to an EJB object.

The Handl e interface defines one method, get EJBCbj ect , with the following signature:

EJBObj ect get EJBObj ect ( ) throws RenpteException ;

The HomeHandle Interface

The HoneHandl e interface is implemented by all home object handles. A handle is an abstraction of a network



reference to a home object. A handle is used as a "robust" persistent reference to a honeobj ect .

The HoneHandl e interface defines one method, get EJBHone, with the following signature:

EJBHonme(Obj ect get EJBHone ( ) throws RenoteException ;

The MessageDrivenBean Interface

The MessageDr i venBean interface is implemented by every message-driven enterprise bean class. The container
uses the MessageDr i venBean methods to notify the enterprise bean instances of the instance's life cycle events.

The MessageDr i venBean interface, as well as any interface dealing with message-driven beans, is new with release
2.0. Table B-11 lists the methods available from the MessageDr i venBean interface.

Table B-11: Methods of the MessageDrivenBean Interface

Method Signature Description

voi d ej bRenmove() The container invokes r enpove immediately prior to
ending the life of the message bean (new with
release 2.0).

voi d set MessageDri venCont ext ( Sets the message-driven context immediately after

MessageDri venCont ext nttx ) creating the instance of the message bean.

The MessageDrivenContext Interface

The MessageDr i venCont ext interface, new with release 2.0, is a subinterface of EJBCont ext that provides an

instance with access to the container-provided runtime context of a message bean instance. The container passes the
MessageDri venCont ext interface to a message enterprise bean instance after the instance has been created. The

MessageDr i venCont ext of a message bean stays associated with the bean for the bean’s entire life.

The MessageDr i venCont ext interface requires no methods other than those from the superinterface,
EJBCont ext , be implemented.

The SessionBean Interface

The Sessi onBean interface is implemented by every session enterprise bean class. The container uses the
Sessi onBean methods to notify the enterprise bean instances of the instance's life cycle events. Table B-12 lists the
methods available from the Sessi onBean interface.

Table B-12: Methods of the SessionBean Interface

Method Signature Description

voi d ej bActivate() The container invokes ej bAct i vat e when the

session bean instance becomes associated with an
EJB object by fetching from a bean pool or
deserializing from storage (enters the active state).

voi d ej bPassi vat e() The container invokes ej bPassi vat e when the
session bean is about to go into a bean pool or be
persisted (enters the passive state).




voi d ej bRenove()

The container invokes r enove immediately prior to
ending the life of the session bean.

voi d set MessageDri venCont ext (
MessageDri venCont ext nctx )

Sets the associated session context after the
container creates an instance of the session bean.

The SessionContext Interface

The Sessi onCont ext interface, a subinterface of EJBCont ext , provides an instance with access to the container-
provided runtime context of a session enterprise bean instance. The container passes the Sessi onCont ext
interface to a session enterprise bean instance after the instance has been created. The Sessi onCont ext of a
session bean stays associated with the bean for the bean’s entire life. Table B-13 lists the methods available from the

Sessi onBean interface.

Table B-13: Methods of the SessionContext Interface

Method Signature

Description

EJBLocal Obj ect get EJBLocal Obj ect ()

Returns a reference to the EJB local object currently
associated with the bean’s instance (new with
release 2.0).

EJBOhj ect get EJBOhj ect ()

Returns a reference to the EJB object currently
associated with the bean instance.

The SessionSynchronization Interface

The Sessi onSynchr oni zat i on interface enables a session bean instance to be notified by its container of

transaction boundaries. A session bean class is not required to implement this interface unless it wishes to
synchronize its state with the transactions. Table B-14 lists the methods available from the

Sessi onSynchr oni zat i on interface.

Table B-14: Methods of the SessionSynchronization Interface

| Method Signature

Description

voi d afterBegin()

The container invokes af t er Begi n to notify a
session bean that a new transaction has started.

voi d afterConpletion ( bool ean
comritted )

The container invokes af t er Conpl et i on to notify
a session bean that a commit or a rollback occurred.

voi d bef oreConpl etion()

The container invokes bef or eConpl eti on to

notify a session bean that a transaction is about to
be committed.




EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Interfaces and Classes Added to JSP Release 1.2

The up-and-coming JSP release 1.2 includes some additional interfaces and classes to the
j avax. servl et.] sp.tagext package. Table A-25 provides a quick look at what's new with JSP 1.2

Table A-25: New Components of the javax.servlet.jsp.tagext Package
(JSP 1.2)

| Component | Type Description

IterationTag Interface Extends the Tag interface by
providing one additional method
that controls the reevaluation of
its body.

TryCat chFinal |y Interface Another interface of a tag-
handler class that wants more
hooks for managing resources.

PageDat a Abstract Class Objects of class PageDat a are
generated by the JSP translator
and passed to a Tag library
validator.

TagLi braryVal i dat or Abstract Class Translation-time validator class
for a JSP page.

TagVari abl el nfo Class Contains information about tag
variables coded in the tid.

The IterationTag Interface

The | t er at i onTag interface extends Tag by defining one additional method that controls the reevaluation of its
body.

A tag handler that implements | t er at i onTag is treated as one that implements Tag regarding the doSt art Tag and
doEndTag methods. | t er at i onTag provides a new method: doAf t er Body with the following signature:

i nt doAfterBody()

The | t er at i onTag interface defines an additional constant that requests the evaluation of the tag body, as follows:

public static final int EVAL BODY_AGAI N



Note that EVAL_BODY_AGAI Nreplaces the deprecated tag BodyTag. EVAL_BODY_TAG

The TryCatchFinally Interface

The Tr yCat chFi nal | y interface is the auxiliary interface of a Tag, | t er at i onTag, or Body Tag tag handler that
wants additional hooks for managing resources.

This interface provides two new methods: doCat ch( Thr owabl €) and doFi nal | y, with the following signatures:

voi d doCatch( Throwable t )
voi d doFinal ly()

The doCat ch method is invoked whenever an exception is thrown within the body of a tag. The doFi nal | y method
is invoked in all cases after the doEndTag method for classes implementing the Tag, BodyTag, or the
It erati onTag interfaces.

The PageData Abstract Class

The PageDat a class contains one method (Table A-26), get | nput St r eam that returns an input stream of an XML
document representing the translated JSP page. You, the JSP author, do not code the get | nput St r eammethod.

Table A-26: Methods in the PageData Class

Method Signature Description

abstract |nputStream getl nput Streamn() Returns an input stream of an XML document
representing the translated JSP page.

The TagLibraryValidator Abstract Class

This class is the translation-time validator class for a JSP page. A validator operates on the XML document associated
with the JSP page. The tld file associates a TagLi br ar yVal i dat or class and some i ni t arguments with a tag

library. Table A-27 lists the methods available from the TagLi br ar yVal i dat or class.

Table A-27: Methods in the TagLibraryValidator Class

Method Signature Description

Map getl nitParaneters() Returns the i ni t parameters data from the tld as an

immutable map. Parameter names are keys, and
parameter values are the values.

void rel ease() Releases any data kept by this instance of the tag-
handler class.

voi d setlnitParaneters( Map parmnmvap ) Sets the i ni t parameters as key/value pairs for this
instance of the validator.

String validate( String tagPrefix, Validates a JSP page. Returns a null string if

String tagURI, PageData page ) validation is successful or a diagnostic if not.

The TagVariableIlnfo Abstract Class



This class contains variable information for a tag in a tag library. It is instantiated from the Tag Library Descriptor file
(tid) and is available only at translation time. The methods contained in the TagVar i abl el nf o class are similar to

those contained in the Var i abl el nf o class. Table A-28 lists the methods available from the TagVari abl el nf o

class.

Table A-28: Methods in the TagVariablelnfo Class

Method Signature

Description

String getC assNane ()

Returns the value (body) of the vari abl e- cl ass
element coded in the tld.

bool ean get Decl are()

Returns the value (body) of the decl ar e element
coded in the tld.

String get NaneFromAttri bute()

Returns the value (body) of the nane- from
attri but e element coded in the tld.

i nt get Scope()

Returns the value (body) of the scope element
coded in the tld.

end




EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP : by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix A: The JSP API

This appendix lists the classes and interfaces that comprise Sun Microsystems’ JavaServer Pages API for quick reference.

The JSP API

Here, you can read about the JSP 1.1 APl and Sun Microsystems’ proposed changes for the upcoming JSP 1.2 release. Only a few
differences exist between the two.

Because JSPs eventually get translated into Java servlets, you can read references to Sun’s Java Servlet API here. Also, the JSP
classes and interfaces inherit from the servlet classes, making a discussion of the JSP API tightly interwoven with mentioning the
Servlet API.

One more point worth mentioning is that you, the JSP programmer, often will not invoke the JSP APl methods directly. When you
create a JSP page, the JSP translator generates references to the JSP API within the generated servlet. However, when you create
custom tags, you must code references to the JSP API for your classes that implement your tag’s functionality.

All of the JSP APl is contained within the following two packages:

. javax.servlet.jsp
. javax.servlet.jsp.tagext

Before examining the contents of these two packages, take a quick look at the class and interface hierarchies for the JSP API for JSP,
releases 1.1 and 1.2.

The Class and Interface Hierarchies for the javax.servlet.jsp Package
The following are the proposed classes and interfaces for the JSP 1.2 release.

cl ass java.l ang. Obj ect

cl ass javax.servlet.jsp.JspEnginelnfo
class javax.servlet.jsp.JspFactory
cl ass javax. servl et. | sp. PageCont ext
class java.lang. Throwabl e (inplenents java.io.Serializable)
cl ass java.l ang. Exception
cl ass javax.servlet.jsp.JspException
class javax.servlet.jsp.JspTagException (JSP 1.2)
class java.io. Witer
cl ass javax.servlet.jsp.JspWiter
interface javax.servlet. Servlet
interface javax.servlet.jsp.JspPage
interface javax.servlet.jsp. HtpJspPage



The Class and Inheritance Hierarchies for the javax.servlet.jsp.tagext Package

The following are the proposed classes and interfaces for the JSP 1.2 release.

cl ass java.l ang. Ovj ect
class javax.servlet.jsp.tagext.PageData (1.2)
class javax.servlet.jsp.tagext. TagAttri butelnfo
class javax.servlet.jsp.tagext. TagData (inplenents java.l ang. C oneabl e)
class javax.servlet.jsp.tagext. TagExtral nfo
cl ass javax.servlet.jsp.tagext. Taglnfo
class javax.servlet.jsp.tagext. TagLi brarylnfo
class javax.servlet.jsp.tagext. TagLi braryValidator (1.2)
class javax.servlet.]sp.tagext. TagSupport (inplenents javax.servlet.jsp.tagext.IterationTag,
java.io. Serializable)
class javax.servlet.]sp.tagext.BodyTagSupport (inplenents javax.servlet.jsp.tagext.BodyTag)
class javax.servlet.jsp.tagext. TagVariablelnfo (1.2)
class javax.servlet.jsp.tagext. Variabl el nfo
class java.io. Witer
class javax.servlet.jsp.JspWiter
cl ass javax.servlet.jsp.tagext.BodyContent interface javax.servlet.jsp.tagext. Tag
interface javax.servlet.jsp.tagext.lterationTag (1.2)
interface javax.servlet.jsp.tagext.BodyTag
interface javax.servlet.jsp.tagext. TryCatchFinally (1.2)

The javax.servlet.jsp Package
The j avax. servl et . j sp package contains the classes and interfaces that describe and define the contracts between a JSP page

implementation class and the runtime environment provided for an instance of such a class by a JSP container. Table A-1 lists the
interfaces, classes, and exceptions of the j avax. ser vl et . j sp package.

Table A-1: Components of the javax.servlet.jsp Package

Component | Type Description

JspPage Interface Describes requirements for a JSP-
generated servlet class.

Ht t pJspPage Interface Describes requirements for a JSP —
uses the HTTP protocol.

JspEngi nel nfo Abstract Class Provides information about the JSP
engine in use.

JspFactory Abstract Class Defines factory methods that the JSP
page may use to create needed
runtime objects.

JspWiter Abstract Class Enables the creation of a buffered
version of java.io. PrintWiter

that throws 10 exceptions.

PageCont ext Abstract Class PageCont ext objects enable the JSP
page to access page-specific
attributes, including a JspWi t er and
er r or page exception processing.

JspError Exception When thrown, output generation stops
and processing is directed to error
pages.

JspException Exception Generic exception known to the JSP
engine.




Note that the JSP author does not invoke the code that invokes most of the methods in the interfaces and classes listed in Table A-1.

The JspPage Interface

JspPage defines methods that create and destroy a generated instance of the JSP page. The JSP container automatically invokes
the methods when appropriate. However, the JSP specification enables the JSP author to invoke the methods as well. Table A-2
shows the methods defined in JspPage.

Table A-2: Methods of the JspPage Interface

Method Signature | Description

void jsp_init() Invoked by the JSP container when the JSP page is
initialized.

voi d jsp_destroy() Invoked by the JSP container just before the container
destroys the JSP page.

The JSP spec enables the JSP author to invoke these methods but the runtime invokes them when needed.

The HttpJspPage Interface

The Ht t pJspPage interface extends JspPage and provides an additional method, shown in Table A-3.

Table A-3: The Method of the HttpJspPage Interface

Method Signature | Description

voi d _jspservice() j spSer vi ce corresponds to the body of the JSP page. This
method is defined automatically by the JSP processor and
should never be invoked by the JSP author.

The Abstract Class JspEnginelnfo

JspEngi nel nf o contains a single method that returns the version number of the JSP engine in use, shown in Table A-4.

Table A-4: The Method of the JspEnginelnfo Class

| Method Signature | Description

| abstract String get SpecificationVersion() | Returns a version number for the JSP engine in use.

The Abstract Class JspFactory
The JspFact ory is an abstract class that defines a number of factory methods available to a JSP page at runtime for the purposes of

creating instances of various interfaces and classes used to support the JSP implementation. The JSP author does not invoke the
methods in this class, which are shown in Table A-5.

Table A-5: Methods of the JspFactory Class

Method Signature | Description



static JspFactory getDefaul t Factory()

Returns the default factory used in this JSP container.

abstract JspEngi nel nfo get Engi nel nfo()

Gets implementation-specific data on the current JSP
engine.

abstract PageCont ext getPageContext( Servlet
serv, ServletRequest request,

Servl et Response response, String
errorPageURL, bool ean needsSession, int

buf fer, bool ean aut oFl ush)

Gets an instance of the PageCont ext abstract class for the
servlet generated by the JSP engine.

abstract void rel easePageCont ext (
PageCont ext t hi sPage )

Releases a previously allocated PageCont ext object.

static void setDefault Factory( JspFactory
def Factory )

Sets the default JSP factory used by this engine.

The Abstract Class JspWriter

Instances of JspW i t er represent the output stream to the client. Many of the methods available in JspW i t er mimic those in
java.io.PrintWiter.The methods of JspWi t er are listed in Table A-6.

Table A-6: Methods of the JspWriter Class

Method Signature

| Description

abstract void clear()

Clears the output stream’s buffer. Throws an | OExcepti on
if buffer is already clear.

abstract void clearBuffer()

Clears the output stream’s buffer. Does not throw an
| OExcept i on if buffer is already clear.

| abstract void close()

| Closes and flushes the output stream.

| abstract void flush()

| Flushes the output stream.

| int getBufferSize()

| Returns the size of the output buffer.

| abstract int getRemai ni ng()

Returns the number of unused bytes in the output buffer.

bool ean i sAut oFl ush()

Returns true if buffer automatically flushes; false if 10
exceptions are thrown on buffer overflows.

abstract void newLi ne()

Writes a line separator (I i ne. separ at or in system
properties) which does not need to be a newl i ne character.

abstract void print( argType printlt )

Prints a variety of primitive and reference types. Parameters
to pri nt are the same as thosetoj ava.i o. print.

abstract void println( argType printlt )

Prints a variety of primitive and reference types followed by
anew i ne character. Parameters to pri nt | n are the same

asthosetojava.io.print.

The fields available from class JspW i t er are listed in Table A-7.

Table A-7: Fields Declared in Class JspWriter

| Declaration

| Description

prot ected bool ean aut oFl ush

Whether or not the output buffer flushes automatically when
full (true) or throws an | OExcept i on when full (false).




| protected int bufferSize | Buffer size in use.

static int DEFAULT_BUFFER Variable indicating that the output stream is buffered and

using the default buffer size.

| static int NO _BUFFER | Variable indicating that the output stream is not buffered.

| static i nt UNBOUNDED BUFFER | Variable indicating output stream is unbounded.

The Abstract Class PageContext

The PageCont ext class provides methods to the JSP author that enable the following functions:

. Managing the various scoped namespaces (page scope, sessi on scope, and so on)
. Accessing the various public objects (out , r equest, r esponse, and so on)

. Fetching the JspW i t er for output

. Managing session usage by the page

. Exposing page directive attributes to the scripting environment

. Forwarding or including the current request to other active components in the application
. Handling er r or page exception processing

Table A-8 lists the methods available in class PageCont ext .

Table A-8: Methods in Class PageContext

Method Signature | Description

abstract Object findAttribute( String Searches for the attribute named at t r Narre in the order of

attrNanme ) page, r equest, sessi on, and appl i cat i on scopes, and
returns if found or returns null if no attribute with at t r Nane
exists.

abstract void forward( String resourceURL ) Redirects the current response or request to another
component (usually a servlet or another JSP page).

abstract Object getAttribute( String Returns the attribute named at t r Name in page scope only

attrNanme ) or returns null if no such attribute exists.

abstract Object getAttribute( String Returns the attribute named at t r Narre in the specified

attrNanme, int scope ) scope or returns null if no such attribute exists.

abstract Enuneration Returns the names of the attributes in the specified scope.

get Attri but eNanesl nScope( int scope)

abstract int getAttributeScope( String Returns the scope by which the attribute at t r Name is

attrName ) known, or O if no attribute exists.

abstract Exception getException() Returns the last exception thrown.

abstract JspWiter getQut() Returns the current instance of JspW i t er used to hold

servlet-generated output to the client.

abstract noject getPage() Returns the servlet instance associated with the current
PageCont ext .

abstract Servl et Request get Request () Returns the request object associated with the current
PageCont ext .




abstract Servl et Response get Response() Returns the response object associated with the current
PageCont ext .

abstract ServletConfig getServletConfig() Returns the Ser vl et Conf i g object associated with the
current PageCont ext .

abstract Servl et Context get Servl et Context() Returns the Ser vl et Cont ext object associated with the
current PageCont ext .

abstract H tpSession getSession () Returns the session object associated with the current
PageCont ext .

abstract void handl ePageException( Exception Processes an unhandled page level exception, perhaps by

pExc ) redirecting to a JSP error page or taking application-specific
action.

abstract void include( String resourceURL ) Causes r esour ceURL to be processed as part of the

current request or response.

abstract void initialize( Servlet aServlet,
Servl et Request request, ServletResponse
response, String errorPageURL, bool ean
requiresSession, int bufSize, bool ean

aut oFl ush )

Initializes a PageCont ext , usually in response to a
JspFact ory. get PageCont ext method.

BodyCont ent pushBody()

Returns an instance of BodyCont ent and saves the current
instance of JspW i t er (the implicit "out" object).

JspWiter popBody()

Returns the saved version of JspW i t er by a previous call
to pushBody.

abstract void renpveAttribute( String
attrNanme )

Removes the attribute named at t r Nane within the page
scope.

abstract void renmoveAttribute( String
attrName, int scope )

Removes the attribute named at t r Nane within the specified
scope.

abstract void setAttribute( String attrNane,
bj ect attrVal ue )

Sets a page scope attribute named at t r Nanme with the
value at t r Val ue.

abstract void setAttribute( String attrNane,
bj ect attrValue, int scope )

Sets an attribute named at t r Nane with the value
at t r Val ue within the specified scope.

Table A-9 lists the class variables (all declared static) available in class PageCont ext .

Table A-9: Class Variables Declared in Class PageContext

| Declaration

Description

String APPLI CATI ON

The name of the Ser vl et Cont ext in the PageCont ext
name table.

| i nt APPL| CATI ON_SCOPE

Value representing appl i cat i on scope.

String CONFI G

Name used to store Ser vl et Conf i g in PageCont ext
name table.

String EXCEPTI ON

Name used to store uncaught exception in PageCont ext
name table.

String OUT Name used to store current JspW i t er in PageCont ext
name table.
String PAGE Name used to store the generated servlet in the

PageCont ext name table.




i nt PAGE_SCOPE

Value representing page scope. PAGE_SCOPE is the default
scope.

String PAGECONTEXT

Name used to store the current PageCont ext in its own
name table.

String REQUEST

Name used to store Ser vl et Request in the
PageCont ext name table.

i nt REQUEST_SCOPE

Value representing r equest scope.

String RESPONSE

Name used to store Ser vl et Request in the
PageCont ext table.

String SESSI ON

Name used to store Ht t pSessi on in PageCont ext name
table.

i nt SESSI ON_SCOPE

Sessi on scope (assuming JSP participates in a session).

The JspError and JspException Classes

The JspError and JspExcept i on classes behave as expected, with constructors that accept a string argument as a default

message.

The javax.servlet.jsp.tagext Package

The j avax. servl et.j sp. t agext package contains the classes and interfaces needed to support the use of custom JSP tags.
Table A-10 lists the interfaces and classes that constitute the j avax. servl et . j sp. t agext package.

Table A-10: Components of the javax.servlet.jsp.tagext Package

Component | Type | Description

BodyTag Interface Extends the Tag interface by defining
additional methods for the tag-handler
class to access and to manipulate the
tag body.

Tag Interface Describes the basic protocol between

a tag-handler class and the class that
implements the JSP page.

BodyCont ent

Abstract Class

A subclass of JspWi t er used to
hold the results of evaluating a tag
body to a tag-handler class that
implements the Body Tag interface.

BodyTagSupport

Class

Class that contains methods to assist
in writing tag-handler classes that
implement the Body Tag interface.

TagAttributelnfo

Class

Instances of TagAttri but el nfo
contain information on Tag attributes

derived from the Tag Library
Descriptor file.

TagDat a

Class

Tag instance attribute and value pairs.

TagExtral nfo

Abstract Class

Extra tag information. This class is
coded in the Tag Library Descriptor
file.




Tagl nfo Class Tag information for a custom tag.
Instances of this class have values
derived from the Tag Library
Descriptor file.

TagLi brarylnfo Abstract Class Information on the tag library.
Instances of this class have values
derived from the Tag Library
Descriptor file.

TagSupport Class A base class used to define new tag
handlers.

Vari abl el nfo Class Information on scripting variables
used by a tag-handler class at
runtime.

Let’s take a closer look at these interfaces and classes.
The BodyTag Interface
The BodyTag interface extends Tag by defining additional methods to enable a Tag handler to access its body.

The interface provides two new methods. The first method is invoked with the Body Cont ent for the evaluation of the body. The
second method reevaluates after every body evaluation. Table A-11 lists the methods defined in the Body Tag interface.

Table A-11: Methods in the BodyTag Interface

| Method Signature | Description
’ i nt doAfterBody()

Performs processing after the body of a custom tag has
been evaluated.

| i nt dol nitBody() | Performs processing before processing of the tag body.

| voi d set BodyCont ent () | Setter method for the BodyCont ent property.

The BodyTag interface also provides a class variable with the following declaration:
static int EVAL_BODY_TAG

This declaration requests the creation of new Body Cont ent to evaluate the body of this tag.

The Tag Interface

The Tag interface defines the basic protocol between a Tag handler and JSP page implementation class, describing the life cycle and
the methods to be invoked at start and end tag. Table A-12 shows the methods of the Tag interface.

Table A-12: Methods in the Tag Interface

| Method Signature | Description

| int doStartTag() | Processes the st ar t tag.

| int doEndTag() | Processes the end tag.

| Tag get Parent () | Returns the par ent tag or null if no parent exists.

| voi d rel ease() | Calls on a tag-handler class to release the state of the tag.




voi d set PageCont ext ( PageCont ext thisPC) Sets the current page context. This method is called before

calls to doSt art Tag.

| voi d setParent ( Tag pTag ) | Establishes pTag as the par ent tag of the current tag.

The Tag interface also defines a few class variables, which are listed in Table A-13.

Table A-13: Class Variables Declared in the Tag Interface

Declaration | Description

static int EVAL_BODY_| NCLUDE Returned by the doSt ar t Tag method to include the
evaluation of the tag body into the output stream (current
instance of JspWi ter).

static int EVAL_PAGE Returned by the doEndTag method to direct the JSP to
continue to evaluate the JSP page.

static int SKIP_BODY Returned by the doSt art Tag and doAf t er Body methods
to omit evaluation of the tag body.

static int SKIP_PAGE Returned by the doEndTag method to omit evaluation of the
remainder of the JSP page.

The BodyContent Abstract Class

The BodyCont ent class is a subclass of JspW i t er that can be used to process body evaluations so they can be re-extracted at a

later time. Table A-14 lists the methods available in class BodyCont ent .

Table A-14: Methods in the BodyContent Class

| Method Signature | Description
| voi d cl earBody() | Clears the contents of a BodyCont ent object.
int flush() Redefines f | ush to make a call to f | ush illegal for objects
of BodyCont ent .
JspWiter getEnclosingWiter() Returns a reference to the JspW i t er object from which
the current Body Cont ent is derived from.
| abstract Reader get Reader () | Returns the instance of BodyCont ent as a Reader .
| abstract String getString() | Returns the instance of BodyCont ent asa Stri ng.
| abstract void witeCut() | Writes the instance of BodyCont ent toaWiter.

The BodyTagSupport Class

The BodyTagSupport class is a base class for defining tag handlers that implement the Body Tag interface. The Body TagSuppor t
class implements the Body Tag interface and adds additional convenience methods including get t er methods for the Body Cont ent

property and methods to get at the previous JspW i t er "out" object. Table A-15 lists the methods available with the
BodyTagSupport class.

Table A-15: Methods in the BodyTagSupport Class



| Method Signature | Description

| int doStartTag() | This method is invoked first when a tag is encountered.
| i nt doEndTag() | Invoke this method when processing the end tag.

| i nt dol nitBody() | Invoke this method before evaluating the tag body.

| BodyCont ent get BodyCont ent () | Returns the current Body Cont ent object.

| JspWiter getPreviousQut() | Returns the enclosing JspW i t er.

| voi d rel ease() | Resets the state of the tag.

| voi d set BodyCont ent () | Prepares for tag body evaluation.

The TagAttributelnfo Class
This class contains information on Tag attributes found in the Tag Library Descriptor file (tld). Only the information needed to generate
code is included in this reference. Additional information such as SCHEMA can be found in the complete JSP Specification

(java.sun.com/products/jsp).

Table A-16 lists the methods for the TagAt t ri but el nf o class.

Table A-16: Methods in the TagAttributelnfo Class

Method Signature | Description
bool ean canBeRequest Ti nme() Indicates whether this attribute can hold a request-time
value
static TagAttributelnfo getlDAttribute( Returns the | D attribute (if one exists) in the attribute list
tagAttributelnfo[] tai ) argument.
| String get Nane() | Returns the name of the attribute.
| String getTypeName() | Returns the type of the attribute as a string.
| boolean isRequired() | Indicates whether this attribute is required or not.
| String toString () | Overrides Object.toString.

The TagAt t ri but el nf o class also contains a class variable declared as follows:

static final String ID="ID"

TheTagData Class
The TagDat a class contains translation-time information for the attributes and values of a tag instance. TagDat a is only used as an

argument to the i sVal i d and get Vari abl el nf o methods of TagExt r al nf o, which are invoked at translation time. Table A-17
lists the methods for the TagDat a class.

Table A-17: Methods in the TagData Class

Method Signature | Description

hject getAttribute( String attNane ) Returns the value of the attribute named at t Nare or null if
no attribute exists.

String getAttributeString( String attName ) Returns the value of the attribute named at t Nane as a
string or null if no attribute exists.




String getlX) Returns the value of the | D type attribute or nullif no | D
attribute exists.

void setAttribute( String attNane, Object Sets the value of the attribute named at t Nane to the value
attVal ue ) att Val ue.

The TagDat a class contains a variable coded as follows:
static Object REQUEST_TI ME_VALUE

This variable tells the JSP container that the value of an attribute is available as a run-time expression, but will not be available at
translation time.

TheTagExtralnfo Class
This class provides extra information about a custom tag. To associate a TagExt r al nf o class with a tag handler class, this class

must be mentioned in the Tag Library Descriptor file (tld). This class must be used if the tag defines any scripting variables or if the tag
wants to provide translation-time validation of the tag attributes. Table A-18 lists the methods for the TagExt r al nf o class.

Table A-18: Methods in the TagExtralnfo Class

| Method Signature | Description

| Tagl nf o get Tagl nfo() | Returns the instance of Tagl nf o for the tag class.

’ Vari abl el nfo[] getVariablelnfo( TagData td ) ’ R(_aturns information on scripting variables defined by
this tag.

| bool ean isValid() | Translation-time validation of tag attributes.

| voi d set Tagl nfo( Taglnfo ti ) | Sets the Tagl nf o object for this class.

The class contains an instance variable coded as follows:
protected Taglnfo taglnfo ;

This instance variable represents the instance of Tagl nf o associated with instances of TagExt r al nf o.

TheTaglnfo Class

Tag information for a tag in a Tag Library; this class is instantiated from the Tag Library Descriptor file (tld). Table A-19 lists the
methods for the Tagl nf o class.

Table A-19: Methods in the Taginfo Class

| Method Signature | Description

TagAttributelnfo getAttributes() Returns a TagAt t ri but el nf o object describing the

attributes of the tag or null if tag has no attributes.

| String getBodyContent () | Returns the BodyCont ent object as a string.
| String getlnfoString() | Returns an information string coded in the tld.
String get TagCl assNane() Returns the name of the class that provides the run-time

handler for the tag.

TagExtral nfo get TagExtral nfo() Returns the instance of the TagExt r al nf o class, if any
exist.




| TagLi braryl nfo get TagLi brary() | Returns the tag library owning this tag.

| String get TagNane() | Returns the tag name.

Vari abl el nfo[] getVariablelnfo( TagData td ) Returns information on the object created by this tag at
runtime. Null means no such object created. Default is
null if the tag has no "id" attribute, otherwise the array,
{"id", Object},isreturned.

String toString() | Overridden version of Gbj ect.t oSt ri ng.

The TagDat a class also includes several class variables, used as arguments to the get BodyCont ent method, which are listed in
Table A-20.

Table A-20: Class Variables Declared in the TagInfo Class

| Declaration | Description
| static String BODY_CONTENT _EMPTY | The current instance of BodyCont ent is empty.
| static String BODY_CONTENT_JSP | The current instance of BodyCont ent contains JSP code.

static String BODY_CONTENT_TAG DEPENDENT The current instance of BodyCont ent depends on the

evaluation of another tag.

TheTagLibraryinfo Class

This class contains information found in the Tag Library Descriptor file about the tag library. Table A-21 lists the methods for the
Tagl nf o class.

Table A-21: Methods in the TagLibrarylnfo Class

| Method Signature | Description
| String getlnfoString() | Returns the info string coded in the tid.
String getPrefixString() Returns the prefix string used to reference tags within the
JSP page.
| String getReliabl eURN() | Returns the URN to the tld.
| String getRequiredVersion() | Returns the version of the JSP container.
| String get Short Nane() | Returns the preferred short name of the library.
Tagl nfo get Tag(String shortNane ) Returns the Tagl nf o object (t agl nf o) for the library with

the short name argument.

Tagl nfo[] get Tags() Returns an array of Tagl nf o objects — one for each tag
described in the tld.

| String get URI () Returns the URI from the t agl i b directive for this library.

Instances of class TagLi br ar yI nf o have instance variables that hold values returned from the get methods listed in Table A-21.

The TagSupport Class

The TagSupport class is a base class for defining new tag handlers implementing the Tag interface. The TagSupport classis a
utility class to be used as the base class for new tag handlers. The TagSupport class implements the Tag and I t er ati onTag



interfaces and adds additional convenience methods including get t er methods for the properties in Tag.

TagSupport has one static method that is included to facilitate coordination among cooperating tags. Many tag handlers extend
TagSupport and only redefine a few methods. Table A-22 lists the methods available in the TagSupport class.

Table A-22: Methods in the TagSupport Class

| Method Signature | Description

| i nt doEndTag() | Invokes this method when processing the end tag.

| int doStartTag() | Invokes this method when processing the st art tag.
static tag findAncestorWthC ass( Tag from Finds the instance of the class named t agdl ass that is the
Class tagd ass ) closest ancestor to the tag named f r om

| Tag get Parent () | Returns the tag instance enclosing this tag instance.
String getTagld() Returns the value of the | D attribute for this tag (if it exists),

or null.

| bj ect getValue( String key ) Returns a value associated with the argument key.

Enunerati on get Val ues() Returns an enumeration representing all the values
associated with this tag.

voi d rel ease() Invoked after a call to doEndTag to reset the state of the
tag.

| voi d renoveVal ue( String key ) Removes a key/value pair associated with this tag.

| voi d set PageCont ext ( PageContext pc ) | Sets the PageCont ext for this tag.

| voi d setParent( Tag ptag ) | Sets the parent (pt ag) for this tag.

| void setTagl D( String i dAttr ) | Sets the | D attribute of the tag.

| voi d setValue( String key, Object value ) | Sets a value for a key/value pair in this tag.

The TagSupport class also has two instance variables that are coded as shown in the following:

protected String id ;
prot ect ed PageCont ext pageContext ;

The Variablelnfo Class
This class contains information on the scripting variables that are created/modified by a tag at run-time. This information is provided by

TagExt r al nf o classes and it is used in the translation phase of JSP. Table A-23 lists the methods available in the Vari abl el nf o
class.

Table A-23: Methods in the Variablelnfo Class

Method Signature | Description

String getd assNane() Returns the class name of the scripting variables coded in
the tld as the <vari abl e- cl ass> element.

bool ean get Decl ar e() Returns the value of the <decl ar e> element coded in the
tld.

i nt get Scope() Returns the value of the <scope> element coded in the tld.

String getVar Name() Returns the name of the scripting variable coded in the tld as

the <vari abl e> element coded in the tld.




The Var i abl el nf o class contains three class variables, listed in Table A-24.

Table A-24: Class Variables Declared in the Variablelnfo Class

| Declaration | Description

| static int AT_BEG N | Variable is visible after the st art tag.

| static int AT_END | Variable is visible after the end tag.

| static int NESTED | Variable is visible within the st art and end tags.

Top £}



EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you've seen how you can leverage the features of JavaServer Pages to create clients for enterprise
beans. By using JSP pages, you can hide functions within JavaBeans or custom tags, thereby separating your
presentation from your logic.

You've seen how a JSP page can use a custom tag to locate an instance of a bean's home object. The single, empty
tag containing needed data as values of attributes allows a JSP page to work with the EJB architecture. Once the
page has a reference to a home object, the page can request the execution of bean methods like any EJB client.

Tag libraries are a powerful feature of JSP. By using tag libraries, your JSP pages contain less Java scriptlet code and
more tags. Since scriptlet code implies business logic, by keeping scriptlet code to a minimum, you'll have less
mingling of presentation and logic.

You've seen the enterprise bean code that performs the same functions as the code shown in Chapter 10. Aside from
including dummy method implementations as required by EJB, the code that accesses the database is mostly the
same as that shown in Chapter 10. However, by adhering to the EJB specification, your code now creates objects that
are distributed objects with location transparency and have access to transaction and security resources by way of the
EJB container.

Top <



EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 10: The “Make Money” Brokerage Application

In previous chapters I've covered the capabilities of JavaServer Pages and shown you some sample JSP code. In this
chapter, you can see how JSP can be used in the construction of a brokerage application.

First, you can read about the functions available in our “Make Money” brokerage application. Next, you will read a
description of the underlying data store and client scenario. Last, you will see the JSP and Java code that implements
a typical client request.

The “Make Money” Application

The “Make Money” application is a small JSP program modeling an online stock trading system. This application will
be used to model several aspects of JSP development that we have covered thus far in this book. We will see the use
of JavaBeans in JSP pages. We will also see demonstrated the use of JSP error-handling tools discussed in the
previous chapter. If this is one of your first JSP applications, you should finish this chapter with a better understanding

of how you can use JSP successfully in developing Web applications.

The “Make Money” application provides clients with several functions. Once clients are successfully logged on, they
can:

. View their account history

. View their portfolio

. Place a buy or sell order

. Change personal information

The application is hardly full-featured. My intent is to present the code required to implement some of the operations of
the application. The next section describes the implemented features in more detail.

Implemented Application Features

Later in the chapter we will see the JSP and Java code that enables the following functions:

. Handling user logons
. Displaying a screen of selections
. Displaying the user’s account history

The JSP and Java code for other options is similar to what is presented here. In other words, it is not necessary to



understand new concepts or capabilities of JavaServer Pages to implement the remaining features.

Before you delve into the code, let’s take a look at the structure of the database that contains the customer, portfolio,
and security information used by the application.

The Application Data Defined
The database for our application consists of four tables. Even though you don’t need all four tables to implement the

three features mentioned in the previous section, you can describe the tables to provide a more complete view of the
application.

The four tables containing the data are described below.

. Customerinfo: Contains the usual customer information (name, address, credit card info, and so on), an account
ID (primary key), and a password. The customer must supply the correct password to gain access to the
application.

. CustomerPortfolio: Contains an account ID (primary key), a stock ticker symbol, and a number representing how
much of this security the customer holds.

. SecurityInfo: Contains a stock ticker symbol, a trade date, and the selling price of the security on the trade date.
This table uses a compound key consisting of the stock ticker symbol and the trade date.

. TransactionHistory: Contains an account ID, a transaction date and type, a stock ticker symbol, and the number
of shares traded on the transaction date. This table uses a compound key of the account ID, transaction date,
stock ticker symbol, and the transaction type (buy or sell).

The preceding four tables have primary and foreign key relationships to ensure referential and data integrity. For sake

of simplicity, the JSP and Java code in this sample application does not have code to capture errors arising from
referential integrity constraint violations.

The Client Scenario

With the application data described, we can now look at a common client scenario. The application will allow a client
to proceed through the following steps:

1. The client requests access to the application by entering an account ID and a password.

2. Once the application receives a matching account ID and password combination, the application displays a list of
choices.

3. The client requests a listing of his or her transaction history; the application displays the list.

Without further delay, let's look at the implementation of this scenario in the “Make Money” application.

Logging on to the “Make Money” Application

The customer enters a URL that identifies the JSP that handles the interactions necessary to grant access to the
client. Figure 10-1 shows the client logon screen.



Wi vans Brnhergme  Faswnd [ty Soimes . Bsopsa® babe el |oplone

Erder Your Account Humber and Password in the Flelds Balow
Thesry Cliche Logon 10 Continues
Ertier ¥our docount Murmber: [
Erder Yioor Passeond [
oy | P |

) Beea L L et
Figure 10-1: Logging on to the application

Listing 10-1 shows the JSP code, | ogon. j sp, that displays the screen shown in Figure 10-1.

Listing 10-1: JSP for logon form (logon.jsp)

<htm >
<head>
<title>Lou's Brokerage....Password Entry Screen</title>

<script |anguage="Javascript">

function giveFocus() {
docunent . passwor df orm acct Nunber . f ocus()

}

function submt() {
docunent . passwor df orm submi t ()

}

function reset() {
docunent . passwor df orm reset ()
docunent . passwor df orm acct Nunber . f ocus()

}
</script>
</ head>
<j sp:include page="inagetable. htm "™ flush="true" />
</ center>

<center>
<f or m nanme="passwor df orm' acti on="checkLogi n.jsp" nethod="POST" >

<p>Ent er Your Account Nunber and Password in the Fields Bel ow
<br >Then dick <b>Logon</b> to Conti nue
<br >
<hr w dt h="50% >
<t abl e>
<tr>
<t d><P>Ent er Your Account Nunber:</td>
<td><i nput type="text" nane="acct Nunber" val ue="" wi dt h="25"></td>



</[tr>

<tr>

<t d><P>Enter Your Password:</td>

<t d><i nput type="password” nanme="enteredPassword” val ue="" w dt h="25"></td>
</tr>
<tr>

<t d><i nput type="button"” name="Logon" val ue="Logon" ond ick="submt()"></td>
<t d><i nput type="button" name="Reset" val ue="Reset"” onCick="reset()"></td>
</tr>
</tabl e>
<hr wi dt h="50% >
</ center>
</ fornp
<% - Here is the diagnostic when the user enters an invalid account nunber --%
<% String nessage = (String)session.getAttribute( "nmessage" ) ;
if ( nmessage '= null ) {
%
<center><font col or="red">
<% nmessage %
</ font ></center>
<%} %

</ body>
</htm >

Many of the code features presented in Listing 10-1 are discussed in the following sections.

Using jsp:include

The following line includes an HTML table that shows the pictures of the stock exchange floor and the piggy banks:
<j sp:include page="inagetable. htm " flush="true" />

Because you're probably curious, Listing 10-2 shows the listing for the included HTML table, i maget abl e. ht nl .

Listing 10-2: HTML to create the page banner (Imagetable.html)

<body bgcol or =" #dddddd" t opmar gi n=0>
<center>

<br >

<h1l>

<ing src="inmages\piggie.gif">

Make Mbney Brokerage

<ing src="inmages\piggie.qgif">

</ hl>

<t abl e>
<tr>
<td><ing src="inages\ nysefl oor.jpg"></td>
<t d>&nbsp; &nbsp; &bsp; </t d>
<td><i ng src="inages\nyseauction.jpg"></td>
</tr>
</tabl e>
</center>

No surprises here, right? The use of the j sp: i ncl ude tag enables you to use this HTML page header for any or all
pages in the application.



Using a Form to Reference a JSP Page

The following line of code from Listing 10-1 directs the server to invoke the JSP page checkLogi n. j sp when the
client clicks the submit button located at the bottom of the HTML form:

<f or m name="passwor df orn{' acti on="checkLogi n.jsp" met hod="POST" >

Using a Form to Associate Client Inputs with Program Variables

The following lines of code from Listing 10-1 create the form elements acct Nunber and ent er edPasswor d that will
be associated with program variables used in subsequent JSPs and JavaBean code.

<i nput type="text" nanme="acct Nunber" val ue="" w dt h="25"></td>
<i nput type="password" nane="enteredPassword" val ue="" w dt h="25">

Using Scriptlet Code to Display a Diagnostic

The following scriptlet code from Listing 10-1 causes | ogi n. j sp to display a message stating that the account
number is not on file or the password entered for the account ID is invalid.
<% String nmessage = (String)session.getAttribute( "nessage" ) ;
if ( message !'= null ) {
%>
<center><font col or="red">
<% nessage %
</ font ></center>
<%} %

The attribute message is set in the JSP page that checks the user login (checkLogi n. j sp). If the account ID is not

on file or the password does not match the entered ID, checkLogi n. j sp sets a sessi on variable named nessage

to the diagnostic. The preceding scriptlet code checks the value of the message variable and, if not null, displays the
message in red.

Checking the Account ID/Password Combination
Once the client enters an account ID/password combination and clicks “Logon,” the application invokes the JSP page

checkLogi n. j sp. This JSP page does not contain any static code for display. The purpose of checkLogi n. j spis
to access the Cust omer | nf o table to determine the following:

. Is the account ID entered on file?
. Is the password entered for an existing account ID the same as the password stored in the Cust oner | nf o table?

Listing 10-3 shows the code for checkLogi n. j sp.

Listing 10-3: JSP to verify login (checkLogin.jsp)

<% page content Type="text/htm"
error Page="error pageexl.jsp"”
i nport="chapter10.*" %

<% - Deternine if password matches account ID --%
<%
String ent er edPasswor d =

request. get Par anet er (" ent er edPassword") ;
String acct Nunber =
request. get Par anet er ("acct Nunber") ;



Cust omer Bean cust oner
String password

new Cust oner Bean( acct Nunber ) ;
cust omer . get Password() ;

bool ean redi rect ToLogi n = fal se ;

if ( password.length() == 0 ) {
session.setAttri bute("nessage",
"Account Nunmber " + acctNunber +
" Not on File. Enter Another Account Nunber") ;
redi rect ToLogin = true ;

}

el se
if ( !password. equal s(enteredPassword) ) {
session. setAttri bute("nessage",
"Password Entered Does Not Match Password For Account " +
acct Nunber ) ;
redi rect ToLogin = true ;

}

if ( redirectToLogin ) {
%
<jsp:forward page="login.jsp" />
<%} else {

session.setAttri bute("custoner”, custoner ) ;

%
<j sp: forward page="showcust opti ons.jsp" />
<%} %W

The first statement worthy of note in checkLogi n. j sp is the page directive, shown here:

<%@ page content Type="text/htm "
error Page="err or pageexl.jsp"
i mport ="chapter10.*" %

The page directive serves several uses in checkLogi n. j sp, as explained in the following sections.

Using the JSP Page Directive

Note the use of a JSP error page, er r or pageex1. j sp, in the preceding code example. Any errors in JSP page
processing cause the JSP engine to invoke er r or pageex1. j sp. For more information on error page
error pageexl. j sp, see the sidebar "Explaining er r or pageex1. j sp."

Explaining errorpageex1.jsp

The code in Listing 10-3 indicates er r or pageex1. j sp as the page which should be used if any errors occur while
processing the login page. Let's look at how this error page works.

<% - Tell JSP that this is an error page --%
<%@ page i sErrorPage="true" %

<htnml >
<head>
<title>An Error Has Cccurred!!!</title>
</ head>

<body bgcol or="#dddddd" >



<P><font size=+3>

The Following Error Occurred on <% new java.util.Date() %
</font>

<br >

<hr >

<font col or="red"><%excepti on % <br >

<%
exception. printStackTrace();

%

</font>

<hr >

<br >

<p>Cal | <b>4-4444</b> and report the above line in <font color="red">red</font>

</ body>
</ htm >

First, we see the use of the i SErr or Page directive, indicating that this page is an error page. Since this page is an
error page, we have access to the implicit except i on object. The use of the statement <%=except i on % outputs

the error to the browser, giving the client a message as to what occurred. Here we also print the program stack trace
of the exception to the browser. Normally the stack trace and exception messages would be saved for logging or
debugging output (see Chapter 9), and what would be output here is a user-friendly message indicating what the user

should do because of the error.

The next attribute set in the page directive is the i npor t attribute. The i nport attribute of the page directive serves
the same purpose as the import statement in a Java program. In this i nport attribute, you want the code in a
package called chapt er 10 to be known without qualification to our JSP.

Using the Implicit Request Object to Reference Entered Data

How does the checkLogi n. j sp page know what values were entered by the client in the previously displayed JSP
page, | ogi n. j sp? The following code in checkLogi n. j sp references the r equest implicit object.

String ent er edPasswor d =

request. get Par anet er (" ent er edPassword") ;
String acct Nunber =

request. get Par anet er ("acct Nunber") ;

The strings passed to the get Par anet er method must match the names coded for the form text elements in
I ogin.jsp.

Now that the St ri ng objects ent er edPasswor d and acct Nunber contain what the client entered, you need to see
how checkLogi n. j sp verifies that the account ID is on file and the password entered matches the password on file.

Matching Entered Data to Stored Data

The JSP uses Java code stored in a class called Cust oner Bean to verify the account ID and to check the entered
password. Before looking at the code in Cust onmer Bean. j ava, which does the actual checking, here’s the JSP code
that accesses the code in Cust oner Bean. j ava:



Cust oner Bean cust oner
String password

new Cust oner Bean( acct Nunber ) ;
cust oner . get Password() ;

The passwor d string is the password stored on the Cust oner | nf o table for the entered account ID.

The checkLogi n. j sp page checks if the get Passwor d method returns a password. If the returned password is
blank, the account ID entered is not on file and checkLogi n. j sp sets a message stating that fact. The following
code reflects the above logic:
if ( password.length() ==0) {

session.setAttri bute("nessage",

"Account Nunmber " + acctNunber +
" Not on File. Enter Another Account Nunber") ;
redi rect ToLogin = true ;

The Boolean r edi r ect ToLogi n causes checkLogi n. j sp to display the login page.

If the get Passwor d method returns a password, checkLogi n. j sp compares the returned password with the
entered password. If the two passwords do not match, checkLogi n. j sp sets a message to that effect. The following
code reflects this logic:
el se
if ( !password. equal s(enteredPassword) ) {
session.setAttri bute("nessage",
"Password Entered Does Not Match Password For Account " +
acct Nunber ) ;
redi rect ToLogin = true ;

Notice that checkLogi n. j sp checks for a valid account ID first, followed by checking for a valid password. Both
code blocks use the set At t ri but e method of class Sessi on. By using the sessi on object, the attributes set in
one JSP are known to other JSPs sharing the session.

Finally, if either mismatch condition arises, the Boolean r edi r ect ToLogi n is examined and, if true,

checkLogi n. j sp forwards processing back to the | ogi n. j sp page. If no mismatches are found,

checkLogi n. j sp saves the customer information in the session object and forwards the client to the "Show Options'
screen. The following code reflects this logic:

if ( redirectToLogin ) {
%
<jsp:forward page="login.jsp" />
<%} else {

session.setAttri bute("custoner", custoner ) ;

%
<j sp: forward page="showcust opti ons.jsp" />
<%} %

Figures 10-2 and 10-3 show a mismatch of password and account ID, respectively.




N0 vary Binhavane. . Fawvaaid [nby Soren . Blicspsal inteonet £ apood

e TR € T [N IR . TR -~ L R

Bk o b, Homr b # iy Hatory:
H&H-lftllﬁ.."u..-h.lk'k’.n.—..-.w_\n.qh-l";-lnn.q:nw d s | = =
&
Erter Your Account Mumber and Password in e Fielos Balom
Theri Click Logon Bo Conkinus
Enter Your Account Mumber: |
Erder Your Password: |
Logn | P |
Fasgw E Do | L L] ey . LA IR
} L |
B Dawa T Livis el

T

-

L e Pk Hamn framke
dsddrain FI‘.I [ R R S T S A S p——

Erder Your Account Mumber and Password in e Fialos Balom
Theri Click Logon Bo Conkirue

Enter Your Account Murmber: |
Erder Voo Pasgword: |
Logem | e |

] D i Lt it
Figure 10-3: Account ID does not exist

Before we look at the showcust oner opti ons. j sp page, let's explore the code in Cust oner Bean. j ava.

Creating the “Make Money” JavaBeans

So far we have looked at several of the JSPs in the “Make Money” application. Let's now get our first look at one of the
JavaBeans in this application (Listing 10-4). In the “Make Money” application, the customer is the central figure. The
CustomerBean models the necessary attributes that a customer would have.

Listing 10-4: JavaBean implementing the Customer (CustomerBean.java)

package chapter10 ;
i mport java.sql.* ;
public class CustonerBean {



private String acctNunber
private String password
private String customer Nanme
private String mailingAddress
private String billingAddress
private String creditCardType
private String creditCardNum
private String expirationbDate = "" ;

/ /' Use the account nunber to access the custoner table...
public CustonerBean( String accountlD ) throws Exception {
String persinfoQuery = "select custonernane," +
" mailingaddress, billingaddress, " +
creditcardtype, creditcardnunber,” +

"expirationdate, password " +
"from custonerinfo where accountid =" ;

St at ement Bean sql Stnt = new St at enent Bean() ;
String query = perslnfoQuery +
"'" + account|I D +

Connection aConn = sql Stnt.connect ToDB() ;
St at enment stm = aConn. creat eSt at enent () ;
Resul t Set myResul t Set = stnt.executeQuery( query

if ( nmyResultSet.next() ) {

acct Nunber = account|D ;
cust omer Nane =

myResul t Set . get String( "custonername" ) ;
mai | i ngAddr ess =

myResul t Set . get String( "nailingaddress" )
bi | i ngAddress =

myResul t Set . get String( "billingAddress" )
creditCardType =

myResul t Set . get String( "creditcardtype" )
credi t CardNum =

myResul t Set . get String( "creditcardnunber”
expirationDate =

myResul t Set . get String( "expirationdate" )
password = nyResult Set.getString( "password" )

}

aConn. cl ose() ;

}
/] Get/ Set net hods foll ow

public String getAcctNunber() {
return acct Nunber ;
}

public void setAcctNunber( String acctnum) {
acct Nunber = acctnum ;
}

public String getPassword() {
return password ;
}

public void setPassword( String pswd ) {
password = pswd ;
}

public String getCustonerNane() {
return customer Nane;
}

public void setCustonerNane( String cName ) {



cust oner Nane = cNane ;

public String getMilingAddress() {
return nailingAddress;

public void setMilingAddress( String mAddr ) {
mai | i ngAddr ess = mAddr ;

}

public String getBillingAddress() {
return billingAddress;

}

public void setBillingAddress( String mAddr ) {
billingAddress = mAddr ;

public String getCreditCardType() {
return creditCardType ;

public void setCreditCardType( String cType ) {
creditCardType = cType ;

public String getCreditCardNum() {
return creditCardNum

public void setCreditCardNum( String mAddr ) {
credi t CardNum = mAddr ;

public String getExpirationDate() {
return expirationbDate ;

public void setExpirationDate( String eDate) {
expirationDate = eDate ;

The code in Cust oner Bean. j ava is straightforward: get and set methods enable you to set instance properties

from any JSP. The constructor is responsible for extracting information for a customer based on the value of the
table’s primary key, acct Nurrber .

The constructor for Cust omer Bean. j ava uses another class called St at ement Bean. j ava, which, in turn, uses

code from another class called SQLBean. j ava. Listing 10-5 shows the code for St at enent Bean. j ava, while
Listing 10-6 shows the code for SQLBean. j ava.

Listing 10-5: JavaBean implementation of a SQL statement (StatementBean.java)

package chapter 10;
i mport java.sql.*;
i mport java.io.*;

public class StatenentBean extends SQ.Bean

{

String passwordQuery = "select password fromcustonmerinfo " +
" where accountid = ";

String accountlnfoQuery = "select transactiondate, " +

transacti ontype, security, nunbershares " +
"fromtransactionhi story where accountid =" ;

"del ete ;
"insert into " ;

String nyDel eteQuery
String nylnsertQery



Resul t Set nyResultSet = null;
public StatenmentBean() {super();}

public String getPassword( String accountlD ) throws Exception {

String passwordOnDB = nul |l ;
String query = passwordQuery + accountlD ;
Statenment stnt = nyConn. createStatenent();
nmyResul t Set = stnt.executeQuery( query );
if ( nyResultSet !'=null ) {
myResul t Set . next () ;
passwor dOnDB = nyResul t Set. getString( "password" )
nmyConn. t akeDown() ;

}

return passwor dOnDB ;

}

publ i c bool ean get Account | nfoQuery( String accountlD ) throws Exception {
String query = account|nfoQuery + accountlD ;
Statenent stnt = nyConn. createStatenent();
myResul t Set = stnt.executeQery( query );

return (myResultSet != null);

}

public bool ean get() throws Exception
{
return nyResult Set. next();
}

public String getColum( String inCol) throws Exception
{
return nyResultSet.getString(inCol);
}

}

The St at enent Bean class contains code to perform the actual database connect through a superclass called
SQLBean. The code for SQLBean is shown in Listing 10-6.

Listing 10-6: Code for SQLBean.java

package chapter10 ;
i mport java.sql.*;
i mport java.io.*;

public class SQ.Bean

{
private String nmyDriver = "sun.jdbc. odbc.JdbcCGdbcDriver™;
private String myURL = "j dbc: odbc: st ock”;

prot ected Connection myConn;
public SQBean() {}

public void makeConnection() throws Exception

{
C ass. forNanme( myDriver);

myConn = Driver Manager. get Connecti on(nmyURL) ;
}



publ i c Connection connect ToDB() throws Exception
{
Cl ass. forName( nyDriver);
return Driver Manager. get Connection(nmyURL) ;

}
public void takeDown() throws Exception
{
myConn. cl ose();
}

}

SQLBean contains code that handles the actual connection and disconnection from the database containing tables for
the application.

There’s nothing specific or peculiar to using these Java classes with JSPs. The JSPs that require instances from
these classes reference the instances through scriptlet code or bean references.

The St at enent Bean class also extracts the account history information. You can see references to the
St at enent Bean class later in this chapter.

Next, let's examine the JSP that presents the user with a list of options — the JSP page named
showcust opti ons. j sp.

Examining the showcustoptions.jsp Page

Once the user has successfully logged into the “Make Money” application, the customer is able to access any of the
account options. The showcust opt i ons. j sp page presents the customer with a list of all of the implemented

options, as shown in Figure 10-4.

i Hii e imtm e Fooplos g

AR R - 2 3 e | i~ 3 "h
B W irririd g Papr s LS irtey Ephire -
Addrwun [ rn v s BH v rg s haim S s =] ~Gs | [m ™
=

Lo Marcd, sedect 8 Cholos Below and Click Proosed o Conbbnss

£ View Your Acoound History
T igw Your Portfolio
T Place an Ordar

 Change Personal Infommation

_Pescend |

&) Daew T Lt wiait
Figure 10-4: The list of user choices



Notice the inclusion of the client’s name in the HTML page. Listing 10-7 shows the JSP code for
showcust opti ons. j sp.

Listing 10-7: JSP to display customer options (showcustoptions.jsp)

<%@ page content Type="text/htm "
i mport="chapter10. *"
error Page="error pageexl.jsp" %

<%- If we've gotten this far, we have a valid account nunber and password. --%
<% - Why not show the options list? --%
<%
String custoptions = request. get Paranet er (" custopti ons")
Cust oner Bean cust oner = (CustonerBean) session. getAttribute("custoner")
String cust oner Nane = cust oner. get Cust oner Nane()
if ( custoptions !=null ) {
%>
<j sp:forward page="<% custoptions %" />
<%} %
<htm >
<head>
<title>Options for <% custonerNane % </title>
</ head>

<j sp:include page="inagetable. htm " flush="true" />
<cent er>
<f orm name="opti onsform' acti on="showcustoptions.jsp" nethod="PCOST">

<p><% cust oner Nanme %, select a Choice Below and dick <b>Proceed</b> to Conti nue<br>
<br >
<hr w dt h="50% >
<t abl e>
<tr>
<t d><i nput type="radi 0" nanme="custoptions" val ue="vi ewhi story.jsp" checked>
Vi ew Your Account History
</td>
</tr>
<tr>
<t d><i nput type="radi 0" name="custoptions" val ue="vi ewportfolio.jsp">
Vi ew Your Portfolio
</td>
</tr>
<tr>
<t d><i nput type="radi 0" name="custoptions" val ue="dotransaction.jsp">
Pl ace an O der
</td>
</tr>
<tr>
<t d><i nput type="radi 0" name="custoptions" val ue="changepersonal.jsp">
Change Personal | nformation
</td>
</tr>
<tr>
<t d><p><i nput type="subnit" name="proceed" val ue="Proceed"></td>
<td></td>
</tr>



</tabl e>

<hr wi dt h="50% >
</center>
</fornp

</ body>

</htm >

The workings of the preceding page are based on associating a JSP corresponding to a user option with each value of
the radio button on the form. In our case, when the client clicks the “View Your Account History” option, the form sets
the value to the name of a JSP page corresponding to that option (vi ewhi st ory. j sp).

In particular, the attribute cust opt i ons used in the form holds the value of the JSP page corresponding to the client
selection. The following code in showcust opt i ons. j sp forwards JSP processing to the selected page.

<%
String custoptions = request. get Paraneter("custoptions”) ;
if ( custoptions !=null ) {

%>

<jsp:forward page="<% custoptions %" />

<%} %

Other pieces of code in showcust opt i ons. j sp fetch the customer name, as shown here:

Cust oner Bean cust omer = (Customer Bean) sessi on.getAttri bute("custoner") ;
String cust omer Name = cust oner. get Cust oner Nanme() ;

Assume the client clicks “View Account History.” The showcust opt i ons. j sp forwards JSP processing to
vi ewhi story. j sp. Let's take a look at the workings of vi ewhi st ory. j sp next.

Examining viewhistory.jsp

One of the implemented customer options is the ability to view a history of all transactions. This feature, displayed to
the customer as "View Account History,” is implemented in vi ewhi st ory. j sp with the help of one new class,

Account Hi st ory. Figure 10-5 shows an HTML page generated by vi ewhi story. j sp.



A Tiarrian lhae Hesdarg For | aw Baioe 87 SFFT . B inteoael § o ploerei

AT S X TR a @ 3
Bt T [Pl [Feey Saich [Jram=tt iy :
_’#""h:l'r:l"b-l\.-ll'lu--'itl'-nrr-"mh:l-l-'-W--wv-rlfn- _:'I i-"l!ll [l ™
> i =
Make Money Brokerage =

Lo Marca, hing (9 8 ligh of your irardaciions

O 11000, you traded 1500 shares of ARG o & BUY ondér

O 12700, vou traded 500 shares of ABC on 8 SELL crder.

O 152, you braded 500 shares of BOC on o BUY order

O 1700, you traded 1000 sheres of LOU o & SELL ordisr

Pt mp Cypiooress Opages |

]

] fen I
Figure 10-5: The client’'s account history

Listing 10-8 shows the code for vi ewhi st ory. j sp.

Listing 10-8: Code for viewhistory.jsp

<%@ page content Type="text/htm"
i mport="chapter10. *"
error Page="error pageexl.jsp" %

<% - Display the account activity for this customer --%

<%
Cust oner Bean cust oner = (CustonerBean) session.getAttribute("custoner") ;
String cust oner Nane = cust oner. get Cust oner Nane() ;
String acct Num = cust oner. get Acct Nunber () ;

%

<htm >

<title>Transaction History for <%custonerNane % <% acctNum % </title>
<body bgcol or ="#dddddd" >
<center>

<% - Put in the pictures for the page top --%
<j sp:include page="imgetable.htm " flush="true" />

<%
Acct Hi story anAcctHi story = new Acct Hi story() ;

if ( anAcctHi story.getHi storyThi sAccount( acctNum) ) {

%

<p><% custonerName %, here is a list of your transactions

<br >

<hr wi dt h="50% >

<f orm nanme="hi st oryfornf acti on="showcustoptions.jsp" nethod="POST">

<t abl e>

<%
whil e ( anAcct Hi story. get Next H st Record() ) {
%



<tr><td>
On <% anAcct Hi story. get Colum("transacti ondate") %, you traded
<% anAcct Hi st ory. get Col um( " nunber shares") % shares of
<% anAcct Hi story. get Col um("security") % on a
<% anAcct Hi story. get Col uim("transactiontype") % order
</td>
</[tr>
<tr bgcol or="red"><t d>&nbsp; </td> </tr>

<%

}
%
<tr>
<t d><p><i nput type="subnmit" nane="Return" val ue="Return to Custoner Options"></td>

</[tr>

</tabl e>

</fornp

<hr w dt h="50% >
</center>

</ body>
</htm >

The vi ewhi st ory. j sp page uses much of the same code as we've seen in the other JSP pages in this application,

so we won't cover them again. What's new in this JSP page is the use of an instance of an account history object from
class Account Hi st ory. Before exploring the vi ewhi st ory. j sp page further, let’s first take a look at the

Account Hi st ory class.

Examining the AccountHistory Class

The Account Hi st ory class contains code to access the Tr ansact i onHi st or y table given a valid account ID.
Listing 10-9 shows the code for the Account Hi st ory class.

Listing 10-9: AccountHistory.java

package chapter10 ;
i mport java.sql.* ;
public class AcctHistory extends SQ.Bean {

private String acctNunber = :
private String transactionDate = "" ;

private String transactionType = ;

private String security = "" ;

private String nunber Shares = ;

public ResultSet nyResultSet ;
public AcctHistory() { super(); } ;

/ /' Use the account nunber to access the history table....
public bool ean getHi storyThi sAccount( String accountlD )
throws Exception {
String histQuery = "select accountid, transactiondate," +
" transactiontype, security, nunmbershares " +



"fromtransactionhi story where accountid =" ;

AcctHi story sql Stnt = new AcctHistory() ;
String query = histQuery + """

+ account| D + ;

myConn = sql St . connect ToDB() ;
Statenment stnt = nyConn. createStatenent();
myResul t Set = stnt.executeQuery( query );

return nyResultSet != null ;
/1 aConn.cl ose() ;

}
public AcctHi story getHi storyRecord( ) throws Exception {

Acct Hi story aHi stRec = new AcctHistory() ;
aH st Rec. acct Nunber =

myResul t Set . get String( "accountid" ) ;
aH st Rec.transactionDate =

myResul t Set . get String( "transactiondate" ) ;
aH st Rec. transacti onType =

myResul t Set . get String( "transactiontype" ) ;
aHi st Rec. security =

myResul t Set . get String( "security" ) ;
aH st Rec. nunber Shares =

myResul t Set . get String( "nunbershares" ) ;

return aH stRec ;

publ i c bool ean get Next Hi st Record() throws Exception

return nyResultSet. next();

public String getColum( String inCol) throws Exception

return nyResult Set.getString(inCol);

}
public void takeDown() throws Exception
{
myConn. cl ose();
}

/] Get/ Set met hods foll ow
public String getAcctNunber() {
return acct Nunber ;

public void setAcctNunmber( String acctnum) {
acct Nunmber = acctnum ;

}

public String getTransacti onDate() ({
return transactionbDate ;

public void setTransactionDate( String tdat) {
transacti onDate = tdat;

}
public String getTransactionType() {

return transactionType;

public void setTransactionType( String ttyp) {



transacti onType = ttyp;

}
public String getSecurity() {

return security;
}

public void setSecurity( String sec) {
security = sec;
}

public String getNunber Shares() {
return nunber Shar es;
}

public void set Nunber Shares( String nShrs) {
nunmber Shares = nShrs ;
}

Revisiting viewhistory.jsp

Now that we've looked at the implementation of the Account Hi st ory class, let's return to vi ewhi story. j sp. The

JSP generates an HTML table inside a form. The form includes a button that enables the user to return to the
customer options screen.

The HTML table writes a line of account history between two red lines. The following code accesses the instances of
Account Hi st ory that contain history information:

<%
Acct Hi story anAcctHi story = new Acct Hi story() ;

if ( anAcctHi story.getHi storyThi sAccount( acctNum) ) {

%
<%
whil e ( anAcctHistory. get Next H st Record() ) {
%
<tr><td>

On <% anAcct Hi story. get Colum("transacti ondate") %, you traded
<% anAcct Hi st ory. get Col um( " nunber shares") % shares of
<% anAcct Hi story. get Col um("security") % on a
<% anAcct Hi story. get Col uim("transacti ontype") % order.
</td>

</[tr>

<tr bgcol or="red" ><t d>&nbsp; </td> </tr>

<%

}

%

Note Some HTML table code has been omitted from this code sample to enable you to view the JSP code that
accesses and lists the account history.

The JSP creates an instance of the Account Hi st ory class and then uses methods in the Account Hi st ory class
(get Hi st or yThi sAccount and get Next Hi st Recor d) and a method in the superclass SQLBean (get Col um) to
access history information.



The remaining code in vi ewhi st ory. j sp formats the fetched information into an HTML table and provides a client
with a way of returning to the options screen.

Top <3



EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 9: JSP Errors and Debugging

Overview

Few processes execute as smoothly as originally planned. Nowhere is this more true than in the world of
programming. Even unseasoned programming novices know that programming errors and the debugging needed to
locate and repair such errors are part of the job.

This chapter covers how to deal with programming errors related to JSP development. You'll read about the JSP
features that can route errors to specific JSP pages, and then spend some time examining JSP translation and
runtime errors. You'll also explore JSP-specific exception classes.

After encountering and handling JSP errors, you must track down the root cause of the error. This chapter discusses
some effective techniques for debugging your JSP pages. You'll read about the straightforward methods, such as
writing to a log, and the not-so-straightforward, such as creating a custom debugging class.

Before you get into the details of JSP error handling, you may be wondering why the topic of JSP errors and
debugging deserves special treatment. The next section provides some answers.

Top



EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You've now seen many of the similarities and differences between JSP pages and servlets. It is necessary to
understand these two technologies and how they work so that you can decide whether to use a JSP page or a servlet
in a specific situation. Remember, above all, that neither JSP nor servlets are the final solution. As we return our focus
to JSP in the following chapters, remember that the power of JSPs and servlets may best be found in using them
together.

Top




EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

EJE & ISP

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JSPs with Servlets

You've learned about JSP pages containing Java code that gets passed to servlets. You've witnessed JSPs using
JavaBeans. You've seen examples of JSP custom-tag libraries. By now, you've discovered quite a lot about
JavaServer Pages. But is there anything in the realm of generating dynamic Web content that JSPs cannot do? More
specifically, does a situation exist in which using only JSPs to generate dynamic Web content is not the best solution?

JSP development assumes that your pages have a common presentation style and theme. JSPs may be inadequate
at providing dramatically different looks based on different user inputs or different data. A JSP page that effectively
displays data as an HTML table may do a poor job displaying data as an animated chart.

Then what is one to do? Although opinions may differ, you can leverage servlets to help your JSP page development
in some situations. A servlet may start the dynamic content preparation process and then forward the request to one
or more JSPs to complete the presentation. In the Model 2 approach, the Model-View-Controller pattern is applied to
this situation by having a servlet act as the controller, the beans as the model, and the JSPs as the view. A more
recent point of view embraces the idea of a server acting as a dispatcher of requests to JSPs and other Java
container objects, such as Enterprise JavaBeans. Appropriately, the term used to describe the above-cited point of
view is called the Dispatcher approach, which is illustrated in Figure 8-2.

[ [T 1]
Breawser

Argurst

Fiesporie

Secrwlct 1Rat gartially

Jaraa

PrOCEsET request Component #1
- T
-
o~ HH\"\-\.\_\_\\
A”’fﬂl 'Y
F55 fipa Sendet e 158 for
ible 1 byl 83 yle 13

Fava
Component #2

Figure 8-2: A servlet acting as a dispatcher

As Figure 8-2 shows, the servlet captures the request and manages the application flow. The dispatching servilet may
not be responsible for generating any dynamic presentation content. Figure 8-2 shows the dispatching servlet



accessing a Java component in addition to dispatching requests and fetched data (from other components) to some
JSP pages or other servlets.

Forwarding Requests from Servlets

In the recent past, the Java servlet programmer did not have a convenient way of implementing the preceding
approach. But with the release of the Servlet API 2.1, the Java programmer can implement the Request Di spat cher

interface. Implementations of Request Di spat cher are available at Ser vi ceCont ext and can be used to send a
request to a static resource (an HTML page, for example) or a dynamic resource (a JSP or servlet, for example).

The servlet programmer has two methods to implement: f or war d, to transfer control to another resource; or
i ncl ude, to handle the overall management of the request from, and the response to, the client.

The code, shown in the following, forwards a request from a servlet to a JSP:

/I Assune request and response have their ‘usual’ meaning
Request Di spatcher rDisp =

get Ser vl et Cont ext () . get Request Di spat cher (" nmyJSPPage. j sp");
rDi sp. forward(request, response ) ;

The URL argument in get Request Di spat cher is a relative path URL.

| <= Prov_ | Noxt =



Client
Browser

Reguest | Response

Servlet that partially
processes request

J5P for
style #1

Serviet for
style #2

Java
Component #2

Java
Component #1

ISP for
style #3




EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using the JSP/Servlet Environment

Now that we have reviewed the methods related to the JSP and servlet life cycles, let's take a close look at the environment in which they exist. Understanding the JSP/servlet environment will help
us to better leverage the features of this environment that are useful for writing robust Web applications. Figure 8-1 depicts the relevant environmental components and the request/response flow

between clients, JSPs, and servlets.

HIML, XML o+
Clent oher MIME bype

L Bresaier ;I'i—| Feigminue
e}

i 3
Rogeest | F5P Engine and Web Sener
WTTP GET {Creates a Servlet from 3 JSP e o= Respomas |

POST, ete and emsrubes tet serilet)

A

FTF, wendor-
specific P file
protooel

B =4 Reponse

larvaiBean, Other
Component

Requess

Figure 8-1: A high-level view of JSP and servlet processing
HTTP, FTP, or any other supported protocol request type originates from a browser (client) and is sent to the Web server. The JSP-enabled server recognizes the . j sp extension and realizes that
the request is packaged with a JavaServer Page. The server translates the JSP page into a servlet. Along the way, the original request gets passed to the _j spSer vi ce method in the generated

servlet. After the servlet executes, perhaps by communicating with other Java components such as JavaBeans, the servlet returns a response in the form of an HTML, XML, plain text, or other MIME-
type resource.

Useful Servlet Environment Features
The servlet environment provides important features to JSP pages. This section describes some of these features.

Session Management

One advantage of using servlets and, as a result, JSPs, is that servlets provide session management services. Recall that a session is a connection between a client and a server that enables the
two to share data. The server identifies sessions by using a session key, which the server stores in a dictionary-type object.



Servlets and JSP pages use cookies by default to manage sessions. A cookie is a set of values, a name-value pair, which is sent to a client. Cookie implementations usually involve files stored on
the client machine, and the location of such files is browser dependent.

It is important to remember that cookies can't be trusted to maintain sessions. For example, the client machine may have cookies disabled. In this situation, the servlet can use a technique called
URL rewriting, which involves encoding the session key in the request URL. The servlet can decode the URL to extract the session key, thereby identifying the appropriate client belonging to that
particular session.

Encoding and Parsing Form Data

Data sent with a get or post request may be encoded in a scheme known as URL encoding. The encoding replaces special characters, such as spaces and unprintable characters, with symbols

and hex values. Names and values are encoded separately. You've seen this encoding on search engines before. For example, an advanced search in the Google search engine
(htt p://ww. googl e. conl ) encodes search parameters as follows:

http: //ww. googl e. conf sear ch?as_g=quant umtconput i ng&unr10&bt nG=Googl e+Sear ch&as_og=&as_epg=&as_eq=&as_occt =ti tl e& r=&as_dt =i &si t esear ch=&saf e=of f
Notice the name-value pairs (g=quantum+computing) with the + symbol replacing the blank, the & symbol connecting multiple search criteria, and the setting of hidden parameters (saf e=of f).

Servers are capable of automatically decoding this data. Whether the data is sent by a get request or post request, your JSP page can decode and retrieve the data by using the get Par anet er
method of the r equest object. For example, the JSP expression shown below retrieves the value of the q parameter:

<% request.getParaneter("q") %

Using the above method eliminates the necessity of writing code to parse the data or having to use the j ava. net . URLEncoder andj ava. net. URLDecoder classes.

Accessing Shared Data

JSPs and servlets may exchange data by using a set of methods available to objects of class Ser vl et Cont ext . In JSP lingo, the application scope represents objects derived from class
Ser vl et Cont ext . Some of these methods are get Attri bute, get Attri buteNanes, set Attribute,andrenoveAttribute.

Servlets and JSPs also can share initialization parameters and configuration settings by using methods available to objects of class Ser vl et Confi g, such as get | ni t Par anet er and
get I ni t Par anet er Nanes.

Your Web server may have additional methods to expose various properties and attributes of your server environment to your JSP pages.

Servlets provide the JSP programmer with powerful features that are accessed with standard JSP expressions. You may think that you'll never have to code a servlet because all your dynamic Web
page content needs are addressed by JSP. Although JSP brings unparalleled abilities to the Web application developer, you shouldn’t throw out that servlet API documentation just yet. The following
section touches on some cases in which you may want to use Java servlets with your JSPs.

Top £

[ <= Prov [ Noxt —



HTML, XML or

Client other MIME type

Browser

Response

¥

Request

HTTF GET,
POSI, ete.
FTP, vendor-
specific
protocol

'S

ISP Engine and Web Server

(Creates a Serviet from a JSP file
and executes the servlet)

k)

Reguest

Response

3

Y

JSP file

'

Regquest

Response

L]

lavaBean, Other
Component




EJB & JSP: Java On The Edge, Unlimited Edition
EJE & ISP ; by Lou Marco ISBN: 0764548026
ac

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 8: JSPs and Servlets Revisited

In previous chapters, you've read much about the relationship between JavaServer Pages and Java servlets. In this chapter, you can take a closer look at this
relationship. You can delve into the servlet life cycle and discover the differences between a “raw” servlet and a JSP-generated servlet. You can also read about
important servlet and JSP methods, along with learning about the servlet environment. In addition, you can gain insight into why you need to use servlets, which
is discussed in this chapter’s section on using Java servlets and JSPs together.

Examining the Servlet Life Cycle

Because JSPs get translated into Java servlets, the JSP life cycle closely parallels that of servlets. In brief, when you request a JSP page, the translator
generates a servlet and the Java compiler on the server compiles the generated servlet. Then the server invokes the class loader to load the servlet and start
execution.

If the servlet contains an i ni t method, the container calls it. The i ni t method runs only once. You can see that, for JSP-generated servlets, the analogue for
the servleti ni t method is called j spl nit. Bothinit andj spl ni t are optional methods.

After execution of i ni t orj spl ni t, the servlet executes its ser vi ce method. The JSP equivalent for the ser vi ce method is _j spSer vi ce. The server can
run multiple threads accessing the service or the _j spSer vi ce method simultaneously, or you can force the server to single thread the method's access by
using a single-threaded model using the i sThr eadSaf e attribute of the page directive.

Next, in servlets the ser vi ce method invokes either the doGet or doPost method. The doGet and doPost methods of the servlet implement the get and
post requests made from the client browser to the servlet, respectively. JSP-generated servlets do not have implementations for doPost and doGet . JSP-
generated servlets perform both post and get requests in the _j spSer vi ce method. Actually, a servlet can implement various do methods depending on the
particulars of the HTTP request, such as doPut and doDel et e methods.

When the server unloads a servlet, the server invokes the dest r oy method. The JSP-generated equivalent to the dest r oy method is j spDest r oy. As with
init andjsplnit,destroy andj spDestroy are optional.

Writing the Minimal Servlet

Given that most of the servlet methods discussed above are optional, you may wonder what is the “smallest” or minimal servlet? Listing 8-1 provides an example
of a minimal servlet.

Listing 8-1: A contender for the minimal servlet

inmport java.io.* ;

inmport java.text.* ;

inmport java.util.* ;

import javax.servlet.* ;
import javax.servlet.http.* ;

public class mninal Servlet extends HttpServlet {

public void doGet( HttpServletRequest request,
Ht t pSer vl et Response response)
throws | OException, ServletException

response. set Content Type("text/htm ") ;

Print Witer out = response.getWiter() ;

out. println("<HTM.> <BODY> Hello World </ BODY>
</ HTM>" )

out.close() ;

public void doPost( HttpServletRequest request,
Ht t pSer vl et Response response)
throws | CException, ServletException



doGet ( request, response ) ;

1}

The above servlet is as bare bones as it gets. It is important to note that you do not have to override the doGet or doPost methods if you instead override the
servi ce method and handle all requests there. This would not be considered good form in servlet design, but it is an option. In the next section we will see that
a minimal JSP-generated servlet is a bit different since the doGet and doPost methods do not exist.

Writing a Minimal JSP-Generated Servlet
The nuts and bolts of a JSP-generated servlet are dependent on the JSP-to-servlet translator used with a particular Web server. Listing 8-2 shows a rather
simple JSP page in which Tomcat 3.2 generated the servlet. However, this page is not the simplest because it has actual JSP scripting elements — a simple

page would have nothing but static text.

Listing 8-2: A simple JSP page with a couple of scripting elements

<%@ page content Type="text/htm" %
<htm >

<head>

<title>Mni mal JSP Page</title>

</ head>

<body>

<0 String hello = "Hello Wrld"; %
<% hello %

</ body>

</htm >

Listing 8-3 shows the servlet that Tomcat generates from the JSP page in Listing 8-2.

Listing 8-3: JSP-generated servlet for minimal JSP page in Listing 8-2

package jsp.|loutest;

i mport javax.servlet.*;

inmport javax.servlet.http.*;
import javax.servlet.jsp.*;

import javax.servlet.jsp.tagext.*;

inmport java.io.PrintWiter;
import java.io.|CException;
import java.io.FilelnputStream
import java.io.ObjectlnputStream

inmport java.util.Vector;

i mport org.apache.jasper.runtine.*;

i mport java. beans. *;

i mport org. apache. jasper. Jasper Excepti on;

public class _0002fjsp_0002f| out est _0002f | out est _0002ej spl out est _j sp_7
extends Htt pJspBase {

/* begin [file="D:\\toncat32\\ Webapps\\ exanpl es\\jsp\\loutest\\loutest.jsp";from
=(7,3);to=(7,34)] */
String hello = "Hello Wrld";
/'l end

static {

}
public _0002fjsp_0002f| out est _0002f | out est _0002ej spl outest _jsp_7( ) {
}

private static boolean _jspx_inited = fal se;

public final void _jspx_init() throws Jasper Exception {
}

public void _jspService(HttpServl et Request request,
Ht t pSer vl et Response response)
throws | OException, ServletException {

JspFactory _jspxFactory
PageCont ext pageCont ext



Ht t pSessi on session = null;

Servl et Context application = null;
Servl et Config config = null;
JspWiter out = null;

bj ect page = this;

String _value = null;

try {

if (_jspx_inited == false) {

_jspx_init();

_jspx_inited = true;
}
_j spxFactory = JspFactory. get Def aul t Factory();
response. set Cont ent Type("text/htm");
pageCont ext =

_j spxFactory. get PageCont ext (thi s, request, response,
", true, 8192, true);

application = pageCont ext. get Servl et Cont ext () ;
confi g = pageCont ext. get Servl et Config();

sessi on = pageCont ext. get Sessi on();

out = pageContext.getCQut();

/* HTML begin [file="D:\\tontat 32\\ Wbapps\\exanpl es\\jsp\\loutest\\loutest.jsp";from=(0,35);to=(7,0)] */
out.wite("\r\n<htm >\r\n<head>\r\n<title>M ni mal JSP
Page</title>\r\n</head>\r\n\r\n<body>\r\n");
/1 end
/* HTML begin
[file="D:\\toncat 32\ \ Webapps\\ exanpl es\\jsp\\l outest\\loutest.jsp";from=(7,36);to0=(8,0)] */
out.write("\r\n");
/1 end
/* HTML begin [file="D:\\tontat32\\Wbapps\\exanpl es\\jsp\\loutest\\loutest.jsp";from=(8,3);to=(8,10)] */
out.print( hello);
/1 end
/* HTML begin [file="D:\\tontat32\\Wbapps\\exanpl es\\jsp\\loutest\\loutest.jsp";from(8,12);to0=(12,0)] */
out.write("\r\n</body>\r\n\r\n</htm >\r\n")
/1 end

} catch (Exception ex) {
if (out.getBufferSize() != 0)
out.clearBuffer();
pageCont ext . handl ePageExcepti on(ex);
} finally {
out. flush();
_j spxFactory. rel easePageCont ext ( pageCont ext ) ;

Whew! What is the reason for showing the generated code? The first reason is to demonstrate the labor and toil expended in generating a servlet from a very
small JSP page. Second, examining generated code is best left to computers, not humans — don’t you agree?

Note the absence of j spl ni t, j spDestroy, doCGet, and doPost methods in the generated servlet (or take my word for it!). Also, take note that the bolded
lines are generated in response to the JSP code in the page.

Because an implementation of the i ni t method is not required for servlet execution and an implementation for the j spl ni t method is not required for JSP
execution, why would you implement these two methods? You can discover why in the next section.

Examining the init and jsplnit Methods

As previously mentioned, the i ni t method is called when the servlet first loads. The i ni t method is not called for each user request. Hence, i ni t is used to
perform one-time initializations. Actually, Java applets have an i ni t method, which is not required, that serves the same function as i ni t for servlets.

You may code the i ni t method sans arguments as follows:

public void init() throws Servl et Exception {

Also, you may pass an object of Ser vl et Confi gtoi nit as follows:

public void init( ServletConfig sConfig)
throws Servl et Exception {
super.init( sConfig ) ;

You would use the second signature for i ni t when your servlet requires server settings. Creating server settings is dependent on the server being used. Some



servers use a configuration file, whereas others use a GUI to set values for server settings.

Note the bolded invocation of the superclass constructor in the second example. Do yourself a favor and code the call to super . i ni t as the first line in your
i ni t implementation when you require an object of Ser ver Confi g.

As with i ni t,j splnit is notrequired for JSP execution. However, you can code aj spl ni t method in your JSP page, which is passed to the generated
servlet. The servlet engine executes the j spl ni t method only once upon loading the generated servlet. Listing 8-4 shows how to code a j spl ni t method in

your JSP pages.

Listing 8-4: Example of jspInit method in a JSP

<% page content Type="text/htm" %
<htm >

<head>

<title>splnit</title>

</ head>

<body>
<% String hello = "Dumy Val ue";
public void jsplnit() {

hello = "Initial value 'Hello Wrld changed in
jspinit()” |
1%
Java variable hello is now <b><% hell o %</b>
</ body>
</htm >

When this page runs, the initial value of Durmy Val ue is changed by the assignment inside the j spl ni t method. In a real-world application, you would not see
one simple String value overriding another, as is seen in this listing. You might override the Durmy Val ue with information retrieved from a bean or a database,
depending on your application needs.

Rather than show you the vast amount of code generated by the JSP translator here, please take my word that this generated servlet contains a j spl ni t
method.

Examining the destroy and jspDestroy Methods

It is unnecessary for you to code an implementation of the dest r oy method for your servlets. However, if you do, the server invokes your dest r oy method
before unloading your servlet. The dest r oy method is a good place to perform various cleanup activities, such as closing database connections and writing any
remaining persistent data to disk.

The JSP equivalent to dest r oy is j spDest r oy. As with dest r oy, j spDest r oy is not required for JSP execution. The j spDest r oy method serves the same
purpose as the dest r oy method for "raw" servlets. As with j spl ni t , you may code an implementation of j spDest r oy in your page, or use a page directive to

include an implementation.

A good rule of thumb is that if you code a j spl ni t method that grabs resources, such as pooled database connections, you should code a j spDest r oy
method to release the grabbed resources.

Note Other thanj spl nit andj spDest r oy, you cannot code methods that start with j sp, j spx, _j sp, or _j spx. These method prefixes are reserved for
future use by Sun.

Examining the service and _jspService Methods

You do not need to code an implementation of the ser vi ce method. In fact, it is best if you do not override ser vi ce. Instead, it is more effective to override the
doGet and doPost methods. Your main advantages of overriding doGet and doPost as opposed to overriding ser vi ce are as follows:

. You can add other do methods more easily when you override doGet and doPost . Overriding ser vi ce removes your ability to add these other methods
easily, especially if your servlet is then subclassed.

. You have automatic support for various requests, such as TRACE and OPTI ONS requests, even if your servlet is subclassed.

The accepted way of overriding the same action for a POST or GET is to override doGet and doPost in a servlet and have doPost invoke doCet , or vice
versa. (Refer to Listing 8-1 for an example of doPost calling doGet .)

The _j spSer vi ce method is required for JSP execution. However, you must never code a _j spSer vi ce method. The _j spSer vi ce method is automatically
generated by the JSP translator. _j spSer vi ce is the "meat and potatoes" of the JSP; most of your JSP code finds its way into the _j spSer vi ce method.

Table 8-1 summarizes the servlet and JSP methods discussed in the preceding sections.



Table 8-1: Summary of Important Servlet and JSP Methods

’ Method ’ ?glravlet or ’ Required ’ Description/Notes

| init ’ Servlet ’ No | Performs one-time initializations.

| jspinit ’ JSP ’ No | Same as i ni t. JSP author may provide code in JSP.

| servi ce ’ Servlet ’ No | Handles the request. Not a good idea to code an implementation

_j spService JSP Yes Handles the HTTP request from the JSP page. The JSP author does not have to
implement it. It is implemented by the JSP translator.

doCet Servlet No Handles an HTTP GET request. Required only if the servlet must handle GET
requests.

doPost Servlet No Handles an HTTP POST request. Required only if the servlet must handle POST
requests.

| dest r oy ’ Servlet ’ No | Performs cleanup immediately prior to servlet purge by server.

| j spDest r oy ’ JSP ’ No | Performs cleanup immediately prior to JSP purge by server.

Topsy




EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

The topic of JSP tag extensions is relatively recent, being introduced in JSP release 1.1. The draft specification for
JSP release 1.2 discusses additional features of the JSP tag extensions. Searching for “JSP tag extensions” at
ht t p: // wwv. googl e. coml returns over 1,300 sites. Those who are "in the know" realize that JSP tag libraries are

an essential component of JSP technology.

Top <



EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Writing an Example Nested Tag

Although the f or mat Li ne and r epeat Li ne tags in the previous section were shown to execute when nested, the tags

can execute independently of each other. In other words, the presence or absence of one tag has no effect on the
execution of the other. At times, one tag requires a specific parent to execute, or a parent requires specific children. In JSP
terms, parent/child tags that depend on one another for proper execution are called nested tags.

Writing nested tags is very similar to writing the sort of tags you've already learned. The difference is that the objects
(beans) in the nested tags need to communicate. The tag library interfaces have methods that enable a child tag to
determine its parent. Once done, you can invoke parent tag methods from the child tag.

The following sections describe how to construct a case construct as a series of nested tags. The general format is as
follows:
<aTaglLi b: case val ue="sone_val ue">
<aTagLi b: when val ue="case_val uel">
JSP to eval uate when sone_val ue = case_val uel
</ aTagLi b: when >
<aTagLi b: when val ue="case_val ue2">
JSP to eval uate when sone_val ue = case_val ue2
</ aTagLi b: when >
<% - Other casevalue tags may follow --%
<aTagLi b: ot her wi se>
JSP to eval uate when sonme_val ue not equal s case_val ues
</ aTagLi b: ot herw se>
</ aTagLi b: case>

The relationships you need to enforce are as follows:

. A when tag must be enclosed within a case tag. The code has to know about the existence of a case tag (parent)
when processing the when tag (child).

. An ot herw se tag must be enclosed within a case tag. The code has to know about the existence of a case tag
(parent) when processing the ot her wi se tag (child).

. The existence of an ot her wi se tag requires the existence of at least one when tag. The code has to know about the
existence of a past-processed when tag when processing the ot her wi se tag.

Of course, you may want to implement the common understanding of a case construct.

The case Statement Tag

The case statement tag is the first tag that we'll examine in looking at the implementation of these nested tags. This tag is



the parent tag of the when and ot her wi se tags.

The code uses indicators (flags, if you will) as properties in the parent tag handler class, which you can access from the
child classes. You must have two indicators: whenst at enent f ound indicates the presence of a when statement within

the case tag and whenst at enent val uef ound indicates the presence of a when statement with a value that matches
that of the case statement. Listing 7-10 shows the tag handler for the case statement.

Listing 7-10: Tag handler class for the case tag

package chapter?7;

i mport javax.servlet.jsp.*;
i mport javax.servlet.jsp.tagext.*;

i mport java.io.*;

public class casestatenent extends TagSupport {
/I This is the value to match on sone when tag
private String val ue
/1 Thi s bool ean states whether or not at |ease one
/ I whenst atenent is found
private bool ean whenstat enentfound = fal se
/1 Thi s bool ean states whether or not one of the when
/lstatenents has a value that matches that of the case
/] statenent.
private bool ean whenst at enent val uef ound = fal se

public void setValue( String val) {
val ue = val ;

}

public String getValue() {
return val ue ;

}

public void setWenstat enent f ound( bool ean found) {
whenst at enent f ound = found ;

}

publ i c bool ean get Whenst at enrent f ound() {
return whenstat enentfound ;

}

public void setWenst at enent val uef ound( bool ean found) {
whenst at enrent val uef ound = found ;

}

publ i c bool ean get Whenst at enrent val uef ound() {
return whenst at enent val uef ound ;

}

public int doStartTag() {
return EVAL_BODY_| NCLUDE ;

}

The code for the case tag (the outer tag) merely establishes the indicator properties and the val ue attribute that may or
may not match some when tags.

The doSt art Tag method coded here instructs the JSP container to continue to evaluate the tag body. Notice that,
because you are not using the tag body by a call to doAf t er Body, the casest at ement class extends the convenience

class TagSupport, not Body TagSupport.

At to this point, you haven’t seen anything new in this tag handler. Next, you can take a look for an implementation of the



when tag, which shows how to access parent class properties.

The when Statement Tag

The when tag is the child tag of the case tag and needs to access information in the parent tag's implementing class. For

this reason, you need a method that identifies the class already instantiated with a bean from the parent tag's implementing
class. The method fi ndAncest or Wt hCl ass does exactly that; f i ndAncest or Wt hCl ass returns the instance of the

parent tag class, thereby enabling child classes access to parent tag properties. Listing 7-11 shows the code for the when
statement tag.

Listing 7-11: Tag handler class for the when tag

public class whenstatement extends BodyTagSupport {
private String val ue ;
public void setValue( String val) {
val ue = val ;
}
public String getValue() {
return val ue ;
}

public int doStartTag() throws JspException {
//See if this is enclosed within a case tag
casest atement caseTag =
(casestatenent) findAncestorWthd ass( this, casestatenent.class );
if (caseTag == null)
t hr ow new
JspException("when tag not enclosed in case tag") ;
el se //set when statenent found indicator
caseTag. set Whenst at enent f ound( true ) ;
/[/See if this is the when statenment that has a val ue
/I matching that of the case tag
if ( caseTag.getVal ue().conpareTo( getValue() ) == 0) {
/1Set indicator in case tag to indicate a match
caseTag. set Whenst at enent val uef ound( true ) ;
return EVAL_BODY_TAG ;
}
el se
return SKI P_BODY ;

public int doAfterBody() throws JspException {

BodyCont ent tagBody = get BodyContent() ;

String tagBodyAsString = tagBody.getString() ;

try {
JspWiter out = tagBody. get EnclosingWiter() ;
out.print( tagBodyAsString ) ;
} catch (1 OException ex) {

t hrow new JspTagException(ex.toString());

} return SKI P_BCODY ;

The doSt art Tag method enables you to determine if a parent (case) class exists or if the value coded in the when tag
matches that coded in the case tag. When a match of values is found, code in doSt ar t Tag, which sets the property
whenst at enent val uef ound in the case tag class to true; the ot her wi se tag accesses this indicator as you can see in



the next section. The doAf t er Body method lists the tag body.

The otherwise Statement Tag

The code for

the ot her wi se tag handler is very similar to the code for the when tag handler. Decisions to process the tag

body are made in the doSt ar t Tag method; the doAf t er Body tag lists the tag body to the screen. Listing 7-12 shows the

code.

Listing 7-12:

Tag handler class for the otherwise tag

package chapter?7;

i mport javax.servlet.jsp.*;
i mport javax.servlet.jsp.tagext.*;
i mport java.io.*;

public class ot herw sestatenment extends BodyTagSupport {
public int doStartTag() throws JspException {

}

publ i
}
}

}

//See if this is enclosed within a case tag
casest atenment caseTag =
(casestatenent) findAncestorWthd ass( this, casestatenent.class);
if (caseTag == null)
t hrow new JspException("otherwi se tag not encl osed"+
"within case tag") ;
//See if a when statenent was found
if ( !caseTag. get Whenst at enment found() )
t hrow new JspException("otherw se tag found without"+
"when tag(s)") ;
/*See if a previous when statenent was execut ed.
Actually, see if a previous when statenent has the
sane value as that found on the case statenent */
if ( !caseTag. get Whenst at enent val uef ound() )
return EVAL_BODY_TAG ;
el se
return SKI P_BODY;

c int doAfterBody() throws JspException {

BodyCont ent tagBody = get BodyContent() ;

String tagBodyAsString = tagBody.getString() ;

try {
JspWiter out = tagBody. getEnclosingWiter() ;
out.print( tagBodyAsString ) ;

catch (1 CeException ex) {

t hrow new JspTagException(ex.toString());

return SKI P_BODY ;

The doSt art Tag method uses fi ndAncest or Wt hd ass to communicate with the parent class. The JSP API does not

provide a mechanism to communicate directly with siblings. Siblings are tags that have the same parent tag. One
procedure for sibling tags to communicate is to access properties of a shared parent class, as is done here.

Top

| <= Prov | Noxt =



EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Implementing a Custom Tag

Throughout the rest of the chapter, we will work in stages to create the following custom tag:

<nytagli b: formatLi ne fontSi ze="5"
f ont Col or =" bl ue"
reverse="true">
This is Line 1
</ nytaglib:formatLine>

The implementation is shown in different stages. First we'll see how to implement an empty tag without attributes that writes
the text “Here’s another line” to the page:

<nytaglib: formatlLine />

Then, we'll change the tag components to implement an empty tag with attributes:
<nmytaglib:formatLine htmline="This is Line 1" />

After adding an attribute, we'll change the tag components to implement the tag with a body:

<nytaglib: format Li ne>
This is Line 1
</ mytaglib:formatlLine>

Finally, we'll create the tag with the body and three attributes, f ont Si ze, f ont Col or, and r ever se, as shown at the
beginning of this section.

Implementing the Empty Tag Without Attributes

As previously mentioned, you need to code three parts: at agl i b directive that references the t | d file, the class that
implements the tag behavior, and the t | d file, although not necessarily in that order.

The JSP Page

You might as well start with the JSP page called exanpl e2. j sp containing the taglib directive and the tag reference. Listing
7-1 shows the page:

Listing 7-1: JSP page example2.jsp containing a custom empty tag

<% - Tell JSP that this page renders HTM. --%
<% page content Type="text/htm" %

<htm >

<head>

<title>Using a Custom Tag to Generate HTM.</title>




</ head>

<body bgcol or ="#dddddd" >

<% - Here is the taglib directive --%

<U@taglib uri="ch7taglib.tld" prefix="nytaglib" %
<% - Here is the tag reference --%
<nmytagli b: format Li ne />

</ body>
</htm >

Figure 7-2 below shows the output of the page:

i Using a Cusiom Tag to Generate HTML - BMicrossll Internet Ex... M= E3

Fie Edt Yiew Favostes Took Help El
'Mﬂrﬂ‘-’l&l‘ﬂ_] g /e albaost GIRL pocammpledy/jips chapba T hesarmpla? jip :J G
e S E| ~ T
Bock Sikp Rebath Hsest
=
This i# Line |
=

Figure 7-2: JSP output from page in Listing 7-1
The t agl i b directive names the t| d as the file ch7t agl i b. t | d, stored in the same directory as this JSP page. The

reference to the f or mat Li ne tag in the t | d (Listing 7-3) names the implementing class for this tag as f or mat Li ne. Even

though the tag and the implementing class have the same name in this example, this does not have to be the case. Now let's
take a look at the implementation of the cl ass f or nat Li ne.

The Tag Handler Class: Empty Tag Without Attributes

Listing 7-2 shows an implementation of our custom tag.

Listing 7-2: Implementing the empty tag without attributes

package chapter?7;

i mport javax.servlet.jsp.*;

i mport javax.servlet.jsp.tagext.*;

import java.io.Witer;

i mport java.io.| OException;

/lor inmport java.io.* if you prefer

/**

* Exanple 1: Wite a line of text to the page
*/

public class formatLi ne extends TagSupport {

public int doStartTag() throws JspException {

try {



JspWiter out= pageContext.getQut() ;
out.print("This is Line 1") ;
} catch (1 OException ex) {
t hrow new JspTagException(ex.toString());
}

return SKI P_BODY ;

Aside from being good programming practice, some servers (Tomcat included) require that your tag implementations be
stored in packages. At a minimum, you can code the import statements that follow the package statement whenever you
implement a custom tag.

As previously mentioned, you can implement an empty tag by extending the convenience class TagSupport . Here, all you
need to do is direct the server to take action when the JSP container detects the start tag (<nyt agl i b: f or mat Li ne />)
by overriding the doSt ar t Tag method. You could have directed the server to produce output when the JSP container
detected the end tag by overriding the doEndTag method in TagSuppor t , too.

Note Although you don’t code an end tag per se when the tag is empty, the server invokes a doEndTag method.

The doSt ar t Tag method throws a JspExcept i on so you can normally enclose your code within a try/catch block, as
shown in Listing 7-2. Here, you're performing a write operation, so you can catch | OExcept i ons and throw a

JspExcepti on.

Output performed by code implementing custom tags is directed to the implicit object out , an instance of the specialized
writer class named JspW i t er. The output is merely the text you want to appear in the page.

The doSt ar t Tag method returns an integer. As mentioned earlier, the tag interface defines four constants that determine
the disposition of the tag body. The constant SKI P_BQODY instruct the server to ignore the body of the tag. Your

doSt art Tag method should return SKI P_BODY when included in the implementation of an empty tag.

The last component that needs coding is the tag library descriptor file.

The tld that Describes the Empty Tag Without Attributes

Listing 7-3 shows the t | d that describes the f or mat Li ne tag.

Listing 7-3: The TLD for the empty tag without attributes

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>

<IDOCTYPE taglib

PUBLI C "-//SunM crosystens, Inc.//DID JSP Tag Library 1.1//EN
"http://java.sun.com dtd/ Web-j sptaglibrary_1 1.dtd">

<!-- Tag library descriptor -->

<taglib>
<tlibversion>1.0</tlibversion>
<j spversi on>1. 1</ j spversi on>

<short name>nyt agl i b</ shor t nane>
<uri></uri>

<i nf 0>
An exanple tag library description file for Chapter 7
</info>

<!-- Place Tag infornmation between <tag> tags -->



<t ag>
<nane>f or mat Li ne</ name>
<t agcl ass>chapter 7. format Li ne</tagcl ass>
<info> Wite a hardcoded string to the JSP page </info>
<bodycont ent >enpt y</ bodycont ent >

</tag>
<!-- Oher tag descriptions could follow -->
</taglib>

Your t | d starts with an XML declaration and a DOCTYPE statement. As Sun Microsystems releases new versions of JSP,
the PUBLI C and SYSTEMidentifiers in the DOCTYPE statement will change to reflect the new releases.

Caution Sun changed the element names in the DTD for tag library descriptors in JSP release 1.2. Table 7-2 shows the

new element names corresponding to the elements used in JSP release 1.1. The element names not listed in
Table 7-2 are the same for both releases.

Table 7-2;: TLD Element Names in JSP Release 1.1 and 1.2

Element Name, R1.1 Element Name, R1.2 Description

tlibversion tlib-version Version of your tag library.

j spversion j sp-version JSP release.

short nanme short - nane Prefix used in referring to tags

within the library. Notice that the
short name inthet| d, myt agl i b,

is used in the t agl i b directive in
Listing 7-1.

The uri tag names a public URI that points to the t | d. In the example, you are not using a public uri , hence, the uri tag
has no content.

The i nf o tag provides a short description about the tag library.
Tl d’s that describe tags that contain attributes and bodies contain additional tags, which are covered later in this chapter.

The content of the t | d is mostly contained within the <t ag> elements. The elements shown in Listing 7-3 have the following
meaning:

. hane — The name of the tag used in the JSP page. Actually, the content of the name element is only part of the tag
name; the actual name of the tag is the prefix coded in the t agl i b directive followed by the value of the name element in
thet! d.

. tagcl ass — The package and class name that contains the implementation of the tag’s behavior, or the name of the tag
handler class.

. i nf o — A short description of the tag.

. bodycont ent — One of three values: enpt y for empty tags (such as the example), JSP for tags that contain JSP
statements in the tag body, or t agdependent for tags that do not rely on the JSP container for processing.

Every tag in the tag library has an accompanying <t ag> entry in the t | d.



To use this tag library, you can place the t | d file in the same directory as the JSP page. Place the tag handler class in
directory Web- i nf / cl asses/ chapt er 7. Depending on your operating system, the case of this directory may or may not

matter, so check the directory where you JSP page is located to be sure. Now you can invoke your JSP page. If you're using
Tomcat, enter this URL in your browser:

htt p://1 ocal host: 8080/ exanpl es/ j sp/ chapt er 7/ exanpl e2. j sp

Refer to the screen shown in Figure 7-2. Now, let's change our tag by adding attributes.

Implementing the Empty Tag with Attributes

Here's the tag you want to implement:
<mytaglib:formatLine htmline="This is Line 1" />

Of course, the value of the attribute ht m | i ne can be any string.

The JSP page is the same as Listing 7-1 except for the preceding tag reference ; there’s no need to show the entire page
here. Also, the displayed page is the same. The changes you need to make are in the tag handler class and the t | d.

The Tag Handler Class: Empty Tag with Attributes

Listing 7-4 shows the code for the tag handler class for the tag shown in the preceding section.

Listing 7-4: Implementing the empty tag with attributes

package chapter?7;
i mport javax.servlet.jsp.*;
i nport javax.servlet.jsp.tagext.*;
import java.io.Witer;
i mport java.io.| OException;
/lor inport java.io.* if you prefer
/**
* Exanple 2: Process the Tag with attributes
*/
public class formatLi ne extends TagSupport {
private String htmline ;
/] Code get and set nethods for the attribute
public void setHmline( String aLine ) {
htm |ine = aLine ;
}
public String getHmline( ) {
return htmline ;

}
public int doStartTag() throws JspException {
try {
JspWiter out= pageContext.getQut()
out.print( getHmMline() )
} catch (1 CException ex) {
t hrow new JspTagException(ex.toString());

}
return SKI P_BODY ;

To get the JSP container to process the attribute coded in the tag, you simply code a pair of get / set methods for the



attribute. Then you can use the attribute value while processing the tag methods.

You do not need to code both get and set methods for your tag attributes. You are required to code a set method. Of
course, if you want any other class (bean) to access the values of your tag attributes, you must code a get method because
attribute instance variables should have private visibility.

You see that the tag handler class implementing the behavior of the tag with attributes is truly a bean. Unlike beans available

to JSPs by using the j sp: useBean action, tag handlers may use non-empty constructors. You may have to change thet | d
to reference the tag attributes. The next section shows you how.

The tld that Describes the Empty Tag with Attributes

For each attribute coded in the tag, include an <at t ri but e>tag in your t | d. Listing 7-5 shows the tag elementinthetl| d
for this empty tag with attributes; the rest of the t | d is the same as that shown in Listing 7-2.

Listing 7-5: Tag library definition entry for an empty tag with attributes

<t ag>
<nane> formatLi ne </ nanme>
<t agcl ass>chapter 7. f or mat Li ne</t agcl ass>
<info> Format an HTM. Line </info>
<bodycont ent >enpt y</ bodycont ent >
<attribute>
<nane>ht m | i ne</ name>
<requi red>true</required>
<!-- rtexpvalue is optional -->
<rtexpval ue>true</rtexpval ue>

</attribute>
<!-- other attributes for this tag would follow -->

</tag>

Here’s what the additional tags in the t | d mean:

. attribut e — Required tag that signals the start of an attribute description.
. name — Required tag that is the name of the attribute.

. requi r ed — Required tag that is true if a value for this attribute is required, false, if not. If you code false for the required
tag, you may omit the attribute when you code the tag in your JSP page. However, when you omit the tag, the tag’s
corresponding set method does not get invoked. You would be wise to code an initial value for an optional attribute in

your tag handler class.

. rtexpval ue — Optional attribute that is true if the value of the attribute may be a Java runtime expression, false if not

(value must be a fixed string). For example:
<apref:atag attr="<% new java.util.Date() %" />

If at ag has the rt expval ue element set to true, the expression is evaluated and used as the value returned by the tag
handler’s get At ag method,; if false, the string is used as the value returned. False is the default value so you can safely
omit coding this tag in your t | d when the attribute value is a fixed string.

So far, you've seen how to code custom empty tags with and without attributes. Next, you can read how to code custom tags

that contain a body.

Implementing the Tag with a Body



Here's the tag you want to implement:

<mytagli b: f or mat Li ne>
This is Line 1
</ nytagli b: f or mat Li ne>

You've taken the line of text, formerly an attribute, and placed it in the body of the tag. There’s no change to the JSPtagli b
directive, so let's get to the tag handler class for the preceding tag.

Listing 7-6 shows the code for the tag handler class for the tag shown in the preceding section. The presence or absence of
attributes has nothing to do with the coding constructs required to process the tag body. First, let’s look at the required code:

Listing 7-6: Tag handler for a tag with a body

package chapter?7;
i mport javax.servlet.jsp.*;
i nport javax.servlet.jsp.tagext.*;
import java.io.Witer;
i mport java.io.| OException;
/lor inmport java.io.* if you prefer
/**
* Exanple 3: Process the tag body
*/
public class formatLi ne extends TagSupport {
public int doStartTag() {

return EVAL_BODY_| NCLUDE ;
}

That's it! The code states that when the JSP container encounters the start of the tag, the container processes the tag body.
If the tag body contains JSP expressions, the expressions are evaluated.

Notice that the inclusion of a tag body in your JSP page is no guarantee that the body is processed. The decision whether or
not to process the tag body is made by the tag handler class, not the tag reference or the t | d. If you code the doSt art Tag

method as follows, your tag body won't be processed.

public int doStartTag() {
return SKI P_BODY ;
}

And you cannot expect the following code to work because by the time the JSP container gets to the end tag, it's too late to
process the tag body.

public class formatlLine extends TagSupport {
public int doEndTag() {
return EVAL_BODY_| NCLUDE ;

}
}

Speaking of the doEndTag method, when would you ever code this method? The next section provides some answers.

The Tag Handler Class: Coding a doEndTag Method

When a tag is empty, you rarely take action at the end of this tag. When a tag has a body, you can find yourself coding
doEndTag methods from time to time. Imagine your tag handler performing some output at the start of a tag, in a

doSt ar t Tag method, such as writing HTML for an HTML table to the implicit out object. The tag body contains JSP and



static text that gets written to out . You could use a doEndTag method to complete the HTML for the table. Your doEndTag
method could resemble the following:

public int doEndTag() {
JspWiter out = pageContent.getQut() ;
/] Several out.print statements that finish the table
return EVAL_PAGE;

}

The preceding example returned a constant instructing the JSP container to continue processing the remainder of the JSP
page. At times, you may want to skip the remainder of the page. Imagine your JSP page is laid out such that if a certain
condition arises after you process the tag body, you do not want to process the remainder of the JSP page. For instance, a
condition may arise when a registered user logs onto a system and the remainder of the page shows user information; but if
that user is not registered, no information is displayed and there’s no need to process the remainder of the page. Your
doEndTag method could resemble the following:

public int doEndTag() {
i f (conditionFronEval TagMeansSki pRest of Page)
return SKI P_PAGE;
el se
return EVAL_PACGE ;

}

Now you know how to conditionally process the remainder of the page. Next, you can see how to code the t | d to describe a
custom tag with a body.

The tld That Dwescribes the Tag with a Body

To code the t | d to describe a custom tag with a body, you need make only a single change to the t | d. Listing 7-7 shows
the t | d tag entry for a tag with a body.

Listing 7-7: Tag library descriptor entry for a tag with a body

<t ag>
<name> format Li ne </ name>
<t agcl ass>chapt er 7. f or mat Li ne</ t agcl ass>
<info> Wite Body of Text to Page </info>
<bodycont ent >JSP</ bodycont ent >
<attribute>
<!-- Describe an attribute here -- >
</attribute>
</tag>

The only change you need to make is to the value of the bodycont ent tag, from enpty to JSP.

Note The bodycont ent tag can use a value of t agdependent , which causes your tag to interpret the tag body as non-
JSP.

Optionally Processing the Tag Body

To this point, you've been shown implementations of tags that are empty, that omit the tag body, or always include the tag
body. If you code a doSt ar t Met hod according to the following template, you can optionally include or skip the tag body.

public int doStartTag() {



i f (youWant ToPr ocessTagBody)
return EVAL_BODY_I NCLUDE ;
el se
return SKI P_BODY ;

In the section on coding the doEndTag method, you encountered a similar situation in which, based on a condition, the

method returned a constant, generated during tag body processing that directed processing of the remainder of the page.
Because this discussion surrounds whether or not to process the tag body, you cannot use a condition generated during
body processing; you may not want to process the tag body. You can assume that the origin of the condition that determines
tag body processing must occur before the JSP container encounters the tag. Possible origins of the condition are from a tag
attribute that has its value dynamically generated, and processes earlier in the page or earlier in some other page. In
general, somewhere before encountering the start of the tag, some property in some object or bean must be set that the
doSt art Tag method can access.

Attribute values from the tag can be accessed by invoking the appropriate get methods, as can bean properties. If the
property is derived from some request time parameter, the doSt ar t Tag method accesses the implicit object by invoking the
get Request method of the pageCont ext object.

What if you want to do something other than include the tag body or skip it? What if you want to selectively process parts of
the tag body? The next section discusses how you would affect the tag body contents.

Selectively Processing the Tag Body

Here, you want to implement the following tag:

<nmytaglib: formatLine fontSi ze="5"
f ont Col or =" bl ue"
reverse="true">
This is Line 1
</ nytagli b: f or mat Li ne>

When the r ever se attribute has a true value, you want to list the string backwards. You also want to append font tags to get
the specified color and font size. Listing 7-8 shows the tag handler that accomplishes the goal.

Listing 7-8: Tag handler for a tag that selectively processes its body

package chapter?7;

i mport javax.servlet.jsp.*;

i mport javax.servlet.sp.tagext.*;

i mport java.io.*;

/**
* Exanple 4: Color, Size text and optionally Print backwards
*/

public class fornatLine extends BodyTagSupport

{

private bool ean reverse ;
private String color, fontSize ;

public void setReverse(bool ean rev) {
reverse = rev;

}

publ i c bool ean get Reverse() {
return reverse ;

}
public void setFontSize( String size ) {



fontSize = size;

}
public String getFontSize() {

return fontSize;
}

public void setColor( String col ) {
color = col ;
}

public String getColor() {
return color ;
}

public int doAfterBody() throws JspException {
BodyCont ent tagBody = get BodyContent() ;
String tagBodyAsString = tagBody.getString() ;
try {
JspWiter out = tagBody.getEnclosingWiter() ;

if ( getReverse() )
tagBodyAsString = ((new StringBuffer(tagBodyAsString)).reverse() ).toString() ;

out.print( "<font color=" + getColor() +
"><font size=" + getFontSize() +
">" + tagBodyAsString + "</font></font>" ) ;

} catch (1 CException ex) {
t hrow new JspTagException(ex.toString());

}
return SKI P_BODY ;

The get and set methods for the attributes are as before — nothing new there. The new code constructs are in italic. Let's
take a look.

The first new construct is found on the cl ass statement:

public class formatLine extends BodyTagSupport

Classes that change the tag body must implement the Body Tag interface or extend the convenience class
BodyTagSupport . The BodyTag interface extends the tag interface so you can continue to code doSt art Tag and

doEndTag methods if you need to. In this example, you do not need to take action at the start or the end of the tag, hence,
you did not code the doSt art Tag and doEndTag methods.

For the most part, you would code doSt art Tag and doEndTag the same way in classes that extend Body TagSupport as
you would in classes that extend TagSupport . However, doSt ar t Tag should return the constant EVAL_BCODY_TAG, a
constant not found in the tag interface.

The name of the method that processes the tag’s body is doAf t er Body. More accurately, the doAf t er Body method is
invoked after the JSP container evaluates any statements or expressions. If you want to perform processing on the tag body
before any JSP statements are evaluated, code a dol ni t Body method.

Perhaps a table showing the order of method invocation is in order. Table 7-3 illustrates the order of method invocation.

Table 7-3;: Order of Method Invocation



Method Name When Executed

doSt art Tag The JSP container hits the start tag.

dol ni t Body After doSt ar t Tag execution, before JSP processing of
tag body.

no method The JSP container processes the tag body.

doAf t er Body After the JSP container processes the tag body.

doEndTag When the JSP container hits the end tag, after

processing the tag body.

The preceding order can be short-circuited by the return values of the methods. In the following section, you learn that if the
doAf t er Body method returns EVAL_BODY_TAG, the doAf t er Body method gets reinvoked after JSP tag body evaluation.

For you to process the tag body in your bean (tag handler), you must have access to the tag body. The method
get BodyCont ent provides such access, returning the tag body as an object of, appropriately, class BodyCont ent . Class

BodyCont ent is an abstract extension of JspW i t er. You operate on the tag body by invoking methods of class
BodyCont ent .

In Listing 7-8, you retrieved the tag body as a String by invoking the get St ri ng method. The String returned by
get St ri ng reflects the JSP processing done on the body.

To write output, you need a reference to the implicit out object. Although you may assume that you can access out by
referencing the pageCont ext object, you can’t. While your tag handler class would successfully compile, you would not get
any output.

To get a reference to the out object, you must invoke the get Encl osi ngW i t er method. Once you have the reference,
you write to the out object as usual.

Class BodyCont ent includes the get Reader method that returns the invoking Body Cont ent object as an input stream,
thereby enabling input stream operations to be performed on tag bodies.

Repetitively Processing the Tag Body

The doAf t er Body method should return SKI P_BQODY, assuming the tag body is to be evaluated only once. If you want to
repetitively process the tag body, your doAf t er Tag method should return a value of EVAL_BODY_TAG When doAf t er Tag
returns EVAL_BODY_TAG, the tag body is again processed by the JSP container and is followed by another call to

doAft er Tag.

For example, if you want the following tag:

<nytaglib:repeattag repeat="3">
This is line nunber
</ nytaglib: repeattag>

To produce the following lines of output:
This is line nunber 1

This is |line nunber 2
This is line nunber 3

The tag handler shown in Listing 7-9 does the trick.

Listing 7-9: Tag handler for repeating tag body processing



public class repeatline extends BodyTagSupport

{
private int nunfli nmes, nunili nmesLeft ;
private String repeat ;
public void setRepeat( String repString) {
repeat = repString ;
try {
nunili mesl eft = Integer.parselnt( repString ) ;
} catch (Nunber For mat Exception nfe) {
nunii mesLeft = 1 ;
}
}

public String getRepeat() {
return repeat ;

}
public int doStartTag() {
try {

nunli mes = | nteger. parselnt( getRepeat() )

} catch (Nunber For mat Exception nfe) {
numfi nes = 1 ;

}

return EVAL_BODY_TAG ;

}
public int doAfterBody() throws JspException {
if (numtinmesleft >0 ) {
int idx = nuntines - nuntinmesleft + 1 ;
BodyCont ent tagBody = get BodyContent() ;
String tagBodyAsString = tagBody. getString()
try {
JspWiter out = tagBody.getEnclosingWiter() ;
out.print( tagBodyAsString + " " + idx + "<br>" )
t agBody. cl ear Body() ;
nuntinmesleft-- ;
} catch (1 CException ex) {
t hrow new JspTagException(ex.toString());
}

return EVAL_BODY_TAG ;
}

el se
return SKI P_BODY ;

The overall idea is to process the tag body based on the value of an integer named numTi nesLef t . Each time the tag body
is processed, the code decrements nunii nesLef t . When nunili mesLef t is zero, the code decides not to process the
loop body.

The key to this code is the returned value of doAf t er Body. When doAf t er Body returns EVAL_BODY_TAG, the JSP engine
processes the tag body, and then the server calls doAf t er Body again. Take note of the following line:

t agBody. cl ear Body() ;

The cl ear Body method erases the tag body content associated with the tag body object. If you omit this line of code, your
output would be as follows:

Here is line 1



Here is line Here is line 2
Here is line Here is line Here is line 3

Each invocation of doAf t er Body picks up the output from the previous invocations, along with the current contents of the
tag body.

Here’s another variation of repetitively processing the tag body, using a combination of tags:

<nytaglib:repeatline repeat="3" >

<nytaglib: formatLine reverse="fal se" fontSize="5" col or="green">
Here is line

</ nytaglib:formatLine>

</nytaglib:repeatline>

You can see that one tag is coded within another; the nyt agl i b: f or mat Li ne is a child tag of nyt agl i b. repeat|i ne.

You do not need to change the tag handlers for the preceding two tags to use the tags as coded. The output for the above
pair of tags is the same as the output for the myt agl i b: r epeat | i ne tag with the line of text as the tag body.

The body of the outer tag nmyt agl i b: r epeat | i ne is the result of processing the inner tag, myt agl i b: f or mat Li ne.
When the doAf t er Body method coded for the outer tag invokes its get Body Cont ent method, the invocation does not
return the code for the inner tag. The get BodyCont ent method returns the result of processing the inner tag.

You can reverse the order of the parent/child relationship as follows:

<nytaglib: formatLine reverse="true" fontSize="5" col or="green">
<nytaglib:repeatline repeat="3" >

Here is line

</nytaglib:repeatline>

</ nytaglib:formatLi ne>

Here is the generated HTML from this tag combination;

<font col or=green><font size=5>

>r b<3
enil enil si sihT
>r b<2
enil enil si sihT
>r b<1

enil enil si sihT
</font></font>

If you were to test this example, this generated HTML would appear as a single green line in your browser.

Top

| <= Prov | Noxt =



EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Tag Library Classes, Interfaces, and Components

As you might imagine, there’s plenty of behind-the-scenes activity to get the JSP container to understand a custom
tag. For a custom tag to work you need to:

1. Indicate in the JSP page that it uses custom tags using the t agl i b directive;
2. Tell the JSP container what to do when the it sees the tag by creating at ag handl er class;

3. Tell the JSP container what class to use when it processes the tag by creating a tag library descriptor file for the
tag library.

Let's examine these coding constructs one at a time, starting with the t agl i b directive.

Using the taglib Directive

The t agl i b directive has a simple syntax shown below:

<y@taglib uri=where_taglib_descriptor_is prefix=sone_prefix %

The uri attribute names the location of the tag library descriptor file. You can read about this file later in this chapter.

For now, know that the tag library descriptor file does what its name says — it describes the characteristics of the tag
library. The t agl i b directive tells your JSP page that the page uses a library, not a particular tag. The library might
only contain a single tag, or it might contain dozens.

A natural question arises — how do you reference an individual tag in the library in your JSP page? The answer is that
you use a prefix, identified as the value of the second attribute of the t agl i b directive, with the name of an individual

tag in the library. For example, the t agl i b directive shown below identifies all tags prefixed with nyt agl i b to be an
individual tag within the tag library described by format i b. t 1 d.

<v@taglib uri="formatlib.tld" prefix=nytaglib %

Here’s how such a tag may be referenced in a JSP page:

<nytaglib: Fornmat Li ne fontSi ze="5"
f ont Col or =" bl ue"
reverse="true">
Here’'s another |ine

</ nytagl i b: For mat Li ne>

In the preceding example, f ormat | i b. t | d is in the same directory as the JSP page containing the t agl i b
directive.



Caution If the uri attribute value is an absolute reference (that is, one that begins with a slash), some servers,

such as Tomcat, map that absolute value to a file on the local system. You may be confused if you
specify a uri value that doesn'’t exist and notice that your JSP pages may still locate the tag library

descriptor file.

Now that you can tell your JSP page that it uses custom tags, you need to tell the JSP container what to do with the
tag.

Examining the Tag Interface

You implement the functionality of your tag by coding a Tag Handler Class. Your tag handler class implements the
j avax. servl et.jsp.tagext. Tag interface. This interface contains constants and methods that the container

invokes during the life cycle of your tag, including methods to perform at the start tag and the end tag.

In practice, your tag handler class does not usually implement the tag interface directly. Instead, you can extend a
convenience class of the tag interface named TagSuppor t if your tag is empty. You can also extend
BodyTagSupport if you want to process the tag’s body. This class already implements the BodyTag interface, which
extends the tag interface.

The tag interface defines four constants that govern the disposition of the tag body. Methods you code that describe

the actions that occur when the JSP container encounters your tag should return the appropriate constant. Table 7-1
lists these constants and their meanings.

Table 7-1: Constants in the Tag Interface

Constant Description

SKI P_BODY The server should not process the body of the tag.

SKI P_PAGE The server should not process the remainder of the
JSP page.

EVAL_BODY_| NCLUDE The server should evaluate the tag body.

EVAL_PAGE The server should process the remainder of the JSP
page.

Before delving into the details of the preceding — named classes and other classes required to implement a custom
tag — let’s take a look at the last component required to implement a custom tag: the tag library descriptor file.

Creating a Tag Library Descriptor File

The tag library descriptor file is a file in XML format that describes the class that implements the functionality of the
custom tags in your JSPs. The tag library descriptor file, or t | d, contains the names of the tags with additional

information.

You can find the official DTD describing the elements and attributes ofatl dathttp://j ava. sun. com dt d/ Wb-
jsptaglibrary 1 1.dtd forJSP, release 1.1.

You cannot create a t | d unless you have a basic understanding of XML. If you haven’'t read Appendix D yet, read it
now.

Next, you can see how to code acl ass, t| d, and t agl i b directive for a custom tag. Let’s start with coding the t | d.






EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using Tags Versus Using JavaBeans

In Chapter 6, you read about using the j sp: useBean action to access a bean from a JSP page. However, this action

is limited to accessing the bean's exposed properties. Within your bean, your mutator methods influence the values of
your bean properties. For example, the JSP code below accesses a bean that generates HTML of a certain font size
and color. In addition, the bean has a property that, when true, reverses the text. The entire JSP page does not need
to be shown; the relevant code illustrates the point.

<j sp: useBean i d="exbean" cl ass="chapter7. ExBean"/>

<j sp: set Property nane="exbean" property="fontSize" val ue="2" />

<j sp: set Property nane="exbean" property="fontColor" val ue="red" />

<j sp: set Property nane="exbean" property="reverse" value="false" />

<j sp: set Property nane="exbean" property="htm line" value="This is <i>Line 1</i>" />
<p>HTM. |ine <br>

<j sp: get Property nane="exbean" property="htnmline" />

<j sp: set Property nane="exbean" property="fontSize" val ue="5" />

<j sp: set Property nane="exbean" property="fontCol or" val ue="blue" />

<j sp: set Property nane="exbean" property="reverse" value="true" />

<j sp: set Property nane="exbean" property="htm line" value="Here's another line" />
<p>Anot her HTM |i ne<br>

<j sp: get Property nane="exbean" property="htmline" />

Here’s the code within the bean class ExBean that sets the value of bean property ht ml | i ne. As with the preceding
listing for the JSP page, the entire bean doesn’t need to be shown because the set method for the ht ni | i ne
property suffices.

public void setHtmline( String linel ) {
String | ocFont Si ze = get Font Si ze() ;
String col or = get Font Col or ()
String linetext = (getReverse())?
((new StringBuffer(linel)).reverse()).toString() : linel ;

htmline = "<font size=" + |ocFontSize + ">" +
"<font color=" + color + ">" + |inetext +
"</ font></font>";

}

Figure 7-1 shows the page.



E Usging a Béan 16 Ganérate HTRL - Miciosoll [atéinet Exploiai M= E

Fle Edt Yiew Favoites Iook Hebp m

| Addrass [ hip /Ao bt BRI eearmples g chapte Texample jip x| G

T [~ = ) i
Bk L =] FAsheth Hurer

[ |

HTHL line

e e =i

Anokher HTML line
enil rehtona s'ereH

-

Figure 7-1: Using bean properties to generate HTML

Compare how clumsy and inelegant the preceding example is with the following code:

<nytaglib: Fornmat Li ne fontSi ze="2"
f ont Col or ="r ed"
reverse="fal se">
This is <i>Line 1</i>
</ mytaglib: For mat Li ne>
<nytaglib: Fornmat Li ne fontSi ze="5"
f ont Col or =" bl ue"
reverse="true">
Here’'s another |ine
</ mytaglib: For mat Li ne>

Notice how natural the syntax of the custom tag fits with a page of HTML or XML text. By comparison, the JSP code
for using the bean seems archaic. Getting, setting, and using bean property values in your JSP pages is a worthwhile
and powerful feature. Sadly, using beans and the associated j sp: set Property and j sp: get Property actions

clutters your pages with counterintuitive coding structures.

Yes, you can code scriptlets to generate the content shown in Figure 7-1. However, placing the Java code inside your
JSP page could blur the distinction between presentation and logic. You would trade using JSP actions with using
Java code.

In summary, you can use JavaBeans with the JSP action commands (or scriptlets) to accomplish much of what you
can with custom JSP tags. However, coding custom tags in your JSP pages looks more natural than the alternatives.

Next, you can read about the components that constitute a custom tag followed by the code for a simple tag.

Top



EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 6: JSP and JavaBeans

You may recall from Chapter 3 that an essential advantage of using JSP over competing technologies is that JSP

enables you to separate the business logic from the appearance of your Web pages. You can separate business logic
from presentation by using J2SE and J2EE APIs to code your business logic in Java components and by using static
and dynamically generated HTML to code your presentation. Java components called JavaBeans are particularly
important to the JSP author.

This chapter shows you how to use JavaBeans in your JavaServer Pages, starting with an overview of JavaBeans,
including how to access data within JavaBeans in your JSP pages. Several examples of accessing JSP pages and
changing data within JavaBeans are shown. At the end of this chapter, you can be ready to use JavaBeans in your
JSP pages.

A JavaBeans Primer

JavaBeans is a topic worthy of entire tomes, but you do not need to be a JavaBeans expert to use them in your JSP
pages. The purpose of this section is to cover enough about JavaBeans to show you how to integrate JavaBeans with
your JSP pages.

JavaBeans Defined

Simply defined, JavaBeans are a standard for writing Java software components. As mentioned in Chapter 1, an
important virtue of using software components is the ability to plug in components as needed. To accomplish the all-
important separation of logic from presentation, it's necessary to discuss how to plug JavaBean components into JSP
pages because JavaBeans encapsulate the business logic.

Note Do not confuse JavaBeans with Enterprise JavaBeans. Enterprise JavaBeans are JavaBeans with special
characteristics that allow them to work with EJB containers. Enterprise JavaBeans are the focus of the
second half of this book. Feel free to read ahead in Chapter 11 for a more complete explanation of

Enterprise JavaBeans.

Note Sun provides the Bean Development Kit, or BDK, for Java developers interested in creating JavaBeans. You
can download a copy at http://java.sun.com/products/javabeans/software/bdk_download.html.

The JavaBean specifies a component architecture for Java classes where a JavaBean is a public class that
(minimally) has an empty constructor, no public instance variables, and get/set methods for accessing persistent data
stored within the bean. In other words, a JavaBean is an object with a well-defined interface. Good Java programmers
already code Java classes with hidden instance variables encapsulated with accessor methods. You are halfway there
to coding JavaBeans for use in your JSP pages!



Note You may encounter the term bean as you read about JavaBeans, here and throughout Java literature. A
bean is an instance of a class created as a JavaBean. In some circles, a bean may mean an Enterprise
JavaBean, too. In this book, bean refers to an instance of a JavaBean class and enterprise bean refers to an
instance of an Enterprise JavaBean.

Professional Java development environments use the Java Programming Language's inherent introspection feature to
peek inside JavaBeans, enabling the Java developer to access and change the properties of JavaBeans by using a
GUI. The environments use structures akin to property sheets to get and set bean property values. You must follow a
convention, which you may already know, when naming your accessor methods. This convention is explained later in
this chapter in the section “Coding JavaBean Property Accessor Methods.” It's important to note that a Java developer
can use a JavaBean without knowing anything about the bean’s internals; the entire state of the bean is described
through its properties, which must be accessible through the bean’s accessor methods. After all, that's what writing
component software is all about.

Another requirement of all JavaBeans is that they implement either the Seri al i zabl e interface or the
Ext er nal i zabl e interface. This requirement allows a bean to be persistent, an attribute inherent to all objects that
implement either of these interfaces. In this book we will only consider the Seri al i zabl e interface.

You may be muttering to yourself, “Great! | have to become a JavaBean maven in order to use JavaBeans in
JavaServer Pages.” Don't worry! Everything you need to know about using JavaBeans in your JSPs is in the
preceding brief definition. If you create a public class with a zero-argument constructor and no public instance
variables, you can use this class in your JSP pages. If you want to save persistent data, you can write this data to a
database or implement Seri al i zabl e. Rather than coding blocks of scriptlets or methods in your JSPs, you can

code JavaBeans containing the scriptlet or method code and invoke the methods from the bean in your JSPs. Now,
that's not so bad, is it?

Before you read about how to code your JSPs to use JavaBeans, a few words about coding JavaBeans are in order.

Coding JavaBeans

Basically, coding JavaBeans resembles coding any Java class; remember to code your bean publ i c, write (or
enable Java to automatically create) a zero-argument constructor, define no publ i ¢ instance variables, and use get
and set methods to provide access to your nonpublic instance variables.

You may already know how to code a public Java class and use a zero-argument class constructor. Whether this is
the case or not, here’'s an example of a public class declaration with a zero-argument constructor:

public class Soned assNane {
/I Here's the no —arg constructor
public Somed assNane() { }
// Rest of the code for this class follows...

You can give your instance variables any visibility except publ i ¢, although most of the time you may opt for
pri vat e visibility for your instance variables.

Writing a method in a JavaBean is exactly the same as writing a method in any Java class. Code your methods as you
would for any Java class, using the familiar Java language constructs you've come to know and love.

Coding JavaBean Property Accessor Methods

As previously mentioned, you must follow a naming convention when coding accessor methods to read values from
and write values to instance variables. JavaBean tools follow the naming convention when looking inside the bean.
These tools then extract the bean properties, enabling the bean user to change the state of the bean by changing the
bean properties through a property sheet.



The naming convention details depend on whether or not the instance variable representing a bean property is an
array or not. Bean properties represented as arrays are known as indexed properties. First, let’'s consider the case in
which bean properties are not represented as arrays.

Coding Accessor Methods for Non-Array Bean Properties
The following is a description of the naming convention for accessor methods of non-array bean properties:

Given a variable named anl nst anceVar i abl e, declared as follows:

private Soned assOrPrimtiveType anlnstanceVari abl e ;

the get method that reads the variable’s name can be coded as follows:

public Somed assOrPrinmtiveType get Anl nstanceVari abl e() {
return anl nstanceVari abl e ;
}

Notice the following about the variable declaration and the get method:

. The variable anl nst anceVari abl e is declared pri vat e. The pri vat e declaration insures that users of your
bean cannot access the bean’s i nst ance variables at will. The bean user has to access the i nst ance variables
through an approved interface.

. The get method is declared publ i c. The get method is part of the approved interface the bean exposes to the
outside world.

. The get method takes no arguments.

. The name of the get method is the word "get" followed by the name of the instance variable with the first letter of
the variable name capitalized. However, when the instance variable is of type bool ean, you may name the
method starting with the word is instead of the word get.

. The get method returns some element of the same class or primitive data type as the i nst ance variable.

The preceding list of restrictions is required for bean use. Suppose you coded the get Anl nst anceVari abl e
method without following the rules? For example:

public Somed assOPrimtiveType

get Anl nst anceVari abl e( O assl objCassl ) {
return anlnstanceVari abl e ;

You could invoke the method to “get” the instance variable. However, JavaBean tools would not know the preceding
coded method is a get method. The difference in signatures between the no-argument get method and the method

coded above would "fool" the bean tool. Stated differently, the preceding coded method does not follow the standard
for coding JavaBeans. To the bean tool, the above method is not related to a bean property.

One common mistake is to forget that the first letter of the i nst ance variable name included in the set method name
must be capitalized. Hence, the method header coded as follows fails the naming standard:

public Somed assOrPrimtiveType getanl nstanceVari abl e()

When you access bean properties in your JSPs, you must code get methods according to the convention described
previously, or else the JSP engine, as with bean tools, will fail to recognize the method as a get method.

In the preceding example, the get method merely returns the i nst ance variable. Of course, you may code methods



that do all sorts of useful work before returning the element. You are free to use any elements at your disposal to
derive a value for the method to return. For example:

public Sonmed assOPrimtiveType get Anl nstanceVari abl e() {
Classl objectdassl = new O assl() ;
SoneC assOrPrimtiveType aVar =
obj ect d assl1Anot her Met hod ( objectd assl1,
anot her El ement ) ;
return avar ;

In the preceding example a new object is created and another method queried before the final value, aVar is returned
to the caller.

You may also have get methods that don't query an specific instance variable. For example, if you have a bean with
the bool ean property net wor kUp, the method i sNet wor kUp would query the network and return a result based on
the status of the network.

In practice, many get methods just return the current value of the i nst ance variable. Much of the manipulation of
setting i nst ance variable values is done in "set" methods. Set, or mutator, methods enable a bean user to change
the value of a bean property. Here’s an example modeled after the get method above:

public void setAnl nstanceVari abl e( SoneC assOrPrimtiveType aVar) ({
anl nstanceVvari able = aVar ;

}

Notice the following about the set method:

. The set method is declared publ i c.
. The set method returns voi d.
. The set method takes one argument of the same class or primitive type as the i nst ance variable.

. The nane of the get method is the word "set" followed by the name of the i nst ance variable with the first letter of
the variable name capitalized.

Notice that set Anl nst anceVari abl e, anl nst anceVari abl e is set to the value of aVar which was passed into
the method. While it is not a requirement of the set method that it contain one or more assignment statements, this is
usually the case.

You don't need to write both get and set methods for a bean property. If your JSP or Java code doesn’t need to
change a bean property, then you shouldn't create a set method for that property.

The following section takes a quick look at coding accessor methods for indexed bean properti