

EJB Cookbook

EJB Cookbook

BENJAMIN G. SULLINS
MARK B. WHIPPLE

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, visit
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: manning@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

.

Manning Publications Co. Copyeditor: Liz Welch
209 Bruce Park Avenue Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1930110944

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03

 To Jenny, Elijah, and Samuel
 —Ben

 To my wonderful wife, Margie,
and my son, Alexander

 —Mark

 contents
preface xv
acknowledgments xvii
about this book xviii
author online xxii
about the cover illustration xxiii

PART I APPETIZERS ... 1

1 Client code 3
1.1 Invoking a local EJB from another EJB 4

1.2 Invoking a remote EJB from another EJB 6

1.3 Accessing EJBs from a servlet 8

1.4 Invoking an EJB from a JavaServer Page 12

1.5 Invoking EJB business logic from a JMS system 15

1.6 Persisting a reference to an EJB instance 18

1.7 Retrieving and using a persisted EJB reference 20

1.8 Persisting a home object reference 21

1.9 Comparing two EJB references for equality 23
vii

viii CONTENTS
1.10 Using reflection with an EJB 25

1.11 Invoking an EJB from an applet 27

1.12 Improving your client-side EJB lookup code 31

2 Code generation with XDoclet 33
An XDoclet appetizer 35

2.1 Generating home, remote, local, and local
home interfaces 37

2.2 Adding and customizing the JNDI name for the
 home interface 43

2.3 Keeping your EJB deployment descriptor current 45

2.4 Creating value objects for your entity beans 47

2.5 Generating a primary key class 53

2.6 Avoiding hardcoded XDoclet tag values 56

2.7 Facilitating bean lookup with a utility object 58

2.8 Generating vendor-specific deployment descriptors 62

2.9 Specifying security roles in the bean source 63

2.10 Generating and maintaining method permissions 64

2.11 Generating finder methods for entity
home interfaces 66

2.12 Generating the ejbSelect method XML 67

2.13 Adding a home method to generated
home interfaces 68

2.14 Adding entity relation XML to the
deployment descriptor 70

2.15 Adding the destination type to a message-driven
bean deployment descriptor 71

2.16 Adding message selectors to a message-driven bean
deployment descriptor 73

CONTENTS ix
PART II MAIN COURSES .. 75

3 Working with data 77
3.1 Using a data source 78

3.2 Creating EJB 2.0 container-managed persistence 81

3.3 Using different data sources for different users 85

3.4 Using a database sequence to generate primary key

values for entity beans 88

3.5 Using a compound primary key for your entity beans 92

3.6 Retrieving multiple entity beans in a single step 95

3.7 Modeling one-to-one entity data relationships 97

3.8 Creating a one-to-many relationship for entity beans 101

3.9 Using entity relationships to create a

cascading delete 104

3.10 Developing noncreatable, read-only entity beans 107

3.11 Invoking a stored procedure from an EJB 109

3.12 Using EJB-QL to create custom finder methods 111

3.13 Persisting entity data into a database view 115

3.14 Sending notifications upon entity data changes 117

3.15 Creating an interface to your entity data 120

3.16 Retrieving information about entity data sets 122

3.17 Decreasing the number of calls to an entity bean 124

3.18 Paging through large result sets 126

4 EJB activities 133
4.1 Retrieving an environment variable 134

4.2 Implementing toString() functionality for an EJB 136

4.3 Providing common methods for all your EJBs 137

x CONTENTS
4.4 Reducing the clutter of unimplemented
bean methods 139

4.5 Sending an email from an EJB 144

4.6 Using the EJB 2.1 timer service 145

4.7 Sending a JMS message from an EJB 147

4.8 Using an EJB as a web service 149

4.9 Creating asynchronous behavior for an EJB client 151

4.10 Creating asynchronous behavior without
message-driven beans 156

4.11 Insulating an EJB from service class
implementations 157

4.12 Creating a batch process mechanism 159

5 Transactions 163
A transaction appetizer 165

5.1 Tuning the container transaction control
for your EJB 166

5.2 Handling transaction management without the
container 169

5.3 Rolling back the current transaction 170

5.4 Attempting error recovery to avoid a rollback 172

5.5 Forcing rollbacks before method completion 175

5.6 Imposing time limits on transactions 176

5.7 Combining entity updates into a single transaction 177

5.8 Managing EJB state at transaction boundaries 179

5.9 Using more than one transaction in a method 181

5.10 Managing EJB state after a rollback 183

5.11 Throwing exceptions without causing a rollback 184

5.12 Propagating a transaction to another
EJB business method 186

CONTENTS xi
5.13 Propagating a transaction to a nonEJB class 188

5.14 Starting a transaction in the client layer 190

5.15 Holding a transaction across multiple
JavaServer Pages 191

5.16 Updating multiple databases in one transaction 193

6 Messaging 197
6.1 Sending a publish/subscribe JMS message 198

6.2 Sending a point-to-point JMS message 200

6.3 Creating a message-driven Enterprise JavaBean 202

6.4 Processing messages in a FIFO manner from a
message queue 205

6.5 Insulating message-driven beans from business
logic changes 209

6.6 Streaming data to a message-driven EJB 210

6.7 Triggering two or more message-driven beans with a
single JMS message 213

6.8 Speeding up message delivery to a message-driven
bean 216

6.9 Filtering messages for a message-driven EJB 219

6.10 Encapsulating error-handling code in a
message-driven EJB 221

6.11 Sending an email message asynchronously 223

6.12 Handling rollbacks in a message-driven bean 225

7 Security 229
7.1 Finding the identity and role of the caller inside

an EJB method 231

7.2 Assigning and determining EJB client security roles 232

7.3 Passing client credentials to the EJB container 234

7.4 Disabling methods for certain users 235

xii CONTENTS
7.5 Assigning a role to an EJB 238

7.6 Preventing access to entity data 239

7.7 Using EJBs to handle simple authentication with
an LDAP source 241

7.8 Securing a message-driven bean 242

PART III DESSERTS .. 245

8 Logging 247
A log4j appetizer 248

8.1 Formatting log messages 251

8.2 Improving logging performance 254

8.3 Using logging to generate reports 257

8.4 Sending log messages to a JMS topic 258

8.5 Logging to an XML file 259

8.6 Creating log file views for the web browser 261

8.7 Creating a centralized log file in a clustered
environment 263

8.8 Tracking the lifecycle of an EJB 265

8.9 Using a different configuration at runtime 267

8.10 Sorting log messages by client 269

9 Deploying and unit testing 273
A deployment and testing appetizer 274

9.1 Compiling Enterprise JavaBeans 278

9.2 Building the ejb.jar file 280

9.3 Building Enterprise JavaBean stub classes 283

9.4 Creating a stateless session bean unit test 286

9.5 Creating a stateful session bean unit test 290

CONTENTS xiii
9.6 Creating an entity bean unit test 292

9.7 Automating test case execution 294

9.8 Executing test cases using a UI 298

appendix A Mixing it up: related recipes 303
appendix B Second helpings: additional resources 315
index 317

 preface
“I did toy with the idea of doing a cookbook.… I think a lot
of people who hate literature but love fried eggs would buy it
if the price was right.”

—Groucho Marx

As the Java 2 Platform Enterprise Edition (J2EE) gains acceptance among increas-
ing numbers of developers, the resources, tutorials, books, and experts covering
Enterprise JavaBeans (EJBs) also grows in numbers. A search at a popular online
bookstore using the phrase “Enterprise JavaBeans” turns up 24 books, and these
results include only those with the phrase in the title. Using the Google Internet
search engine (www.google.com) with the same phrase results in approximately
7441 pages with a strong relation to EJBs. While the multitude of material is cer-
tainly a wealth of knowledge, explanation, and discussion, it often forces EJB
developers into lengthy searches for quick solutions. How many times have you
needed to answer a specific question and had to search through many pages in a
book—or a few books—to find your answer?

 Having experienced this problem firsthand, we decided to do something
about it. Our goal with this book is to provide an essential problem-solving
resource. Just as cookbooks for meals contain step-by-step directions for creating
various dishes, this book provides recipes for solving problems involving Enter-
prise JavaBeans. Here you will find recipes for many types of problems, ranging

1 Google actually listed a potential for 123,000 pages, but cuts off the result after 744 for
relevancy.
xv

xvi PREFACE
from simple, everyday quick-reference issues to complex design challenges using
EJB patterns.

 This book is intended for developers with at least some EJB development expe-
rience. With that in mind, you will not find recipes describing the basic construc-
tion rules of session and entity beans. We assume that you understand the concepts
of enterprise development and the basics of EJB programming. The format used
here specifically references problems and issues, avoiding the use of EJB keywords
(a look through the table of contents will verify this). For example, rather than
looking up “design patterns,” look up the actual problem you are trying to solve
(for example, “improving network performance”). To maximize the usefulness of
the book, the index includes both EJB keywords and problem-area keywords.

 The recipes we’ve concocted are self-contained, referencing other recipes that
are related to the solution. We wanted to create a book that you could pick up and
start reading at any point. The recipes are short and concise so that you can read
them on the subway, in your favorite coffee house, or whenever you find yourself
with five minutes to spare.

 A useful companion to this book is Bitter EJB, also from Manning, which details
many antipatterns specific to EJB development. It offers a practical approach to
design: how to become a better programmer by studying problems and solutions
to the most important problems surrounding the technology.

 Now that we have described and set this book up for you, we invite you to par-
take in our buffet of solutions. You may pick and choose from our nine chapters,
or sample them all. Enjoy!

 acknowledgments
Many people helped to pull this book together in a very short time frame. We
would like to thank Manning Publications for allowing us to work on this project.
Thanks to Marjan Bace and Alex Garrett for conceiving and guiding the cook-
book idea. Thanks as usual to Susan Capparelle and Mary Piergies for keeping the
project on schedule, and thanks to Helen Trimes for getting the word out.

 In addition to Manning Publications, we had excellent help from our copy-
editor, Liz Welch. She was always ready to work hard with little notice. Likewise,
we extend thanks to our reviewers: Karl Moss, Barry Nowak, Lester Martin, Ravi
Mathur, Naveen Gabrani, Jeff Sullins, Bruce Tate, and Ganapathy Arunkumar.

 Finally, thanks to Cyrus Dadgar for providing his technical expertise and fact-
checking ability.

BEN SULLINS—I wish to thank my wife, Jenny. Not only do I get the undying sup-
port of a smart, funny, and sexy woman, I also get to live with her for the remain-
der of my life. I would also like to thank God for giving me this excellent
opportunity to provide for my family. Finally, I wish to thank my coauthor, Mark,
for working hard and putting up with the pressure to complete this book.

MARK WHIPPLE—I would like to thank my family for enduring the late nights
and laptop usage during holiday vacations. Without their patience and support,
this book would not be possible. Thanks go to my parents, whose support
throughout my life has enabled me to build the skills necessary to succeed. I
would especially like to thank my coauthor, Ben. His high level of motivation and
enduring drive for success are an inspiration to me, and kept me focused on the
completion of this book.
xvii

about this book
All but two recipes in this book are based on the EJB 2.0 specification. The recipes
on creating EJB web service endpoints and the EJB timer service are based on the
EJB 2.1 specification. In a few chapters, the book covers other technologies or
frameworks where appropriate. In fact, this book makes use of XDoclet, log4j,
Ant, and Cactus. For example, chapter 8 discusses using log4j to provide logging
in an Enterprise JavaBeans application. Wherever these outside frameworks or
tools are referenced, only the portion that touches the EJB world is described. So
even though an introduction may be provided, you might need to consult addi-
tional documentation to answer any further questions.

 We intend this book for the practicing EJB developer. That said, we don’t
include many recipes for tasks that we assume you already know how to do. For
instance, you won’t find recipes describing the basic rules of EJB construction,
building, or deployment. Many of the recipes show full examples, whereas others
may only show psuedo-code or partial examples. Much of the code can be down-
loaded from the book’s website at www.manning.com/sullins2.

Chapter menu

You can choose to read this book from start to finish, or you can focus on certain
topics as you need. The following sections give a short preview of each chapter so
that you can jump ahead if you like. In fact, we suggest you jump around in the
book for specific solutions to problems you face in day-to-day EJB development.
No chapter builds on a previous chapter, so you don’t gain anything by reading
xviii

ABOUT THIS BOOK xix
them in order. We’ll bet this is one of the few books on your shelf that allows you
to read the last page first without spoiling anything.

Chapter 1 Client code
This chapter presents recipes that deal with problems encountered by Enterprise
JavaBean clients. You will work through examples that demonstrate using EJBs
with servlets, applets, and JavaServer Pages. This chapter also discusses using EJB
metadata to discover information about EJBs before invoking their methods.

Chapter 2 Code generation with XDoclet
Chapter 2 covers code generation by introducing and using an open source tool
called XDoclet. XDoclet is quickly becoming the code-generation tool of choice
for many Enterprise JavaBeans developers. In this chapter you will learn how to
use XDoclet to keep all your EJB files in synch by generating files based off the
bean implementation class. XDoclet will generate your deployment descriptors,
interfaces, and other classes, such as value objects.

Chapter 3 Working with data
Chapter 3 attempts to cover the most pressing problems that occur when Enter-
prise JavaBeans work with data. The chapter focuses on using Java Database Con-
nectivity (JDBC) with session beans and with bean-managed persistence entity
beans, as well as container-managed persistence entity beans. We also present best
practices for using entity beans, and a solution for returning large result sets back
to clients.

Chapter 4 EJB activities
This chapter offers a collection of recipes dealing with the day-to-day activities of
an Enterprise JavaBean. These recipes are not as closely related as those in other
chapters, but you will find unique recipes, such as creating asynchronous proc-
esses with message-driven beans and insulating EJBs from business service class
implementations.

Chapter 5 Transactions
Chapter 5 deals with transaction-related problems. You will discover recipes work-
ing with both container-managed and bean-managed transactions. Along with

xx ABOUT THIS BOOK
solutions for creating transactions and propagating transactions, chapter 5 illus-
trates solutions for working with rollbacks and recovering from errors.

Chapter 6 Messaging
Chapter 6 focuses purely on the messaging aspects of Enterprise JavaBeans appli-
cations. This chapter contains recipes dealing with the Java Message Service (JMS)
and message-driven beans. You will learn how to send different types of JMS mes-
sages to different types of destinations. Also in this chapter are guidelines for
encapsulating business logic within message-driven beans, as well as handling
errors and rollbacks.

Chapter 7 Security
This chapter contains recipes for solving your security problems by using the
security mechanism provided by the EJB container. In addition, chapter 7
includes security guidelines for protecting entity and message-driven beans. The
chapter focuses on the EJB declarative security model described by the EJB speci-
fication, and describes the various security- and identity-related methods available
to each EJB.

Chapter 8 Logging
Chapter 8 covers the open source log4j logging tool. We introduce you to log4j by
showing you how to install and incorporate it into your enterprise applications.
After the introduction, the chapter provides solutions for some problems related to
logging with Enterprise JavaBeans applications. Recipes found here include cen-
tralizing logging in a cluster and sorting log messages in a multiclient environment.

Chapter 9 Deploying and unit testing
The two main focuses of this chapter are Apache Ant and Apache Cactus. Several
recipes focus on using Ant for building EJB class files, generating stubs, and pack-
aging class files into appropriate JAR files. The second half of the chapter focuses
on using Cactus to unit test functionality provided by your EJBs. The chapter pro-
vides an introduction to Cactus and testing recipes for entity and session beans.

ABOUT THIS BOOK xxi
Appendix A Mixing it up: related recipes
This appendix renders the recipe titles in a cross reference format. It allows you
to easily look up any recipe and find its related recipes. In this manner you will
find all the applicable information pertinent to any topic in the book.

Appendix B Second helpings: additional resources
This short appendix lists some resources for further information on certain topics
presented in this book. This is essential as this book is not a detailed tutorial on
many of the ideas presented. Use the resources listed here for further explanation
and investigation.

Code

The source code is freely available from Manning’s website, www.manning.com/
sullins2. Many of the recipes include only code fragments to illustrate a point, and
these fragments will not be found in the downloadable source code. The down-
loadable source includes only those examples that contain full listings. In some
cases, the entire source is not shown in the recipe.

 When we present source code, we sometimes use a bold font to draw attention
to specific elements. In the text, Courier typeface is used to denote code (XML,
Java, and HTML) as well as Java methods and other source code identifiers:

■ A reference to a method in the text will generally not include the signature,
because there may be more than one form of the method call.

■ A reference to an XML element in the text will include the braces but not
the properties or closing tag (<action>).

How to use this book

This book is not a story—it does not have a beginning or an end. You don’t have
to read the chapters in order; we recommend you use the index or the table of
contents to find the topics you’re interested in and jump right to them. Recipe
titles are found both in the table of contents and the index. In addition, the major
subject areas are referenced throughout the index. The power of this book is its
ability to impart solutions in just a few moments. We intend it to be a quick-
solutions reference, not an instructional tutorial.

author online
Purchase of the EJB Cookbook includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/sullins2.
This page provides information on how to get on the forum once you are regis-
tered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher's website as long as the book is in print.
xxii

 about the cover illustration
The figure on the cover of EJB Cookbook is a “Paysanne de l’Angoumois,” a peasant
woman from the Angoumois region in Western France. The Charente Valley, with
its excellent vineyards, is the heart of the region and the brandy from the local
grapes is known throughout the world as cognac, named after the main distillery.

 The illustration, a hand-colored copper engraving, is taken from a French
travel book, Encyclopedie des Voyages by J. G. St. Saveur, published in 1796. Travel for
pleasure was a relatively new phenomenon at the time and travel guides such as
this one were popular, introducing both the tourist as well as the armchair trav-
eler to the inhabitants of other regions of France and abroad.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present. Dress codes have
changed since then and the diversity by region, so rich at the time, has faded away.
It is now often hard to tell the inhabitant of one continent from another. Perhaps,
trying to view it optimistically, we have traded a cultural and visual diversity for a
more varied personal life. Or a more varied and interesting intellectual and tech-
nical life.

 In spite of the current downturn, we at Manning continue to celebrate the
inventiveness, the initiative, and, yes, the fun of the computer business with book
covers based on the rich diversity of regional life two centuries ago brought back
to life by the pictures from this travel guide.
xxiii

Part 1

Appetizers

Part 1 of the cookbook deals with two “front-end” topics in Enterprise JavaBeans
(EJB) development. Chapter 1 deals with EJB clients, the front end of many EJB
applications. Chapter 2 introduces the first open source tool used in the book,
XDoclet, for generating EJB-related files and source code.

Chapter 1 covers various problems specifically encountered by EJB clients. In
this chapter, you will find recipes working with applets, servlets, and other EJBs
acting as clients. In addition, a few recipes deal with problems that transcend the
type of client and can be applied in many client situations. Chapter 2 introduces
and discusses XDoclet in detail. XDoclet is an open source tool that provides the
ability to generate EJB source code and maintain XML deployment descriptors.
This chapter examines many of the capabilities of XDoclet pertaining to EJB
development.

Client code
“Hey man, I’m drinking wine, eating cheese,
and catching some rays.”

— Donald Sutherland as Oddball,
from the movie “Kelly’s Heroes”
3

4 CHAPTER 1

Client code
An Enterprise JavaBean (EJB) client is any object that contacts an EJB. For this
contact to work, EJBs need to know how to find each other. The recipes presented
in this chapter provide solutions for allowing EJBs to locate one another.

 EJB clients can be divided into two main categories: remote clients and local
clients. This is an important distinction because it affects the way clients find the
EJBs they need to use. For example, creating the InitialContext instance to look
up EJBs in the same virtual machine is completely different from creating an
instance for remote EJB lookups. The clients covered in this chapter include Java-
Server Pages (JSPs), servlets, applets, and other EJBs. Each client faces its own set
of problems.

 In this chapter, you’ll find recipes for the following tasks:

■ Invoking a local EJB method from another EJB

■ Invoking a remote EJB method from another EJB

■ Contacting an EJB from a servlet

■ Contacting an EJB from a JSP

■ Using the Java Message Service (JMS) to invoke EJB business logic

■ Saving an EJB reference in a persistent format

■ Using a persisted EJB reference

■ Storing an EJB home object reference

■ Determining if two EJB references refer to the same bean

■ Getting information about an EJB’s methods by using reflection

■ Using an EJB from an applet

■ Improving EJB lookups

1.1 Invoking a local EJB from another EJB

◆ Problem

From one EJB, you want to invoke a method on another EJB in the same EJB
container.

◆ Background

In most EJB applications, completing business logic in one EJB involves invoking
another EJB. In addition, entity bean access is usually through a session bean

Invoking a local EJB 5
from another EJB
facade. When you’re creating an EJB application, it is essential to know how to
contact other EJBs in the same EJB container. Solving this problem requires you to
know how to find another bean in the same container.

◆ Recipe

To invoke a method from another EJB in the same container, from the client EJB,
add a method for looking up the home object of the needed EJB. For example,
the method shown in listing 1.1 looks up the home object, PasswordHome, for the
PasswordBean EJB.

private PasswordHome getPasswordHome() {

 try {
 Context ic = new InitialContext();
 PasswordHome passwordHome = (PasswordHome)
 ic.lookup("ejbAccess.passwordHome");

 return passwordHome;
 }
 catch (NamingException ne) {
 return null;
 }
 }

◆ Discussion

With a reference to the home object, you can invoke any methods declared by the
interface. Typically, you would invoke a create() method to acquire a reference
to the business interface (remote or local) of the EJB in order to execute business
logic or data access.

 Finding the home object is only part of using an EJB, of course. Once you have
a home object, you can create or locate EJB instances for use (depending on the
bean type). With the completion of the EJB 2.0 specification came the concept of
local interfaces. Typically, if you know that an EJB is only going to be used (or
should only be used) in the local EJB container (meaning that it has no remote
clients), then the EJB should implement a local home and a local business inter-
face. This is just the same as the home and remote interfaces, except that the local
interface is not exposed via Java Remote Method Invocation (RMI) and can only
be used in the same virtual machine. Using local interfaces improves the perfor-
mance and security of EJBs to be used by local clients.

Listing 1.1 A simple lookup method

Creates a default
InitialContext
instance

Performs JNDI
lookup of the
EJB home
object

6 CHAPTER 1

Client code
◆ See also

1.1—Invoking a remote EJB from another EJB

1.12—Improving your client-side EJB lookup code

2.1—Generating home, remote, local, and local home interfaces

2.7—Facilitating bean lookup with a utility object

7.6—Preventing access to entity data

1.2 Invoking a remote EJB from another EJB

◆ Problem

From one EJB, you want to invoke a method on another EJB in a remote EJB
container.

◆ Background

In most EJB applications, completing business logic in one EJB involves invoking
another EJB. In addition, entity bean access is usually through a session bean
facade. With most cases, EJB access from another EJB takes place in the same EJB
container. However, large enterprise applications may separate business logic
across hosts, or may invoke other EJB applications to complete a workflow. In
these cases, you might need to access remote EJBs from other EJBs. For this solu-
tion, you need to know how to create an initial context for finding a remote EJB
container in order to look up or create remote EJBs.

◆ Recipe

Unlike recipe 1.1, you cannot create only the default InitialContext instance
and be able to invoke a remote EJB. You must pass in some properties that let the
context find the Java Naming and Directory Interface (JNDI) system used for the
remote EJBs. For example, the private method in listing 1.2 looks up a remote EJB
home object in a Weblogic EJB container.

private EquityHome getEquityHome() {

 try {
 // Get an InitialContext
 Properties props = new Properties();
props.put(Context.INITIAL_CONTEXT_FACTORY,

Listing 1.2 A lookup method using an initialized InitialContext

Creates an InitialContext instance
with environment properties

Invoking a remote EJB 7
from another EJB
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL,
 "http://MyRemoteHost:7001");
 Context ic = new InitialContext(props);

 EquityHome equityHome = (EquityHome)
 ic.lookup("ejbAccess.equityHome");
equityHome = (EquityHome)
 PortableRemoteObject.narrow(equityHome,
 EquityHome.class);

return equityHome;
 }
 catch (NamingException ne) {
 return null;
 }
 }

With a home reference in hand, you can find or create a new EJB. The following
code locates an existing instance of the EquityBean entity bean:

 //remote interface of the EJB
 Equity equity = null;
 String symbol = getSymbol();

 try{
 //Use previously acquired home reference
 //to find an entity instance
 equity = equityHome.findByPrimaryKey(symbol);
 }
 catch(Exception e){
 e.printStackTrace();
 throw new RemoteException("Error Finding Symbol:"+symbol);
 }

◆ Discussion

This recipe shows how one EJB might contact a remote EJB (in a different EJB con-
tainer). The solution provided here is similar to recipe 1.1 (contacting local EJBs)
except that the JNDI InitialContext object must be provided with some proper-
ties in order to find the other EJB container. In this example, we provided the
InitialContext instance with the correct properties to find a remote Weblogic
EJB container using the following code:

props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL,
 "http://MyRemoteHost:7001");

Narrows the
return value

8 CHAPTER 1

Client code
Consult your application server’s documentation for the exact properties you
need to provide. In addition, to make your beans more portable (and maintain-
able), you should read the property values in from an environment variable (or
similar mechanism).

 Notice also that the example EJB uses the javax.rmi.PortableRemoteObject
class to retrieve the EJB’s stub for use. You must always use this class’s narrow()
method when retrieving a remote stub to ensure that the remote stub conforms to
the IIOP protocol used now by Java RMI.

◆ See also

1.1—Invoking a local EJB from another EJB

1.12—Improving your client-side EJB lookup code

2.1—Generating home, remote, local, and local home interfaces

4.1—Retrieving an environment variable

1.3 Accessing EJBs from a servlet

◆ Problem

You want to contact an EJB from a servlet.

◆ Background

With the recent push to use web applications for enterprise solutions, servlets
have started to perform important roles in business applications. While servlets
control the flow and validation of page presentation, they also are the main access
point to the back-end business logic contained in EJBs.

◆ Recipe

When using a servlet as an EJB client, you might need to contact a local or remote
EJB container, so we provide separate recipes for local and remote EJBs. Also, you
need to write portable servlets that don’t contain hard-coded values for creating
the JNDI initial context environment.

Contacting EJBs from the same server
When contacting an EJB in the same virtual machine, you need only make use of a
default instance of the InitialContext class. For example, the servlet in listing 1.3
contacts a LoginBean EJB in order to process a user login.

Accessing EJBs from a servlet 9

import javax.servlet.*;

public class LoginServlet extends HttpServlet
{
 //home interface for the EJB PasswordBean
 private LoginHome loginHome = null;

 public void init(ServletConfig conf) throws ServletException
 {
 super.init(conf);
 try {
 lookupLoginHome();
 }
 catch (NamingException e) {
 e.printStackTrace ();
 }
 }

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 {
 try
 {
 String name = getUserName(req);
 String password = getUserPassword(req);

 Login loginBean = loginHome.create(name);
 Boolean valid = loginBean.login(password);

 }catch(Exception e)
 {
 //handle exception
 }
 //perform further work (not shown)
 }

 public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 {
 doGet(req);
 }

 private void lookupLoginHome() throws NamingException
 {
 Context ctx = new InitialContext();

 try {
 if(loginHome == null)
 loginHome = (LoginHome)3
 ctx.lookup("servletAccess.loginHome");
 }

Listing 1.3 LoginServlet.java

Looks up the EJB home
from the servlet init

Creates an EJB and
validates a login

Uses the
InitialContext
class to find an
EJB home
object

10 CHAPTER 1

Client code
 catch (NamingException ne) {
 throw ne;
 }
 }
}

Contacting EJBs in a remote server
The code in listing 1.4 shows the same LoginServlet class, but this time it contacts
a remote EJB container to find the LoginBean EJB. The differences appear in bold.

import javax.servlet.*;

import javax.rmi.PortableRemoteObject;

public class LoginServlet extends HttpServlet
{
 //home interface for the EJB PasswordBean
 private LoginHome loginHome = null;

 public void init()
 {
 lookupLoginHome();
 }

 public void doGet(HttpServletRequest req,
 HttpServletResponse res)
 {
 String name = getUserName(req);
 String password = getUserPassword(req);

 Login loginBean = (Login) PortableRemoteObject.narrow(
 loginHome.create(name), Login.class);

 Boolean valid = loginBean.login(password);

 //perform further work (not shown)
 }

 public void doPost(HttpServletRequest req,
 HttpServletResponse res)
 {
 doGet(req);
 }

 private void lookupLoginHome() throws NamingException
 {
 Properties props = new Properties();

 props.put(Context.INITIAL_CONTEXT_FACTORY,
 getInitParameter("factory_class"));
 props.put(Context.PROVIDER_URL, getInitParameter("url"));

 Context ctx = new InitialContext(props);

Listing 1.4 LoginServlet.java

Creates an EJB

Initializes an
InitialContext instance

with an environment

Accessing EJBs from a servlet 11

 try{
 if(loginHome == null)
 loginHome = (LoginHome) ctx.lookup(
 "servletAccess.loginHome");
 }
 catch (NamingException ne) {
 throw ne;
 }
 }

Listing 1.5 contains the XML descriptor for the servlet. Notice that it creates the
two parameters used by the servlet to build the initial context environment
needed to find the remote EJBs.

<servlet>
 <servlet-name>login-servlet</servlet-name>
 <servlet-class>LoginServlet</servlet-class>
 <init-param>
 <param-name>url</param-name>
 <param-value>http://localhost:7001</param-value>
 </init-param>
 <init-param>
 <param-name>factory_class</param-name>
 <param-value>weblogic.jndi.WLInitialContextFactory</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>login-servlet</servlet-name>

 <url-pattern>/login-servlet</url-pattern>
</servlet-mapping>

◆ Discussion

The major change for the LoginServlet that contacts a remote EJB is the need to
pass environment setting properties into the InitialContext instance used to find
the EJB. Notice that in this recipe (as opposed to recipe 1.2) we used initialization
parameters to store the values of the properties passed to the InitialContext
object, keeping our servlet a little more portable. Notice also that when trying to
retrieve the remote object stub of the EJB using the home object we must use the
javax.rmi.PortableRemoteObject class to narrow the return value (using the nar-
row() method). When retrieving a remote stub of an EJB, you must always invoke
this method to ensure that the returned object conforms to the IIOP protocol now
used by Java RMI.

Listing 1.5 The web.xml for the LoginServlet

12 CHAPTER 1

Client code
 The properties for the InitialContext instance used values retrieved from the
servlet’s initialization parameters. Doing this allows the servlet to maintain more
portability between application servers.

 After reading recipes 1.1, 1.2, and 1.3, you will notice that contacting local or
remote EJBs is very similar regardless of the client. Because of this, you should
start thinking along the lines of developing portable utility classes that can handle
EJB lookup for you. By doing so, you can abstract the EJB lookup code away from
your client, making your client more flexible and maintainable. Recipe 1.12
shows how utility objects not only abstract EJB lookup code, but can also improve
the performance of your clients.

◆ See also

1.4—Invoking an EJB from a JavaServer Page

1.12—Improving your client-side EJB lookup code

2.1—Generating home, remote, local, and local home interfaces

2.7—Facilitating bean lookup with a utility object

1.4 Invoking an EJB from a JavaServer Page

◆ Problem

You want to contact an EJB from a JavaServer Page (JSP).

◆ Background

Just as servlets have become increasingly valuable with the growing popularity of
web applications, JavaServer Pages (JSPs) have gained in importance as well. In
some cases, developers wish to contact EJBs directly without going through the
extra step of contacting a servlet. JSPs are compiled on the server side, and some-
times need to contact an EJB in order to complete the dynamically generated
HTML or JavaScript for the end user.

◆ Recipe

Using EJBs from JSPs requires knowledge of constructing the correct JNDI initial
context and good coding practices. This recipe shows solutions for both remote
and local EJBs.

Invoking an EJB 13
from a JavaServer Page
Contacting EJBs in the same container
The code for looking up and using an EJB from a JSP is exactly the same as
recipe 1.3 (which describes contacting an EJB from a servlet). Listing 1.6 shows a
JSP scriptlet that looks up a home object of the LoginBean EJB.

 <%

 LoginHome loginHome = null;

 try {
 System.out.println("Looking up Home: loginHome ");

 Context localCtx = new InitialContext();
 loginHome = (LoginHome)
 localCtx.lookup("jspAccess.loginHome");
 }
 catch (Exception ne) {
 System.out.println("Unable to look up the EJBHome.");

 throw ne;
 }
 %>

After creating a home reference, you can create and use a LoginBean EJB instance.
The JSP scriptlet in listing 1.7 demonstrates this.

 <%
 Boolean loggedIn = new Bollean(false);

 String passwd = request.getParameter("Password");
 String username = request.getParameter("UserName");

 System.out.println("JSP Logging in for User:"+userName);

 try{
 Login loginBean = loginHome.create(username);
 loggedIn = loginBean.login(passwd);
 System.out.printIn("Status of Login:"+loggedIn);
 }
 catch(Exception e){
 //process exception, possible go to error page;
 }

 %>

Listing 1.6 Sample JSP looking up a local EJB

Listing 1.7 Sample JSP using a local EJB

14 CHAPTER 1

Client code
Contacting EJBs from a remote server
As in recipe 1.3, we also demonstrate the same code, but we’re contacting an EJB
from a remote EJB container. To successfully find the remote EJB container, you
must pass in initialization properties to the InitialContext object constructor.
The code in listing 1.8 contacts a remote Weblogic container. The differences
from the previous JSP scriptlet are shown in bold.

 <%

 LoginHome loginHome = null;

 try {
 System.out.println("Looking up Home: loginHome ");

 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, "t3://localhost:7001");
 remoteCtx = new InitialContext(props);

 loginHome = (LoginHome)
 remoteCtx.lookup("jspAccess.loginHome ");
 }
 catch (Exception ne) {
 System.out.println("Unable to lookup the EJBHome.");

 throw ne;
 }
 %>

◆ Discussion

The code in listings 1.6, 1.7, and 1.8 is similar to that in recipes 1.1 through 1.3.
You should read those recipes for further details on using remote and local EJBs.
When using EJBs from JSPs, keep in mind a few good development guidelines: For
instance, if you need to contact an entity bean, it is generally accepted practice
that you should do so through a session bean. A session facade to an entity bean
can provide security for your data and help you improve the performance of your
clients. In the same vein, consider wrapping your EJB access code in an object.
This will insulate your JSP pages from unnecessary changes due to lookup code
changes. Also, it adds a further layer of abstraction to your business logic (and
persistence) layer.

Listing 1.8 Sample JSP looking up a remote EJB

Invoking EJB business logic 15
from a JMS system
 In addition, if your EJBs are using bean-managed transactions, take care to
avoid starting transactions from the client layer. If a client should start a transac-
tion and walk away, your application might be stuck with locked tables or cor-
rupted data.

 Finally, as with the servlet example in the previous recipe, you should consider
reading the property values passed in to the InitialContext object from a proper-
ties file (or similar mechanism). Doing this will improve the maintainability of
your code.

◆ See also

1.3—Accessing EJBs from a servlet

3.15—Creating an interface to your entity data

5.15—Holding a transaction across multiple JavaServer Pages

1.5 Invoking EJB business logic from a JMS system

◆ Problem

You want to execute EJB business logic by sending a Java Message Service (JMS)
message.

◆ Background

Many complex enterprise applications use a combination of many Java 2 Platform
Enterprise Edition (J2EE) technologies, including EJBs and JMS. Using a JMS sys-
tem, you can trigger back-end business logic in a batch process, from remote cli-
ents, or without user interaction. If all of your business logic is encapsulated in
EJBs, it would be nice to be able to invoke an EJB using a JMS message. Invoking an
EJB with a JMS message requires creating a message-driven EJB and setting up the
correct JMS message destination in the application server running the EJB applica-
tion, as well as configuring the EJB to receive your messages.

◆ Recipe

Create a message-driven bean to receive JMS messages in order to start business
logic methods. For example, the EJB class in listing 1.9 defines a message-driven
EJB. Notice that it extends a specific EJB interface, and also implements the JMS
MessageListener interface.

16 CHAPTER 1

Client code
import javax.ejb.*;
import javax.jms.*;
import javax.naming.*;

public class MessageBean implements
 MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void ejbRemove() {
 }

 public void ejbPassivate() {
 }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

 public void ejbCreate () throws CreateException {
 }

 public void onMessage(Message msg) {

 try {
 String command = ((TextMessage) msg).getText();
 //perform or delegate business logic
 }
 catch(JMSException ex) {
 ex.printStackTrace();
 }
 }

To set up a message-driven EJB to receive JMS messages, you need to describe
its functionality in the XML deployment descriptor. For instance, the sample
XML in listing 1.10 describes the message-driven bean, including which JMS
topic it describes.

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>myMessageBean</ejb-name>
 <ejb-class>ejbs.msgbean.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>

Listing 1.9 MessageBean.java

Listing 1.10 Deployment descriptor for the MessageBean

Implements
MessageDrivenBean and

MessageListener
interfaces

Implements an
onMessage() method

Retrieves the
message

Invoking EJB business logic 17
from a JMS system
 </message-driven>

 </enterprise-beans>
</ejb-jar>

The XML sample in listing 1.10 ties an instance of the MessageBean message-driven
EJB to a JMS system using a JMS topic. Each particular application server generally
has an additional configuration step for EJB deployment. For example, Weblogic
uses an additional XML file to describe the behavior of EJBs. Listing 1.11 contains
a sample partial XML document for the message bean that specifies the actual JMS
topic for the EJB.

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>myMessageBean</ejb-name>

 <message-driven-descriptor>
 <destination-jndi-name>BookJMSTopic</destination-jndi-name>
 </message-driven-descriptor>

 <jndi-name>myMessageBean</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

◆ Discussion

Our example message bean attempts to extract a command string from JMS mes-
sages it receives. From this command String, it will start particular business proc-
esses in an asynchronous manner.

 As you can tell from this recipe, you should consult your application server’s
documentation for the specific way it maps message-driven beans to actual JMS
topics and messages. In this example, for Weblogic we needed to create an addi-
tional XML file for the message-driven bean that specifies the actual JMS topic for
the EJB.

 This recipe shows only a small subset of the message-driven EJB capability.
When developing message-driven beans, you should consider delegating business
logic to other objects rather than tying it to a particular bean. This will allow you
to use particular business logic in other places and not tie it to the message-driven
behavior. You can read more about this idea in chapter 6.

Listing 1.11 Weblogic deployment descriptor

18 CHAPTER 1

Client code
◆ See also

Chapter 6, “Messaging”

1.6 Persisting a reference to an EJB instance

◆ Problem

You want to serialize a reference to an EJB so that you can avoid looking it up again.

◆ Background

One way to improve the performance of the client layer of an EJB application is to
avoid repeated JNDI lookup calls to find an EJB. One of the best ways to do this is
to save the EJB reference in a persistent format once the client looks it up. Saving
a reference to an EJB means creating an object that can rebuild the connection to
the EJB object in the EJB container.

◆ Recipe

Use an instance of the Handle class as the saved reference. Since EJB handles are
serializable, we can persist them using an object output stream for later retrieval
and use. The EJB specification designed the handle with this in mind. The client
code in listing 1.12 implements a method, saveReference(), that persists a handle
to an EJB.

public class ClientSaver
{
 private String url;
 private HelperHome home;

 public void runExample()
 {

 home = retrieveHelperHome();

 Helper goodHelper = null;

 try {
 goodHelper = (Helper)
 PortableRemoteObject.narrow(home.create(),
 Helper.class);

 saveReference(goodHelper);

Listing 1.12 ClientSaver.java

Retrieves a home
object for the Helper

Creates an
instance of the
Helper EJB

Persisting a reference 19
to an EJB instance
 }

 private void saveReference(Helper helper)
 {
 FileOutputStream ostream = null;
 ObjectOutputStream objStream = null;

 try{
 ostream = new FileOutputStream("Helper.obj");
 objStream = new ObjectOutputStream(ostream);

 objStream.writeObject(helper.getHandle());
 objStream.flush();
 objStream.close();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

◆ Discussion

Once you have a reference to an actual EJB instance, you can use the getHandle()
method to retrieve a serializable object that contains information for rebuilding
the bean to which it refers. Using an instance of the Handle class, you can store a
reference to an EJB, shut down your application, and then restart and restore the
conversational state between your client and the EJB. EJB handles can be retrieved
only from the EJBObject instance for your EJB. The EJBObject interface is the par-
ent interface to the EJB’s remote interface. This means that you can create han-
dles only to remote EJB references, not to local objects.

 You can also use an EJB handle to pass an EJB reference to a remote object.
Since the EJB handle instance is a serializable object, it can be passed over an RMI
invocation. This allows you to pass the handle to remote EJBs for callbacks or to
any other remote object. Remote objects receiving the handle will not need to
know how to look up the EJB—they can simply retrieve the EJBObject from the
handle and start using it.

◆ See also

1.7—Retrieving and using a persisted EJB reference

1.8—Persisting a home object reference

Stores the
reference

20 CHAPTER 1

Client code
1.7 Retrieving and using a persisted EJB reference

◆ Problem

After storing a reference to an EJB (recipe 1.6), you want to retrieve it and use it.

◆ Background

Recipe 1.6 illustrates a good way to store a reference to an existing EJB. However,
that ability does a client little good if it doesn’t know how to retrieve that refer-
ence. Retrieving a stored Handle object lets you circumvent the JNDI lookup of the
EJB instance. To retrieve a stored EJB handle, you have to deserialize it from its
stored location.

◆ Recipe

By retrieving a serialized EJB handle, you can re-create the bean that was originally
created and that produced the handle (see listing 1.13).

import java.io.*;

public class ClientLoader {

 public void runExample() {
 Helper goodHelper = null;

 goodHelper = loadReference();

 //use bean (not shown)
 }

 private Helper loadReference()
 {
 FileInputStream istream = null;
 ObjectInputStream objStream = null;
 Handle handle = null;
 Helper helper = null;

 try{

 istream = new FileInputStream("Helper.obj");
 objStream = new ObjectInputStream(istream);

 handle = (Handle) objStream.readObject();
 objStream.close();

 helper = (Helper)
 PortableRemoteObject.narrow(handle.getEJBObject(),
 Helper.class);

Listing 1.13 ClientLoader.java

Retrieves the
serialized
handle

Gets the
EJBObject
reference

Persisting a home object reference 21

 }
 catch(Exception e){
 e.printStackTrace();
 }

 return helper;
 }
}

◆ Discussion

Retrieving a serialized instance of an EJB Handle object is a simple matter of
object input/output (I/O). After retrieving the Handle instance from its persis-
tent storage, you can invoke its getEJBObject() method to obtain the EJB refer-
ence that originally created the handle. Using the handle to find the EJB
reference lets you skip looking up a home object via JNDI, and then finding or
creating an EJB instance.

◆ See also

1.6—Persisting a reference to an EJB instance

1.8—Persisting a home object reference

1.8 Persisting a home object reference

◆ Problem

You want to serialize an EJB home object reference so that you can avoid looking it
up again.

◆ Background

By storing a previously retrieved home object reference of an EJB, you can reuse it
to create or find new instances of an EJB. You improve the performance of your
client by avoiding repeated calls to the JNDI system for the home reference
lookup. Persisting the home object will let you shut down your client, restart, and
start creating references of an EJB without another JNDI lookup.

◆ Recipe

In recipes 1.6 and 1.7, we illustrated the serialization of the EJB handle. Like the
EJBObject interface (the remote interface parent), the EJBHome interface shown

22 CHAPTER 1

Client code
in listing 1.14 provides a method, getHomeHandle(), that creates a handle for the
home object of an EJB. This class invokes some methods whose implementations
are not shown.

public class ClientHomeSaver
{
 private HelperHome home;

 public void runExample()
 {

 //Perform a jndi lookup to get home reference
 home = getHomeReference();

 saveHomeReference(goodHelperHome);

 home = loadReference();

 }

 private void saveHomeReference(HelperHome helper)
 {
 FileOutputStream ostream = null;
 ObjectOutputStream objStream = null;

 try{
 ostream = new FileOutputStream("HelperHome.obj");
 objStream = new ObjectOutputStream(ostream);

 objStream.writeObject(helper.getHomeHandle());
 objStream.flush();
 objStream.close();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }

 private HelperHome loadReference()
 {
 FileInputStream istream = null;
 ObjectInputStream objStream = null;
 Handle handle = null;
 Helper helper = null;

 try{

 istream = new FileInputStream("Helper.obj");
 objStream = new ObjectInputStream(istream);

 handle = (Handle) objStream.readObject();
 objStream.close();

 helper = (Helper) handle.getEJBHome();

Listing 1.14 ClientHomeSaver.java

Looks up a home
object for the Helper

Stores the
home object
reference

Retrieves the
home handle
reference

Comparing two EJB references for equality 23

 }
 catch(Exception e){
 e.printStackTrace();
 }

 return helper;
 }
}

◆ Discussion

Persisting a home object reference is simple when you create a HomeHandle
instance. The parent of your home interface provides the getHomeHandle()
method that returns an instance of the HomeHandle class. Only remote home inter-
faces, not extenders of the EJBLocalHome interface, will have the getHomeHandle()
method. The HomeHandle class implements the serializable interface, allowing an
instance to be persisted to stable storage.

 Using a HomeHandle class is useful not only for persisting a reference to a home
object, but also for keeping a reference in memory over the lifespan of a client. By
keeping the handle around, you can avoid performing further JNDI lookups to
retrieve a home reference to the same EJB.

◆ See also

1.6—Persisting a reference to an EJB instance

1.7—Retrieving and using a persisted EJB reference

1.12—Improving your client-side EJB lookup code

1.9 Comparing two EJB references for equality

◆ Problem

An EJB client has two EJB references and needs to determine if they are references
to the same bean.

◆ Background

A client that uses many EJBs may encounter a situation that requires it to know
whether multiple EJB references point to the same bean instance. For example,
you may need to know if two entity beans encapsulate the same data, or if two ses-
sion bean references are identical. Clients cannot use an equals() method from

24 CHAPTER 1

Client code
an EJB reference because of the nature of EJB deployment. EJB references point to
stub objects that may be different stub instances yet point to the same EJB. An
equals() invocation is not guaranteed to return the correct value.

◆ Recipe

Use the isIdentical() method from the remote or local interface to compare EJB
references. The client program in listing 1.15 creates and compares several Equi-
tyBean entity EJB instances. A stock symbol makes an EquityBean instance unique.

public void runExample()
{
 Equity equity1 = null;
 Equity equity2 = null;
 String symbol = "ACME";
 String description = "ACME Corp";

 try
 {

 equity1 = findEquity(symbol, description);
 equity2 = findEquity(symbol, description);

 System.out.println("Does equity1 equal equity2: " +
 equity1.isIdentical(equity2));

 symbol = "CDE";
 description = "CDE Corp";
 equity1 = findEquity(symbol, description);

 symbol = "ACME";
 description = "ACME Corp";
 equity2 = findEquity(symbol, description);

 System.out.println("Does equity1 equal equity2: " +
 equity1.isIdentical(equity2));

 }
 catch(Exception e) {
 e.printStackTrace();
 }
 }

◆ Discussion

When an EJB client retrieves or creates an EJB reference, the EJB container pro-
vides a stub object reference that points to the actual bean. That means that the

Listing 1.15 A method that compares EJB references

Comparison
returns true

Comparison
returns false

Using reflection with an EJB 25

reference contained by the client is actually a reference to the EJB stub object
used by the container. Therefore, if you have more than one reference to an EJB,
you could have two different stub objects that reference the same EJB. If you were
to compare the references using the equals() method, it might return false, even
if the stubs point to the same EJB. To solve this problem, EJB references imple-
ment the isIdentical() method. This method compares the two objects (the
invoker and the parameter) to see if they both eventually point to the same EJB
(through the stub).

1.10 Using reflection with an EJB

◆ Problem

You want to examine an EJB using reflection in order to determine its methods,
method parameters, and other information.

◆ Background

In your EJB application, you would like to examine an EJB reference using reflec-
tion. However, since an EJB reference is actually a reference to a stub object in the
EJB container (pointing to an EJB), you cannot examine the actual EJB itself. Or
you might only have a reference to the EJB home object and you want to deter-
mine the EJB’s available business methods before looking up or creating one.
Using reflection on an EJB reference will not work because the reference points to
an EJB stub object inside the EJB container, not to the EJB itself.

◆ Recipe

EJB home references implement the EJBHome interface, which declares a method
getEJBMetaData(). This method returns an instance of the EJBMetaData class,
which provides information about the EJB belonging to the home object. The
Client class in listing 1.16 demonstrates how to use the EJBMetaData instance
describing an EJB.

public class Client
{
 private String url;
 private String symbol;
 private String description;
 private EJBHome home;

Listing 1.16 Client.java

26 CHAPTER 1

Client code
 public void runExample() {
 Equity equity = null;
 Context ctx = null;

 try
 {
 ctx = getInitialContext();
 home = (EJBHome) ctx.lookup("metadata.equityHome");
 home = (EJBHome)
 javax.rmi.PortableRemoteObject.narrow(home,
 EJBHome.class);

 EJBMetaData metaData =
 home.getEJBMetaData();

 Class homeClass =
 metaData.getHomeInterfaceClass();
 Class remoteClass =

 metaData.getRemoteInterfaceClass();

 System.out.println("---------[MetaData Info]-----------");
 System.out.println("Home Class Type:"+homeClass.getName());
 System.out.println("Remote Class Type:" +
 remoteClass.getName());

 home = (EJBHome)
 javax.rmi.PortableRemoteObject.narrow(home, homeClass);

 System.out.println("Primary Key Type:"
 + metaData.getPrimaryKeyClass().getName();
 System.out.println("Is this a Session "
 + "Bean:"+metaData.isSession());
 System.out.println("Is this a Stateless Session Bean:"
 + metaData.isStatelessSession());

 Method[] methods =
 homeClass.getDeclaredMethods();

 Method[] remoteMethods =
 remoteClass.getDeclaredMethods();

 System.out.println("---------[Home Methods]-----------");
 for(int i = 0; i < methods.length; i++)
 {
 System.out.println("Method Found:"+methods[i].getName());
 Class[] params = remoteMethods[i].getParameterTypes();
 System.out.println(" Has "+params.length+" Parameters");
 for(int j = 0;j < params.length; j++)
 {
 System.out.println(" Param:"+params[j].getName());
 }
 }
 System.out.println("---------[Home Methods]--------\n\n");

Retrieves the EJB home
interface and narrows it

Acquires the EJBMetaData
instance from the home object

Uses the metadata
to get the home
and remote class
objects

Determines if the
EJB is an entity,
stateful session,
or stateless
session bean

Uses reflection to
determine
methods

Invoking an EJB from an applet 27

 System.out.println("---------[Remote Methods]-------");
 for(int i = 0; i < remoteMethods.length; i++)
 {
 System.out.println("\nMethod "
 + "Found:"+remoteMethods[i].getName());
 Class[] params=remoteMethods[i].getParameterTypes();
 for(int j = 0; j < params.length; j++)
 {
 System.out.println(" Param:"+params[j].getName());
 }
 }
 System.out.println("-----[Remote Methods]--------\n\n");
 }
 catch(Exception e) {
 e.printStackTrace();
 }
 System.out.println("End of the example...\n");
 }

◆ Discussion

The EJBMetaData class is intended to be used by tool developers. For example, an
integrated development environment (IDE) application or deployer tool can use
the metadata from an EJB for a richer user experience for the EJB application
developer .

 However, using the EJBMetaData class, you can expose your EJB instances to the
reflection API. This allows you to use reflection with EJBs for the same advantages
and decoupling as you would for normal applications.

1.11 Invoking an EJB from an applet

◆ Problem

You want to invoke an EJB from an applet.

◆ Background

Java applets can be useful front ends to an EJB application. Unlike servlets, JSPs, or
standalone Java applications, applets can easily contact a single remote host (the
one that delivered it to the user). To contact an EJB from an applet, you need to
package some special classes for it to function correctly. In addition, you must
consider the special security restrictions imposed on an applet.

28 CHAPTER 1

Client code
◆ Recipe

Due to execution restrictions and environment, you have to take specific factors
into account when developing and deploying an applet from which you want to
invoke an EJB. The simple applet in listing 1.17 contacts a session bean to start a
business function.

import javax.swing.*;
import java.awt.event.*;
import java.awt.*;
import java.util.*;
import javax.naming.*;
import javax.ejb.*;
import java.rmi.*;

public class EJBApplet extends JApplet
{
 private JButton button = null;

 public EJBApplet(){}

 public void init()
 {
 setSize(new Dimension(400,100));

 button = new JButton("Start");

 button.addActionListener(new ActionListener()
 {
 public void actionPerformed(ActionEvent event)
 {
 callEJB();
 }
 }
);

 getContentPane().setLayout(new BorderLayout());
 getContentPane().add(button, BorderLayout.CENTER);
 }

 public void callEJB()
 {
 try
 {
 InitialContext ctx = getInitialContext();

 SampleSessionHome home =
 (SampleSessionHome) PortableRemoteObject.narrow(

 ctx.lookup("ejb/sampleSession"), SampleSessionHome.class);
 SampleSession bean = home.create();
 bean.doProcess();

Listing 1.17 EJBApplet.java

Calls the
SampleSessionBean EJB

Invoking an EJB from an applet 29

 }catch(Exception e)
 {
 e.printStackTrace();
 }
 }

 private InitialContext getInitialContext() throws Exception
 {
 Properties props = new Properties();

 String theHost = getCodeBase().getHost();
 props.setProperty(Context.PROVIDER_URL, theHost + ":7001");
 props.setProperty(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");

 return new InitialContext(props);
 }

}

This applet uses the Swing user interface (UI) components, so the Java plug-in
must be installed in your browser for it to work. (Go to http://java.sun.com/
docs/books/tutorial/information/examples.html#plugin for more information
on installing the plug-in.) The HTML used to start the applet should also provide
the necessary dependent JAR files needed for execution. We created the HTML
shown in listing 1.18 by using the plug-in HTML converter program.

<html>
<!--"CONVERTED_APPLET"-->
<!-- HTML CONVERTER -->
<OBJECT
 classid = "clsid:8AD9C840-044E-11D1-B3E9-00805F499D93"
 codebase = "http://java.sun.com/products/plugin/autodl/jinstall-1_4-

windows-i586.cab#Version=1,4,0,0"
 WIDTH = 400 HEIGHT = 100 >
 <PARAM NAME = CODE VALUE = "EJBApplet" >
 <PARAM NAME = CODEBASE VALUE = "." >
 <PARAM NAME = ARCHIVE VALUE = "necessaryClasses.jar" >
 <PARAM NAME = "type"
 VALUE = "application/x-java-applet;version=1.4">
 <PARAM NAME = "scriptable" VALUE = "false">

</OBJECT>

<!--
<APPLET CODE = "applet.EJBApplet" CODEBASE = "."

 ARCHIVE = "necessaryClasses.jar" WIDTH = 400 HEIGHT = 100>

Listing 1.18 HTML file for the EJBApplet class

Builds the URL to the
applet’s parent host

Completes the JNDI
environment for the
Weblogic container

Packages
necessary classes
for the applet

30 CHAPTER 1

Client code
</APPLET>
-->
<!--"END_CONVERTED_APPLET"-->

</html>

◆ Discussion

Notice that the applet code used to look up the EJB is very similar to what you
find in other remote clients. However, remember that applets can contact only a
single remote host—the host that contains the applet class files. For this example,
we assume the EJB container also resides on this host and that the applet can
therefore contact it. If the applet was a signed applet, it could contact other
hosts. To ensure that this applet creates the correct JNDI environment for the
InitialContext instance, we use the getCodeBase() method to retrieve the cor-
rect URL information.

 The second important item for this example is contained in the HTML used to
launch the applet. An applet that launches an EJB is going to need the EJB classes
(stubs and interfaces), as well as vendor-specific classes used to create the JNDI
environment. For instance, our applet uses Weblogic classes. All the necessary
classes should be packaged into a JAR file or files and listed in the ARCHIVE
attribute of the applet HTML.

 We created our HTML file by running a simple HTML file through the Java
plug-in HTML converter utility. Doing this generated the necessary browser tags
that force a client download of the Java plug-in (which the applet requires).

 When you are developing applets that must contact EJBs, consider develop-
ing a servlet for the applet. When the applet needs information contained or cre-
ated by an EJB, it can contact the servlet, which will handle the actual EJB work.
Using a servlet decouples your applet from the EJB container, building in more
flexibility for your applet. In addition, browsers will have to download less code
(your code and third-party JARs) when the applet contacts a servlet rather than
an EJB container.

◆ See also

1.2—Invoking a remote EJB from another EJB

1.3—Accessing EJBs from a servlet

1.4—Invoking an EJB from a JavaServer Page

Improving your client-side EJB lookup code 31

1.12 Improving your client-side EJB lookup code

◆ Problem

You want to improve the performance of a client that makes multiple EJB lookup
invocations.

◆ Background

Typical EJB applications make use of a client layer that invokes one or many EJBs
several times. This is true for many web applications as well. When your client
layer must use a particular bean multiple times, you’ll want to make an effort to
improve the performance of the JNDI call that looks up the bean. In addition, it
would be nice to reduce duplicated code.

◆ Recipe

To improve client performance, create a utility object that encapsulates the JNDI
lookup of EJB home object reference. In addition to performing home lookups,
the utility object can cache the home reference for reuse. For example, listing 1.19
contains a utility object that looks up the home object for an EJB UserBean.

import javax.naming.NamingException;
import javax.naming.InitialContext;
import javax.rmi.PortableRemoteObject;

import java.util.Hashtable;

public class UserUtil
{
 private static EquityHome remoteHome = null;

 public static EquityHome getHome(Hashtable env)
 throws NamingException
 {
 if(remoteHome == null)
 {
 InitialContext initialContext = null;

 if(env == null)
 initialContext = new InitialContext();
 else
 initialContext = new InitialContext(env);

 try

Listing 1.19 UserUtil.java

Tests for an
existing EJB
home reference

Builds an InitialContext object
with or without environment

32 CHAPTER 1

Client code
 {
 Object obj = initialContext.lookup(EquityHome.JNDI_NAME);

 remoteHome = (EquityHome)
 PortableRemoteObject.narrow(objRef, UserHome.class);

 } catch(Exception e) {
 //handle error
 }
 }
 return remoteHome;
 }
}

◆ Discussion

The utility class in this recipe declares a single static method that you can use with
or without an environment for the internal InitialContext instance. This
method looks up the EJB home reference after checking its class member variable
for an already set value. Since the home variable is static, all instances of the utility
class will share a discovered home reference.

 Building a utility class like this one improves EJB client code by providing con-
venience methods for EJB lookup code, reducing duplicate code, and increasing
performance by caching the EJB home object reference. If you know that this is
only a local EJB, you don’t have to narrow the home reference.

 To further improve this class, you can add a static method to retrieve local
home interfaces. If you don’t want to write a new utility class for each EJB, you
could instead create a generic utility class that contains static methods and static
variables (for home object caching) for each bean. In that case, one class encapsu-
lates all of your EJB lookup code.

◆ See also

2.2—Adding and customizing the JNDI name for the home interface

2.7—Facilitating bean lookup with a utility object

Uses the JNDI name
declared in the EJB

home interface

Code generation
with XDoclet
“It’s so beautifully arranged on the plate—you know someone’s
fingers have been all over it.”

—Julia Child
33

34 CHAPTER 2

Code generation with XDoclet
Developing EJBs today entails the creation of a bean class, multiple interfaces, pos-
sible helper data access classes, primary key classes, and even lookup utility classes.
In addition, each new bean requires changes and additions to the XML descriptor.
With each new bean developed, the possibility for out-of-synch files increases. For
example, a change to an EJB local interface would require similar changes to the
remote interface, the implementation class, utility classes (data access object,
value objects, etc.), a facade class, and the XML deployment descriptor.

 Now, take that single change and multiply it across all your EJBs. The final
result is that a development team must manage the synchronization of multiple
files across multiple beans in order to keep the most basic tasks, such as compila-
tion and deployment, working successfully. Without a doubt, experienced devel-
opers can ultimately handle this file management problem, but you must also
consider the development time consumed by the trivial task of repeating code
from interface files to implementation files. Time is a valuable commodity, and
most projects struggle to have enough in all phases.

 Increasingly, developers are turning to tools that automate much of bean
development. For instance, more and more tools provide support for descriptor
generation and manipulation. Rather than cover the multitude of IDE tools,
we’ve chosen to cover XDoclet, an open-source tool that is rapidly gaining accep-
tance. Simple and easy, XDoclet saves you time and energy while generating
excellent code.

 In this chapter, we present the most common uses of XDoclet, including the
following tasks:

■ Generating EJB interfaces

■ Adding JNDI names to your home interfaces

■ Maintaining the XML descriptor

■ Creating value objects for entity beans

■ Creating primary key classes

■ Customizing XDoclet tags with Ant properties

■ Generating a utility object

■ Adding security roles to the bean source

■ Creating method permission XML

■ Generating finder methods

■ Creating the XML for ejbSelect methods

■ Adding home methods to home interfaces

An XDoclet appetizer 35
■ Generating entity relation XML

■ Generating XML descriptors for message-driven EJBs

An XDoclet appetizer

XDoclet requires the use of Ant, a build tool from Apache, which you can find at
http://ant.apache.org. This chapter assumes that you have a working knowledge
of Ant, including writing build.xml files for compiling and packaging your EJB
files. If you have not used Ant for a build system, you can find specific recipes for
those tasks in chapter 9.

 Specifically, XDoclet relies on the Ant task <ejbdoclet/>. Once inserted into the
build.xml, the <ejbdoclet/> task allows you to specify subtasks for file generation,
method construction, and more. Tasks execute a section of code within Ant. Ant
contains many predefined tasks for such jobs as generating documentation and
compiling, but it lets you build your own tasks as well. In fact, the <ejbdoclet/> task
is a custom task that executes certain code in the XDoclet library.

 For this book, we used XDoclet beta version 1.2. Table 2.1 lists the JAR file
dependencies needed by this version of XDoclet, as well as the URL for their down-
load. The JAR files listed in table 2.1 must be in the classpath of the <ejbdoclet/>
task added to your build.xml file before you execute the <ejbdoclet/> Ant task.
(Some of the JAR files will not be needed if you don’t use certain features of the 1.2
version of XDoclet.)

After your environment is set up, you need to perform only three steps to gener-
ate code:

Table 2.1 The JAR file dependencies for the 1.2 version of XDoclet. These jars should be placed in the
<ejbdoclet/> Ant task classpath in order for you to use XDoclet 1.2.

Framework/application Needed JAR files URL

Ant 1.5 ant.jar http://jakarta.apache.org/ant/

Log4j 1.13 log4j-1.1.3-jar http://jakarta.apache.org/log4j/

Commons logging commons-logging-1.0.jar http://jakarta.apache.org/log4j/

XML APIs xml-apis-2.0.2.jar http://xml.apache.org/xerces2-j/

Velocity velocity-1.4-dev.jar http://jakarta.apache.org/velocity/index.html

JUnit junit-3.7.jar http://junit.org

36 CHAPTER 2

Code generation with XDoclet
1 Add the necessary XDoclet tags to your source files (similar to JavaDoc com-
ment tags).

2 Modify the <ejbdoclet/> task in the build.xml file to generate the desired
files.

3 Execute the Ant task using a command similar to ant ejbdoclet.

With three steps, XDoclet can make your EJB development more efficient and
streamlined.

 Before moving on to the actual recipes, let’s quickly examine the pieces of the
<ejbdoclet/> task contained in the build.xml file. The task basically contains
three sections: setup, source file selection, and subtask declaration. The following
XML is only a portion of a larger build.xml file and shows an example
<ejbdoclet/> task definition:

<target name="ejbdoclet" depends="init">

 <taskdef name="ejbdoclet" classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>
 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />
 </fileset>

 <remoteinterface/>
 <homeinterface/>
 <localhomeinterface/>
 <homeinterface/>

 <deploymentdescriptor destdir="${build}/ejb/META-INF" />

 </ejbdoclet>
 </target>

The first section of the target declares the task and provides the name of the
implementing class that will perform the functions required of the task. The task
definition is also responsible for setting up the classpath for the task. In this case,
we have the necessary XDoclet JAR files (see table 2.1) in the XDoclet lib direc-
tory. The property xdoclet.lib.dir should be defined earlier in the build.xml file
containing this target.

bDefines the new <ejbdoclet/> task>

c Sets up
the task

dAdds subtasks to
generate code

b

Generating home, remote, local, 37
and local home interfaces
Next, the <ejbdoclet/> tag is started by specifying the source directory, the gener-
ated files destination directory, and the EJB specification version that the
build.xml file should use. After starting the task, the next section defines the set of
source files the build.xml file should examine for possible source-generation tags.
Using the <fileset/> tag, not only can you specify which files to include, but you
can also exclude files. For instance, the sample shows a file set of Java source files
that end with *Bean.java.

Before closing the <ejbdoclet/> task, you can specify subtasks that actually per-
form the source examination and generation of code. The declaration in this
sample generates the remote, home, local home, and local interfaces for bean
classes with the appropriate XDoclet tags.
XDoclet provides many more features than shown in this simple example. This
chapter contains recipes that examine the most useful or commonly used features
of XDoclet. We highlight the XDoclet JavaDoc tags in bold to distinguish them
from the remaining code. In addition, we show generated code where appropriate.

We hope this chapter will encourage you to look further into XDoclet for your EJB
development. Refer to the XDoclet website at http://XDoclet.sourceforge.net for
downloads, examples, and more documentation. In addition, you can refer to the
Ant website (http://jakarta.apache.org) to learn more about using Ant or creat-
ing build.xml files. For more information about creating an Ant task, or using
existing tasks, check the Ant documentation at http://jakarta.apache.org/ant/
manual/index.html, or check out the excellent book Java Development with Ant,
from Manning Publications by Erik Hatcher and Steve Loughran.

2.1 Generating home, remote, local,
and local home interfaces

◆ Problem

You want to generate the EJB home and remote interfaces.

◆ Background

While developing bean classes and interfaces, you must spend too much time
keeping your interface file in synch with the implementation class. After develop-
ing the bean class, you would like to generate all the necessary interfaces for
deployment. This includes the remote, home, local, and local home interfaces.

c

d

38 CHAPTER 2

Code generation with XDoclet
Likewise, after any modifications to the bean class, you want the interfaces to be
updated similarly, and in the correct way for the specific interface.

◆ Recipe

To generate the interfaces (home, local home, remote, and local), you must do two
things. You need to add the appropriate XDoclet tags to the bean implementation
class, and then add the correct subtasks to the <ejbdoclet/> task in your build.xml
file. This recipe covers adding create and business methods to the correct inter-
faces. Other methods, such as finder methods, are covered in later recipes.

A session bean example
The session bean example in listing 2.1 illustrates how to document a bean class
in order to generate both remote and local interfaces. The XDoclet tags are
shown in bold. Notice that assigned values for the tags always use double quotes.

package ch2;

import javax.ejb.*;

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 */
public class UserBean implements SessionBean
{
 private String name = null;

 public UserBean(){}
 public void setSessionContext(SessionContext context) {}

 /**
 * @ejb.create-method
 */
 public void create(){}
 public void ejbCreate() {}
 public void ejbRemove() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 /**
 * @ejb.interface-method
 */
 public void setName(String value)
 {
 this.name = value;

Listing 2.1 UserBean.java

Declares the
bean attributes

Indicates
which type of
methods to
generate

Generating home, remote, local, 39
and local home interfaces
 }

 /**
 * @ejb.interface-method
 */
 public String getName()
 {
 return name;
 }
}

An entity bean example
The entity bean example in listing 2.2 illustrates the same tags as the previous ses-
sion bean example.

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * view-type="both"
 */
public abstract class DataBean implements EntityBean
{
 public void setEntityContext(EntityContext context) {}
 public void unsetEntityContext() {}

 public void ejbRemove() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 /**
 * @ejb.create-method
 *
 */
 public void ejbCreateData(String data1, String data2)
 {
 setBigData(data1);
 setSmallData(data2);
 }

 /**
 * @ejb.interface-method
 *
 */
 public void getAllData()
 {

Listing 2.2 DataBean.java

Declares the bean
attributes

Indicates
which type of
methods to
generate

40 CHAPTER 2

Code generation with XDoclet
 return getBigData() + " " + getSmallData();
 }

 /**
 * @ejb.interface-method
 */
 public abstract String getBigData();

 /**
 * @ejb.interface-method
 */
 public abstract String getSmallData();

 /**
 * @ejb.interface-method
 */
 public abstract void setBigData(String data);

 /**
 * @ejb.interface-method
 */
 public abstract void setSmallData(String data);
}

Modifying the build.xml
As shown in listing 2.3, you add the <ejbdoclet/> Ant task in your build.xml file
with the appropriate subtasks that will actually perform the code generation.

 <target name="ejbdoclet" depends="init">
 <taskdef name="ejbdoclet" classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>
 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />
 </fileset>

 <remoteinterface pattern="{0}Remote"/>
 <homeinterface/>
 <localinterface/>
 <localhomeinterface/>

 </ejbdoclet>
 </target>

Listing 2.3 Sample Build.xml

Add subtasks for
code generation

Generating home, remote, local, 41
and local home interfaces
Notice that this target is only part of a larger build.xml file. In your build.xml,
you need to configure the ${src} and ${xdoclet.lib.dir} properties for the task
to work.

◆ Discussion

Examining each bean source, you should first notice the class-level JavaDoc com-
ments. The class-level JavaDoc contains the XDoclet tags that describe the bean
and specifies the interfaces that should be generated. The @ejb.bean tag describes
the EJB defined in the source file. It contains two properties—type and view-
type—that are involved in the interface generation. The type property describes
the type of this EJB; it can be Stateful, Stateless, CMP, or BMP. The code generator
needs this information in order to properly provide super interfaces for the gen-
erated interfaces. The second property, view-type, indicates which interfaces
should be generated. Its possible values are local, remote, or both. By specifying
both, you ensure that all four interfaces will be produced.

 However, these two properties only help XDoclet to generate the interface
declaration; you still must describe the methods that go into each interface. To do
this, you need to make use of the @ejb.interface-method and @ejb.create-
method XDoclet tags. As shown in the source, these tags are used to mark bean
methods for declaration in the appropriate interfaces. Create methods are routed
to the home interfaces, and interface methods are declared in the remote and
local interfaces. Table 2.2 summarizes the tags that generate methods into the
interfaces.

Two method types noticeably absent from this discussion are finder and select
methods for entity beans. We show these two method types in greater detail in
later recipes in this chapter.

Table 2.2 Other tags used to specify methods for EJB interfaces

Tag Description

@ejb.interface-method Declares a method to be a business method

@ejb.create-method Declares a method to be an ejbCreate method

@ejb.home-method Declares a method to be a home method

@ejb.finder Used to define a finder method for the home and local home interfaces

@ejb.select Declares a method to be an ejbSelect method

@ejb.pk-field When used properly, creates a findByPrimaryKey method in the home
interface (see recipe 2.5)

42 CHAPTER 2

Code generation with XDoclet
 Finally, the additional subtasks must be specified in the <ejbdoclet/> task
itself. As you can see in the recipe, we add tasks to generate all four interfaces for
the beans. Indeed, all four will be generated because we also specified the view-
type as both.

 In addition, by default XDoclet will add a component name and JNDI name for
both the local home and home interfaces as a public final static member vari-
able. You can use the variable to make your client code more maintainable. By
default, the names correspond to the fully qualified name of the bean class (using
/ instead of .).

 Rather than show all four generated interfaces for each bean, we just show the
local interfaces for each. For the session bean, the getName() and setName() meth-
ods will be in the local and remote interfaces. The session bean’s home and local
home interfaces will contain a create() method. Listing 2.4 contains the session
bean’s generated entire remote interface (comments and all).

/*
 * Generated by XDoclet - Do not edit!
 */
package ch2;

/**
 * Remote interface for ch2.User.
 */
public interface User
 extends javax.ejb.EJBObject
{

 public java.lang.String getName()
 throws java.rmi.RemoteException;

 public void setName(java.lang.String value)
 throws java.rmi.RemoteException;

}

The entity bean’s home and local home interfaces will contain a findByPrima-
ryKey() method. Its remote and local interface will contain getFirstName(), set-
FirstName(), getLastName(), setLastName(), and getName(). Listing 2.5 contains
the entity bean’s generated remote interface

 .

Listing 2.4 Generated by XDoclet, User.java

Adding and customizing the JNDI name 43
for the home interface
/*
 * Generated by XDoclet - Do not edit!
 */
package ch2;

/**
 * Remote interface for ch2.Data.
 */
public interface Data
 extends javax.ejb.EJBObject
{
 public void getAllData()
 throws java.rmi.RemoteException;

 public java.lang.String getBigData()
 throws java.rmi.RemoteException;

 public java.lang.String getSmallData()
 throws java.rmi.RemoteException;

 public void setBigData(java.lang.String data)
 throws java.rmi.RemoteException;

 public void setSmallData(java.lang.String data)
 throws java.rmi.RemoteException;
}

◆ See also

2.2—Adding and customizing the JNDI name for the home interface

2.5—Generating a primary key class

2.11—Generating finder methods for entity home interfaces

2.2 Adding and customizing the JNDI name
for the home interface

◆ Problem

You want a good way to store the JNDI name of a bean for easy retrieval to aid in
bean lookup.

Listing 2.5 Generated by XDoclet, Data.java

44 CHAPTER 2

Code generation with XDoclet
◆ Background

You can use XDoclet to add a public static final member variable to the home
interfaces that it generates to store the JNDI name of the bean. Without customi-
zation, it provides a default value for this name. By specifying the JNDI name in
the home interface, you can modify it without changing your bean lookup code.

◆ Recipe

Use the recipe shown in recipe 2.1 (listing 2.4) to generate the home interface.
However, change the class-level JavaDoc to look like the following and specify the
JNDI name (the changes are shown in bold):

/**
 * @ejb.bean type="Stateful"
 * jndi-name="ejb/UserBean"
 * local-jndi-name="ejb/UserBeanLocal"
 * view-type="both"
 */
public class UserBean implements SessionBean
{

No changes need to be made to the build.xml file from the target shown in
recipe 2.1.

◆ Discussion

By including the JNDI lookup name as a public static final member variable in
the home interface, you give your code a permanent, safe way of discovering the
JNDI name for EJB lookup. Using this method, you don’t have to hardcode a name
in the lookup implementation. The resulting home interface has the following
lines added to it:

 public static final String
 COMP_NAME="comp/env/ejb/ch2/User";
 public static final String JNDI_NAME="ejb/UserBean";

The resulting local home interface contains a different name (as specified in the
bean source):

 public static final String
 COMP_NAME="java:comp/env/ejb/ch2/UserLocal";
 public static final String JNDI_NAME="ejb/UserBeanLocal";

Without customization, XDoclet will enter names using the package name of the
bean class. For instance, the UserBean JNDI name would have been ch2/UserBean.

Keeping your EJB deployment descriptor current 45

When looking up an EJB home interface via JNDI, you normally would use code
similar to the following:

InitialContext ctx = new InitialContext();
UserHome home = (UserHome) ctx.lookup("ejb/UserBean");

By adding the JNDI name to the home interface, your code can change to some-
thing like this:

InitialContext ctx = new InitialContext();
UserHome home = (UserHome) ctx.lookup(UserHome.JNDI_NAME);

◆ See also

2.1—Generating home, remote, local, and local home interfaces

2.3 Keeping your EJB deployment descriptor current

◆ Problem

You want to generate the EJB deployment descriptor and update it as the EJB
source files change.

◆ Background

When developing EJBs, you have a multitude of changes to the bean class that
affect the final deployment descriptor of the bean. Even if you generate the
deployment descriptor once, you may have to change it each time you alter a bean
class, interface, or persistent feature. In addition, changes to security roles,
method permissions, and EJB relationships require you to modify the XML descrip-
tor. Generating the deployment XML is only part of an important task. XDoclet will
help you maintain this file by updating it as your beans change and develop.

◆ Recipe

To have XDoclet generate your deployment descriptor, add the <deploymentde-
scriptor/> subtask to your <ejbdoclet/> task in the build.xml file. (See the sec-
tion “An XDoclet appetizer” at the beginning of this chapter for information
about XDoclet setup and the build.xml file.) The <ejbdoclet/> task shown in list-
ing 2.6 uses the descriptor subtask.

46 CHAPTER 2

Code generation with XDoclet
 <target name="ejbdoclet" depends="init">
 <taskdef name="ejbdoclet"
 classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>
 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />
 </fileset>

 <deploymentdescriptor destdir="${build}/ejb/META-INF" />

 </ejbdoclet>
 </target>

Let’s examine the class declaration for a session bean (used from recipes 2.1 and
2.2). However, this time we also include the bean name (shown in bold):

/**
 * @ejb.bean type="Stateful"
 * name="UserBean"
 * jndi-name="ejb/UserBean"
 * local-jndi-name="ejb/UserBeanLocal"
 * view-type="both"
 */
public class UserBean implements SessionBean

XDoclet uses this information to build the basic deployment descriptor for each
bean. The XML section shown in listing 2.7 is what XDoclet generated for this
bean (we have shown only the portion of the XML that contains the UserBean).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise

JavaBeans 2.0//EN" "http://java.sun.com/dtd/ejb-jar_2_0.dtd">

<ejb-jar >

 <description><![CDATA[No Description.]]></description>
 <display-name>Generated by XDoclet</display-name>

 <enterprise-beans>

 <!-- Session Beans -->
 <session >

Listing 2.6 Sample Build.xml

Listing 2.7 Deployment descriptor generated by XDoclet

Adds the subtask for
XML generation

Creating value objects for your entity beans 47

 <description><![CDATA[]]></description>

 <ejb-name>UserBean</ejb-name>

 <home>ch2.UserBeanHome</home>
 <remote>ch2.UserBean</remote>
 <local-home>ch2.UserBeanLocalHome</local-home>
 <local>ch2.UserBeanLocal</local>
 <ejb-class>ch2.UserBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>

 </session>

 </enterprise-beans>

◆ Discussion

The <deploymentdescriptor/> subtask tells XDoclet to generate the deployment
descriptor for the beans it has examined from the file set described in the
<fileset/> tag. XDoclet will also take care of including any other additions in the
descriptor along with the actual bean description. As long as you keep this subtask
in your <ejbdoclet/> task, XDoclet will generate or regenerate the XML deploy-
ment descriptor for each modified bean class in the file set. As you can tell, all you
need to provide is the destination directory for the XML file.

 XDoclet can also generate the numerous other pieces of the ejb-jar.xml file for
your beans. This includes security roles, method permission, and related EJBs. As
you add more XDoclet JavaDoc comments to your bean source files, more gener-
ated XML will appear. Many of the additional tags are covered in other recipes.

◆ See also

2.8—Generating vendor-specific deployment descriptors

2.4 Creating value objects for your entity beans

◆ Problem

You want to generate a value object for your entity beans.

◆ Background

An accepted practice for improving EJB application performance and for separat-
ing client, business, and data layers is to make use of value objects for entity beans.

48 CHAPTER 2

Code generation with XDoclet
Value objects create a decoupled view of entity beans and also shield clients from
back-end code changes. This class can represent the bean in every way and be
passed back to the client for a read-only snapshot of the entity data.

 Creating value objects for entity beans adds one more file to the list of multiple
files that developers must create for each bean. As with other generated files,
XDoclet will help you maintain this file with changes as your beans change.

◆ Recipe

Use the @ejb.value-object tag in the class-level JavaDoc for entity beans needing
a value object. For example, the section of the entity bean ItemBean source shown
in listing 2.8 uses this tag. The new tag is shown in bold; reference the previous
recipes for information about the others. Don’t worry about the tags @ejb.pk-
field and @ejb.persistence for now; we cover those in the next recipe.

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * name="ItemBean"
 * jndi-name="ejb/ItemBean"
 * view-type="both"
 *
 * @ejb.value-object
 *
 */
public abstract class ItemBean implements EntityBean
{
 public void setEntityContext(EntityContext context) {}
 public void unsetEntityContext() {}

 public void ejbRemove() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 /**
 * @ejb.create-method
 */
 public void ejbCreate(String id)
 {
 setID(id);
 }

 /**

Listing 2.8 ItemBean.java

Creating value objects for your entity beans 49

 * @ejb.interface-method
 * @ejb.persistence
 * @ejb.pk-field
 */
 public abstract String getID();

 /**
 * @ejb.interface-method
 */
 public abstract String getType();

 /**
 * @ejb.interface-method
 */
 public abstract String setType();
}

In addition, you need to add the subtask <valueobject/> to your build.xml file in
order for XDoclet to know it should generate the new class.

◆ Discussion

Listing 2.9 contains the generated value object class (including comments), refor-
matted for this chapter.

/*
 * Generated file - Do not edit!
 */
package ch2;

import java.util.*;

/**
 * Value object for ItemBean.
 *
 */
public class ItemBeanValue extends java.lang.Object
 implements java.io.Serializable
{
 private java.lang.String iD;
 private boolean iDHasBeenSet = false;
 private java.lang.String type;
 private boolean typeHasBeenSet = false;

 private ch2.ItemBeanPK pk;

 public ItemBeanValue()
 {
 pk = new ch2.ItemBeanPK();

Listing 2.9 ItemBeanValue.java

50 CHAPTER 2

Code generation with XDoclet
 }

 public ItemBeanValue(java.lang.String iD,
 java.lang.String type)
 {
 this.iD = iD;
 iDHasBeenSet = true;
 this.type = type;
 typeHasBeenSet = true;
 pk = new ch2.ItemBeanPK(this.getID());
 }

 //TODO Cloneable is better than this !
 public ItemBeanValue(ItemBeanValue otherValue)
 {
 this.iD = otherValue.iD;
 iDHasBeenSet = true;
 this.type = otherValue.type;
 typeHasBeenSet = true;

 pk = new ch2.ItemBeanPK(this.getID());
 }

 public ch2.ItemBeanPK getPrimaryKey()
 {
 return pk;
 }

 public void setPrimaryKey(ch2.ItemBeanPK pk)
 {
 // it's also nice to update PK object - just in case
 // somebody would ask for it later...
 this.pk = pk;
 }

 public java.lang.String getID()
 {
 return this.iD;
 }

 public java.lang.String getType()
 {
 return this.type;
 }

 public String toString()
 {
 StringBuffer str = new StringBuffer("{");

 str.append("iD=" + getID() + " " + "type=" + getType());
 str.append('}');

 return(str.toString());
 }

Initializes the
value object
with data

Provides
read-only
access

Creating value objects for your entity beans 51

 /**
 * A Value object has an identity if its
 * attributes making its Primary Key
 * have all been set. One object without identity
 * is never equal to any
 * other object.
 *
 * @return true if this instance have an identity.
 */
 protected boolean hasIdentity()
 {
 boolean ret = true;
 ret = ret && iDHasBeenSet;
 return ret;
 }

 public boolean equals(Object other)
 {
 if (! hasIdentity()) return false;
 if (other instanceof ItemBeanValue)
 {
 ItemBeanValue that = (ItemBeanValue) other;
 if (! that.hasIdentity()) return false;
 boolean lEquals = true;
 if(this.iD == null)
 {
 lEquals = lEquals && (that.iD == null);
 }
 else
 {
 lEquals = lEquals && this.iD.equals(that.iD);
 }

 lEquals = lEquals && isIdentical(that);

 return lEquals;
 }
 else
 {
 return false;
 }
 }

 public boolean isIdentical(Object other)
 {
 if (other instanceof ItemBeanValue)
 {
 ItemBeanValue that = (ItemBeanValue) other;
 boolean lEquals = true;
 if(this.type == null)
 {
 lEquals = lEquals && (that.type == null);

Implements
equality testing

52 CHAPTER 2

Code generation with XDoclet
 }
 else
 {
 lEquals = lEquals && this.type.equals(that.type);
 }

 return lEquals;
 }
 else
 {
 return false;
 }
 }

 public int hashCode(){
 int result = 17;
 result = 37*result +
 ((this.iD != null) ? this.iD.hashCode() : 0);

 result = 37*result +
 ((this.type != null) ? this.type.hashCode() : 0);

 return result;
 }

}

The combination of the XDoclet tags and the <ejbdoclet/> subtask will cause
XDoclet to generate the value object for the entity bean. The generated class will
contain getters for all the data fields of the bean, as well as the primary key. When
used by a bean, the generated value object is a read-only snapshot of the entity
bean. It can therefore be passed to clients as a lightweight representation of the
bean. Value objects can also be used to separate a client’s view to the data persis-
tence model being used.

◆ See also

2.1—Generating home, remote, local, and local home interfaces

2.2—Adding and customizing the JNDI name for the home interface

2.5—Generating a primary key class

Generating a primary key class 53

2.5 Generating a primary key class

◆ Problem

You want to generate a primary key class for your entity beans during development.

◆ Background

As you develop more and more entity beans, you find yourself also having to cre-
ate the primary key class. As we emphasized in this chapter, having to code one
more class just adds to the time it takes to develop a bean and increases your
chances for having source files out of synch.

◆ Recipe

To have XDoclet generate a primary key class, use the @ejb.pk tag in your bean
source file, use the @ejb.pk-field tag to denote an accessor for the primary key,
and modify your <ejbdoclet/> task to include the <entitypk/> subtask. For
instance, examine the ItemBean class shown in listing 2.10. The XDoclet tags appli-
cable to this recipe are shown in bold; the others can be found in earlier recipes.

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * name="ItemBean"
 * jndi-name="ejb/ItemBean"
 * view-type="both"
 * primkey-field="ID";
 * @ejb.pk
 */
public abstract class ItemBean implements EntityBean
{
 public void setEntityContext(EntityContext context) {}
 public void unsetEntityContext() {}

 public void ejbRemove() {}
 public void ejbLoad() {}
 public void ejbStore() {}
 public void ejbActivate() {}
 public void ejbPassivate() {}

 /**
 * @ejb.create-method
 */

Listing 2.10 ItemBean.java

Identifies the
primary key field

Adds the primary key tag

54 CHAPTER 2

Code generation with XDoclet
 public void ejbCreate(String id)
 {
 setID(id);
 }

 /**
 * @ejb.interface-method
 * @ejb.persistence
 * @ejb.pk-field
 */
 public abstract String getID();
}

Notice in addition to the placement of the specified tags that we included the
primkey-field attribute in the @ejb.bean tag at the class declaration level. Note
that you must also use the @ejb.persistence tag in combination with the
@ejb.pk-field tag.

◆ Discussion

The result of using these tags is a source file named ItemBeanPK.java (containing
the ItemBeanPK class). Listing 2.11 shows the generated code for this class.

/*
 * Generated by XDoclet - Do not edit!
 */
package ch2;

/**
 * Primary key for ItemBean.
 */
public class ItemBeanPK extends java.lang.Object
 implements java.io.Serializable
{
 private int _hashCode = Integer.MIN_VALUE;
 private StringBuffer _toStringValue = null;

 public java.lang.String iD;

 public ItemBeanPK()
 {
 }

 public ItemBeanPK(java.lang.String iD)
 {
 this.iD = iD;
 }

Identifies the primary
key getter method

Listing 2.11 ItemBeanPK.java

Generating a primary key class 55

 public java.lang.String getID()
 {
 return iD;
 }

 public void setID(java.lang.String iD)
 {
 this.iD = iD;
 _hashCode = Integer.MIN_VALUE;
 }

 public int hashCode()
 {
 if(_hashCode == Integer.MIN_VALUE)
 {
 if (this.iD != null) _hashCode += this.iD.hashCode();
 }

 return _hashCode;
 }

 public boolean equals(Object obj)
 {
 if(!(obj instanceof ch2.ItemBeanPK))
 return false;

 ch2.ItemBeanPK pk = (ch2.ItemBeanPK)obj;
 boolean eq = true;

 if(obj == null)
 {
 eq = false;
 }
 else
 {
 if(this.iD == null &&
 ((ch2.ItemBeanPK)obj).getID() == null)
 {
 eq = true;
 }
 else
 {
 if(this.iD == null ||
 ((ch2.ItemBeanPK)obj).getID() == null)
 {
 eq = false;
 }
 else
 {
 eq = eq && this.iD.equals(pk.iD);
 }
 }
 }

56 CHAPTER 2

Code generation with XDoclet
 return eq;
 }

 /** @return String representation of
 this pk in the form of [.field1.field2.field3]. */
 public String toString()
 {
 if(_toStringValue == null)
 {
 _toStringValue = new StringBuffer("[.");
 _toStringValue.append(this.iD).append('.');
 _toStringValue.append(']');
 }

 return _toStringValue.toString();
 }

}

The generated primary key class contains a default constructor, an initialization
constructor that accepts a String ID parameter, a getter method, a setter method,
hashcode() and equals() methods, and a toString() method.

 If you use the @ejb.pk tag without using the @ejb.pk-field tag, you generate a
primary key file without the getter, setter, and initialization constructor.

◆ See also

2.1—Generating home, remote, local, and local home interfaces

2.6 Avoiding hardcoded XDoclet tag values

◆ Problem

You would like to centralize values in one place and not have to modify source
files in order to update the values.

◆ Background

XDoclet is a great tool for generating necessary EJB files. In addition, it lets you
specify values for the XML deployment descriptor and JNDI names for your beans.
Using XDoclet with your development lets you automate and generate almost
everything you need. However, as you add more XDoclet JavaDoc tags to your
source files, you are specifying more values in code for things like JNDI names and
bean names. Now you have many values spread out across many bean source files.

Avoiding hardcoded XDoclet tag values 57

◆ Recipe

Use Ant properties in your XDoclet tags. Examine listing 2.12, which contains a
subsection from a build.xml file. This subsection defines a property and the
<ejbdoclet/> task.

<property name="user.bean.jndi"
 value="ejb/session/UserBean"/>

 <target name="ejbdoclet" depends="init">
 <taskdef name="ejbdoclet"
 classname="xdoclet.modules.ejb.EjbDocletTask">
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>

 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />

 </fileset>

 <remoteinterface pattern="{0}Remote"/>
 <homeinterface/>
 <localhomeinterface/>
 <homeinterface/>

 <entitypk/>

 <deploymentdescriptor destdir="${build}/ejb/META-INF" />

 </ejbdoclet>
 </target>

Notice the property user.bean.jndi at the top of the file. Now examine the class
declaration for the UserBean; it uses the Ant property in the JNDI attribute of the
@ejb.bean tag:

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 * jndi-name="${user.bean.jndi}"
 *
 */
public class UserBean implements SessionBean{

Listing 2.12 Sample Build.xml

Creates an
Ant property

Completes the
remaining task

58 CHAPTER 2

Code generation with XDoclet
◆ Discussion

When XDoclet attempts to generate the home interface for this bean, it will see
that for the JNDI name it should use the value specified in the Ant property
user.bean.jndi. Ant replaces the named property in the source file with the value
contained in the build.xml file. Using this system, you can replace every hard-
coded value in your source XDoclet JavaDoc tags with Ant property names. The
advantage of this system is that it centralizes all of your property values into your
build.xml file, and you no longer have to alter source code to change a value.

 XDoclet allows you to specify everything about a bean in its source file. Not
everything is included in this chapter, but the list includes security roles, EJB rela-
tionships, method permission, transactions, and more. By moving all the values
of these various elements into Ant properties in the build.xml file, you create a
centralized control of the various values that can be changed at build time in a
single file.

◆ See also

2.1—Generating home, remote, local, and local home interfaces

2.2—Adding and customizing the JNDI name for the home interface

2.3—Keeping your EJB deployment descriptor current

2.7 Facilitating bean lookup with a utility object

◆ Problem

You want to generate a utility object to help with looking up the home interface of
an EJB.

◆ Background

Two often-repeated tasks in an EJB application are the lookup of a bean’s home
interface and the subsequent creation of the bean. Developers sometimes handle
these tasks by creating a static method that contains the lookup code for a particu-
lar bean. However, it is possible that this code also must change as a bean changes.
The generated class will encapsulate all the code necessary for looking up the
home interface of its parent EJB.

Facilitating bean lookup with a utility object 59

◆ Recipe

To generate a utility object, use the @ejb.util tag in the class-level JavaDoc of
your bean and modify your <ejbdoclet/> task to include the <utilityobject/>
subtask. This works for both entity and session beans. For example, examine the
class declaration of the UserBean:

package ch2;

import javax.ejb.*;

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 *
 * @ejb.util
 *
 */
public class UserBean implements SessionBean{

Listing 2.13 contains the build.xml used to generate the utility object.

 <target name="ejbdoclet" depends="init">
 <taskdef name="ejbdoclet" classname="xdoclet.modules.ejb.EjbDocletTask" >
 <classpath>
 <fileset dir="${xdoclet.lib.dir}" includes="*.jar"/>
 </classpath>
 </taskdef>

 <ejbdoclet destdir="${src}" ejbspec="2.0" >

 <fileset dir="${src}">
 <include name="**/*Bean.java" />
 </fileset>

 <utilobject cacheHomes="true" />

 </ejbdoclet>
 </target>

The <utilobject/> subtask tells XDoclet to search for source files containing the
@ejb.util class-level JavaDoc tag and generate a utility object. Notice the subtask
specifies an attribute cacheHomes equal to true. This attribute tells XDoclet to gen-
erate a utility object that caches the home object after the first lookup in order to
improve performance. Listing 2.14 shows the generated utility class for this exam-
ple (reformatted for this chapter).

Listing 2.13 Sample Build.xml

b Adds the utility
object subtask

b

60 CHAPTER 2

Code generation with XDoclet
/*
 * Generated by XDoclet - Do not edit!
 */
package ch2;

import javax.rmi.PortableRemoteObject;
import javax.naming.NamingException;
import javax.naming.InitialContext;

import java.util.Hashtable;

/**
 * Utility class for ch2.User.
 */
public class UserUtil
{
 /** Cached remote home (EJBHome). Uses lazy loading to obtain
 its value (loaded by getHome() methods). */
 private static ch2.UserHome cachedRemoteHome = null;

 /** Cached local home (EJBLocalHome). Uses lazy loading to obtain
 its value (loaded by getLocalHome() methods). */
 private static ch2.UserLocalHome cachedLocalHome = null;

 // Home interface lookup methods

 /**
 * Obtain remote home interface from default initial context
 * @return Home interface for ch2.User. Lookup using COMP_NAME
 */
 public static ch2.UserHome getHome() throws NamingException
 {
 if (cachedRemoteHome == null) {
 // Obtain initial context
 InitialContext initialContext = new InitialContext();
 try {
 java.lang.Object objRef =
 initialContext.lookup(ch2.UserHome.COMP_NAME);
 cachedRemoteHome = (ch2.UserHome)
 PortableRemoteObject.narrow(objRef,
 ch2.UserHome.class);
 } finally {
 initialContext.close();
 }
 }
 return cachedRemoteHome;
 }

/**
 * Obtain remote home interface from parameterised initial context
 * @param environment Parameters to use for creating initial context
 * @return Home interface for ch2.User. Lookup using COMP_NAME

Listing 2.14 UserUtil.java, generated by XDoclet

Facilitating bean lookup with a utility object 61

 */
 public static ch2.UserHome getHome(Hashtable environment)
 throws NamingException
 {
 // Obtain initial context
 InitialContext initialContext =
 new InitialContext(environment);
 try {
 java.lang.Object objRef =
 initialContext.lookup(ch2.UserHome.COMP_NAME);
 return (ch2.UserHome)
 PortableRemoteObject.narrow(objRef, ch2.UserHome.class);
 } finally {
 initialContext.close();
 }
 }

/**
* Obtain local home interface from default initial context
* @return Local home interface for ch2.User. Lookup using COMP_NAME
*/
 public static ch2.UserLocalHome getLocalHome()
 throws NamingException
 {
 // Local homes shouldn't be narrowed,
 // as there is no RMI involved.
 if (cachedLocalHome == null) {
 // Obtain initial context
 InitialContext initialContext = new InitialContext();
 try {
 cachedLocalHome = (ch2.UserLocalHome)
 initialContext.lookup(ch2.UserLocalHome.COMP_NAME);
 } finally {
 initialContext.close();
 }
 }
 return cachedLocalHome;
 }

}

◆ Discussion

In addition to the cacheHomes attribute, you could add the generate attribute to
the @ejb.util tag to specify whether the generated utility class should use the
JNDI name or the component name from the home interface to perform a lookup
(see recipe 2.2). The default behavior for the utility object is to use the JNDI
name, but the possible values are false, logical, or physical. Keep in mind that

Looks up
and stores the
home interface

Looks up and
stores the local
home interface

62 CHAPTER 2

Code generation with XDoclet
XDoclet uses every piece of information it has on a bean to generate applicable
files. The generated utility object uses the names declared in the public static
final member variables of the home and local home interfaces to perform look-
ups, making your code more stable.

◆ See also

2.1—Generating home, remote, local, and local home interfaces

2.2—Adding and customizing the JNDI name for the home interface

2.8 Generating vendor-specific deployment descriptors

◆ Problem

You would like to generate a vendor-specific XML file along with the standard
XML descriptor.

◆ Background

One of the great reasons to use J2EE is that its API is a published standard. This
means that EJB applications should be portable across different vendors’ applica-
tion servers. Vendors maintain the specified functionality from the J2EE specifica-
tion, but usually ask that developers deploy EJBs with an additional deployment
XML file that is specific to the application server. This vendor-specific XML file
allows the application server to correctly map EJB functionality to its EJB container.

◆ Recipe

Use the appropriate subtask in the <ejbdoclet/> task of your build.xml file.
Table 2.3 lists the subtasks that XDoclet uses to generate the vendor-specific
XML descriptors.

Table 2.3 These subtasks can be added to your <ejbdoclet/> task to generate the vendor-specific
deployment XML for your EJBs. Along with each subtask are associated JavaDoc comments in order to
help XDoclet completely generate the XML. Refer to the XDoclet documentation for more information
about each of these tasks.

Application Server Subtask Comments

Weblogic <weblogic/> Generates descriptors for versions 6.0 and 6.1

JBoss <jboss/> Generates the jboss-xml and jaws.xml files

(continued on next page)

Specifying security roles in the bean source 63

◆ Discussion

These subtasks have many common attributes, but also contain a set of subtask-
specific attributes. Consult the XDoclet documentation for the details specific
to your application server. In addition, many of the subtasks have XDoclet tags
that you can include in your bean source file to make the XML generation
more complete.

◆ See also

2.3—Keeping your EJB deployment descriptor current

2.9 Specifying security roles in the bean source

◆ Problem

You want to generate security roles directly into the EJB deployment descriptor.
You do not want to edit the XML file manually.

◆ Background

Rather than updating the XML deployment descriptor for a bean with security
information after development, you would like it generated along with the other
XML parts of the descriptor. Creating security roles in the XML can be tedious and
error prone when you edit by hand.

JonAS <jonas/>

JRun <jrun/>

Orion <orion/> Generates the orion-ejb-jar.xml

Websphere <websphere/>

Pramati <pramati/>

Resin <resin-ejb-xml/> Generates the resin-ejb xml

HPAS <hpas/>

EAServer <easerver/> Generates XML for EAServer 4.1

Table 2.3 These subtasks can be added to your <ejbdoclet/> task to generate the vendor-specific
deployment XML for your EJBs. Along with each subtask are associated JavaDoc comments in order to
help XDoclet completely generate the XML. Refer to the XDoclet documentation for more information
about each of these tasks. (continued)

Application Server Subtask Comments

64 CHAPTER 2

Code generation with XDoclet
◆ Recipe

Listing 2.15 contains the UserBean from recipe 2.6 with additional JavaDoc com-
ments (shown in bold) to create security constraints in the generated XML deploy-
ment descriptor.

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 * jndi-name="${user.bean.jndi}"
 *
 * @ejb.security-role-ref
 * role-name="ADMIN"
 * role-link="administrator"
 *
 */
public class UserBean implements SessionBean{

You must also be sure that your <ejbdoclet/> task in the build.xml file includes
the correct subtask to generate the deployment XML file (see recipe 2.3).

◆ Discussion

As you can see, there is nothing too complicated about specifying security roles.
In addition, you can use the @ejb.security-identity tag to declare the bean to
assume a role when it acts as a client to another bean. This tag has the attributes
user-caller-identity and run-as, which correspond to the XML elements you
should recognize.

◆ See also

2.3—Keeping your EJB deployment descriptor current

2.8—Generating vendor-specific deployment descriptors

2.10—Generating and maintaining method permissions

2.10 Generating and maintaining method permissions

◆ Problem

You would like to automate the permission-creation method in the deployment XML.
You also want the XML to change as your EJB methods and security roles change.

Listing 2.15 Declaring security roles in the source code

Generating and maintaining method permissions 65

◆ Background

In addition to needing security roles in the EJB deployment XML, EJB applications
usually need method permissions based on those roles in order to provide access
control to various EJB methods. As EJBs change, and as new EJBs are created, the
method permissions created in the deployment descriptor must also change. In
addition, as you create new methods (or new security roles), you will have to add
method permissions in the XML.

◆ Recipe

Use the @ejb.permission tag in the method-level JavaDoc comments to specify
method permissions for specific methods. This tag must be used in combination
with @ejb.create-method or @ejb.interface-method. Refer to recipe 2.1 for more
information on those tags. The UserBean source subsection in listing 2.16 shows a
single method declaring method permissions (highlighted in bold).

package ch2;

import javax.ejb.*;

/**
 * @ejb.bean type="Stateful"
 * view-type="both"
 * jndi-name="${user.bean.jndi}"
 *
 */
public class UserBean implements SessionBean{

 private String name = null;

 /**
 * @ejb.interface-method
 * @ejb.permission
 * unchecked="true";
 */
 public void setUserName(String name)
 {
 this.name = name;
 }
}

◆ Discussion

When using the @ejb.permission tag, you can use the role-name attribute to spec-
ify a specific role for the method permission or the unchecked attribute to indicate

Listing 2.16 UserBean.java

66 CHAPTER 2

Code generation with XDoclet
universal access. The role-name attribute can have a single role name value, or it
can be a comma-separated list of role names that can access the method. The use
of the @ejb.permission tag, along with others in this chapter, helps you to more
completely generate your ejb-jar.xml for deploying your EJBs. This tag must be
used with @ejb.create-method or @ejb.interface-method so that XDoclet knows
with which method the permission is associated. To that end, you must include
the subtask <deploymentdescriptor/> in your build.xml file in order to generate
any new XML.

 The generated XML will differ depending on which EJB interfaces you are gen-
erating. If you generate both, you should see XML for the method permission gen-
erated for both view types.

◆ See also

2.1—Generating home, remote, local, and local home interfaces

2.3—Keeping your EJB deployment descriptor current

2.8—Generating vendor-specific deployment descriptors

2.9—Specifying security roles in the bean source

2.11 Generating finder methods
for entity home interfaces

◆ Problem

You want to generate the finder method declaration as part of the home interface
generation process.

◆ Background

Recipe 2.1 shows how to generate home (and other) interfaces for session and
entity beans. In that recipe, we add creation methods to the home interface. In
the case of entity beans, home interfaces often need to include finder methods.
Adding these finder methods requires time-consuming changes to the interface
and may cause file synchronization problems, as described in recipe 2.1.

◆ Recipe

To generate the finder method declaration, use the @ejb.finder tag in the class-
level JavaDoc of your bean source. For example, the following class section of

Generating the ejbSelect method XML 67

code from the ItemBean generates a finder method for the bean’s home and local
home interface:

package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * name="ItemBean"
 * jndi-name="ejb/ItemBean"
 * view-type="both"
 *
 * @ejb.finder signature="java.util.Collection findAll()"
 */
public abstract class ItemBean implements EntityBean
{

◆ Discussion

The result of this tag is the declaration of the finder method into the home and
local home interface of the EJB. As long as you are generating the home or local
home interface, you don’t need to make any changes to the build.xml file.

◆ See also

2.1—Generating home, remote, local, and local home interfaces

2.12 Generating the ejbSelect method XML

◆ Problem

You want to use XDoclet to generate the XML for the select methods of a bean.

◆ Background

Entity beans often must declare specific select methods allowing you to select col-
lections or specific entities from the persistent store. Select methods must be
described in the deployment XML for a bean. As with all manual tasks, editing the
XML descriptor is error prone and tedious.

◆ Recipe

To generate the XML for select methods, declare the abstract select methods in
your bean class and identify them with the @ejb.select tag in their JavaDoc com-
ments. Use the tag attribute query to specify the EJB-QL statement for the method.
For instance, examine the ItemBean in listing 2.17.

68 CHAPTER 2

Code generation with XDoclet
package ch2;

import javax.ejb.*;
/**
 * @ejb.bean type="CMP"
 * name="ItemBean"
 * jndi-name="ejb/ItemBean"
 * view-type="both"
 */
public abstract class ItemBean implements EntityBean
{
 //various bean methods…

 //ejbSelect methods

 /**
 * @ejb.select query="SELECT OBJECT(i) FROM Item AS i"
 */
 public abstract java.util.Collection ejbSelectAll();
}

Also, you must specify the <deploymentdescriptor/> subtask in your build.xml file.

◆ Discussion

Select methods are not generated into a particular interface—the only result you
should see is in the XML deployment descriptor. The descriptor will contain the
EJB-QL and proper declarations for the method. Keep in mind that ejbSelect
methods run under the transaction context of the invoker.

◆ See also

2.3—Keeping your EJB deployment descriptor current

2.13 Adding a home method
to generated home interfaces

◆ Problem

You want to add home methods to your generated home or local home interface.

Listing 2.17 ItemBean.java

Adding a home method 69
to generated home interfaces
◆ Background

Occasionally you need to compute a value that encompasses all bean instances,
such as the sum of all account balances over all Account entity beans. Since these
methods are independent of any particular bean instance, they need to be
defined on the home interface. As long as XDoclet is generating your home inter-
face (see recipe 2.1), you should add any home methods to that generation.
Please read recipe 2.1 before following this recipe.

◆ Recipe

To add home methods to either/both of your home and local home interfaces,
you simply need to add a method-level JavaDoc tag to the method in the bean
source. For example, the following method from an entity bean illustrates the
necessary JavaDoc:

 /**
 * @ejb.home-method
 * view-type="both"
 */
 public void addDataToAll()
 {
 //method implementation here
 }

◆ Discussion

Adding a home method to your home interfaces (home and local home) is no dif-
ferent than adding a regular business interface method—except that the JavaDoc
tag routes the method to the home interface. The @ejb.home-method JavaDoc tag
has an optional attribute, view-type, which you can use to specify the home inter-
faces you want to add this method. The possible values are remote, local, and
both. This recipe once again illustrates how XDoclet provides the easiest way to
keep your interface synchronized with your EJB source. If you later add methods,
such as a home method, to your bean source, another trip through the Ant build
process will entirely regenerate your interfaces and keep them up to date.

◆ See also

2.1—Generating home, remote, local, and local home interfaces

70 CHAPTER 2

Code generation with XDoclet
2.14 Adding entity relation XML
to the deployment descriptor

◆ Problem

You want to generate the deployment XML for an entity bean relationship.

◆ Background

A new feature for EJB 2.0 applications is the ability to relate entity beans using rela-
tionships. This is similar to what you would find in any relational database. With
EJB 2.0, you can create one-to-one, one-to-many, and many-to-many data relation-
ships. The only drawback is that creating relationships requires large additions to
the ejb-jar.xml file. Please read recipes 2.1 and 2.3 before using this recipe.

◆ Recipe

The following source shows a method that indicates a relationship between two
entity beans. This method comes from the OwnerBean entity bean. Each OwnerBean
entity bean is related unidirectly to a DataBean entity bean.

 /**
 * @ejb.interface-method
 * @ejb.relation
 name="OwnerToData"
 relation-role="Owner"
 target-ejb="ch2.DataBean"
 */
 public abstract Data getData();

◆ Discussion

Using the method-level @ejb-relation tag shown in the recipe generates the fol-
lowing XML in the assembly descriptor section of the ejb-jar.xml file:

 <relationships >
 <ejb-relation >
 <ejb-relation-name>OwnerToData</ejb-relation-name>

 <ejb-relationship-role >
 <multiplicity>One</multiplicity>
 <relationship-role-source >
 <ejb-name>ch2.Owner</ejb-name>
 </relationship-role-source>
 <cmr-field >
 <cmr-field-name>data</cmr-field-name>
 </cmr-field>

Adding the destination type 71
to a message-driven bean deployment descriptor
 </ejb-relationship-role>

 <ejb-relationship-role >
 <multiplicity>One</multiplicity>
 <relationship-role-source >
 <ejb-name>ch2.DataBean</ejb-name>
 </relationship-role-source>
 </ejb-relationship-role>

 </ejb-relation>
 </relationships>

The JavaDoc tag is used to specify a data accessor that indicates the entity data
relationship. In this case, the OwnerBean entity data is related to the DataBean
entity bean. The three attributes shown with the tag are the mandatory properties
that must be set when using this tag.

◆ See also

2.3—Keeping your EJB deployment descriptor current

3.7— Modeling one-to-one entity data relationships

2.15 Adding the destination type
to a message-driven bean deployment descriptor

◆ Problem

You want to generate the XML for the JMS message destination type while generat-
ing the deployment descriptor for a message-driven bean.

◆ Background

Message-driven beans must declare their destination type in their deployment
descriptor from which they will be receiving JMS messages. Recipe 2.3 showed how
to use XDoclet to generate the deployment descriptor for EJBs. Additionally, you
can specify the destination type for a message-driven bean in its class source and
add it to the generated XML. Please read recipe 2.3 before using this one.

◆ Recipe

To generate the XML for the message destination type, add the destination-type
attribute to the class-level @ejb.bean XDoclet tag for your message-driven bean
class. The following code does this for the MessageBean class:

72 CHAPTER 2

Code generation with XDoclet
/**
 * @ejb.bean
 * name="MessageBean"
 * type="MDB"
 * destination-type="javax.jms.Queue"
 */
public class MessageBean
 implements MessageDrivenBean, MessageListener {

Notice also the change in the type attribute for this example. Instead of session
or entity, its value is MDB, indicating that this class is a message-driven EJB.

◆ Discussion

Using the destination-type attribute with the @ejb.bean tag generates the addi-
tional XML (shown in bold):

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>MDB</ejb-name>
 <ejb-class>MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

</enterprise-beans>
<ejb-jar>

The other possible value would be javax.jms.Topic, which would add a Topic des-
tination instead of a Queue. If you are using a Topic, then you can optionally spec-
ify whether the topic should be Durable or NonDurable by using an additional
attribute, subscription-durability.

◆ See also

2.3—Keeping your EJB deployment descriptor current

2.16—Adding message selectors to a message-driven bean deployment
descriptor

Chapter 6, “Messaging”

Adding message selectors to 73
a message-driven bean deployment descriptor
2.16 Adding message selectors to
a message-driven bean deployment descriptor

◆ Problem

You want to generate the XML for a message selector while generating the deploy-
ment descriptor for a message-driven bean.

◆ Background

Message-driven beans have the ability to filter incoming messages by using mes-
sage selectors. Each message selector for a message-driven bean must be specified
in its deployment XML. Recipe 2.3 showed how to use XDoclet to generate the
deployment descriptor for EJBs. You can also use XDoclet to add a message selec-
tor to generated deployment XML for a message-driven bean. Please read
recipe 2.3 before using this one.

◆ Recipe

To generate the XML for a message selector, add the message-selector attribute
to the class-level @ejb.bean XDoclet tag for your message-driven bean class. The
following code does this for the MessageBean class:

/**
 * @ejb.bean
 * name="MessageBean"
 * type="MDB"
 * message-selector="<![CDATA messageType = 'buyerRequest']]>"
 */
public class MessageBean
 implements MessageDrivenBean, MessageListener {

Notice also the change in the type attribute for this example. Instead of session
or entity, its value is MDB, indicating that this class is a message-driven EJB.

◆ Discussion

Using the message-selector attribute with the @ejb.bean tag generates the follow-
ing XML:

<ejb-jar>
 <enterprise-beans>

74 CHAPTER 2

Code generation with XDoclet
 <message-driven>
 <ejb-name>MDB</ejb-name>
 <ejb-class>MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-selector>
 <![CDATA[messageType = 'buyerRequest']]>
 </message-selector>
 </message-driven>

</enterprise-beans>
<ejb-jar>

Notice the use of the CDATA brackets when specifying the message selector value.
Because message selectors can use special characters like > and <, you must use
the CDATA brackets so that the XML file can be correctly parsed.

◆ See also

2.3—Keeping your EJB deployment descriptor current

2.15—Adding the destination type to a message-driven bean deployment
descriptor

Chapter 6, “Messaging”

Part 2

Main courses

Part 2 encompasses the majority of this book. Here you will find chapters cov-
ering the major functional areas of Enterprise JavaBeans (EJB). These areas
include working with data, transactions, security, messaging, and other impor-
tant EJB activities.

Chapter 3, “Working with data,” covers many of the problems encountered
when EJBs interact with databases. The recipes presented in this chapter do more
than just cover entity beans.

Chapter 4, “EJB activities,” covers topics encountered by developers across a
wide range of EJB topics. These recipes do not fall into the area of security, data,
or transactions. In this chapter, you will find topics ranging from sending email to
making EJB web service endpoints.

Chapter 5, “Transactions,” solves many of the problems you’ll encounter when
developing with transactions. In this chapter we explain and demonstrate solu-
tions for both bean-managed and container-managed EJBs.

Chapter 6, “Messaging,” presents topics that deal with EJBs and the Java Mes-
sage Service (JMS). Specifically, this chapter thoroughly covers message-driven EJB
problems. In addition to learning about the message-driven bean, you will find
topics that demonstrate solutions to JMS-specific problems.

Chapter 7, “Security,” provides solutions to security-related problems; the solu-
tions focus on good design and the EJB API. Many of the recipes use the declara-
tive security model provided by the EJB container.

Working with data
“And I’m President of the United States and I’m not
going to eat any more broccoli.”

—President George Bush
77

78 CHAPTER 3

Working with data
EJB components were designed to provide a portable, reliable, and scalable persis-
tence layer for enterprise applications. Accessing a data source is one of the most
common tasks for EJBs. Whether you use entity beans or session beans with data
access objects, this chapter should provide you with solutions for your data access
problems. The topics we cover here range from using CMP persistence, to model-
ing entity bean relationships, to developing custom finder methods. In this chap-
ter, you will learn about the following topics:

■ Using data sources on a per-user basis

■ Creating EJB 2.0 CMP entity beans

■ Generating primary key values

■ Finding a collection of entity beans

■ Creating one-to-one entity relationships

■ Creating one-to-many entity relationships

■ Using a cascading delete

■ Creating read-only entity beans

■ Making use of a stored procedure

■ Using EJB-QL

■ Creating entity beans across table joins

■ Tracking data changes

■ Encapsulating entity bean access

■ Discovering information about entity beans

■ Reducing the number of calls to entity beans

■ Managing large result sets

3.1 Using a data source

◆ Problem

You want your EJB to access a Java Database Connectivity (JDBC) data source.

◆ Background

Connecting to a database via JDBC is essential in many applications. For instance,
a session bean needs to access data to complete a business function, and entity
beans with bean-managed persistence require access to a JDBC connection to load

Using a data source 79
and store data. The application server running the EJB application provides data
sources as specified by the deployer.

◆ Recipe

To retrieve the javax.sql.DataSource object from the application server, you
must complete two steps. First, you must configure the deployment descriptor for
the bean that will need access to the DataSource object. Listing 3.1 shows the par-
tial XML from a deployment descriptor file for the SampleDataSourceBean bean.

 <ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>SampleDataSourceBean</ejb-name>
 <home>sample.SampleDataSourceHome</home>
 <remote>sample.SampleDataSource</remote>
 <ejb-class>sample.SampleDataSourceBean</ejb-class>
 <session-type>Stateless</session-type>
 <resource-ref>
 <res-ref-name>ejbBookDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 </assembly-descriptor>
 </ejb-jar>

Second, acquire the DataSource reference by performing a JNDI lookup. Examine
the partial source from the SampleDAtaSourceBean session EJB, shown in
listing 3.2. This code contains a getConnection() method that returns a JDBC Con-
nection object from a DataSource reference.

import javax.ejb.SessionBean;
import javax.naming.InitialContext;
import javax.sql.DataSource;
import java.sql.*;

public class SampleDataSourceBean implements SessionBean
{
 // Other bean methods left out intentionally

Listing 3.1 Deployment descriptor

Listing 3.2 SampleDataSourceBean.java

Describes the
data source

80 CHAPTER 3

Working with data
 public Connection getConnection()
 {
 DataSource ds = null;
 try
 {
 InitialContext ctx = new InitialContext();
 ds = (javax.sql.DataSource)
 ctx.lookup("java:comp/env/ejbBookDataSource");

 return ds.getConnection();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 return null;
 }
}

◆ Discussion

This recipe shows the best way to acquire the connection. Data sources allow you
to use connection pooling and optimize database access. To use a data source
from the application server, you must perform two steps:

1 Set up the EJB’s deployment descriptor so that the implementation can find
a JDBC data source.

2 From inside the EJB, look up the DataSource via a JNDI name and acquire
a JDBC connection.

For the first step, you need to add a <resource-ref> tag to declare a DataSource
resource for the EJB (and map it to a particular JNDI name). Resources available
to an EJB include JDBC DataSource, JavaMail, and the Java Message Service (JMS).
In this case, the name ejbBookDataSource is mapped to a JDBC DataSource
instance provided by the EJB container. The JNDI name and DataSource mapping
are configured by the application server in a vendor-specific manner. For more
details about your application server, refer to your vendor’s documentation.

 The final step in creating the JDBC connection requires the EJB to look up the
declared resource. To look up an object using JNDI, you first need to obtain the
InitialContext provided to your bean from the EJB container. To do this, you
simply have to construct a new InitialContext object with its default constructor.
Once you have the context, you need only call its lookup() method, passing in the

Creates and uses the
JNDI initial context

Returns a JDBC
connection

Creating EJB 2.0 container-managed persistence 81

JNDI value referenced in the deployment descriptor of your bean. Notice that the
JNDI name is always relative to the standard JNDI context name, java:comp/env.

NOTE It is generally accepted as best practice to open a connection from a
DataSource object retrieved from the application server. This allows
your EJB to have the maximum portability when it comes to JDBC con-
nections. However, if you have strong motivation for not wanting to use
a DataSource, you can load a JDBC driver and open the connection
manually. You will most likely need values for a database URL, username,
and password—all of which can be hardcoded or also looked up
through JNDI.

◆ See also

4.1—Retrieving an environment variable

3.2 Creating EJB 2.0 container-managed persistence

◆ Problem

You want to set up your EJBs to use container-managed persistence (CMP).

◆ Background

Many developers are still looking to move previously developed CMP and bean-
managed persistence (BMP) entity beans to the EJB 2.0 CMP model, which offers
numerous advantages and functionality. For example, CMP beans allow you to use
container-managed relationships (CMR) and perform optimizations such as entity
caching and lazy loading. When you’re creating entity beans, CMP beans should
be your first choice.

◆ Recipe

To set up a CMP bean, first write the source code of the entity bean. Listing 3.3
contains an example of the EquityBean source code.

import java.util.*;
import java.rmi.RemoteException;
import javax.ejb.*;
import javax.naming.InitialContext;

Listing 3.3 EquityBean.java

82 CHAPTER 3

Working with data
import javax.naming.NamingException;

abstract public class EquityBean implements EntityBean
{
 private EntityContext ctx;

 public void setEntityContext(EntityContext ctx) {
 this.ctx = ctx;
 }

 public void unsetEntityContext() {
 this.ctx = null;
 }

 /*
 Data access methods below
 */
 abstract public String getSymbol();
 abstract public void setSymbol(String symbol);

 abstract public String getDescription();
 abstract public void setDescription(String description);

 abstract public double getLastTrade();
 abstract public void setLastTrade(double lastTrade);

 abstract public double getChange();
 abstract public void setChange(double change);

 abstract public int getVolume();
 abstract public void setVolume(int volume);

 abstract public double getMarketCap();
 abstract public void setMarketCap(double marketCap);

 abstract public double getPe();
 abstract public void setPe(double pe);

 abstract public int getAvgVolume();
 abstract public void setAvgVolume(int avgVolume);

 /*
 bean methods below (NOT ALL SHOWN)
 */
 public void ejbLoad() {
 System.out.println ("EquityBean.ejbLoad (" + id() + ")");
 }

 public void ejbStore() {
 System.out.println("EquityBean.ejbStore (" + id() + ")");
 }

 public String ejbCreate(String symbol, String description)
 throws CreateException
 {
 setSymbol(symbol);

Declares the
class abstract

Declares
abstract

data
accessors

Creating EJB 2.0 container-managed persistence 83

 setDescription(description);

 return null;
 }

 /* Application defined methods below (NOT SHOWN)
 */
}

After you’ve written the source code of the entity bean, the remaining changes
need to take place in the deployment descriptor of the bean. The partial XML
shown in listing 3.4 is the deployment descriptor for the EquityBean entity EJB.

 <ejb-jar>
 <enterprise-beans>

 <!-- =========[ContainerManaged Bean]======== -->
 <entity>
 <ejb-name>containerManaged</ejb-name>
 <home>containerManaged.EquityHome</home>
 <remote>containerManaged.Equity</remote>
 <ejb-class>containerManaged.EquityBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>EquityBean</abstract-schema-name>
 <cmp-field>
 <field-name>symbol</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>description</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>lastTrade</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>change</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>volume</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>marketCap</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>pe</field-name>

Listing 3.4 Deployment descriptor

Declares the EJB that
will use container-

managed persistence

Indicates the use of the
2.0 specification and

declares the schema name

Declares the persistent
fields of the bean

84 CHAPTER 3

Working with data
 </cmp-field>
 <cmp-field>
 <field-name>avgVolume</field-name>
 </cmp-field>
 <primkey-field>symbol</primkey-field>
 </entity>
 <!-- =========[ContainerManaged Bean]======== -->
 </enterprise-beans>
 <assembly-descriptor>
 </assembly-descriptor>
 </ejb-jar>

◆ Discussion

As you can see in the EquityBean example, the source for a CMP bean is notice-
ably different from that of a BMP bean. First of all, the methods will not contain
any persistence code, like JDBC connections or SQL statements. Also, a CMP
entity bean has a much more descriptive deployment descriptor than a BMP
entity bean. However, like a BMP bean, it must declare its persistence type. In this
case, it should be declared Container. Similarly, the deployment descriptor
should also tell the container to use the EJB 2.0 specification (which is what this
recipe describes).

 After declaring the bean to be a 2.0 CMP entity bean, you should describe the
persistent fields and schema used by the bean. Indicate each field that will be per-
sisted with a <cmp-field/> tag. The EJB container will generate a concrete subclass
of your abstract bean that implements the abstract methods to actually perform
the persistence and loading of the bean data as needed.

 The schema and persistent fields are mapped to an actual database table in a
vendor-specific manner, usually with a vendor deployment descriptor for the
bean. Check your vendor’s documentation for more information on what you
need to do. Typically, application servers require you to provide an additional
XML descriptor file. For example, Weblogic requires you to build two files:
weblogic-ejb-jar.xml and weblogic-cmp-rdbms-jar.xml. Lastly, you should declare
which persistent field is the primary key for this entity bean.

 When using entity beans in your application, you should always encapsulate
access to them through a session bean. Not only does this separate your clients
from the data layer, but it lets you provide better security, transaction manage-
ment, and performance. For instance, when you access your entity beans through
a session facade (see recipe 3.15), your entity beans need only implement local

Declares the primary
key field of the bean

Using different data sources for different users 85

interfaces. This prevents any remote client from finding your entity data without
first passing through the session bean layer and being validated.

◆ See also

2.3—Keeping your EJB deployment descriptor current

3.4—Using a database sequence to generate primary key values for entity beans

3.5—Using a compound primary key for your entity beans

3.3 Using different data sources for different users

◆ Problem

Within an EJB, you would like to provide different data sources to different user
sessions.

◆ Background

In your application, you need the ability to provide a different database view (or
database) depending on the current user. This is one way to prevent unautho-
rized users from updating restricted data. Since the EJB security model provides
for the discovery of the invoking client, you can easily determine a user’s identity
and assigned roles. Programmatically restricting data access to specific users can
make your code less flexible and maintainable.

◆ Recipe

In order to switch data sources for a particular user, you must first determine
which user is calling an EJB method. Inside the UserSpecificDBBean session bean
shown in listing 3.5, the getConnection() method determines the invoking user
and returns a JDBC connection based on the retrieved value.

public class UserSpecificDBBean implements SessionBean
{
 private SessionContext ctx;

 public void setSessionContext(SessionContext ctx) {
 this.ctx = ctx;
 }

 public Connection getConnection() throws SQLException{
 String srcName = null;

Listing 3.5 UserSpecificDBBean.java

86 CHAPTER 3

Working with data
 InitialContext initCtx = null;

 try {
 Principal p = this.ctx.getCallerPrincipal();
 String username = p.getName();

 initCtx = new InitialContext();
 System.out.println("User Requesting Connection:" + username);

 srcName = "java:comp/env/"+userName+"BookDataSource" ;
 System.out.println("User Requesting DataSource:"+srcName);

 return ((javax.sql.DataSource)
 initCtx.lookup(srcName)).getConnection();
 }
 catch(NamingException ne) {
 ne.printStackTrace();
 throw new EJBException(ne);
 }
 finally{
 try{
 if(initCtx != null) initCtx.close();
 }
 catch(NamingException ne) {
 throw new EJBException(ne);
 }
 } //finally
 }//method

}

The data source must be defined in the ejb-jar.xml deployment descriptor for
each of the users. The name of the data source must correspond to that of the
generated data source name. For this example, we created two data source refer-
ences (for users “guest” and “markw”). Listing 3.6 shows the partial XML descrip-
tor file for this bean.

<ejb-jar>
 <enterprise-beans>

 <!-- =========[UserSpecificDB Session Bean]======== -->
 <session>
 <ejb-name>userSpecificDB</ejb-name>
 <home>userspecificdb.UserSpecificDBHome</home>
 <remote>userspecificdb.UserSpecificDB</remote>
 <ejb-class>userspecificdb.UserSpecificDBBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

Listing 3.6 Deployment descriptor

Finds the user
calling the bean

Looks up the data source
by the username

Using different data sources for different users 87

 <resource-ref>
 <res-ref-name>markwBookDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 <resource-ref>
 <res-ref-name>guestBookDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 </session>
 <!-- =========[UserSpecificDB Session Bean]======== -->

 </enterprise-beans>
</ejb-jar>

◆ Discussion

In this example, we are including the user’s login ID as part of the JNDI name used
to look up the data source. The JNDI name is constructed by concatenating the
user ID with a base String value. This is only an example implementation for
switching data sources; you could easily have an if-else statement or some other
switching logic. You will actually create the data sources using the application
server console or configuration file, so check your vendor’s documentation for
more information. However, using the ejb-jar.xml deployment file of your
beans, you should add a resource description of the data sources you will want
your beans to access. In our recipe, we included two data sources, each with a user
ID as part of the JNDI name (the <resource-ref-name/> element) for looking up
the resource.

 Many similar ways to implement a solution such as this one exist, but doing
something like this will free you from having to code detailed data-access restric-
tions. Instead of using the username to build the data source name, you could eas-
ily use a role name—allowing for a larger group of users to be assigned to a single
data source.

◆ See also

3.1—Using a data source

7.1—Finding the identity and role of the caller inside an EJB method

Describes
an available
data source

88 CHAPTER 3

Working with data
3.4 Using a database sequence
to generate primary key values for entity beans

◆ Problem

You want to use a database sequence to generate primary keys for your CMP and
BMP entity beans.

◆ Background

When creating entity data such as user profiles or product descriptions, you can
easily make a primary key the username or some unique field contained in the
data. However, many times you want to use a unique field generated solely for the
purpose of identifying the entity data, not a piece of the actual data. In these
cases, you don’t want to programmatically create the key when creating the bean.
Using a database sequence provides you with a reliable source of primary keys for
your entity beans.

 Another reason to use a database sequence to provide a numeric primary key
for your entity beans is performance. Since shorter primary key fields perform bet-
ter than longer ones, using a database sequence to generate your primary key val-
ues should actually improve the efficiency of your entity beans. Using a sequence
requires you to link your entity bean with the database sequence, either in code or
through the use of the container. The actual generation (via database sequence)
of the key is specific to a particular database, but the end results are the same.

◆ Recipe

Using a database sequence to generate primary key values can be done in both
BMP and CMP entity beans. No changes need to be made to the sequence in order
for it to be used by a BMP or CMP entity bean. For this recipe, we chose an Oracle
database as an example. We used the following SQL to create the sequence:

CREATE SEQUENCE test_sequence INCREMENT BY 1;

We will reference the test_sequence for generating primary keys for both types of
entity beans shown in this example.

BMP recipe
Since BMP beans manage everything concerning their persistence, a BMP bean
can easily access any value it needs for a primary key. The EJB accesses the
test_sequence sequence to set the value of its primary key. Listing 3.7, which

Using a database sequence 89
to generate primary key values for entity beans
contains the partial source from the SequenceBean BMP entity bean, illustrates
acquiring a primary key value in the ejbCreate() method.

public class SequenceBean implements EntityBean {

 public Integer ejbCreate(String name) throws CreateException{
 PreparedStatement ps = null;
 Connection con = null;
 ResultSet rs = null;

 this.name = name;

 try {
 String query = "select test_sequence.nextval from dual";
 con = getConnection();
 ps = con.prepareStatement(query);
 ps.executeQuery();

 rs = ps.getResultSet();

 if(rs.next())
 {
 sequenceId = rs.getInt(1);
 }
 else {
 String error = "ejbCreate: Sequence error creating";
 System.out.println(error);
 throw new CreateException (error);
 }

 ps.close();
 rs.close();

 query = "insert into ejbSequence(sequenceId, name) "
 + values (?,?)";
 ps = con.prepareStatement(query);
 ps.setInt(1, sequenceId);
 ps.setString(2, name);

 if (!(ps.executeUpdate() > 0)) {
 String error = "ejbCreate: SequenceBean ("
 + name + ") not created";
 System.out.println(error);
 throw new NoSuchEntityException (error);
 }

 ps.close();

 }
 catch(SQLException sqe) {
 throw new EJBException (sqe);
 }

Listing 3.7 SequenceBean.java

Builds and
executes the
sequence query

Retrieves a
value from the
result set

Creates the
entity data

90 CHAPTER 3

Working with data
 finally {
 try{
 if(ps!=null) ps.close();
 if(rs!=null) rs.close();
 if(con!=null) con.close();
 }
 catch(SQLException e){}
 }

 return new Integer(sequenceId);
 }
}

CMP recipe
For CMP entity beans, the solution is much simpler. Rewriting the SequenceBean,
we need to add only a couple of data methods instead of including all the neces-
sary JDBC code in the bean source:

abstract public class SequenceBean implements EntityBean {

 abstract public Integer getSequenceId();
 abstract public void setSequenceId(Integer val);

}

Next, we need to declare the deployment descriptor for the entity bean that signi-
fies its primary key value and type (see listing 3.8).

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>oracleSequence</ejb-name>
 <home>CMPsequence.SequenceHome</home>
 <remote>CMPsequence.Sequence</remote>
 <ejb-class>CMPsequence.SequenceBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.Integer</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>SequenceBean</abstract-schema-name>
 <cmp-field>
 <field-name>sequenceId</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>name</field-name>
 </cmp-field>
 <primkey-field>sequenceId</primkey-field>

Listing 3.8 Deployment descriptor

Returns the
primary key

Specifies the primary key type

Describes
the
persistent
fields

Identifies the
primary key field

Using a database sequence 91
to generate primary key values for entity beans
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>oracleSequence</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

◆ Discussion

In the case of the BMP bean, acquiring a primary key value from a sequence is just
a matter of completing an additional JDBC call. And after retrieving a primary key
value, the BMP bean goes on to insert the new entity data into the database
(because this is an ejbCreate() method).

 The CMP bean relies on the EJB container to provide the value of the primary
key. In this case, we simply set up the bean and its deployment descriptor in the
normal CMP entity bean way. However, in the vendor-specific descriptor, we indi-
cate how the primary key value is acquired (and we also set up the schema map-
ping of the bean). For instance, we used a Weblogic container for this example.
One of the vendor files, weblogic-cmp-rdbms-jar.xml, contains a snippet of XML
specifying a database sequence for generating our primary key:

 <automatic-key-generation>
 <generator-type>ORACLE</generator-type>
 <generator-name>test_sequence</generator-name>
 <key-cache-size>10</key-cache-size>
 </automatic-key-generation>

Check your vendor’s documentation for your specific setup.

◆ See also

2.5—Generating a primary key class

3.1—Using a data source

3.2—Creating EJB 2.0 container-managed persistence

3.5—Using a compound primary key for your entity beans

92 CHAPTER 3

Working with data
3.5 Using a compound primary key for your entity beans

◆ Problem

You want to use a combination of column values for a primary key for an entity bean.

◆ Background

Typically, primary key values are more complex than a single column. Compound
primary keys are an excellent way to drill down to specific data. Using a com-
pound primary key is more complex for both CMP and BMP entity beans. For both
types of beans, you must create a primary key class that follows specific rules, and
also configure your entity bean to properly use an instance of the class.

◆ Recipe

To provide a compound primary key for an entity bean, you must create a pri-
mary key class. In this recipe, we define a complex key for a portfolio holdings
table. This key consists of a String for the portfolio name as well as a String for
the symbol of an equity in the portfolio holding. Listing 3.9 shows a primary key
class that meets the EJB 2.0 rules for primary key classes (and models the equity
situation described).

public class HoldingKey implements Serializable
{
 public String portfolioName = null;
 public String symbol = null;

 public HoldingKey(){}

 public HoldingKey(String symbol, String portfolioName)
 {
 this.symbol = symbol;
 this.portfolioName = portfolioName;
 }

 public boolean equals(Object obj){

 if(obj == null || !(obj instanceof HoldingKey))
 return false;

 HoldingKey key = (HoldingKey) obj;

 if((key.portfolioName.equals(portfolioName))&&
 (key.symbol.equals(symbol)))
 {
 return true;

Listing 3.9 HoldingKey.java

Implements the
Serializable interface

Declares public CMP
field variables

Defines a default constructor

Implements an
equals() method

Using a compound primary key for your entity beans 93

 }
 else{
 return false;
 }
 }

 public int hashCode(){
 return portfolioName.hashCode() + symbol.hashCode();
 }

 public String toString()
 {
 return portfolioName + " " + symbol;
 }
}

When an entity bean uses a primary key class, the entity bean source must be
altered to meet certain requirements. Listing 3.10 shows the PortfolioHolding-
Bean entity bean that uses a HoldingKey instance for a primary key.

public abstract class PortfolioHoldingBean implements EntityBean
{
 public HoldingKey ejbCreate(String symbol, String portfolioName)
 throws CreateException{
 setSymbol(symbol);
 setPortfolioName(portfolioName);
 return null;
 }

 abstract public String getPortfolioName();
 abstract public void setPortfolioName(String portfolioName);

 abstract public String getSymbol();
 abstract public void setSymbol(String Symbol);

 //other bean methods not shown
}

In the bean deployment descriptor (see listing 3.11), you must declare the pri-
mary key classname and its persistent fields.

<ejb-jar>
 <enterprise-beans>

 <!-- =========[PortfolioHolding Bean]======== -->

Listing 3.10 PortfolioHoldingBean.java

Listing 3.11 Deployment descriptor

Implements a
hashCode() method

Defines a create
method to accept

pk fields

Returns null

94 CHAPTER 3

Working with data
 <entity>
 <ejb-name>portfolioHoldingBean</ejb-name>
 <home>compoundKey.PortfolioHoldingHome</home>
 <remote>compoundKey.PortfolioHolding</remote>
 <ejb-class>compoundKey.PortfolioHoldingBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>compoundKey.HoldingKey</prim-key-class>
 <reentrant>False</reentrant>

 <cmp-field>
 <field-name>symbol</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>portfolioName</field-name>
 </cmp-field>
 </entity>
 <!-- =========[PortfolioHolding Bean]======== -->

 </enterprise-beans>
</ejb-jar>

◆ Discussion

A primary key class must meet four requirements:

■ It must implement the java.io.Serializable interface.

■ It should declare public method variables that are a subset of the persistent
fields of the entity bean. The names of these primary key fields and entity
fields should be exactly the same.

■ It should define a default constructor.

■ It should define the hashCode() and equals() methods.

The EJB container uses these requirements, along with reflection, to create and
populate an instance of the primary key class as needed. The equals() and
hashCode() methods of the primary key class allow instances of the class to be
properly used in collections.

 The PortfolioHolding CMP entity bean returns null from its ejbCreate()
method because the EJB container is going to instantiate and populate an instance
of the HoldingKey class and return it to the EJB client as the primary key. A default
constructor must exist in the primary key class for this to work successfully. Inside
the ejbCreate() method, the bean must set the values passed in using the abstract
methods in order for the EJB container to properly construct a primary key
instance. The container will use the abstract getter methods to retrieve the

Declares
the primary
key
classname

Retrieving multiple entity beans in a single step 95

appropriate values for the primary key instance. In addition, the findByPrimary-
Key() method declared in the entity bean home interface should pass in an
instance of the primary key class.

 If you are using a BMP entity bean, you must manually create the primary key
instance and return it from the ejbCreate() method instead of returning null (as
a CMP bean does). BMP beans must do everything manually whereas the CMP
bean relies on the container.

◆ See also

2.5—Generating a primary key class

3.1—Using a data source

3.2—Creating EJB 2.0 container-managed persistence

3.4—Using a database sequence to generate primary key values for entity beans

3.6 Retrieving multiple entity beans in a single step

◆ Problem

You want to retrieve multiple entity beans without performing multiple JNDI
lookup calls.

◆ Background

In many of the recipes in this chapter, we’ve described a stock portfolio applica-
tion. Consider the situation when we need to retrieve all of the EquityBean entity
instances in a user’s portfolio. Each bean must be looked up by its primary key (its
symbol), resulting in many JNDI calls and database access calls. It would be better
if we could streamline this into a single call.

◆ Recipe

Returning a collection of data requires you to add some specific helper methods
to the EJB home interface. In the home interface of a bean, define a finder
method that returns a java.util.Collection instance instead of a single instance
of an entity bean. The following is the home interface of the PortfolioHolding
EJB. This EJB represents a particular stock held in a user’s portfolio:

public interface PortfolioHoldingHome extends EJBHome
{
 public PortfolioHolding create(PortfolioHoldingVO holding)

96 CHAPTER 3

Working with data
 throws CreateException, RemoteException;

 public PortfolioHolding findByPrimaryKey(HoldingKey primaryKey)
 throws FinderException, RemoteException;

 public Collection findByPortfolioName(String portfolioName)
 throws FinderException, RemoteException;
}

The last method declared in the interface, findByPortfolioName(), tells the con-
tainer to return a set of PortfolioHolding instances. Listing 3.12 contains the par-
tial bean implementation class showing the implementation of this method.
Notice that we are populating a Collection with the primary keys for EJB
instances and not the actual data. The EJB container will take care of instantiating
and returning the actual EJBs to the calling program. The implemented method is
renamed ejbFindByPortfolioName(), indicating to the container that this method
is from the home interface.

public class PortfolioHoldingBean implements EntityBean
{
 public Collection ejbFindByPortfolioName(String portfolioName)
 throws ObjectNotFoundException
 {
 ArrayList array = new ArrayList();
 PreparedStatement ps = null;
 Connection con = null;
 HoldingKey key = null;

 try {

 String query = "select portfolioName,symbol "
 + "from ejbPortfolioHolding where portfolioName=?";

 con = getConnection();
 ps = con.prepareStatement(query);

 ps.setString(1, portfolioName);
 ps.executeQuery();

 ResultSet rs = ps.getResultSet();

 while(rs.next()) {
 key = new HoldingKey();
 key.portfolioName = rs.getString(1);
 key.symbol = rs.getString(2);
 array.add(key);
 }
 }
 catch (SQLException sqe) {

Listing 3.12 PortfolioHoldingBean.java

Sets up
the query

Executes the
statement and

retrieves the
results

Modeling one-to-one entity data relationships 97

 throw new EJBException (sqe);
 }
 finally {
 try{
 if(ps!=null) ps.close();
 if(con!=null) con.close();
 }
 catch(SQLException e){}
 }

 return array;
 }
}

◆ Discussion

Finder methods are easily added to EJB home interfaces. However, it is important
to remember how useful a carefully crafted finder method is to your application.
Finder methods should be used to improve your code, replacing EJB lookups
when possible. For example, instead of looking up entity beans one at a time, you
can write a finder method to return a collection of beans.

 In the case of a BMP bean, the finder method returns a Collection instance
full of the primary keys for the entity bean matching the query represented by the
method. The container will replace each primary key with the entity bean
instance it represents. We will cover the creation of finder methods without using
SQL later in the chapter.

◆ See also

3.1—Using a data source

3.12—Using EJB-QL to create custom finder methods

3.7 Modeling one-to-one entity data relationships

◆ Problem

You want to model a one-to-one data relationship using entity beans.

◆ Background

As you model more of your data with entity beans, you will eventually want to
model some of the data relationships with entity beans as well. For instance, a
stock purchase application contains a one-to-one relationship between owner data

98 CHAPTER 3

Working with data
and address data. With the EJB 2.0 specification release, entity beans can model
one-to-one data relationships. Creating entity relationships requires you to follow
specific configuration and coding rules detailed by the EJB specification.

◆ Recipe

To create a one-to-one relationship, you must define two entity beans that contain
methods for setting/getting an instance of the other bean. For this recipe, we will
use the OwnerBean and AddressBean entity beans. For example, the OwnerBean
declares setAddress() and getAddress() as methods, and the AddressBean
declares setOwner() and getOwner() as methods. These methods create the one-
to-one relationship of these beans.

 Listing 3.13 contains the source for the OwnerBean EJB. Listing 3.14 shows the
source for the AddressBean.

public abstract class OwnerBean implements EntityBean
{
 abstract public java.lang.String getOwnerName();
 abstract public void setOwnerName(java.lang.String val);
 abstract public java.sql.Date getLastAccess();
 abstract public void setLastAccess(java.sql.Date val);
 abstract public Address getAddress();
 abstract public void setAddress(Address address);

 //bean methods not shown
}

public abstract class AddressBean implements EntityBean
{
 abstract public String getAddressField();
 abstract public void setAddressField(String val);
 abstract public Owner getOwner();
 abstract public void setOwner(Owner owner);

 //bean methods not shown
}

Finally, you must describe in the assembly descriptor of the ejb-jar.xml file the
entity relationship between the OwnerBean and the AddressBean (see listing 3.15).

Listing 3.13 OwnerBean.java

Listing 3.14 AddressBean.java

Relates the
owner to the
address

Relates the address
to the owner

Modeling one-to-one entity data relationships 99

 <ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>OwnerEJB</ejb-name>
 <local-home>one2oneRelation.OwnerHome</local-home>
 <local>one2oneRelation.Owner</local>
 <ejb-class>one2oneRelation.OwnerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>OwnerBean</abstract-schema-name>
 <cmp-field>
 <field-name>ownerName</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>lastAccess</field-name>
 </cmp-field>
 <primkey-field>ownerName</primkey-field>
 </entity>

 <entity>
 <ejb-name>AddressEJB</ejb-name>
 <local-home>one2oneRelation.AddressHome</local-home>
 <local>one2oneRelation.Address</local>
 <ejb-class>one2oneRelation.AddressBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>AddressBean</abstract-schema-name>
 <cmp-field>
 <field-name>addressField</field-name>
 </cmp-field>
 <primkey-field>addressField</primkey-field>
 </entity>
 </enterprise-beans>
 <assembly-descriptor>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Owner-Address</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Owner-Has-Address
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>OwnerEJB</ejb-name>
 </relationship-role-source>

Listing 3.15 Deployment descriptor

Lists persistent
fields of the
OwnerBean

Lists persistent fields
of the AddressBean

Describes the
roles of the

beans in the
relationship

100 CHAPTER 3

Working with data
 <cmr-field>
 <cmr-field-name>address</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>

 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Address-Belongs-To-Owner
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>

 <relationship-role-source>
 <ejb-name>AddressEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>owner</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>

 </ejb-relation>

 </relationships>
</assembly-descriptor>
<ejb-jar>

◆ Discussion

As with any other CMP beans, we must describe which fields of the bean are persis-
tent fields. Both the OwnerBean and AddressBean declare persistent fields, but also
notice the absence of the one field from each bean. The OwnerBean does not declare
its address field, nor does the AddressBean declare its owner field persistent. Fields
used to create the relationship are moved to the <relationship/> section.

 Each bean participating in a relationship has a role in that relationship. The
entire relationship is described in the <relationships/> section of the ejb-jar.xml.
Inside that tag, you can add <ejb-relation/> elements that describe the roles
played by each bean in a relationship. In this case, we describe each role with a
name, a multiplicity, and the field that establishes the link to the other bean
(address and owner).

 The container uses these relationship descriptions to enforce the relations
between beans. For example, if you attempt to set an instance of the OwnerBean
into two or more AddressBean instances, the container will stop you.

◆ See also

2.14—Adding entity relation XML to the deployment descriptor

3.2—Creating EJB 2.0 container-managed persistence

Indicates which field
establishes the
relationship

Creating a one-to-many relationship for entity beans 101

3.8—Creating a one-to-many relationship for entity beans

3.9—Using entity relationships to create a cascading delete

3.10—Developing noncreatable, read-only entity beans

3.8 Creating a one-to-many relationship for entity beans

◆ Problem

You want to model a one-to-many data relationship in a database using entity
beans.

◆ Background

As you model more of your data with entity beans, you will start to model certain
data relationships as well. For example, owner entity data can be related to a set of
portfolio entity data. With the EJB 2.0 specification release, entity beans can now
handle one-to-many data relationships. Creating entity relationships lets you
model table joins in the database and avoid implementing code to create and
manage the relationships.

◆ Recipe

To create a one-to-many relationship, you must define two entity beans. For this
recipe, we will again use the OwnerBean EJB and the PortfolioBean EJB (both CMP
entity beans), as in recipe 3.7. Both beans contain methods for setting/getting an
instance of the other bean. For example, the OwnerBean declares setPortfolio()
and getPortfolio() as methods. And the PortfolioBean declares setOwner() and
getOwner() as methods. These methods create the one-to-many relationship of
these beans.

 Listing 3.16 shows the source for the OwnerBean EJB. Listing 3.17 contains the
definition of the PortfolioBean EJB.

public abstract class OwnerBean implements EntityBean
{
 abstract public java.lang.String getOwnerName();
 abstract public void setOwnerName(java.lang.String val);
 abstract public java.sql.Date getLastAccess();
 abstract public void setLastAccess(java.sql.Date val);
 abstract public Collection getPortfolios();

Listing 3.16 OwnerBean.java

102 CHAPTER 3

Working with data
 abstract public void setPortfolios(Collection portfolios);

 //bean methods not shown
}

public abstract class PortfolioBean implements EntityBean
{
 abstract public String getPortfolioName();
 abstract public void setPortfolioName(String val);
 abstract public double getCashValue();
 abstract public void setCashValue(double val);
 abstract public Owner getOwner();
 abstract public void setOwner(Owner owner);

 //bean methods not shown
}

Finally, you must describe the entity relationship between the OwnerBean and
AddressBean in the assembly descriptor of the ejb-jar.xml file (see listing 3.18).
Notice that the bean deployment descriptors are normal CMP entity bean sec-
tions, except for missing one persistent field. The missing field is the one used to
create the entity relationship.

<ejb-jar>
 <enterprise-beans>
 <entity>
 <ejb-name>OwnerEJB</ejb-name>
 <local-home>cascadeDelete.OwnerHome</local-home>
 <local>cascadeDelete.Owner</local>
 <ejb-class>cascadeDelete.OwnerBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>OwnerBean</abstract-schema-name>
 <cmp-field>
 <field-name>ownerName</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>lastAccess</field-name>
 </cmp-field>

Listing 3.17 PortfolioBean.java

Listing 3.18 Deployment descriptor

Relates the
owner to the

portfolios

Relates the
portfolio to
the owner

Lists persistent
fields of the
OwnerBean

Creating a one-to-many relationship for entity beans 103

 <primkey-field>ownerName</primkey-field>
 </entity>

 <entity>
 <ejb-name>PortfolioEJB</ejb-name>
 <local-home>cascadeDelete.PortfolioHome</local-home>
 <local>cascadeDelete.Portfolio</local>
 <ejb-class>cascadeDelete.PortfolioBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>PortfolioBean</abstract-schema-name>
 <cmp-field>
 <field-name>portfolioName</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>cashValue</field-name>
 </cmp-field>
 <primkey-field>portfolioName</primkey-field>
 </entity>
 </enterprise-beans>

 <assembly-descriptor>
 <relationships>
 <ejb-relation>
 <ejb-relation-name>Owner-Portfolio</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Owner-Has-Portfolios
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>OwnerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>portfolios</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Portfolio-Has-Owner
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <cascade-delete/>
 <relationship-role-source>
 <ejb-name>PortfolioEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>owner</cmr-field-name>

Lists persistent
fields of the
PortfolioBean

Describes the
roles of the
beans in the
relationship

Indicates
which field
establishes the
relationship

104 CHAPTER 3

Working with data
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>
 </relationships>
 </assembly-descriptor>
</ejb-jar>

◆ Discussion

As with any other CMP beans, you must describe which fields of the bean are
persistent fields. Both the OwnerBean and PortfolioBean declare fields persis-
tent, but also notice the absence of the one field from each bean. The Owner-
Bean does not declare its portfolios field, nor does the PortfolioBean declare
its owner field persistent. Fields used to create the relationship are moved to the
<relationship/> section.

 Each bean participating in a relationship has a role in that relationship. The
entire relationship is described in the <relationships/> section of the ejb-jar.xml.
Inside that tag, you can add <ejb-relation/> elements that describe the roles
played by each bean in a relationship. In this case, we describe each role with a
name, a multiplicity, and the field that establishes the link to the other bean (port-
folios and owner). In the case of the owner, the <cmr-field/> must indicate a type
of java.util.Collection (because this is a one-to-many relationship).

◆ See also

2.14—Adding entity relation XML to the deployment descriptor

3.7—Modeling one-to-one entity data relationships

3.9—Using entity relationships to create a cascading delete

3.10—Developing noncreatable, read-only entity beans

3.9 Using entity relationships
to create a cascading delete

◆ Problem

After modeling data relationships with entity beans, you want to add the ability to
perform a cascading delete.

Using entity relationships 105
to create a cascading delete
◆ Background

Relational databases have the ability to constrain related data to the point where,
if one part of a relationship is deleted, the other part will also be deleted (called a
cascading delete). Cascading deletes are a valuable timesaving tool when you’re
working with data. In addition, they are an essential part of maintaining the refer-
ential integrity of your data within the database. Now that entity beans can model
data relationships, you should also create entity beans to handle cascading
deletes. Be sure to read recipe 3.7 before using this recipe.

◆ Recipe

To create a cascading delete, you first need a relationship between two entity
beans. For this example, we are examining a relationship between an Owner entity
EJB (the one) and its potentially many Portfolio entity beans (the many).
Listing 3.19 contains a partial source for the OwnerBean class. The OwnerBean mod-
els the data of an owner of several equity portfolios.

public abstract class OwnerBean implements EntityBean
{
 abstract public java.lang.String getOwnerName();
 abstract public void setOwnerName(java.lang.String val);
 abstract public java.sql.Date getLastAccess();
 abstract public void setLastAccess(java.sql.Date val);
 abstract public Collection getPortfolios();
 abstract public void setPortfolios(Collection portfolios);

 //bean methods not shown
}

Listing 3.20 contains the partial source of the PortfolioBean class. The Portfolio-
Bean EJB models a set of data that makes up a portfolio owned by an owner.

public abstract class PortfolioBean implements EntityBean
{
 abstract public String getPortfolioName();
 abstract public void setPortfolioName(String val);
 abstract public double getCashValue();
 abstract public void setCashValue(double val);
 abstract public Owner getOwner();

Listing 3.19 OwnerBean.java

Listing 3.20 PortfolioBean.java

Relates the owner
to portfolios

106 CHAPTER 3

Working with data
 abstract public void setOwner(Owner owner);

 //bean methods not shown
}

Since the relationship has already been modeled in recipe 3.8, we need only add
the cascade delete tag, <cascade-delete/>, to the deployment descriptor, as
shown in listing 3.21.

<ejb-jar>
 <enterprise-beans>

 </enterprise-beans>

<assembly-descriptor>

 <relationships>
 <ejb-relation>
 <ejb-relation-name>Owner-Portfolio</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Owner-Has-Portfolios
 </ejb-relationship-role-name>
 <multiplicity>one</multiplicity>
 <relationship-role-source>
 <ejb-name>OwnerEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>portfolios</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 Portfolio-Has-Owner
 </ejb-relationship-role-name>
 <multiplicity>many</multiplicity>
 <cascade-delete/>
 <relationship-role-source>
 <ejb-name>PortfolioEJB</ejb-name>
 </relationship-role-source>
 <cmr-field>
 <cmr-field-name>owner</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
 </ejb-relation>

Listing 3.21 Deployment descriptor

Relates the portfolio
to the owner

Indicates the
relationship supports
cascade deletes

Developing non-creatable, read-only entity beans 107

 </relationships>
 </assembly-descriptor>
</ejb-jar>

◆ Discussion

A cascading delete is created by adding the element <cascade-delete/> to the
relationship role describing an EJB relationship in the deployment descriptor. A
cascading delete can be used only with one-to-one or one-to-many relationships,
not with many-to-many relationships. When the EJB container removes an EJB par-
ticipating in an EJB relationship marked with a cascade delete tag, it will automat-
ically remove the data represented in the relation. For example, when an
OwnerBean entity bean is removed from the database, all related PortfolioBean
data will also be removed.

 You do not have to set up your persistent tables to support cascading deletes
(in the database)—the container will manage everything. Combining cascading
deletes with entity relationships is an excellent way to maintain referential
integrity in your database. You can be sure that no data is left without its
related counterparts.

◆ See also

3.2—Creating EJB 2.0 container-managed persistence

3.10—Developing noncreatable, read-only entity beans

3.10 Developing noncreatable, read-only entity beans

◆ Problem

You want to create an entity bean that is read only and that cannot be created by
any method.

◆ Background

Entity beans represent a data model existing in a data store. However, in some sit-
uations, you may want to present the data model as read-only and noncreatable.
For example, suppose you want an application to compare passwords entered by
users for validation against those stored in the database, but you don’t want to
allow updates to those passwords. In a case like this, you need an entity bean that
could not be created by a user and that only allows the user to look up existing

108 CHAPTER 3

Working with data
instances. To accomplish this, you must create an entity bean that cannot be
created by any program code whatsoever. In addition, you need a way to keep the
entity bean from being removed, even with CMP beans.

◆ Recipe

To complete this recipe, you have to create a home interface without any create
methods for the EJB. In addition, the EJB class file should throw an exception
from its ejbRemove() method. The following is the home interface for the Pass-
wordBean EJB. This EJB contains a username and password combination corre-
sponding to an application user. Notice that the home interface does not contain
a create method. Without a create method, a client cannot create this type of
bean; it can only look up an instance of the bean.

import java.rmi.RemoteException;
import javax.ejb.*;

public interface Password extends EJBObject {
 public boolean isValid(String password)throws RemoteException;
}

Listing 3.22 shows the partial source of the PasswordBean EJB. The bean class
implements everything that a normal entity bean would need. However, in the
ejbRemove() method, the bean throws an exception, preventing the entity data
from being removed.

public class PasswordBean implements EntityBean {

 public void ejbStore() {
 }

 public void ejbLoad(){
 }

 abstract public String getOwnerName();
 abstract public void setOwnerName(String ownerName);

 abstract public String getPassword();
 abstract public void setPassword(String password);

 public void ejbRemove()throws RemoveException{
 throw new RemoveException("Remove Method Not allowed");
 }

 public boolean isValid(String inPassword){
 return (this.password.equals(password));
 }
}

Listing 3.22 PasswordBean.java

Declares
data
accessors

Prevents
data removal

Invoking a stored procedure from an EJB 109

Finally, the remote interface (or the local interface if you need it) declares the
isValid() method only available to clients of this EJB. This effectively prevents
any of the entity data from being updated by the client. The following is the
remote interface for this bean:

import java.rmi.RemoteException;
import javax.ejb.*;

public interface Password extends EJBObject {
 public boolean isValid(String password)throws RemoteException;
}

◆ Discussion

The following two items make the PasswordBean read only:

■ The home interface does not declare a create method.

■ The remote interface does not declare any methods that update entity data.

With these measures in place, the only way to create entity data for these beans is
to manually add data to the database. In the case of the application, a user man-
agement system takes care of adding users and passwords to the application.
Using a read-only EJB like this one is a good way to secure sensitive data from the
remaining part of the application. This solution will work equally well for both
container-managed and bean-managed entity beans.

◆ See also

3.2—Creating EJB 2.0 container-managed persistence

3.7—Modeling one-to-one entity data relationships

3.8—Creating a one-to-many relationship for entity beans

7.6—Preventing access to entity data

3.11 Invoking a stored procedure from an EJB

◆ Problem

You want to invoke a stored procedure from an EJB.

◆ Background

Stored procedures are a good way to improve the performance of an enterprise
application. The stored procedure can encapsulate database work that is more
easily performed by the database, rather than your application (through JDBC).

110 CHAPTER 3

Working with data
◆ Recipe

Invoking a stored procedure requires you to use a BMP bean and to know how to
use the stored procedure through JDBC programming. For example, examine the
partial source of the PricingBean session bean shown in listing 3.23. It uses a
stored procedure to determine the price of a particular equity.

public class PricingBean implements SessionBean
{
 //other bean methods and attributes not shown

 public double getStoredProcPrice(String symbol){

 Connection conn = null;
 CallableStatement cstmt = null;
 double price = 0;

 try{
 conn = getConnection();
 cstmt = conn.prepareCall ("{ call getEquityPrice (?,?)}");

 cstmt.setString(1, symbol);
 cstmt.registerOutParameter(2, Types.DOUBLE);

 cstmt.execute();

 price = cstmt.getDouble(2);

 System.out.println("The Price is: " + price);

 cstmt.close();
 conn.close();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 finally {
 try{
 if(cstmt!=null) cstmt.close();
 if(conn!=null) conn.close();
 }
 catch(SQLException e){}
 }
 return price;
 }
}

Listing 3.23 PricingBean.java

Sets up the call to the
stored procedure

Executes the call and
retrieves a value

Using EJB-QL to create custom finder methods 111

◆ Discussion

To execute a stored procedure, you have to first set up a JDBC CallableStatement
object. After acquiring a connection, build a CallableStatement instance using
the prepareCall() method, passing in a String describing the statement and pro-
cedure. With the example statement in hand, you need to pass in a single input
parameter (the equity symbol) and also register an output parameter (a double
indicating the price returned).

 Input parameters are populated in the same manner as using a PreparedState-
ment instance. For output parameters, you must use the registerOutParameter()
method, which lets you declare the type of the return value as well. After setup, all
you need to do is call the CallableStatement’s execute() method and retrieve the
result using the getDouble() method (the type of our output parameter).

◆ See also

3.1—Using a data source

3.12 Using EJB-QL to create custom finder methods

◆ Problem

When writing entity bean create and finder methods, you want the container to
manage the SQL queries and data access.

◆ Background

Every entity bean home interface has a mandatory findByPrimaryKey() method.
The EJB specification has always allowed you to specify custom finder methods in
the home interface for more specific and different lookups. However, in EJB 1.1
the custom finder relied on vendor-specific implementations for CMP beans. This
reduced the portability of your EJBs and the power of custom finder methods. In
EJB 2.0, the specification added a standard EJB query language (EJ-BQL). Using EJ-
BQL to replace the implementation of a finder method does not in any way affect
the source of an entity bean.

◆ Recipe

To add finder methods to a CMP entity bean, you need to use EJ-BQL. For this rec-
ipe, we are going to add some customer finder methods to the EquityBean CMP

112 CHAPTER 3

Working with data
entity bean that we have used in other recipes in this chapter. The home interface
is shown in listing 3.24.

public interface EquityHome extends EJBHome
{
 public Equity create(String symbol, String description)
 throws CreateException, RemoteException;

 public Equity findByPrimaryKey(String primaryKey)
 throws FinderException, RemoteException;

 public Collection findHighPriced(double minPrice)
 throws FinderException, RemoteException;

 public Collection findHighPricedLowPE(double minPrice,double PE)
 throws FinderException, RemoteException;
 }

The finder methods specified in the home interface will not appear in the bean
class. In fact, the bean source remains unchanged, specifying only its abstract data
getters and setters. The real changes for finder methods take place in the entity
bean deployment descriptor, as shown in listing 3.25.

 <entity>
 <ejb-name>EBQL</ejb-name>
 <home>EBQL.EquityHome</home>
 <remote>EBQL.Equity</remote>
 <ejb-class>EBQL.EquityBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>EquityBean</abstract-schema-name>
 <cmp-field>
 <field-name>symbol</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>description</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>lastTrade</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>change</field-name>

Listing 3.24 EquityHome.java

Listing 3.25 Deployment descriptor

Adds custom
finder methods

Declares the
bean CMP

Declares the EJB 2.x compliant

Using EJB-QL to create custom finder methods 113

 </cmp-field>
 <cmp-field>
 <field-name>volume</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>marketCap</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>pe</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>avgVolume</field-name>
 </cmp-field>
 <primkey-field>symbol</primkey-field>
 <query>
 <query-method>
 <method-name>findHighPriced</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 <![CDATA[SELECT OBJECT(a) FROM EquityBean AS a
 WHERE a.lastTrade > ?1]]>
 </ejb-ql>
 </query>
 <query>
 <query-method>
 <method-name>findHighPricedLowPE</method-name>
 <method-params>
 <method-param>double</method-param>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 <![CDATA[SELECT OBJECT(a) FROM EquityBean AS
 a WHERE a.lastTrade > ?1 and a.pe < ?2]]>
 </ejb-ql>
 </query>
 </entity>

◆ Discussion

Since the 2.0 release of the EJB specification, EJBs can make use of EJB-QL. This
query language is an SQL-like syntax that allows you to describe a query to the EJB
container for finder and create methods. Using EJB-QL lets the container perform
the actual database query to retrieve entity data, which is usually more efficient

Describes the
findHighPriced()
method

Describes the
findHighPricedLowPE()
method

114 CHAPTER 3

Working with data
and portable. Let’s examine a query method description from the deployment
descriptor more closely:

 <query>
 <query-method>
 <method-name>findHighPriced</method-name>
 <method-params>
 <method-param>double</method-param>
 </method-params>
 </query-method>
 <ejb-ql>
 <![CDATA[SELECT OBJECT(a) FROM EquityBean AS a WHERE a.lastTrade > ?1]]>
 </ejb-ql>
 </query>

Each custom finder method should be described by a <query/> block in the
deployment descriptor for each bean. In the <query/> tag, you specify the method
name and its parameter types (in the order that they appear in the method).
Lastly, you specify the EJB-QL string that represents the entity bean query that the
method should execute to return an entity bean or beans to the EJB client.

 An EJB-QL string resembles a JDBC prepared statement in that arguments are
represented by a question mark (?). However, in EJB-QL you also add a number
next to the ? that specifies which argument it represents (first, second, third, and
so forth). EJB-QL is not hard to use, but it also does not encompass as many fea-
tures as SQL. Examining our statements, you can see they have three parts:

■ The SELECT clause can return any EJB object, CMP, or CMR field. When
returning an EJB, the statement must use the OBJECT() operator to sur-
round the return type. If returning a field, you can simply state the field,
like SELECT a.symbol. In the SELECT part, you can also make use of the DIS-
TINCT keyword, as in SELECT DISTINCT OBJECT(a). This will cause each
returned value to be unique, with no duplicates.

■ The FROM clause allows you to select the scope to pull data from. For
instance, in our queries we are extracting data from the EquityBean EJBs.
The AS keyword lets you rename the bean with an identifier. The identifier
cannot be a name that is already used for an EJB name or abstract schema
name (and the identifier is not case sensitive).

■ The WHERE clause lets you drill down to specific data by setting up condi-
tions. The data returned from the statement must meet the conditions in
this clause. In our example, the lastTrade field of an EquityBean EJB should
be greater than our input parameter.

For more information on EJB-QL, go to http://www.javasoft.com.

Persisting entity data into a database view 115

◆ See also

2.11—Generating finder methods for entity home interfaces

3.2—Creating EJB 2.0 container-managed persistence

3.13 Persisting entity data into a database view

◆ Problem

You want to use a database view to represent the table in which entity beans load
and store data.

◆ Background

In some situations, entity data crosses over multiple tables. When using a CMP
entity bean, you cannot persist into more than one table or load from a table join.
However, using a database view and a BMP bean, you can model data from multi-
ple tables with a single entity bean. To do this requires you to correctly configure
your BMP bean and interact with the database view through JDBC calls.

◆ Recipe

To represent data from multiple tables (like a table join) with a single entity bean,
create a database view and use it to create entity beans. The following is the SQL
that creates a sample view for this recipe:

DROP VIEW equityPriceView;
create view equityPriceView as select symbol,Description,LastTrade from

equities;

We define our CMP bean exactly as we would if the bean were working with a nor-
mal table. The bean class will still define the abstract methods to define the data
elements for the bean:

public abstract class EquityBean implements EntityBean
{
 abstract public String getSymbol();
 abstract public void setSymbol(String symbol);

 abstract public String getDescription();
 abstract public void setDescription(String description);

 abstract public double getLastTrade();
 abstract public void setLastTrade(double lastTrade);
}

116 CHAPTER 3

Working with data
Listing 3.26 shows the deployment descriptor for the bean. Note that there is no
change from a normal CMP deployment.

 <entity>
 <ejb-name>cmpViewEquity</ejb-name>
 <home>CMPView.EquityHome</home>
 <remote>CMPView.Equity</remote>
 <ejb-class>CMPView.EquityBean</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>java.lang.String</prim-key-class>
 <reentrant>False</reentrant>
 <cmp-version>2.x</cmp-version>
 <abstract-schema-name>EquityBean</abstract-schema-name>
 <cmp-field>
 <field-name>symbol</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>description</field-name>
 </cmp-field>
 <cmp-field>
 <field-name>lastTrade</field-name>
 </cmp-field>
 <primkey-field>symbol</primkey-field>
 </entity>

The only difference comes in the container deployment. Using the vendor-spe-
cific method, you normally bind the abstract schema name from the deployment
descriptor to a physical table. However, in this case you bind the bean to your
database view. You also do not want the container to try to create the table,
because it is really a view. When setting up the vendor descriptor, be sure to:

■ Use the column names from the view, not the tables (if they are different).

■ Tell the EJB container not to create the table; the view has already been con-
structed in the database.

◆ Discussion

Because CMP entity beans cannot persist into multiple tables (like a join), EJB
developers are stuck sometimes creating an unnecessary extra entity bean or com-
promising their data model. One way around this problem is to construct a data-
base view in which to persist the beans. Developing a bean to use a database view
is no different than developing a normal CMP entity bean. The main difference
lies in the vendor-specific deployment descriptor that tells the container how to

Listing 3.26 Deployment descriptor

Sending notifications upon entity data changes 117

map an entity bean to a physical database schema. When persisting to a view, you
need to map to its columns, not the tables, and also inform the container not to cre-
ate the tables (the view should be constructed before deployment of any beans).

◆ See also

3.2—Creating EJB 2.0 container-managed persistence

3.14 Sending notifications upon entity data changes

◆ Problem

You want your enterprise beans to notify certain listeners when data changes.

◆ Background

Many enterprise applications are dependent on other systems for completing a
workflow. Actually, enterprise applications many times represent steps within an
enterprise workflow. In these situations, data represented by your entity beans
may also be shared by (or be important to) other applications. These outside
applications might need to know when the data is changed in order to begin their
steps in the workflow. Sending notifications is best accomplished using a JMS
implementation accessed from the application server running your EJB container.

◆ Recipe

To notify outside listeners of entity changes, you will use a JMS publisher. Before
looking at the bean source, let’s examine the object used to publish messages into
a JMS system (listing 3.27). It publishes provided messages to a particular JMS
topic created in the application server (see your vendor’s documentation for set-
ting up JMS topics in your application server). This publisher provides access to a
JMS topic in a Weblogic application server.

public class JMSPublisher
{
 private TopicConnection topicConnection = null;
 private TopicSession topicSession = null;
 private TopicPublisher topicPublisher = null;
 private Topic topic = null;
 private TopicConnectionFactory topicFactory = null;
 private String url="t3://localhost:7001";

 private Context getInitialContext() throws NamingException {

Listing 3.27 JMSPublisher.java

118 CHAPTER 3

Working with data
 try {
 // Get an InitialContext
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, url);

 return new InitialContext(props);
 }
 catch (NamingException ne) {
 System.out.println("Could not connect "
 + "to the application server");
 throw ne;
 }
 }

 public JMSPublisher(String factoryJNDI, String topicJNDI)
 throws JMSException, NamingException {

 // Get the initial context
 Context context = getInitialContext();

 // Get the connection factory
 topicFactory = (TopicConnectionFactory)
 context.lookup(factoryJNDI);

 // Create the connection
 topicConnection = topicFactory.createTopicConnection();

 // Create the session
 TopicSession = topicConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 // Look up the destination
 topic = (Topic)context.lookup(topicJNDI);

 // Create a publisher
 topicPublisher = topicSession.createPublisher(topic);
 }

 public void publish(String msg) throws JMSException {

 // Create a text message
 TextMessage message = topicSession.createTextMessage();
 message.setText(msg);

 // Publish the message
 topicPublisher.publish(message);
 }

 public void close() throws JMSException {
 topicSession.close();
 topicConnection.close();
 }

}

Builds an
InitialContext instance

Establishes a
connection to

the topic

Publishes a message
to the topic

Sending notifications upon entity data changes 119

With an object available to use for sending JMS messages, you can add calls to its
publish() method whenever you want to indicate a change has occurred in an
entity bean. For example, the EquityBean entity bean in listing 3.28 sends mes-
sages upon data change. The bean also implements a publishMessage() method
to encapsulate calls to the JMSPublisher instance.

public class EquityBean implements EntityBean {

 private JMSPublisher publisher = null;

 private void publishMessage(String msg)
 {
 try{
 if(publisher=null)
 publisher = new JMSPublisher("BookJMSFactory","BookJMSTopic");

 System.out.println("Publishing message: "+msg);
 publisher.publish(msg);
 publisher.close();
 }
 catch(Exception e){

 e.printStackTrace();
 }
 }

 public void ejbRemove()throws RemoveException{
 //implementation not shown
 publishMessage("Removed Equity from Database:"+symbol);
 }

 public String ejbCreate(String symbol, String description)
 throws CreateException
 {
 //implementation not shown

 publishMessage("Inserted Equity into Database:"+symbol);
 }

 public void setEquity(EquityVO equity){

 //implementation not shown
 publishMessage("Changed the Equity in the Database:"+symbol);
 }
}

◆ Discussion

Now that you have an EJB that publishes JMS messages, any JMS clients you have
will be able to pick up the entity messages as needed. You can use a solution like

Listing 3.28 EquityBean.java

Encapsulates
calls to the
publisher

Sends a
message

120 CHAPTER 3

Working with data
this one to provide notification of data changes, and even to track the state of
data. However, you should not use a system like this one to compute the end
result of several data updates unless you add functionality to guarantee the cor-
rect ordering of messages. If the JMS client is allowed to receive messages in any
order, the final state of the data on the client may not match the actual state of
the data.

 This example shows simple JMS code that will get the job done. For more infor-
mation about JMS, visit the JMS site at http://www.javasoft.com.

◆ See also

Chapter 6, “Messaging”

3.15 Creating an interface to your entity data

◆ Problem

You don’t want to expose your entity data directly to the client layer.

◆ Background

For security and ease of use, a session bean should always wrap your entity beans.
This allows you to implement security in the session bean, as well as provide a
local interface only to your entity beans (ensuring that no unauthorized remote
access can occur). Using a session facade also helps shield your client application
from data model changes and provide the most appropriate transactional support
for accessing your entity data.

◆ Recipe

For this recipe, we will use the common session facade design pattern. This pat-
tern wraps all entity bean access with a session bean. Wrapping your entity beans
lets you develop only a local interface for the entity beans, preventing any remote
access to them. For example, the following is the local interface for the Password-
Bean EJB, a bean that manages a username and password combination:

public interface Password extends EJBLocalObject
{
 public boolean isPasswordValid(String password);
}

The entity bean source is the normal CMP entity bean. No changes need to be
made to accommodate the local interface:

Creating an interface to your entity data 121

public abstract class PasswordBean implements EntityBean
{
 private EntityContext ctx;

 abstract public java.lang.String getUserName();
 abstract public void setUserName(java.lang.String val);
 abstract public java.lang.String getPassword();
 abstract public void setPassword(java.lang.String val);
 abstract public java.sql.Date getLastAccess();
 abstract public void setLastAccess(java.sql.Date val);

 public boolean isPasswordValid(String password)
 {
 String passwd = getPassword();
 return password.equals(passwd);
 }
}

In order for clients to access this entity data to do a password comparison, they must
go through a session bean. (Actually, if the client were in the local JVM, it could look
up the entity bean, but you should enforce otherwise.) We developed a session
bean, HelperBean, that provides a login() method for clients to use to access the
entity data for password comparison. Here is the HelperBean EJB partial source:

public class HelperBean implements SessionBean
{

 private SessionContext ctx;
 private PasswordLocalHome passwordHome;

 public boolean login(String userName, String password)
 throws RemoteException {

 Password passwd = null;

 try{

 //use the previously looked up PasswordBean localHome interface
 passwd = passwordHome.findByPrimaryKey(userName);
 return passwd.isPasswordValid(password);
 }
 catch(Exception e){
 throw new RemoteException("Finding Password object failed");
 }

 }
 //other bean methods not shown
}

◆ Discussion

The PasswordBean entity EJB in the recipe implements only a local and a local
home interface. Using only the local interface prevents any remote creation or

122 CHAPTER 3

Working with data
lookup of the entity bean. In order for remote clients to access the entity data,
they need access through a wrapper session bean. The session bean can then man-
age user session data, transactions, and more. The session facade pattern is widely
accepted by the enterprise development community, and you should use it for all
of your entity bean access.

◆ See also

3.2—Creating EJB 2.0 container-managed persistence

7.6—Preventing access to entity data

3.16 Retrieving information about entity data sets

◆ Problem

You want to query your persistent system for information about entity data with-
out creating entity beans or using JDBC.

◆ Background

When using entity beans, one of the common problems you’ll encounter is
retrieving information about the data that entity beans represent. For example,
you want to know how many rows of data exist of a certain type. Using multiple
entity bean lookups (either directly or through finder methods) will certainly pro-
vide you with your desired information but will cost you dearly in performance as
your data set grows. The EJB 2.0 specification details a new solution to this prob-
lem. It allows you to declare methods in the home interface of an EJB (called
home methods) that return information about the entity data without returning
an EJB instance.

◆ Recipe

To find information about entity data sets, add an EJB home method to the entity
bean. For example, the following EquityHome home interface (to the EquityBean)
declares a method, getCountOfSymbols(), as a home method:

public interface EquityHome extends EJBHome
{
 public Equity create(String symbol, String description)
 throws CreateException, RemoteException;

 public Equity findByPrimaryKey(String primaryKey)
 throws FinderException, RemoteException;

Retrieving information about entity data sets 123

 //home method
 public int getCountOfSymbols() throws RemoteException;
}

Listing 3.29 contains the EquityBean EJB source, showing the implementation of
the home method. For this recipe, the EquityBean EJB is a BMP bean. Notice that
the home method is prefixed with ejbHome. This indicates to the container that
this is a home method and can be executed directly from the home object. The
remaining source would remain unchanged and is not shown.

public class EquityBean implements EntityBean
{
 //other bean methods not shown

 public int ejbHomeGetCountOfSymbols()
 {
 System.out.println("Executing Home Method: getCountOfSymbols");

 PreparedStatement ps = null;
 Connection con=null;
 int count=0;

 try {

 String query="select count(*) from EQUITIES";
 con = getConnection();
 ps = con.prepareStatement(query);
 ps.executeQuery();

 ResultSet rs = ps.getResultSet();
 if(rs.next())
 {
 count = rs.getInt(1);
 }
 }
 catch (SQLException sqe) {
 throw new EJBException (sqe);
 } finally {
 try{
 if(ps != null) ps.close();
 if(con != null) con.close();
 }
 catch(SQLException e){}
 }
 return count;
 }
}

Listing 3.29 EquityBean.java

124 CHAPTER 3

Working with data
◆ Discussion

Home methods let clients retrieve information about entity data without return-
ing an instance of the entity bean. When declaring home methods in the home
interface, keep in mind that the name of the method must not start with create,
remove, or find. Home methods are designed to operate over the entire set of
entity data represented by the bean class. As opposed to returning information
about the number of symbols (getCountOfSymbols()), you could apply a change
to the entire set of data. For example, an entire set of bank account data could be
credited with an amount of data. Home methods are meant to be convenience
methods used in place of retrieving the entire set of data to make changes across
the whole set.

3.17 Decreasing the number of calls to an entity bean

◆ Problem

You want to increase the performance of your clients that access fields of entity
beans.

◆ Background

Entity beans are a good way to encapsulate database access and provide a main-
tainable and flexible persistence layer. However, if used improperly, they can start
to affect the performance of your application. For instance, after looking up an
entity bean instance, you might have to invoke several getter methods to access all
its data attribute values. Each of the getter invocations could take a hit to the data-
base to retrieve the value. When using entity beans, you want to avoid having
them become the performance bottleneck of your applications.

◆ Recipe

To improve your client’s performance, instead of accessing entity bean methods
one at a time to retrieve all of the entity data, implement a single bulk accessor
method that returns a lightweight value object for the bean. The value object
encapsulates all of the entity data in a single object that can be passed back to a
client (session bean or client layer) with a single method call. For example, revisit-
ing the EquityBean EJB used in other recipes in this chapter, the code in
listing 3.30 lists its value object class.

Decreasing the number of calls to an entity bean 125

public class EquityVO implements Serializable
{
 private String symbol = null;
 private String description = null;
 private double lastTrade = 0.0;

 public String getSymbol()
 {
 return symbol;
 }

 public String getDescription()
 {
 return description;
 }

 public double getLastTrade()
 {
 return lastTrade;
 }

 public void setSymbol(String value)
 {
 symbol = value;
 }

 public void setDescription(String value)
 {
 description = value;
 }

 public void setLastTrade(String value)
 {
 lastTrade = value;
 }
}

After creating the value object, add the bulk accessor method to the entity bean
class. For example, the source in listing 3.31 lists the new EquityBean EJB.

abstract public class EquityBean implements EntityBean {

 abstract public String getSymbol();
 abstract public void setSymbol(String symbol);

 abstract public String getDescription();
 abstract public void setDescription(String description);

Listing 3.30 EquityVO.java

Listing 3.31 EquityBean.java

126 CHAPTER 3

Working with data
 abstract public double getLastTrade();
 abstract public void setLastTrade(double lastTrade);

 public EquityVO getAllData()
 {
 EquityVO vo = new EquityVO();
 vo.setSymbol(getSymbol());
 vo.setDescription(getDescription());
 vo.setLastTrade(getLastTrade());

 return vo;
 }
}

◆ Discussion

Using a value object for an entity bean is a quick and easy way to improve the per-
formance of your EJB applications. For instance, for a large amount of data you
can save several method calls to an entity bean.

 Many developers create value objects by extending a Map class, allowing any
number of future fields to be added to the class. Using a subclass of Map lets you
add and retrieve key/value pairs to the value object as needed using the super
class put() and get() methods.

3.18 Paging through large result sets

◆ Problem

A session bean uses a query that returns an enormous result set—too large to pass
back to a client in one chunk. You would like to page through the data.

◆ Background

Using session beans to query databases via JDBC calls is an effective way to
present data to an EJB client. However, if a query returns hundreds of rows, you
cannot possibly expect your application to return all the data at one time to a
client. Paging through data is an excellent way for clients to navigate through
large result sets.

Implements a
bulk accessor
method

Paging through large result sets 127

◆ Recipe

Creating a page-able session bean requires you to perform a little different JDBC
connection setup. This recipe shows a generic mechanism that you can alter to fit
your needs. The following session bean operates over an SQL statement that is
passed to it by the client. Clients can then use the next() and previous() methods
to return a manageable set of data as needed. Clients would use the bean in the
following order:

1 Create the session bean.

2 Call paginate(), passing in an SQL statement to retrieve data and a state-
ment that counts data.

3 Call next() or previous() as needed.

4 Call cleanup() when you’re through with a particular statement.

Listing 3.32 contains the session bean class.

import java.sql.*;
import java.util.*;
import java.lang.reflect.*;
import javax.ejb.*;

public class PaginationBean implements SessionBean
{
 private int page = 10;
 private ResultSet set = null;
 private int total = 0;
 private Connection con = null;
 private Statement stmt = null;
 private int firstRowNumber = 1;

 /******************************
 *other bean methods not shown *
 ******************************/

 public void paginate(String sql, String countSQL)
 {
 try
 {
 ResultSet temp = executeQuery(countSQL);
 total = temp.getInt(1);
 cleanup();
 set = executeQuery(sql);
 }catch(Exception e){
 set = null;
 e.printStackTrace();

Listing 3.32 PaginationBean.java

Stores the size of
a page of data

Executes the count SQL and
stores the total number of rows

Executes the query SQL
and stores the result set

128 CHAPTER 3

Working with data
 }
 }

 public Object[] next()
 {
 if(total == 0)
 return null;

 Object[] rvalue = null;

 int count = page; //try to return a full page

 try
 {
 //see if we can return a total page,
 // if not get as much as allowed
 if((count + set.getRow()) > total)
 {
 count = total - set.getRow() + 1;
 }

 //if count is zero, we are at the end of the set
 if(count == 0)
 return null;

 //update the current page index
 current++;

 rvalue = new Object[count];

 for(int i = 0; i < count; i++)
 {
 rvalue[i] = buildObject(set.next());
 }

 //reset the first row number variable
 // for previous() comparisons

 if (set.isAfterLast())
 firstRowNumber = total - count + 1;
 else
 firstRowNumber = set.getRow() - count;
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 return rvalue;
 }

 public Object[] previous()
 {
 if(total == 0)
 return null;

 int count = page; //try to return a full page

Builds an object
from a row of data

Returns the
previous page

Paging through large result sets 129

 Object[] rvalue = null;
 try
 {
 if((firstRowNumber - count) < 0)
 {
 count = count - firstRowNumber;
 }

 if(count <= 0)
 return null;

 //decrement the current page index
 current--;

 //test to see if we should be at the beginning
 if((firstRowNumber - count) == 0)
 set.absolute(firstRowNumber - count + 1);
 else
 set.absolute(firstRowNumber - count);

 rvalue = new Object[count];
 for(int i = 0; i < count; i++)
 {
 rvalue[i] = buildObject(set.next());
 }

 firstRowNumber = set.getRow() - count;

 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 return rvalue;
 }

 public int getTotalPages()
 {
 try
 {
 int mod = total % page;

 int result = total/page;

 if(mod != 0)
 return result + 1 + "";
 else
 return result + "";
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

Returns the total
number of pages

130 CHAPTER 3

Working with data
 return –1;
 }

 public void cleanup()
 {
 try{
 if(stmt != null){
 stmt.close();
 stmt = null;
 }
 if(con != null && !con.isClosed())
 {
 con.close();
 }
 }catch(Exception ex) { ex.printStackTrace(); }

 }

 public boolean canNext()
 {
 try{
 return !(set.isAfterLast());
 } catch(Exception e){e.printStackTrace();}
 return false;
 }

 public boolean canPrevious()
 {
 try{
 if(firstRowNumber <= 1)
 return false;
 }catch(Exception e){

 e.printStackTrace();
 return false;
 }
 return true;;
 }

 private ResultSet executeQuery(String sql) throws Exception
 {
 con = null;
 stmt= null;
 ResultSet rs = null;

 con = getConnection();
 stmt = con.createStatement(|#10
 ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE); |#10
 rs = stmt.executeQuery(sql);
 rs.next();

 return rs;
 }

Cleans up the statement
and connection

Tests to see if next()
will return a value

Tests to see if previous()
will return a value

Creates a scrollable
result set

Paging through large result sets 131

 private Connection getConnection()
 {
 //implementation not shown
 }

 private Object buildObject()
 {
 //implementation not shown
 }
}

◆ Discussion

While the code in the solution is lengthy, it is pretty straightforward. There are a
couple of key points to make about this session bean. First, in order to predict the
number of data pages, the session bean requires you to pass in an SQL statement
that returns the row count of the query that will be paginated. Second, the result
set created by executing the query must be scrollable. This is done by creating the
Statement object with the following line of code:

 stmt = con.createStatement(ResultSet.TYPE_SCROLL_INSENSITIVE,
 ResultSet.CONCUR_UPDATABLE);

Once the actual result set is acquired, the next() and previous() methods just
keep track of the database cursor as they scroll through the result set. The only
tricky part is being careful with the beginning and end indexes of the result set.
Both methods use the total number of rows, the page size constant, and the return
value of the getRow() method to determine how much data to return. The
getRow() method of the ResultSet object returns the index number of the cur-
rent row selected.

 Using a page-able mechanism like this one allows your clients to build page-
able tables in their displays. Users can then navigate forward and backward
through the result set as needed. Another convenience method you could easily
add to this bean is a jump() method. A jump method could loop through succes-
sive calls of next() or previous() to reach a certain page of data. Since the bean
knows the total number of pages, this would be a simple exercise.

EJB activities
“You know her, she knows you, but she wants to eat him,
and everyone’s okay with this?”

—Timon from “The Lion King”
133

134 CHAPTER 4

EJB activities
EJBs are hard workers that can perform many activities. In addition to working
with data (covered in chapter 3), EJBs can be used to retrieve environment vari-
ables, access the file system, send email, and more. This chapter also covers two
important improvements added to EJBs with the 2.1 specification: the EJB timer
service, and the use of EJBs as web service endpoints.

You will find the following topics in this chapter:

■ Using environment variables

■ Describing EJBs

■ Providing common methods declarations

■ Reusing trivial implementations

■ Sending synchronous email

■ Using the new EJB 2.1 timer service

■ Creating a web service endpoint

■ Sending a JMS message

■ Building asynchronous processes

■ Using asynchronous processes without JMS

■ Insulating EJB from service changes

■ Creating batch processes

4.1 Retrieving an environment variable

◆ Problem

You want your EJBs to be able to access environment type variables at runtime.

◆ Background

Environment variables are useful for providing constant values to applications
about their runtime environment. Using environment variables can increase the
portability of your EJBs. EJBs that rely on environment entries can customize their
behavior and decrease the need for hardcoded values. Because Java can execute
on many different platforms, you must take special precautions when accessing the
hosting environment of the application. Fortunately, the EJB container provides an
excellent way to supply environment values to executing EJBs. EJBs have the ability
to use environment variables that are specified in their deployment descriptors.

Retrieving an environment variable 135

◆ Recipe

To specify an environment variable that you want your EJB to access, use the <env-
entry> tag in the deployment descriptor. The following XML shows a sample ses-
sion bean descriptor that declares an environment variable CONTACT_URL:

<ejb-jar>
 <enterprise-bean>
 <session>
 <!- - bean description not shown - ->
 <env-entry>
 <description>The url to contact</description>
 <env-entry-name>CONTACT_URL</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>http://thehost/withpath</env-entry-value>
 <env-entry>
 </session>
 </enterprise-bean>
</ejb-jar>

To look up the value of an environment variable from inside the session bean, use
the EJB’s Java Naming and Directory Interface (JNDI) context. You could use the
following code to find the value of the environment variable shown in the previ-
ous XML descriptor:

InitialContext context = new InitialContext();
String contactURL = (String) context.lookup(
 "java:comp/env/CONTACT_URL");

◆ Discussion

The example shown in the recipe retrieves the CONTACT_URL property. The bean
might use the property in order to contact a remote process or other object. Each
<env-entry> in the deployment descriptor must contain at least a name, type, and
value—the description is optional. The type of an environment entry can be
String or any of the primitive type wrapper objects (Integer, Long, Double, Byte,
Float, Boolean, or Short).

To retrieve the value of an entry, you need only perform a simple lookup with
the JNDI context contained by the EJB. Use the context’s lookup() method, pass-
ing it the name of the environment entry you wish to find. Remember that JNDI
names are relative to the standard java:comp/env root.

◆ See also

3.1—Using a data source

136 CHAPTER 4

EJB activities
4.2 Implementing toString() functionality for an EJB

◆ Problem

You want to give your EJBs the ability to describe themselves with a String value
for debugging and logging purposes.

◆ Background

Adding toString() functionality to your EJBs is a quick way to provide an excel-
lent logging and debugging tool for future development work and problem solv-
ing. However, you cannot expose a toString() method remotely, because you
would have to override the method and add a RemoteException (which cannot be
done when overriding a method). Therefore, you must create a new method with
the same functionality.

◆ Recipe

To implement toString() functionality for an EJB, define a method, ejb-
ToString(), that describes the implementing EJB. The ejbToString() method can
be exposed on the remote or local interface to be used by EJB clients. The follow-
ing entity bean remote interface declares the ejbToString() along with some
other attributes:

public interface Equity extends EJBObject{
 public void setEquity(EquityVO equity)throws RemoteException;
 public EquityVO getEquity()throws RemoteException;

 //other methods not shown….

 public String ejbToString()throws RemoteException;
}

The method implementation in listing 4.1 shows how the Equity entity bean
might use the ejbToString() method to describe its attribute values to a client. In
this case, the entity bean makes use of a value object to construct the return
String value.

public String ejbToString(){
 StringBuffer buffer = new StringBuffer();
 EquityVO equity = new EquityVO();

 equity.symbol = getSymbol();

Listing 4.1 The ejbToString() method

Providing common methods for all your EJBs 137

 equity.description = getDescription();
 equity.lastTrade = getLastTrade();
 equity.change = getChange();
 equity.volume = getVolume();
 equity.marketCap = getMarketCap();
 equity.PE = getPe();
 equity.avgVolume = getAvgVolume();

 buffer.append("-------------[Equity Entity Bean]------------\n");
 buffer.append("Entity ID:"+id()+"\n\n");
 buffer.append(equity.toString()+"\n");
 buffer.append("-------------[Equity Entity Bean]------------");

 return buffer.toString();
 }

◆ Discussion

EJB clients can choose to log the returned bean description, or even parse it.
When developers are using a debugger to examine EJB data, they can use the ejb-
ToString() method to quickly ascertain the state of the bean’s attributes. For
instance, the ejbToString() method in the recipe example describes an instance
of the EquityBean entity bean by returning the value of all its attributes.

4.3 Providing common methods for all your EJBs

◆ Problem

You want your remote and/or local interface for all your EJBs to have common
methods.

◆ Background

When developing complex enterprise applications, you should use good object-
oriented practices to increase the maintainability and ease of understanding of
your code. One way to do this is to use super classes and super interfaces to encap-
sulate common functionality or methods in a single location that can be inherited
by other classes or interfaces. In the Enterprise JavaBean world, you can use a
super interface to provide common methods across all business interfaces of your
EJBs. By including a super interface, your EJB clients can always expect certain
methods to be present in the EJB interfaces.

138 CHAPTER 4

EJB activities
◆ Recipe

In order to provide common methods for all your EJBs, you need to create a
base interface. For this example, we want all of our EJBs to implement the
method we describe in recipe 4.2, ejbToString(). First, create a base interface
like the following:

public interface UtilInterface extends EJBObject{
 public String ejbToString() throws RemoteException;
}

With the base interface completed, all of the EJB remote (or local) interfaces just
need to extend it instead of the EJBObject interface (or the EJBLocalObject inter-
face if you use that instead):

public interface Equity extends UtilInterface{
 public void setEquity(EquityVO equity)throws RemoteException;
 public EquityVO getEquity()throws RemoteException;
}

The actual EJB class (listing 4.2) does not implement the base interface, but still
must implement its methods since they are inherited into the remote (or local)
interface of the EJB.

abstract public class EquityBean implements EntityBean {

 public String ejbToString(){
 StringBuffer buffer = new StringBuffer();
 EquityVO equity = new EquityVO();

 equity.symbol=getSymbol();
 equity.description=getDescription();
 equity.lastTrade=getLastTrade();
 equity.change=getChange();
 equity.volume=getVolume();
 equity.marketCap=getMarketCap();
 equity.PE=getPe();
 equity.avgVolume=getAvgVolume();

 buffer.append("-------------[Equity Entity Bean]------------\n");
 buffer.append("Entity ID:"+id()+"\n\n");
 buffer.append(equity.toString()+"\n");
 buffer.append("-------------[Equity Entity Bean]------------");

 return buffer.toString();
 }

 //other bean methods not shown
}

Listing 4.2 EquityBean.java

Reducing the clutter 139
of unimplemented bean methods
◆ Discussion

Using super interfaces is an excellent way to ensure that all your EJBs at least
attempt to provide an implementation for a common method. By supplying the
base interface, implementing EJBs are required to provide at least a trivial imple-
mentation of the methods (of the base interface) in order to compile. With each
EJB interface inheriting a common super interface, EJB clients assume that EJBs
will contain the common methods. In fact, with the super interface in place, your
clients can make use of casting techniques to provide greater flexibility and per-
haps create longer-lived code through more object-oriented coding practices.

◆ See also

2.1—Generating home, remote, local, and local home interfaces

2.4—Creating value objects for your entity beans

3.17—Decreasing the number of calls to an entity bean

4.1—Retrieving an environment variable

4.4—Reducing the clutter of unimplemented bean methods

4.4 Reducing the clutter
of unimplemented bean methods

◆ Problem

In many cases, EJB methods such as ejbPassivate() and ejbActivate() are left
with empty implementations. You would like to remove the clutter of unimple-
mented methods from your EJB classes.

◆ Background

When you’re developing EJBs, many times the numerous EJB lifecycle methods
are left without meaningful implementation. This leaves beans with a more clut-
tered class file, with several empty methods. In addition, each time you develop a
new bean, you could find yourself adding the empty methods via cut and paste. It
would be nice to remove these methods from your bean class file and not have to
add them for each new EJB.

◆ Recipe

For each type of EJB, create an adapter super class that defines all of the standard
methods required for that type. Your bean classes can subclass the correct adapter

140 CHAPTER 4

EJB activities
class and inherit the method definitions. Each derived class can choose to inherit
the bean methods or provide an implementation by overriding methods.

Entity beans
The abstract class shown in listing 4.3 is the bean adapter class for entity beans. It
provides a simple implementation for all the necessary methods needed for entity
beans, and also includes a couple of convenience methods.

abstract public class EntityBeanTemplate implements EntityBean {
 protected EntityContext eContext=null;;

 public EntityBeanTemplate() {};

 public void setEntityContext(EntityContext eContext) {
 log(this.getClass().getName()+".setEntityContext (" + id() + ")");
 this.eContext = eContext;
 }

 public void unsetEntityContext() {
 log(this.getClass().getName()
 +".unsetEntityContext (" + id() + ")");
 this.eContext = null;
 }

 protected String id() {
 return "" + System.identityHashCode(this) + ", PK = " +
 (String) ((eContext == null) ? "nulleContext"
 : ((eContext.getPrimaryKey() == null ?
 "null" : eContext.getPrimaryKey().toString())));
 }

 public void ejbActivate() {
 log(this.getClass().getName()+".ejbActivate (" + id() + ")");
 }

 public void ejbPassivate() {
 log(this.getClass().getName()+".ejbPassivate (" + id() + ")");
 }

 public void ejbLoad() {
 log(this.getClass().getName()+".ejbLoad (" + id() + ")");
 }

 public void ejbStore() {
 log(this.getClass().getName()+".ejbStore (" + id() + ")");
 }

 public void ejbRemove() throws RemoveException {
 log(this.getClass().getName()+".ejbRemove (" + id() + ")");
 }

Listing 4.3 EntityBeanTemplate.java

Reducing the clutter 141
of unimplemented bean methods
 protected void log(String s){
 System.out.println(this.getClass().getName()+"::"+s);
 }
}

The TestEntityBean entity bean class (listing 4.4) extends the EntityBeanTem-
plate class in order to inherit all the bean methods. Notice that all the entity bean
does now is provide the getters and setters for data, as well as the ejbCreate() and
ejbPostCreate() methods.

abstract public class TestEntityBean extends EntityBeanTemplate {

 public TestEntityBean() {};

 abstract public int getStatus();
 abstract public void setStatus(int status);

 abstract public String getProcessId();
 abstract public void setProcessId(String processId);

 public String ejbCreate(String processId,int status)
 throws CreateException
 {
 log("TestEntityBean.ejbCreate(id = " +
 System.identityHashCode(this) +
 ", PK = " +
 processId + ", " + "Status = " + status + ")");

 setProcessId(processId);
 setStatus(status);

 return null; // See 9.4.2 of the EJB 1.1 specification
 }

 public void ejbPostCreate(String processId, int status)
 {
 log("TestEntityBean.ejbPostCreate (" + id() + ")");

}

Session beans
For the session bean, the bean adapter looks like the class shown in listing 4.5.

public class SessionBeanTemplate implements SessionBean {
 protected SessionContext sContext;

Listing 4.4 TestEntityBean.java

Listing 4.5 SessionBeanTemplate.java

142 CHAPTER 4

EJB activities
 public void ejbRemove() {
 log("ejbRemove called");
 }

 public void ejbPassivate() {
 log("ejbPassivate called");
 }

 public void setSessionContext(SessionContext ctx) {
 log("setSessionContext called");
 this.ctx = ctx;
 }

 public void ejbCreate () throws CreateException {
 log("ejbCreate called");
 }

 private void log(String s) {
 System.out.println(this.getClass().getName()+"::"+s);
 }

 public void ejbActivate() {
 log("ejbActivate called");
 }
}

The following TestSessionBean session bean class makes use of the session bean
adapter class:

public class TestSessionBean extends SessionBeanTemplate {

 public void doFunction(String message)
 {
 //implementation not shown
 }
}

As you can see, by using the adapter class, session beans now only contain their
business methods. However, you could implement additional create() methods
as needed.

Message-driven beans
Listing 4.6 contains the bean adapter class for message-driven beans.

public class MessageBeanTemplate implements MessageDrivenBean,
MessageListener {

 private MessageDrivenContext mContext;

 public void ejbRemove() {

Listing 4.6 MessageBeanTemplate.java

Reducing the clutter 143
of unimplemented bean methods
 log("ejbRemove called");
 }

 public void ejbPassivate() {
 log("ejbPassivate called");
 }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 log("setMessageDrivenContext called");
 this.mContext = ctx;
 }

 public void ejbCreate () throws CreateException {
 log("ejbCreate called - This is called "
 + "by Container when deploying bean");
 }

 public void ejbActivate() {
 log("ejbActivate called");
 }

 public void log(String s) {
 System.out.println(this.getClass().getName()+"::"+s);
 }

 public void onMessage(Message msg) {
 log("onMessage called");
 }

}

By extending the message-driven adapter class, the MessageBean message-driven
bean only needs to provide the onMessage() method implementation and any
other helper methods needed:

public class MessageBean extends MessageBeanTemplate{

 public void onMessage(Message msg) {
 //implementation not shown
 }
}

◆ Discussion

As you can tell from the three examples, using a bean adapter class greatly
reduces the size of the EJB class source file. By using adapter classes, you essen-
tially factor out methods that are common to all EJBs of a certain type—those
methods that many of us just give trivial implementations. Each bean instance
inherits these methods, and can provide its own implementation of specific meth-
ods if needed.

144 CHAPTER 4

EJB activities
◆ See also

4.3—Providing common methods for all your EJBs

4.5 Sending an email from an EJB

◆ Problem

You want to send an email from a session EJB.

◆ Background

In many enterprise situations, you will need to inform a user of specific events or
notices by using an email message. Sending an email from a Java application has
become a simple process now that developers can use the javax.mail package. The
Java mail API is usually more than enough to satisfy the email needs of developers.

◆ Recipe

To provide the ability to send email from a session bean, we need a new method,
sendEmail(). Listing 4.7 contains a simple stateless session bean that exposes the
sendEmail() method in its remote interface (the interface is not shown).

import javax.mail.*;

public class SendEmailBean implements SessionBean
{

 //other bean methods not shown

 private void sendEmail(String recipient, String text)
 {
 Session mailSession = null;
 javax.mail.Message msg = null;

 try{
 System.out.println("Sending Email to: " + rcpt);

 mailSession = (Session) ctx.lookup("BookMailSession");

 msg = new MimeMessage(mailSession);
 msg.setFrom();
 msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(recipient , false));
 msg.setSubject("Important Message");
 msg.setText(text);

Listing 4.7 SendEmailBean.java

Looks up the
mail session
object

Creates and populates
an email message

Using the EJB 2.1 timer service 145

 Transport.send(msg);
 System.out.println("Sent Email to: "+rcpt);
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

◆ Discussion

For EJBs, the mail session object should be retrieved from the EJB container as a
resource. After you’ve retrieved the email session object, it’s just a matter of creat-
ing and populating a message instance before sending it using the Transport
object. However, with large emails, you should be aware of the time clients may
have to wait when invoking the sendEmail() method.

NOTE If you are concerned about holding a lock on an object while waiting for
the sendEmail() method to complete, you could always send the email
asynchronously using a message-driven bean. For more about perform-
ing this and other tasks with message-driven beans, see chapter 6.

◆ See also

6.11—Sending an email message asynchronously

4.6 Using the EJB 2.1 timer service

◆ Problem

You want to execute business logic at specific instances in time.

◆ Background

Enterprise applications often require certain business logic to run at specific
times or at specific intervals that are triggered by time notifications. With the
release of the EJB 2.1 specification, developers now have the ability to incorporate
timers into their EJBs. Using the new timer service allows you to concentrate on
the business logic instead of trying to develop a robust timing mechanism.

Sends the
message

146 CHAPTER 4

EJB activities
◆ Recipe

To demonstrate how to use the timer service, let’s create a session bean that pro-
vides timers for its EJB client. The session bean must be stateful, since stateless
beans cannot use the timer service. Here is the remote interface for the stateful
session bean:

public interface TimerSession extends EJBObject {
 public void startTimer() throws RemoteException;
}

The remote interface TimerSession forces the session bean implementation class
to provide the startTimer() method. In addition to implementing this method,
the session bean must implement the TimedObject interface. The TimedObject
interface provides the session bean with the ejbTimeout() method. Listing 4.8
shows the TimerSessionBean stateful session bean.

public class TimerSessionBean implements SessionBean,TimedObject
{
 private SessionContext ctx;

 //other bean methods not shown

 public void startTimer()
 {
 TimerService timerService = ctx.getTimerService();
 Timer timer =
 timerService.createTimer(10000,
 "EJBTimer1");
 Timer timer2 =
 timerService.createTimer(2000,
 5000, "EJBTimer2");
 }

 public void ejbTimeout(Timer timer)
 {
 System.out.println("*******ejbTimeout Called by Container");
 System.out.println("Next Timed Event:"
 + timer.getNextTimeout());
 System.out.println("Timer Application Info:"
 + timer.getInfo());
 }
}

Listing 4.8 TimerSessionBean.java

Retrieves the TimerService
instance from the

SessionContext object

Creates a timer that times
out after 10 seconds

Creates a timer that times
out after 2 seconds, and
then every 5 seconds

Prints the next timeout
event for the timer

Prints the value
used in the creation
of the timer

Sending a JMS message from an EJB 147

◆ Discussion

The ejbTimeout() method of the TimedObject interface is a callback method that
is invoked when a timer event occurs. A timer event is either a single expiration of
the timer (as in the case of EJBTimer1 in the session bean) or a repeated event at
an interval (as in the case of EJBTimer2). When the ejbTimeout() callback is
invoked, the method receives the Timer instance that corresponds to the timeout.
The session bean in the recipe uses the instance to print some information from
the timer. Timer instances are created by specifying their interval times, and by
passing in some user “info” that can be retrieved when the timer expires using the
getInfo() method (it is optional and can be null).

Timers are cancelled in a few specific situations. In the case of the single event
timer, it expires after invoking the ejbTimeout() method. If the timer was started
in an entity bean instance and the bean is removed, the timer is also cancelled.
Finally, if the cancel() method is invoked on the Timer instance, it is stopped.

Similar to EJB home objects, Timer objects contain a method, getHandle(), that
allows you to store a handle object for a Timer instance. The TimerHandle object is
serializable, which allows you to persist the object to storage. You can rebuild the
TimerHandle object and use its getTimer() method to re-create a Timer instance.

Another important feature of the EJB timer service is its persistent nature. If
the server crashes while timers are running, the application can assume they will
still be running when the server restarts. If the interval of the timer expires while
the server is down, the ejbTimeout() method will be invoked as soon as the
server restarts.

Transactions also apply to the timer service. If you create a timer within a trans-
action that is rolled back, the timer creation will also be rolled back. Similarly, if
you cancel a timer within a transaction that is rolled back, the cancellation will
also be rolled back.

◆ See also

4.11—Insulating an EJB from service class implementations

4.7 Sending a JMS message from an EJB

◆ Problem

You want to send a JMS message from one of your EJBs.

148 CHAPTER 4

EJB activities
◆ Background

JMS now provides Java enterprise applications with connectivity into other messag-
ing platforms and applications. In addition, with the creation of message-driven
beans, other EJBs have the ability to use JMS messages to create asynchronous pro-
cesses. Using JMS requires developers to write some special code, as well as set up
the environment in the application server.

◆ Recipe

The method shown in listing 4.9 illustrates how to send a JMS message from a ses-
sion bean. You use this method to send a message to a JMS topic, and the session
bean loads the JMS topic connection factory from the application server with a
JNDI lookup.

 private void publish(String subject, String content) {

 TopicConnection topicConnection = null;
 TopicSession topicSession = null;
 TopicPublisher topicPublisher = null;
 Topic topic = null;
 TopicConnectionFactory topicFactory = null;

 try{

 topicFactory = (TopicConnectionFactory)
 context.lookup("TopicFactory");

 topicConnection =
 topicFactory.createTopicConnection();

 topicSession =
 topicConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 topic =
 (Topic) context.lookup("ProcessorJMSTopic");

 topicPublisher =
 topicSession.createPublisher(topic);

 MapMessage message = topicSession.createMapMessage();
 message.setString("Subject", subject);
 message.setString("Content", content);
 topicPublisher.publish(message);
 }catch(Exception e){
 e.printStackTrace();
 }
 }

Listing 4.9 The publish() method

Looks up the topic
factory using the

EJB’s context
object

Creates a topic
connection
and session

Finds the topic
and builds a
publisher

Builds and sends
the message

Using an EJB as a web service 149

◆ Discussion

The ability to create and send JMS messages gives EJBs the ability to contact enter-
prise systems and start asynchronous business processes using message-driven
EJBs. All EJBs can send JMS messages, but only message-driven beans should accept
messages. Message-driven beans are uniquely positioned to accept messages with-
out blocking clients. Chapter 6 focuses on using message-driven beans.

This recipe only shows a JMS topic destination, but EJBs can also send messages
to JMS queue destinations. The code for sending to a message queue is similar to
that for sending to a topic; you need only change the classes to represent their
queue counterparts.

◆ See also

Chapter 6, “Messaging”

4.8 Using an EJB as a web service

◆ Problem

You want to expose your session EJB as the business logic for a web service.

◆ Background

As web services become easier to implement, and more important to enterprise
solutions, many developers would like to leverage their existing enterprise appli-
cations by reusing already developed business logic. With the release of the 2.1
EJB specification, EJBs can be created to serve as web service endpoints. For those
who are new to web services, creating them is sometimes a daunting task.

◆ Recipe

Web service endpoints can be created using a stateless session bean; no other type
of EJB may be used. The web service client will not know that a stateless session
bean implements the web service. In order for the EJB to act as a web service, it
must have a web service endpoint interface. The following shows a sample web
service endpoint interface:

public interface EJBWebService extends Remote
{
 public void serviceMethod() throws RemoteException;
}

150 CHAPTER 4

EJB activities
The EJB implementation class now needs to implement the method declared by
the web service endpoint interface. The following sample session bean does this:

public class EJBWebServiceBean implements SessionBean
{
 //other bean methods not shown

 public void serviceMethod()
 {
 System.out.println("Invoked by a web service client");
 }
}

After compiling the two files (interface and bean implementation), you need to
run the wscompile tool that comes with the Java 2 Platform Enterprise Edition
(J2EE) JDK. Depending on your build environment, you should use something
like the following:

wscompile –define config.xml

The wscompile tool reads the config.xml file, which describes the web service end-
point. The tool uses a .wsdl file for the service, packages everything into an ejb.jar
file, and finally packages everything into an .ear file.

Here is a sample config.xml file used for this recipe:

<?xml version="1.0" encoding="UTF-8"?>
<configuration
 xmlns="http://java.sun.com/xml/ns/jax-rpc/ri/config">
 <service
 name="EJBWebService"
 targetNamespace="urn:Name"
 typeNamespace="urn:Name"
 packageName="ch4">
 <interface name="ch4.EJBWebService"/>
 </service>
</configuration>

◆ Discussion

This recipe only shows how to create the web service endpoint. For information
about creating web service clients, go to http://java.sun.com. Creating web ser-
vices allows you to expose previously developed business logic (that is encapsu-
lated in an EJB) to platform-neutral web service clients. Doing this lets you reuse
business logic and expose your application to a variety of clients. In addition, all
the web service clients don’t need to know the implementation platform or lan-
guage of your application.

Creating asynchronous behavior for an EJB client 151

The example in the recipe provides a simple demonstration of exposing a busi-
ness method as a web service. In this case, the example exposes the method
serviceMethod(). The business logic to be shared as a web service should be
placed in this method.

4.9 Creating asynchronous behavior for an EJB client

◆ Problem

You want to provide an EJB client with the ability to start an asynchronous business
method without the client using the Java Message Service (JMS).

◆ Background

With the release of the 2.0 EJB specification, EJB applications have the ability to
create asynchronous behavior using message-driven beans. However, if an EJB cli-
ent wants to use a message-driven bean, it must be able to send a JMS message in
order to trigger the business logic. To reduce the complexity of the client, you
would like to provide asynchronous behavior without the need for the client to
use JMS.

◆ Recipe

To provide asynchronous processing, use a message-driven bean, but also create a
session bean to start the asynchronous process and check the status of that pro-
cess. This recipe completes three tasks:

1 Develops a session facade to a message-driven bean. The facade gives an EJB
client the capability to invoke the message-driven bean without using JMS
from the client.

2 Develops an entity bean to represent the process ID and status of an asyn-
chronous process.

3 Develops the message-driven bean to contain the business logic for the
asynchronous process.

Listing 4.10 shows the implementation of the AsyncProcessBean session bean that
starts an asynchronous process for an EJB client. The session bean exposes a
method that stores a unique ID in a database and then starts a process with a

152 CHAPTER 4

EJB activities
message-driven bean. It exposes a second method that checks the status of the
process by querying the database (which is updated by the message-driven bean).

public class AsyncProcessBean implements SessionBean {

 private SessionContext ctx;

 //bean methods not shown

 public String startProcess(){
 String processId = null;

 processId = "" + System.currentTimeMillis();
 createStatus(processId);
 sendMessage(processId);

 return processId;
 }

 private void createStatus(String processId){
 int status = 0;
 Context ctx = null;
 StatusHome home = null;

 try {
 home = (StatusHome) ctx.lookup("statusHome");
 home=(StatusHome) PortableRemoteObject.narrow(home,
 StatusHome.class);
 home.create(processId, status);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 public int getStatus(String processId){
 int status = 0;
 StatusHome home = null;
 Status statusBean = null;

 try {
 home = (StatusHome) ctx.lookup("statusHome");
 home=(StatusHome) PortableRemoteObject.narrow(home,
 StatusHome.class);
 statusBean = (Status) PortableRemoteObject.narrow(
 home.findByPrimaryKey(processId), Status.class);
 status = statusBean.getStatus();
 ctx.close();
 }
 catch (Exception e) {
 e.printStackTrace();
 }

Listing 4.10 AsyncProcessBean.java

Starts a new
asynchronous
process

Initializes the process status
and sends the JMS message

Checks the status
of the process

Creating asynchronous behavior for an EJB client 153

 return status;
 }

 private void sendMessage(String processId){
 TopicConnection topicConnection=null;
 TopicSession topicSession=null;
 TopicPublisher topicPublisher=null;
 Topic topic=null;
 TopicConnectionFactory topicFactory = null;

 try{
 topicFactory = (TopicConnectionFactory)
 context.lookup("BookJMSFactory");
 topicConnection = topicFactory.createTopicConnection();
 topicSession = topicConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);
 topic = (Topic)context.lookup("BookJMSTopic");
 topicPublisher = topicSession.createPublisher(topic);

 MapMessage message = topicSession.createMapMessage();
 message.setString("ProcessId",processId);
 topicPublisher.publish(message);
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

Listing 4.11 shows the StatusBean entity bean that is used to persist and update
the status of the asynchronous process.

abstract public class StatusBean implements EntityBean {
 private EntityContext ctx;

 public StatusBean(){}

 public void setEntityContext(EntityContext ctx) {
 this.ctx = ctx;
 }

 public void unsetEntityContext() {
 this.ctx = null;
 }

 abstract public int getStatus();
 abstract public void setStatus(int status);

 abstract public String getProcessId();
 abstract public void setProcessId(String processId);

Listing 4.11 StatusBean.java

Accesses the status attribute

Accesses the process ID

154 CHAPTER 4

EJB activities
 public String ejbCreate(String processId,int status)
 throws CreateException
 {
 setProcessId(processId);
 setStatus(status);

 return null;
 }

 //remaining bean methods not shown
}

Listing 4.12 shows the message-driven EJB that executes the asynchronous proc-
ess. In an enterprise application, this bean would contain the business logic for
execution. This EJB is also responsible for updating the status of the process in
the database.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map=(MapMessage)msg;

 try {
 String processId = map.getString("ProcessId");

 //execute custom business logic (not shown)

 //update the status of the process
 updateStatus(processId);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 private void updateStatus(String processId){
 int status = 1;
 StatusHome home = null;
 Status statusBean = null;

 try {
 home = (StatusHome) ctx.lookup("statusHome");
 home = (StatusHome) PortableRemoteObject.narrow(home,
 StatusHome.class);
 statusBean = (Status) PortableRemoteObject.narrow(
 home.findByPrimaryKey(processId), Status.class);
 statusBean.setStatus(status);

Listing 4.12 MessageBean.java

Retrieves the
new process ID

Updates the process status
after executing business logic

Uses the
StatusBean entity

bean to set the
new status

Creating asynchronous behavior for an EJB client 155

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 //other bean methods not shown
}

Finally, the following pseudo-code shows how an EJB client can use the session
facade to start an asynchronous process and check its progress as needed:

//lookup session facade
AsyncProcessRemote bean = lookupBean();
String processId = bean.startProcess();

//do something else for a while

int status = bean.checkStatus(processId);

◆ Discussion

To provide asynchronous processing, clients should still use a message-driven
bean. However, to shield those clients that wish to make use of the message-driven
functionality, you should create a session facade for the message-driven bean.
When an EJB client invokes a particular session bean method, the session bean
will send a JMS message to trigger business logic in a message-driven bean.

In the recipe, the AsyncProcessBean session bean acts as the session facade to
the MessageBean message-driven bean. To give more power to the EJB client, the
session bean will also provide a way for the client to check the status of the asyn-
chronous process. To do this, each message will have a unique ID assigned to it.
The recipe makes use of the StatusBean entity bean to store the status and the
process ID for each asynchronous process. The message-driven bean will update
the status of its process in the database according to the process ID from the origi-
nal message. The session bean can check the status of the process by querying the
database (either with or without an entity bean). Of course, it’s up to the client
how often, and if at all, it checks the status of the process.

Asynchronous behavior has been possible in EJB applications since the creation
of the message-driven bean. However, to execute a message-driven bean, EJB cli-
ents must make use of JMS. If your client is using JMS only for invoking message-
driven beans, it is really only adding more complexity for potentially little gain. It
would be better to create asynchronous behavior without requiring EJB clients to
use JMS.

156 CHAPTER 4

EJB activities
◆ See also

4.7—Sending a JMS message from an EJB

4.10—Creating asynchronous behavior without message-driven beans

Chapter 6, “Messaging”

4.10 Creating asynchronous behavior
without message-driven beans

◆ Problem

You want to execute some business logic asynchronously without the use of mes-
sage-driven beans.

◆ Background

Asynchronous behavior is a valuable attribute of many enterprise applications. It
became more feasible in EJB applications with the advent of the message-driven
bean. The only drawback of message-driven beans is that your applications must
make use of JMS. If your applications already use JMS, it’s not so hard to start using
message-driven beans. However, JMS may be more of an inconvenience if all you
use it for is to contact a message-driven bean. You would like to create asynchro-
nous processes without using JMS or message-driven beans. This recipe requires
the use of a J2EE 1.4 feature, the EJB timer service (see recipe 4.6).

◆ Recipe

To create an asynchronous process, EJB clients can make use of a session bean that
uses the EJB timer service. The session bean implementation class in listing 4.13
provides a single method, startProcess(), that creates a timer in order to trigger
business logic.

public class AsynchBean
 implements SessionBean,TimedObject
{
 private SessionContext ctx;

 //other bean methods not shown

 public void startProcess(Serializable arguments)
 {
 TimerService timerService = ctx.getTimerService();

Listing 4.13 AsynchBean.java

Acquires an
instance of the
TimerService

Insulating an EJB 157
from service class implementations
 Timer timer = timerService.createTimer(1000, arguments);
 }

 public void ejbTimeout(Timer timer)
 {
 Serializable arguments = timer.getInfo();

 //perform business logic below (not shown)
 }
}

◆ Discussion

Creating a session bean like this one allows a client to create a process to execute
business logic without having to stick around and wait for it to complete. The cli-
ent merely invokes the startProcess() method. The startProcess() method
accepts a Serializable object as arguments to the business process. When the
startProcess() method returns, the client simply continues with other work. The
timer started by the startProcess() method will eventually time out; the recipe
sets it for 1 second and invokes the callback method on the session bean. The
ejbTimeout() callback method contains the actual business logic for execution.
The session bean pulls out any arguments from the Timer instance and executes
the business logic. Using the timer service in this way enables you to create asyn-
chronous processes without the use of JMS and message-driven beans.

◆ See also

4.1—Retrieving an environment variable

4.5—Sending an email from an EJB

4.6—Using the EJB 2.1 timer service

4.11 Insulating an EJB
from service class implementations

◆ Problem

You want to insulate your EJBs from the implementation of classes that encapsu-
late the services of your application.

Creates a timer to
expire in 1 second

Retrieves the
arguments from
the client

158 CHAPTER 4

EJB activities
◆ Background

Many times EJBs make use of other objects to encapsulate business functions as
services to the bean. Encapsulating business logic allows many EJBs to reuse the
business logic. However, as your application grows, you may find that your service
classes have subclasses that provide specialized implementations of the business
logic. As your EJBs start to use the specialized subclasses of the service classes, they
become less portable and more dependent on outside classes.

◆ Recipe

To insulate your EJB, create an interface for each service class and load the imple-
mentation class using reflection and environment variables. For instance, assume
we have a service class that performs three important functions. Its interface
would look like this:

public interface MyService
{
 public void performTaskOne();
 public void performTaskTwo();
 public void performTaskThree();
}

By using an interface, the EJB can store any implementation class in a member
variable (of the interface type). The EJB method in listing 4.14 could be used to
load a service implementation for use by an EJB.

private MyService createServiceInstance(){
 MyService service = null;
 Class c = null;

 try{
 String classname = (String)
 context.lookup("java:comp/env/MY_SERVICE_CLASS");
 c = Class.forName(classname);
 service = (MyService) c.newInstance();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 return service;
}

Listing 4.14 The createServiceInstance() method

Finds the
implementation

classname

Creates an instance of the class and
casts it to the interface type

Creating a batch process mechanism 159

◆ Discussion

The key to this recipe is the use of reflection, interface, and environment vari-
ables stored in a bean’s deployment descriptor. This example loads the implemen-
tation classname from an environment variable in its deployment descriptor, and
uses reflection to instantiate an instance of the class. For more information about
using the deployment descriptor to store variables, see recipe 4.1.

◆ See also

4.1—Retrieving an environment variable

4.12 Creating a batch process mechanism

◆ Problem

You want to create an EJB mechanism to start and run batch processes.

◆ Background

Batch processing is a powerful tool in many enterprise applications. With a batch
system, you can advance daytime orders through to the next step in a workflow
during nighttime hours. This enables data to be ready for the next day’s work, and
allows the system to utilize resources that might be tied up during peak usage
hours. Unfortunately, many times the batch processing system is not a part of the
actual enterprise application. This separation sometimes creates problems
because you now have applications to keep in synch (code wise) and maintain in
production. This recipe requires the use of a J2EE 1.4 feature, the EJB timer service
(see recipe 4.6). This recipe is a combination of an asynchronous process using an
entity bean to report status (recipe 4.9) and an asynchronous process using a
timer (recipe 4.6).

◆ Recipe

To create a batch process, use the EJB timer service to create an asynchronous
process, and use an entity bean to create a status for the process. The stateful ses-
sion bean in listing 4.15 should be used by EJB clients to create a batch process. It
contains a single method that allows clients to schedule a process.

160 CHAPTER 4

EJB activities
public class BatchProcessBean implements SessionBean,TimedObject
{
 private SessionContext ctx;

 //other bean methods not shown

 public void createBatchProcess(String batchName, long timeFromNow)
 {
 TimerService timerService =
 ctx.getTimerService();
 Timer timer =
 timerService.createTimer(timeFromNow,
 batchName);

 //create an entity bean to update the status of this batch
 try {
 StatusHome home = (StatusHome) ctx.lookup("statusHome");
 home=(StatusHome) PortableRemoteObject.narrow(home,
 StatusHome.class);
 int status = 0;
 home.create(batchName, status);
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void ejbTimeout(Timer timer)
 {
 String batchName = timer.getInfo();

 //perform business logic for batch process below (not shown)
 //update status as needed
 }
}

◆ Discussion

This solution creates a batch process that executes only once. You could, however,
change the creation of the timer to execute repeatedly (instead of only once). See
recipe 4.6 for the specifics of the EJB timer service. By timing the batch process to
run at off-peak hours, you are safe from tying up resources that are needed by
actual users. When you’re developing a mechanism like this one, your business
logic would be located in the ejbTimeout() method. This is the method that is
executed when the timer expires. If you use a repeating timer, this method is also

Listing 4.15 BatchProcessBean.java

Acquires an instance of
the TimerService

Creates a timer to
expire in 1 second

Executes when
the timer expires

Creating a batch process mechanism 161

invoked repeatedly. Management consoles (or your client application) can look
up the entity beans that represent the batch status using the batch name.

Another factor to consider when developing a batch system like this one is your
ability to encapsulate business logic from the ejbTimeout() method. This way,
when your batch business logic changes (its code), your batch system does not
need to also change. Recipe 4.11 presents an example of insulating your EJBs
from the business logic.

◆ See also

4.9—Creating asynchronous behavior for an EJB client

4.10—Creating asynchronous behavior without message-driven beans

4.11—Insulating an EJB from service class implementations

Transactions
“Never eat more than you can lift.”

—Miss Piggy
163

164 CHAPTER 5

Transactions
Enterprise JavaBeans are well integrated into a transactional API provided by the
Java 2 Enterprise Edition (J2EE) platform. Transactions control the permanence
of the result from a section of code that creates new data or modifies existing
data. Not all applications require transactions, but critical applications must have
ways of ensuring that data is consistent for all data clients and that it exists in a
predictable way. For example, transactions help remove data modifications made
by a failed process.

The importance of transactions is clearly demonstrated by imagining what hap-
pens when you remove them from critical situations. Imagine a multistep process
such as transferring money between two bank accounts—money is withdrawn
from one account and deposited into a second. A single transaction should con-
trol this two-step process in a single event. If one half of the event cannot succeed,
then none of it should. If the withdrawal of money succeeds but the deposit fails,
then the withdrawal must be reversed (or rolled back).

 Without transactions, an automated process is prone to self-corruption due to
uncorrected errors. In the account example, someone could lose money if a
deposit failed and the withdrawal were not reversed. Granted, this is an overly sim-
plified example, but it does illustrate the value of transactions. Just as important,
transactions protect data accessors from reading bad data. If a database update
fails midway through, you need to remove the already updated data. For example,
getting an account balance during a money transfer should reflect only those
transfers that have completed successfully, not those in progress because they still
might fail. Transactions provide the mechanism for ensuring that data changes
and processes run correctly. This chapter contains recipes for EJB transactions
and covers the following topics:

■ Modifying the transaction control of your EJBs

■ Creating bean-managed transactions

■ Rolling back the current transaction

■ Avoiding rollbacks by handling errors

■ Forcing a rollback

■ Imposing timeouts on transactions

■ Updating more than one entity bean

■ Managing state during a transaction

■ Using multiple transactions

■ Managing state after a rollback

A transaction appetizer 165

■ Throwing exceptions during a transaction

■ Propagating transactions to other EJBs

■ Propagating transactions to nonEJBs

■ Starting transactions in the client layer

■ Using transactions in JavaServer Pages

■ Creating distributed transactions

A transaction appetizer

Transactions in the J2EE platform are ACID transactions—atomic, consistent, iso-
lated, and durable. Being atomic means that a transaction must either complete
entirely or not at all. If any part of the transaction fails, the entire process is
reversed with a rollback. Transactions are consistent by guaranteeing that the proc-
ess running within the transaction does not result in inconsistent data. For exam-
ple, one database connection should not be able to read data that might not be
completely updated by another transaction—or data that might get rolled back.
Isolated transactions are those that operate without interference from other proc-
esses. Finally, durable transactions must commit data to a persistent storage so that
it survives application crashes.

Transactions are best used when they span business rules, not just actual meth-
ods. For instance, using a transaction to cover each single entity bean attribute is
not as useful as covering the entire insert of a data set. When developing EJB
transactional behavior, it’s easy to become too fine grained—using one transac-
tion for each method. Be sure to take careful consideration and lay out your
transactions across business logic and functions to create a more robust enter-
prise application.

Also, it is useful to have some background context for many of the recipes by
discussing the two mechanisms for handling transactions in the Enterprise Java-
Bean world:

■ Container-managed transactions (CMT)—The most common way of managing
transactions in your EJB applications is to use container-managed transac-
tions. CMT beans rely on the EJB container to create, propagate, and com-
mit transactions. By relying on the container, enterprise beans can
concentrate more on business logic development without worrying about
coordinating the transactional operations of an enterprise application. In

166 CHAPTER 5

Transactions
the majority of cases, CMTs are the most secure, reliable, and efficient way to
manage transactions.

■ Bean-managed transactions (BMT)—Developers should use bean-managed
transactions in order to have a finer-grained control over their transactional
system. For instance, with BMT beans, you can create more than one trans-
action per bean method (see recipe 5.9). A BMT bean is responsible for cre-
ating, propagating, committing, and rolling back its transactions. By not
relying on the container, the bean developer must face the sometimes
daunting task of coordinating a transactional system. EJB applications that
use BMT beans can be every bit as secure and reliable as CMT applications,
but there is a larger chance of developer-introduced transactional errors. In
most cases, the EJB container is sufficient for enterprise applications’ trans-
action management.

5.1 Tuning the container transaction control for your EJB

◆ Problem

You want to be able to control how the container manages the transactions of
each of your EJBs.

◆ Background

Your enterprise beans are declared to use container-managed transactions. Con-
tainer-managed transaction EJBs declare their transaction behavior in the deploy-
ment descriptor. When declaring a bean to use CMTs, you need to specify the
transaction behavior for the methods using transactions. The EJB specification
defines six levels of transaction support, each causing an EJB to behave in a differ-
ent way.

◆ Recipe

A CMT bean declares the transaction level of each method in the assembly
descriptor portion of the ejb-jar.xml file for the bean. To do this, you use the
<container-transaction/> element. For example, the XML file shown in
listing 5.1 is the deployment descriptor for the session bean SampleBean. It
declares the transaction attribute for a single method (shown in bold).

Tuning the container transaction control for your EJB 167

<ejb-jar >

 <description>Sample Deployment XML</description>
 <display-name>Sample XML</display-name>

 <enterprise-beans>
 <!—Beans described in this section -->
 </enterprise-beans>

 <assembly-descriptor>

 <container-transaction>
 <method>
 <ejb-name>SampleBean</ejb-name>
 <method-name>simpleBusinessMethod</method-name>
 </method>
 <trans-attribute>Mandatory</trans-attribute>
 </container-transaction>

 </assembly-descriptor>
</ejb-jar>

The <trans-attribute/> element value can be one of six values: NotSupported,
Supports, Required, RequiresNew, Never, or Mandatory. The Discussion section
describes each value. In addition, ensure that your bean is declaring itself a user
of container-managed transactions. To do this, modify the <transaction-type/>
element in the deployment descriptor for your bean. For example, the following
is a sample descriptor for the session bean UserBean:

<session>
 <description>Example</description>
 <ejb-name>User</ejb-name>
 <home>UserHome</home>
 <remote>User</remote>
 <ejb-class>UserBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
</session>

The two values for the <transaction-type/> element are Container and Bean,
indicating CMT and BMT, respectively.

◆ Discussion

In the assembly descriptor section of the ejb-jar.xml file, you should set the trans-
action attribute for each EJB method. The <container-transaction/> element’s

Listing 5.1 Deployment descriptor

168 CHAPTER 5

Transactions
<ejb-name> value lists the name of the EJB that contains the named method in the
<method-name> value. In addition, the <method-name> value can be an *, indicating
that the transaction attribute applies to all the methods of an EJB. Each <container-
transaction/> element can list several methods and must contain the <trans-
attribute/> tag. This tag declares the transaction level for the specified method.
Table 5.1 details the possible values for the transaction attribute tag.

As the recipe states, you should also ensure that your EJB declares itself a CMT
bean by specifying Container in the <transaction-type/> element of the deploy-
ment descriptor. A value of Bean indicates that the bean itself is handling its own
transactions, in which case you do not need to specify the transaction attribute
for methods.

Table 5.1 The <trans-attribute> tag value can be one of the following values. Each value sets a
transaction level for an EJB.

Transaction
Control Level

Description

NotSupported No transaction can be propagated to a method with this attribute. The current
transaction will be suspended until the method completes, and then will
resume. This attribute is commonly used for a method that should never be
used in a transaction.

Supports Indicates that a method does not require a transaction but can be executed
within the scope of a transaction. Methods with this attribute support operation
with or without transactions.

Required A transaction must be used when invoking a method with this attribute. If one
cannot be propagated to it, the container will create a new transaction. This
attribute should be used for methods that must always run inside a transaction.
Required transaction methods are those that are usually critical business
functions that must complete successfully to ensure data integrity or to com-
plete a user process (and should be reversible upon failure).

RequiresNew When a method with this transaction attribute is invoked, the EJB container will
create a new transaction for it. Methods declared with this attribute should
never run inside transactions that have already completed work.

Mandatory The invoked method must always be part of a transaction. If a nontransactional
method invokes it, the invocation will fail with a TransactionRequiredExcep-
tion (for remote clients) or RequiredLocalException (for local clients)
exception being thrown.

Never The method with this attribute must never be invoked inside a transaction; oth-
erwise, it will fail with a RemoteException (for remote clients) or EJBExcep-
tion (for local clients) exception being thrown.

Handling transaction management 169
 without the container
5.2 Handling transaction management
without the container

◆ Problem

You want to know how to develop your enterprise beans to manage transactions
without the container.

◆ Background

In most situations, container-managed transactions will satisfy the needs of your
EJB application. However, situations may arise where beans need more control
over the transactions controlling their methods. For instance, with CMT beans you
are limited to a single transaction per method. By managing transactions without
the container you’ll have finer-grained control of the transactions within a single
method. Only session beans are allowed to manage their own transactions. Entity
beans must always use container-managed transactions.

◆ Recipe

Use the EJBContext instance of your EJB to acquire the current UserTransaction
instance from the container:

UserTransaction transaction = ejbContext.getUserTransaction();

After acquiring a transaction instance, you can use it to wrap a certain section of
code (as described in the Discussion section). In addition, you can use the EJB-
Context to access more transactions as needed.

◆ Discussion

While you may invoke this method from any type of EJB, it will actually succeed
only inside EJBs that can manage their own transactions—and only session beans
and message-driven beans are free to manage their own transactions. If an entity
bean makes a call to this method, it will result in a java.lang.IllegalState-
Exception. Likewise, invocations by beans that have not declared their transaction
type to be bean-managed will result in an exception. The following sample XML
describes a BMT session bean. Use something similar for your own EJB.

<session>
 <description>Example</description>
 <ejb-name>User</ejb-name>
 <home>UserHome</home>
 <remote>User</remote>

170 CHAPTER 5

Transactions
 <ejb-class>UserBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Bean</transaction-type>
</session>

Use the getUserTransaction() method of the EJBContext class (as shown in the
recipe) to acquire a transaction instance. Once you have an instance of User-
Transaction, you can do the following:

 transaction.begin();
 //perform operations inside a transaction
 transaction.commit();

After committing a transaction, you can acquire another one in the same manner,
allowing you to program fine-grained transaction control of your method imple-
mentation. (See recipe 5.9 for more information.) Generally, you should always
use container-managed transactions because the EJB container is specifically
designed to handle transactions properly to avoid problems associated with trans-
actional systems. However, there certainly is a time and place for BMT beans, for
instance when you need a finer-grained transactional method.

Instead of using your EJBContext object to get a transaction, acquire the
transaction using JNDI. The following code demonstrates:

InitialContext context = new InitialContext();
UserTransaction transaction = (UserTransaction)
 context.lookup("java:comp/env/UserTransaction");

After acquiring the UserTransaction instance, you can use it as illustrated in
the discussion.

◆ See also

5.1—Tuning the container transaction control for your EJB

5.3 Rolling back the current transaction

◆ Problem

You want to know how to force the rollback of the current transaction.

◆ Background

Before the end of a transaction, you want to roll back the current transaction
regardless of the outcome of the method. Your code has detected an error or a

Rolling back the current transaction 171
condition that will cause the code to fail, and you want to roll back the previously
executed code within the transaction.

◆ Recipe

If you are using bean-managed transactions, you should use the methods in the
UserTransaction class. Acquire the UserTransaction instance from the EJBCon-
text set in your EJB (see recipe 5.2 for more information). From the UserTrans-
action, use one of the following methods:

transaction.rollback();
transaction.setRollbackOnly();

On the other hand, if your bean uses container-managed transactions, it must use
the following method of the EJBContext :

ejbContext.setRollbackOnly();

◆ Discussion

For BMT beans, use one of the rollback methods in the UserTransaction object
acquired from the container. The rollback() method tells the container to start
a rollback immediately, while the setRollbackOnly() method only marks the
transaction for rollback (which will occur after the EJB method completes). Ulti-
mately, these methods will cause the current transaction to be rolled back and
undo any updates that were performed. Collectively, they can throw three differ-
ent exceptions:

■ SecurityException—Thrown by the rollback() method if the thread using
the UserTransaction is not allowed to perform a rollback

■ IllegalStateException—Thrown if the current thread is not associated
with a transaction

■ SystemException—Thrown if an unexpected error occurs while the transac-
tion is being rolled back

EJBs typically make use of the rollback() method after detecting an error in the
processes contained in a transaction. For example, say an exception is thrown in
the method implementation, and you want to immediately roll back the previ-
ous updates. Programmers can use the getStatus() method (from the User-
Transaction class) to determine the state of the current transaction. This
method returns an int value contained in the javax.transaction.Status class,
such as STATUS_ACTIVE. You can use the int value to check if the current transac-
tion has already been marked for a rollback.

172 CHAPTER 5

Transactions
For CMT beans, you must use the setRollbackOnly() method of the EJBContext
class. It marks the current transaction for rollback regardless of the transaction’s
outcome. It can throw the following exceptions:

■ IllegalStateException—Thrown if the current thread is not associated
with a transaction

■ SystemException—Thrown if an unexpected error occurs while the transac-
tion is being rolled back

Combined with getRollbackOnly(), the setRollbackOnly() method should be
used to successfully manage errors that may occur in a method implementation.
For instance, if the EJB detects an error, it can test the transaction with the
getRollbackOnly() method to see if the error causes the transaction to be marked
for rollback. If not, it can attempt to correct the problem and complete the trans-
action, or mark the transaction for rollback if necessary.

◆ See also

5.4—Attempting error recovery to avoid a rollback

5.5—Forcing rollbacks before method completion

5.8—Managing EJB state at transaction boundaries

5.10—Managing EJB state after a rollback

5.4 Attempting error recovery to avoid a rollback

◆ Problem

You want your EJBs to attempt to recover from errors before causing a transac-
tion rollback.

◆ Background

You would like a particular EJB method to have the highest possibility of success.
To do this, you want to code a particular method to monitor the status of the exe-
cuting code in order to detect errors or conditions that may cause a rollback to
occur. If a rollback is necessary, you want your EJB to attempt to recover from the
error before performing a rollback.

◆ Recipe

With both bean-managed and container-managed transaction EJBs, you can avoid
causing a rollback by correctly handling errors.

Attempting error recovery to avoid a rollback 173

For bean-managed transaction beans
Listing 5.2 contains a code section from a BMT bean business method that
attempts to avoid a rollback.

UserTransaction transaction = ejbContext.getUserTransaction();
transaction.begin();

try
{
 //perform business logic here
}
catch(Exception e)
{
 boolean errorFixed = false;
 boolean markedForRollback = transaction.getRollbackOnly();

 if(!markedForRollback) //not marked for rollback
 {
 //discover actual error and attempt a fix
 errorFixed = fixError();
 }
 else return; //skip remaining method body

 if(!errorFixed)
 {
 transaction.rollback();
 }
}
transaction.commit();

For container-managed transaction beans
Listing 5.3 contains a code section from a CMT bean business method that
attempts to avoid a rollback.

Ltry
{
 //perform business logic here
}
catch(Exception e)
{
 boolean errorFixed = false;
 boolean markedForRollback = ejbContext.getRollbackOnly();
 if(!markedForRollback)
 {
 //discover actual error and attempt a fix

Listing 5.2 Avoiding a rollback in a BMT bean

Listing 5.3 Avoiding a rollback in a CMT bean

Acquires an instance of UserTransaction

Tests for a
potential rollback

Attempts to fix
the error

Rolls back the
transaction

Tests for a potential rollback

174 CHAPTER 5

Transactions
 errorFixed = fixError();
 }
 else return; //skip remaining method body

 if(!errorFixed)
 {
 ejbContext.setRollbackOnly();
 }
}

◆ Discussion

The recipe describes how to test for rollbacks for both BMT and CMT beans. Bean-
managed transaction beans should use the methods from the UserTransaction
instance being used, and container-managed transaction beans should use the
methods of their EJBContext instance. The recipe demonstrates in both cases an
attempt to recover from exceptions thrown within the current transaction. The
ability to acquire the status of a transaction and to mark it for rollback gives you
more control over your transactions in both BMT and CMT beans.

For BMT bean methods containing many steps, the transaction rollback con-
trol shown in the recipe allows you to test the transaction after each significant
step in the method. After each step, you can attempt recovery or begin a roll-
back. For CMT beans, you have only one transaction per method, but you can
mark the transaction for rollback without throwing an exception to the con-
tainer. In both cases, testing the transaction allows you to skip the remaining
code in a method if you plan to roll back the transaction. This can be important
for improving performance.

In addition, BMT beans could use the rollback() method to immediately force
a rollback of the current transaction.

◆ See also

5.2—Handling transaction management without the container

5.3—Rolling back the current transaction

5.8—Managing EJB state at transaction boundaries

5.10—Managing EJB state after a rollback

Attempts to fix the error

Marks the transaction
for rollback

Forcing rollbacks before method completion 175

5.5 Forcing rollbacks before method completion

◆ Problem

You want the container to roll back the current transaction without waiting for the
current method to complete execution.

◆ Background

In certain conditions, it is best to immediately roll back a transaction without
attempting to complete the remaining code within the transaction. For instance,
if attempts to acquire a database connection time out, trying to complete the
method that uses the connection is pointless. For performance and application
health reasons, it is simply best to roll back any previous changes without complet-
ing the method.

◆ Recipe

In order to force a rollback, you should throw an instance, or subclass, of the
javax.transaction.SystemException exception class (see listing 5.4).

public void businessMethod() throws EJBException
{
 //perform important logic
 boolean returnValue = performBusinessFunction();
 try
 {
 //evaluate success of logic
 if(returnValue){
 //do something else
 }
 else{
 //force immediate rollback
 throw new SystemException("Condition failed, rolling back");
 }
 }catch(CustomException ce)
 {
 throw new EJBException(ce);
 }
}

Listing 5.4 Sample business method throwing a SystemException

176 CHAPTER 5

Transactions
◆ Discussion

Transactions are automatically rolled back if a system exception is thrown at any
time during the transaction. System exceptions are the RuntimeException and any
of its subclasses. Because system exceptions are runtime exceptions, they do not
need to be declared in the method declaration.

If a system exception is thrown from within the method that started the transac-
tion, the transaction is rolled back. If a client started the transaction, the client’s
transaction is marked for rollback.

Using system exceptions to force rollbacks does have certain, important side
effects. When the container catches a system exception, it rolls back the transac-
tion, logs the exception, and discards the EJB that originated the exception. For
stateless session and entity beans, losing a bean instance is not that important,
since a new one will be identical in every way for the client. However, losing a ref-
erence to a stateful bean will cause a client to lose the state it might have accumu-
lated in that bean.

◆ See also

5.3—Rolling back the current transaction

5.8—Managing EJB state at transaction boundaries

5.10—Managing EJB state after a rollback

5.6 Imposing time limits on transactions

◆ Problem

You want to set a timeout value for your transactions.

◆ Background

A particular transaction appears to be taking longer than expected and you need
to impose time limits on it. In other words, for a transaction to be considered suc-
cessful, it must execute in a predefined time limit. Using time limits is a good way
to discover performance-related errors. For example, even if your application
transactions are completing successfully but they are unusually slow, they should
be flagged as errors. If an executing transaction exceeds a certain time, it should
be considered in an error state, and any completed work should be rolled back.

Combining entity updates into a single transaction 177

◆ Recipe

Bean-managed transaction EJBs can set a timeout value for a transaction using the
setTransactionTimeout() method from the UserTransaction instance acquired
from the EJBContext set in the bean. For example:

 UserTransaction transaction = ejbContext.getUserTransaction();
 transaction.begin();
 transaction.setTransactionTimeout(30); //set value to 30 seconds
 // invoke business functions here
 transaction.commit();

The timeout value for container-managed transaction beans comes from the
EJB container itself. Your vendor’s documentation should explain how to set
this value.

◆ Discussion

As you can see from the recipe, setting timeout values for transactions is simple.
When a timeout occurs, the transaction will be rolled back because a SystemEx-
ception will be thrown. An EJB can receive notification of the rollback by imple-
menting the SessionSynchronization interface for session beans only. If an EJB
client has a reference to the transaction, it can test the transaction using the
getRollbackOnly() method from the UserTransaction instance.

◆ See also

5.2—Handling transaction management without the container

5.5—Forcing rollbacks before method completion

5.8—Managing EJB state at transaction boundaries

5.10—Managing EJB state after a rollback

5.7 Combining entity updates into a single transaction

◆ Problem

You want to update more than one entity bean in a single transaction.

◆ Background

You have two or more entity beans that represent data in a single step of a transac-
tion. For example, from the account transfer example in the chapter introduction,

178 CHAPTER 5

Transactions
you might have entity beans that represent each of the two accounts. In this case,
you want to perform both updates in single transaction.

◆ Recipe

Develop a session bean that contains a business method that updates the entity
beans within its transaction. In addition, each entity bean’s transaction attribute
should not be set to RequiresNew, Never, or NotSupported; you must set it to
Requires, Mandatory, or Supports. The SampleBean session bean shown in
listing 5.5 updates two entity beans in a single transaction.

public class SampleBean implements SessionBean
{
 private SampleEntityBean bean1;
 private SampleEntityBean bean2;

 /**
 * Sample business method executing in a single transaction.
 */
 public void commitMultipleEntities()
 {
 bean1.setMyAttribute("abc");
 bean2.setMyAttribute("def");
 }
 //session bean methods below
}

The transaction attribute for the session bean should be set to Required, Manda-
tory, or RequiresNew.

◆ Discussion

Using session beans to encapsulate access to entity beans is an accepted practice
by all EJB developers. The session bean uses its transaction for the commitMulti-
pleEntities() business method to contain the two updates of the entity beans. In
order to keep the multiple entity bean updates within a single transaction, make
sure that each entity bean’s transaction attribute is not set to RequiresNew. If you
use RequiresNew, the EJB container will create a separate transaction for each
entity bean update, breaking the single-transaction requirement. By propagating
the business method’s transaction to the entity beans, all the updates can be
rolled back together. This ensures that all entity beans are updated if and only if
they all succeed in the update.

Listing 5.5 SampleBean.java

Managing EJB state at transaction boundaries 179
◆ See also

5.1—Tuning the container transaction control for your EJB

5.16—Updating multiple databases in one transaction

5.8 Managing EJB state at transaction boundaries

◆ Problem

In order to manage their state, you want your EJBs to know when a transaction
starts, completes, and/or rolls back.

◆ Background

You don’t want to use bean-managed transactions, but you do want to be notified
when a transaction starts and when one completes. Being notified of transaction
events allows your beans to manage their member state variables appropriately.
For instance, when a transaction starts, you want to make sure the EJB has initial-
ized its state variables. When the transaction completes, you want to make sure
you are preparing state variables for the next transaction. This doesn’t apply to
stateless session beans, because they should not contain any state that needs to be
managed at transaction boundaries.

◆ Recipe

To get information about transaction status for stateful session beans, implement
the javax.ejb.SessionSynchronization interface. The example session bean in
listing 5.6 receives a callback for the beginning, successful completion, and post-
completion of a transaction.

public class SampleBean implements SessionBean, SessionSynchronization
{
 private Object stateVariable;

 public void afterBegin() throws RemoteException
 {
 //Transaction has started…
 stateVariable = initializeState();
 }

 public void beforeCompletion() throws RemoteException
 {
 //Transaction is about to complete

Listing 5.6 SampleBean.java

180 CHAPTER 5

Transactions
 saveState();
 }

 public void afterCompletion(boolean committed) throws RemoteException
 {
 //test for rollback
 if(!committed)
 stateVariable = initializeState();
 }

 //implementation of the EJB below…
}

For entity beans, the ejbLoad() and ejbStore() methods are the beginning and
end of a transaction (also ejbCreate() and ejbRemove()—basically where data is
loaded or stored). If a rollback occurs, ejbLoad() will be invoked to restore the
bean’s state.

◆ Discussion

The SessionSynchronization interface should be used to prepare a stateful ses-
sion bean before specific transaction boundaries. It provides callback methods to
the bean occurring after the transaction begins, before the transaction commits,
and after the transaction completes. The afterCompletion() callback provides a
boolean parameter indicating whether the transaction has been marked for a roll-
back. In addition, the beforeCompletion() callback will be invoked only if the
transaction is about to perform a commit.

The container will invoke all the methods of this interface at the correct times.
The first callback method, afterBegin(), should be used to prepare data for use
inside a transaction. This process might include reading from a database. The sec-
ond callback should be used to save the state of data that was created from the
business method and needs to be preserved. The final method should be used to
test for a rollback condition. If a rollback has occurred, use this method to restore
the session bean’s data to its original state before the transaction started.

◆ See also

5.2—Handling transaction management without the container

5.4—Attempting error recovery to avoid a rollback

5.5—Forcing rollbacks before method completion

5.10—Managing EJB state after a rollback

Using more than one transaction in a method 181

5.9 Using more than one transaction in a method

◆ Problem

In a single business method, you want to make use of more than one transaction.

◆ Background

With container-managed transaction beans, you are limited to a single transaction
per method. You would like to group some important sections of code into a sin-
gle method but use multiple transactions within the entire method. You need
transaction control like this if you have a method that contains critical sections of
code that cannot be broken into separate methods for CMT control. This enables
you to roll back a small section of code and exit the method without executing the
remaining method. This applies only to session beans, because entity beans must
always use container-managed transactions.

◆ Recipe

Change your session bean to manage its own transactions by altering its XML
descriptor. For example, the following code sets up a UserBean EJB for bean-man-
aged transactions:

<session>
 <description>Example</description>
 <ejb-name>User</ejb-name>
 <home>UserHome</home>
 <remote>User</remote>
 <ejb-class>UserBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Bean</transaction-type>
</session>

Create transactions around your important code sections as needed. For example,
the business method in listing 5.7 uses multiple transactions.

public void businessMethod()
{
 UserTransaction transaction = null;
 try
 {
 transaction = ejbContext.getUserTransaction();
 transaction.begin();
 //perform important code

Listing 5.7 Sample business method

182 CHAPTER 5

Transactions
 transaction.commit();

 }catch(Exception e)
 {
 //need to rollback?
 if(transaction == null)
 transaction.rollback();
 }

 //start next section of important code
 try
 {
 transaction = ejbContext.getUserTransaction();
 transaction.begin();
 //perform important code
 transaction.commit();

 }catch(Exception e)
 {
 //need to rollback?
 if(transaction == null)
 transaction.rollback();
 }
}

◆ Discussion

At times, you need a finer-grained control of transactions than the single-
transaction-per-business method provided by container-managed transactions. If
this is the case, it makes sense to change your session beans to bean-managed trans-
actions. By managing transactions on your own, you can create as many as you
need within a single method. This gives you the ability to specify small rollbacks,
attempt to recover from errors, and provide specific explanation of exceptions.

In a situation like this, you may even consider using nested transactions—start-
ing one transaction while executing within another. Unfortunately, this type of
transactional programming is not allowed. Possibly in the future we will see the
EJB specification modified to handle this behavior. For clarification, an EJB that
declares its transactional behavior with RequiresNew called within another transac-
tion is not an example of nested transactions. The containing transaction is sus-
pended while the new one executes, and resumes when the new transaction
completes. The “inside” transaction does not affect the first transaction. For EJBs,
transactions are either suspended or propagated.

Managing EJB state after a rollback 183

◆ See also

5.1—Tuning the container transaction control for your EJB

5.12—Propagating a transaction to another EJB business method

5.13—Propagating a transaction to a nonEJB class

5.10 Managing EJB state after a rollback

◆ Problem

You want to make sure your EJBs have correct state variables after a rollback
completes.

◆ Background

After a rollback has occurred, a stateful session EJB must reset its state to what it was
before the rolled-back transaction began execution. The goal of a rollback is to
restore an EJB state to the pre-transaction version, ensuring that new transactions
can start with the correct state. You need your EJB to know when a transaction roll-
back has occurred within a method, and you want to restore the EJB state before a
new transaction can start.

◆ Recipe

To reset the state for a session bean after a rollback, implement the javax.ejb
.SessionSynchronization interface shown in listing 5.8.

public class SampleBean implements SessionBean, SessionSynchronization
{
 public void afterBegin() throws RemoteException
 {
 //Transaction has started…
 }

 public void beforeCompletion() throws RemoteException
 {
 //Transaction is about to complete
 }

 public void afterCompletion(boolean committed)
 throws RemoteException
 {
 //test for rollback

Listing 5.8 SampleBean.java

184 CHAPTER 5

Transactions
 if(!committed)
 restoreState(); //invoke bean method to restore state
 }

 //implementation of the EJB below…
}

For entity beans, don’t do anything. The container will invoke ejbLoad() on the
entity bean and restore it to its original state before the transaction.

◆ Discussion

Only session beans can implement the SessionSynchronization interface. It pro-
vides session beans with three callback methods that indicate the beginning, suc-
cessful completion, and postcompletion of a transaction within the bean.

After the transaction has completed, the container invokes the afterComple-
tion() method, passing in a boolean parameter indicating whether the transac-
tion was rolled back. If a rollback occurred, you should use this method to restore
the original state of the bean before the business method invocation.

As you can see, the SessionSynchronization interface should be used with
beans using container-managed transactions. If your bean is managing its own
transactions, you won’t need this interface to know about transaction boundaries
because the bean itself manages those events.

Entity beans, on the other hand, do not need to be informed of transaction
boundaries. Their ejbLoad() and ejbStore() methods are the indicators of trans-
action boundaries. If a rollback occurs on an entity bean, the container will
invoke the ejbLoad() method to restore the bean’s state.

5.11 Throwing exceptions without causing a rollback

◆ Problem

You want to throw exceptions from methods within a transaction without causing
a rollback.

◆ Background

In a container-managed transaction session bean, you want to throw an exception
that does not force a transaction rollback. In some of your business methods, you
want to do some data validation before actually doing any work that might require

Throwing exceptions without causing a rollback 185

a rollback. If the validation fails, you want to indicate as such by throwing an
exception. However, the data validation would not require a rollback. For exam-
ple, registering a user would require validation of user data before persisting it in
a data store. You might want to throw an exception upon invalid data, and no roll-
back would be needed because no data has been persisted.

◆ Recipe

To avoid causing a rollback, throw an application exception from your business
method. An application exception is any exception that does not subclass Run-
timeException or RemoteException. Consider the registerUser() business method:

public void registerUser(String user, String password) throws
 InvalidUserDataException
{
 if(user == null || password == null)
 throw new InvalidUserDataException();
}

◆ Discussion

Unlike system exceptions, application exceptions do not necessarily force a trans-
action to be rolled back. Application exceptions do not extend RuntimeException
or RemoteException. Typically, they are used in validation situations, such as the
one in the recipe. Application exceptions must be declared in the method decla-
ration and are returned to the client without being wrapped in an EJBException
or RemoteException. As you can see in the recipe, the InvalidUserDataException
instance is thrown because either the user or the password was null. The applica-
tion exception is thrown before any actual work is completed in the method, and
therefore no rollback is needed.

Obviously, this works only if your method has not done something that needs a
rollback. While developing such methods, you must be careful to force rollbacks
when necessary.

◆ See also

5.5—Forcing rollbacks before method completion

186 CHAPTER 5

Transactions
5.12 Propagating a transaction
to another EJB business method

◆ Problem

You want to propagate the current transaction to another EJB method.

◆ Background

You want a transaction to cross two or more business methods within a single EJB,
or you need to contain two or more business methods from two or more separate
EJBs. Propagating transactions across methods lets you break up a multistep proc-
ess into many methods or beans and still contain it in a single transaction. Using
propagation lets you keep the benefits of a single transaction—a single transac-
tion and a single commit—while letting you break up large sections of code into
multiple methods and beans.

◆ Recipe

Both CMT and BMT beans can propagate their current transaction to another EJB.

For container-managed transaction beans
For CMT beans you need to ensure that the methods being invoked from within a
transaction do not use the RequiresNew, Never, or NotSupported transaction
attributes. The deployment descriptor of each bean describes the transaction
attributes for the business methods. For example, a CMT session bean SampleBean,
with the business method simpleBusinessMethod(), might be described like this:

<container-transaction>
 <method>
 <ejb-name>SampleBean</ejb-name>
 <method-name>simpleBusinessMethod</method-name>
 </method>
 <trans-attribute>Mandatory</trans-attribute>
</container-transaction>

As long as each business method does not declare its transaction attribute to be
RequiresNew (or NotSupported or Never), the current transaction will be propa-
gated to it.

For bean-managed transaction beans
In this situation, a BMT bean wants to pass along its transaction to another busi-
ness method. If the other business method is in a CMT bean, use the container-

Propagating a transaction 187
to another EJB business method
managed transaction recipe. If an instance of UserTransaction was started in one
method, it can be committed in a different method. Subsequent calls to getUser-
Transaction() return the current transaction instance. Listing 5.9 shows a session
bean that manages transactions in this manner.

public class SimpleBean implements SessionBean
{
 public void businessMethodOne()
 {
 UserTransaction transaction = ejbContext.getUserTransaction();
 transaction.begin();
 //do some work
 }

 public void businessMethodTwo()
 {
 // do some work
 UserTransaction transaction = ejbContext.getUserTransaction();
 transaction.commit();
 }
}

◆ Discussion

This recipe does not apply to stateless session beans. Because stateless beans are
shared across multiple clients, it does not make sense to share transactions across
them. Per the EJB specification, one transaction cannot start in one stateless
method or bean and complete in another. For stateless bean methods, transac-
tions must be started and completed within the method invocation. This solution
should therefore be applied only to stateful beans or entity beans as needed.

◆ See also

5.1—Tuning the container transaction control for your EJB

5.2—Handling transaction management without the container

5.13—Propagating a transaction to a nonEJB class

Listing 5.9 SimpleBean.java

188 CHAPTER 5

Transactions
5.13 Propagating a transaction to a nonEJB class

◆ Problem

You want to involve a nonEJB class in the current transaction by propagating the
transaction to the object.

◆ Background

Your EJB application makes use of session beans that call into data access objects
(DAOs) rather than entity beans. If the data update from the DAO object fails, you
want the transaction to roll back.

◆ Recipe

Two of the best ways to solve this problem are to catch a custom exception thrown
by the DAO object (indicating a failed update), or to allow the DAO to throw a sys-
tem exception upon the failed update.

The session bean in listing 5.10 uses a DAO pattern to update a database, and it
catches the custom BadUpdateException thrown by the DAO. After catching the
exception, it tells the container to roll back the transaction.

public class SimpleBean implements SessionBean
{
 public void businessMethod(Hashtable data)
 {
 BusinessDataAccessObject bdBean = getData();
 try
 {
 bdBean.updateData(parameters);
 }catch(BadUpdateException e)
 {
 //do some work before rolling back….

 ejbContext.setRollbackOnly();
 }
 }

 //remaining methods below
}

Alternatively, the DAO object could simply throw a system exception after telling
its JDBC connection to roll back an update. The system exception will force a

Listing 5.10 SimpleBean.java

Propagating a transaction to a non-EJB class 189

rollback of the current transaction. The data access object class in listing 5.11
demonstrates this concept.

public class BusinessDataAccessObject
{
 public void updateData(Hashtable parameters) throws SQLException
 {
 Connection con = null;
 try{
 con = getConnection();
 con.setAutoCommit(false);
 PreparedStatement stmt = createStatement(con);
 stmt.executeUpdate();
 con.commit();

 }catch(Exception e)
 {
 con.rollback();
 throw new SystemException(e.getMessage());
 }

 }
}

◆ Discussion

This recipe separates the actual transaction of the session bean and the JDBC
transaction contained within the DAO object. The DAO uses a system exception in
order to force the container to roll back the session bean’s transaction upon an
error in the update. This recipe works for CMT session beans; for BMT beans you
could pass a reference to the UserTransaction instance to the DAO object for con-
trol. If you were using multiple DAO objects, each of which might possibly need
rollbacks, it would be best to use a bean-managed transaction EJB, allowing you
finer-grained control.

◆ See also

5.5—Forcing rollbacks before method completion

Listing 5.11 BusinessDataAccessObject.java

190 CHAPTER 5

Transactions
5.14 Starting a transaction in the client layer

◆ Problem

You want to start a transaction in the client layer of your application and propa-
gate to an EJB.

◆ Background

You would like your application client to start a transaction with which to execute
EJB methods. In this scenario, you want the client to propagate a transaction to
the EJB container. This recipe should only be used with session beans.

◆ Recipe

To start a transaction in the client layer, first create an instance of the JNDI con-
text and use it to acquire a UserTransaction instance (see listing 5.12).

 Properties props = new Properties();
 //put any necessary vendor props…

 Context myJNDIContext = new InitialContext(props);
 UserTransaction transaction = (UserTransaction)
 myJNDIContext.lookup("java:comp/env/UserTransaction");
 try
 {
 transaction.begin();

 //do some work with EJBs

 transaction.commit();
 }
 catch(Exception e)
 {
 transaction.rollback();
 }

The EJB to be used should not declare its transaction level to be RequiresNew,
Never, or NotSupported; anything else will work correctly (Required, Supports,
or Mandatory).

◆ Discussion

Clients can make use of transactions like a BMT bean. From an initialized Context
object, a client can acquire a new UserTransaction instance from the transaction

Listing 5.12 Starting a transaction in the client layer

Holding a transaction 191
across multiple JavaServer Pages
system by looking up the JNDI name java:comp/env/UserTransaction. With a new
instance in hand, the client can look up beans and execute their methods within
the transaction. The transaction will be propagated to the beans for their use. The
EJBs being used within the client transaction should not set the transaction level
to RequiresNew, Never, or NotSupported. RequiresNew will force the container to
create a new transaction for the bean and suspend the one started by the client.
Using Never or NotSupported will tell the container that the bean should not be
executed within a transaction, and an exception will be thrown.

When creating your InitialContext instance, be sure to check your vendor
documentation for any specific properties you need to set in order for the lookup
to function successfully.

Finally, keep in mind that you should apply this recipe only to session beans. In
reality, you can apply it to entity beans, but it is accepted practice to avoid expos-
ing entity beans to the client layer. You should use a session bean to wrap your
data access. To include entity beans within a client-initiated transaction, use a ses-
sion bean to wrap them—apply this recipe to the wrapping session bean. You can
use the session bean to provide security, context, and better performance over the
longevity of your application lifecycle.

If you are seriously considering starting a transaction on the client, you should
attempt to first see if you can move that functionality to a session bean. Typically,
you should start and complete transactions in the EJB layer in order to ensure that
they are managed in the correct way.

◆ See also

3.17—Decreasing the number of calls to an entity bean

5.2—Handling transaction management without the container

5.15—Holding a transaction across multiple JavaServer Pages

5.15 Holding a transaction
across multiple JavaServer Pages

◆ Problem

You want to hold a transaction across a series of JavaServer Pages.

◆ Background

You have a complex series of JSP pages that users interact with to complete a func-
tion, such as filling out a registration form or running a wizard. In order to

192 CHAPTER 5

Transactions
provide your users with the best experience, you persist the collected information
from each page (or step) of the process. Because many steps persist information,
you want to span the entire process with a single transaction started and commit-
ted from your JSP.

NOTE While spanning a JSP session with a single transaction is possible, it may
not be the best solution. After examining this code, be sure to read the
Discussion section for more information regarding the drawbacks of
this approach.

◆ Recipe

To span a JSP session with a single transaction, create the transaction and store it
in the Session object. Retrieve it from successive pages and commit or roll back
when needed:

<%
 UserTransaction transaction = (UserTransaction)
 myJNDIContext.lookup("java:comp/env/UserTransaction");
 Session.setAttribute("CURRENT_TRANSACTION", transaction);
 transaction.begin();
 //do some work with EJBs
 %>

To retrieve the transaction, use this code:

<%
 UserTransaction transaction = (UserTransaction)
 Session.getAttribute("CURRENT_TRANSACTION");
 //do some work with EJBs
%>

◆ Discussion

While this recipe will work, using it might indicate a possible need to re-architect
your method of presenting a process to the end user. A better way of solving this
problem, rather than carrying a transaction across multiple pages using the Ses-
sion, is to store the user’s progress in a stateful session bean. The sequence should
move something like this:

1 The user starts the process and the JSP creates a stateful session bean for the
user session.

2 For each process step, the JSP collects data and sends it to the user’s ses-
sion bean.

Updating multiple databases in one transaction 193

3 The process completes.

4 The JSP starts a transaction in the session bean, commits the data, and
ends the transaction.

5 The JSP reports the status back to the user.

This method performs the same function and prevents database locks and long-
lived transactions. In this manner you create a short transaction, and your system
is better suited for multiple and long-lived sessions (alternatively, you could store
state in the HTTP session of the user). You should use a form of this solution,
rather than creating a long-lived transaction spanning a user session.

◆ See also

5.2—Handling transaction management without the container

5.14—Starting a transaction in the client layer

5.16 Updating multiple databases in one transaction

◆ Problem

You want to commit updates to two or more entity beans, persisting to different
databases, in a single transaction. This is a two-phase commit.

◆ Background

One of the benefits of using EJBs for business logic and data persistence is the
ability to trust the EJB container to properly manage complex transactional situa-
tions. For example, completing or rolling back a transaction that is involved in a
two-phase commit is not easily managed by the programmer. When using
container-managed transactions, you can easily perform a two-phase commit,
updating two different databases in a single transaction.

◆ Recipe

Before you try a two-phase commit in your EJB application, you need to check
the following:

1 Read your application server documentation to see if it supports two-phase
commits with its transaction system.

194 CHAPTER 5

Transactions
2 Make sure your database driver supports the two-phase commit protocol
for your connections. The database driver provider must include the
classes javax.sql.XAConnection and javax.sql.XADataSource.

After meeting these requirements, you should not have any problems. For exam-
ple, listing 5.13 contains a CMT session bean that updates two entity beans.

public class SampleBean implements SessionBean
{
 private SampleEntityBean bean1;
 private SampleEntityBean bean2;

 /**
 * Sample business method executing in a single transaction.
 */
 public void commitMultipleEntities()
 {
 //look up 2 entity beans from separate data bases
 bean1 = getEntityDataFromDB1();
 bean2 = getEntityDataFromDB2();

 bean1.setMyAttribute("abc");
 bean2.setMyAttribute("def");
 }

 //session bean methods below not shown
}

Configure the method commitMultipleEntities()with the transaction attribute
Required, Mandatory, or RequiresNew. The container will handle the commits or
necessary rollback.

◆ Discussion

The entity beans used in the recipe solution (bean1 and bean2) need to be config-
ured separately to persist to separate databases. The entity beans should make use
of an XADataSource in order for the distributed, two-phase commit to succeed.
Check your application server documentation for setting up these beans.

Once configured, completing this type of transaction is no harder than any
other type of transaction. The simple session bean just updates the two entity
beans and completes the method. Once the method completes successfully, the
EJB container’s transaction manager will commit the transaction, telling the two

Listing 5.13 SampleBean.java

Updating multiple databases in one transaction 195

different JDBC connections to commit. If both connections succeed, the transac-
tion is considered a success.

◆ See also

3.2—Creating EJB 2.0 container-managed persistence

5.1—Tuning the container transaction control for your EJB

5.7—Combining entity updates into a single transaction

Messaging
“An army marches on its stomach.”

—Napoleon Bonaparte
197

198 CHAPTER 6

Messaging
With the introduction of the message-driven bean in the EJB 2.0 specification,
Enterprise JavaBean applications can now easily be integrated with messaging sys-
tems. Java 2 Platform Enterprise Edition (J2EE)-compliant application servers are
required to provide messaging capabilities. Before the message-driven bean, EJB
applications could still send Java Message Service (JMS) messages and listen for
those messages by including a JMS listener object; however, messages had to be
processed in a synchronous manner. Message-driven beans are now the ideal way
to expose business logic to messaging applications.

This chapter primarily focuses on problems associated with message-driven
bean development. In this chapter, you will find recipes dealing with these topics:

■ Sending JMS messages

■ Creating a message-driven EJB

■ Processing messages first in, first out

■ Putting business logic in message-driven beans

■ Streaming data with JMS

■ Triggering multiple message-driven beans

■ Speeding up message delivery

■ Using message selectors

■ Handling errors in a message-driven bean

■ Sending email asynchronously

■ Handling rollbacks in a message-driven bean

6.1 Sending a publish/subscribe JMS message

◆ Problem

You want to send a JMS message to a message topic (known as publish/subscribe
messaging).

◆ Background

Enterprise applications can now use the JMS to communicate to outside applica-
tions or other application servers. EJBs can use JMS to decouple communication
with these other systems in an asynchronous manner using a publish/subscribe
pattern. JMS message topics create a one (the sender) to many (the receiver) rela-
tionship between messaging partners. In addition, publish/subscribe topics can

Sending a publish/subscribe JMS message 199

be used to store messages even when no entity is ready to retrieve them (referred
to as durable subscriptions).

◆ Recipe

The code in listing 6.1 shows a private method, publish(), that can be used in any
object that wishes to send a JMS message to a publish/subscribe topic.

 private void publish(String subject, String content) {

 TopicConnection topicConnection = null;
 TopicSession topicSession = null;
 TopicPublisher topicPublisher = null;
 Topic topic = null;
 TopicConnectionFactory topicFactory = null;

 try{
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, url);
 InitialContext context = new InitialContext(props);

 topicFactory =
 (TopicConnectionFactory)
 context.lookup("TopicFactory");

 topicConnection =
 topicFactory.createTopicConnection();

 topicSession =
 topicConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 topic = (Topic) context.lookup("ProcessorJMSTopic");
 topicPublisher = topicSession.createPublisher(topic);

 MapMessage message = topicSession.createMapMessage();
 message.setString("Subject", subject);
 message.setString("Content", content);
 topicPublisher.publish(message);
 }catch(Exception e){
 e.printStackTrace();
 }
 }

Listing 6.1 The publish() method

Creates an
InitialContext
for the
Weblogic
application
server

Looks up the
topic factory

Creates a topic
connection and

session

Finds the
topic and
builds a
publisher

Builds and sends
the message

200 CHAPTER 6

Messaging
◆ Discussion

Publish/subscribe messaging allows you to send a single message to many message
listeners. In fact, you can create message Topic destinations as durable, allowing
message listeners to retrieve messages that were sent before the listener sub-
scribed to the topic.

To send a message to a JMS topic, you first need to create a Java Naming and
Directory Interface (JNDI) context and retrieve the JMS connection factory for
topics in the JMS environment. Next, you must create a topic connection in order
to establish a topic session. Once you have a session, you can find the actual topic
to which you want to send a message, and build a publisher object for transmis-
sion of your message. Finally, simply construct your message and send it using the
publisher. For more about the JMS API, visit http://java.sun.com

◆ See also

6.2—Sending a point-to-point JMS message

6.3—Creating a message-driven Enterprise JavaBean

7.8—Securing a message-driven bean

6.2 Sending a point-to-point JMS message

◆ Problem

You want to send a point-to-point message.

◆ Background

Like the publish/subscribe messaging model shown in recipe 6.1, the point-to-
point model allows applications to send messages asynchronously to remote mes-
sage listeners. Point-to-point messaging differs in that it creates a one-to-one rela-
tionship between sender and receiver—that is, a single receiver consumes a single
message. No message will be duplicated across multiple consumers.

◆ Recipe

The code in listing 6.2 shows a private method, send(), that can be used in any
object that wishes to send a JMS point-to-point message.

Sending a point-to-point JMS message 201

 private void send(String subject, String content) {
 QueueConnection queueConnection = null;
 QueueSession queueSession=null;
 QueueSender queueSender=null;
 Queue queue=null;
 QueueConnectionFactory queueFactory = null;

 try{
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "weblogic.jndi.WLInitialContextFactory");
 props.put(Context.PROVIDER_URL, url);
 InitialContext context = new InitialContext(props);

 queueFactory =
 (QueueConnectionFactory) context.lookup("QueueFactory");

 queueConnection = queueFactory.createQueueConnection();
 queueSession = queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queue = (Queue)context.lookup("BookJMSQueue");
 queueSender = queueSession.createSender(queue);

 MapMessage message =
 queueSession.createMapMessage();
 message.setString("Symbol",symbol);
 message.setString("Description",description);
 queueSender.send(message);

 }
 catch(Exception e){
 log("Error Publishing Message");
 e.printStackTrace();
 }
 }

◆ Discussion

To send a point-to-point message, you must send a message to a JMS message
queue. To send the message, you first have to create a JNDI context and retrieve
the JMS connection factory for a message queue in the JMS environment. Next,
you must create a queue connection in order to establish a queue session. Once
you have a session, you can find the actual queue to which you want to send a mes-
sage, and build a sender object for transmission of your message. Finally, you sim-
ply construct your message and send it using the sender.

Listing 6.2 The send() method

Creates an
InitialContext

for the
Weblogic

application
server

Looks up the topic factory

Creates a
topic

connection
and session

Finds the
topic and
builds a
senderBuilds and

sends the
message

202 CHAPTER 6

Messaging
Message queues guarantee that messages are consumed by only one receiver
and are never duplicated across multiple listeners (unlike a JMS topic). Message
queues are ideal for messages that should be processed concurrently but only
once. Many receivers can be pulling messages from a queue for processing at the
same time, but each message will be sent to only one consumer.

◆ See also

6.1—Sending a publish/subscribe JMS message

6.3—Creating a message-driven Enterprise JavaBean

7.8—Securing a message-driven bean

6.3 Creating a message-driven Enterprise JavaBean

◆ Problem

You want to create a message-driven bean to contain business logic that will be
triggered by a JMS message.

◆ Background

Message-driven beans (added to the EJB 2.0 specification) are assigned to receive
messages from a particular JMS message destination. These EJBs are ideal for exe-
cuting business logic asynchronously and for exposing EJB applications to enter-
prise messaging systems. Message-driven beans use the same transaction models
(see chapter 5) and declarative security (see chapter 7) as do session and entity
beans. Another advantage of message-driven beans is that they can be used to proc-
ess messages concurrently. EJB containers can create a pool of identical message-
driven beans that are able to process messages at the same time, generating a great
deal of processing power.

◆ Recipe

This recipe illustrates how to build a simple message-driven bean and create its
XML descriptor. The class in listing 6.3 defines a message-driven bean. It imple-
ments the required MessageDrivenBean interface and the necessary MessageLis-
tener interface that allows the bean to receive JMS messages.

Creating a message-driven Enterprise JavaBean 203

public class SampleMDB implements MessageDrivenBean, MessageListener
{

 private MessageDrivenContext ctx;

 public void ejbRemove() { }

 public void ejbPassivate() { }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

 public void ejbCreate () throws CreateException { }

 public void ejbActivate() { }

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;

 try {

 processMessage(map);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 private void processMessage(MapMessage map) throws Exception
 {
 //implementation not shown
 }

}

Listing 6.4 contains the partial deployment XML file for the bean; notice how it
indicates the source type of messages for the bean (either point-to-point or pub-
lish/subscribe).

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>SampleMDB</ejb-name>
 <ejb-class>SampleMDB</ejb-class>
 <transaction-type>Container</transaction-type>

Listing 6.3 SampleMDB.java

Listing 6.4 Deployment descriptor

Implements the
MessageDrivenBean and

MessageListener interfaces

Handles
incoming
messages

204 CHAPTER 6

Messaging
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

 </enterprise-beans>

 <assembly-descriptor>
 </assembly-descriptor>

</ejb-jar>

Finally, you must perform the vendor-specific steps to assign the bean to an actual
JMS message destination. The deployment XML describes only the type of messag-
ing used by the message-driven bean, not the actual name of a topic or queue.
Consult your application server documentation for more information. For exam-
ple, the following XML could be used for the Weblogic application server:

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>SampleMDB</ejb-name>
 <message-driven-descriptor>
 <destination-jndi-name>BookJMSTopic</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>ejb/SampleMDB</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

◆ Discussion

As with all other types of EJBs, security and transaction control is implemented in
the usual way. In some cases, transactions and security do have special consider-
ations that you must take into account when dealing with message-driven beans.
For example, you need a good way to prevent unwanted clients from sending mes-
sages to your message-driven EJBs and triggering business logic, and you also need
to know how to handle rollbacks in the onMessage() method. In addition, you
should keep in mind that message-driven beans are stateless, and you should
therefore not attempt to keep any state information stored at a class level in-
between onMessage() invocations.

The MessageDriveBean interface must be implemented in order to provide the
bean with the appropriate bean methods, such as ejbRemove() and ejbCreate().
The Context object set in the bean is an instance of the MessageDrivenContext,
which provides many of the methods found in the session and entity bean context
classes. However, due to the nature of the message-driven bean, many of the

Describes the
messaging type
for this bean

Processing messages in a FIFO manner 205
from a message queue
context methods will throw an exception if used. Since a message-driven bean has
no real EJB client (only the container that delivers the message), the getCaller-
Principal() and isCallerInRole() methods throw a runtime exception. In addi-
tion, message-driven beans have no home interfaces (and therefore have no
home objects), so getEJBHome() and getEJBLocalHome() also throw runtime
exceptions if used. Finally, since no EJB clients exist for a message-driven bean, the
transaction context for the start of the onMessage() method is started by the con-
tainer in the case of container-managed transactions, or by the bean itself in the
case of bean-managed transactions.

◆ See also

6.1—Sending a publish/subscribe JMS message

6.2—Sending a point-to-point JMS message

7.8—Securing a message-driven bean

6.4 Processing messages in a FIFO manner
from a message queue

◆ Problem

You want to ensure that a message in a queue is processed only after any previous
message has finished processing.

◆ Background

While some business logic operated by a message-driven bean can process mes-
sages in any order, other business functions might need messages supplied in a
specific order. For instance, you might want to process incoming JMS messages
according to the order in which they were received to preserve a specific data-
driven workflow. Each message can be a step in a workflow, and the next step can-
not begin without the previous one completing. Refer to recipe 6.2 for a discussion
of using message queues.

◆ Recipe

The client shown in listing 6.5 publishes messages onto a message queue for a
message-driven bean to pick up.

206 CHAPTER 6

Messaging
public class Client
{
 private QueueConnection queueConnection = null;
 private QueueSession queueSession = null;
 private QueueSender queueSender = null;
 private Queue queue = null;
 private QueueConnectionFactory queueFactory = null;
 private String url = getURL();

 public Client()throws JMSException, NamingException {
 Context context = getInitialContext();

 queueFactory = (QueueConnectionFactory)
 context.lookup("BookJMSFactory");
 queueConnection = queueFactory.createQueueConnection();
 queueSession = queueConnection.createQueueSession(false,
 Session.AUTO_ACKNOWLEDGE);
 queue = (Queue) context.lookup("BookJMSQueue");
 queueSender = queueSession.createSender(queue);
 }

 public void send() throws JMSException {
 MapMessage message = null;

 for(int i=0;i<10;i++){
 message = queueSession.createMapMessage();
 message.setInt("Index",i);
 queueSender.send(message);
 }
 }

 public void close() throws JMSException {
 queueConnection.close();
 }

 public static void main(String[] args) {
 Client sender = null;

 try{
 sender = new Client();
 sender.send();
 sender.close();
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.5 Client.java

Processing messages in a FIFO manner 207
from a message queue
Notice that the client sends a counter value in the messages. The message-driven
bean will use that value to show that the messages are received and processed one
at a time. The message-driven bean shown in listing 6.6 picks up messages from
the message queue and prints out the counter value that each message contains.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;

 try {
 int index = map.getInt("Index");
 System.out.println("Processing message: " + index);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 //other bean methods not shown
}

Since we made use of a message queue, we are guaranteed that messages will be
removed from the queue in the order in which they were placed. To ensure that
one message is completely processed before the next message begins, you should
deploy only a single message-driven bean to remove messages from the queue.

Listing 6.7 contains the deployment XML for the bean; notice how it indicates
the source type of messages for the bean.

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>fifoMDB</ejb-name>
 <ejb-class>fifo.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
 </message-driven>

Listing 6.6 MessageBean.java

Listing 6.7 Deployment descriptor

208 CHAPTER 6

Messaging
 </enterprise-beans>

 <assembly-descriptor>
 </assembly-descriptor>

</ejb-jar>

To ensure that the second message is not consumed before the first message proc-
essing has completed, you must have only one bean listening to the queue. This is
set up in the vendor-specific deployment file. For example, you can use XML like
that shown in listing 6.8 for the Weblogic application server.

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>fifoMDB</ejb-name>
 <message-driven-descriptor>
 <pool>
 <max-beans-in-free-pool>1</max-beans-in-free-pool>
 <initial-beans-in-free-pool>1</initial-beans-in-free-pool>
 </pool>
 <destination-jndi-name>BookJMSQueue</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>fifo.MBD</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

◆ Discussion

Message queues guarantee that only one consumer will process each single mes-
sage. By limiting the number of consumers assigned to a queue to a single message-
driven bean, you ensure that all the messages will be processed in the order in
which they were received. In addition, using one consumer guarantees that each
message will completely process before the next one begins processing. Otherwise,
you can create a pool of message-driven beans (by increasing the pool size in a ven-
dor-specific manner) to pull messages faster from the queue. Messages will still only
be delivered to a single message-driven bean instance, but using many message-
driven bean instances with the same queue results in faster message processing.

◆ See also

6.2—Sending a point-to-point JMS message

Listing 6.8 Weblogic deployment descriptor

Creates the
message-

driven bean
pool of size 1

Insulating message-driven beans 209
from business logic changes
6.5 Insulating message-driven beans
from business logic changes

◆ Problem

You want to prevent changing your message-driven EJB classes when the business
logic they invoke changes.

◆ Background

Message-driven EJBs are ideal for executing business logic via JMS messages. How-
ever, when developing an enterprise application in a changing environment (or a
shorter development cycle), you might find that you spend too much time
upgrading the business logic contained in your message-driven beans. It would be
ideal to encapsulate your business logic and insulate your message-driven beans
from unnecessary changes.

◆ Recipe

To shield your message-driven beans from business logic changes, encapsulate the
business logic with an intermediary object. The message-driven EJB shown in list-
ing 6.9 uses an instance of the BusinessLogicBean class.

public class MessageBean implements MessageDrivenBean, MessageListener
{
 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map=(MapMessage)msg;

 try {
 String symbol = map.getString("Symbol");
 String description = map.getString("Description");

 BusinessLogicBean bean =
 new BusinessLogicBean(symbol, description);
 bean.executeBusinessLogic();
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.9 MessageBean.java

Invokes the
encapsulated
business logic

210 CHAPTER 6

Messaging
◆ Discussion

The BusinessLogicBean class has a single purpose: to encapsulate business logic.
This class is a simple object that allows the message-driven bean to execute busi-
ness logic by passing in parameters and invoking a method. Using a class like this
allows the EJB to shield itself from changes to the business logic. In addition, it is
good practice to build business logic into reusable classes. An alternative to using
a simple object is to invoke a session EJB that already encapsulates some business
logic. By encapsulating all business logic with session beans, you ensure that the
logic is available to both message-driven beans and any other EJB clients.

◆ See also

6.3—Creating a message-driven Enterprise JavaBean

6.6 Streaming data to a message-driven EJB

◆ Problem

You want to send a stream of data to a message-driven EJB.

◆ Background

Message-driven beans can receive all types of JMS messages. Because of that capa-
bility, you can use the most appropriate JMS message type for the data you want to
send. For instance, when you want to send a large amount of binary data (like an
image), you should stream the data to conserve bandwidth and memory. Refer to
recipe 6.1 for more information on using message topics.

◆ Recipe

This solution demonstrates a client and a message-driven bean using streamed
data. Listing 6.10 shows a client that streams a message containing data from a
binary file to a message-driven EJB. It uses a message topic as a message destination.

public class Client
{
 private TopicConnection topicConnection = null;
 private TopicSession topicSession = null;
 private TopicPublisher topicPublisher = null;
 private Topic topic = null;
 private TopicConnectionFactory topicFactory = null;

Listing 6.10 Client.java

Streaming data to a message-driven EJB 211

 private String url= "http://myjndihost";

 public Client(String factoryJNDI, String topicJNDI)
 throws JMSException, NamingException {

 // Get the initial context, implementation not shown
 Context context = getInitialContext();

 // Get the connection factory
 topicFactory = (TopicConnectionFactory)
 context.lookup(factoryJNDI);

 // Create the connection
 topicConnection = topicFactory.createTopicConnection();

 // Create the session
 topicSession=topicConnection.createTopicSession(false,
 Session.AUTO_ACKNOWLEDGE);

 // Look up the destination
 topic = (Topic) context.lookup(topicJNDI);

 // Create a publisher
 topicPublisher = topicSession.createPublisher(topic);
 }

 public void sendToMDB(String filename) throws JMSException
 {
 byte[] bytes = new byte[1024];
 FileInputStream istream = null;
 int bytesRead = 0;

 try{
 BytesMessage message = topicSession.createBytesMessage();
 Istream = new FileInputStream(filename);
 while((bytesRead = istream.read(bytes,0,bytes.length)) > 0)
 {
 message.writeBytes(bytes,0,bytesRead);
 }
 istream.close();
 topicPublisher.publish(message);
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }

 public void close() throws JMSException {
 topicSession.close();
 topicConnection.close();
 }

 public static void main(String[] args) {
 Client publisher = null;
 String filename = null;

 try{

Creates the
BytesMessage

instance

Writes the data
to the message

212 CHAPTER 6

Messaging
 publisher = new Client("BookJMSFactory", "BookJMSTopic");
 System.out.println("Publishing message:");

 if(args.length > 0){
 filename = args[0];
 publisher.sendToMDB(filename);
 publisher.close();
 }
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.11 shows the sample message-driven bean that receives data from a
streamed message. This bean simply prints out the data it receives.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void ejbRemove() { }

 public void ejbPassivate() { }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

 public void ejbCreate () throws CreateException { }

 public void ejbActivate() { }

 public void onMessage(Message msg)
 {
 BytesMessage message = (BytesMessage) msg;
 int bytesRead = 0;
 byte[] bytes = new byte[1024];

 try {
 while((bytesRead = message.readBytes(bytes, 1024)) > 0){
 System.out.println(new String(bytes, 0 , bytesRead));
 }
 }catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.11 MessageBean.java

Reads the data
off the message

Triggering two or more message-driven beans 213
with a single JMS message
◆ Discussion

Streaming large amounts of data helps you to avoid building a single large mes-
sage. In addition, message streams are ideal for sending binary file data. By using
message streams, you can more easily build messaging systems that can restart
message transmission from the point of failure, rather than retransmit data. The
client uses the BytesMessage message class. This message type is used specifically
for sending large amounts of data to a message listener. The message-driven bean
uses its onMessage() method to receive the message, as it would any other message
type. The message-driven bean in this recipe only printed out the data it received
from the streamed message, but it could instead store it in a database or create a
new file containing the data.

◆ See also

6.1—Sending a publish/subscribe JMS message

6.3—Creating a message-driven Enterprise JavaBean

6.7 Triggering two or more message-driven beans
with a single JMS message

◆ Problem

You want to start two or more business methods concurrently with a single JMS
message.

◆ Background

Message-driven beans give other parts of an enterprise application the ability to
execute business logic asynchronously. However, sending multiple JMS messages
to execute multiple pieces of business logic can be time-consuming and redun-
dant. To improve the efficiency of code, you should send a single message that
triggers multiple message-driven beans.

◆ Recipe

To execute two pieces of business logic with a single message, you need only have
two different message-driven beans listen for the same message. To do this, you
must use a JMS message topic. Topics create a one-to-many relationship between
sender and receiver(s). For this example, we will use two simple message-driven

214 CHAPTER 6

Messaging
beans (listings 6.12 and 6.13). The onMessage() method simply prints out a state-
ment indicating it has received a message.

public class MessageBean implements MessageDrivenBean, MessageListener {

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;

 try {
 String symbol = map.getString("Symbol");
 String description = map.getString("Description");

 System.out.println("MDB 1 received Symbol : " + symbol
 + " " + description);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
 //other bean methods not shown
}

public class MessageBean2 implements MessageDrivenBean, MessageListener {

 public void onMessage(Message msg) {
 MapMessage map=(MapMessage)msg;

 try {
 String symbol = map.getString("Symbol");
 String description = map.getString("Description");

 System.out.println("MDB 2 received Symbol : " + symbol
 + " " + description);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

Listing 6.14 contains the XML descriptor for these beans. As you can see, the
descriptor indicates the JMS destination type.

Listing 6.12 MessageBean.java

Listing 6.13 MessageBean2.java

Triggering two or more message-driven beans 215
with a single JMS message
<enterprise-beans>

 <message-driven>
 <ejb-name>MDB</ejb-name>
 <ejb-class>multiSubscriber.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

 <message-driven>
 <ejb-name>MDB2</ejb-name>
 <ejb-class>multiSubscriber.MessageBean2</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

 </enterprise-beans>

The actual topic used by the message-driven beans is specified in a vendor-specific
manner. For example, listing 6.15 shows the XML used by the Weblogic applica-
tion server to specify the JMS topic for each bean.

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>MDB</ejb-name>
 <message-driven-descriptor>
 <destination-jndi-name>BookJMSTopic</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>multiSubscriber.MDB</jndi-name>
 </weblogic-enterprise-bean>

 <weblogic-enterprise-bean>
 <ejb-name>MDB2</ejb-name>
 <message-driven-descriptor>
 <destination-jndi-name>BookJMSTopic</destination-jndi-name> |#1
 </message-driven-descriptor>
 <jndi-name>multiSubscriber2.MDB</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

Listing 6.14 Deployment descriptor

Listing 6.15 Weblogic deployment descriptor

Assigns the
message-driven

bean to a JMS topic

Assigns the message-driven bean
to the BookJMSTopic topic

216 CHAPTER 6

Messaging
◆ Discussion

Recipe 6.1 provides more information on JMS topics. Since they allow multiple
message-driven beans (even message-driven beans of different Java classes) to
receive the same incoming message, you can use them to create concurrent proc-
essing for sections of business logic. Sending a single message, you can trigger two
completely unrelated business functions to start processing at the same time.

In this recipe, each message-driven bean simply prints out a statement indicat-
ing it has received a message. However, in a practical application the two message-
driven beans should each contain an important business function. To ensure that
both message-driven beans receive the same message, they both need to subscribe
to a JMS topic. For both beans to be triggered by a single message, both EJBs need
to use the same topic.

◆ See also

6.1—Sending a publish/subscribe JMS message

6.3—Creating a message-driven Enterprise JavaBean

6.9—Filtering messages for a message-driven EJB

6.8 Speeding up message delivery
to a message-driven bean

◆ Problem

You want to reduce the time it takes for a message to start processing in a message-
driven bean.

◆ Background

In most enterprise situations, you want your asynchronous business functions to
complete as quickly as possible. Since a message-driven bean processes a single
message at a time, the waiting time for a single message increases as the num-
ber of messages delivered before it increases. In other words, if a single message
takes a long period of time to complete, other messages experience a delay
before processing. In critical applications, these messages should be processed as
quickly as possible.

Speeding up message delivery 217
to a message-driven bean
◆ Recipe

To speed up the consumption of messages, use a pool of message-driven beans.
Each EJB is an instance of the single EJB class. With a pool of message-driven
beans, you can consume more messages in a shorter time. Listing 6.16 shows a
simple message-driven bean used to consume messages.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void ejbRemove() {
 }

 public void ejbActivate() {
 }

 public void ejbPassivate() {
 }

 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 this.ctx = ctx;
 }

 public void ejbCreate () throws CreateException {
 }

 public void onMessage(Message msg) {
 MapMessage map= (MapMessage) msg;

 try {
 String symbol = map.getString("Symbol");
 String description = map.getString("Description");

 System.out.println("MDB received Symbol : " + symbol
 + " " + description);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

To ensure a single message is not duplicated across instances in the message-driven
bean pool, the message-driven bean instances should use a message queue as the
destination type. Listing 6.17 contains the deployment descriptor for the bean.

Listing 6.16 MessageBean.java

218 CHAPTER 6

Messaging
<enterprise-beans>

 <message-driven>
 <ejb-name>concurrentMDB</ejb-name>
 <ejb-class>concurrent.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-driven-destination>
 <destination-type>javax.jms.Queue</destination-type>
 </message-driven-destination>
 </message-driven>

 </enterprise-beans>

Message-driven bean instance pools are created in a vendor-specific manner. List-
ing 6.18 shows how this is accomplished using the Weblogic application server.
Notice the vendor XML creates a pool maximum size of five beans, with an initial
size of two beans.

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
 <ejb-name>concurrentMDB</ejb-name>
 <message-driven-descriptor>
 <pool>
 <max-beans-in-free-pool>5</max-beans-in-free-pool>
 <initial-beans-in-free-pool>2</initial-beans-in-free-pool>
 </pool>
 <destination-jndi-name>BookJMSQueue</destination-jndi-name>
 </message-driven-descriptor>
 <jndi-name>concurrent.MBD</jndi-name>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

◆ Discussion

Using a bean pool is a quick and dirty way to achieve concurrent processing of
messages. The pool, combined with a message queue, provides a way to process
many messages at once without duplicating messages across instances. Creating
an environment like this allows messages to start processing instead of waiting for
previous messages to complete. You should use this type of processing only when

Listing 6.17 Deployment descriptor

Listing 6.18 Weblogic deployment descriptor

Sets up the message-
driven bean pool

Filtering messages for a message-driven EJB 219

concurrent processing of messages will not cause problems in your business logic
or invalid states in your data.

◆ See also

6.1—Sending a publish/subscribe JMS message

6.3—Creating a message-driven Enterprise JavaBean

6.9 Filtering messages for a message-driven EJB

◆ Problem

You want your message-driven beans to receive only the messages that they are
intended to process.

◆ Background

Message-driven beans that subscribe to a topic or receive messages from a queue
should be able to handle messages of the wrong type (which should not invoke the
message-driven business logic). Beans should just politely discard these messages
when they are encountered. This is especially true for message-driven beans that
exist in an environment with many different beans that watch a single source for
incoming messages. However, it would be more efficient to avoid the execution
time used for discarding messages and instead avoid receiving unwanted messages.

◆ Recipe

To selectively deliver messages to a message-driven bean, the bean should be
deployed with a message selector. The bean source needs no changes in order to use
the message selector. Listing 6.19 shows a simple message-driven bean that only
wants messages that contain an attribute UserRole set to "BuyerRole". The bean
prints out the role of the incoming message for verification.

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map=(MapMessage)msg;

 try {
 String role = map.getString("UserRole");

Listing 6.19 MessageBean.java

220 CHAPTER 6

Messaging
 System.out.println("Received Message for Role: " + role);
 ProcessTheMessage(message);
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
}

In the XML descriptor for the bean, you describe the message selector that filters
undesired messages for the message-driven bean. Listing 6.20 shows the partial
XML descriptor that describes the simple EJB and its message selector.

<ejb-jar>
 <enterprise-beans>

 <message-driven>
 <ejb-name>MDB</ejb-name>
 <ejb-class>messageSelector.MessageBean</ejb-class>
 <transaction-type>Container</transaction-type>
 <message-selector>
 <![CDATA[UserRole = 'BuyerRole']]>
 </message-selector>
 <message-driven-destination>
 <destination-type>javax.jms.Topic</destination-type>
 </message-driven-destination>
 </message-driven>

 </enterprise-beans>
<ejb-jar>

Here is a simple publish method that appropriately creates messages for the
message-driven bean message selector:

 public void publish(String role) throws JMSException {

 MapMessage message = topicSession.createMapMessage();
 message.setString("UserRole",role);
 message.setStringProperty("UserRole",role);

 System.out.println("Publishing message to Role:" + role);
 topicPublisher.publish(message);
 }

Listing 6.20 Deployment descriptor

Specifies a
message
selector

Encapsulating error-handling code 221
in a message-driven EJB
◆ Discussion

When sending particular messages, we must assign a value to the property User-
Role. The message selector will pick out the messages that meet its criteria and
deliver them to the message-driven bean. Message selectors operate using the
property values that are set in JMS messages. Any property that is set in the mes-
sage can be examined by a message selector for filtering purposes.

Message selection strings can be any length and any combination of message
property comparisons. The following is an example of a more complex message
selector:

"DollarAmount < 100.00 OR (ShareCount < 100 AND (CreditAmount
 – DollarAmount > 0)) AND Role in ('Buyer', 'ADMIN')"

You can make other familiar comparisons using the following operators as well: =,
BETWEEN, and LIKE (using a % as a wildcard). As mentioned in the recipe, message
selectors operate upon messages by examining the properties set in the message
using its setStringProperty() method. If a property is not present in a message,
the selector considers that a nonmatching message. To specify the message selec-
tor in the deployment XML, you must use the CDATA tag to avoid XML parsing
errors due to the use of special characters like < or >.

◆ See also

6.3—Creating a message-driven Enterprise JavaBean

6.10 Encapsulating error-handling code
in a message-driven EJB

◆ Problem

Rather than handle errors in a message-driven bean, you want your beans to off-
load errors to an error-handling system.

◆ Background

Handling errors across all your message-driven beans should be consistent and
exact. By keeping the error-handling code in your message-driven beans, you
open your beans to tedious changes if your error-handling strategy changes. If you
must change the error-handling code in one bean, you might have to change it in
all your message-driven beans. Passing exceptions to an error-handling object or

222 CHAPTER 6

Messaging
session bean allows you to avoid rollbacks and gracefully handle errors in a consis-
tent manner.

◆ Recipe

Instead of acting upon any errors, the message-driven bean catches any excep-
tions and forwards them on to an error-handling session bean. The message-
driven bean should be implemented as usual; the only new addition is the error-
handling mechanism (see listing 6.21).

public class MessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;
 String symbol = null;
 String description = null;
 ErrorHome errorHome = null;

 try {
 symbol = map.getString("Symbol");
 description = map.getString("Description");

 System.out.println("Received Symbol : " + symbol);
 System.out.println("Received Description : " + description);

 processEquityMessage(symbol, description);
 }
 catch(Exception e){
 e.printStackTrace();
 System.out.println("Error Creating Equity with Symbol:"+symbol);
 System.out.println("Consuming error and "
 + "passing on to error Handler");
 try{
 handleError(e, msg);
 }
 catch(Exception errorExc){}
 }
 }

 private void handleError(Exception e, Message msg)
 {
 ErrorHandler handler = lookupErrorEJB();
 handler.handleMessageDrivenError(e.getMessage(), msg);
 }
}

Listing 6.21 MessageBean.java

Looks up and
uses the error-
handling
session EJB

Sending an email message asynchronously 223

The handleError() method looks up a session EJB that handles specific errors.
For example, the following remote interface could expose error-handling func-
tionality to an entire EJB application:

public interface ErrorHandler extends javax.ejb.EJBObject
{
 public void handleMessageDrivenError(String message, Message mg);
 public void handleSessionError(Object errorMessage);
 public void handleEntityError(Object errorMessage);
}

◆ Discussion

The message-driven EJB shown in the recipe processes messages containing equity
information. The actual message-processing logic is not shown, so instead let’s
examine the handleError() method invoked only when an exception occurs dur-
ing message processing. The session EJB interface shown in the recipe declares
methods for handling different types of errors. For example, the session bean has
a specific way it can handle session bean errors, entity bean errors, and message-
driven bean errors. Using an error-handling system like this does not have to take
the place of a normal transactional system. Instead, it acts as a way to store infor-
mation on errors occurring in your application—acting as a logger of errors, and
possibly offloading them to a management system.

◆ See also

6.12—Handling rollbacks in a message-driven bean

6.11 Sending an email message asynchronously

◆ Problem

You want to provide your EJBs with the ability to send email in an asynchro-
nous manner.

◆ Background

The ability to send email is an important part of many enterprise applications.
Email can be used to send notifications, alerts, and general information, such as
price quotes or contract information. When sending an email from an EJB, you
should be able to continue processing without waiting for an email to be sent.
Sending email using the Java mail package is a simple process.

224 CHAPTER 6

Messaging
◆ Recipe

Combining email-sending code with a message-driven bean provides the asyn-
chronous behavior that is ideal for enterprise applications. Listing 6.22 contains
a message-driven bean that sends email using property values passed to it via a
JMS message.

import javax.jms.*;

public class EmailBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext ctx;

 public void onMessage(Message msg) {
 MapMessage map = (MapMessage) msg;

 try {
 sendEmail(map.getProperty("Recipient"),
 map.getProperty("message"));
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }

 private void sendEmail(String recipient, String text)
 throws Exception {
 Session mailSession = null;
 javax.mail.Message msg = null;

 try{
 System.out.println("Sending Email to: " + rcpt);

 mailSession = (Session) ctx.lookup("BookMailSession");

 msg = new MimeMessage(mailSession);
 msg.setFrom();
 msg.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(recipient , false));
 msg.setSubject("Important Message");
 msg.setText(text);

 Transport.send(msg);
 System.out.println("Sent Email to: "+rcpt);
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }
}

Listing 6.22 EmailBean.java

Retrieves the email address
and text from the JMS message

Sends the email
message

Handling rollbacks in a message-driven bean 225

◆ Discussion

When using a message-driven bean to send an email message, you need to be sure
to send a JMS message with all the values that you need for the email. For instance,
the solution in the recipe only retrieved the email address and text from the JMS
message and populated the subject of the email with a hardcoded value.

Another improvement you can make to your message-driven email beans is to
only send JMS messages that contain the email recipient address and the type of
email to send. For instance, a message-driven bean can be initialized with standard
email message texts to use for your various email needs in your enterprise applica-
tion (purchase confirmation, error, contract status, etc.). This would include the
subject and message. All your application needs to do is supply a valid email
address and the type of email to send. This way, you won’t have to transmit the
body of an email message to the EJB. In addition, you could pass parameters to the
EJB for formatting an already loaded email body.

◆ See also

4.5—Sending an email from an EJB

6.12—Handling rollbacks in a message-driven bean

6.12 Handling rollbacks in a message-driven bean

◆ Problem

When a transaction in a message-driven bean rolls back, the application server
can be configured to resend the JMS message that started the transaction. If the
error that caused the rollback keeps occurring, you could potentially cause an
endless loop.

Background
Rollbacks in message-driven beans occur in the same way that they can happen in
other beans—an error occurs in executing logic. However, in the case of a
message-driven bean using a durable subscription, the application server will
most likely attempt to redeliver the message that caused the rollback in the bean.
If the error is not corrected, the rollback will continue on, consuming more pro-
cessing time and memory. You need your message-driven beans to be insulated
from rollback loops and able to handle error-causing messages without a rollback
every time.

226 CHAPTER 6

Messaging
◆ Recipe

To handle rollbacks in a message-driven bean, keep track of the number of times
a particular message has been delivered to the bean. Once a certain retry limit is
reached, you want to discard the message from that point on. Listing 6.23 shows
the onMessage() method from a message-driven bean that tracks and checks mes-
sage redelivery attempts.

private HashMap previousMessages;
private int count = 0;

public void onMessage(Message incomingMsg)
{
 // get the unique message Id
 String msgId = incomingMsg.getJMSMessageID();

 if (previousMessages.containsKey(msgId))
 count = ((Integer) msgMap.get(msgId)).intValue();
 else
 count = 0;

 // if msg has been retried couple of times, discard it.
 // and remove the stored id.
 if (count < _MAX_REDLIVERY_CONST_)
 {
 logMessage(incomingMsg);
 previousMessages.remove(msgId);
 return;
 }

 //perform business logic for message
 boolean error = doBusinessFunction();

 if (error)
 {
 mdbContext.setRollBackOnly();
 previousMessages.put(msgId, new Integer(++count));

 }
 else
 {
 if(previousMessages.containsKey(msgId))
 previousMessages.remove(msgId);
 }
}

Listing 6.23 The onMessage() method

Checks for previous
attempts

Checks the number of attempts

Checks for
necessary
rollback

Handling rollbacks in a message-driven bean 227

◆ Discussion

Some application servers and some JMS vendors allow you to specify the redelivery
count of a rolled-back message delivery to a message-driven bean. However, to
ensure your message-driven EJBs are the most secure and portable, you can imple-
ment a simple message tracker like the one shown in the recipe. In this code, the
EJB maintains a Map of message IDs and the number of times they have been
delivered. If the delivered count for a particular message reaches a predefined
constant value, the bean simply logs the message and returns. By returning suc-
cessfully, the EJB ensures that the EJB container commits the transaction and the
message will not be delivered again.

If the message makes it past the count check, the bean will attempt to perform
its business function. After attempting the business logic, the EJB will check to see
if it is necessary to mark the current transaction for rollback. If so, the EJB uses its
MessageDrivenContext instance to mark the transaction and returns. The con-
tainer will roll back the transaction and will attempt to redeliver the message. The
previousMessages Hashtable will store only those message IDs that caused errors.
If the message succeeds, no ID is stored (and any previously stored ID is removed).

◆ See also

Chapter 5, “Transactions”

Security
“Part of the secret of success in life is to eat what you like
and let the food fight it out inside.”

— Mark Twain
229

230 CHAPTER 7

Security
J2EE security generally falls into three categories: authentication, authorization (or
access control), and secure communication. Enterprise applications handle these
three areas with different mechanisms. For instance, users are presented with a JSP
form and must enter a username and password (authentication); EJBs map users
to security roles in order to access business methods (access control); and the
application server provides a secure socket layer (SSL) for communication.

EJBs are best suited for handling access control of clients. The EJB specifica-
tion describes a system of specifying security roles that define the level of access
to particular business methods and beans. This type of access control is a declara-
tive security measure. Bean descriptors declare the roles that can access their
methods, and the EJB container can map these logical roles to actual security
realms within the application server. For example, when a user logs into a J2EE
application, the application server matches the username to a security role called
ADMIN. As the user attempts to execute code that performs a JNDI lookup of an
EJB, the user’s credentials (username and password) are passed to the EJB con-
tainer. Before returning the bean, or before invoking bean methods, the con-
tainer verifies that the user has sufficient access (as defined by the user’s security
role) to the bean.

The recipes contained in this chapter deal directly with security roles and
access control (as well as a few other unique recipes). For information about map-
ping users to roles within an application server, you should consult the documen-
tation from your vendor. After reading this chapter, you will be familiar with the
following topics:

■ Finding information about EJB clients

■ Using client roles

■ Passing client identity to EJBs

■ Disabling EJB methods

■ Using an EJB as a client

■ Securing entity bean access

■ Authenticating LDAP access

■ Understanding message-driven bean security

Finding the identity and role 231
of the caller inside an EJB method
7.1 Finding the identity and role
of the caller inside an EJB method

◆ Problem

You want an EJB to be able to find the identity of the invoker of a bean method.

◆ Background

Many business situations require that decisions be made based on which user
starts a process. For instance, depending on the permission of a user, an EJB may
decide to limit functionality or validate input in a different manner. For example,
if a user does not have Administrator permissions, you may allow that user to view
data but not make any changes. Each EJB should be able to determine the EJB cli-
ent in order to make such decisions if necessary.

◆ Recipe

To discover the EJB client’s identity, use the security methods from the EJBContext
instance set inside your EJB:

java.security.Principal principal = ejbContext.getCallerPrincipal();

System.out.println("User name is: " + principal.getName());

boolean inAdminRole = ejbContext.isCallerInRole("ADMIN");

◆ Discussion

Whether you are implementing methods inside an entity or session bean, the EJB
container will provide you with an object that implements the EJBContext inter-
face. Session beans will receive a SessionContext instance. Entity beans will
receive an EntityContext instance. Since both instances implement the EJBCon-
text interface, you can invoke the two methods shown in the recipe in both ses-
sion and entity beans.

The getCallerPrincipal() method returns the Principal object associated
with the caller of your EJB’s method. With the Principal object, you can acquire
the name of the invoker by using the Principal class’s getName() method.

The isCallerInRole() method allows you to query the container for informa-
tion about the caller’s roles. For instance, the recipe is questioning whether the
caller is in the ADMIN role. You can use this method to perform different imple-
mentations of an operation based on the role of the caller.

232 CHAPTER 7

Security
◆ See also

7.2—Assigning and determining EJB client security roles

7.3—Passing client credentials to the EJB container

7.4—Disabling methods for certain users

7.2 Assigning and determining EJB client security roles

◆ Problem

You want to assign logical roles to a client, and EJBs need to determine client roles
at runtime.

◆ Background

In recipe 7.1, we showed how an EJB can determine the caller’s identity (the user-
name, for instance) and make informed decisions. In EJB applications, the appli-
cation server has the ability to map a set of users to a logical role. By placing users
into roles, you can programmatically assign permissions. For instance, you can
limit application functionality based on the client’s role.

◆ Recipe

To determine the client’s role, use a method from the EJBContext instance set
inside your EJB:

boolean inAdminRole = ejbContext.isCallerInRole("Administrator");

To create a logical role, use the <security-role> tag within the assembly descrip-
tor section of the ejb-jar xml file:

<ejb-jar>
 <enterprise-beans>
 <entity>
 <!-- Bean data here -->
 <security-role>
 <description>
 The admin role
 </description>
 <role-name>
 ADMIN
 </role-name>
 </security-role>
 </entity>
 </enterprise-beans>

Assigning and determining EJB client security roles 233

 <assembly-descriptor >

 </assembly-descriptor>

</ejb-jar>

Finally, you must reference this role for a particular EJB. You should place the fol-
lowing within the bean section of the deployment descriptor; it creates a logical
role used by the EJB and maps it to a logical role in the assembly descriptor:

<security-role-ref>
 <description>
 Users with this role are in the Administrators group
 </description>
 <role-name>
 Administrator
 </role-name>
 <role-link>
 ADMIN
 </role-link>
</security-role-ref>

◆ Discussion

As stated in the chapter introduction, security roles are a declarative method of
setting up client boundaries around an EJB. The <security-role> element of the
assembly descriptor sets up logical roles used to group EJB clients. The <security-
role-ref> element maps logical roles used by an EJB to a security role defined in
the assembly descriptor or in the runtime environment. For instance, the recipe
sets up a runtime role ADMIN and links it to users of the bean with the Administra-
tor role.

The <role-link> tag is optional for the <security-role-ref> element, but if it
is not provided to map to a <security-role> in the assembly descriptor, it must be
mapped to a role in the runtime environment (see your vendor documentation).
The logical roles set up in the deployment descriptor are just that: logical roles.
They are only labels declared before runtime. Each role must be mapped to an
existing security realm in the runtime environment. Again, this important step
will differ across vendors, and you should consult your documentation for the
exact process.

The isCallerInRole() method is used to determine the appropriate action of a
method. Take the following implementation of a business method:

public void performImportantAction() throws NotAdminException
{
 boolean isAdmin = ejbContext.isCallerInRole("ADMIN");
 if(isAdmin)
 //perform the important function

234 CHAPTER 7

Security
 else
 throw new NotAdminException();
}

This example allows clients within the role ADMIN to perform the important func-
tion. Clients in other roles will cause a NotAdminException to be thrown if they try
to invoke the method.

◆ See also

2.9—Specifying security roles in the bean source

7.1—Finding the identity and role of the caller inside an EJB method

7.3—Passing client credentials to the EJB container

7.4—Disabling methods for certain users

7.3 Passing client credentials to the EJB container

◆ Problem

You want your clients to pass along their security credentials to the EJB container
when looking up or invoking an EJB.

◆ Background

Working within your application server, you have mapped certain users into spe-
cific logical roles. In addition, you have set up the security roles (see recipe 7.2)
in the deployment descriptors for your EJBs. However, EJB clients must pass
their security credentials to the EJB container in order for EJBs to acquire the
user information.

◆ Recipe

To pass the client’s credentials to the EJB container, create the JNDI InitialContext
object using a set of properties that defines the client’s credentials (listing 7.1).

 Hashtable env = new Hashtable();

 //add security principal information into context environment
 env.put(Context.SECURITY_AUTHENTICATION, "simple");
 env.put(Context.SECURITY_PRINCIPAL, "my_username");
 env.put(Context.SECURITY_CREDENTIALS, "my_password");

Listing 7.1 Sample code initializing the InitialContext object with security credentials

Disabling methods for certain users 235

 //Optionally set any properties needed by your app server vendor…
 /*
 env.put("", "");
 */
 Context ctx = new InitialContext(env);

 //Look up a particular EJB home interface
 SampleBeanHome home = (SampleBeanHome) ctx.lookup("ejb/SampleBean");

The final step for this recipe resides in the documentation of your application
server. You need to assign users to particular roles in the server (which are then
mapped to logical roles in the bean’s deployment XML).

◆ Discussion

The code in the recipe sets the username, password, and authentication mecha-
nism for the client application. This information is passed to the container when
the client attempts to look up or use a bean. The credentials are compared to a
specific bean’s security requirements to determine whether the client has enough
privileges to use the bean. Additionally, beans can programmatically retrieve this
information for use in method implementations to make flow decisions.

◆ See also

7.1—Finding the identity and role of the caller inside an EJB method

Chapter 1, “Client code”

7.4 Disabling methods for certain users

◆ Problem

You want to prevent certain clients from invoking certain EJB methods.

◆ Background

While you want to allow an EJB client to find and use a particular EJB, you want to
expose only a limited set of methods to that client. Your goal is to hide a set of
business methods, and possibly even particular home interface methods. For
example, certain methods need to be available only to users in the Administrator
role. Perhaps methods that make security changes, or critical data changes,
should be hidden from normal users. EJBs use method permissions to further
guarantee that the correct users are accessing methods.

236 CHAPTER 7

Security
◆ Recipe

To disable methods for users, you need to create a security role and configure the
method access in the EJB deployment descriptor. Create security roles for your
EJBs (see recipe 7.2 for more on this topic). Then, use the <method-permission>
tag to set up method permissions for those roles. Assume an EmployeeBean con-
tains getters and setters for the attributes firstName and lastName. The Employee-
Bean has declared two roles, ADMIN and READ_ONLY, in its deployment descriptor.
The code in listing 7.2 grants those with the ADMIN role access to all methods
within an EJB.

<ejb-jar>
 <enterprise-beans>
 <!-- Bean data here -->
 </enterprise-beans>

 <assembly-descriptor >
 <method-permission>
 <role-name>
 ADMIN
 </role-name>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
 </method-permission>
 </assembly-descriptor>

</ejb-jar>

To map the READ_ONLY role to the correct method permissions (only allowing use
of the getter methods), use the following:

<method-permission>
 <role-name>
 READ_ONLY
 </role-name>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>getFirstName</method-name>
 </method>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>getLastName</method-name>
 </method>
</method-permission>

Listing 7.2 Deployment descriptor

Disabling methods for certain users 237

To disable all security checks for all clients of an EJB for a particular method, use
the <unchecked/> tag:

<method-permission>
 <unchecked/>
 <method>
 <ejb-name>EmployeeBean</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

◆ Discussion

Security roles are useful in and of themselves, but they would hardly be worth the
trouble if you could use them only for the isCallerInRole() method from the
EJBContext class. The EJB deployment descriptor also allows you to map security
roles to actual EJB methods. The <method-permission> tag builds a many-to-many
relationship between roles and methods, where a role is given access permission
to certain methods.

The <method-permission> tag contains an optional <description> element, at
least one <role-name> element, and at least one <method> element. To grant a role
permission to use a method, you name the role in the <role-name> element, and
name the method in the <method> element (using its <ejb-name> and <method-
name> elements). The recipe demonstrates this in two ways. It names specific
methods for the READ_ONLY role, allowing access only to getter methods. It also
uses an * as a wildcard, indicating that the role ADMIN can access all methods
within the EmployeeBean EJB. The only acceptable use of the wildcard is by itself.
You cannot use something like get* for a method name; only a single * will work.

Finally, the recipe provides an example of the <unchecked/> method permis-
sion. If a method permission is declared unchecked, the method can be invoked
by any client of any role. In other words, no security checks will occur when a cli-
ent invokes the specified method. An unchecked method permission overrides all
other permissions that might be specified for that method.

All methods from the EJB’s remote, home, and super interfaces can be set up
with permissions. Any method that is excluded from the method permissions list
cannot be accessed by any role. In addition, the <method> element allows you to
describe methods in more detail. This is important if your bean contains over-
loaded methods. Within the <method> element, you can use the <method-param>
tag to specify parameter types, or use the <method-intf> tag to specify the inter-
face (possible values are Home, Remote, LocalHome, or Local) in which the method
is declared.

238 CHAPTER 7

Security
◆ See also

2.10—Generating and maintaining method permissions

7.2—Assigning and determining EJB client security roles

7.5 Assigning a role to an EJB

◆ Problem

All of your clients have been assigned a role, but now you need an EJB to run
within a logical role in order to provide a more secure environment.

◆ Background

EJB clients don’t always reside in the client layer. Many times, a client to an EJB is
another EJB, and you need to ensure that the client EJB will have the necessary
permission to access the methods on the second EJB. You need your client EJB to
run as a particular role when interacting with a second EJB. Doing this allows you
to avoid passing user credentials from bean to bean.

◆ Recipe

To assign a role to an EJB, use the <security-identity> tag within the bean sec-
tion of the deployment descriptor, as shown in listing 7.3.

<ejb-jar>
 <enterprise-beans>
 <entity>
 <!-- Bean data here -->

 <security-identity>
 <run-as>
 <role-name>
 ADMIN
 </role-name>
 </run-as>
 </security-identity>

 </entity>
 </enterprise-beans>

 <assembly-descriptor >

 </assembly-descriptor>

</ejb-jar>

Listing 7.3 Deployment descriptor

Preventing access to entity data 239

◆ Discussion

The <run-as> functionality was reintroduced in the EJB 2.0 specification. Using
the <security-identity> element lets you assign a role to an EJB. If and when the
EJB becomes a client to another EJB, it assumes this role. This allows you to apply
method permissions against the client EJB as well as other EJBs to ask for the cli-
ent’s role.

However, the identity role specified for this EJB does not have to be the identity
that accesses the bean. For example, a client with the role READ_ONLY may access a
session bean to obtain some data. That session bean has a security identity of
ADMIN, which it uses to access other EJBs in order to complete the method invoca-
tion for its READ_ONLY client.

Alternatively, you can declare the security identity of an EJB to always be the
identity of the EJB client. For example:

<security-identity>
 <use-caller-identity/>
</security-identity>

This entry makes the invoked EJB run under the identity of the client. If a READ_ONLY
client invokes a bean with this type of identity (<use-caller-identity/>), the bean
will also run under the role READ_ONLY.

◆ See also

2.9—Specifying security roles in the bean source

7.2—Assigning and determining EJB client security roles

7.6 Preventing access to entity data

◆ Problem

Even though you have assigned users to a role in order to allow limited access to
your EJBs, you would like to further restrict a client’s ability to find entity beans.

◆ Background

You need to ensure that users update only data that pertains to them. For exam-
ple, users should be able to access and update their own user profile data but no
other user profiles. A single bean class protects profile data, and this can be a
problem because the method used to insert/update/delete user profile data is
protected by a role. A member of the role has access to the method, but should be

240 CHAPTER 7

Security
able to use it only to access certain data. Because of situations like these, you want
to restrict a client’s ability to access entity bean data.

◆ Recipe

For this recipe, we will use the example of a banking application that includes a ses-
sion bean named AccountAccessBean, which contains methods like withdraw() and
deposit(). You want only users with the role BANK_CUSTOMER to access these meth-
ods. However, you want customers to be able to access only their own accounts.

To solve this problem, create an additional session bean that has only one cre-
ate method. The create method has a parameter for the account number, or user
ID, or something similar. You can use this stateful bean to access all other data or
methods based on the unique identifier. This recipe demonstrates the session
facade pattern. The code in listing 7.4 shows the AccountAccessBean, a bean used
to access the account data.

public class AccountAccessBean implements SessionBean
{
 public void create(String accountNumber)
 {
 this.account = accountNumber;
 }

 public void withdraw(double amount) throws EJBException
 {
 withdrawFromAccount(account, amount);
 }

 public void deposit(double amount) throws EJBException
 {
 depositToAccount(account, amount)
 }

 //remaining EJB and private methods not shown
}

The second part of this recipe is to create only local interfaces for your entity
beans (this requires EJB 2.0 at a minimum). With only local interfaces for your
entity beans, no remote clients have the ability to look up an entity bean and are
forced to go through the session facade.

Listing 7.4 AccountAccessBean.java

Using EJBs to handle simple authentication 241
with an LDAP source
◆ Discussion

The point of this recipe is to highlight that good design can solve most of your EJB
application problems. You should normally use a session bean as the only access
to your entity bean layer. To ensure this, implement only local interfaces for your
entity beans. To access the entity beans, a user must use the session bean, which
can access the user’s credentials and use custom finder methods on the entity
beans to return those appropriate for the particular user only.

The EJB client passes its account number and credentials to the session facade,
which uses the information in a finder method on the entity bean implemented
to use the account number. This design ensures only the correct data is returned
to the user.

By using only local interfaces for your entity beans, you deny any remote access
to the beans. Combine the local entity beans with a session facade to the entity
beans and you effectively wrap them with a security layer provided by a session
bean. The session facade can use all the normal EJB security mechanisms, such as
roles and method permissions, to protect your entity data.

7.7 Using EJBs to handle simple authentication
with an LDAP source

◆ Problem

You want to use an EJB to authenticate users from a Lightweight Directory Access
Protocol (LDAP) source.

◆ Background

You need to validate a user login from an LDAP source via an EJB call. Using an
LDAP store is one of the quickest and most efficient ways to store user information
for security and application permissions. Because of this, you might need to access
an LDAP user store from an EJB managing logins.

◆ Recipe

Using JNDI from your EJB, you can successfully perform simple authentication to
an LDAP source, as shown in listing 7.5.

242 CHAPTER 7

Security
Hashtable env = new Hashtable();

env.put(Context.PROVIDER_URL, "ldap://localhost:389/o=EJBCookbook");
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");

env.put(Context.SECURITY_PRINCIPAL,
 "cn=bsullins, ou=authors, o=EJBCookbook");
env.put(Context.SECURITY_CREDENTIALS, "password");
env.put(Context.SECURITY_AUTHENTICATION, "simple");

//get the initial context
DirContext ctx = new InitialDirContext(env);

◆ Discussion

As you can see, the recipe code is not really EJB specific. If authentication fails, an
AuthenticationException will be thrown. The javax.naming package contains the
DirContext and AuthenticationException classes.

7.8 Securing a message-driven bean

◆ Problem

You need to provide more security for your message-driven beans.

◆ Background

A message-driven bean does not control user access with security roles or method
permissions. It receives JMS messages as the only form of access to the bean. Unau-
thorized (deceptive or phony) messages are a security problem encountered with
this type of bean. Your message-driven beans need the ability to authenticate mes-
sages that trigger their functionality.

◆ Recipe

Pass credentials in the messages sent to message-driven beans. In the onMessage()
method, retrieve the credentials for comparison. One way to pass the credentials
in the message is to set object properties in the message. The code in listing 7.6

Listing 7.5 Sample code showing LDAP authentication

Securing a message-driven bean 243

demonstrates placing a JMS message on a message queue for a message-driven
bean to retrieve—notice how it sets client credentials into the message.

try
{
 Hashtable env = new Hashtable();
 env.put(Context.INITIAL_CONTEXT_FACTORY, getContextURL());
 env.put(Context.PROVIDER_URL, getContextURL());
 InitialContext jndi = new InitialContext(env);

 //create a JMS connection factory
 TopicConnectionFactory factory = (TopicConnectionFactory)
 jndi.lookup(
 getConnectionFactoryClassName());

 //creation a JMS connection
 TopicConnection connection = factory.createTopicConnection();
 TopicSession session = connection.createTopicSession(
 false, Session.AUTO_ACKNOWLEDGE);

 //Look up a JMS Topic
 Topic theTopic = (Topic) jndi.lookup(getTopicName());
 TopicPublisher publisher = session.createPublisher(theTopic);
 connection.start();
 jndi.close();

 //publish a message
 javax.jms.Message message = session.createMessage();
 message.setObjectProperty("USERNAME", getUserName());
 message.setObjectProperty("PASSWORD", getPassword());
 //add more to the message….

 publisher.publish(message);

 }
 catch(javax.naming.CommunicationException cex){
 //handle error
 }
 catch(Exception e){
 e.printStackTrace();
 }

After picking up a message, the message-driven bean must retrieve the client’s cre-
dentials. The message-driven bean sample in listing 7.7 contains an onMessage()
implementation that retrieves a username and password from a message.

Listing 7.6 Securing a JMS message

Set the
username
and password
as properties

244 CHAPTER 7

Security
public class SecureMDB implements MessageDrivenBean,
 javax.jms.MessageListener
{

 public void setMessageDrivenContext(MessageDrivenContext mdc){
 }

 public void onMessage(Message msg){
 String username = (String) msg.getObjectProperty("USERNAME");
 String password = (String) msg.getObjectProperty("PASSWORD");

 //verify username and password, perform actions…
 }
}

◆ Discussion

Before sending a JMS message, the creator of the message sets two object proper-
ties in the message. For example, the recipe retrieved the caller’s username
using the key USERNAME and the client’s password with the key PASSWORD. You
can develop your system to pass along actual user credentials, or you can pass
along a predefined message sending the username and password. This means
that clients creating messages for message-driven beans use a predefined user-
name and password that message-driven beans can retrieve and verify before
executing any actions.

Listing 7.7 SecureMDB.java

Part 3

Desserts

Part 3 concludes this book with the addition of two chapters. Chapter 8 covers
application logging from Enterprise JavaBeans (EJB). Specifically, the chapter
introduces the log4j framework from Apache. The log4j is an open source logging
framework that is growing in popularity because of its modular, nonintrusive
approach to logging. Chapter 9 covers problems encountered during the build-
ing, deployment, and testing of EJBs. Here we demonstrate using Ant to build,
package, and deploy your EJBs. We also use Apache Cactus to build an EJB unit-
testing framework. Cactus is another open source framework from Apache that
helps you to unit-test server-side components, and chapter 9 shows you how to
integrate Cactus tests into your Ant build system.

Logging
“Buzzards gotta eat … same as worms.”

—Clint Eastwood as Josey Wales
from the movie “The Outlaw Josey Wales”
247

248 CHAPTER 8

Logging
Enterprise JavaBeans (EJB) deliver fantastic functionality, but also can make for
difficult debugging and user tracking during runtime. A good logging framework
remedies much of the complexity by allowing you to leave coded trails through-
out your application. An experienced developer uses logging as a debugging tool
and as a system to track application usage.

 As Java moves increasingly into the enterprise, logging frameworks are becom-
ing more important to enterprise applications. A large EJB application can push
the limits of ordinary logging frameworks. Enterprise applications support many
clients, run in clustered environments across many servers, and contain a multi-
tude of transactions. All of these make an application more robust, but chip away
at the usefulness of typical homegrown loggers.

 The recipes in this chapter focus on using the log4j open source project to
provide solutions to EJB logging problems. You will find the following topics in
this chapter:

■ Writing log messages with log4j

■ Enhancing logging performance

■ Creating a logging report

■ Logging to a JMS destination

■ Logging in XML format

■ Viewing log files with a web browser

■ Logging in a clustered environment

■ Logging the life of an EJB

■ Refreshing the logging setup

■ Logging with many clients

A log4j appetizer

log4j is an excellent logging framework that is fast, lightweight, extensible, and
easily configurable. To use log4j, perform the following steps:

1 Download log4j from http://jakarta.apache.org/log4j. (You can also find
more information about log4j and the logging framework at this site.)

2 Include the log4j file in the application classpath. (See your application
server vendor documentation for more information.)

3 Add the logger to your code.

A log4j appetizer 249

4 In the properties file, set the logging level and assign an appender for
each logger you reference in your code.

5 Initialize the logging framework with a configuration.

The best way to learn to use log4j is to go over a short example. The following
example, combined with the various recipes, should be enough to get you going.
After downloading and preparing your log4j installation, start by adding log state-
ments to your code.

Adding a logger to your code

Since enterprise beans will eventually contain much of your business logic in an
enterprise application, it is essential that you add logging messages to the bean code.
For example, the AccountBean in listing 8.1 is an EJB used in a brokerage application.

import javax.ejb.SessionBean;
import org.apache.log4j.Logger;

public class AccountBean implements SessionBean
{
 private static final Logger logger = null;

 public void ejbCreate()
 {
 //instantiate a logger object
 logger = Logger.getLogger("ejb.messages");

 //write an info message
 logger.info("Creating instance of AccountBean");
 }

 public void ejbActivate()
 throws RemoteException, EJBException
 {
 logger = Logger.getLogger("ejb.messages");
 }

 public void buyStock(String symbol, int shares)
 throws AccountException
 {
 //write a debug message
 logger.debug("Buying " + shares + " of " + symbol);
 }

 public void sellStock(String symbol, int shares)
 throws AccountException
 {
 logger.debug("Buying " + shares + " of " + symbol);

Listing 8.1 AccountBean.java

Imports
log4j classes

Creates a
Logger object

Writes
log
messages

250 CHAPTER 8

Logging
 }
 //remaining bean methods below
}

As you can see from the code, log4j is simple to use. For this example, the first
thing we need to do is import the Logger class. The Logger class is the most used
class in the logging framework; it provides the methods you use to write messages.

 In the ejbCreate() and ejbActivate() methods, we acquired a reference to a
new Logger instance, named ejb.messages. The Logger class is a factory for creat-
ing and finding Logger instances.

Setting up the properties file

Listing 8.2 shows the contents of the logconfig.properties configuration file
associated with the brokerage application that contains the AccountBean (this can
also be in an XML format).

#set logger level and appenders
log4j.rootLogger=DEBUG, stdout
log4j.logger.ejb.messages=DEBUG, stdout

#set logger appenders
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%5p [%t] %F:%l - %m%n

To set up log4j, you need to set the logging level and assign an appender for each
logger you reference in your code. In our case, we referenced the logger name
ejb.messages. In the properties file, we first assigned the rootLogger and our log-
ger to the DEBUG level, and assigned an appender named stdout. The root logger,
which is always present, is the parent of all loggers you create. If our logger did
not have an assigned level, it would fall back on the root logger’s level. Configur-
ing the root logger is optional. After setting these values, we need to configure the
stdout appender that we assigned to our logger.

 Appenders are assigned a class and a layout, plus any additional properties
available to a particular type of appender. The stdout appender is assigned the
class org.apache.log4j.ConsoleAppender, which routes log messages to the con-
sole window. Additionally, its layout is contained in the class PatternLayout of the
same package. The PatternLayout class lets us assign a particular pattern to

Listing 8.2 Sample log4j configuration file

Sets the logging level and
assigns appenders

Creates the
stdout appender

Formatting log messages 251

format a message. The specified format for the stdout appender produces the fol-
lowing output from the AccountBean when someone buys stock:

INFO [ejbCreate] AccountBean.java:12 – Creating instance of AccountBean
DEBUG [buyStock] AccountBean.java:17 – Buying 100 shares of WXYZ

You can create as many appenders as you need in a log configuration file, and you
can assign as many appenders to a single logger as you want. Each appender is
independent of any others assigned to the same logger; each log message is repro-
duced and sent through each appender on its list.

Initializing the logging framework

Before you can begin sending messages through the logging system, you must
initialize the logging framework with a configuration. For example, to initial-
ize the brokerage application with the previous configuration file, your applica-
tion must use the org.apache.log4j.PropertyConfigurator class. The following
code demonstrates:

Propertyconfigurator.configure("logconfig.properties");

You need only invoke the static configure method and pass in the name of the
properties file that contains your logging configuration. You have to do this only
once—-by calling an initialization method on a static class from your EJBs. In addi-
tion, you can use the configureAndWatch() method to force the log4j framework
to reload the configuration if you modify the properties file.

 With this brief introduction, you are ready to start covering the recipes in this
chapter. The recipes present only a subset of the log4j functionality, and generally
focus on particular usage points beneficial to an EJB application rather than the
log4j architecture or additional features.

8.1 Formatting log messages

◆ Problem

You want to alter the format of messages without changing your code.

◆ Background

You have already set up log4j for your EJB application and coded all the log mes-
sages that you need. Recording log events is only part of a good logging system.
The final form of the message is as important as the message itself. Regardless of

252 CHAPTER 8

Logging
the final destination of your messages (file, database, JMS queue), you want to for-
mat them in a particular way without having to change any of your code.

◆ Recipe

When setting up an appender for the logger in question, use the PatternLayout
class to format messages. For instance, you might set up a logger named
ejb.session with an appender like this:

log4j.logger.ejb.session=DEBUG, myappender

#setup appender myappender
log4j.appender.myappender=org.apache.log4j.ConsoleAppender
log4j.appender.myappender.layout=org.apache.log4j.PatternLayout
log4j.appender.myappender.ConversionPattern=%5p [%t] - %m%n

After specifying the PatternLayout class as the formatter, also indicate the value of
the ConversionPattern attribute for the appender. The ConversionPattern value
tells the PatternLayout class how to format your message. Using this setup, the fol-
lowing shows output from some sample code:

public void testMethod(){
 Logger ejbSession = Logger.getLogger("ejb.session");
 ejbSession.debug("Writing statement 1");
 ejbSession.debug("Writing statement 2");
}

Invoking testMethod() produces the following output based on the appender
setup for the logger ejb.session:

DEBUG [testMethod] – Writing statement 1
DEBUG [testMethod] – Writing statement 2

◆ Discussion

The conversion pattern value is composed of a set of conversion specifiers and
any literal text you want. A conversion specifier starts with a % followed by an
optional format modifier and then a conversion character. Format modifiers con-
trol spacing, justification, and so forth, and conversion characters specify the data
to include with the message. In this example, the conversion pattern %5p [%t] -
%m%n translates to Logger level [thread name] – message\n. Table 8.1 lists the possible
conversion characters available to the PatternLayout class.

 Table 8.1 shows you the data that log4j can add to the final message formatted
by the PatternLayout class. Table 8.2 describes how you can format the individual
pieces of data. This table contains several examples of formatting the message
data (represented by m).

Formatting log messages 253

Table 8.1 All possible conversion characters for the PatternLayout class. Each character repre-
sents a piece of data that can be included in the conversion pattern. These characters allow you to add
important information to the final form of the log message.

Character Description

c Outputs the name of the logger sending the message. Can be used with {} to substring
logger names.

C Outputs the fully qualified classname containing the message. Can be used with {} to
substring the classname.

d Outputs a timestamp for the logging event. Specify the format using {}. By default,
ISO8601 format is used. Additionally, you can specify log4j formatters using
ABSOLUTE, DATE, or ISO8601.

f Outputs the filename of where the message was coded.

l Outputs location information for the logging event. This varies by JVM implementation,
but consists of a fully qualified classname, source filename, and line number.

L Outputs the line number where the message was coded.

m Outputs the message.

M Outputs the method name of the occurrence.

n Outputs a line separator for the execution platform.

p Outputs the priority of the logging event.

r Outputs the elapsed time since the start of the application (in milliseconds).

t Outputs the thread name of the logging event.

x Outputs the nested diagnostic context associated with the thread.

X Outputs the mapped diagnostic context associated with a thread. Must be used with {}
specifying a client number.

% Use %% to output a single % character.

Table 8.2 Examples of formatting conversion characters. These are examples of applied formatting to
the previous conversion characters. Each example uses the conversion character m.

Character Description

%5m The message (m) must be at least 5 characters long. To ensure this, the formatter will
pad to the left if necessary.

%-5m The message (m) must be at least 5 characters long. To ensure this, the formatter will
pad to the right if necessary.

%.5m The message (m) should be a maximum of 5 characters long. If necessary, the format-
ter will truncate it to 5 characters.

254 CHAPTER 8

Logging
When formatting messages, you can combine format modifiers. For example, the
modifier %10.50c adds padding to the left of the logger name if it contains fewer
than 10 characters, and truncates it if it’s longer than 50 characters.

◆ See also

8.2—Improving logging performance

8.2 Improving logging performance

◆ Problem

You want to enhance the performance of your logging system.

◆ Background

You have added logging code to your entire EJB application, but now you’ve
noticed a performance degradation. Logging can affect the performance of your
application in a number of ways. log4j is probably the fastest logger you can find,
but depending on how you use it, you can hurt your application performance.
The two most common areas that affect performance are the number of log mes-
sages and the construction of log messages.

◆ Recipe

There are four ways to improve the log4j performance:

■ Adjust the logger level.

■ Construct your messages economically.

■ Use formatting with caution.

■ Use a fast appender layout class.

Change the level of your loggers
A large application might have thousands of log messages of varying levels. Modify
your logging configuration file to output only the absolutely necessary messages
into your logs. Disabling messages will improve the overall performance of your
application. For example, if you have tested your application in production, you
might want to turn off the debugging statements that are no longer necessary.

Improving logging performance 255

Change the way you write messages
When you’re outputting messages, performance is slowed not only by the actual
act of logging, but also by the construction of the message. For instance, look at
the following sections of code that contain log statements:

//first section
public String getValue()
{
 String returnValue = computeValue();
 Logger.debug("Final value of action: " + action
 + " is " + computeValue());
 return returnValue;
}

Compare that code to the following:

//second statement
public String getValue()
{
 String returnValue = computeValue();

 if(logger.isDebugEnabled()) //check for level enabled
 {
 logger.debug("Final value of action " +
 action + " is " + returnValue); //reuse computed value
 }
 return returnValue;
}

The first logging statement incurs the cost of an extra method call to com-
puteValue() and string concatenation for the message even if the DEBUG level of
the logging system is disabled. The second statement wisely reuses the return-
Value object, and also constructs the log message only if the DEBUG level is enabled.

Change your conversion patterns
The PatternLayout class and ConversionPattern attribute comprise one of the
most common configurations for log4j. However, many of the PatternLayout’s
formatting options can slow down your application. Table 8.3 lists the conversion
characters you should use with caution—and really only if performance is not an
issue with your application.

Change the layout class of an appender
Change the layout class to the org.apache.log4j.SimpleLayout class. This layout
class produces messages that include only the log level and message of the log-
ging event:

DEBUG – my message from the application

256 CHAPTER 8

Logging
The SimpleLayout class is the fastest of the layout classes.

◆ Discussion

Regardless of the inherent speed of the log4j system, improving performance of
your logging system relies on good programming practices and thoughtful mes-
sage construction. For instance, the recipe shows a simple example of how reusing
already acquired object values can decrease the time it takes to build a message.
In addition, concatenating strings, converting primitive types to strings, and simi-
lar steps should be used only when necessary. If you must construct a message
from various parts (which is common), you should at least test for the logger level
to avoid unnecessary construction of the message.

 When using the PatternLayout class to format your messages, always be con-
cerned with the performance degradation of certain conversion characters. Refer
to table 8.3 for these characters, but keep in mind that although they can provide
useful data, they do so at a high cost of time. Finally, if performance is your utmost
objective, switch to the SimpleLayout class for formatting messages. It provides
only a simple message structure, but it performs the fastest of the layout classes.

◆ See also

8.1—Formatting log messages

Table 8.3 Conversion characters that degrade overall application performance. The process that cre-
ates the data produced by these characters is time-consuming. Repeatedly using these characters will
eventually degrade the performance of your application to a noticeable degree.

Character Data acquired Performance problem

C Fully qualified
classname

The logging framework must walk the stack trace in order to build
the classname of the object sending the message.

d Date of the
logging event

If you use this character, use one of the log4j date formatters. For
example, use ABSOLUTE, DATE or IISO8601 with a character like
%d{ABSOLUTE}.
The SimpleDateFormat from the JDK is much slower than the log4j
formatters. See recipe 8.1 and log4j docs for more information.

F Filename of the
logging event

Same problems as using ‘C’.

l Location
information

Suffers from having to walk the stack trace in order to gather infor-
mation about class, file, and line number.

L Line number Same problems as ‘l’.

M Method name Same problems as ‘l’.

Using logging to generate reports 257

8.3 Using logging to generate reports

◆ Problem

Without modifying your logging framework, you would like to generate reports
based on the messages output by the logger.

◆ Background

In many production systems, the logging system is used to report critical errors to
production support users. If your logging system outputs to a single file (or even
multiple files), it can be difficult for users to work through a complex log file
looking for particular messages. At specific times (for example, weekly or
monthly), support personnel would like to summarize the errors or critical events
of the previous cycle into a report.

◆ Recipe

To be able to generate logger reports, set up the JDBC appender for log4j in your
log4j configuration file. For example, the following properties set up the
appender for an Oracle database in a log4j properties file:

log4j.appender.myJDBC=org.apache.log4j.jdbc.JDBCAppender
log4j.appender.myJDBC.URL=jdbc:oracle:thin:@myhost:1521:mysid
log4j.appender.myJDBC.user=user
log4j.appender.myJDBC.password=password
log4j.appender.myJDBC.sql=INSERT INTO LogTable (date, logger_name, thread,
 message) VALUES ('%d', '%c', '%t' '%m')
log4j.appender.myJDBC.driver= oracle.jdbc.driver.OracleDriver

In addition, be sure to assign the new appender to an available logger:

log4j.logger.myLogger=DEBUG, myJDBC

◆ Discussion

By inserting log messages into a database table, you provide your application with
an instant way to generate all types of reports. For example, you could log
performance data, which could then be gathered to display performance of par-
ticular components of your application. In addition, log4j allows you to create
multiple appenders and multiple loggers. Using a system as flexible as this lets you
create separate database tables for many loggers, effectively separating messages
as needed to better categorize your reporting.

 As you can see in the recipe, log4j contains a JDBC appender. To create the
appender, you need to provide it with a URL to a database, a username and

258 CHAPTER 8

Logging
password, a database driver classname, and an SQL statement. The appender
invokes the SQL statement to insert a log message into a database table; notice
that the message format is also specified in the SQL statement. You can use any of
the conversion characters associated with formatting messages.

NOTE When sending messages to a JDBC appender, be careful not to send any
characters in the message that would disrupt the SQL statement. For
instance, sending a ' character would cause the SQL statement in the rec-
ipe to fail.

According to the log4j team, the JDBC appender will be replaced in the future
with one that offers more features. For example, the current JDBC appender
does not log exceptions. Please refer to the log4j documentation for updates to
this appender.

◆ See also

8.1—Formatting log messages

8.4 Sending log messages to a JMS topic

◆ Problem

You want the ability to send certain log messages to a JMS topic.

◆ Background

Exposing your log messages to a JMS system lets you send logging events to any
appropriately coded JMS listener. Sending your log messages to a JMS topic allows
you to offload the process that stores the log messages. If your application runs in
a clustered environment, you can use JMS to consolidate your log messages to a
single repository.

◆ Recipe

To send log messages to a JMS topic, use the log4j JMS appender. The JMS
appender will place messages on a queue according to a specified JMS topic.
Objects look up a JMS topic using JNDI. Because of that, you must be aware of
how you set up your log4j configuration file. If the logging system is initialized
inside an EJB (see the chapter introduction), your appender setup should look
similar to this:

Logging to an XML file 259

log4j.appender.jmsappender=org.apache.log4j.net.JMSAppender
log4j.appender.jmsappender.TopicBindingName=LOGGING_TOPIC

The value LOGGING_TOPIC should be configured in the application server hosting
your EJBs. See your vendor’s documentation for more information.

 If the logging system is initialized outside an EJB, you need to explicitly set up
the initial context environment in the configuration properties. For example, use
this code to look up a Weblogic context:

log4j.appender.jmsappender=org.apache.log4j.net.JMSAppender
log4j.appender.jmsappender.TopicBindingName=LOGGING_TOPIC
log4j.appender.jmsappender.InitialContextFactoryName=

weblogic.jndi.WLInitialContextFactory
log4j.appender.jmsappender.ProviderURL=t3://localhost:7001

◆ Discussion

In order for the JMS appender to operate successfully, it must retrieve the JNDI
InitialContext object for the operating environment. If the appender is initial-
ized inside an EJB, it can make use of the InitialContext class’s default con-
structor since the correct context is provided by the EJB container contract with
the bean.

 However, from outside the container, the appender will need to initialize the
InitialContext with environment properties. The recipe provides an example of
how this can be done through the log4j configuration properties. The additional
properties shown are placed into a Hashtable and used to retrieve the Initial-
Context for later use. Refer to the log4j API for more property information, and
check your application server’s documentation to learn about the required prop-
erties for the JNDI initial context.

8.5 Logging to an XML file

◆ Problem

You want your log messages to build an XML file.

◆ Background

Using XML is the best way to ensure that data is readable by a variety of clients.
Creating a log file formatted as an XML document lets you transfer important
information to a variety of applications.

260 CHAPTER 8

Logging
◆ Recipe

To log to an XML file, use the log4j XML layout class with the rolling file appender.
The following properties are a sample of a log4j properties configuration file that
assigns a file appender with an XML layout to a logger:

#setup log level and assign appenders
log4j.logger.mylogger=DEBUG, xmlFileAppender

#setup xmlFileAppender appender
log4j.appender.xmlFileAppender=org.apache.log4j.RollingFileAppender
log4j.appender.xmlFileAppender.File=Log.xml
log4j.appender.xmlFileAppender.MaxFileSize=100KB
log4j.appender.xmlFileAppender.MaxBackupIndex=2
log4j.appender.xmlFileAppender.layout=org.apache.log4j.xml.XMLLayout

◆ Discussion

RollingFileAppender is an appender you can use to output messages to a file. In
addition, the RollingFileAppender class will back up the log file when it reaches a
certain size (which you specify). Not only that, but it will rename backup files as
many times as you need. We set up this appender in order to provide the new XML
layout in the file. Using the org.apache.log4j.xml.XMLLayout class, we placed
each logging event in an XML tag. The following is a sample log message (event)
capture in XML:

<log4j:event logger="test" timestamp="1037368796395" level="DEBUG"
thread="main">
<log4j:message><![CDATA[writing message number two]]></log4j:message>
</log4j:event>

The tags used by the layout correspond to the log4j.dtd file that comes with the
log4j download. If you set the property LocationInfo to true, log4j will output
location information about the message into the logs. You set the property with an
additional line in the property configuration for the appender:

log4j.appender.xmlFileAppender.layout.LocationInfo=true

That line creates the following new output for logging events:

<log4j:event logger=
 "test" timestamp="1037369165731" level="DEBUG" thread="main">

<log4j:message><![CDATA[writing message number two]]></log4j:message>
<log4j:locationInfo class=

 "log4jTest" method="main" file="log4jTest.java" line="12"/>
</log4j:event>

Creating log file views for the web browser 261

XML output from log4j does not create a well-formed XML document. The data
created is meant to be wrapped by a header and footer. See the log4j.dtd file and
log4j documentation for more information.

◆ See also

8.2—Improving log performance

8.6 Creating log file views for the web browser

◆ Problem

You want to create log files that are easily readable with your web browser.

◆ Background

In most cases, capturing logging events is not the hardest task. Rather, it is the pre-
sentation of the message store in a meaningful and easy-to-interpret format that is
more difficult. Log messages exist to enable us to analyze the behavior and lifecy-
cle of applications. Creating a log file in HTML format is a quick and easy way of
presenting log messages to a user.

◆ Recipe

To create a web browser view for your log files, use the log4j HTML layout class with
the rolling file appender. The following properties are a sample of a log4j proper-
ties configuration file that assigns a file appender with an HTML layout to a logger:

log4j.logger.mylogger=DEBUG, htmlFileAppender

log4j.appender.htmlFileAppender =org.apache.log4j.RollingFileAppender
log4j.appender.htmlFileAppender.File=Log.html
log4j.appender.htmlFileAppender.MaxFileSize=100KB
log4j.appender.htmlFileAppender.MaxBackupIndex=2
log4j.appender.htmlFileAppender.layout=org.apache.log4j.HTMLLayout
log4j.appender.htmlFileAppender.layout.LocationInfo=true

◆ Discussion

The RollingFileAppender is an appender you can use to output messages to a file.
In addition, the RollingFileAppender class will back up the log file when it
reaches a certain size (which you specify). It will also rename backup files as many
times as you need. We set up this appender in order to provide the new HTML lay-
out in the file. Using the org.apache.log4j.HTMLLayout class (shown in the

262 CHAPTER 8

Logging
recipe), log4j builds an HTML table of logging events. The result of two applica-
tion executions is shown in figure 8.1.

◆ See also

8.2—Improving logging performance

8.5—Logging to an XML file

Figure 8.1 The HTML view generated by log4j

Creating a centralized log file 263
in a clustered environment
8.7 Creating a centralized log file
in a clustered environment

◆ Problem

In your clustered environment, you would like to consolidate your log messages
into a single, centralized location.

◆ Background

As application servers grow easier to use, it also becomes easier to cluster your
enterprise applications. Once you begin to cluster your applications, you might be
faced with the problem of consolidating your log files. When each member of the
cluster creates its own log file, you will have an increasingly difficult time tracking
user sessions and critical events.

◆ Recipe

To set up a centralized log file, create in your cluster a new EJB application consist-
ing of only a single message-driven bean. In the other members of the cluster, cre-
ate a JMS appender for the logging framework that publishes messages to a topic
that the message-driven bean uses to acquire messages. The single message-driven
bean writes out the messages as needed. The code in listing 8.3 shows a sample
message-driven bean class.

import javax.ejb.*;
import javax.jms.*;
import org.apache.log4j.*;

public class LogConsolidatorBean implements MessageDrivenBean,
MessageListener

{
 private static final Logger logger = null;

 public void setMessageDrivenContext(MessageDrivenContext mdc){
 }

 public void ejbCreate()
 {
 logger = Logger.getLogger("app.consolidated");
 }

Listing 8.3 LogConsolidatorBean.java

Creates the
Logger object

264 CHAPTER 8

Logging
 public void ejbRemove()
 {
 LogManager.shutdown();
 }

 public void onMessage(Message msg)
 {
 LoggingEvent event;
 Logger tempLogger;

 try
 {
 ObjectMessage objectMessage = (ObjectMessage) message;
 event = (LoggingEvent) objectMessage.getObject();
 tempLogger = Logger.getLogger(event.getLoggerName());
 tempLogger.callAppenders(event);

 }
 catch(JMSException jmse)
 {
 logger.error("Cannot log incoming message", jmse);
 }
 }
}

When deploying this bean, you must also provide a log4j configuration file with
all the logger names that are found in the other cluster members. Provide a single
appender across all the named loggers in order to achieve a single, consolidated
log repository.

◆ Discussion

The important parts of this recipe are the onMessage() method of the message-
driven bean LogConsolidatorBean and its log4j configuration file. Examining the
onMessage() call, you might be asking yourself why we did not simply call the
event.getMessage() method and send it to a new logger for formatting. Well, we
could have done that, but the log message would have lost all of its format and
context information. For instance, all the messages sent to a new logger would
have a new thread, timestamp, classname, and so forth. Instead, we preserve log-
ging event context information by sending the event itself to a logger. To actually
persist the log message (to a file, for example), we need to invoke the appenders
associated with the retrieved logger.

 The key to this recipe is duplicating all the logger names specified in the clus-
ter into the log4j configuration file used by the message-driven bean JVM. It is not
necessary to duplicate all of the appender setup—just the loggers. In the new

Invokes
appenders for

the logger

Tracking the lifecycle of an EJB 265

log4j configuration file, you need just one appender for all the loggers, which
ensures that all the messages are routed to a single location. For information
about sending log messages to a JMS queue (from each of the cluster members),
see recipe 8.4.

◆ See also

6.3—Creating a message-driven Enterprise JavaBean

8.1—Formatting log messages

8.4—Sending log messages to a JMS topic

8.10—Sorting log messages by client

8.8 Tracking the lifecycle of an EJB

◆ Problem

You want to use your logging framework to track the lifecycle of your EJBs.

◆ Background

When tuning an EJB application for production, it is useful to know how the con-
tainer manages instances of your EJBs. You would like to see how your EJBs move
through their lifecycle in your application. This information can allow you to tune
the EJB container or provide metrics of client usage, container tuning, perform-
ance, and more.

◆ Recipe

To track the lifecycle of an EJB, you should create a particular Logger instance and
place log messages in the lifecycle methods of the EJB.

 Create a logger in the creation method for each EJB deployed and name the
logger using the EJB classname. In the various lifecycle methods, such as ejbCre-
ate() and ejbRemove(), log a message indicating that the method is executing. In
the log4j configuration file, format your log messages so that they include the log-
ger name, timestamp, method name, and message. For example, the following
portion of a log4j configuration properties file sets up a logger for a sample EJB.
The appender should be shared among all loggers.

#setup log level and assign appenders
#this logger is named after an EJB classname
log4j.logger.cookbook.ch8.SampleBean=DEBUG, output

266 CHAPTER 8

Logging
#setup output appender
log4j.appender.output =org.apache.log4j.RollingFileAppender
log4j.appender.output.layout=org.apache.log4j.PatternLayout
log4j.appender.output.layout.ConversionPattern=%c; %d{HH:mm:ss}; %M; %m%n

When creating the logger in the bean, use the classname as the logger name.
Finally, in each bean, create a unique ID by using a random number (or some-
thing similar) that identifies the life of the particular EJB. Send this ID as the mes-
sage to the logging framework. For instance, examine the code for the bean
cookbook.ch8.SampleBean in listing 8.4.

package cookbook.ch8;

import javax.ejb.*;
import org.apache.log4j.*;

public class SampleBean implements SessionBean
{
 private static final Logger logger = null;
 private String beanID = null;

 public ejbCreate()
 {
 logger = Logger.get(SampleBean.class);
 Random random = new Random();
 beanID = random.nextInt() + "SampleBean";
 logger.debug(beanID);
 }

 public ejbRemove()
 {
 logger.debug(beanID);
 }

 public void ejbPassivate()
 {
 logger.debug(beanID);
 }

 public void ejbActivate()
 {
 logger.debug(beanID);
 }

 //business methods below
}

Listing 8.4 SampleBean.java

Creates the
Logger object

Creates a unique ID
for this bean

Logs the ID at
critical points

Using a different configuration at runtime 267

The code in listing 8.4 shows a sample session EJB that logs messages with an ID
identifying the bean and tracks its lifecycle. The output would look something
similar to this:

cookbook.ch8.SampleBean; 07:20:53; ejbCreate; 986751959SampleBean
cookbook.ch8.SampleBean; 07:20:54; ejbPassivate; 986751959SampleBean
cookbook.ch8.SampleBean; 07:20:55; ejbActivate; 986751959SampleBean
cookbook.ch8.SampleBean; 07:20:56; ejbRemove; 986751959SampleBean

◆ Discussion

We used the EJB classname as the logger name in order to better sort the resulting
log file created with multiple bean entries. Since we used a semicolon to separate
the portions of the formatted message, we can open the log file in Microsoft Excel
and sort messages by timestamp, logger name, and message (the unique ID). The
unique ID lets us pull the exact log events for an EJB session lifecycle. We don’t
have to specify anything else in the message to the logger because we are pulling
the method name from the logging event.

◆ See also

8.1—Formatting log messages

8.2—Improving logging performance

8.9 Using a different configuration at runtime

◆ Problem

You would like to specify which logging configuration file to load, or even switch
configurations during runtime of your EJB application.

◆ Background

While log4j lets you create multiple destinations and formats for your log mes-
sages, you would like to change the log4j configuration after your application has
started. For instance, after testing your application in production, you need to
turn down the logging level from a debug level to a normal operating level. You
can improve performance by including only logging messages that are abso-
lutely necessary.

268 CHAPTER 8

Logging
◆ Recipe

To update the log4j configuration for the JVM running your EJB application,
deploy a servlet to that JVM that has the ability to refresh the log4j system. For
instance, the servlet shown in listing 8.5 initializes the logging framework as it is
deployed, and its doGet() method can be used to reset the logging framework
after a configuration file has been replaced or modified.

import javax.servlet.*;
import org.apache.log4j.PropertyConfigurator;
import java.io.*;

public class LoggerInitializationServlet extends HttpServlet
{

 private static String file = null;

 public void init()
 {
 file = getInitParameter("CONFIGURATION_FILE");
 initialize(file);
 }

 private void initialize(String filename)
 {
 if(filename != null)
 {
 this.file = filename;
 }

 PropertyConfigurator.configure(getServletContext().getRealPath("/")
 + file));
 }

 public void doGet(HttpServletRequest reg, HttpServletResponse res)
 {
 String filename = getFileName(req);
 initialize(filename);
 }

 public void doPost(HttpServletRequest reg, HttpServletResponse res)
 {
 String filename = getFileName(req);
 initialize(filename);
 }
}

Listing 8.5 LoggerInitializationServlet

Retrieves the
configuration
filename

Initializes the logging system

Initializes the logging system at
any servlet request

Sorting log messages by client 269

The servlet example in listing 8.5 does not show the getFileName() method. You
must implement this method to retrieve a configuration filename from the servlet
request. To deploy this servlet, add the following to your web.xml file:

<servlet>
 <servlet-name>init-servlet</servlet-name>
 <servlet-class>LoggerInitializationServlet</servlet-class>

 <init-param>
 <param-name>CONFIGURATION_FILE</param-name>
 <param-value>WEB-INF/classes/logconfig.properties</param-value>
 </init-param>
</servlet>

◆ Discussion

The initialization servlet is a flexible way of resetting your logger configuration at
runtime. You can develop the servlet to accept parameters, such as new filenames,
to control how the logger is reset. Essentially, the servlet opens a runtime window
to the logger configuration, and with an open place to add code, you can do any-
thing you need.

 Alternatively, if your application server contains a JMX MBean server, you
could write an MBean to expose the logging configuration to a management con-
sole. For more information on JMX (Java Management Extensions), read JMX in
Action (2002, Manning Publications).

8.10 Sorting log messages by client

◆ Problem

You would like your log files to be sortable by user session. More important, you
need to sort a user’s session log events in the order they occurred, separated from
other sessions.

◆ Background

An enterprise application usually allows access from a group of users. In web
applications, each user is usually mapped to a single session. A user session may
touch many pieces of the application. When an application allows access to simul-
taneous user sessions, the log store becomes a confusion of interlayered log events
from different users.

270 CHAPTER 8

Logging
 To solve this problem, you can use the log4j NDC class. NDC stands for Nested Diag-
nostic Context. By using this class, you can have log4j retrieve information about a
client (its context information) and display that information in the log message
repository, allowing log readers to make sense of multiclient environments.

◆ Recipe

To identify a single client in a multiclient log file, push client-specific information
onto the NDC stack. Then, using the pattern layout in your configuration file,
retrieve the NDC information and use it to identify log messages. For example, for
each new client, pick a unique characteristic (username, hostname, ID, etc.) and
push it onto the NDC stack. The following code does this:

//starting client thread session inside bean
NDC.push(username);
logger.debug("a message written to the log");

//more messages and code…

When work for the (client) thread is complete, clean up the NDC stack object:

NDC.pop();
NDC.remove();

To configure an appender to use the NDC information to identify a client, config-
ure one similar to the following:

log4j.appender.myappender =org.apache.log4j.ConsoleAppender
log4j.appender.myappender.layout=org.apache.log4j.PatternLayout
log4j.appender.myappender.layout.ConversionPattern=%x %5p [%t] - %m%n

In the conversion pattern, %x refers to the NDC stack for the particular thread send-
ing the log message. log4j retrieves any information pushed onto the stack and
includes it in the output. See recipe 8.1 for formatting questions.

◆ Discussion

The NDC class acts as a stack for each thread. log4j provides a stack for each new
thread context that executes. The NDC operates a stack on a per-thread basis. That
is, each new thread gets its own stack to use. In the EJB environment, a single user
session may span several threads during its lifetime. If you are trying to tie log mes-
sages back to a user session, you need to push context information onto the NDC
for each user thread. For instance, if you are using the username of a client as con-
text information, you must make sure the username is available in each thread.

Sorting log messages by client 271

 Before exiting a thread, you should call the remove() method on the NDC class,
as you can see in the recipe. This method cleans up memory allocated for the
thread and ensures the garbage collector can perform its duties.

 EJBs can always retrieve the security Principal of callers through their EJBCon-
text instance set during their creation. For example, the following code retrieves
the username of an EJB client:

 String username = ejbContext.getPrincipal().getName();

During the design of your application, you will need to consider how you want
to track the user’s session across nested EJB calls. EJBs can choose to run under
a client’s identity using the <use-caller-identity/> tag in the EJB deploy-
ment descriptor.

 An alternative to the NDC class is the MDC class (Mapped Diagnostic Context).
The MDC operates in much the same manner as the NDC, but it is a map instead of a
stack. A map allows you store and retrieve information about a client in a more
controlled fashion. For instance, even though you may place many items about a
client in the map, you can choose to only retrieve a single item. You make use of
the MDC by placing thread context information in the map using a key:

MDC.put("username", userNameVariable);
logger.debug("writing a log message");

An appender set up to use the MDC information is similar to the previous NDC
example:

log4j.appender.myappender =org.apache.log4j.ConsoleAppender
log4j.appender.myappender.layout=org.apache.log4j.PatternLayout
log4j.appender.myappender.layout.ConversionPattern=%X{username} %5p [%t]-

%m%n

When using the MDC, you retrieve information with the %X{key} conversion
character.

◆ See also

7.1—Finding the identity and role of a caller inside an EJB method

7.5—Assigning a role to an EJB

8.1—Formatting log messages

8.2—Improving logging performance

Deploying and
unit testing
“There can be no question, my dear Watson, of the value of
exercise before breakfast.”

—Sherlock Holmes
273

274 CHAPTER 9

Deploying and unit testing
A good build system can be a developer’s best friend. Apache Ant provides the
perfect combination of power and flexibility to meet all of your application build-
ing and deployment needs. Another important tool the EJB developer needs is a
comprehensive testing utility. Apache Cactus, an open source framework, lets you
build unit tests for your EJB functionality. In addition, you can use Ant to build a
good regression test system with your unit tests. The recipes in this chapter dem-
onstrate how to use Ant to build and deploy your EJBs and how to use Cactus for
testing your EJBs.

 You will find recipes for the following topics in this chapter:

■ Using Ant for compilation

■ Packaging beans into an ejb.jar file

■ Generating stub classes

■ Unit-testing stateless session beans

■ Unit-testing stateful session beans

■ Unit-testing an entity bean

■ Automating test cases

■ Executing test cases

A deployment and testing appetizer

After all your work developing your EJB applications, you’re ready to send them
out into the world. Using two open source Apache projects, you can build and test
your EJBs. Apache Ant is an excellent tool for creating and automating a build sys-
tem for your EJB application; Apache Cactus provides an equally excellent system
for building and running EJB unit tests.

Apache Ant

Put simply, Ant executes tasks described in a build.xml file. These Ant tasks are
implemented in Java classes and perform such tasks as class compilation and JAR
file creation. Ant allows you to build your own tasks, as well as use the many tasks it
already includes. In this chapter, we demonstrate how to use Ant to build, pack-
age, and deploy your EJBs.

 The build.xml file defines an Ant project. The project contains different tar-
gets, each of which define a task that Ant will accomplish (such as compiling,
copying files, or making directories). You will see how to create these Ant tasks as
you read through the Ant recipes in this chapter. If, after examining the recipes,

A deployment and testing appetizer 275

you need more information about Ant, refer to “Second helpings: Additional
resources,” at the end of this book.

Apache Cactus

In this book, we have focused on a few open source tools. For testing EJBs, we
chose to use another open source framework, Apache Cactus. Cactus lets you
build and execute test cases for server-side components like servlets and EJBs. Cac-
tus uses JUnit (a popular unit testing framework) and extends it.

 We might have chosen other testing frameworks for this chapter. In fact, you
can test EJBs using simple JUnit test cases. Instead, we chose Cactus for a few
main reasons:

■ Cactus executes tests within the EJB container.

■ Cactus can test EJBs that use only local interfaces.

■ Cactus tests run in the same environment as your production environment.
This means test execution occurs the same way a production EJB call would.

■ You can use Ant to automate your Cactus tests to build a rigorous regression
testing system.

Using Cactus, you build test cases for all of your session bean business logic and
entity bean data access. Cactus redirects test cases using the process illustrated in
figure 9.1. It redirects test cases invoked on the client side by a JUnit test runner
to server-side test cases.

J2EE Container

EJB Engine

CactusTestCase

testMethod1()
testMethod2(){}

Server-Side
Class

Server-Side
Class

Servlet JSP
Engine

Redirector
Proxy

CactusTestCase

beginTest1
endTest1

beginTest2
endTest2

HTTPResponse

HTTPRequest

Figure 9.1 A Cactus test case. Test cases are started on the client side by
a JUnit test runner and passed to the Cactus test redirector servlet in the
server-side container, where actual test cases are executed.

276 CHAPTER 9

Deploying and unit testing
 To download and install Cactus, acquire the latest build from Apache at http://
jakarta.apache.org/cactus. Cactus doesn’t require installation per se; it’s only a
framework, and as such, the necessary Cactus JAR files need only be in the class-
path of your application. Extracting the downloaded file to a working directory,
you should notice several JAR files and documentation. You can place the JAR files
into the classpath of your application in two ways: either include the files in the
classpath of the application server running your EJB application, or package them
in the enterprise archive (EAR) or web archive (WAR) file containing your applica-
tion. The following JAR files come with the Cactus binary download (their names
may vary depending on the version number):

■ cactus.jar

■ cactus-ant.jar

■ httpclient.jar

■ junit.jar

■ aspectj.jar

■ commons-logging.jar

■ log4j.jar

All of the JAR files listed should be placed in the application server classpath, or
simply in the classpath of your application (its WAR or EAR file, for instance). In
addition, these JAR files are needed for the execution of the test client, and you
must include them in the classpath of your Ant setup and JUnit test runner, as
illustrated by recipes 9.7 and 9.8.

 In order to actually execute the test cases you write for your EJBs, you must
deploy the test case classes and the Cactus servlets into your application server.
Cactus has several servlets used to execute various server-side tests. The following
sample web.xml file shows how you would deploy the Cactus servlets with your
web application. You would need to do this for each of your applications.

<web-app>
 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

 <!-- =======[Remainder is set up for Cactus Test Suite
]========= -->
 <servlet>
 <servlet-name>ServletTestRunner</servlet-name>
 <servlet-class>
 org.apache.cactus.server.runner.ServletTestRunner

A deployment and testing appetizer 277

 </servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>ServletTestRunner</servlet-name>
 <url-pattern>/ServletTestRunner</url-pattern>
 </servlet-mapping>

 <filter>
 <filter-name>FilterRedirector</filter-name>
 <filter-class>org.apache.cactus.server.FilterTestRedirector
 </filter-class>
 </filter>

 <filter-mapping>
 <filter-name>FilterRedirector</filter-name>
 <url-pattern>/FilterRedirector</url-pattern>
 </filter-mapping>

 <servlet>
 <servlet-name>ServletRedirector</servlet-name>
 <servlet-class>
 org.apache.cactus.server.ServletTestRedirector
 </servlet-class>
 </servlet>

 <servlet>
 <servlet-name>JspRedirector</servlet-name>
 <jsp-file>/jspRedirector.jsp</jsp-file>
 </servlet>

 <servlet-mapping>
 <servlet-name>ServletRedirector</servlet-name>
 <url-pattern>/ServletRedirector</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>JspRedirector</servlet-name>
 <url-pattern>/JspRedirector</url-pattern>
 </servlet-mapping>

</web-app>

The servlet classes and their dependent classes (contained in the JAR files listed in
recipe 9.1) should already be in the classpath, as described earlier.

 With that brief introduction to Cactus, you’re prepared to start writing and
executing EJB test cases (see recipes 9.4–9.8). While Cactus has many features, the
recipes in this chapter focus on using Cactus for testing EJBs. You should consult
the full Cactus documentation to learn about its other features and abilities.

278 CHAPTER 9

Deploying and unit testing
9.1 Compiling Enterprise JavaBeans

◆ Problem

You want to use Apache Ant to build your EJB source files.

◆ Background

The first step in a good build system is to successfully manage the compilation of
source files. You need a build system that is fast, reliable, and easy to use. With
Apache Ant, compiling your source file is a straightforward task. After following
this recipe for building your EJB source files, you can proceed to the next recipes,
which focus on packaging your EJBs and building stub classes. Since this is the first
of several recipes using Ant to create a build and deploy systems, we need to set up
some basic files.

◆ Recipe

We will be using two files for these build recipes. The first is a properties file that
contains some environment variables used by Ant to successfully build our EJBs.
For this recipe, the properties file (listing 9.1) defines variables describing the
source directory and build directory, among other things.

#choose classic, modern, jikes, or jvc
JAVAC=modern

#The Ant project name
PROJECT_NAME=ejbCookbook

#-------------[Point to the J2EE JAR for includes]---------------
EJB_JAR=C:/j2sdkee1.4/lib/j2ee.jar

#-------------[Where do all the source files live]---------------
EJB_SOURCE=ejbs
META_SOURCE=META-INF

#-------------[Where do all the class/build files live]----------
BUILD=build
EJB_BUILD=${BUILD}/ejbs

The second file Ant needs for this recipe is the build.xml file, shown in listing 9.2.
As we move on to the next recipes, we will be adding to this file to accomplish

Listing 9.1 The build.properties file

Names the
Ant project

Describes external JARs needed for compiling

Names the source
directories

Names the build
directories

Compiling Enterprise JavaBeans 279

different build tasks. For now, this build file only sets up the classpath, compiles
the sources, and cleans the build directory.

<project name="${PROJECT_NAME}" default="all" basedir=".">

 <!-- set global properties for this build -->
 <property environment="env"/>
 <property file="build_ejb.properties"/>

 <target name="all" depends="init, compile_ejb, jar_ejb,
 ejbc, deploy_jar">
 <echo>---------[Project name: ${PROJECT_NAME} Completed]----
 </echo>
 </target>

 <!--
 ===
 Setup ready for build.
 Create all the necessary Directories
 ===
 -->
 <target name="init">
 <tstamp/>
 <echo>----[Creating all Directories and copying XML files]-
 </echo>
 <mkdir dir="${BUILD}"/>
 <mkdir dir="${EJB_BUILD}"/>
 <mkdir dir="${EJB_BUILD}/META-INF"/>
 </target>

 <!--
 ===
 Clean the files up
 ==
 -->
 <target name="clean">
 <tstamp/>
 <echo>---[Cleaning the Compiled and Deployed Files]-----
 </echo>
 <delete dir="${BUILD}"/>
 </target>

 <!—
 ===
 Compile the EJB Source Files
 ===
 -->

Listing 9.2 The build.xml file used to compile and package an EJB application

Loads the build
properties file

Executes the build system

Creates necessary
directories

Deletes the build
directory and contents

280 CHAPTER 9

Deploying and unit testing
 <target name="compile_ejb" depends="init">
 <tstamp/>
 <echo>---[Compiling EJB Source Files]------------</echo>
 <javac srcdir="${EJB_SOURCE}" destdir="${EJB_BUILD}" >
 <classpath>
 <pathelement location="${EJB_JAR}"/>
 <pathelement location="${INCLUDE_JARS}"/>
 </classpath>
 </javac>
 </target>

</project>

After creating these two files, make sure you put them in the directory structure
that is described by the project. For instance, in this recipe, they should be in the
same directory, one level above the source directory. From a command prompt,
change to the directory and execute the following command:

prompt> ant all

◆ Discussion

Obviously, you should modify the build properties file to represent your particular
folder structure for both source and build directories. After running Ant with this
setup, you should see the class file in your build directory. Without executing the
clean target, successive runs of Ant will compile any source files that have changed
since the previous execution.

◆ See also

9.2—Building the ejb.jar file

9.3—Building Enterprise JavaBean stub classes

9.2 Building the ejb.jar file

◆ Problem

After compiling the EJB source files, you want Ant to also package the new class
files into an ejb.jar file.

◆ Background

After building class files, you need to package them into an ejb.jar file along with
the XML deployment descriptor that describes your EJBs. The JDK includes a JAR

Builds the EJB
class files

Building the ejb.jar file 281

tool that will package all of your class files along with the descriptor, but it’s cum-
bersome to manually execute it after every source compilation. You should auto-
mate the JAR execution along with the generation of class files.

◆ Recipe

For this step, no changes are necessary to the build properties file (created in rec-
ipe 9.1). We only need to add a dependent target to the build.xml file. The
changes are shown in bold in listing 9.3.

<project name="${PROJECT_NAME}" default="all" basedir=".">

 <!-- set global properties for this build -->
 <property environment="env"/>
 <property file="build_ejb.properties"/>

 <target name="all" depends="init, compile_ejb, jar_ejb">
 <echo>---------[Project name: ${PROJECT_NAME} Completed]---
 </echo>
 </target>

 <!--
 ==
 Setup ready for build.
 Create all the necessary Directories
 ==
 -->
 <target name="init">
 <tstamp/>
 <echo>---[Creating all Directories and copying XML files]--
 </echo>
 <mkdir dir="${BUILD}"/>
 <mkdir dir="${EJB_BUILD}"/>
 <mkdir dir="${EJB_BUILD}/META-INF"/>
 </target>

 <!--
 ===
 Clean the files up
 ===
 -->
 <target name="clean">
 <tstamp/>
 <echo>----[Cleaning the Compiled and Deployed Files]-------
 </echo>
 <delete dir="${BUILD}"/>
 </target>

 <!—

Listing 9.3 build.xml

Adds the new jar_ejb target to the depends list

282 CHAPTER 9

Deploying and unit testing
 ===
 Compile the EJB Source Files
 ===
 -->

 <target name="compile_ejb" depends="init">
 <tstamp/>
 <echo>---------[Compiling EJB Source Files]------</echo>
 <javac srcdir="${EJB_SOURCE}" destdir="${EJB_BUILD}" >
 <classpath>
 <pathelement location="${EJB_JAR}"/>
 <pathelement location="${INCLUDE_JARS}"/>
 </classpath>
 </javac>
 </target>

 <!--
 ==
 Create the EJB JAR File
 =======================================
 -->
 <target name="jar_ejb" depends="compile_ejb">
 <tstamp/>
 <echo>--[Copying META-INF Files]--------------</echo>
 <copy todir="${EJB_BUILD}/META-INF">
 <fileset dir="${META_SOURCE}">
 <include name="*.xml"/>
 </fileset>
 </copy>
 <echo>---------[Creating EJB JAR File]-------</echo>
 <jar jarfile="${BUILD}/${PROJECT_NAME}.jar" basedir="${EJB_BUILD}" />
 </target>

</project>

◆ Discussion

This recipe adds a new target to the build.xml file. The jar_ejb target sets up and
executes the JAR tool against the newly created class files (from the compile com-
mand). Notice, in fact, that it depends on the compile_ejb target before it exe-
cutes. This ensures that class files are present for the JAR tool. Before setting up
the <fileset> tag, the target copies all available EJB XML files into a META-INF
folder under the build directory. Next the <fileset> tag tells the target where to
find the class files for the JAR tool. Finally, the <jar> command builds a JAR file
named after the project.

Describes the task
that will create the

ejb.jar file

Building Enterprise JavaBean stub classes 283

◆ See also

9.1—Compiling Enterprise JavaBeans

9.3—Building Enterprise JavaBean stub classes

9.3 Building Enterprise JavaBean stub classes

◆ Problem

After building class files from your EJB source files, you want to automate the gen-
eration of your EJB stub classes.

◆ Background

After you generate the class file for your EJBs, you also need to generate the stub
classes for deploying the beans into a specific EJB container. Generating stub
classes requires you to run an EJB compiler tool provided by the vendor. This tool
will generate stub source files and automatically compile them. Using Ant, you
can automate the use of this tool.

◆ Recipe

For this recipe, we will generate stub classes for deploying EJBs into the Weblogic
EJB container. The properties file in listing 9.4 shows the changes needed for this
step in our build system. The changes from the previous recipe are shown in bold.

#choose classic, modern, jikes, or jvc
JAVAC=modern

PROJECT_NAME=ejbCookbook

#-------------[Point to the J2EE JAR for includes]-------------------
EJB_JAR=C:/j2sdkee1.4/lib/j2ee.jar
INCLUDE_JARS=C:/bea/wlserver6.1/lib/weblogic.jar

#-------------[Where do all the source files live]-------------------
EJB_SOURCE=ejbs
META_SOURCE=META-INF

#-------------[Where do all the class/build files live]-------------------
BUILD=build
EJB_BUILD=${BUILD}/ejbs

#-------------[This is specific to the Weblogic container for us]-------
WL_HOME=C:/bea/wlserver6.1

Listing 9.4 The modified build.properties file for generating stubs

Used to add the weblogic.jar
to the classpath

Used to store the BEA Weblogic home directory

284 CHAPTER 9

Deploying and unit testing
Listing 9.5 shows the build.xml file, also taken from the previous recipe. In this
version of the file, we added a new target that builds the stub files. Notice that
the all target now also depends on the new target. The differences are high-
lighted in bold.

<project name="${PROJECT_NAME}" default="all" basedir=".">

 <!-- set global properties for this build -->
 <property environment="env"/>
 <property file="build_ejb.properties"/>

 <target name="all" depends="init, compile_ejb, jar_ejb, ejbc">
 <echo>---------[Project name: ${PROJECT_NAME} Completed]---
 </echo>
 </target>

 <!--
 ===
 Setup ready for build.
 Create all the necessary Directories
 ===
 -->
 <target name="init">
 <tstamp/>
 <echo>--[Creating all Directories and copying XML files]---
 </echo>
 <mkdir dir="${BUILD}"/>
 <mkdir dir="${EJB_BUILD}"/>
 <mkdir dir="${EJB_BUILD}/META-INF"/>
 </target>

 <!--
 ===
 Clean the files up
 ===
 -->
 <target name="clean">
 <tstamp/>
 <echo>---[Cleaning the Compiled and Deployed Files]--------
 </echo>
 <delete dir="${BUILD}"/>
 </target>

 <!—
 ===
 Compile the EJB Source Files
 ==
 -->

 <target name="compile_ejb" depends="init">
 <tstamp/>

Listing 9.5 The modified build.xml file

Adds the ejbc target
to the depends list

Building Enterprise JavaBean stub classes 285

 <echo>----[Compiling EJB Source Files]----------</echo>
 <javac srcdir="${EJB_SOURCE}" destdir="${EJB_BUILD}" >
 <classpath>
 <pathelement location="${EJB_JAR}"/>
 <pathelement location="${INCLUDE_JARS}"/>
 </classpath>
 </javac>
 </target>

 <!--
 ==
 Create the EJB JAR File
 ==
 -->
 <target name="jar_ejb" depends="compile_ejb">
 <tstamp/>
 <echo>---[Copying META-INF Files]--------------</echo>
 <copy todir="${EJB_BUILD}/META-INF">
 <fileset dir="${META_SOURCE}">
 <include name="*.xml"/>
 </fileset>
 </copy>
 <echo>---------[Creating EJB JAR File]--------------</echo>
 <jar jarfile="${BUILD}/${PROJECT_NAME}.jar" basedir="${EJB_BUILD}" />
 </target>

 <!--
 ===
 Run EJBC for Weblogic Container Deployment Descriptors
 ===
 -->
 <target name="ejbc" depends="jar_ejb">
 <tstamp/>
 <echo>---------[Creating Deployable Jar File using EJBC]---
 </echo>
 <copy tofile="${BUILD}/wl_${PROJECT_NAME}.jar"
 file="${BUILD}/${PROJECT_NAME}.jar" />
 <java classpath="${CLASSPATH}" classname="weblogic.ejbc"
 fork="yes">
 <sysproperty key="weblogic.home" value="${WL_HOME}"/>
 <arg line="-compiler javac ${BUILD}/wl_${PROJECT_NAME}.jar
 ${BUILD}/${PROJECT_NAME}.jar"/>
 <classpath>
 <pathelement path=
 "${WL_HOME}/lib/weblogic_sp.jar;${WL_HOME}/lib/weblogic.jar"/>
 </classpath>
 </java>
 <delete file="${BUILD}/wl_${PROJECT_NAME}.jar"/>
 </target>

</project>

Describes the task
that will generate

the EJB stubs

286 CHAPTER 9

Deploying and unit testing
◆ Discussion

The new addition to the build.xml is the ejbc target. This target sets up and exe-
cutes a Java command that runs the EJB stub compiler for the Weblogic container.
In the build properties file, we added the weblogic.jar file to a variable so that we
can add it to the classpath for this execution. Examining the new target, notice
that it does three things:

1 It copies the ejb.jar file to a temporary JAR file.

2 It executes the weblogic.ejbc class file using a JVM.

3 It deletes the temporary JAR file.

Since this target depends on the target that creates the ejb.jar file, it can assume
that a JAR file (with the project name) exists. Using the <copy> tag, the target cre-
ates a temporary JAR file. Next, the <java> tag sets up the classpath, names the
class to execute (the weblogic.ejbc class), and also uses the <arg> tag to add argu-
ments to the execution of the Java class. These arguments are specific to the EJB
compiler needed by the EJB container. Once the execution is complete, the target
completes execution by deleting the temporary JAR file it used as input to the EJB
compiler. The execution of the EJB compiler produced a new JAR file, again
named after the project.

◆ See also

9.1—Compiling Enterprise JavaBeans

9.2—Building the ejb.jar file

9.4 Creating a stateless session bean unit test

◆ Problem

You want to create a unit test for your stateless session Enterprise JavaBeans.

◆ Background

Unit-testing stateless session beans helps you catch errors in your business logic
before moving your application to the next phase: application or user testing.
Using Cactus, you can create tests that execute in the EJB container in order to
test not only the business logic, but also the deployment of the EJBs in the EJB
container. This integration testing helps prevent deployment errors long before
it’s time to move the application into other environments.

Creating a stateless session 287
bean unit test
◆ Recipe

In order to create unit tests with Cactus, you need to extend a test-case base class
provided by Cactus. For our test cases, we will be extending the ServletTestCase
class. Test cases have the following requirements:

1 Import the org.apache.cactus and junit.framework packages.

2 Extend a Cactus test case base class.

3 Include a constructor that accepts the test name as a String parameter (a
one-argument constructor).

4 Include at least one testXXX() method, where XXX is a name of your
choosing describing the functionality.

Optionally, your test cases can provide a suite() method that will list the available
testXXX() methods contained in the test case class, and a main() method that will
allow the test case to be executed from a command line. The testXXX() methods
have only a few responsibilities:

1 Instantiating or obtaining the object to test

2 Invoking methods upon the test object

3 Using the JUnit assert() methods to determine the test results

The sample test case class in listing 9.6 instantiates TestStateless EJBs and creates
two test methods—testPositiveResponse() and testNegativeResponse()—that
test return values from sample business methods on the bean.

import org.apache.org.*;
import junit.framework.*;

public class TestStateless
 extends ServletTestCase{

 public TestStateless (String theName){
 super(theName);
 }

 public static Test suite(){
 return new TestSuite(TestServlet.class);
 }

 public void testPositiveResponse(){

 try{
 TestStatelessHome home = lookupHome();
 TestStateless session = createSession(home);

Listing 9.6 TestStateless.java

Initializes the test
class with a name

Creates and returns
a suite class

288 CHAPTER 9

Deploying and unit testing
 boolean value = session.positiveResponse();
 assertEquals(true,value);
 }
 catch(Exception e){
 e.printStackTrace();
 System.out.println("Failed Finding Session:"
 + e.getMessage());
 }

 }

 public void testNegativeResponse(){

 try{
 TestStatelessHome home=lookupHome();
 TestStateless session=createSession(home);
 boolean value=session.negativeResponse();
 assertEquals(false,value);
 }
 catch(Exception e){
 e.printStackTrace();
 System.out.println("Failed Finding Session:"
 +e.getMessage());
 }

 }

 /** private methods below **/

 private TestStateless createSession(TestStatelessHome home)
 throws ObjectNotFoundException,
 CreateException,RemoteException {

 TestStateless session = null;

 System.out.println("Creating Session");
 session = (TestStateless) PortableRemoteObject.narrow(
 home.create(),
 TestStateless.class);

 System.out.println("Created Session ");
 return session;
 }

 private TestStatelessHome lookupHome() throws NamingException{
 Context ctx = new InitialContext();

 System.out.println("Looking up Home:");
 TestStatelessHome home = (TestStatelessHome)
 ctx.lookup("testStateless");
 home = (TestStatelessHome) PortableRemoteObject.narrow(
 home,
 TestStatelessHome.class);
 return home;
 }
}

Tests an equals-true
comparison

Tests an equals-false
comparison

Creates a session bean
from a home object

Looks up a home object
for a session bean

Creating a stateless session 289
bean unit test
◆ Discussion

Running tests against stateless session beans is a simple matter of looking up the
bean and executing its business methods. You can choose to either catch excep-
tions or evaluate return values to determine if the test is successful. Notice that
both test methods in our recipe invoke private methods to create an instance of
the stateless session bean. To save time and improve the performance of your
tests, you can factor out the EJB lookup by storing the bean reference in a local
class member variable. Each test method can then check the member variable for
an existing reference before performing another EJB lookup.

 Notice that the test methods use assertXXX() methods to perform test com-
parisons to determine success or failure conditions for the tested business logic.
Test cases inherit these methods from the JUnit Assert class. Table 9.1 lists addi-
tional assertXXX() methods that are available in the JUnit API.

◆ See also

9.5—Creating a stateful session bean unit test

9.6—Creating an entity bean unit test

9.7—Automating test case execution

9.8—Executing test cases using a UI

Table 9.1 The various assertXXX() methods that test methods can use to evaluate pass/fail condi-
tions of tested business logic

Method Description

assertEquals() Many versions of this method exist to compare many types of objects
and basic data types for equality.

assertSame() These methods test to see if two references point to the same object.

assertFalse() Tests a condition for a false value.

assertTrue() Tests a condition for a true value.

assertNotNull() Tests an object reference for a null value.

assertNotSame() Tests that two references point to different objects.

assertNull() Tests that a reference is a null value.

290 CHAPTER 9

Deploying and unit testing
9.5 Creating a stateful session bean unit test

◆ Problem

You want to create a unit test for a stateful session Enterprise JavaBean.

◆ Background

Unit-testing stateful session beans helps you to catch errors in your business logic
and integration with other resources. Using Cactus, you can create tests that exe-
cute in the EJB container in order to test not only the business logic, but also the
deployment of the EJBs in the EJB container. Testing stateful session beans using
Cactus helps you test an EJB’s dependencies on the application server. For exam-
ple, a stateful session bean might use a data source or other EJB. Please read rec-
ipe 9.4 for the common requirements for building a Cactus test case class.

◆ Recipe

The test case class in listing 9.7 provides a single test method, testIncrement(),
that tests a business method upon a stateful session bean.

import org.apache.org.*;
import junit.framework.*;

public class TestStateful extends ServletTestCase{

public TestStateful(String theName){
 super(theName);
}

public static Test suite(){
 return new TestSuite(TestServlet.class);
}

public void testIncrement(){
 int count = 0;

 try{
 TestStatefulHome home = lookupHome();
 TestStateful session = createSession(home);

 session.increment();
 count++;
 assertEquals(count,session.getCurrentCount());

 session.increment();
 count++;
 assertEquals(count,session.getCurrentCount());

Listing 9.7 TestStateful.java

Initializes the test
class with a name

Creates and
returns a suite class

Tests a comparison
with a counted value

Creating a stateful session 291
bean unit test
 session.increment();
 count++;
 assertEquals(count,session.getCurrentCount());

 }
 catch(Exception e){
 e.printStackTrace();
 System.out.println("Failed Working with Session:"
 +e.getMessage());
 }

}

private TestStateful createSession(TestStatefulHome home)
 throws ObjectNotFoundException,
 CreateException,RemoteException {

 TestStateful session = null;

 System.out.println("Creating Session");
 Session = (TestStateful) PortableRemoteObject.narrow(
 home.create(),
 TestStateful.class);

 System.out.println("Created Session");
 return session;
}

private TestStatefulHome lookupHome() throws NamingException{
 Context ctx = new InitialContext();

 System.out.println("Looking up Home");
 TestStatefulHome home = (TestStatefulHome)
 ctx.lookup("testStateful");
 Home = (TestStatefulHome) PortableRemoteObject.narrow(
 home,
 TestStatefulHome.class);
 return home;
}
}

◆ Discussion

Executing tests against a stateful session bean is similar to running tests against a
stateless session bean. In the case of stateful beans, you have the added ability of
storing and retrieving state information during a test. Therefore, you should con-
struct your tests with this in mind. As we also discussed in the previous recipe, you
can factor out the EJB lookup in each test method by storing a reference to the
bean in a local member variable. In the case of stateful bean tests, use the local
variable to test the state of the EJB.

Creates a session bean
from a home object

Looks up a home object
for a session bean

292 CHAPTER 9

Deploying and unit testing
◆ See also

9.4—Creating a stateless session bean unit test

9.6—Creating an entity bean unit test

9.7—Automating test case execution

9.8—Executing test cases using a UI

9.6 Creating an entity bean unit test

◆ Problem

You want to create a unit test for an entity Enterprise JavaBean.

◆ Background

Unit-testing entity Enterprise JavaBeans means testing not only business logic, but
also database access and schema mappings. Unit-testing your entity beans lets you
test for incorrect column names, finder methods, and overall database usage. This
is especially important when using bean-managed persistence, where errors are
more likely to exist. Please read recipes 9.4 and 9.5 before using this recipe; they
provide the foundation for building Cactus test cases.

◆ Recipe

This recipe tests the ability to create and find a particular entity bean. Here we are
testing the entity schema and the integration with the application server. The test
case class in listing 9.8 provides two test methods—one that tests the ability to cre-
ate an entity bean, and one that tests the ability to find a bean.

import org.apache.org.*;
import junit.framework.*;

public class TestEntity extends ServletTestCase{

 public TestEntity(String theName){
 super(theName);
 }

 public static Test suite(){
 return new TestSuite(TestEntity.class);
 }

 public void testCreateEntity(){

Listing 9.8 TestEntity.java

Initializes the test
class with a name

Creates and returns
a suite class

Tests the creation of
an entity bean

Creating an entity bean unit test 293

 try{
 TestEntityHome home = lookupHome();
 TestEntity entity = createEntity("This is a test",home);
 }
 catch(Exception e){
 e.printStackTrace();
 System.out.println("Failed Finding Entity:"+e.getMessage());
 }
 }

 public void testFindEntity(){
 Integer id = null;

 try{
 TestEntityHome home = lookupHome();

 //---------[Create the entity]--------------//
 TestEntity entity = createEntity("This is a test",home);
 id = entity.getEntityId();
 System.out.println("Created Entity with ID:"
 +id.intValue());

 //---------[Find the entity]--------------//
 entity = findEntity(id, home);

 //---------[Check the id to be identical]-----------//
 assertEquals(id, entity.getEntityId());
 }
 catch(Exception e){
 e.printStackTrace();
 System.out.println("Failed Finding Entity:"+e.getMessage());
 }
 }

 private TestEntity createEntity(String txt, TestEntityHome home)
 throws ObjectNotFoundException,
 CreateException,RemoteException {

 TestEntity entity = null;
 Integer id = null;

 System.out.println("Creating Entity with ID: "+txt);
 entity = (TestEntity) PortableRemoteObject.narrow(
 home.create(txt),
 TestEntity.class);
 id = entity.getEntityId();

 System.out.println("Created Entity with ID: "+id.intValue());
 return entity;
 }

 private TestEntity findEntity(Integer id, TestEntityHome home)
 throws ObjectNotFoundException, FinderException,
 CreateException, RemoteException {

Tests the entity of a
created and found

Creates the test
entity bean

Finds the test
entity bean

294 CHAPTER 9

Deploying and unit testing
 System.out.println("Trying to find Entity with ID: "+id);
 return (TestEntity) PortableRemoteObject.narrow(
 home.findByPrimaryKey(id), TestEntity.class);
 }

 private TestEntityHome lookupHome() throws NamingException{
 Context ctx = new InitialContext();

 System.out.println("Looking up Home:");
 TestEntityHome home = (TestEntityHome)
 ctx.lookup("testEntity");
 home = (TestEntityHome) PortableRemoteObject.narrow(home,
 TestEntityHome.class);
 return home;
 }
}

◆ Discussion

Notice that the test method testCreateEntity() does not use an assert() method
to evaluate any test conditions. However, it does catch and throw an exception if
something goes wrong while trying to create an instance of the test entity bean. If
an exception is thrown from a test method, Cactus will recognize the test as a fail-
ure. You can use this Cactus feature to test business logic that is evaluated without
the basis of return values. Business methods that throw exceptions as a method of
validation and a way to indicate errors can be quickly tested using methods that
pass along the exceptions to the Cactus framework.

◆ See also

9.4—Creating a stateless session bean unit test

9.5—Creating a stateful session bean unit test

9.7—Automating test case execution

9.8—Executing test cases using a UI

9.7 Automating test case execution

◆ Problem

You want to automate the execution of your test cases. Specifically, you want to
avoid executing them manually (potentially one at a time).

Automating test case execution 295

◆ Background

After creating numerous unit test cases with Cactus, you need a good system of
executing them. In addition, you should create a system that lets you quickly re-
execute test cases after changes in your EJBs. Creating an automated testing sys-
tem will help you create a quickly executed and effective test regression frame-
work. Using Ant to execute your test cases is a good way to integrate unit testing
into your build system. With Ant executing your test, you can quickly build a
robust regression test system for your EJB layer.

 Making this task easier is the Cactus framework itself. Cactus provides a custom
Ant task that allows you to develop a step-by-step testing system. With the Cactus
Ant task, you can deploy your tests, start your EJB container, execute the tests, and
stop your EJB container. For the task to execute successfully, you must provide
information about your application server. Fortunately, Cactus also includes the
Ant tasks for many popular application servers.

◆ Recipe

This recipe shows the additions you should make to your Ant build.xml file in
order to integrate Cactus into your build system. The first item to add is the setup
of the new Cactus Ant task. The following initcactus target defines the new task,
runservertests:

 <target name="initCactus" description="Initialize Cactus">
 <taskdef name="runservertests"
 classname="org.apache.cactus.ant.RunServerTestsTask">
 <classpath>
 <pathelement location="${CACTUS_ANT_JAR}"/>
 </classpath>
 </taskdef>
 </target>

The second target you need to add to your build.xml file is a test target that exe-
cutes the newly defined runservertests task provided by Cactus. The following
test target illustrates the invocation of the Cactus task:

 <target name="test" depends="initCactus"
 description="Run tests using Cactus">
 <runservertests
 testURL=
"http://localhost:7001/${PROJECT_NAME}/

ServletRedirector?Cactus_Service=RUN_TEST"
 startTarget="start.weblogic.61"
 stopTarget="stop.weblogic.61"

296 CHAPTER 9

Deploying and unit testing
 testTarget="runCactusTest"
 />
 </target>

After defining the previous target, you must also define the targets it depends on.
This includes the targets you name in the startTarget, stopTarget, and
testTarget parameters. This target definition, testTarget, is responsible for
actually running the Cactus tests:

<target name="runCactusTest">
 <junit printsummary="yes" haltonfailure="yes" haltonerror="yes"
 fork="yes">
 <classpath>
 <pathelement location="${PROJECT_LOCATION}/build/tests"/>
 <pathelement location="${PROJECT_LOCATION}/build/ejbs"/>
 <pathelement location="C:/cactus/lib/cactus-1.4.1.jar"/>
 <pathelement location="C:/j2sdkee1.4/lib/j2ee.jar"/>
 <pathelement
 location="C:/jakarta-ant-1.5-cactus/lib/aspectjrt-1.0.5.jar"/>
 <pathelement
 location="C:/jakarta-ant-1.5-cactus/lib/commons-collection-2.0.jar"/>
 <pathelement
 location="C:/cactus/lib/commons-httpclient-2.0alpha1-20020606.jar" />
 <pathelement location="." />
 </classpath>

 <formatter type="plain" usefile="false"/>
 <test name="${PROJECT_NAME}.TestStateless"/>
 </junit>

</target>

A test is executed for each <test> element present in the target. Each <test> tar-
get specifies a classname of a test case in which to invoke. The following target is
for starting the server; this is the target that was specified in the startTarget
parameter of the Cactus task. This target definition has been taken exactly from
the Cactus distribution. The distribution contains target definitions for most of
the popular application servers available today. This one is for the Weblogic appli-
cation server:

 <target name="start.weblogic.61">
 <echo>deploy location=${DEPLOY_LOCATION}</echo>
 <java classname="weblogic.Server" fork="yes" dir="${DEPLOY_LOCATION}">

 <classpath>
 <pathelement
 location="${WL_HOME}/wlserver6.1/lib/weblogic.sp.jar"/>
 <pathelement location="${WL_HOME}/wlserver6.1/lib/weblogic.jar"/>
 <pathelement location="${junit.jar}"/>
 </classpath>

Automating test case execution 297

 <jvmarg value="-hotspot"/>
 <jvmarg value="-ms64m"/>
 <jvmarg value="-mx64m"/>
 <jvmarg
 value="-Djava.library.path=${java.library.path};${WL_HOME}/wlserver6.1/bin"
 />
 <jvmarg value="-Dweblogic.RootDirectory=."/>
 <jvmarg value="-Dweblogic.Domain=bookdomain"/>
 <jvmarg value="-Dweblogic.Name=myserver"/>
 <jvmarg value="-Dbea.home=${WL_HOME}"/>
 <jvmarg value="-Dweblogic.management.password=dietcoke"/>
 <jvmarg value="-Djava.security.policy==./lib/weblogic.policy"/>

 </java>

 </target>

Finally, the following target illustrates the stopTarget task supplied to the Cac-
tus test. Like the previous target, this one is also supplied in the Cactus distribu-
tion. For both the start and stop targets, you need only supply pertinent
parameter values.

 <target name="stop.weblogic.61">

 <java classname="weblogic.Admin" fork="yes">

 <classpath>
 <pathelement
 location="${WL_HOME}/wlserver6.1/lib/weblogic.sp.jar"/>
 <pathelement location="${WL_HOME}/wlserver6.1/lib/weblogic.jar"/>
 </classpath>

 <arg line="-url t3://localhost:${test.port}"/>
 <arg line="-username system"/>
 <arg line="-password dietcoke"/>
 <arg value="SHUTDOWN"/>

 </java>

 </target>

◆ Discussion

To execute the task, you need to specify a few arguments: a URL to the server, and
three other target names that can be executed by the Cactus task in order to stop
or start your application server and to actually execute test cases.

 The <runservertests> task will want to check whether the application server is
already running before invoking the target that starts the server. It does this by
examining the cactus.properties file found in the classpath. In this properties file
(if it exists), the Cactus task will find a URL to the application server it can use to
test whether it is running. If the application server is already running, it will not

298 CHAPTER 9

Deploying and unit testing
attempt to start it. Once the server is running, the Cactus task will invoke the test
target, and then the stop server target. For example, if you choose to provide a
cactus.properties file, it might contain something like the following:

cactus.contextURL=http://localhost:7001/myDomain

◆ See also

9.4—Creating a stateless session bean unit test

9.5—Creating a stateful session bean unit test

9.6—Creating an entity bean unit test

9.8—Executing test cases using a UI

9.8 Executing test cases using a UI

◆ Problem

You want more ways of executing tests, not always using Ant.

◆ Background

After creating a multitude of Cactus tests, and setting up Ant to execute your tests,
you may find yourself wanting a few other methods of executing your tests. For
instance, you may have set up Ant to run all your tests, or a few specific tests, but
you also want the ability to execute only a single test when needed. Basically, your
Ant build.xml file is a static resource that describes which test cases to run, and
you want the ability to run single tests at a moment’s notice.

◆ Recipe

Your Cactus tests can be run from a web browser, from Apache Ant, or by Cactus
UI classes included in the Cactus distribution. This recipe illustrates executing test
cases from a web browser and the Cactus UI classes.

Executing unit tests from a web browser
To execute a unit test from a web browser, contact the Cactus servlet (the test redi-
rector) with a specific URL. Create the URL directly to the Cactus servlet, and pass
the test name as a parameter. For example, to execute a test case encapsulated by
the class examples.cactus.Test1, use the following URL (your URL might differ by
hostname, port, and servlet location):

http://localhost:7001/ServletTestRunner?suite=examples.cactus.Test1

Executing test cases using a UI 299

Notice that the single URL parameter suite includes the fully qualified classname
of a test case. Opening the URL will produce something similar to the following
XML output:

<?xml version="1.0" encoding="UTF-8" ?>
<testsuites>
 <testsuite name="examples.cactus.Test1"
 tests="2" failures="0"
 errors="0" time="0.07">
 <testcase name="testPositiveResponse" time="0.02" />
 <testcase name="testNegativeResponse" time="0.04" />
 </testsuite>
</testsuites>

To return HTML instead of pure XML, indicate to the test redirector servlet that it
should use an XSL style sheet. Here is the modified URL:

http://localhost:7001/ServletTestRunner?suite=
examples.cactus.Test1&xsl=junit-noframes.xsl

In order for this to work successfully, you need to make sure you deploy the
XSL style sheet where the servlet can find it. Consult the Cactus documentation
if you have any problems. In figure 9.2, we’ve captured the test case output in
the browser.

Executing unit tests from UI classes
Each of the test cases we wrote in previous recipes contained a main() method
that lets you execute it from a command line using the Java runtime environment.
These main() methods make use of a utility class provided by the JUnit framework
for executing test cases visually. The following is a sample main() method from
one of our test cases:

public static void main(String[] theArgs)
{
 junit.swingui.TestRunner.main(new String[]
 {TestServlet.class.getName()});
}

The UI shown in figure 9.3 allows you to run available tests provided in the test
case class and to view their results.

◆ Discussion

Combining the two methods for executing test cases shown in this recipe with the
ability to execute tests with Ant provides you with a robust test evaluation system.
Using Ant to build a regression system in the build process provides long-term

300 CHAPTER 9

Deploying and unit testing
unit testing of your EJBs. By executing test cases from a web browser, or by invok-
ing them directly, you can spot-check your EJBs or quickly verify newly developed
code. In addition, if your Ant system executes only a subset of tests, you can use
either of these new methods to evaluate code that is not frequently tested.

Figure 9.2 Using a web browser and XSL style sheet to execute a single test case and capture its output

Executing test cases using a UI 301

◆ See also

9.4—Creating a stateless session bean unit test

9.5—Creating a stateful session bean unit test

9.6—Creating an entity bean unit test

9.7—Automating test case execution

Figure 9.3 The JUnit UI lets you execute tests and view the results.

Mixing it up:
related recipes
303

304 APPENDIX A
Chapter 1 • Client code

1.1 Invoking a local EJB from another EJB 4
1.1—Invoking a local EJB from another EJB 4
1.12—Improving your client-side EJB lookup code 31
2.1—Generating home, remote, local, and local home interfaces 37
2.7—Facilitating bean lookup with a utility object 58
7.6—Preventing access to entity data 239

1.2 Invoking a remote EJB from another EJB 6
1.2—Invoking a remote EJB from another EJB 6
1.12—Improving your client-side EJB lookup code 31
2.1—Generating home, remote, local, and local home interfaces 37
4.1—Retrieving an environment variable 134

1.3 Accessing EJBs from a servlet 8
1.4—Invoking an EJB from a JavaServer Page 12
1.12—Improving your client-side EJB lookup code 31
2.1—Generating home, remote, local, and local home interfaces 37
2.7—Facilitating bean lookup with a utility object 58

1.4 Invoking an EJB from a JavaServer Page 12
1.3—Accessing EJBs from a servlet 8
3.15—Creating an interface to your entity data 120
5.15—Holding a transaction across multiple JavaServer Pages 191

1.5 Invoking EJB business logic from a JMS system 15

1.6 Persisting a reference to an EJB instance 18
1.7—Retrieving and using a persisted EJB reference 20
1.8—Persisting a home object reference 21

1.7 Retrieving and using a persisted EJB reference 20
1.6—Persisting a reference to an EJB instance 18
1.8—Persisting a home object reference 21

1.8 Persisting a home object reference 21
1.6—Persisting a reference to an EJB instance 18
1.7—Retrieving and using a persisted EJB reference 20
1.12—Improving your client-side EJB lookup code 31

1.9 Comparing two EJB references for equality 23

1.10 Using reflection with an EJB 25

1.11 Invoking an EJB from an applet 27
1.2—Invoking a remote EJB from another EJB 6
1.3—Accessing EJBs from a servlet 8
1.4—Invoking an EJB from a JavaServer Page 12

RELATED RECIPES 305
1.12 Improving your client-side EJB lookup code 31
2.2—Adding and customizing the JNDI name for the home interface 43
2.7—Facilitating bean lookup with a utility object 58

Chapter 2 • Code generation with XDoclet

2.1 Generating home, remote, local, and local home interfaces 37
2.2—Adding and customizing the JNDI name for the home interface 43
2.5—Generating a primary key class 53
2.11—Generating finder methods for entity home interfaces 66

2.2 Adding and customizing the JNDI name for the home interface 43
2.1—Generating home, remote, local, and local home interfaces 37

2.3 Keeping your EJB deployment descriptor current 45
2.8—Generating vendor-specific deployment descriptors 62

2.4 Creating value objects for your entity beans 47
2.1—Generating home, remote, local, and local home interfaces 37
2.2—Adding and customizing the JNDI name for the home interface 43
2.5—Generating a primary key class 53

2.5 Generating a primary key class 53
2.1—Generating home, remote, local, and local home interfaces 37

2.6 Avoiding hardcoded XDoclet tag values 56
2.1—Generating home, remote, local, and local home interfaces 37
2.2—Adding and customizing the JNDI name for the home interface 43
2.3—Keeping your EJB deployment descriptor current 45

2.7 Facilitating bean lookup with a utility object 58
2.1—Generating home, remote, local, and local home interfaces 37
2.2—Adding and customizing the JNDI name for the home interface 43

2.8 Generating vendor-specific deployment descriptors 62
2.3—Keeping your EJB deployment descriptor current 45

2.9 Specifying security roles in the bean source 63
2.3—Keeping your EJB deployment descriptor current 45
2.8—Generating vendor-specific deployment descriptors 62
2.10—Generating and maintaining method permissions 64

2.10 Generating and maintaining method permissions 64
2.1—Generating home, remote, local, and local home interfaces 37
2.3—Keeping your EJB deployment descriptor current 45
2.8—Generating vendor-specific deployment descriptors 62
2.9—Specifying security roles in the bean source 63

306 APPENDIX A
2.11 Generating finder methods for entity home interfaces 66
2.1—Generating home, remote, local, and local home interfaces 37

2.12 Generating the ejbSelect method XML 67
2.3—Keeping your EJB deployment descriptor current 45

2.13 Adding a home method to generated home interfaces 68
2.1—Generating home, remote, local, and local home interfaces 37

2.14 Adding entity relation XML to the deployment descriptor 70
2.3—Keeping your EJB deployment descriptor current 45
3.7—Modeling one-to-one entity data relationships 97

2.15 Adding the destination type to a message-driven bean deployment descriptor 71
2.3—Keeping your EJB deployment descriptor current 45
2.16—Adding message selectors to a message-driven bean deployment

descriptor 73

2.16 Adding message selectors to a message-driven bean deployment descriptor 73
2.3—Keeping your EJB deployment descriptor current 45
2.15—Adding the destination type to a message-driven bean deployment

descriptor 71

Chapter 3 • Working with data

3.1 Using a data source 78
4.1—Retrieving an environment variable 134

3.2 Creating EJB 2.0 container-managed persistence 81
2.3—Keeping your EJB deployment descriptor current 45
3.4—Using a database sequence to generate primary key values for entity beans 88
3.5—Using a compound primary key for your entity beans 92

3.3 Using different data sources for different users 85
3.1—Using a data source 78
7.1—Finding the identity and role of the caller inside an EJB method 231

3.4 Using a database sequence to generate primary key values for entity beans 88
2.5—Generating a primary key class 53
3.1—Using a data source 78
3.2—Creating EJB 2.0 container-managed persistence 81
3.5—Using a compound primary key for your entity beans 92

3.5 Using a compound primary key for your entity beans 92
2.5—Generating a primary key class 53
3.1—Using a data source 78
3.2—Creating EJB 2.0 container-managed persistence 81
3.4—Using a database sequence to generate primary key values for entity beans 88

RELATED RECIPES 307
3.6 Retrieving multiple entity beans in a single step 95
3.1—Using a data source 78
3.12—Using EJB-QL to create custom finder methods 111

3.7 Modeling one-to-one entity data relationships 97
2.14—Adding entity relation XML to the deployment descriptor 70
3.2—Creating EJB 2.0 container-managed persistence 81
3.8—Creating a one-to-many relationship for entity beans 101
3.9—Using entity relationships to create a cascading delete 104
3.10—Developing noncreatable, read-only entity beans 107

3.8 Creating a one-to-many relationship for entity beans 101
2.14—Adding entity relation XML to the deployment descriptor 70
3.7—Modeling one-to-one entity data relationships 97
3.9—Using entity relationships to create a cascading delete 104
3.10—Developing noncreatable, read-only entity beans 107

3.9 Using entity relationships to create a cascading delete 104
3.2—Creating EJB 2.0 container-managed persistence 81
3.10—Developing noncreatable, read-only entity beans 107

3.10 Developing noncreatable, read-only entity beans 107
3.2—Creating EJB 2.0 container-managed persistence 81
3.7—Modeling one-to-one entity data relationships 97
3.8—Creating a one-to-many relationship for entity beans 101
7.6—Preventing access to entity data 239

3.11 Invoking a stored procedure from an EJB 109
3.1—Using a data source 78

3.12 Using EJB-QL to create custom finder methods 111
2.11—Generating finder methods for entity home interfaces 66
3.2—Creating EJB 2.0 container-managed persistence 81

3.13 Persisting entity data into a database view 115
3.2—Creating EJB 2.0 container-managed persistence 81

3.14 Sending notifications upon entity data changes 117

3.15 Creating an interface to your entity data 120
3.2—Creating EJB 2.0 container-managed persistence 81
7.6—Preventing access to entity data 239

3.16 Retrieving information about entity data sets 122

3.17 Decreasing the number of calls to an entity bean 124

3.18 Paging through large result sets 126

308 APPENDIX A
Chapter 4 • EJB activities

4.1 Retrieving an environment variable 134
3.1—Using a data source 78

4.2 Implementing toString() functionality for an EJB 136

4.3 Providing common methods for all your EJBs 137
2.1—Generating home, remote, local, and local home interfaces 37
2.4—Creating value objects for your entity beans 47
3.17—Decreasing the number of calls to an entity bean 124
4.1—Retrieving an environment variable 134
4.4—Reducing the clutter of unimplemented bean methods 139

4.4 Reducing the clutter of unimplemented bean methods 139
4.3—Providing common methods for all your EJBs 137

4.5 Sending an email from an EJB 144
6.11—Sending an email message asynchronously 223

4.6 Using the EJB 2.1 timer service 145
4.11—Insulating an EJB from service class implementations 157

4.7 Sending a JMS message from an EJB 147

4.8 Using an EJB as a web service 149

4.9 Creating asynchronous behavior for an EJB client 151
4.7—Sending a JMS message from an EJB 147
4.10—Creating asynchronous behavior without message-driven beans 156

4.10 Creating asynchronous behavior without message-driven beans 156
4.1—Retrieving an environment variable 134
4.5—Sending an email from an EJB 144
4.6—Using the EJB 2.1 timer service 145

4.11 Insulating an EJB from service class implementations 157
4.1—Retrieving an environment variable 134

4.12 Creating a batch process mechanism 159
4.9—Creating asynchronous behavior for an EJB client 151
4.10—Creating asynchronous behavior without message-driven beans 156
4.11—Insulating an EJB from service class implementations 157

RELATED RECIPES 309
Chapter 5 • Transactions

5.1 Tuning the container transaction control for your EJB 166

5.2 Handling transaction management without the container 169
5.1—Tuning the container transaction control for your EJB 166

5.3 Rolling back the current transaction 170
5.4—Attempting error recovery to avoid a rollback 172
5.5—Forcing rollbacks before method completion 175
5.8—Managing EJB state at transaction boundaries 179
5.10—Managing EJB state after a rollback 183

5.4 Attempting error recovery to avoid a rollback 172
5.2—Handling transaction management without the container 169
5.3—Rolling back the current transaction 170
5.8—Managing EJB state at transaction boundaries 179
5.10—Managing EJB state after a rollback 183

5.5 Forcing rollbacks before method completion 175
5.3—Rolling back the current transaction 170
5.8—Managing EJB state at transaction boundaries 179
5.10—Managing EJB state after a rollback 183

5.6 Imposing time limits on transactions 176
5.2—Handling transaction management without the container 169
5.5—Forcing rollbacks before method completion 175
5.8—Managing EJB state at transaction boundaries 179
5.10—Managing EJB state after a rollback 183

5.7 Combining entity updates into a single transaction 177
5.1—Tuning the container transaction control for your EJB 166
5.16—Updating multiple databases in one transaction 193

5.8 Managing EJB state at transaction boundaries 179
5.2—Handling transaction management without the container 169
5.4—Attempting error recovery to avoid a rollback 172
5.5—Forcing rollbacks before method completion 175
5.10—Managing EJB state after a rollback 183

5.9 Using more than one transaction in a method 181
5.1—Tuning the container transaction control for your EJB 166
5.12—Propagating a transaction to another EJB business method 186
5.13—Propagating a transaction to a nonEJB class 188

310 APPENDIX A
5.10 Managing EJB state after a rollback 183

5.11 Throwing exceptions without causing a rollback 184
5.5—Forcing rollbacks before method completion 175

5.12 Propagating a transaction to another EJB business method 186
5.1—Tuning the container transaction control for your EJB 166
5.2—Handling transaction management without the container 169
5.13—Propagating a transaction to a nonEJB class 188

5.13 Propagating a transaction to a nonEJB class 188
5.5—Forcing rollbacks before method completion 175

5.14 Starting a transaction in the client layer 190
3.17—Decreasing the number of calls to an entity bean 124
5.2—Handling transaction management without the container 169
5.15—Holding a transaction across multiple JavaServer Pages 191

5.15 Holding a transaction across multiple JavaServer Pages 191
5.2—Handling transaction management without the container 169
5.14—Starting a transaction in the client layer 190

5.16 Updating multiple databases in one transaction 193
3.2—Creating EJB 2.0 container-managed persistence 81
5.1—Tuning the container transaction control for your EJB 166
5.7—Combining entity updates into a single transaction 177

Chapter 6 • Messaging

6.1 Sending a publish/subscribe JMS message 198
6.2—Sending a point-to-point JMS message 200
6.3—Creating a message-driven Enterprise JavaBean 202
7.8—Securing a message-driven bean 242

6.2 Sending a point-to-point JMS message 200
6.1—Sending a publish/subscribe JMS message 198
6.3—Creating a message-driven Enterprise JavaBean 202
7.8—Securing a message-driven bean 242

6.3 Creating a message-driven Enterprise JavaBean 202
6.1—Sending a publish/subscribe JMS message 198
6.2—Sending a point-to-point JMS message 200
7.8—Securing a message-driven bean 242

6.4 Processing messages in a FIFO manner from a message queue 205
6.2—Sending a point-to-point JMS message 200

RELATED RECIPES 311
6.5 Insulating message-driven beans from business logic changes 209
6.3—Creating a message-driven Enterprise JavaBean 202

6.6 Streaming data to a message-driven EJB 210
6.1—Sending a publish/subscribe JMS message 198
6.3—Creating a message-driven Enterprise JavaBean 202

6.7 Triggering two or more message-driven beans with a single JMS message 213
6.1—Sending a publish/subscribe JMS message 198
6.3—Creating a message-driven Enterprise JavaBean 202
6.9—Filtering messages for a message-driven EJB 219

6.8 Speeding up message delivery to a message-driven bean 216
6.1—Sending a publish/subscribe JMS message 198
6.3—Creating a message-driven Enterprise JavaBean 202

6.9 Filtering messages for a message-driven EJB 219
6.3—Creating a message-driven Enterprise JavaBean 202

6.10 Encapsulating error-handling code in a message-driven EJB 221
6.12—Handling rollbacks in a message-driven bean 225

6.11 Sending an email message asynchronously 223
4.5—Sending an email from an EJB 144
6.12—Handling rollbacks in a message-driven bean 225

6.12 Handling rollbacks in a message-driven bean 225

Chapter 7 • Security

7.1 Finding the identity and role of the caller inside an EJB method 231
7.2—Assigning and determining EJB client security roles 232
7.3—Passing client credentials to the EJB container 234
7.4—Disabling methods for certain users 235

7.2 Assigning and determining EJB client security roles 232
2.9—Specifying security roles in the bean source 63
7.1—Finding the identity and role of the caller inside an EJB method 231
7.3—Passing client credentials to the EJB container 234
7.4—Disabling methods for certain users 235

7.3 Passing client credentials to the EJB container 234
7.1—Finding the identity and role of the caller inside an EJB method 231

7.4 Disabling methods for certain users 235
2.10—Generating and maintaining method permissions 64
7.2—Assigning and determining EJB client security roles 232

312 APPENDIX A
7.5 Assigning a role to an EJB 238
2.9—Specifying security roles in the bean source 63
7.2—Assigning and determining EJB client security roles 232

7.6 Preventing access to entity data 239

7.7 Using EJBs to handle simple authentication with an LDAP source 241

7.8 Securing a message-driven bean 242

Chapter 8 • Logging

8.1 Formatting log messages 251
8.2—Improving logging performance 254

8.2 Improving logging performance 254
8.1—Formatting log messages 251

8.3 Using logging to generate reports 257
8.1—Formatting log messages 251

8.4 Sending log messages to a JMS topic 258

8.5 Logging to an XML file 259
8.2—Improving logging performance 254

8.6 Creating log file views for the web browser 261
8.2—Improving logging performance 254
8.5—Logging to an XML file 259

8.7 Creating a centralized log file in a clustered environment 263
6.3—Creating a message-driven Enterprise JavaBean 202
8.1—Formatting log messages 251
8.4—Sending log messages to a JMS topic 258
8.10—Sorting log messages by client 269

8.8 Tracking the lifecycle of an EJB 265
8.1—Formatting log messages 251
8.2—Improving logging performance 254

8.9 Using a different configuration at runtime 267

8.10 Sorting log messages by client 269
7.1—Finding the identity and role of the caller inside an EJB method 231
7.5—Assigning a role to an EJB 238
8.1—Formatting log messages 251
8.2—Improving logging performance 254

RELATED RECIPES 313
Chapter 9 • Deploying and unit testing

9.1 Compiling Enterprise JavaBeans 278
9.2—Building the ejb.jar file 280
9.3—Building Enterprise JavaBean stub classes 283

9.2 Building the ejb.jar file 280
9.1—Compiling Enterprise JavaBeans 278
9.3—Building Enterprise JavaBean stub classes 283

9.3 Building Enterprise JavaBean stub classes 283
9.1—Compiling Enterprise JavaBeans 278
9.2—Building the ejb.jar file 280

9.4 Creating a stateless session bean unit test 286
9.5—Creating a stateful session bean unit test 290
9.6—Creating an entity bean unit test 292
9.7—Automating test case execution 294
9.8—Executing test cases using a UI 298

9.5 Creating a stateful session bean unit test 290
9.4—Creating a stateless session bean unit test 286
9.6—Creating an entity bean unit test 292
9.7—Automating test case execution 294
9.8—Executing test cases using a UI 298

9.6 Creating an entity bean unit test 292
9.4—Creating a stateless session bean unit test 286
9.5—Creating a stateful session bean unit test 290
9.7—Automating test case execution 294
9.8—Executing test cases using a UI 298

9.7 Automating test case execution 294
9.4—Creating a stateless session bean unit test 286
9.5—Creating a stateful session bean unit test 290
9.6—Creating an entity bean unit test 292
9.8—Executing test cases using a UI 298

9.8 Executing test cases using a UI 298
9.4—Creating a stateless session bean unit test 286
9.5—Creating a stateful session bean unit test 290
9.6—Creating an entity bean unit test 292
9.7—Automating test case execution 294

Second helpings:
additional resources
315

316 APPENDIX B
We’ve covered so many different topics in this book—we hope you aren’t suf-
fering from indigestion! Several chapters have focused on a particular open
source tool that we used to write many of our recipes. If in the process of read-
ing our recipes you were left with some unanswered questions, use the follow-
ing resources to find more information. The list contains a few web links to
many of the topics covered in this book. However, keep in mind that links tend
to change, so some of them may not work by the time you try them.

Apache Ant
 http://ant.apache.org/index.html
Java Development with Ant (Manning, 2002), by Erik Hatcher
 and Steve Loughran

Apache Cactus
 http://jakarta.apache.org/cactus
JUnit in Action (Manning,2003), by Vincent Massol and Ted Husted

Apache log4j
 http://jakarta.apache.org/log4j/docs/index.html

EJB 2.1 specification
 http://java.sun.com/products/ejb/docs.html#specs
Bitter EJB (Manning, 2003), by Bruce Tate, et al.

J2EE tutorial
 http://java.sun.com/j2ee/download.html#tutorial

JDBC
 http://developer.java.sun.com/developer/onlineTraining/Database/
 JDBC20Intro/

XDoclet
 http://xdoclet.sourceforge.net/
XDoclet in Action (Manning, 2003), by Craig Walls and Norman Richards

Also, please visit our Author Online forum at www.manning.com/sullins2. We
wish you the best of luck with your future EJB development!

index
A

access control 230
accessing EJBs from a servlet 8
AccountAccessBean 240
AccountBean 249
ACID 165
adding a home method to gen-

erated home interfaces 68
adding entity relation XML to

the deployment
descriptor 70–71, 73

adding log messages 249
AddressBean 98
afterBegin 179–180, 183
afterCompletion 180, 184
Ant 274, 278

automating tests 294
building stubs 283
building the ejb.jar 280
compiling EJB source 278
properties 56
properties with XDoclet 57
setting up for build 278
with Cactus 294
See also build.xml

Apache
Ant 274
Cactus 275

appenders
html 261
JDBC 257
JMS 258
rolling file 260
XML 259

Applet 27

<arg> 286
assert 287, 289
assertEquals 289
assertFalse 289
assertNotNull 289
assertNotSame 289
assertNull 289
assertSame 289
assertTrue 289
assigning a role to an EJB 238
assigning and determining EJB

client security roles 232
AsynchBean 156
asynchronous business logic 202
asynchronous email 223
asynchronous processes 151

without message-driven
bean 156

asynchronous timer 145
AsyncProcessBean 151
atomic 165
attempting error recovery to

avoid a rollback 172
authentication 230
AuthenticationException 242
authorization 230
automate development 34
<automatic-key-generation> 91
automating test cases 274

execution 294
automation, building EJB

stubs 283
avoiding a rollback 172

in a BMT bean 173
in a CMT bean 173

avoiding hard-coded XDoclet
tag values 56

B

batch processes 159
BatchProcessBean 160
bean adapter 139
bean-managed transactions 166,

169
beforeCompletion 179–180, 183
BETWEEN 221
binary data messages 210
BMP

switching to CMP 81
BMT 170
BookJMSQueue 208
build.properties 278, 283
build.xml 35–38, 40, 44, 49, 62,

64, 66–68
for building ejb.jar 281
for generating deployment

descriptor 46
for generating interfaces 40
for XDoclet 36
generating EJB interfaces 41
generating stubs 284
generating utility objects 59
generating XML 45
using Ant properties 57–58

building 278
EJB stubs 283
ejb.jar file 280

building Enterprise JavaBean
stub classes 283

business logic insulation 209
BusinessDataAccessObject 189
BusinessLogicBean 209
BytesMessage 211, 213
317

318 INDEX
C

Cactus
automating tests 294
building test cases 286
introduction 275
jar files 276
servlets 276
testing entity beans 292
unit test for a stateful

bean 290
unit test for session bean 286
with a UI 298

cactus.jar 276
cactus.properties 297
CallableStatement 111
<cascade-delete⁄ > 106
cascading deletes 104
CDATA 220–221
centralize logging 263
change the level of your

loggers 254
change the way you write

messages 255
change your conversion

patterns 255
class files

packaging 280
client 210

applet 27
assigning security role 232
categories 4
credentials 234
EJBs finding identity 231
JMS 15
JSP 12
other EJBs 4
remote EJB 6
servlets 8
sorting log messages 269
starting asynchronous

processes 151
starting transactions 190
streaming 210
using large result sets 126

Client.java 206
using reflection 25

ClientLoader 20
ClientSaver 18
cluster, centralize logging 263

CMP 81, 84
EJB-QL 111
generating primary keys 88

<cmp-field⁄ > 84
CMR XML

generating 70
<cmr-field⁄ > 104
CMT 165–169, 173, 181, 194
code finder methods

generating 66
code generation 33

CMR XML 70
deployment descriptor 45
EJB interfaces 37
finder methods 66
JMS XML 71
primary key class 53
utility objects 58
value objects 47

code value objects 47
Collection 96
combining entity updates into a

single transaction 177
commitMultipleEntities 178
common interfaces 137
COMP_NAME 44, 60–61
comparing two EJB references

for equality 23
compile_ejb target 282
compiling Enterprise

JavaBeans 278
compound primary keys 92
consistent 165
ConsoleAppender 250, 252,

270–271
constant values 134
CONTACT_URL 135

env var 135
container-managed

persistence 81
container-managed

transactions 165, 186
multiples in a method 181
propagating to another

method 186–187
rollback 173–174
throwing exceptions 184
timeout 177

<container-transaction> 167
Context.SECURITY_

AUTHENTICATION 234

Context.SECURITY_
CREDENTIALS 234

Context.SECURITY_
PRINCIPAL 234

continuous integration 34
conversion characters 253

formatting 253
conversion specifiers 252
ConversionPattern 252

performance 255
createServiceInstance 158
creating a batch process

mechanism 159
creating a centralized log file in

a clustered environment 263
creating a message-driven

 Enterprise JavaBean 202
creating a one-to-many relation-

ship for entity beans 101
creating a stateful session bean

unit test 290
creating a stateless session bean

unit test 286
creating an entity bean unit

test 292
creating an interface to your

entity data 120
creating asynchronous behavior

for an EJB client 151
without message-driven

beans 156
creating EJB 2.0 container-

managed persistence 81
creating log file views for the

web browser 261

D

DAO 188
data source 78

for different users 85
database

logging 257
view 115

database sequence 88
for BMP 88
for CMP 90

DataBean 39
DataSource 79

EJB deployment descriptor 79

INDEX 319
decreasing hardcoded
values 134

decreasing the number of calls
to an entity bean 124

deployment descriptor 65
cascading deletes 106
CMP 83
CMR 1 to 1 99
CMR 1 to many 102
datasource 79
for a CMP bean 83
for BMT 169
for CMP primary key

generation 90
for message-driven bean 203
one-to-one relationship 99
setting transaction

control 166
showing a data source 79
showing environment

variable 135
vendor specific 62
weblogic for message-driven

bean 204
<deploymentdescriptor⁄ > 45,

47, 66, 68
<description> 135
<destination-jndi-name> 215
<destination-type> 204
developing noncreatable, read-

only entity beans 107
disabling methods for certain

users 235
distributed transactions 193
Durable 72
durable subscriptions 165, 199

E

EJB 18
2.0 specification 5, 202
2.1 149
2.1 specification 145
See also Enterprise JavaBeans

EJB clients, using Timer
service 146

EJB Container. getting client
credentials 234

EJB credentials 234
EJB equality 23

EJB handle 19–21
EJB interfaces

generating 37
inheritance 137

EJB lifecycle 265
EJB lifecycle methods 139
EJB references 23
@ejb.bean 38–39, 44, 46, 53–54,

57, 59, 64–65, 67–68
properties 41

@ejb.finder 41, 66–67
@ejb.home-method 41, 69
ejb.jar 280

using Ant 280
@ejb.permission 65
@ejb.persistence 48–49, 54
@ejb.pk 41, 48–49, 53–54, 56
@ejb.pk-field 41, 48–49,

53–54, 56
@ejb.security-identity 64
@ejb.select 41, 67–68
ejb.session 252
@ejb.util 59, 61
@ejb.value-object 48
ejbActivate, inheriting 139
EJBApplet 28
EJBApplet.java 28
ejbBookDataSource 80
ejbc 285–286
EJBContext 169–172, 174,

177, 231
identity methods 231–232

<ejbdoclet⁄ > 35–38, 40, 62, 64
generating a primary key

class 53
generating a value object 52
generating EJB interfaces 40
generating interfaces 42
generating XML 45
sample usage 37
using Ant properties 57
utility objects 59
vendor XML 62

ejbFindByPortfolioName 96
ejbHomeGetCountOfSymbols

123
<ejb-jar⁄ > 83
ejb-jar.xml 47

generating 45
ejbLoad 180, 184

EJBLocalHome 23
EJBMetaData 25–27
EJBObject 19
ejbPassivate, inheriting 139
EJB-QL 68, 111
<ejb-ql> 114
<ejb-relation⁄ > 99–100
<ejb-relation-name> 99
ejbTimeout 146–147, 157, 160
ejbToString 136–137
EJBWebService 149
EJBWebServiceBean 150
@ejb.security-role-ref 64
email 144

asynchronous 223
synchronous 144

EmailBean 224
encapsulate business logic 210
encapsulating error-handling

code in a message-driven
EJB 221

Enterprise JavaBeans
as a web service 149
building stubs 283
cascading deletes 104
CMP 81
compiling 278
creating a message-driven

bean 202
disabling methods 235
email 223
error handling in an

MDB 221
examining with reflection 25
faster lookup 31
finding client identity 231
finding client role 232
generating code 34
generating interfaces 37
handling rollbacks in an

MDB 225
invoking another EJB

(local) 4
invoking another EJB

(remote) 6
logging in a cluster 263
logging with many clients 269
looking up with JNDI 43
one-to-many relationships 101
one-to-one relationships 97
packaging 280

320 INDEX
Enterprise JavaBeans (continued)
retreiving a persisted

reference 20
saving a home object

reference 21
saving a reference 18
security 230
security role identity 238
sending JMS messages 147
stateful unit test 290
superclass 139
testing for equality 23
toString method 136
tracking the lifecycle 265
2.1 timer service 145
using a data source 78
using environment

variables 134
with applets 27
with JMS 202
with JSP 12
with no create method 107
with servlets 8

entity bean
cascading deletes 104
compound primary key 92
decreasing calls 124
EJB-QL 111
finder methods 95
from a database view 115
generating interfaces 39
generating primary keys 88
primary key classes 95
security 239
select methods 122
session facade 120
superclass 140
unit test 292
value objects 124
with JMS 117

entity deletes 104
entity relationships

generating 70
generating XML 45

EntityBeanTemplate 140
<entitypk⁄ > 53
<env-entry> 135
<env-entry-name> 135
<env-entry-type> 135
<env-entry-value> 135
environment entry, data

types 135

environment variables 134
equality 23
equals 23
EquityBean 7, 24, 81, 137

sample toString 137
with a database view 115

EquityHome 6
equityPriceView 115
EquityVO 125
error handling

message-driven beans 221
rollbacks in a message-driven

bean 225
ErrorHandler 223
executing test cases 274

using a UI 298
executing unit tests

from a web browser 298
from UI classes 299

F

facilitating bean lookup with a
utility object 58

FIFO 205
<fileset⁄ > 37, 282
filtering messages for a message-

driven EJB 219
findByPortfolioName 96
findByPrimaryKey 96
finder methods 95

EJB-QL 111
findHighPriced 112
findHighPricedLowPE 112
finding a remote EJB 6
finding the identity and role of

the caller inside an EJB
method 231

forcing rollbacks before method
completion 172, 175, 177,
180, 185, 189

formatting log messages 251
FROM 114

G

generating a primary key
class 53

generating and maintaining
method permissions 64

generating finder methods for
entity home interfaces 66

generating primary key
values 88

generating stub classes 274
generating the ejbSelect method

XML 67
generating vendor XML 62
generating vendor-specific

deployment descriptors 62
getCallerPrincipal 205, 231
getCodeBase 30
getConnection 85
getCountOfSymbols 122, 124
getEJBMetaData 25
getEJBObject 21
getEquityHome 6
getHandle 19
getHomeHandle 22–23
getPasswordHome 5
getPrincipal 271
getRollbackOnly 172
getRow 131
getStoredProcPrice 110
getUserTransaction 169–170,

173, 177, 181–182, 187
Google xv

H

Handle 18
Handle class 18
handleMessageDrivenError 222
handling rollbacks in a message-

driven bean 225
handling transaction manage-

ment without the
container 169

HelperBean 121
holding a transaction across

multiple Java Server
Pages 191

HoldingKey 92
home interfaces

caching 61
generating 37
JNDI name variable 44

home methods, generating 68
home object reference,

persisting 21
HomeHandle 23
how to format log4j

messages 251

INDEX 321
HTML 29
as a log format 261
converter 29
layout 261

htmlFileAppender 261
HTMLLayout 261

I

IIOP 8, 11
IllegalStateException 169, 171
implementing toString function-

ality for an EJB 136
imposing time limits on

transactions 176
improving logging

performance 254
improving your client-side EJB

lookup code 31
inheritance

EJB superclass 139
interfaces 137

<initial-beans-in-free-pool> 208
InitialContext 170, 190–191

configuring JMS
appender 259

finding a remote EJB 6
finding environment

entries 135
initializing 6
with a servlet 12
with a utility object 32
with JSP 13

<init-param> 269
insulating an EJB from service

class implementations 157
insulating message-driven beans

from business logic
changes 209

insulation 157, 209
invoking a local EJB from

another EJB 4
invoking a remote EJB from

another EJB 6
invoking a stored procedure

from an EJB 109
invoking an EJB from a Java-

Server Page 12
invoking an EJB from an

applet 27
invoking EJB business logic from

a JMS system 15

invoking EJBs in the same
container 4

isCallerInRole 231, 233, 237
isDebugEnabled 255
isIdentical 24–25
Isolated 165
isPasswordValid 120
ItemBean 48, 53, 67–68
ItemBeanPK 54
ItemBeanPK.java 54
ItemBeanValue 49
ItemBeanValue.java 49

J

J2EE 1.4 156
jar_ejb target 282
<java> 286
Java Message Service. See JMS
Java plug-in 29
java.util.Collection 95, 103–104,

106
JavaServer Page. See JSP
javax.mail 144
javax.rmi.PortableRemoteObject

8, 10–11, 26, 31
<jboss⁄ > 62
JDBC 78

appender 257
data source 78, 85
invoking a stored

procedure 109
log4j 257
opening a connection 81
using a database view 115
with large result sets 126

JMS 15, 147
appender 258
decouple communication 198
FIFO 205
for centralizing logging 263
for clustered logging 263
generating XML 71
invoking an EJB 15
logging 258
message destination 202
message selectors 73
security 242
sending messages to many

consumers 200
sending to a JMS topic 198

sending to a queue 200
speeding up message

delivery 216
streaming data 210
topic 198
triggering multiple MDBs 213
using message selectors 219
with entity beans 119

JMSAppender 259
JMSPublisher 117
JMX

to refresh log4j 269
JNDI 8, 42, 44, 170, 190, 241

avoiding repeated
lookups 18, 21

finder methods 95
finding env variables 135
home interface JNDI

variable 43
name added to the home

interface 42
static member variable 44
with JMS 200–201
with log4j JMS appender 258

JNDI_NAME 45
join 116
<jonas⁄ > 63
<jrun⁄ > 63
JSP xix, 12, 191

calling an EJB 12
calling local EJB 13
calling remote EJB 14

JUnit 275
junit.framework 287

L

LDAP 241
lifecycle methods 139
LIKE 221
loadReference 20, 22
local interfaces 5

generating 37
LocationInfo 260
log level 254
log4j 248

conversion characters 253
formatting messages 251
in a cluster 263
initialization 251
introduction 248–249
isDebugEnabled 255

322 INDEX
log4j (continued)
jdbc 257
JDBC appender 257
Location Info 252
making reports 257
performance 254
refreshing configuration 267
rolling file appender 260
sample configuration 250
sorting messages by client 269
to HTML 261
to JMS 258
XML file log 259

logconfig.properties 250
LogConsolidatorBean 263
Logger.getLogger 249
LoggerInitializationServlet 268
logging 247

format characters 253
formatting messages 251
making reports 257
performance 254
to a database 257
to an XML file 259
to HTML 261
to JMS 258
to XML 259
tracking EJB lifecycle 265

LoginBean 8
LoginHome 13
LoginServlet 9–10
lookup 135

env vars 135

M

managing EJB state after a
rollback 183

managing EJB state at transac-
tion boundaries 179

Mandatory 168
Map 126
MapMessage 199
Mapped Diagnostic Context 271
<max-beans-in-free-pool> 208
MDC 271
message filters 219
message queue 200
message selectors 73, 219
MessageBean 16–17, 154, 207,

209, 214, 217, 219, 222

MessageBean2 214
MessageBeanTemplate 142
MessageDriveBean 204
<message-driven> 202–203
message-driven beans

business logic 209
creating 202
deployment descriptor 203
email 223
error handling 221
for centralizing logging 263
handling rollbacks 225
pool of 208
security 204, 242
superclass 142
using message selectors 219

MessageDrivenBean 203
MessageDrivenContext 203
<message-driven-

descriptor> 215
<message-driven-

destination> 204
MessageListener 15, 203
<message-selector> 220
method permissions 64, 235

generating XML 45
method that compares EJB

references 24
<method-intf> 237
<method-permission> 236–237
Microsoft Excel 267
modeling one-to-one entity data

relationships 97
MyService 158

N

NDC 270
Nested Diagnostic Context 270
nested transactions 182
Never 168
next 127
NonDurable 72
NotAdminException 233
NotSupported 168

O

one-to-many 101
one-to-one 97

onMessage 203, 242–243
handling rollbacks 226
security 242

org.apache.cactus.server.runner.
ServletTestRunner 276

org.apache.cactus.server.Servlet
TestRedirector 277

<orion⁄ > 63
OwnerBean 70, 98, 101

P

packaging beans into an ejb.jar
file 274

PaginationBean 127
paging through large result

sets 126
passing client credentials to the

EJB container 234
PasswordBean 108, 121
PasswordHome 5
PatternLayout 250, 252

performance 255
patterns

bean adapter 139
session facade 120

performance
JMS message delivery 216
logging 254
repeated lookups 31

permissions 235
persisting a home object

reference 21
persisting a reference to an EJB

instance 18
persisting entity data into a data-

base view 115
point-to-point 200
pool

of MDB 208
PortableRemoteObject 7, 10,

18, 20, 28, 32
PortfolioBean 101–102, 104
PortfolioHolding 95
PortfolioHoldingBean 93, 96
PortfolioHoldingHome 95
<pramati⁄ > 63
prepareCall 111
preventing access to entity

data 239
previous 127
PricingBean 110

INDEX 323
primary key class 92
generating 53
requirements 94

primary keys
compound 92
custom classes 94
from a database sequence 88

processing messages 205
in a FIFO manner from a mes-

sage queue 205
propagating transactions 165,

186, 190
to a nonEJB class 188
to another EJB business

method 186
Propertyconfigurator 251
providing common methods for

all your EJBs 137
publish 148, 199
publish/subscribe 198
publishMessage 119

Q

<query> 113–114
<query-method> 114
queue 201, 205

for FIFO messaging 205
QueueConnection 201
QueueConnectionFactory 201
QueueSender 201
QueueSession 201

R

read-only entity beans 107
reducing the clutter of unimple-

mented bean methods 139
reference, EJB 18
reflection 25
registerOutParameter 111
<relationship⁄ > 100
<relationship-role-source> 100
<relationships> 99
relationships

cascading deletes 104
one-to-many 101
one-to-one 97

remote interfaces
generated sample 42
generating 37

reports 257
Required 168
RequiredLocalException 168
RequiresNew 167–168
<resin-ejb-xml⁄ > 63
<resource-ref>

for a data source 80
<resource-ref⁄ > 80
result sets 126
retrieving an environment

variable 134
retrieving and using a persisted

EJB reference 20
retrieving information about

entity data sets 122
retrieving multiple entity beans

in a single step 95
RMI 5
<role-link> 233
<role-name> 66, 232, 236
rollback 171, 173–174, 182,

189–190
rollback recovery 174
rollbacks 170

message-driven bean 225
rolling back the current

transaction 170
RollingFileAppender 260–261
rootLogger 250
<run-as> 239
runCactusTest 296
<runservertests> 295, 297
RuntimeException 176, 185

S

sample JSP looking up a
remote EJB 14

sample JSP using a local EJB 13
sample log output 251
SampleBean 178
SampleDataSourceBean 79

deployment descriptor 79
SampleMDB 203
saveHomeReference 22
saveReference 18
saving an EJB reference 18
SecureMDB 244
securing a message-driven

bean 242
security 230

credentials 234

disabling methods 235
entity beans 239
LDAP 241
local interfaces 240
MDB 242
message-driven beans 204
passing credentials to the EJB

container 234
roles 238

security roles 232
for an EJB 238
generating XML 45

SecurityException 171
<security-identity> 238–239
<security-role> 232–233
<security-role-ref> 233
SELECT 114
select methods 67, 122

generating 67
selector 221
send 201
sendEmail 144–145, 224
SendEmailBean.java 144
sending a JMS message from an

EJB 147
sending a point-to-point JMS

message 200
sending a publish/subscribe JMS

message 198
sending an email from an

EJB 144
sending an email message

asynchronously 223
sending notifications upon

entity data changes 117
SequenceBean 89

CMP 90
serializable 18

EJB handles 18
service classes 157, 209
serviceMethod 151
servlets

as EJB clients 8
calling local EJB 8
calling remote EJB 10
initialization parameters 11
refreshing log4j 263

ServletTestCase 287, 290, 292
session beans

facade 5
generating interfaces 38

324 INDEX
session beans (continued)
invoking a stored

procedure 109
paging through data 126
sending email 144
session facade 120
superclass 141
unit test 286

session facade 120, 241
SessionBeanTemplate 141
SessionSynchronization 177,

179–180, 183–184
setRollbackOnly 171–172,

174, 188
setTransactionTimeout 177
simple lookup method 5
SimpleDateFormat 256
SimpleLayout 256
sorting log messages by

client 269
source files

compiling 278
specifying security roles in the

bean source 63
speeding up message delivery to

a message-driven bean 216
start.weblogic.61 296
starting a transaction in the cli-

ent layer 190
startProcess 156
startTarget 296
startTimer 146
StatusBean 153
stdout appender 250
stop.weblogic.61 297
stopTarget 296
store procedure 109
Streaming 210
streaming data to a message-

driven EJB 210
stub classes 283
super interface 139
Supports 168
Swing 29
SystemException 171–172, 177

T

test_sequence 88
testCreateEntity 294
TestEntity 292
TestEntityBean 141

testIncrement 290
testing 274

automating tests 294
entity bean 292
from a browser 298
from Swing 299
statefull session 290
stateless session 286
with a UI 298

testNegativeResponse 287
testPositiveResponse 287
TestStateful 290
TestStateless 287
testTarget 296
throwing exceptions without

causing a rollback 184
TimedObject 146–147
timeouts 176
Timer 145
timer service

to create asynchronous
process 156

TimerHandle 147
TimerService 146
TimerSession 146
TimerSessionBean 146
topic 199

logging to JMS 258
TopicBindingName 259
TopicConnection 199
TopicConnectionFactory 199
TopicPublisher 199
TopicSession 199
toString 136
tracking the lifecycle of an

EJB 265
transaction attribute

Mandatory 167
Never 167
NotSupported 167
Required 167
Supports 167

transaction behavior 166
transaction boundaries 179
TransactionRequiredException

168
transactions 164

avoiding rollbacks 172
distributed 193
forcing rollbacks 175
introduction to 165
JSP 191

managing state 179
nested 182
progating to nonEJB 188
propagating to an EJB 186
restoring state after

rollback 183
rollback the current

transaction 170
throwing exceptions 184
timeouts 176
updating multiple entity

beans 177
using more than one per

method 181
<transaction-type⁄ > 170, 181
<trans-attribute> 167
triggering two or more message-

driven beans with a single
JMS message 213

trivial implementations 139
tuning the container transac-

tion control for your EJB 166
2 phase commit 193
TYPE_SCROLL_INSENSITIVE

131

U

<unchecked> 65, 237
unit tests

an entity bean 274
automation 294
entity 292
executing 298
stateful session 290
stateful session beans 274
stateless session 286
stateless session beans 274

Updating multiple databases in
one transaction 193

<use-caller-identity⁄ > 239
UserBean 31, 38, 44, 46, 57, 59,

64–65
sample ejb-jar.xml 46
utility object 59

UserSpecificDB
deployment descriptor 86

UserSpecificDBBean 85
UserTransaction 169–171,

173–174, 177, 181, 187,
189–190, 192

INDEX 325
UserUtil 31
UserUtil.java 31
using a compound primary key

for your entity beans 92
using a data source 78
using a database sequence to

generate primary key values
for entity beans 88

using a different configuration
at runtime 267

using an EJB as a web
service 149

using Ant for compilation 274
using different data sources for

different users 85
using EJB-QL to create custom

finder methods 111
using EJBs to handle simple

authentication with an LDAP
source 241

using entity relationships to cre-
ate a cascading delete 104

using environment
variables 134

using more than one transaction
in a method 181

using reflection with an EJB 25
using the EJB 2.1 timer

service 145
UtilInterface 138
<utilityobject> 59

V

value objects 124
generating 47

<valueobject> 49

W

web browser
viewing log files 261
with a UI 298

web service config.xml 150
web services 149
web.xml

for cactus 276
Weblogic

ejbc 286
finding remote EJBs 7
stubs 283

Weblogic deployment
descriptor 17

for message-driven bean 204
generating primary keys 91
MDB pool 208

<websphere⁄ > 63
WHERE 114
wildcard 237
wscompile 150

X

XAConnection 194
XADataSource 194
XDoclet 34–35, 37, 44, 66

<remoteinterface⁄ > 40
adding home methods 69
continuous integration 34
customizing home

interfaces 44
deployment descriptor 46–47
generating a primary key

class 53

generating EJB interfaces 38
generating interfaces 41
generating utility objects 58
generating vendor XML 62
generating XML 67
generating XML file 62
installing 35
introduction to 34
jar dependencies 36, 168
JNDI names 42
method permissions 64
security roles 63
using Ant properties 56, 58
value objects 52
vendor XML subtasks 62
website 37

XDoclet tags
@ejb

create-method 38
@ejb.bean 38
@ejb.create-method 39, 41,

48, 53, 65–66
@ejb.interface-method 38–

41, 49, 54, 65–66, 70
@ejb.util 59
@ejb-relation 70
@ejb-value-object 48
generating EJB interfaces 41

XML 84, 259
as log file 259
descriptor for Servlet EJB

client 11
layout 259
message selectors 221

Bitter Java
by Bruce Tate
ISBN: 1-930110-43-X
368 pages
$44.95
March 2002

Bitter EJB
by Bruce Tate, Mike Clark, Bob Lee,

Patrick Linskey
ISBN: 1-930110-95-2
450 pages
$44.95
June 2003

For ordering information go to www.manning.com

MORE JAVA TITLES FROM MANNING

MORE JAVA TITLES FROM MANNING

For ordering information go to www.manning.com

Eclipse in Action: A Guide for Java Developers
by David Gallardo, Ed Burnette,

Robert McGovern
ISBN: 1-930110-96-0
416 pages
$44.95
May 2003

JUnit in Action
by Vincent Massol and Ted Husted
ISBN: 1930110-99-5
300 pages
$39.95
September 2003

MORE JAVA TITLES FROM MANNING
For ordering information go to www.manning.com

Java Development with Ant
by Erik Hatcher and Steve Loughran
ISBN: 1-930110-58-8
672 pages
$44.95
August 2002

Jess in Action: Java Rule-based Systems
by Robert Friedman-Hill
ISBN: 1-930110-89-8
525 pages
$44.95
July 2003

	contents
	preface
	acknowledgments
	about this book
	author online
	about the cover illustration
	Part 1 Appetizers
	Client code
	1.1 Invoking a local EJB from another EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	1.2 Invoking a remote EJB from another EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	1.3 Accessing EJBs from a servlet
	Problem
	Background
	Recipe
	Discussion
	See also

	1.4 Invoking an EJB from a JavaServer Page
	Problem
	Background
	Recipe
	Discussion
	See also

	1.5 Invoking EJB business logic from a JMS system
	Problem
	Background
	Recipe
	Discussion
	See also

	1.6 Persisting a reference to an EJB instance
	Problem
	Background
	Recipe
	Discussion
	See also

	1.7 Retrieving and using a persisted EJB reference
	Problem
	Background
	Recipe
	Discussion
	See also

	1.8 Persisting a home object reference
	Problem
	Background
	Recipe
	Discussion
	See also

	1.9 Comparing two EJB references for equality
	Problem
	Background
	Recipe
	Discussion

	1.10 Using reflection with an EJB
	Problem
	Background
	Recipe
	Discussion

	1.11 Invoking an EJB from an applet
	Problem
	Background
	Recipe
	Discussion
	See also

	1.12 Improving your client-side EJB lookup code
	Problem
	Background
	Recipe
	Discussion
	See also

	Code generation with XDoclet
	An XDoclet appetizer
	2.1 Generating home, remote, local, and local home interfaces
	Problem
	Background
	Recipe
	Discussion
	See also

	2.2 Adding and customizing the JNDI name for the home interface
	Problem
	Background
	Recipe
	Discussion
	See also

	2.3 Keeping your EJB deployment descriptor current
	Problem
	Background
	Recipe
	Discussion
	See also

	2.4 Creating value objects for your entity beans
	Problem
	Background
	Recipe
	Discussion
	See also

	2.5 Generating a primary key class
	Problem
	Background
	Recipe
	Discussion
	See also

	2.6 Avoiding hardcoded XDoclet tag values
	Problem
	Background
	Recipe
	Discussion
	See also

	2.7 Facilitating bean lookup with a utility object
	Problem
	Background
	Recipe
	Discussion
	See also

	2.8 Generating vendor-specific deployment descriptors
	Problem
	Background
	Recipe
	Discussion
	See also

	2.9 Specifying security roles in the bean source
	Problem
	Background
	Recipe
	Discussion
	See also

	2.10 Generating and maintaining method permissions
	Problem
	Background
	Recipe
	Discussion
	See also

	2.11 Generating finder methods for entity home interfaces
	Problem
	Background
	Recipe
	Discussion
	See also

	2.12 Generating the ejbSelect method XML
	Problem
	Background
	Recipe
	Discussion
	See also

	2.13 Adding a home method to generated home interfaces
	Problem
	Background
	Recipe
	Discussion
	See also

	2.14 Adding entity relation XML to the deployment descriptor
	Problem
	Background
	Recipe
	Discussion
	See also

	2.15 Adding the destination type to a message-driven bean deployment descriptor
	Problem
	Background
	Recipe
	Discussion
	See also

	2.16 Adding message selectors to a message-driven bean deployment descriptor
	Problem
	Background
	Recipe
	Discussion
	See also

	Part 2 Main courses
	Working with data
	3.1 Using a data source
	Problem
	Background
	Recipe
	Discussion
	See also

	3.2 Creating EJB 2.0 container-managed persistence
	Problem
	Background
	Recipe
	Discussion
	See also

	3.3 Using different data sources for different users
	Problem
	Background
	Recipe
	Discussion
	See also

	3.4 Using a database sequence to generate primary key values for entity beans
	Problem
	Background
	Recipe
	Discussion
	See also

	3.5 Using a compound primary key for your entity beans
	Problem
	Background
	Recipe
	Discussion
	See also

	3.6 Retrieving multiple entity beans in a single step
	Problem
	Background
	Recipe
	Discussion
	See also

	3.7 Modeling one-to-one entity data relationships
	Problem
	Background
	Recipe
	Discussion
	See also

	3.8 Creating a one-to-many relationship for entity beans
	Problem
	Background
	Recipe
	Discussion
	See also

	3.9 Using entity relationships to create a cascading delete
	Problem
	Background
	Recipe
	Discussion
	See also

	3.10 Developing noncreatable, read-only entity beans
	Problem
	Background
	Recipe
	Discussion
	See also

	3.11 Invoking a stored procedure from an EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	3.12 Using EJB-QL to create custom finder methods
	Problem
	Background
	Recipe
	Discussion
	See also

	3.13 Persisting entity data into a database view
	Problem
	Background
	Recipe
	Discussion
	See also

	3.14 Sending notifications upon entity data changes
	Problem
	Background
	Recipe
	Discussion
	See also

	3.15 Creating an interface to your entity data
	Problem
	Background
	Recipe
	Discussion
	See also

	3.16 Retrieving information about entity data sets
	Problem
	Background
	Recipe
	Discussion

	3.17 Decreasing the number of calls to an entity bean
	Problem
	Background
	Recipe
	Discussion

	3.18 Paging through large result sets
	Problem
	Background
	Recipe
	Discussion

	EJB activities
	4.1 Retrieving an environment variable
	Problem
	Background
	Recipe
	Discussion
	See also

	4.2 Implementing toString() functionality for an EJB
	Problem
	Background
	Recipe
	Discussion

	4.3 Providing common methods for all your EJBs
	Problem
	Background
	Recipe
	Discussion
	See also

	4.4 Reducing the clutter of unimplemented bean methods
	Problem
	Background
	Recipe
	Discussion
	See also

	4.5 Sending an email from an EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	4.6 Using the EJB 2.1 timer service
	Problem
	Background
	Recipe
	Discussion
	See also

	4.7 Sending a JMS message from an EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	4.8 Using an EJB as a web service
	Problem
	Background
	Recipe
	Discussion

	4.9 Creating asynchronous behavior for an EJB client
	Problem
	Background
	Recipe
	Discussion
	See also

	4.10 Creating asynchronous behavior without message-driven beans
	Problem
	Background
	Recipe
	Discussion
	See also

	4.11 Insulating an EJB from service class implementations
	Problem
	Background
	Recipe
	Discussion
	See also

	4.12 Creating a batch process mechanism
	Problem
	Background
	Recipe
	Discussion
	See also

	Transactions
	A transaction appetizer
	5.1 Tuning the container transaction control for your EJB
	Problem
	Background
	Recipe
	Discussion

	5.2 Handling transaction management without the container
	Problem
	Background
	Recipe
	Discussion
	See also

	5.3 Rolling back the current transaction
	Problem
	Background
	Recipe
	Discussion
	See also

	5.4 Attempting error recovery to avoid a rollback
	Problem
	Background
	Recipe
	Discussion
	See also

	5.5 Forcing rollbacks before method completion
	Problem
	Background
	Recipe
	Discussion
	See also

	5.6 Imposing time limits on transactions
	Problem
	Background
	Recipe
	Discussion
	See also

	5.7 Combining entity updates into a single transaction
	Problem
	Background
	Recipe
	Discussion
	See also

	5.8 Managing EJB state at transaction boundaries
	Problem
	Background
	Recipe
	Discussion
	See also

	5.9 Using more than one transaction in a method
	Problem
	Background
	Recipe
	Discussion
	See also

	5.10 Managing EJB state after a rollback
	Problem
	Background
	Recipe
	Discussion

	5.11 Throwing exceptions without causing a rollback
	Problem
	Background
	Recipe
	Discussion
	See also

	5.12 Propagating a transaction to another EJB business method
	Problem
	Background
	Recipe
	Discussion
	See also

	5.13 Propagating a transaction to a nonEJB class
	Problem
	Background
	Recipe
	Discussion
	See also

	5.14 Starting a transaction in the client layer
	Problem
	Background
	Recipe
	Discussion
	See also

	5.15 Holding a transaction across multiple JavaServer Pages
	Problem
	Background
	Recipe
	Discussion
	See also

	5.16 Updating multiple databases in one transaction
	Problem
	Background
	Recipe
	Discussion
	See also

	Messaging
	6.1 Sending a publish/subscribe JMS message
	Problem
	Background
	Recipe
	Discussion
	See also

	6.2 Sending a point-to-point JMS message
	Problem
	Background
	Recipe
	Discussion
	See also

	6.3 Creating a message-driven Enterprise JavaBean
	Problem
	Background
	Recipe
	Discussion
	See also

	6.4 Processing messages in a FIFO manner from a message queue
	Problem
	Background
	Recipe
	Discussion
	See also

	6.5 Insulating message-driven beans from business logic changes
	Problem
	Background
	Recipe
	Discussion
	See also

	6.6 Streaming data to a message-driven EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	6.7 Triggering two or more message-driven beans with a single JMS message
	Problem
	Background
	Recipe
	Discussion
	See also

	6.8 Speeding up message delivery to a message-driven bean
	Problem
	Background
	Recipe
	Discussion
	See also

	6.9 Filtering messages for a message-driven EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	6.10 Encapsulating error-handling code in a message-driven EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	6.11 Sending an email message asynchronously
	Problem
	Background
	Recipe
	Discussion
	See also

	6.12 Handling rollbacks in a message-driven bean
	Problem
	Recipe
	Discussion
	See also

	Security
	7.1 Finding the identity and role of the caller inside an EJB method
	Problem
	Background
	Recipe
	Discussion
	See also

	7.2 Assigning and determining EJB client security roles
	Problem
	Background
	Recipe
	Discussion
	See also

	7.3 Passing client credentials to the EJB container
	Problem
	Background
	Recipe
	Discussion
	See also

	7.4 Disabling methods for certain users
	Problem
	Background
	Recipe
	Discussion
	See also

	7.5 Assigning a role to an EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	7.6 Preventing access to entity data
	Problem
	Background
	Recipe
	Discussion

	7.7 Using EJBs to handle simple authentication with an LDAP source
	Problem
	Background
	Recipe
	Discussion

	7.8 Securing a message-driven bean
	Problem
	Background
	Recipe
	Discussion

	Part 3 Desserts
	Logging
	A log4j appetizer
	Adding a logger to your code
	Setting up the properties file
	Initializing the logging framework

	8.1 Formatting log messages
	Problem
	Background
	Recipe
	Discussion
	See also

	8.2 Improving logging performance
	Problem
	Background
	Recipe
	Discussion
	See also

	8.3 Using logging to generate reports
	Problem
	Background
	Recipe
	Discussion
	See also

	8.4 Sending log messages to a JMS topic
	Problem
	Background
	Recipe
	Discussion

	8.5 Logging to an XML file
	Problem
	Background
	Recipe
	Discussion
	See also

	8.6 Creating log file views for the web browser
	Problem
	Background
	Recipe
	Discussion
	See also

	8.7 Creating a centralized log file in a clustered environment
	Problem
	Background
	Recipe
	Discussion
	See also

	8.8 Tracking the lifecycle of an EJB
	Problem
	Background
	Recipe
	Discussion
	See also

	8.9 Using a different configuration at runtime
	Problem
	Background
	Recipe
	Discussion

	8.10 Sorting log messages by client
	Problem
	Background
	Recipe
	Discussion
	See also

	Deploying and unit testing
	A deployment and testing appetizer
	Apache Ant
	Apache Cactus

	9.1 Compiling Enterprise JavaBeans
	Problem
	Background
	Recipe
	Discussion
	See also

	9.2 Building the ejb.jar file
	Problem
	Background
	Recipe
	Discussion
	See also

	9.3 Building Enterprise JavaBean stub classes
	Problem
	Background
	Recipe
	Discussion
	See also

	9.4 Creating a stateless session bean unit test
	Problem
	Background
	Recipe
	Discussion
	See also

	9.5 Creating a stateful session bean unit test
	Problem
	Background
	Recipe
	Discussion
	See also

	9.6 Creating an entity bean unit test
	Problem
	Background
	Recipe
	Discussion
	See also

	9.7 Automating test case execution
	Problem
	Background
	Recipe
	Discussion
	See also

	9.8 Executing test cases using a UI
	Problem
	Background
	Recipe
	Discussion
	See also

	Mixing it up: related recipes
	Second helpings: additional resources
	index

	appendix A Mixing it up: related recipes
	appendix B Second helpings:additional resources
	Index

