

Professional Hibernate

Eric Pugh
Joseph D. Gradecki

01_576771 ffirs.qxd 9/1/04 3:33 PM Page iii

Professional Hibernate

01_576771 ffirs.qxd 9/1/04 3:33 PM Page i

01_576771 ffirs.qxd 9/1/04 3:33 PM Page ii

Professional Hibernate

Eric Pugh
Joseph D. Gradecki

01_576771 ffirs.qxd 9/1/04 3:33 PM Page iii

Professional Hibernate
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 0-7645-7677-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as
permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department,
Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317)
572-4355, e-mail: brandreview@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR
MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COM-
PLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WAR-
RANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR
EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER
IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR
SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION
OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOM-
MENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET
WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN THEN
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please
contact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317)
572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley Publishing logo, Wrox, the Wrox logo, the Wrox Programmer to Pro-
grammer logo and related trade dress are trademarks or registered trademarks of John Wiley & Sons,
Inc. and/or its affiliates in the United States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective owners. Wiley Publishing, Inc.
is not associated with any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

01_576771 ffirs.qxd 9/1/04 3:33 PM Page iv

www.wiley.com

Credits
Authors
Eric Pugh
Joseph D. Gradecki

Executive Editor
Robert Elliott

Production Editor
Felicia Robinson

Book Producer
Ryan Publishing Group, Inc.

Copy Editors
Linda Recktenwald
Tiffany Taylor

Compositor
Gina Rexrode

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

01_576771 ffirs.qxd 9/1/04 3:33 PM Page v

01_576771 ffirs.qxd 9/1/04 3:33 PM Page vi

About the Authors

Eric Pugh is a member of the Maven development team and an experienced Java enterprise devel-
oper specializing in database application design and development, and open source tool integra-
tion. He has contributed Hibernate-related code to many projects, including XDoclet and
OSWorkflow, and is currently leading development of the Hibernate plugin for Maven. Eric has
built several Hibernate applications for clients (including a Web-based lab automation application)
and regularly uses Hibernate with Eclipse and Maven. In addition to writing documentation and
specifications, Eric has written for OnJava.

Joseph D. Gradecki is a software engineer at Comprehensive Software Solutions, where he works
on their SABIL product, an enterprise-level securities processing system. He has built numerous
dynamic, enterprise application using Java, Hibernate, MySQL, XML, AspectJ, servlets, JSPs, Resin,
BroadVision, and other technologies. He is the author of Mastering JXTA and the co-author of
MySQL and Java Developers Guide and Professional Java Tools for Extreme Programming. Joe holds
Bachelors and Masters degrees in Computer Science and is currently pursuing a Ph.D.

01_576771 ffirs.qxd 9/1/04 3:33 PM Page vii

01_576771 ffirs.qxd 9/1/04 3:33 PM Page viii

Introduction

Application development is hard work. Handling requirements, building a design, and coding the
application usually take the majority of a team’s time. In the meantime, they need to be concerned
with the data that will be used throughout the application. In many cases, the data is stored in a
relational database. Over the years, we’ve advanced our development techniques to include OOP
and aspects, yet the database side of the equation has remained fairly static.

Developers have often used brute-force techniques to store and retrieve data from a database and
populate their objects. Usually this means building a proprietary persistence layer to act as the con-
duit between the application and the database. If the objects change or the database is altered, the
persistence layer must be changed as well.

Thankfully, there are now more elegant and effective options for the Java developer. Hibernate is
an object/relational mapping (ORM) tool that also provides data querying and retrieval functions
in a Java environment. Whether you’re using simple objects or collections, Hibernate reduces your
development time by handling most of the common data persistence tasks. It’s designed for perfor-
mance with a comprehensive caching layer as well as its own query language to take advantage of
its persisted objects. Hibernate is a SourceForge.net project and a mature technology with
widespread support within the Java community.

Who Should Read This Book?
This book is written for professional Java developers who already understand how to build sophis-
ticated applications. We assume thorough knowledge of Java, general familiarity with databases,
and familiarity with Java application and Web development. The book assumes no previous expe-
rience with Hibernate.

Professional application development requires more than mastering a single tool such as
Hibernate. You will need to integrate Hibernate into your development process, using it with other
tools and technologies. We have written this book to help you accomplish just that: by not only
explaining how Hibernate works, but also demonstrating how to use Hibernate with a suite of
tools and technologies, we hope to set you on the fast track to using Hibernate for professional
application development.

01_576771 ffirs.qxd 9/1/04 3:33 PM Page ix

x

Introduction

Versions Used in This Book
Hibernate is designed to be used with an assortment of development tools, databases, and tech-
nologies; it’s intended to be dropped into an active application development process. For this rea-
son, our book spends a considerable amount of time demonstrating how to use Hibernate with
other popular tools you may be using (including Eclipse, Tomcat, Maven, Struts, and XDoclet). We
use the following software versions in this book:

❑ Hibernate: 2.1.6

❑ Java: Java SDK 1.4.2_03 and SDK 1.5 Beta

❑ Maven: 1.0

❑ MySQL: 4.0.17

❑ Tomcat: 5.0.24

❑ XDoclet: 1.2.1

❑ Microsoft SQL Server: 2000

Where to Get the Code
This book takes a real-world, hands-on approach to Hibernate and includes many working code
examples, as well as two more sophisticated sample applications. The book also contains example
code for using Hibernate with XDoclet, Maven, AspectJ, and other tools and technologies. All the
code examples, sample applications, and supporting files can be downloaded from
www.wrox.com.

Organization of This Book
This book is split into three parts. Chapters 1–13 walks you through Hibernate’s major components
and how to use them. Chapters 14–19 discusses how to use Hibernate is your current development
practices and toolsets. The Appendixes provide additional information that will help you get the
most out of Hibernate.

01_576771 ffirs.qxd 9/1/04 3:33 PM Page x

Contents

Introduction ix

Chapter 1: Introduction to Mapping Objects to Relational Databases 1

Serialization 2
XML 2
Object-Oriented Database Systems 3
Mapping 3

Primary Keys, Timestamps, and Version Numbers 8
Handling Inheritance 8

Lowest-Child Inheritance Mapping 9
Table-Per-Class Inheritance Mapping 10
Table-Per-Concrete-Class Inheritance Mapping 11

Working With Relationships 11
Mapping a One-to-One Relationship 11
Mapping a One-to-Many Relationship 12
Mapping a Many-to-Many Relationship 13

Summary 14

Chapter 2: Introduction to Hibernate 15

Hibernate 15
Hibernate Architecture 16
Hibernate Configuration 18
Hibernate Sessions 20
Hibernate Callbacks 21
Hibernate’s Support for Other Technologies 22
Summary 22

Chapter 3: Hibernate Development Environment 23

Obtaining Hibernate 23
Hibernate Prerequisites and Requirements 24
Installing Hibernate 25
Hibernate Configuration File 26
Hooking Up a Database Server 26
Setting Up Hibernate to Use MySQL 27

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xi

xii

Contents

Setting Up Hibernate to Use Microsoft SQL Server 27
A Standalone Hibernate Application 28

Creating the Java Class 28
Creating a Database Table 30
Building a Mapping Document for Database Tables 30
Application Skeleton Code 33
Loading the Mapping into an Application 38

Obtaining the SessionFactory 39
Creating Persistent Classes 39
Updating Objects 41
Deleting Objects 43
Loading Persistent Classes 43
Finding Data Objects 45
Exercising the Application 46

A Servlet-Based Hibernate Application 46
Installing and Configuring Tomcat 46
Setting Up Tomcat Database Access 47
Adding Hibernate to the Web Application 49
Interface Page 50
Writing a Servlet to Use Hibernate 51

Summary 53

Chapter 4: Database Connecting and Schema Generation 55

Overview of Hibernate JDBC Properties 56
hibernate.connection.driverclass 56
hibernate.connection.url 58
hibernate.connection.username 58
hibernate.connection.password 58
hibernate.connection.pool_size 58
hibernate.connection.datasource 58
hibernate.jndi.url 59
hibernate.jndi.class 59
hibernate.dialect 59
hibernate.default_schema 59
hibernate.Session_-factory_name 59
hibernate.use_outer_join 59
hibernate.max_fetch_depth 59
hibernate.jdbc.fetch_size 60
hibernate.jdbc.batch_size 60
hibernate.jdbc.use_scrollable_resultset 60
hibernate.jdbc.use_streams_for_binary 60

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xii

xiii

Contents

hibernate.cglib.use_reflection_optimizer 60
hibernate.jndi.<property> 60
hibernate.connection.isolation 60
hibernate.connection.provider_class 61
hibernate.transaction.factory_class 61
jta.UserTransaction 61
hibernate.show_sql 61

Query Substitutions 62
SQL Dialect Determination 62
Using Connection Pooling 64

Using Hibernate’s Built-in Pooling 65
Using C3P0 65
Using Apache DBCP 66
Using Proxool 66

JDBC Database Connection 67
Using More Than One Database Server 68

Building the Mapping Document 69
<hibernate-mapping> Element 69
<class> Element 70
<id> Element 72
<generator> Element 73

Increment 73
Identity 73
Sequence 73
Hilo 74
seqhilo 74
Uuid.hex 74
Uuid.string 75
Native 75
Assigned 75
Foreign 75

<composite-id> Element 75
<discriminator> Element 76
<version> Element 77
<timestamp> Element 78
<property> Element 78

Relationship Elements 80
<many-to-one> Element 80
<one-to-one> Element 81
<component> Element 82
<subclass> Element 82
<joined-subclass> Element 83

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xiii

xiv

Contents

Collection Elements 84
<key> Element 85
<index> Element 86
<element> Element 86

Summary 86

Chapter 5: Creating Persistent Classes 87

Creating Persistent Java Classes 87
Mapping a Basic Java Class 88
Mapping a Class with Binary Data 93
Mapping a Serializable Class 95
Mapping a Class with Data/Calendar Attributes 97
Mapping a Read-Only Class 99
Mapping Classes Using Versioning/Timestamps 102
Mapping Inheritance with Java Classes 107

Table-Per-Class Hierarchy Mapping 110
Table-Per-Subclass Hierarchy Mapping 113
Table-Per-Concrete-Class Hierarchy Mapping 115

Persisting Interfaces 117
Mapping Enums 119
Working with Column Formulas 122
Using the Session Pattern 124

Summary 126

Chapter 6: Working with Collections 127

Associations 127
Index Elements 128
Element Elements 129
Bidirectional Associations 130
Lazy Initialization 131

Mapping Maps/SortedMaps 131
Mapping a Values Map 131
Mapping an Object Map: <many-to-many> Element 135
Mapping a TreeMap 140

Mapping Set/SortedSets 147
SortedSet Interface Mapping 151

Mapping Lists 152
Bag Mapping 156

Mapping Arrays 157
Mapping a Bidirectional Association 158
Summary 160

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xiv

xv

Contents

Chapter 7: Using Persistent Objects 161

Persisting Objects 161
Loading Data into an Object 164
Using Previous Sessions 165
Flushing Objects 166
Deleting Objects 166
Refreshing Objects 168
Updating Objects 168
Finding Objects 169
Finding Large Resultsets 171
Filtering Collections 171
Scalar Queries 172
Queries and Named Queries 173

Query Results Control 176
Single Row 178

Named Queries 178
Named Parameters 179

Query Timeout 180
SQL Queries 181
Criteria Objects 181
Summary 184

Chapter 8: Hibernate Query Language 185

Chapter Example 185
Example Classes 185
Example Mapping Document 189
Example Tables 191
Example Application 191
Example Rows 192

Example Use 193
Select Clause 194
Narrowing the SELECT Using the WHERE Clause 196
Working with Collections in HQL 197

.size, size() 197

.minlndex, minindex(), .maxlndex, maxindex() 197
index() 198
any(), some(), all(), exists(), in(), elements(), indices() 198
[] 199

Other HQL WHERE Expressions 199
Logicals 199
NULL Expression 199

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xv

xvi

Contents

Groupings 200
Scalar Functions 200
Equality 201
Named Parameters 201
Booleans 201

Subselects 202
Polymorphism 202
Order By Clause 203
Aggregate Functions 204
Group By Clause 204
HAVING Clause 205
Working with HQL Joins 205

Left Outer Join 205
Right Outer Join 206
Inner Join 206
Full Join 206
Fetch Join 206

Summary 206

Chapter 9: Hibernate Caching 207

Why Cache? What Does Hibernate Provide? 207
Caching the Survey Object Example Code 208
Setting Up a SessionFactory Cache 212
Using the Persistent Object Cache 213

Read-Only Cache Usage 213
Read-Write Cache Usage 214
Nonstrict Read-Write Cache Usage 214
Transactional Cache Usage 214

SessionFactory Support Methods 214
Using the Query Cache 215
Session Cache Functionality 216
Setting Up EHCache 216
When Not to Use Caching 218
Summary 219

Chapter 10: Hibernate Transactions and Locking 221

What Are Transactions? 223
Configuration 223
Database Support 224
Using Transactions 225

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xvi

xvii

Contents

The Transaction API 226
Transaction Example Using MySQL 227

ISAM Table Type 228
InnoDB Table Type 228
Forced Rollback Example 229
Optimal Session Use 229

Locking 230
Summary 234

Chapter 11: J2EE and Hibernate 235

Installing an Application Server 235
Configuring Tomcat for Hibernate with JNDI 235

Configuring Tomcat for JNDI 236
Creating the Necessary Hibernate Configuration File 236

SessionFactory Singleton Class 237
Building a Stateless Session Bean 238
Building a Stateful Session Bean 240
Using Container Managed Transactions (CMT) 242
Summary 245

Chapter 12: Hibernate and DAO Design Pattern 247

Data Access Object Design Pattern 247
Factory Method Implementation 250
Abstract Factory Implementation 252
Concrete DAO Example 253

Building a DAO Factory 254
Building Specific Data Source Factories 254
Building the DAO Objects 255
Testing It All 259

Summary 260

Chapter 13: Hibernate and XDoclet 261

Introduction to XDoclet 262
What Is Javadoc? 263
How XDoclet Works 264
Code Generation Templating 265
Why XDoclet Simplifies Development 265

Installing XDoclet 266

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xvii

xviii

Contents

Using XDoclet with Hibernate 266
Simple Example 266
Generating Hibernate.cfg.xml 268
Generating an MBean Descriptor File for JBoss 270
Tagging Source Files with Mapping Attributes 272

Tagging Properties 272
Tagging Object References 274
Tagging a Collection 277
Fully Specifying a Property 281
Tagging Getters versus Setters 282

Hibernate XDoclet Tags and Description 282
@hibernate.class 282
@hibernate.cache 283
@hibernate.discriminator 283
@hibernate.joined-subclass 283
@hibernate.joined-subclass-key 284
@hibernate.query 284
@hibernate.subclass 284
@hibernate.array 284
@hibernate.bag (0..1) 285
@hibernate.collection-cache 285
@hibernate.collection-composite-element 286
@hibernate.collection-element 286
@hibernate.collection-index 286
@hibernate.collection-key 287
@hibernate.collection-key-column (0..*) 287
@hibernate.collection-many-to-many 287
@hibernate.collection-one-to-many 287
@hibernate.column 288
@hibernate.component 288
@hibernate.generator-param 288
@hibernate.id 289
@hibernate.index-many-to-many 289
@hibernate.list 290
@hibernate.many-to-one 290
@hibernate.map 291
@hibernate.one-to-one 291
@hibernate.primitive-array 292
@hibernate.property 292
@hibernate.set 292
@hibernate.timestamp 293
@hibernate.version 293

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xviii

xix

Contents

Full-Circle Process 294
Tips on Using XDoclet 304
Summary 305

Chapter 14: Hibernate and Maven 307

Installing Maven 308
Using Maven 308

The Project Object Model 309
Five-Minute Tutorial to Using Maven 310

Compiling Java Code 311
Producing a JAR 311
Generating the Site Docs 311
Goals and Plug-ins and Properties, Oh My! 311

Generating Hibernate Files with Maven 312
Running the XDoclet Plug-in for Maven 313
Generate Mapping Files 313
Generate the Hibernate.cfg.xml File 314

Scripting Directly in Maven.xml 314
Set Up Dependencies 314
Generate Mapping Files 315
Generate Hibernate.cfg.xml with Maven 316

Using the Hibernate Plug-in for Maven 317
hibernate:aggregate-mappings 317
hibernate:schema-export 317

Putting It All Together 319
Generating Files 319
Configuring a Database Prior to Running Unit Tests 320

Advantages over Ant 327
Things to Be Aware Of 327
Summary 328

Chapter 15: Hibernate Extensions 329

Tools 329
SchemaExport/SchemaUpdate 329

Building the Mapping Document and Database Table 330
Advanced Mapping Document Options 333
Updating the Database Table 338
Application Support 340
Ant Support 341

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xix

xx

Contents

Hibernate Extensions 342
Code Generator 342
CodeGenerator Finder 348
Map Generator 349
Hibern8IDE 350

AndroMDA 355
Setting Up a Project 356

MiddleGen 358
Summary 361

Chapter 16: Hibernate and Eclipse 363

Hibernator 363
Database Connection 364
Creating a Mapping Document 366
Querying the Database 367
Creating a Schema 367
Updating the Schema 367

HiberClipse 368
Configuring a JDBC Connection 369
Creating a Mapping Document 369
Creating Java Code from a Mapping Document 370
Creating a Schema Export or Updating a Schema 370

Hibernate Synchronizer 370
Configuration File Wizard 370
Mapping Document Wizard 371

Summary 372

Chapter 17: Using Velocity, Struts, and Hibernate 373

Brief Introduction to Struts 373
Struts Flow Diagram 373

Installing Struts 374
A Sample Application 374

Building the ActionForm 375
RegisterForm Code 376
Creating an Action 377
RegisterAction Code 377
Configuring Struts 378
Struts Configuration File 382

Web.xml File 382

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xx

xxi

Contents

Toolbox.xml File 385
Success Page 385
Success.vm Template 385
Success under Struts and Velocity 385
Register Page 385
Register.VM Template 387
Compile 387
Run 387

Summary 388

Chapter 18: Hibernate and AspectJ 389

What Is Aspect-Oriented Programming 389
Where OOP Has Brought Us 390
What OOADP Did for Computer Science 390
Problems Resulting from OOP 392
Results of Tangled Code 396
How AOP Solves OOP Problems 396

What Is AOP? 397
Development Process with AOP 397

Introduction to AspectJ 398
AOP Language Specification 399

Join Points 399
Pointcuts 400
Advice 400
Aspects 400

AOP Language Implementation 401
AspectJ 402
Example Aspect 403

Using AspectJ with Hibernate 404
Summary 405

Chapter 19: Hibernate Interceptors 407

Interceptor Interface 407
Building an Interceptor 408
Summary 412

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xxi

xxii

Contents

Appendix A: Hibernate Database Connectivity 413

DB2 413
DB2/400 414
HypersonicSQL 414
Interbase 414
McKoi SQL 415
Microsoft SQL Server 415
MySQL 416
Oracle 416
Pointbase 416
PostgreSQL 417
SAP DB 417
Sybase 417

Appendix B: Getting Involved with Hibernate 419

Hibernate Forums 419
Hibernate Wiki 420
Contributing to the Further Development of Hibernate 420

Checking Out the Source and Building It 420
Development Mailing List 421
Issue Tracking 421

More Information on Open Source 422

Index 423

02_576771 ftoc.qxd 9/1/04 3:33 PM Page xxii

Introduction to Mapping
Objects to Relational

Databases

In the computer industry, we commonly have discussions, disagreements, and even shouting
matches over which of the latest languages are the best and where they should be used.
Discussions turn to the best platform currently available and who’s suing whom. However, each
of us is also thinking about the latest project we’ve been given and its strict deadline. Overall, the
project isn’t complex, but we have to support numerous database backend systems. This means
we need to incorporate a persistence layer to handle the database differences. That part isn’t too
difficult, but what about the data itself? Do we just store it in some proprietary database and deal
with the details later? No, we need to have a strategy that works with our application and the lan-
guage the application is written in.

Today’s programming languages take advantage of the latest in object-oriented techniques. As you
know, an object is a construct to enforce encapsulation. The problem is how to store an object for
use by the same application at a later time or by another application. Some of the common solu-
tions to this problem are:

❑ Serialization

❑ XML

❑ Object-oriented database systems mapping

Let’s consider these possible solutions and determine their advantages and disadvantage before
looking at the solution around which this book is written.

111

03_576771_c01.qxd 9/1/04 12:09 PM Page 1

Serialization
You can save data stored in an object by creating a flat-file representation of the object. In the Java lan-
guage, this process is called serialization. An object that is serialized has all its attributes and their class
types saved into a file or a buffer. The resulting information string can be saved to a file, placed in a col-
umn in a traditional relational database, or sent to another machine. An example is the CD class:

public class CD implements Serializable {
String title;
String artist;
public CD(String title, String artist) {
this.title = title;
this.artist = artist;

}
}

The CD class has two attributes that need to be saved when the object is serialized. In Java, all primitive
types as well as many of the foundational classes are defined such that they implement the Serializable
interface. The system automatically recurses into each of the attributes as needed.

The serialization of the CD class results in a binary representation of the data currently contained in the
represented object. The binary representation could be placed in a BLOB column type of a relational
database; this process would allow other applications to access the data. However, if a legacy application
has been tweaked to access the column where the object is held, it won’t be able to make sense of the
data unless the legacy application can deserialize Java objects. Even worse, the serialization process
doesn’t migrate well from Java application to Java application.

Further, the serialization process isn’t fast, and a large object can take a considerable amount of time to
be put into its binary representation. Thus, serialization as a practice has a specific place in the develop-
ment process; but as a mechanism for persisting data, it should be avoided.

XML
In the past few years, XML has been one of the hottest technologies. With this popularity comes the issue
of using XML in both objects and mapping to a database. First, consider an XML document like the
following:

<cd>
<title>

Grace Under Pressure
</title>

<artist>
Rush

</artist>
</cd>

A database to handle the XML document can be created with the following schema:

2

Chapter 1

03_576771_c01.qxd 9/1/04 12:09 PM Page 2

create table cd (
title varchar,
artist varchar

);

From the XML, we can easily build a class like this:

public class cd {
String title;
String artist;
}

Having the XML representation creates an additional level of complexity and processing required to go
from an object to the database. This processing can be extensive, given the complexity of the objects in
an application.

Object-Oriented Database Systems
When object-oriented programming first began to be used, the issue of storing objects for later use was
an important topic. The most widely used component for storage is a database, so several companies
started down the path of developing a new database technology used specifically to store objects. The
object-oriented database system handles the storing and loading of objects in a transparent manner. The
complexity in the system comes from querying the database. For example, we might have a query like
this:

select x from user x where x.name = \"John Doe\"");

The database will access all the user objects in the database and return those whose name attribute is
equal to “John Doe”. The database needs to be designed in a manner that automatically allows the query
to access the attributes of the stored objects.

Although these new database systems can transparently store and load objects to Java or other object-
oriented languages, there is typically an issue when a legacy system or a quick RAD application needs to
access the same information. In addition, the OO databases haven’t made a large impact in the database
market; they’re still coming of age when compared to those offered by Oracle, Microsoft, and others.

Mapping
The three solutions we’ve just covered can work, but they present issue when put into the mix of legacy
applications and traditional relational database systems. If you’re working with an application that uses
a database, you’ll most likely need to use databases having names like Oracle, MySQL, Sybase,
Microsoft SQL Server, and others. These databases are based on the traditional relational model; some-
how we need to use them along with our Java objects.

An object can be placed in a relational database through the process of mapping. Mapping is a technique
that places an object’s attributes in one or more fields of a database table. For example, the earlier CD

3

Introduction to Mapping Objects to Relational Databases

03_576771_c01.qxd 9/1/04 12:09 PM Page 3

class has two attributes that would need to be mapped to a relational database table for permanent stor-
age. The title and artist fields can be mapped to a schema like the following:

create table CD (
ID int not null primary key auto_increment,
title varchar(256),
artist varchar(256)
);

The ID field is used to create unique rows in the database. Each title and artist field holds the appropri-
ate value from the CD object. This is an example of a one-to-one mapping between the class and the
database. Figure 1.1 shows the appropriate UML diagram to accompany the class and the resulting
database table.

Figure 1.1

From a database standpoint, consider a CD object instantiated using the following constructor:

new CD("Grace Under Pressure", "Rush");

When the object is mapped to the database table defined earlier, the values in the database might look
like this:

+----+--------------------------+-------+
| ID | Title | Artist|
+----+--------------------------+-------+
| 1 | Grace Under Pressure | Rush |
+----+--------------------------+-------+

For any additional CD objects that are instantiated, new rows are created in the database; the ID column
maintains their uniqueness.

Typically, the classes you’re dealing with in a production application will include more than just simple
attributes. Consider the following CD class:

public class CD implements Serializable {
String title;
String artist;

<<class model>>

CD CD

-title : String
-artist : String

+getTitle : String
+getArtist : String
+getTitle()
+getArtist()

<<Physical Data Model>>

ID : int
title : varchar(256)
artist : varchar(256)

4

Chapter 1

03_576771_c01.qxd 9/1/04 12:09 PM Page 4

ArrayList tracks;

public CD(String title, String artist) {
this.title = title;
this.artist = artist;

tracks = new ArrayListO;
}

public void addTrack(String track) {
tracks. add(track);
}
}

In this new CD class, we’ve added an ArrayList to hold the name of each title on the CD. As you might
expect, this additional attribute introduces a hidden complexity to the mapping between the objects
instantiated from the CD class and the permanent storage: The ArrayList attribute can contain no values
or hundreds of values. There might be 8 to 10 tracks on a CD; an MP3 CD could include hundreds of
songs. In either case, we need to be able to map the ArrayList attribute into a database structure so it can
be permanently recorded when the entire CD is committed.

A common solution is to create a second database table just for the attribute. For example, we might cre-
ate a table like this:

create table CD_tracks (
ID int not null primary key.
track varchar(256)
);

Using the Rush CD object created earlier, we can make a couple of calls to the addTrack() method and
fill the tracks ArrayList:

rush.addTrack("Distant Early Warning");
rush.addTrack("Afterimage");
rush.addTrack("Red Sector A");

When the CD object is saved to the database, information is placed in two different tables: a CD table

+----+--------------------------+-------+
| ID | Title | Artist|
+----+--------------------------+-------+
| 1 | Grace Under Pressure | Rush |
+----+--------------------------+-------+

and a CD_tracks table

+----+---------------------------+
| ID | Track |
+----+---------------------------+
| 1 | Distant Early Warning |
+----+---------------------------+
| 2 | Afterimage |
+----+---------------------------+
| 3 | Red Sector A |
+----+---------------------------+

5

Introduction to Mapping Objects to Relational Databases

03_576771_c01.qxd 9/1/04 12:09 PM Page 5

If we have another CD to store, should another track table be added to the system, or should the tracks
be added to the existing CD_tracks table? If we add a track to the CD_tracks table, how do we keep track
of the fact that some of the tracks relate to specific CDs in the CD table?

We need to add a foreign key to the CD_tracks table; it will relate to the primary key in the CD table.
Here’s what the new CD_tracks table looks like:

create table CD_tracks (
ID int not null primary key auto_increment,
cd_id int,
track varchar(256)
);

Using this schema, the Rush CD’s tracks appear as follows:

+----+------+----------------------------+
| ID | cd_id| Track |
+----+------+----------------------------+
| 1 | 1 | Distant Early Warning |
+----+------+----------------------------+
| 2 | 2 | Afterimage |
+----+------+----------------------------+
| 3 | 3 | Red Sector A |
+----+------+----------------------------+

With the addition of the cd_id column, we can relate the two tables needed to fully map the CD object to
permanent storage. The addition of the new CD_tracks table expands our UML diagram, as shown in
Figure 1.2.

Figure 1.2

<<class model>>

CD CD

-title : String
-artist : String

+getTitle : String
+getArtist : String
+setTitle()
+setArtist()

<<Physical Data Model>>

ID : int
title : varchar(256)
artist : varchar(256)

cd_tracks

ID : int
cd_id : int
name : varchar(256)
length : int

6

Chapter 1

03_576771_c01.qxd 9/1/04 12:09 PM Page 6

Our CD class can be further complicated by adding an attribute based on another class type. For
example:

public class CD implements Serializable {
String title;
String artist;
ArrayList tracks;

public CD(String title, String artist) {
this.title = title;
this.artist = artist;

tracks = new ArrayList();
}

public void addTrack(Track track) {
tracks.add(track);
}

private class Track {
String name;
int length;

public track(String name, int length) {
this.name = name;
this.length = length;

}
}
}

We’ve added another class called Track, which is added to the track ArrayList instead of a single string.
With the Track class added to the class model, we have a new situation that needs to be handled through
an appropriate mapping. The most obvious choice is to add another database table for mapping between
the class and the permanent storage. For example:

create table tracks (
ID int not null primary key auto_increment,
name varchar(256),
length int

);

The new database table looks similar to the CD_tracks database created in the previous example but
includes a little more information. (We could have used the CD_tracks schema and added the length
column.)

After these examples, it should be clear that saving a set of objects to permanent storage isn’t a simple
task. In order to correctly put an object’s attributes in a database, you must have a clear plan in place
with the proper databases and mappings. As you can see, though, once a class has been defined, the
database tables and mappings become clear. Thus, in most design situations, the database modeling
should occur after the classes have been defined.

7

Introduction to Mapping Objects to Relational Databases

03_576771_c01.qxd 9/1/04 12:09 PM Page 7

Primary Keys, Timestamps, and Version Numbers
In the examples presented so far, all the database tables have included a primary key that isn’t part of
the original object being mapped. The primary key is needed in order for the database server to uniquely
distinguish and manage the objects stored in the database. Without the primary key, the database might
have duplicate rows in a table because two objects in the system have identical attribute values. The pri-
mary key also gives us the ability to determine whether or not an object has actually been added to the
database and if the object needs to be updated.

Depending on the system used to handle the mapping from objects to permanent storage, there are dif-
ferent ways to determine whether an object is up to date. One way is to use a timestamp in the database
table. When the persistence layer needs to determine whether an object should be persisted to the
database, it can check the timestamp in the table row for the object. If the timestamp is less than a time-
stamp kept in the object itself, the persistence layer knows the object should be persisted. If the time-
stamps are the same, the object hasn’t been changed and doesn’t need to be saved.

Another technique involves a version number stored in the database. When the object is pulled from the
database, it has an associated version number. If the application changes the object in any way, the per-
sistence layer updates the version number by a single digit. The layer can then use the version number
to determine whether the object needs to be persisted.

Handling Inheritance
Obtaining efficiencies in the software development process means using all of a methodology’s features.
This is especially true when you’re developing the classes for an application. During the development of
the class structure, a clear hierarchy can sometimes be created through inheritance. For example, for our
CD class, we might have another class called SpecialEditionCD that inherits its foundational attributes
from the CD class:

public class SpecialEditionCD extends CD {
String newFeatures;
int cdCount;

public SpecialEditionCD(
String title,
String artist,
String newFeatures,
int cdCount) {
this.title = title;
this.artist = artist;
this.newFeatures = newFeatures;
this.cdCount = cdCount;

}
}

The SpecialEditionCD class adds two more attributes that need to be persistent to our permanent stor-
age in addition to the attributes from the CD parent class. We can’t easily store the SpecialEditionCD
information in the CD database table because of these new attributes. How do we perform the mapping?
There are several solutions:

8

Chapter 1

03_576771_c01.qxd 9/1/04 12:09 PM Page 8

❑ Create a single table using the attributes from the lowest child.

❑ Create a table per class.

❑ Create a table per concrete class.

Let’s consider each of these inheritance mappings using the CD and SpecialEditionCD classes
as examples.

Lowest-Child Inheritance Mapping
If we have a hierarchy of classes, our mapping needs to be able to handle both the CD and
SpecialEditionCD classes using a single table. We can accomplish this by taking all the attributes for the
lowest child in the inheritance chain, mapping them, and then moving up the chain until we’ve mapped
the topmost parent. The result is a table with attributes from all classes. Using our two classes, this pro-
cess produces a table like the one in Figure 1.3.

create table cd (
ID int not null primary key auto_increment,
type varchar(256),
title varchar(256),
artist varchar(256),
newFeatures varchar(256),
count int
);

Figure 1.3

If we have an object of type SpecialEditionCD, all the necessary columns are available to persist it to the
database. If we have a CD object, all the necessary columns are still available; however, both the

CD

SpecialEditionCD

-newFeatures : String
-count : int

+getNewFeatures : String
+getCount : String
+setNewFeatures()
+setCount()

CD

-title : String
-artist : String

+getTitle : String
+getArtist : String
+setTitle()
+setArtist()

ID : int
type : varchar(256)
title : varchar(256)
artist : varchar(256)
newFeatures: varchar(256)
count : int

cd_tracks

ID : int
cd_id : int
name : varchar(256)
length : int

9

Introduction to Mapping Objects to Relational Databases

03_576771_c01.qxd 9/1/04 12:09 PM Page 9

newFeatures and count columns need to be populated with a value such as null. But will this work?
Can’t we have a SpecialEditionCD object where both the count and newFeatures attributes are null? In
that case, how can we tell which object has been stored? We add to the database schema an addition field
called type that the mapping software uses to keep track of the class type to which a particular row
belongs.

As you can see from this example, adding new classes to the class model as well as the database is as
simple as adding columns to the single hierarchy table. There is complete support for polymorphism
because of the type column. Changing the type value from one class to another changes the object class
type. We don’t need to keep track of additional tables since all the information for the class hierarchy can
be found in the single table.

If you have a large hierarchy, the single-table option isn’t ideal because of the potential for wasted space
from row to row. If an object is higher in the hierarchy, there will be quite a few nulled column values.
Further, the database may potentially have a large number of columns. This isn’t usually a problem for
database-management software, but the database can be difficult to read and maintain.

Table-Per-Class Inheritance Mapping
If you want to eliminate some of the issues with the single-table approach to mapping an inheritance
hierarchy, consider creating a single table for each of the classes. Figure 1.4 shows an example of the
object-to-table mapping.

Figure 1.4

In Figure 1.4, we’ve created three tables to handle the CD inheritance hierarchy. The CD and cd_tracks
tables monitor the attribute needed for a CD object. For the SpecialEditionCD class, we create another
table to hold the information new to this class. If the object we’re mapping to the database is a CD class,
then we just need to access the two base tables. However, if we have a SpecialEditionCD, we need to
access three tables to pull out all the information needed to save or load the object from the database. If
the persistence layer is intelligent, we won’t necessarily hit all three tables for a SpecialEditionCD—only
the tables needed at a particular moment.

If we add more classes to the hierarchy, we need to build the appropriate database table to fulfill the nec-
essary mappings. Various relationship must be maintained between the rows for each subchild object

SpecialEditionCD

ID : int
newFeatures : varchar(256)
count : int

CD

ID : int
type : varchar(256)
title : varchar(256)
artist : varchar(256)

cd_tracks

ID : int
cd_id : int
name : varchar(256)
length : int

10

Chapter 1

03_576771_c01.qxd 9/1/04 12:09 PM Page 10

created. Maintaining these relationships can be complex, depending on the hierarchy being mapped. We
aren’t wasting database space if we have a CD object instead of a SpecialEditionCD since we won’t need
a row for the child object.

Table-Per-Concrete-Class Inheritance Mapping
In our example CD class hierarchy, it’s clear that we’ll be creating objects of type CD and
SpecialEditionCD. Thus both of these classes are concrete. However, you might have a hierarchy in
which one or more classes aren’t concrete. In this type of situation, mapping all the classes to database
tables isn’t necessary; instead, you can make the concrete classes only. This technique will save you time
and database space. The real advantage comes in the time needed to access the database for attributes
from the nonconcrete classes when an object needs to be saved or loaded.

Working With Relationships
In almost all applications, numerous objects relate to one another in some fashion. For example, we might
have an account object that holds information about a specific account in an accounting application. Each
account might be associated with a single owner object; this association is a one-to-one relationship. Each
account might have numerous addresses where account information could be sent; this association is a one-
to-many relationship. Finally, each account can be assigned to numerous securities, and securities can be
assigned to numerous accounts; this association creates a many-to-many relationship.

These three different relationships are called multiplicity; however, there is another relationship type called
directionality. To illustrate, consider the account/securities many-to-many relationship just discussed. If you
have an account, you can determine which securities it’s associated with; and if you have a security, you
can determine which accounts it’s associated with. This is an example of a bidirectional relationship. For the
account-to-address association, an account knows about the addresses it needs, but the addresses don’t
know which account they’re bound to; this is an example of a unidirectional relationship.

Mapping a One-to-One Relationship
In our one-to-one relationship example, we’ll consider a situation where we have a single account and a
single owner. Figure 1.5 shows an example of the classes we’ll map.

Figure 1.5.

owner

ID : int
name : int
birthdate : date
account_id : int

account

ID : int
type : int
opendate : date
owner : Owner

11

Introduction to Mapping Objects to Relational Databases

03_576771_c01.qxd 9/1/04 12:09 PM Page 11

To map the relationship shown in Figure 1.5 to a relational database, we need to use a foreign key that
associates the owner with the account. Since there will be a single owner for each account, we know
there will be a single row in the database table that holds the owner information. The following table
schemas can be used to map the relationship in Figure 1.5:

create table account (
ID int not null primary key auto_increment,
type int,
opendate

);

create table owner (
ID int not null primary key auto_increment,
account_id int,
name varchar(256),
birthdate date

);

The one-to-one mapping is created between the account and owner tables through the account_id field
in the owner table. When a new row is added to the account table, a new ID is created. This ID uniquely
identifies the account to the accounting system. No matter how many accounts are added to the system,
no other one will have the same ID value. Therefore, this value can be used to associate the account and
its database row with any other necessary data. Some of that data is found in the owner table. Just after
the account is added to the database, the owner row is inserted. Part of the owner information to be
stored is the ID of the account. The ID is stored in the account_id field, which is a foreign key to the pri-
mary key (ID) of the account table.

When the application needs to pull the account, it accesses the account through the primary key or,
potentially, through a query that pulls the ID as well. The application can then pull the owner row using
the ID value.

Mapping a One-to-Many Relationship
In the previous example, we also have a one-to-many relationship when the account object relates to one
or more addresses. Figure 1.6 shows an example of the objects we need to map.

A single account in our application can have one or more addresses. Thus, each account needs an array
of address objects that hold the full address where information can be sent and associated with the
account. The following schemas show how the information is kept in the database:

create table account (
ID int not null primary key auto_increment,
type int,
opendate date

);

create table address (
ID int not null primary key auto_increment,
account_id int,
address varchar(256),
city varchar(256),
state varchar(256),
zip varchar(256)

);

12

Chapter 1

03_576771_c01.qxd 9/1/04 12:09 PM Page 12

Figure 1.6

As you can see, the foreign key, account_id, is used in the mapping just as it is in the one-to-one rela-
tionship map. When an account is added to the database, its ID is obtained and used to store one or
more addresses in the address table. The ID is stored in the account_id foreign key column. The appli-
cation can perform a query against the address table using the ID as a search value.

Mapping a Many-to-Many Relationship
In the final type of relationship, an account relates to securities and at the same time securities relate to
accounts. Figure 1.7 shows the classes in the relationship.

As you might expect, doing the mapping for a many-to-many relationship isn’t as easy as it is for the
one-to-one and one-to-many cases. For every account and security in the system, we need to be able to
relate one or more of the other classes. For example, if we have an account with an ID of 3425, it might
be associated with the securities 4355, 3245, 3950, and 3954. How can we associate these securities with
the single account? We could have four columns in the account table called sec1, sec2, sec3, and sec4. But
what if we added two more securities to the account? We wouldn’t have enough columns in the account
table.

The solution is to use an association table between the account table and the security table. Here are the
table schemas:

create table account (
ID int not null primary key auto_increment,
type int,
opendate date,
securities int

);

create table security (
ID int not null primary key auto_increment,
name varchar(256),

address

ID : int
address : String
city : String
state : String
zip : String
account_id : int

account

ID : int
type : int
opendate : date
owner : Owner
Addresses : ArrayList

13

Introduction to Mapping Objects to Relational Databases

03_576771_c01.qxd 9/1/04 12:09 PM Page 13

14

Chapter 1

cost int,
accounts int

);

create table account_security (
ID int not null primary key auto_increment,
account_id int,
security_id int,

);

Figure 1.7

For every relationship between an account and a security, there will be a unique row in the
account_security association table. If we have an account ID, we can query the account_
security table to find all the securities associated with the account. We can also go the other direction
and use a security ID to query for all the accounts using that security.

Summary
When you’re writing applications using the object-oriented methodology, real-world information is
stored in classes where the information can be encapsulated and controlled. At some point during the
execution of the application, the information in each of the objects will need to be persisted. The goal of
this chapter has been to provide you with an overview of the issues and techniques involved in object
mapping from the application to permanent storage. By far the most popular technique is mapping a
class to one or more database tables. We’ve covered many of the issues involved in object/relational
mapping; now we’ll push forward and discuss Hibernate as a tool for providing the necessary mapping.

security

ID : int
name : String
cost : int
accounts : ArrayList

account

ID : int
type : int
opendate : date
owner : Owner
addresses : ArrayList
securities : ArrayList

03_576771_c01.qxd 9/1/04 12:09 PM Page 14

222
Introduction to Hibernate

Most production-level applications need to be able to store data in one form or another. The ques-
tion is, should you store that data in its natural container—the object—or pull it out? With
Hibernate, you can handle the data in the object and not worry about the details of extracting,
storing, and loading individual data components. In this chapter, we'll explain what Hibernate is
and how it works.

Hibernate
Hibernate is Java-based middleware designed to complete the Object Relational (O/R) mapping
model. For the most part, you'll see little disruption to your classes and code as a result of using
Hibernate. In fact, one of the most complex parts of many O/R mapping mechanisms—writing
SQL code—can be simplified significantly with Hibernate. Figure 2.1 shows a high-level illustra-
tion of where Hibernate fits into the development picture.

Figure 2.1

Applications

Hibernate

Database Server

04_576771_c02.qxd 9/1/04 12:14 PM Page 15

In the figure, you can see that Hibernate sits between traditional Java objects and handles all the work in
persisting those objects based on the appropriate O/R mechanisms and patterns. Your goal is to accu-
rately map how Hibernate will persist objects to the database tables of the underlying database server; in
most cases, the mapping exercise is straightforward. As you'll see in later chapters, Hibernate can persist
even the most complex classes, including those using composition, inheritance, and collections. As we
move through this chapter, we'll begin to point out Hibernate's key issues and features.

Hibernate Architecture
In order to help you fully understand what Hibernate brings to you, let's start drilling into the system's
architecture based on the initial view in Figure 2.1. Figure 2.2 expands the architecture to show the indi-
vidual classes that make up a typical Java application.

Figure 2.2

When you're using Hibernate to provide the O/R mapping, it's your responsibility to determine which
classes need to be persisted and which can be reconstructed without storing or loading data from the
database. Clearly, you don't want to take the time and expense of persisting transient objects that are
routinely created and destroyed in the application. The most important objects in the application are
those that provide information about a product or a user. As a developer, you don't have to do much
work when an object is designated to the stored by Hibernate: The most important task is determining
how the object will be persisted.

If a class exists on its own and generally isn't part of a composition relationship with another object, the
class needs to expose an identifier. The identifier is designed to provide uniqueness to the object when
it's stored in the database. Hibernate allows for several different identifier types, including string and
int. Further, Hibernate lets you use various generators to build the identifier; these generators range
from using the native functionality of the database server to building a unique identifier using compo-
nents of the operating system including the clock and network address.

Application
Classes

Hibernate

Database Server

POJO Classes

16

Chapter 2

04_576771_c02.qxd 9/1/04 12:14 PM Page 16

17

Introduction to Hibernate

In addition to the identifier, all Java objects that will be persisted must follow the JavaBean specification
and include the appropriate mutator and accessor functions. Depending on your implementation, the
function may be public or private; in either case, Hibernate can access the functions as long as they're
JavaBean-like. Further, all persisted classes need to include a default constructor so Hibernate can
instantiate the object when it's requested from the database.

As you'll see in later chapters, Hibernate supports complex class structures: Inheritance hierarchies can
be successfully persisted and the polymorphic behavior behind the inheritance structure utilized. Just
about all Java applications use collections. Hibernate can persist collections when they're part of an
object's attribute structure. The collection can be automatically stored when the parent object is per-
sisted, or the application can choose to store the collection independently. If you incorporate the design
concept of composition in a Java class, Hibernate will be able to honor the implementation when the
object is stored.

Vital to the functionality of Hibernate is a database server and the connection between itself and the
server. Fortunately, Hibernate is rich in this area: It supports a variety of the most popular open-source
and commercial servers. However, Hibernate isn't limited to these servers; you can use just about any
server, assuming an appropriate JDBC driver is available. As you'll see in Chapter 3, Hibernate supports
basic SQL and allows individual dialect changes to be made as appropriate for the database being used
in the application. Thus even if you're using a database that includes some quirky syntax, Hibernate can
support it using a specific dialect class.

Figure 2.3 shows that JDBC isn't the only additional technology used between Hibernate and the
database server. Hibernate can be used with applications that rely on an application server to handle
servlets and Enterprise JavaBeans. In these situations, it's normal to use Java Naming and Directory
Interface (JNDI) to handle the database resource associated with the environment. Once a JNDI resource
has been created, Hibernate can access the resource with just a few changes to its configuration file.
Further, transaction support is available through both the JDBC connection and the Java Transaction API
(JTA) specification and its implementation classes. When you're using JTA, options are available to use
either an open-source implementation or one provided by the application server; it's a matter of setting
up the configuration file correctly.

Figure 2.3

Application
Classes

Hibernate

Database Server

JDBC JNDI JTA

04_576771_c02.qxd 9/1/04 12:14 PM Page 17

18

Chapter 2

Hibernate Configuration
Figure 2.4 shows the Configuration class, which is critical to launching Hibernate. The
Configuration class's operation has two keys components: the database connection and the class-
mapping setup.

Figure 2.4

The first component is handled through one or more configuration files supported by Hibernate. These
files are hibernate.properties and hibernate.cfg.xml, as shown in Listing 2.1.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd">

<hibernate-configuration>

<session-factory>
<property name="connection.driver">com.mysql.jdbc.Driver</property>
<property name="connection.url"

jdbc:mysql://localhost/products</property>
<property name="dialect">

net.sf.hibernate.dialect.MySQLDialect</property>
</session-factory>

</hibernate-configuration>

Application
Classes

Hibernate

Database Server

JDBC JNDI JTA

Configuration

04_576771_c02.qxd 9/1/04 12:14 PM Page 18

hibernate.dialect net.sf.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class com.mysql.jdbc.Driver
hibernate.connection.url jdbc:mysql://localhost/products
hibernate.connection.username
hibernate.connection.password
hibernate.show_sql true
hibernate.cglib.use_reflection_optimizer false

Listing 2.1

One of the files handles setting up Hibernate using XML, and another doesn't. For the most part, we'll
use the hibernate.cfg.xml file throughout this book. You can set up both JDBC and JNDI connections
through these files as well as a host of other options.

The second component makes the connection between the Java classes and database tables. Listing 2.2
shows an example of a mapping for a simple Java class.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Notes"
table="notes">

<id name="id" unsaved-value="0">
<generator class="native"/>

</id>

<property name="info" type="string"/>
<property name="count" type="integer" not-null="true"/>
<property name="zipcode" type="string"/>
<property name="fullname" type="string"/>

</class>

</hibernate-mapping>

Listing 2.2

As you can see in Listing 2.2, the mapping document is XML based and includes elements for specifying
an identifier as well as the attributes of the mapped object. Once a mapping document has been created,
the appropriate database table can be added to the database server, thus completing an O/R mapping
from a Java class to the database.

19

Introduction to Hibernate

04_576771_c02.qxd 9/1/04 12:14 PM Page 19

20

Chapter 2

Hibernate Sessions
When you begin using Hibernate, a singleton class called SessionFactory is instantiated. As shown
in Figure 2.5, the SessionFactory configures Hibernate for the application using the supplied config-
uration file (as described in the previous section) and allows for a Session object to be instantiated. As
you might expect, the SessionFactory object is heavyweight; you should take care to create only one
SessionFactory per application. (This is true for both traditional applications and those that execute
in an application server.)

Figure 2.5

When you begin persisting or loading objects to/from the database, a Session object is instantiated.
The Session object is lightweight and designed to be instantiated each time an interaction is needed
with the database. Thus, the Session object is created, an object or two is persisted or loaded from the
database, and the Session object is closed. When a Session object is instantiated, a connection is
made to the database; thus the interactions should be fairly quick to ensure the application doesn't keep
database connections open needlessly.

In the process of working with persisted objects, two additional interfaces are commonly used, as shown
in Figure 2.6. The Transaction interface lets you make sure that all the operations on persisted objects
occur in a transaction supported by either JDBC or JTA. When you're using a transaction, any error that

Application
Classes

Hibernate

Database Server

JDBC JNDI JTA

Configuration

SessionFactor

Session

04_576771_c02.qxd 9/1/04 12:14 PM Page 20

TE
AM
 F
LY

occurs between the start and end of the transaction will cause all the operations to fail; this is important
when the persisted objects rely on each other to maintain integrity in the database. The Query interface
lets you query the database for objects instead of having to rely solely on an object's identifier.

Figure 2.6

Hibernate Callbacks
When Hibernate is in the process of persisting or loading an object, it provides support for you to be
warned of certain events so you can respond appropriately. The process is implemented through call-
backs. The available events are as follows:

public Boolean onSave(Session s); - called before the object is saved to the
database

public Boolean onUpdate(Session s); - called before the object is updated

public boolean onDelete(Session s); - called before the object is deleted

public Boolean onLoad(Session s); - called after the object is loaded from
the database

�����������

	��

�

��������

�����
� ������

���	 ���� ���

	������������ ����
�����������

��

���������

��

���

21

Introduction to Hibernate

04_576771_c02.qxd 9/1/04 12:14 PM Page 21

Hibernate also implements a Validatable interface that you can use to verify the state of an object
before it's persisted to the database. The goal of the interface isn't to change the state of the object but to
make sure the object is in a state appropriate to be stored; otherwise an exception is thrown.

Hibernate’s Support for Other Technologies
Hibernate supports a variety of external processes and methodologies to help with the execution and
setup of the system. Some of the tools include a schema generator that automatically creates the neces-
sary schema for a host of mappings. The mapping-file generator generates a skeleton file for Java classes,
using reflection to find the class's attributes.

Hibernate supports a variety of other technologies, including the following:

❑ XDoclet Spring

❑ J2EE

❑ Eclipse plug-ins

❑ Maven

Summary
In this quick introduction to Hibernate, we've shown how easy it is to provide persistence to ordinary
Java objects. Throughout the remainder of this book, we'll build on the concepts discussed here and
show numerous examples to fully explore the Hibernate product.

22

Chapter 2

04_576771_c02.qxd 9/1/04 12:14 PM Page 22

Hibernate Development
Environment

After the background information you’ve learned in the previous two chapters, it should be clear
that Hibernate presents a comprehensive solution to the problem of persisting Java objects to per-
manent storage. Hibernate works with all the major database-management systems and, as you’ll
see, is easy to use. In this chapter, we’ll explain how to install Hibernate, configure it, and develop
a “Hello World”-type application both in a standalone setting and in a J2EE container using
Tomcat.

Obtaining Hibernate
To use Hibernate, you first need to obtain it from the Hibernate home page. Follow these steps:

1. Browse to www.hibernate.org.

2. Locate the Download link in the left navigational bar. Click it to bring up the download
page.

3. Part way down the new page is a Download from Sourceforge link. Click it to display a
list of available downloads.

4. The first two files in the list are the most recent ZIP and GZ distributions. Download the
appropriate version for your platform.

Once you’ve downloaded the file, open it to reveal a directory structure similar to that shown in
Figure 3.1.

333

05_576771_c03.qxd 9/1/04 12:16 PM Page 23

Figure 3.1

Hibernate Prerequisites and Requirements
As you might expect, the developers of Hibernate wanted to concentrate on the mechanics of persisting
objects instead of writing logging packages. So, Hibernate uses a few additional libraries that are com-
mon in the Java development community. You’ll find the libraries used in the development and execu-
tion of Hibernate in the /lib directory of the Hibernate installation.

24

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 24

The current packages required by Hibernate handle the following tasks:

❑ dom4j: XML parsing (www.dom4j.org/)

❑ Xalan: XSLT processing (http://xml.apache.org/xalan-j/)

❑ Xerces: XML parsing, specifically SAX in this case (http://xml.apache.org/xerces-j/)

❑ CGLIB: Appropriate changes to Java classes at runtime (http://cglib.sourceforge.net/)

❑ log4j: Logging in the application (http://logging.apache.org/log4j/docs/index.html)

❑ Commons: Logging, collections, and so on (http://jakarta.apache.org/commons

Copy the following library files from /lib into your classpath, and change your classpath variable
to include the JARs:

❑ cglib2.jar

❑ commons-collections.jar

❑ commons-Logging.jar

❑ dom4j.jar

❑ ehcache.jar

❑ jdbc2.0-stdext.jar

❑ jta.jar

❑ log4j.jar

❑ odmg.jar

❑ xalan.jar

❑ xerces.jar

❑ xml-apis.jar

For the moment, assume you’re writing a standalone application. When you develop code for an appli-
cation server environment, you place the libraries in a specific location in the application server’s
/webapps directory.

If you browse to the /lib directory, you’ll find numerous other JARs. They’re used in building Hibernate,
connection pooling, and caches. We’ll discuss these topics later in the book.

Installing Hibernate
One of the JARs in the Hibernate distribution is called hibernate2.jar; it’s in the root directory of the
installation. This is the primary JAR that Hibernate needs to do its work. Place this file in your classpath
just as you did the required JARs in the previous section. For a standalone application, this is all the
installation needed for Hibernate.

25

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 25

Hibernate Configuration File
The database is one of Hibernate’s key components. You configure the database using a file called
hibernate.properties, which is usually saved in the root directory of your application. The following are
examples of some of the properties and property values found in the file:

hibernate.dialect net.sf.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class com.mysql.jdbc.Driver
hibernate.connection.url jdbc:mysql://<host>/<table>
hibernate.connection.username <username>
hibernate.connection.password <password>

You can set all the database options and various other options in the hibernate.properties file. We’ll dis-
cuss all the properties and configuration options available in Chapter 4. For our purposes in this chapter,
you only need to know about the five options shown here.

Hooking Up a Database Server
Before you begin to work with Hibernate, you need to install a database so that Hibernate has a place to
store the persisted Java classes. Hibernate can be used on different platforms and with a variety of
databases; we’ve chosen two databases to discuss here: MySQL and Microsoft SQL Server. If you’re
interested in using another database supported by Hibernate, please see Appendix A, which provides
installation instructions and Hibernate configurations for each of the supported databases. In this sec-
tion, we’ll show you the configuration needed for the three databases.

As we mentioned, the Hibernate configuration file holds various properties. For databases in a stan-
dalone situation, the properties available are as follows:

❑ hibernate.dialect: Relates to the SQL generated by Hibernate. Including this property makes
Hibernate generate the appropriate SQL for the chosen database.

❑ hibernate.connection.driver_class: Relates to the JDBC driver class used to communicate
between Java and the database server.

❑ hibernate.connection.url: Relates to the URL used to specify the location of the database server,
the optional port to use, and (potentially) a database and table to access upon connection.

❑ hibernate.connection.username: The username to use when connecting to the database server.

❑ hibernate.connection.password: The password for the supplied username.

❑ hibernate.connection.pool_size: The total number of pooled connections for Hibernate to man-
age. Hibernate includes a simple connection pool for testing and development purposes; you’ll
see how to use more advanced pooling in Chapter 4.

If you’re using a database in an application server situation, you’ll use the following configuration
element:

❑ hibernate.connection.datasource: The JNDI name defined in the application server context
you’re using for the application.

26

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 26

Depending on the definition of the JNDI source, the following properties can also be defined:

❑ hibernate.jndi.class: The JNDI InitialContextFactory class.

❑ hibernate.jndi.url: The JNDI provider URL.

❑ hibernate.connection.username: The username to use when connecting to the database server.

❑ hibernate.connection.password: The password for the supplied username.

As we define the configuration for each of the databases, we’ll touch on these properties in more detail.

Setting Up Hibernate to Use MySQL
MySQL is one of the most popular open-source database systems available today. The home page for the
database is www.mysql.com; this Web site provides downloads of the current database system for most
platforms. Pull the database for your platform, and install it based on the instructions provided.
Basically, if you’re running Windows, you’ll perform a standard wizard “Click-Next” install. On a Unix-
based platform, you’ll do the familiar source install of ./configure, make, make install; an RPM install; or
a create-directory-and-copy install for a binary.

Once you’ve installed MySQL, you’re halfway to using the database with Hibernate. You need a second
component—a JDBC driver—which is also available at www.mysql.com. For MySQL, the JDBC driver of
choice is Connector/J. You can find it in the downloads area (www.mysql.com/downloads/api-jdbc-
stable.html); select the download appropriate for your platform. After you’ve completed the download,
extract the compressed file and find the file with a name like mysql-connector-java-3.0.11-stable-bin.jar.
Place this file in your classpath so our example application will be able to find it.

Now you need to build an appropriate hibernate.properties file. Here’s an example:

hibernate.dialect net.sf.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class com.mysql.jdbc.Driver
hibernate.connection.url jdbc:mysql://localhost/products
hibernate.connection.username test
hibernate.connection.password test

You should only need to change the last three lines of the properties file. In this example, we’ve used the
server location localhost and the database name products. Our example application creates a table
called CD in the products database. You should also set up a username/password on this system and
place those values appropriately in the file.

Setting Up Hibernate to Use Microsoft SQL
Server

As you might expect, installing Microsoft SQL Server is a point-and-click wizard process. For our pur-
poses, we’ve used a developer’s version of Microsoft SQL Server 2000 with Service Pack 3a installed.

27

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 27

After you’ve installed SQL Server on the target database machine, you need to obtain a JDBC driver so
the Java application can access the database. You can get such a driver directly from Microsoft at
www.microsoft.com/sql/downloads. Click the JDBC for SQL Server link, and scroll to the bottom of the
page. Two downloads are available: setup.exe for Windows and mssqlserver.tar for Unix. Also in the list
is a file called InstallationGuide_SP2.txt: Open it for Unix instructions. In Windows, launch setup.exe
and walk through the screens.

Next, you need to add the JDBC driver to your global classpath. For example, using the base installa-
tion directory, the classpath needs to contain the following :

c:\Microsoft SQL Server 2000 Driver for JDBC\lib\msbase.jar
c:\Microsoft SQL Server 2000 Driver for JDBC\lib\msutil.jar
c:\Microsoft SQL Server 2000 Driver for JDBC\lib\mssqlserver.jar

(You may want to pull the JARs from the installation directory and place them in a directory with a
shorter name.) Once you’ve added the JARs to the classpath, you can set up the hibernate.hbm.xml or
hibernate.properties file. Let’s say you’ve installed SQL Server on a box with the IP address 192.168.1.55,
and a user is defined in the server with the username “readwrite” and the password “secret”. The
Hibernate configuration file will appear as follows:

hibernate.dialect net.sf.hibernate.dialect.SQLServerDialect
hibernate.connection.driver_class

com.microsoft.jdbc.sqlserver.SQLServerDriver
hibernate.connection.url jdbc:Microsoft:sqlserver://localhost:1433/products
hibernate.connection.username sa
hibernate.connection.password sa

You’ll need to specify the location of your database server; we’ve used localhost in this case. Also add
the appropriate username and password to the file.

A Standalone Hibernate Application
With some of the preliminaries out of the way, let’s dive into an example of using Hibernate to provide
Java persistence in a standalone application. For this example, we’ll use the CD class designed in Chapter
1 and create a simple application that displays a list of CDs. The user can select one CD and change or
add information about it.

Creating the Java Class
The first step in creating an application is to build the Java class or classes, depending on the application
that will be persisted to the database. As you might expect, a typical application has many objects; but
only a few key objects hold information that should be kept permanently.

The primary data in our application describes a CD, so we need an appropriate class. Listing 3.1 shows
an example CD class.

import java.io.*;
import java.util.*;

28

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 28

public class CD {
int id;
String title;
String artist;
Date purchaseDate;
double cost;

public CD() {
}

public CD(String title,
String artist,
Date purchaseDate,
double cost) {

this.title = title;
this.artist = artist;
this.purchaseDate = purchaseDate;
this.cost = cost;

}

public void setId(int id) {
this.id = id;

}

public int getId(){
return id;

}

public void setTitle(String title) {
this.title = title;

}

public String getTitle() {
return title;

}

public void setArtist(String artist) {
this.artist = artist;

}

public String getArtist() {
return artist;

}

public void setPurchasedate(Date purchaseDate) {
this.purchaseDate = purchaseDate;

}

public Date getPurchasedate() {
return purchaseDate;

}

public void setCost(double cost) {

29

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 29

this.cost = cost;
}

public double getCost() {
return cost;

}
}

Listing 3.1

The CD class in Listing 3.1 isn’t fancy—it’s a JavaBeans-compliant class that holds the necessary informa-
tion for CDs. When you’re writing classes to be persisted by Hibernate, it’s important to provide
JavaBeans-compliant code as well as an index attribute like the id attribute in the CD class. Hibernate
uses the id attribute to determine uniqueness among the objects persisted to the database. Notice that
we haven’t inherited or implemented any type of class or interface. Thus, Hibernate will use reflection
based on the JavaBean setter/getter methods to persist the object.

Creating a Database Table
As you learned in Chapter 1, once the object or objects to be persisted have been created, you create the
database table. The hardest part of this process is matching the database column types to the defined
class. The following command creates the necessary table for a MySQL database:

create database products;
use products;

create table CD(
ID int not null primary key,
title text,
artist text,
purchasedate datetime,
cost double
);

create table hibernate_unique_key (
next_hi int
);

insert into hibernate_unique_key values(1);

Use the appropriate interface for the database you’ve chosen to create the database tables in a database
called products. Hibernate uses the second table, hibernate_unique_key, to keep values it will need
when generating unique IDs for the objects it will be persisting to the database. We need to seed the
table, as well; that’s the purpose of the insert command executed after the table is created.

Building a Mapping Document for Database Tables
At this point, we’ve defined a class to hold information about a CD as well as a database table where the
CD information will be permanently kept. The next step is to build a mapping document that tells

30

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 30

Hibernate how to map the CD class to the database. Listing 3.2 shows the mapping document needed for
our CD class.

<?xml version=" 1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
http://www.sourceforae.net/hibernate-mapping-2.0.dtd>

<hibernate-mapping>
<class name="CD"
table="cd">

<id name="id"
type="int"
unsaved-value="null">
<column name="ID"

sql-type="int"
not-null="true"/>

<generator class="hilo"/>
</id>

<property name="title"/>
<property name="artist"/>
<property name="purchasedate" type="date"/>
<property name="cost" type="double"/>

</class>
</hibernate-mapping>

Listing 3.2

In Listing 3.2, we’ve created a mapping document for Hibernate that relates the CD class to the underly-
ing cd database table. As you’ll see in Chapter 15, tools are available to help you with the process of
mapping Java class that need to be persisted. Also, in Chapter 5, we’ll provide a comprehensive review
of the mapping document; for now, let’s discuss the document in Listing 3.2.

The mapping document is an XML document, and it includes the necessary tags to indicate its status.
The root element is <hibernate-mapping>; it contains all the <class> elements used to define spe-
cific mappings from a Java class to the database. The <hibernate-mapping> element in our example
doesn’t include any attributes; but if the class to be persisted was part of a package, we’d have an
attribute called package. The full package declaration can be used to provide a package prefix for all
the classes in this mapping file. If you don’t include a package attribute in the <hibernate-mapping>
element, you must provide a fully qualified class name in the <class> element.

The <class> element in our example includes two attributes:

❑ name: Identifies the fully qualified class name for the class or interface being mapped; if the
package prefix is used in the <hibernate-mapping> element, the class name can be the
unqualified name.

❑ table: Specifies the name of the table in the database where the mapped class will be persisted.

31

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 31

The <class> element includes numerous elements to fully map the Java class. In our example, we use
two subelements: <id> and <property>. The <id> element maps the unique ID attribute added to our
CD class to the primary key of the database. In our example, the <id> element includes both attributes
and subelements. The attributes include the following:

❑ name: The attribute name found in the CD.

❑ type: The class type given to the ID attribute.

❑ unsaved-value: Specifies whether Hibernate should persist an object. The identifier attribute of
our CD class is called id; it holds a value of null for a new object and an integer value for an
object pulled from storage. Hibernate obtains the value of the identifier and compares it to the
value specified in the unsaved-value attribute to determine whether Hibernate should persist
the object. If the default value of the identifier used in your application isn’t null, you need to
place the default value in the unsaved-value attribute.

The <id> element also includes a couple of subelements: <column> and <generator>. The <column>
element tells Hibernate what specific column in the mapped database table relates to the identifier for
the class. In our case, we use a <column> element with the name, sql-type, and not-null attributes set
to the values used in the definition of the cd database table.

When Hibernate places an object in the database, it must be sure that each row is unique, because the
rows represent specific objects. It’s possible for two objects in the system to have the same attribute val-
ues. If this occurs, the system needs to be able to distinguish the objects in the database. To do this, we
specified the identifier with our Java class and added the ID column to the database table. Hibernate
uses the identifier to assign a unique value, which is created using a generator. The <generator> ele-
ment specifies the generator to be used when creating the unique identifier. The generator class is speci-
fied in the name attribute of the <generator> element. Hibernate includes quite a few generators; we’ll
discuss them in Chapter 4. For our example, we’ve chosen the hilo generator; it generates an int, short,
or long value that is unique for a given database table.

After the <id> element has been specified, we need to let Hibernate know about the attributes to be per-
sisted from our CD class. The specification comes from the <property> element.

You can build objects in an application and not persist all the attributes. When Hibernate pulls an object
from the database, those attributes that aren’t part of the persisted attributes are given their Java default
value. In our example, we’ve persisted four attributes using the following elements:

<property name="title"/>
<property name="artist"/>
<property name="purchasedate" type="date"/>
<property name="cost" type="double"/>

The only required attribute in the <property> element is name, which is the name of the attributes in
our CD class. Hibernate uses reflection to locate the setter/getter methods for each attribute specified.
Any attributes that we don’t want to be persisted aren’t listed. In the purchasedate and cost elements,
we’ve included the type to be used for the attribute: If the type attribute isn’t included in an element,
Hibernate uses reflection to try to guess the attribute type; and for these two elements, we want to make
sure Hibernate gets the type right. For title and artist, the String type will be easily obtained through the
reflection mechanism.

32

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 32

You should save the mapping document in a file with the format <classname>.hbm.xml. We saved our
mapping document in the file CD.hbm.xml.

As you might expect, much more can appear in a Hibernate mapping document. We’ll cover the addi-
tional attributes and elements throughout the book as we discuss more advanced topics.

Application Skeleton Code
Because we don’t just want to present a “Hello World” application, we’ve come up with a small applica-
tion that stores a list of CDs. The full code for the application appears in Listing 3.3. We’ll refer to this
code throughout this section of the chapter.

import java.io.*;
import java.awt.*;
import javax.swing.*;
import java.util.*;
import javax.swing.table.*;
import javax.swing.event.*;
import java.awt.event.*;

import net.sf.hibernate.*;
import net.sf.hibernate.cfg.*;

public class CDTest extends JFrame implements ListDataListener {

JList list;
CDList listModel;
JTextField artistField;
JTextField titleField;
JTextField costField;
JTextField IDField;
JLabel IDLabel;
int selectedListIndex;

SessionFactory sessionFactory;

public CDTest(){
try {
Configuration cfg = new Configuration().addClass(CD.class);
sessionFactory = cfg.buildSessionFactory();

} catch (Exception e) {
e.printStackTrace();

}

buildGUI();
}

private void buildGUI() {
Container container = getContentPane();
listModel = new CDList();

// listModel.addCD("Grace Under Pressure", "Rush", new Date(), 9.99);

33

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 33

list = new JList();
list.setModel(listModel);
list.setCellRenderer(new CDRenderer());
container.add(list, BorderLayout.NORTH);

list.addListSelectionListener(new ListSelectionListener() {
public void valueChanged(ListSelectionEvent ae) {
JList list = (JList)ae.getSource () ;
CDList model = (CDList)list.getModel();

selectedListIndex = ((JList)ae.getSource()).getSelectedIndex();

CD cd = (CD)model.getElementAt(selectedListIndex);
IDLabel.setText(""+cd.getId());
titleField.setText(cd.getTitle());
artistField.setText(cd.getArtist());
costField.setText(""+cd.getCost());

}
});

JPanel panel = new JPanel(new GridLayout(7,2));
artistField = new JTextField(25);
titleField = new JTextField(25);
costField = new JTextField(25);
IDLabel = new JLabel();

panel.add(new JLabel("ID"));
panel.add(IDLabel);
panel.add(new JLabel("Title"));
panel.add (titleField);
panel.add(new JLabel("Artist"));
panel.add (artistField);
panel.add(new JLabel("Cost"));
panel.add(costField);

JButton button = new JButton("Update");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
CD cd = (CD)listModel.getElementAt(selectedListIndex);

cd.setTitle(titleField.getText());
cd.setArtist(artistField.getText());
cd.setCost((double)Double.parseDouble(costField.getText()));

try {
Session session = sessionFactory.openSession();
session.update(cd);

session.flush();
session.close();

} catch (Exception e) {}

IDLabel.setText("");
titleField.setText("");

34

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 34

artistField.setText("");
costField.setText("");
}

});
panel.add (button);

button = new JButton("Add");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
CD cd = new CD(artistField.getText(),

titleField.getText(),
new Date(),
Double.parseDouble(costField.getText()));

listModel.addCD(cd);

try {
Session session = sessionFactory.openSession();

session.save(cd);
session.flush();

session.close();
} catch (Exception e) {
e.printStackTrace();

}

IDLabel.setText("");
titleField.setText("");
artistField.setText("");
costField.setText("");
}

});
panel.add (button);
button = new JButton("Delete");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
CD cd = (CD)listModel.getElementAt(selectedListIndex);

try {
Session session = sessionFactory.openSession();

session.delete(cd);
session.flush();
session.close();

} catch (Exception e) {}

listModel.removeElement(selectedListIndex);

}
});
panel.add (button);

button = new JButton("Pull All");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
try {
Session session = sessionFactory.openSession();

35

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 35

java.util.List cds = session.find("from CD");
session.close();

listModel.addCDs(cds);
} catch (Exception e) {

JOptionPane.showMessageDialog(null,
"No CD", "problem pulling cds", 0);

}
}

});
panel.add(button);

IDField = new JTextField(25);
panel.add(IDField);

button = new JButton("Pull Single");
button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
int index = Integer.parseInt(IDField.getText());
try {
Session session = sessionFactory.openSession();
CD cd = new CD();
session.load(cd, new Integer(index));
session.close();

listModel.addCD(cd);
} catch (Exception e) {
JOptionPane.showMessageDialog(null,

"No CD", "No CD with that ID", 0);
}

}
});
panel.add (button);

container.add(panel, BorderLayout.SOUTH);

setSize(300,250);
setVisible(true);

}

public void intervalAdded(ListDataEvent e) {
list.invalidate();

}

public void contentsChanged(ListDataEvent e) {
list.invalidate();

}

public void intervalRemoved(ListDataEvent e) {
list.invalidate();

}

public static void main(String [] args) {
CDTest t = new CDTest() ;

36

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 36

}

private class CDList extends AbstractListModel {
Vector v = new Vector();

public void addCD(String title,
String artist,
Date pdate, double cost) {

CD cd = new CD(title, artist, pdate, cost);
v.add(cd);
fireContentsChanged(this, 0, 0);

}

public void addCD(CD cd) {
v.add(cd) ;
fireContentsChanged(this, 0, 0);

}

public void addCDs(java.util.List cds) {
v.addAll(cds);
fireContentsChanged(this, 0, 0);

}

public int getSize() {
return v.size();

}

public void removeElement(int index) {
v.removeElementAt(index);
fireContentsChanged(this, 0, 0);

}

public Object getElementAt(int index) {
return v.elementAt(index);

}
}

private class CDRenderer extends JLabel implements ListCellRenderer {
private Color HIGHLIGHT = new Color(0,0,128);

public CDRenderer() {
setOpaque(true);

}

public Component getListCellRendererComponent(JList list,
Object value,

int index,
boolean isSelected,
boolean cellHasFocus) {

CD cd = (CD)value; setText(cd.getTitle());
if (isSelected) {
setBackground(HIGHLIGHT);
setForeground(Color.white);

} else {

37

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 37

setBackground(Color.white);
setForeground(Color.black);

}
return this;

}
}

}

Listing 3.3

The code in Listing 3.3 creates the GUI shown in Figure 3.2. This application lists all the CDs it knows
about by title and lets you enter, delete, and update CDs. Unfortunately, once you enter a CD, it’s lost
when the application exits; therefore, we need to add persistence to the CD objects. That is the goal of the
remainder of this section.

38

Chapter 3

Figure 3.2

Loading the Mapping into an Application
With our example application ready and the mapping established between the CD class and the
database, we can begin to incorporate Hibernate into our application. The first step is to build a
Configuration object. The Configuration object is responsible for pulling, parsing, and compiling
the mapping documents into a format that Hibernate uses internally. We’ll create the configuration file in
the constructor of the example code. Here’s the new code:

public CDTest() {
Configuration cfg = new Configuration().addClass(CD.class);
buildGU();

}

05_576771_c03.qxd 9/1/04 12:16 PM Page 38

This code creates a new Configuration object and then tries to load the mapping documents for the
class specified in the addClass() method. By default, the code attempts to find a file named
CD.hbm.xml. As you look at other Hibernate code, you’ll also see an .addFile(String) method used
to load the mapping component file. The .addFile(String) method takes the name of the mapping
component filename as its parameter.

It’s also possible to load a specific properties file when instantiating the Configuration object. For
example, instead of loading the default hibernate.properties file, we could load our own with the
following code:

Properties props = new Properties();
Configuration cfg = new Configuration().

addClass(CD.class).setProperties(props);

This technique of instantiating the Configuration object lets an application load specific properties
based on a determination like a runtime flag, which determines the database type being used. Different
property files can be set up with the appropriate properties for each database to be used.

Obtaining the SessionFactory
The Configuration object handles all the parsing and internal processing of mapping documents.
Most of the real work done by Hibernate occurs in a Session object. To build a Session object, a
SessionFactory object needs to be instantiated from the Configuration object. We further expand
the CD class’s constructor:

public CDTest() {
Configuration cfg = new Configuration().addClass(CD.class);
sessionFactory = cfg.buildSessionFactory();

buildGUI();
}

The constructor assumes there is a class attribute defined as follows:

sessionFactory = null;

The buildSessionFactory() method builds a factory based on the specifics of the mapping docu-
ments processed by the Configuration object. Once the SessionFactory object has been created,
the Configuration object can be discarded.

Creating Persistent Classes
Now that we have a SessionFactory, we need to do two things: create a new CD object and create a
session for when we want to save the object to storage. Creating the CD object is easy. If you look back at
our skeleton code, you’ll see that we create a new CD object when the Add button is clicked. As far as
Hibernate is concerned, this is all we need to do to create a new object. However, once the object has
been created, we should save it to permanent storage. We do this by obtaining a Session object and
using the save() method:

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {

39

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 39

CD cd = new CD(artistField.getText(),
titleField.getText(),
new Date(),

Double.parseDouble(costField.getText()));
listModel.addCD(cd);

try {
Session session = sessionFactory.openSession();
session.save(cd);

session.flush();
session.close();

} catch (Exception e) {
e.printStackTrace();

}

IDLabel.setText("");
titleField.setText("");
artistField.setText("");
costField.setText("");
}

});

The code for the Add button includes both application code and statements for the heart of Hibernate.
First we instantiate a new CD object. Note that if you glanced at the value of the id attribute just after the
CD object was created, it would have a default value of null. Remember when we created the mapping
document, we told the system the unsaved value for our object was null. Hibernate will know that this
object hasn’t been persisted.

After the new CD object is added to the internal vector, we begin the Hibernate processing. The first step
in persisting our CD object is to create a Session object. The Session object handles all the work
involved in saving, updating, and loading objects from permanent storage. A Session should be
invoked for a short time, to save or load an object. Generally, a Session object isn’t created when the
application is started and closed when the application exits; instead, it’s created when needed and
closed when a persistence operation has completed.

With this in mind, we create a Session object using the SessionFactory that was created when the
application’s constructor was called. One of the most important actions performed by the Session
object is creating a connection to the database. The Session object includes a few methods to use when
you’re persisting an object to the database, including save(), saveOrUpdate(), and update(). The
methods are differentiated based on the following criteria:

❑ save(): An object hasn’t been persisted before.

❑ update(): An object has been persisted before.

❑ saveOrUpdate(): The object might have been persisted before, but we don’t know.

Since we just created a new CD object, clearly we want to use the save() method. To persist the new
object, we call the save() method of the Session object, passing in the object that needs to be per-
sisted. Hibernate checks the identifier in the new object and compares it against the unsaved value
defined in the mapping component. We expect the value to be null, so the system will save the object to
the database. Just before closing the session, we perform a flush on the session; the flush causes the

40

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 40

system to automatically perform the Hibernate operation on the database instead of caching it. Finally,
the session is closed, which ultimately closes the connection to the database.

We don’t need to do anything else at this point in the code. We’ve created a new CD, added it to the list
model for our GUI, and persisted the object to permanent storage. The last line in the addCD() method
displays the ID assigned to the object by Hibernate. For our example code, the ID created is:

131073

As you add more CDs to the application, the identifier will change based on the generator specified in
the mapping document:

mysql> select * from cd;
+--------+-------------+----------------------+---------------------+-------+
| ID | title | artist | purchasedate | cost |
+--------+-------------+----------------------+---------------------+-------+
131073	Rush	Grace Under Pressure	2004-04-03 00:00:00	9.99
131074	Evanescence	Fallen	2004-04-03 00:00:00	13.84
163841	Nickelback	The Long Road	2004-04-03 00:00:00	11.99
+--------+-------------+----------------------+---------------------+-------+
3 rows in set (0.01 sec)

Updating Objects
The applications you’ll build will do more than just create an object and be done with it. Sometimes the
object will be updated with new information from either external processes or the user. You can change
the information found in a CD object through our example application. If you click one of the CDs listed,
the information for that CD appears in the text fields at the bottom of the application window. Figure 3.3
shows an example of this action.

41

Hibernate Development Environment

Figure 3.3

You can change each of the values displayed and then click the Update button. For the Update button,
we’ve added an ActionListener through an anonymous inner class:

05_576771_c03.qxd 9/1/04 12:16 PM Page 41

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
CD cd = (CD)listModel.getElementAt(selectedListIndex);

cd.setTitle(titleField.getText());
cd.setArtist(artistField.getText());
cd.setCost((double)Double.parseDouble(costField.getText()));

try {
Session session = sessionFactory.openSession();
session.update(cd);

/ session.flush();
session.close();

} catch (Exception e) {}

IDLabel.setText("");
titleField.setText("");
artistField.setText("");
costField.setText("");
}

});

The first few lines of code obtain a reference to the CD object selected from the list and edited in the
application text fields. Each attribute in the CD object is updated with the new value edited by the user.
(This code would be the same with or without Hibernate.)

After the object has been updated in the application, we obtain a Session object from the
SessionFactory and make a call to the update() method, passing in the CD object. We’re using the
update() method because we know the object has already been stored in the database (the save()
method is used when the CD object is first created). If you need to verify this, you can include a couple of
println() calls and output the identifier for the object before and after the update() call. The identi-
fier is defined, and it doesn’t change after the update.

The result of the update() method is an UPDATE SQL statement issued to the database using the iden-
tifier as an index to the table. After the object has been updated, the session is closed. The following
information from our database shows that the price for the Nickelback CD has been updated:

mysql> select * from cd;
+--------+------------+----------------------+---------------------+-------+
| ID | title | artist | purchasedate | cost |
+--------+------------+----------------------+---------------------+-------+
| 131073 | Rush | Grace Under Pressure | 2004-04-03 00:00:00 | 9.99 |
| 163841 | Nickelback | The Long Road | 2004-04-03 00:00:00 | 11.99 |
+--------+------------+----------------------+---------------------+-------+
2 rows in set (0.00 sec)

mysql> select * from cd;
+--------+------------+----------------------+---------------------+------+
| ID | title | artist | purchasedate | cost |
+--------+------------+----------------------+---------------------+------+
| 131073 | Rush | Grace Under Pressure | 2004-04-03 00:00:00 | 9.99 |
| 163841 | Nickelback | The Long Road | 2004-04-03 00:00:00 | 11.5 |
+--------+------------+----------------------+---------------------+------+
2 rows in set (0.00 sec)

42

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 42

Deleting Objects
When you delete an object, you normally remove the application’s reference to the object; this eventually
lets the Java garbage collector recover the memory space. However, with persisted objects, the idea of
performing a delete has more meaning. We’re no longer just talking about using the object but about
removing the data from permanent storage.

In our example application, we can remove an object from our list of CDs. The code is as follows:

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
CD cd = (CD)listModel.getElementAt(selectedListIndex);

try {
Session session = sessionFactory.openSession();

session.delete(cd);
session.flush();
session.close();

} catch (Exception e) {}

listModel.removeElement(selectedListIndex);

}
});

The first part of this code should look familiar: We obtain a reference to the currently selected CD object
from the list model. Once we have the reference, we obtain a session and call the delete() method,
passing in the object we want to remove from permanent storage. As you’d expect, the Session object
creates a connection to the database and issues a DELETE SQL command. As a result, the object is per-
manently removed from the database.

We also need to add a new method to our CDList model class. The method is

public void removeElement(int index) {
v.removeElementAt(index);

}

This method handles removing the CD object from the list model and updating the list.

Loading Persistent Classes
In developing our example application, we’ve added code that lets us create a new CD record and put it
in permanent storage. The object can be updated both in the application and in the database. If neces-
sary, the object can be removed from the list of available CDs and permanently removed from the
database. So, what’s missing?

At this point, when we restart the application, it won’t have any CDs to display. All the CDs are in the
database but not in the application. To access the CDs in the database, we need to load them. There are
two basic ways to load a persisted object from the database, and they differ based on whether you know
the value of the identifier for each object. In this section, we’ll explain how to load an object if you know
the identifier; we’ll discuss loading without the identifier in the next section.

We obtain an object from the database using the object’s unique identifier with code like the following:

43

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 43

Session session = sessionFactory.openSessionO;
CD cd = new CDO;
session. load(cd, 45);
session.close();

Hibernate issues a SELECT to the appropriate database table to obtain the object corresponding to the
provided identifier. In this case, the system attempts to pull a row where ID equals 45. If the database
contains such a row, the fields of the provided CD object are filled, and the object can be used in the
application as needed. If the object row can’t be found, an exception is thrown.

If there is a chance the object row won’t be found in the database, you can use an alternative method:
get(). Here’s some example code:

Session session = session Factory.openSession();
CD cd = session. get(CD.class. 45);
if (cd ==null) {
cd = new CD("","");

session.save(cd, 45);
}
session.close();

In this code snippet, we attempt to get the object where the identifier is 45. If the row is found, the CD
object is populated. If the row isn’t found, the CD object is null. In this case, we create a new CD object,
populate it with the appropriate values, and immediately save the object to permanent storage using the
identifier value 45. Notice that in this code we use the save() method without specifying an identifier.
For most applications, you’ll allow the Hibernate system to generate the identifier. This is what occurs
when you use the save(Object) method. In the previous snippet, we knew there was no object row
with an ID value of 45, so we could safely save the object with a specific identifier.

Our example lets the user instantiate a specific CD object by entering the ID into the ID field and clicking
the Pull Single button (Figure 3.4 shows an example).

44

Chapter 3

Figure 3.4

05_576771_c03.qxd 9/1/04 12:16 PM Page 44

The code for the Pull Single button is as follows:

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
int index = Integer.parseInt(IDField.getText());
try {
Session session = sessionFactory.openSession();
CD cd = new CD();
session.load(cd, new Integer(index));
session.close();

listModel.addCD(cd);
} catch (Exception e) {
JOptionPane.showMessageDialog(null,

"No CD", "No CD with that ID", 0);
}

}
});

For the new button code, we obtain the value of the CD index for the user, convert it to an integer, and
then attempt to load the object. If the load is successful, the object is added to the listModel for the list
component and displayed to the user. Otherwise the user sees an error message.

Finding Data Objects
Our example application GUI also has a Pull All button that pulls all the objects from the cd database.
Based on the code we’ve already written, pulling the objects from the database one at a time won’t be
efficient. In fact, how would we know when to stop pulling objects? Do we know that the identifier val-
ues will start at 1 and increment by 1?

Fortunately, Hibernate has a solution: We can do a query against the object table using Hibernate’s query
language or traditional SQL. We’ll explore both of these options in more detail in Chapter 8, but we’ll
use them a little now. To find objects in the object table, Hibernate includes a method called find() in
the Session object. The find() method accepts Hibernate Query Language (HQL).

Here’s the code in the Pull All button:

button.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent ae) {
try {
Session session = sessionFactory.openSession();
java.util.List cds = session.find("from CD");

session.close();

listModel.addCDs(cds);
} catch (Exception e) {

JOptionPane.showMessageDialog(null,
"No CD", "problem pulling cds", 0);

}
}

});

45

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 45

We begin by obtaining the Session object. Next, we have the Session object execute the find()
method using an HQL expression. The "from CD" tells Hibernate to pull all the object rows from the
table CD. You can see the similarity to SQL, where the query would read SELECT * FROM CD. Since we
don’t pull individual columns from the object rows but instead pull the entire object, the SELECT * is
redundant; it isn’t used when formulating a query string with HQL.

The result of the find() method call is a list of CD objects. We pass this list to the list model object, and
the CDs are displayed to the user. The find() method is a great way to obtain all the objects (or just a
few) from a table, depending on the query. We’ll look at additional queries in Chapter 8.

Exercising the Application
At this point, we’ve covered all the pieces of our example application. You can add new CDs, update
them, and load them as needed, and all the information is kept permanently in the database. This exam-
ple shows how to use Hibernate in a standalone application. We’ll now turn our attention to the Web
and create a Web form that lets the user view the same CD information remotely.

A Servlet-Based Hibernate Application
Imagine that the standalone application we created is being used in an office situation. Some employees
need access when they’re on the road, but the VPN isn’t reliable. The solution is to build a Web applica-
tion that can access the persisted CD objects. In this section, we’ll show how to set up Tomcat and
develop a servlet that interacts with Hibernate to provide full access.

Installing and Configuring Tomcat
The first step toward the remote application is to obtain and install Tomcat. We’ll leave the particulars of
this task to you; you can find Tomcat at http://jakarta.apache.org/tomcat/.

Once you’ve installed Tomcat, you need to set up the JARs. First, if you previously set up the class-
path to use the standalone application, you should remove the JAR from the global classpath to prevent
Java from choosing the wrong JAR files. Now take the JDBC driver for your database and place in the
global classpath so Tomcat can find it.

Next, let’s create a directory structure for our new application so we’ll have a place to put the other
Hibernate JARs. In the /webapps directory of the Tomcat installation, add the following structure:

/cdviewer/WEB-INF/lib
/cdviewer/WEB-INF/classes

Place all the JARs from the /lib directory of the Hibernate installation into the /webapps/cdviewer/
WEB-INF/lib directory. With all the libraries installed, you can set up Tomcat to access the database.

46

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 46

Setting Up Tomcat Database Access
When you’re using an application server like Tomcat, it’s customary to build a resource declaration for
JDBC database connections in Tomcat’s configuration file: /conf/server.xml. Add the following XML to
the server.xml file:

<Context path="/cdviewer" docBase="/cdviewer">
<Resource name="jdbc/pullcd"

scope="Shareable"
type="javax.sgl.DataSource"/>
<ResourceParams name="jdbc/pullcd">
<parameter>
<name>factory</name>
<value>

org.apache.commons.dbcp.BasicDataSourceFactory
</value>
</parameter>

<parameter>
<name>url</name>
<value>jdbc:mysgl://localhost/CD</value>
</parameter>
<parameter>
<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>
</parameter>
<parameter>
<name>username</name>
<value></value>
</parameter>
<parameter>
<name>password</name>
<value></value>
</parameter>
<parameter>
<name>maxWait</name>
<value>2000</value>
</parameter>
<parameter>
<name>maxIdle</name>
<value>250</value>
</parameter>
<parameter>
<name>maxActive</name>
<value>5</value>
</parameter>
</ResourceParams>
</Context>

This <Context> element was pulled directly from one of the test machines for this application. You’ll
need to make the appropriate changes for the url and driverClassName entries based on the
database you’re using. Be sure to update the username and password values and set to the appropriate

47

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 47

values. From the entries in this XML file, you can see that Tomcat handles connection pooling for the
application through the Jakarta Commons DBCP connection pool class.

With Tomcat’s database JNDI information configured, you can move to the hibernate.cfg.xml or
hibernate.properties file, depending on which one you chose to use for configuration. If you’re using a
MySQL database, the configuration file might appear as follows:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd>

<hibernate-configuration>
<session-factory>
<property name="connection.datasource">
java:comp/env/jdbc/pullcd
</property>

<property name="show_sgl">false</property>
<property name="dialect">
net.sf.hibernate.dialect.MySQLDialect
</property>

<mapping resource="CD.hbm.xml"/>
</session-factory>
</hibernate-configuration>

You’ll notice that instead of specifying the URL, driver, and other database information in the configura-
tion file, we reference the JNDI parameter java:comp/env/jdbc/pullcd.

We’ve also added an appropriate web.xml file to the /cdviewer directory. The web.xml file looks like
this:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app PUBLIC
"-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
<servlet>
<servlet-name>viewer</servlet-name>
<servlet-class>CDViewer</servlet-class>

</servlet>

<servlet-mapping>
<url-pattern>/viewer</url-pattern>
<servlet-name>viewer</servlet-name>

</servlet-mapping>
</web-app>

48

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 48

Adding Hibernate to the Web Application
To build our Web application, the first step is to copy the CD class created earlier into the /classes direc-
tory. Since we’ll be accessing the same CD objects in our Web application, we need the CD class to save
the objects.

Next, we need to write the servlet. You might decide to dive right in, but you need to know a few key
things before writing the servlet code.

There should only be a single SessionFactory for your application. This means you won’t be able to
put the SessionFactory instantiation code in your servlet and instantiate it every time the servlet exe-
cutes. When a Session object is created from the SessionFactory, it’s designed to handle the work
at hand and then be closed. Thus, it isn’t thread-safe. In fact, when you’re working with servlets, you
should have a specific session for each threaded instance of the servlet. You can handle this situation a
few different ways.

You can create a static class to hold the SessionFactory and use a ThreadLocal attribute for the ses-
sion variable; this is the option provided in the Hibernate reference manual. Alternatively, you can use
the init() method in a servlet. For example, consider Listing 3.4, which contains the traditional skele-
ton code for a servlet.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*;

public class CD Viewer extends HttpServlet {
private SessionFactory sessionFactory;

public void init(ServletConfig config) throws ServletException {
super.init(config);

sessionFactory = new Configuration().
addClass(CD.class).buildSessionFactoryO;

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");
PrintWriter out = response. getWriter();

}

public void doGet(HttpServletRequest request,
HttpServletREsponse response)

throws IOException, ServletException {
doGet(request, response);

}
}

Listing 3.4

49

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 49

We’ve added an init() method to the servlet code to handle the creation of the SessionFactory
object. The application server calls the init() method when the servlet is first prepared to handle
incoming requests. For the execution lifecycle of the servlet, we’re assured the init() method will be
called once. We’ll instantiate specific Session objects in the servlet code, since a session isn’t thread-
safe; thus we should obtain the session, use it, and close it like any other database connection. Using this
methodology, we can be sure the session is closed before the response is returned to the user.

Interface Page
To let outside employees access the CD objects in permanent storage, we need to have an appropriate
Web page. Figure 3.5 shows an example of the page presented to users.

50

Chapter 3

Figure 3.5

Figure 3.6 shows an example of the output when the user clicks Pull All CDs.

Figure 3.6

05_576771_c03.qxd 9/1/04 12:16 PM Page 50

The initial Web page is created using HTML; it’s shown in Listing 3.5.

<HTML>
<HEAD>
<TITLE>CD VIEWER</TITLE>

<BODY>

<form action="/cdviewer/viewer" method="post">

<input type="submit" name="submit" value="Pull All CDs">

</form>
</BODY>

</BODY>
</HTML>

Listing 3.5

The most important aspect of the HTML code is found in the <form> tag, where the action specifies
the /cdviewer/viewer servlet. When the use clicks the Submit button, the servlet we’ll build next is
executed.

Writing a Servlet to Use Hibernate
To produce the output shown in Figures 3.5 and 3.6, we need to begin writing the code in our servlet.
Listing 3.6 shows the servlet code.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*;
import java.util.*;

import net.sf.hibernate.*;
import net.sf.hibernate.cfg.*;

public class CDViewer extends HttpServlet {
private SessionFactory sessionFactory;

public void init(ServletConfig config) throws ServletException {
super.init(config);

try {
sessionFactory = new Configuration().

addClass(CD.class).buildSessionFactory();
} catch(Exception e) {
e.printStackTrace();

}
}

51

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 51

private void displayAll(PrintWriter out, Session session) {
try {
out.println("<html>");
out.println("<table border='1'>");
out.println("<tr><td>Title</td><td>Artist</td><td>cost</td></tr>");
List cds = session.find("from CD");

Iterator iter = cds.iterator();
while (iter.hasNext()) {
CD cd = (CD)iter.next();
out.println("<tr><td>");
out.println(cd.getTitle());
out.println("</td><td>");
out.println(cd.getArtist());
out.println("</td><td>");
out.println(cd.getCost());
out.println("</td></tr>");

}
} catch(Exception e) {}

out.println("</table>");
out.println("</html>");

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws IOException, ServletException {

response.setContentType("text/html");
PrintWriter out = response. getWriter();

Session session = null;

try {
session = sessionFactory.openSession();

String action = request.getParameter("submit");
if (action.equals("Pull All CDs")) {
displayAll(out, session);

} else {
out.println("Bad Input");

}

session.flush();
session.close();

} catch (Exception e) {
e.printStackTrace();

}
}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

52

Chapter 3

05_576771_c03.qxd 9/1/04 12:16 PM Page 52

throws IOException, ServletException {
doGet(request, response);

}
}

Listing 3.6

When the servlet is first executed, the application server executes the init() method that instantiates
the SessionFactory object. Since the init() method is executed only once, we get a single
SessionFactory object.

Next, the code in the doGet() method executes. This code begins by setting up for HTML output. Next,
the tags for an HTML table are output along with the values for the table heading. Finally, we begin to
access the data needed for the rows of the table. All the CD objects are obtained through the find()
method of the Session object that was instantiated before we began to output the HTML.

We haven’t done anything special to access the CD objects; we’ve obtained a Session object, pulled the
objects, and displayed their attributes for the user. Note that we close the Session object before exiting
the servlet. It’s important to close the Session object before the servlet is finished; otherwise a database
connection could be left in a precarious position.

Summary
When you’re using Java to develop either standalone applications or Web servlets, persisting the object
to permanent storage should be as easy as using Java itself. As you saw from the two applications in this
chapter, adding persistence to Java with Hibernate is a simple process. We’ve touched on how you can
use Hibernate in Java applications; we’ll expand on these topics in the coming chapters.

53

Hibernate Development Environment

05_576771_c03.qxd 9/1/04 12:16 PM Page 53

05_576771_c03.qxd 9/1/04 12:16 PM Page 54

Database Connecting and
Schema Generation

The most fundamental component of Hibernate is the database: The system must have a place to
persist Java objects. For the most part, setting up the database is a simple process as long as it’s
supported by Hibernate and a JDBC driver is available. The current list of supported databases is
as follows:

❑ DB2

❑ FrontBase

❑ HypersonicSQL

❑ Informix

❑ Ingres

❑ InterBase

❑ Mckoi SQL

❑ Microsoft SQL Server

❑ MySQL

❑ Oracle

❑ Oracle 9

❑ PointBase

❑ PostgreSQL

❑ Progress

❑ SAP DB

❑ Sybase

❑ Sybase Anywhere

444

06_576771_c04.qxd 9/1/04 2:14 PM Page 55

Hibernate supports these databases because a specific Dialect class implemented for the database pro-
vides a listing of the available column types as well as SQL replacement strings. The SQL replacement
strings are used when the database doesn’t support or deviates from generic SQL. A common situation,
as you’ll see in Chapter 5, involves Identity columns: Some databases support them, and some don’t.
The databases that do support Identity columns obtain the identity value in different ways, so there’s a
specific dialect for each.

In addition to the dialect, a database must have a JDBC driver so Hibernate (written in Java) can access
the system. JDBC drivers are available for most major databases either from the database developers or
from a third party.

Because the database is so important to Hibernate, we’ll devote this chapter to discussing the finer
points of using databases in Hibernate. Topics include Hibernate versus user-supplied connections,
connection pooling, using multiple databases, and working with database schemas and the mapping

document.

Overview of Hibernate JDBC Properties
As we touched on in Chapter 3, configuring Hibernate consists of two parts: database setup and map-
pings. You configure the system using one of two files: hibernate.properties or hibernate.cfg.xml. Both of
these files can be used to configure the database to be used in persisting Java objects. However, only
hibernate.cfg.xml can be used to specify the mappings in the current application. For this reason, most
people use the hibernate.cfg.xml file for the entire Hibernate configuration. (It wouldn’t be surprising to
see the hibernate.properties file deprecated in the future.)

Regardless of how you configure the database, you can use a couple dozen properties to set up the sys-
tem properly. In this section, we’ll list and describe the available properties; they affect either the
database connection or the JDBC driver.

hibernate.connection.driverclass
All JDBC drivers are implemented in a Java class, and you must specify that class with this property. You
should provide the fully qualified class. For example, the MySQL JDBC driver provided by MySQL is
com.mysgl.jdbc.Driver. The JAR file containing the JDBC driver needs to be in the application’s global
classpath.

You can find a listing of available JDBC drivers at http://servlet.java.sun.com/products/jdbc/drivers/
index.html. Figure 4.1 shows an example of what you’ll see at that page.

56

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 56

Figure 4.1

57

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 57

hibernate.connection.url
The URL property determines where the database server is located and how to connect with it. In many
cases, you’ll also supply the database to be accessed once a connection is established. The URL has this
format:

<protocol>:<subprotocol>:<subname>

Just as with any other URL, a protocol is involved in the transfer of information between the client and
the server associated with the URL. In this case, the <protocol> is jdbc. The <subprotocol> is asso-
ciated with the driver to be used for the connection; this value depends on the JDBC driver being used.
In the case of MySQL, the <subprotocol> is mysql. Finally, the <subname> is a string of connection
information for the source of the database. The format of the <subname> is:

//<host>[: <port>] [/<database>]

The <host> part of the subname is an IP address or domain name of the database server where a con-
nection should be attempted. In addition to the IP address of the server, the port to use must also be
known. When the database server software is installed, it has a default port value. If you haven’t
changed the port on which the database software listens for connections, you don’t need to specify a
port on the URL string. If you have changed the port value, append it along with a colon to the end of
the IP address or domain name specified. Finally, if you want to use a particular database on the server,
you can specify by appending it along with a slash character (/) to the URL string. Here’s an example
string:

jdbc:mysgl:// 192.168.1.21/products

hibernate.connection.username
Each application that attaches to a database should have a unique username and password associated
with it. You can specify the username using this property. A unique username is important because in
most database systems, you can specify the permissions available to that username; doing so adds a
level of protection when you’re running multiple databases on a single system.

hibernate.connection.password
This property specifies the password to be used with the corresponding username.

hibernate.connection.pool_size
As you’ll see later in this chapter, Hibernate includes a simple connection pool for development use. You
can use this property to specify the total number of connections to initially establish with the database
server.

hibernate.connection.datasource
If you’re working with a JNDI connection, the datasource string is specified in this property.

58

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 58

hibernate.jndi.url
The URL, as defined earlier, is specified in this property when a JNDI source is being used and a URL
isn’t specified with the datasource. This property is optional.

hibernate.jndi.class
This property specifies the name of the JNDI class that implements InitialContextFactory. This
property is optional.

hibernate.dialect
This property specifies the name of the dialect to use for the database connection. We outline the dialect
functionality in detail shortly.

hibernate.default_schema
In SQL query strings, you provide the table or tables from which information should be pulled without
specifying schema or tablespaces. If you want your table to be fully qualified, use the default_schema
property to specify the schema or tablespace Hibernate can generate with its SQL calls to the database
server.

hibernate.Session_factory_name
If you’re using JNDI and wish to provide a binding between the SessionFactory class and a JNDI
namespace, use the session factory_name property. Provide the name, and Hibernate uses the values
specified in hibernate.jndi and hibernate.jndi.class to create the initial context.

hibernate.use_outer_join
As you may have noticed in your SQL experience, an outer join can provide a performance increase
because fewer database accesses are needed. By default, the use_outer_join property is true. If you
don’t want to allow outer joins, set the property to false. For each relationship in an application’s set of
tables, the outer join attribute determines the correct action.

hibernate.max_fetch_depth
The database server can create an outer join using a graph, where the nodes in the graph are tables and
the edge and relationships are join conditions. Using the graph, a depth-first search can be performed to
determine which tables will be part of the outer join. You can limit the depth of the search using this
property. Note that outer joins may reduce the communication with the database, but a lot of work goes
into building the outer join SQL string correctly.

59

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 59

hibernate.jdbc.fetch_size
When JDBC performs a query against the database, some rows are returned based on the fetch size for
the JDBC driver being used. You can use this property to set the total number of rows retrieved by each
JDBC fetch from the database. If you have a SELECT query, and JDBC returns one row at a time to popu-
late a ResultSet object, the performance will be bad. Much of the literature on this subject suggests
that an appropriate number of rows for JDBC to pull is 10.

hibernate.jdbc.batch_size
If you’re using a JDBC driver that supports JDBC 2.x, you may be able to use batch updates. In a batch
update, the JDBC driver groups some number of INSERT, UPDATE, DELETE commands together and
sends them as a batch to the server, thus reducing the communication time between the client and the
database. If the batch_size property is set to a nonzero value, Hibernate attempts to use batch
updates. The value used in the batch_size property dictates the total number of updates to use per
batch.

hibernate.jdbc.use_scrollable_resultset
Another update to JDBC is the concept of a scrollable resultset. If you’re using a user-supplied connec-
tion and wish to have Hibernate use scrollable resultsets, set this property to true. If you’re using a
Hibernate-created connection to the database server, this property has no effect.

hibernate.jdbc.use_streams_for_binary
Although there is debate about how much binary data should be stored in a database, many times you’ll
need to put large quantities into a row. Instead of directly copying the binary data to the query string,
JDBC lets you use a stream. To make JDBC use streams for binary data, set this property to true.

hibernate.cglib.use_reflection_optimizer
By default, Hibernate uses CGLIB; but you can defeat this behavior by setting this property to false. If
the property has a false value, Hibernate uses runtime reflection instead.

hibernate.jndi.<property>
You can provide extraneous properties for JNDI’s InitialContextFactory class using this property.
The property and its value are passed to the JNDI factory.

hibernate.connection.isolation
It can be argued that data integrity is the most important topic when discussing databases. When a
database is confronted with multiple clients making updates and queries (a situation called database con-
currency), data may be changed and returned to clients with wrong values. There are three primary con-
currency issues:

60

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 60

❑ Dirty reads: One transaction changes a value in the database. But before the first transaction is
committed (or possibly before it’s even rolled back), another transaction reads the new data. If
the first transaction performs a rollback of the transaction, the second transaction will have a
bad value.

❑ Nonrepeatable reads: One transaction performs a read on a row in the database. A second
transaction updates the row and commits the transaction. The first transaction performs a
reread on the row and gets modified data (or no data, if the first transaction deleted the row).

❑ Phantom inserts: One transaction performs a read on a number of rows with a specific query.
Another transaction inserts new rows that match the specific query. If the first transaction per-
forms another read with the query, it will receive a different resultset.

You can solve all three of these situations using the isolation levels associated with a database and ANSI
SQL; the following table shows the isolation level needed. Note that not all databases support all four
isolation levels. And, as the level increases, so does the time needed by the database to handle the issues.

Level Name Dirty Read Nonrepeatable Read Phantom Insert

1 Read Uncommitted May occur May occur May occur

2 Read Committed Can’t occur May occur May occur

4 Repeatable Read Can’t occur Can’t occur May occur

8 Serializable Can’t occur Can’t occur Can’t occur

hibernate.connection.provider_class
If you’re using a JDBC driver that includes a custom ConnectionProvider class, you need to specify
that class in this property.

hibernate.transaction.factory_class
This property names a specific TransactionFactory class to be used with Hibernate. We discuss
transactions in more detail in Chapter 10.

jta.UserTransaction
This property specifies the JNDI name for the JTATransactionFactory.

hibernate.show_sql
If you want a log of the SQL commands generated by Hibernate to the underlying database, set the
show_sql property to true. The result will be the SQL query strings output to the console window. For
example, here’s some of the output from our example application in Chapter 3:

Hibernate: select cd0_.ID as ID, cd0_.title as title,
cd0_.artist as artist, cd0_.purchasedate as purchase4_,
cd0_.cost as cost from cd cd0_

61

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 61

Hibernate: insert into cd (title, artist, purchasedate, cost, ID)
values (?, ?, ?, ?, ?)

Hibernate: update cd set title=?, artist=?, purchasedate=?,
cost=? where ID=?

Hibernate: delete from cd where ID=?

Query Substitutions
When you’re using the Hibernate Query Language (HQL), Hibernate formulates appropriate SQL state-
ments according to the dialect specified for the database. If you need to help Hibernate with a query, you
can specify substitutions in the Hibernate configuration file. The property for the substitutions is
hibernate.query.substitutions. For example:

hibernate.query.substitutions true "Y" false "N"

SQL Dialect Determination
When you’re defining a database connection, you can add the hibernate.dialect property to the
properties or configuration file. This property tells Hibernate the type of database the current connection
is associated with. Although it isn’t a required property, hibernate.dialect allows Hibernate to customize
itself and the SQL queries for a specific database.

Some of the information Hibernate customizes is based on the Dialect parent class. The Dialect class
and subsequent child classes include methods like public String getIdentitySelectString();
this function specifies the SQL needed to obtain an Identity value from the database. If you look at the
code for MySQLDialect and SybaseDialect (used for both Sybase and Microsoft SQL Server), found
in the Hibernate installation at \src\net\sf\hibernate\dialect, you’ll see that it’s different. In
MySQLDialect, the String returned for this method is:

return "SELECT LAST_INSERT_ID()";

For Sybase/Microsoft SQL Server, the String returned is:

return "select @@identity";

Another important part of the Dialect class and its child classes is a method called
registerColumnType(). In each of the Dialect classes, this method tells Hibernate the column
types available as well as the names appropriate in Hibernate. For example, here is the constructor for
the MySQLDialect class:

public MySQLDialect() {
super();
registerColumnType(Types.BIT, "BIT");
registerColumnType(Types.BIGINT, "BIGINT");
registerColumnType(Types.SMALLINT, "SMALLINT");

62

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 62

registerColumnType(Types.TINYINT, "TINYINT");
registerColumnType(Types.INTEGER, "INTEGER");
registerColumnType(Types.CHAR, "CHAR(1)");
registerColumnType(Types.VARCHAR, "LONGTEXT");
registerColumnType(Types.VARCHAR, 16777215, "MEDIUMTEXT");
registerColumnType(Types.VARCHAR, 65535, "TEXT");
registerColumnType(Types.VARCHAR, 255, "VARCHAR($l)");
registerColumnType(Types.FLOAT, "FLOAT");
registerColumnType(Types.DOUBLE, "DOUBLE PRECISION");
registerColumnType(Types.DATE, "DATE");
registerColumnType(Types.TIME, "TIME");
registerColumnType(Types.TIMESTAMP, "DATETIME");
registerColumnType(Types.VARBINARY, "LONGBLOB");
registerColumnType(Types.VARBINARY, 16777215, "MEDIUMBLOB");
registerColumnType(Types.VARBINARY, 65535, "BLOB");
registerColumnType(Types.VARBINARY, 255, "VARCHAR($l) BINARY");
registerColumnType(Types.NUMERIC, "NUMERIC(19, $l)");
registerColumnType(Types.BLOB, "LONGBLOB");
registerColumnType(Types.BLOB, 16777215, "MEDIUMBLOB");
registerColumnType(Types.BLOB, 65535, "BLOB");
registerColumnType(Types.CLOB, "LONGTEXT");
registerColumnType(Types.CLOB, 16777215, "MEDIUMTEXT");
registerColumnType(Types.CLOB, 65535, "TEXT");

getDefaultProperties().
setProperty(Environment.USE_OUTER_JOIN, "true");

getDefaultProperties().
setProperty(Environment.STATEMENT_BATCH_SIZE,

DEFAULT_BATCH_SIZE);
}

This list includes each of the MySQL column types Hibernate can deal with during the mapping of a
Java object to the database. If any problems occur during the configuration of a mapping between an
object and a specific database, you can consult the specific dialect and see if you’ve specified the column
correctly; you can also check the constraints for the column.

Another important issue for the dialect and its use is the <generator> element. Some of the ID genera-
tor functions can only be used with specific databases. For example, the identity generator can be used
with DB2, MySQL, Microsoft SQL Sever, Sybase, and HypersonicSQL. It’s a good idea to specify the
database dialect, because Hibernate will be able to determine if the generator is valid.

The following dialects are available in the current version of Hibernate:

❑ net.sf.hibernate.dialect.DB2Dialect

❑ net.sf.hibernate.dialect.FirebirdDialect

❑ net.sf.hibernate.dialect.FrontBaseDialect

❑ net.sf.hibernate.dialect.HSQLDialect

❑ net.sf.hibernate.dialect.InformixDialect

❑ net.sf.hibernate.dialect.Informix9Dialect

63

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 63

❑ net.sf.hibernate.dialect.IngresDialect

❑ net.sf.hibernate.dialect.InterbaseDialect

❑ net.sf.hibernate.dialect.MckoiDialect

❑ net.sf.hibernate.dialect.MySQLDialect

❑ net.sf.hibernate.dialect.Oracle9Dialect

❑ net.sf.hibernate.dialect.OracleDialect

❑ net.sf.hibernate.dialect.PointbaseDialect

❑ net.sf.hibernate.dialect.PostreSQLDialect

❑ net.sf.hibernate.dialect.ProgressDialect

❑ net.sf.hibernate.dialect.SQPDBDialect

❑ net.sf.hibernate.dialect.SQLServerDialect

❑ net.sf.hibernate.dialect.Sybase11_9_2Dialect

❑ net.sf.hibernate.dialect.SybaseAnywhereDialect

❑ net.sf.hibernate.dialect.SybaseDialect

If your database isn’t listed here, then it isn’t directly supported by Hibernate. If you want to experiment
with your own database, you can use the net.sf.hibernate.dialect.GenericDialect class, which defines
several column types and no specific SQL statements.

Using Connection Pooling
When Hibernate needs to persist a Java object, it must have access to the database. There are two ways
to provide access to the database from a connection standpoint: Either the connection has been previ-
ously opened and the current connection can be used, or a new connection can be created.

First, let’s consider opening a single connection for every database interaction. If you need to open a single
connection, the system must locate the server’s IP address by resolving the domain for the server (although
the IP address may have been given already in the database URL). The system contacts the database server
and does some handshaking between the server and the client, including exchanging username and pass-
word information. After the handshake communication is finished, the client (Hibernate, in this case) can
begin using the database system. When Hibernate is finished, it closes the connection. On average, using a
database server on the local LAN running MySQL, a connection can be made in 2.5 to 3.0 seconds. That’s
quite a bit of time—especially if you need to handle many transactions.

Now, consider a situation where a connection was made when the application started. In this scenario,
the application doesn’t need to go through the entire handshake process; it can just use the connection.
Of course, in a multithreaded or Web situation, there must be a monitor on the connection so that only
one thread uses the connection at a time. With synchronization out of the picture, you can quickly obtain
and use the previously established connection.

64

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 64

We need an easy-to-use mechanism between these two scenarios that can handle multiple threads and
provide fast access to a database connection. The solution is called a connection pool: a mechanism that
establishes an optimum number of connections to the database when the application is first executed.
These connections are maintained in a data structure like a queue, commonly called a pool. When the
application needs to communicate with the database, it contacts the mechanism and asks for a connec-
tion. If a connection is available in the pool, the mechanism returns it to the application. If the applica-
tion is multithreaded, each thread can ask for a connection; the mechanism returns a unique connection
to the database. Since the connections were established with the database server at application start,
there is no need to spend time handshaking with the server: The application can immediately begin
using the connection. When the application or thread is finished with the connection, the connection is
returned to the pool and queued up for use at another time. The connection pool optimizes the number
of connections available in the pool by closing some when they’ve been inactive for a long time and
reestablishing connections as needed.

The ability to quickly access a database connection increases Hibernate’s performance. Providing a con-
nection pool for an application that uses Hibernate requires very little work; Hibernate includes a simple
connection pool that you can use in a development setting. If you need performance- or production-level
connection pooling, Hibernate provides three options: C3P0, Apache DBCP, and Proxool. Each of these
packages provides a seamless connection pool with a JDBC driver and can be used in a standalone or
JNDI situation. In the rest of this section, we’ll describe the connection pools, discuss their strengths and
weaknesses, and explain how to configure them for use with Hibernate.

Using Hibernate’s Built-in Pooling
The first connection pool we’ll discuss is the one that comes with Hibernate. This connection pool pro-
vides N number of connections to the database and uses them as needed. The number of initial connec-
tions to the database is specified by the following property:

hibernate.connection.pool_size

For development purposes, you’ll probably use a number like 5 or 10 for this value, since little perfor-
mance testing should occur with the application and the database during development.

When you move to the end of your development phase (and especially in your test phase), you should
use a production-level connection pool package.

Using C3P0
C3P0 is an open-source project available at http://sourceforge.net/projects/c3p0/. A library for it is
supplied with Hibernate in the /lib directory. As of this writing, version 0.8.3 of C3P0 is supplied with
Hibernate, and version 0.8.4.5 is on the sourceforge.net Web site. For our purposes, we’ll use the version
supplied with Hibernate.

The first step in using C3P0 is to put its JAR file (c3p0-0.8.3.jar) in the classpath of the client machine
where the application and Hibernate are executing. Next you need to tell Hibernate that you want to use
the C3P0 connection pool. You do so by using one or more of the C3P0 properties in the configuration
file. The available properties are as follows:

❑ hibernate.c3p0.acquire_increment: The total number of connections C3P0 will create when all
connections in the pool have been used. The default value for this property is 3.

65

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 65

❑ hibernate.c3p0.idle_test_period: The time before a connection in the pool is validated against
the database. The default value for this property is 0. A value greater than 0 causes C3P0 to test
all unused connections every X seconds; where X is the value for this property.

❑ hibernate.c3p0.max_size: The maximum number of connections in the pool. The default value
is 15.

❑ hibernate.c3p0.max_statements: The maximum size of the C3P0 statement cache. The default
value is 0, meaning the cache is turned off.

❑ hibernate.c3p0.min_size: The minimum number of connections in the pool. The default value
is 3.

❑ hibernate.c3p0.timeout: The maximum time a connection will be kept in the pool without being
used. The default value is 0, meaning that all connections in the pool won’t expire.

Once you put a property in the configuration file, Hibernate will begin using the C3P0 connection pool.

Using Apache DBCP
One of the projects in Apache’s Jakarta Commons package is DBCP; this open-source package supports
connection pooling for JDBC connections to a database. You can obtain it at http://jakarta.apache.org/
commons/dbcp/. Downloads for the package are available in both zip and tar format. Once you’ve
downloaded the package, uncompress it; a single JAR file called commons-dbcp-1.1jar will be added to
the root directory. Place this file in your classpath so Hibernate will be able to locate it.

Again, if you want Hibernate to use DBCP for database connection pooling, you must set one of the fol-
lowing properties:

❑ hibernate.dbcp.maxActive: The total number of connections that can be used from the pool at
any given time. The default is 8.

❑ hibernate.dbcp.maxIdle: The maximum number of connections that can remain in the pool at
any given time. The default is 8.

❑ hibernate.dbcp.maxWait: The number of milliseconds a connection can be used from the pool.
The default value of -1 means indefinitely.

❑ hibernate.dbcp.testOnBorrow: Specifies whether a connection is validated before being taken
out of the pool. The default is true.

❑ hibernate.dbcp.testOnReturn: Determines whether a connection is validated upon return from
the application. The default is false.

❑ hibernate.dbcp.validationQuery: The query string used to validate the connection.

Using Proxool
The final connection pool package available for Hibernate is called Proxool. You can obtain it from
http://proxool.sourceforge.net/ in both zip and tar formats. Once you’ve downloaded it, locate the /lib
directory, which contains a single JAR called proxool-0.8.3.jar; place this file in your classpath. To acti-
vate Proxool in Hibernate, set one of the following properties.

66

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 66

❑ hibernate.proxool.existing_pool: Determines whether the current pool should be configured
from an existing pool. Possible values are true and false.

❑ hibernate.proxool.pool_alias: An alias to use with the Proxool pool. You need to use this value,
because it will be referenced in the existing pool, properties, or XML file.

❑ hibernate.proxool.properties: The path to the proxool.properties property file.

❑ hibernate.proxool.xml: The path to the proxool.xml property file.

JDBC Database Connection
As an experiment in how Hibernate uses a database connection, remove or rename the file hibernate
.properties, or remove the database elements in hibernate.cfg.xml (if you’re using it), in either the stand-
alone or servlet application written in the previous chapter. When you’ve changed the file, execute the
application and attempt an action that accesses the database, such as showing all the CDs. Since our
error handling displays the stack trace, you should get a fairly large trace dump on the console window
where you launched the application. If you’re using the servlet example, you might need to open a log
file to see the errors.

At the top of the stack trace, you should see a message like “user needs to supply connection”. This error
tells you that Hibernate was unable to obtain a connection to any database for more than just a wrong
password. But, in fact, no hibernate.properties file or database elements are available to the application;
as such, the application doesn’t know how to connect to a database. This is obviously bad, because
Hibernate accomplishes most of its work through a database.

The point is, the developers of Hibernate developed the system in a manner that lets you handle a vari-
ety of design situations. In this case, Hibernate can either create its own connection to the underlying
database or use a connection that’s already in place. The examples in Chapter 3 show you how to use
Hibernate connections. If you’re developing an application from scratch, you’ll probably let Hibernate
handle the connection; there aren’t any glaring issues with this type of situation, and there are no perfor-
mance problems. So, why does Hibernate allow user-based connections? Primarily to handle legacy
issues.

Given the constant evolution of software systems, you won’t always be able to rewrite your code. In
some cases, you must refactor live systems. The application has already been written, and database con-
nections are established and available, so why not use them? You need to consider a couple of issues.
The first is connection pooling, which we discuss in detail later in this chapter. If you’re using a previ-
ously established connection, you’ll bypass any connection pooling defined in Hibernate. Second is the
issue of transactions. When you’re using a user-based connection, you can use Hibernate’s transaction
system (discussed in Chapter 10), or the application can handle transactions through the underlying
database using JDBC transactions or through JTA.

Here’s an example of the code for using a previously established connection:

try {
Class.forName("com.mysql.jdbc.Driver").newInstance();

67

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 67

Connection connection = DriverManager.
getConnection("jdbc:mysql://localhost/accounts");

SessionFactory sessionFactory = Configuration.buildSessionFactory();

Session session = sessionFactory.openSession(connection);
} catch (Exception e) {}

Using More Than One Database Server
During the development of a complex application, you may need to connect to more than one database
server. This requirement typically arises when you’re developing a replacement application for a legacy
system. The legacy applications has its own database servers, and you may have another one. The new
application code must communicate effectively with all the servers. Of course, you want to keep every-
thing working with Hibernate, so you must have a way to communicate with multiple database servers.

Fortunately, this isn’t a big deal to Hibernate, because it’s all in the configuration file(s). When you
instantiate a Configuration object, the system will by default attempt to find either a hibernate.properties
or a hibernate.cfg.xml file in the application’s root directory. One of these files contains the database con-
figuration information needed to contact a database server. To communicate with a second database
server, you need another configuration file.

For example, let’s say we have a MySQL database and a Microsoft SQL Server database that will be used
in an application. We’ll let the hibernate.cfg.xml file contain the connection and mapping information for
the MySQL database. For the Microsoft SQL Server database, we’ll build a configuration file called
sqlserver.cfg.xml, which looks like this:

<?xml version="I.0" ?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD 2.0//EN"
http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd>

<hibernate-configuration>

<session-factory>

<property name="connection.driver class">
com.microsoft.jdbc.Driver</property> <property name="connection.url">
jdbc.Microsoft://localhost/products</property> <property

name="username">sa</property>
<property name="password">sa</property>

</session-factory>

</hibernate-configuration>

We now have two different configuration files for our databases. Next we create an application that uses
the files. Here’s an example piece of code:

Configuration configuration = new ConfigurationO.addClass(CD.class);
SessionFactory mysqlSession = configuration.buildSessionFactoryQ;

68

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 68

TE
AM
 F
LY

configuration = new Configuration().
configure("sglserver.cfg.xml").addClass(CD.class);
SessionFactory sqlserverSession = configuration.buildSessionFactoryO;

This code handles two different database servers. Remember, the key to using Hibernate is the
SessionFactory built from a Configuration object. The first part of the code creates a
Configuration object and a SessionFactory object using the technique from Chapter 3. This code
uses the default hibernate.cfg.xml file for its connection and mapping information.

The trick to using multiple databases comes into play in the second part of the code. Here we build a
new Configuration object, but we use a method called configure() to bring in the SQL Server con-
figuration file. The configure() method accepts an XML document that adheres to the hibernate-con-
figuration-2.0.dtd file. Our configuration file is designed to work with hibernate-configuration-2.0.dtd;
as such, the Configuration object gladly accepts it as a valid configuration file. Subsequently, the
object ignores the default configuration file.

Building the Mapping Document
As you learned in Chapter 3, Hibernate can’t persist Java objects without a mapping document for each
class that tells Hibernate how to store the information it finds in the objects. In this section, we’ll lay out
the full mapping document and all the elements available to you. Then, in Chapter 5, we’ll show how to
map from real Java classes to your database.

The format of the mapping document is:

<?xml version=" 1.0" ?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd>

<hibernate-mapping>
</hibernate-mapping>

To give you a good handle on this document, we’ll run through all the available elements and how they
affect Hibernate when you’re mapping Java objects to a database. Some of these mappings are compli-
cated, such as relationships and collections. We’ll touch on the elements here so you have a good idea
how they work, and then we’ll devote chapters to more detailed discussions of the topic.

<hibernate-mapping> Element
The <hibernate-mapping> element is the root element for the mapping document. Its format is:

<hibernate-mapping
schema="name" [optional]
default-cascade="none I save-update" [optional - default none]
auto-import="true | false" [optional - default true]
package="name" [optional]
/>

69

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 69

This element has four available attributes:

❑ package: Fully qualifies unqualified classes in the mapping document. As you’ll see later, the
<class> element includes a name attribute that relates to the name of the Java class being
mapped. You can choose to use the package attribute and fully qualify the Java class. For
example:

<hibernate-mapping package="com.company">
<class name="Account"/>
</hibernate-mapping>

In this example, we’re mapping the class com.company.Account. If we didn’t add the
package attribute to the element, the system would expect to map a class called Account.

❑ schema: Like the package attribute, fully qualifies the table used in this particular mapping. If
you add the schema attribute, the supplied namespace is appended to the table. For example:

<hibernate-mapping schema="products">
<class table="CD"> </class>
</hibernate-mapping>

In this example, the fully qualified database/table is products.CD. The schema attribute is
optional.

❑ default-cascade: Specifies how actions that are performed on a parent are cascaded to a child.
The parent/child relationship is created through one-to-one, many-to-many, or one-to-many
mappings. (We’ll discuss these mappings in detail in Chapter 5.) For each mapping, you can
specify a cascade attribute; if you don’t, the default-cascade attribute’s value is used.

There are four possible values for default-cascade: all, none, save-update, and
delete. (The meanings are self-explanatory.) If you don’t specify a default-cascade
attribute, the default is none (no cascading of options occurs).

❑ auto-import: If set to false, doesn’t allow unqualified class names in query strings. When you
build queries using HQL, you specify the class name provided in the <class name= ""> ele-
ment. The default is true; this attribute is optional.

<class> Element
Since we’re building a mapping file between a class and a database table, we need to specify the class
this mapping document references. The <class> element is designed for this purpose:

<class
name="name"
table="table" discriminator-value="value" [optional]
mutable="true | false" [optional - defaults to true]
schema="name" [optional]
proxy="interface" [optional]
dynamic-update="true | false" [optional - defaults false]
dynamic-insert="true | false" [optional - defaults false]
select-before-update="true | false" [optional - defaults false]
polymorphism="implicit | explicit" [optional - defaults implicit]
where="string" [optional]

70

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 70

persister="class" [optional]
batch-size="#" [optional -defaults 1]
optimistic-lock=""none | version | dirty | all"

[optional - defaults version]
lazy="true | false" [optional]
/>

The element includes 15 attributes:

❑ name: Specifies the name of the Java class this mapping document is designed to represent.
Hibernate expects a fully qualified class name in this attribute if you don’t include the package
attribute in the <hibernate-mapping> element.

❑ table: Specifies the name of the table to be used when persisting the Java object for this map-
ping.

❑ discriminator-value: Distinguishes between different classes in an inheritance hierarchy. The
default is the class name.

❑ mutable: Signals whether an object persisted by Hibernate can be updated/deleted. If this
attribute is set to false, then the object is essentially read-only. The object can be persisted by
Hibernate but never updated or deleted from permanent storage.

❑ schema: Overrides the value for the schema attribute specified in the <hibernate-mapping>
root element (if such a value has been set).

❑ proxy: Tells Hibernate whether to use lazy initialization for objects of this mapping type. Lazy
initialization lets Hibernate stub out the data in an object. If you’re using lazy initialization, you
create objects and load them just in the example application in Chapter 3; but Hibernate won’t
populate (make a call to the database for data) until the object is used. The proxy attribute
requires that you provide a class to be used for the lazy initialization; this should normally be
the class name used in the name attribute.

❑ dynamic-update: If true, then when Hibernate updates a row in the database for a class
attribute that has changed, it generates an UPDATE SQL statement at runtime during the
update() method call on the session and only include the columns of the table that have been
updated. This is an optional attribute; the default is false.

❑ dynamic-insert: The same as dynamic-update in principle; but Hibernate dynamically creates
an INSERT SQL statement with only those columns that aren’t null values. This is an optional
attribute; the default is false.

❑ select-before-update: If true, Hibernate performs a select to determine if an update is needed
(by default, Hibernate won’t perform an update unless the object has been modified). This is an
optional attribute; the default is false.

❑ polymorphism: Specifies whether to use implicit or explicit polymorphism. As you’ll see later
in this chapter and in Chapter 6, you can define mappings that specify a hierarchy of objects
based on inheritance between Java classes. When a query, usually a find(), is executed,
Hibernate returns instances of this class when the class name or superclass is named in the
query; this is implicit polymorphism. In explicit polymorphism, Hibernate returns instances of
the class and its mapped subclasses. This attribute is optional; the default is implicit.

❑ where: Specifies a global where clause for this class mapping.

71

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 71

❑ persister: Specifies the class that will be used to persist this particular class to the database.

❑ batch-size: Specifies the total number of instances to pull when Hibernate pulls instances from
the database for this class. This attribute is optional; the default is 1.

❑ optimistic-lock: Specifies the type of locking used for the row, table, or database when updates
need to occur in the database. The values available are:

❑ none: No optimistic locking.

❑ version: Checks the version or timestamp column.

❑ dirty: Checks those columns that have been changed.

❑ all: Checks all columns.

This attribute is optional; the default is version.

❑ lazy: If true, assumes the proxy attribute is included and the proxy class name is the same as the
mapped class name.

<id> Element
When you’re mapping a Java class to a database table, an ID is required. The ID is the primary key col-
umn of the database table used to persist a specific Java object. In addition, you should define a
setter/getter pair of methods, with the Java class for the ID following the JavaBean style. The <id> ele-
ment specifies information about the ID column. The format of the <id> element is as follows:

<id
name="name" [optional]
type="type" [optional]
column="column" [optional - defaults to name value]
unsaved-value="ant | none | null | value" [optional - defaults to null]
access="field | property | class" [optional - defaults to property]

<generator/>
/>

<generator class="class"
<param/>
/>

The <id> element has five elements and one subelement:

❑ name: Specifies the name of the ID. This is an optional attribute; it’s included in many map-
pings with a value of "id".

❑ type: Specifies the Hibernate type for the ID. If a type isn’t provided, Hibernate uses reflection
to try to determine the type. For a list of the Hibernate types, see the later description of the
<property> element.

❑ column: Specifies the name of the database column. This is an optional attribute; if it isn’t speci-
fied, the database column name is the value in the name attribute. You need to include either the
name or the column attribute in the <id> element.

72

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 72

❑ unsaved-value: Determines whether a newly instantiated object needs to be persisted (as men-
tioned in Chapter 3). This is an optional attribute; the default is null.

❑ access: Specifies the way Hibernate accesses an object’s attribute using traditional JavaBean
style setter/getter methods. The values available for the access attribute are field, property,
or a class name. If you want Hibernate to use reflection and access the Java object’s attribute
directly, use the value "field". To build your own class for accessing the attribute of an object,
use as a value a class that implements net.sf.hibernate.property.PropertyAccessor.

❑ <generator> subelement: Defined in the following section, “<generator> Element.”

<generator> Element
When Hibernate needs to add a new row to the database for a Java object that has been instantiated, it
must fill the ID column with a unique value in order to uniquely identify this persisted object. The
<generator> subelement of <id> specifies how the unique identifier should be created. The element
contains a single attribute called class, which specifies the class used to generate the ID. If parameters
are passed to the class, you use the <param name= "">value</param> element. Hibernate includes
a number of built-in generators that we’ll discuss next.

Increment
The increment generator is probably the most familiar creator of IDs. Each time the generator needs to
generate an ID, it performs a select on the current database, determines the current largest ID value, and
increment to the next value. Note that if you’re in a multithreaded environment this generator isn’t safe,
because two or more threads could obtain the same ID value and cause an exception on the database
server.

This generator supports all databases. It has no parameters. The possible column types are short, int, and
long. Here’s some example output:

+--------+------------+----------------------+---------------------+------+
| ID | title | artist | purchasedate | cost |
+--------+------------+----------------------+---------------------+------+
| 1 | Rush | Grace Under Pressure | 2004-04-03 00:00:00 | 9.99 |
| 2 | Nickelback | The Long Road | 2004-04-03 00:00:00 | 11.5 |
+--------+------------+----------------------+---------------------+------+
2 rows in set (0.23 sec)

Identity
If the database has an identity column associated with it, Hibernate can take advantage of the column to
indicate when an object hasn’t been added to the database. Supported databases include DB2, MySQL,
Microsoft SQL Server, Sybase, and HypersonicSQL. Be sure you use this generator with the correct
database. It has no parameters. The possible column types are short, int, and long.

Sequence
If the database has a sequence column associated with it, Hibernate can take advantage of the column to
determine if the object has been added to the database. Supported databases include DB2, PostgreSQL,

73

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 73

Oracle, SAP DB, McKoi, and InterBase. Be sure you use this generator with the correct database. It has
no parameters. The possible column types are short, int, and long.

Hilo
The hilo generator generates unique IDs for a database table. The IDs won’t necessarily be sequential.
This generator must have access to a secondary table that Hibernate uses to determine a seed value for
the generator. The default table is hibernate-unique-key, and the required column is next-value.
You need to insert one row in the table, as you saw in Chapter 3. Here’s a possible table-creation query:

create table hibernate-unique-key next-value int
);

insert into hibernate-unique-key values(100);

The hilo generator must be used with a Hibernate-generated connection. It shouldn’t be used with JTA
connections, according to the Hibernate reference manual.

You can provide three parameters to this generator to change the table name, column name, and maxi-
mum low value. For example:

<generator class="hilo">
<param name="table">hilo</param>
<param name="column">next</param>
<param name="max to">500</param>
</generator>

The possible column types are short, int, and long. Here’s some example output:

mysql> select * from cd;
+--------+------------+----------------------+---------------------+------+
| ID | title | artist | purchasedate | cost |
+--------+------------+----------------------+---------------------+------+
| 131073 | Rush | Grace Under Pressure | 2004-04-03 00:00:00 | 9.99 |
| 163841 | Nickelback | The Long Road | 2004-04-03 00:00:00 | 11.5 |
+--------+------------+----------------------+---------------------+------+
2 rows in set (0.23 sec)

seqhilo
With the seqhilo generator, Hibernate combines the sequence and hilo generators. Supported databases
include DB2, PostgreSQL, Oracle, SAP DB, McKoi, and InterBase. Be sure you use this generator with
the correct database.

You can provide a sequence name with a value of hi_value or low_value depending on the sequence
start. You can also provide a max_lo name with the starting value of the sequence. The possible column
types are short, int, and long.

Uuid.hex
This generator creates a unique strings based on appending the following values: the machine’s IP
address, the startup time of the current JVM, the current time, and the counter value. It supports all

74

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 74

databases and has no parameters. The possible column types are string, varchar, and text. Here’s some
example output:

mysql> select * from cd;
+-------------------+-------+---------------------+---------------------+----+
| ID | title | artist | purchasedate |cost|
+-------------------+-------+---------------------+---------------------+----+
| 40288195fbd50bb...| Rush | Grace Under Pressure| 2004-04-10 00:00:00 |9.99|
+-------------------+-------+---------------------+---------------------+----+
1 row in set (0.00 sec)

Uuid.string
This generator is like Uuid.hex, but the result is a string 16 characters long. It supports all databases except
PostgreSQL, and it has no parameters. Possible column types are string, varchar, and text. In the following
example output, the Marcus Roberts CD is using uuid.string:

mysql> select * from cd;
+--------------+--------------+---------------------+-------------------+-----+
| ID | title | artist | purchasedate |cost |
+--------------+--------------+---------------------+-------------------+-----+
| 40288195f... | Rush |Grace Under Pressure|2004-04-10 00:00:00 |9.99 |
| _¿_§{U?_?... |Marcus Roberts|the truth is spoken |2004-04-10 00:00:00 |13.88|
+--------------+--------------+---------------------+-------------------+-----+
2 rows in set (0.00 sec)

Native
The native generator picks identity, sequence, or hilo, depending on the database.

Assigned
If you need to assign the identifier yourself in your application, then use the assigned generator. You set
the identifier using the set<identifier> method of the Java class. The application assumes the
responsibility of making sure the id value is unique; otherwise, you’ll probably get a database insert
exception.

This generator supports all databases. Some level of application validation may need to occur. It has no
parameters. The column types are application dependent.

Foreign
When a class is part of a one-to-one relationship, it can be helpful to have a common ID between the objects.
By specifying the foreign generator, you make the class use the ID of the other class. This generator sup-
ports all databases and has no parameters.

<composite-id> Element
You can use Hibernate in many different coding situations, including accessing legacy databases. One of
the situations you’ll encounter when using a legacy database is a composite ID. A composite ID is made
up of numerous individual values to form a whole. Hibernate can handle the composite ID using the
<composite-id> element. (Chapter 5 includes a complete example that uses this element.)

75

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 75

The format of the <composite-id> is as follows:

<composite-id
[name=-string"]
[class="string"]
[unsaved-value=" [any] [none]"]
access=" [field] [property] [component class name]"

<key-property/>
<key-many-to-one/>
</composite-id>

There are two versions of <composite-id>. The first doesn’t include the name, class, and unsaved-
value, but uses the <key-property> and <key-many-to-one> elements to map the ID.
For example:

<composite-id>
<key-property name="ss"/>
<key-property name="account"/>
</composite-id>

In another situation, we’ll use a component class to represent the composite ID (as demonstrated in
Chapter 5).

The element’s attributes are as follows:

❑ name: Attribute in the component class for the identifier class; the component class for the com-
posite ID.

❑ unsaved-value: Default value for the attribute specifying whether the newly instantiated object
should be persisted to the database.

❑ access: Possible values: field, property, or a class name. Hibernate accesses an object’s
attribute using traditional JavaBean style setter/getter methods. This form of access is specified
using the property value for the access attribute. If you want Hibernate to use reflection and
access the Java object’s attribute directly, use the value "field". If you want to build your own
class to access the attribute of an object, use as a value a class that implements net.sf.hiber-
nate.property.PropertyAccessor.

<discriminator> Element
If you’re mapping a hierarchy of objects with Hibernate, you have the option of using a mapping of a
table-per-class-hierarchy scheme, as we discussed in Chapter 1. For the single table to work
properly, a column is used to distinguish one class from another in the hierarchy. The <discrimina-
tor> element identifies the column in the table. The format of the element is:

<discriminator
column="column" [optional - defaults to class]
type="type" [optional - defaults to string]
force="true | false" [optional - defaults to false]
/>

76

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 76

The element has three attributes:

❑ column: Specifies the name of the column in the table to use as the discriminator column. This
attribute is optional; the default is class.

❑ type: Specifies the type of the discriminator column. The default is string if the attribute isn’t
included. The valid types are string, character, integer, byte, short, Boolean, yes no, and true
false. Some of these types will only handle two different classes.

❑ force: Determines whether Hibernate uses discriminator values when retrieving all instances of
a root class. This attribute is optional; the default is false.

Notice that the element doesn’t specify the value to place in the column. The value is determined with
the discriminator-value attribute, which we discuss in the sections on the <class> element and
the <subclass> element.

<version> Element
If data in your object needs to be versioned as opposed to having a unique ID, you can use the <ver-
sion> or <timestamp> (discussed next) element to keep the data up to date. There is no generator for
the version or timestamp. The application must handle populating the Java class attribute with the
correct value. You’ll see an example of using a version/timestamp column in Chapter 5.

The format of the element is

<version
column="column" [optional - defaults to name value]
name=”name"
type="type" [optional - defaults to integer]
access="field | property | class" [optional - defaults to property]
unsaved-value="null | negative | undefined"
[optional - defaults to undefined]

/>

The <version> element has five attributes:

❑ column: Specifies the name of the column to use for the identifier. This attribute is optional; the
default is the value of the name attribute.

❑ name: Specifies the name of the Java class’s version attribute.

❑ type: Specifies the type of the version attribute. This attribute is optional; the default is int.

❑ access: See the description in our discussion of the <id> element.

❑ unsaved-value: Indicates whether the object is newly instantiated. Hibernate uses the value to
determine whether the object needs to be persisted. This is an optional attribute; the default is
undefined.

77

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 77

<timestamp> Element
The <timestamp> element is used in much the same manner as the <version> element. It has five
attributes:

❑ column: Specifies the name of the column to use for the identifier. This attribute is optional; the
default is the value of the name attribute.

❑ name: Specifies the name of the Java class’s timestamp attribute.

❑ type: Specifies the type of the timestamp attribute. This attribute is optional; the default is
int.

❑ access: See the description in our discussion of the <id> element.

❑ unsaved-value: Indicates whether the object is newly instantiated. Hibernate uses the value to
determine whether the object needs to be persisted. This is an optional attribute; the default is
undefined.

<property> Element
For each of the attributes in your Java class that should be saved to the database when an object is per-
sisted, you need to define a <property> element in the mapping document. The persisted attributes
must be JavaBean compliant. The format of the element is as follows:

<property
name="name"
column="column" [optional - defaults to name value]
type="type" [optional]
update="true | false" [optional - defaults to true]
insert="true | false" [optional - defaults to true]
formula="sql string" [optional]
access="field | property | class" [optional - defaults to property]
/>

The <property> element has seven possible attributes:

❑ name: Specifies the name of the property. Note that the first character of the name must
be lowercase.

❑ column: Specifies the name of the column in the database table where this attribute should be
saved. This is an optional attribute; Hibernate uses a column name equal to the value of the
name attribute if it’s missing.

❑ type: Specifies the name of the Hibernate type for this mapped Java attribute. If the type isn’t
specified, Hibernate attempts to determine the type using reflection. The reflection process isn’t
as easy as you’d expect, but it’s based on a set of rules. The Hibernate types available as well as
the rules are as follows:

❑ First attempt: to reflect to a basic type:

78

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 78

Java Class Attribute Hibernate Type Possible SQL Type—
Type Vendor Specific

Integer, int, long short integer, long, short Appropriate SQL type

char character char

java.math.BigDecimal big_decimal NUMERIC, NUMBER

float, double float, double float, double

java.lang.Boolean, boolean boolean, yes_no, true_false boolean, int

java.lang.string string varchar, varchar2

Very long strings text CLOB, TEXT

java.util.Date date, time, timestamp DATE, TIME, TIMESTAMP

java.util.Calendar calendar, calendar_date TIMESTAMP, DATE

java.util.Locale locale varchar, varchar2

java.util.TimeZone timezone varchar, varchar2

java.util.Currency Currency varchar, varchar2

java.sql.Clob clob CLOB

java.sql.Blob blob BLOB

Java object serializable binary field

byte array binary binary field

java.lang.Class class varchar, varchar2

❑ Second attempt: a Java basic type of int, float, char, java.lang.String, java
.util.Date, java.lang.Integer, or java.sql.Clob.

❑ Third attempt: an enum based on the class PersistentEnum (see Chapter 5 for an exam-
ple of PersistentEnum).

❑ Fourth attempt: a serializable Java class.

❑ Fifth attempt: a custom type match.

❑ update: Determines whether this specific attribute should be used in an UPDATE SQL query.
This is an optional attribute; the default is true.

❑ insert: Determines whether this specific attribute should be used in an INSERT SQL query. This
is an optional attribute; the default is true. Note that if both the update and insert attributes
are false, then you must assume this attribute will be filled by another attribute or possibly by
a database trigger.

❑ formula: Contains a SQL query string that is executed to produce a value for this mapping
value. (See Chapter 5 for an example.)

❑ access: See the description in our discussion of the <id> element.

79

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 79

As you begin mapping Java classes to the database, sometimes you’ll need to quote the identifier being
stored in the database. You can perform this quoting in the <property> element. For example:

<property name="value" column="' ValueColumnName"'/>

In this mapping, the value of the Java class attribute is mapped to the ValueColumnName of the
database. The value is put inside the appropriate quotation characters, based on the current dialect being
used.

Relationship Elements
One of Java’s most widely used features is associating one class with another through composition or
some other means. For example, you might have an employee object that contains a social security
object. You need to be able to map these relationships in the database. In this section, we aren’t talking
about situations where you have a vector of another class as an attribute.

Hibernate’s mapping document uses two relationship elements: <many-to-one> and <one-to-one>. In
this section, we’ll describe the mappings; we’ll look at them in detail in Chapter 5.

<many-to-one> Element
In the course of object mapping, in some situations many objects associate to a single object. This is a
many-to-one relationship; you use the <many-to-one> element for the mapping. The format of the ele-
ment is as follows:

<many-to-one
name="string"
column="string"
class="string"
cascade=- [all] [none] [save-update] [delete]"
outer-join="[true] [false] [auto]"
update=" [true] [false]"
insert="[true] [false]"
property-ref="associated class" [optional]
access=" [field] [property] [component class name]"
/>

This element has the following attributes:

❑ name: Specifies the name of the Java attribute associated with the relationship.

❑ column: Specifies the name of the database column for the mapping. This is an optional
attribute; the default is the name attribute value.

❑ class: Specifies the name of the class that is part of the relationship. Hibernate uses reflection if
this attribute isn’t included.

❑ cascade: See the description in our discussion of the <hibernate-mapping> element.

80

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 80

❑ outer-join: Determines whether an outer join should be used when pulling this object from the
database row. This attribute is optional; the default is auto. The possible values include auto,
true, and false. If the value is auto, an outer join is used if the related class isn’t using
a proxy.

❑ update: Determines whether this specific attribute should be used in an UPDATE SQL query.
This is an optional attribute; the default is true.

❑ insert: Determines whether this specific attribute should be used in an INSERT SQL query. This
is an optional attribute; the default is true. Note that if both the update and insert attributes
are false, then you must assume this attribute will be filled by another attribute or possibly by
a database trigger.

❑ property-ref: In most relationships, the related class’s primary key is stored in this mapped col-
umn. In some databases, the relationship from the primary class to the related class isn’t based
on the primary key but on some other column. Since Hibernate attempts to use the identifier of
the related class, you need to specify the exact column to use. The property-ref attribute
specifies the exact column. (You’ll see an example in Chapter 5.)

❑ access: See the description in our discussion of the <id> element.

<one-to-one> Element
In the course of object mapping, in some situations one object is associated with a single object. This is a
one-to-one relationship; you use the <one-to-one> element for the mapping. The format of the ele-
ment is as follows:

<one-to-one
name="name"
class="class"
cascade=" [all] [none] [save-update] [delete]"
[optional - default none] constrained=" [true] [false]"

outer-join=" [true] [false] [auto]"
property-ref="property other than primary key of mapped table"
[optional] access=" [field] [property] [component class name]"

/>

This element has the following attributes:

❑ name: Specifies the name of the Java attribute associated with the relationship.

❑ class: Specifies the name of the class that is part of the relationship. Hibernate uses reflection if
this attribute isn’t included.

❑ cascade: See the description in our discussion of the <hibernate-mapping> element.

❑ outer-join: Determines whether an outer join should be used when pulling this object from the
database row. This attribute is optional; the default is auto. The possible values include auto,
true, and false. If the value is auto, an outer join is used if the related class isn’t using a
proxy.

❑ constrained: Determines that a foreign key constraint exists with the primary key of the
mapped table.

❑ property-ref: In most relationships, the related class’s primary key is stored in this mapped col-
umn. In some databases, the relationship from the primary class to the related class isn’t based

81

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 81

on the primary key but on some other column. Since Hibernate attempts to use the identifier of
the related class, you need to specify the exact column to use. The property-ref attribute
specifies the exact column. (You’ll see an example in Chapter 5.)

❑ access: See the description in our discussion of the <id> element.

<component> Element
The <component> element is designed to allow a property to be saved in the current object’s mapping
from another class. The format of the element is:

<component
name="name"
class="class"
update="true | false" [optional - defaults to true]
insert="true | false" [optional - defaults to true]
access="field | property | class" [optional - defaults to property]

<property/>
<many-to-one/>
/>

This element has the following attributes:

❑ name: Specifies the name of the property to map.

❑ class: Specifies the child class where the named property appears.

❑ update: Determines whether this specific attribute should be used in an UPDATE SQL query.
This is an optional attribute; the default is true.

❑ insert: Determines whether this specific attribute should be used in an INSERT SQL query. This
is an optional attribute; the default is true. Note that if both the update and insert attributes are
false, then you must assume this attribute is filled by another attribute or possibly by a
database trigger.

❑ access: See the description in our discussion of the <id> element.

For all the properties in the child class that need to be mapped, you need to include <property> ele-
ments. You can also add appropriate relationships to the <component> element.

<subclass> Element
When an inheritance relationship is defined for your Java classes, the hierarchy needs to be defined.
Since Hibernate recommends the table-per-class-hierarchy mapping, you should define all subclasses
with the <subclass> element. Subclass definitions include attributes as well as the properties that have
been added to this specific subclass.

The format of the element is as follows:

<subclass
name=”name”

82

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 82

discriminator-value="value" [optional - defaults to name value]
proxy="interface" [optional]
lazy="true (false" [optional]
dynamic-update="true | false"[optional - defaults to false]
dynamic-insert="true | false" [optional - defaults to false]

<property/>
/>

This element has the following attributes:

❑ name: Specifies the name of the Java class this mapping document is designed to represent.
Hibernate expects a fully qualified class name in this attribute if you don’t have the package
attribute in the <hibernate-mapping> element.

❑ discriminator-value: Specifies the value used to distinguish between different classes in an
inheritance hierarchy. The default is the class name.

❑ proxy: Tells Hibernate whether to use lazy initialization for objects of this mapping type. Lazy
initialization allows Hibernate to basically stub out the data in an object. If you’re using lazy ini-
tialization, you create objects and load them just as in the example application in Chapter 3, but
Hibernate won’t populate or make a call to the database for data until the object is used. The
proxy attribute requires you to provide a class that is used for the lazy initialization; this should
normally be the class name used in the name attribute.

❑ dynamic-update: If true, then when Hibernate updates a row in the database for a class
attribute that has changed, it generates an UPDATE SQL statement at runtime during the
update() method call on the session and only include the columns of the table that have been
updated. This is an optional attribute; the default is false.

❑ dynamic-insert: The same as dynamic-update in principle; but Hibernate dynamically creates
an INSERT SQL statement with only those columns that aren’t null values. This is an optional
attribute; the default is false.

Once the attributes have been defined for the subclass, you need to define all the new attributes that
should be persisted. Use the <property> element to define each attribute.

<joined-subclass> Element
If you don’t want to use the recommended inheritance mapping, you can choose the table-per-
subclass mapping. Each subclass must have its own <joined-subclass> element. You include all
the usual elements like <property>, <key>, and so on for this subclass.

The format of the element is as follows:

<joined-subclass
name="name"
proxy="interface" [optional]
lazy="true | false" [optional]
dynamic-update="true | false" [optional - defaults to false]
dynamic-insert="true | false" [optional - defaults to false]

83

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 83

<key/>
<property/>
/>

This element has the following attributes:

❑ name: Specifies the name of the Java class this mapping document is designed to represent.
Hibernate expects a fully qualified class name in this attribute if you don’t have the package
attribute in the <hibernate-mapping> element.

❑ proxy: Tells Hibernate whether to use lazy initialization for objects of this mapping type. Lazy
initialization allows Hibernate to basically stub out the data in an object. If you’re using lazy ini-
tialization, you create your objects and load them as you saw in the example application in
Chapter 3, but Hibernate won’t populate or make a call to the database for data until the object
is used. The proxy attribute requires you to provide a class that is used for the lazy initializa-
tion; this should normally be the class name used in the name attribute.

❑ dynamic-update: If true, then when Hibernate updates a row in the database for a class
attribute that has changed, it generates an UPDATE SQL statement at runtime during the
update() method call on the session and only include the columns of the table that have been
updated. This is an optional attribute; the default is false.

❑ dynamic-insert: The same as dynamic-update in principle; but Hibernate dynamically creates
an INSERT SQL statement with only those columns that aren’t null values. This is an optional
attribute; the default is false.

Collection Elements
If you’re using Java collections of the type Map, Set, SortedMap, SortedSet, List, Collection, and arrays,
Hibernate can persist them for you like other Java objects. This is such an important topics that we
devote Chapter 6 to it. We’ll cover the elements needed to handle the collections here, and then we’ll
present numerous examples in Chapter 6. For all the collections that can be mapped, there are appropri-
ate elements: <map>, <set>, <list>, <array>, and <primitive-array>.

The format of the elements is:

<map | list | bag
name="name"
table="table" [optional - defaults to name value]
schema="name" [optional]
lazy="true | false" [optional - defaults to false]
inverse="true | false" [optional - defaults to false]
cascade="all | none | save-update | delete | all-delete-orphan"
[optional - defaults to none"

sort="unsorted I natural I class" [optional]
order-by="name asc | desc" [optional]
where="sql where string" [optional]
outer join="true (false I auto" [optional]
batch-size=="#" [optional -defaults to 1]
access="field I property I class" [optional - defaults to property]

84

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 84

<key/>
<index/>
<element/>
/>

These elements have the following attributes available:

❑ name: Specifies the name of the property.

❑ table: Specifies the name of the table where the collection should be saved.

❑ schema: Specifies the schema to be used with this collection mapping. This value overrides the
global schema value, if any.

❑ lazy: Determines whether lazy initialization should be used. Possible values include true or
false. The default is false if the attribute doesn’t appear in the element. Arrays can’t use lazy
initialization.

❑ cascade: See the description in our discussion of the <hibernate-mapping> element.

❑ sort: Specifies the sort attribute used to determine how a collection should be sorted. The values
available are unsorted, natural, and a class name based on ComparatorClass.

❑ inverse: If true, specifies that a collection is part of a bidirectional relationship, as discussed in
Chapter 7. This is an optional attribute; the default is false.

❑ order-by: If you’re using JDK 1.4, specifies one or more columns that can be used to determine
the iteration order of the collection. The attribute value is the name of the column followed
by [asc][desc], depending on the required order. This is an optional attribute.

❑ where: Allows a SQL WHERE clause to be added to the Hibernate query when the collection is
persisted or loaded.

❑ outer-join: Determines whether an outer join is used during the object loading. The possible
values are true, false, and auto.

❑ batch-size: Specifies the total number of instances to pull when Hibernate pulls instances from
the database for this class. This attribute is optional; the default is 1.

❑ access: See the description in our discussion of the <id> element.

<key> Element
Since a collection is owned by a class, you use the <key> element to indicate the property of the class.
The format is:

<key
column="column"
/>

This element has a single attribute: column, which specifies the foreign key column.

85

Database Connecting and Schema Generation

06_576771_c04.qxd 9/1/04 2:14 PM Page 85

<index> Element
If the collection is indexed like a list or map, you need to use the <index> subelement. The format of the
element is:

<index
column="column"
type="class" [optional]
/>

The attributes are as follows:

❑ column: The column for the index values of the collection. This is a required attribute.

❑ type: The type of the index. This is an optional attribute; the default is integer.

If a map is being used, the index might be a class. In this case, you use the <index-many-to-many>
subelement with two attributes:

❑ column: The column for the index values of the collection. This is a required attribute.

❑ class: The class used as the index.

<element> Element
If the collection only includes values, you need to specify the <element> subelement. The format of the
element is:

<element
column=”column”
type=”type”
/>

It has two attributes:

❑ column: The column for the element values.

❑ type: The type of the element values.

Summary
This chapter has been filled information about the mapping document. Our goal has been to provide a
reference for all the details you may encounter when you’re mapping a Java object to a database table. In
the next chapter, we’ll put this knowledge to good use as we begin the process of mapping example Java
objects to our database system.

86

Chapter 4

06_576771_c04.qxd 9/1/04 2:14 PM Page 86

Creating Persistent Classes

In the previous chapter, we spent considerable time discussing the databases available for use with
Hibernate as well as the makeup of the mapping document. The mapping document is where
you’ll spend the vast majority of your time during the development of the object persistence plan.
In this chapter as well as the next two, we’ll bridge the gap between the database and your Java
classes: We’ll illustrate how to create mapping documents and database tables for countless Java
classes. We encourage you to read the next three chapters carefully so you have a solid under-
standing of how to map your Java classes in an efficient manner.

Creating Persistent Java Classes
The entire work of Hibernate is encapsulated in its ability to take the values from Java class
attributes and persist them to a database table. As you saw in the Chapter 4, the mapping docu-
ment is key in determining how Hibernate pulls the values from the classes. Unless Hibernate is
changed from its default behavior, it uses reflection to determine how to access the attributes of
the Java class. As a developer of the Java class, it’s your responsibility to create the class in a con-
sistent manner.

You need to follow some simple guidelines when developing Java classes:

❑ Hibernate will only persist attributes specified in the mapping document; therefore you
can include in your class as many temporary attributes as needed. If the temporary
attributes aren’t persisted, their values will be lost when the object is loaded from perma-
nent storage in the future.

❑ All attributes that will be persisted should be declared private and have setter/getting
methods defined in the JavaBean style. For example:

private String firstname;
public String getFirstname() {
return firstname;

555

07_576771_c05.qxd 9/1/04 12:19 PM Page 87

}

public void setFirstname(String s) {
firstname = s;

}

Note that the setter/getter methods don’t need to be declared public, because Hibernate can
locate them using reflection even if they’re protected or private. Further, you can use a method
name like isFirstname() as well as set and get.

❑ Hibernate can handle mapping from just about any data type. If you’re using Java primitives
and JDK types, use the type, and refer to the Hibernate types described in the Chapter 4 when
creating the mapping document.

❑ If an attribute type is a collection like a Map, List, or Set, you’ll need to do additional work
when creating the mapping. For collections, refer to Chapter 6 for a complete overview.

❑ Mapped classes can use the concept of composition, where an attribute’s type is another class.
The last half of Chapter 6 discusses composition mapping also called components in Hibernate
in full detail.

❑ All classes should contain an ID in order to allow easy identification of your objects within
Hibernate and the database. As you read in Chapter 4, IDs have values like int, long, or String.
Be sure to use the right type when defining your ID, especially if you’re using an ID generator.

❑ Interfaces, final classes, and some inner classes can be mapped to permanent storage using
Hibernate. See later sections in this chapter for more information.

❑ All Java classes that will be persisted need a default constructor.

With these guidelines in place and all the information you learned in Chapter 4, let’s map a few simple
classes. You’ll learn about mapping as follows over the next few chapters:

❑ In this chapter, we’ll show you the basics of mapping, including inheritance.

❑ Collections are covered in Chapter 6.

❑ Composition is covered in Chapter 6.

❑ Relationships are discussed in Chapter 7.

Mapping a Basic Java Class
To get the mapping process moving, let’s consider the simple but typical Java class shown in Listing 5.1.
The Book class contains attributes that relate to a book as well as an ID attribute that is an int. We need
to map this class so Hibernate can persist any objects instantiated from the class. Listing 5.2 shows the
possible mapping.

package example.products;

public class Book{
private int id;
private String title;
private String author;

88

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 88

private String isbn;
private int pages;
private int copyright;
private float cost;

public Book() {
}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setTitle(String s) {
title = s;

}

public String getTitle() {
return title;

}

public void setAuthor(String s) {
author = s;

}

public String getAuthor() {
return author;

}

public void setIsbn(String s) {
isbn = s;

}

public String getIsbn() {
return isbn;

}

public void setPages(int i) {
pages = i;

}

public int getPages() {
return pages;

}

public void setCopyright(int i) {
copyright = i;

}

public int getCopyright() {
return copyright;

89

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 89

}

public void setCost(float f) {
cost = f;

}

public float getCost() {
return cost;

}
}

Listing 5.1

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="example.products.Book" table="books">
<id name="id"

type="int"
unsaved-value="0">

<generator class="hilo"/>
</id>

<property name="title"/>
<property name="author"/>
<property name="isbn"

not-null="true"/>
<property name="pages"

type="integer"
column="pagecount" />

<property name="copyright"/>
<property name="cost">
<column name="cost"

sql-type="NUMERIC(12,2)"/>
</property>

</class>
</hibernate-mapping>

Listing 5.2

The mapping in Listing 5.2 is contained in a file called book.hbm.xml so the Configuration object can
locate it. Since the Book class is fairly simple, the mapping document isn’t complex either. Throughout
the examples in this chapter, we’ll mix things up by changing how the mapping document handles the
attributes in the class and explaining the differences. For the book mapping, we’ve included the required
<class> element and fully qualified the class in the name attribute. Recall that we could have used the
package attribute of the <hibernate-mapping> element to specify the package prefix of our mapped
class. After the name attribute, the table attribute tells Hibernate the name of the database table where
all Book objects should be persisted. If you look back at Chapter 4, you’ll see that the <class> element

90

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 90

has quite a few options for you to use in different situations. In most mappings, the default values for
the <class> element attributes will suffice.

Once the <class> element has been filled out, it’s a good idea to immediately handle the definition of
the identifier for the class. We’ve designed our Book class to include an int identifier so the objects can
be uniquely identified in the database. For the identifier, the name attribute specifies the name of the
attribute in the class being mapped. In the Book class, the identifier is called id; that value is placed in
the assignment part of the attribute. Next, we specify the type of the identifier. The type is an optional
parameter to the <id> element because Hibernate will use reflection to determine the type of the identi-
fier specified in the name attribute.

You should follow a standard for specifying the type of the identifier in your development process.
There are advantages and disadvantages to specifying the type for the identifier as well as the attributes
in the class. If you’re using reflection, you can change the identifier type in the class without too much
issue in the mapping document, although you may need to change the <generator>.

A very important attribute in the <id> element is unsaved-value. When a new object is instantiated,
Hibernate needs to know whether the object needs to be persisted to the database through a save or
update operation. Hibernate uses the value in the unsaved-value attribute to make the determination.
When the value in the identifier is null, the default value for the unsaved-value attribute, or a value
specified in the mapping document, Hibernate knows the object has been newly instantiated and thus
that it needs to be saved or INSERTed into the database. If the identifier value isn’t the same as the
unsaved-value value, then the object has been previously INSERTed into the database; thus any
changes to the object need to be UPDATEd to the database.

For every <id> element, there should be a corresponding <generator> element that populates the
identifier with a value. The list of generators available in Hibernate was discussed in Chapter 4. For our
Book mapping, we’ll use the hilo generator. This generator requires a second table to keep track of row
information for Hibernate. (You saw an example of using this generator in Chapter 3.)

Once we’ve completed the <id> element, we provide a mapping from the Book class attributes we want
to be persisted. Remember that not all the attributes have to be saved when the object is persisted: just
those that hold nongeneratable values. The class attributes to be persisted with the object are defined in
the <property> element. This element tells Hibernate at a minimum the name of the attribute in the
class and the name of the column in the database table where the attribute’s value should be stored. In
some of our <property> elements, we’ve just listed the name of the attribute: Hibernate will use reflec-
tion to determine the attribute type and use the name of the property as the column name in the table. In
the case of the isbn attribute, we’ve used the not-null attribute to let Hibernate know that this
attribute must have a value before being sent to the database.

For the pages attribute, we’ve taken the liberty of specifying the attribute type as well as the name of the
database table column. Since the name of the attribute is pages and the column name is pagecount,
we need to specify the actual value so Hibernate can properly populate the table.

Finally, the cost attribute uses the <column> element in the <property> element, because we need to
let Hibernate know there is a restriction on the database table. The <column> element specifies the
name of the table as well as the SQL type. For our example, we’ve specified that the type is
NUMERIC(12,2).

91

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 91

The database schema for this class is:

mysql> create table books(
id int,
title text,
author text,
isbn text not null,
pagecount int,
copyright int,
cost numeric(12,2)
);

Here’s an example of an object persisted to the database:

mysql> select * from books;
+------+----------------------+---------+------------+----------+---------+------+
| id | title |author |isbn |pagecount |copyright|cost |
+------+----------------------+---------+------------+----------+---------+------+
|229377|Professional Hibernate|Some Guys|003948490309| 300| 0 |29.99 |
+------+----------------------+---------+------------+----------+---------+------+
1 row in set (0.01 sec)

mysql>

To put the data into the database, we’ve used the sample application in Listing 5.3. We’ll use the same
code for the remainder of the mappings to verify that they work.

import java.io.*;
import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

import example.products.Book;

public class BookTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

Book book = new Book();
book.setTitle("Professional Hibernate");
book.setIsbn("003948490309");
book.setAuthor("Some Guys");
book.setPages(300);
book.setCost(29.99f);

session.save(book);
session.flush();

session.close();

92

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 92

} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 5.3

Mapping a Class with Binary Data
There has always been a debate about whether binary data should be stored in the database or whether
you should just maintain a link to a binary file on the local filesystem. If you want to keep an application
consistent, you need a way to map binary data stored in a Java class into a database row. Fortunately,
Hibernate does all the hard work. Consider the encrypted image Java class in Listing 5.4.

package example.encryption;

import java.sql.*;

public class EncryptedImage {
private int id;
private String filename;
private Blob data;

public EncryptedImage() {
}

public int getId() {
return id;

}

public void setId(int id) {
this.id = id;

}

public String getFilename() {
return filename;

}

public void setFilename(String s) {
this.filename = s;

}

public Blob getData() {
return data;

}

public void setData(byte[] b) {
this.data = b;
}

}

Listing 5.4

93

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 93

The EncryptedData class in Listing 5.4 has an attribute called data, which is designed to hold an
array of bytes. The bytes represent an arbitrary binary data; the actual type is Blob, because Hibernate
doesn’t automatically persist an array of byte to the database without a user-defined type. For this rea-
son, we’ll take advantage of the SQL types in our Java class.

In addition to the data, we have the filename attribute and an integer ID. Now we need to map the
attributes to a database table. The question for the mapping surrounds the binary data: How do we rep-
resent it? As you’ll see in Chapter 6, we could consider the data as an array of data; but typically we con-
sider an array to be a collection of objects, and the bytes don’t make the grade. If you look back at
Chapter 3 and the available Hibernate types, you’ll find that binary is a good choice. Listing 5.5 shows
the Hibernate mapping document for the EncryptedData class.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
http://hibernate.sourceforge.net/hibarnte-mapping-2.O.dtd>

<hibernate-mapping>
<class name="example.encryption.EncryptedData"

table="encrypteddata">
<id name="id"

type="integer"
unsaved-value="0">

<column name="id"
sql-type="int"
not-null="true"/>

<generator class="native"/>
</id>

<property name="filename">
<column name="filename"

sql-type="varchar(255)"/>
</property>
<property name="data"

type="binary">
<column name="data"

sql-type="blob"/>
</property>

</class>
</hibernate-mapping>

Listing 5.5

For the EncryptedData mapping, we’ve changed the generator from a hilo to a native type. This
allows the database server to use the column as defined in the table.

Next, we create the <property> elements for each of the attributes in the class. The first element is for
the filename attribute. We’ve specified the name attribute but not the type, thus allowing Hibernate
to use reflection to determine its type. In addition, we include the <column> element to specify the col-
umn in the database for the class attribute and also define the SQL type being used in the database.

94

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 94

The most important mapping is for the class’s data attribute. In the <property> element, we specify
the name of the attribute in the class and then use a type of binary. Looking back at Chapter 4, a
Hibernate type of binary maps an attribute to a Blob. We take the extra step and specify a <column>
element with a SQL type of BLOB to make sure Hibernate does the proper mapping.

The database schema for this class is:

create table encryptedData(
ID int not null,
filename varchar(256),
data blob
);

Mapping a Serializable Class
In most cases, you persist a Java object by specifying attributes in the class that will be stored in the
database. Hibernate loads the stored object by instantiating a new object and populating the attributes
from the values stored in a row. An alternative mechanism takes advantage of the Serializable inter-
face available to Java classes. Consider the Java class in Listing 5.6.

package example.count;

public class Counter {
private String id;
private Integer ivalue;

public Counter() {
}

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;

}

public Integer getIvalue() {
return ivalue;

}

public void setIvalue(Integer value) {
ivalue = value;

}
}

Listing 5.6

The Counter class shown in Listing 5.6 has two attributes: an identifier defined to be a String and an
Integer attribute that represents an attribute we want to store as an object (not just its attributes). The
Hibernate mapping document for the Counter class is found in Listing 5.7.

95

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 95

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibarnte-mapping-2.0.dtd">

<hibernate-mapping>
<class name="example.count.Counter"

table="counter">
<id name="id"

type="string"
unsaved-value=" null">
<generator class="uuid.hex"/>

</id>

<property name="ivalue"
type="serializable" >

<column name="value"
sql-type="blob"/>

</property>
</class>

</hibernate-mapping>

Listing 5.7

The mapping document looks similar to the others, but we’ve made a few changes. Instead of using an
int for the identifier class type, we’re using a String. Further, we’ve changed the generator from hilo to
uuid.hex, to take advantage of the string type of the id.

The biggest change comes in the <property> element for our class’s ivalue attribute. Notice that the
type for the attribute is serializable instead of int or integer. The specified type tells Hibernate that we
won’t just access the attribute but instead will serialize it. For the database column, we tell the system to
use the value column and specify the type to be BLOB so the serialized attribute can be stored properly.

The database row created from this class and mapping look like the following:

create table counter (
id text not null,
value blob
);

The following example shows the rows for a specific object:

mysql> select * from counter;
+----------------------------------+-----------+
| id | value |
+----------------------------------+-----------+
| 40288195fbf116a800fbf116ab830001 | __ |
+----------------------------------+-----------+
1 row in set (0.01 sec)

The code to produce the table is shown in Listing 5.8.

96

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 96

import java.io.*;
import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

import example.count.Counter;

public class CounterTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

Counter counter = new Counter();

Integer i = new Integer("34");
counter.setIvalue(i);

session.save(counter);
session.flush();

Counter counter2 = (Counter)session.load
(Counter.class, counter.getId());

System.out.println(counter.getId() +
" : " + counter.getIvalue().intValue());

System.out.println(counter2.getId() +
" : " + counter2.getIvalue().intValue());

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 5.8

Mapping a Class with Data/Calendar Attributes
With Hibernate and Java, you can map more than just strings and integers, as you just saw. Of course, if
you serialize a class and store it in a BLOB column of the database, that data will only make sense to a
Java application. Some other Java objects will translate into standard SQL types; some of those include
the Date, Calendar, and Time classes. Consider the Account Java class in Listing 5.9.

package example.accounting;

public class Account {
private String id;
private String name;
private String accountnumber;
private Date setupdate;
private double balance;

}

Listing 5.9

97

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 97

The Account class includes a new attribute called setupdate, which is populated with the date when
the account is first opened. We don’t want to serialize this attribute, because a report-generation applica-
tion might want to perform a SQL query based on the Date and we need a real value in the column. The
mapping that stores the Account class is shown in Listing 5.10.

<?xml version=- 1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="example.accounting.Account"

table="account">
<id name="id"

type="string"
unsaved-value="null">

<generator class="uuid.hex"/>
</id>

<property name="name"/>
<property name="accountnumber"/>
<property name="setupdate">
<column name="setup"

sql-type="Date"/>
</property>
<property name="balance"

type="double"/>
</class>

</hibernate-mapping>

Listing 5.10

The mapping looks much the same as the other mappings. We’ve included an identifier based on a
String type using a UUID generator. Next, each of the attributes in the class is mapped to appropriate
columns in the database. For the Date attribute, we specify the Hibernate Date type using the type
attribute of the <property> element. We use the <column> element to specify the column where the
setup date should be stored as well as a hint to Hibernate that the SQL type for the column is Date.

The database schema for this mapping is:

create table account (
id text not null,
name text,
accountnumber text,
setup Date,
balance double
);

Here’s an example row for an object:

98

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 98

mysql> select * from account;
+----------------------------------+------+---------------+------------+---------+
| id | name | accountnumber | setup | balance |
+----------------------------------+------+---------------+------------+---------+
|40288195fbf1333000fbf13334280001 | Joe | 39084 | 2004-04-15 | 4054 |
+----------------------------------+------+---------------+------------+---------+
1 row in set (0.04 sec)

The code that produced the table is as follows:

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

import example.accounting.BasicAccount;

public class AccountTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

BasicAccount account = new BasicAccount();

account.setName("Joe");
account.setAccountnumber("39084");
account.setSetupdate(new Date());
account.setBalance(4054.00);

session.save(account);
session.flush();

BasicAccount account2 = (BasicAccount)session.load
(BasicAccount.class, account.getId());

System.out.println(account.getId() + " : " + account.getSetupdate());
System.out.println(account2.getId() +

" : " + account2.getSetupdate());

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Mapping a Read-Only Class
In many Java applications, objects are created that can be considered read-only. The application might
create the objects during an initialization phase or during an event in the application’s life cycle.

99

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 99

Hibernate gives you the ability to persist read-only or immutable objects. Consider the Support Java
class in Listing 5.11.

package example.util;

public class Support {
private int id;
private String name;
private String support;

public Support() {
}

public Support(String n, String s) {
name = n;
support = s;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String s) {
name = s;

}

public String getName() {
return name;

}

public void setSupport(String s) {
support = s;

}

public String getSupport() {
return support;

}
}

Listing 5.11

Not much is special in the Support class as far as Java is concerned, except the fact that all the class
attributes (not including the identifier) are defined to be final. Using our mapping skills and another
<class> element attribute, we can tell Hibernate that the object is immutable. The resulting mapping is
shown in Listing 5.12.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping

100

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 100

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="example.util.Support"

table="support" mutable="false">
<id name="id"

type="integer"
unsaved-value="0">

<generator class="hilo"/>
</id>

<property name="name"/>
<property name="support"/>

</class>
</hibernate-mapping>

Listing 5.12

For the mapping in Listing 5.12, the class attribute <property> elements aren’t anything out of the
ordinary. The added functionality is found in the <class> element, where we’ve included the mutable
attribute and set its value to false. The default value for mutable is true; with a false value,
Hibernate allows only two operations on the Support objects. The first saves an object using an INSERT
SQL command; Hibernate persists the object and assigns an identifier based on the specified generator.
The second is the SELECT command, which Hibernate uses to load a persisted object from the database.
Hibernate won’t allow a DELETE or UPDATE SQL command to be executed against the object. Even if the
Java class is defined to allow its attributes to be changed, Hibernate still won’t let an update occur.

The database schema for the Support class is:

create table support(
id int,
name text,
support text
);

Here’s an example output row:

mysql> select * from support;
+--------+-------+---------+
| id | name | support |
+--------+-------+---------+
| 262145 | First | Second |
+--------+-------+---------+
1 row in set (0.00 sec)

Listing 5.13 contains an example application that exercises the Support class:

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

101

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 101

import example.util.Support;

public class SupportTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

Support support = new Support("First", "Second");

session.save(support);
session.flush();

support.setName("Name");
session.update(support);
session.flush();

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 5.13

In this example, we’ve added an immutable object to the database and then tried to update it in the
application. The row doesn’t change, since Hibernate knew the object couldn’t be updated.

Mapping Classes Using Versioning/Timestamps
When you’re developing commercial applications, much of the data is time dependent or versioned. To
keep track of the current version or time when data changed, you need to track an appropriate attribute
in the class structure. Hibernate lets you use versioning and timestamping to keep track of the most
recent version of an object. The version or timestamp is used as a replacement for the identifier that
would typically be found in the class and corresponding database table. Since the version and time-
stamp change when an object is updated in the database, you don’t need the identifier for uniqueness.
Consider the Java class in Listing 5.14, which shows a class with a version attribute.

package example.code;

public class VModule {
public int id;
private String name;
private String owner;
private int version;

public void setId(int i) {
id = i;

102

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 102

}

public int getId() {
return id;

}

public void setName(String s) {
name = s;

}

public String getName() {
return name;

}

public void setOwner(String s) {
owner = s;

}

public String getOwner() {
return owner;

}

public void setVersion(int i) {
version = i;

}

public int getVersion() {
return version;

}

}

Listing 5.14

The VModule class holds information about a code module. The version attribute is an int type and is
incremented each time the data in the class is updated. The Hibernate mapping required to use the ver-
sion is shown in Listing 5.15.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="example.code.VModule"

table="vmodule">

<id name="id"
type="int"
unsaved-value="0">

<generator class="native"/>
</id>

103

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 103

<version name="version"
column="version"
type="integer"
unsaved-value="undefined"/>

<property name="name"/>
<property name="owner"/>

</class>

</hibernate-mapping>

Listing 5.15

The most important part of the Hibernate mapping in Listing 5.15 is the introduction of the <version>
element. This element includes many of the attributes typically found in the <id> element. We specify
the name of the attribute in the mapped class that holds the version information. The column and type
used to hold the version information are specified as well as the unsaved-value attribute. Just like the
identifier <id> element, it’s important for the unsaved-value to hold the value of a newly instantiated
object. Hibernate uses the value to determine whether the object should be saved or updated.

The database schema for this version mapping is:

create table vmodule(
id int not null auto_increment primary key,
version int,
name text,
owner text
);

A possible row in the database for an insert of a new object into the database is as follows:

mysql> select * from vmodule;
+----+---------+----------+-----------+
| id | version | name | owner |
+----+---------+----------+-----------+
| 4 | 0 | Module 1 | James Doe |
+----+---------+----------+-----------+
1 row in set (0.00 sec)

When the object is updated and saved, the database row becomes:

mysql> select * from vmodule;
+----+---------+----------+-----------+
| id | version | name | owner |
+----+---------+----------+-----------+
| 4 | 1 | Module 1 | James Doe |
+----+---------+----------+-----------+
1 row in set (0.00 sec)

Listing 5.16 contains the code that created the two rows:

104

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 104

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

import example.code.VModule;

public class VModuleTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

VModule mod = new VModule();

mod.setOwner("John Smith");
mod.setName("Module 1");

session.save(mod);
session.flush();
System.out.println(mod.getVersion());

mod.setOwner("James Doe");
session.save(mod);
session.flush();

System.out.println(mod.getVersion());
session.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 5.16

We use the code in Listing 5.17 when a timestamp should be used instead of just a version. The
java.sql.Timestamp class holds the timestamp. The mapping document for the class is shown in
Listing 5.18.

package example.code;

import java.sql.*;

public class Module {
public int id;
private String name;
private String owner;
private Timestamp timestamp;

105

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 105

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String s) {
name = s;

}

public String getName() {
return name;

}

public void setOwner(String s) {
owner = s;

}

public String getOwner() {
return owner;

}

public void setTimestamp(Timestamp t) {
timestamp = t;

}

public Timestamp getTimestamp() {
return timestamp;

}

}

Listing 5.17

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="example.code.Module"

table="module">

<id name="id"
type="int"
unsaved-value="0">

<generator class="native"/>
</id>

<timestamp name="timestamp"
column="stamp"
unsaved-value="undefined"/>

106

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 106

<property name="name"/>
<property name="owner"/>

</class>

</hibernate-mapping>

Listing 5.18

When you’re using a timestamp instead of a version value, the <timestamp> element is used in the
mapping. The same attributes are specified in the element as in the <version> element. Note that
there is no type attribute in the <timestamp> element: This element is a shortcut for the <version>
element using an attribute of type timestamp.

The database schema for the timestamp mapping is

create table module(
id int not null auto_increment primary key,
stamp timestamp,
name text,
owner text
);

Here’s an initial row in the database:

mysql> select * from module;
+----+----------------+----------+-----------+
| id | stamp | name | owner |
+----+----------------+----------+-----------+
| 1 | 20040416174130 | Module 1 | James Doe |
+----+----------------+----------+-----------+

1 row in set (0.02 sec)An updated row in the database is as follows:

mysql> select * from module;
+----+----------------+----------+-----------+
| id | stamp | name | owner |
+----+----------------+----------+-----------+
| 1 | 20040416174310 | Module 1 | James Doe |
+----+----------------+----------+-----------+
2 rows in set (0.00 sec)

The code to produce the rows and objects for this example looks the same as the code for the
<version> example.

Mapping Inheritance with Java Classes
In just about any application, some kind of inheritance hierarchy needs to be mapped to permanent stor-
age. As you saw in Chapter 1, there are several ways to map the inherence hierarchy. In our mapping,
we’ll consider the following methods:

107

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 107

❑ Table-per-class hierarchy

❑ Table-per-subclass

❑ Table-per-concrete class

For our inheritance example, we’ll use the CD class defined in Chapter 3 along with two subclasses
called SpecialEditionCD and InternationalCD. The three classes are listed in Listing 5.19.

package example.products;

import java.io.*;
import java.util.*;

public class CD {
int id;
String title;
String artist;
DatepurchaseDate;
double cost;

public CD() {
}

public CD(String title,
String artist,
Date purchaseDate, double cost) {

this.title = title;
this.artist = artist;
this.purchaseDate = purchaseDate;
this.cost = cost;

}

public void setId(int id) {
this.id = id;

}

public int getId(){
return id;

}

public void setTitle(String title) {
this.title = title;

}

public String getTitle() {
return title;

}

public void setArtist(String artist) {
this.artist = artist;

}

public String getArtist() {

108

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 108

return artist;
}

public void setPurchasedate(Date purchaseDate) {
this.purchaseDate = purchaseDate;

}

public Date getPurchasedate() {
return purchaseDate;

}

public void setCost(double cost) {
this.cost = cost;

}

public double getCost() {
return cost;

}
}

package example.products;

import java.util.*;

public class SpecialEditionCD extends CD {

private String newfeatures;

public SpecialEditionCD() {
}

public SpecialEditionCD(String title,
String artist,
Date purchaseDate,
double cost, String features) {

super(title, artist, purchaseDate, cost);

newfeatures = features;
}

public void setNewfeatures(String s) {
newfeatures = s;

}

public String getNewfeatures() {
return newfeatures;

}
}

package example.products;

109

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 109

import java.util.*;

public class InternationalCD extends CD {

private String languages;
private int region;

public InternationalCD() {
}

public InternationalCD(String title, String artist,
Date purchaseDate, double cost, String language, int region) {

super(title, artist, purchaseDate, cost);

languages = language;
this.region = region;

}

public void setLanguages(String s) {
languages = s;

}

public String getLanguages() {
return languages;

}

public void setRegion(int i) {
region = i;

}

public int getRegion() {
return region;

}
}

Listing 5.19

Table-Per-Class Hierarchy Mapping
In our first mapping example, we’ll create a mapping document for the three classes that stores objects
of the hierarchy in a single table structure. The mapping is shown in Listing 5.20.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping package="example.products">
<classname="CD"

table="cd"
discriminator-value="cd">

<id name="id"
type="integer"

110

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 110

unsaved-value="0">
<generator class="hilo"/>

</id>

<discriminator column="cd_type"
type= "string"/>

<property name="title"/>
<property name="artist"/>
<property name="purchasedate" type="date"/>
<property name="cost" type="double"/>

<subclass name="SpecialEditionCD"
discriminator-value="SpecialEditionCD">

<property name="newfeatures" type="string"/>
</subclass>

<subclass name="InternationalCD"
discriminator-value="InternationalCD">

<property name="languages"/>
<property name="region"/>

</subclass>

</class>

</hibernate-mapping>

Listing 5.20

The mapping in Listing 5.20 is more complex than the mappings you’ve seen so far. The first addition in
the mapping is the <discriminator> element. To understand how the mapping works, consider what
Hibernate will attempt to accomplish with the hierarchy objects: When the user instantiates and saves a
CD object, it’s saved to a table called CD with the appropriate attributes from the CD class mapped to the
database columns. When the user instantiates and saves a SpecialEditionCD object, it’s saved to the
same CD table as the CD object. The difference is that additional attributes are mapped from the
SpecialEditionCD. Those additional attributes are set to null for the CD object. To differentiate
between the three classes in the hierarchy, we add a discriminator column to the table and enter a spe-
cific value in the column for each object type.

The <discriminator> element includes two attributes in our example. The first attribute, column,
relates to the column in the database to be used for the discriminator value. The second attribute, type,
determines the column type.

In the <class> element, an element called <discriminator-value> relates to the value to be
placed in the discriminator column for an object instantiated from the CD class. Figure 5.1 shows all of
the rows in the cd table.

111

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 111

Figure 5.1

The database schema for this mapping is:

create table cd(
id int,
title text,
artist text,
purchasedate datetime,
cost double,
newfeatures text,
languages text,
region int,
cd_type text
);

Notice that the database schema consists of a single table and columns for all the possible attributes in
the base CD class as well as the child SpecialEditionCD and InternationalCD classes. By using the
table-per-class method, we need only one table for all object types in the mapped hierarchy.
Hibernate can do this by using the discriminator column, defined as cd_type in the schema, to hold a
string value indicating the class of object held in a particular row.

Here’s the code for an example use of the CD hierarchy. We used this code to produce the database rows
illustrated earlier:

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

import example.products.CD;
import example.products.SpecialEditionCD;
import example.products.InternationalCD;

public class CDTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

CD cd = new CD("Grace Under Pressure", "Rush", new Date(), 9.99);
SpecialEditionCD secd = new SpecialEditionCD
("Grace Under Pressure", "Rush", new Date(), 9.99, "Widescreen");

112

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 112

InternationalCD icd = new InternationalCD
("Grace Under Pressure", "Rush", new Date(), 9.99, "Spanish", 4);

session.save(cd);
session.save(secd);
session.save(icd);

session.flush();

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

We create three different objects, one for each class type, and persist them to permanent storage.
Hibernate puts the appropriate column values in the rows, depending on the class type.

Table-Per-Subclass Hierarchy Mapping
If you need to separate out the various classes into individual tables, one option is to use a table per sub-
class. Listing 5.21 shows the mapping needed to support this method.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping package="example.products">
<class name="CD"

table="cd">
<idname="id"

type="integer"
unsaved-value="0">

<generator class="hilo"/>
</id>

<property name="title"/>
<property name="artist"/>
<property name="purchasedate" type="date"/>
<property name="cost" type="double"/>

<joined-subclass name="SpecialEditionCD"
table="secd">

<key column="id"/>
<property name="newfeatures" type="string"/>

</joined-subclass>

<joined-subclass name="InternationalCD"
table="icd">

<key column="id"/>
<property name="languages"/>
<property name="region"/>

113

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 113

</joined-subclass>

</class>

</hibernate-mapping>

Listing 5.21

In the mapping document, we’ve removed the discriminator element and attributes and replaced them
with a <key> element and the names of database tables to be used when storing objects of a particular
type. What’s most interesting about the table-per-subclass method is the fact that the attribute
inherited from the parent only appears in the parent database table. Hibernate uses the <key> element
to determine which field in the parent database should be used to create a relationship between the par-
ent and child. Our example program places rows in all three tables.

Since there will be three tables, we need three database schemas—they’re shown in Listing 5.22.

create table cd(
id int,
title text,
artist text,
purchasedate datetime,
cost double,
);

create table secd(
id int,
newfeatures text,
);

create table icd(
id int,
languages text,
region int,
);

Listing 5.22

Using the same example program a in the previous table-per-class example, Hibernate creates
rows in each of the tables as shown here:

mysql> select * from cd;
+--------+----------------------+--------+---------------------+------+
| id | title | artist | purchasedate | cost |
+--------+----------------------+--------+---------------------+------+
425985	Grace Under Pressure	Rush	2004-04-16 00:00:00	9.99
425986	Grace Under Pressure	Rush	2004-04-16 00:00:00	9.99
425987	Grace Under Pressure	Rush	2004-04-16 00:00:00	9.99
+--------+----------------------+--------+---------------------+------+
3 rows in set (0.00 sec)

114

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 114

mysql> select * from secd;
+--------+-------------+
| id | newfeatures |
+--------+-------------+
| 425986 | Widescreen |
+--------+-------------+
1 row in set (0.00 sec)

mysql> select * from icd;
+--------+-----------+--------+
| id | languages | region |
+--------+-----------+--------+
| 425987 | Spanish | 4 |
+--------+-----------+--------+
1 row in set (0.00 sec)

Recall that the example program creates three objects of types CD, SpecialEditionCD, and
InternationalCD. All three objects share the attributes found in the CD table, since it’s a parent to
SpecialEditionCD and InternationalCD. When the CD object is persisted, Hibernate inserts a sin-
gle row in the cd table. When a SpecialEditionCD is persisted, Hibernate writes a row into the cd
table and then writes the additional fields for the object into the secd table. Notice that the id field val-
ues are matched between the second row in the cd table and the single row in the secd table. The same
process is used when storing the InternationalCD.

Table-Per-Concrete-Class Hierarchy Mapping
Finally, you can use the table-per-concrete-class method, where Hibernate uses database tables
containing all the fields for a particular class. In other words, the SpecialEditionCD and
InternationalCD class have all the fields found in the CD class. All three approaches store the same
type of information, but in different ways. Both this method and the previous one require either two
selects to the database or a join.

The database schema used for this approach is shown in Listing 5.23.

create table cd(
id int,
title text,
artist text,
purchasedate datetime,
cost double
);

create table secd(
id int,
title text,
artist text,
purchasedate datetime,
cost double,
newfeatures text,
);

create table icd(
id int,

115

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 115

title text,
artist text,
purchasedate datetime,
cost double,
languages text,
region int,
);

Listing 5.23

The mapping required uses three <class> elements with no embedding of the various elements, as
shown in Listing 5.24.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping package="example.products">
<classname="CD"

table="cd"
discriminator-value="cd">

<id name="id"
type="integer"
unsaved-value="0">

<generator class="hilo"/>
</id>

<property name="title"/>
<property name="artist"/>
<property name="purchasedate" type="date"/>
<property name="cost" type="double"/>

</class>

<class name="SpecialEditionCD"
table="secd">

<id name="id"
type="integer"
unsaved-value="0">

<generator class="hilo"/>
</id>

<property name="title"/>
<property name="artist"/>
<property name="purchasedate" type="date"/>
<property name="cost" type="double"/>

<property name="newfeatures" type="string"/>
</class>

<class name="InternationalCD"
table="icd">

<id name="id"

116

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 116

TE
AM
 F
LY

type="integer"
unsaved-value="0">

<generator class="hilo"/>
</id>

<property name="title"/>
<property name="artist"/>
<property name="purchasedate" type="date"/>
<property name="cost" type="double"/>

<property name="languages"/>
<property name="region"/>

</class>

</hibernate-mapping>

Listing 5.24

Using the same example program as in the last two sections, we obtain the following rows in the three
databases:

mysql> select * from cd;
+--------+----------------------+--------+---------------------+------+
| id | title | artist | purchasedate | cost |
+--------+----------------------+--------+---------------------+------+
| 458753 | Grace Under Pressure | Rush | 2004-04-16 00:00:00 | 9.99 |
+--------+----------------------+--------+---------------------+------+
1 row in set (0.00 sec)

mysql> select * from secd;
+-------+----------------------+--------+--------------------+------+-----------+
|id | title | artist | purchasedate | cost |newfeatures|
+-------+----------------------+--------+--------------------+------+-----------+
|491521 | Grace Under Pressure | Rush | 2004-04-16 00:00:00| 9.99 | Widescreen|
+-------+----------------------+--------+--------------------+------+-----------+
1 row in set (0.00 sec)

mysql> select * from icd;
+-------+--------------------+-------+-------------------+----+---------+--------+
|id |title |artist |purchasedate |cost|languages| region |
+-------+--------------------+-------+-------------------+----+---------+--------+
|524289 |Grace Under Pressure|Rush |2004-04-16 00:00:00|9.99|Spanish | 4 |
+-------+--------------------+-------+-------------------+----+---------+--------+
1 row in set (0.00 sec)

Persisting Interfaces
As you know, in many situations interfaces denote the information needed in an application. The inter-
face is used to fully build a set of classes. Hibernate allows the interfaces to be persisted, but that doesn’t
make much sense since interfaces don’t exist without an implementing class. Let’s look at an example
interface and a couple of classes that implement it.

117

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 117

We’ve defined an interface called AppAccount that represents a bank account. There are numerous
bank accounts, so we chose an interface to represent the common functions but allow the implementa-
tion to develop. Two different implement the AppAccount interface: SavingsAccount and
CheckingAccount.

Listing 5.25 contains an example mapping for the interface and classes—it looks just like the mapping
for our inheritance example.

<?xml version="1.0" encoding="utf-8" ?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping package="example.products">
<class name="AppAccount"
table="accounts">
<id name="id"
type="integer"
unsaved-value="0">
<generator class="hilo"/>
</id>

<discriminator column="type"
type= "string"/>

<property name="title"/>
<property name="artist"/>
<property name="purchasedate" type="date"/>
<property name="cost" type="double"/>

<subclass name="CheckingAccount"
discriminator-value="CheckingAccount">

...
</subclass>

<subclass name="SavingsAccount"
discriminator-value="SavingsAccount">

...
</subclass>

</class>
</hibernate-mapping>

Listing 5.25

Notice that the interface class doesn’t include a discriminator-value attribute in the <class> element;
thus Hibernate can’t create an entry in the database for an object of type AppAccount. But that’s good,
because it’s an interface, and we can’t create an object of the AppAccount type. We can represent the
interface and classes using any of the three inheritance mappings available.

118

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 118

Mapping Enums
One of the most common language constructs left out of the Java language is the Enum. An enumeration
is typically a set of string values that have unique integer values but are considered a type in themselves.
Until Java 1.5, developers had to devise ways to produce an Enum. The creators of Hibernate saw the
need to be able to persist enumerations, so they developed an Enum design using the class net.sf
.hibernate.PersistentEnum. To make Hibernate persist your enums, you must build them by
implementing this class type. Consider the Java class in Listing 5.26.

package example.enums;
import net.sf.hibernate.PersistentEnum;
public class Display implements PersistentEnum {
private final int code;
private Display(int code) {
this.code = code;

}

public static final Display FULL = new Integer (0);
public static final Display SEMI = new Integer(1);
public static final Display NONE = new Integer(2);
public int toInt() {
return code;

}

public static Display fromInt(int code) {
switch(code) {
case 0: return FULL;
case 1: return SEMI;
case 2: return NONE;
default: throw new RuntimeException("Unknown display code");

}
}

}

Listing 5.26

An example class to use the Display enumeration looks like Listing 5.27.

package example.enum;

public class UseDisplay {

private String id;
private Display display;

public UseDisplay() {
}

public void setId(String i) {
id = i;

}

119

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 119

public String getId() {
return id;

}

public void setDisplay(Display e) {
display = e;

}

public Display getDisplay() {
return display;

}
}

Listing 5.27

This class includes a single enumeration attribute and an identifier. The mapping needed to handle the
class is shown in Listing 5.28.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="example.enum.UseDisplay"

table="display">

<id name="id"
type="string"
unsaved-value="null">

<generator class="uuid.hex"/>
</id>

<property name="display"
type="example.enum.Display">

<column name="display" sql-type="int"/>
</property>

</class>

</hibernate-mapping>

Listing 5.28

This mapping is a little different than the previous ones, because we include the class type for the enu-
meration in the type attribute of the <property> element. The type value is example.enum
.Display; we place the entire name in the attribute. In the same <property> element, we include a
<column> element to indicate the database field name as well as the database type. Hibernate handles
converting the enumeration from its display name to an integer so it can be stored properly. The
database schema for the mapping is:

120

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 120

create table display(
id text,
display int
);

Here’s an example row in the database for a persisted object:

mysql> select * from display;
+----------------------------------+---------+
| id | display |
+----------------------------------+---------+
| 40288195fbf8a14400fbf8a148710001 | 1 |
+----------------------------------+---------+
1 row in set (0.04 sec)

This row has persisted an object with an enumeration value of SEMI; thus the value 1 is stored in the
display column. The example application that uses both the class and the enumeration is shown in
Listing 5.29.

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

import example.enum.UseDisplay;
import example.enum.Display;

public class DisplayTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

UseDisplay display = new UseDisplay();

display.setDisplay(Display.SEMI);

session.save(display);
session.flush();

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 5.29

121

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 121

Working with Column Formulas
In Chapter 4, you learned that the <property> element has an attribute called formula designed to let
Hibernate pull information from the persisted object and place the result in the object being loaded.
Basically, Hibernate takes the SQL query string placed in the attribute and puts it in the SELECT com-
mand used to pull the object from the database. The value from the SELECT is placed in a specified
attribute of the class. You can place any SQL in the formula attribute that would be valid in a SELECT
clause. Consider the following Account class:

package example.accounting;

import java.io.*;

public class Account {
private String id;
private String accountnum;
private double balance;
private String firstname;
private String lastname;
private String fullname;

public Account() {
}

public void setId(String s) {
id = s;

}

public String getId() {
return id;

}

public void setAccountnum(String s) {
accountnum = s;

}

public String getAccountnum() {
return accountnum;

}

public void setBalance(double b) {
balance = b;

}

public double getBalance() {
return balance;

}

public void setFirstname(String s) {
firstname = s;

}

public String getFirstname() {

122

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 122

return firstname;
}

public void setLastname(String s) {
lastname = s;

}

public String getLastname() {
return lastname;

}

public void setFullname(String s) {
fullname = s;

}

public String getFullname() {
return fullname;

}
}

The Account class includes attributes for firstname, lastname, and fullname. Obviously the full-
name attribute is a concatenation of the firstname and lastname values; we let Hibernate create the
value. The mapping to produce the value is shown here:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="example.accounting.Account"
table="account2">

<id name="id"
type="string"
unsaved-value="null">
<generator class="uuid.hex"/>
</id>

<property name="accountnum"/>
<property name="firstname"/>
<property name="lastname"/>
<property name="balance"/>
<property name="fullname" formula="concat(firstname, ' ', lastname)"/>
</class>

</hibernate-mapping>

All the work takes place in the <property> element with the name="fullname" attribute. Notice the
formula that creates the value we’re after for our class. Here’s the database schema for the mapping:

create table account2(
id text,
accountnum text,

123

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 123

firstname text,
lastname text,
balance double
);

To determine whether the mapping works, we use the following example code:

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

import example.accounting.Account;

public class AccountTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

Account account = new Account();

account.setFirstname("Joe");
account.setLastname("Smith");
account.setAccountnum("39084");
account.setBalance(4054.00);

session.save(account);
session.flush();

Account account2 = (Account)session.load(Account.class,
account.getId());

System.out.println(account2.getFullname());

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

When the object is loaded from the database, the fullname attribute is populated with the correct value
based on a call to the database instead of the object having to create the value.

Using the Session Pattern
In Chapter 2, we provided an implementation of a servlet that takes advantage of the init() method to
obtain a single SessionFactory object and a local Session object when the servlet is ready to save or
load persistent classes. As we mentioned, it’s important that your application instantiate only a single
SessionFactory object, because Hibernate is designed to work with a single instance. Further, the

124

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 124

Session object created to allow an application to save() and load() persisted objects isn’t thread-
safe, and you must take care that a single session isn’t shared or accessed across threads.

Fortunately, Java provides a couple of mechanisms that ensure these two rules are followed: static
attributes and the ThreadLocal construct. The developers of Hibernate created a pattern that uses
these two mechanisms to ensure safe SessionFactory and Session object instantiation and use. The
pattern is shown in Listing 5.30.

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class HibernateSession {
private static final SessionFactory sessionFactory;

static {
try {
sessionFactory = new Configuration().
configure().buildSessionFactory();

} catch (HibernateException e) {
throw new RuntimeException
("SessionFactory Error - " + e.getMessage(), e);

}
}

public static final ThreadLocal session = new ThreadLocal();

public static Session currentSession() throws HibernateException {
Session s = (Session) session.get();

if (s == null) {
s = sessionFactory.openSession();
session.set(s);

}

return s;
}

public static void closeSession() throws HibernateException {
Session s = (Session) session.get();
session. set(null);
if (s != null)
s.close();

}
}

Listing 5.30

In this pattern code, a static attribute and instantiation block are used to create the SessionFactory
object, making sure there is only a single object for the application. To obtain a Session object, the
application calls the openSession() method. The code tries to determine if a Session object has
already been instantiated by calling the session attribute’s get() method. Notice that the session
attribute is declared as a ThreadLocal variable: This means the JVM will ensure that only one session

125

Creating Persistent Classes

07_576771_c05.qxd 9/1/04 12:19 PM Page 125

object is available for all the threads that call the openSession() method. If an object isn’t available, a
new one is instantiated and returned to the caller.

When using this pattern, Hibernate looks for the hibernate.cfg.xml file and pulls all the necessary
database connection information as well as the mapping document references. For example, we might
have a hibernate.cfg.xml file that looks like Listing 5.31.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd">

<hibernate-configuration>

<session-factory>
<property name="connection.driver">com.mysql.jdbc.Driver</property>
<property name="connection.url">jdbc:mysql://localhost/products</property>
<property name="dialect">net.sf.hibernate.dialect.MySQLDialect</property>

<mapping resource="book.hbm.xml"/>
</session-factory>

</hibernate-configuration>

Listing 5.31

Summary
Mapping Java classes to permanent database storage is a fundamental issue with any production appli-
cation. Our goal in this chapter was to provide you with experience in creating the Hibernate mapping
document between simple and more complex classes. We’ve exercised many of the elements found in
Chapter 4 in order to create the mappings. In the next chapter, we’ll expand our discussion to include
collections and components. Collections let you include in your mappings lists, maps, and sets of data;
and components give you the ability to support object-oriented composition.

126

Chapter 5

07_576771_c05.qxd 9/1/04 12:19 PM Page 126

Working with Collections

In Chapter 5, you saw how to persist Java classes that contain attributes consisting of Java basic
types as well as serializable classes. What was missing from all our examples were collections.
When we talk about collections, we’re specifically interested in those classes that implement the
java.util.Collection interface as well as traditional arrays. Hibernate can persist attributes defined
as the following collections interfaces and their corresponding implementation classes:

❑ java.util.Map: HashMap

❑ java.util.SortedMap: TreeMap

❑ java.util.Set: HashSet

❑ java.util.SortedSet: TreeSet

❑ java.util.List: ArrayList

❑ Any array of basic types or other persisted classes

One of the most important issues with collections and Hibernate is the fact that you can use them
just as you’ve been using them in your applications; with the proper mapping, Hibernate will per-
sist them as easily as it persists an integer value. However, Hibernate doesn’t just persist the col-
lections but replaces the standard Map, Set, and List classes with its own versions to support the
persisting mechanism. Therefore, the extra semantics of, say, a HashMap are not persisted. You’ll
see examples of this behavior later in the chapter.

Associations
Before we start the process of mapping collection examples, we need to talk about the different
associations that can occur between a collection and a class where the collection is defined. A col-
lection can be instantiated to hold values and is associated with a single class. In this type of situa-
tion, the collection has a parent that it must be associated with. In addition, you might have a
situation where a single collection is referenced by more than one class. You need to be able to
handle these associations.

666

08_576771_c06.qxd 9/1/04 12:22 PM Page 127

Let’s begin with a collection called pictures, which is defined in a class called Album:

public class Album {
private String name;
private List pictures;
public void setName(String s) {
name = s;

}
public String getName() {
return name;

}
public void setPictures(List l) {
pictures = l;

}
public List getPictures() {
return pictures;

}
}

The Album class has two attributes: the name of the album and a List for all the pictures that are part of
the album. From Chapter 5, you know there will be a mapping for the Album class that contains an ele-
ment called <list> to handle the mapping of the pictures attribute. In to keep track of the parent of the
pictures collection, Hibernate creates a foreign key based on the parent’s identifier. Hibernate calls the
foreign key a collection key; it’s defined using a <key> element. The <key> element contains a single
attribute called column. The value of the attribute is the name of the identifier column in the parent
class. Hibernate also requires a collection table for the elements of the collection.

Index Elements
If the collection is based on an index, List, array, or Map, you must have a column in the table to hold
the index position of each element in the collection. In the case of an array or List, the column type is
an integer. The map can use any valid Hibernate type to fully emulate the functionality of the map.
There are four <index> elements, to support a variety of situations.

Here’s the simple case for an array, List, or Map:

<index
column="column"
type="type"
length="length"

/>

The <index> element has three attributes: column, type, and length. The column attribute specifies
the name of the column in the collection table that will hold the index. The type attribute specifies the
type of the column, and the length attribute is the length of the column.

When you’re using a map, you’ll most commonly use another class as the index to the values in the map.
Hibernate supports this using the <index-many-to-many> element:

<index-many-to-many
column="column"
class="class"

/>

128

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 128

It has only two attributes: column is the name of the column in the collection table to hold the index val-
ues, and class is the name of the class for the index.

If you need to use a composite index for your collection, you can specify it using the <composite-
index> element. This element specifies the class to use for the index and uses the <key-property>
element to specify the individual pieces of the composite index:

<composite-index
class="class">
<key-property name="name" type="type" column="column"/>
>

A fourth index is available, which isn’t recommended by Hibernate; it allows for a heterogeneous map-
ping in the collections as far as the index is concerned:

<index-many-to-any
id-type="type"
meta_type="type">
<column/>

</index-many-to-any>

There are two attributes: id-type is an identifier type that needs to be present in a custom type defined
by the meta-type attribute. The <index-many-to-any> element contains <column> subelements.
The first <column> element defines the table of the mapping, and an additional <column> element
defines the identifier to be used.

Element Elements
All the values of a collection can be basic types or classes except another collection. Hibernate calls the
values in the collection collection element types. The type is defined using an <element> element. There
are five different <element> elements.

If your collection only contains values, you use the <element> element to specify the column to use for
the values and the type:

<element
column="column"
type="type"

/>

The column and type are created in the database table, as you’ll see shortly.

If your collection contains objects, you use the <many-to-many> element to specify those objects:

<many-to-many
column="column"
class="class"
outer-join="true | false | auto"

/>

129

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 129

The column attribute is the name of the column in the database table to hold the foreign key to the object
table that Hibernate uses to store the object. You need a mapping for the objects to be contained in the
collection. The class attribute is the name of the class to be held in the collection. If you want to let
Hibernate use an outer join when pulling collection objects, set the outer-join attribute to the appro-
priate value. The default is auto, which lets Hibernate choose for itself.

As you’ll see toward the end of the chapter, you can save an entire component in a Java collection by
using the <composite-element> element:

<composite-element class="class">
<property name=""/>
</composite-element>

This element groups together the needed attributes to be saved. The <property> subelement is
required to determine which of the attributes to pull from the class defined by the class attribute.

In most other mappings, you needed a collection table to handle the mapping between the classes in the
collections. When you’re using a one-to-many relationship, there is no additional table. There is only a
single class attribute in this element, which is the name of the associated class:

<one-to-many
class="class"

/>

When you’re using the <one-to-many> element in a collection-mapping element like <set>, you need
to declare a <key> element as well so that Hibernate can make the appropriate mappings.

The index and element elements create considerable variety when you’re mapping a collection. You’ll
see many of these elements in the remainder of this chapter as we do some actual mappings.

Bidirectional Associations
When you’re using a collection, you typically have a parent object that contains an attribute of the collec-
tion type. For example:

public class Parent {
private List list;

}

Here the list attribute is a child of the Parent. To access the list, you typically go through the parent.
Further, the objects in the list are typically owned by the parent and not shared with other parents. This
is a one-to-many relationship. If the objects in the List are shared among various parents, it’s a many-
to-many situation.

If you want to be able to determine the parent of a child, you must establish a bidirectional association
for the many-to-many relationship but not for the one-to-many. You do so by putting a <many-to-
many> element in each of the class or collection elements. You also need to specify the inverse attribute
in one end of the association. You’ll see an example of using a bidirectional many-to-many association
toward the end of the chapter.

130

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 130

Lazy Initialization
Clearly, there can be an issue of performance when considering the loading of a persisted collection. If
the collection is very large, there is no reason to bring in the entire collection when you only want to look
at a few elements. You can help Hibernate by specifying the proxy attribute in the <class> or <sub-
class> element, defining the class that should be used for lazy initialization. Typically the class is the
same as the class being mapped. If you want Hibernate to use lazy initialization in your classes, specify
the lazy attribute in the mapping element. For example:

<class name="Group" proxy="Group">
<set lazy="true">
</set>

</class>

Mapping Maps/SortedMaps
Java maps are designed to handle key/value pairs, where the key and value can be a primitive type or
an object. All maps are defined based on the interface called java.util.map, which means you can’t
instantiate a new map using the code:

Map map = new Map();

Since map is an interface, you need to use an implementation supplied by Java. One of the most popular
implementations is the HashMap; we’ll use it in our example. When Hibernate persists a HashMap, you
lose the semantics involved in the HashMap and provide the functionality from the Map interface when
the map is pulled from the database. If you’re interested in a sorted map, the SortedMap interface is
supported along with the TreeMap class implementation. When you’re using objects for the key in a
sorted map, it’s important to implement both the equal() and hashCode() methods in the class itself.

As you’ll see in an example shortly, we define our own comparator so both Java and Hibernate can accu-
rately insert new key/value pairs into a sorted map. In the Map section, we’ll show examples that use a
map of primitive values, a map using objects, and a sorted map using objects for both the key and value
pairs—a ternary example.

Mapping a Values Map
Our first example of persisting a map involves a class called SupportProperty, which contains the
name of the support property, and a Map called properties. The map will be filled with key/value
pairs consisting of a property name for the key using a String type. The value is also a String type
relating to the key. Since the key and values are both Strings, we need only a single class for this exam-
ple. The SupportProperty class is defined as shown in Listing 6.1.

import java.util.*;

public class SupportProperty {
private int id;
private String name;
private Map properties;

131

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 131

public SupportProperty() {
}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String s) {
name = s;

}

public String getName() {
return name;

}

public void setProperties(Map m) {
properties = m;

}

public Map getProperties() {
return properties;

}
}

Listing 6.1

It’s important to note that we’ve specified the base map interface as the property type in our example
class. Both the accessor and mutator methods also refer to the interface instead of the implementation
map. At this point we don’t have an implementation map to discuss, but it will be a HashMap.

The SupportProperty class and its Map attribute represent the easiest mapping needed for persis-
tence. Listing 6.2 shows the necessary mapping document.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="SupportProperty"
table="supportproperty">
<id name="id">
<generator class="native"/>

</id>

<map name="properties">
<key column="part_id"/>

132

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 132

<index column="property_name" type="string"/>
<element column="property_value" type="string"/>

</map>
<property name="name" type="string"/>
</class>
</hibernate-mapping>

Listing 6.2

The attributes in our SupportProperty class include the identifier, the name of the object, and a map
consisting of various key/value pairs. For our mapping document, we’ve included an <id> element
that supports a native generator—this means we’ll use the auto increment clause when defining our
MySQL database table. We also include a <property> element for the name attribute.

The new element in the mapping document is called <map>; it will be used to map the properties
attribute to the database. The <map> element includes three subelements—<key>, <index>, and <ele-
ment>—and a single name attribute that tells Hibernate the name of the map attribute in the class we’re
mapping. Hibernate uses a separate database table to hold the map key/value pairs; since we don’t sup-
ply a table attribute, Hibernate uses the value found in the name attribute.

Next we define the <key> subelement to associate the map with its parent. The attribute column value
is the name of a foreign key column where Hibernate puts the primary key of the parent. The <index>
subelement specifies the information for the key part of the map, and the <element> subelement is the
value part of the map. We’ve supplied both the column name and the type of the key/value pieces of the
map.

From the mapping document, we can derive our database table. There are two tables: one for the parent
object and another for the map attribute. The two tables are linked to each other through a primary/
foreign key relationship. If your database server requires an explicit foreign key link, you’ll need to sup-
ply it. The definitions in Listing 6.3 works for MySQL.

create table supportproperty (
id int not null auto_increment primary key,
name text);
create table properties (
id int,
property_name text,
property_value text
);

Listing 6.3

Notice that we’ve supplied the auto_increment keyword in the supportproperty table but not in the
properties table. The reason is the primary/foreign key association. When Hibernate persists a
SupportProperty object, it stores the name of the object and allows MySQL to automatically create a
primary key for the supportproperty table. Hibernate obtains the created primary key and inserts it
along with the key/values of the properties map into the properties table. When Hibernate needs to load
the object from the database, it can pull the row from the supportproperty table and use the primary key
to obtain the appropriate key/value pairs from the property table.

133

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 133

The application in Listing 6.4 shows how to use the SupportProperty object and its Hibernate map-
ping document. This example instantiates a SupportProperty object and populates the name
attribute. Next, we create a HashMap object and add two key/value pairs. The map is added to the
SupportProperty object; then we save the object to permanent storage. Finally, we pull the object
from storage and display the values of the two properties.

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class SupportPropertyTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

SupportProperty sp = new SupportProperty();

sp.setName("John Smith");
HashMap p = new HashMap();
p.put("color", "blue");
p.put("lnf", "mac");
sp.setProperties(p);

session.save(sp);
session.flush();

SupportProperty sp2 = (SupportProperty)session.
load(SupportProperty.class, new Integer(sp.getId()));

Map p2 = sp2.getProperties();
System.out.println(p2.get("color"));
System.out.println(p2.get("lnf"));

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 6.4

The results from the example application are shown below. Hibernate has persisted our
SupportProperty, just as we expected. The supportproperty table holds the name attribute and
primary key of the object, and the properties table holds the two key/value pairs as well as a foreign
key value associating the appropriate object row in supportproperty table with the map rows.

134

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 134

mysql> select * from supportproperty;
+----+------------+
| id | name |
+----+------------+
| 5 | John Smith |
+----+------------+
1 rows in set (0.00 sec)

mysql> select * from properties;
+-----------+---------------+---------------------+
| part_id | property_name | property_value |
+-----------+---------------+---------------------+
| 5 | lnf | mac |
| 5 | color | blue |
+-----------+---------------+---------------------+
2 rows in set (0.00 sec)

Mapping an Object Map: <many-to-many> Element
Many times in the development of an application that uses a map, the key is a primitive type like an
integer or a string but the value is an object. In this situation, you need to be able to store the object and
provide a reference to be used in the map as well as other maps. Since the object can be used in more
than one map, it’s a many-to-many situation as far as the map element is concerned. This means you use
the <many-to-many> element instead of the <element> element to specify the value part of the map’s
key/value pair.

To illustrate how this works, we’ll create an example class called Employee that contains some basic
attributes and a Map called benefits. The map uses a key based on a string specifying the name of the
benefit and a value using a Benefit class. The two classes needed are shown in Listing 6.5.

import java.util.*;

public class Employee {
private int id;
private String name;
private Map benefits;

public Employee() {
}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String s) {

135

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 135

name = s;
}

public String getName() {
return name;

}

public void setBenefits(Map m) {
benefits = m;

}

public Map getBenefits() {
return benefits;

}
}

public class Benefit {
private int id;
private int cost;

public Benefit() {
}

public Benefit(int c) {
cost = c;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setCost(int i) {
cost = i;

}

public int getCost() {
return cost;

}
}

Listing 6.5

The mapping document required for our Employee class is shown in Listing 6.6. The Employee class
includes an identifier using a native generator. In fact, we allow MySQL to generate the identifier for
each object added to the employee table. The name attribute of the Employee class is mapped to the
database as well as the benefit Map attribute.

All the work takes place in the <map> element. First we define a specific table for the map called
employee benefit. This is an association table used to associate rows from the employee table with rows

136

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 136

from an as-yet-undefined table called benefit, which will hold specific Benefit objects. The rows in
the association table have three columns:

❑ parent id: Defined using the <key> element. This column holds the identifier from the
employee table so Hibernate can persist and load the correct map when handling an
Employee object.

❑ benefit name: Defined using the <index> element, which represents the key parts of the
key/value map pair. The key will be stored in the column using a type of string.

❑ benefit id: Defined using the <many-to-many> element, which represents the value part of the
key/value map pair. The class is Benefit.

Notice that there is no type attribute but a class attribute instead. Hibernate notices the difference
based on the <many-to-many> element and only persist a foreign key value into the supplied column.

The foreign key value for the association table is obtained from the database mapping the supplied
class—in this case, Benefit. The mapping for Benefit is found in the same mapping document as
Employee but under a different <class> element. The Benefit class mapping looks like any other
class mapping with its attributes mapped to specific columns and an identifier definition using a native
generator. So, MySQL automatically generates the identifier values for the Benefit objects as well. The
result is an association table that maps many Benefit objects to at least one Employee object. All the
work is accomplished in the association table, as you’ll see shortly.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="Employee"
table="employee">
<id name="id" unsaved-value="0">
<generator class="native"/>

</id>

<map name="benefits"
table="employee_benefit" cascade="all">

<key column="parent_id"/>
<index column="benefit_name" type="string"/>
<many-to-many column="benefit_id" class="Benefit"/>

</map>
<property name="name" type="string"/>
</class>
<class name="Benefit"
table="benefit">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>
<property name="cost" type="int"/>
</class>
</hibernate-mapping>

Listing 6.6

137

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 137

From the mapping document, we find that we need three tables: employee, benefit, and employee
benefit. The necessary MySQL SQL to generate the tables is found in Listing 6.7.

create table employee (
id int not null auto_increment primary key,
name text
);

create table benefit (
id int not null auto_increment primary key,
cost int
);

create table employee_benefit (
parent_id int,
benefit_name text,
benefit_id int
);

Listing 6.7

With the classes, mapping, and database in place, we can discuss an application that shows how
Hibernate maps a real object to persistent storage. An example application is shown in Listing 6.8.

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class EmployeeTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

Employee sp = new Employee();
Employee sp3 = new Employee();

sp.setName("John Doe");
HashMap p = new HashMap();
p.put("health", new Benefit(200));
p.put("dental", new Benefit(300));
sp.setBenefits(p);

sp3.setName("Jim Smith");
sp3.setBenefits(p);

138

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 138

session.save(sp);
session.save(sp3);
session.flush();

Employee sp2 = (Employee)session.load(Employee.class, new
Integer(sp.getId()));

Map p2 = sp2.getBenefits();
System.out.println(((Benefit)p2.get("health")).getCost());
System.out.println(((Benefit)p2.get("dental")).getCost());

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 6.8

This code creates two Employee objects and assigns them different names. For the benefits, we create
two key/value pairs. Notice that the key is a String and the value is a Benefit object. In this example,
we’re assuming that both employees have the same benefits, so the HashMap created to hold the
Benefit objects is assigned using the setBenefits() method on both Employee objects. This exam-
ple shows how Hibernate can handle shared objects.

Once the example application executes, Hibernate needs to store both Employee objects as well as both
Benefit objects in the database. The result is the tables below. The result includes two rows in the
employee table, as we expect: one for each object instantiated. The same is true for the two Benefit
objects. The two tables are associated in the employee_benefit table; as you can see, there are two
rows for each of the employees, since we associated two benefits with each in their maps.

mysql> select * from employee;
+----+-----------+
| id | name |
+----+-----------+
| 7 | John Doe |
| 8 | Jim Smith |
+----+-----------+
2 rows in set (0.00 sec)

mysql> select * from benefit;
+----+------+
| id | cost |
+----+------+
| 9 | 300 |
| 10 | 200 |
+----+------+
2 rows in set (0.00 sec)

139

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 139

mysql> select * from employee_benefit;
+-----------+--------------+------------+
| parent_id | benefit_name | benefit_id |
+-----------+--------------+------------+
7	dental	9
7	health	10
8	dental	9
8	health	10
+-----------+--------------+------------+
4 rows in set (0.00 sec)

Mapping a TreeMap
In the previous two examples, we’ve handled maps where the key/value pair consisted of primitive
types and the value was a persistable object; but what about a situation where both the key and the
value are objects? This is called a ternary association; we’ll cover such an example in this section.

For our ternary example, we’re also going to move away from the HashMap and focus on the TreeMap
so the key values are sorted based on a comparison algorithm. We’ll write a comparator class to handle
the comparison of the key value objects. The containing class for this example is called Console, and it
represents a gaming console. The Console object contains an identifier, a name, and a SortedMap
attribute called games. The games map uses a key value based on a class called Game, which contains a
name attribute. The games map uses a value key based on a class called Instructions, which con-
tains an attribute called info. All three class definitions are shown in Listing 6.9.

import java.util.*;

public class Console {
private int id;
private String name;
private Map games;

public Console() {
}

public Console(String name) {
this.name = name;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String n) {
name = n;

}

140

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 140

public String getName() {
return name;

}

public void setGames(Map m) {
games = m;

}

public Map getGames() {
return games;

}
}

public class Game {
private int id;
private String name;

public Game() {
}

public Game(String name) {
this.name = name;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String s) {
name = s;

}

public String getName() {
return name;

}

public boolean equals(Object obj) {
if (obj == null) return false;
if (!this.getClass().equals(obj.getClass())) return false;

Game obj2 = (Game)obj;

if ((this.id == obj2.getId()) &&
this.name.equals(obj2.getName())) {
return true;

}

return false;
}

141

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 141

public int hashCode() {
int tmp = 0;
tmp = (id + name).hashCode();

return tmp;
}

}

public class Instructions {
private int id;
private String info;

public Instructions() {
}

public Instructions(String info) {
this.info = info;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setInfo(String s) {
info = s;

}

public String getInfo() {
return info;

}
}

Listing 6.9

The mapping document required for the three classes in this example is more complex than the other
mapping examples; see Listing 6.10. First, all three classes are defined in the single Console.hbm.xml file,
more for convenience than for any other reason. The Console mapping begins with an identifier using
a native generator like we’ve used in the past. There is also the familiar <property> element for the
name of the console. Notice that we’re using <map> as the element even though the ultimate class will
be a TreeMap. In the <map> element, we define the name of the attribute being mapped as well as the
association table to be used. We have an association table because we aren’t mapping primitive types but
instead objects in the map. We also have a sort attribute, since we’ll be dealing with a SortedMap class.
In our example, we’ve specified a custom class called GameComparator, which we’ll discuss shortly.
Finally, we use the cascade attribute to tell Hibernate that it should attempt to persist all objects when
the Console object is saved. As you’ll see later, this doesn’t always do the job.

142

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 142

The subelements in the <map> element include <key>, to hold the primary key from the parent so
Hibernate knows which map elements are associated with the parent Console object. Instead of an
<index> element, we use the element <index-many-to-many> when the key value for a map is an
object and not a primitive type like integer or String. The element includes the column attribute to
map the object’s primary key to a specific column as well as the class being represented in the column.
Just as in the previous example, Hibernate uses the specified column to hold a row identifier for the
Game object being used as a key. The same is true for the value object through the <many-to-many>
element specified for the Instruction object used in the map pair.

After the <class> element for the Console class are the appropriate <class> elements for the Game
and Instructions classes. Both of the classes need an identifier and a generator so Hibernate has a
primary key to place in the foreign key columns defined by the <index-many-to-many> and <many-
to-many> elements in the <map>.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="Console"
table="console">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<map name="games"
table="game_instructions" sort="GameComparator" cascade="all">

<key column="parent_id"/>
<index-many-to-many column="game_id" class="Game"/>
<many-to-many column="instructions_id" class="Instructions"/>

</map>
<property name="name" type="string"/>

</class>

<class name="Game"
table="game">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>
<property name="name" type="string"/>

</class>

<class name="Instructions"
table="instructions">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>
<property name="info" type="string"/>

</class>

</hibernate-mapping>

Listing 6.10

143

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 143

From the mapping document, we can create the necessary tables for this example. The MySQL SQL
needed to create them is found in Listing 6.11.

create table console (
id int not null auto_increment primary key,
name text
);

create table game (
id int not null auto_increment primary key,
name text
);

create table instructions (
id int not null auto_increment primary key,
info text
);

create table game_instructions (
parent_id int,
game_id int,
instructions_id int
);

Listing 6.11

The first three database tables hold the three objects in our example: console, game, and instruc-
tions. Each has its own identifier, which is automatically generated by the database server. The
game_instructions table is used as an association table to create the ternary relationship between the
Console object and the map object containing the Game and Instructions objects. Once Hibernate
has all the main objects stored in the database, it pulls the identifiers as primary keys and places them in
the association table as foreign keys.

As we mentioned earlier, we need to define a Comparator class so Java can sort the Game objects prop-
erly. Listing 6.12 shows the Comparator class; it overrides the compare() and equals() methods as
defined by the Comparator interface.

Listing 6.13 shows the code for an example application that uses all of our classes and mappings. The
code begins by creating a Console object and setting its name attribute. It instantiates a TreeMap object
using our new Comparator, and then creates two Game objects and assigns them to the appropriate
variables. Next, we add two pairs to the TreeMap object, creating the appropriate Instructions at the
same time.

It may seem strange that we aren’t building the Game objects as we did the Instructions objects,
using the put() to the map. The reason comes out of the cascade attribute found in the <map> ele-
ment. As you might expect, Hibernate should persist both the Game and Instructions objects when a
Console object is persisted. Unfortunately, Hibernate only persists the value object and not the key

144

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 144

objects. We have to manually save the key objects and flush them before saving the Console object;
otherwise we get an exception.

import java.util.*;

public class GameComparator implements Comparator {
public int compare(Object o1, Object o2) {

Game game1 = (Game)o1;
Game game2 = (Game)o2;

return game1.getName().compareTo(game2.getName());
}

public boolean equals(Object obj) {
if (obj == null) return false;
if (!this.getClass().equals(obj.getClass())) return false;

return true;
}

}

Listing 6.12

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class ConsoleTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

Console sp = new Console("New Console");

TreeMap p = new TreeMap(new GameComparator());
Game g = new Game("Donkey Kong");
Game g2 = new Game("Asteroids");
p.put(g, new Instructions("Instructions for Donkey Kong"));
p.put(g2, new Instructions("Instructions for Asteroids"));
sp.setGames(p);

session.save(g);
session.save(g2);

session.flush();

session.save(sp);
session.flush();

145

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 145

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 6.13

When the example application is executed, we obtain the rows found below. Notice that once the Game
object is persisted, Hibernate can populate the game_instructions association table with the proper
primary keys from both the game and instructions tables.

mysql> select * from console;
+----+-------------+
| id | name |
+----+-------------+
| 5 | New Console |
+----+-------------+
1 row in set (0.00 sec)

mysql> select * from game;
+----+-------------+
| id | name |
+----+-------------+
| 3 | Donkey Kong |
| 4 | Asteroids |
+----+-------------+
2 rows in set (0.00 sec)

mysql> select * from instructions;
+----+------------------------------+
| id | info |
+----+------------------------------+
| 3 | Instructions for Asteroids |
| 4 | Instructions for Donkey Kong |
+----+------------------------------+
2 rows in set (0.00 sec)

mysql> select * from game_instructions;
+-----------+---------+-----------------+
| parent_id | game_id | instructions_id |
+-----------+---------+-----------------+
| 5 | 4 | 3 |
| 5 | 3 | 4 |
+-----------+---------+-----------------+
2 rows in set (0.00 sec)

146

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 146

Based on the rows in the database shown in the previous example, you can clearly see how Hibernate
takes the identifiers from the three object tables and builds the association table.

Mapping Set/SortedSets
The Set and SortedSet are other important collection interfaces and classes available in Java. As you
might expect, the Java set interface is based on the mathematical set, where elements are added in a
manner such that no two elements are identical. As you might expect, objects to be added to a set must
implement both the equals() and hashCode() methods so Java can determine whether any two ele-
ments/objects are identical. Since we need to be able to persist Sets just as we did Maps, we’ll show an
appropriate mapping document for an example.

From a practical sense, we’ll use the classes HashSet and TreeSet to implement the example. This
example is based on two classes: GameScore and HighScores, as shown in Listing 6.14. The
GameScore class holds two attributes: the name of a game and the score achieved. The HighScores
class holds a name as well as a Set containing GameScore objects.

public class GameScore {
private int id;
private String name;
private int score;

public GameScore() {
}

public GameScore(String name, int score) {
this.name = name;
this.score = score;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String s) {
name = s;

}

public String getName() {
return name;

}

public void setScore(int i) {
score = i;

}

147

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 147

public int getScore() {
return score;

}

public boolean equals(Object obj) {
if (obj == null) return false;
if (!this.getClass().equals(obj.getClass())) return false;

GameScore obj2 = (GameScore)obj;

if ((this.id == obj2.getId()) &&
(this.name.equals(obj2.getName())) &&
(this.score == obj2.getScore())
) {
return true;

}

return false;
}

public int hashCode() {
int tmp = 0;
tmp = (id + name + score).hashCode();

return tmp;
}

}

import java.util.*;

public class HighScores {
private int id;
private String name;
private Set games;

public HighScores() {
}

public HighScores(String name) {
this.name = name;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String n) {
name = n;

}

148

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 148

public String getName() {
return name;

}

public void setGames(Set games) {
this.games = games;

}

public Set getGames() {
return games;

}
}

Listing 6.14

Based on our two classes and the Set object contained in the HighScores object, we create the
Hibernate mapping document shown in Listing 6.15. This mapping document looks very similar to the
Map object documents; the only real change is the <set> element. The document includes two <class>
elements for each of our classes. The GameScore <class> element defines the attributes from the class
that need to be persisted. It’s referenced from the <set> element in the HighScores <class>
element. For the <set> element, we define both a <key> element and a <one-to-many> element: in
our case, <one-to-many> to handle the relationship between the two classes. The <key> is the column
in the gamescore table that holds the foreign key to the parent object. We use the <one-to-many>
element to tell Hibernate the column and class for the objects stored in the Set; it indicates that one
HighScores object relates to many GameScore objects and, as such, the GameScore object must have
a HighScores parent associated with it. The element also means we don’t need an association table but
only the object tables. We also use the cascade attribute in the <set> element to tell Hibernate to persist
the GameScore objects at the same time as the HighScore object.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="HighScores"
table="highscores">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<set name="games" cascade="all" >
<key column="parent_id"/>
<one-to-many class="GameScore"/>

</set>
<property name="name" type="string"/>

</class>

<class name="GameScore"
table="gamescores">

149

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 149

<id name="id" unsaved-value="0">
<generator class="native"/>

</id>
<property name="name"/>
<property name="score"/>

</class>

</hibernate-mapping>

Listing 6.15

Of course, we need a couple of database tables for our three classes. There shouldn’t be any surprises:
We have two tables for each of our objects and a single association table to handle the objects in the Set.
Listing 6.16 shows the SQL to build the MySQL tables.

create table HighScores (
id int not null auto_increment primary key,
name text
);

create table gamescores (
id int not null primary key auto_increment,
name text,
score int,
parent_id int
);

Listing 6.16

Listing 6.17 shown an example application that takes our classes, instantiates the appropriate objects,
and persists the entire thing to the database. The key to the application lies in instantiating the HashSet
object and populating it with GameScore objects. The HashSet is attached to the HighScore object
through the setGames() method, and the HighScores object is saved to the database. Notice that we
haven’t saved the GameScore objects to the database—only the HighScores object. The cascade
attribute in the mapping document tells Hibernate to save the object automatically when the parent
object is saved.

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class GameScoreTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

150

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 150

HighScores sp = new HighScores("James");

HashSet set = new HashSet();
set.add(new GameScore("Asteroids", 3784783));
set.add(new GameScore("PacMan", 20823));
sp.setGames(set);

session.save(sp);
session.flush();

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 6.17

The results in the database tables from the example are shown below. There are only two tables because
of the one-to-many relationship stipulated in the mapping document. The primary relationship between
the tables is the primary key of the highscores table and the foreign key column, parent_id, of the
gamescores table.

mysql> select * from highscores;
+----+-------+
| id | name |
+----+-------+
| 7 | James |
+----+-------+
1 row in set (0.00 sec)

mysql> select * from gamescores;
+----+-----------+---------+-----------+
| id | name | score | parent_id |
+----+-----------+---------+-----------+
| 1 | Asteroids | 3784783 | 7 |
| 2 | PacMan | 20823 | 7 |
+----+-----------+---------+-----------+
2 rows in set (0.00 sec)

SortedSet Interface Mapping
If you need to use a SortedSet interface through the TreeSet implementation class, you handle the
situation using the same functionality as found in the SortedMap example in the previous section. Only
three changes are needed. First, use a TreeSet in the example application instead of the HashSet. Of
course, using a TreeSet means you need a Comparator class just like the TreeMap. Finally, add the
sort attribute to the <set> element.

151

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 151

Mapping Lists
Some developers use the Map and Set functionality mentioned in the previous two sections, but most
use a List collection. The list collection is based on the interface java.util.List, and the typical
implementation classes are the ArrayList and the Vector. Because of the popularity of the list func-
tionality, we’ll show how Hibernate can handle persisting this Java construct. For this example, we’ll use
two classes called Group and Story, shown in Listing 6.18. An object instantiated from the Group class
contains a list of Story objects. The list can be any length and contain duplicates if necessary. There is
no sorting involved—just a list of objects.

import java.util.*;

public class Group {
private int id;
private String name;
private List stories;

public Group(){
}

public Group(String name) {
this.name = name;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String n) {
name = n;

}

public String getName() {
return name;

}

public void setStories(List l) {
stories = l;

}

public List getStories() {
return stories;

}
}

import java.util.*;

public class Story {
private int id;

152

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 152

private String info;

public Story(){
}

public Story(String info) {
this.info = info;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setInfo(String n) {
info = n;

}

public String getInfo() {
return info;

}
}

Listing 6.18

At this point, you might be able to write the mapping document without much help; the current map-
ping document in shown in Listing 6.19. The only real difference between this mapping document and
the previous ones is the use of the <list> element instead of <map> or <set>. The current <list> ele-
ment looks quite a bit like the <set> element with <key> and <one-to-many> elements; but there’s
also an <index> element because lists and vectors are indexed using an integer value. The indexing is
basically the order in which the objects were added to the list, so we maintain that functionality in the
mapping. The parent_id and idx columns specified in the <list> element are added to the story
table because of the one-to-many mapping. If we changed this example to use a many-to-many relation-
ship, we’d need an association table to map between the parent and the child objects.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Group"
table="grouptable">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<list name="stories" cascade="all">

153

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 153

<key column="parent_id"/>
<index column="idx"/>
<one-to-many class="Story"/>

</list>
<property name="name" type="string"/>

</class>
<class name="Story"
table="story">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<property name="info"/>
</class>

</hibernate-mapping>

Listing 6.19

The databases required for the mappings are shown in Listing 6.20. As we mentioned in the previous
section, the columns needed for the <list> element are added to the story table because of the one-to-
many relationship. Both the tables have independent identifiers with the grouptable identifier used as a
foreign key in the story table.

create table grouptable (
id int not null primary key auto_increment,
name text
);

create table story (
id int not null primary key auto_increment,
info text,
idx int,
parent_id int
);

Listing 6.20

Finally, Listing 6.21 shows an example application to use the Group and Story objects. We’ve used the
ArrayList implementation class to hold all the Story objects. Again, we don’t need to persist the
Story objects because of the cascade attribute in the <list> element. Hibernate handles all the details
for the child objects as well as the parent.

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class GroupTest {

public static void main(String [] args) {

154

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 154

try {
Session session = HibernateSession.currentSession();

Group sp = new Group("accounting");

ArrayList list = new ArrayList();
list.add(new Story("A Story"));
list.add(new Story("And yet another story"));
sp.setStories(list);

session.save(sp);
session.flush();

session.close();
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 6.21

When we execute the example application, Hibernate produces three rows in our two tables, as shown
below. The rows look similar to the ones from the <set> example. Hibernate persists the Story objects
to the story table and updates them with the primary key from the grouptable database table.

mysql> select * from grouptable;
+----+-----------+
| id | name |
+----+-----------+
| 3 | accounting|
+----+-----------+
1 row in set (0.00 sec)

mysql> select * from story;
+----+-----------------------+------+-----------+
| id | info | idx | parent_id |
+----+-----------------------+------+-----------+
| 1 | A Story | 0 | 3 |
| 2 | And yet another story | 1 | 3 |
+----+-----------------------+------+-----------+
2 rows in set (0.00 sec)

155

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 155

Bag Mapping
If you don’t care about the list’s index functionality, you can persist the ArrayList or Vector as a bag.
A bag is a random grouping of the objects in the list. Using a bag is a simple matter of changing the
<list> element to a <bag> and removing the <index> subelement. The mapping using a <bag>
element in shown in Listing 6.22.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Group"
table="grouptable">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<bag name="stories" cascade="all">
<key column="parent_id"/>
<one-to-many class="Story"/>

</bag>
<property name="name" type="string"/>
</class>
<class name="Story"
table="story">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<property name="info"/>
</class>

</hibernate-mapping>

Listing 6.22

When the example application from the <list> mapping is used with the bag, we obtain the rows in
the database tables as shown below.

mysql> select * from grouptable;
+----+-----------+
| id | name |
+----+-----------+
| 4 | accounting|
+----+-----------+
1 row in set (0.00 sec)

156

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 156

mysql> select * from story;
+----+-----------------------+------+-----------+
| id | info | idx | parent_id |
+----+-----------------------+------+-----------+
| 3 | A Story | NULL | 4 |
| 4 | And yet another story | NULL | 4 |
+----+-----------------------+------+-----------+
2 rows in set (0.00 sec)

Mapping Arrays
Our last collection-mapping example uses a traditional array commonly used before the days of collec-
tions. As you might expect, not much change is needed in the mapping document when using an array.
Listing 6.23 shows an example of the Group/Story classes being mapped using the <array> element.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Group"
table="grouptable">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<array name="stories" cascade="all">
<key column="parent_id"/>
<index column="idx"/>
<one-to-many class="Story"/>

</array>
<property name="name" type="string"/>

</class>
<class name="Story"
table="story">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<property name="info"/>
</class>
</hibernate-mapping>

Listing 6.23

157

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 157

As you can see from the array mapping, we need an index because we’re using an array as well as an
element. We’ve used the <one-to-many> element to associate the Story objects with the array. As
you’d expect, the outcome of the <array> element is just like that of <list> and <set>, for the most
part.

Mapping a Bidirectional Association
Since Hibernate doesn’t support the idea of a bidirectional association when using an indexed collection
like the list, map, or array, we’ll consider an example of establishing the association using a Set.
Bidirectional association provides a way to reference the parent through a child object. We already have
a way to go from the parent to the child, so we want to add the additional association.

To set the stage, we’ll use the Group/Story examples from the previous examples. First we have the
Group and Story class, as shown in Listing 6.18. Those classes were designed for a List example, so
we change the List definition to Set. The mapping document for the classes is shown in Listing 6.24.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Group"
table="grouptable">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<set name="stories" cascade="all">
<key column="parent_id"/>
<one-to-many class="Story"/>

</set>
<property name="name" type="string"/>
</class>

<class name="Story" table="story">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<property name="info"/>
</class>

</hibernate-mapping>

Listing 6.24

158

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 158

We now use code like the following in a test application, as we’ve done in the past:

Group sp = new Group("accounting");

HashSet set = new HashSet();
set.add(new Story("A Story"));
sp.setStories(set);

session.save(sp);
session.flush();

session.close();

From a database perspective, we get three SQL statements: one to save Group sp, one to save a Story
object, and an update statement to associate the Story object with the Group object. If we want to
obtain the Story object, we can use Hibernate to load it; but we won’t know anything about the parent
Group object. If we want to load the Group, we have the association to the child because of the Set
attribute in the Group object.

We can add the bidirectional association by making a few changes to the Story object and the mapping
document. First we add a new attribute and necessary methods to the Story object, as follows:

private Group parent;
public void setParent(Group g) {
parent = g;

}
public Group getParent() {
return parent;

}

Now, for each Story object, Hibernate can associate the Group parent object. In addition, Hibernate can
save the objects to the database without using the UPDATE command and using only the two INSERTs.
Of course, we also need to change the mapping document. The new mapping document in shown in
Listing 6.25.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Group"
table="grouptable">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<set name="stories" cascade="all" inverse="true">
<key column="parent_id"/>
<one-to-many class="Story"/>

</set>

159

Working with Collections

08_576771_c06.qxd 9/1/04 12:22 PM Page 159

<property name="name" type="string"/>
</class>

<class name="Story" table="story">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<property name="info"/>
<many-to-one name="parent" column="parent_id" not-null="true"/>

</class>

</hibernate-mapping>

Listing 6.25

We’ve made two changes to the system. First, we’ve added a <many-to-one> element to the Story
child class. This element lets Hibernate know that each child object is associated with a parent object
and, as such, that we need to supply the parent identifier to each child row. We’ve provided a column
called parent_id to hold the identifier of the parent. Second, we’ve added an inverse attribute to the
parent’s <set> element. When set to true, this attribute tells Hibernate that a bidirectional association
is set up and the additional UPDATE query command is unnecessary.

Summary
This extensive chapter has shown you how to map one of the most important constructs in the Java lan-
guage. The Collections interfaces and associated classes are used in most Java applications to handle
the storage of some amount of data. It would be unfortunate if we had to re-create the collections each
time the application was executed. Hibernate provides the ability to persist Collection objects using
many different mapping techniques.

160

Chapter 6

08_576771_c06.qxd 9/1/04 12:22 PM Page 160

Using Persistent Objects

Now that we’ve introduced Hibernate and the mapping documents, you should have a good feel
for how to set things up to persist your Java objects. You’ve seen a few examples of storing objects
in an underlying database. Now we’ll dive into the persistence and loading process and show you
some of Hibernate’ more advanced features. In this chapter, we’ll cover the basics like saving and
loading Java objects; we’ll also discuss advanced topics like performing queries against the
database to find the right objects and validating object attributes.

Persisting Objects
In the previous chapters, we’ve shown how to build a Java class and a related mapping document
so the Hibernate system knows how to persist the object to the underlying database. Of course,
creating the Java class and its mapping document doesn’t do much for saving the object. You can
instantiate Java objects from the class all day long, and the objects will disappear when the appli-
cation terminates. The mapping document you create for the objects tells Hibernate how to take
each of the objects’ attributes and store them in the database. To persist the newly instantiated
objects, you need to use a specific method associated with the Session. The primary method is
called save(); the Session object contains the following signatures for the method:

public Object save(Object obj);
public void save(Serializable id);

The save() method persists the provided object to the database. Of course, things aren’t always
that simple. First, the method must make sure the object hasn’t already been saved (otherwise
you’d get duplicate objects in the database). The method checks the identifier attribute you’re
required to add to the Java class and makes sure it’s a null value. Remember, in the mapping docu-
ment you supply an attribute called not-saved to the <id> element; this value tells Hibernate the
value of the Java object’s identifier attribute if the object hasn’t been saved to the database.
Typically, you’ll set the not-saved value to be the default value of the attribute type; so if the iden-
tifier is an integer, the not-saved value is 0. The save() method checks to be sure you aren’t try-
ing to save an object that has already been saved.

777

09_576771_c07.qxd 9/1/04 12:23 PM Page 161

After the save check, Hibernate creates a unique identifier using the associated <generator> defined
in the mapping document. The identifier is set in the Java object; finally, the object is saved to the under-
lying database using the get methods created in the Java class and referenced in the mapping document.

Let’s look at some code. Listing 7.1 shows a class called User, and Listing 7.2 is the associated mapping
document.

public class User {
private int id;
private String username;
private String password;

public Group(){
}

public Group(String name) {
this.name = name;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setUsername(String n) {
username = n;

}

public String getUsernme() {
return username;

}

public void setPasswword(String l) {
password = l;

}

public String getPassword() {
return password;

}
}

Listing 7.1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

162

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 162

<hibernate-mapping>
<class name="User"

table="user">
<id name="id">
<generator class="native"/>

</id>
<property name="username" type="string"/>
<property name="password" type="string"/>

</class>
</hibernate-mapping>

Listing 7.2

The code in Listing 7.3 uses the User object to build and persist an object.

Session session = SessionFactory.openSession();
User user = new User("username", "password");
session.save(user);

Listing 7.3

As we’ve discussed, the code in Listing 7.3 instantiates the necessary Session object and the User
object. In the last line of code, the User object is stored in the database using the save() method.
Notice that you don’t need to do anything more than save the object.

We can see the identifier associated with the saved object in a number of ways, as shown here:

session.save(user);
System.out.println(user.getId());

or

Long id = (Long)session.save(user);

The first section of code takes advantage of the value returned by the save() method. Of course, the
output received depends on the generator used in the mapping document.

If there is a problem, the save() method throws the HibernateException exception; as such, your
code needs to be wrapped in a try-catch block. If an exception occurs when trying to persist an object,
not much can be done directly. Either a database error has occurred (such as a connection failure) or the
database server itself has gone down. You must be careful about one case, though.

In later chapters, we’ll discuss how to create relationships between your objects: for example, in the case
of composition, one object has an attribute relating to another object or a collection of objects. In many
cases, you have the option of setting a cascade attribute when building the mapping document. The cas-
cade attribute tells Hibernate that when the parent object is persisted, the associated attribute with the
proper cascade value should also be saved. In these cases, Hibernate handles all the saves and relation-
ship housekeeping itself.

163

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 163

However, if you choose to use the not-null value for an attribute, then the order in which you call the
save() method is important. Consider an example where object A has an attribute that is the B object.
In the mapping document for class A, the B attribute has the not-null attribute set to true. This means
that if Hibernate hasn’t already stored object B and knows about its identifier, a save() on object A will
cause a constraint error based on the not-null attribute. Hibernate will throw an exception if the not-null
constraint is violated. Therefore, when using the not-null attribute in your mapping document for an
attribute of the class, you must be sure to note the order in which the objects should be saved.

If you look back at the two save() methods available through the Session object, you’ll find that one
is available that lets us directly specify the identifier for the object. As you might expect, this version of
the save() method needs to be used with some caution.

First, the identifier for an object shouldn’t be created in a manner that provides a business function.
Many organizations build database tables in such a manner that the row identifier is an account number
or a combination of fields in a complex identifier string. Both of these cases cause the database row to
use an identifier that means something other than a unique row index. So, when using the <id> and
<generator> elements in a mapping document, the identifier is created to be unique but otherwise has
no value to the object itself. You should follow this same rule when using the save(object, id)
method.

Second, the identifier passed to the method must be unique. This requirement can’t be overstated. An
identifier is a unique integer or string that provides uniqueness for your object in the database.
Remember that you can create two identical objects in Java and persist those objects. The saved
attributes is the same between the two objects--the only thing that keeps the objects unique is the identi-
fier. Thus, if you provide your own identifier, it must be unique; otherwise a database error will occur,
because the server will be unable to add the row.

Loading Data into an Object
Once an object has been persisted to the database, there will come a time when you want to retrieve the
object and use it in your application. Hibernate provides many different ways to obtain objects from the
database, and you’ll see many of them in this chapter; however the easiest way is to use the load()
method defined as part of the Session object. The Session object includes three versions of the
load() method:

public Object load(Class class, Serializable id, LockMode mode);
public Object load(Class class, Serializable id);
public void load(Object object, Serialiable id);

As you can see, all three methods return an Object based on the identifier passed as a parameter. Two
of the methods return the requested object as a return value; this means the load() method instantiates
the object. In the third method, you must create the object and pass it to the method. In all three cases,
you must pass in the identifier of the object that should be pulled from the persistent store. This is inter-
esting, because how do you know the identifier? In most cases, you won’t know it, which creates a situa-
tion that we’ll resolve later in the chapter.

For now, let’s discuss situations where we know the identifier of the object we need to load. Consider the
following code:

164

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 164

TE
AM
 F
LY

Session session = SessionFactory.openSession();

User user = (User)session.load(User.class, 0);

This code creates a session object and asks Hibernate to pull an object from the database based on the
User class and identifier value 0.

We’ve mentioned how the identifier pulls the appropriate object from the database, but we didn’t say
which database table is used or how Hibernate knows. The answer is the Class parameter, or the
Object parameter in the case where the object is passed to the load() method. When the Class
parameter is passed to the load() method, the system can easily determine which table to use because
it uses the name of the supplied class. Using the name, Hibernate pulls the mapping document relating
to the class and accesses the listed table. Using the information from the mapping document, Hibernate
knows the appropriate fields that need to be pulled from the database and populated in the newly cre-
ated object.

Using Previous Sessions
As we’ve discussed, using Hibernate is a straightforward process: You load an object, use it, and (poten-
tially) update the object in the database. Of course, all straightforward processes have a wrinkle, and this
is the case with Hibernate. Java is a popular language for building Web-based applications. If you follow
the typical lifecycle of information in a Web application you’ll find that the user enters some information
into a Web page, the page is transferred to the Web server where the provided information is used to
locate an object in the database. The object is passed back to the client using a JSP page and information
is displayed. This is basically the end of a ‘transaction’ for the application. We still have the Web session
but we don’t want to keep a connection to the database because we don’t know the user will be quick in
their response. However, we still want the provided object available in the event the user updates infor-
mation in the object. We’ll need to have the object updated in the database.

However, we no longer have the original Session object used when we accessed the object originally.
So what do we do? We must reattach to a new Session and then update the object. Hibernate provides
the lock() method to perform the reattachment of the object with a new session. Here’s an example:

//in first session
Session session = SessionFactory.openSession();
User user = session.load(User.class, 0);
SessionFactory.closeSession();

user.setPassword("NewPassword");
session = SessionFactory.openSession();
session.lock(user, LockMode.NONE);
SessionFactory.closeSession();

First this code obtains a session and pulls a User object based on the identifier value of 0. Once the
object is loaded, the session is closed. Next, we change an object attribute and open a new Session. We
use the lock() method to lock the object and reassociate with the new session. The key part of the
lock() method is the LockMode value: This value tells Hibernate how to handle a situation where the
current object is different from the object in the database. Since the objects in the database are available

165

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 165

to other threads or sessions of our application, there is a chance the object has been changed. The avail-
able lock modes are as follows:

❑ LockMode.NONE: No lock occurs with the row in the database. Thus any thread can make a
change to the object.

❑ LockMode.READ: A read lock occurs on the object.

❑ LockMode.UPGRADE: A lock occurs on the object row, and the in-memory object is updated
with the object information in the database table.

❑ LockMode.UPGRADE_NOWAIT: An upgrade lock is attempted using a SELECT FOR
UPDATE NOWAIT.

❑ LockMode.WRITE: A write lock is obtained when the object is either inserted (for a new object)
or updated.

As you probably know, some locks are more expensive than others, and you should take care when
obtaining a lock. Depending on your choice, some threads using the same object may be blocked from
updating the database.

Flushing Objects
At any time during the processing of objects, you can call the flush() method on the Session object.
During the execution of the flush, all queued SQL statements are executed. As you might have noticed,
when you persist or update an object, the work doesn’t automatically occur in the database; this is part
of Hibernate’s caching mechanism. When a flush() method executes, all the SQL statements are exe-
cuted against the database. As a developer, you can flush the queue at any time. Hibernate executes a
flush automatically when a commit() method is called as well as during the find() and iterate()
methods.

Deleting Objects
Most of the life cycle of a Java object in the Hibernate arena involves inserting a new object in the
database and updating the object. This process occurs over and over during one run of an application.
Of course, sometimes an object needs to be deleted. The delete process isn’t just the process of releasing
the object in memory at the end of a function; instead, it involves deleting the row that represents the
object from the database table. Hibernate provides the delete() method to do the job. The format of
the command is as follows:

public void delete(Object object);
public void delete(String query);

Here’s an example that deletes a single object using the first version of delete():

Session session = SessionFactory.openSession();
User user = (User)session.load(User.class, 0);
session.delete(user);
SessionFactory.closeSession();

166

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 166

In this code, we obtain an object from the table and then pass the object to the delete() command; the
object is permanently removed from the database.

Hibernate generates a SQL query based on the id field of the user table. If you’ve turned on the
showSQL property, you’ll see a statement like the following:

delete from user where id = 0;

A second load() method that returns the object via its return statement also accepts a LockMode
parameter.

Finally, we can also use the version of the load() method where we must supply the object. Here’s the
code using the third method type:

User user = new User();
// do anything you want with the object here

Session session = SessionFactory.openSession(); session.load(user, 0);
session.close();

In this code, we begin by instantiating a new User object. Here we’ve chosen to use a default construc-
tor, but this doesn’t have to be the case. Once the object has been instantiated, you’re free to do just
about anything you want with the object. When you’re ready to populate the object based on values
stored in the database, call the load() method, passing in the object and the identifier for the desired
persisted object. Hibernate determines the class type of the object passed to the load() method and
uses the appropriate mapping document and setter functions to load the passed object with the database
field values.

When you’re using the various load() methods, you may encounter a compile error at times. This may
happen when you have a statement like the following:

User user = session.load(User.class, 0);

Notice we’ve forgotten the (User) cast before the session.load() call. You must always cast the
object returned from the session.load() method call to the appropriate class; otherwise you’ll
receive a compile error.

If Hibernate attempts to load a row from the database with the provided identifier and it doesn’t exist,
an exception will occur and will need to be caught by the application. You could use the get() method
instead of load()--the get() method doesn’t throw an error if the row doesn’t exists but instead
returns a null value. The signatures for the get() methods are:

public Object get(Class class, Serializable id);
public Object get(Class class, Serializable id, LockMode mode);

Here’s an example:

User user = (User)session.get(User.class, 0);
if (user == null) {
// doesn't exist - maybe build a new User object
}

167

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 167

In this code, we try to load the User object based on the identifier value of 0. If the object doesn’t exist in
the database, we may consider creating a new one.

Refreshing Objects
At any time during the execution of your application, you have the option of reloading or refreshing the
object from the database. The refresh() command does the job:

public void refresh(Object object);
public void refresh(Object object, LockMode mode);

You could use the refresh in a multiuser situation where another user of the system might be updating
the same object and you aren’t part of a transaction. In this type of situation, two threads of an applica-
tion have objects based on the same row in the database. If one thread updates the object in the database,
the other thread is out of sync. The thread can reload the object to be sure it has the lasted information.

Updating Objects
You’ve persisted an object and loaded it into your application so you can use it. Your application might
be such that the object is changed based on an operation. In the case of the User class, the user of the
system may change their password; when the password changes, the user expects the new value to be
stored, so you need a way to update the persistent store with the new value.

There are four ways to update a persisted object. The methods are update(), saveOrUpdate(), and
flush(), and their signatures are as follows:

public void saveOrUpdate(Object object);
public void update(Object object);
public void update(Object object, Serializable id);
public void flush();

If you load an object and then change part of it, Hibernate can figure this out on its own when the
flush() or close() method is executed against the Session object. For example:

Session session = SessionFactory.openSession();
User user = (User)session.load(User.class, 0);

user.setPassword("newpassword");
session.flush();

In this code, we load an object, change it, and then flush the session. The flush() method looks at all
currently loaded persistent objects and automatically issues the appropriate SQL update statement to
make sure the database reflects the changes made to the object. (More information about flush()is pre-
sented toward the end of the chapter.) For the purpose of updating the object, you just need to know that
the flush() method can determine whether a change has been made to the object.

168

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 168

A second mechanism for updating an object uses the saveOrUpdate() method. This method deter-
mines whether the provided object should be either saved for the first time or updated. The method can
make the determination based on the identifier and the not-saved value specified for the identifier in the
mapping document. Remember that any object that hasn’t been persisted to the database has a default
value in its identifier attribute. An integer has a 0 value, and a string is null. When an object is passed to
the saveOrUpdate() method, the method looks at the identifier value and calls either save() or
update().

You’ve already seen the save() method.

There are two different signatures for update(): The first provides the object to be updated as a param-
eter, and the second includes a specific identifier. Here’s an example:

Session session = SessionFactory.openSession();
User user = (User)session.load(User.class, 0);
user.setPassword("newpassword");
session.update(user);

Hibernate determines whether the object truly needs to be updated and then issues the appropriate SQL
statement to make the changes in the underlying database. If you want to provide the identifier for the
object yourself, you can use the second signature of the update() method where the identifier is passed
to the method code. Note that an exception is thrown if a row with the identifier value doesn’t exists.
Also, it should be clear that if you provide the wrong identifier, you may corrupt your database.

Finding Objects
All the code to this point has assumed that you know the identifier of the object you wish to pull from
the database. In most cases, this won’t be a valid assumption. Consider the User object as an example. If
the user supplies a username/password combination in a Web application, you need to pull the User
object from the persisted store based on the username value. You don’t have the identifier value to use,
since the identifier is a unique value and doesn’t have any business purpose. You find the object in the
database using the Session object’s find() method. The signatures for the various find() methods
are as follows:

public List find(String query);
public List find(String query, Object value, Type type);
public List find(String query, Object[] values, Type[] types);

The most basic find() method accepts a string. The method passes a query string to the method based
on some criteria that need to be satisfied in order to return a particular object from the database. The
method’s return type is the List because there is always the potential for more than one object to be
returned. The criteria used to determine whether a particular object is returned are specified as a query
string based on the Hibernate Query Language (HQL), which we discuss in detail in Chapter 13.

Let’s look at a simple example:

Session session = SessionFactory.openSession();
List users = session.find("from User");
session.close();

169

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 169

In this example, we execute the find() method using a string that pulls all the objects from the User
table. The HQL string looks like SQL, which would read “select * from User”. We assume that the
entire object should be returned, so the select * part of the string is redundant. The result of this code
is a List containing all the previously persisted User objects. We could now look through all the objects
and try to find the one that matches the username supplied by our user. Of course, this is too much
work; we should let the database server do the work for us.

Consider this code:

Session session = SessionFactory.openSession();
List users = session.find("from User where username " + username + ""');
session.close();

Here we’ve changed the query string to include the WHERE clause, which causes the database to narrow
the results based on supplied criteria. For this example, our criteria is “username = ?”. We want to
find only those objects (just one, we hope) where the username attribute of a stored object is equal to the
Java variable username that contains the string entered by the user. The result is all the objects where the
username attribute is equal to the value supplied by the user.

If you’ve used SQL, you know that using string concatenation as in this example isn’t good practice.
Instead, we should use placeholders like this:

Session session = SessionFactory.openSession();
List users = session.find("from User where username = ?",

username,
Hibernate.STRING

);
session.close();

In our new code example, we’ve removed the string concatenation and added a ? placeholder to the
query string. In addition, we’ve used a different version of the find() command that has three parame-
ters instead of one. The second parameter in the new method is either a single object or an array consist-
ing of the values to be substituted in the query string. All the supplied values are substituted in order
from left to right; a ? placeholder is needed for each supplied values. The third parameter in the find()
method is a single object or an array of types for each of the supplied placeholder values. In this exam-
ple, we only have a single placeholder, so we provide the value and type.

The result of this find() method is the same as for the string concatenation, but placeholders are
better from a coding and style perspective. The following example shows how we might use multiple
placeholders.

Session session = SessionFactory.openSession();
List users = session.find("from User where username = ? or upper(username)",

new Object[] { username, username },
new Type[] { Hibernate.STRING, Hibernate.STRING }

);
session.close();

In this example, we want to search on the string itself as well as make a comparison based on an upper-
case version to be sure we catch both string formats. We’ve used internal arrays to build the second and
third parameters to the method.

170

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 170

Finding Large Resultsets
In our previous examples, we’ve assumed that the number of objects returned is small—on the order of
hundreds of objects. However, sometimes many more rows could be returned. There will be problems
with the system if you try to return and instantiate a million objects that have been previously persisted.
In these cases, you need to try to stay away from the find() method and use a query method called
iterate(). The signature for iterate() is as follows:

public Iterator iterate(String query);
public Iterator iterate(String query, Object value, Type type);
public Iterator iterate(String query, Object[] values, Type[] types);

Consider the following example:

Session session = SessionFactory.openSession();
try {
Iterator iter = session.iterate("from User user order by user");
while (iter.hasNext()) {
User user = (User)iter.next();
//do something with the user object
if (user.equals ("middleoftheroad")) {
break;
}

} catch(Exception e) { SessionFactory.closeSession0;

The iterate() command executes a supplied query string and then lets you iterate over the results
one at a time and, if you wish, stop using the result at some point in the resultset. Query strings can
be provided in the iterate() method with placeholders and the appropriate values and types, as in
the find() methods.

Filtering Collections
Collections are used in most Java applications, and Hibernate offers complete support for them (as dis-
cussed in Chapter 6). When you’re using persisted objects, sometimes you want to obtain objects from a
collection that might be part of another object. You could load the containing object, but you can also use
the filter() method of the Session object to obtain object from the collection directly. The signatures
for the filter() methods are as follows:

public Collection filter(Object collection, String filter);
public Collection filter(Object collection,
String filter Object value, Type type);

public Collection filter(Object collection,
String filter Object[] values, Type[] types);

Consider the following example (for this example, assume there is a Site object that contains an
attribute with the definition List users representing a collection of User objects and an accessor
method called getUsers()):

171

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 171

Session session = SessionFactory.open Session();
Site site = session.load(Site.class, 0);
Collection users = session.filter(site.getUsers(), "where this.username like
'a%');
SessionFactory.closeSession();

The code starts by obtaining a Site object. We assume that we’ve indicated lazy initialization so noth-
ing is pulled for the Site object until we use it. Next, we use the filter() method to return a
Collection object representing all User objects where the username start with the letter a. As you can
see, the filter() method is a little different from find(), load(), and iterate(); the key differ-
ence is the first parameter, which tells the filter where to obtain the collection to perform the filtering.
Hibernate can access the Site object provided and pull only its collection of users. From a table stand-
point, you can imagine Hibernate producing the appropriate queries to get the identifier of the specified
Site object and using that identifier as a foreign key to the User table. The result is a resultset of
only those User objects that are part of the provided Site object’s user collection. At this point,
Hibernate can filter the list. Of course, most of this is performed using one or two queries based on how
well Hibernate can formulate the needed query statements.

Notice the use of the this qualifier in the query string: The this qualifier references the collection we’re
trying to filter. The collection is always the result of the first parameter to the method.

Like the other query commands associated with the Session object, the filter() method can use
placeholders. The values and types of the placeholders are specified like the other methods. Scalar
queries can also be used with the filter() method. For example:

Session session = SessionFactory.openSession();
Site site = session.load(Site.class, 0);
Collection users = session.filter(site.getUsers(),

"select this.password where this.username like
'a%'”);

SessionFactory.closeSession();

Here we’re returning only the password instead of the entire object.

Scalar Queries
In all the examples so far in this chapter, we’ve relied on the fact that the result of a query is an object or
a list of objects. Hibernate lets you return not only a complete object previously stored in the database
but also individual attributes or groups of attributes. These queries are called scalar queries.

If you use SQL on a regular basis, you’re accustomed to writing queries where SELECT * isn’t in the
query string: Instead you have something like:

SELECT name, zipcode, count(zipcode)

In this query string, we’re pulling the values for the name and zipcode columns; but in addition, an
aggregate function pulls the count of each zip code. Here’s an example of using scalar queries:

172

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 172

Session session = SessionFactory.openSession();
List list = session.find("select site.name, size(site.users) from users");
for (int I=();I<list.size;I++) {

Object[] row = list.get(i);

String name = (String)row[0];
Integer count = (Integer)row[1];

}

SessionFactory.close();

Things are a little different when you use a scalar query. Hibernate executes the appropriate query
against the specified database and returns a resultset. Since we don’t want to just use a resultset,
Hibernate assembles the values in the resultset as an array of objects. Each element of the resulting List
is an array of the objects from a particular row. As you can see in our example, each row is pulled from
the List and assigned to an Object array called row. The actual values are in the row object. We pull
each object, cast to the appropriate type, and assign to individual variables.

Of course, we aren’t limited to pulling the individual attributes of our object; we can also retrieve the full
object as well as the attributes. Here’s an example:

Session session = SessionFactory.openSession();
List list = session.find("select user, site.name,

size(site.users) from users");

for (int I=0;1<list.size;I++) {

Object[] row = list.get(i);

User user = (String)row[0];
String name = (String)row[1];
Integer count = (Integer)row[2];

}

SessionFactory.close();

In this example, we pull the object to begin with and then the attributes of the site object.

Queries and Named Queries
You’ve seen two different ways to query the objects from the database. The first is a straight query using
the find() method; in this type of query, you basically get all or nothing from the database. In the sec-
ond query, you can use the iterate() method, which returns a single object at a time based on your
requesting each one.

Hibernate provides another query, using the Query object, which allows more control over the results.
The following table shows the methods available on the Query object.

173

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 173

Query Object Methods

String[] getNamedParameters()

String getQueryString()

Type[] getReturnTypes()

Iterator iterate()

List list()

ScrollableResults scroll()

Query setBigDecimal(int position, BigDecimal number)

Query setBigDecimal(String name, BigDecimal number)

Query setBinary(int position, byte[] val)

Query setBinary(String name, byte[] val)

Query setBoolean(int position, boolean val)

Query setBoolean(String name, boolean val)

Query setByte(int position, byte val)

Query setByte(String name, byte val)

Query setCacheable(boolean cacheable)

Query setCacheRegion(String cacheRegion)

Query setCalendar(int position, Calendar calendar)

Query setCalendar(String name, Calendar calendar)

Query setCalendarDate(int position, Calendar calendar)

Query setCalendarDate(String name, Calendar calendar)

Query setCharacter(int position, char val)

Query setCharacter(String name, char val)

Query setDate(int position, Date date)

Query setDate(String name, Date date)

Query setDouble(int position, double val)

Query setDouble(String name, double val)

Query setEntity(int position, Object val)

Query setEntity(String name, Object val)

Query setEnum(int position, Object val)

Query setEnum(String name, Object val)

Query setFirstResult(int firstResult)

Query setFloat(int position, float val)

Query setFloat(String name, float val)

174

Chapter 7

Table continued on following page

09_576771_c07.qxd 9/1/04 12:23 PM Page 174

Query Object Methods

Query setInteger(int position, int val)

Query setInteger(String name, int val)

Query setLocale(int position, Locale locale)

Query setLocale(String name, Locale locale)

void setLockMode(String alias, LockMode lockMode)

Query setLong(int position, long val)

Query setLong(String name, long val)

Query setMaxResults(int maxResults)

Query setParameter(int position, Object val)

Query setParameter(int position, Object val, Type type)

Query setParameter(String name, Object val)

Query setParameter(String name, Object val, Type type)

Query setParameterList(String name, Collection vals)

Query setParameterList(String name, Collection vals, Type type)

Query setParameterList(String name, Object[] vals)

Query setParameterList(String name, Object[] vals, Type type)

Query setProperties(Object bean)

Query setSerializable(int position, Serializable val)

Query setSerializable(String name, Serializable val)

Query setShort(int position, short val)

Query setShort(String name, short val)

Query setString(int position, String val)

Query setString(String name, String val)

Query setText(int position, String val)

Query setText(String name, String val)

Query setTime(int position, Date date)

Query setTime(String name, Date date)

Query setTimeout(int timeout)

Query setTimestamp(int position, Date date)

Query setTimestamp(String name, Date date)

Object uniqueResult()

175

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 175

Some of the most important features of the Query object are the ability to fetch a particular set size and
specify the starting position in the entire resultset. Using Query also allows the use of named queries
defined in the mapping document. This is convenient because you don’t need to define query strings in
the compiled code—just in the mapping document.

Query Results Control
The first feature of the Query object is the ability to control the resultset returned from the execution of
the query. Consider the following code:

Session session = SessionFactory.openSession();
Query query = session.createQuery(
"from Users users where users.access > 50");

query.setMaxResults(25);
query.setFirstResult(5);
List users = query.list();

SessionFactory.closeSession();

In this example code, we open a session and then instantiate a Query object from the session. As part of
the Query construction, we supply the HQL string to be executed against the database. To control the
outcome of the query, we use two different methods:

setMaxResults(int);
setFirstResults(int);

The setMaxResults() method is passed an integer value indicating the maximum number of results
that should be returned from the database. The final results include up to the maximum value provided
to the method. The setFirstResults() method provides an integer value indicating where in the
entire resultset the current results should be returned. For example, we might want 20 results to be
returned, starting at position 20. Once the various criteria have been set up, we use the list() com-
mand to execute the query and return our desired results as a List object.

If your JDBC driver supports scrollable results, you can also execute and request the results of the query
using the scroll() method. The scroll() method returns a ScrollableResults object that can be
used to access the objects in the results returned. The methods available in the ScrollableResults
object are shown in the following table.

ScrollableResults Methods

void afterLast()

void beforeFirst()

void close()

boolean first()

Object[] get()

Object get(int i)

176

Chapter 7

Table continued on following page

09_576771_c07.qxd 9/1/04 12:23 PM Page 176

ScrollableResults Methods

Object get(int i, Type type)

BigDecimal getBigDecimal(int col)

byte[] getBinary(int col)

Blob getBlob(int col)

Boolean getBoolean(int col)

Byte getByte(int col)

Calendar getCalendar(int col)

Character getCharacter(int col)

Clob getClob(int col)

Date getDate(int col)

Double getDouble(int col)

Float getFloat(int col)

Integer getInteger(int col)

Locale getLocale(int col)

Long getLong(int col)

int getRowNumber()

Short getShort(int col)

String getString(int col)

String getText(int col)

TimeZone getTimeZone(int col)

Type getType(int i)

boolean isFirst()

boolean isLast()

boolean last()

boolean next()

boolean previous()

boolean scroll(int i)

boolean setRowNumber(int rowNumber)

Notice that you can also set whether Hibernate should cache the results from this query. If you want the
results to be cached, use this code:

query.setCacheable(true);

177

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 177

Single Row
Another interesting method available in the Query object is called uniqueResult(). You can use this
method to test the database and whether objects based on a query are available. The method returns a
null value if no results are available for a particular query or if a single object is returned. For example:

Session session = SessionFactory.open Session();

Query query = session.createQuery(
"from Users user where user.access > 50");

if (query.uniqueResult()) {
// objects are available
}
SessionFactory.closeSession();

In this code, the uniqueResult() method is called and the results are used as a condition for a deci-
sion statement. If an object is returned based on the query, additional work can occur; otherwise, the
statement is false and is skipped.

Named Queries
Some of the real power of the Query object lies in its ability to use queries that have been previously
defined and stored in a mapping document. This ability gives you more flexibility in your applications
because HQL query strings aren’t hard-coded into the application code; thus the code is easier to change
and tweak on the fly.

Let’s consider two different queries: one without parameters and one with. For the query without
parameters, the first step is to define a query in the mapping document. We do so using the <query>
element:

<query name="find.users.access.greaterthan.50">
<! [CDATA[from users user where user > 50]

]>
</query>

The <query> element requires two components: the name attribute we’ll use to access the query in our
application code, and the query string. Notice that we use the CDATA section designator to contain our
query string: This is required if your query contains any characters that would be considered XML
markup. (This is a common area for bugs to appear.) You might define a simple query without the
CDATA designator but later change the string and still not include the designator. You should consider
always using CDATA, but that’s a matter of style.

Once the query has been named in the mapping document, we need to use it in the application code.
This is accomplished as follows:

Session session = SessionFactory.open Session();

Query query = session.getNamedQuery(
"find.users.access.greaterthan.50");

178

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 178

query.setMaxResults(25);
query. setFirstResult(5);
List users = query.list();

SessionFactory.closeSession();

The only change in this code snippet is the use of the getNamedQuery() method. This method accepts
a string that identifies the name of the query that should be pulled from the mapping document and
used as part of the instantiated Query object. Once the query has been pulled from the mapping docu-
ment, the Query object can be used as normal.

Few queries are this simple--most require the use of parameters. Consider the following query, which is
a slight modification of the previous one:

<query name="find.users.access.greaterthan"> <! [CDATA
[from users user where user > ?]]>
</query>

Notice that we’ve removed the explicit value of 50 from the query and replaced it with a placeholder.
The code to use the query is

Session session = SessionFactory.openSession();

Query query = session.getNamedQuery("find.users.access.greaterthan");
query.setMaxResults(25);
query.setFirstResult(5);
query.setInt(0, 100);
List users = query.list();

SessionFactory.closeSession();

In this code, we’ve changed the name of the named query to pull from the mapping document in order
to obtain the right query. An additional line of code has been added:

query.setInt(0,100);

As shown in a previous table, numerous set* methods are used to replace the placeholder with an
actual value. In our example, the first placeholder is replaced with a value of 100. (Note that the place-
holders start with 0 instead of 1.) Once the placeholder has been populated with a value, the query can
be executed.

Named Parameters
You can also replace the placeholders with named parameters. Named parameters are string values
starting with a colon character (:). For example, here’s a named query using the named parameter:

<query name="findnusers.access.greaterthan">
<! [CDATA
[from users user where user > :accesses]
]>
</query>

179

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 179

Instead of putting in an actual value or using the ? placeholder, we’ve added the named
parameter:accesses to the query. The code to use the query is:

Session session = SessionFactory.openSession();
Query query = session.getNamedQuery("find.users.access.greaterthan");
query. setMaxResults(25);
query. setFirstResult(5);
query.setlnt("accesses", 100);
List users = query.list();

SessionFactory.closeSession();

Instead of using the setInt(int, int) method, we use the setInt(String, int) method, which
accepts a named parameter and the value to replace the parameter. In the end, the result of using the
Query object, named queries, and named parameters is the ability to fully object-orient the queries and
not rely on hard-coded strings.

Finally, if you have a situation where you need to include a list of parameters, the Query object includes
the setParameterList() method. For example, consider the following named query:

<query name="find.users"> <! [CDATA
[from users user where username in (userlist)]]>
</query>

Here we’ve changed our named query to look for users whose username is found in a particular list. The
code to use the query is:

Session session = SessionFactory.openSession();
Query query = session.getNamedQuery("find.users");

List users = new ArrayList(); users.add("jsmith");

users.add("joem");
query.setParameterList("userlist", users);
List users = query.list();

SessionFactory.closeSession();

In this code, we’ve created a list of names using an ArrayList object. Once all the names of the users
we want to query against are added, we call the setParameterList() method with the name of the
named parameter in our query and the ArrayList object. Hibernate formulates the appropriate query
string and executes it against the database.

Query Timeout
Finally, the Query object lets you control the amount of time that a query is allowed to reside on the
database server. Using the setTimeout(int) method, you can give the query object X number of

180

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 180

seconds to execute before it’s cancelled. When you’re working on production systems, it’s vital that
queries not be allowed to take infinite or unreasonable amounts of time to execute. By using the timeout
functionality as well as the methods to limit the number of rows returned by the query, you can provide
the user with fast results.

SQL Queries
If you need to use good ‘ol native SQL in your queries, Hibernate lets you do so with a little extra work.
Consider the following code:

Session session = SessionFactory.openSession();

List users = session.createSQLQuery("SELECT * FROM users", users ,
Users.class)
.list();
SessionFactory.closeSession();

The SQL query string in this example looks like any other native SQL you might execute against the
database server without Hibernate. The result is a List of the values from the selected database table
rows.

If you need to use an alias in your SQL query, you must surround the alias with { } characters. Here’s
an example:

Session session = SessionFactory.openSession();
List users = session.createSQLQuery(
"SELECT * FROM users as {user} where {user}.username= 'test"',
"users",
Users.class).list();
SessionFactory.closeSession();

Notice the {user} alias. Any time you use native SQL, all of the aliases must be wrapped in order for
Hibernate to create the proper query.

Criteria Objects
All our examples so far have used either native SQL or HQL to access the objects in the database. If you
don’t have experience with SQL or don’t want to use it, you can use Hibernate’s Criteria object to build
queries without SQL.

You need a couple of different classes to use Criteria objects. The first is Criteria; its methods are
displayed in the next table. You use the Expression object to build the actual criteria for querying the
database; its methods are shown in the subsequent table.

181

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 181

Criteria Methods

Criteria add(Criterion criterion)

Criteria addOrder(Order order)

Criteria createAlias(String associationPath, String alias)

Criteria createCriteria(String associationPath)

Criteria createCriteria(String associationPath, String alias)

Class getCriteriaClass()

Class getCriteriaClass(String alias)

List list()

Criteria setCacheable(boolean cacheable)

Criteria setCacheRegion(String cacheRegion)

Criteria setFetchMode(String associationPath, FetchMode mode)

Criteria setFirstResult(int firstResult)

Criteria setLockMode(LockMode lockMode)

Criteria setLockMode(String alias, LockMode lockMode)

Criteria setMaxResults(int maxResults)

Criteria setResultTransformer(ResultTransformer resultTransformer)

Criteria setTimeout(int timeout)

Object uniqueResult()

Expression Class Methods

static Criterion allEq(Map propertyNameValues)

static Criterion and(Criterion lhs, Criterion rhs)

static Criterion between(String propertyName, Object lo, Object hi)

static Conjunction conjunction()

static Disjunction disjunction()

static SimpleExpression eq(String propertyName, Object value)

static Criterion eqProperty(String propertyName, String otherPropertyName)

static SimpleExpression ge(String propertyName, Object value)

182

Chapter 7

Table continued on following page

09_576771_c07.qxd 9/1/04 12:23 PM Page 182

Expression Class Methods

static SimpleExpression gt(String propertyName, Object value)

static Criterion ilike(String propertyName, Object value)

static Criterion ilike(String propertyName, String value, MatchMode matchMode)

static Criterion in(String propertyName, Collection values)

static Criterion in(String propertyName, Object[] values)

static Criterion isNotNull(String propertyName)

static Criterion isNull(String propertyName)

static SimpleExpression le(String propertyName, Object value)

static Criterion leProperty(String propertyName, String otherPropertyName)

static SimpleExpression like(String propertyName, Object value)

static SimpleExpression like(String propertyName, String value, MatchMode matchMode)

static SimpleExpression lt(String propertyName, Object value)

static Criterion ltProperty(String propertyName, String otherPropertyName)

static Criterion not(Criterion expression)

static Criterion or(Criterion lhs, Criterion rhs)

static Criterion sql(String sql)

static Criterion sql(String sql, Object[] values, Type[] types)

static Criterion sql(String sql, Object value, Type type)

The following is a simple example of how to use the Criteria and Expression classes to build a
query against a database using Hibernate:

Session session = SessionFactory.openSession();
Critieria criteria = session.createCriteria(User.class);
criteria.add(Expression.eq("username", "johndoe");
criteria.setMaxResults(5);
List users = criteria.list();
SessionFactory.closeSession();

In this code, we begin by creating a Criteria object from the Session. The Criteria object acts like
a container for the SQL to be executed against the database. In order for the Criteria object to do any-
thing useful, we need to add expressions to it using the various methods of the Expression object. In
this example, we want to find all the User objects where the username has been set to johndoe. You
can add as many Expression objects as needed; many methods are available, as shown in the previous
table.

183

Using Persistent Objects

09_576771_c07.qxd 9/1/04 12:23 PM Page 183

The Criteria is executed when the list() method is called. When you call this method, Hibernate
creates an appropriate SQL query statement and sends it to the database server. The result of the query is
appropriate objects returned as a List collection object.

Summary
This chapter, combined with Chapter 6, has shown you the true power of Hibernate. Regardless of how
objects are persisted to the database, Hibernate gives you the ability to retrieve them in a variety of ways
that aren’t necessarily related to the way the objects are stored.

184

Chapter 7

09_576771_c07.qxd 9/1/04 12:23 PM Page 184

Hibernate Query Language

In most of our previous examples, we obtained an object from the database using the object’s iden-
tifier. Although this approach works well in our examples, it won’t be so easy in an actual applica-
tion. In a typical application, you’ll use a username or account number to access an object. With
this information, you’ll find the necessary objects that have been previously persisted to the
database. To find the objects, you must use the Hibernate Query Language (HQL). HQL is a SQL-
like language specifically designed to pull objects as well as attributes from objects. In this chapter,
we’ll provide a comprehensive review of all the HQL clauses and how they work in an example.

Chapter Example
In order to bring HQL to life, we need to work with a real application that incorporates many of
the different issues we’ve discussed in the previous chapters. For our example, we’ll incorporate a
Group class and a single derived class called NewsGroup. The Group class contains a couple of
basic attributes as well as a List collection object for Story objects. The Group class also contains
a Server object to represent object-oriented composition.

Example Classes
As we mentioned, our example application uses four classes. These are Group, in Listing 8.1;
NewsGroup, in Listing 8.2; Story, in Listing 8.3; and Server, in Listing 8.4.

import java.util.*;

public class Group {
private int id;
private String name;
private boolean active;
private List stories;
private Server primaryserver;

888

10_576771_c08.qxd 9/1/04 12:24 PM Page 185

public Group(){
}

public Group(String name) {
this.name = name;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setName(String n) {
name = n;

}

public String getName() {
return name;

}

public void setActive(boolean b) {
active = b;

}

public boolean getActive() {
return active;

}

public void setStories(List l) {
stories = l;

}

public List getStories() {
return stories;

}

public void setPrimaryserver(Server s) {
primaryserver = s;

}

public Server getPrimaryserver() {
return primaryserver;

}
}

Listing 8.1

186

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 186

public class Newsgroup extends Group {
private int first;
private int last;

public Newsgroup() {
}

public Newsgroup(String s) {
super(s);

}

public void setFirst(int i) {
first = i;

}

public int getFirst() {
return first;

}

public void setLast(int i) {
last = i;

}

public int getLast() {
return last;

}
}

Listing 8.2

import java.util.*;

public class Story {
private int id;
private String info;

public Story(){
}

public Story(String info) {
this.info = info;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setInfo(String n) {
info = n;

187

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 187

}

public String getInfo() {
return info;

}
}

Listing 8.3

public class Server {
private int id;
private String servername;
private String ip;
private int port;
private String username;
private String password;

public Server() {
}

public Server(String name, String ip, int port,
String username, String password) {
this.servername = name;
this.ip = ip;
this.port = port;
this.username = username;
this.password = password;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setServername(String s) {
servername = s;

}

public String getServername() {
return servername;

}

public void setIp(String s) {
ip = s;

}

public String getIp() {
return ip;

}

188

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 188

public void setPort(int i) {
port = i;

}

public int getPort() {
return port;

}

public void setUsername(String s) {
username = s;

}

public String getUsername() {
return username;

}

public void setPassword(String s) {
password = s;

}

public String getPassword() {
return password;

}
}

Listing 8.4

Example Mapping Document
The four classes all interact with each other. The Group class is the primary container, with a composi-
tion Server attribute and a List of Story objects. The NewsGroup class is derived from the Group
class and includes two additional attributes for the first and last article numbers. Creating a Hibernate
mapping document is key to making all the class work together.

We want the Sever objects to be independent elements of the system; we’ll assign one of them to the
Group as needed. We may have many different server objects in the application that aren’t associated
with a Group, so we’ve included a <many-to-one> element in the Group <class> to handle the asso-
ciation. The final mapping document in shown in Listing 8.5.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Group"
table="grouptable"

discriminator-value="parent">

189

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 189

<id name="id" unsaved-value="0">
<generator class="native"/>

</id>

<discriminator column="type"/>

<list name="stories" cascade="all">
<key column="parent_id"/>
<index column="idx"/>
<one-to-many class="Story"/>

</list>

<property name="name" type="string"/>
<property name="active" type="boolean"/>

<many-to-one name="primaryserver" class="Server"
column="server_id" cascade="all"/>

<subclass name="Newsgroup"
discriminator-value="newsgroup">

<property name="first"/>
<property name="last"/>

</subclass>
</class>

<class name="Story"
table="story">
<id name="id" unsaved-value="0">

<generator class="native"/>
</id>

<property name="info"/>
</class>

<class name="Server"
table="servertable">

<id name="id" unsaved-value="0">
<generator class="native"/>

</id>

<property name="servername"/>
<property name="ip"/>
<property name="port"/>
<property name="username"/>
<property name="password"/>

</class>

</hibernate-mapping>

Listing 8.5

190

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 190

Example Tables
From the Hibernate mapping document in Listing 8.5, we find that we need three tables in the database
to persist the four objects. We use a discriminator to handle the Group and NewsGroup classes in a sin-
gle table. Listing 8.6 shows the SQL create commands that build the necessary tables in MySQL.

create table grouptable (
id int not null primary key auto_increment,
name text,
first int,
last int,
type text,
server_id int,
active int
);

create table story (
id int not null primary key auto_increment,
info text,
idx int,
parent_id int
);

create table servertable (
id int not null primary key auto_increment,
servername text,
ip text,
port int,
username text,
password text
);

Listing 8.6

Example Application
Pulling all the classes, mapping document, and table creation SQL together, we can build an application
as shown in Listing 8.7. This application creates three groups and associates a List of Story objects
with two of the Group objects. We also instantiate three server objects and assign one of them as an
attribute to a single Group object. Finally, we build a NewsGroup object and persist everything to the
database.

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class GroupTest {

191

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 191

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

Newsgroup sp = new Newsgroup("misc.hibernate");
Newsgroup sp2 = new Newsgroup("misc.software");
Group sp3 = new Group("alt.donothing");

ArrayList list = new ArrayList();
list.add(new Story("A Story"));
list.add(new Story("And yet another story"));
sp.setStories(list);

list = new ArrayList();
list.add(new Story("For the good of men"));
list.add(new Story("Venus and Mars"));
list.add(new Story("All The Rest"));
sp3.setStories(list);

Server server = new Server(
"Forte", "news.forteinc.com", 485, "mrfred", "freds");

sp.setServer(server);
sp.setActive(true);

session.save(sp);
session.save(sp2);
session.save(sp3);
session.save(server2);
session.save(server3);

session.flush();
session.close();

} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 8.7

Example Rows
As a result of the application in Listing 8.7, we get appropriate rows in the three database tables as
shown below. As you can see, the mappings have been made between the Group object, the Story
objects, and the Server objects.

192

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 192

mysql> select * from grouptable;
+----+----------------+-----------+-----------+-------+------+--------+
| id | name | type | server_id | first | last | active |
+----+----------------+-----------+-----------+-------+------+--------+
16	misc.hibernate	newsgroup	9	0	0	1
17	misc.software	newsgroup	NULL	0	0	0
18	alt.donothing	parent	NULL	NULL	NULL	0
+----+----------------+-----------+-----------+-------+------+--------+
3 rows in set (0.00 sec)

mysql> select * from story;
+----+-----------------------+------+-----------+
| id | info | idx | parent_id |
+----+-----------------------+------+-----------+
36	A Story	0	16
37	And yet another story	1	16
38	For the good of men	0	18
39	Venus and Mars	1	18
40	All The Rest	2	18
+----+-----------------------+------+-----------+
5 rows in set (0.00 sec)

mysql> select * from servertable;
+----+------------+-------------------+------+----------+----------+
| id | servername | ip | port | username | password |
+----+------------+-------------------+------+----------+----------+
9	Forte	news.forteinc.com	485	mrfred	freds
10	comcast	news.comcast.net	0	mrfred	freds
11	free news	news.freenews.com	0	mrfred	freds
+----+------------+-------------------+------+----------+----------+
3 rows in set (0.00 sec)

Example Use
When someone is writing a book on technology, a “catch-22” scenario often occurs—and we’ve hit that
point. In Chapter 7, we discussed the ways of querying the persisted storage without trying to cover too
much of the query language; but in this chapter, we’ll need the methods for obtaining the information
from the database. As we discuss HQL, we’ll access both objects and attributes. In Chapter 7, we dis-
cussed methods for pulling results as a single resultset or through an iterator/scrollset, depending on
the expected size. For the examples in this chapter, we’ll stick to using the find() method to bring back
our objects. As mentioned, we’ll obtain both objects and scalars from the database, and they will need to
be processed in different manners.

When you pull objects from the database, you obtain a List where the entries are the actual objects. So,
you can use get() or obtain an iterator to access each of the objects and cast them to the right Java
object class. When you use HQL to pull more than one object—maybe a scalar or two, and possibly

193

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 193

aggregated values—Hibernate returns a List object containing an array of Object. For example, we
can use the find() method in the following fashion:

List stuff = session.find(
"select name, date, sum(records) from table....");

The result of this query is a List of Object arrays. To access each of the values, we might use code like
the following:

Iterator iter = stuff iterator();
while (iter.hasNext()) {
Object[] temp = (Object[])iter.next();
String name = (String)temp[o];
Date date = (Date)temp[1];
Integer sum = (Integer)temp[2];

}

Select Clause
The SELECT clause pulls information from a database table. It works in a variety of ways in HQL includ-
ing pulling a single object, a group of objects, or an attribute from in an object. In this section, we’ll con-
sider the formats of SELECT and what is returned based on our example classes and objects.

If we need to pull a group of objects from storage, we can use an abbreviated format of the SELECT
query to obtain those objects. For example:

List groups = session.find("from groups.Group");

This query returns a List object containing all the objects in the database of type groups: Group as well
as any derived classes. Using our example objects, the result is a list of three Group objects. Note that
one of these objects will be of type Group, and two will be of type NewsGroup.

If we want to limit the objects returned to those of type NewsGroup, we use this code:

List groups = session.find("from groups.Newsgroup");

In both cases, we specify the Java class along with the package where the class has been defined. If your
class isn’t contained in a package, we can leave off the package string. This is a prime location for errors
to occur in an application because the package name was accidentally left off the query string. Be sure to
note these locations if the number of objects returned by your application isn’t what you expected.

As you begin to build more complex queries, you’ll need to reference the object you’re trying to obtain.
For example, you might want to limit the objects returned based on some value using the WHERE clause
discussed in the next section. In the WHERE clause, you need to reference the object being accessed. You
facilitate the reference to the object using an alias. For example:

List groups = session.find("from groups.Group as group");

194

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 194

In this example, we pull all the Group objects, but we also alias the Group object using the string
“group”. As you’ll see later in the chapter, the alias can be used to reference the object in a clause. The
“as” alias clause is optional, so you could also alias the Group object using the following:

List groups = session.find("from groups.Group group");

The as clause is removed, and the first string after the class name is used as the alias. If you’ve used
SQL, you know that more than one database table can appear with the FROM clause. You can do the same
with HQL by referencing more than one class. For example:

List groups = session.find("from groups.Group as group, Server as server");

The result is a List object containing both Group and Server objects. You need to use the instanceof
Java keyword to determine which class each of the individual objects references.

Once you have a List of object, you can use each of the objects in a traditional Java manner by access-
ing and changing the various attributes of the object. What if you wanted to access and return individual
attributes from the objects directly from the database? You can do this using the SELECT clause and
HQL. For example:

List servers = session.find(
"select group.server from groups.Group as group");

The result of this query is a List object containing all the Server objects that are attributes of a per-
sisted Group object. Notice that we’ve used and taken advantage of the alias “group” for the attribute
we wanted to view. Note that the list of objects returned in our previous find() is different than the fol-
lowing find():

List server = session.find("from groups.Server");

The previous find() only returns Server objects that have been instantiated and assigned as an
attribute to a Group object. This new find() returns all the Server objects in the database. In some
cases, a Server object might be instantiated and never used as an attribute value; thus is wouldn’t be
found through the select group.server clause.

The ability to return an attribute of an object isn’t limited to composition objects as in the previous exam-
ples; you can return any Java type. Here are a couple of examples:

List servers = session.find(
"select group.name from groups.Group as group");

List servers = session.find(
"select group.server.port from groups.Group as group");

Notice that you can drill into objects as in the case of group.server.port. What if you have an
attribute that is a collection? You can obtain just the collection using a function called elements(). For
example:

List servers = session.find(
"select elements (group.articles) from groups.Group as group");

195

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 195

This example returns a List of all Article objects associated with the group.articles attribute,
which happens to be a List type. All our recent HQL examples only use a single value for the SELECT
command. We return either a List of String objects or a List of Servers, but no examples return
two or more types. For example, we might like to perform the following query:

List servers = session.find(
"select group.server.ip, group.server port from groups.Group as group");

You can even build new objects on the fly and return them:

List machines = session.find(
"select new Machine (group.server.ip, group.server.port)
from groups.Group as group");

In this find() method, Hibernate instantiates Machine objects using the ip and port values for each
Group object found in the database. Of course, your application must have a Machine class defined
with the appropriate constructor.

Narrowing the SELECT Using the WHERE
Clause

In the previous HQL examples, all the objects in the database are returned to the application without any
kind of restriction. If you want to narrow the specific objects that are returned from storage, you use the
WHERE clause. In this section, we’ll provide examples that use the WHERE clause in a variety of ways.

Let’s look at a simple use of the WHERE clause:

List servers = session.find("from Server as server where server.port = 0");

This example gives us a way to pull all the Server objects where the port attribute has a value of 0. For
our example data, we’ll get two objects where the port is 0, however, one of our Server objects has a
port value of 485 and it will not be returned. The equality provided in this HQL example handles a com-
parison of an attribute with a specific value. We can also compare objects during the HQL query as
needed. For example, let’s say we want to pull all Group objects that use the same Server object:

List servers = session.find(

"from Group as group, Group as samegroup where

group.server = samegroup.server");

In this HQL query, we join the Group table with itself to compare the Server objects with each other.
Those Group objects that have the same Server objects are returned. In our example classes for this
chapter, both the Group and Newsgroup classes are available to the application. In fact, our example
code uses both classes to instantiate objects.

If we want to return all Newsgroup objects but ignore the Group objects, we can use a special property
called class. For example:

196

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 196

List groups = session.find(
"from Group as group where group.class = Newsgroup");

This code instructs Hibernate to pull all the Group classes from the database and narrow the results to
only those objects that are specifically of the Newsgroup class type. Hibernate can to do this using the
discriminator-value provided in our mapping document for both the Group and Newsgroup <class>
definitions.

HQL also defines another special property called id, which we can use to pull objects from the database
based on the identifier value:

List servers = session.find("from Server as server where server.id = 0");

At first glance, this HQL query string doesn’t seem noteworthy, because we define our identifier column
with the string name “id”; but if we’d used the name “ident” or “identifier”, we could still use the
id special property to access the true identifier of the objects.

Working with Collections in HQL
In our example classes and objects, we’ve included a collection in the form of a List attribute. We use the
attribute to assign individual stories to a group. HQL provides quite a few operations for working
directly with collections.

.size, size()
Using the size special property or the size() function, HQL can use the size of a collection as a criteria
in a WHERE clause:

List groups = session.find(
"from Group as group where group.stories.size > 3");

List groups = session.find(
"from Group as group where size(group.stories) > 3");

In both of these examples, Hibernate accesses all the group objects currently stored in the database,
determines the total number of Story objects in the stories attribute, and returns the Group objects where
the count is greater than 3.

Note that the size property requires a subselect and generally appears in a WHERE clause.

.minlndex, minindex(), .maxlndex, maxindex()
If the collection used in an object is indexed, like an array or a List, you can use the minimum and
maximum index values in a query as well. If the collection in an object uses Java basic types like integer,
float, and other, you can use the minimum and maximum element special properties to select results
based on values in the collection. Our example doesn’t use one of these, but consider the following class
example:

197

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 197

public class Test {
private int[] values;

}
We could return Test objects from the database based on a comparison against the maximum element
in the array with the following query:

List tests = session.find(
"from Test as test where test.values.maxElement > 5000");

List tests = session.find(
"from Test as test where maxelement(test.values) > 5000");

Notice that you can use either the special property notation where the property is added to the end of
the attribute being compared or the method notation.

index()
If you’re interested in the index value of an element in a collection of values or a one-to-many associa-
tion, use the index() property. For example, we can pull all the stories that have an index value of 2
using the following HQL:

List stories = session.find("from Story story where index(story) = 2");

Based on our example, we return an object based on the following row:

+----+-----------------------+------+-----------+
| id | info | idx | parent_id |
+----+-----------------------+------+-----------+
| 10 | All The Rest | 2 | 6 |
+----+-----------------------+------+-----------+

any(), some(), all(), exists(), in(), elements(), indices()
SQL includes a few predicates that you can use to compare and determine whether a value is part of a
set. These predicates are as follows:

❑ any/some: Returns a result when a compared value is true for any value in the subquery.

❑ all: Returns a result when a compared value is true for all values in the subquery.

❑ exists: Returns a result when the row from the query is found in a subquery.

❑ in: Returns results when a value in the database matches a value in a result set.

One use of these predicates in Hibernate calls for two functions: elements() and indices(). The
elements() function returns the values of a collection as a set so the predicates listed here can access
the values. The indices() function returns the key values of a collection such as those found in a map.

Using this information, we can produce a query based on our example application and those objects per-
sisted to the database:

198

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 198

List groups = session.find(
"from Group groups where :reply exists elements(groups.stories)");

Note that properties, elements, and indices require a subselect and generally appear in a WHERE clause.
The elements() and indices() functions can be used in the SELECT clause even in a database that
doesn’t support the subselect.

[]
You’ve seen how to access the minimum and maximum indices as well as the size of a collection, but
what if you want to access the value of an indexed collection at cell 5, or a map element? You can use the
[] operator for this purpose:

List stories = session.find(
"select story from Story story, Group group where group.stories[1] =

story");

Note that the [] symbols can only be used in a WHERE clause.

Other HQL WHERE Expressions
In this part of the chapter, we’ll discuss the other expressions that can appear in a WHERE clause.
Many of these expressions will be familiar if you’ve used SQL. Each expression is categorized based on
its functionality.

Logicals
When you’re building a query string to narrow the results of a query, you sometimes need more than
one criterion to fully achieve the narrowing. This situation calls for the use of a logical operator such as
AND, OR, and NOT. For example:

List servers = session.find(
"from Server as server where server.port = 0 and server.password is not

null");

Here we’ll only return Server objects that have a port of 0 and a password that isn’t null. The AND rela-
tional requires that both conditions be true in order for the entire condition to be true.

NULL Expression
When you’re persisting Java objects to the database, there will undoubtedly be times when an attribute
has a null value associated with it instead of a reference to another object. For example, we might instan-
tiate a Group object and not add anything to the stories attribute or the server attribute. In this case,
Hibernate persists the Group object and enters null values for the appropriate places in the database
table row.

199

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 199

HQL lets you use the null value as a condition to narrow a query. There are two commands to test for
null:

❑ is null

❑ is not null

Notice that you don’t use the equality symbol to test against null. It’s important to always test for null
using the is and is not keywords. For example:

List groups = session.find(
"from Groups as group where group.server is null");

The result of the HQL query is a list of Group objects that don’t have the server attribute set to a Server
object. This is a quick way to retrieve objects that need to be repaired or filled with additional informa-
tion. You can use the is not null command to find objects that have the appropriate attribute filled with
an object.

Groupings
In many cases, you’ll want to narrow the results of a query based on a set of values or a range. For exam-
ple, we might want to pull the Server objects that have port values in the range of 0 through 1024. To
do this, we can use the between keyword:

List servers = session.find(
"from Server as server where server.port between 0 and 1024");

Hibernate checks each stored Server object and retrieves only those that have a port value between 0
and 1024. If by chance you want to narrow your results based on several different values, you can use
the in keyword. For example, we might want to pull the objects were the password string is
“password” or “test” for a Server object. The HQL would appear as follows

List servers = session.find(
"from Server as server where server.port in ('password', 'test')");

We can also perform the negation of both the in and between keywords:

List servers = session.find(
"from Server as server where server.port not between 0 and 1024");

List servers = session.find(
"from Server as server where server.port not in ('password', 'test')");

Scalar Functions
If the underlying database where Hibernate is persisting your objects supports scalar functions, you can
use them in your HQL query string as well. Consider the MySQL database server, which includes many
scalar functions such as ABS, ASIN, CURRENT_DATE(), and others. Two commonly used functions are
upper() and lower(), which change the case of a value found in the database.

200

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 200

For example, we might want to pull objects from the database based on the name of the group. Because a
Group object might have a name attribute in both uppercase and lowercase, we need to use one of the
functions to make sure we select the right objects. The query might look like the following:

List groups = session.find(
"from Group group where lower(group.name) like 'www.%'");

For this query string, the name attribute of the Group object is changed to lowercase and then compared
against the “www.” String.

Equality
While we’re on the subject of checking equality of an attribute against a value, Hibernate supports all the
common equality operators found in SQL. These include:

❑ =: Equality

❑ <=: Less than or equal

❑ >=: Greater than or equal

❑ <>: Not equal

❑ !=: Not equal

❑ like: Allows for matching a substring using a wildcard—the most common wildcard, %, can
appear before, after, or in a string

Named Parameters
Hibernate supports the concept of a named parameter, where a variable can be added to a HQL query
string and a method used to set the value of the variable. For example, we might have code like the fol-
lowing:

Query q = session.createQuery(
"from Group group where group.name = :groupname");

q.setString("groupname", "alt.mygroup");
Iterator iter = q.iterate();

The power of the named parameter is its ability to dynamically set a value in the query as needed by the
application. There is no need to deal with string concatenations or other gimmicks to add dynamic infor-
mation to a query string.

Booleans
The issue of boolean values in a database is an interesting topic because not all database servers support
a specific boolean column type. Typically, a boolean column contains one or two different values—true
or false—but for those database servers that don’t directly support a true Boolean column, the values 0
and 1 provide the same functionality. Consider the following query:

201

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 201

List groups = session. find("from Group group where group.active = true");

The query returns all Group objects that currently have the active parameter set to true. But if your
database server doesn’t support the idea of true/false, the query produces an error. The solution is to
use the query substitutions allowed in the Hibernate configuration file. Recall that you can add a query
substitution with the hibernate.query.substitution property. Using this property, you can tell
Hibernate to substitute the appropriate values for true and false when found in a query. The statements
would be

hibernate.query.substitution true = 1
hibernate.query.substitution false = 0

When Hibernate sends this query to the underlying database server, the query string appears as follows:

select * from Group group where group.active = 1

Subselects
Most modern database servers support the idea of performing a series of selects in order to produce a
single result set. This multiple-selection capability is often called a subselect. The basic idea is to perform
a SELECT query on a database table and then use the results of the first SELECT as the input to a final
SELECT that produces the results to be returned to the application. Hibernate supports the idea of a sub-
select as long on the underlying database supports the construct.

In the following query, we obtain the average size of the stories attribute in the subselect and then com-
pare the size of each story list with the obtained average:

from Group as group where size(group.stories) > (
select avg(size(storygroup.stories)) from Group storygroup)

The result is those Group objects that have a List attribute greater than the average of all lists.

Polymorphism
Since we’ve created a hierarchy in our example, and Hibernate is designed to be used with Java (an
object-oriented language), you might expect we can obtain objects from the database based on the hier-
archy and taking advantage of polymorphism. In fact, a query used in Hibernate can include any valid
class type. For example, if we execute the following query, we’ll obtain all the objects of type Group or
based on Group (such as Newsgroup):

List groups = session.find("from Group");

Now we can obtain the Newsgroup objects based on the following query:

List groups = session.find("from Newsgroup");

202

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 202

Finally, we can obtain all objects that have been persisted with this query:

List allobjects = session.find("from java.lang.Object");

Order By Clause
As you’ve seen throughout this chapter, the result of the find() method is a List of the objects match-
ing the HQL query string. As you might expect, there is no guarantee of the order in which the objects
are returned from the database table. If you want Hibernate to return the objects in a specific order, you
can use the order by clause.

Looking back at the example application used to instantiate and persist the Group, Story, and Server
objects, you can see that the Group objects are instantiated in the following order:

misc.hibernate
misc.software
alt.donothing

Clearly, this order isn’t sorted. You might expect the Group objects to be placed in the database in the
same order in which they were instantiated. If you look back at the beginning of the chapter in Listing
8.6, we display the tables for the Group objects, the objects were placed in the database in the same
order. Now we won’t rely on this fact from an application standpoint: We can use the Order By clause
to return the objects in a specific order. For example:

List sortedgroups = session.find(
"from Group as group order by group.name asc");

The result of this query is a List of Group objects that are returned based on an ascending sort using
natural ordering for a string attribute. The objects are in this order:

alt.donothing
misc.hibernate
misc.software

If you’d like the sorting performed in descending order, use this example:

List sortedgroups = session.find(
"from Group as group order by group.name asc");

Now we can create even more complex object results using multilevel sorting:

List sortedgroups = session.find(
"from Group as group order by group.server.port asc, group.name asc");

In this query, the Group objects are returned based first on a sort of the server.port value and then on
a sort in ascending order of the Group object name. The sorting of the objects based on the name
attribute is seen only when multiple objects have the same server.port value.

203

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 203

Aggregate Functions
HQL includes a few aggregate functions you can use to combine values in the attributes of stored
objects. The available functions are as follows:

❑ count(*): Provides a count of the total number of objects persisted to the database; possibly lim-
ited by a WHERE clause.

❑ count(query): Provides a count of the total number of objects based on the supplied query.

❑ count(distinct attribute): Provides a count of the objects having distinct attribute values.

❑ count(attribute): Provides a count of all objects in a specific class.

❑ avg(attribute): Provides the average value for the field provided.

❑ sum(attribute): Provides the sum of all values supplied in the attribute.

❑ min(attribute): Provides the minimum value found for all supplied attribute values.

❑ max(attribute): Provides the maximum value found for all supplied attribute values.

Here’s an example of using an aggregate function:

List group = session.find(
"select max(size(group.stories)) from Group as group");

Here we ask for the value of the maximum List size for all the Group objects. As you’ll see shortly, the
aggregate functions are used extensively when you’re adding a group by clause to the query.

Group By Clause
Sorting through the order by clause is one way to group a series of objects, but an even more powerful
option is the group by clause. This clause lets Hibernate pull information from the database and group it
based on a value of an attribute and, typically, use the result to include an aggregate value. When you’re
using the group by clause, the column in the clause must:

❑ Be from one of the tables in the FROM clause.

❑ Not be part of an aggregate function.

❑ Be in the SELECT clause.

Any other column included in the SELECT clause must be either part of the group by or part of an
aggregate function. For example:

List group = session.find(
"select groups.server.name, count(groups)
from Group groups group by groups.server.name");

In this query, we’ve grouped the Group objects based on the name of the Server and returned the
server name as well as the number of groups using the server. Let’s say we also wanted the IP address of
the server, so we tried the following query:

204

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 204

List group = session.find(
"select groups.server.name, count(groups),

groups.server.ip from Group groups group by groups.server.name");

We’ll get an error on this query because the SELECT clause contains an attribute, groups.server.ip,
that isn’t part of an aggregate function or in the group by clause.

HAVING Clause
The HAVING clause is probably one of the most misunderstood SQL clauses. It works in much the same
way as WHERE, except the attributes in the HAVING clause are a subset of those used in an accompanying
group by clause. Thus, the HAVING clause limits the results of a query and is used in conjunction with
the group by clause.

It’s possible to have both a WHERE and a HAVING clause in a query. In this type of situation, the WHERE
clause narrows the results used in the group by clause using columns that aren’t part of any aggregate
functions. The HAVING clause then narrow the results even further after the aggregation has occurred
using a subset of the columns used in the aggregate functions. Therefore, in order to use the HAVING
clause, the query must:

❑ Include a group by clause.

❑ Use one or more columns used in an aggregation function.

Working with HQL Joins
In the final section of this chapter, we’ll discuss joins. Our goal is to provide some of the basics about
joins and show how they can be used in Hibernate. If you’re familiar with SQL, Hibernate joins are no
different than those found in SQL. Hibernate supports the following joins:

❑ Left outer join

❑ Right outer join

❑ Inner join

❑ Full join

We’ll discuss each of these in detail in the following sections of this chapter.

Left Outer Join
In many situations, you need to obtain information from one or more tables in a single query. The left
outer join is designed to join tables that have a common column between them. The result of the join is
rows containing values from both tables matched on the common column. Rows in the source table that
don’t match a row in the joined table are included in the result. The values for the joined table in these
unmatched rows have null values. (The “Left” part of the clause says that the table on the left is the
source table and all of its rows are included in the result regardless of a match.)

205

Hibernate Query Language

10_576771_c08.qxd 9/1/04 12:24 PM Page 205

For example, let’s say we want to obtain the name of a group as well as a count of all stories in the group
based on the story name. Here’s what the query looks like:

Select group.name, count(items)
From Group as group
Left outer join group.stories as items
Group by group.stories.name

Right Outer Join
The right outer join has the same functionality as the left outer join, but the table on the right is the
source and all of its rows are included in the result.

Inner Join
The inner join is used in places where you want to join two tables that have a common column. For
example, if you have an account table and an address tables, the tables may share an account number.
You can join the tables using the account number column. The result of the join is those rows from both
tables where the account number is the same for each table.

Full Join
In a full join, the result is a match between all rows in the joined tables. If there are 10 rows in each table,
there will be 100 rows in the final result. You must use this join used with caution due to the total num-
ber of rows in the result.

Fetch Join
Finally, Hibernate supports the idea of a fetch join. This allows Hibernate to fully initialize an object
along with its associated collection. For example, we might do the following query:

From Group as group
Left join fetch group.stories

Summary
This chapter has provided an overview of the Hibernate Query Language and shown many examples of
how to use the various clauses and constructs. In most cases, you’ll write applications where you don’t
know the identifier of a specific object you wish to pull from persisted storage, so using HQL will be
mandatory. If you’re new to SQL and HQL, the best way to learn is to start using the language and view
the objects returned. In some cases, you won’t receive the objects you might expect, so revise your HQL
query string and try again.

206

Chapter 8

10_576771_c08.qxd 9/1/04 12:24 PM Page 206

Hibernate Caching

In a typical application, you instantiate objects, persist those objects, reuse the objects, load objects
from the database, change the objects, update the objects, and so forth. This process happens over
and over as the application executes. In the vast majority of standalone application, you don’t
need to worry about object availability and performance beyond keeping the database server oper-
ational. However, there are a few situations like large multiuser applications and Web-supported
situations where you need to consider what the underlying system does with objects. Caching can
mean the difference between a sluggish system and a responsive system, but it requires you to
think about what approach you take.

Why Cache? What Does Hibernate
Provide?

Caching is so important with Hibernate that there isn’t a single caching mechanism; instead,
Hibernate utilizes a multilevel caching scheme. The first-level cache is the Session object. In previ-
ous chapters, you’ve seen how the Session object acts in a cache-like manner when you pull objects
from the database. It works hard to present you with the basics of an object as fast as possible
while doing the real work in the background using lazy initialization. At the other end of the spec-
trum, the Session object keeps an object under its own power before committing it to the database.
If the application needs the object, it’s available in memory; Hibernate doesn’t need to run to the
database to provide the object. If you issue multiple updates to an object, Hibernate tries to delay
doing the update as long as possible to reduce the number of update SQL statements issued. If you
close the session, all the objects being cached are lost and either persisted or updated in the
database. When you open a new session, the objects can be pulled and further cached by the cur-
rent session.

Why do we need other caches beyond the Session object? The answer comes in two parts. The first
is called a Java Virtual Machine (JVM) or SessionFactory-level class. Hibernate delegates some caching
of specific classes and collections to this second-level cache. If you have a second-level cache at the

999

11_576771_c09.qxd 9/1/04 12:26 PM Page 207

SessionFactory level, the application objects are cached in a manner where they are available across
sessions.

The second cache is called the query cache. Using this cache, Hibernate can, obviously, cache queries and
their results in the event the application executes the same query again. Of course, the query cache takes
memory, and cached queries should have a high likelihood of being executed again.

Caching the Survey Object Example Code
This section presents the complete code for the sample Survey application used in this chapter. You can
also download this code at www.wrox.com. Listing 9.1 contains the contents of the Hibernate.cfg.xml
file, Listing 9.2 contains the contents of the ehcache.xml configuration file, Listing 9.3 contains the
Survey object mapping file, and Listing 9.4 contains the Survey source and unit test.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate
Configuration DTD 2.0//EN" "http://hibernate.sourceforge.net/hibernate-
configuration-2.0.dtd">

<!-- Generated file - Do not edit! -->

<hibernate-configuration>

<!-- a SessionFactory instance listed as /jndi/name -->
<session-factory>

<!-- properties -->
<property name="dialect">net.sf.hibernate.dialect.

HSQLDialect</property>
<property name="show_sql">true</property>
<property name="use_outer_join">false</property>
<property name="connection.username">sa</property>
<property name="connection.driver_class">org.hsqldb.

jdbcDriver</property>
<property name="connection.url">jdbc:hsqldb:

hsql://localhost</property>
<property name="hibernate.cache.provider_class">net.sf.

ehcache.hibernate.Provider</property>

<!-- mapping files -->
<mapping resource="example/survey/Survey.hbm.xml"/>

</session-factory>

</hibernate-configuration>.

Listing 9.1

208

Chapter 9

11_576771_c09.qxd 9/1/04 12:26 PM Page 208

<ehcache>

<diskStore path="java.io.tmpdir"/>

<defaultCache
maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"
overflowToDisk="true"
/>

<cache name="example.survey.Survey"
maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="3600"
overflowToDisk="false"
/>

</ehcache>

Listing 9.2

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class

name="example.survey.Survey"
table="SURVEYS"
dynamic-update="false"
dynamic-insert="false"

>
<cache usage="read-write"/>
<id

name="id"
column="SURVEY_ID"
type="java.lang.Long"

>
<generator class="native">
</generator>

</id>

<property
name="name"
type="java.lang.String"
update="true"
insert="true"
access="property"

209

Hibernate Caching

11_576771_c09.qxd 9/1/04 12:26 PM Page 209

column="name"
/>
</class>

</hibernate-mapping>

Listing 9.3

package example.survey;

/**
*
* @author Eric Pugh
*
*/
public class Survey {

private Long id;
private String name;

/**
*
* @return Returns the id.
*/
public Long getId() {

return id;
}

/**
*
* @param id
* The id to set.
*/
public void setId(Long id) {

this.id = id;
}

/**
* @return Returns the name.
*/
public String getName() {

return name;
}

/**
* @param name
* The name to set.
*/
public void setName(String name) {

this.name = name;
}

}
package example.survey;

210

Chapter 9

11_576771_c09.qxd 9/1/04 12:26 PM Page 210

import junit.framework.TestCase;
import net.sf.hibernate.Session;

public class SurveyTest extends TestCase {

public void testCreateSurvey() throws Exception{
Session session = HibernateHelper.getSessionFactory().openSession();
Survey survey = new Survey();
survey.setName("Test Survey Caching");
assertNull(survey.getId());
session.save(survey);
assertNotNull(survey.getId());
Survey surveyInSessionCache = (Survey)session.

get(Survey.class,survey.getId());
assertEquals("Two objects shouldn't be equal.",survey,

surveyInSessionCache);

}
}
package example.survey;

import net.sf.hibernate.HibernateException;
import net.sf.hibernate.SessionFactory;
import net.sf.hibernate.cfg.Configuration;

public class HibernateHelper {
private static SessionFactory sessionFactory;

private static Configuration configuration;

public static SessionFactory getSessionFactory() throws
HibernateException {

if (sessionFactory == null) {
sessionFactory = getConfiguration().buildSessionFactory();

}
return sessionFactory;

}

public static Configuration getConfiguration() throws
HibernateException {

if (configuration == null) {
configuration = new Configuration().configure();

}
return configuration;

}
}

Listing 9.4

211

Hibernate Caching

11_576771_c09.qxd 9/1/04 12:26 PM Page 211

Setting Up a SessionFactory Cache
We’ll begin our caching discussion by setting up the SessionFactory cache so you can give the
Session object help with specific classes or collections. The first step is to set up the cache and make it
available. The following properties are available in the Hibernate Configuration files to handle cache
setup:

❑ hibernate.cache.provider_class: Indicates the class name of a custom CacheProvider. For
example, classname.of.CacheProvider.

❑ hibernate.cache.use_minimal_puts: Optimizes second-level cache operation to minimize
writes, at the cost of more frequent reads (useful for clustered caches). Possible values are true
and false.

❑ hibernate.cache.use_query_cache: Enables the query cache. The query cache is disabled by
default. Possible values are true and false.

❑ hibernate.cache.region_prefix: Provides a prefix to use for second-level cache region names.
For example, prefix.

The two important properties are hibernate.cache.provider_class and hibernate.cache
.use_query_cache. By default, Hibernate is configured to use the EHCache class for the second-level
cache. If you need or want to change the cache type, specify the hibernate.cache.provider_class
property for the cache you want.

The following table summarizes the caches and what they provide.

Cache Provider Class Type Cluster Safe Query Cache
Supported

EHCache net.sf.hibernate.ehcache Memory, disk No Yes
.hibernate.Provider

OSCache net.sf.hibernate.cache Memory, disk No Yes
.OSCacheProvider

SwarmCache net.sf.hibernate.cache Clustered Yes No
.SwarmCacheProvider (IP multicast) (clustered

invalidation)

TreeCache net.sf.hibernate Clustered Yes (replication) No
.cache. (IP multicast),
TreeCacheProvider transactional

As you can see, it’s important to choose the right second-level cache class for your application. Your
choice is limited if you also want to use a query cache. The only requirement is that the cache provider
must implement net.sf.hibernate.cache.CacheProvider.

A couple of the providers are designated as clustered. This means more than one machine can be used to
cache the object pulled by a session. The idea is to distribute the load over several machines instead of
just one. Using clustered caches is a viable option for a large application, but you must take care when

212

Chapter 9

11_576771_c09.qxd 9/1/04 12:26 PM Page 212

TE
AM
 F
LY

mapping out this type of architecture: The clustered caches aren’t aware of changes made to a cached
object across clustered machines.

If you’re just starting out using caching, then EHCache is a good choice (the EH stands for Easy
Hibernate). It’s available from http://ehcache.sourceforge.net/. It was implemented by the Hibernate
developers and therefore was designed with Hibernate in mind. We’ll walk through the configuration of
an EHCache-based second-level cache later in the chapter.

Using the Persistent Object Cache
Once you’ve configured Hibernate with a second-level cache, you cache your classes and collections
using the <cache> element available to the <class> and various collection-mapping elements. The
format of the <cache> element is as follows:

<cache usage="transactional |
read-write |
nonstrict-read-write |
read-only"

/>

Include the element in those classes that you want to be cached. In the included Survey example applica-
tion, we’ve marked the object Survey as a read-write cache:

<class name="Survey">
<cache usage="read-write"/>
</class>

For the Survey class, the second-level cache is used for both read and write situations. If you have a
class that is immutable (read-only), you can use read-only:

<class name="Question" mutable="false">
<cache usage="read-only"/>

</class>

As mentioned, the cache can be used in collections. For example:

<class name="Survey">
<cache usage="read-write"/>
<set name="Questions">
<cache usage = "read-only"/>

</set>
</class>

Now let’s look at the different possible values for the usage attribute.

Read-Only Cache Usage
If your application’s Session object will be loading various classes and the classes don’t and won’t
change during the execution of the application, you can use the read-only cache usage. As you might

213

Hibernate Caching

11_576771_c09.qxd 9/1/04 12:26 PM Page 213

expect, the read-only usage is very fast for the cache provider. A typical example is to look up data for
an application.

Read-Write Cache Usage
When the objects being cached need to be updated, the read-write usage mechanism is an appropriate
option to choose. As you might expect, the time requirements for supporting a read-write cache are more
involved than in a read-only situation. Therefore, you should study the requirements for the cache
closely.

Unfortunately, you must follow a few rules when you’re using a read-write cache. The first rule comes
into play when you’re using the read-write cache in a JTA environment. In this case, you must specify
the property hibernate.transaction.manager_lookup_class. This property tells Hibernate
how to find the appropriate JTA TransactionManager class.

If the read-write cache is used outside of JTA but still in a transactional environment, it’s imperative that
the transaction be completed before the session is closed or the connection to the database is discon-
nected. Otherwise the cache will potentially become corrupted.

Also note that if the database is being updated by other processes external to Hibernate, such as a data
import job or other applications, then a read-write cache may not be suitable—the data cached by
Hibernate may become inaccurate due to the other processes.

Finally, if you’re using a clustered cache, a mechanism must be available to lock the database in order to
ensure that the database and cache remain in sync. Further, the system architect needs to determine
whether the clustered class will handle situations where one application updates an object in the
database and all other clustered caches become invalid. These situations aren’t handled by the cache-
provider classes listed earlier in the chapter.

Nonstrict Read-Write Cache Usage
The nonstrict read-write cache mechanism works in the same fashion and has the same rules as the read-
write cache usage described in the previous section, but you can use it when an application will only
occasionally update the application objects. Using this cache usage relaxes the transaction isolation pro-
vided in the read-write pattern.

Transactional Cache Usage
Of the built-in provider classes, the JBoss TreeCache is the only one that fully supports a transactional
cache strategy. You can only use this provider in a JTA environment. It provides a high level of support
for caching objects when used with JTA.

SessionFactory Support Methods
You can manage the SessionFactory second-level cache using the following methods:

214

Chapter 9

11_576771_c09.qxd 9/1/04 12:26 PM Page 214

public void evict(Class class);
public void evict(Class class, Serializable id);
public void evictCollection(String name);
public void evictCollection(String name, Serializable id);

The primary role of each of these methods is to permanently remove objects from the cache. If the object
is currently part of a transaction, it’s removed from the cache. No rules block an object from being
removed. In the case of the first method, evict(Class class), all objects of the supplied class type
are removed from the cache.

The methods work on either classes or collections, depending on the one used. If you supply an identi-
fier, then that specific object is removed. This is the only way to update an object that has been set up to
be cached as read-only and nonexpiring.

Using the Query Cache
Objects aren’t the only entity that you can cache in Hibernate. You can also cache specific queries and the
result returned by those queries in the form of a set of identifiers. To use the query cache, you must first
activate it using the hibernate.cache.use_query_cache=”true” property. By setting this prop-
erty to true, you make Hibernate create the necessary caches in memory to hold the query and identi-
fier sets. Note that in order for a query to be picked from the cache, it must match the exact query string
including all supplied parameters. This is no different than query caches provided by many database
servers.

To use the query cache, you use the setCacheable(Boolean) method of the Query class.
For example:

Session session = SessionFactory.openSession();
Query query = session.createQuery("from Survey");
query.setCacheable(true);
List users = query.list();
SessionFactory.closeSession();

In this code, we define a Query object and supply a query string. Next, we use the setCacheable()
method to tell Hibernate two things: that this query is cacheable and should be placed in the query cache
once it’s executed, and that it should attempt to find the query in the cache before executing the query.

Hibernate also supports very fine-grained cache support through the concept of a cache region. A cache
region is part of the cache that’s given a name. For example, you might have a cache area for user sup-
port or an area for sites. You use setCacheRegion() to specify the region to be used:

Session session = SessionFactory.openSession();
Query query = session.createQuery("from Survey");
query.setCacheable(true);
query.setCacheRegion("surveys");
List users = query.list();
SessionFactory.closeSession();

This code uses the method to tell Hibernate to store and look for the query in the surveys area of the
cache.

215

Hibernate Caching

11_576771_c09.qxd 9/1/04 12:26 PM Page 215

At any point, you can tell the SessionFactory to remove all cached queries from the entire cache or a
particular cache region with these methods:

public void evictQueries();
public void evictQueries(String region);

Session Cache Functionality
As we’ve mentioned, the Session object contains its own cache to hold individual objects relative to the
current session. The class supports several methods for controlling the objects in the cache. These meth-
ods are as follows:

public void evict(Object object);
public void clear();
boolean contains(Object object);
Serializable getIdentifier(Object object);

Just as in the SessionFactory, these methods are designed to both remove and identify objects in the
cache. The familiar evict() method removes a specific object from the Session object’s cache. The
clear() method clears the entire cache. The contains() method returns a boolean value depending
on whether the specified object exist in the persistent store. The getIdentifier() method works in
much the same way, except it returns the identifier of the supplied object if it exists in the cache; other-
wise an exception is thrown.

Setting Up EHCache
EHCache is by far the easiest production-ready caching provider to set up. It comes with Hibernate, but
it’s also available at http://ehcache.sourceforge.org; newer versions may also be available. It’s a suitable
caching engine for any application that requires a generic caching solution.

To explicitly use EHCache with Hibernate, set the hibernate.cache.provider_class in hibernate
.cfg.xml to the EHCache provider:

<property name="hibernate.cache.provider_class">net.sf.ehcache.hibernate
.Provider</property>

Then add an ehcache.xml file to your classpath. Ehcache.xml defines all the cache settings for the differ-
ent objects:

<ehcache>

<diskStore path="java.io.tmpdir"/>

<defaultCache
maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="120"
timeToLiveSeconds="120"

216

Chapter 9

11_576771_c09.qxd 9/1/04 12:26 PM Page 216

overflowToDisk="true"
/>

<cache name="example.survey.Survey"
maxElementsInMemory="1000"
eternal="false"
timeToIdleSeconds="3600"
overflowToDisk="true"
/>

<cache name="example.survey"
maxElementsInMemory="1000"
eternal="true"
overflowToDisk="true"
/>

</ehcache>

The <diskStore /> attribute specifies where EHCache should spool objects to disk when it runs out
of space in memory. In this example, it outputs them to the default temporary file path. You can also use
user.home to store in the user home directory, or user.dir to store in their current working directory.

The <defaultCache> attribute specifies the values to use for objects without a specific cache defined.
In this example, by default only 1000 objects are stored in memory. After that, they’re spooled to disk. If
a cache is marked as external, then the object never expires. Otherwise timeToIdleSeconds specifies
how long an object can be idle before it expires. The timeToLiveSeconds value specifies the overall
length of time that an object can be cached before being expired.

The example.survey.Survey objects have been defined as never expiring, and after the first 1000
have been loaded, the remainder are spooled to disk. You can look back at the section “SessionFactory
Support Methods” to see how to instruct EHCache to clear all cached Survey objects.

The Survey application object model has mapped this Java object to a Hypersonic database. To run the
example, start Hypersonic by running either startHsql.bat or startHsql.sh in the /etc directory, depend-
ing on your platform. Doing so starts up a preconfigured database called surveydb in the /etc directory.

Then, enter ant test; you should get output that looks similar to this:

C:\clients\book\9\survey>ant test
Buildfile: build.xml

init:
[echo] Build survey-om-chapter9

compile:

compile-tests:

test:
[junit] Running example.survey.SurveyTest
[junit] Tests run: 1, Failures: 0, Errors: 0, Time elapsed: 3.435 sec

217

Hibernate Caching

11_576771_c09.qxd 9/1/04 12:26 PM Page 217

[junit] ------------- Standard Output ---------------
[junit] 2004-08-02 16:25:48,385 [main] INFO net.sf.hibernate.cfg

.Environment - Hibernate 2.1.5
[junit] 2004-08-02 16:25:51,199 [main] DEBUG net.sf.hibernate.impl

.SessionImpl - resolved object in session cache [example.survey.Survey#23]
[junit] ------------- ---------------- ---------------

BUILD SUCCESSFUL
Total time: 4 seconds
C:\clients\book\9\survey>

As you can see from the steps, the Java source has been compiled, the unit tests compiled, and the
SurveyTest unit test run.

The log4j.properties file has been set to DEBUG level so that you can see all the logging produced by
Hibernate. In this example, most of the standard output has been removed. If you look through the logs,
you’ll see EHCache being checked to see whether a valid Survey object is stored in it.

When Not to Use Caching
As we’ve mentioned, caching takes up resources in your application and requires careful tuning to bal-
ance the amount of memory used versus the benefit gained. There are definitely times when caching
isn’t indicated:

❑ If your database is being modified by multiple applications, then Hibernate won’t be able to
ensure that the data is valid. You may be able to deal with this issue by specifying a version or
timestamp property for your object and using the Session.lock() method to verify that the
object hasn’t been changed.

❑ Some data is retrieved and then not reused so that the data expires from the cache. In this case,
there is no point in caching the information and taking up more memory. Caching only helps
when the same data is used multiple times within the expiry time period.

❑ The database provides additional functionality, such as auditing your data retrieval. Some
applications have a requirement that all SQL statements are logged in order to track who is
using what data. Typically this is done at the database level via triggers. In these situations, the
cache may be handing the data to various users but without reissuing the SQL statements. This
would bypass the SELECT statements that are required for the database triggers to fire.

❑ The application is preserving the first-level session cache for long periods of time. Often in a
thick client application a single session is created when the application is started. This session is
held open for the lifetime of the application. In this case, the session provides all the caching
required.

❑ You’re loading very large numbers of objects. If you’re loading and parsing millions of objects,
then there may not be enough memory available to cache them. However, remember that you
don’t have to cache everything. Many applications have large subsets of data that are reused
frequently.

218

Chapter 9

11_576771_c09.qxd 9/1/04 12:26 PM Page 218

Summary
Caching of database objects is often a bandage applied to the design at the end of development when
performance problems are discovered. It’s often applied as another layer to your application, and it can
make the code accessing the database harder to read. But when you’re using Hibernate, the integrated
cache can revolutionize the speed of an application without changing the data access code. Using
caching requires analysis and tuning of parameters, but it can make a barely useable application light-
ning fast.

Between the integrated caching and the sophisticated minimizing of SQL statements that Hibernate is
capable of, Hibernate almost always outperforms any corresponding data-access code written by hand
for any but the most trivial application. Regardless of how an object is persisted to the database,
Hibernate lets you retrieve those objects in a variety of ways that aren’t only related to the way the
objects are stored.

219

Hibernate Caching

11_576771_c09.qxd 9/1/04 12:26 PM Page 219

11_576771_c09.qxd 9/1/04 12:26 PM Page 220

Hibernate Transactions and
Locking

All major applications, both desktop and Internet-based, that use a database rely on the fact that
the information within the database will be accurate and correct. This is especially true when the
database is used in a multiuser environment. In order to illustrate this point, consider two
database tables from Chapter 6 based on two classes called Group and Story. An object instanti-
ated from the Group class has some number of Story objects associated within it using a List
Collection object. Within the mapping document for the Group class, we specified that
Hibernate should cascade a save or update to all of the Story objects when a Group object is per-
sisted to the database. By specifying the cascade attribute, we ensure that the Story objects will
be properly stored or updated and the Group object will maintain a proper level of integrity.

Consider a situation where an application creates a Group object and associates several different
Story objects to it through the List attribute within Group. Once the application executes the
save() method on the session, all of the Story objects and the single Group object will be saved
to the database. If we set the show_sql Hibernate property to true, you can see the SQL that
Hibernate attempts to execute:

Hibernate: insert into grouptable (name) values (?)
Hibernate: insert into story (info) values (?)
Hibernate: insert into story (info) values (?)
Hibernate: update story set parent_id=?, idx=? where id=?

After the SQL is executed, we have rows in the database tables corresponding to our objects, as
shown in Listing 10.1.

101100

12_576771_c10.qxd 9/1/04 12:32 PM Page 221

mysql> select * from grouptable;
+----+-----------+
| id | name |
+----+-----------+
| 5 | accounting |
+----+-----------+
1 rows in set (0.00 sec)

mysql> select * from story;
+----+-----------------------+------+-----------+
| id | info | idx | parent_id |
+----+-----------------------+------+-----------+
| 5 | A Story | 0 | 5 |
| 6 | And yet another story | 1 | 5 |
+----+-----------------------+------+-----------+
2 rows in set (0.02 sec)

Listing 10.1

Looking back at the SQL Hibernate used to store the objects, you can see that the sequence is:

1. Store the Group object.

2. Store the Story objects.

3. Update the Story objects based on the identifier, the primary key, for the Group object.

Probably the most important step is number 3, where Hibernate will provide the proper linkage between
the Story object rows and the Group object row. So what does any of this have to do with transactions?
The answer is plenty, and you need to understand what would happen when an error occurs at any of
the steps in the process.

❑ Case 1: There is an error on step 1. When Hibernate tries to store the Group object to the
database, there could be an error with a column value or maybe the identifier value. Any error
will cause the database server to issue an error message and status.

❑ Case 2: There is an error on step 2. Hibernate will attempt to store each of the story objects
found in the List object of the Group object. Again, there could be an issue with the attribute
values for the Story object or the generated identifier for any of the Story objects.

❑ Case 3: There is an error on step 3. If an error occurs on either case 1 or case 2, case 3 will fault as
well, since the identifier for the Group object won’t be available to use in the update of the
Story objects or the Story objects won’t be available in the table. In fact, if we had to persist
five Story objects but one of them failed, the SQL for step 3 would update only four table rows
and we would effectively lose an object from our list.

Clearly, if there are any problems with steps 1 through 3, there is an integrity issue within the database.
Since the database is our sole copy of the data when the application terminates, we must do everything
in our power to preserve the integrity of the data. The solution used in all database servers for data
integrity is called the transaction.

222

Chapter 10

12_576771_c10.qxd 9/1/04 12:32 PM Page 222

What Are Transactions?
A transaction is a unit of work that consists of two possible outcomes: failure or success. The outcome
relates to the entire unit of work and is triggered by the outcomes of the individual elements of the
transaction’s unit of work. In relating a transaction to our previous example, the steps to save the Group
object, the Story objects, and updating the relationship between the database rows would be considered
a single transaction. If any of the steps within the transaction fail, the entire transaction will fail. The
application where the transaction takes place will see just a failure of the transaction, but to the database
server, all of the changes made to the database up to the failure will need to be reversed.

When an error occurs within the transaction, the database will roll back all changes made. On the other
hand, if there are no errors with each individual component that makes up the transaction, the changes
will be committed. Since we have such a definitive answer from the transaction, we won’t run into the
situation described earlier. Of course, the definitive answer comes at a cost. The cost is different from
database server to database server, but some table locking must occur and there must be some decision
making when it comes time to commit or roll back the transaction.

Configuration
By default, Hibernate doesn’t use transactions while persisting data to the database. There are two con-
figuration options that can be used to handle transactions:

hibernate.transaction.factory_class jta.userTransaction
hibernate.transaction.manager_lookupclass

Of the three, hibernate.transaction.factory_class is the most important because it tells
Hibernate which of two built-in mechanisms to use for transactions. The mechanisms are

❑ JDBC transactions

❑ JTA transactions

Differentiating between the two mechanisms is quite easy. If you are working outside an application
server environment, use JDBC transactions; otherwise, use JTA transactions. To specify and use JDBC
transactions, set the property hibernate.transaction.factory_class equal to net.sf
.hibernate.transaction.JDBCTransactionFactory. With this setting, Hibernate will use the
transaction facilities found within the JDBC driver.

If you are working within an application server environment, you will want to utilize the Java
Transaction API, or JTA transaction mechanism. To use JTA, set hibernate.transaction
.factory_class equal to net.sf.hibernate.transaction.JTATransactionFactory. The
JTA mechanism is designed to work in an environment where transactions within the application will
potentially be distributed. The JTA transaction manager will handle all of the details necessary to ensure
that a transaction remains a single unit of work. When using the JTA transaction, you will need to spec-
ify a strategy based on the application server being used. The following table shows the value used to
assign the property hibernate.transaction.manager_lookup class based on the application
server being used in the application.

223

Hibernate Transactions and Locking

12_576771_c10.qxd 9/1/04 12:32 PM Page 223

Application
Server Factory Class

Jboss net.sf.hibernate.transaction.JbossTransactionManagerLookup

Weblogic net.sf.hibernate.transaction.WeblogicTransactionManagerLookup

WebSphere net.sf.hibernate.transaction.WebSphereTransactionManagerLookup

Orion net.sf.hibernate.transaction.OrionTransactionManagerLookup

Resin net.sf.hibernate.transaction.ResinTransactionManagerLookup

JOTM net.sf. hibernate.transaction.JOTMTransaction ManagerLookup

JOnAS net.sf.hibernate.transaction.JOnASTransactionManagerLookup

JRun4 net.sf.hibernate.transaction.JRun4TransactionManagerLookup

Database Support
As you might expect, a transaction isn’t something that either JDBC or JTA just happens to support.
Remember that when the first part of a transaction is executed, the database server will be making actual
changes to the database, such as an update. Thus, the application will tell the JDBC driver the SQL to
execute, and the JDBC driver with its transaction support will execute the SQL against the database. It
might not be until the very last SQL query where an error occurs. The database server will then need to
roll back all of the changes previously made to the database tables. This process of updating the
database and rolling back changes is fundamentally a process performed by the database server, and
therefore the tables being used by the application must support transactions.

In most all of the commercial databases such as Oracle and Microsoft SQL Server that are supported by
Hibernate, this really isn’t a problem. However, if you are using an open source database, you will need
to look carefully at the documentation to determine whether you are using the right database table. A
case in point is MySQL. By default, MySQL’s ISAM table type doesn’t support transactions. You will see
an example later in the chapter, where we attempt to perform a transaction on a table that isn’t compati-
ble with transactions. In MySQL’s case, there are two transaction tables available: InnoDB and BDB.

In addition to the database table type, you also need to be slightly concerned with the issue of the isola-
tion level. As mentioned in Chapter 3, the isolation level can be defined using one of four different level
indicators.

Depending on the isolation level, concurrent processes accessing the database during a transaction from
another process will see varying results. For example, the isolation levels from the previous table suggest
the different accesses that will potentially occur. If you have an application that must be completely
free of any conflicts during transactions, the serializable isolation level should be used; however, your
application will take quite a performance hit when using this level. Each database server has its own
default level. For example, in MySQL, the InnoDB and BDB table types default to the REPEATABLE READ
isolation level. The InnoDB table type also supports the other three levels, and BDB also supports READ-
UNCOMMITTED.

224

Chapter 10

12_576771_c10.qxd 9/1/04 12:32 PM Page 224

❑ In Microsoft SQL Server, READ-COMMITTED is the default isolation level.

❑ In Sybase, READ-UNCOMMITTED is the default isolation level.

❑ In Oracle, the READ-COMMITTED level is the default.

The problems inherent with transaction include the following:

❑ Dirty reads: In a dirty read, one transaction changes a value in the database, but before the first
transaction is committed or even possibly rolled back, another transaction reads the new data. If
the first transaction does indeed perform a rollback of the transaction, the second transaction
will have a bad value.

❑ Non-repeatable reads: In a non-repeatable read, the first transaction performs a read on a row
in the database. A second transaction updates the row and commits the transaction. The first
transaction performs a re-read on the row and gets modified data and possibly no data if the
first transaction deleted the row.

❑ Phantom insert: In a phantom insert, the first transaction performs a read on a number of rows
with a specific query. Another transaction inserts new rows that happen to match the specific
query. If the first transaction performs another read with the specific query, it will receive a dif-
ferent resultset.

All three of these situations can be solved using the isolation levels associated with a database and ANSI
SQL. The following table shows the isolation level needed to solve these issues. Note that not all
databases support all four isolation levels, and as the level increases, so does the time needed by the
database to handle the issues.

Name Dirty Read Non-repeatable Read Phantom Insert

Read Uncommitted May occur May occur May occur

Read Committed Cannot occur May occur May occur

Repeatable Read Cannot occur Cannot occur May occur

Serializable Cannot occur Cannot occur Cannot occur

Using Transactions
So how do you use the transaction ability within Hibernate? It’s actually quite simple, and it should be
as transparent as possible. Here’s an example use of transactions:

Session session = sessionFactory.openSession();
Transaction transaction = null;

try {
transaction = session.beginTransaction();

session.update(myObject);

225

Hibernate Transactions and Locking

12_576771_c10.qxd 9/1/04 12:32 PM Page 225

transaction.commit();
} catch (Exception e) {
if (transaction != null) {
transaction.rollback();
throw e;

}
} finally {
session.close();

}

The primary work within this code example occurs when we tell Hibernate that we’d like to begin a
transaction. The method beginTransaction() associated with the Session object is the catalyst.
When we made the call to beginTransactionQ, Hibernate performed any necessary communication
with the database server, letting it know that a transaction is starting. This usually means the autocom-
mit variable of the database server will be set to the proper value. At this point, there isn’t anything for
Hibernate to do until a save or update is performed. In the example code above, we tell Hibernate to
update an object to the database called myObject. Of course, since we are in a transaction, the change to
the object or any of its dependents, such as List attribute objects, won’t be made permanent to the
database just yet.

Once we’ve performed all of the saves and updates needed for the transaction, we execute the com-
mit() method associated with the Transaction class. Note, we could have just said transaction
.rollback() to get rid of the changes to the database table. Instead, we just execute transaction
.commit() so that the database will make our changes permanent. If there are any problems with the
SQL and associated update to the tables, an exception will be thrown. Our code catches the exception
and immediately calls the rollback() method so that none of the changes will be made to the
database. At this point, we can either rethrow the exception to our parent or handle the problem locally.
We make use of the finally construct so the session will be closed whether or not the transaction is
successful.

It is important that transactions used in an application be considered a unit of work and that unit of
work be as small as possible. It makes little sense to have a transaction that consists of hundreds or even
tens of individual SQL queries. The transaction should perform a simple operation consisting of a hand-
ful of operations and then either commit or roll back the changes. There is nothing that says you cannot
open another transaction after completing the first one. However, you will never want to open two or
more transactions on the same session whether or not you are in a threaded environment. In fact, you
should never have more than one session per thread either, as we’ve mentioned in the past. Just create a
transaction, use it, commit it, and open another one if necessary.

The Transaction API
The primary interface for transactions within Hibernate is called net. sf.hibernate.Transaction.
This interface is implemented by both the JDBCTransaction and JTATransaction classes. The
methods available in the interface are

❑ void commit(): Instruct Hibernate to perform the necessary operations to finish up the transac-
tion and make permanent all of the changes to the database.

❑ void rollback(): Force Hibernate to undo all of the changes made to the database.

226

Chapter 10

12_576771_c10.qxd 9/1/04 12:32 PM Page 226

❑ boolean wasCommitted(): Return a boolean value indicating whether or not the transaction
was committed to the database.

❑ boolean wasRolledBack(): Return a boolean value indicating whether or not the transaction
was rolled back within the database.

If there is an issue with any of the Transaction class methods, the HibernateException exception
will be thrown.

Transaction Example Using MySQL
Now that you have a good basis for transactions within Hibernate, consider the code in Listing 10.2. The
code is designed to create a Group object and place several Story objects within a Java list. The code to
persist the Group object is wrapped within a transaction using the code we outlined earlier. If the trans-
action should fail, the code will catch the exception and the rollback operation will be performed. Notice
that the code isn’t much different from what we’ve done throughout the book to this point. The only real
difference is the addition of the transaction.

import java.io.*;
import java.util.*;

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class GroupTest {

public static void main(String [] args) {

try {
Session session = HibernateSession.currentSession();

Group sp = new Group("accounting");

ArrayList list = new ArrayList();
list.add(new Story("A Story"));
list.add(new Story("And yet another story"));
sp.setStories(list);

Transaction transaction = null;

try {
transaction = session.beginTransaction();

session.save(sp);

transaction.commit();
} catch (Exception e) {
if (transaction != null) {
transaction.rollback();
throw e;

}

227

Hibernate Transactions and Locking

12_576771_c10.qxd 9/1/04 12:32 PM Page 227

} finally {
session.close();

}
} catch (Exception e) {
e.printStackTrace();

}
}

}

Listing 10.2

ISAM Table Type
So what happens when we execute the code above using MySQL’s ISAM table? The answer is that the
code works as expected. The proper rows appear in the group table and story tables just as if we hadn’t
used transactions. Why? Hibernate and MySQL basically work together, and since we are just using a
MyISAM table type, MySQL “downgrades” the transaction request, and the proper rows are placed in
the database. This type of functionality will be dependent on the database server you are using for your
application.

InnoDB Table Type
If we try to do the right thing and use an appropriate transaction table type in MySQL such as BDB,
there are a few steps that must take place. The first is compiling or using a binary distribution of MySQL
that includes either BDB or InnoDB support. Typically, this is a Max distribution as found on the MySQL
Web site (www.mysql.com). Once the appropriate server is installed, support for transaction table types
needs to be turned on in the my.cnf configuration file. Typically, this file in found in /etc on the UNIX
side and c:/ under Windows. If you open the file, you will see the BDB and InnoDB configuration
options commented out. Just uncomment them and restart the server. In a production setting, you will
want to adjust the configuration options appropriately.

Now for a MySQL database server, we would create two InnoDB tables using the following syntax:

mysql> create table grouptable (
-> id int not null auto_increment primary key,
-> name text
->) type = InnoDB;

mysql> create table story (
-> id int not null auto_increment primary key,
-> info text,
-> idx int,
-> parent_id int
->) type = InnoDB;

There really isn’t anything special about the SQL, just the use of the type = InnoDB clause at the end.
If we execute the code found in Listing 10.2 again, the proper values will be placed in the database if

228

Chapter 10

12_576771_c10.qxd 9/1/04 12:32 PM Page 228

there is no error. But what if there is an error; how do we know Hibernate, JDBC, and the database
server will act properly?

Forced Rollback Example
To see what Hibernate will do when a forced rollback occurs, consider the code in Listing 10.3. In the
code, we persist the Group object and its Story objects within the List attribute. After the save, we
immediately force a rollback of the save. Listing 10.3 shows the snippet of code to do the rollback.

try {
transaction = session.beginTransaction();

session.save(sp);

transaction.rollback();
} catch (Exception e) {

Listing 10.3

In Listing 10.3, we manually call the rollback() method of the Transaction object. If the tables
were empty before the example code was executed, they should be empty after the rollback. If you are
using a database table that doesn’t support the rollback, you will still have rows in the table. In an exam-
ple run of the rollback code in Listing 10.3 using a MyISAM table, a non-transaction table type, the
Group and Story object rows were in the table but some of the fields were left with null values in them.
Since the table didn’t support transactions, Hibernate and MySQL were unable to roll back the rows.

Optimal Session Use
As we’ve touched on several times throughout the book and this chapter, the Session object is
designed to be used for a business purpose and the transaction for a unit of work. When the Session
object is instantiated and some number of objects loaded from the database, there has been a bit of work
accomplished. When the Session object is closed, the loaded objects are no longer tracked by Hibernate
for persistence purposes. We’ve said that it is good practice to create a session, use it, and then close it as
soon as possible. For most applications, this practice will be fairly easy to accomplish, but there will be
times when interactions need to take place between the application and a user or some other outside
interface. In these cases, keeping the session open means the connection to the database also remains
open. In an active database, such as an Internet store, a connection pool could easily become over-
whelmed if database connections aren’t returned in a timely manner. Why wouldn’t the connections be
returned? Probably the most common situation would be a web store where a user is trying to pick
appropriate merchandise to buy. In this case, we would have opened a session to obtain objects associ-
ated with the current use and potentially created a shopping cart and persisted it so it’s available in the
near future—if the user were to be logged off suddenly, she could get her cart back without having to
refill it.

If we create the session when the user logs in and close it when she either times out on a page or makes a
purchase, a database connection will be made with the database server and kept for quite a long time.
During the entire session, one or many transactions might have occurred with the database server, for

229

Hibernate Transactions and Locking

12_576771_c10.qxd 9/1/04 12:32 PM Page 229

example, to pull inventory and place it in the user’s cart. Instead of keeping the session open for this
period of time, we are going to employ a mechanism called session disconnect.

In session disconnect, we are assuming there is a single business function to accomplish, but the time to
finish the task is large and there will be periods where the user will be doing offline work. During this
time period, we don’t want to keep the database connection open, so we will disconnect from the server.
However, we need to be sure that all open transactions have been completed. To disconnect from the
database server, we execute the code:

session.disconnect();

At this point, our session object is still valid and will be tracking any changes we make to the objects pre-
viously loaded to the application through the Session object; however, the connection associated with
the database will be returned to the connection pool. When the application gets control back, it will
reconnect to the database using the code:

session.reconnect();

The application will now have the ability to load new objects or store changes to the objects previously
loaded. When Hibernate updates the database, it always assumes the data is dirty, and so the update
will overwrite what is currently in the object’s row. If you want to have a little more control over the con-
currency associated with the database, you can choose to lock the database based on the rows needed for
a particular object.

Locking
So what’s the purpose of the lock() method? Consider the code in Listing 10.3, which is designed to
work with a membership Web site. The site includes a number of HTML pages, including a login page
and another to select a time for reserving a conference room. When the user accesses the login page, the
code in Listing 10.3 will execute the code within the if (action.equals("Login")) construct. As
you can see, we start a session within the application server and also open a Session object and imme-
diately assign the Session object to an application session variable called hibernatesession. We
want to keep the Session object we’ve instantiated private to this user, so we store it in the user’s ses-
sion. Now we also know that when the Session object is instantiated, a connection is made to the
database, so once we’ve stored the object, we need to use it.

The code pulls information needed for this user, stores it, and also obtains a list of all conference rooms
and their reservation times. All of this information is stored in the ConferenceRoom object using a Map
attribute. The object is stored in the application session so that the conference information can be dis-
played to the user. Now for the trick. We disconnect the Session object from the database but maintain
the information in the Session object--namely the user’s information and the ConferenceRoom object.
At this point, the code will display the conference room information to the user and wait for the user to
respond. Clearly we didn’t want to keep a connection to the database during this time; otherwise, we
could easily overwhelm the total connections available.

If the user chooses to refresh the conference room information, the code in Listing 10.3 will execute the
code within the if (action. equal s("Refresh")) construct. The code will reconnect with the
database using the reconnect() method. In order to refresh the information in the ConferenceRoom

230

Chapter 10

12_576771_c10.qxd 9/1/04 12:32 PM Page 230

object, we can just ask for a READ lock on the objects within the Map of the ConferenceRoom object as
we build an updated Map object. The new ConferenceRoom object is sent back to the user for display
purposes.

When the user selects a specific conference room to reserve, the code in Listing 10.4 will execute the code
within the if(action.equals ("Reserve")) construct. The first action within the code block is to
reconnect the Session object to the database. Now we don’t really know how much time has passed since
we obtained the conference room information and the reservation, so there is a good chance that the con-
ference room selected is already reserved. What we need to do is perform a version check on the specific
object we are interested in and make sure it hasn’t changed. The code pulls a new copy of the room
object and then checks the version number associated with it against the room object obtained when the
user first logged in to the system. If there is a version problem, the updated information will be dis-
played to the user. Otherwise, we start a transaction, reserve the room, and commit the change.

package Courts;
import java.io.*;
import java.servlet.*;
import javax.servlet.http.*;

public class Court extends HttpServlet {
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
PrintWriter out = response.getWriter();

ServletContext app = getServletContext();
HttpSession appSession = request.getSession(true);

String action = request.getParameter("action");
if (action.equals("Login")) {
Session session = SessionFactory.openSession();

ConferenceRoom cr = session.load(ConferenceRoom.class, new Integer(l));

String username = request.getParameter("username");
String password = request.getParameter("password");

Login login = session.find("from logins I where I.username="' + username + "'
and I.password="' + password + ""');

appSession.setAttribute("login", login);
appSession.setAttribute("rooms", conferenceRooms);
appSession.setAttribute("hibernatesession", session);

RequestDispatcher displatch =
app.getRequestDispatcher("/loginresponse.jsp");

dispatch.forward(request, response);

} else if (action.equals("Refresh")) {
Session session = (Session)appSession.getAttribute("hibernatesession")
session.reconnect();

231

Hibernate Transactions and Locking

12_576771_c10.qxd 9/1/04 12:32 PM Page 231

ConferenceRoom cr = (ConferenceRoom) appSession.getAttribute("rooms");

Iterator iter = cr.getRooms().iterator();
HashMap map = new HashMap();

while (iter.hasNext()) {
Room room = (Room) iter.next();
session.lock(room, LockMode.READ);
map.add(room.getNumber(), room);
}
cr.addRooms(map);

appSession.setAttribute("rooms", cr);
appSession.setAttribute("hibernatesession", session);

RequestDispatcher displatch =
app.getRequestDispatcher("/refreshresponse.jsp");

dispatch.forward(request, response);
} else if (action.equals("Reserve")) {

Session session = (Session)appSession.getAttribute("hibernatesession");
session.reconnect();

ConferenceRoom cr = (ConferenceRoom) appSession.getAttribute("rooms");

Room oldRroom =
cr.getRooms().elementAt(Integer.parselnt(
request.getParameter("roomnumber")));

Room newRoom = session.load(Room.class, oldRoom.getId());
if (oldRoom.getVersion() != newRoom.getVersion()) {
RequestDispatcher displatch =
app.getRequestDispatcher("/updated.jsp");
dispatch.forward(request, response);
} else {
try {
Transaction t = session. beginTransaction();

oldRoom.setReserved();

t.commit();
} catch (Exception e) {
if (t!=null) t.rollback();
throw e;

}

RequestDispatcher displatch =
app.getRequestDispatcher("/alreadyreserved.jsp");

dispatch.forward(request, response);
}

}

public void doPost(HttpServletRequest request,
HttpServletResponse response)

232

Chapter 10

12_576771_c10.qxd 9/1/04 12:32 PM Page 232

throws ServletException, IOException {
doGet(request, response);

}
}

Listing 10.4

There are five different locks that can be obtained. Note that for the most part, the developer doesn’t
need to manually lock on an object, but as the previous example shows, there are times when it is
needed.

❑ LockMode.WRITE: Hibernate updates an object or saves a new object.

❑ LockMode.UPGRADE: Hibernate obtains this lock when using the SELECT <string> FOR
UPDATE SQL command.

❑ LockMode.UPGRADE -NO WAIT: Hibernate obtains this lock when using the SELECT
<string> FOR UPDATE SQL command under the Oracle database server.

❑ LockMode.READ: Hibernate obtains this lock either at the user’s request as in our previous
example or when needed for reading an object.

❑ LockMode.NONE: Hibernate obtains this lock when a transaction finishes or during the start of
a call to update() or saveOrUpdateQ.

All of the modes can be used with three different methods:

❑ Session.load(): Loads a new object from the database using the specified LockMode.

❑ Session.lock(): Obtains a specific lock on a specified object.

❑ Query.setLockMode(): Sets the specified lock mode for the query.

A subtle point can be found in the lock mode descriptions above, and that is not all database servers
support all lock modes. When a server doesn’t support a lock mode, Hibernate doesn’t throw an
exception but instead tries to select another mode that the database server will accept.

There are two additional methods you should be aware of within the Session object that relate
to locking:

❑ refresh(Object, LockMode): Refreshes the specified object using the supplied LockMode. This
method will reload the object from the persistence store. Hibernate does not recommend using
this method for reloading the object when using disconnected or long sessions. It is better to do
a session.lock() as we did in our previous code example.

❑ LockMode getCurrentLockMode(Object): Returns the current LockMode of the specified
object.

233

Hibernate Transactions and Locking

12_576771_c10.qxd 9/1/04 12:32 PM Page 233

Summary
In this chapter, we’ve taken the opportunity to explore the topic of transactions and locking.
Transactions are an important part of any application that uses a database to store information. If your
application will be working in a multithread or multiuser environment, it is advisable to use transactions
to make sure your data has the highest possible integrity. As you work with web-based applications, the
issue of session disconnect will become important, and this chapter has provided the information
needed to solve that problem.

234

Chapter 10

12_576771_c10.qxd 9/1/04 12:32 PM Page 234

J2EE and Hibernate

One of the most popular Java technologies is J2EE. One of the goals of J2EE was creating an easy
way for developers to build enterprise-level applications using a multitiered architecture. In the
minds of many people, J2EE didn’t quite live up to the ease-of-use expectation. There are many
files to build, rules to follow, and other tedious requirements that make using J2EE more difficult
than it should be. We can use Hibernate to remove one of those obstacles: the entity beans. In this
chapter, we will show how to use Hibernate along with both stateful and stateless session beans as
well as Container Managed Transactions (CMT).

Installing an Application Server
There are many different application servers on the commercial market and in the open source
arena. Sun has one, IBM has one, Weblogic has one, and there are also Tomcat and JBoss. For the
examples in this chapter, we won’t be using any special features of any one application, so you
should be able to use the information found in this chapter with your current J2EE applications.
We will use Tomcat for these examples because we have a specific chapter for JBoss.

You can download Tomcat for a variety of platforms at http://jakarta.apache.org/site/
binindex.cgi. For this chapter, we’ve specifically downloaded and installed Tomcat 5.0.24.

Configuring Tomcat for Hibernate with
JNDI

There are two steps to configuring Tomcat for use with Hibernate:

1. Configure Tomcat for JNDI.

2. Create the necessary Hibernate configuration file.

111111

13_576771_c11.qxd 9/1/04 12:35 PM Page 235

We will use the Session pattern described in Chapter 5 for the actual connections to the database from
within our beans.

Configuring Tomcat for JNDI
The first step in our configuration process is to build a resource declaration for the connection to our
database and add it to the Tomcat configuration file found in the directory <tomcat installation>
/conf/server.xml. Listing 11.1 shows an example resource declaration that is added to the server.xml
file.

<Context path="/hiber" docBase="hiber">
<resource name="jdbc/hiber" scope="Shareable" type="javax.sql.DataSource"/>

<ResourceParams name="jdbc/hiber">
</ResourceParams>
<parameter>

<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>
<parameter>

<name>url</name>
<value>jdbc:mysql://localhost/products</value>

</parameter>
<parameter>

<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>
<parameter>

<name>username</name>
<value></value>

</parameter>
<parameter>

<name>password</name>
<value></value>

</parameter>
</Context>

Listing 11.1

As you can see from the configuration, we’ve assumed that our application will be in the /hiber direc-
tory and access will be through the URL http://localhost:8080/hiber.

Creating the Necessary Hibernate Configuration File
Now we need to create a Hibernate configuration file that uses the resource defined previously. The file
is shown in Listing 11.2.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate
Configuration DTD//EN" "http://hibernate.sourceforge.net/hibernate-
configuration-2.0.dtd">

236

Chapter 11

13_576771_c11.qxd 9/1/04 12:35 PM Page 236

<hibernate-configuration>

<session-factory>
<property name="connection.datasource">java:comp/env/jdbc/hiber</property>
<property name="dialect">net.sf.hibernate.dialect.MySQLDialect</property>

<mapping resource="DemoBean.hbm.xml"/>

</session-factory>

</hibernate-configuration>

Listing 11.2

The primary change in our Hibernate configuration file for J2EE is that we are using a connection
.datasource property to specify the JNDI resource to use when communicating with our persistent
storage.

SessionFactory Singleton Class
As in our previous examples, we need to have a singleton class to handle creating the new Session
options. Listing 11.3 shows the singleton class used in our application server examples. The most impor-
tant part of the class is the ctx.lookp() method call, where we obtain access to our database connec-
tion through Tomcat.

import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;

public class HibernateSession {
private static final SessionFactory sessionFactory;

static {
try {

Context ctx = new InitialContext();
sessionFactory = (SessionFactory)ctx.lookup("jdbc/hiber ");

} catch (HibernateException e) {
throw new RuntimeException("SessionFactory Error - " + e.getMessage(),

e);
}

}

public static final ThreadLocal session = new ThreadLocal();

public static Session currentSession() throws HibernateException {
Session s = (Session) session.get();

237

J2EE and Hibernate

13_576771_c11.qxd 9/1/04 12:35 PM Page 237

if (s == null) {
s = sessionFactory.openSession();
session.set(s);

}

return s;
}

public static void closeSession() throws HibernateException {
Session s = (Session) session.get();
session. set(null);
if (s != null)
s.close();

}
}

Listing 11.3

Building a Stateless Session Bean
The first example we will cover for Enterprise JavaBeans (EJB) is a stateless session bean. The idea
behind the stateless session bean is building a structure that can be used by any business activity with-
out the need to keep track of session details from one interaction to another. For instance, we have a ses-
sion bean that can be used to install a new user row into a database. Listing 11.4 shows such an example
bean.

import java.uti1.*;
import javax.ejb.*;

public class DemoBean implements SessionBean {

public void ejbCreate() throws CreateException {
}

public void installUser(String name, String address) {
Session session = HibernateSession.openSession();
User user = new User(name, address);

Session.save(user);

session.flush();
session.close();

}

public CartBean() { }
public void ejbRemveO { }
public void ejbActivate() { }
public void ejbPassivate() { }
public void setSessionContext(SessionContext sc) {}

}

Listing 11.4

238

Chapter 11

13_576771_c11.qxd 9/1/04 12:35 PM Page 238

The DemoBean in Listing 11.4 shows how a business method would be created to handle creating the
new user, an object called User, and saving the object in the database. Notice that we obtain the neces-
sary Hibernate Session object at the start of the business method and then close the session when we
have finished with the method. This is important because a stateless session bean doesn’t guarantee any
type of state from user to user or even one business method call to another. For this reason and because
we don’t want to keep the database connection open, we don’t want to store the session as an attribute
in the bean. For this example, we also need the appropriate remote and home interfaces as well as the
deployment descriptor. These entities are shown in Listings 11.5, 11.6, and 11.7.

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface DemoBean extends EJBHome {
void create() throws RemoteException, CreateException;

Listing 11.5

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Demo extends EJBObject {
public void addUser(String name, String address) throws RemoteException;

}

Listing 11.6

<?xml version="1.0?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD
Enterprise JavaBeans 1.2//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1 2.dtd'>

<ejb-jar>
<display-name>Cart</display-name>
<enterprise-beans>

<session>
<ejb-name>DemoBean</ejb-name>
<home>DemoHome</home>
<remote>Demo</remote>
<ejb-class>DemoEJB</ejb-class>
<session-type>Stateless</session-type>

</session>
</enterprise-beans>

<ejb-jar>

Listing 11.7

239

J2EE and Hibernate

13_576771_c11.qxd 9/1/04 12:35 PM Page 239

Building a Stateful Session Bean
Of course, the power in EJBs can be extruded when a stateful session bean is used. For a stateful session
bean, we will have one session bean object for each user of our system. By using one object per user, we
have the ability to keep important information from the user between tasks. Probably the best example
of a stateful session bean is a shopping cart. When a user logs in to a Web site or signs in to an applica-
tion, a new session bean can be created along with the internal attributes needed to hold items from the
Web site or application. As the user interacts with the site or application, the session bean is kept and
used whenever the user needs to interact with the database. Items can be added or removed as needed,
and there isn’t any chance of one user using the shopping cart of another user because they are separate
sessions. Listing 11.8 shows the code for a simple shopping cart, stateful EJB.

import java.util.*;
import javax.ejb.*;

public class CartBean implements SessionBean {
Cart cart;
String id;
String name;
private Session session;

public void ejbCreate(String name, String id) throws CreateException {
if (name == null) {
throw new CreateException ("null not allowed");

} else {
this.name = name;

}

this.id = id;

session = HibemateSession.openSessionQ;
Query q = new Query("from Cart carts where carts.id = :id");
q.setName("id", this.id);

session.disconnect();
}

public void addltem(Item item) {
session.reconnect();
cart. addItem(item);
session.disconnect();

}

public void removeltem(Item item) {
session.reconnect();
cart.removeItem(item);
session.disconnect();

}

public CartBean() { }
public void ejbRemve() { }
public void ejbActivate() { }

240

Chapter 11

13_576771_c11.qxd 9/1/04 12:35 PM Page 240

public void ejbPassivate() { }
public void setSessionContext(SessionContext sc) {
session = HibernateSession.openSession();

}
}

Listing 11.8

The code in Listing 11.8 is designed to be used with the Hibernate Session pattern, and one of the
attributes of the bean is used to hold a Session variable. Since each of the individual users of the sys-
tem will have separate session beans, they will also have separate Session objects. We handle the cre-
ation and store of the Session objects within the setSessionContext() method, which is
guaranteed to be executed when the session bean object is instantiated. Since our EJB is stateful, we have
the ability to keep the Hibernate Session object available throughout the entire “session” of the user.
For each of the operations where the bean needs to access the Cart object, the session is reconnected
using the reconnect() method to create a database connection back to the underlying database server.
When all of the work for the method is finished, we make sure to disconnect from the database server
because we don’t really know how long it will be between the current user’s task and the next time he
needs to access the database. As you know, a user can browse a site for quite some time before actually
adding an item to a shopping cart. Therefore, we need to be sure to always disconnect from the database
server.

In addition to the code in Listing 11.8, we need to make sure the descriptor for the bean is accurate. The
changes for the stateful EJB are found in Listing 11.9.

<?xml version="1.0?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD
Enterprise JavaBeans 1.2//EN' http://java.sun.com/j2ee/dtds/ejb-jar_1 2.dtd'>
<ejb-jar>

<display-name>Cart</display-name>
<enterprise-beans>

<session>
<ejb-name>CartBean</ejb-name>
<home>CartHome</home>
<remote>Cart</remote>
<ejb-class>CartEJB</ejb-class>
<session-type>Stateful</session-type>

</session>
</enterprise-beans>

</ejb-jar>

Listing 11.9

The Remote and Home interface code for the CartBean class is shown in Listings 11.10 and 11.11. There
will need to be an appropriate deployment descriptor file, as shown in Listing 11.12, for our CartBean
as well.

241

J2EE and Hibernate

13_576771_c11.qxd 9/1/04 12:35 PM Page 241

import java.io.Serializable;
import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface CartHome extends EJBHome {
Cart create(String name, String id) throws RemoteException,

CreateException;

Listing 11.10

import javax.ejb.EJBObject;
import java.rmi.RemoteException;

public interface Cart extends EJBObject {
public void addItem(Item item) throws RemoteException;
public void removeltem(Item item) throws RemoteException;

}

Listing 11.11

<?xml version="1.0?>
<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems Inc.//DTD
Enterprise JavaBeans 1.2//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1 2.dtd'>

<ejb-jar>
<display-name>Cart</display-name>
<enterprise-beans>

<session>
<ejb-name>CartBean</ejb-name>
<home>CartHome</home>
<remote>Cart</remote>
<ejb-class>CartEJB</ejb-class>
<session-type>Stateless</session-type>

</session>
</enterprise-beans>

<ejb-jar>

Listing 11.12

Using Container Managed Transactions
(CMT)

If you’ve used a variety of Java application servers, you will find that, fundamentally, Tomcat isn’t a full-
blown application server but is really just a servlet server with some application features thrown in.
Specially, Tomcat doesn’t include a transaction manager by default. For this reason, we need to provide
Tomcat with a transaction manager before we can show how to use Hibernate with Tomcat utilizing the
server transactions.

242

Chapter 11

13_576771_c11.qxd 9/1/04 12:35 PM Page 242

The Java Transaction API (JTA) is the specification designed for providing transactions, and Java Open
Transaction Manager (JOTM) is an open-source implementation of JTA. JOTM can be obtained at
http://www.objectweb.org/jotm. In order to use JOTM, both Hibernate and Tomcat will need to know
about the manager, just as we saw in the Transactions chapter. First, we will set up Tomcat to use the
transaction manager. Obtain JOTM from the URL above and copy the following files to the <tomcat
installation directory>/common/lib directory:

❑ jotm.jar

❑ jotm_jrmp_stubs.jar

❑ jonas_timer.jar

❑ carol.jar

❑ jta-spec1_0_1.jar

❑ jts1_0.jar

❑ objectweb-datasource.jar

❑ xapool.jar

Within the <tomcat installation directory>/common/classes directory, create a file called carol.prop-
erties and include the following text:

carol.protocols=lmi
carol.start.jndi=false
carol.start.ns=false

Now, with JOTM set up, let’s provide Tomcat with the necessary configuration. Within the <tomcat instal-
lation directory>/conf/server.xml directory, place the following information within the <Context> ele-
ment added to Tomcat from Chapter 3:

<Resource name="UserTransaction" auth="Container"
type="javax.transaction.UserTransaction"/>

<ResourceParams name="UserTransaction">
<parameter>
<name>factory</name>
<value>org.objectweb.jotm.UserTransactionFactory</value>

</parameter>
<parameter>
<name>jotm.timeout</name>
<value>60</value>

</parameter>
</ResourceParams>

This information tells Tomcat about JOTM as well as configures a couple parameters. Now, as we saw in
the Transactions chapter, we will need to put the transaction factory class of JOTM within the hibernate
.cfg.xml file. Listing 11.13 shows the full hibernate.cfg.xml file for our example.

<hibernate-configuration>
<session-factory>
<property name="connection.datasource">

243

J2EE and Hibernate

13_576771_c11.qxd 9/1/04 12:35 PM Page 243

java:comp/env/jdbc/cdviewer
</property>

<property name="transaction.factory_class">
org.objectweb.jotm.UserTransactionFactory
</property>

<property name="show_sgl">false</property>

<property name="dialect">
net.sf.hibernate.dialect.MySQLDialect
</property>

<mapping resource="CartBean.hbm.xml"/>
</session-factory>
</hibernate-configuration>

Listing 11.13

Finally, we need to change the ejb.xml file for the session bean in the previous chapter. Listing 11.14
shows the new XML file.

<?xml version="1.0?>
<!DOCTYPE ejb jar PUBLIC "-//Sun Microsystems Inc.//DTD
Enterprise JavaBeans 1.2//EN'
http://java.sun.com/j2ee/dtds/ejb-jar_1 2.dtd'>

<ejb-jar>
<display-name>Cart</display-name>
<enterprise-beans>

<session>
<ejb-name>CartBean</ejb-name>
<home>CartHome</home>
<remote>Cart</remote>
<ejb-class>CartEJB</ejb-class>
<session-type>Stateful </session-type>
<transaction-type>container</transaction-type>

</session>
</enterprise-beans>
<assembly-descriptor>

<container-transaction>
<method>

<ejb-name>CartBean</ejb-bean>
<method-intf>Remote</method-intf>
<method-name>removeItem</method-name>
<method-param>Item</method-param>

</method>
<method>

<ejb-name>CartBean</ejb-bean>
<method-intf>Remote</method-intf>
<method-name>addItem</method-name>
<method-param>Item</method-param>

</method>

244

Chapter 11

13_576771_c11.qxd 9/1/04 12:35 PM Page 244

<trans-attribute>Required</trans-attribute>
</container-transaction>

fs</assembly-descriptor>
</ejb-jar>

Listing 11.14

In this new XML file we’ve added a few things. The first is the <transaction-type> element with its
container value. This element tells the application server that all transactions are to be managed by the
container and not the bean itself. This means we can basically ignore the transaction code discussed in
Chapter 10 because the application server itself will do all of the transaction work. Next in the XML file
is the <assembly-descriptor>, which is designed to tell the application server the methods that will
use transactions. We have two <method> elements to do the specification of the methods: one for
removeItem and one for addItem. Finally, we have the <trans-attribute> element, which is used
to configure the application server as to how transactions are to be handled. The possible values are

❑ Required: This option will guarantee that all of the statements within the method are part of a
transaction.

❑ RequiresNew: This option tells the manager to commit the results unconditionally.

❑ NotSupported: This option tells the manager to not use a transaction.

❑ Supports: This option tells the manager to use a transaction if the caller is part of a transaction.

❑ Mandatory: This option tells the manager to always use transactions.

❑ Never.:This option tells the manager to never use a transaction.

With all of these new configuration options in place, we needn’t do anything to our CartBean code
for transactions because both Tomcat and Hibernate have been instructed to do the transactions
automatically.

Summary
In this chapter, we’ve shown you how to use Hibernate within J2EE applications in order to reduce the
amount of work needed in the development of entity beans. The techniques in this chapter can be
applied to new developments as well as in projects that are already using J2EE to provide enterprise-
level functionality.

245

J2EE and Hibernate

13_576771_c11.qxd 9/1/04 12:35 PM Page 245

13_576771_c11.qxd 9/1/04 12:35 PM Page 246

Hibernate and DAO Design
Pattern

When building a new application, there is always some sort of data access involved. The tricky part
of the development comes when we try to support more than one type of data storage. For example,
we might want to store our data in a flat file arrangement in one deployment situation or in a rela-
tional database in another. The testing group might want to forego the entire data access layer and
just use mock objects in order to simulate the accessing of data. In all of these cases, the data is
accessed by different means and will require the developer to write different code. The real problem
presents itself when we try to write the application code in a manner that will allow all three differ-
ent access mechanisms to be used without distributing different applications. Thus, we might use a
system property to indicate which type of access to support, or we might just use a command-line
flag. In either case, the application code will need to use the access indicator in all places where code
will be accessing the underlying data. For example, we might have the following code:

if (access_flag == MOCK_OBJECTS) {
else if (access_flag == RELATIONAL) {
else if (access_flag == FLAT_FILE) {
}

Obviously, if we have this type of code in every place where we access the underlying data, we
will have confusion, code blot, and many places for nasty little bugs to appear. Therefore, we need
to have a mechanism to handle our data access problem in a clean, design-oriented fashion. The
solution is the Data Access Object design pattern.

Data Access Object Design Pattern
The Data Access Object (DAO) design pattern is one of the core J2EE patterns found in the Core
J2EE Pattern Catalog at http://java.sun.com. The purpose of the design pattern is to provide a
clean design-oriented mechanism for accessing all types of data from your application. The key to
the pattern is designing a series of objects where the application doesn’t know any of the details of
how data is saved or retrieved from the underlying source and, for that matter, doesn’t even know

121122

14_576771_c12.qxd 9/1/04 12:39 PM Page 247

what the underlying data source is. A developer just needs to ask for data, and the data will appear
regardless of how it is stored.

Let’s begin our look at the DAO design pattern by using a class diagram, as shown in Figure 12.1.

248

Chapter 12

����������� ����������� �����������

	
��

Figure 12.1

In Figure 12.1 we have four different classes, each representing a component within the design pattern.
On the left side of the diagram is the Application class, which needs some data represented by the
Data class. From the diagram we see that the Application class either accesses the data or mutates
it, depending on the business rules within the application. The key aspect of the design pattern rests
in the DataAccessObject class and the DataSource class. Instead of allowing the application to
access the data on its own, we will provide a wrapper or adapter between the DataSource class and
the Application. In Figure 12.1, the DataAccessObject creates a Data class so the application will
be able to use it for storing and retrieving data. That’s all there really is to the Data Access Object design
pattern—just a middleman between the application and the data source.

To put the design pattern in real terms, consider an application that needs to access Account and User
objects from the underlying data source. In this situation, we would build two different
DataAccessObject classes, like those shown in Figure 12.2.

14_576771_c12.qxd 9/1/04 12:39 PM Page 248

Figure 12.2

When the application object needs to access an Account object, it will instantiate an AccountDAO object
and call the methods declared within it to access the Account object. Likewise, accessing a User object
will be through the UserDAO class.

If we use this information and look back at our original problem, we see that we’ve solved the problem
of having the application know anything about the data source. But what about the three different data

249

Hibernate and DAO Design Pattern

�����������

	
���� ������� ��

	
�� �������

���������

14_576771_c12.qxd 9/1/04 12:39 PM Page 249

�����������

	�
������

	���

	���������	���������
�����

sources? How do we handle those? The answer is by applying two additional design patterns found in
the book Design Patterns by the Gang of Four: Abstract Factory and Factory Method.

Factory Method Implementation
In the Factory Method design pattern we design an implementation of DAO that uses a Factory to
build the various adapters or wrappers to the underlying data. For example, consider the classes in
Figure 12.3.

250

Chapter 12

Figure 12.3

14_576771_c12.qxd 9/1/04 12:39 PM Page 250

In Figure 12.3 we have two different factories. The first is called DAOFactory, and its purpose is to build
a specific DAO factory for the underlying data source. The specific DAO factory called SDAOFactory
will be responsible for creating DAO objects for each of the different classes represented in the underly-
ing data source. Figure 12.4 shows the Factory Method design pattern applied to the Account/User
example we introduced earlier.

251

Hibernate and DAO Design Pattern

�����������

	�
������

����	�

����

�������	�

�������

	���������

Figure 12.4

As you can see from the example, we’ve made an assumption that our underlying data source is a
MySQL database; thus we’ve called the specific DAO factory MySQLDAOFactory. Clearly we could
change the name depending on the data source. The MySQLDAOFactory will create individual DAO
classes for the User and Account objects. All of the code to access the database and build the User and
Account objects will be contained in the UserDAO and AccountDAO classes, respectively. Yes, I know
we still haven’t discussed how we are going to handle multiple data sources, but that is where the
Abstract Factory pattern comes into play.

14_576771_c12.qxd 9/1/04 12:39 PM Page 251

Abstract Factory Implementation
In the Abstract Factory pattern we expand the functionality of the DAOFactory class found in Figure
12.3 to build numerous specific DAO factories, depending on the data source. Consider the diagram in
Figure 12.5.

252

Chapter 12

�����������

	�
������

	�
������

����	�

����

�������	�

�������

	���������

Figure 12.5

14_576771_c12.qxd 9/1/04 12:39 PM Page 252

In this example, we have allowed the DAOFactory class to instantiate not just a single, specific DAO
Factory but three of them—one for each of our possible underlying data sources. Notice how each of
the specific DAO factories will produce its own UserDAO and AccountDAO classes. All of the imple-
mentation code for accessing the User and Account objects from the specific data sources will be con-
tained in those classes. Clearly the code to pull a User object from a relational database will be different
from the code to pull one from a flat file.

As we’ve introduced the DAO pattern, it should begin to become clear where Hibernate fits into the pic-
ture. In the implementation classes, UserDAO and AccountDAO, all of the Hibernate code can be found
to ease the persistence of the Java objects. Instead of using JDBC, we just use Hibernate. Let’s look at a
concrete example so the pattern becomes clear in its interaction with Hibernate.

Concrete DAO Example
In Chapter 10, we used two classes called Story and Group to illustrate how to use transactions within
Hibernate. We are going to use the same two classes in this DAO example. Figure 12.6 shows the class
diagram we are after in this example. There are two specific data sources: MySQL and a mock source.

253

Hibernate and DAO Design Pattern

�����������

	�
������

����	�
������ ����	�
������

���������	�

�����

�����	�

����

	���������

���������	�

�����

��������	�

����

Figure 12.6

14_576771_c12.qxd 9/1/04 12:39 PM Page 253

Building a DAO Factory
The first step in our example is to build the abstract DAO factory. Remember, this factory will be tasked
with instantiating a specific data source DAO factory. The code for the abstract factory can be found in
Listing 12.1.

public abstract class DAOFactory {

public static final int MYSQL = 1;
public static final int MOCK = 2;

public abstract GroupDAO getGroupDAO();
public abstract StoryDAO getStoryDAO();

public static DAOFactory getDAOFactory(int factory) {
switch(factory) {
case MYSQL:
return new MySQLDAOFactory();

case MOCK:
return new MockFactory();

default:
return null;

}
}

}

Listing 12.1

As mentioned earlier, the abstract DAO factory is designed to produce a specific factory for one of the
supported data sources. Our example includes two sources: a mock source and a MySQL source.
Looking at the code in Listing 12.1, we find that the class is defined as abstract but includes a single
static method called getDAOFactory(), which returns a new specific factory depending on the integer
supplied in the parameter list. At the beginning of the code, we have two defined enums called MYSQL
and MOCK, which are compared against the supplied parameter. We’ve included two abstract method
definitions called getGroupDAO() and getStoryDAO(), which will return the specific DAO class for
either the Group or Story class. Since the methods are abstract, all specific DAO factory classes must
implement these two methods. Of course, we will need to build the specific DAO factories.

Building Specific Data Source Factories
The purpose of the specific DAO factories is to implement the abstract methods defined in the abstract
DAO class, which will return the DAO objects for each type we need to persist. Listing 12.2 shows the
code for the MySQL DAO factory, and Listing 12.3 shows the code for the Mock DAO factory. As you
can see in the code, both of the classes extend the DAOFactory class defined in Listing 12.1 and thus
define each of the getGroupDAO and getStoryDAO methods. For our purposes, the only code needed
in each of the methods is a return statement. The return statement provides the caller with a new DAO
object for each of the class types we need to store or load from persistent storage.

254

Chapter 12

14_576771_c12.qxd 9/1/04 12:39 PM Page 254

public class MySQLDAOFactory extends DAOFactory {

public GroupDAO getGroupDAO() {
return new MySQLGroupDAO();

}

public StoryDAO getStoryDAO() {
return new MySQLStoryDAO();

}
}

Listing 12.2

public class MockDAOFactory extends DAOFactory {

public GroupDAO getGroupDAO() {
return new MockGroupDAO();

}

public StoryDAO getStoryDAO() {
return new MockStoryDAO();

}
}

Listing 12.3

Building the DAO Objects
All of the implementation work for the DAO pattern occurs in the DAO class for each of the types we
have persisted. In our case, we have two value classes: Story and Group. Each of the value classes
needs specific DAO classes for each of the data sources we’ve decided to support. Thus, we will need to
build four DAO classes: two for Mock and two for MySQL.

We will begin with the classes for the Group value object. Listing 12.4 shows an interface that must be
defined by the DAO classes regardless of the data source. In the interface, we provide all of the methods
the client will need to interact with the underlying data source. For this example, we include two
methods: findGroup and insertGroup. These two methods give us the ability to save and load
objects from the underlying data source without worrying about or needing to know about the details.
We simply pass in a Group value object or get a Group value object as a return value. If you need addi-
tional business methods, you should add them to the interface first so that all DAO classes implement
the entire suite and thus allow one data source to be substituted for another when any code changes.

public interface GroupDAO {
public Group findGroup(int id);
public void insertGroup(Group group);

}

Listing 12.4

255

Hibernate and DAO Design Pattern

14_576771_c12.qxd 9/1/04 12:39 PM Page 255

Listings 12.5 and 12.6 provide the actual code for the Group DAO classes. We will concentrate on the
MySQL class because it includes our Hibernate code. The code starts with two helper methods called
getSession() and closeSession(). These methods allow the object to obtain a Hibernate session
from the HibernateSession singleton object. All of the exception handling for obtaining and releasing
the Session object should occur in these two methods. Next, we have the code for the required
findGroup() and insertGroup() methods.

import net.sf.hibernate.*;
import net.sf.hibernate.exception.*;

public class MySQLGroupDAO implements GroupDAO {

public MySQLGroupDAO() {
}

private Session getSession() {
try {
Session session = HibernateSession.currentSession();
return session;

} catch (Exception e) {
}

return null;
}

private void closeSession() {
try {
HibernateSession.closeSession();

} catch (Exception e) {
}

}

public Group findGroup(int id) {

Group group = null;
try {
Session session = getSession();

group = (Group)session.load(Group.class, new Integer(id));
} catch(Exception e) {

} finally {
closeSession();

}

return group;
}

public void insertGroup(Group group) {

try {
Session session = getSession();

session.save(group);

256

Chapter 12

14_576771_c12.qxd 9/1/04 12:39 PM Page 256

} catch(Throwable e) {

} finally {
closeSession();

}
}

}

Listing 12.5

public class MockGroupDAO implements GroupDAO {
public MockGroupDAO() {
}

public Group findGroup(int id) {
return new Group("MockGroup");

}

public void insertGroup(Group group) {
// do nothing

}
}

Listing 12.6

The purpose of the findGroup() method is to accept the ID value of a previously stored object and
return that specific object from the data source. The method will return a null value if the object is not
found. As you can see from the code in Listing 12.5, the method first obtains a Hibernate Session object
and then tries to execute the load() method using the Group class type and the ID value passed to the
method. If the method is successful, the Group object matching the specified ID will be returned to the
caller; otherwise, an exception will occur and a null value will be returned. Notice we don’t do anything
special when an exception occurs. We’ve already set the return object, group, to null at the start of the
method. If you need to perform some type of additional exception work such as logging, you can do it
within the catch clause. Most users of the DAO pattern agree that the best option is to do as little excep-
tion handling as possible in the DAO class and instead allow the business object to handle errors. Thus,
you might just rethrow any exception that occurs in the DAO class and let the developer worry about it.

Moving to the insertGroup() method, we find the same type of code as in the findGroup()
method; however, instead of loading an object, we call the save() method using the Group object
passed to the method. This method will save the new object. You might choose to do a
saveOrUpdate() method call instead of a save() in the event the developer calls this method on an
object that has already been persisted, but that’s a design decision.

In Listing 12.6, you will find the code for the MockGroupDAO class implementing the findGroup() and
insertGroup() methods. As you can see, the code isn’t as complex since we are just mimicking the
function of loading or saving an object. What is important to notice is that adding a data source using
the DAO pattern is very simple. Just create the appropriate factory and DAO classes.

The same process for implementing the StoryDAO classes is used as for GroupDAO. The appropriate
classes are found in Listings 12.7, 12.8, and 12.9. Listing 12.7 is the interface for all StoryDAO classes or
derived classes. Again, we just include two methods called findStory() and insertStory().

257

Hibernate and DAO Design Pattern

14_576771_c12.qxd 9/1/04 12:39 PM Page 257

Listing 12.8 is the actual code for the MySQLStoryDAO class, and it matches the MySQLGroupDAO class.
Listing 12.9 mimics the MockStoryDAO class.

public interface StoryDAO {
public Story findStory(int id);
public void insertStory(Story story);

}

Listing 12.7

import net.sf.hibernate.*;

public class MySQLStoryDAO implements StoryDAO {

public MySQLStoryDAO() {
}

private Session getSession() {
try {
Session session = HibernateSession.currentSession();
return session;

} catch (Exception e) {
}

return null;
}

private void closeSession() {
try {
HibernateSession.closeSession();

} catch (Exception e) {
}

}

public Story findStory(int id) {
Story story = null;
try {
Session session = getSession();

story= (Story)session.load(Story.class, new Integer(id));
} catch(Exception e) {

} finally {
closeSession();

}

return story;
}

public void insertStory(Story story) {
try {
Session session = getSession();

session.save(story);
} catch(Exception e) {

258

Chapter 12

14_576771_c12.qxd 9/1/04 12:39 PM Page 258

} finally {
closeSession();

}
}

}

Listing 12.8

public class MockStoryDAO implements StoryDAO{
public MockStoryDAO() {
}

public Story findStory(int id) {
return new Story("Mock New Story");

}

public void insertStory(Story story) {
// do nothing

}
}

Listing 12.9

Testing It All
Finally, we can pull together all of the different classes in an example application. Listing 12.10 shows
how to use the DAO pattern and classes to build and store a Group object.

import java.io.*;
import java.util.*;

public class GroupTest {

public static void main(String [] args) {

DAOFactory mysqlFactory = DAOFactory.getDAOFactory(DAOFactory.MYSQL);

GroupDAO groupDAO = mysqlFactory.getGroupDAO();

Group sp = new Group("accounting");

ArrayList list = new ArrayList();
list.add(new Story("A Story"));
list.add(new Story("And yet another story"));
sp.setStories(list);

groupDAO.insertGroup(sp);
}

}

Listing 12.10

259

Hibernate and DAO Design Pattern

14_576771_c12.qxd 9/1/04 12:39 PM Page 259

The first step to using the DAO classes is to obtain the specific DAO factory we will need to use in stor-
ing and loading objects. The code is:

DAOFactory mysqlFactory = DAOFactory.getDAOFactory(DAOFactory.MYSQL);

Here we use the static getDAOFactory() method from the DAOFactory class. We are passing in the
MYSQL constant to indicate that the DAOFactory class needs to instantiate and return a
MySQLDAOFactory class in order for us to access the MySQL data source. After the DAO factory is cre-
ated, we obtain a GroupDAO object from the MySQL factory. Next, we instantiate and populate the
Group object for our application. Basically, we just do the business work needed and ignore the fact that
we have a connection to an underlying data source. After we’ve created our Group object and used it,
we can persist it with the code:

groupDAO.insertGroup(sp);

This code makes a call to the insertGroup() method of the GroupDAO object, and the Hibernate code
within the insertGroup() method will store the object in an appropriate manner.

It is important to note the power of the DAO pattern and our example application. Notice that there is
no Hibernate code within the application. If we wanted to use the Mock data source, we would just
change the getDAOFactory() method to:

DAOFactory mysqlFactory = DAOFactory.getDAOFactory(DAOFactory.MOCK);

No other code needs to change in the application for any of the DAO classes. We might have other DAO
classes for other data sources, and we would just make the single code change.

Summary
In this chapter, we’ve explored the J2EE Core Pattern called Data Access Object. Using DAO and
Hibernate allows for complete transparency between an application and the underlying data source.
Using Hibernate with DAO gives us the best of both worlds by allowing for clean persistence of Java
objects.

260

Chapter 12

14_576771_c12.qxd 9/1/04 12:39 PM Page 260

TE
AM
 F
LY

Hibernate and XDoclet

Throughout all of the chapters to this point, using Hibernate has required quite a few steps to inte-
grate into an application. The steps have included writing a mapping document and building the
appropriate Java object relating to the mapping document. We might have created the files in the
reverse order, but we still would have needed to write more than just the classes for the applica-
tion. If you’ve done any J2EE work, you know that the same sort of situation exists when writing
entity or session beans. You must have the Java object as well as numerous support files.

XDoclet was created in order to help with the development of code that requires multiple support
files, thereby reducing the amount of work involved. In this chapter we will look at what XDoclet
is and how it can be used with Hibernate to speed up development.

131133

The complete code for the Survey application discussed in this chapter can be
found in Chapter 9 and on the Web at www.wrox.com.

The first section of this chapter will give a brief overview of what XDoclet is and why it should be
used. The second section will discuss the XDoclet modules for Hibernate. We will use the object
model for a Survey application consisting of questions and answers as an example of using
XDoclet. The topics this chapter covers include:

❑ Why code generation can simplify development

❑ How to generate the hibernate.cfg.xml file

❑ How to generate the Hibernate mapping files

❑ How to generate the MBean descriptor files for use when managing Hibernate objects in
JBoss

❑ Best practices for using XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 261

262

Chapter 13

The example code was written using Ant, Hibernate 2.1.4, XDoclet 1.2.1, and Hypersonic for a database.
An XDoclet2 project is under way.

XDoclet grew out of a project to simplify generating Enterprise JavaBeans called EJBGen.
EJBGen supported generating EJBs only, but developers saw how useful it was to place tags
in their source code and then perform code generation from the data in tagged Java source
code. Thus, XDoclet was born.

Today, there are many modules for XDoclet, including modules for generating JDO mapping
files, servlet web.xml files, and WebWork and Struts action files. As the original XDoclet code
was pulled and stretched to support so many varied uses, limitations in the original code base
became visible, especially in the support for writing templates. Thus, the XDoclet2 project
was born as an attempt to componentize the code base and integrate better template solutions
using Velocity. XDoclet2, at the time of this writing, was not yet ready for primetime use.
However, some modules have been ported over to XDoclet2, and more progress is being
made.

Introduction to XDoclet
XDoclet is a code-generation tool. Code generation means that it parses source code, reads tags, and out-
puts new generated code. While there are many purpose-specific code generators available, such as
JAXB (Java API for XML Beans), which generates Java classes for translating XML files in Java objects,
XDoclet is a general-purpose code generator. XDoclet consists of a basic framework for code generation
with multiple pluggable modules. The modules provide the specific templates and logic for parsing the
source code and generating the output files. The functionality of XDoclet is exposed to users through a
collection of Ant tasks.

XDoclet has found support in a variety of different technologies including:

❑ EJB

❑ Servlets

❑ Hibernate

❑ JDO

❑ JMX

❑ SOAP

❑ MockObjects

❑ Struts

❑ Eclipse

❑ JBoss

❑ WebLogic

15_576771_c13.qxd 9/1/04 12:44 PM Page 262

Our goal in the remainder of this chapter is to guide you step-by-step through the basics of using
XDoclet so that you are ready to apply it. The knowledge you learn using the hibernatedoclet module
for XDoclet is applicable to other modules of XDoclet such as jmxdoclet or webdoclet.

What Is Javadoc?
One of the most important issues in software development I try to get across when teaching new com-
puter science students is the need to document the code. There must be some defect in the documenta-
tion gene when software engineers are created, because no matter how hard teachers pound this topic,
nobody seems to get it right. In an attempt to help with the defective gene, Java architects chose to
provide the technology of self-documenting code within the language itself and to provide the tools for
building much of the needed documentation. This technology is called Javadoc, and we need to explore
it before looking at XDoclet. Of course, no code is self-documenting without the software engineer pro-
viding the necessary tags within the code, but that’s another story.

Javadoc is a technology in which defined attributes are placed in comment blocks of the code in order to
provide a processor application with information about the code itself. Consider this example:

/**
* The JavaHelpMe class has been documented
* using multiple lines of comments
*/

public class JavaHelpMe {
}

Here we have a simple class with a comment block used to describe the class. All of the text between the
beginning /* and the closing */ symbols will be ignored by the Java compiler and left for the reader of
the code or Javadoc. The comment blocks can be found on many of the language constructs, as we see
here:

/**
* The JavaHelpMe class has been documented
* using multiple lines of comments
*/
public class JavaHelpMe {

/** a method comment */
public int returnHelpO {
}

}

Of course, these comment blocks aren’t anything new, because we used the same type of construct when
we wrote our C code; at least we were suppose to comment that code. The Javadoc technology adds to
the comment blocks using tags and tag descriptions. For example:

/**
* The JavaHelpMe class has been documented
* using multiple lines of comments
* @see com.my.OtherClass
*/

263

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 263

public class JavaHelpMe {

/** a method comment
* @return int value
*/
public int returnHelpO {
}

}

In this example, we’ve added two Javadoc tags, @see and @return. Javadoc will process each of these
tags and take specific actions when they are encountered. In the case of the @see, additional output will
be added to the description of the class such as:

See Also: class

where class is a link to another Javadoc page.

There are countless additional Javadoc tags, which can be found at http://java.sun.com/j2se/javadoc/.
The code can basically self-document as long as the developer uses the Javadoc tags and provides com-
ment blocks.

How XDoclet Works
Each module merges a template with attributes in your source code to produce a generated file. An
attribute is a Javadoc-like tag that provides information to the XDoclet generator to produce the final
output file. For instance, to identify that a Java class should be persisted to the database via Hibernate,
we add the following to the top of our source code:

/**
* @author Eric.Pugh
*
* @hibernate.class
*
*/
public class Survey {
}

As you can see, we have a normal @author Javadoc tag, as well as an @hibernate.class XDoclet
tag. When the Javadocs are generated, the @author tag will be used to provide the author information.
The @hibernate.class tag will be ignored. Then, when XDoclet is run over the source code, the
@hibernate.class tag will be parsed and will signify that a Survey.hbm.xml file should be generated,
and the @author tag will be ignored.

Because XDoclet reads in attributes from the source code versus parsing an XML file or reading the Java
code, it is often referred to as Attribute-Oriented Programming. Becoming familiar with using attributes
in your source code will help when moving to JDK1.5 with the JSR-175 support for runtime metadata.

264

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 264

Code Generation Templating
XDoclet processes input files and produces some type of output file(s). Of course, XDoclet will need a
way to obtain the input files, as you can see in Figure 13.1. Instead of reinventing another preprocessor
for XDoclet, the XDoclet team chose to use the power of Ant to trigger the XDoclet process. Via a series
of tasks, discussed in more detail later, an Ant build script will trigger XDoclet to process specific source
files, generating new code in the form of Java source files, configuration files, and others. To take advan-
tage of all the power of XDoclet, all a developer needs to do is define the Ant task for XDoclet, add spe-
cific XDoclet tags within the source code, call the Ant target, and sit back as the code is automatically
generated.

265

Hibernate and XDoclet

�������

����

�������

����

	
�����

�����

�����

�������

�������

����

Figure 13.1

Why XDoclet Simplifies Development
XDoclet promises to help tackle one of the biggest challenges for J2EE developers: complexity. For exam-
ple, in a typical J2EE-based Web application, there are multiple tiers, including a presentation tier, a mid-
dle tier, and a database tier. If a developer needs to add an extra field to a form in a Web page, he must
edit multiple files, including the HTML template, the validation script, the middle tier data object, and
the Hibernate configuration and mapping files, and finally add the column into the database. If the
developer forgets to perform any of these steps, then the entire application breaks.

By using XDoclet to generate the Hibernate mapping files and configuration files, a developer can code
faster. Adding another database column onto a table involves merely adding another property to the

15_576771_c13.qxd 9/1/04 12:44 PM Page 265

corresponding middle-tier Java data object, tagging it with the appropriate XDoclet tags, and letting
XDoclet run. No more worrying whether all the required files are up-to-date. The mapping files and con-
figuration file are generated every time the build is performed.

Installing XDoclet
As mentioned earlier, XDoclet requires Ant in order to do its required work and, of course, Java. For this
reason, the first step in installing XDoclet is to install Ant. Once you have Ant in place and have verified
it to be working correctly, fire up your browser and surf to http://xdoclet.sourceforge.net. On this page,
you can click the Download and Install link on the left navigation bar. This link will bring you to a page
where you can download XDoclet. The options include:

❑ xdoclet-lib-1.x: Includes libs

❑ xdoclet-bin-1.x: Includes libs, samples, and docs

❑ xdoclet-src-1.x: Includes all source code

Most developers can just download the binary and uncompress it on your system. Within the uncom-
pressed files, you will find a directory called /lib. You will need to keep track of this directory and set
the appropriate variable within your Ant build script. The various XDoclet JARs have also been pack-
aged with the included sample application.

Using XDoclet with Hibernate
XDoclet can generate the Hibernate mapping files, the XML-based configuration file, and MBean
descriptor files for managing Hibernate objects in JBoss. Before we look at the variety of Hibernate tags
available, let’s work through a simple example in order to illustrate the process of using XDoclet and
Hibernate.

Simple Example
XDoclet is made up of Ant tasks that are run from a build.xml file. An appropriate <fileset> element
has been added to instruct Ant where to find the JAR library files needed for XDoclet. In the example
Survey applications in /lib/xdoclet-1.2.1 are the minimum set of JARs required to run the XDoclet task.
The lib.dir property is assumed to point to this directory. Follow these steps:

1. Specify the classpath that includes the XDoclet jars:

<path id="xdoclet.class.path">
<fileset dir="${lib.dir}/xdoclet-1.2.1">

<include name="*.jar"/>
</fileset>

</path>

2. Then define the hibernatedoclet task with a reference to the already defined classpath for
XDoclet:

266

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 266

<taskdef
name="hibernatedoclet"
classname="xdoclet.modules.hibernate.HibernateDocletTask"
classpathref="xdoclet.class.path"

/>

3. After the task definition has been created, you need to configure the actual task. The attributes
for the task include the destination directory where all of the resulting mapping document files
should be placed, whether the generation of the mapping documents should be forced or not
regardless of whether the source files have been updated or not, the merge directory, and finally
how much information should be generated to the console during execution of the task. Next,
you define the location of the source directory for all of the Java source code to be parsed by the
task and, finally, indicate that you are dealing with version 2.0 of Hibernate:

<target name="hibernate " description="Generate hibernate documents">
<hibernatedoclet

destdir="${classes.dir}"
force="true"
mergedir="${classes.dir}"
verbose="false">

<fileset dir="${src.dir}">
<include name="**/*.java"/>
</fileset>

<hibernate version="2.0"/>

</hibernatedoclet>
</target>

This is a very barebones example of generating the mapping files, but it demonstrates how XDoclet
works. The <hibernatedoclet> task takes a fileset of Java source files and outputs the generated
code in the ${classes.dir} directory. Supplying the specific subtask:

<hibernate version="2.0"/>

instructs the <hibernatedoclet> to generate mapping files for version 2.0 of Hibernate. In the source
code for Chapter 13 is a build1.xml file. Verify that everything works by running the Hibernate target in
the build1.xml file by entering ant –f build1.xml hibernate. You should receive the following
output from Ant on the console:

C:\clients\book\13\survey>ant –f build1.xml hibernate
Buildfile: build.xml

init:
[echo] Build survey-om-chapter13

hibernate-hbm:
[hibernatedoclet] 0 [main] INFO XDocletMain.start - Running <hibernate/>

BUILD SUCCESSFUL
Total time: 1 second

267

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 267

If you get an error like “Buildfile: build.xml does not exist!” then check that you passed the –f
build1.xml switch.

Now that you have verified that Ant is properly set up, you are ready to start generating your Hibernate
support files!

Generating Hibernate.cfg.xml
By generating the hibernate.cfg.xml file using XDoclet, you don’t have to remember to add a reference to
each individual .hbm.xml file. Instead, let XDoclet take care of the plumbing!

The <hibernatecfg> subtask instructs <hibernatedoclet> to generate the hibernate.cfg.xml file.
The easiest way to start up Hibernate is to put the hibernate.cfg.xml file in the root of the class path. This
will allow Hibernate to configure itself automatically.

The <hibernatecfg> subtask requires a number of attributes to be passed into the subtask. This is
data that isn’t available as @ tags in the source code and is therefore passed in. Below is a minimal set of
attributes that the <hibernatecfg> subtask requires:

<target name="hibernate" depends="init" description="Generate hibernate
documents">

<hibernatedoclet
destdir="${classes.dir}"
verbose="false"

force="true">

<fileset dir="${src.dir}">
<include name="**/*.java"/>
</fileset>

<hibernatecfg
jdbcUrl="jdbc:hsqldb:hsql://localhost"
driver="org.hsqldb.jdbcDriver"
dialect="net.sf.hibernate.dialect.HSQLDialect"
userName="sa"
password=""

/>

<hibernate version="2.0"/>

</hibernatedoclet>
</target>

Notice that we have added force="true" to the <hibernatedoclet> attributes. Normally, XDoclet
will regenerate a file only if the source code has a timestamp greater than the generated code. This will
force XDoclet to always generate the file.

268

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 268

The <hibernatecfg> subtask takes in quite a few attributes. Because we are planning on running
Hibernate against a Hypersonic database running out of a process database, we have configured it to
connect to a database using the URL jdbc:hsqldb:hsql://localhost. The default username and password
combination for Hypersonic databases is being used.

<hibernatecfg> needs to know which Java classes are Hibernated classes. As you saw in the intro-
duction to the chapter, @hibernate.class is all that needs to be added to distinguish regular classes
from Hibernated classes:

/**
*
* @author Eric Pugh
*
* @hibernate.class
*/

public class Survey {

}

<hibernatecfg> will parse through all the source files, and any classes it finds with a @hibernate
.class attribute will be added as a <mapping> to the hibernate.cfg.xml file.

Now run the supplied build2.xml’s Hibernate task to generate the hibernate.cfg.xml file by enter-
ing ant –f build2.xml hibernate, and Ant should generate output similar to this:

C:\clients\book\13\survey>ant -f build2.xml hibernate
Buildfile: build2.xml

init:
[echo] Build survey-om-chapter13

hibernate:
[hibernatedoclet] 0 [main] INFO XDocletMain.start - Running <hibernatecfg/>
[hibernatedoclet] Generating hibernate.cfg.xml file
[hibernatedoclet] 150 [main] INFO XDocletMain.start - Running <hibernate/>
[hibernatedoclet] Generating mapping file for example.survey.Survey.
[hibernatedoclet] example.survey.Survey

BUILD SUCCESSFUL
Total time: 1 second

In the /build/classes/ directory will be the generated hibernate.cfg.xml:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC "-//Hibernate/Hibernate
Configuration DTD 2.0//EN" "http://hibernate.sourceforge.net/hibernate-
configuration-2.0.dtd">

<!-- Generated file - Do not edit! -->

<hibernate-configuration>

269

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 269

<!-- a SessionFactory instance listed as /jndi/name -->
<session-factory>

<!-- properties -->
<property

name="dialect">net.sf.hibernate.dialect.HSQLDialect</property>
<property name="show_sql">false</property>
<property name="use_outer_join">false</property>

<property name="connection.username">sa</property>
<property

name="connection.driver_class">org.hsqldb.jdbcDriver</property>
<property name="connection.url">jdbc:hsqldb:hsql:survey</property>

<!-- mapping files -->
<mapping resource="example/survey/Survey.hbm.xml"/>

</session-factory>

</hibernate-configuration>

XDoclet has inserted a Generated file - Do not edit! comment into the file to remind develop-
ers not to directly edit the file. In addition, all the attributes passed in via the Ant subtask have been
used to provide the information required to create the JDBC connection that Hibernate will need. Lastly,
the Survey Java class that was tagged with @hibernate.class has had its corresponding mapping
file added as a mapping. As other files are tagged with @hibernate.class they will be added to
hibernate.cfg.xml as well.

Generating an MBean Descriptor File for JBoss
JBoss is an open source application server designed around the Java Management Extensions (JMX) API.
JMX is a standard API for providing a management interface to Java applications and components. For
more information on JBoss visit http://www.jboss.org.

JBoss can manage your Hibernate database connection information by reading a special MBean descrip-
tor file. While you can generate this XML file by hand, it requires a lot of data that you already have;
therefore, it is an obvious candidate for code generation. While a detailed example of using Hibernate
with JBoss is beyond this chapter, we will look at how XDoclet can help by using the <jbossservice>
Ant task.

The <jbossservice> task is very similar to the <hibernatecfg> task:

<hibernatecfg
jdbcUrl="jdbc:hsqldb:hsql:survey"
driver="org.hsqldb.jdbcDriver"
dialect="net.sf.hibernate.dialect.HSQLDialect"
userName="sa"
password=""

/>

<hibernate version="2.0" />

270

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 270

<jbossservice
destdir="${build.dir}"
jndiname="java:/hibernate/Survey"
servicename="HibernateSurvey"
dialect="net.sf.hibernate.dialect.HSQLDialect"
datasource="java:/DefaultDS"
username="sa"
password=""/>

We provided some of the same parameters used in <hibernatecfg> such as dialect, username,
and password. We also provided some additional information, including the data source name to use to
create the SessionFactory and the JNDI name under which to store the SessionFactory.

Look at the resulting \build\jboss-service.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE server>

<!-- Generated file - Do not edit! -->

<server>
<mbean code="net.sf.hibernate.jmx.HibernateService"

name="jboss.jca:service=HibernateSurvey">
<depends>jboss.jca:service=RARDeployer</depends>
<attribute name="MapResources">
example/survey/SurveyTaker.hbm.xml,
example/survey/Survey.hbm.xml,
example/survey/Answer.hbm.xml,
example/survey/Question.hbm.xml

</attribute>
<attribute name="JndiName">java:/hibernate/Survey</attribute>
<attribute name="Datasource">java:/DefaultDS</attribute>
<attribute

name="Dialect">net.sf.hibernate.dialect.HSQLDialect</attribute>
<attribute name="UserName">sa</attribute>
<attribute name="UseOuterJoin">false</attribute>
<attribute name="ShowSql">false</attribute>

</mbean>

</server>

This file contains everything that JBoss needs to manage the Hibernated classes. The power of XDoclet
code generation really becomes apparent when you look at the list of mapping files to be included:

<attribute name="MapResources">
example/survey/SurveyTaker.hbm.xml,
example/survey/Survey.hbm.xml,
example/survey/Answer.hbm.xml,
example/survey/Question.hbm.xml

</attribute>

In the example we have only three classes and already the single line is wrapping. In a real application,
this could easily be 50 classes stretching across many lines. Maintaining that list would be very tedious
and error prone.

271

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 271

Tagging Source Files with Mapping Attributes
Without using XDoclet, we would just create a normal mapping document for the User class by hand,
but whenever we change the class, we would need to remember to also change the mapping document.
With XDoclet, we can put the information right in the source code!

Tagging the source files involves setting attributes at the class level and method level. This section will
walk through tagging the included example Survey application’s Java classes, leading up to more com-
plex relationships. For a refresher on the types of mappings available with Hibernate, refer back to
Chapter 5, "Creating Persistent Classes," and Chapter 6, "Working With Collections.”

Tagging Properties
We’ll start out by tagging a very simple class Question, which consists at this point of two properties:
id and question. The questions will be stored in the Question table of the database and the id will be
the primary key. We are letting the database provide the primary key, so we will specify that the genera-
tor for the primary key will be native. We have also specified that we want to cache Question objects
using a read-write cache. For more information on caching, refer back to Chapter 9, "Hibernate Caching."

package example.survey;

/**
*
* @author Eric Pugh
*

* @hibernate.class
* table="QUESTIONS"
* @hibernate.cache
* usage="read-write"

*/
public class Question {

private Integer id;
private String question;

/**

* @hibernate.id generator-class="native" column="QUESTION_ID"

*
* @return Returns the id.
*/
public Integer getId() {

return id;
}
/**
* @param id The id to set.
*/
public void setId(Integer id) {

this.id = id;
}

272

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 272

/**

* @hibernate.property column="QUESTION_AS_STRING"

*
* @return Returns the question.
*/
public String getQuestion() {

return question;
}
/**
* @param question The question to set.
*/
public void setQuestion(String question) {

this.question = question;
}

}

The class-level attribute @hibernate.class indicates that this file should produce a mapping file
called /example/survey/Question.hbm.xml. The objects will be mapped to a table named QUESTIONS.
The other class-level attribute @hibernate.cache specifies that the second-level cache read-write is to
be used with Question objects.

Because most databases use numbers as a primary key, the Question class has the property id mapped
as an Integer object. The method-level attribute @hibernate.id specifies which method has the pri-
mary key associated with this row in the database.

XDoclet passes parameters into an attribute by following the attribute with a space-delimited list of
parameter name=value pairs. Because Hibernate has multiple methods of generating a primary key,
the @hibernate.id attribute has an extra parameter, generator-class. In the previous example,
working with the Hypersonic database, the identity generator can be used. To port to another database
such as Oracle that doesn’t support identities, but instead uses sequences, the attribute would be:

/**

* @hibernate.id generator-class="sequences" column="QUESTION_ID"
* @hibernate.generator-param

* name="sequence"
* value="sequences"
*
* @return Returns the id.
*/
public Integer getId() {

return id;
}

The question property is a basic String data type, so it is tagged with @hibernate.property but
with the actual database column called QUESTION_AS_STRING.

The resulting /example/survey/Question.hbm.xml file looks pretty typical, with many defaults pro-
vided. XDoclet produces a very readable XML format with plenty of whitespace.

273

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 273

<?xml version="1.0"?>

<!DOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class

name="example.survey.Question"
dynamic-update="false"
dynamic-insert="false"

>
<cache usage="read-write" />

<id
name="id"
column="QUESTION_ID"
type="java.lang.Integer"

>
<generator class="native">
</generator>

</id>

<property
name="question"
type="java.lang.String"
update="true"
insert="true"
access="property"
column="QUESTION_AS_STRING"

/>

</class>

</hibernate-mapping>

In the next section we’ll look at tagging more complex relationships.

Tagging Object References
Tagging basic data type properties via the @hibernate.property is relatively simple. Slightly more
complex is tagging references to other objects. For instance, in our application every survey is made up
of questions with answers. Therefore, each Answer object needs a reference to the Question it belongs
to, as well as to the person taking the survey, called the SurveyTaker. Here is the Answer class with
just the class-level tags:

/**
*
* @author Eric Pugh
*
* @hibernate.class
* table="ANSWERS"
*/
public class Answer {

274

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 274

private Integer id;
private String answer;
private Question question;
private SurveyTaker surveyTaker;

/**
* @return Returns the id.
*/
public Integer getId() {

return id;
}

/**
* @param id The id to set.
*/
public void setId(Integer id) {

this.id = id;
}

/**
* @return Returns the answer.
*/
public String getAnswer() {

return answer;
}

/**
* @param answer The answer to set.
*/
public void setAnswer(String answer) {

this.answer = answer;
}

/**
* @return Returns the question.
*/
public Question getQuestion() {

return question;
}

/**
* @param question The question to set.
*/
public void setQuestion(Question question) {

this.question = question;
}

/**
* @return Returns the surveyTaker.
*/
public SurveyTaker getSurveyTaker() {

return surveyTaker;
}

275

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 275

/**
* @param surveyTaker The surveyTaker to set.
*/
public void setSurveyTaker(SurveyTaker surveyTaker) {

this.surveyTaker = surveyTaker;
}

}

The first step is to tag the id and answer properties. This is very similar to the tags in the Question
class:

/**

* @hibernate.id generator-class="native" column="ANSWER_ID"

*
* @return Returns the id.
*/
public Integer getId() {

return id;
}
/**

* @hibernate.property column="ANSWER"

*
* @return Returns the answer.
*/
public String getAnswer() {

return answer;
}

Then proceed to tag the references to Question and SurveyTaker:

/**

* @hibernate.many-to-one
* column="QUESTION_ID"
* not-null="true"

* @return Returns the question.
*/
public Question getQuestion() {

return question;
}
/**

* @hibernate.many-to-one
* column="SURVEYTAKER_ID"
* not-null="true"

* @return Returns the surveyTaker.
*/

276

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 276

public SurveyTaker getSurveyTaker() {
return surveyTaker;

}

As you can see, both of the many-to-one references follow the same pattern. Both mappings are set to be
not null. This ensures that an Answer isn’t saved into the database without a Question and a
SurveyTaker associated with it. The column property of the @hibernate.many-to-one attribute
specifies the name of the foreign key column in the ANSWERS table. The SQL that would be generated
would look something like this:

create table ANSWERS (
ANSWER_ID BIGINT NOT NULL IDENTITY,
ANSWER VARCHAR(255),
QUESTION_ID BIGINT not null,
SURVEYTAKER_ID BIGINT not null

)
create table SURVEYTAKER (

SURVEYTAKER_ID BIGINT NOT NULL IDENTITY
)
create table QUESTIONS (

QUESTION_ID BIGINT NOT NULL IDENTITY,
SURVEY_ID BIGINT not null,
IDX INTEGER,
QUESTION_AS_STRING VARCHAR(255) not null

)
create table SURVEYS (

SURVEY_ID BIGINT NOT NULL IDENTITY
)
alter table ANSWERS add constraint FKF8494455B9CDF014 foreign key
(QUESTION_ID)
references QUESTIONS
alter table ANSWERS add constraint FKF84944555400E689 foreign key
(SURVEYTAKER_I
D) references SURVEYTAKER
alter table QUESTIONS add constraint FK3BDD512D1869DC20 foreign key
(SURVEY_ID)
references SURVEYS

The SQL produced generates the four tables and provides all the referential integrity specified by the
XDoclet mapping files. The not-null="true" properties of the @hibernate.many-to-one tags for
the Answer class are translated into NOT NULL references and foreign key constraints on QUESTION_ID
and SURVEYTAKER_ID. If an Answer object is mistakenly saved to the database without either a
Question or SurveyTaker associated with it, then the foreign key constraint will kick in and a
HibernateException will be thrown.

Tagging a Collection
A survey is made up of questions. Properly tagging the Question and Survey classes to work together
can be the most difficult part of using the XDoclet tags for Hibernate, because it requires you to work
with two separate source files and use fairly complex tags. We’ll begin by adding to a Survey a set of
Questions, and then we’ll modify the code so that instead of an unordered Set, a List will be used so
that the questions are presented in a specific order.

277

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 277

278

Chapter 13

If you don't recall how Collections work, you may want to refer back to
Chapter 6, "Working with Collections."

Here is the Set of questions related to a Survey:

public class Survey {
private Integer id;
private String name;
private Set questions;

/**
* @return Returns the questions.
*/
public Set getQuestions() {

return questions;
}

/**
* @param question A question to add to the Survey
*/
public void addQuestion(Question question) {

question.setSurvey(this);
getQuestions().add(question);

}

Note the addQuestion() helper method that facilitates setting up the bidirectional link. This method
will be called by Hibernate if it exists and ensures that all Questions have a reference to the survey
they belong to.

Now add the tags:

public class Survey {
private Integer id;
private String name;
private Set questions;

/**

* @hibernate.set
* inverse="true"
* cascade="all"
* @hibernate.collection-key
* column="SURVEY_ID"
* @hibernate.collection-one-to-many
* class="example.survey.Question"

*

15_576771_c13.qxd 9/1/04 12:44 PM Page 278

* @return Returns the questions.
*/
public Set getQuestions() {

return questions;
}

/**
* @param question A question to add to the Survey
*/
public void addQuestion(Question question) {

question.setSurvey(this);
getQuestions().add(question);

}

The attribute @hibernate.set specifies that this is a Set mapping. The @hibernate.collection-
one-to-many attribute specifies what type of reference this is. Possible values could have been
@hibernate.collection-one-to-one or @hibernate.collection-many-to-many, depend-
ing on the type of reference desired.

@hibernate.collection-key specifies that the SURVEY_ID column in the QUESTIONS table indi-
cates which questions belong to a specific survey.

Because the link between the Survey object and its Questions is bidirectional, the parameter
inverse=true is added to the @hibernate.set attribute. If a Question object didn’t have a refer-
ence to the Survey it was part of, then the mapping would be

* @hibernate.set
* inverse="false"
* cascade="all"

To simplify the task of saving changes to Question objects, the cascade="all" parameter is included
to ensure that whenever a Survey object is saved, any changes to its dependent questions are also
changed. This allows you to add or remove Question objects but save only their parent Survey object:

Session session = HibernateHelper.getSessionFactory().openSession();
Survey survey = new Survey();
survey.setName("Hibernate Survey");
Question firstQuestion = new Question();
firstQuestion.setQuestion("What is the best thing about Hibernate?");
Question secondQuestion = new Question();
secondQuestion.setQuestion("What is the hardest thing about

Hibernate?");
survey.addQuestion(firstQuestion);
survey.addQuestion(secondQuestion);
session.save(survey);
session.flush();

However, at this point, the order of the questions in the survey isn’t defined. Contrary to many set
implementations, Hibernate’s Set implementation really follows the semantics of a Set. In the previous
example, just because secondQuestion was saved into the database after firstQuestion doesn’t
mean that when it is retrieved it will be in the same order! Specifying the order of the questions in a sur-
vey requires mapping using a Hibernate List and specifying a column in the database to establish
order.

279

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 279

To start out you must add an index property to the Question object to explicitly preserve the order of
the questions in a Survey:

public class Question {
private Integer id;
private String question;

private int index;

/**
* @return Returns the index.
*/
public int getIndex() {

return index;
}
/**
* @param index The index to set.
*/
public void setIndex(int index) {

this.index = index;
}

The index property of a Question is an int data type stored in a column in the database called IDX.
Tag this using the @hibernate.property:

/**
* @hibernate.property column="IDX"
*
* @return Returns the index.
*/
public int getIndex() {

return index;
}

Now that you have added the index property, you can tag the Survey class to have an ordered list of
Questions:

public class Survey {
private Integer id;
private String name;
private Set questions;

/**
* @hibernate.list
* inverse="true"
* cascade="all"
* @hibernate.collection-key
* column="SURVEY_ID"
* @hibernate.collection-index
* column="IDX"
* @hibernate.collection-one-to-many
* class="example.survey.Question"

280

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 280

*
* @return Returns the questions.
*/
public List getQuestions() {

return questions;
}

/**
* @param question A question to add to the Survey
*/
public void addQuestion(Question question) {

question.setSurvey(this);
getQuestions().add(question);

}

The change from @hibernate.set to @hibernate.list required passing in some extra collection
information. Hibernate needs to know which column provides the ORDER BY information. Tagging with
@hibernate.collection-index specifies that the IDX column will provide the order of questions.

Fully Specifying a Property
Often, someone else such as a DBA has already defined the database schema. This person may have
used column names that don’t cleanly map to the Java object’s method names. Or the SchemaExport
task is being used, and more information is needed to generate the SQL for the database. Hibernate
allows you to add extra attributes to your Javadocs to specify this extra information.

In the following example, the text of the question to be asked is stored in a 256-character column called
questionAsStr. We want every question to be unique, and they can’t be blank. The extra properties
required are appended to the end of the @hibernate.property tag:

/**
* @hibernate.property column="questionAsStr"
* length="512"
* not-null="true"
* unique="true"
*
* @return Returns the question.
*/

They will also produce extra information in the mapping file:

<property
name="question"
type="java.lang.String"
update="true"
insert="true"
access="property"
column="questionAsStr"
length="512"
not-null="true"
unique="true"

/>

281

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 281

Tagging Getters versus Setters
Many attributes can be applied to either getters or setters. @hibernate.property can be tagged to
either a getter or a setter. But be careful, because if both a getter and setter for the same property receive
the @hibernate.property, then the resulting .hbm file will contain two properties with the same
name.

Some attributes have specific meanings based on being tagged to a getter or a setter. The attribute
@hibernate.id is assigned to a setter when it is part of a composite primary key field. For normal
single-property primary keys, the @hibernate.id must be assigned to the getter field only.

Hibernate XDoclet Tags and Description
In the previous example, we showed how to use a couple of the Hibernate XDoclet tags to document our
User class. There are many more tags available than just those shown above. In this section, we list all of
the Hibernate tags and provide a description of each tag.

@hibernate.class
This is a class-level tag and is used to specify a class within the mapping document. If the tag is part of a
Java source file, there should be only one of them. The attributes and possible values are shown in the
following table.

Attribute Description Required Values

table Database table. N Table name string

discriminator-value Subclass string. N String to distinguish
different subclasses

mutable Specifies whether or
not a class is read-only. N True, false

dynamic-update If true, only changed fields
will be updated. N True, false (default)

dynamic-insert If true, null columns are not
included in an insert. N True, false (default)

polymorphism Enables “explicit”
polymorphism. N Implicit, explicit

schema Schema name for this class. N Schema name

proxy Supports a proxy for this class. N Proxy name

282

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 282

@hibernate.cache
This is a class-level tag and is used to determine whether or not a particular class should be part of the
second-level cache. The attributes and possible values are as follows:

Attribute Description Required Values

usage How the class should Read-write, nonstrict-
be cached N read-write, read-only,

transactional

@hibernate.discriminator
This is a class-level tag and is used to specify that this class is part of a hierarchy and the column to use
for the discriminator value specified in this tag. The attributes and possible values are listed here:

Parameter Description Required Values

column Database column to be used Y Database column name

type Type N Hibernate type

length Length N Length of column

@hibernate.joined-subclass
This is a class-level tag and is used to specify that this class is a join subclass. The attributes and possible
values are as follows:

Parameter Description Required Values

proxy The class to use as a proxy. N Class name

dynamic-update If true, only changed fields True, false (default)
will be updated. N

dynamic-insert If true, only set fields True, false (default)
will be inserted. N

schema The schema to use for this class. N Schema name

283

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 283

@hibernate.joined-subclass-key
This is a class-level tag and specifies the key column to be used for a joined-subclass.

Parameter Description Required Values

column The column name to be Y Database table
used for the key column name

@hibernate.query
This is a class-level tag and specifies the name of a query and the query SQL string.

Parameter Description Required Values

name Query name Y Query name

query SQL query Y Query string

@hibernate.subclass
This is a class-level tag and specifies that the current class is a subclass.

Parameter Description Required Values

discriminator-value The discriminator value N Discriminator
for the subclass value

proxy The proxy class N Proxy class name

dynamic-update If true, only changed fields N True, false
will be updated. (default)

dynamic-insert If true, only changed fields N True, false
will be inserted. (default)

@hibernate.array
This is a method-level tag and defines an array for a particular class.

284

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 284

Attribute Description Required Values

table The collection table name N Table to be used to
store the collection

schema Schema name for this collection N Schema name

cascade Determines whether or not N All, none, save-
operations on the parent are update, delete
cascaded to the child

where A WHERE clause for this collection N SQL string for a
WHERE clause

@hibernate.bag (0..1)
This is a method-level tag and defines a bag for a particular class.

Attribute Description Required Values

inverse Specifies if the collection N True, false (default)
is inverse or not

table The collection table N Table name

schema Table schema for this collection N Scheme name

lazy Specifies this class should be N True, false (default)
lazy initialized

cascade Determines whether or not N All, none, save-
operations on the parent are update, delete
cascaded to the child

order-by The order in which the results N Column names
should be returned

where A WHERE clause N WHERE clause string

@hibernate.collection-cache
This is a method-level tag and determines how a collection is specified in the second-level cache.

285

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 285

Attribute Description Required Values

usage How the collection is cached: Y Read-write, nonstrict-
read-write, read-only,read-write
transactional

nonstrict-read-write

read-only

transactional

@hibernate.collection-composite-element
This is a method-level tag and specifies a composite collection element.

Attribute Description Required Values

class The element class for the Y Class name
element

@hibernate.collection-element
This is a method-level tag and specifies a collection element.

Attribute Description Required Values

column Database table column Y Column name

type Type Y The type for the field

length Length N Length of the field

not-null If true, the column can be null N True, false

unique If true, the column must be unique N True, false

@hibernate.collection-index
This is a method-level tag and defines a collection index.

Attribute Description Required Values

column Database table column Y Column name

type Type N Column type

length Length N Length of the column

286

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 286

@hibernate.collection-key
This is a method tag and defines a key for a specific collection.

Attribute Description Required Values

column Database table column Y Column name

@hibernate.collection-key-column (0..*)
This is a method-level tag and defines the column to use for a collection key.

Attribute Description Required Values

name Column to use for the key. Y Column name

length Length of column. N Length

unique If true, the column is unique. N True, false

not-null If true, the column cannot N True, false
hold a null value.

index Index to use. N Index name

unique-key Unique constraint name. N Constraint name

sql-type Actual SQL type. N SQL type

@hibernate.collection-many-to-many
This is a method tag and defines a many-to-many relationship between a class and a collection.

Attribute Description Required Values

column Mapped database table column Y Table column

class Class name N Fully qualified class
name

outer-join Specifies if outer-join fetching N Auto (default), true,
should be used false

@hibernate.collection-one-to-many
This is a method tag and defines a one-to-many relationship

287

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 287

Attribute Description Required Value

class The associated class N Fully qualified class
name

@hibernate.column
This is a method tag and is used to fully customize a column mapping.

Attribute Description Required Values

name The column name. Y Column name

length The column length. N Length

unique If true, the column is unique. N True, false

not-null If true, the column cannot N True, false
contain a null value.

index The name of the index. N Index name

unique-key The name of a unique constraint. N Constraint name

sql-type Actual SQL column type. N SQL type

@hibernate.component
This is a method tag and defines a component.

Attribute Description Required Values

class A class name. N Fully qualified class
name

prefix If column types are the same, N Prefix name
this prefix will be added.

@hibernate.generator-param
This is a method tag and defines an ID generator value.

Attribute Description Required Values

name The name of the parameter Y Parameter name

value The parameter value Y Parameter value

288

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 288

@hibernate.id
This is a method tag and defines an identifier property.

Attribute Description Required Values

column The mapped database table N Column name
column

type Type N The type

length Length N length

unsaved-value Value that determines if an N Null (default), value
object has been persisted

generator-class The key generator class; Y uuid.hex
specifying native will require
either identity or sequence

uuid.string

strategies depending on what the increment
underlying database supports assigned

native

identity

sequence

hilo

seqhilo

foreign

@hibernate.index-many-to-many
This is a method tag and defines a many-to-many collection index.

Attribute Description Required Values

column The mapped database table column Y Column name

class The key for the mapping Y Class name

foreign-key The foreign key constraint N Constraint name

289

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 289

@hibernate.list
This is a method-level tag and defines a list.

Attribute Description Required Values

table The collection table name N Table name

schema Table schema to use N Schema name

lazy Lazy initialization N True, false

cascade Specifies how operations on N All, none, save-update,
the parent should be cascaded delete
to the child

where A WHERE clause N WHERE clause string

@hibernate.many-to-one
This is a method-level tag and defines a many-to-one association.

Attribute Description Required Values

column The mapped database table N Column name
column

class The associated class N Class name

cascade Specifies how operations on the N All, none, save-update,
parent should be cascaded to delete
the child

not-null If true, the column cannot contain N True, false
a null value

unique If true, the column is unique N True, false

outer-join Determines if an outer-join N True, false, auto
should be used

insert If true, column will appear in N True, false
the insert command

update If true, column will appear in N True, false
the update command

property-ref The foreign key table name to N Table name
the associated class

foreign-key Name of the foreign key for the N Foreign key column
association name

290

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 290

@hibernate.map
This is a method-level tag and defines a map.

Attribute Description Required Values

table Collection table name N Table name

schema Schema to use for map N Schema name

lazy Activates lazy initialization N True, false

cascade Determines if an operation on N All, none, save-update,
the parent is cascaded to the delete
child

sort Determines the sorting N Sort class

order-by The order of the collection N Column names for
order

where A WHERE condition N SQL WHERE string

@hibernate.one-to-one
This is a method-level tag and defines a one-to-one association.

Attribute Description Required Values

class Associated class N Class name

property-ref Table name to a bidirectional N Table name
association

constrained If true, there is a foreign N True, false
key constraint

cascade Determines if an operation on N All, none, save-update,
the parent is cascaded to the delete
child

outer-join Determines if an outer-join N True, false, auto
should be used

foreign-key Name of a foreign key constraint N Constraint column
name

291

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 291

@hibernate.primitive-array
This is a method-level tag and defines a primitive-array.

Attribute Description Required Values

table Collection table name N Table name

schema Table schema to use N Schema name

cascade Determines if an operation N All, none, save-
on the parent is cascaded to updated, delete
the child

where A WHERE condition N WHERE clause

@hibernate.property
This is a method-level tag and defines a property.

Parameter Description Required Values

column The mapped database table N Column name
column

type The type N Class name

length The length N Length

not-null If true, the column cannot N True, false
contain a null value

unique If true, the column is unique N True, false

insert If true, column will appear in N True, false
the insert command

update If true, column will appear in N True, false
the update command

@hibernate.set
This is a method-level tag and defines a set.

292

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 292

Attribute Description Required Values

inverse Determines if it is an inverse N True, false
collection

table The collection table name N Table name

schema Table schema to use N Schema name

lazy If true, lazy initialization is used N True, false

cascade Determines how operations on N All, none, save-
the parent are cascaded to the updated, delete
child

sort How the collection is sorted N Sort class name

order-by The iteration order for the N Column names for the
collection order

where A WHERE clause N WHERE clause

@hibernate.timestamp
This is a method-level tag and defines a timestamp property.

Attribute Description Required Values

column The timestamp column N Column name

@hibernate.version
This is a method-level tag and defines a version property.

Attribute Description Required Values

column The version number column N

type The type for the version property N integer

short

long

timestamp

calendar

access How Hibernate accesses the value N Field, property, class
name

unsaved-value The value for an unsaved object N Null, negative,
undefined

293

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 293

Full-Circle Process
The full circle during development is writing your Java classes, tagging them with attributes, generating
the mapping files from the Java source, compiling the source, running the unit tests, and then repeating
this cycle. Using the included sample Survey application, enter ant –f build4.xml test to see the
full process.

The final code for the XDoclet version of the Survey application appears in the next listings. Listing 13.1
is a complete listing of the build.xml file (this file is available as a download from www.wrox.com and is
called build4.xml); it is a good example when writing your own build.xml file. Listing 13.2 contains the
Java source files, and Listing 13.3 contains the Java JUnit test files.

<project name="Survey OM (Chapter 13)" default="test" basedir=".">

<!-- Give user a chance to override without editing this file or typing -D -->
<property file="build.properties"/>
<property file="${user.home}/.ant.properties"/>

<!-- Name of project and version, used to create filenames -->
<property name="name" value="survey-om"/>
<property name="version" value="chapter13"/>

<!-- set global properties for this build -->
<property name="src.dir" value="src/java"/>
<property name="test.src.dir" value="src/test"/>
<property name="etc.dir" value="etc"/>
<property name="lib.dir" value="lib"/>
<property name="build.dir" value="build"/>
<property name="classes.dir" value="${build.dir}/classes"/>

<path id="xdoclet.class.path">
<fileset dir="${lib.dir}/xdoclet-1.2.1">
<include name="*.jar"/>
</fileset>

</path>

<taskdef
name="hibernatedoclet"
classname="xdoclet.modules.hibernate.HibernateDocletTask"
classpathref="xdoclet.class.path"
/>

<path id="lib.class.path">
<fileset dir="${lib.dir}">
<include name="**/*.jar"/>

</fileset>
</path>

<patternset id="jar.files">
<include name="**/*.dtd"/>
<include name="**/*.xml"/>
<include name="**/*.xslt"/>

</patternset>

294

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 294

<!-- Targets Available -->

<target name="clean" description="Cleans up directories">
<delete dir="${build.dir}"/>

</target>

<target name="init" description="Initialize the build">

<echo message="Build ${name}-${version}"/>

<mkdir dir="${classes.dir}"/>
<copy todir="${classes.dir}">
<fileset dir="${src.dir}">
<patternset refid="jar.files"/>

</fileset>
</copy>

</target>

<target name="compile" depends="init" description="Compile the Java source
code">

<javac
srcdir="${src.dir}"
destdir="${classes.dir}"
classpathref="lib.class.path"
debug="${javac.debug}"
optimize="${javac.optimize}"
nowarn="on">

</javac>
</target>

<target name="hibernate" depends="compile" description="Generate hibernate
documents">

<hibernatedoclet
destdir="${classes.dir}"
verbose="false"
force="true">

<fileset dir="${src.dir}">
<include name="**/*.java"/>
</fileset>

<hibernatecfg
jdbcUrl="jdbc:hsqldb:hsql://localhost"
driver="org.hsqldb.jdbcDriver"
dialect="net.sf.hibernate.dialect.HSQLDialect"
userName="sa"
password=""

/>

<hibernate version="2.0" />

<jbossservice

295

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 295

destdir="${build.dir}"
jndiname="java:/hibernate/Survey"
servicename="HibernateSurvey"
dialect="net.sf.hibernate.dialect.HSQLDialect"
datasource="java:/DefaultDS"
username="sa"
password=""/>

</hibernatedoclet>
</target>

<target name="compile-tests" depends="init,compile,hibernate"
description="Compile the Java test code">

<javac
srcdir="${test.src.dir}"
destdir="${classes.dir}"
classpathref="lib.class.path"
debug="${javac.debug}"
optimize="${javac.optimize}"
nowarn="on">

</javac>
</target>

<target name="test" depends="compile-tests" description="Run unit tests">

<mkdir dir="${build.dir}/test-reports"/>

<junit
printSummary="true"
fork="false">
<formatter type="xml"/>
<formatter type="brief" usefile="false"/>
<classpath>
<pathelement location="${classes.dir}"/>
<path refid="lib.class.path"/>

</classpath>

<batchtest todir="${build.dir}/test-reports">
<fileset dir="${classes.dir}">

<include name="**/*Test*"/>
</fileset>

</batchtest>
</junit>

</target>

</project>

Listing 13.1

package example.survey;

import java.util.List;

296

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 296

/**
*
* @author Eric Pugh
*
* @hibernate.class
* table="SURVEYS"
*/

public class Survey {
private Integer id;
private String name;
private List questions;

/**
* @hibernate.id generator-class="native" column="SURVEY_ID"
*
* @return Returns the id.
*/
public Integer getId() {

return id;
}

/**
*
* @param id
* The id to set.
*/
public void setId(Integer id) {

this.id = id;
}

/**
* @return Returns the name.
*/
public String getName() {

return name;
}

/**
* @param name
* The name to set.
*/
public void setName(String name) {

this.name = name;
}

/**
* @hibernate.list
* lazy="true"
* inverse="true"
* cascade="all"
* @hibernate.collection-key
* column="SURVEY_ID"
* @hibernate.collection-index

297

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 297

* column="IDX"
* @hibernate.collection-one-to-many
* class="example.survey.Question"
*
* @return Returns the questions.
*/
public List getQuestions() {

return questions;
}

/**
* @param question A question to add to the Survey
*/
public void addQuestion(Question question) {

question.setSurvey(this);
getQuestions().add(question);

}

/**
* @param questions
* The questions to set.
*/
public void setQuestions(List questions) {

this.questions = questions;
}

}

package example.survey;

import java.util.List;

/**
*
* @author Eric Pugh
*
* @hibernate.class
* table="SURVEYTAKER"
*/

public class SurveyTaker {
private Integer id;
private String name;
private Survey survey;
private List answers;

/**
* @hibernate.id generator-class="native" column="SURVEYTAKER_ID"
*
* @return Returns the id.
*/
public Integer getId() {

return id;
}

298

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 298

/**
* @param id The id to set.
*/
public void setId(Integer id) {

this.id = id;
}

/**
* @return Returns the answers.
*/
public List getAnswers() {

return answers;
}

/**
* @param answers The answers to set.
*/
public void setAnswers(List answers) {

this.answers = answers;
}

/**
* @return Returns the name.
*/
public String getName() {

return name;
}

/**
* @param name The name to set.
*/
public void setName(String name) {

this.name = name;
}

/**
* @return Returns the survey.
*/
public Survey getSurvey() {

return survey;
}

/**
* @param survey The survey to set.
*/
public void setSurvey(Survey survey) {

this.survey = survey;
}

}

package example.survey;

299

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 299

/**
*
* @author Eric Pugh
*
* @hibernate.class
* table="QUESTIONS"
* @hibernate.cache
* usage="read-write"
*/
public class Question {

private Integer id;
private String question;
private int index;
private Survey survey;

/**
* @hibernate.id generator-class="native" column="QUESTION_ID"
*
* @return Returns the id.
*/
public Integer getId() {

return id;
}

/**
* @param id The id to set.
*/
public void setId(Integer id) {

this.id = id;
}

/**
* @hibernate.many-to-one
* outer-join="true"
* cascade="save-update"
* column="SURVEY_ID"
* not-null="true"
*
* @return Returns the survey.
*/
public Survey getSurvey() {

return survey;
}

/**
* @param survey The survey to set.
*/
public void setSurvey(Survey survey) {

this.survey = survey;
}

/**
* @hibernate.property column="IDX"
*

300

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 300

* @return Returns the index.
*/
public int getIndex() {

return index;
}

/**
* @param index The index to set.
*/
public void setIndex(int index) {

this.index = index;
}

/**
* @hibernate.property column="QUESTION_AS_STRING"
* length="256"
* not-null="true"
* unique="true"
* sql-type="CHAR(255)"
*
* @return Returns the question.
*/
public String getQuestion() {

return question;
}

/**
* @param question The question to set.
*/
public void setQuestion(String question) {

this.question = question;
}

}

package example.survey;

/**
*
* @author Eric Pugh
*
* @hibernate.class
* table="ANSWERS"
*/
public class Answer {

private Integer id;
private String answer;
private Question question;
private SurveyTaker surveyTaker;

/**
* @hibernate.id generator-class="native" column="ANSWER_ID"
*
* @return Returns the id.
*/

301

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 301

public Integer getId() {
return id;

}

/**
* @param id
* The id to set.
*/
public void setId(Integer id) {

this.id = id;
}

/**
* @hibernate.property column="ANSWER"
*
* @return Returns the answer.
*/
public String getAnswer() {

return answer;
}

/**
* @param answer
* The answer to set.
*/
public void setAnswer(String answer) {

this.answer = answer;
}

/**
* @hibernate.many-to-one
* column="QUESTION_ID"
* not-null="true"
* @return Returns the question.
*/
public Question getQuestion() {

return question;
}

/**
* @param question
* The question to set.
*/
public void setQuestion(Question question) {

this.question = question;
}

/**
* @hibernate.many-to-one
* column="SURVEYTAKER_ID"
* not-null="true"
* @return Returns the surveyTaker.
*/
public SurveyTaker getSurveyTaker() {

302

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 302

return surveyTaker;
}

/**
* @param surveyTaker
* The surveyTaker to set.
*/
public void setSurveyTaker(SurveyTaker surveyTaker) {

this.surveyTaker = surveyTaker;
}

}

Listing 13.2

package example.survey;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

import net.sf.hibernate.Session;
import junit.framework.TestCase;

public class SurveyTest extends TestCase {

public void testCreateSurvey() throws Exception{
Session session = HibernateHelper.getSessionFactory().openSession();
Survey survey = new Survey();
survey.setName("New Survey");
assertNull(survey.getId());
session.save(survey);
assertNotNull(survey.getId());

}

}
package example.survey;

import net.sf.hibernate.HibernateException;
import net.sf.hibernate.SessionFactory;
import net.sf.hibernate.cfg.Configuration;

public class HibernateHelper {
private static SessionFactory sessionFactory;

private static Configuration configuration;

public static SessionFactory getSessionFactory() throws
HibernateException {

if (sessionFactory == null) {
sessionFactory = getConfiguration().buildSessionFactory();

}

303

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 303

return sessionFactory;
}

public static Configuration getConfiguration() throws HibernateException {
if (configuration == null) {

configuration = new Configuration().configure();
}
return configuration;

}
}

Listing 13.3

Tips on Using XDoclet
Adding XDoclet to the mix of technologies you use, while simplifying the ongoing development process,
does make your build process more complex. A common complaint is that developers don’t want to run
an Ant task just to update the mapping files. Another concern for some developers is not being comfort-
able leaving the crafting of the mapping files to XDoclet.

To alleviate the first complaint, most modern Java IDEs such as Eclipse and IntelliJ support calling Ant
tasks from inside the IDE. This helps reduce the flow of thought that a developer may incur when hav-
ing to switch from her favorite IDE to running an Ant task just to update the mapping files. Also, to
make generating the files faster, make sure that the force attribute of <hibernatedoclet> is set to
false. This ensures that only the mapping files for changed Java classes are regenerated.

To address the second complaint of leaving the generation of the mapping files up to XDoclet, having
comprehensive unit tests is critical. The standard for unit testing is JUnit (http://www.junit.org), and it
is very simple to set up your build so that a database is generated from the Hibernate mapping files.
As developers add to the object model, they should be writing their unit tests in parallel with their
development. That way, there are unit tests verifying that the objects interact with each other and with
Hibernate properly. It is very easy to make a change to an XDoclet tag that has unintended conse-
quences—especially when using the cascade or lazy loading functionality provided by Hibernate.

It also helps to not check in the mapping files. Generated code is typically treated as a build artifact, not
as source code. If you don’t check the JAR file produced by a build into CVS, then you shouldn’t check
in the .hbm files either.

Lastly, having a solid continuous integration plan is key. Using a tool such as CruiseControl
(http://cruisecontrol.sf.net) to build the code constantly throughout the day verifies that no one checks
in something that XDoclet can’t parse (see Professional Java Tools for Extreme Programming by Rick
Hightower, et al., for more information about using XDoclet, CruiseControl, and other tools together).
Your continuous integration tool should perform all the steps of the build automatically. This ensures
that a developer who checks out the code will immediately be able to perform a successful build.

304

Chapter 13

15_576771_c13.qxd 9/1/04 12:44 PM Page 304

Summary
The goal of using Hibernate and XDoclet is to reduce the amount of time needed to build and maintain
the mapping documents for all of the classes in your application. Incorporating XDoclet into your Ant
build script will reduce the number of files to manage by hand and ensure that all changes to the source
code will produce the right mapping documents.

305

Hibernate and XDoclet

15_576771_c13.qxd 9/1/04 12:44 PM Page 305

15_576771_c13.qxd 9/1/04 12:44 PM Page 306

Hibernate and Maven

Time and time again we see the open source community pull together tools that just make their
life easier in the area of software development. One of the latest tools is called Maven, and it has
the following stated goals:

❑ Making the build process easy

❑ Providing a uniform build system

❑ Providing quality project information

❑ Providing clear development process guidelines

❑ Providing guidelines for thoroughly testing practices

❑ Providing coherent visualization of project information

❑ Allowing transparent migration to new features

Maven, as found at http://maven.apache.org, is a tool designed to provide a clear view and
development of your project through the Project Object Model (POM). The idea is that a project
should be defined in a manner such that performing a build should be simple and not require lots
of custom scripting.

With these goals in mind, we can see that Hibernate fits in well—not from the standpoint of the
tools itself but by automatically incorporating the creation of the Hibernate mapping documents
while Maven does its magic.

The first section of this chapter will give a brief overview of what Maven is and will demonstrate
some simple functionality. The second section will discuss the Hibernate plug-in for Maven. We
will use the database-driven Survey application that we tagged in Chapter 13, “Hibernate and
XDoclet,” as a starting point. The rest of the chapter will cover best practices with regard to
Maven. In this chapter we will also cover

141144

16_576771_c14.qxd 9/1/04 12:46 PM Page 307

❑ What Maven is and how to use it

❑ How to run XDoclet tasks directly to generate code

❑ How to use the XDoclet plug-in for Maven to generate code

❑ How to use the Hibernate plug-in for Maven to export a schema

❑ How to weave Hibernate code generation and schema export steps into a build

The example code was written using Maven 1.0, Hibernate 2.1.6, XDoclet 1.2.1, and Hypersonic for a
database.

Installing Maven
The first step toward using Maven and Hibernate is to download and install Maven, which can be found
at http://maven.apache.org/start/download.html. You will find various downloads for different plat-
forms, so just pick the one most appropriate for your platform. After you’ve downloaded the tool, you
will need to install it. Uncompress the file using the appropriate tool, and a full directory structure will
be created based on the current version of Maven. Within the home directory you will find the familiar
/bin and /lib directories along with a /plugins directory. This directory will be important, as you will
see shortly.

Next, you need to create an environment variable called MAVEN_HOME and point it to the Maven install
directory. Do this using your .cshrc file or the My Computer/Properties control. If you have used the
Windows installer, the variable will be automatically created for you. You might also want to change
your PATH environment variable to point to the /bin directory of the installation as well. In order to ver-
ify that everything is installed and working correctly, type maven –v at the command prompt, and you
should see version information for Maven. If you get a message about MAVEN_HOME being set, you will
need to reset the environment variable.

308

Chapter 14

Maven installs with two working directories: repository is where it stores the
downloaded artifacts, and cache is where the plug-ins are expanded. By
default, these directories will be in a .maven folder in the temporary documents
folder. To keep everything together, define the environment variable
MAVEN_HOME_LOCAL and point that to your MAVEN_HOME. Then cache, and the
repository will be placed in ${MAVEN_HOME}/cache and
${MAVEN_HOME}/repository, respectively.

Using Maven
Maven instills order into a chaotic build environment. Instead of having you starting from scratch on
every project, setting up an Ant script to compile, test, and package the code, Maven provides goals that
perform these steps. This ensures that every project built with Maven works the same and that once you
are familiar with the Maven setup, you’ll be able to build any Maven-enabled project. Maven handles all
the interdependencies between goals so that when you run a Maven test, the Java code is compiled for
you. There’s no need to script basic steps for every new project.

16_576771_c14.qxd 9/1/04 12:46 PM Page 308

TE
AM
 F
LY

The Project Object Model
To power this functionality, Maven establishes a Project Object Model that describes all the attributes
needed to build the project. For instance, the POM lists the specific dependencies required to compile the
Java code. The POM also provides a structure for storing meta information about a project, such as who
the developers are, the current version of the project, how to access source repositories, and which
reports to run, such as Javadoc, CheckStyle, or PMD.

The POM is saved in a file called project.xml and lives at the root of your project. It is a very simple
human-readable XML document and is the core of Maven.

<project default="">
<pomVersion>3</pomVersion>
<id>survey</id>
<name>Object Model for Simple Survey</name>
<currentVersion>chapter-15</currentVersion>
<inceptionYear>2004</inceptionYear>
<package>example.survey</package>
<description>
Object Model for a system to administer simple
surveys made up of a list of questions and answers.

</description>
<shortDescription>Object Model for Survey System</shortDescription>
<developers>
<developer>
<name>Eric Pugh</name>
<id>epugh</id>
<email>epugh@opensourceconnections.com</email>

</developer>
</developers>
<dependencies>
<dependency>
<groupId>hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>2.1.4</version>

</dependency>
<!--

Dependencies Trimmed to Save Space
-->
</dependencies>
<build>
<sourceDirectory>src/java</sourceDirectory>
<unitTestSourceDirectory>src/test</unitTestSourceDirectory>
<unitTest>
<includes>
<include>**/*Test*.java</include>

</includes>
</unitTest>

</build>
<reports>
<report>maven-javadoc-plugin</report>

</reports>
</project>

309

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 309

As you can see, there are quite a few elements in a Maven project descriptor. In this chapter we aren’t
going to go over all the elements. You can find a complete description of what is contained in a Maven
project descriptor at http://maven.apache.org/reference/project-descriptor.html. However, the core of
the POM is contained in the <dependencies> elements, which you will learn about below.

Maven uses the list of dependencies to construct the classpath used to perform various goals, such as
compiling and testing the code.

<dependency>
<groupId>hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>2.1.6</version>

</dependency>

The <groupId> and <artifactId> are used to name the dependency to be downloaded. The <ver-
sion> tag specifies the exact version of a JAR required. Using explicit versions means no more XML
parser hell, because you dropped another version of an XML parser into your /lib directory. The POM
forces explicit versioning of each JAR used.

While avoiding XML parser hell is great, the other really nice benefit of going through the tedious pro-
cess of adding all the dependencies to the POM is that it allows Maven to download all the dependen-
cies from Maven repositories online. A repository in this case is an online Web site set up with a specific
directory structure from which Maven can download JAR files. The biggest Maven repository is hosted
at http://www.ibiblio.org/maven. Ibiblio is an organization that functions as a digital library. And since
a repository functions as a library of JARs, Ibiblio has been set up as the default Maven repository.
Maven will parse a dependency like this:

<dependency>
<groupId>hibernate</groupId>
<artifactId>hibernate</artifactId>
<version>2.1.6</version>

</dependency>

It will then attempt to download a JAR file named hibernate-2.1.6.jar and install it in your local
repository from the URL:

http://www.ibiblio.org/maven/hibernate/jars/hibernate-2.1.6.jar

Of course, you can also provide Maven with your own list of repositories to attempt to download from.
Typically, this would include the main Ibiblio repository followed by an internal corporate repository.
Maven would first check the Ibiblio repository, and if it doesn’t find the dependency, then it would
check your internal corporate repository.

Five-Minute Tutorial to Using Maven
Using the sample Survey code, we’ll walk through the basic steps of compiling the Java code, creating a
JAR file, and generating the site documentation. With Maven, everything is done through goals. Goals
are akin to Ant’s targets but come as prebuilt functionality.

310

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 310

Compiling Java Code
Compiling Java code is quite simple. Enter maven java:compile, and Maven builds the classpath
from the dependencies in the POM, finds the Java classes by looking up the <sourceDirectory>, and
compiles the code into a default location, /target/classes. You should receive output similar to this:

C:\clients\book\15\survey>maven java:compile
__ __
| \/ |__ _Apache__ ___
| |\/| / _` \ V / -_) ' \ ~ intelligent projects ~
|_| |___,_|_/___|_||_| v. 1.1-SNAPSHOT

build:start:

java:prepare-filesystem:

java:compile:
[echo] Compiling to C:\clients\book\15\survey/target/classes

BUILD SUCCESSFUL
Total time: 2 seconds
Finished at: Tue Jun 29 17:46:02 CEST 2004

With Maven, any generated artifacts such as .class files will always be generated into the /target direc-
tory. This allows you to remove everything by just deleting the /target directory. Or you can run the
maven clean goal to remove the /target directory.

Producing a JAR
Maven really begins to shine when performing actions, such as producing a JAR file, that build on other
goals. Enter maven jar and a series of steps will be performed:

1. Java code identified in <sourceDirectory> is compiled.

2. Unit tests identified in <unitTestSourceDirectory> are compiled and executed. If any of
the unit tests fail, then the build fails.

3. A versioned JAR file is produced in the /target directory based on the <id> and
<currentVersion> information in the POM.

Generating the Site Docs
The structure of the POM makes it easy for Maven to generate a fairly well-fleshed-out Web site that
includes Javadocs, cross-referenced source code, developer information, and results of unit tests. Enter
maven site and Maven runs a series of reports that pull information from the POM. The <reports>
section of the POM allows you to add or remove reports. Adding such reports as PMD, Findbugs,
StatCVS, JDepend, and Simian provides powerful tools for gaining visibility into your project.

Goals and Plug-ins and Properties, Oh My!
Providing the various goals in Maven are a set of standardized plug-ins. Plug-ins can be thought of as
similar to the tasks in Ant, but they are tightly integrated into Maven’s build process. When you run
maven site, you are executing the default goal of the site plug-in, which is to generate the site docu-
mentation. However, you can also write your own goals by creating a top-level maven.xml file to hold

311

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 311

custom scripts. To write a goal that uses the Ant Echo task to spill out the eponymous “Hello World”
message, you would add the following code to maven.xml:

<project xmlns:ant="jelly:ant">
<goal name="survey:helloworld" description="Emit Hello World">

<ant:echo message="Hello World"/>
</goal>

</project>

While our goal that emits the text “Hello World" is nice, you might want to be able to change the mes-
sage without editing the script. In that case, you can set up properties in a project.properties file that
functions similarly to the common practice in Ant of including a build.properties file. Just change the
<ant:echo> to:

<project xmlns:ant="jelly:ant">
<goal name="survey:helloworld" description="Emit Hello World">

<ant:echo message="${survey.helloworld}"/>
</goal>

</project>

Then add to a new top-level project.properties file the message to emit:

message to display when invoking survey:helloworld
survey.helloworld=It's a beautiful world out there.

I always like to prefix all my goal and property names with the name of the project to prevent any
chance of running into a conflict with another goal or property set within Maven.

You can also instruct Maven to run your goal before or after another goal. To echo “Hello World” before
compiling the Java code, you would use a preGoal that then calls your goal via attainGoal:

<project xmlns:ant="jelly:ant">
<preGoal name="java:compile">

<attainGoal name="survey:helloworld"/>
</preGoal>

</project>

The ability to have preGoals and postGoals weave customizations around the standard Maven goals
allows you to integrate the various XDoclet code-generation steps needed to generate Hibernate files
seamlessly into the standard Maven build.

Generating Hibernate Files with Maven
There are two approaches to generating the Hibernate files from within Maven. You can either script
calling the <hibernatedoclet> task yourself or use the XDoclet plug-in for Maven. The XDoclet plug-
in for Maven is typically the simpler method to start with; however, in some environments it may not
support everything you need to do. First, we’ll walk through using the XDoclet plug-in to generate the
Hibernate files, and then we’ll follow up by scripting the XDoclet steps ourselves. To see how to inte-
grate the XDoclet steps into the Maven build process, jump to the end of this chapter.

312

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 312

Running the XDoclet Plug-in for Maven
One of the nice things that Maven brings to the table is the ability to download and install plug-ins from
online repositories. Just run the following line to download and install the 1.2.1 version of the XDoclet
plug-in:

maven plugin:download -DgroupId=xdoclet
-DartifactId=maven-xdoclet-plugin -Dversion=1.2.1
-Dmaven.repo.remote=http://xdoclet.sourceforge.net/repository

If you are running offline, then the XDoclet plug-in is also available in the /lib/ directory of the XDoclet
distribution. Look for a file similar to maven-xdoclet-plugin-1.2.1.jar and copy it to the /plugin directory
of your Maven installation.

To verify the installation, enter maven –P xdoclet, and you should receive something like this:

Goals in xdoclet
================

[xdoclet] (NO DEFAULT GOAL)
documentdoclet documentdoclet
ejbdoclet ejbdoclet
hibernatedoclet hibernatedoclet
jdodoclet jdodoclet
jmxdoclet jmxdoclet
mockobjectdoclet mockobjectdoclet
portletdoclet portletdoclet
springdoclet springdoclet
webdoclet webdoclet
xdoclet xdoclet

We will be discussing only the hibernatedoclet goal; however, all the XDoclet goals are configured
and run in a similar fashion.

Generate Mapping Files
To generate the mapping files, XDoclet needs various information, such as where the source files are
located. This information is stored in the project.properties file. Our project.properties file
offers this simple example:

maven.xdoclet.hibernatedoclet.fileset.0=true
maven.xdoclet.hibernatedoclet.fileset.0.include=**/*.java
maven.xdoclet.hibernatedoclet.hibernate.0.Version=2.0

Enter maven xdoclet:hibernatedoclet and the mapping files will be generated into the
/target/xdoclet/hibernatedoclet directory. You can override this directory by providing a different value
for maven.xdoclet.hibernatedoclet.destDir in the project.properties file.

The structure of the properties for the XDoclet plug-in for Maven is a little different from the properties
for most Maven plug-ins in that if you need to provide multiple directories, instead of using a comma-
delimited list, you use an indexed list:

313

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 313

maven.xdoclet.hibernatedoclet.fileset.0=true
maven.xdoclet.hibernatedoclet.fileset.0.include=**/om/*.java
maven.xdoclet.hibernatedoclet.fileset.1=true
maven.xdoclet.hibernatedoclet.fileset.1.include=**/otherom/*.java

You can also disable generation of a fileset by setting the fileset index value to false:

maven.xdoclet.hibernatedoclet.fileset.1=false

Generate the Hibernate.cfg.xml File
The xdoclet:hibernatedoclet goal also needs some basic data to generate the hibernate.cfg.xml
file. You provide this data in a similar fashion to the fileset data used in generating the mapping files:

maven.xdoclet.hibernatedoclet.hibernatecfg.0=true
maven.xdoclet.hibernatedoclet.hibernatecfg.0.jdbcUrl=jdbc:hsqldb:hsql:survey
maven.xdoclet.hibernatedoclet.hibernatecfg.0.driver=org.hsqldb.jdbcDriver
maven.xdoclet.hibernatedoclet.hibernatecfg.0.dialect=net.sf.hibernate.dialect
.HSQLDialect
maven.xdoclet.hibernatedoclet.hibernatecfg.0.userName=sa
maven.xdoclet.hibernatedoclet.hibernatecfg.0.password=

You also need to supply in the POM a dependency on the specific XDoclet modules that implement the
various XDoclet templates. In our case, we need to add xdoclet-hibernate-module:

<dependency>
<groupId>xdoclet</groupId>
<artifactId>xdoclet-hibernate-module</artifactId>
<version>1.2.1</version>

</dependency>

Everything is now configured. Running maven xdoclet:hibernatedoclet will download the
xdoclet-hibernate-module and generate the configuration and .hbm files into the /target/
xdoclet/hibernatedoclet directory.

Scripting Directly in Maven.xml
At various times you may discover that an Ant task exists for something you need to have done, but
either there is no Maven plug-in or the Maven plug-in doesn’t suit your needs. In these cases you will
build on your Ant skills by adding your own goal to maven.xml. For more information on calling
XDoclet tasks using Ant, refer back to Chapter 13. We’ll walk through the process of calling the
xdoclet:hibernatedoclet task from our own Maven goal.

Set Up Dependencies
First, we’ll need to add the various dependencies for the hibernatedoclet module to the POM. One
of the advantages of using a plug-in is that it downloads its own list of dependencies behind the scenes.
But since we aren’t using the XDoclet plug-in, we need to add them directly to our POM:

<!-- Begin XDoclet Dependencies -->
<dependency>

314

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 314

<groupId>xdoclet</groupId>
<artifactId>xdoclet</artifactId>
<version>1.2.1</version>

</dependency>
<dependency>
<groupId>xdoclet</groupId>
<artifactId>xdoclet-hibernate-module</artifactId>
<version>1.2.1</version>

</dependency>
<dependency>
<groupId>xdoclet</groupId>
<artifactId>xdoclet-xdoclet-module</artifactId>
<version>1.2.1</version>

</dependency>
<dependency>
<groupId>xdoclet</groupId>
<artifactId>xjavadoc</artifactId>
<version>1.0.3</version>

</dependency>

Then we need to define the new goal in the maven.xml file:

<goal name="survey:hibernate" description="Generate Hibernate files with
Xdoclet">

</goal>

Just like using any nonstandard Ant task in an Ant build.xml, we need to provide a task definition. As
part of this, we’ll define the classpath to use as well by just using all the dependencies in the POM:

<goal name="survey:hibernate" description="Generate Hibernate files with
Xdoclet">

<ant:taskdef name="hibernatedoclet"
classname="xdoclet.modules.hibernate.HibernateDocletTask">

<ant:classpath>
<ant:path refid="maven.dependency.classpath"/>

</ant:classpath>
</ant:taskdef>

</goal>

Notice that all of the Ant XML tags are prefixed with ant:. Maven handles multiple namespaces in the
XML documents by declaring as part of the project definition all the XML namespaces:

<project xmlns:ant="jelly:ant">

However, because the Maven developers wanted to make it simple for people with an Ant background
to port their scripts, by default the Ant namespace is imported. So prefixing the Ant XML elements with
ant: isn’t required.

Generate Mapping Files
And now we’re ready to use the <hibernatedoclet> task combined with the <hibernate> subtask
to generate the mapping files:

315

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 315

<goal name="survey:hibernate" description="Generate Hibernate files with
Xdoclet">

<ant:taskdef name="hibernatedoclet"
classname="xdoclet.modules.hibernate.HibernateDocletTask">

<ant:classpath>
<ant:path refid="maven.dependency.classpath"/>

</ant:classpath>
</ant:taskdef>

<ant:hibernatedoclet destDir="${maven.build.dir}/generated-sources"
force="true" verbose="true">
<ant:hibernate version="2.0"/>
<ant:fileset dir="${maven.src.dir}/java"

includes="**/*.java"/>
</ant:hibernatedoclet>

</goal>

Notice that we’re using the Maven-supplied property maven.build.dir to build a relative path to our
generated source. Maven will translate ${maven.build.dir}/generated-sources into target/
generated-sources. A strong principle with Maven is that anything generated should go into /target, and
anything else should be checked into source control. And since XDoclet is doing the work of generating
the Hibernate mapping files, there is no reason to check the generated code into source control.

Generate Hibernate.cfg.xml with Maven
You can imagine how simple it is to generate the Hibernate.cfg.xml file. If you guessed that you would
add something as simple as this, then you’d be right!

<ant:hibernatedoclet destDir="${maven.build.dir}/generated-sources"
force="true" verbose="true">
<ant:hibernate version="2.0"/>
<ant:fileset dir="${maven.src.dir}/java"

includes="**/*.java"/>
<ant:hibernatecfg

jdbcUrl="jdbc:hsqldb:hsql:survey"
driver="org.hsqldb.jdbcDriver"
dialect="net.sf.hibernate.dialect.HSQLDialect"
userName="sa"
password=""

/>
</ant:hibernatedoclet>

To make the project more flexible and less tied to HSQL, you should change all the values being passed
into <ant:hibernatecfg> into properties that are set in the accompanying project.properties file:

<ant:hibernatecfg
jdbcUrl="${survey.jdbcurl}"
driver="${survey.driver}"
dialect="${survey.dialect}"
userName="${survey.username}"
password="${survey.password}"

/>

316

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 316

And in project.properties add the various properties defining the database connection:

database connection properties
survey.jdbcurl=jdbc:hsqldb:hsql:survey
survey.driver=org.hsqldb.jdbcDriver
survey.dialect=net.sf.hibernate.dialect.HSQLDialect
survey.username=sa
survey.password=

Using the Hibernate Plug-in for Maven
At the time of this writing, the functionality that the Hibernate plug-in for Maven provides is an easy
interface to the SchemaExport tool and a tool to aggregate multiple .hbm.xml files into a single file.

To view all the goals available for the Hibernate plug-in, enter maven –P hibernate:

Goals in hibernate
==================

[hibernate] (NO DEFAULT GOAL)
aggregate-mappings Aggregate multiple .hbm.xml files into

one
file

schema-export Export Hibernate schema

hibernate:aggregate-mappings
Keeping the hibernate.cfg.xml file up-to-date can be a challenge if you aren’t using XDoclet to generate
this file. It’s very easy for a developer to forget to add another <mapping/> reference when adding
new classes. One approach is to aggregate all the .hbm files into a single file and then reference this
file in the hibernate.cfg.xml. By default, this file will be output as /target/schema/aggregated-map-
pings.hbm.xml.

Enter maven hibernate:aggregate-mappings, and a resulting aggregated-mappings.hbm.xml
file will be produced. Change the hibernate.cfg.xml to use this file by having just a single <mapping >
reference:

<mapping resource="aggregated-mappings.hbm.xml"/>

hibernate:schema-export
The SchemaExport tool, as you may recall, generates your database schema from the various .hbm map-
ping files. You can instruct it to just generate the schema or to generate and insert the schema into the
database. The <hibernate:schema-export> goal wraps the SchemaExport tool and integrates it
cleanly into Maven. For more information about the SchemaExport tool, jump ahead to Chapter 15,
“Hibernate Extensions.”

The only required property for this goal is maven.hibernate.properties, which should reference a
hibernate.properties file. The hibernate.properties file is a standard Java properties file with all the
database configuration information required for Hibernate to create a Configuration object from:

maven.hibernate.properties=bin/hibernate.properties

317

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 317

The other properties duplicate the SchemaExport properties that you will learn about in Chapter 15,
“Hibernate Extensions.”

An up-to-date list of all the properties and goals is available from the plug-in home page:
http://maven.apache.org/reference/plugins/hibernate.

Just generating the SQL statements doesn’t require a database connection as long as you set the property
maven.hibernate.text=true. The SQL is generated according to the hibernate.dialect property:

hibernate.dialect=net.sf.hibernate.dialect.HSQLDialect

But if you wish to insert the schema into a database, then you will need to add to the POM another
dependency with the JDBC driver classes to be used. In the Survey example, we added the HSQL
database driver to the list of dependencies:

<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.7.1</version>

</dependency>

To demonstrate exporting the schema, you must first have an HSQL database running. In survey/bin are
two files, startHsql.bat and startHsql.sh. Pick the one appropriate for your platform and start up HSQL.
Then run maven hibernate:schema-export and you will see the SQL statements listed on the con-
sole as they are executed. The following table explains the properties for the Hibernate plug-in for
Maven.

Attribute Description Required Values

maven.hibernate.properties The location of the Y Hibernate.properties
Hibernate properties
file with all the inform-
ation for configuring
Hibernate at runtime

maven.hibernate.quiet How verbose the plug- N True (default), false
in should be; set to true
to help with debugging

maven.hibernate.text Instructs Hibernate N True, false (default)
whether to insert the
schema into the database;
setting to true will write
the SQL to the file system
only

maven.hibernate.drop Specify whether to N True, false (default)
generate just the drop
table SQL statements

318

Chapter 14

Table continued on following page

16_576771_c14.qxd 9/1/04 12:46 PM Page 318

Attribute Description Required Values

maven.hibernate.delimiter String used to separate
SQL commands N

maven.hibernate.output.dir The location to output N ${maven.build.dir}/
generated files schema

maven.hibernate.output.file The name of the file N ${maven.final.
created by the schema- name}-
export goal schema.sql

maven.hibernate.input.dir Comma-separated N ${maven.build.
list of base directories dest}
indicating where
mapping files are located

maven.hibernate. Comma-separated list N **/*.hbm.xml
input.includes of patterns of Hibernate

mapping files to be
included in aggregating
mappings

maven.hibernate. Comma-separated list N **/*.hbm.xml2
input.excludes of patterns of Hibernate maven.hibernate.

mapping files to be aggregate
excluded in aggregating
mappings

.output.file File containing the N aggregated
aggregated mappings mappings.hbm.xml

Putting It All Together
At this point, you know how to run the various goals needed to perform all the Hibernate-related tasks,
either through custom goals in maven.xml or via the various plug-ins. Now in most cases, we want the
Hibernate/XDoclet plug-ins to seamlessly weave the various generation steps into the standard Maven
process versus adding extra manual steps to the build process.

Generating Files
To generate the mapping files, we’ll add to the maven.xml a new <preGoal> to run after the
java:compile step and to call either the xdoclet:hibernatedoclet goal or the customized sur-
vey:hibernate goal, depending on which approach you want to take:

<preGoal name="java:compile">
<attainGoal name="xdoclet:hibernatedoclet"/>

</preGoal>

319

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 319

Now, if you run maven java:compile, you’ll see both the Hibernate mapping files and the
hibernate.cfg.xml file generated into the target/xdoclet directory. However, this doesn’t do you
much good, since if you run a goal such as maven jar, the generated files will be ignored since they
are not in target/classes and therefore aren’t included. Therefore, you need to declare the generated
files as <resources> to be included:

<build>
<sourceDirectory>src/java</sourceDirectory>
<unitTestSourceDirectory>src/test</unitTestSourceDirectory>
<unitTest>
<includes>
<include>**/*Test*.java</include>

</includes>
</unitTest>
<resources>
<resource>
<directory>${maven.build.dir}/xdoclet/hibernatedoclet</directory>
<targetPath>/</targetPath>
<includes>
<include>hibernate.cfg.xml</include>
<include>**/*.hbm.xml</include>

</includes>
</resource>

</resources>
</build>

We added information about the generated files to the <build> section of the POM. The <directory>
tag specifies the directory into which the files are generated. The <targetPath>/</targetPath>
specifies the target/classes directory. And the <includes> provide pattern matchers to pick up
the hibernate.cfg.xml and all the various Hibernate mapping files and copy them into the
target/classes directory. Run maven jar and you will see in /target a survey-chapter-15.jar file.
Open it and you will see included in the JAR the XDoclet-generated files!

Configuring a Database Prior to Running Unit Tests
Unit testing has become an accepted part of Java development. Indeed, now the question isn’t whether
to have unit tests but whether to do test-driven development! Unit testing Java classes mapped to a
database using Hibernate provides many benefits, including:

❑ Verifying that the code functions as expected.

❑ XDoclet tags in the Javadocs are generating valid mapping files.

❑ Hibernate has all the required data to start up.

❑ HQL queries use the correct object names and properties.

The easiest way to do this is to have a live database that you can test against. However, testing against a
live database presents its own challenges. Developers need to make sure that as they change the object
model, the schema is updated as well. While changing the object model is as simple as changing the Java
code and updating the XDoclet tags, keeping the schema up-to-date can be a very formidable task.

320

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 320

Fortunately, by using the SchemaExport tool to generate the SQL statements needed to create the
schema, it is easy to have an up-to-date database. It is simple to weave the hibernate:schema-
export goal to run before the unit tests are run, providing a clean, empty database before every unit
test is run.

<preGoal name="test:test-resources">
<attainGoal name="hibernate:schema-export"/>

</preGoal>

Attaching the preGoal to test:test-resources ensures that the schema is refreshed regardless of
whether you run the test, test:single, or test:match target.

To verify that the mapping file is generated properly, and that Survey objects can be saved to and read
from a Hypersonic database, we have written a simple SurveyTest unit test. SurveyTest opens a
connection to the database, creates a new Survey, saves it, and verifies that a Survey ID was assigned
as the primary key in the database:

package example.survey;

import net.sf.hibernate.Session;
import junit.framework.TestCase;

public class SurveyTest extends TestCase {

public void testCreateSurvey() throws Exception{
Session session = HibernateHelper.getSessionFactory().openSession();
Survey survey = new Survey();
survey.setName("Test Survey");
assertNull(survey.getId());
session.save(survey);
assertNotNull(survey.getId());

}

}

Notice the use of the HibernateHelper class:

Session session = HibernateHelper.getSessionFactory().openSession();

HibernateHelper wraps all the logic needed to start up Hibernate and return a Hibernate
SessionFactory. This simplifies writing multiple unit tests.

package example.survey;

import net.sf.hibernate.HibernateException;
import net.sf.hibernate.SessionFactory;
import net.sf.hibernate.cfg.Configuration;

public class HibernateHelper {
private static SessionFactory sessionFactory;

private static Configuration configuration;

321

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 321

public static SessionFactory getSessionFactory() throws
HibernateException {

if (sessionFactory == null) {
sessionFactory = getConfiguration().buildSessionFactory();

}
return sessionFactory;

}

public static Configuration getConfiguration() throws HibernateException {
if (configuration == null) {

configuration = new Configuration().configure();
}
return configuration;

}
}

Because we want to update the schema and run the unit test from two separate threads, we need to man-
ually start Hypersonic. In the /bin directory are two scripts, startHsql.bat and startHsql.sh. Execute the
one appropriate for your platform.

After starting up Hypersonic, enter maven test and the SurveyTest will be run. The Java code will
be compiled, the mapping files and hibernate.cfg.xml generated, the schema exported, and finally the
unit tests run. The logging level is set to DEBUG, so you can see the details of what Hibernate is doing as
it runs.

If you wish, enter maven site and the Web site will be generated. This step will take the data gener-
ated by the unit tests and provide a nice HTML report that you can view. Again, you need Hypersonic
running in its own thread so the unit test will run. If you don’t want to run the unit tests, then add the
switch –Dmaven.test.skip to the maven site command.

Our Survey Example
This section contains the complete code for a Maven version of the Survey application that we started in
Chapter 9. Listing 14.1 contains the project.xml POM, Listing 14.2 contains the project.properties file,
and Listing 14.3 contains the maven.xml file. These file are all available for download at www.wrox.com.

<?xml version="1.0" encoding="UTF-8"?>
<project default="">
<pomVersion>3</pomVersion>
<id>survey</id>
<name>Object Model for Simple Survey</name>
<currentVersion>chapter-15</currentVersion>
<inceptionYear>2004</inceptionYear>
<package>example.survey</package>
<description>
Object Model for a system to administer simple
surveys made up of a list of questions and answers.

</description>
<shortDescription>Object Model for Survey System</shortDescription>
<developers>
<developer>

322

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 322

<name>Eric Pugh</name>
<id>epugh</id>
<email>epugh@opensourceconnections.com</email>

</developer>
</developers>
<dependencies>
<dependency>
<groupId>cglib</groupId>
<artifactId>cglib-full</artifactId>
<version>2.0.1</version>

</dependency>
<dependency>
<groupId>commons-collections</groupId>
<artifactId>commons-collections</artifactId>
<version>2.1</version>

</dependency>
<dependency>
<groupId>commons-dbcp</groupId>
<artifactId>commons-dbcp</artifactId>
<version>1.1</version>

</dependency>
<dependency>
<groupId>commons-lang</groupId>
<artifactId>commons-lang</artifactId>
<version>1.0.1</version>

</dependency>
<dependency>
<groupId>commons-logging</groupId>
<artifactId>commons-logging</artifactId>
<version>1.0.3</version>

</dependency>
<dependency>
<groupId>commons-pool</groupId>
<artifactId>commons-pool</artifactId>
<version>1.1</version>

</dependency>
<dependency>
<groupId>dom4j</groupId>
<artifactId>dom4j</artifactId>
<version>1.4</version>

</dependency>
<dependency>
<groupId>ehcache</groupId>
<artifactId>ehcache</artifactId>
<version>0.7</version>

</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.8</version>

</dependency>
<dependency>
<groupId>hibernate</groupId>
<artifactId>hibernate</artifactId>

323

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 323

<version>2.1.4</version>
</dependency>
<dependency>
<groupId>jdbc2_0</groupId>
<artifactId>jdbc2_0</artifactId>
<version>stdext</version>

</dependency>
<dependency>
<groupId>jta</groupId>
<artifactId>jta</artifactId>
<version>unknown</version>
<jar>jta.jar</jar>

</dependency>
<dependency>
<groupId>odmg</groupId>
<artifactId>odmg</artifactId>
<version>3.0</version>

</dependency>
<dependency>
<groupId>xalan</groupId>
<artifactId>xalan</artifactId>
<version>2.4.1</version>

</dependency>
<dependency>
<groupId>xerces</groupId>
<artifactId>xerces</artifactId>
<version>2.4.0</version>

</dependency>
<dependency>
<groupId>xml-apis</groupId>
<artifactId>xml-apis</artifactId>
<version>2.0.2</version>

</dependency>

<!-- Begin XDoclet Dependencies -->
<dependency>
<groupId>xdoclet</groupId>
<artifactId>xdoclet</artifactId>
<version>1.2.1</version>

</dependency>
<dependency>
<groupId>xdoclet</groupId>
<artifactId>xdoclet-hibernate-module</artifactId>
<version>1.2.1</version>

</dependency>
<dependency>
<groupId>xdoclet</groupId>
<artifactId>xdoclet-xdoclet-module</artifactId>
<version>1.2.1</version>

</dependency>
<dependency>
<groupId>xdoclet</groupId>
<artifactId>xjavadoc</artifactId>
<version>1.0.3</version>

324

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 324

</dependency>

<!-- Database to be used in testing -->
<dependency>
<groupId>hsqldb</groupId>
<artifactId>hsqldb</artifactId>
<version>1.7.1</version>

</dependency>
</dependencies>
<build>
<sourceDirectory>src/java</sourceDirectory>
<unitTestSourceDirectory>src/test</unitTestSourceDirectory>
<unitTest>
<includes>
<include>**/*Test*.java</include>

</includes>
</unitTest>
<resources>
<resource>
<directory>${maven.build.dir}/generated-sources/xdoclet</directory>
<targetPath>/</targetPath>
<includes>
<include>hibernate.cfg.xml</include>
<include>**/*.hbm.xml</include>

</includes>
</resource>

</resources>
</build>
<reports>
<report>maven-license-plugin</report>
<report>maven-linkcheck-plugin</report>
<report>maven-jdepend-plugin</report>
<report>maven-junit-report-plugin</report>
<report>maven-pmd-plugin</report>
<report>maven-simian-plugin</report>
<report>maven-javadoc-plugin</report>
<report>maven-jxr-plugin</report>
<report>maven-tasklist-plugin</report>

</reports>
</project>

Listing 14.1

Survey Project settings

survey.helloworld=It's a beautiful world out there.

survey.jdbcurl=jdbc:hsqldb:hsql://localhost
survey.driver=org.hsqldb.jdbcDriver
survey.dialect=net.sf.hibernate.dialect.HSQLDialect
survey.username=sa
survey.password

325

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 325

XDoclet Plugin for Maven settings

maven.xdoclet.hibernatedoclet.fileset.0=true
maven.xdoclet.hibernatedoclet.fileset.0.include=**/*.java
maven.xdoclet.hibernatedoclet.hibernate.0.Version=2.0

maven.xdoclet.hibernatedoclet.hibernatecfg.0=true
maven.xdoclet.hibernatedoclet.hibernatecfg.0.jdbcUrl=jdbc:hsqldb:hsql://local
host
maven.xdoclet.hibernatedoclet.hibernatecfg.0.driver=org.hsqldb.jdbcDriver
maven.xdoclet.hibernatedoclet.hibernatecfg.0.dialect=net.sf.hibernate.dialect
.HSQLDialect
maven.xdoclet.hibernatedoclet.hibernatecfg.0.userName=sa
maven.xdoclet.hibernatedoclet.hibernatecfg.0.password=

maven.xdoclet.hibernatedoclet.destDir=${maven.build.dir}/generated-
sources/xdoclet

Hibernate Plugin for Maven settings

maven.hibernate.properties=bin/hibernate.properties
maven.hibernate.quiet=false
maven.hibernate.output.dir=${maven.build.dir}/generated-sources/schema

Listing 14.2

<project xmlns:ant="jelly:ant">
<goal name="survey:helloworld" description="Emit Hello World">

<ant:echo message="${survey.helloworld}"/>
</goal>

<goal name="survey:hibernate" description="Generate Hibernate files with
Xdoclet">

<ant:taskdef name="hibernatedoclet"
classname="xdoclet.modules.hibernate.HibernateDocletTask">

<ant:classpath>
<ant:path refid="maven.dependency.classpath"/>

</ant:classpath>
</ant:taskdef>

<ant:hibernatedoclet destDir="${maven.build.dir}/generated-sources"
force="true" verbose="true">
<ant:hibernate version="2.0"/>
<ant:fileset dir="${maven.src.dir}/java"

includes="**/*.java"/>
<ant:hibernatecfg

jdbcUrl="${survey.jdbcurl}"
driver="${survey.driver}"
dialect="${survey.dialect}"
userName="${survey.username}"

326

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 326

password="${survey.password}"
/>

</ant:hibernatedoclet>
</goal>

<preGoal name="java:compile">
<attainGoal name="xdoclet:hibernatedoclet"/>
<!--
Alternatively call survey:hibernate:
<attainGoal name="survey:hibernate"/>
-->

</preGoal>

<preGoal name="test:test-resources">
<attainGoal name="hibernate:schema-export"/>

</preGoal>

</project>

Listing 14.3

Advantages over Ant
Maven has advantages over Ant, including the ability to insert your own steps between already existing
steps via pre- and post-goal processing. This was used to weave the generation of the mapping files and
schema export steps into the standard compile/test cycle.

Integrating additional functionality such as PMD reports is as simple as registering the plug-in to use. A
developer doesn’t have to become an expert on the inner workings of a new tool to leverage it. The plug-
ins hide the complexity of the underlying tool.

All Mavenized projects are laid out in similar ways and function identically. To run unit tests, you
always type maven test. To build a JAR, you always type maven jar. To generate the site documen-
tation, you use maven site. When getting started with a new Mavenized project, a developer already
knows how to execute the basic functionality.

And finally, Maven builds on your existing Ant skills. All Ant tasks function the same way in Maven!

Things to Be Aware Of
Maven’s POM is based on the idea that you will produce one artifact per project. So, if you have a pro-
ject where you have two Ant tasks—one that produces a JAR file containing just your Hibernate code
and another one that produces a JAR file of your entire project—then you will find this setup hard to
reproduce in Maven. Maven would push you to have two projects—one whose sole output is a JAR with
your Hibernate object model and another project that depends on the first JAR.

327

Hibernate and Maven

16_576771_c14.qxd 9/1/04 12:46 PM Page 327

Initial setup can be tedious as well. Hibernate has quite a few dependencies! You will need to add all of
them to your project.xml. And, when a new version of Hibernate is released, you’ll need to carefully ver-
ify that you have updated all the version numbers and removed or added any changed dependencies.
This is more work than just grabbing a bunch of JAR files and dragging them into your /lib directory,
but the increased control and certainty over what you are building pays off in the long run.

Maven also has expectations about how projects are organized. For example, if your unit tests live in a
/src/java/.../test directory that is in the same file system as your regular .java class files, then Maven
will want you to move them into a /src/test directory tree instead.

When using Eclipse as your IDE, you will be presented with some additional integration steps. The
Eclipse plug-in for Maven makes it easy to generate the .classpath and .project files needed to create an
Eclipse project. The challenge arises when Eclipse performs a clean compile. The various mapping files
in the /target/classes directory will all be removed. Unless you have the XDoclet steps as part of the
Eclipse build, you will be missing all the generated code when Eclipse finishes compiling the code.
Fortunately, the Eclipse plug-in takes this into account. When working with Eclipse, all generated code
should be compiled into /target/generated-sources. In the survey example, we would add the
following properties:

maven.xdoclet.hibernatedoclet.destDir=${maven.build.dir}/generated-
sources/xdoclet
maven.hibernate.output.dir=${maven.build.dir}/generated-sources/schema

These properties will generate the code into /target/generated-sources/xdoclet and
/target/generated-sources/schema. Run maven eclipse and these two directories will be
treated as separate source directories in Eclipse. If you import the survey project into Eclipse, you will
see source directories set up. This will allow Eclipse to copy the generated code over as source code into
the target classpath whenever the IDE performs a clean compile.

Summary
That’s all there is to using Maven with Hibernate. With Maven, you take yet another step toward a fully
automated development process. It would be wise to keep up with the XDoclet and Maven products as
they mature along with Hibernate.

328

Chapter 14

16_576771_c14.qxd 9/1/04 12:46 PM Page 328

Hibernate Extensions

Throughout this book, we’ve gone through the exercise of creating Java classes, mapping docu-
ments and database table schemas for our examples. In the examples, we have generally created
the Java class needed for an application first, then determined the mapping necessary to persist
the class, and finally used the mapping document to determine how the resulting database table
should appear. Of course, when using a new technology, we need to do things by hand over and
over in order to build our confidence in how the technology works. Now that we’ve used
Hibernate for quite some time, we have the opportunity to take advantage of numerous tools
available through Hibernate and third-party vendors that will automate a majority of the work in
using Hibernate. When using the automation tools described in this chapter, we will still need to
be aware of what the tools are generating, since the promise of code generation and automation
isn’t a perfect art.

Tools
So just what is available to the developer using Hibernate in the way of automation? In this chap-
ter we will cover the following tools:

❑ SchemaExport/SchemaUpdate

❑ Hibernate Extensions—Code Generator/Map Generator

❑ AndroMDA

❑ MiddleGen

SchemaExport/SchemaUpdate
One of the developer tools provided in the main Hibernate package is called SchemaExport, or
hbm2ddl. This tool is designed to allow the developer to automatically generate a database

151155

17_576771_c15.qxd 9/1/04 12:52 PM Page 329

schema using the information found only within a Hibernate mapping document, along with a few
additional attributes to support the tool itself. The tool can be used in a command-line standalone situa-
tion, within an application, or even as part of an Ant task.

This tool is really made up to two different classes and applications called SchemaExport and
SchemaUpdate. The SchemaExport part is designed to create an initial database schema based on the
supplied mapping document. When changes are made to the mapping document, the database table
might need to be updated as well. The SchemaUpdate application is used for this purpose by creating
an appropriate DDL for the deltas between the original and current mapping document. Both of these
applications can be found in the <hibernate installation directory>/bin directory. There you will find two
batch files or scripts called SchemaExport and SchemaUpdate, as you might expect. From a class
standpoint, the classes that implement the functions are:

net.sf.hibernate.tool.hbm2ddl.SchemaExport
net.sf.hibernate.tool.hbm2ddl.SchemaUpdate

Listing 15.1 shows an example of the Windows SchemaExport.bat file. Notice the JDBC_DRIVER
variable.

@echo off

rem ---
rem Execute SchemaExport tool
rem ---

set JDBC_DRIVER=C:\jars\mysql310.jar
set HIBERNATE_HOME=..
set LIB=%HIBERNATE_HOME%\lib
set PROPS=%HIBERNATE_HOME%\src
AU: Please indicate where to wrap this line of code. LSRset
CP=%JDBC_DRIVER%;%PROPS%;%HIBERNATE_HOME%\hibernate2.jar;%LIB%\
commons-logging-
1.0.3.jar;%LIB%\commons-collections-2.1.jar;%LIB%\commons-
lang-1.0.1.jar;%LIB%\cglib-2.0-rc2.jar;%LIB%\dom4j-1.4.jar;%LIB%\
odmg-3.0.jar;%LIB%\xml-
apis.jar;%LIB%\xerces-2.4.0.jar;%LIB%\xalan-2.4.0.jar

java -cp %CP% net.sf.hibernate.tool.hbm2ddl.SchemaExport %*

Listing 15.1

There are two areas in this script that you need to change for your application. The first is the
JDBC_DRIVER variable, which needs to be set to the JDBC driver you will be using for your database
server. The second is the PROPS variable, which needs to point to the directory where your Hibernate
property files are located.

Building the Mapping Document and Database Table
The work we want to accomplish with the SchemaExport tool is the automatic generation of a database
schema given an appropriate mapping document. As you can tell from our examples throughout this
book, the database schema is fairly easy to produce, given just the normal information we provide in

330

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 330

each element of the document. We’ll look at a simple example and then expand it to include some of the
more unique attributes designed specifically for the SchemaExport tool. Consider the mapping docu-
ment in Listing 15.2.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping

PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Notes"
table="notes">

<id name="id" unsaved-value="0">
<generator class="sequence"/>

</id>

<property name="owner" type="Sstring"/>
<property name="info" type="string"/>
<property name="count" type="integer"/>

</class>

</hibernate-mapping>

Listing 15.2

The mapping document in Listing 15.2 is designed for a Java class with a couple of attributes and an
appropriate identifier. To generate the schema for an appropriate database, we’ll need to use the
SchemaExport script found in the /bin directory using the mapping document saved in the file
Notes.hbm.xml. Here’s an example command line:

SchemaExport Notes.hbm.xml

In order for the tool to work properly, it needs to be able to find the appropriate configuration file with
connection information to our database. If we use the script with the above command line, we will be
presented with an appropriate database schema on the console, as shown in Listing 15.3. The tool will
connect to your database, drop the current tables if they exist, and create the necessary tables based on
the mapping document. As you can read, there is a key point in the previous sentence. The tables that
the SchemaExport tool will create will be dropped if they already exist. Thus, if you have tables in your
database with the names of the classes within the supplied mapping document, they will be deleted.

C:\data\books\hibernate-2.1\bin>schemaexport --text Notes.hbm.xml
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Environment <clinit>
INFO: Hibernate 2.1.2
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Environment <clinit>
INFO: loaded properties from resource hibernate.properties:
{hibernate.connection.username=, hibernate.connection.password=,
hibernate.cglib.use_reflection_opti
mizer=false, hibernate.dialect=net.sf.hibernate.dialect.MySQLDialect,
hibernate.show_sql=true,
hibernate.connection.url=jdbc:mysql://localhost/products,
hibernate.connection.driver_class=com.mysql.jdbc.Driver}
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Configuration addFile

331

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 331

INFO: Mapping file: Notes.hbm.xml
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Binder bindRootClass
INFO: Mapping class: Notes -> notes
May 20, 2004 3:16:36 PM net.sf.hibernate.dialect.Dialect <init>
INFO: Using dialect: net.sf.hibernate.dialect.MySQLDialect
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing one-to-many association mappings
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing one-to-one association property references
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing foreign key constraints
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing one-to-many association mappings
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing one-to-one association property references
May 20, 2004 3:16:36 PM net.sf.hibernate.cfg.Configuration secondPassCompile
INFO: processing foreign key constraints
May 20, 2004 3:16:36 PM net.sf.hibernate.tool.hbm2ddl.SchemaExport execute
INFO: Running hbm2ddl schema export
drop table if exists notes
create table notes (id INTEGER NOT NULL AUTO_INCREMENT, owner VARCHAR(255),
info
VARCHAR(255), count INTEGER, primary key (id))
May 20, 2004 3:16:36 PM net.sf.hibernate.tool.hbm2ddl.SchemaExport execute
INFO: schema export complete

Listing 15.3

Now having the output of the tool displayed on the console is nice for viewing purposes, but you might
not always want this done. To facilitate this situation as well as others, the SchemaExport tool allows
several command-line options. These options are shown in the following table.

Command-Line Option Purpose

--quiet Suppress console output

--drop Drop the tables upon execution but don’t create new ones

--text Only display the SQL to generate the new tables but don’t
actually connect to the database

--output=my_schema.ddl Produce the required SQL for creating the database tables to
the specified file

--config=hibernate.cfg.xml Look for the Hibernate configuration file using the specific
filename provided in the option

--properties=hibernate.properties Look for the Hibernate properties in the provided file

--format Pretty-print the SQL for the table creation

--delimiter=x Define a specific end-of-line delimiter for the output

332

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 332

As you can see, there are quite a few options available for the SchemaExport tool. Probably the most
important ones are –quiet, --drop, --text, and --output.

When you execute the script, quite a bit of output can be displayed to the console as the script does its
work. If you aren’t interested in the output or just want to use the script in an automated situation, you
can suppress the output using the --quiet command-line option. Related to the console output, if you
just want to see the SQL that the SchemaExport script would generate but not actually make any
changes to the database, use the --text option. The result will be the SQL needed to build the neces-
sary database tables, but no changes will be made to the database server. The --drop option can be
used when you just want the script to drop any tables in the database but not actually create the new
tables. Finally, if you are interested in having the SQL generated from the script output to a file, use
the --output option such as

SchemaExport Notes.hbm.xml --output=schema.sql

As mentioned previously, the SchemaExport tool requires the use of a Hibernate configuration file in
order to access the database server and generate the necessary tables from the supplied mapping docu-
ment. The following table shows the fields that must be included in the configuration file. It is very
important that the dialect property be accurate because Hibernate will use this property to determine the
right SQL to generate. Not all of the databases that Hibernate supports include the default ability to han-
dle foreign keys automatically. The MyIsam table used as the default table type in MySQL is one such
example.

Property Name Description

hibernate.connection.driver_class The JDBC driver class for the database server

hibernate.connection.url The URL for connecting to the database server

hibernate.connection.username The database user to log in to the database
server

hibernate.connection.password The password for the supplied username

hibernate.dialect The database dialect to use when creating the
SQL for the DDL

Advanced Mapping Document Options
The majority of the information needed by the SchemaExport script to build the database tables comes
from the elements of the mapping document. As you might expect, the elements need to include enough
information to give the script everything needed to build the correct table columns. This means you will
need to have elements with more information than <property name="address"/>. This example
element doesn’t tell the script much about how to create the “address” table column. Clearly, adding a
type attribute to the element will give the script enough information to build the column. For example,
we might use the element <property name="address" type=" string"/>. Since many database
servers don’t include a SQL type of string, the result will be a table column such as varchar or text.

If you want to exert more control over how the script generates the table columns, you can use the
attributes found in the following table. Some of the attributes can be added directly to a <property> or
<element> element; however, some of them need to use a <column> subelement, as indicated in the

333

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 333

table. The <column> subelement can be used within any of the elements that detail a database column,
such as <property>. Let’s look at examples using each of the attributes and the results from the script.
We will assume that the Hibernate configuration file for these examples specifies a MySQL database.

Attribute Values Interpretation

length Value Limits the length of a database column to the specified value

sql-type Type The type to use for a particular column overriding the one
specified by a type attribute or found during reflection

foreign-key Name The name of the foreign key constraint

not-null True/false Determines whether or not a column is nullible; the default is
false

unique True/false Determines whether or not a column has a unique constraint

index Name The name of a multicolumn index

unique-key Name The name of a multicolumn unique constraint

check SQL SQL check constraint

length
When the attribute being mapped from a class to an appropriate database has a limit on its length, usu-
ally a string attribute, the developer can specify the maximum size using the length attribute. You can
see the difference in the table column created using a mapping document with the following two
<property> elements:

<property name="owner" type="string" length="32"/>
<property name="info" type="string"/>

The script will produce a table with the following description:

mysql> describe notes;
+-------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
owner	varchar(32)	YES		NULL	
info	varchar(255)	YES		NULL	
count	int(11)	YES		NULL	
+-------+--------------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

Sql-type
Of course, in most of our examples, we’ve relied on the script choosing the correct table column type.
For example, we supply the attribute "type="string"" and the script produces the MySQL column
type of varchar(255) What if we wanted to have a type of text instead? The sql-type attribute gives us

334

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 334

the ability to change the type, thus overriding the type defined in the parent element. The sql-type
attribute requires the use of the <column> subelement. For example:

<property name="owner" type="string" length="32"/>
<property name="info" type="string">
<column name="info" sql-type="text"/>

</property>

When the SchemaExport script is executed against the elements shown above, we obtain the database
schema we are after, as shown here:

mysql> describe notes;
+-------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
owner	varchar(32)	YES		NULL	
info	text	YES		NULL	
count	int(11)	YES		NULL	
+-------+-------------+------+-----+---------+----------------+
4 rows in set (0.01 sec)

not-null
If you have a database column that needs to be constrained from the standpoint of not allowing null val-
ues, the not-null attribute needs to be set to true. If the not-null attribute is not part of either the primary
element such as property or the <column> element, a null value can be associated with the object’s
attribute and stored in the database. An example of the not-null attribute is:

<property
name="count"
type="integer"
not-null="true"

/>

This mapping will produce the following table schema:

mysql> describe notes;
+-------+-------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
owner	varchar(32)	YES		NULL	
info	text	YES		NULL	
count	int(11)			0	
+-------+-------------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

Notice that the Null column in the output has a blank for the count field. This indicates that a null value
is not allowed when a row is inserted or updated in the table.

335

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 335

foreign-key
When you create a relationship between two different objects, there must be a related link between the
tables of the objects. Consider an example of a Notes class with a many-to-one relationship with an
Owner class. Within the mapping document, we will have a <many-to-one> element for the <class
name="Notes"> element, as shown here:

<class name="Notes"
table="notes">

<id name="id" unsaved-value="0">
<generator class="native"/>

</id>

<many-to-one name="owner" class="Owner" foreign-key="fk_foo_bar" not-
null="true"/>
<property name="info" type="string">
<column name="info" sql-type="text"/>

</property>
<property name="count" type="integer" not-null="true"/>

</class>

<class name="Owner"
table="owner">

<id name="id" unsaved-value="0">
<generator class="native"/>

</id>

<property name="fullname" type="string"/>
</class>

Notice that we have the name and class attributes within the relationship element, but we’ve also
included a foreign-key attribute to indicate the column to be added to the Notes table for the rela-
tionship between the Notes and Owner tables. Hibernate will use the column to create the necessary
relationship. If your database server supports foreign keys, then the SQL generated by SchemaExport
will create the constraint automatically. Here’s the SQL generated for both tables and the constraint:

create table owner (id INTEGER NOT NULL AUTO_INCREMENT, fullname
VARCHAR(255),
primary key (id))

create table notes (id INTEGER NOT NULL AUTO_INCREMENT, owner INTEGER not
null,
info text, count INTEGER not null, primary key (id))

alter table notes add index (owner), add constraint fk_foo_bar foreign key
(owner)
references owner (id)

Notice that the alter table command executed after the tables were added to the server. The con-
straint was created between the two tables.

336

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 336

index
If you would like the script to create an index for a column within the database server, use the index
attribute to specify the name of the index. For example:

<property name="zipcode" type="string" length="10">
<column name=”zipcode” index="zipidx"/>

</property>

When the script encounters the attribute, the SQL generated is:

drop table if exists notes

create table notes (id INTEGER NOT NULL AUTO_INCREMENT, info VARCHAR(255),
count INTEGER not null, zipcode VARCHAR(255), primary key (id))

create index zipidx on notes (zipcode)

unique
If you have a column within your attribute that must be unique, and you want to extend the constraint
to the database, use the unique attribute. Setting the attribute to true will impose the UNIQUE keyword
on the column within the SQL string sent to the database server. The default value, where the unique
attribute is not used, is false, and thus duplicate values can exist for the column. An example of using
the unique attribute is:

<property name="socialsecuritynumber" type="string" length="9" >
<column name="socialsecuritynumber" unique="true"/>

</property>

The resulting SQL from the SchemaExport script is

drop table if exists notes

create table notes (id INTEGER NOT NULL AUTO_INCREMENT, info VARCHAR(255),
count INTEGER not null, socialsecuritynumber VARCHAR(255) unique, primary key
(id))

For the unique attribute, the script adds the unique clause to our socialsecuritynumber column.

check
A constraint can be associated with a column or table using the check attribute. For example, we could
set up a constraint to make sure that the length of the socialsecuritynumber column is equal to 9.
Here’s what the element would look like:

<property name="socialsecuritynumber" type="string" length="9" >
<column name="socialsecuritynumber" check="len(socialsecuritynumber) = 9"

/>
</property>

337

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 337

The result of using the check attribute is shown in the following SQL:

drop table if exists notes

create table notes (id INTEGER NOT NULL AUTO_INCREMENT, info VARCHAR(255),
count
INTEGER not null, socialsecuritynumber VARCHAR(255)
check(len(socialsecuritynumber)
= 9), primary key (id))

The check attribute adds an appropriate check clause to the SQL command. The database server you
are using must support the check command in order for this attribute to work. The MySQL database
server does not support this command.

unique-key
If you are interested in creating a multicolumn key for your object and table, then you can use the
unique-key attribute to create it. For example:

<property name="bigkey" type="string" >
<column name="bigkey" unique-key="info"/>
<column name="bigkey" unique-key="count"/>

</property>

The result of the above elements is the SQL:

create table notes (id INTEGER NOT NULL AUTO_INCREMENT, info VARCHAR(255),
count
INTEGER not null, bigkey VARCHAR(255), primary key (id), unique (bigkey),
unique
(bigkey))

For MySQL, the description of the table shows the MUL value for the Key column, indicating that the col-
umn is made from a combination of column values:

mysql> describe notes;
+--------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
info	varchar(255)	YES		NULL	
count	int(11)			0	
bigkey	varchar(255)	YES	MUL	NULL	
+--------+--------------+------+-----+---------+----------------+
4 rows in set (0.00 sec)

Updating the Database Table
Clearly, we don’t always want to drop the current table associated with a mapping document just
because a simple change is made to the Java class or the mapping document itself. In these cases, we can
switch from the SchemaExport script to SchemaUpdate, which is designed to analyze the currently sup-
plied mapping document and the database table already incorporated on the database server. Let’s con-
sider a table based on the mapping document in Listing 15.4.

338

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 338

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Notes"
table="notes">

<id name="id" unsaved-value="0">
<generator class="native"/>

</id>

<property name="info" type="string"/>
<property name="count" type="integer" not-null="true"/>

</class>

</hibernate-mapping>

Listing 15.4

The table would appear as shown here:

+-------+--------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+----------------+
id	int(11)		PRI	NULL	auto_increment
info	varchar(255)	YES		NULL	
count	int(11)			0	
+-------+--------------+------+-----+---------+----------------+

We will change the mapping document as shown in Listing 15.5, where some of the attributes are
changed and a couple of new columns are added.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>

<class name="Notes"
table="notes">

<id name="id" unsaved-value="0">
<generator class="native"/>

</id>

<property name="info" type="string"/>
<property name="count" type="integer" not-null="true"/>
<property name="zipcode" type="string"/>
<property name="fullname" type="string"/>

</class>

</hibernate-mapping>

Listing 15.5

339

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 339

Now we can execute the SchemaUpdate script using the command:

schemaupdate Notes.hbm.xml

The result of the script is the following SQL:

alter table notes add column zipcode VARCHAR(255)
alter table notes add column fullname VARCHAR(255)

As you can see, the majority of the SQL commands at the end of the processing involve the alter
table command as expected. Note that updating the schema using the SchemaUpdate functionality
must use metadata generated by the JDBC driver, and only well-developed drivers will be able to sup-
port the necessary information. Check your driver’s documentation for an explanation of how well it
implements the JDBC Metadata API. The SchemaUpdate script allows two command-line options, as
shown in the following table.

Command-Line Option Description

--quiet No output is exposed to the console

--properties=hibernate.properties Location of the properties file

Application Support
Whether you are building a development tool or some application that will be dynamically changing the
mapping documents and database schema, you can execute both the SchemaExport and SchemaUpdate
tools from within Java code. The class defined for SchemaExport is called net.sf.hibernate
.tool.hbm2dll.SchemaExecute and for SchemaUpdate is called net.sf.hibernate.tool
.hbm2dl1.SchemaUpdate. Executing from within Java is basically the same process for each class, but
the methods available are a bit different. The next table shows the methods and constructors for
SchemaExport, and the subsequent table is for SchemaUpdate.

The process to use the classes is shown in the following code snippet:

Configuration config = new Configuration();
SchemaExport export = new SchemaExport(config);
export.create(false, false);

The same code can be used for the SchemaUpdate class as well the execute() method, as shown in
the following tables.

Method Description

void create(boolean script, boolean export) Execute the SchemaExport script to create the new
table.

Export: If true then the SQL will be provided to the
database server.

Script: If true the script information will be dis-
played to the console.

340

Chapter 15

Table continued on following page

17_576771_c15.qxd 9/1/04 12:52 PM Page 340

Method Description

void drop(boolean script, boolean export) Execute the SchemaExport script to drop the tables
in the script.

Export: If true then the SQL will be provided to the
database server.

Script: If true the script information will be dis-
played to the console.

SchemaExport setDelimiter(String delimiter) Set the delimiter to be used between the generated
SQL statements.

SchemaExport setOutputFile(String filename) Set the name of the file to output the script.

Method Description

void execute(boolean script, Execute the SchemaUpdate script.
boolean doUpdate)

Export: If true then the SQL will be provided to the
database server.

Script: If true the script information will be dis-
played to the console.

Ant Support
Finally, we need to consider how to incorporate both of these schema scripts into Ant since Ant is the
primary build mechanism for Java, and it is a perfect match for the functionality provided within both
the SchemaUpdate and SchemaExport scripts. Adding an Ant target for SchemaExport is shown in
Listing 15.6.

<target name="schemaexport">
<taskdef name="schemaexport"

classname="net.sf.hibernate.tool.hbm2ddl.SchemaExportTask"
classpathref="classpath"/>

<schemaexport
properties="hibernate.properties"
quiet="no"
delimiter=";">
<fileset dir="src">

<include name="**/*.hbm.xml"/>
</fileset>

</schemaexport>
</target>

Listing 15.6

341

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 341

One of the key points to the script in Listing 15.6 is the classname of SchemaExportTask to handle the
execution of the export. Any of the needed command-line options can be provided in the Ant task using
the <schemaexport> element. The <fileset> element is used to indicate the various mapping docu-
ments that should be used by the SchemaExport task. For completeness, we provide the SchemaUpdate
Ant task in Listing 15.7.

<target name="schemaupdate">
<taskdef name="schemaupdate"

classname="net.sf.hibernate.tool.hbm2ddl.SchemaUpdateTask"
classpathref="classpath"/>

<schemaupdate
properties="hibernate.properties">
<fileset dir="src">

<include name="**/*.hbm.xml"/>
</fileset>

</schemaupdate>
</target>

Listing 15.7

Hibernate Extensions
Several of the tools available to developers are produced by the same folks who created Hibernate. In a
separate package called Hibernate Extensions, there are three different tools to help make a developer’s
job just a little easier:

❑ hbm2java: Code generator

❑ class2hbm: Map generator

❑ hibern8IDE: Interactive tool for browsing and executing HQL queries

Once you’ve downloaded and installed the Hibernate Extensions from the Hibernate home page, you
will find the /tools and /hibern8ide directories. These directories include /bin subdirectories, from
which the various tools can be executed.

Code Generator
If you choose to build your application’s persistence with the mapping documents first, the Java classes
can be built automatically using the Code Generator. The Code Generator is designed to take mapping
documents and produce a skeletal Java class that handles the basic parts of the mapping. You can exe-
cute the Code Generator either by using the batch file in the /bin directory of the tools installation or
through the class itself. If you are using the batch file, be sure to check the setenv.bat file to set all needed
environment variables. The execution commands are:

hbm2java <mapping document>

java –cp <classpath> net.sf.hibernate.tool.hbm2java.CodeGenerator <options>
<mapping document>

342

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 342

The result of the Code Generator will be a Java class with the appropriate constructor and setter/getter
methods. The mapping document shown in Listing 15.8 produces the Java class in Listing 15.9.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<hibernate-mapping>
<class name="Account">

<id type="integer">
<generator class="native"/>

</id>

<property name="name" type="string" />
<property name="acctnum" type="string" />
<property name="zipcode" type="integer" />

</class>
</hibernate-mapping>

Listing 15.8

// default package

import java.io.Serializable;
import org.apache.commons.lang.builder.ToStringBuilder;

/** @author Hibernate CodeGenerator */
public class Account implements Serializable {

/** nullable persistent field */
private String name;

/** nullable persistent field */
private String acctnum;

/** nullable persistent field */
private int zipcode;

/** full constructor */
public Account(String name, String acctnum, int zipcode) {

this.name = name;
this.acctnum = acctnum;
this.zipcode = zipcode;

}

/** default constructor */
public Account() {
}

343

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 343

public String getName() {
return this.name;

}

public void setName(String name) {
this.name = name;

}

public String getAcctnum() {
return this.acctnum;

}

public void setAcctnum(String acctnum) {
this.acctnum = acctnum;

}

public int getZipcode() {
return this.zipcode;

}

public void setZipcode(int zipcode) {
this.zipcode = zipcode;

}

public String toString() {
return new ToStringBuilder(this)

.toString();
}

}

Listing 15.9

There are a few different options that can be used with the generator, as shown in the following table.

Option Description

--output=rootDirectory The root directory where the output should be added

--config=config The configuration file to use with the generator

The --config indicates that a configuration file may be used with the generator. The purpose of the
configuration file is to specify how the code generator creates the underlying code from the mapping
document files as well as provide a mechanism for supplying global-level options. The format of the
configuration file is:

<codegen>
<meta>
<generate>

</codegen>

344

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 344

The <generate> tag defines the renderer to be used within the CodeGenerator class for generating
the Java classes. Hibernate currently supplies two different code renderers: a default renderer for gener-
ating the Java classes, called BasicRenderer, and a second renderer for creating EJB finders for spe-
cific Hibernate properties.

The <meta> tags are used within the mapping document for annotation of the final Java code and are
read by the Code Generator as well as added to the configuration file for global use. For example, we
might use the <meta> tag within a <class> tag to insert Javadoc tags or any of the functionality shown
in the following table.

Attribute Description

class-description Javadoc tags for a class description

field-description Javadoc tags for a field description

interface Set to true to generate an interface

implements Adds an implements clause and class

extends Adds an extend clause and class for inheritance unless the class is
a <subclass> within the mapping document

generated-class The class name to use when generating the class; probably differ-
ent than the class=”” value in the mapping document

scope-class Declares the scope for the class

scope-set Declares the scope for the setter method

scope-get Declare the scope for getter method

scope-field Declare the scope for the field

use-in-tostring Specifies the property to use in a toString();

bound Adds propertyChangeListener support for a property

constrained Adds vetoChangeListener support for a property

gen-property Set to false to not generate a property in the mapping document

property-type Overrides the default type of the property

finder-method Supplies the name of a finder method

session-method Allows the Session object to be obtained within the finder; uses
the code SessionTable.getSessionTable().getSession();

Let’s look at a simple example of annotating the mapping document files with the <meta> tags.
Consider the following mapping document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping
PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

345

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 345

<hibernate-mapping>
<class name="Account">
<meta attribute="extends">
Loggable

</meta>

<id type="integer">
<generator class="native"/>

</id>

<property name="name" type="string">
<meta attribute="field-description">
The name of the account - should be full name
@see StudentName

</meta>
</property>

<property name="acctnum" type="string">
<meta attribute="field-description">
The account number of the account

</meta>
</property>

<property name="zipcode" type="integer">
<meta attribute="field-description">
The zipcode of the account
@see FullZipcode

</meta>
</property>

</class>
</hibernate-mapping>

Here we’ve add a couple of different <meta> tags. The first uses the attribute type of field-descriptor for
the various attributes. We want the Code Generator to add the specified Javadoc for each of the proper-
ties. We also added a <meta> tag to make sure the generated class also extends the Loggable interface.
Once the Code Generator processes the mapping document, the following output will be generated:

// default package

import java.io.Serializable;
import org.apache.commons.lang.builder.ToStringBuilder;

/** @author Hibernate CodeGenerator */
public class Account extends

Loggable
implements Serializable {

/** nullable persistent field */
private String name;

346

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 346

/** nullable persistent field */
private String acctnum;

/** nullable persistent field */
private int zipcode;

/** full constructor */
public Account(String name, String acctnum, int zipcode) {

this.name = name;
this.acctnum = acctnum;
this.zipcode = zipcode;

}

/** default constructor */
public Account() {
}

/**
* The name of the account - should be full name
* @see StudentName
*
*/
public String getName() {

return this.name;
}

public void setName(String name) {
this.name = name;

}

/**
* The account number of the account

*/
public String getAcctnum() {

return this.acctnum;
}

public void setAcctnum(String acctnum) {
this.acctnum = acctnum;

}

/**
* The zipcode of the account
* @see FullZipcode
*
*/
public int getZipcode() {

return this.zipcode;
}

public void setZipcode(int zipcode) {
this.zipcode = zipcode;

}

347

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 347

public String toString() {
return new ToStringBuilder(this)

.toString();
}

}

The command to generate the output is:

java -cp <classpath> net.sf.hibernate.tool.hbm2java.CodeGenerator <options>
<mappingFiles>

Specifically, we used:

java net.sf.hibernate.tool.hbm2java.CodeGenerator Account.hbm.xml

As you can see, the generated class extends Loggable, and the attributes are properly commented with
Javadoc tags. Without the <meta> tag, we would not be able to provide this extra level of annotation to
the generated Java code. Remember, you can use the <meta> tag within the configuration file for global
changes to the generated code.

CodeGenerator Finder
When you use Hibernate and EJBs, you still need to use finders for some of the properties of your map-
ping document. Using the CodeGenerator class to create the finders is a two-step process. The first
step is to build the appropriate configuration file with the <generate> tags to specify the finder
renderer. For example, here’s a possible configuration file called codegen.xml:

<codegen>
<generate renderer="net.sf.hibernate.tool.hbm2java.BasicRenderer"/>

<generate suffix="Genfinder"
renderer="net.sf.hibernate.tool.jbm2java.FinderRenderer"/>

</codegen>

Here we’ve just created a new renderer using the FinderRenderer class and specified the suffix
attribute. The suffix attribute is used to change the output file generated based on the <class
name="<classname>"> tag within the mapping document. If the class name is Account, the gener-
ated Java file will be AccountGenfinder.java where the suffix string is appended to the class name.
We could also specify the package for the finders as well if we included the "package="<string>""
attribute within the <generate> element. If you use the package attribute in the configuration file, it
will override the package specified in the mapping document file.

After the configuration file is created, we need to annotate the mapping document with the appropriate
<meta> tags. For example:

<property name="zipcode" type="integer">
<meta attribute="field-description">
The zipcode of the account
@see FullZipcode

</meta>
<meta attribute="finder-method">findByZipcode</meta>
</property>

348

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 348

Here we’ve added a <meta> element to the Zipcode property. The attribute is defined as "finder-
method" and the value of the element is findByZipcode. The code produced for the finder method
is shown here:

// default package

import java.io.Serializable;
import java.util.List;
import java.sql.SQLException;

import net.sf.hibernate.*;
import net.sf.hibernate.type.Type;

/** Automatically generated Finder class for AccountGenfinder.
* @author Hibernate FinderGenerator **/
public class AccountGenfinder implements Serializable {

public static List findByZipcode(Session session, int zipcode) throws
SQLException, HibernateException {

List finds = session.find("from Account as account where
account.zipcode=?", new Integer(zipcode), Hibernate.INTEGER);

return finds;
}

public static List findAll(Session session) throws SQLException,
HibernateException {

List finds = session.find("from Account in class null.Account");
return finds;

}
}

Map Generator
Many of the tools discussed so far are very helpful when you develop a new application, but there will
be many times when you want to use Hibernate to persist Java classes that have already been created
and possibly even used in a heritage application. Hibernate includes the class2hbm class to automati-
cally create a mapping document from a compiled Java class.

Of course, we should always be concerned when we are talking about using a computer application to
analyze another language construct to produce yet another application construct. As you might expect,
the Map Generator will use reflection to pull the attributes from the Java class and pretty much guess the
type to be used for the mapping. The tool will attempt to map inheritance trees as much as it can. Thus,
you as the developer should expect to spend some time looking through the resulting mapping docu-
ment to fine-tune how the objects will be mapped.

Before we look at the tool itself, let’s consider some of the rules that the Map Generator will adhere to
when trying to analyze the Java class. The rules include:

❑ The Java class must include a default constructor.

❑ The class cannot be nested, an interface, an array, or a primitive type.

❑ Attributes of the class must have setter/getter functions.

349

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 349

❑ Setter methods must start with set.

❑ Getter methods must start with get or is.

To use the Map Generator tool, execute the following command:

java –cp <classpath> net.sf.hibernate.tool.class2hbm.MapGenerator options
classnames

You can also execute the tool from the /bin directory using a script called class2hbm.bat. The batch file
executes another batch file called setenv.bat. Be sure to open this batch file and set the proper environ-
ment values for your specific setup. The options for the Map Generator are shown in the following table.

Option Description

--interact Starts interactive mode, allowing responses to the tool

--quiet Doesn't allow output to appear on the console

--setUID=uid Sets the list of candidate UIDs to the singleton uid

--addUID=uid Places the specified uid to the front of the list of candidate UIDs

--select=mode Selects the mode for subsequently added classes

--depth=<small-int> Reduces the depth of component data recursion for subsequently
added classes

--output=my_mapping.xml Sends the O-R Mapping output to a file

full.class.Name Adds the specified class to the mapping

--abstract=full.class.Name Tells the tool to ignore specified superclasses

Once you’ve executed the Map Generator on a Java class, you will need to open the mapping document
and make any necessary changes.

If you attempt to execute the Map Generator against a class that doesn’t have a default constructor, you
will receive the following message:

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping PUBLIC

"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">

<!-- Class com.gradecki.URLObject has no 0-arg constructor! -->
<hibernate-mapping>
</hibernate-mapping>

Hibern8IDE
A very good tool provided with the extensions package is called Hibern8IDE. Although not a true IDE,
this application allows you to browse your persisted store using supplied mapping documents as well
as perform manual HQL queries. The tool is provided in the /hibern8ide directory and consists of a

350

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 350

single JAR and several support JARs within the /lib directory. Make sure all of the JARs are in your
classpath, and execute the following command:

java net.sf.hibern8ide.Hibern8IDE

Or you can use the Ant build.xml file and execute it with the command ant run , as shown in Listing
15.10.

<project name="Hibern8IDE" default="dist" basedir=".">

<!-- Name of project and version, used to create filenames -->
<property name="Name" value="Hibern8IDE"/>
<property name="name" value="hibern8ide"/>
<property name="version" value="1.0"/>

<!-- set global properties for this build -->
<property name="lib.dir" value="lib"/>
<property name="jar.name" value="${name}"/>

<!-- set Hibernate core related properties -->
<property name="hibernate-core.home" value="../../hibernate-2.1"/>
<property name="hibernate-core.jar" value="${hibernate-

core.home}/hibernate2.jar"/>
<property name="hibernate-core.lib.dir" value="${hibernate-

core.home}/lib"/>
<property name="hibernate-core.doc.api" value="${hibernate-

core.home}/doc/api"/>

<path id="lib.class.path">
<path location="${hibernate-core.jar}"></path>
<fileset dir="${hibernate-core.lib.dir}">

<include name="**/*.jar"/>
</fileset>
<fileset dir="${lib.dir}">

<include name="**/*.jar"/>
</fileset>

</path>

<!-- Tasks -->

<target name="run" >
<java classname="net.sf.hibern8ide.Hibern8IDE"

classpathref="lib.class.path" fork="true">
<classpath>

<path location="${src.dir}"/>
</classpath>

</java>
</target>

</project>

Listing 15.10

351

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 351

Within the Ant script, you will need to add additional JAR lib directories to the lib.class.path id. specifi-
cally to those places where your JDBC drivers are located. Further, you should add an entry to the src.dir
variable to point to where your source classes and mapping documents are located. The result of the
command is a graphical application, as shown in Figure 15.1.

352

Chapter 15

Figure 15.1

There are still a few different tasks we need to do before we can start using the IDE. The first is to load
the Hibernate.properties and/or hibernate configuration file. To do this, click the ellipse button
next to the Properties and Config File: edit lines. Browse to where the appropriate file(s) are located and
click on them. In order for Hibern8IDE to work properly, there must be a <mapping> element within the
hibernate.cfg.xml file; otherwise, you would see quite a few errors in the console window where you
started the IDE. When you’ve added the correct properties and/or configuration files, click the Apply
button. One of two actions will occur. The first is an error with the supplied files. In this case, the right-
most part of the window will automatically change to the Messages tab, and an error will be displayed.
Along with the error there might be some additional stack trace dumps on the console window. Fix the
errors and click the Apply button again. You will have a successful Apply when see a GUI like the one
shown in Figure 15.2.

On the left -most part of the GUI, you will find a listing of the mapped classes based on the provided
mapping documents. If you need to add additional documents, use the Mapping Files: control on the
right side of the GUI. Make sure that you load parent mappings before child ones. Once the proper
classes have been mapped, you have a few different options available.

17_576771_c15.qxd 9/1/04 12:52 PM Page 352

Figure 15.2

Browsing Objects
The first task we can do with the IDE is browse the mapped classes by clicking on the expansion plus
signs for each class. In Figure 15.3, we show how the IDE is able to display all of the mapped attributes
along with their types. In the case of the Newsgroup class, one of the attributes is a List, and thus the
IDE is able to accurately show which class (Story) is stored in the List and its appropriate attributes.
Although it’s a little hard to see in Figure 15.3, the IDE displays a tiny ID label next to the ID of each
mapped class as well as 1-N and N-1 labels to show relationships.

We can also get a pictorial view of the currently displayed mapped classes. Figure 15.4 shows an
example of the type of graph that can be displayed just by clicking the Graph tab at the top of the left-
most window of the IDE.

Querying Objects
The real power of the IDE comes from the ability to execute HQL queries in an interactive fashion.
Figure 15.5 shows an example where we’ve entered a query in the text area of the HQLCommander tab.
The results of the query are displayed in the lower right window of the application.

353

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 353

Figure 15.3

354

Chapter 15

Figure 15.4

17_576771_c15.qxd 9/1/04 12:52 PM Page 354

Figure 15.5

AndroMDA
It is considered good practice today to develop new applications using a modeling tool such as UML.
From the model, we have the ability to build our classes, mapping document and database tables. What
if we had the ability to generate the classes and mapping documents automatically from the UML dia-
gram components? This ability creates a fantastic write-once opportunity and vastly saves production
time, so the engineer can work on testing and other tasks that are typically condensed because of sched-
ule issues.

There is one such application available called AndroMDA. AndroMDA is an open source framework
that allows an application to be constructed using a UML model. The framework generates the necessary
class and components needed to execute an application in a J2EE environment or just a standalone appli-
cation. So what does this have to do with Hibernate? The answer is that AndroMDA supports the con-
cept of a cartridge, which expands the usefulness of AndroMDA to other technologies such as Hibernate.
In fact, there already exists a cartridge for Hibernate, so we can automatically gain the ability to use
AndroMDA in our persistent application.

To obtain AndroMDA, browse to http://www.andromda.org and click Installation and then click the
link to the download area. Click on the latest version of the application and download it to your
machine. Unzip the downloaded application into an appropriate directory. In order to use AndroMDA,
you will need a few additional tools. The first is Ant, and the second is some sort of UML editor. We will
use Poseidon as our tool. You can download a copy at http://www.gentleware.com/. From this site, you

355

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 355

can download and install a community edition of the UML editor, and then you can begin using
AndroMDA and Hibernate. For the remainder of this section, we will assume you’ve downloaded
AndroMDA and Poseidon or some other UML editor. You will need Ant installed on your machine as
well.

Setting Up a Project
The first step in using AndroMDA is to change into the installation directory of the application and open
the samples directory. Within this directory you will find a hibernate-template directory along with
other template directories. In addition, there is a wizard.xml build file as well as a wizard.properties file.
Open the wizard.properties file and set the appropriate paths for AndroMDA and JBoss.

Now open a command prompt and change into the /samples directory and execute the following com-
mand. You can change the location of the sample we are creating:

ant –f wizard.xml –Dproject.home=c:/temp/example hibernate

This command will create a new project at the directory specified in the command line. Note the hiber-
nate option at the end of the command. This option tells the AndroMDA wizard to generate a project
appropriate for the Hibernate cartridge associated with AndroMDA. Cartridges are like plug-ins and
give AndroMDA the information needed to build the appropriate files from a UML model.

Now change to the example project directory and notice that there are a few properties files and build
scripts for Ant. Change to the /src/uml directory and you will find a blank Poseidon model waiting to
be built into your favorite application. Start Poseidon and open the blank model. You should get a GUI,
as shown in Figure 15.6.

356

Chapter 15

Figure 15.6

17_576771_c15.qxd 9/1/04 12:52 PM Page 356

TE
AM
 F
LY

You can actually just use the example model provided by AndroMDA because it includes a couple of
classes. Now, go back to your command prompt and execute Ant by entering the command ant. After a
few moments, the script will stop on a compile error (if you don’t have XDoclet installed), but it will still
show the information that is output by the Hibernate cartridge.

The result of the Hibernate cartridge for AndroMDA can be found in the /generated directory under the
specific directories for the package of the example classes. If you open the EntityA Java class, you will
find that Hibernate XDoclet tags have been added and are ready to be processed. Listing 15.11 shows an
example of the output.

/**
* Attention: Generated source! Do not modify by hand!
*/
package com.acme.domain;

/**
*
* @hibernate.class
* table="HIB_ENTITY_A"
*
* @hibernate.discriminator
* column="class"
*
*
* element.uuid -64--88-1-100-137008a:f3c983c88d:-7fda
*
*/
public abstract class EntityA {

// --------------- attributes ---------------------

private java.lang.String attribute_1;

/**
*
* @hibernate.id
* generator-class="uuid.hex"
* column="ATTRIBUTE_1"
*
* @hibernate.column
* name="ATTRIBUTE_1"
* sql-type="VARCHAR(255)"
*
*/
public java.lang.String getAttribute_1()
{

return this.attribute_1;
}

public void setAttribute_1(java.lang.String newValue)
{

this.attribute_1 = newValue;
}

357

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 357

// ------------- relations ------------------

// ---------------- business methods ----------------------

}

Listing 15.11

Notice how clean the generated code appears and the use of XDoclet. This is important because
AndroMDA can generate J2EE -based code using XDoclet as well.

MiddleGen
Our last tool to be covered is called MiddleGen, and it can be found at http://boss.bekk.no/boss/
middlegen. Fundamentally, MiddleGen is a database-driven tool that will automatically create code for
you, such as EJBs and Hibernate mapping documents. MiddleGen takes advantage of the XDoclet tags
to do most of the work, so you should be somewhat familiar with the XDoclet tags from Chapter 13. For
MiddleGen, you will need to download and install several different components. First of all, you will
need Ant and XDoclet, and then you will need to download MiddleGen from the site listed above.
Finally, there is a demo application available at Hibernate’s SourceForge site, http://prdownloads
.sourceforge.net/hibernate/. The name of the file is Middlegen-Hibernate-r4.zip.

Once you’ve downloaded both MiddleGen and the demo application, you have the tools needed to use
MiddleGen. Uncompress each of the files. Once the files have been downloaded and uncompressed,
change into the Middlegen-Hibernate-r4 directory and type the command ant. The result of the com-
mand will be a GUI like that shown in Figure 15.7.

So what is MiddleGen doing, and what do we see in the GUI? MiddleGen is designed to work with a
database, its tables, and schemas. The tool will read all of the table information found within the
database specified by the following element in the build.xml file:

<!DOCTYPE project [
<!ENTITY database SYSTEM "file:./config/database/hsqldb.xml">

]>

The database configuration file looks like the following:

<!-- === -->
<!-- ant properties/targets for hsqldb -->
<!-- note: this is not a proper xml file (there is no root element) -->
<!-- it is intended to be imported from a *real* xml file -->
<!-- === -->

<property name="database.script.file"
value="${src.dir}/sql/${name}-hsqldb.sql"/>

358

Chapter 15

17_576771_c15.qxd 9/1/04 12:52 PM Page 358

<property name="database.driver.file" value="${lib.dir}/hsqldb-
1.7.1.jar"/>

<property name="database.driver.classpath"
value="${database.driver.file}"/>

<property name="database.driver"
value="org.hsqldb.jdbcDriver"/>

<property name="database.url"
value="jdbc:hsqldb:${build.dir}/hsqldb/airline"/>

<property name="database.userid" value="sa"/>
<property name="database.password" value=""/>
<property name="database.schema" value=""/>
<property name="database.catalog" value=""/>

<!-- This isonly for the hsqldb-gui target -->
<property name="database.urlparams" value=""/>

<property name="jboss.datasource.mapping" value="Hypersonic SQL"/>

359

Hibernate Extensions

Figure 15.7

17_576771_c15.qxd 9/1/04 12:52 PM Page 359

Notice that all of the important properties are included, such as the location of the database and the URL
string to use for accessing the server and selecting a specific table.

For the demonstration, we use the Hypersonic SQL database, which has already been populated with
various tables. The MiddleGen GUI can be used to tweak the schema. Clicking on one of the fields of a
visible table will show information about the field as well as other information at the bottom of the GUI,
including the description of the field, the scope, and property information. All of this is shown in Figure
15.8.

360

Chapter 15

Figure 15.8

Once you’ve finished the basic tweaking of the fields of the table, you can click the Generate button. The
result will be various mapping documents found in the build/gen-src/airline/hibernate directory. For
the demo, there are three mapping documents, one for each table. Clearly, you could create an applica-
tion Ant build script to execute MiddleGen and then the CodeGenerator class to build most of your
Hibernate functionality.

17_576771_c15.qxd 9/1/04 12:52 PM Page 360

So how do we use MiddleGen to handle our own database and table? It certainly looks like the applica-
tion just connects to the database and displays all of the tables. If we have a database that has more than
one set of tables, it will display all of them. The answer is the build.xml file. If you open the build.xml
file within the demo directory, you will find a paragraph and element like the following:

We can specify what tables we want Data generated for.
If none are specified, Data will be generated for all tables.
Comment out the <table> elements if you want to generate for all

tables.
Also note that table names are CASE SENSITIVE for certain databases,
so on e.g. Oracle you should specify table names in upper case.
-->
<!--table generate="true" name="flights" pktable="flights_pk"/>
<table name="reservations"/-->

As you can see, the element is commented out, and thus all of the tables will be processed. If you want to
use specific tables, just include them using the <table> element.

Summary
As with many new technologies, it’s best to learn automation tools through many hands-on examples.
Once you’ve mastered the technology, you can use automation tools with the most efficiency possible. In
this chapter we’ve explored some of the Hibernate and third-party scripts and tools that make generat-
ing mapping documents, Java classes, and database schemas much easier and far less time-consuming
than by hand.

361

Hibernate Extensions

17_576771_c15.qxd 9/1/04 12:52 PM Page 361

17_576771_c15.qxd 9/1/04 12:52 PM Page 362

Hibernate and Eclipse

As many developers will attest, when you start using open source products such as Hibernate,
their attraction becomes so overwhelming that you tend to find such products for the other devel-
opment tools needed during a project. One of those tools that has literally taken the community by
storm is Eclipse. Eclipse is an open source IDE designed for the open source community, and it
provides for the use of a variety of plug-ins. The plug-ins give Eclipse additional features that the
developers didn’t initially put into the tool. As you might expect, some of the plug-ins provide fea-
tures well beyond those typically found in an IDE.

The plug-ins in this chapter are designed to make a connection between Eclipse and Hibernate so
that using Hibernate in your project becomes easier than it already is. We’ll cover three different
plug-ins:

❑ Hibernator

❑ HiberClipse

❑ Hibernate Synchronizer

Of course the plug-ins will need a host, and so you will need to install Eclipse if you don’t already
use it. You can find Eclipse at the following Web site: http://www.eclipse.org. Download and
install the version needed for your platform.

Hibernator
The Hibernator plug-in can be found at http://hiberator.sourceforge.net. There are two available
downloads, one that includes all of the necessary libraries from Hibernate and one that doesn’t
include the libraries. If you choose to install the version without the Hibernator libraries, you will
need to include the following libraries from your Hibernate installation into the <eclipse install
directory>/plugins/hibernator_0.9.6/libs directory:

161166

18_576771_c16.qxd 9/1/04 12:54 PM Page 363

- xml-apis.jar
- xerces.jar
- commons-beanutils.jar
- commons-collections.jar
- commons-lang.jar
- commons-logging.jar
- dom4j.jar
- hibernate2.jar
- odmg.jar
- cglib-asm.jar
- log4j.jar

Of course, if the Hibernator version has changed since 0.9.6, you must change the directory to the ver-
sion of the new download. If you download the version of Hibernator with the libraries included, just
unzip it in the <eclipse installation directory> directory. Once it is installed, start Eclipse or restart it if it’s
already running. You are now ready to use the features available in Hibernator.

Database Connection
You can obtain a connection to a database that is necessary for many of the Hibernator functions to fol-
low by choosing Windows > Open Perspective > Other and double-clicking the Hibernator entry, as
shown in Figure 16.1.

364

Chapter 16

Figure 16.1

The result of clicking the Hibernator option will be a new window titled Connection View in the Eclipse
browser on the left side of the window. Right-click in the Connection View window and choose Add.
The available Eclipse projects will be shown in the resulting dialog of a Connection Wizard, as shown in
Figure 16.2. If you haven’t created the Eclipse project for your application, you might want to do that
first before creating the connection to the database.

18_576771_c16.qxd 9/1/04 12:54 PM Page 364

Figure 16.2

Once you’ve checked the appropriate project to associate a connection, click the Next button of the
Connection Wizard. The resulting dialog will provide areas for adding information about the connec-
tion. Fill in the areas in a way resembling that found in Figure 16.3.

365

Hibernate and Eclipse

Figure 16.3

18_576771_c16.qxd 9/1/04 12:54 PM Page 365

After you’ve filled in the areas in the Connection dialog, click the Finish button. The name you provided
in the dialog will appear in the Connection View window. To connect to the database, right-click the
name within the window and select Connect. Notice that you have other options available as well when
you right-click, including Delete, Add, and Edit.

After you click the Connect! option, a progress dialog will appear. If the connection is successful, you
will see additional windows on the right side of the Eclipse window. The dialogs are Query View and
Results View. At the bottom of the Results View dialog is a tab for Log View as well.

Creating a Mapping Document
In order to do much with Hibernator, you will need a mapping document, and to create a mapping doc-
ument, you will need a Java class. In your project, create a new class and add the appropriate attribute
and methods as you would for any class that you want Hibernate to persist. At this point, you should
still be in the Java Perspective.

Now, you need to open a view relating to the Hibernator plug-in by choosing Window > Show View >
Other, selecting Hibernator, and clicking OK. The result will be a window at the bottom-right side of the
Java Perspective. To see the mapping document for a Java class, double-click on the class to open it and
view the information in the Hibernator window, as shown in Figure 16.4.

366

Chapter 16

Figure 16.4

18_576771_c16.qxd 9/1/04 12:54 PM Page 366

To save the contents of the Hibernate window as a mapping document, just right-click in the window
and choose Save. The appropriate mapping document will appear in the Package Explorer for the
project.

Querying the Database
With a connection to the database provided, you can create a query based on the Hibernate Query
Language using the Query View window, which opened when you connected to the database. To per-
form a query, click in the Query View window and type in your query, as shown in Figure 16.5.

367

Hibernate and Eclipse

Figure 16.5

To execute the query, click the Execute button. The result of the query will be shown in the Results View.
Any errors will be displayed in a dialog and also in the Log View window.

Creating a Schema
If you have just created a class and its resultant mapping document using Hibernator, you can have the
tool build the database table by clicking the Create Schema button found in the Query View window.
Note that if you click this button, Hibernator will first attempt to drop any table with the name specified
in the mapping document.

Updating the Schema
Of course, if you make any changes to your Java class and then generate a new mapping document, you
can click the Update Schema button found in the Query View window to update the database table
accordingly.

As you might expect, the Hibernator plug-in is a work-in-progress, and errors may occur. A forum is
available for the users of Hibernate at http://sourceforge.net/forum/, where you can find some solu-
tions to problems. This is also a good place to look to determine whether you’ve found a bug or just
need help.

18_576771_c16.qxd 9/1/04 12:54 PM Page 367

HiberClipse
The second plug-in covered here is called HiberClipse, and it can be found at http://hiberclipse
.sourceforge.net/. By far the easiest way to install HiberClipse is to use Eclipse’s Update Manager. To do
this, start Eclipse and choose Window > Open > Other and click Install/Update. On the bottom left of
the displayed perspective is a window called Feature Updates. Right-click in this window and select
New > Site Bookmark.

In the dialog that appears, enter the value HiberClipse in the Name field and http://hiberclipse
.sourceforge.net/siteupdate in the URL field, as shown in Figure 16.6.

368

Chapter 16

Figure 16.6

Now click Finish. The HiberClipse update icon will appear in the Feature Updates window tree. Expand
the HiberClipse entry twice, and click the entry called net.sourceforge.hiberclipse.feature
<version number>. On the page that appears in the right-most window, click the Install Now button,
as shown in Figure 16.7.

18_576771_c16.qxd 9/1/04 12:54 PM Page 368

Figure 16.7

When the Update Manager asks if you want to restart the workbench, you will need to click Yes to acti-
vate HiberClipse. Finally, you will need to have the Hibernate Tools Extension JAR in a classpath where
Eclipse will be able to find it, because this is how HiberClipse performs most of its work.

Configuring a JDBC Connection
The first step in using HiberClipse is to set up the connection to the database used by a Hibernate pro-
ject. Therefore, you need to create a project first. Once the project is created, right-click on the project and
select Properties. In the Properties dialog that appears, click HiberClipse. Next, fill in the JDBC driver
and mapping files. For HiberClipse to connect to the database for the project, the hibernate
.properties or hibernate.cfg.xml file must in the root directory of your project.

Creating a Mapping Document
Now let’s say you’ve created a new Java class and added it to your project. To generate the mapping
document for the new class, right-click on the class entry in the Package Explorer, locate HiberClipse at
the bottom of the page, and choose the MapGenerator menu option. This option will execute the
MapGenerator found in the Hibernate Tools Extension. The result will be a mapping document created
as part of the project.

369

Hibernate and Eclipse

18_576771_c16.qxd 9/1/04 12:54 PM Page 369

Creating Java Code from a Mapping Document
You can also use HiberClipse to go the other direction, from a mapping document to a Java class. To do
this, right-click on a mapping document, select HiberClipse, and then select CodeGenerator. The result
will be a new Java class matching the description of the mapping document.

Creating a Schema Export or Updating a Schema
You can execute the SchemaExport tool by right-clicking on a mapping document, selecting HiberClipse,
and then selecting SchemaExport. Likewise, the SchemaUpdate tool can be executed by selecting the
appropriate option on the pop-up menu.

Hibernate Synchronizer
Our final plug-in is called Hibernate Synchronizer, and it can be found at: http://www.binamics
.com/hibernatesynch. This plug-in can be installed in Eclipse using the Update Manager as described in
the previous section. The URL for the update site is also http://www.binamics.com/hibernatesynch.
Note that you must be using Eclipse 3 for this option to work properly. Otherwise, if you’re using
Eclipse 2.1, you can download the plug-in at http://www.binamics.com/hibernatesynch/releases.

Once the plug-in is installed, you can use it to handle many of the features we discussed for the other
plug-ins.

Configuration File Wizard
You can use Hibernate Synchronizer to create a new Hibernate configuration file for a project by select-
ing File > New > Other > Hibernate > Configuration File from within Eclipse. You will see the dialog
shown in Figure 16.8, which has the values filled out as an example.

When you click the Finish button, the plug-in will produce an appropriate configuration file for
the project.

370

Chapter 16

18_576771_c16.qxd 9/1/04 12:54 PM Page 370

Figure 16.8

371

Hibernate and Eclipse

Mapping Document Wizard
In the same menu, File > New > Other > Hibernate, there is an option to produce a Mapping Document.
Choosing this option will produce the dialog shown in Figure 16.9.

Once you fill in the appropriate fields, an appropriate mapping document will be created Most of the
work for Hibernate Synchronizer is performed by allowing the plug-in to automatically make changes to
the mapping document based on changes made to a class. You can force the synchronization by right-
clicking on a mapping document file listed in the Package Explorer of your project, clicking the
Hibernate Synchronizer menu item, and then choosing the Synchronize Files option.

18_576771_c16.qxd 9/1/04 12:54 PM Page 371

Figure 16.9

Summary
In this chapter we’ve taken a look at some of the plug-ins available for the Eclipse IDE tool. The three
plug-ins in this chapter provide helpful tasks that would otherwise be tedious and time-consuming. As
you use Eclipse and Hibernate, be sure to track the state of these plug-ins to make certain you have the
most recent version.

372

Chapter 16

18_576771_c16.qxd 9/1/04 12:54 PM Page 372

Using Velocity, Struts, and
Hibernate

This chapter introduces three popular technologies and explains how they can be configured to
work together. The technologies are Struts, Velocity, and Hibernate. Struts, produced under
Apache Jakarta, is probably the most well-known of the Web frameworks available today. In fact,
entire books have been written on using Struts. Our goal is to present an introduction to Struts and
show how Hibernate can be used to access the database. The primary instruction will occur via an
example registration system.

Brief Introduction to Struts
As mentioned above, there are entire books written on the topic of Struts, so this section will be a
short introduction to the major components of the system. Figure 17.1 shows a flow diagram of
what occurs within the Struts framework.

Struts Flow Diagram
As you can see from the diagram in Figure 17.1, the entire process starts with a home page of sorts
that presents the user with links or HTML forms to be filled out. In our example later in the book,
we will be presenting the user with a form to register with a Web application. When the user clicks
on the link or clicks the Submit button, the Struts ActionServlet will be invoked. This servlet is
designed to take the URL specified in the action attribute of the HTML form or the link URL and
determine an action to perform. The action is defined in a configuration file along with the action
class, the action JavaBean, and the response HTML pages.

The action class is defined around the Action base class, and the form data is defined around
ActionForm. The HTML response pages can be written in JSP or Velocity, as in this chapter. In the
remainder of the chapter, we will discuss the prerequisites necessary for Struts and provide an
example using both Struts and Velocity.

171177

19_576771_c17.qxd 9/1/04 12:55 PM Page 373

Figure 17.1

Installing Struts
Struts is a framework, and as such it relies on a few friends to accomplish its tasks. Those friends
include:

❑ An application server such as Tomcat or Resin. We use Tomcat in this chapter.

❑ Ant, which is required to compile the source code for Struts or examples but not for the example
in this chapter.

❑ The JDK, of course.

❑ Velocity: You will need the Velocity JAR, Struts library, Struts view, and associated dependen-
cies. To make the download easy, we’ve included all of the necessary libraries in the source code
download for this chapter on the Web site at http://www.wrox.com.

A Sample Application
In order to see how simple it is to use Struts with a Velocity templating solution and Hibernate, we will
build a Web application that allows a user to register using a username and password. The system will

374

Chapter 17

����

������

���	
���
�������� ����

���	������� ������

���
�� �

����������	��

19_576771_c17.qxd 9/1/04 12:55 PM Page 374

present a registration page with a form to gather a username, the password, and a copy of the password,
which will be used to make sure the user typed in the right combination of characters.

For the registration system, we will look at six steps in the process. All of the steps relate to the Struts
process outlined above. These steps are:

1. Create an ActionForm.

2. Build the action.

3. Modify the struts-config.xml file.

4. Create an appropriate web.xml file.

5. Create Success and Failure pages.

6. Create the Register page.

Building the ActionForm
As you might expect, we will use an HTML form to gather the username, password, and second pass-
word. There will need to be a way of getting the data entered by the user into the system so it can be
processed. In the “old” way, we would obtain the HttpServletRequest object and use the
getParameter() method to get the values. Under Struts, we will use a JavaBean for the transport
object. As you learned earlier, when a user clicks a Submit button in a form, the action attribute of the
<form> tag will specify a Struts action defined in the struts-config.xml file. Associated with
the Struts action is an ActionForm. For our registration example, we will use the class defined in
Listing 17.1.

import org.apache.struts.action.*;

public class RegisterForm extends ActionForm {
protected String username;
protected String password;
protected String password2;

public String getUsername() { return this.username; }
public String getPassword() { return this.password; }
public String getPassword2() { return this.password2; }

public void setUsername(String username) { this.username = username; };
public void setPassword(String password) { this.password = password; };
public void setPassword2(String password) { this.password2 = password; };

}

Listing 17.1

The User class holds the username and password for each of the users in the system. The code for the
class is shown in Listing 17.2.

375

Using Velocity, Struts, and Hibernate

19_576771_c17.qxd 9/1/04 12:55 PM Page 375

import java.util.*;

public class User{
private int id;
private String username;
private String password;

public Group(){
}

public Group(String name) {
this.name = name;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setUsername(String n) {
username = n;

}

public String getUsernme() {
return username;

}

public void setPasswword(String l) {
password = l;

}

public String getPassword() {
return password;

}
}

Listing 17.2

RegisterForm Code
The RegisterForm class is designed to handle all of the data that will be sent from our form. The class
must inherit from ActionForm, which is a Struts base class. As you can see, the code in the class is what
you would expect from a JavaBean. There are protected attributes and getter/setter methods for each of
them. Both the system and the developer will use this Form class. The developer will access it from the
Velocity Templates as well as in the action discussed next.

376

Chapter 17

19_576771_c17.qxd 9/1/04 12:55 PM Page 376

Creating an Action
The action is where all of business work occurs, usually as a result of a user clicking a link or a Submit
button of a form. Based on the Struts configuration file, an Action object will be put into play. Listing
17.3 shows the code for the RegisterAction class.

import org.apache.struts.action.*;
import javax.servlet.http.*;
import java.io.*;
import net. sf.hibernate.*;
import net. sf.hibernate.cfg.*;

public class RegisterAction extends Action {
public ActionForward perform(ActionMapping mapping, ActionForm form,

HttpServletRequest request, HttpServletResponse response) {
RegisterForm rf = (RegisterForm) form;

String username = rf.getUsername();
String password = rf.getPassword();
String password2 = rf.getPassword2();
if (password.equals(password2)) {
Context ctx = new InitialContext();
SessionFactory sf =

(SessionFactory)ctx.lookup("emp:/hibernate/SessionFactory");
Session session = sf.openSession();

User user = new User();
user.setUsername(username);
user.setPassword(password);

session.save(user);

}
return mapping.findForward("failure");

}
}

Listing 17.3

RegisterAction Code
As you might expect, the RegisterAction class extends the Struts Action base class. The Struts sys-
tem will call the perform() method, providing a Form object if appropriate, the
HttpServletRequest, and Response objects. In our case, we immediately cast the Form class into
RegisterForm and pull the values for the username, password, and second password.

The code will check to see if the two passwords match each other. If they do, we tell Struts to return a
value of success, which is matched against the configuration file and the success.vm template.
Otherwise, a value of failure is returned for the failure.vm template.

377

Using Velocity, Struts, and Hibernate

19_576771_c17.qxd 9/1/04 12:55 PM Page 377

Configuring Struts
Most of the structure for a Struts Web application is found in the configuration file called struts-
conf.xml, as shown in Listing 17.4.

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 1.0//EN"
"http://jakarta.apache.org/struts/dtds/struts-config_1_0.dtd">

<struts-config>

<form-beans>
<form-bean name="registerForm" type="RegisterForm"/>

</form-beans>

<action-mappings>
<action path="/struts"

type="RegisterAction"
name="registerForm">

<forward name="success" path="/success.vm"/>
<forward name="failure" path="/failure.vm"/>

</action>
</action-mappings>

<plug-in className="edu.arbor.util.pluin.HibernatePlugIn">
<set-property property="configFilePath" value="/
<set-property property="storeInServletContext" value="true"/>

</plug-in>
</struts-config>

Listing 17.4

The important part of the configuration file for Hibernate is the <plug-in> element, which is designed
to bring into Struts a plug-in to initialize Hibernate when our Struts application is first accessed. Of
course, that means we will also need a plug-in to handle the initialization. The plug-in code is found in
Listing 17.5. The plug-in was designed by Bradley M. Handy and was posted to the Hibernate commu-
nity Web site.

package edu.arbor.util.plugin;

import java.net.URL;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import net.sf.hibernate.SessionFactory;
import net.sf.hibernate.cfg.Configuration;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.struts.action.ActionServlet;
import org.apache.struts.action.PlugIn;
import org.apache.struts.config.ModuleConfig;

378

Chapter 17

19_576771_c17.qxd 9/1/04 12:55 PM Page 378

/**
* Implements the <code>PlugIn</code> interface to configure the Hibernate
* data persistence library. A configured
* <code>net.sf.hibernate.SessionFactory</code> is stored in the
* <code>ServletContext</code> of the web application unless the property
* <code>storedInServletContext</code> is set to <code>false</code>.
*
* <p>
* <plugin
class="net.sf.hibernate.plugins.struts.HibernatePlugIn">
* <set-property name="configFilePath""
* value="path-to-config-file"/>
* <set-property name="storedInServletContext""
* value="true-or-false"/>
* </plugin>
*
* @author Bradley M. Handy
* @version 1.0
*/
public class HibernatePlugIn implements PlugIn {

/**
* the key under which the <code>SessionFactory</code> instance is stored
* in the <code>ServletContext</code>.
*/
public static final String SESSION_FACTORY_KEY

= SessionFactory.class.getName();

private static Log _log = LogFactory.getLog(HibernatePlugIn.class);

/**
* indicates whether the <code>SessionFactory</code> instance will be

stored
* in the <code>ServletContext</code>, or not.
*/
private boolean _storedInServletContext = true;

/**
* the path to the xml configuration file. the path should start with a
* '/' character and be relative to the root of the class path.
* (DEFAULT: "/hibernate.cfg.xml")
*/
private String _configFilePath = "/hibernate.cfg.xml";

private ActionServlet _servlet = null;
private ModuleConfig _config = null;
private SessionFactory _factory = null;

/**
* Destroys the <code>SessionFactory</code> instance.
*/
public void destroy() {

_servlet = null;

379

Using Velocity, Struts, and Hibernate

19_576771_c17.qxd 9/1/04 12:55 PM Page 379

_config = null;

try {
_log.debug("Destroying SessionFactory...");

_factory.close();

_log.debug("SessionFactory destroyed...");
} catch (Exception e) {

_log.error("Unable to destroy SessionFactory...(exception
ignored)",

e);
}

}

/**
* Initializes the <code>SessionFactory</code>.
* @param servlet the <code>ActionServlet</code> instance under which the
* plugin will run.
* @param config the <code>ModuleConfig</code> for the module under which
* the plugin will run.
*/
public void init(ActionServlet servlet, ModuleConfig config)
throws ServletException {

_servlet = servlet;
_config = config;

initHibernate();
}

/**
* Initializes Hibernate with the config file found at
* <code>configFilePath</code>.
*/
private void initHibernate() throws ServletException {

Configuration configuration = null;
URL configFileURL = null;
ServletContext context = null;

try {
configFileURL =

HibernatePlugIn.class.getResource(_configFilePath);

context = _servlet.getServletContext();

if (_log.isDebugEnabled()) {
_log.debug("Initializing Hibernate from "

+ _configFilePath + "...");
}

configuration = (new Configuration()).configure(configFileURL);
_factory = configuration.buildSessionFactory();

if (_storedInServletContext) {

380

Chapter 17

19_576771_c17.qxd 9/1/04 12:55 PM Page 380

_log.debug("Storing SessionFactory in ServletContext...");

context.setAttribute(SESSION_FACTORY_KEY, _factory);
}

} catch (Throwable t) {
_log.error("Exception while initializing Hibernate.");
_log.error("Rethrowing exception...", t);

throw (new ServletException(t));
}

}

/**
* Setter for property configFilePath.
* @param configFilePath New value of property configFilePath.
*/
public void setConfigFilePath(String configFilePath) {

if ((configFilePath == null) || (configFilePath.trim().length() ==
0)) {

throw new IllegalArgumentException(
"configFilePath cannot be blank or null.");

}

if (_log.isDebugEnabled()) {
_log.debug("Setting 'configFilePath' to '"

+ configFilePath + "'...");
}

_configFilePath = configFilePath;
}

/**
* Setter for property storedInServletContext.
* @param storedInServletContext New value of property

storedInServletContext.
*/
public void setStoredInServletContext(String storedInServletContext) {

if ((storedInServletContext == null)
|| (storedInServletContext.trim().length() == 0)) {

storedInServletContext = "false";
}

if (_log.isDebugEnabled()) {
_log.debug("Setting 'storedInServletContext' to '"

+ storedInServletContext + "'...");
}

_storedInServletContext
= new Boolean(storedInServletContext).booleanValue();

}

}

Listing 17.5

381

Using Velocity, Struts, and Hibernate

19_576771_c17.qxd 9/1/04 12:55 PM Page 381

If you take the time to look through the plug-in, most of the code should be self explanatory. The vast
majority of the work is finding the Hibernate configuration file and then initializing the Session object. It
is important that the Hibernate configuration file be located relative to the root and start with a / charac-
ter. The Hibernate configuration file for this example is shown here:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
"-//Hibernate/Hibernate Configuration DTD//EN"
"http://hibernate.sourceforge.net/hibernate-configuration-2.0.dtd"> ***AU:
Please indicate where to wrap this line of code. LSR***

<hibernate-configuration>

<session-factory name="emp:/hibernate/SessionFactory">
<property name="connection.driver">com.mysql.jdbc.Driver</property>
<property name="connection.url">jdbc:mysql://localhost/products</property>
<property name="dialect">net.sf.hibernate.dialect.MySQLDialect</property>

<property name="username">sa</property>
<property name="password">sa</property>

<mapping resource="User.hbm.xml"/>

</session-factory>

</hibernate-configuration>

An important part of the configuration is the designator for the JNDI name of the session factory. We
will use this name within our Struts application to access the Session object.

Struts Configuration File
In the configuration file, we define the Form JavaBeans, including their name, which is a reference for
the <action> element and the class name. Next, we define all of the actions that can occur in the appli-
cation. We have only one, which we have called “struts.” When the struts action is called from a
<form> or link, the framework will activate the RegisterAction action and use the RegisterForm
form to pull the data from the <form> data. Also defined in the <action> element are the forwards,
which represent the pages where results will be provided to the user.

Web.xml File
In addition to the Struts configuration file, we also need to include a web.xml file so the application
server knows how to handle requests from the user. Listing 17.6 shows the file.

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
"http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">

<web-app>

382

Chapter 17

19_576771_c17.qxd 9/1/04 12:55 PM Page 382

<!-- Action Servlet Configuration -->
<servlet>
<servlet-name>action</servlet-name>
<servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
<init-param>
<param-name>config</param-name>
<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>
<init-param>
<param-name>debug</param-name>
<param-value>2</param-value>

</init-param>
<init-param>
<param-name>detail</param-name>
<param-value>2</param-value>

</init-param>
<init-param>
<param-name>validate</param-name>
<param-value>true</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>

<servlet>
<servlet-name>velocity</servlet-name>
<servlet-

class>org.apache.velocity.tools.view.servlet.VelocityViewServlet</servlet-
class>

<init-param>
<param-name>toolbox</param-name>
<param-value>/WEB-INF/toolbox.xml</param-value>

</init-param>
<load-on-startup>10</load-on-startup>
</servlet>

<!-- Action Servlet Mapping -->

<servlet-mapping>
<servlet-name>velocity</servlet-name>
<url-pattern>*.vm</url-pattern>

</servlet-mapping>

<servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>

</servlet-mapping>

<!-- Struts Tag Library Descriptors -->
<taglib>
<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>

383

Using Velocity, Struts, and Hibernate

19_576771_c17.qxd 9/1/04 12:55 PM Page 383

<taglib>
<taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-html.tld</taglib-location>

</taglib>

<taglib>
<taglib-uri>/WEB-INF/struts-logic.tld</taglib-uri>
<taglib-location>/WEB-INF/struts-logic.tld</taglib-location>

</taglib>
</web-app>

Listing 17.6

The web.xml file consists of two important parts. The first is a definition of the <servlet-mapping>
and <servlet> elements for Struts. The configuration says that any URL with an ending of *.do will
be redirected to the ActionServlet servlet provided with Struts. We also include a configuration sec-
tion for Velocity. All *.vm URLs will be directed to the VelocityViewServlet. Notice that there is a
parameter to the Velocity <servlet> for a toolbox.xml file. This file is found in Listing 17.7.

<?xml version="1.0"?>

<toolbox>
<tool>
<key>toolLoader</key>
<class>org.apache.velocity.tools.tools.ToolLoader</class>
</tool>

<tool>
<key>link</key>
<class>org.apache.velocity.tools.struts.LinkTool</class>

</tool>

<tool>
<key>msg</key>
<class>org.apache.velocity.tools.struts.MessageTool</class>

</tool>

<tool>
<key>errors</key>
<class>org.apache.velocity.tools.struts.ErrorsTool</class>

</tool>

<tool>
<key>form</key>
<class>org.apache.velocity.tools.struts.FormTool</class>

</tool>
</toolbox>

Listing 17.7

384

Chapter 17

19_576771_c17.qxd 9/1/04 12:55 PM Page 384

Toolbox.xml File
The toolbox.xml file defines several classes that the Struts ActionServlet can use to provide a bridge
between Struts, its Form JavaBeans, and Velocity Templates. All of the code is found in the Velocity
Struts plug-in that we already discussed.

Success Page
When a user provides a username and two passwords that match, the RegisterAction class will
instruct the Struts ActionServlet to use the success forward. The success forward, defined in the
Struts configuration file, tells the system to use the success.vm Velocity template to display output to
the user. The code for the template is found in Listing 17.8.

<HTML>
<HEAD>
<TITLE>Success</TITLE>

</HEAD>
<BODY>
Registration Success!
Thanks for logging in $!registerForm.username
<P>Try Another?</P>

</BODY>
</HTML>

Listing 17.8

Success.vm Template
The template is fairly basic, but you will get the idea. If the user is successful in providing accurate infor-
mation, we pull the username from the RegisterForm object created when Struts executed the
RegisterAction action. Notice the use of the $! directive. This directive tells Velocity to search all
available context objects for the registerForm object and the username() method.

Success under Struts and Velocity
The Failure page looks like the Success Velocity template but tells the user to try again.

Register Page
Throughout this discussion we have referenced the page where the user can provide information and
submit it to the server. Listing 17.9 shows the Register Velocity template that provides this capability.

<html>
<head>
<title>Register</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

385

Using Velocity, Struts, and Hibernate

19_576771_c17.qxd 9/1/04 12:55 PM Page 385

<body bgcolor="#CCCCCC" text="#006699" link="#006699" vlink="#006699"
alink="#006699">
<table width="80%" border="1" cellspacing="0" cellpadding="0"
bgcolor="#999999"
bordercolor="#000000" align="center">
<tr>
<td>
<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr>
<td>
<div align="center"><font face="Verdana, Arial, Helvetica, sans-

serif" size="-1">Home
</div>

</td>
</tr>

</table>
</td>

</tr>
</table>
<table width="80%" border="1" cellspacing="0" cellpadding="0"
bordercolor="#000000"
align="center">
<tr>
<td width="22%" align="right"><img src="header2.gif" width="200"

height="75"></td>
</tr>

</table>
<table width="80%" border="1" cellspacing="0" cellpadding="0"
bordercolor="#000000"
align="center">
<tr>
<td align="left" valign="top" height="423">
<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr>
<td width="20%" height="9"><font face="Verdana, Arial, Helvetica,

sans-serif" size="-2" color="#000000">$date</td>
<td width="43%" height="9"> </td>
<td width="37%" height="9" bgcolor="#000000">
<table width="100%" border="0" cellspacing="0" cellpadding="0">
<tr bgcolor="#000000">

</tr>
</table>

</td>
</tr>

</table>
<table width="69%" border="0" cellspacing="0" cellpadding="0"

align="center">
<tr>
<td width="71%" height="246" align="left" valign="top">
<p> </p>

<form action="struts.do" method="post">

386

Chapter 17

19_576771_c17.qxd 9/1/04 12:55 PM Page 386

username: <input type="text" name="username"/>

password: <input type="text" name="password"/>

again : <input type="text" name="password2"/>

<input type="submit" name="submit" value="Register"/>
</form>

</td>
</tr>

</table>
</td>

</tr>
</table>
<p> </p>
<p> </p><p> </p>
<p> </p>
</body>
</html>

Listing 17.9

Register.VM Template
A large part of the template is formatting information, except at the end. An HTML form is created with
an action attribute set equal to “struts.do.” Remember that the name of our action in the Struts con-
figuration file is struts. When the struts.do URL is provided to the server, the “.do” will be
stripped and the “struts” string matched against the <action> elements in the configuration.

Compile
To compile the Action and Form classes, use the following command:

javac "../lib/struts_1_0_2.jar;./;" *.java

Once the Java source files have been compiled, you can restart the application server.

Run
You can execute the application by browsing to the following URL:

http://localhost:8080/struts/register.vm

When you click on the dialog, the Struts action will be triggered. The code will check the passwords pro-
vided and build an appropriate User object and store it in the database.

387

Using Velocity, Struts, and Hibernate

19_576771_c17.qxd 9/1/04 12:55 PM Page 387

Summary
In this chapter, we’ve gone through the details of using Velocity, Struts, and Hibernate to provide a com-
prehensive MVC solution to developing dynamic Web pages and applications. With just a few simple
classes, you can combine Hibernate with some of the best-known open source tools.

388

Chapter 17

19_576771_c17.qxd 9/1/04 12:55 PM Page 388

Hibernate and AspectJ

In their book Mastering AspectJ, Joseph D. Gradecki and Nicholas Lesiecki discuss how we’ve all
become accustomed to breaking the encapsulation concept when using an object-oriented lan-
guage to build an application. They provide a clear example using the logging capability found in
most production systems. When building objects for a system, we typically want to have the abil-
ity to log information from the object to a console window or a file. In Java, we might use the
native features founding version 1.4, or we might rely on the open source project log4J found at
http://jakarta.apache.org. In either case, the logging functionality is initialized at the start of the
application and log methods or other mechanisms are used to put information into the logging
system.

The problem with the logging is that it breaks the encapsulation of the objects where the logging
statements are placed. An Account class shouldn’t know anything about logging since that isn’t its
contract with the system. An Account class contains attribute and methods that are a specific part
of a real-world account. Since we don’t have any other clear way of providing the logging func-
tionality needed within the account, we add it anyway. The requirement to log is called a crosscut-
ting concern because it is a requirement of the system that will affect more than a single class. In
this chapter, we will show how to marry the technology of Aspect-Oriented Programming through
AspectJ with Hibernate.

What Is Aspect-Oriented Programming
Developers are still having difficulty fully expressing a problem into a completely modular and
encapsulated model. Although breaking a problem into objects makes sense, some pieces of func-
tionality must be made available across objects. Aspect-Oriented Programming (AOP) is one of the
most promising solutions to the problem of creating clean, well-encapsulated objects without
extraneous functionality. In this chapter, we will explore what object-oriented programming (OOP)
did right for computer science, problems that arise from objects, and how AOP can fill in the
blanks.

181188

20_576771_c18.qxd 9/1/04 12:56 PM Page 389

Where OOP Has Brought Us
Object-oriented analysis, design, and programming (OOADP) is no longer the new kid on the block; it
has been proven successful in both small and large projects. As a technology, it has gone through its
childhood and is moving into a mature adult stage. Research by educational establishments as well as
audits by companies have shown that using OOP instead of functional-decomposition techniques has
dramatically enhanced the state of software. The benefits of using object-oriented technologies in all
phases of the software development process are varied:

❑ Reusability of components

❑ Modularity

❑ Less complex implementation

❑ Reduced cost of maintenance

Each of these benefits (and others you can think of) will have varied importance to developers. One of
them, modularity, is a universal advancement over structured programming that leads to cleaner and
more understandable software.

What OOADP Did for Computer Science
The object-oriented methodology—including analysis, design, and programming—brought to computer
science the ability to model or design software more along the lines of how you envision a system in the
real world. The primary tool used for this modeling is the object. An object is a representation of some
primary component of the problem domain. The object has attributes representing the state of the object
and behaviors that act on the object to change its state. For example, if you were tasked with designing a
system to handle selling DVD products, an OO design might include objects such as a product, a DVD,
and a Boxset, as well as many others.

The objects must be filled out with attributes and behaviors specific to their roles. A product might have
a context defined as follows:

❑ Attributes

❑ Price

❑ Title

❑ Suppliers

❑ Behaviors

❑ Assign price

❑ Assign title

❑ Get suppliers

Of course, a production system would include many more attributes and behaviors, but those added to
the product object here will suit our purpose. In defining the product, we create or acknowledge a rela-
tionship between the product and a supplier object. After further decomposition of the problem, DVD
objects are created as well as Boxset objects, as shown in Figure 18.1.

390

Chapter 18

20_576771_c18.qxd 9/1/04 12:56 PM Page 390

Figure 18.1

One of the goals in object design is encapsulating all the data and methods necessary for manipulating
that data fully within the object. There shouldn’t be any outside functions that can directly change the
product object, nor should the product object make changes to any other object. Instead, a supplier object
might send a message to a product object asking it to change its state by adding the supplier object to a
list of suppliers in the product object. When a message is sent from one object to another, the receiving
object is fully in control of its state. All the attributes of the object are encapsulated in a single entity,
which can be changed only through an exposed interface. The exposed interface consists of the methods
of the object having a public access type. The object could have internal private methods, but those
methods aren’t exposed to other objects. The encapsulation of the object is achieved by exposing an
interface to other objects in the system. The interface defines the methods that can be used to change the
object’s state. The functionality behind the exposed interface is kept private.

Designing an object-oriented system in this manner aids in the functioning of the system, debugging if
problems arise, and the extension of the system. All the objects in the system know their roles and per-
form them without worrying about malicious changes being made to their state. From a simplistic view,
the system is just a group of objects that execute and send messages to each other, requesting informa-
tion and changes in the other objects.

As the state of object-oriented technology has evolved, the vocabulary has evolved as well. As you
know, an object is an instantiation of a class. The class is an abstract datatype used to model the objects in
a system. A class is built based on a requirement extracted through an analysis phase (assuming there is
an analysis phase). The class might be built on the fly during coding of a solution, with the requirements
written in the comments of the class. These requirements and classes can be linked by a concern.

A concern is some functionality or requirement necessary in a system, which has been implemented in
a code structure. This definition allows a concern to not be limited to object-oriented systems—a

391

Hibernate and AspectJ

�������

���	
�

���

�����
�	
��

����

����

20_576771_c18.qxd 9/1/04 12:56 PM Page 391

structured system can also have concerns. In a typical system, a large number of concerns need to be
addressed in order for the system to accomplish its goals. A system designer is faced with building a
system that uses the concerns but doesn’t violate the rules of the methodologies being used. When all
the concerns have been implemented with system code as well as related functional tests, the system is
complete.

Problems Resulting from OOP
If you read books and articles about object orientation, they commonly say that OOP allows for the
encapsulation of data and methods specific to the goal of a specific object. In other words, an object
should be a self-contained unit with no understanding of its environment, and its environment should
be aware of nothing about the object other than what the object reveals. A class is the cookie cutter for
objects in a system, and it implements a concern for the system. The goal of the class is to fully encapsu-
late the code needed for the concern. Unfortunately, this isn’t always possible. Consider the following
two concerns:

❑ Concern 1: The system will keep a price relating to the wholesale value of all products.

❑ Concern 2: Any changes to the price will be recorded for historical purposes.

The first concern dictates that all products in the system must have a wholesale price. In the object-
oriented world, a Product class can be created as an abstract class to handle common functionality
of all products in the system:

public abstract class Product {
private real price;

Product() {
price = 0.0;

}

public void putPrice(real p) {
price = p;

}

public int getPrice() {
return price;

}
}

The Product class as defined here satisfies the requirement in concern 1. The principles of OO have
been maintained, because the class encapsulates the code necessary to keep track of the price of a prod-
uct. The same functionality could easily be created in a structured environment using a global array.

Now let’s consider concern 2, which requires that all operations involved in changing the price be
logged. In itself, this concern does not conflict with the first concern and is easy to implement. The fol-
lowing class defines a logging mechanism:

public class Logger {
private OutputStream ostream;

Logger() {

392

Chapter 18

20_576771_c18.qxd 9/1/04 12:56 PM Page 392

//open log file
}
void writeLog(String value) {
//write value to log file

}
}

A logger object is instantiated from the Logger class by the application’s constructor or other initializa-
tion function, or individual logger objects are created within those objects needing to log information.
Again, the fundamental object-oriented concepts remain in the Logger class.

To use the logger, you add the writeLog() method to code where the product price might be changed.
Because you have only one other class, Product, its methods should be considered for logging inclu-
sion. As a result of the class analysis, a new Product class emerges:

public abstract class Product {
private real price;
Logger loggerObject;

Product() {
price = 0.0;
loggerObject = new Logger();

}

public void putPrice(real p) {
loggerObject.writeLog("Changed Price from" + price + " to " + p);
price = p;

}

public int getPrice() {
return price;

}
}

The change made to the Product class is the inclusion of the logging method calls in the setPrice()
method. When the price is changed using this method, a call is made to the logger object, and the
old/new prices are recorded. All objects instantiated from the Product class have a local logger object
to handle all logging functionality.

Let’s look at the idea of encapsulation and modularity within object-oriented methodologies. By adding
code to the Product class to handle a second concern in the system, it would appear that we’ve broken
the idea of encapsulation. The class no longer handles only its concern, but also must fulfill the require-
ments of another concern. The class has been crosscut by concerns in the system.

Crosscutting represents the situation when a requirement for the system is met by placing code into
objects through the system—but the code doesn’t directly relate to the functionality defined for those
objects. (Crosscutting is discussed in more detail in the next section.) A class such as Product, which is
defined to represent a specific entity within the application domain, should not be required to host code
used to fulfill other system requirements.

Consider what would happen to the Product class if you added timing information, authentication,
and long-term data persistence. Are all these concerns supposed to be designed into the Product

393

Hibernate and AspectJ

20_576771_c18.qxd 9/1/04 12:56 PM Page 393

object? Structured and object-oriented languages leave you no other choice when addressing crosscut-
ting concerns. The additional concerns are forced to be part of another concern, thus breaking many of
the rules of our favorite methodology.

This mixing of concerns leads to a condition called code scattering or tangling. With code scattering, the
code necessary to fulfill one concern is spread over the classes needed to fulfill another concern. Code
tangling involves using a single method or class to implement multiple concerns. Both of these problems
break the fundamentals of OO and cause headaches for designers (for more information, see the follow-
ing section). Consider the following Product class, where the two concerns mentioned earlier have
been added in pseudocode form. This additional functionality is necessary, but it shouldn’t be part of the
Product class:

public abstract class Product {
private real price;
Logger loggerObject;

Product() {
price = 0.0;
loggerObject = new Logger();

}

public void putPrice(real p) {
//start timing
//Check user authentication
loggerObject.writeLog("Changed Price from" + price + " to " + p);
price = p;
// log if problem with authentication
//end timing
//log timing
}

public int getPrice() {
//check user authentication
return price;

}

public void persistIt() {
//start timing
//save this object
//end timing
//log timing

}

}

Once the Product class has been created, a DVD concrete class is formulated. The class inherits all the
functionality found in the Product class and adds a few more attributes. The DVD class includes an
attribute and associated methods for the number of copies currently available. This is important infor-
mation that should be included in all logging activities:

394

Chapter 18

20_576771_c18.qxd 9/1/04 12:56 PM Page 394

public class DVD extends Product {

private String title;
private int count;
private String location;

public DVD(String inTitle) {
super();
title = inTitle;

}

private void setCount(int inCount) {
//start timing
//check user authentication
count = inCount;
//end timing
//log timing

}

private int getCount() {
return count;

}

private void setLocation(String inLocation, int two) {
//start timing
//check user authentication
location = inLocation;
//end timing
//log timing

}

private String getLocation() {
return location;

}

public void setStats(String inLocation, int inCount) {
//start timing
//check user authentication
setLocation(inLocation, 0);
setCount(inCount);
//end timing
//log timing

}
}

Do you notice any problems with the code? The logging hasn't been included in the methods that change
the count information. Unfortunately, the developer missed this concern when creating the new class.

395

Hibernate and AspectJ

20_576771_c18.qxd 9/1/04 12:56 PM Page 395

Results of Tangled Code
A developer doesn’t have to be in the industry long to find out the effects of tangled and scattered code.
Some of the effects are as follows:

❑ Classes that are difficult to change

❑ Code that can’t be reused

❑ Code that’s impossible to trace

Engineers and managers who need to refactor code commonly encounter one example of dealing with
tangled code. If the code is written in clear components using well-defined objects, a relatively obvious
cost-benefit ratio can be created. If the time and money can be justified, the components of the system
can be refactored. However, in most cases, the code for the components is intertwined, and factoring
becomes too cost prohibitive under traditional means. However, AOP allows the refactoring to be per-
formed on a different level and in a manner that helps to eliminate some of the tangled code.

In one of the original AspectJ Tutorial presentations (http://aspectj.org/documentation/
papersAndSlides/ OOPSLA2002-demo.ppt), you could analyze the Jakarta Tomcat project to determine
where code that performed logging was located in the source code. The result of the project showed that
the logging code wasn’t in just one place in the code, and not even in a couple of small places—it’s spread
throughout the source code.

As the Tomcat analysis project showed, code tangling is a major problem. Just think about the nightmare
if the code for logging needed to change. The tangled code clearly accomplishes some defined function-
ality, like logging. The code is tangled because it needs to be spread throughout the application. When a
requirement results in tangled code, we say that it crosscuts the system. The crosscutting isn’t always a
primary requirement of the system, just as logging isn’t required for the application software to function
properly; but sometimes it is required in the case of user authentication.

How AOP Solves OOP Problems
Aspect-Oriented Programming is a paradigm created to solve the problems discussed so far without the
difficulties and complexities encountered with subject-oriented programming (SOP) and multidimen-
sional separation of concerns (MDSOC). AOP isn’t necessarily a new idea; its roots lie in the separation
of concerns movement, but it has moved into the forefront through work by Gregor Kiczales and his col-
leagues at Xerox’s PARC (www.parc.com/groups/csl/projects/aspectj/).

AOP doesn’t require the user to learn a host of new techniques, but instead relies on the features of its
host language to solve crosscutting of concerns. Depending on the implementation of AOP, you need to
learn only a handful of new keywords. At the same time, AOP supports reuse and modularity of code, to
eliminate code tangling and scattering. With the advent of Java and the AspectJ support language, AOP
is on the verge of becoming the next big thing in computer science since the adoption of OOP.

396

Chapter 18

20_576771_c18.qxd 9/1/04 12:56 PM Page 396

What Is AOP?
Aspect-oriented programming is a paradigm that supports two fundamental goals:

❑ Allow for the separation of concerns as appropriate for a host language.

❑ Provide a mechanism for the description of concerns that crosscut other components.

AOP isn’t meant to replace OOP or other object-based methodologies. Instead, it supports the separation
of components, typically using classes, and provides a way to separate aspects from the components. In
our example, AOP is designed to support the separation of the example concerns and to allow both a
Logger and a Product class; it also handles the crosscutting that occurs when logging is required in
the components supporting another concern.

Development Process with AOP
To get an idea of how AOP helps with crosscutting, let’s revisit the example concerns:

❑ Concern 1: The system will keep a price relating to the wholesale value of all products.

❑ Concern 2: Any changes to the price will be recorded for historical purposes.

The two classes built to implement these concerns separated their functionality, as would seem appro-
priate. However, when concern 2 is fully implemented, it becomes clear that calls from the Product
class will need to be made to the Logger class. Suddenly the Product class isn’t completely modular,
because it needs to incorporate within its own code calls to functionality that isn’t part of a product.

AOP provides several tools that can help with this problem. The first is the language used to code the
requirements or concerns into units of code (either objects or functions). The AOP literature commonly
calls this the component language. The secondary or support requirements (aspects) are coded as well,
using an aspect language. Nothing in the paradigm states that either language needs to be object-oriented
in nature, nor do the two languages need to be the same. The result of the component and aspect lan-
guages is a program that handles the execution of the components and the aspects. At some point, the
respective programs must be integrated. This integration is called weaving, and it can occur at compile,
link, run-, or load time.

Using this information, let’s look at how AOP handles the issue of putting logging code directly into the
Product class. AOP is designed to respect the idea that some requirements can be modularly coded and
others will crosscut the previously modular classes. In our example, concern 1 can be implemented in
the Product class without violating the modularity of the class. Concern 2 cannot be implemented in a
modular fashion within the Product class because it needs to be implemented in different spots
throughout the Product class and other classes in the software system.

If we step back from the implementation details behind both concerns, we find that concern 2 doesn’t
necessarily need to be coded directly in the Product class (and the DVD class, the Boxset class, and so
on). Instead, it would be ideal if the logging code could be called when the system calls any log-worthy
methods.

For this to occur, an aspect must be created specifying that when the system encounters a call to the
method setPrice(), it should first execute code defined in the aspect language. Here’s an example of
what the aspect might look like in a (fictional) object-oriented aspect language:

397

Hibernate and AspectJ

20_576771_c18.qxd 9/1/04 12:56 PM Page 397

define aspect Logging{
Logger loggingObject = new Logger();
when calling set*(taking one parameter) {
loggingObject.writeLog("Called set method");

}
}

This aspect is compiled along with the component Product class using a compiler provided by the AOP
system. The compiler weaves the aspect code into the component code to create a functioning system.
Figure 18.2 shows graphically how the weave looks.

398

Chapter 18

�������

������� �	�

����	�

�����	���

�����

Figure 18.2

The weave occurs based on the information provided in line 3, where the aspect is defined to act when a
call is made to any method having a name starting with set and taking a single parameter. Once the sys-
tem begins to execute, a call is made to the setPrice() method of the DVD object. Just before control is
given to the setPrice() method of a target object, the code in line 4 executes and produces the state-
ment "Called set method" in the system log. As a result of using AOP, any call matching the aspect crite-
ria produces an entry in the log—you don't have to scatter code throughout the entire program to
support the concern.

Introduction to AspectJ
The primary goal of an AOP language is the separation of concerns. An application is written in a lan-
guage that best satisfies the needs of the application and the developers. This language could be Java,
C++, C#, Visual Basic, or even Cobol; in all these languages, a compiler converts the written language

20_576771_c18.qxd 9/1/04 12:56 PM Page 398

syntax into a format the machine can execute. In the case of Java or .NET, the language syntax is con-
verted to byte code, which in turn is executed by a runtime environment.

During the development of the application, all the requirements are satisfied to produce the final system.
The requirements include those necessary to meet the true needs of the application as well as conve-
niences such as logging and timing. Unfortunately, in most cases, this type of development (whether
object-oriented or not) produces tangled code. When you use AOP, the development process isn’t the
same: The primary concerns are implemented using a language deemed appropriate for the application,
and the crosscutting concerns are implemented in an aspect-oriented language.

It doesn’t matter what language type is used for the implementation as long as the code written for the
crosscuts can be combined with the primary application to produce a fully executable system. Any lan-
guage that expects to implement concerns must have a specification and implementation.

AOP Language Specification
In the previous section, we briefly touched on the major components of an AOP system. In this section,
we will lay out the pieces any AOP language must be able to represent in order to allow the develop-
ment of code for crosscuts. The major components of an AOP language are as follows:

❑ Join points

❑ A type of language to match join points

❑ Advice

❑ An encapsulating component, such as a class

Join Points
A join point is a well-defined location within the primary code where a concern will crosscut the applica-
tion. Join points can be method calls, constructor invocations, exception handlers, or other points in the
execution of a program.

Suppose the specification document for a new system created by an AOP-aware team includes a concern
stating that all SQL executions to the database should be logged. To facilitate the development of the pri-
mary system, a transaction component class is created to handle all database communication from
business-level components. Within the transaction component, a method called updateTables()
handles all database updates. To fully implement the crosscut concern, you need to add code to the
method to register a timestamp when the method is first called. You must also include code at the end
of the method to register a timestamp and add a success flag to the log. Thus, the join point to the imple-
mentation is the name of the method along with (possibly) the class name. For example, the following
statement describes a join point:

public String DBTrans.updateTables(String);

The exact syntax will vary from language to language, but the goal of the join point is to match well-
defined execution points.

399

Hibernate and AspectJ

20_576771_c18.qxd 9/1/04 12:56 PM Page 399

Pointcuts
Given that the join point is a well-defined execution point in an application, you need a construct that
tells the aspect-oriented language when it should match the join point. For example, you may want the
aspect language to match the join point only when it is used in a call from one object to another or possi-
bly a call from within the same object. To handle this situation, you can define a designator named
call() that takes a join point as a parameter:

call(public String DBTrans.updateTables(String))

The designator tells the aspect language that the public String DBTrans.updateTables(String)
join point should be matched only when it’s part of a method call.

In some cases, you may use multiple designators to narrow the join point match or create groupings.
Regardless, another construct called a pointcut is typically used to group the designators. A pointcut can
be named or unnamed, just as a class can be named or anonymous. For example, in the following exam-
ple the pointcut is called updateTable(). It contains a single designator for all calls to the defined join
point:

Pointcut updateTable() :
call(public String DBTrans.updateTables(String))

The pointcut is used in advice structures, described next.

Advice
In most AOP specifications, advice code can execute at three different places when a join point is
matched: before, around, and after. In each case, a pointcut must be triggered before any of the advice
code will be executed. Here’s an example of using the before advice:

before(String s) : updateTables(s) {
System.out.println(“Passed parameter – “ + s);

}

Once a pointcut has triggered, the appropriate advice code executes. In the case of the previous example,
the advice code executes before the join point is executed. The String argument is passed to the code so
it can be used if needed. In most AOP systems, you have access to the object associated with the join
point as well as other information specific to the join point itself.

Aspects
A system that has 10 crosscutting concerns might include 20 or so join points and a dozen or more point-
cuts with associated advice. By using AOP, you can reduce code tangling and disorganization rather
than create more. With this in mind, the aspect syntax was developed to handle encapsulation of join
points, pointcuts, and advice.

Aspects are created in much the same manner as classes and allow for complete encapsulation of code
related to a particular concern. Here’s an example aspect:

public aspect TableAspect {
pointcut updateTable(String s) :

400

Chapter 18

20_576771_c18.qxd 9/1/04 12:56 PM Page 400

call(public String DBTrans.updateTables(String) &&
args(s);

before(String s) : updateTable(s) {
System.out.println("Passed parameter – " + s);

}
}

The TableAspect aspect is an object that implements a concern related to the UpdateTables() method.
All the functionality required for this concern is neatly encapsulated in its own structure.

AOP Language Implementation
The examples presented so far are written in the AspectJ AOP language and follow the Java specification
because, as you will see shortly, AspectJ is designed to be used with applications written in Java. Once a
concern has been written in an AOP language, a good deal of work must still be done to get the primary
and AOP applications to run as a complete system. This task of integrating the crosscutting concern code
and the primary application is called weaving. The following table lists the different types of weaving.

Type Description Tool Used

Compile-time The source code from the primary and aspect Compiler
languages is weaved before being put through
the phases of the compiler where byte code is
produced. AspectJ 1.0.x uses this form of weaving.

Link-time The weaving occurs after the primary and Linker
aspect language code has been compiled into
byte code. AspectJ 1.1.x uses this form of weaving.

Load-time The weaving occurs when classes are loaded Classloader under
by the classloader. Ultimately, the weaving is at Java
the byte-code level.

Run-time The virtual machine is responsible for Virtual machine
detecting join points and loading and
execution aspects.

Using Java as an example, at some point in development a number of classes and possibly aspects will
represent all the concerns defined for a particular application. The primary application can be compiled
into Java byte code using the Javac compiler. Once compiled, the application byte code can be executed
within the Java Runtime Environment. Unfortunately, a number of aspects also need to execute. Because
the aspects are Java code as well, it isn’t unreasonable to think that a compiler can be used to convert the
aspect code into pure Java code; the aspects are converted to classes, and pointcuts, join points, and des-
ignators are turned into other Java constructs. If this step is performed, the standard Java compiler can
also be used to produce byte code from the aspects.

Assume that a compiler is available that will convert both the Java and aspect code into Java byte code
during the compilation process. You need a way to incorporate the aspect code into the Java code. In
compile-time weaving, the aspect code is analyzed, converted to the primary language if needed, and
inserted directly into the primary application code. So, using the previous example, you know that a join

401

Hibernate and AspectJ

20_576771_c18.qxd 9/1/04 12:56 PM Page 401

point has been defined on the updateTables() method and that a pointcut defined to execute before
the updateTables() method actually executes. The compile-time weaver finds the updateTables()
method and weaves the advice code into the method. If the aspect is converted to a class, the call within
the updateTables() method can reference a method of the new aspect object.

Here’s a simple example of what the code might look like after the compile-time weaver pulls together
the primary Java code and the aspect defined earlier:

public String updateTables(String SQL) {
//start code inserted for aspect
TableAspect.updateTable(SQL);
//end code inserted for aspect
initializeDB();
sendSQL(SQL);

}

In this example, a call is inserted to the updateTable() method of the tablesAspectClass class cre-
ated from the TableAspect aspect code defined earlier. A preprocessor handles this work before any
traditional compilation takes place. Once the aspect has been weaved into the primary application code,
the resulting intermediate files are sent to the Java compiler. The resulting system code implements both
the primary and crosscutting concerns.

One of the downfalls of a compile-time weaving system is its inability to dynamically change the aspect
used against the primary code. For example, suppose an aspect handles the way the updateTables()
method connects to the database. A simple connection pool can consist of the details within the aspect. It
would be interesting if the aspect could be swapped with another aspect during execution of the pri-
mary application based on predefined rules. A compile-time weaver cannot do this type of dynamic
swapping, although code can be written in an aspect to mimic the swapping. In addition, compile-time
weaving suggests that you need to have the source code available for all aspects, and convenience fea-
tures such as JAR files cannot be used.

A link-time or runtime weaver doesn’t weave the aspect code into the primary application during the
compile but waits until runtime to handle the weave. A processor is still used to place hooks in the
methods/constructor of the primary language as well as other strategic places. When the hooks are
executed, a modified runtime system determines whether any aspects need to execute. As you might
expect, dynamic weaving is more complicated because of the need to change the system where the
application is executing. In a byte-code system where a runtime environment is available, the process
isn’t as involved as a system like C++, where a compiler produces machine-level code.

AspectJ
This chapter covers the use of a byte-code weaving AOP language called AspectJ. The AspectJ language
comes from research work performed at the Xerox Palo Alto Research Center by a team of researchers
including Gregor Kiczales (project leader), Ron Bodkin, Bill Griswold, Erik Hilsdale, Jim Hugunin, Wes
Isberg, and Mik Kersten. The stated goal of AspectJ is to make the methodology of AOP available to a
large number of developers. In order to accomplish this goal, AspectJ is built on top of the Java language
and works to provide a seamless integration of primary and crosscutting concerns.

402

Chapter 18

20_576771_c18.qxd 9/1/04 12:56 PM Page 402

Example Aspect
This example class and related aspect will give you an idea of what writing in AspectJ is all about.
Listing 18.1 shows the code for a very simple Java class and main() method. The Simple class has a
single attribute and method. A main() method is used to instantiate an object of the class and makes a
call to the getName() method.

public class Simple {
private String name;

public String getName() {
return name;

}
public static void main(String args[]) {
Simple simple = new Simple();
System.out.println(simple.getName());

}
}

Listing 18.1

Listing 18.2 shows an AspectJ aspect complete with a join point related to the getName() method in the
primary code, and a pointcut defining the conditions necessary for triggering advice code found in the
before() statement. The purpose of the aspect is to execute code when a call is made to the
getName() method of a Simple object.

public aspect SimpleAspect {
pointcut namePC() : call (public String getName());
before() : MatchAllgetName() {
System.out.println(thisJoinPoint.getSignature());

}
}

Listing 18.2

If the standard Java compiler is used to compile the Simple class and the SimpleAspect aspect files,
the compiler will produce a few errors related to the SimpleAspect aspect. The compiler won’t be able
to recognize the aspect, pointcut, before, and other statements used in the code. The AspectJ system
includes a compiler called ajc that compiles both the aspect code and the primary code. The ajc compiler
is built on top of IBM’s Eclipse project compiler, which allows a strict compliance to the Java language
and resulting byte code. The ajc compiler adds the ability to compile the AspectJ-specific keyword into
byte code and facilitates the weaving of the byte codes into class files. The aspect code is converted from
an aspect construct into a class, and the other AspectJ-specific constructs are converted to standard Java.
The AspectJ compiler weaves the aspect byte code into the byte code of the primary application byte
code and produces appropriate Java class files that can be executed by the Java Runtime Environment.
AspectJ can be found at http://eclipse.org/aspectj/. Download the most recent version, install it, and
we’ll begin using it.

403

Hibernate and AspectJ

20_576771_c18.qxd 9/1/04 12:56 PM Page 403

Using AspectJ with Hibernate
Probably the easiest aspect to write for Hibernate is explicitly closing the Session after it has been used
in a method. If you take a good look at the HibernateSession code, you will see that the
closeSession() method call checks to be sure the local Session object isn’t null before calling the
close() method on the session. This means we don’t have to worry about calling closeSession() if
the session has already been closed. Therefore, we will write an aspect that will call closeSession()
on all methods having a get string in their name and that are part of a class with DAO in the name. The
aspect looks like the following:

public aspect HibernateCloseSessionAspect {
pointcut getDAOCall() : call (public void GROUP.set*())
void after(): getDAOCall()
{
try {
HibernateSession.closeSession();

} catch (Exception e) {
// log exception
}

}

In this aspect, we define a pointcut called getDAOCall, which is used to match all methods having the
string “set” in the name. When such a method is called, the pointcut will be matched and the after
advice will be executed so we make sure the method is able to perform its work before we close the
session.

What about using AspectJ to automatically save an object any time an attribute is changed? AspectJ
includes the ability to use an attribute as a join point. So we could have an aspect that looks like the
following:

public aspect HibernateSaveAllAspect {

pointcut objectSet(Group group) : set(private * *) && this(group);

void after(Group group) : objectSet(group) { try {
Session session = HibernateSession.openSession();
session.saveOrUpdate(group);
HibernateSession.closeSession();

} catch (Exception e) {
// log exception

}

In this aspect, we build a pointcut based on all attributes of the Group class. The set designator tells
AspectJ to match when the attributes of the provided call are set to new values.

404

Chapter 18

20_576771_c18.qxd 9/1/04 12:56 PM Page 404

TE
AM
 F
LY

Summary
In this chapter, we’ve taken a brief look at the Aspect-Oriented Programming methodology. Using the
information gain, Hibernate can be directly incorporated into aspects that have requirements spanning
multiple classes within an application.

405

Hibernate and AspectJ

20_576771_c18.qxd 9/1/04 12:56 PM Page 405

20_576771_c18.qxd 9/1/04 12:56 PM Page 406

Hibernate Interceptors

As you might have noticed throughout this book, the objects created and persisted with Hibernate
go through a lifecycle. An object will be created and persisted. Once the object has been changed, it
becomes dirty and must be saved to the database again using an update operation. This process
continues until the next time the object is needed, and it will be loaded from the persistent store.
Finally, in some situations, the object will be deleted from the store permanently. As you saw in
Chapter 5, an object can choose to implement the Lifecycle interface and implement four
methods:

❑ onSave

❑ onUpdate

❑ onDelete

❑ onLoad

These four methods allow the object some control over itself when Hibernate performs various
operations on it. We can also provide an application some control over how the Session operates
using the Interceptor interface. The Interceptor interface is designed to work at the
Session level and affects all of the persisted objects being managed by Hibernate.

Interceptor Interface
The following list shows all of the methods available within the Interceptor interface.

❑ int[] findDirty(Object obj, Serializable serial, Object[] currentState, Object[] previousState,
String[] properties, Type[] types)

❑ Object instantiate(Class class, Serializable serial)

❑ Boolean isUnsaved(Object obj)

191199

21_576771_c19.qxd 9/1/04 12:57 PM Page 407

❑ void onDelete(Object obj, Serializable id, Object[] state, String[] properties, Type[] types)

❑ boolean onFlushDirty(Object obj, Serializable id, Object[] currentState, Object[] previousState,
String[] properties, Type[] types)

❑ boolean onLoad(Object obj, Serializable serial, Object[] state, String[] propertyNames, Type[]
types)

❑ boolean onSave(Object obj, Serializable serial, Object[] state, String[] properties, Type[] types)

❑ void postFlush(Iterator entities)

❑ void preFlush(Iterator entities)

Each method listed in the previous table is designed to be called by the Session object when a specific
task is executed. The times when the methods are called are as follows:

❑ findDirty: Called when the flush() method is called on a Session object. If null is returned,
Hibernate will use its own implementation to determine if a flush should occur. If the return is
an empty array, then the object will not be saved. If the return is an array of indices, the object
will be saved.

❑ instantiate: Called when a persisted class is instantiated. Returns null to allow Hibernate to
handle the instantiation or a new object of the class type.

❑ isUnsaved: Called when an object is passed to the saveOrUpdate() method. If the return
value is true, save() is called; if false, then update() is called. If null, then Hibernate will
check the identifier value to determine what should occur.

❑ onDelete: Called before an object is deleted.

❑ onFlushDirty: Called when Hibernate detects that an object is dirty during a flush operation.
If the currentState parameter is changed, returns true.

❑ onLoad: Called before an object is initialized. The state parameter can be changed as needed,
and the return value should be true if the state parameter is changed.

❑ onSave: Called before an object is saved. Returns a true value if the state parameter is changed.

❑ postFlush: Called after a flush has occurred and an object has been updated in memory.

❑ preFlush: Called before a flush.

Now the question remains, just how do we use the Interceptor interface?

Building an Interceptor
What good is the Interceptor interface? The answer is that it gives us total control over how an object
will look to both the application and the database. The first step in using the Interceptor interface is
to build a traditional interface that a particular class in the application can implement in order to indi-
cate that the class should be visible to the Interceptor class.

408

Chapter 19

21_576771_c19.qxd 9/1/04 12:57 PM Page 408

The class we will build is called Inquire, and it will have the following methods defined to work on
the object, depending on what the Session object is doing at a given time.

❑ flushDirty(): We will call this method when the Session object thinks an object should be
saved.

❑ beforeSave(): We will call this method when the object is just about to be saved. The code will
update a timestamp attribute within the object itself.

❑ justUpdated(): We will call this method when the object in memory has been updated.

The actual code for the Inquire class is shown in Listing 19.1.

public interface Inquire {
public void flushDirty();
public void beforeSave();
public void justUpdated();

}

Listing 19.1

Now the code in Listing 19.1 will be used with all of our objects that should be processed by the
Interceptor. So, let’s look at a class called User, which will implement the Inquire interface. The
User class is shown in Listing 19.2.

import java.util.*;

public class User Implements Inquire {
private int id;
private String username;
private String password;

public Group(){
}

public Group(String name) {
this.name = name;

}

public void setId(int i) {
id = i;

}

public int getId() {
return id;

}

public void setUsername(String n) {
username = n;

}

public String getUsernme() {

409

Hibernate Interceptors

21_576771_c19.qxd 9/1/04 12:57 PM Page 409

return username;
}

public void setPasswword(String l) {
password = l;

}

public String getPassword() {
return password;

}

public void flushDirty() {
System.out.println("Call to flushDirty");

}

public void beforeSave() {
System.out.println("Call to beforeSave");

}

public void justUpdated() {
System.out.println("Call to justUpdated");

}
}

Listing 19.2

For the User class, we must implement the Inquire interface and provide code for the flushDirty,
beforeSave, and justUpdated methods. For our example, we just provide a little indicator to show
that the method is called. Now we are getting closer to using the Interceptor interface. The final step is to
build the Interceptor class itself. Listing 19.3 shows the code.

import java.io.Serializable;

import java.util.Iterator;

import net.sf.hibernate.Interceptor;

public class InquireInterceptor implements Interceptor, Serializable {

public void onDelete(Object obj,
Serializable serial,
Object[] state,
String[] properties,
Type[] types) {

}

public boolean onFlushDirty(Object obj,
Serializable serial,
Object[] currentState,
Object[] previousState,
String[] properties,

410

Chapter 19

21_576771_c19.qxd 9/1/04 12:57 PM Page 410

Type[] types) {

if (entity instanceof Inquire) {
obj.flushDirty();
return true;

}
return false;

}

public boolean onLoad(Object obj,
Serializable serial,
Object[] state,
String[] properties,
Type[] types) {

return false;
}

public boolean onSave(Object obj,
Serializable serial,
Object[] state,
String[] properties,
Type[] types) {

if (entity instanceof Inquire) {
obj.beforeSave();
return true;

}
return false;

}

public void postFlush(Iterator entities) {
}

public void preFlush(Iterator entities) {

}

public boolean isUnsaved(Object obj) {
// need to check each object attributes to determine if this should be

saved
or not

return null;
}

public Object instantiate(Class class,
Serializable serial) {

return null;
}

public int[] findDirty(Object obj,
Serializable serial,
Object[] currentState,
Object[] previousState,
String[] properties,

411

Hibernate Interceptors

21_576771_c19.qxd 9/1/04 12:57 PM Page 411

Type[] types) {
// Here we need to compare currentState with PreviousState and return

array of ints
// for each object that is different
return null;

}
}

Listing 19.3

The Interceptor in Listing 19.3 is fairly basic in that it just calls a method of the passed object or
returns a null value to allow Hibernate to use its own default behavior for the requested operation.

Using the InterceptorSo how do we use the Interceptor? The answer is using a variant of the
openSession() method of the Session Factory class. An example is:

Session session - SessionFactory.openSession(new InquireInterceptor);

Or, we could build the Interceptor at the Configuration level as well with the code:

Configuration.setInterceptor(new InquireInterceptor);

That’s all there is to using Hibernate and its Interceptor interface. When the application is executed,
all calls to the Interceptor will be routed to a method within the working object.

Summary
In this chapter, we talked about how to extend the functionality of the application as it uses Hibernate to
store Java objects. By using the Interceptor interface, we have complete control over how an object is
pulled from the database or stored, either for the first time or potentially numerous times.

412

Chapter 19

21_576771_c19.qxd 9/1/04 12:57 PM Page 412

Hibernate Database
Connectivity

In an effort to make Hibernate as easy to use as possible, we’ve added this appendix to provide
you with all of the information you should need to initially get Hibernate working with all of the
databases it currently supports. Each database section below will give you the information you
need to obtain a specific database, as well as the properties needed for Hibernate to use it.

DB2
DB2 is IBM’s primary database product, and it is available in several different versions. For per-
sonal use, you can download a copy of the system at http://www14.software.ibm.com/webapp/
download/. There are versions available for Linux for 64-bit and 32-bit as well as Windows 32-bit.
Note that the files range from 0.5GB to 1.5GB in size.

The server already has the JDBC driver with it. If you need the client-side tools that come with the
JDBC driver, you can download them from here: http://www-3.ibm.com/cgi-bin/db2www/
data/db2/udb/winos2unix/support/index.d2w/report. From this page, click the DB2 Client link
appropriate for your database version. The next page that appears provides links for many differ-
ent products for many different platforms. You need to click the Application Development Client
link for the platform where you will be executing your application. Unfortunately, you will get
much more than just the JDBC client, so just delete what you don’t want to use.

The Hibernate properties for DB2 might look like the following, based on your application and
architecture.

AAA

22_576771_appa.qxd 9/1/04 12:58 PM Page 413

hibernate.dialect net.sf.hibernate.dialect.DB2Dialect
hibernate.connection.driver_class COM.ibm.db2.jdbc.app.DB2Driver
hibernate.connection.url jdbc:db2:test
hibernate.connection.username name
hibernate.connection.password password

DB2/400
If you need to install IBM’s DB2 on an iSeries machine, you can visit the following URL to find the
necessary product information: http://www-1.ibm.com/servers/eserver/iseries/db2/. The JDBC
driver for DB2/400 can be obtained from the JTOPen IBM Toolbox for Java Web site at http://
www-124.ibm.com/developerworks/oss/jt400/index.html. The jtopen_4_2.zip file contains the driver
named jt400.jar.

hibernate.dialect net.sf.hibernate.dialect.DB2400Dialect
hibernate.connection.username user
hibernate.connection.password password
hibernate.connection.driver_class COM.ibm.db2.jdbc.app.DB2Driver
hibernate.connection.url jdbc:db2://localhost

HypersonicSQL
From the HypersonicSQL project site, http://sourceforge.net/projects/hsqldb/, “HSQLDB is a rela-
tional database engine written in Java, with a JDBC driver, supporting a subset of ANSI-92 SQL. It offers
a small (about 100k), fast database engine which offers both in-memory and disk-based tables. This
product includes Hypersonic SQL.” The Hibernate properties are:

hibernate.dialect net.sf.hibernate.dialect.HSQLDialect
hibernate.connection.driver_class org.hsqldb.jdbcDriver
hibernate.connection.username sa
hibernate.connection.password sa
hibernate.connection.url jdbc:hsqldb:hsql://localhost

Interbase
Interbase is a Borland database server available at http://www.borland.com/interbase/. Various
database types are included, but they aren’t open source. A trial download is available along with the
InterClient JDBC driver.

hibernate.dialect net.sf.hibernate.dialect.InterbaseDialect
hibernate.connection.username sa
hibernate.connection.password sa
hibernate.connection.driver_class interbase.interclient.Driver
hibernate.connection.url jdbc:interbase://localhost

414

Appendix A

22_576771_appa.qxd 9/1/04 12:58 PM Page 414

McKoi SQL
The McKoi database is open source and is written in Java. It is available at http://mckoi.com/
database/. The download includes both the server and the JDBC driver. The Hibernate properties
are as follows:

hibernate.dialect net.sf.hibernate.dialect.MckoiDialect
hibernate.connection.driver_class com.mckoi.JDBCDriver
hibernate.connection.url jdbc:mckoi://localhost/
hibernate.connection.username sa
hibernate.connection.password sa

Microsoft SQL Server
Probably the most popular Windows database engine is Microsoft’s SQL Server. Although very popular,
Microsoft SQL Server is quite pricey and is usually found only in medium to large corporations.
However, if you are interested in getting your feet wet with this database engine, you can download a
120-day trial at http://www.microsoft.com/sql/evaluation/trial/default.asp. Installing the engine is
just a matter of clicking through a few wizard dialogs.

The trials and tribulations of the relationship between Microsoft and Sun are quite well known, and so
Java support for Microsoft products isn’t always the best. There are currently 47 different JDBC drivers
available for Microsoft SQL Server, according to Sun’s JDBC driver page. Some of the drivers are certi-
fied for various SDKs, some of them are commercial, and others have a variety of options. Here are a
couple of choices:

The Microsoft driver (although Hibernate does not recommend using this driver):

hibernate.dialect net.sf.hibernate.dialect.SQLServerDialect
hibernate.connection.username sa
hibernate.connection.password sa
hibernate.connection.driver_class
com.microsoft.jdbc.sqlserver.SQLServerDriver
hibernate.connection.url
jdbc:microsoft:sqlserver://localhost;DatabaseName=test

Weblogic has a driver available at http://e-docs.bea.com/wls/docs81/jdrivers.html. The JDBC is an
evaluation driver available for 30 days. The properties for the driver are as follows:

hibernate.dialect net.sf.hibernate.dialect.SQLServerDialect
hibernate.connection.username sa
hibernate.connection.password sa
hibernate.connection.driver_class weblogic.jdbc.mssqlserver4.Driver
hibernate.connection.url jdbc:weblogic:mssqlserver4:localhost:1433

415

Hibernate Database Connectivity

22_576771_appa.qxd 9/1/04 12:58 PM Page 415

MySQL
In Chapter 3, we went through the process of obtaining and installing both MySQL and the JConnector
JDBC driver. Refer to that chapter for obtaining those products. The configuration for MySQL is given
below:

hibernate.dialect net.sf.hibernate.dialect.MySQLDialect
hibernate.connection.driver_class com.mysql.jdbc.Driver
hibernate.connection.url jdbc:mysql://<server>/test
hibernate.connection.username root
hibernate.connection.password root

Oracle
When people talk about databases, Oracle always enters the conversation. Oracle has always been con-
sidered the primary powerhouse of database servers in the market. You can find versions 8i, 9i, and 10g
at http://otn.oracle.com/software/products/database/oracle10g/index.html. There are downloads for
all major platforms.

Oracle’s JDBC driver can be found at http://otn.oracle.com/software/tech/java/sqlj_jdbc/index.html.

A great deal of information on using Oracle and Oracle’s JDBC can be found at the following link:
http://download-west.oracle.com/docs/cd/B10501_01/java.920/a96654/preface.htm. The Hibernate
configuration options are shown here:

hibernate.dialect net.sf.hibernate.dialect.Oracle9Dialect

or

hibernate.dialect net.sf.hibernate.dialect.OracleDialect
hibernate.connection.driver_class oracle.jdbc.driver.OracleDriver
hibernate.connection.username oracle
hibernate.connection.password oracle
hibernate.connection.url jdbc:oracle:thin:@localhost:1521:test

PointBase
Another commercial database that can be used with Hibernate is PointBase. Information on the database
can be found at http://www.pointbase.com/products/core_technology.aspx. There are several different
product types, including PointBase Embedded, PointBase Server, and PointBase Micro. Currently, an
evaluation download is available for PointBase Micro. Everything you need is included with the down-
load. The Hibernate configuration information is shown here:

hibernate.dialect net.sf.hibernate.dialect.PointbaseDialect
hibernate.connection.driver_class com.pointbase.jdbc.jdbcUniversalDriver
hibernate.connection.url jdbc:pointbase:micro:test
hibernate.connection.username test
hibernate.connection.password test

416

Appendix A

22_576771_appa.qxd 9/1/04 12:58 PM Page 416

PostgreSQL
Another very popular open source database is PostgreSQL. This database has many of the same features as
commercial servers and has been proven to perform with the best of them. The database is available for
a variety of platforms, and you can download it from the following link: http://www.postgresql.org/
mirrors-ftp.html. Once you’ve obtained the server and installed it, you can obtain the JDBC driver at
http://jdbc.postgresql.org/.

The Hibernate properties for PostgreSQL are as follows:

hibernate.dialect net.sf.hibernate.dialect.PostgreSQLDialect
hibernate.connection.driver_class org.postgresql.Driver
hibernate.connection.url jdbc:postgresql://localhost/template1
hibernate.connection.username pg
hibernate.connection.password pg
hibernate.query.substitutions yes 'Y', no 'N'

SAP DB
SAP DB is an open source database that has been rebranded as MaxDB and placed under the MySQL
umbrella. SAP DB is a high-powered database that includes views, stored procedures, triggers, auto-
matic failover, as well as a host of other features not currently found in the MySQL database server. You
can download MaxDB from http://www.mysql.com/products/maxdb/. Click the Download Binaries
and Sources link on the lower-right menu.

At the top of the download page you will find the database server installation files and toward the bot-
tom of the page, the JDBC driver.

hibernate.dialect net.sf.hibernate.dialect.SAPDBDialect
hibernate.connection.driver_class com.sap.dbtech.jdbc.DriverSapDB
hibernate.connection.url jdbc:sapdb://localhost/test
hibernate.connection.username TEST
hibernate.connection.password TEST
hibernate.query.substitutions yes 'Y', no 'N'

Sybase
There are currently two different databases from Sybase:

❑ Sybase Adaptive Server Enterprise

❑ SQL Anywhere Studio

You are currently able to download an evaluation version of SQL Anywhere Studio for both Linux and
Windows. The link to the downloads can be found at http://www.sybase.com/developer under the
Developer Downloads menu on the left navigation menu.

417

Hibernate Database Connectivity

22_576771_appa.qxd 9/1/04 12:58 PM Page 417

The JDBC driver can be found at http://www.sybase.com/products/middleware/jconnectforjdbc. Click
the Downloads link on the left navigation menu.

hibernate.dialect net.sf.hibernate.dialect.SybaseDialect
hibernate.connection.driver_class com.sybase.jdbc2.jdbc.SybDriver
hibernate.connection.username sa
hibernate.connection.password sasasa
hibernate.connection.rl jdbc:sybase:Tds:co3061835-a:5000/tempdb

418

Appendix A

22_576771_appa.qxd 9/1/04 12:58 PM Page 418

Getting Involved with
Hibernate

So you’ve read the book from cover to cover. And now you want to become more involved with
the Hibernate community? One of the wonderful things about an open source project is that the
more you put into it, the better the community becomes, and the more you can get out of it. There
are a number of ways you can contribute to the community, including helping answer user ques-
tions on the forums, adding material to the Hibernate wiki, and finally, actually working on the
further development of Hibernate.

Hibernate Forums
The Hibernate project handles supporting users through online forums available at http://forum
.hibernate.org/. There are a number of specialized forums, starting from “Hibernate Beginners”
for people who haven’t read this book, to intellectually challenging discussions about architecting
applications and integrating Hibernate in frameworks in the “Application Architecture” and
“System Integration” forums. Plus, because Hibernate is under the JBoss framework, there is a
“JBoss and JBossCache” specific forum. Lastly, as the tools for Hibernate progress, you can find
support for them in the Tools forum.

In an attempt to keep a high signal-to-noise ratio in the forums, the Hibernate team has posted a
“How to Ask for Help” page available here: www.hibernate.org/160.html. This is mainly a list of
commonsense steps to perform when you get into trouble, such as: “write a unit test to isolate
your problem,” “read the Frequently Asked Questions,” and, of course, the most basic “search the
forum.” Chances are that the someone else has had the problem you’re experiencing and has
already posted the problem and recieved the answer you need. If these approaches don’t get you
an answer to your problem, then you’re ready for the next level of suggestions, such as providing
as much information as possible about your problem and writing a professional request for help.
The various rules of thumb on how to ask for help are well worth taking to heart when trying to
solve a problem you may be experience with any piece of software, not just Hibernate.

BBB

23_576771_appb.qxd 9/1/04 12:59 PM Page 419

The Hibernate forums aren’t just a great way to request support—they are also a great way to learn
about advanced techniques with Hibernate that you may not yet have had a chance to apply in your
own projects. Reading posts and answering them can really build your knowledge of Hibernate.

Hibernate Wiki
One of the strengths of the Hibernate project is its excellent documentation. However, users often come
up with ideas for how to use Hibernate that aren’t covered in the documentation and want to share these
ideas. That is where the wiki comes into play.

420

Appendix B

Taken from wikipedia.org: “A wiki (pronounced “wicky” or “weeky”) is a web-
site (or other hypertext document collection) that gives users the ability to add
content, as on an Internet forum, but also allows that content to be edited by
other users.”

People contribute back to the Hibernate community by being able to add new content to the wiki. So, if
you discover an interesting technique for using Hibernate, then by adding a new page to the wiki, you
are increasing the total sum of knowledge about Hibernate. An example of the type of content available
on the wiki is a description of how to write an appender for the Log4j logging tool from the Apache
Software Foundation that persists logging events via Hibernate. Another example is how to use
Hibernate with PicoContainer, an open source Inversion of Control container available from http://
picocontainer.codehaus.org/.

The wiki also encourages a dialog by allowing users to add comments and version their content. Again,
if you are trying to solve a problem, searching the wiki is often a good first step to see if anyone else has
run up against the same issue.

Contributing to the Further Development of
Hibernate

Once you feel like you are a hibernate wiz, you may want to dig into the source code and start contribut-
ing to the further development of Hibernate. To get started, you’ll want to check out the source code and
join the development mailing list. For ideas on what to do, take a look at the outstanding issues list for
Hibernate.

Checking Out the Source and Building It
Because Hibernate is an open source project, the source code is freely available. The source is hosted
by SourceForge.net, a popular site devoted to providing tools like CVS to support open source
development.

23_576771_appb.qxd 9/1/04 12:59 PM Page 420

To check out the source code you’ll need a CVS client. The easiest way is to use the CVS client that is
probably already embedded in your favorite IDE. I happen to like the one in Eclipse 3.0. In Eclipse, you
would switch to the Repository View. Right click and add a new repository using the following settings:

❑ host: cvs.sourceforge.net

❑ repository path: /cvsroot/hibernate

❑ user: anonymous

❑ password: Leave the password field blank; as an anonymous user you don’t need to fill any-
thing in

❑ connection type: pserver

Once you’re connected you will see a couple modules listed under CVS HEAD, including Hibernate2,
Hibernate3, and HibernateExt. If you are interested in looking at the current released code for Hibernate,
then check out Hibernate2. At the time of writing this is the current production ready code, and releases
of this are used in this book. HibernateExt contains various extensions to Hibernate, including the
Hibern8ide and tools projects. The next major version, Hibernate 3, is available in the Hibernate3
module. This is the latest and greatest version of Hibernate, but isn’t released yet.

Hibernate is built using Ant. Once you have checked out the Hibernate module you would like, just exe-
cute ant to build Hibernate. To see all the various targets available, run ant –projecthelp to receive
a list.

Development Mailing List
To keep abreast of what is happening with the development of Hibernate, you should join the various
mailing lists available here: http://sourceforge.net/mail/. Note that the the development list is not a
place to ask for help. If you are having problems with Hibernate, or trying to use Hibernate in a new
manner, then you should post your questions in the forums. The development mailing list focuses solely
on the development of the core Hibernate product.

The hibernate commits mailing list allows you to receive notification of each commit to the Hibernate
code base. This allows you to keep up with what changes are being applied. Similarly, the hibernate-
issues mailing list notifies you of changes filed with the JIRA issue tracker for Hibernate.

Issue Tracking
Hibernate uses the JIRA issue tracker hosted by Atlassian at http://opensource.atlassian.com/pro-
jects/hibernate/. You can anonymously browse the various issues, and if you register, you can attach
comments as well. The Hibernate team uses JIRA to track bugs and feature requests related to Hibernate.
If you have a contribution to make to Hibernate, then you should open a new issue in JIRA if one doesn’t
already exist. Then attach your new code as a patch file to the issue. When you save your changes to the
issue, an email will be generated to the hibernate issues mailing list, notifing the committers that an
issue has been updated. A committer will review your code change, and assuming it meets their stan-
dards, will take the patch file you supplied and apply it to the code base.

421

Getting Involved with Hibernate

23_576771_appb.qxd 9/1/04 12:59 PM Page 421

More Information on Open Source
For more information on how open source projects like Hibernate work, visit the following Web sites:

❑ Open Source Initiative: www.opensource.org/

❑ Apache Software Foundation: www.apache.org/

❑ The classic article The Cathedral and Bazaar: http://www.catb.org/~esr/writings/
cathedral-bazaar/cathedral-bazaar/

422

Appendix B

23_576771_appb.qxd 9/1/04 12:59 PM Page 422

In
de

x

Index

Symbols
!= (not equal) operator, 201
<= (less than or equal) operator, 201
<> (not equal) operator, 201
= (equality) operator, 201
>= (greater than or equal) operator, 201
[] operator (HQL), 197–198

A
Abstract Factory implementation (DAO), 252–253
ActionForm (Struts application example), 375–376
actions (Struts application example), 377
advice (AspectJ), 400
aggregate functions (HQL), 204
all predicate (HQL), 197–198
AndroMDA, 355–358
Ant

Maven comparison, 327
SchemaExport/SchemaUpdate tool support,

341–342
any predicate (HQL), 197–198
AOP (Aspect-Oriented Programming), 389. See also

AspectJ; OOADP
aspect languages, 397
component languages, 397
development process, 397–398
goals, 397
language implementation in AspectJ, 401–402
OOADP problems solved by, 396
weaving, 397, 401–402

Apache DBCP, 66
architecture (Hibernate), 16–17
arrays, mapping, 157–158
<artifactId> element, 310
AspectJ. See also AOP

advice, 400
AOP language implementation, 401–402
aspects, 400–401

example class, 403
Hibernate aspects, 404
join points, 399
overview, 398–399
pointcuts, 400
weaving, 401–402

aspect languages, 397
Aspect-Oriented Programming. See AOP
aspects (AspectJ), 400–401
<assembly-descriptor> element, 245
assigned generator, 75
associations, 127–128

bidirectional, 130, 158–160
<element> element, 129–130
<index> element, 128–129
lazy initialization, 131
ternary, 140

avg(attribute) function (HQL), 204

B
bags, mapping, 156
beginTransaction() method, 226
bidirectional associations, 130, 158–160
binary data, mapping classes with, 93–95
booleans (HQL), 201–202
boolean wasCommitted() method, 227
boolean wasRolledBack() method, 227
browsing objects (Hibern8IDE tool), 353

C
C3PO, 65–66
caching, 207–208

EHCache, 216–218
persistent object cache, 213–214
query caches, 215–216
session caches, 216
SessionFactory caches, 212–215

24_576771_bindex.qxd 9/1/04 1:02 PM Page 423

Survey application example, 208–211
when not to use, 218

calendar attributes, mapping classes with, 97–99
callbacks, 21–22
CD list servlet-based application example

adding Hibernate to, 49–50
interface page, 50–51
servlet code, 51–53

CD list standalone application example
database table, 30
Java class, 28–30
loading the mapping, 38–39

data objects, finding, 45–46
deleting objects, 43
obtaining SessionFactory, 39
persistent classes, creating, 39–41
persistent classes, loading, 43–45
updating objects, 41–42

mapping document, 30–33
skeleton code, 33–38

check attribute, 337–338
<class> element, 31–32, 70–72
classes, mapping

basic classes, 88–93
with binary data, 93–95
with data/calendar attributes, 97–99
read-only classes, 99–102
serializable classes, 95–97
table-per-class inheritance mapping, 110–113
table-per-concrete-class inheritance mapping, 115–117
table-per-subclass inheritance mapping, 113–115
with versioning/timestamps, 102–107

CMT (container managed transactions), 242–245
code generation, 262
code generation templating (XDoclet), 265
CodeGenerator finders, 348–349
Code Generator tool, 342–348
code scattering (OOADP), 394–396
code tangling (OOADP), 394–396
collection elements, 84–85
collections

filtering, 171–172
HQL (Hibernate Query Language), 197–199
mapping, 127

arrays, 157–158
associations, 127–128, 129–131
bags, 156
bidirectional associations, 158–160
lazy initialization, 131
lists, 152–155
maps, 131–147

Sets and SortedSets, 147–151
tagging (XDoclet), 277–281

<column> element, 32
column formulas, 122–124
comment blocks, 263–264
commit() method, 226
committing transactions, 223
<componenet> element, 82
component languages, 397
<composite-id> element, 75–76
concerns (OOADP), 391–392
Configuration class, 18–19
configuration file, 26
configuration file wizard (Hibernate Synchronizer), 370
configuring

Hibernate properties, 58–64, 223–224
Struts

<plug-in> element, 378–382
struts-conf.xml file, 378

Tomcat, 46, 236
connection pooling, 64–65

with Apache DBCP, 66
with built-in pooling, 65
with C3PO, 65–66
with Proxool, 66–67

container managed transactions (CMT), 242–245
controlling resultsets, 176–177
count(*) function (HQL), 204
count(distinct attribute) function (HQL), 204
count(query) function (HQL), 204
Criteria object, 181–184
crosscutting (OOADP), 393

D
DAO design pattern, 247–250

Abstract Factory implementation, 252–253
example application

application code, 259–260
class diagram, 253
factories, building, 254–255
objects, building, 255–259

Factory Method implementation, 250–251
Data Access Object design pattern. See DAO design

pattern
data attributes, mapping classes with, 97–99
databases

configuring for unit testing, 320–322
connecting to, 67–69
DB2, 413–414

424

caching

24_576771_bindex.qxd 9/1/04 1:02 PM Page 424

DB2/400, 414
Hibernate-supported, 55–56
HypersonicSQL, 414
Interbase, 414
McKoi SQL, 415
Microsoft SQL Server, 415
MySQL, 416
Oracle, 416
PointBase, 416
PostgreSQL, 417
SAP DB, 417
Sybase, 417–418
transaction support, 224–225

database server hookup, 26–27
database tables, standalone CD list application exam-

ple, 30
data objects, finding, 45–46
DB2/400 database, 414
DB2 database, 413–414
DBCP (Apache), 66
deleting objects, 166–168
dialect determination (SQL), 62–64
dirty reads (transactions), 225
<discriminator> element, 76–77
documenting code, 263–264

E
Eclipse

HiberClipse plug-in, 368–370
Hibernate Synchronizer plug-in, 370–372
Hibernator plug-in, 363–367
integrating with Maven, 328
plug-ins, 22

EHCache, 216–218
EJB (Enterprise JavaBeans)

finders, 348–349
stateful session bean example, 240–242
stateless session bean example, 238–239EJBGen,

262
<element> element, 86, 129–130
elements predicate (HQL), 197–198
Enterprise JavaBeans. See EJB
enumerations. See Enums
Enums, mapping, 119–121
equality operators (HQL), 201
exists predicate (HQL), 197–198

F
factories, building (DAO), 254–255
Factory Method implementation (DAO), 250–251
fetch joins (HQL), 206
filtering collections, 171–172
finders, 348–349
finding

large resultsets, 171
objects, 169–170

flushing objects, 166
forced rollbacks (transactions), 229
foreign generator, 75
foreign-key attribute, 336
formulas, 122–124
forums on Hibernate, 419–420
full joins (HQL), 206
functions, scalar, 200–201

G
<generator> element, 32, 73–75
getCurrentLockMode(Object) method, 233
getters, tagging (XDoclet), 282
goals (Maven), 311–312
greater than or equal (>=) operator, 201
group by clause (HQL), 204–205
<groupId> element, 310
groupings (HQL), 200

H
HAVING clause (HQL), 204–205
HiberClipse plug-in (Eclipse), 368–370
Hibern8IDE tool, 350–353

browsing objects, 353
querying objects, 353–355

Hibernate
configuration file, 26
database server hookup, 26–27
downloading, 23–24
forums, 419–420
installing, 25
issue tracking, 421
mailing lists, 421
Microsoft SQL Server setup, 27–28
MySQL setup, 27
overview, 15–16

425

Hibernate

In
de

x

24_576771_bindex.qxd 9/1/04 1:02 PM Page 425

architecture, 16–17
callbacks, 21–22
configuration, 18–19
persistent classes, 17–18
server support, 17
sessions, 20–21
technologies supported, 22

requirements, 24–25
source code, 420–421
wiki, 420

hibernate:aggregate-mappings goal (Maven), 317
@hibernate.array tag, 284–285
@hibernate.bag (0..1) tag, 285
@hibernate.cache tag, 283
hibernate.cfg.xml file, generating, 268–270

with Maven, 314, 316–317
hibernate.cglib.use_reflection_optimizer property, 60
@hibernate.class tag, 282
@hibernate.collection-cache tag, 285–286
@hibernate.collection-composite-element tag, 286
@hibernate.collection-element tag, 286
@hibernate.collection-index tag, 286
@hibernate.collection-key-column (0..*) tag, 287
@hibernate.collection-key tag, 287
@hibernate.collection-many-to-many tag, 287
@hibernate.collection-one-to-many tag, 287–288
@hibernate.column tag, 288
@hibernate.component tag, 288
hibernate.connection.datasource property, 26, 58
hibernate.connection.driver_class property, 26
hibernate.connection.isolation property, 60–61
hibernate.connection.password property, 26, 27, 56, 58
hibernate.connection.pool_size property, 26, 58
hibernate.connection.provider_class property, 61
hibernate.connection.url property, 26, 58
hibernate.connection.username property, 26, 27, 58
hibernate.default_schema property, 59
hibernate.dialect property, 26, 59, 62–64
@hibernate.discriminator tag, 283
@hibernate.generator-param tag, 288
@hibernate.id tag, 289
@hibernate.index-many-to-many tag, 289
hibernate.jdbc.batch_size property, 60
hibernate.jdbc.fetch_size property, 60
hibernate.jdbc.use_scrollable_resultset property, 60
hibernate.jdbc.use_streams_for_binary property, 60
hibernate.jndi.<property> property, 60
hibernate.jndi.class property, 27, 59
hibernate.jndi.url property, 27, 59
@hibernate.joined-subclass-key tag, 284
@hibernate.joined-subclass tag, 283

@hibernate.list tag, 290
@hibernate.many-to-one tag, 290
@hibernate.map tag, 291
hibernate.max_fetch_depth property, 59
@hibernate.one-to-one tag, 291
@hibernate.primitive-array tag, 292
@hibernate.property tag, 292
@hibernate.query tag, 284
hibernate:schema-export goal (Maven), 317–319
hibernate.Session_factory_name property, 59
@hibernate.set tag, 292–293
hibernate.show_sql property, 61–62
@hibernate.subclass tag, 284
@hibernate.timestamp tag, 293
hibernate.transaction.factory_class property, 61
hibernate.use_outer_join property, 59
@hibernate.version tag, 293
hibernatedoclet task, 266–267
Hibernate Extensions

CodeGenerator finders, 348–349
Code Generator tool, 342–348
Hibern8IDE tool, 350–353

browsing objects, 353
querying objects, 353–355

Map Generator tool, 349–350
<hibernate-mapping> element, 31–32, 69–70
Hibernate plug-in for Maven, 317–319
Hibernate Query Language. See HQL
Hibernate Synchronizer plug-in (Eclipse), 370–372
Hibernator plug-in (Eclipse), 363–364

creating schemas, 367
database connection, 364–366
mapping documents, creating, 364–366
queries, 367
updating schemas, 367

hilo generator, 74
hooking up database servers, 26–27
HQL (Hibernate Query Language)

aggregate functions, 204
booleans, 201–202
collections, 197–199
equality operators, 201
group by clause, 204–205
groupings, 200
HAVING clause, 204–205
joins, 205–206
logical operators, 199
named parameters, 201
newsgroup example

application code, 191–192
classes, 185–189

426

Hibernate

24_576771_bindex.qxd 9/1/04 1:02 PM Page 426

mapping document, 189–190
rows, 192
tables, 191

NULL expression, 199–200
order by clause, 203
polymorphism, 202–203
query substitution, 62
scalar functions, 200–201
SELECT clause, 194–196
subselects, 202
WHERE clause, 196–197

HypersonicSQL database, 414

I
<id> element, 32, 72–73
identity generator, 73
increment generator, 73
index() property, 198
<index> element, 86, 128–129
index attribute, 337
indices predicate (HQL), 197–198
inheritance, 8–9

lowest-child inheritance mapping, 9–10
table-per-class, 10–11, 110–113
table-per-concrete-class, 11, 115–117
table-per-subclass, 113–115

inheritance hierarchies, 107–110
inner joins (HQL), 206
InnoDB table type (MySQL transactions), 228–229
in predicate (HQL), 197–198
integrity. See transactions
Interbase database, 414
Interceptor interface

building interceptors, 408–412
methods, 407–408

interfaces, persisting, 117–119
ISAM table type (MySQL transactions), 228
issue tracking, 421

J
J2EE, 22

application servers, 235
CMT (container managed transactions), 242–245
DAO design pattern, 247–250

Abstract Factory implementation, 252–253
example application, 253–260

Factory Method implementation, 250–251
Hibernate configuration file, 236–237
SessionFactory singleton class, 237–238
stateful session bean example, 240–242
stateless session bean example, 238–239
Tomcat configuration, 235–237

JARs, producing (Maven), 311
Java classes, creating (standalone CD list application

example), 28–30
Javadoc, 263–264

with Maven, 311
Java Naming and Directory Interface (JNDI), 17
Java Transaction API (JTA), 17
Java Virtual Machine (JVM), 207
JBoss, 270–272
JDBC, 17

configuring connections (HiberClipse), 369
properties, 58–62

JDBC database connections, 67–69
JIRA issue tracker, 421
JNDI (Java Naming and Directory Interface), 17, 236
<joined-subclass> element, 83–84
join points (AspectJ), 399
joins (HQL), 205–206
JTA (Java Transaction API), 17
jta.UserTransaction property, 61
JVM (Java Virtual Machine), 207

K
<key> element, 85
keys, primary, 8

L
large resultsets, finding, 171
lazy initialization, 131
left outer joins (HQL), 205–206
length attribute, 334
less than or equal (<=) operator, 201
like operator, 201
lists, mapping, 152–155
load() method, 233
loading data into objects, 164–165
lock() method, 233
locking, 230–233
LockMode.NONE lock, 233
LockMode.READ lock, 233

427

LockMode.READ lock

In
de

x

24_576771_bindex.qxd 9/1/04 1:02 PM Page 427

LockMode.UPGRADE lock, 233
LockMode.UPGRADE-NO WAIT lock, 233
LockMode.WRITE lock, 233
LockMode getCurrentLockMode(Object) method, 233
logical operators (HQL), 199
lower() function (HQL), 200–201
lowest-child inheritance mapping, 9–10

M
mailing lists, 421
<many-to-many> element, 135–140
many-to-many relationships, 13–14
<many-to-one> element, 80–81
Map Generator tool, 349–350
mapping

classes
basic classes, 88–93
with binary data, 93–95
with data/calendar attributes, 97–99
inheritance hierarchies, 107–110
read-only classes, 99–102
serializable classes, 95–97
table-per-class inheritance mapping, 110–113
table-per-concrete-class inheritance mapping,

115–117
table-per-subclass inheritance mapping, 113–115
with versioning/timestamps, 102–107

collections, 127
arrays, 157–158
associations, 127–131
bags, 156
bidirectional associations, 158–160
lazy initialization, 131
lists, 152–155
maps, 131–147
Sets and SortedSets, 147–151

Enums, 119–121
inheritance, 8–9

lowest-child inheritance mapping, 9–10
table-per-class inheritance mapping, 10–11
table-per-concrete-class inheritance mapping, 11

loading into an application, 38–39
data objects, finding, 45–46
deleting objects, 43
obtaining SessionFactory, 39
persistent classes, creating, 39–41
persistent classes, loading, 43–45
updating objects, 41–42

overview, 3–7
primary keys, 8
relationships, 11

many-to-many, 13–14
one-to-many, 12–13
one-to-one, 11–12

timestamps, 8
version numbers, 8

mapping documents, 69
<class> element, 31–32, 70–72
<componenet> element, 82
<composite-id> element, 75–76
creating

with Eclipse, 364–366
with HiberClipse, 369
with Hybernate Synchronizer, 371–372
with Maven, 313–315, 319–320

<discriminator> element, 76–77
<element> element, 86, 129–130
<generator> element, 32, 73–75
<hibernate-mapping> element, 31–32, 69–70
<id> element, 32, 72–73
<index> element, 86, 128–129
<joined-subclass> element, 83–84
<key> element, 85
<many-to-many> element, 131–135
<many-to-one> element, 80–81
newsgroup example (HQL), 189–190
<one-to-one> element, 81–82
<property> element, 78–80

formula attribute, 122–124
standalone CD list application example, 30–33
<subclass> element, 82–83
<timestamp> element, 78
<version> element, 77

mapping document wizard (Hibernate Synchronizer),
371–372

maps
mapping, 131

object maps, 131–135
TreeMaps, 140–147
values maps, 131–135

Maven, 22
Ant comparison, 327
compiling Java code, 311
database configuration for unit testing, 320–322
downloading, 308
Eclipse integration, 328
goals, 311–312
Hibernate files, generating, 312

428

LockMode.UPGRADE lock

24_576771_bindex.qxd 9/1/04 1:02 PM Page 428

hibernate.cfg.xml file, 314
mapping files, 313–314, 319–320
XDoclet plug-in, 313

Hibernate plug-in, 317
hibernate:aggregate-mappings goal, 317
hibernate:schema-export goal, 317–319

installing, 308
JARs, producing, 311
Javadocs, generating, 311
with multiple Ant tasks, 327
overview, 308
plug-ins, 311–312
POM (Project Object Model), 309–310
project organization, 328
properties, 311–312
scripting

generating hibernate.cfg.xml file, 316–317
generating mapping files, 314–315
setting up dependencies, 314–315

setup, 328
Survey application example code, 322–327

max(attribute) function (HQL), 204
maximum index values (HQL), 197–198
MBean descriptor, generating, 270–272
McKoi SQL database, 415
Microsoft SQL Server database, 415
Microsoft SQL Server setup, 27–28
MiddleGen, 358–361
min(attribute) function (HQL), 204
minimum index values (HQL), 197–198
MySQL, 416

setup, 27
transaction example, 227–228

forced rollbacks, 229
InnoDB table type, 228–229
ISAM table type, 228
optimal session use, 229–230

N
named parameters, 179–180, 201
named queries, 178–180
native generator, 75
newsgroup example (HQL)

application code, 191–192
classes, 185–189
mapping document, 189–190
rows, 192

tables, 191
non-repeatable reads (transactions), 225
nonrestrict read-write cache usage, 214
not equal operators, 201
not-null attribute, 335
NOT operator (HQL), 199
NULL expression (HQL), 199–200

O
object maps, mapping, 131–135
object-oriented analysis, design, and programming. See

OOADP
object-oriented database systems, 3
object references, tagging, 274–277
Object Relational mapping model, 15
objects, 390

browsing (Hibern8IDE tool), 353
DAO, building, 255–259
data objects, finding, 45–46
deleting, 43
locking, 230–233
mapping. see mapping overview
persistent

creating, 161–164
Criteria object, 181–184
deleting, 166–168
filtering collections, 171–172
finding, 169–170
flushing, 166
large resultsets, finding, 171
loading data into, 164–165
named, 178–180
previous sessions, using, 165–166
refreshing, 168
scalar queries, 172–173
SQL, 181
straight queries, 173–178
timeouts, 180–181
updating, 168–169

querying (Hibern8IDE tool), 353–355
serializing, 2
updating, 41–42

one-to-many relationships, 12–13
<one-to-one> element, 81–82
one-to-one relationships, 11–12

429

one-to-one relationships

In
de

x

24_576771_bindex.qxd 9/1/04 1:02 PM Page 429

OOADP (object-oriented analysis, design, and program-
ming), 390

benefits of, 390–392
code scattering, 394–396
code tangling, 394–396
concerns, 391–392
crosscutting, 393
objects, 390
problems resulting from, 392–395
tangled code, 396

open source resources, 422
AND operator (HQL), 199
optimal session use, 229–230
Oracle database, 416
order by clause (HQL), 203
O/R mapping model, 15
OR operator (HQL), 199

P
parameters, named, 179–180, 201
persistent classes, 17–18

creating
CD list application example, 39–41
guidelines, 87–88

loading, 43–45
persistent object caches, 213

nonrestrict read-write cache usage, 214
read-only cache usage, 213–214
read-write cache usage, 214
transactional cache usage, 214

persistent objects
creating, 161–164
Criteria object, 181–184
deleting, 166–168
filtering collections, 171–172
finding, 169–170
flushing, 166
large resultsets, finding, 171
loading data into, 164–165
previous sessions, using, 165–166
queries

named, 178–180
scalar, 172–173
SQL, 181
straight, 173–178
timeouts, 180–181

refreshing, 168
updating, 168–169

persisting interfaces, 117–119

phantom inserts (transactions), 225
<plug-in> element (Struts), 378–382
plug-ins (Maven), 311–312
PointBase database, 416
pointcuts (AspectJ), 400
polymorphism (HQL), 202–203
POM (Project Object Model), 307, 309–310
pools. See connection pooling
PostgreSQL database, 417
previous sessions, using, 165–166
primary keys, 8
project.xml file, 309
Project Object Model. See POM
properties

fully specifying (XDoclet), 281
Maven, 311–312
tagging (XDoclet), 272–274

<property> element, 32, 78–80, 122–124
Proxool, 66–67

Q
queries

aggregate functions, 204
booleans, 201–202
caches, 208, 215–216
collections

[] operator, 198–199
all predicate, 198–199
any predicate, 198–199
elements predicate, 198–199
exists predicate, 198–199
index() property, 198
indices predicate, 198–199
minimum/maximum index values, 197–198
in predicate, 198–199
size property, 197
some predicate, 198–199

equality operators, 201
group by clause, 204–205
groupings, 200
HAVING clause, 204–205
Hibernator plug-in, 367
joins, 205–206
logical operators, 199
named, 178–180
named parameters, 201
newsgroup example

application code, 191–192
classes, 185–189

430

OOADP

24_576771_bindex.qxd 9/1/04 1:02 PM Page 430

mapping document, 189–190
rows, 192
tables, 191

NULL expression, 199–200
order by clause, 203
polymorphism, 202–203
query substitution, 62
scalar, 172–173
scalar functions, 200–201
SELECT clause, 194–196
SQL, 181
SQL dialect determination, 62–64
straight, 173–178

controlling resultsets, 176–177
single row queries, 178

subselects, 202
substitution, 62
timeouts, 180–181
WHERE clause, 196–197

querying objects (Hibern8IDE tool), 353–355
Query interface, 20

R
read-only cache usage, 213–214
read-only classes, mapping, 99–102
read-write cache usage, 214
refresh(Object, LockMode) method, 233
refreshing objects, 168
RegisterForm (Struts application example), 376
registration system example

ActionForm, 375–376
actions, creating, 377
compiling, 387
configuration file, 382
flow diagram, 373–374
register.vm template, 385–387
RegisterAction code, 377
RegisterForm, 376
register page, 385–387
running, 387
success.vm template, 385
success page, 385
toolbox.xml file, 385
web.xml file, 382–384

relationship elements, 80
relationships, 11

many-to-many, 13–14
one-to-many, 12–13

one-to-one, 11–12
resources

forums, 419–420
issue tracking, 421
mailing lists, 421
on open source, 422
source code, 420–421
wiki, 420

resultsets, controlling, 176–177
right outer joins (HQL), 206
rollback() method, 226
rolling back transactions, 223
rows, newsgroup example (HQL), 192

S
SAP DB database, 417
scalar functions, 200–201
scalar queries, 172–173
SchemaExport/SchemaUpdate tool, 329–333

advanced options, 333–334
check attribute, 337–338
foreign-key attribute, 336
index attribute, 337
length attribute, 334
not-null attribute, 335
sql-type attribute, 334–335
unique attribute, 337
unique-key attribute, 338

Ant support, 341–342
application support, 340–341
command-line options, 332
updating tables, 338–340

schemas
creating, 367
exports, creating (HiberClipse), 370
updating

HiberClipse plug-in, 370
Hibernator plug-in, 367

scripting (in Maven)
generating hibernate.cfg.xml file, 316–317
generating mapping files, 314–315
setting up dependencies, 314–315

scroll() method, 176
SELECT clause (HQL), 194–196
seqhilo generator, 74
sequence generator, 73–74
serialization, 2

431

serialization

In
de

x

24_576771_bindex.qxd 9/1/04 1:02 PM Page 431

servers
database server hookup, 26–27
Hibernate support, 17
multiple, connecting to, 68–69
Tomcat

configuring, 46
downloading, 46
installing, 46
setting up database access, 47–48

servlet-based CD list application example
adding Hibernate to, 49–50
interface page, 50–51
servlet code, 51–53

session caches, 216
SessionFactory caches, 212–213, 214–215
SessionFactory class, 20

J2EE example, 237–238
obtaining, 39

SessionFactory-level class (caching), 207
Session object, 20
session pattern, 124–126
sessions

locking, 230–233
optimal use, 229–230

setFirstResults() method, 176
setLockMode() method, 233
setMaxResults() method, 176
Sets, mapping, 140–147
setters, tagging (XDoclet), 282
setTimeout() method, 180–181
shopping cart EJB example, 240–242
single row queries, 178
size property (HQL), 197
some predicate (HQL), 197–198
SortedSets, mapping, 140–147
source code (Hibernate), 420–421
SQL

dialect determination, 62–64
in formula attributes, 122–124
queries, 181

SQL Server database, 415
sql-type attribute, 334–335
standalone CD list application example

database table, 30
Java class, 28–30
loading the mapping, 38–39

data objects, finding, 45–46
deleting objects, 43
obtaining SessionFactory, 39
persistent classes, creating, 39–41

persistent classes, loading, 43–45
updating objects, 41–42

mapping document, 30–33
skeleton code, 33–38

stateful session bean example, 240–242
stateless session bean example, 238–239
straight queries, 173–178

controlling resultsets, 176–177
single row queries, 178

Struts
configuring

<plug-in> element, 378–382
struts-conf.xml file, 378

installing, 374
registration system example

ActionForm, 375–376
actions, creating, 377
compiling, 387
configuration file, 382
flow diagram, 373–374
register.vm template, 385–387
RegisterAction code, 377
RegisterForm, 376
register page, 385–387
running, 387
success.vm template, 385
success page, 385
toolbox.xml file, 385
web.xml file, 382–384

struts-conf.xml file, 378
<subclass> element, 82–83
subselects (HQL), 202
sum(attribute) function (HQL), 204
supported databases, 55–56
SupportProperty class, 131–132
Survey application example

caching, 208–211
Maven

compiling Java code, 311
complete source code, 322–327
goals, 311–312
JARs, producing, 311
Javadocs, generating, 311
plug-ins, 311–312
properties, 311–312

XDoclet, 266–268
collections, tagging, 277–281
final code, 294–304
fully specifying properties, 281
getters versus setters, tagging, 282

432

servers

24_576771_bindex.qxd 9/1/04 1:02 PM Page 432

hibernate.cfg.xml file, generating, 268–270
MBean descriptor, generating, 270–271
object references, tagging, 274–277
properties, tagging, 272–274

Sybase database, 417–418

T
table-per-class inheritance mapping, 10–11, 110–113
table-per-concrete-class inheritance mapping, 11,

115–117
table-per-subclass inheritance mapping, 113–115
tables, newsgroup example (HQL), 191
tagging source files (XDoclet)

collections, 277–281
fully specifying properties, 281
getters versus setters, 282
object references, 274–277
properties, 272–274

tangled code, 396
tangled code (OOADP), 394–396
ternary associations, 140
timeouts (queries), 180–181
<timestamp> element, 78
timestamps, 8, 102–107
Tomcat

CMT (container managed transactions), 242–245
configuring, 46

for JNDI, 236
downloading, 46
installing, 46
setting up database access, 47–48

toolbox.xml file (Struts application example), 385
transactional cache usage, 214
transactions, 223

basic use example, 225–226
CMT (container managed transactions), 242–245
committing, 223
configuration options, 223–224
database support, 224–225
dirty reads, 225
errors, 222
MySQL example, 227–228

forced rollbacks, 229
InnoDB table type, 228–229
ISAM table type, 228
optimal session use, 229–230

non-repeatable reads, 225

phantom inserts, 225
rolling back, 223
Transaction API, 226–227

<transaction-type> element, 245
<trans-attribute> element, 245
TreeMaps, mapping, 140–147

U
unique attribute, 337
unique-key attribute, 338
uniqueResult() method, 178
unit testing, configuring databases for, 320–322
updating objects, 168–169
upper() function (HQL), 200–201
uuid.hex generator, 74–75
uuid.string generator, 75

V
values maps, mapping, 131–135
Velocity. See registration system example
<version> element, 77
versioning, mapping classes with, 102–107
version numbers, 8

W
wasCommitted() method, 227
wasRolledBack() method, 227
weaving (AOP), 397, 401–402
web.xml file (Struts application example), 382–384
WHERE clause (HQL), 194–196
wiki, 420

X
XDoclet

best practices, 304
development of, 262
hibernate.cfg.xml file, generating, 268–270
installing, 266
JAR files, 266
Maven plug-in, 313
MBean descriptor, generating, 270–272

433

XDoclet

In
de

x

24_576771_bindex.qxd 9/1/04 1:02 PM Page 433

modules, 262
overview, 262–266

code generation templating, 265
development simplification, 265–266
Javadoc and, 263–264

support for, 262
Survey application example code, 294–304
tagging source files

collections, 277–281
fully specifying properties, 281

getters versus setters, 282
object references, 274–277
properties, 272–274

tags, 282–293
task configuration, 267
task definition, creating, 266–267

XDoclet2, 262
XDoclet Spring, 22
XML, 2–3

434

XDoclet

24_576771_bindex.qxd 9/1/04 1:02 PM Page 434

	cover.pdf
	page_c2.pdf
	page_r1.pdf
	page_r2.pdf
	page_r3.pdf
	page_r4.pdf
	page_r5.pdf
	page_r6.pdf
	page_r7.pdf
	page_r8.pdf
	page_r9.pdf
	page_r10.pdf
	page_r11.pdf
	page_r12.pdf
	page_r13.pdf
	page_r14.pdf
	page_r15.pdf
	page_r16.pdf
	page_r17.pdf
	page_r18.pdf
	page_r19.pdf
	page_r20.pdf
	page_r21.pdf
	page_r22.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf
	page_228.pdf
	page_229.pdf
	page_230.pdf
	page_231.pdf
	page_232.pdf
	page_233.pdf
	page_234.pdf
	page_235.pdf
	page_236.pdf
	page_237.pdf
	page_238.pdf
	page_239.pdf
	page_240.pdf
	page_241.pdf
	page_242.pdf
	page_243.pdf
	page_244.pdf
	page_245.pdf
	page_246.pdf
	page_247.pdf
	page_248.pdf
	page_249.pdf
	page_250.pdf
	page_251.pdf
	page_252.pdf
	page_253.pdf
	page_254.pdf
	page_255.pdf
	page_256.pdf
	page_257.pdf
	page_258.pdf
	page_259.pdf
	page_260.pdf
	page_261.pdf
	page_262.pdf
	page_263.pdf
	page_264.pdf
	page_265.pdf
	page_266.pdf
	page_267.pdf
	page_268.pdf
	page_269.pdf
	page_270.pdf
	page_271.pdf
	page_272.pdf
	page_273.pdf
	page_274.pdf
	page_275.pdf
	page_276.pdf
	page_277.pdf
	page_278.pdf
	page_279.pdf
	page_280.pdf
	page_281.pdf
	page_282.pdf
	page_283.pdf
	page_284.pdf
	page_285.pdf
	page_286.pdf
	page_287.pdf
	page_288.pdf
	page_289.pdf
	page_290.pdf
	page_291.pdf
	page_292.pdf
	page_293.pdf
	page_294.pdf
	page_295.pdf
	page_296.pdf
	page_297.pdf
	page_298.pdf
	page_299.pdf
	page_300.pdf
	page_301.pdf
	page_302.pdf
	page_303.pdf
	page_304.pdf
	page_305.pdf
	page_306.pdf
	page_307.pdf
	page_308.pdf
	page_309.pdf
	page_310.pdf
	page_311.pdf
	page_312.pdf
	page_313.pdf
	page_314.pdf
	page_315.pdf
	page_316.pdf
	page_317.pdf
	page_318.pdf
	page_319.pdf
	page_320.pdf
	page_321.pdf
	page_322.pdf
	page_323.pdf
	page_324.pdf
	page_325.pdf
	page_326.pdf
	page_327.pdf
	page_328.pdf
	page_329.pdf
	page_330.pdf
	page_331.pdf
	page_332.pdf
	page_333.pdf
	page_334.pdf
	page_335.pdf
	page_336.pdf
	page_337.pdf
	page_338.pdf
	page_339.pdf
	page_340.pdf
	page_341.pdf
	page_342.pdf
	page_343.pdf
	page_344.pdf
	page_345.pdf
	page_346.pdf
	page_347.pdf
	page_348.pdf
	page_349.pdf
	page_350.pdf
	page_351.pdf
	page_352.pdf
	page_353.pdf
	page_354.pdf
	page_355.pdf
	page_356.pdf
	page_357.pdf
	page_358.pdf
	page_359.pdf
	page_360.pdf
	page_361.pdf
	page_362.pdf
	page_363.pdf
	page_364.pdf
	page_365.pdf
	page_366.pdf
	page_367.pdf
	page_368.pdf
	page_369.pdf
	page_370.pdf
	page_371.pdf
	page_372.pdf
	page_373.pdf
	page_374.pdf
	page_375.pdf
	page_376.pdf
	page_377.pdf
	page_378.pdf
	page_379.pdf
	page_380.pdf
	page_381.pdf
	page_382.pdf
	page_383.pdf
	page_384.pdf
	page_385.pdf
	page_386.pdf
	page_387.pdf
	page_388.pdf
	page_389.pdf
	page_390.pdf
	page_391.pdf
	page_392.pdf
	page_393.pdf
	page_394.pdf
	page_395.pdf
	page_396.pdf
	page_397.pdf
	page_398.pdf
	page_399.pdf
	page_400.pdf
	page_401.pdf
	page_402.pdf
	page_403.pdf
	page_404.pdf
	page_405.pdf
	page_406.pdf
	page_407.pdf
	page_408.pdf
	page_409.pdf
	page_410.pdf
	page_411.pdf
	page_412.pdf
	page_413.pdf
	page_414.pdf
	page_415.pdf
	page_416.pdf
	page_417.pdf
	page_418.pdf
	page_419.pdf
	page_420.pdf
	page_421.pdf
	page_422.pdf
	page_423.pdf
	page_424.pdf
	page_425.pdf
	page_426.pdf
	page_427.pdf
	page_428.pdf
	page_429.pdf
	page_430.pdf
	page_431.pdf
	page_432.pdf
	page_433.pdf
	page_434.pdf

