
Preface (Java Enterprise in a Nutshell)

Table of Contents
Preface..1

0.1. Contents of This Book..1
0.2. Related Books...2
0.3. Java Programming Resources Online...2
0.4. Examples Online...3
0.5. Conventions Used in This Book...4
0.6. We'd Like to Hear from You..5
0.7. Acknowledgments...6

0.7.1. David Flanagan...6
0.7.2. Jim Farley...6
0.7.3. William Crawford...6
0.7.4. Kris Magnusson..6

1.1. Enterprise Computing Defined...8
1.2. Enterprise Computing Demystified..8
1.3. The Java Enterprise APIs..9

1.3.1. JDBC: Working with Databases...10
1.3.2. RMI: Remote Method Invocation...10
1.3.3. Java IDL: CORBA Distributed Objects..11
1.3.4. JNDI: Accessing Naming and Directory Services..11
1.3.5. Enterprise JavaBeans..12
1.3.6. Servlets..12
1.3.7. JMS: Enterprise Messaging..13
1.3.8. JTA: Managing Distributed Transactions...13
1.4.1. Enabling E−Commerce for a Mail−Order Enterprise...14
1.4.2. Updating CornCo with Enterprise JavaBeans..15

1.4. Enterprise Computing Scenarios...16
1.5. Java Enterprise APIs Versus Jini..17
2.1. JDBC Architecture..18
2.2. JDBC Basics...20
2.3. JDBC Drivers..20

2.3.1. JDBC URLs..21
2.3.2. The JDBC−ODBC Bridge..23

2.4. Connecting to the Database..24
2.5. Statements...24

2.5.1. Multiple Result Sets..25
2.6.1. Handling Nulls..26
2.6.2. Large Data Types..27
2.6.3. Dates and Times..28

2.6. Results...29
2.7. Handling Errors...30

2.7.1. SQL Warnings..31
2.8. Prepared Statements..31
2.9. Metadata..32

2.9.1. DatabaseMetaData..33
2.9.2. ResultSetMetaData...34

2.10. Transactions..34
2.11. Stored Procedures...36
2.12. Escape Sequences...38
2.13. JDBC 2.0...40

2.13.1. Results Handling...41
2.13.2. Batch Updates...43
2.13.3. Java−Aware Databases...43

Preface (Java Enterprise in a Nutshell)

i

Table of Contents
Preface

2.13.4. BLOBs and CLOBs..45
2.13.5. The JDBC Standard Extension...46

3.1. Introduction to RMI..47
3.1.1. RMI in Action...47
3.1.2. RMI Architecture..49
3.1.3. RMI Object Services...49
3.1.3.1. Naming/registry service...50
3.1.3.2. Object activation service..53
3.1.3.3. Distributed garbage collection...55
3.2.1. Key RMI Classes for Remote Object Implementations..55

3.2. Defining Remote Objects..55
3.3. Creating the Stubs and Skeletons..56
3.4. Accessing Remote Objects as a Client..56

3.4.1. The Registry and Naming Services..59
3.4.2. Remote Method Arguments and Return Values...60
3.4.3. Factory Classes...61

3.5. Dynamically Loaded Classes..61
3.5.1. Configuring Clients and Servers for Remote Class Loading..63
3.5.2. Loading Classes from Applets..64

3.6. Remote Object Activation...65
3.6.1. Persistent Remote References...66
3.6.2. Defining an Activatable Remote Object...68
3.6.2.1. The Activatable class...68
3.6.2.2. Implementing an activatable object...70
3.6.3. Registering Activatable Objects...70
3.6.3.1. Registering an activatable object without instantiating...70
3.6.3.2. Passing data with the MarshalledObject..71
3.6.4. Activation Groups...73
3.6.4.1. Registering activation groups..74
3.6.4.2. Assigning activatable objects to groups...75
3.6.5. The Activation Daemon..75
3.6.5.1. The daemon's dual personality...76
3.7.1. RMI with JNI Versus CORBA...76

3.7. RMI and Native Method Calls..77
3.8. RMI over IIOP..78

3.8.1. Accessing RMI Objects from CORBA...78
4.1. The CORBA Architecture...81

4.1.1. Interface Definition Language..81
4.1.2. Object Request Broker..84
4.1.3. The Naming Service...85
4.1.4. Inter−ORB Communication..85

4.2. Creating CORBA Objects...86
4.2.1. An IDL Primer..86
4.2.1.1. Modules...87
4.2.1.2. Interfaces..88
4.2.1.3. Data members and methods...89
4.2.1.4. A complete IDL example...89
4.2.2. Turning IDL Into Java..90
4.2.2.1. A simple server class...90
4.2.2.2. The helper class...90
4.2.2.3. The holder class...91

Preface (Java Enterprise in a Nutshell)

ii

Table of Contents
Preface

4.2.2.4. The client and server stubs...91
4.2.3. Writing the Implementation..92

4.3. Putting It in the Public Eye...93
4.3.1. Initializing the ORB..95
4.3.2. Registering with a Naming Service..96
4.3.3. Adding Objects to a Naming Context...98

4.4. Finding Remote Objects...99
4.4.1. Initial ORB References...100
4.4.2. Getting Objects from Other Remote Objects..101
4.4.2.1. Using a naming context...102
4.4.2.2. Using multiple naming services...104
4.4.3. Stringified Object References...106

4.5. What If I Don't Know the Interface?..106
4.5.1. Dynamic Invocation Interface..106

5.1. The Servlet Life Cycle..107
5.2. Servlet Basics..109

5.2.1. HTTP Servlets...111
5.2.2. Forms and Interaction...112
5.2.3. POST, HEAD, and Other Requests..115
5.2.4. Servlet Responses...115
5.2.5. Servlet Requests..117
5.2.6. Error Handling..118
5.2.6.1. Status codes..119
5.2.6.2. Servlet exceptions..120
5.2.6.3. A file serving servlet..121
5.2.7. Security...121
5.8.1. HttpSessionBindingListener...122
5.8.2. Session Contexts...123

5.3. Servlet Chaining...124
5.4. Custom Servlet Initialization..124
5.5. Thread Safety..125
5.6. Server−Side Includes..126
5.7. Cookies...127
5.8. Session Tracking...130
5.9. Databases and Non−HTML Content..132
5.10. The Servlet API 2.1...134

5.10.1. Request Dispatching...136
5.10.2. Shared Attributes..138
5.10.3. Resource Abstraction..138

6.1. JNDI Architecture...139
6.2. A JNDI Example...141
6.3. Introducing the Context..141

6.3.1. Using the InitialContext Class..142
6.3.2. Other Naming Systems...142
6.5.1. The Command Interface...144
6.5.2. Loading an Initial Context..144
6.5.3. Running the Shell..146
6.6.1. How Names Work..147
6.6.2. Browsing a Naming System...148
6.6.3. Listing the Bindings of a Context...148

6.4. Looking Up Objects in a Context...149

Preface (Java Enterprise in a Nutshell)

iii

Table of Contents
Preface

6.5. The NamingShell Application..150
6.6. Listing the Children of a Context...153
6.7. Creating and Destroying Contexts..153
6.8. Binding Objects..154
6.9. Accessing Directory Services...155

6.9.1. X.500 Directories..157
6.9.2. The DirContext Interface..158
6.9.3. The Attributes Interface..159
6.9.4. The Attribute Interface..160

6.10. Modifying Directory Entries...162
6.11. Creating Directory Entries..163
6.12. Searching a Directory...163

6.12.1. Search Criteria..164
6.12.2. Search Results...164
6.12.3. Search Controls...166
6.12.4. A Search Command..168
7.2.1. The EJB Client..169
7.2.2. The Enterprise JavaBeans Object...171
7.2.3. The EJB Container..171

7.1. A Note on Evolving Standards...172
7.2. EJB Roles..172
7.3. Transaction Management..173

7.3.1. Making the EJB Server Aware of Database Transactions..175
7.3.2. Transaction Isolation Levels...176
7.4.1. Home Interface...176
7.4.2. Remote Interface...177
7.4.3. The Bean Implementation...178

7.4. Implementing a Basic EJB Object..180
7.5. Implementing Session Beans..182

7.5.1. Stateless Versus Stateful Session Beans...184
7.5.2. Optional Transaction Support...185

7.6. Implementing Entity Beans..186
7.6.1. Primary Keys..187
7.6.2. Finder Methods...188
7.6.3. Entity Bean Implementation...188
7.6.3.1. A persistent ProfileBean..191
7.6.4. The Entity Context..192
7.6.5. Life Cycle of an Entity Bean..194
7.6.6. Handles on Entity Beans...195
7.6.7. Container−Managed Persistence..196
7.6.7.1. Handling complex data structures..197

7.7. Deploying an Enterprise JavaBeans Object..198
7.7.1. Container−Managed Data Mapping...199
7.7.2. Access−Control Deployment Attributes...204
7.7.3. Generating the Container Classes and Deployment Descriptor....................................204
7.7.4. Packaging Enterprise JavaBeans..205

7.8. Using an Enterprise JavaBeans Object...205
7.8.1. Finding Home Interfaces Through JNDI..209
7.8.2. Creating/Finding Beans..210
7.8.3. Using Client−Side Transactions...212

7.9. Changes in EJB 1.1 Specification...212

Preface (Java Enterprise in a Nutshell)

iv

Table of Contents
Preface

7.9.1. XML−Based Deployment Descriptors...213
7.9.2. Entity Beans Required..214
7.9.3. Home Handles...215
7.9.4. Detailed Programming Restrictions for Bean Implementations...................................215
7.9.5. Assorted Other Changes...216

8.1. Relational Databases...217
8.2. Data Types..218
8.3. Schema Manipulation Commands..219

8.3.1. CREATE TABLE...219
8.3.2. ALTER TABLE..219
8.3.3. DROP..219

8.4. Data Manipulation Commands...219
8.4.1. SELECT..221
8.4.1.1. String comparisons..221
8.4.1.2. Subqueries and joins..223
8.4.1.3. Groups..224
8.4.2. INSERT..224
8.4.3. UPDATE...225
8.4.4. DELETE...226

8.5. Functions...227
8.5.1. Aggregate Functions...227
8.5.2. Value Functions..228
8.5.2.1. Date/time functions..229
8.5.2.2. String manipulation functions..230

8.6. Return Codes...231
10.1. IDL Keywords..231
10.2. Identifiers..232

10.2.1. Mapping Identifiers to Java..233
10.3. Comments...233

10.3.1. Mapping Comments to Java...233
10.4.1. Strings and Characters..233
10.4.1.1. Mapping strings and characters to Java...234

10.4. Basic Data Types..235
10.5. Constants and Literals...238

10.5.1. Mapping Constants to Java...243
10.5.2. Boolean Literals..244
10.5.3. Numeric Literals...245
10.5.3.1. Integer literals..245
10.5.3.2. Floating−point literals..246
10.5.3.3. Fixed−point literals..246
10.5.3.4. Mapping numeric literals to Java...247
10.5.4. Character Literals..247
10.5.5. String Literals...248

10.6. Naming Scopes...248
10.7. User−Defined Data Types..249

10.7.1. Typedefs..249
10.7.1.1. Mapping typedefs to Java..249
10.7.2. Arrays..249
10.7.2.1. Mapping arrays to Java..249
10.7.3. Sequences..250
10.7.3.1. Mapping sequences to Java..250

Preface (Java Enterprise in a Nutshell)

v

Table of Contents
Preface

10.7.4. Structs...250
10.7.4.1. Mapping structs to Java...251
10.7.5. Enumerations..252
10.7.5.1. Mapping enumerations to Java..253
10.7.6. Unions...254
10.7.6.1. Mapping unions to Java...254

10.8. Exceptions...254
10.8.1. Standard Exceptions...255
10.8.2. Mapping Exceptions to Java...255

10.9. Module Declarations...256
10.9.1. Mapping Modules to Java...256

10.10. Interface Declarations...256
10.10.1. Attributes..257
10.10.2. Methods..257
10.10.2.1. Parameters..258
10.10.2.2. Exceptions..259
10.10.2.3. Context values..262
10.10.2.4. Call semantics..262
10.10.3. Interface Inheritance...263
10.10.3.1. Method and attribute inheritance...264
10.10.3.2. Constant, type, and exception inheritance...264
10.10.3.3. IDL early binding...265
10.10.4. Mapping Interfaces to Java...265
10.10.4.1. Helper and holder classes..266
10.10.4.2. Attributes...267
10.10.4.3. Methods...267

11.1. Naming Service...268
11.2. Security Service..269
11.3. Event Service..269
11.4. Persistent Object Service..269
11.5. Life Cycle Service...270
11.6. Concurrency Control Service..270
11.7. Externalization Service...271
11.8. Relationship Service...271
11.9. Transaction Service...272
11.10. Query Service..272
11.11. Licensing Service..274
11.12. Property Service..274
11.13. Time Service...275
11.14. Trading Service...276
11.15. Collection Service...276
1. Finding a Quick−Reference Entry...277
2. Reading a Quick−Reference Entry..278

2.1. Class Name, Package Name, Availability, and Flags..278
2.2. Description...279
2.3. Synopsis...280
2.3.1. Member availability and flags..281
2.3.2. Functional grouping of members..282
2.4. Class Hierarchy..282
2.5. Cross References..283
2.6. A Note About Class Names...284

Preface (Java Enterprise in a Nutshell)

vi

Table of Contents
Preface

Colophon..284
 Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved....................................286
Logos and Trademarks..289
Disclaimer...299

1. Finding a Quick−Reference Entry...310
2. Reading a Quick−Reference Entry..312

2.1. Class Name, Package Name, Availability, and Flags..315
2.2. Description...329
2.3. Synopsis...356
2.3.1. Member availability and flags..365
2.3.2. Functional grouping of members..370
2.4. Class Hierarchy..400
2.5. Cross References..422
2.6. A Note About Class Names...434
Table of Contents..438
 Part 1: Introducing the Java Enterprise APIs...446
 Part 2: Enterprise Reference..454
 Part 3: API Quick Reference...462

Chapter 1. Introduction..470

Chapter 2. JDBC...474

Chapter 3. Remote Method Invocation...529

Chapter 4. Java IDL ...532

Chapter 5. Java Servlets...534

Chapter 6. JNDI..543

Chapter 7. Enterprise JavaBeans..545

Chapter 8. SQL Reference...559

Chapter 9. RMI Tools...569

Chapter 10. IDL Reference..651

Chapter 11. CORBA Services Reference..651

Chapter 12. Java IDL Tools...651

Chapter 13. The java.rmi Package..652

Chapter 14. The java.rmi.activation Package..653

Chapter 15. The java.rmi.dgc Package...653

Preface (Java Enterprise in a Nutshell)

vii

Table of Contents
Chapter 16. The java.rmi.registry Package..653

Chapter 17. The java.rmi.server Package..656

Chapter 18. The java.sql Package...657

Chapter 19. The javax.ejb Package...657

Chapter 20. The javax.ejb.deployment Package..658

Chapter 21. The javax.jms Package..659

Chapter 22. The javax.naming Package...659

Chapter 23. The javax.naming.directory Package..660

Chapter 24. The javax.naming.spi Package...660

Chapter 25. The javax.servlet Package...661

Chapter 26. The javax.servlet.http Package...661

Chapter 27. The javax.sql Package...661

Chapter 28. The javax.transaction Package...662

Chapter 29. The javax.transaction.xa Package..663

Chapter 30. The org.omg.CORBA Package...663

Chapter 31. The org.omg.CORBA.DynAnyPackage Package...663

Chapter 32. The org.omg.CORBA.ORBPackage Package...666

Chapter 33. The org.omg.CORBA.portable Package...667

Chapter 34. The org.omg.CORBA.TypeCodePackage Package..667

Chapter 35. The org.omg.CosNaming Package...668

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package..669

Chapter 37. Class, Method, and Field Index..669

How to Use This Quick Reference...669

How to Use This Quick Reference...669

Part 1. Introducing the Java Enterprise APIs..671

Preface (Java Enterprise in a Nutshell)

viii

Table of Contents
Part 2. Enterprise Reference..672

Part 3. API Quick Reference..673

Preface (Java Enterprise in a Nutshell)

ix

Preface
This book is a desktop quick reference for Java programmers who are writing enterprise applications. The first
part of the book provides a fast−paced introduction to the key Java Enterprise APIs: JDBC™, RMI, Java IDL
(CORBA), servlets, JNDI, and Enterprise JavaBeans™. These chapters are followed by a quick−reference
section that succinctly details every class of those APIs, as well as a few other Enterprise APIs.

This book complements the best−selling Java in a Nutshell and the forthcoming Java Foundation Classes in a
Nutshell. Java in a Nutshell introduces the Java programming language itself and provides an API quick
reference for the core packages and classes of the Java platform, while Java Foundation in a Nutshell offers a
fast−paced tutorial on the Java APIs that comprise the Java Foundation Classes (JFC) and provides
corresponding quick−reference material.

0.1. Contents of This Book

This book is divided into three parts:

Part 1, "Introducing the Java Enterprise APIs"
The chapters in this part introduce the key Enterprise APIs and provide enough information so that
you can start using them right away.

Part 2, "Enterprise Reference"
This part contains two reference chapters that help you work with technologies key to the Enterprise
APIs: SQL and IDL. It also contains chapters that cover the tools provided with Sun's Java
Development Kit for RMI and Java IDL.

Part 3, "API Quick Reference"
This part is a quick reference for the Java Enterprise APIs; it forms the bulk of the book. Please be
sure to read the How To Use This Quick Reference section, which appears at the beginning of this
part. It explains how to get the most out of this book.

Copyright 0.2. Related Books

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface

Preface 1

0.2. Related Books

O'Reilly & Associates publishes an entire series of books on Java programming. These books include Java in
a Nutshell and Java Foundation Classes in a Nutshell, which, as mentioned above, are companions to this
book.

A related reference work is the Java Power Reference. It is an electronic Java quick−reference on CD−ROM
that uses the Java in a Nutshell style. But since it is designed for viewing in a web browser, it is fully
hyperlinked and includes a powerful search engine. It is wider in scope but narrower in depth than the Java in
a Nutshell books. Java Power Reference covers all the APIs of the Java 2 platform, plus the APIs of many
standard extensions. But it does not include tutorial chapters on the various APIs, nor does it include
descriptions of the individual classes.

You can find a complete list of O'Reilly's Java books at http://java.oreilly.com. Books of particular interest to
enterprise programmers include the following:

Java Servlet Programming, by Jason Hunter with William Crawford
A guide to writing servlets that covers dynamic web content, maintaining state information, session
tracking, database connectivity using JDBC, and applet−servlet communication.

Java Distributed Computing, by Jim Farley
A programmer's guide to writing distributed applications with Java.

Database Programming with JDBC and Java, by George Reese
An advanced tutorial on JDBC that presents a robust model for developing Java database programs.

Enterprise JavaBeans, by Richard Monson−Haefel
A thorough introduction to EJB for the enterprise software developer.

0.1. Contents of This Book 0.3. Java Programming
Resources Online

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface

0.3. Java Programming Resources Online

This book is designed for speedy access to frequently needed information. It does not, and cannot, tell you
everything you need to know about the Java Enterprise APIs. In addition to the books listed in the previous
section, there are several valuable (and free) electronic sources of information about Java programming.

Preface (Java Enterprise in a Nutshell)

0.2. Related Books 2

http://java.oreilly.com/

Sun's main web site for all things related to Java is http://java.sun.com. The web site specifically for Java
developers is http://developer.java.sun.com. Much of the content on this developer site is password−protected
and access to it requires (free) registration.

Some of the Enterprise APIs covered in this book are part of the core Java 2 platform, so if you have
downloaded the JDK, you have the classes for APIs such as JDBC, RMI, and Java IDL. Other APIs are
standard extensions, however, so if you want to use, say, JNDI or servlets, you have to download the classes
separately. The best way to get the latest APIs is to start on Sun's Products and APIs page at
http://java.sun.com/products/ and find the appropriate API from there.

Sun distributes electronic documentation for all Java classes and methods in its javadoc HTML format.
Although this documentation is rough or outdated in places, it is still an excellent starting point when you
need to know more about a particular Java package, class, method, or field. If you do not already have the
javadoc files with your Java distribution, see http://java.sun.com/docs/ for a link to the latest available
version.

Finally, don't forget O'Reilly's Java web site. http://java.oreilly.com contains Java news and commentary and
a monthly tips−and−tricks column by O'Reilly Java author Jonathan Knudsen.

0.2. Related Books 0.4. Examples Online

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface

0.4. Examples Online

The examples in this book are available online and can be downloaded from the home page for the book at
http://www.oreilly.com/catalog/jentnut. You may also want to visit this site to see if any important notes or
errata about the book have been published there.

0.3. Java Programming
Resources Online

0.5. Conventions Used in
This Book

Preface (Java Enterprise in a Nutshell)

0.4. Examples Online 3

http://java.sun.com/
http://developer.java.sun.com/
http://java.sun.com/products/
http://java.sun.com/docs/
http://java.oreilly.com/
http://www.oreilly.com/catalog/jentnut

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface

0.5. Conventions Used in This Book

The following formatting conventions are used in this book:

Italic
Is used for emphasis and to signify the first use of a term. Italic is also used for commands, email
addresses, web sites, FTP sites, file and directory names, and newsgroups.

Bold
Is occasionally used to refer to particular keys on a computer keyboard or to portions of a user
interface, such as the Back button or the Options menu.

Letter Gothic
Is used in all Java code and generally for anything that you would type literally when programming,
including options, keywords, data types, constants, method names, variables class names, and
interface names.

Letter Gothic Oblique
Is used for the names of function arguments, and generally as a placeholder to indicate an item that
should be replaced with an actual value in your program.

Franklin Gothic Book Condensed
Is used for the Java class synopses in Part III. This very narrow font allows us to fit a lot of
information on the page without a lot of distracting line breaks. This font is also used for code entities
in the descriptions in Part III.

Franklin Gothic Demi Condensed
Is used for highlighting class, method, field, property, and constructor names in Part III, which makes
it easier to scan the class synopses.

Franklin Gothic Book Compressed Italic
Is used for method parameter names and comments in Part III.

0.4. Examples Online 0.6. We'd Like to Hear
from You

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

0.5. Conventions Used in This Book 4

Preface

0.6. We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors you find, as
well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
1−800−998−9938 (in the U.S. or Canada)
1−707−829−0515 (international or local)
1−707−829−0104 (FAX)

You can send us messages electronically. To be put on the mailing list or request a catalog, send email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You can
access this page at:

http://www.oreilly.com/catalog/jentnut/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

0.5. Conventions Used in
This Book

0.7. Acknowledgments

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface

Preface (Java Enterprise in a Nutshell)

0.6. We'd Like to Hear from You 5

http://www.oreilly.com/catalog/jentnut/
http://www.oreilly.com/

0.7. Acknowledgments

This book is an outgrowth of the best−selling Java in a Nutshell. We'd like to thank all the readers who made
that book a success and who wrote in with comments, suggestions, and praise.

The authors would like to say a big thank you to the book's technical reviewers, whose constructive criticism
has done much to improve this work: Andy Deitsch, Jason Hunter, William Smith, and Gary Letourneau.

0.7.1. David Flanagan

Java Enterprise in a Nutshell is a book I've wished I could write for some time now. Time constraints and my
own lack of expertise in enterprise computing have kept me from doing it myself, and so I am deeply grateful
to Jim Farley, William Crawford, and Kris Magnusson, who are experts and who did all the hard work to
make this book a reality. I owe an extra thanks to Jim Farley for taking the time to help me understand
Enterprise JavaBeans and the JTA and JTS transaction APIs. Paula Ferguson also earns my sincere thanks:
she had the unenviable task of editing material from four independent authors and fitting it seamlessly
together into a single book.

0.7.2. Jim Farley

A writing project of any kind requires a much larger cast of characters than those listed on the cover. Paula
Ferguson deserves mention above all, not only for doing her usual excellent editing job, but also for roping in
four disobedient authors, as opposed to the usual one disobedient author. I'd like to thank David Flanagan for
putting together the API listings and the introductory chapter, as well as providing great technical review
comments, all of which helped integrate this into the "Java ... Nutshell" set. Technical reviewers are the
unsung heroes of writing projects such as this one, so many thanks to Andy Deitsch, Bill Smith, Jason Hunter,
and Gary Letourneau.

To my wife Sandy Mallalieu, who has somehow not only accepted the fact that her husband enjoys spending
much of his free time on writing projects like this, but is also supportive and inspiring through it all−−well,
what else is there to say? My extended family, and the folks at the Harvard Business School, were supportive
as always, and getting through efforts such as this makes me appreciate them both all the more. And for the
late−night inspiration, my undying gratitude to Madeline and to Declan MacManus.

0.7.3. William Crawford

Writing projects would be impossible without the support of everyone at Invantage, especially Martin
Streeter, Nicholas Riley, and Stephen Braverman. Jason Hunter's knowledge of servlet programming was a
boon to Chapter 5. I would also like to thank the staff of the Emotion Cybernet Cafe in Hanoi, Vietnam,
where I wrote most of the class summaries for the java.sql package, paying six cents a minute for
computer time. And we wouldn't be here without David Flanagan.

I have enjoyed support, encouragement, and grudging tolerance from William F. Crawford, William E.
Crawford, Francine Crawford, and Faith Crawford, as well as from Joel Pomerantz, Sam Carner, and Isaac
Kohane.

Finally, my heartfelt thanks goes to our editor, Paula Ferguson, for her extreme patience with me over the last
year and a half.

0.7.4. Kris Magnusson

I found a good deal of pleasure in writing the JNDI−related material for this book. And I have many people to
thank for the opportunity−−too many to list here. But some deserve special mention.

Preface (Java Enterprise in a Nutshell)

0.7. Acknowledgments 6

In particular I thank my partner and wife Kristen Dalzen for all her support, without which my work would
not have been possible. She is the Empress of the Blue People, and she has enriched my life beyond
description. She has been brave to bear the abandonment.

At O'Reilly, David Flanagan provided invaluable assistance in writing my portions of this book; clearly he is
an asset to the entire Java community. My editor, Paula Ferguson, was equally invaluable; she tightened up
my language and code like a vise. And my other editor, Mike Loukides, is a good sport for giving me time off
from my other book to work on this one.

My Novell experience has been a period of immense personal growth for me. My officemates Bruce "Stocks"
Bergeson, Jim Sermersheim, and Kent Boogert have been key players in that drama, as were Alan Landes,
Alvin Tedjamulia, Chris Stone, Don Lavange, Don Thomas, Ed Lane, Erni Messenger, Michael J. Simpson,
Mike Flathers, Mike MacKay, Ric Buhler, Scott Pead, Steve Holbrook, Steve Weitzeil, and Trisha Turner.
Here's to a fruitful second act.

Outside of work, Don Yacktman and Dr. Sean Luke were instrumental in sharing their object−oriented
architecture expertise over the years. And Yan Fang and her support for my computer and other habits helped
immensely with my transition from fresh economics graduate to software guy.

Thanks, everyone!

0.6. We'd Like to Hear
from You

Part 1. Introducing the
Java Enterprise APIs

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 1: Introducing the
Java Enterprise APIs

Preface (Java Enterprise in a Nutshell)

0.7. Acknowledgments 7

Chapter 1. Introduction
Contents:

Enterprise Computing Defined
Enterprise Computing Demystified
The Java Enterprise APIs
Enterprise Computing Scenarios
Java Enterprise APIs Versus Jini

This book is an introduction to, and quick reference for, the Java Enterprise APIs. Some of these APIs are a
core part of the Java platform, while others are standard extensions to the platform. Together, however, they
enable Java programs to use and interact with a suite of distributed network services that are commonly used
in enterprise computing.

Just before this book went to press, Sun announced a new Java platform for enterprise computing. Java 2
Platform, Enterprise Edition, or J2EE, is the standard Java 2 platform with a number of extensions for
enterprise computing. As of this writing, J2EE is still in its alpha stages; it will be some time before a
complete specification and implementation are delivered. From the preliminary specifications, however, it
appears that most of the enterprise−computing technologies that will be part of J2EE are already documented
in this book. In the months ahead, you will undoubtedly hear quite a bit about Java 2 Platform, Enterprise
Edition. Although you won't find that name used explicitly here, you can rest assured that this book
documents the building blocks of J2EE.

1.1. Enterprise Computing Defined

Before we go any further, let's be clear. The term enterprise computing is simply a synonym for distributed
computing: computation done by groups of programs interacting over a network.

Anyone can write distributed applications: you don't have to work for a major corporation, university,
government agency, or any other kind of large−scale "enterprise" to program with the Java Enterprise APIs.
Small businesses may not have the same enterprise−scale distributed computing needs large organizations
have, but most still engage in plenty of distributed computing. With the explosive growth of the Internet and
of network services, just about anyone can find a reason to write distributed applications. One such reason is
that it is fun. When distributed computing is used to leverage the power of the network, the results can be
amazingly cool!

So, if the Java Enterprise APIs aren't used exclusively by enterprises, why aren't they called the Java
Distributed Computing APIs? The reasons are simple. First, enterprise is a hot buzzword these
days−−everyone in the networking industry wants to be doing enterprise something. Second, large enterprises
have lots of money to spend on costly hardware for running their expensive network server software. Since
the enterprise is where the money is, we get the word enterprise in the APIs.

Part 1. Introducing the
Java Enterprise APIs

1.2. Enterprise Computing
Demystified

Chapter 1. Introduction 8

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 1: Introduction

1.2. Enterprise Computing Demystified

Enterprise computing has a reputation for complexity and, for the uninitiated, it is often surrounded by a
shroud of mystery. Here are some reasons enterprise computing can seem intimidating:

•
Enterprise computing usually takes place in a heterogeneous network: one in which the computers
range from large mainframes and supercomputers down to PCs (including both top−of−the−line
Pentium IIIs and outdated 386s). The computers were purchased at different times from a variety of
different vendors and run two or three or more different operating systems. The only common
denominator is that all the computers in the network speak the same fundamental network protocol
(usually TCP/IP).

•
A variety of server applications run on top of the heterogeneous network hardware. An enterprise
might have database software from three different companies, each of which defines different,
incompatible extensions.

•
Enterprise computing involves the use of many different network protocols and standards. Some
standards overlap in small or significant ways. Many have been extended in various vendor−specific,
nonstandard ways. Some are quite old and use a vocabulary and terminology that dates back to an
earlier era of computing. This creates a confusing alphabet soup of acronyms.

•
Enterprise computing has only recently emerged as an integrated discipline of its own. Although
enterprise development models are today becoming more cohesive and encompassing, many
enterprises are still left with lots of "legacy systems" that are aggregated in an ad−hoc way.

•
Enterprise programmers, like many of us in the high−tech world, tend to make their work seem more
complicated that it actually is. This is a natural human tendency−−to be part of the "in" group and
keep outsiders out−−but this tendency seems somehow magnified within the computer industry.

Java helps to alleviate these intimidating aspects of enterprise computing. First, since Java is
platform−independent, the heterogenous nature of the network ceases to be an issue. Second, the Java
Enterprise APIs form a single, standard layer on top of various proprietary or vendor−enhanced APIs. For
example, the JDBC API provides a single, standard, consistent way to interact with a relational database
server, regardless of the database vendor and regardless of the underlying network protocol the database
server uses to communicate with clients. Finally, recall that many enterprise protocols and standards were
developed before the days of object−oriented programming. The object−oriented power and elegance of the
Java language allow the Java Enterprise APIs to be simpler, easier to use, and easier to understand than the
non−Java APIs upon which they are layered.

The messages you should take away from this discussion are:

•

Preface (Java Enterprise in a Nutshell)

1.2. Enterprise Computing Demystified 9

Enterprise computing is for everyone.

•
Any programmer can write distributed applications using the Java Enterprise APIs.

With that said, it is important to understand that distributed computing actually is somewhat more
complicated than nondistributed computing. Just as using threads in a program introduces complexities that do
not exist in single−threaded programs, using network services in a program introduces complexities that do
not exist in programs that run entirely on one computer. While multithreaded programs have to deal with the
issues of thread synchronization and deadlock, distributed applications have to deal with the possibilities of
network failure and the complexities of distributed transaction processing. Do not fear, however: the
complexities of distributed computing are not overwhelming, and, with a little study, any programmer can
master them.

1.1. Enterprise Computing
Defined

1.3. The Java Enterprise
APIs

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 1: Introduction

1.3. The Java Enterprise APIs

The Java Enterprise APIs provide support for a number of the most commonly used distributed computing
technologies and network services. These APIs are described in the sections that follow. The APIs are
building blocks for distributed applications. At the end of the chapter, I'll present some enterprise computing
scenarios that illustrate how these separate APIs can be used together to produce an enterprise application.

1.3.1. JDBC: Working with Databases

JDBC (Java Database Connectivity) is the Java Enterprise API for working with relational database systems.
JDBC allows a Java program to send SQL query and update statements to a database server and to retrieve
and iterate through query results returned by the server. JDBC also allows you to get meta−information about
the database and its tables from the database server.

The JDBC API is independent of vendor−specific APIs defined by particular database systems. The JDBC
architecture relies upon a Driver class that hides the details of communicating with a database server. Each
database server product requires a custom Driver implementation to allow Java programs to communicate
with it. Major database vendors have made JDBC drivers available for their products. In addition, a "bridge"
driver exists to enable Java programs to communicate with databases through existing ODBC drivers.

Preface (Java Enterprise in a Nutshell)

1.3. The Java Enterprise APIs 10

The JDBC API is found in the java.sql package, which was introduced in Java 1.1. Version 1.2 of the Java
2 platform adds a number of new classes to this package to support advanced database features. Java 1.2 also
provides additional features in the javax.sql standard extension package. javax.sql includes classes
for treating database query results as JavaBeans, for pooling database connections, and for obtaining database
connection information from a name service. The extension package also supports scrollable result sets, batch
updates, and the storage of Java objects in databases.

The JDBC API is simple and well−designed. Programmers who are familiar with SQL and database
programming in general should find it very easy to work with databases in Java. See Chapter 2, "JDBC", for
details on JDBC, and Chapter 8, "SQL Reference", for a quick reference to SQL.

1.3.2. RMI: Remote Method Invocation

Remote method invocation is a programming model that provides a high−level, generic approach to
distributed computing. This model extends the object−oriented programming paradigm to distributed
client−server programming; it allows a client to communicate with a server by invoking methods on remote
objects that reside on the server. You invoke remote methods using the same syntax you would use to invoke
methods of a normal local object. This model for distributed computing can be implemented in a number of
ways. One of those ways is the Java Remote Method Invocation (RMI) API. RMI is implemented in the
java.rmi package and its subpackages, which were introduced in Java 1.1 and have been enhanced for
Version 1.2 of the Java 2 platform.

The Java RMI implementation is full−featured, but still simple and easy to use. It gains much of its simplicity
by being built on top of a network−centric and dynamically extensible platform, of course. But it also gains
simplicity by requiring both client and server to be implemented in Java. This requirement ensures that both
client and server share a common set of data types and have access to the object serialization and
deserialization features of thejava.io package, for example. On the other hand, this means that RMI
cannot be used with distributed objects written in languages other than Java, such as objects that exist on
legacy servers.[1] It also means that servers written using RMI can be used only by clients written in Java. In
practice, RMI is an excellent distributed object solution for situations where it is clear that clients and servers
will always be written in Java. Fortunately, there are many such situations.

[1]One way to work around this restriction is to use native methods to create Java wrappers
that interface directly with the legacy objects that are written in other languages.

The java.rmi package makes it easy to create networked, object−oriented programs. Programmers who
have spent time writing networked applications using lower−level technologies are usually amazed by the
power of RMI. By making RMI so easy, java.rmi points the way to future applications and systems that
consist of loose groups of objects interacting with each other over a network. These objects may act both as
clients, by calling methods of other objects, and as servers, by exposing their own methods to other objects.
See Chapter 3, "Remote Method Invocation", for a tutorial on using RMI.

1.3.3. Java IDL: CORBA Distributed Objects

As we've just seen, RMI is a distributed object solution that works well when both client and server are
written in Java. It does not work, however, in heterogenous environments where clients and servers may be
written in arbitrary languages. For environments like these, the Java 2 platform includes a CORBA−based
solution for remote method invocation on distributed objects.

CORBA (Common Object Request Broker Architecture) is a widely used standard defined by the Object
Management Group (OMG). This standard is implemented as a core part of the Java 2 platform in the
org.omg.CORBA package and its subpackages. The implementation includes an Object Request Broker
(ORB) that a Java application can use to communicate, as both a client and a server, with other ORBs, and

Preface (Java Enterprise in a Nutshell)

1.3.2. RMI: Remote Method Invocation 11

thus with other CORBA objects.

The interfaces to remote CORBA objects are described in a platform− and language−independent way with
the Interface Description Language (IDL). Sun provides an IDL compiler (in "early access" release at the time
of this writing) that translates an IDL description of a remote interface into the Java stub classes needed for
implementing the IDL interface in Java or for connecting to a remote implementation of the interface from
your Java code.

A number of Java implementations of the CORBA standard are available from various vendors. This book
documents Sun's implementation, known as Java IDL. It is covered in detail in Chapter 4, "Java IDL". The
syntax of the IDL language itself is summarized in Chapter 10, "IDL Reference".

1.3.4. JNDI: Accessing Naming and Directory Services

JNDI (Java Naming and Directory Interface) is the Java Enterprise API for working with networked naming
and directory services. It allows Java programs to use name servers and directory servers to look up objects or
data by name and search for objects or data according to a set of specified attribute values. JNDI is
implemented in the javax.naming package and its subpackages as a standard extension to the Java 2
platform.

The JNDI API is not specific to any particular name or directory server protocol. Instead, it is a generic API
that is general enough to work with any name or directory server. To support a particular protocol, you plug a
service provider for that protocol into a JNDI installation. Service providers have been implemented for the
most common protocols, such as NIS, LDAP, and Novell's NDS. Service providers have also been written to
interact with the RMI and CORBA object registries. JNDI is covered in detail in Chapter 6, "JNDI".

1.3.5. Enterprise JavaBeans

Enterprise JavaBeans do for server−side enterprise programs what JavaBeans do for client−side GUIs.
Enterprise JavaBeans (EJB) is a component model for units of business logic and business data. Thin client
programming models that take business logic out of the client and put it on a server or in a middle tier have
many advantages in enterprise applications. However, the task of writing this middleware has always been
complicated by the fact that business logic must be mixed in with code for handling transactions, security,
networking, and so on.

The EJB model separates high−level business logic from low−level housekeeping chores. A bean in the EJB
model is an RMI remote object that implements business logic or represents business data. The difference
between an enterprise bean and a run−of−the−mill RMI remote object is that EJB components run within an
EJB container, which in turn runs within an EJB server. The container and server may provide features such
as transaction management, resource pooling, lifecycle management, security, name services, distribution
services, and so on. With all these services provided by the container and server, enterprise beans (and
enterprise bean programmers) are free to focus purely on business logic. The particular set of services
provided by an EJB server is implementation−dependent. The EJB specification is strongest in the areas of
transaction management and resource pooling, so these are features that are expected in all EJB server
implementations.

The EJB specification is a document that specifies the contracts to be maintained and conventions to be
followed by EJB servers, containers, and beans. Writing EJB components is easy: you simply write code to
implement your business logic, taking care to follow the rules and conventions imposed by the EJB model.

Unlike the other Java Enterprise APIs, EJB is not really an API; it is a framework for component−based
enterprise computing. The key to understanding Enterprise JavaBeans lies in the interactions among beans,
containers, and the EJB server. These interactions are described in detail in Chapter 7, "Enterprise
JavaBeans". There is, of course, an API associated with the EJB application framework, in the form of the

Preface (Java Enterprise in a Nutshell)

1.3.4. JNDI: Accessing Naming and Directory Services 12

javax.ejb and javax.ejb.deployment packages. You'll find complete API quick−reference
information for these packages in Part 3, "API Quick Reference".

1.3.6. Servlets

A servlet is a piece of Java code that runs within a server to provide a service to a client. The name servlet is a
takeoff on applet−−a servlet is a server−side applet. The Java Servlet API provides a generic mechanism for
extending the functionality of any kind of server that uses a protocol based on requests and responses.

Right now, servlets are used primarily by web servers. On the growing number of web servers that support
them, servlets are a Java−based replacement for CGI scripts. They can also replace competing technologies,
such as Microsoft's Active Server Pages (ASP) or Netscape's Server−Side JavaScript. The advantage of
servlets over these other technologies is that servlets are portable among operating systems and among
servers. Servlets are persistent between invocations, which gives them major performance benefits over CGI
programs. Servlets also have full access to the rest of the Java platform, so features such as database access
are automatically supported.

The Servlet API differs from many other Java Enterprise APIs in that it is not a Java layer on top of an
existing network service or protocol. Instead, servlets are a Java−specific enhancement to the world of
enterprise computing. With the advent of the Internet and the World Wide Web, many enterprises are
interested in taking advantage of web browsers−−a universally available thin−client that can run on any
desktop. Under this model, the web server becomes enterprise middleware and is responsible for running
applications for clients. Servlets are a perfect fit here. The user makes a request to the web server, the web
server invokes the appropriate servlet, and the servlet uses JNDI, JDBC, and other Java Enterprise APIs to
fulfill the request, returning the result to the user, usually in the form of HTML−formatted text.

The Servlet API is a standard extension to the Java 2 platform, implemented in the javax.servlet and
javax.servlet.http packages. The javax.servlet package defines classes that represent generic
client requests and server responses, while the javax.servlet.http package provides specific support
for the HTTP protocol, including classes for tracking multiple client requests that are all part of a single client
session. See Chapter 5, "Java Servlets", for details on servlet programming.

1.3.7. JMS: Enterprise Messaging

JMS (Java Message Service) is the Java Enterprise API for working with networked messaging services and
for writing message−oriented middleware (fondly referred to as MOM).

The word "message" means different things in different contexts. In the context of JMS, a message is chunk of
data that is sent from one system to another. The data serves as a kind of event notification and is almost
always intended to be read by a computer program, not by a human. In a nondistributed system, an Event
object notifies the program that some important event (such as the user clicking a mouse button) has occurred.
In a distributed system, a message serves a similar purpose: it notifies some part of the system that an
interesting event has occurred. So you can think of a networked message service as a distributed event
notification system.

Like JNDI and JDBC, JMS is an API layered on top of existing, vendor−specific messaging services. In order
to use JMS in your applications, you need to obtain a JMS provider implementation that supports your
particular message server.

Although JMS is an important part of the Java Enterprise APIs, its use is not nearly as universal as APIs such
as JDBC and JNDI, so this book does not contain a tutorial chapter on JMS. Chapter 21, "The javax.jms
Package", does contain a complete API quick reference for the javax.jms package, however.

Preface (Java Enterprise in a Nutshell)

1.3.6. Servlets 13

1.3.8. JTA: Managing Distributed Transactions

The JTA, or Java Transaction API, is a Java Enterprise API for managing distributed transactions. Distributed
transactions are one of the things that make distributed systems more complicated than nondistributed
programs. To understand distributed transactions, you must first understand simple, nondistributed
transactions.

A transaction is a group of several operations that must behave atomically−−as if they constituted a single,
indivisible operation. Consider a banking application that allows a user to transfer money from a checking
account to a savings account. If the two account balances are stored in a database, the application must
perform two database updates to handle a transfer: it must subtract money from the checking account and add
money to the savings account. These two operations must behave atomically. To see why, imagine what
would happen if the database server crashed after money had been subtracted from the checking account but
before it had been added to the savings account. The customer would lose money!

To make multiple operations atomic, we use transactions. In our banking example, we first begin a
transaction, then perform the two database updates. While these updates are in progress, no other threads can
see the updated account balances. If both updates complete successfully, we end the transaction by committing
it. This makes the updated account balances available to any other clients of the database. On the other hand,
if either of the database updates fails, we roll back the transaction, reverting the accounts to their original
balances. Other clients are again given access to the database, and they see no changes in the account
balances. The JDBC API supports transactions on databases. The database server is required to do some
complex work to support transactions, but for the application programmer, the API is easy: simply begin a
transaction, perform the desired operations, and then either commit or rollback the transaction.

Distributed transactions are, unfortunately, quite a bit more complex than the simple transactions just
described. Imagine, for example, a program that transfers money from an account stored in one database to
another account stored in a different database running on a different server. In this case, there are two different
servers involved in the transaction, so the process of committing or rolling back the transaction must be
externally coordinated. Distributed transactions are performed using a complex procedure known as the
two−phase commit protocol; the details of the protocol are not important here. What is important is that we
could write our account transfer code so that it implements the two−phase commit protocol itself,
coordinating the entire distributed transaction with the two database servers. This would be tedious and
error−prone, however. In practice, distributed transactions are coordinated by a specialized distributed
transaction service.

This brings us, finally, to the JTA. The JTA is a Java API for working with transaction services. It defines a
Java binding for the standard XA API for distributed transactions (XA is a standard defined by the Open
Group). Using the JTA, we can write a program that communicates with a distributed transaction service and
uses that service to coordinate a distributed transaction that involves a transfer of money between database
records in two different databases.

Unfortunately, however, using the JTA in this way is still complex and error−prone. Modern enterprise
applications are typically designed to run within some kind of application server, such as an Enterprise
JavaBeans server. The server uses JTA to handle distributed transactions transparently for the application.
Under this model, JTA becomes a low−level API used by server implementors, not by typical enterprise
programmers. Therefore, this book doesn't include a tutorial chapter on JTA. It does, however, contain a
complete API quick reference for the javax.transaction and javax.transactions.xa packages
(see Chapter 28, "The javax.transaction Package" and Chapter 29, "The javax.transaction.xa Package").

1.2. Enterprise Computing
Demystified

1.4. Enterprise Computing
Scenarios

Preface (Java Enterprise in a Nutshell)

1.3.8. JTA: Managing Distributed Transactions 14

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 1: Introduction

1.4. Enterprise Computing Scenarios

The previous sections have been rapid−fire introductions to the Java Enterprise APIs. Don't worry if you
didn't understand all the information presented there: the rest of the chapters in this Part cover the APIs in
more detail. The important message you should take from this chapter is that the Java Enterprise APIs are
building blocks that work together to enable you to write distributed Java applications for enterprise
computing. The network infrastructure of every enterprise is unique, and the Java Enterprise APIs can be
combined in any number of ways to meet the specific needs and goals of a particular enterprise.

Figure 1−1 shows a network schematic for a hypothetical enterprise. It illustrates some of the many possible
interconnections among network services and shows the Java Enterprise APIs that facilitate those
interconnections. The figure is followed by example scenarios that demonstrate how the Java Enterprise APIs
might be used to solve typical enterprise computing problems. You may find it useful to refer to Figure 1−1
while reading through the scenarios, but note that the figure does not illustrate the specific scenarios presented
here.

Preface (Java Enterprise in a Nutshell)

1.4. Enterprise Computing Scenarios 15

Figure 1−1. The distributed computing architecture of a hypothetical enterprise

1.4.1. Enabling E−Commerce for a Mail−Order Enterprise

CornCo Inc. runs a successful catalog−based mail−order business selling fresh flavored popcorn. They want
to expand into the exciting world of electronic commerce over the Internet. Here's how they might do it:[2]

[2]This example is intended to illustrate only how the Java Enterprise APIs can be used
together. I have ignored efficiency considerations, so the resulting design might not actually
be practical for a large−scale e−commerce web site.

•
A customer visits the company's web site, www.cornco.com, and uses a web browser to interact with
the company's web server. This allows the customer to view the company's products and make
selections to purchase.

•
The web server uses a shopping−cart servlet to keep track of the products the customer has chosen to
buy. The HTTP protocol is itself stateless, but servlets can persist between client requests, so this
shopping−cart servlet can remember the customer's selections even while the customer continues to
browse the web site.

•
When the customer is done browsing and is ready to purchase the selected products, the web server
invokes a different checkout servlet. This servlet performs a number of important tasks, using several
Enterprise APIs.

•

Preface (Java Enterprise in a Nutshell)

1.4. Enterprise Computing Scenarios 16

The checkout servlet uses JDBC to retrieve the list of products to be purchased (stored in a database
by the shopping−cart servlet).

•
Next, the servlet queries the customer for a shipping address, a billing address, and other required
information, and then uses JDBC again to store this information in a customer database. This database
can be used, for example, by the CornCo marketing department for direct mail purposes.

•
The servlet then sends the customer's billing address and total purchase price to the billing server.
This server is a legacy application, specific to CornCo, that has a nonstandard interface. Fortunately,
however, the billing server exports itself as a CORBA object, so the servlet can treat the entire server
as a CORBA remote object and invoke the necessary methods on it.

•
In order to ensure the very freshest product, CornCo maintains warehouses throughout the world.
CornCo is a growing company, so the list of warehouses is frequently updated. The checkout servlet
uses JNDI to contact a directory server and then uses the directory server to find a warehouse that is
close to the customer and has the customer's requested products in stock.

•
Having located a warehouse that can fulfill the customer's order, the checkout servlet uses JMS to
contact the company's enterprise messaging service. It uses this service to send the customer's order to
the selected warehouse in the form of a message. This message is delivered to and queued up on the
local computer at the warehouse.

1.4.2. Updating CornCo with Enterprise JavaBeans

You may have noticed a flaw in the previous scenario. The checkout servlet sends billing information to one
server, and then sends fulfillment information to another server. But it performs these two actions
independently, without any attempt to maintain transactional integrity and make them behave atomically. In
other words, if a network failure or server crash were to occur after the billing information had been sent, but
before the fulfillment information had been sent, the customer might receive a bill for popcorn that was never
shipped.

The designers of the e−commerce system described in the previous section were aware of this problem, but
since distributed transactions are complex, and CornCo did not own a transaction management server, they
simply chose to ignore it. In practice, the number of customers who would have problems would be small, and
it was easier for the original programmers to let the customer service department sort out any irregularities.

But now, CornCo has hired a new Vice President of Information Systems. She's tough as nails, and likes all
her i's dotted and her t's crossed. She won't stand for this sloppy state of affairs. As her first official act as VP,
she buys a high−end application server with Enterprise JavaBeans support and gives her e−commerce team
the job of revamping the online ordering system to use it. The modified design might work like this:

•
The customer interacts with the web server and the shopping−cart servlet in the same way as before.

•
The checkout servlet is totally rewritten. Now it is merely a frontend for an Enterprise JavaBeans
component that handles the interactions with the ordering and fulfillment servers and with the
marketing database. The servlet uses JNDI to look up the enterprise bean, and then uses RMI to
invoke methods on the bean (recall that all enterprise beans are RMI remote objects).

•

Preface (Java Enterprise in a Nutshell)

1.4.2. Updating CornCo with Enterprise JavaBeans 17

The major functionality of the checkout servlet is moved to a new checkout bean. The bean stores
customer data in the marketing database using JDBC, sends billing information to the billing server
using CORBA, looks up a warehouse using JNDI, and sends shipping information to the warehouse
using JMS. The bean does not explicitly coordinate all these activities into a distributed transaction,
however. Instead, when the bean is deployed within the EJB server, the system administrator
configures the bean so that the server automatically wraps a distributed transaction around all of its
actions. That is, when the checkout() method of the bean is called, it always behaves as an atomic
operation.

•
In order for this automatic distributed transaction management to work, another change is required in
the conversion from checkout servlet to checkout bean. The checkout servlet managed all its own
connections to other enterprise services, but enterprise beans do not typically do this. Instead, they
rely on their server for connection management. Thus, when the checkout bean wants to connect to
the marketing database or the enterprise messaging system, for example, it asks the EJB server to
establish that connection for it. The server doesn't need to know what the bean does with the
connection, but it does need to manage the connection, if it is to perform transaction management on
the connection.

1.3. The Java Enterprise
APIs

1.5. Java Enterprise APIs
Versus Jini

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 1: Introduction

1.5. Java Enterprise APIs Versus Jini

Jini™ is the latest networking initiative from Sun. It is related to, but mostly incompatible with, the Java
Enterprise APIs. Jini is a next−generation networking system designed to enable instantaneous networking
between unrelated devices, without external communication. Jini is a system for distributed computing; it
includes a name service, a distributed transaction service, and a distributed event service. Although these
services overlap with JNDI, JTS, and JMS, Jini is fundamentally different from the Java Enterprise APIs. The
Enterprise APIs are designed to bring Java into existing enterprises and to interoperate with existing protocols
and services. Jini, on the other hand, is a next−generation networking system that was designed from scratch,
with no concern for compatibility with today's distributed systems. Jini is a powerful and interesting
technology, but covering it is beyond the scope of this book.

1.4. Enterprise Computing
Scenarios

2. JDBC

Preface (Java Enterprise in a Nutshell)

1.5. Java Enterprise APIs Versus Jini 18

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 1: Introducing the
Java Enterprise APIs

Preface (Java Enterprise in a Nutshell)

1.5. Java Enterprise APIs Versus Jini 19

Chapter 2. JDBC
Contents:

JDBC Architecture
JDBC Basics
JDBC Drivers
Connecting to the Database
Statements
Results
Handling Errors
Prepared Statements
Metadata
Transactions
Stored Procedures
Escape Sequences
JDBC 2.0

The JDBC[1] API provides Java applications with mid−level access to most database systems, via the
Structured Query Language (SQL). JDBC is a key enterprise API, as it's hard to imagine an enterprise
application that doesn't use a database in some way. This chapter starts by demonstrating the central concepts
and classes that comprise the original JDBC API (JDBC 1.0), which was introduced as an add−on to Java 1.0
and included as part of the core Java 1.1 API. It concludes with an introduction to the new JDBC 2.0 features
that are provided as part of Version 1.2 of the Java 2 platform.

[1]According to Sun, JDBC is not an acronym for Java Database Connectivity, although most
people assume it is.

A word of caution: while the java.sql package is less complicated than, say, the RMI packages, it does
require grounding in general database concepts and the SQL language itself. This book does include a brief
SQL reference (see Chapter 8, "SQL Reference", but if you have never worked with a relational database
system before, this chapter is not the place to start. For a more complete treatment of JDBC and general
database concepts, I recommend Database Programming with JDBC and Java by George Reese (O'Reilly).

2.1. JDBC Architecture

Different database systems have surprisingly little in common: just a similar purpose and a mostly compatible
query language. Beyond that, every database has its own API that you must learn to write programs that
interact with the database. This has meant that writing code capable of interfacing with databases from more
than one vendor has been a daunting challenge. Cross−database APIs exist, most notably Microsoft's ODBC
API, but these tend to find themselves, at best, limited to a particular platform.

JDBC is Sun's attempt to create a platform−neutral interface between databases and Java. With JDBC, you
can count on a standard set of database access features and (usually) a particular subset of SQL, SQL−92. The
JDBC API defines a set of interfaces that encapsulate major database functionality, including running queries,
processing results, and determining configuration information. A database vendor or third−party developer
writes a JDBC driver, which is a set of classes that implements these interfaces for a particular database
system. An application can use a number of drivers interchangeably. Figure 2−1 shows how an application
uses JDBC to interact with one or more databases without knowing about the underlying driver
implementations.

Chapter 2. JDBC 20

Figure 2−1. JDBC−database interaction

1.5. Java Enterprise APIs
Versus Jini

2.2. JDBC Basics

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

2.2. JDBC Basics

Before we discuss all of the individual components of JDBC, let's look at a simple example that incorporates
most of the major pieces of JDBC functionality. Example 2−1 loads a driver, connects to the database,
executes some SQL, and retrieves the results. It also keeps an eye out for any database−related errors.

Example 2−1. A Simple JDBC Example

import java.sql.*;

public class JDBCSample {

Preface (Java Enterprise in a Nutshell)

2.1. JDBC Architecture 21

 public static void main(java.lang.String[] args) {
 try {
 // This is where we load the driver
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 }
 catch (ClassNotFoundException e) {
 System.out.println("Unable to load Driver Class");
 return;
 }

 try {
 // All database access is within a try/catch block. Connect to database,
 // specifying particular database, username, and password
 Connection con = DriverManager.getConnection("jdbc:odbc:companydb",
 "", "");

 // Create and execute an SQL Statement
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT FIRST_NAME FROM EMPLOYEES");

 // Display the SQL Results
 while(rs.next()) {
 System.out.println(rs.getString("FIRST_NAME"));
 }

 // Make sure our database resources are released
 rs.close();
 stmt.close();
 con.close();

 }
 catch (SQLException se) {
 // Inform user of any SQL errors
 System.out.println("SQL Exception: " + se.getMessage());
 se.printStackTrace(System.out);
 }
 }
}

Example 2−1 starts out by loading a JDBC driver class (in this case, Sun's JDBC−ODBC Bridge). Then it
creates a database connection, represented by a Connection object, using that driver. With the database
connection, we can create a Statement object to represent an SQL statement. Executing an SQL statement
produces a ResultSet that contains the results of a query. The program displays the results and then cleans
up the resources it has used. If an error occurs, a SQLException is thrown, so our program traps that
exception and displays some of the information it encapsulates.

Clearly, there is a lot going on in this simple program. Every Java application that uses JDBC follows these
basic steps, so the following sections discuss each step in much more detail.

2.1. JDBC Architecture 2.3. JDBC Drivers

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

2.1. JDBC Architecture 22

Chapter 2: JDBC

2.3. JDBC Drivers

Before you can use a driver, the driver must be registered with the JDBC DriverManager. This is
typically done by loading the driver class using the Class.forName() method:

try {
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
 Class.forName("com.oracle.jdbc.OracleDriver");
}
catch (ClassNotFoundException e) {
 /* Handle Exception */
}

One reason most programs call Class.forName() is that this method accepts a String argument,
meaning that the program can store driver selection information dynamically (e.g., in a properties file).

Another way to register drivers is to add the driver classes to the jdbc.drivers property. To use this
technique, add a line like the following to ~/.hotjava/properties (on Windows systems this file can be found in
your Java SDK installation directory):

jdbc.drivers=com.oracle.jdbc.OracleDriver:foo.driver.dbDriver:com.al.AlDriver;

Separate the names of individual drivers with colons and be sure the line ends with a semicolon. Programs
rarely use this approach, as it requires additional configuration work on the part of end users. Every user needs
to have the appropriate JDBC driver classes specified in his properties file.

JDBC drivers are available for most database platforms, from a number of vendors and in a number of
different flavors. There are four categories of drivers:

Type 1 JDBC−ODBC Bridge Drivers
Type 1 drivers use a bridge technology to connect a Java client to an ODBC database system. The
JDBC−ODBC Bridge from Sun and InterSolv is the only extant example of a Type 1 driver. Type 1
drivers require some sort of non−Java software to be installed on the machine running your code, and
they are implemented using native code.

Type 2 Native−API Partly Java Drivers
Type 2 drivers use a native code library to access a database, wrapping a thin layer of Java around the
native library. For example, with Oracle databases, the native access might be through the Oracle Call
Interface (OCI) libraries that were originally designed for C/C++ programmers. Type 2 drivers are
implemented with native code, so they may perform better than all−Java drivers, but they also add an
element of risk, as a defect in the native code can crash the Java Virtual Machine.

Type 3 Net−protocol All−Java Drivers
Type 3 drivers define a generic network protocol that interfaces with a piece of custom middleware.
The middleware component might use any other type of driver to provide the actual database access.
BEA's WebLogic product line (formerly known as WebLogic Tengah and before that as
jdbcKona/T3) is an example. These drivers are especially useful for applet deployment, since the
actual JDBC classes can be written entirely in Java and downloaded by the client on the fly.

Preface (Java Enterprise in a Nutshell)

2.3. JDBC Drivers 23

Type 4 Native−protocol All−Java Drivers
Type 4 drivers are written entirely in Java. They understand database−specific networking protocols
and can access the database directly without any additional software. These drivers are also well
suited for applet programming, provided that the Java security manager allows TCP/IP connections to
the database server.

When you are selecting a driver, you need to balance speed, reliability, and portability. Different applications
have different needs. A standalone, GUI−intensive program that always runs on a Windows NT system will
benefit from the additional speed of a Type 2, native−code driver. An applet might need to use a Type 3 driver
to get around a firewall. A servlet that is deployed across multiple platforms might require the flexibility of a
Type 4 driver.

A list of currently available JDBC drivers is available at http://java.sun.com/products/jdbc/jdbc.drivers.html.

2.3.1. JDBC URLs

A JDBC driver uses a JDBC URL to identify and connect to a particular database. These URLs are generally
of the form:

jdbc:driver:databasename

The actual standard is quite fluid, however, as different databases require different information to connect
successfully. For example, the Oracle JDBC−Thin driver uses a URL of the form:

jdbc:oracle:thin:@site:port:database

while the JDBC−ODBC Bridge uses:

jdbc:odbc:datasource;odbcoptions

The only requirement is that a driver be able to recognize its own URLs.

2.3.2. The JDBC−ODBC Bridge

The JDBC−ODBC Bridge ships with JDK 1.1 and the Java 2 SDK for Windows and Solaris systems. The
bridge provides an interface between JDBC and database drivers written using Microsoft's Open DataBase
Connectivity (ODBC) API. The bridge was originally written to allow the developer community to get up and
running quickly with JDBC. Since the bridge makes extensive use of native method calls, it is not
recommended for long−term or high−volume deployment.

The bridge is not a required component of the Java SDK, so it is not supported by most web browsers or
other runtime environments. Using the bridge in an applet requires a browser with a JVM that supports the
JDBC−ODBC Bridge, as well as a properly configured ODBC driver and data source on the client side.
Finally, due to different implementations of the native methods interface, the bridge does not work with some
development environments, most notably Microsoft Visual J++.

The JDBC URL subprotocol odbc has been reserved for the bridge. Like most JDBC URLs, it allows
programs to encode extra information about the connection. ODBC URLs are of the form:

jdbc:odbc:datasourcename[;attribute−name=attribute−value]*

For instance, a JDBC URL pointing to an ODBC data source named companydb with the CacheSize
attribute set to 10 looks like this:

Preface (Java Enterprise in a Nutshell)

2.3.1. JDBC URLs 24

http://java.sun.com/products/jdbc/jdbc.drivers.html

jdbc:odbc:companydb;CacheSize=10

2.2. JDBC Basics 2.4. Connecting to the
Database

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

2.4. Connecting to the Database

The java.sql.Connection object, which encapsulates a single connection to a particular database,
forms the basis of all JDBC data−handling code. An application can maintain multiple connections, up to the
limits imposed by the database system itself. A standard small office or web server Oracle installation can
support 50 or so connections, while a major corporate database could host several thousand. The
DriverManager.getConnection() method creates a connection:

Connection con = DriverManager.getConnection("url", "user", "password");

You pass three arguments to getConnection(): a JDBC URL, a database username, and a password. For
databases that do not require explicit logins, the user and password strings should be left blank. When the
method is called, the DriverManager queries each registered driver, asking if it understands the URL. If a
driver recognizes the URL, it returns a Connection object. Because the getConnection() method
checks each driver in turn, you should avoid loading more drivers than are necessary for your application.

The getConnection() method has two other variants that are less frequently used. One variant takes a
single String argument and tries to create a connection to that JDBC URL without a username or password.
The other version takes a JDBC URL and a java.util.Properties object that contains a set of
name/value pairs. You generally need to provide at least username=value and password=value pairs.

When a Connection has outlived its usefulness, you should be sure to explicitly close it by calling its
close() method. This frees up any memory being used by the object, and, more importantly, it releases any
other database resources the connection may be holding on to. These resources (cursors, handles, and so on)
can be much more valuable than a few bytes of memory, as they are often quite limited. This is particularly
important in applications such as servlets that might need to create and destroy thousands of JDBC
connections between restarts. Because of the way some JDBC drivers are designed, it is not safe to rely on
Java's garbage collection to remove unneeded JDBC connections.

The JDBC 2.0 standard extension, discussed later in this chapter, provides a facility for connection pooling,
whereby an application can maintain several open database connections and spread the load among them. This
is often necessary for enterprise−level applications, such as servlets, that may be called upon to perform tens
of thousands of database transactions a day.

Preface (Java Enterprise in a Nutshell)

2.4. Connecting to the Database 25

2.3. JDBC Drivers 2.5. Statements

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

2.5. Statements

Once you have created a Connection, you can begin using it to execute SQL statements. This is usually
done via Statement objects. There are actually three kinds of statements in JDBC:

Statement
Represents a basic SQL statement

PreparedStatement
Represents a precompiled SQL statement, which can offer improved performance

CallableStatement
Allows JDBC programs complete access to stored procedures within the database itself

We're just going to discuss the Statement object for now; PreparedStatement and
CallableStatement are covered in detail later in this chapter.

To get a Statement object, you call the createStatement() method of a Connection:

Statement stmt = con.createStatement();

Once you have created a Statement, you use it to execute SQL statements. A statement can either be a
query that returns results or an operation that manipulates the database in some way. If you are performing a
query, use the executeQuery() method of the Statement object:

ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMERS");

Here we've used executeQuery() to run a SELECT statement. This call returns a ResultSet object that
contains the results of the query (we'll take a closer look at ResultSet in the next section).

Statement also provides an executeUpdate() method, for running SQL statements that do not return
results, such as the UPDATE and DELETE statements. executeUpdate() returns an integer that indicates
the number of rows in the database that were altered.

If you don't know whether a SQL statement is going to return results (such as when the user is entering the

Preface (Java Enterprise in a Nutshell)

2.5. Statements 26

statement in a form field), you can use the execute() method of Statement. This method returns true
if there is a result associated with the statement. In this case, the ResultSet can be retrieved using the
getResultSet() method and the number of updated rows can be retrieved using getUpdateCount():

Statement unknownSQL = con.createStatement();
if(unknownSQL.execute(sqlString)) {
 ResultSet rs = unknownSQL.getResultSet();
 // display the results
}
else {
 System.out.println("Rows updated: " + unknownSQL.getUpdateCount());
}

It is important to remember that a Statement object represents a single SQL statement. A call to
executeQuery(), executeUpdate(), or execute() implicitly closes any active ResultSet
associated with the Statement. In other words, you need to be sure you are done with the results from a
query before you execute another query with the same Statement object. If your application needs to
execute more than one simultaneous query, you need to use multiple Statement objects. As a general rule,
calling the close() method of any JDBC object also closes any dependent objects, such as a Statement
generated by a Connection or a ResultSet generated by a Statement, but well−written JDBC code
closes everything explicitly.

2.5.1. Multiple Result Sets

It is possible to write a SQL statement that returns more than one ResultSet or update count (exact
methods of doing so vary depending on the database). TheStatement object supports this functionality via
the getMoreResults() method. Calling this method implicitly closes any existing ResultSet and
moves to the next set of results for the statement. getMoreResults() returns true if there is another
ResultSet available to be retrieved by getResultSet(). However, the method returns false if the
next statement is an update, even if there is another set of results waiting farther down the line. To be sure
you've processed all the results for a Statement, you need to check that getMoreResults() returns
false and that getUpdateCount() returns −1.

We can modify the previous execute() example to handle multiple results:

Statement unknownSQL = con.createStatement();
unknownSQL.execute(sqlString);
while (true) {
 rs = unknownSQL.getResultSet();
 if(rs != null)
 // display the results
 else
 // process the update data

 // Advance and quit if done
 if((unknownSQL.getMoreResults() == false) &&
 (unknownSQL.getUpdateCount() == −1))
 break;
}

Statements that return multiple results are actually quite rare. They generally arise from stored procedures or
SQL implementations that allow multiple statements to be executed in a batch. Under SyBase, for instance,
multiple SELECT statements may be separated by newline (\n) characters.

2.4. Connecting to the
Database

2.6. Results

Preface (Java Enterprise in a Nutshell)

2.5.1. Multiple Result Sets 27

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

2.6. Results

When a SQL query executes, the results form a pseudo−table that contains all rows that fit the query
parameters. For instance, here's a textual representation of the results of the query string "SELECT NAME,
CUSTOMER_ID, PHONE FROM CUSTOMERS":

NAME CUSTOMER_ID PHONE
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−− −−−−−−−−−−−−−−−−−−−
Jane Markham 1 617 555−1212
Louis Smith 2 617 555−1213
Woodrow Lang 3 508 555−7171
Dr. John Smith 4 (011) 42 323−1239

This kind of textual representation is not very useful for Java programs. Instead, JDBC uses the
java.sql.ResultSet interface to encapsulate the query results as Java primitive types and objects. You
can think of a ResultSet as an object that represents an underlying table of query results, where you use
method calls to navigate between rows and retrieve particular column values.

A Java program might handle the previous query as follows:

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(
 "SELECT NAME, CUSTOMER_ID, PHONE FROM CUSTOMERS");

while(rs.next()) {
 System.out.print("Customer #" + rs.getString("CUSTOMER_ID"));
 System.out.print(", " + rs.getString("NAME"));
 System.out.println(", is at " + rs.getString("PHONE");
}
rs.close();
stmt.close();

Here's the resulting output:

Customer #1, Jane Markham, is at 617 555−1212
Customer #2, Louis Smith, is at 617 555−1213
Customer #3, Woodrow Lang, is at 508 555−7171
Customer #4, Dr. John Smith, is at (011) 42 323−1239

The code loops through each row of the ResultSet using the next()method. When you start working
with a ResultSet, you are positioned before the first row of results. That means you have to call next()
once just to access the first row. Each time you call next(), you move to the next row. If there are no more

Preface (Java Enterprise in a Nutshell)

2.6. Results 28

rows to read, next() returns false. Note that with the JDBC 1.0 ResultSet, you can only move
forward through the results and, since there is no way to go back to the beginning, you can read them only
once. The JDBC 2.0 ResultSet, which we discuss later, overcomes these limitations.

Individual column values are read using the getString() method. getString() is one of a family of
getXXX() methods, each of which returns data of a particular type. There are two versions of each
getXXX() method: one that takes the case−insensitive String name of the column to be read (e.g.,
"PHONE", "CUSTOMER_ID") and one that takes a SQL−style column index. Note that column indexes run
from 1 to n, unlike Java array indexes, which run from 0 to n−1, where n is the number of columns.

The most important getXXX() method is getObject(), which can return any kind of data packaged in an
object wrapper. For example, callinggetObject() on an integer field returns an Integer object, while
calling it on a date field yields a java.sql.Date object. Table 2−1 lists the different getXXX() methods,
along with the corresponding SQL data type and Java data type. Where the return type for a getXXX()
method is different from the Java type, the return type is shown in parentheses. Note that the
java.sql.Types class defines integer constants that represent the standard SQL data types.

Table 2−1. SQL Data Types, Java Types, and Default getXXX() Methods

SQL Data Type Java Type GetXXX() Method

CHAR String getString()

VARCHAR String getString()

LONGVARCHAR String getString()

NUMERIC java.math.BigDecimal getBigDecimal()

DECIMAL java.math.BigDecimal getBigDecimal()

BIT Boolean (boolean) getBoolean()

TINYINT Integer (byte) getByte()

SMALLINT Integer (short) getShort()

INTEGER Integer (int) getInt()

BIGINT Long (long) getLong()

REAL Float (float) getFloat()

FLOAT Double (double) getDouble()

DOUBLE Double (double) getDouble()

BINARY byte[] getBytes()

VARBINARY byte[] getBytes()

LONGVARBINARYbyte[] getBytes()

DATE java.sql.Date getDate()

TIME java.sql.Time getTime()

TIMESTAMP java.sql.Timestamp getTimestamp()

Note that this table merely lists the default mappings according to the JDBC specification, and some drivers
do not follow these mappings exactly. Also, a certain amount of casting is permitted. For instance, the
getString() method returns a String representation of just about any data type.

2.6.1. Handling Nulls

Sometimes database columns contain null, or empty, values. However, because of the way certain database
APIs are written, it is impossible for JDBC to provide a method to determine before the fact whether or not a
column is null.[2] Methods that don't return an object of some sort are especially vulnerable. getInt(),

Preface (Java Enterprise in a Nutshell)

2.6. Results 29

for instance, resorts to returning a value of −1. JDBC deals with this problem via the wasNull() method,
which indicates whether or not the last column read was null:

[2] The driver can figure this out after reading the object, but since some driver
implementations and database connection protocols allow you to reliably read a value from a
column only once, implementing an isNull() method requires the ResultSet to cache
the entire row in memory. While many programs do exactly this, it is not appropriate
behavior for the lowest−level result handler.

int numberInStock = rs.getInt("STOCK");
if(rs.wasNull())
 System.out.println("Result was null");
else
 System.out.println("In Stock: " + numberInStock);

Alternately, you can call getObject() and test to see if the result is null:[3]

[3]Some drivers, including early versions of Oracle's JDBC drivers, don't properly support
this behavior.

Object numberInStock = rs.getObject("STOCK");
if(numberInStock == null)
 System.out.println("Result was null");

2.6.2. Large Data Types

You can retrieve large chunks of data from a ResultSet as a stream. This can be useful when reading
images from a database or loading large documents from a data store, for example. The relevant ResultSet
methods are getAsciiStream(), getBinaryStream(), and getUnicodeStream(), where each
method has column name and column index variants, just like the other getXXX() methods. Each of these
methods returns an InputStream. Here's a code sample that retrieves an image from a PICTURES table
and writes the image to an OutputStream of some kind (this might be a ServletOutputStream for a
Java servlet that produces a GIF from a database):

ResultSet rs =
 stmt.executeQuery("SELECT IMAGE FROM PICTURES WHERE PID = " +
 req.getParameter("PID"));

if (rs.next()) {
 BufferedInputStream gifData =
 new BufferedInputStream(rs.getBinaryStream("IMAGE"));
 byte[] buf = new byte[4 * 1024]; // 4K buffer
 int len;
 while ((len = gifData.read(buf, 0, buf.length)) != −1) {
 out.write(buf, 0, len);
 }
}

The JDBC 2.0 API includes Blob and Clob objects to handle large data types; we discuss these objects later
in this chapter.

Preface (Java Enterprise in a Nutshell)

2.6.2. Large Data Types 30

2.6.3. Dates and Times

JDBC defines three classes devoted to storing date and time information: java.sql.Date,
java.sql.Time, and java.sql.Timestamp. These correspond to the SQL DATE, TIME, and
TIMESTAMP types. The java.util.Date class is not suitable for any of them, so JDBC defines a new set
of wrapper classes that extend (or limit) the standard Date class to fit the JDBC mold.

The SQL DATE type contains only a date, so the java.sql.Date class contains only a day, month, and
year. SQL TIME (java.sql.Time) includes only a time of day, without date information. SQL
TIMESTAMP (java.sql.Timestamp) includes both, but at nanosecond precision (the standard Date
class is incapable of handling more than milliseconds).

Since different DBMS packages have different methods of encoding date and time information, JDBC
supports the ISO date escape sequences, and individual drivers are required to translate these sequences into
whatever form the underlying DBMS requires. The syntax for dates, times, and timestamps is:

{d 'yyyy−mm−dd'}
{t 'hh:mm:ss'}
{ts 'yyyy−mm−dd hh:mm:ss.ms.microseconds.ns'}

A TIMESTAMP only needs to be specified up to seconds; the remaining values are optional. Here is an
example that uses a date escape sequence (where dateSQL is a Statement of some sort):

dateSQL.execute("INSERT INTO FRIENDS(BIRTHDAY) VALUES ({d '1978−12−14'})");

2.5. Statements 2.7. Handling Errors

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

2.7. Handling Errors

Any JDBC object that encounters an error serious enough to halt execution throws a SQLException. For
example, database connection errors, malformed SQL statements, and insufficient database privileges all
throw SQLException objects.

The SQLException class extends the normal java.lang.Exception class and defines an additional
method called getNextException(). This allows JDBC classes to chain a series of SQLException
objects together. SQLException also defines the getSQLState() and getErrorCode() methods to
provide additional information about an error. The value returned by getSQLState() is one of the
ANSI−92 SQL state codes; these codes are listed in Chapter 8, "SQL Reference". getErrorCode()

Preface (Java Enterprise in a Nutshell)

2.6.3. Dates and Times 31

returns a vendor−specific error code.

An extremely conscientious application might have a catch block that looks something like this:

try {
 // Actual database code
}
catch (SQLException e) {
 while(e != null) {
 System.out.println("\nSQL Exception:");
 System.out.println(e.getMessage());
 System.out.println("ANSI−92 SQL State: " + e.getSQLState());
 System.out.println("Vendor Error Code: " + e.getErrorCode());
 e = e.getNextException();
 }
}

2.7.1. SQL Warnings

JDBC classes also have the option of generating (but not throwing) a SQLWarning exception when
something is not quite right, but at the same time, not sufficiently serious to warrant halting the entire
program. For example, attempting to set a transaction isolation mode that is not supported by the underlying
database might generate a warning rather than an exception. Remember, exactly what qualifies as a warning
condition varies by database.

SQLWarning encapsulates the same information as SQLException and is used in a similar fashion.
However, unlike SQLException objects, which are caught in try/catch blocks, warnings are retrieved
using the getWarnings() methods of the Connection, Statement, ResultSet,
CallableStatement, and PreparedStatement interfaces. SQLWarning implements the
getMessage(), getSQLState(), and getErrorCode() methods in the same manner as
SQLException.

If you are debugging an application, and you want to be aware of every little thing that goes wrong within the
database, you might use a printWarnings() method like this one:

void printWarnings(SQLWarning warn) {
 while (warn != null) {
 System.out.println("\nSQL Warning:");
 System.out.println(warn.getMessage());
 System.out.println("ANSI−92 SQL State: " + warn.getSQLState());
 System.out.println("Vendor Error Code: " + warn.getErrorCode());
 warn = warn.getNextWarning();
 }
}

Then you could use the printWarnings() method as follows:

// Database initialization code here
ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMERS");
printWarnings(stmt.getWarnings());
printWarnings(rs.getWarnings());
// Rest of database code

2.6. Results 2.8. Prepared Statements

Preface (Java Enterprise in a Nutshell)

2.7.1. SQL Warnings 32

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

2.8. Prepared Statements

The PreparedStatement object is a close relative of the Statement object. Both accomplish roughly
the same thing: running SQL statements. PreparedStatement, however, allows you to precompile your
SQL and run it repeatedly, adjusting specific parameters as necessary. Since processing SQL strings is a large
part of a database's overhead, getting compilation out of the way at the start can significantly improve
performance. With proper use, it can also simplify otherwise tedious database tasks.

As with Statement, you create a PreparedStatement object from a Connection object. In this
case, though, the SQL is specified at creation instead of execution, using the prepareStatement()
method of Connection:

PreparedStatement pstmt = con.prepareStatement(
 "INSERT INTO EMPLOYEES (NAME, PHONE) VALUES (?, ?)");

This SQL statement inserts a new row into the EMPLOYEES table, setting the NAME and PHONE columns to
certain values. Since the whole point of a PreparedStatement is to be able to execute the statement
repeatedly, we don't specify values in the call to prepareStatement(), but instead use question marks
(?) to indicate parameters for the statement. To actually run the statement, we specify values for the
parameters and then execute the statement:

pstmt.clearParameters();
pstmt.setString(1, "Jimmy Adelphi");
pstmt.setString(2, "201 555−7823");
pstmt.executeUpdate();

Before setting parameters, we clear out any previously specified parameters with the
clearParameters() method. Then we can set the value for each parameter (indexed from 1 to the
number of question marks) using the setString() method. PreparedStatement defines numerous
setXXX() methods for specifying different types of parameters; see the java.sql reference material later
in this book for a complete list. Finally, we use the executeUpdate() method to run the SQL.

The setObject() method can insert Java object types into the database, provided that those objects can be
converted to standard SQL types. setObject() comes in three flavors:

setObject(int parameterIndex, Object x, int targetSqlType, int scale)
setObject(int parameterIndex, Object x, int targetSqlType)
setObject(int parameterIndex, Object x)

Calling setObject() with only a parameter index and an Object causes the method to try and
automatically map the Object to a standard SQL type (see Table 2−1). Calling setObject() with a type

Preface (Java Enterprise in a Nutshell)

2.8. Prepared Statements 33

specified allows you to control the mapping. The setXXX() methods work a little differently, in that they
attempt to map Java primitive types to JDBC types.

You can use PreparedStatement to insert null values into a database, either by calling the
setNull() method or by passing a null value to one of the setXXX() methods that take an Object. In
either case, you must specify the target SQL type.

Let's clarify with an example. We want to set the first parameter of a prepared statement to the value of an
Integer object, while the second parameter, which is a VARCHAR, should be null. Here's some code that
does that:

Integer i = new Integer(32);
pstmt.setObject(1, i, Types.INTEGER);
pstmt.setObject(2, null, Types.VARCHAR);
// or pstmt.setNull(2, Types.VARCHAR);

2.7. Handling Errors 2.9. Metadata

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

2.9. Metadata

Most JDBC programs are designed to work with a specific database and particular tables in that database; the
program knows exactly what kind of data it is dealing with. Some applications, however, need to dynamically
discover information about result set structures or underlying database configurations. This information is
called metadata, and JDBC provides two classes for dealing with it: DatabaseMetaData and
ResultSetMetaData. If you are developing a JDBC application that will be deployed outside a known
environment, you need to be familiar with these interfaces.

2.9.1. DatabaseMetaData

You can retrieve general information about the structure of a database with the
java.sql.DatabaseMetaData interface. By making thorough use of this class, a program can tailor its
SQL and use of JDBC on the fly, to accommodate different levels of database and JDBC driver support.

Database metadata is associated with a particular connection, so DatabaseMetaData objects are created
with the getMetaData() method of Connection:

DatabaseMetaData dbmeta = con.getMetaData();

Preface (Java Enterprise in a Nutshell)

2.9. Metadata 34

DatabaseMetaData provides an overwhelming number of methods you can call to get actual
configuration information about the database. Some of these return String objects (getURL()), some
return boolean values (nullsAreSortedHigh()), and still others return integers
(getMaxConnections()). The full list is given in Chapter 17, "The java.rmi.server Package".

A number of other methods return ResultSet objects. These methods, such as getColumns(),
getTableTypes(), and getPrivileges(), generally encapsulate complex or variable−length
information. The getTables() method, for instance, returns a ResultSet that contains the name of
every table in the database and a good deal of extra information besides.

Many of the DatabaseMetaData methods take string patterns as arguments, allowing for simple wildcard
searching. A percent sign (%) substitutes for any number of characters, and an underscore (_) calls for a
single character match. Thus, %CUSTOMER% matches NEW_CUSTOMERS, CUSTOMER, and CUSTOMERS,
while CUSTOMER% matches only CUSTOMER and CUSTOMERS. All of these patterns are case−sensitive.

Example 2−2 shows a simple program that displays some basic database characteristics, a list of tables, and a
list of indexes on each table. The program assumes a JDBC driver with full support for all the
DatabaseMetaData commands.

Example 2−2. DBViewer Program

import java.sql.*;
import java.util.StringTokenizer;

public class DBViewer {

 final static String jdbcURL = "jdbc:odbc:customerdsn";
 final static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

 public static void main(java.lang.String[] args) {

 System.out.println("−−− Database Viewer −−−");

 try {
 Class.forName(jdbcDriver);
 Connection con = DriverManager.getConnection(jdbcURL, "", "");

 DatabaseMetaData dbmd = con.getMetaData();

 System.out.println("Driver Name: " + dbmd.getDriverName());
 System.out.println("Database Product: " + dbmd.getDatabaseProductName());
 System.out.println("SQL Keywords Supported:");
 StringTokenizer st = new StringTokenizer(dbmd.getSQLKeywords(), ",");
 while(st.hasMoreTokens())
 System.out.println(" " + st.nextToken());

 // Get a ResultSet that contains all of the tables in this database
 // We specify a table_type of "TABLE" to prevent seeing system tables,
 // views and so forth
 String[] tableTypes = { "TABLE" };
 ResultSet allTables = dbmd.getTables(null,null,null,tableTypes);
 while(allTables.next()) {
 String table_name = allTables.getString("TABLE_NAME");
 System.out.println("Table Name: " + table_name);
 System.out.println("Table Type: " + allTables.getString("TABLE_TYPE"));
 System.out.println("Indexes: ");

 // Get a list of all the indexes for this table
 ResultSet indexList = dbmd.getIndexInfo(null,null,table_name,false,false);
 while(indexList.next()) {
 System.out.println(" Index Name: "+indexList.getString("INDEX_NAME"));

Preface (Java Enterprise in a Nutshell)

2.9.1. DatabaseMetaData 35

 System.out.println(" Column Name:"+indexList.getString("COLUMN_NAME"));
 }
 indexList.close();
 }

 allTables.close();
 con.close();
 }
 catch (ClassNotFoundException e) {
 System.out.println("Unable to load database driver class");
 }
 catch (SQLException e) {
 System.out.println("SQL Exception: " + e.getMessage());
 }
 }
}

Here's some sample output when this program is run against a Microsoft Access database via the
JDBC−ODBC bridge (snipped slightly to prevent several pages of uninteresting text):

−−− Database Viewer −−−
Driver Name: JDBC−ODBC Bridge (odbcjt32.dll)
Database Product: ACCESS
SQL Keywords Supported:

ALPHANUMERIC
AUTOINCREMENT
BINARY
BYTE
FLOAT8
...

Table Name: Customers
Table Type: TABLE
Indexes:

Index Name: PrimaryKey
Column Name:CustNo
Index Name: AddressIndex
Column Name:Address
...

2.9.2. ResultSetMetaData

The ResultSetMetaData interface provides information about the structure of a particular ResultSet.
Data provided by ResultSetMetaData includes the number of available columns, the names of those
columns, and the kind of data available in each. Example 2−3 shows a short program that displays the
contents of a table and shows the data type for each column.

Example 2−3. TableViewer Program

import java.sql.*;
import java.util.StringTokenizer;

public class TableViewer {

 final static String jdbcURL = "jdbc:oracle:customerdb";
 final static String jdbcDriver = "oracle.jdbc.OracleDriver";
 final static String table = "CUSTOMERS";

 public static void main(java.lang.String[] args) {

 System.out.println("−−− Table Viewer −−−");

Preface (Java Enterprise in a Nutshell)

2.9.2. ResultSetMetaData 36

 try {
 Class.forName(jdbcDriver);
 Connection con = DriverManager.getConnection(jdbcURL, "", "");
 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery("SELECT * FROM "+ table);

 ResultSetMetaData rsmd = rs.getMetaData();
 int columnCount = rsmd.getColumnCount();
 for(int col = 1; col <= columnCount; col++) {
 System.out.print(rsmd.getColumnLabel(col));
 System.out.print(" (" + rsmd.getColumnTypeName(col)+")");
 if(col < columnCount)
 System.out.print(", ");
 }
 System.out.println();

 while(rs.next()) {
 for(int col = 1; col <= columnCount; col++) {
 System.out.print(rs.getString(col));
 if(col < columnCount)
 System.out.print(", ");
 }
 System.out.println();
 }

 rs.close();
 stmt.close();
 con.close();
 }
 catch (ClassNotFoundException e) {
 System.out.println("Unable to load database driver class");
 }
 catch (SQLException e) {
 System.out.println("SQL Exception: " + e.getMessage());
 }
 }
}

The key methods used here are getColumnCount(), getColumnLabel(), and
getColumnTypeName(). Note that type names returned by getColumnTypeName() are
database−specific (e.g., Oracle refers to a string value as a VARCHAR; Microsoft Access calls it TEXT).
Here's some sample output for TableViewer:

−−− Table Viewer −−−
CustNo (SHORT), CustName (VARCHAR), CustAddress (VARCHAR)
1, Jane Markham, 12 Stevens St
2, Louis Smith, 45 Morrison Lane
3, Woodrow Lang, 4 Times Square

2.8. Prepared Statements 2.10. Transactions

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

2.9.2. ResultSetMetaData 37

Chapter 2: JDBC

2.10. Transactions

A transaction is a group of several operations that must behave atomically, or as if they are a single,
indivisible operation. With regards to databases, transactions allow you to combine one or more database
actions into a single atomic unit. If you have an application that needs to execute multiple SQL statements to
fulfill one goal (say, an inventory management system that needs to move items from an INVENTORY table to
a SHIPPING table), you probably want to use JDBC's transaction services to accomplish the goal.

Working with a transaction involves the following steps: start the transaction, perform its component
operations, and then either commit the transaction if all the component operations succeed or roll it back if
one of the operations fails. The ability to roll back a transaction is the key feature. This means that if any one
SQL statement fails, the entire operation fails, and it is as though none of the component operations took
place. Therefore it is impossible to end up with a situation where, for example, the INVENTORY table has
been debited, but the SHIPPING table has not been credited.

Another issue with transactions and databases concerns when changes to the database become visible to the
rest of the system. Transactions can operate at varying levels of isolation from the rest of the database. At the
most isolated level, the results of all the component SQL statements become visible to the rest of the system
only when the transaction is committed. In other words, nobody sees the reduced inventory before the
shipping data is updated.

The Connection object in JDBC is responsible for transaction management. With JDBC, you are always
using transactions in some form. By default, a new connection starts out in transaction auto−commit mode,
which means that every SQL statement is executed as an individual transaction that is immediately committed
to the database.

To perform a transaction that uses multiple statements, you have to call the setAutoCommit() method
with a false argument. (You can check the status of auto−commit with the getAutoCommit() method.)
Now you can execute the SQL statements that comprise your transaction. When you are done, you call the
commit() method to commit the transaction or the rollback() method to undo it. Here's an example:

try {
 con.setAutoCommit(false);
 // run some SQL
 stmt.executeUpdate("UPDATE INVENTORY SET ONHAND = 10 WHERE ID = 5");
 stmt.executeUpdate("INSERT INTO SHIPPING (QTY) VALUES (5)");
 con.commit();
}
catch (SQLException e) {
 con.rollback(); //undo the results of the transaction
}

When auto−commit is set to false, you must remember to call commit() (or rollback()) at the end
of each transaction, or your changes will be lost.

JDBC supports a number of transaction isolation modes that allow you to control how the database deals with
transaction conflicts−−in other words, who sees what when. JDBC defines five modes, some of which may
not be supported by all databases. The default mode varies depending on the underlying database and driver.
Higher isolation levels yield poorer performance. Here are the five standard options, which are defined as
integer constants in the Connection interface:

Preface (Java Enterprise in a Nutshell)

2.10. Transactions 38

TRANSACTION_NONE
Transactions are either disabled or not supported.

TRANSACTION_READ_UNCOMMITTED
Minimal transaction support that allows dirty reads. In other words, other transactions can see the
results of a transaction's SQL statements before the transaction commits itself. If you roll back your
transaction, other transactions may be left with invalid data.

TRANSACTION_READ_COMMITTED
Transactions are prevented from reading rows with uncommitted changes, or in other words, dirty
reads are not allowed.

TRANSACTION_REPEATABLE_READ
Protects against repeatable reads as well as dirty reads. Say one transaction reads a row that is
subsequently altered (and committed) by another transaction. If the first transaction reads the row
again, the first transaction does not get a different value the second time around. The new data is
visible to the first transaction only after it calls commit() and performs another read.

TRANSACTION_SERIALIZABLE
Provides all the support of TRANSACTION_REAPEATABLE_READ and guards against row
insertions as well. Say one transaction reads a set of rows, and then another transaction adds a row to
the set. If the first transaction reads the set again, it does not see the newly added row. Put another
way, this level of isolation forces the database to treat transactions as if they occurred one at a time.

Transaction isolation modes are set by the setTransactionIsolation() method. For example:

con.setTransactionIsolation(TRANSACTION_READ_COMMITTED);

You can use the DatabaseMetaData class to determine the transaction support of the underlying
database. The most useful methods are getDefaultTransactionIsolation(),
supportsTransactions(), supportsTransactionIsolationLevel(), and
supportsDataDefinitionAndDataManipulationTransactions() (which may very well be
the longest method name in the Java API).

An application that uses transactions is a prime candidate for also using a connection pool (available in JDBC
2.0). Since each database transaction requires its own Connection object, an application that performs multiple
simultaneous transactions (for instance, spawning threads that perform database updates) needs multiple
connections available. Maintaining a pool of connections is much more efficient than creating a new one
whenever you need a new transaction.

2.9. Metadata 2.11. Stored Procedures

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

2.10. Transactions 39

Chapter 2: JDBC

2.11. Stored Procedures

Most RDBMS systems include some sort of internal programming language (e.g., Oracle's PL/SQL). These
languages allow database developers to embed procedural application code directly within the database and
then call that code from other applications. The advantage of this approach is that the code can be written just
once and then used in multiple different applications (even with different platforms and languages). It also
allows application code to be divorced from the underlying table structure. If stored procedures handle all of
the SQL, and applications just call the procedures, only the stored procedures need to be modified if the table
structure is changed later on.

Here is an Oracle PL/SQL stored procedure:[4]

[4] If it looks familiar, that's because it is from George Reese's Database Programming with
JDBC (O'Reilly).

CREATE OR REPLACE PROCEDURE sp_interest
(id IN INTEGER
bal IN OUT FLOAT) IS
BEGIN
SELECT balance
INTO bal
FROM accounts
WHERE account_id = id;

bal := bal + bal * 0.03;

UPDATE accounts
SET balance = bal
WHERE account_id = id;

END;

This PL/SQL procedure takes two input values, an account ID and a balance, and returns an updated balance.

The CallableStatement interface is the JDBC object that supports stored procedures. The
Connection class has a prepareCall() method that is very similar to the prepareStatement()
method we used to create a PreparedStatement. Because each database has its own syntax for accessing
stored procedures, JDBC defines a standardized escape syntax for accessing stored procedures with
CallableStatement. The syntax for a stored procedure that does not return a result set is:

{call procedure_name[(?[,?...])]}

The syntax for a stored procedure that returns a result is:

{? = call procedure_name[(?[,?...])]}

In this syntax, each question mark (?) represents a placeholder for a procedure parameter or a return value.
Note that the parameters are optional. The JDBC driver is responsible for translating the escape syntax into
the database's own stored procedure syntax.

Preface (Java Enterprise in a Nutshell)

2.11. Stored Procedures 40

Here's a code fragment that uses CallableStatement to run the sp_interest stored procedure:

CallableStatment cstmt = con.prepareCall("{call sp_interest(?,?)}");
cstmt.registerOutParameter(2, Types.FLOAT);
cstmt.setInt(1, accountID);
cstmt.setFloat(2, 2343.23);
cstmt.execute();
out.println("New Balance:" + cstmt.getFloat(2));

In this example, we first create a CallableStatement using the prepareCall() method and passing
in the appropriate escape syntax for the stored procedure. Since this stored procedure has an output parameter
(actually, in this case, an INOUT parameter, which means it also serves as an input parameter), we use the
registerOutParameter() method to identify that parameter as an output of type FLOAT. Note that just
as with prepared statements, substituted parameters are numbered from 1 to n, left to right. Any time you have
an output parameter in a stored procedure, you need to register its type using registerOutParameter()
before you execute the stored procedure.

Next we set the two input parameters, the account ID and the balance, using the appropriate setXXX()
methods. Finally, we execute the stored procedure and then use thegetFloat() method to display the new
balance. The getXXX() methods of CallableStatement are similar to those of the ResultSet.

You need to use CallableStatement only with stored procedures that have output values, such as the
one we just saw. You can use either of the other statement objects to execute stored procedures that take
parameters but don't return anything.

2.10. Transactions 2.12. Escape Sequences

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

2.12. Escape Sequences

Escape sequences allow JDBC programs to package certain database commands in a database−independent
manner. Since different databases implement different features (especially scalar SQL functions) in different
ways, in order to be truly portable, JDBC needs to provide a way to access at least a subset of that
functionality in a standard way. We've already seen escape sequences twice: with the various SQL date and
time functions, and with the CallableStatement object.

A JDBC escape sequences consists of a pair of curly braces, a keyword, and a set of parameters. Thus, call
is the keyword for stored procedures, while d, t, and ts are keywords for dates and times. One keyword we
haven't seen yet is escape. This keyword specifies the character that is used to escape wildcard characters in

Preface (Java Enterprise in a Nutshell)

2.12. Escape Sequences 41

a LIKE statement:

stmt.executeQuery(
 "SELECT * FROM ApiDocs WHERE Field_Name like 'TRANS_%' {escape '\'}");

Normally, the underscore (_) character is treated as a single−character wildcard, while the percent sign (%) is
the multiple−character wildcard. By specifying the backslash (\) as the escape character, we can match on the
underscore character itself. Note that the escape keyword can also be used outside wildcard searches. For
example, SQL string termination characters (such as the single quote) need to be escaped when appearing
within strings.

The fn keyword allows the use of internal scalar database functions. Scalar functions are a fairly standard
component of most database architectures, even though the actual implementations vary. For instance, many
databases support the SOUNDEX(string) function, which translates a character string into a numerical
representation of its sound. Another function, DIFFERENCE(string1,string2), computes the
difference between the soundex values for two strings. If the values are close enough, you can assume the two
words sound the same ("Beacon" and "Bacon"). If your database supports DIFFERENCE, you can use it by
executing a SQL statement that looks like this:

{fn DIFFERENCE("Beacon", "Bacon")}

Available scalar functions differ depending on the database being used. In addition, some drivers, such as
Oracle's, do not support the {fn} escape mechanism at all.

The last escape keyword is oj, which is used for outer joins. The syntax is simply:

{oj outer−join}

Outer joins are not supported by some databases and are sufficiently complex (and unrelated to the JDBC API
per se) as to be beyond the scope of this chapter. For more information, consult the SQL documentation for
your database.

Note that when performance is an issue, you can use the setEscapeProcessing() method of
Statement to turn off escape−sequence processing.

2.11. Stored Procedures 2.13. JDBC 2.0

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 2: JDBC

Preface (Java Enterprise in a Nutshell)

2.12. Escape Sequences 42

2.13. JDBC 2.0

The original JDBC API (JDBC 1.0) was first introduced as an add−on package for JDK 1.0, and it became a
part of the core Java API with Java 1.1. In May 1998, Sun released the specification for JDBC 2.0. This new
version of the API provides support for extended result handling, Java−aware databases, BLOB fields, and
other minor improvements. All in all, there are enough new features in JDBC 2.0 to warrant a separate section
in this chapter. The new version of the API is backward−compatible; code written for JDBC 1.0 compiles and
runs just fine under JDBC 2.0.

The updated API ships with Version 1.2 of the Java 2 platform and is also available for download separately.
As of early 1999, there are very few JDBC 2.0−compliant drivers available, although Sun and InterSolv are
working towards an updated version of the JDBC−ODBC Bridge.

2.13.1. Results Handling

With JDBC 1.0, the functionality provided by the ResultSet interface is rather limited. There is no
support for updates of any kind and access to rows is limited to a single, sequential read (i.e., first row, second
row, third row, etc., and no going back). JDBC 2.0 supports scrollable and updateable result sets, which
allows for advanced record navigation and in−place data manipulation.

With scrolling, you can move forward and backward through the results of a query, rather than just using the
next() method to move to the next row. In terms of scrolling, there are now three distinct types of
ResultSet objects: forward−only (as in JDBC 1.0), scroll−insensitive, and scroll−sensitive. A
scroll−insensitive result set generally does not reflect changes to the underlying data, while scroll−sensitive
ones do. In fact, the number of rows in a sensitive result set does not even need to be fixed.

As of JDBC 2.0, result sets are also updateable. From this perspective, there are two different kinds of result
sets: read−only result sets that do not allow changes to the underlying data and updateable result sets that
allow such changes, subject to transaction limitations and so on.

To create an updateable, scroll−sensitive result set, we pass two extra arguments to the
createStatement() method:

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATEABLE);

If you do not pass any arguments to createStatement(), you get a forward−only, read−only result set,
just as you would using JDBC 1.0. Note that if you specify a scrollable result set (either sensitive or
insensitive), you must also specify whether or not the result set is updateable. After you have created a
scrollable ResultSet, use the methods listed in Table 2−2 to navigate through it. As with JDBC 1.0, when
you start working with a ResultSet, you are positioned before the first row of results.

Table 2−2. JDBC 2.0 Record Scrolling Functions

Method Function

first() Move to the first record.

last() Move to the last record.

next() Move to the next record.

previous() Move to the previous record.

beforeFirst() Move to immediately before the first record.

afterLast() Move to immediately after the last record.

Preface (Java Enterprise in a Nutshell)

2.13. JDBC 2.0 43

absolute(int) Move to an absolute row number. Takes a positive or negative argument.

relative(int)
Move backward or forward a specified number of rows. Takes a positive or negative
argument.

The JDBC 2.0 API also includes a number of methods that tell you where you are in a ResultSet. You can
think of your position in a ResultSet as the location of a cursor in the results. The isFirst() and
isLast() methods return true if the cursor is located on the first or last record, respectively.
isAfterLast() returns true if the cursor is after the last row in the result set, while
isBeforeFirst() returns true if the cursor is before the first row.

With an updateable ResultSet, you can change data in an existing row, insert an entirely new row, or
delete an existing row. To change data in an existing row, you use the newupdateXXX() methods of
ResultSet. Let's assume we want to update the CUSTOMER_ID field of the first row we retrieve (okay, it's
a contrived example, but bear with me):

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
 ResultSet.CONCUR_UPDATEABLE);
ResultSet rs = stmt.executeQuery("SELECT NAME, CUSTOMER_ID FROM CUSTOMERS");

rs.first();
rs.updateInt(2, 35243);
rs.updateRow();

Here we use first() to navigate to the first row of the result set and then call updateInt() to change
the value of the customer ID column in the result set. After making the change, call updateRow() to
actually make the change in the database. If you forget to call updateRow() before moving to another row
in the result set, any changes you made are lost. If you need to make a number of changes in a single row, you
can do that with multiple calls to updateXXX() methods and then a single call to updateRow(). Just be
sure you call updateRow() before moving on to another row.

The technique for inserting a row is similar to updating data in an existing row, with a few important
differences. The first step is to move to what is called the insert row, using the moveToInsertRow()
method. The insert row is a blank row associated with the ResultSet that contains all the fields, but no
data; you can think of it as a pseudo−row where you can compose a new row. After you have moved to the
insert row, use updateXXX() methods to load new data into the insert row and then call insertRow() to
append the new row to the ResultSet and the underlying database Here's an example that adds a new
customer to the database:

ResultSet rs = stmt.executeQuery("SELECT NAME, CUSTOMER_ID FROM CUSTOMERS");
rs.moveToInsertRow();
rs.updateString(1, "Tom Flynn");
rs.updateInt(2, 35244);
rs.insertRow();

Note that you do not have to supply a value for every column, as long as the columns you omit can accept
null values. If you don't specify a value for a column that cannot be null, you'll get a SQLException.
After you call insertRow(), you can create another new row, or you can move back to the ResultSet
using the various navigation methods shown in Table 2−2. One final navigation method that isn't listed in the
table ismoveToCurrentRow(). This method takes you back to where you were before you called
moveToInsertRow(); it can only be called while you are in the insert row.

Deleting a row from an updateable result set is easy. Simply move to the row you want to delete and call the
deleteRow() method. Here's how to delete the last record in a ResultSet:

rs.last();
rs.deleteRow();

Preface (Java Enterprise in a Nutshell)

2.13. JDBC 2.0 44

Calling deleteRow() also deletes the row from the underlying database.

Note that not all ResultSet objects are updateable. In general, the query must reference only a single table
without any joins. Due to differences in database implementations, there is no single set of requirements for
what makes an updateable ResultSet.

As useful as scrollable and updateable result sets are, the JDBC 2.0 specification does not require driver
vendors to support them. If you are building middleware or some other kind of system that requires interaction
with a wide range of database drivers, you should avoid this functionality for the time being. The extended
JDBC 2.0 DatabaseMetaData object can provide information about scrolling and concurrency support.

2.13.2. Batch Updates

The original JDBC standard isn't very efficient when it comes to loading large amounts of information into a
database. Even if you use a PreparedStatement, your program still executes a separate query for each
piece of data inserted. If your software is inserting 10,000 rows into the database, there may be performance
problems.

The new addBatch() method of Statement allows you to lump multiple update statements as a unit and
execute them at once. You call addBatch() after you create the statement and before execution:

con.setAutoCommit(false); // If some fail, we want to rollback the rest
Statement stmt = con.createStatement();

stmt.addBatch("INSERT INTO CUSTOMERS VALUES (1, "J Smith", "617 555−1323");
stmt.addBatch("INSERT INTO CUSTOMERS VALUES (2, "A Smith", "617 555−1132");
stmt.addBatch("INSERT INTO CUSTOMERS VALUES (3, "C Smith", "617 555−1238");
stmt.addBatch("INSERT INTO CUSTOMERS VALUES (4, "K Smith", "617 555−7823");

int[] upCounts = stmt.executeBatch();
con.commit();

Notice that we turn transaction auto−commit off before creating the batch. This is because we want to roll
back all the SQL statements if one or more of them fail to execute properly. After calling addBatch()
multiple times to create our batch, we call executeBatch() to send the SQL statements off to the database
to be executed as a batch. Batch statements are executed in the order they are added to the batch.
executeBatch() returns an array of update counts, where each value in the array represents the number of
rows affected by the corresponding batch statement. If you need to remove the statements from a pending
batch job, you can call clearBatch(), as long as you call it before calling executeBatch().

Note that you can use only SQL statements that return an update count (e.g., CREATE, DROP, INSERT,
UPDATE, DELETE) as part of a batch. If you include a statement that returns a result set, such as SELECT,
you get a SQLException when you execute the batch. If one of the statements in a batch cannot be
executed for some reason, executeBatch() throws a BatchUpdateException. This exception,
derived from SQLException, contains an array of update counts for the batch statements that executed
successfully before the exception was thrown.

The addBatch() method works slightly differently for PreparedStatement and
CallableStatement objects. To use batch updating with a PreparedStatement, create the statement
normally, set the input parameters, and then call the addBatch() method with no arguments. Repeat as
necessary and then call executeBatch() when you're finished:

con.setAutoCommit(false); // If some fail, we want to rollback the rest
PreparedStatement stmt = con.prepareStatement(
 "INSERT INTO CUSTOMERS VALUES (?,?,?)");

Preface (Java Enterprise in a Nutshell)

2.13.2. Batch Updates 45

stmt.setInt(1,1);
stmt.setString(2, "J Smith");
stmt.setString(3, "617 555−1323");
stmt.addBatch();

stmt.setInt(1,2);
stmt.setString(2, "A Smith");
stmt.setString(3, "617 555−1132");
stmt.addBatch();

int[] upCounts = stmt.executeBatch();
con.commit();

This batch functionality also works with CallableStatement objects for stored procedures. The catch is
that each stored procedure must return an update count and may not take any OUT or INOUT parameters.

2.13.3. Java−Aware Databases

Java is object−oriented; relational databases are not. As a result, it's decidedly difficult to shoehorn a Java
object into a stubbornly primitive−oriented database table. Luckily, the wind is changing, and newer database
systems, including object−oriented database management systems (OODBMS) and Java−relational database
management systems,[5] provide direct support for storing and manipulating objects. Where a regular
relational database can store only a limited number of primitive types, a JDBMS system can store entire,
arbitrary Java objects.

[5] This is Sun's term. I have yet to see any packages actually marketed as Java−relational
databases, but many newer packages, including Personal Oracle, are capable of storing Java
classes. A number of these products also use Java as a trigger language, generally in a JDBC
structure.

Say we want to store a customized Java Account object in the ACCOUNTS table in a database. With a
standard DBMS and JDBC 1.0, we have to pull each piece of data (account number, account holder, balance,
etc.) out of the Account object and write it to a complicated database table. To get data out, we reverse the
process. Short of serializing the Account object and writing it to a binary field (a rather complex operation),
we're stuck with this clumsy approach.[6]

[6] There is a commercial product, called Java Blend, that automatically handles mapping
objects to database records and vice versa. See
http://www.javasoft.com/products/java−blend/index.html for more information.

With JDBC 2.0, the getObject() method has been extended to support these new Java−aware databases.
Provided that the database supports a Java−object type, we can read the Account object just like any
primitive type:

ResultSet rs = stmt.executeQuery("SELECT ACCOUNT FROM ACCOUNTS");
rs.next();
Account a = (Account)rs.getObject(1);

To store an object, we use a PreparedStatement and the setObject() method:

Account a = new Account();
// Fill in appropriate fields in Account object

PreparedStatement stmt = con.prepareStatement(
 "INSERT INTO ACCOUNTS (ACCOUNT) VALUE (?)");

Preface (Java Enterprise in a Nutshell)

2.13.3. Java−Aware Databases 46

http://www.javasoft.com/products/java-blend/index.html

stmt.setObject(1, a);
stmt.executeUpdate();

A column that stores a Java object has a type of Types.JAVA_OBJECT. The JDBC API does not take any
special steps to locate the bytecodes associated with any particular class, so you should make sure that any
necessary objects can be instantiated with a call to Class.forName().

2.13.4. BLOBs and CLOBs

Binary large objects (BLOBs) and character large objects (CLOBs) store large amounts of binary or character
data. Different database vendors have different names for these fields. For example, on Oracle7 systems, they
are known as LONG and LONG RAW fields, while Microsoft Access refers to them as OLE object fields.
Oracle8 introduces actual BLOB and CLOB types. JDBC 1.0 makes programs retrieve BLOB and CLOB data
using the getBinaryStream() or getAsciiStream() methods (a third method,
getUnicodeStream(), has been deprecated in favor of the new getCharacterStream() method,
which returns a Reader).

In JDBC 2.0, the ResultSet interface includes getBlob() and getClob() methods, which return
Blob and Clob objects, respectively. The Blob and Clob objects themselves allow access to their data via
streams (the getBinaryStream() method of Blob and the getCharacterStream() method of
Clob) or direct−read methods (the getBytes() method of Blob and the getSubString() method of
Clob).

In addition, you can set Blob and Clob objects when you are working with a PreparedStatement,
using the setBlob() and setClob() methods. There are update methods for streams, but no
updateBlob() and updateClob()methods. Note that the lifespan of a Blob or Clob object is limited
to the transaction that created it.

2.13.5. The JDBC Standard Extension

The javax.sql package is a standard extension for JDBC 2.0 that includes support for a variety of
enterprise−development activities. For example, the standard extension lets you use JNDI for connecting to a
database, making it possible to obtain the name of a database from a name service, rather than using a
hardcoded name. Another key feature is the ability to treat the results of a database query as a JavaBeans
component, using the RowSet interface. The PooledConnection interface offers connection−pooling
functionality, so that your application can have a cache of open database connections. The standard extension
also provides support for distributed transactions by allowing a JDBC driver to utilize the standard two−phase
commit protocol used by the Java Transaction API (JTA), which facilitates the use of JDBC in Enterprise
JavaBeans components.

2.12. Escape Sequences 3. Remote Method
Invocation

Preface (Java Enterprise in a Nutshell)

2.13.4. BLOBs and CLOBs 47

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 1: Introducing the
Java Enterprise APIs

Preface (Java Enterprise in a Nutshell)

2.13.4. BLOBs and CLOBs 48

Chapter 3. Remote Method Invocation
Contents:

Introduction to RMI
Defining Remote Objects
Creating the Stubs and Skeletons
Accessing Remote Objects as a Client
Dynamically Loaded Classes
Remote Object Activation
RMI and Native Method Calls
RMI over IIOP

This chapter examines the Java Remote Method Invocation (RMI) API−−Java's native scheme for creating
and using remote objects. Java RMI provides the following elements:

•
Remote object implementations

•
Client interfaces, or stubs, to remote objects

•
A remote object registry for finding objects on the network

•
A network protocol for communication between remote objects and their client

•
A facility for automatically creating (activating) remote objects on−demand

Each of these elements (except the last one) has a Java interface defined for it within the java.rmi package
and its subpackages, which comprise the RMI API. Using these interfaces, you can develop remote objects
and the clients that use them to create a distributed application that resides on hosts across the network.

3.1. Introduction to RMI

RMI is the distributed object system that is built into the core Java environment. You can think of RMI as a
built−in facility for Java that allows you to interact with objects that are actually running in Java virtual
machines on remote hosts on the network. With RMI (and other distributed object APIs we discuss in this
book), you can get a reference to an object that "lives" in a remote process and invoke methods on it as if it
were a local object running within the same virtual machine as your code (hence the name, "Remote Method
Invocation API").

RMI was added to the core Java API in Version 1.1 of the JDK (and enhanced for Version 1.2 of the Java 2
platform), in recognition of the critical need for support for distributed objects in distributed−application
development. Prior to RMI, writing a distributed application involved basic socket programming, where a
"raw" communication channel was used to pass messages and data between two remote processes. Now, with
RMI and distributed objects, you can "export" an object as a remote object, so that other remote
processes/agents can access it directly as a Java object. So, instead of defining a low−level message protocol
and data transmission format between processes in your distributed application, you use Java interfaces as the
"protocol" and the exported method arguments become the data transmission format. The distributed object
system (RMI in this case) handles all the underlying networking needed to make your remote method calls

Chapter 3. Remote Method Invocation 49

work.

Java RMI is a Java−only distributed object scheme; the objects in an RMI−based distributed application have
to be implemented in Java. Some other distributed object schemes, most notably CORBA, are
language−independent, which means that the objects can be implemented in any language that has a defined
binding. With CORBA, for example, bindings exist for C, C++, Java, Smalltalk, and Ada, among other
languages.

The advantages of RMI primarily revolve around the fact that it is "Java−native." Since RMI is part of the
core Java API and is built to work directly with Java objects within the Java VM, the integration of its remote
object facilities into a Java application is almost seamless. You really can use RMI−enabled objects as if they
live in the local Java environment. And since Java RMI is built on the assumption that both the client and
server are Java objects, RMI can extend the internal garbage−collection mechanisms of the standard Java VM
to provide distributed garbage collection of remotely exported objects.

If you have a distributed application with heterogeneous components, some of which are written in Java and
some that aren't, you have a few choices. You can use RMI, wrapping the non−Java code with RMI−enabled
Java objects using the Java Native Interface (JNI). At the end of this chapter, we discuss this first option in
some detail, to give you a feeling for where it could be useful and where it wouldn't. Another option is to use
another object distribution scheme, such as CORBA, that supports language−independent object interfaces.
Chapter 4, "Java IDL", covers the Java interface to CORBA that is included in the Java 2 SDK. A third option
involves the new RMI/IIOP functionality that allows RMI objects to communicate directly with remote
CORBA objects over IIOP. We also discuss this option in some detail at the end of this chapter.

3.1.1. RMI in Action

Before we start examining the details of using RMI, let's look at a simple RMI remote object at work. We can
create an Account object that represents some kind of bank account and then use RMI to export it as a
remote object so that remote clients (e.g., ATMs, personal finance software running on a PC) can access it and
carry out transactions.

The first step is to define the interface for our remote object. Example 3−1 shows the Account interface.
You can tell that it's an RMI object because it extends the java.rmi.Remote interface. Another signal that
this is meant for remote access is that each method can throw a java.rmi.RemoteException. The
Account interface includes methods to get the account name and balance and to make deposits, withdrawals,
and transfers.

Example 3−1. A Remote Account Interface

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.List;

public interface Account extends Remote {
 public String getName() throws RemoteException;
 public float getBalance() throws RemoteException;
 public void withdraw(float amt) throws RemoteException;
 public void deposit(float amt) throws RemoteException;
 public void transfer(float amt, Account src) throws RemoteException;
 public void transfer(List amts, List srcs) throws RemoteException;
}

The next step is to create an implementation of this interface, which leads to the AccountImpl class shown
in Example 3−2. This class implements all the methods listed in the Account interface and adds a
constructor that takes the name of the new account to be created. Notice that the AccountImpl class

Preface (Java Enterprise in a Nutshell)

3.1.1. RMI in Action 50

implements the Account interface, but it also extends the java.rmi.UnicastRemoteObject class.
This RMI class provides some of the basic remote functionality for server objects.

Example 3−2. Implementation of the Remote Account Interface

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;
import java.util.List;
import java.util.ListIterator;

public class AccountImpl extends UnicastRemoteObject implements Account {
 private float mBalance = 0;
 private String mName = "";

 // Create a new account with the given name
 public AccountImpl(String name) throws RemoteException {
 mName = name;
 }

 public String getName() throws RemoteException {
 return mName;
 }
 public float getBalance() throws RemoteException {
 return mBalance;
 }

 // Withdraw some funds
 public void withdraw(float amt) throws RemoteException {
 mBalance −= amt;
 // Make sure balance never drops below zero
 mBalance = Math.max(mBalance, 0);
 }

 // Deposit some funds
 public void deposit(float amt) throws RemoteException {
 mBalance += amt;
 }

 // Move some funds from another (remote) account into this one
 public void transfer(float amt, Account src) throws RemoteException {
 src.withdraw(amt);
 this.deposit(amt);
 }

 // Make several transfers from other (remote) accounts into this one
 public void transfer(List amts, List srcs) throws RemoteException {
 ListIterator amtCurs = amts.listIterator();
 ListIterator srcCurs = srcs.listIterator();
 // Iterate through the accounts and the amounts to be transferred from
 // each (assumes amounts are given as Float objects)
 while (amtCurs.hasNext() && srcCurs.hasNext()) {
 Float amt = (Float)amtCurs.next();
 Account src = (Account)srcCurs.next();
 this.transfer(amt.floatValue(), src);
 }
 }
}

Once the remote interface and an implementation of it are complete, you need to compile both Java files with
your favorite Java compiler. After this is done, you use the RMI stub/skeleton compiler to generate a client
stub and a server skeleton for the AccountImpl object. The stub and skeleton handle the communication
between the client application and the server object. With Sun's Java SDK, the RMI compiler is called rmic,
and you can invoke it for this example like so:

Preface (Java Enterprise in a Nutshell)

3.1.1. RMI in Action 51

% rmic −d /home/classes AccountImpl

The stub and skeleton classes are generated and stored in the directory given by the −d option (/home/classes,
in this case). This example assumes that the AccountImpl class is already in your CLASSPATH before you
run the RMI compiler.

There's just one more thing we need to do before we can actually use our remote object: register it with an
RMI registry, so that remote clients can find it on the network. The utility class that follows, RegAccount,
does this by creating an AccountImpl object and then binding it to a name in the local registry using the
java.rmi.Naming interface. After it's done registering the object, the class goes into a wait(), which
allows remote clients to connect to the remote object:

import java.rmi.Naming;

public class RegAccount {
 public static void main(String argv[]) {
 try {
 // Make an Account with a given name
 AccountImpl acct = new AccountImpl("JimF");

 // Register it with the local naming registry
 Naming.rebind("JimF", acct);
 System.out.println("Registered account.");
 }
 catch (Exception e) {
 e.printStackTrace();

 }
 }
}

After you compile the RegAccount class, you can run its main() method to register an Account with
the local RMI registry. First, however, you need to start the registry. With Sun's Java SDK, the registry can be
started using the rmiregistry utility. On a Unix machine, this can be done like so:

objhost% rmiregistry &

Once the registry is started, you can invoke the main() method on the RegAccount class simply by
running it:

objhost% java RegAccount
Registered account.

Now we have a remote Account object that is ready and waiting for a client to access it and call its
methods. The following client code does just this, by first looking up the remote Account object using the
java.rmi.Naming interface (and assuming that the Account object was registered on a machine named
objhost.org), and then calling the deposit method on the Account object:

import java.rmi.Naming;

public class AccountClient {
 public static void main(String argv[]) {
 try {
 // Lookup account object
 Account jimAcct = (Account)Naming.lookup("rmi://objhost.org/JimF");

 // Make deposit
 jimAcct.deposit(12000);

 // Report results and balance.
 System.out.println("Deposited 12,000 into account owned by " +

Preface (Java Enterprise in a Nutshell)

3.1.1. RMI in Action 52

 jimAcct.getName());
 System.out.println("Balance now totals: " + jimAcct.getBalance());
 }
 catch (Exception e) {
 System.out.println("Error while looking up account:");
 e.printStackTrace();
 }
 }
}

The first time you run this client, here's what you'd do:

% java AccountClient
Deposited 12,000 into account owned by JimF
Balance now totals: 12000.0

For the sake of this example, I've assumed that the client process is running on a machine with all the
necessary classes available locally (the Account interface and the stub and skeleton classes generated from
the AccountImpl implementation). Later in the chapter, we'll see how to deal with loading these classes
remotely when the client doesn't have them locally.

3.1.2. RMI Architecture

Now that we've seen a complete example of an RMI object in action, let's look at what makes remote objects
work, starting with an overview of the underlying RMI architecture. There are three layers that comprise the
basic remote−object communication facilities in RMI:

•
The stub/skeleton layer, which provides the interface that client and server application objects use to
interact with each other.

•
The remote reference layer, which is the middleware between the stub/skeleton layer and the
underlying transport protocol. This layer handles the creation and management of remote object
references.

•
The transport protocol layer, which is the binary data protocol that sends remote object requests over
the wire.

These layers interact with each other as shown in Figure 3−1. In this figure, the server is the application that
provides remotely accessible objects, while the client is any remote application that communicates with these
server objects.

In a distributed object system, the distinctions between clients and servers can get pretty blurry at times.
Consider the case where one process registers a remote−enabled object with the RMI naming service, and a
number of remote processes are accessing it. We might be tempted to call the first process the server and the
other processes the clients. But what if one of the clients calls a method on the remote object, passing a
reference to an RMI object that's local to the client. Now the server has a reference to and is using an object
exported from the client, which turns the tables somewhat. The "server" is really the server for one object and
the client of another object, and the "client" is a client and a server, too. For the sake of discussion, I'll refer to
a process in a distributed application as a server or client if its role in the overall system is generally limited to
one or the other. In peer−to−peer systems, where there is no clear client or server, I'll refer to elements of the
system in terms of application−specific roles (e.g., chat participant, chat facilitator).

Preface (Java Enterprise in a Nutshell)

3.1.2. RMI Architecture 53

Figure 3−1. The RMI runtime architecture

As you can see in Figure 3−1, a client makes a request of a remote object using a client−side stub; the server
object receives this request from a server−side object skeleton. A client initiates a remote method invocation
by calling a method on a stub object. The stub maintains an internal reference to the remote object it
represents and forwards the method invocation request through the remote reference layer by marshalling the
method arguments into serialized form and asking the remote reference layer to forward the method request
and arguments to the appropriate remote object. Marshalling involves converting local objects into portable
form so that they can be transmitted to a remote process. Each object is checked as it is marshaled, to
determine whether it implements the java.rmi.Remote interface. If it does, its remote reference is used as
its marshaled data. If it isn't a Remote object, the argument is serialized into bytes that are sent to the remote
host and reconstituted into a copy of the local object. If the argument is neither Remote nor
Serializable, the stub throws a java.rmi.MarshalException back to the client.

If the marshalling of method arguments succeeds, the client−side remote reference layer receives the remote
reference and marshaled arguments from the stub. This layer converts the client request into low−level RMI
transport requests according to the type of remote object communication being used. In RMI, remote objects
can (potentially) run under several different communication styles, such as point−to−point object references,
replicated objects, or multicast objects. The remote reference layer is responsible for knowing which
communication style is in effect for a given remote object and generating the corresponding transport−level
requests. In the current version of RMI (Version 1.2 of Java 2), the only communication style provided out of
the box is point−to−point object references, so this is the only style we'll discuss in this chapter. For a
point−to−point communication, the remote reference layer constructs a single network−level request and
sends it over the wire to the sole remote object that corresponds to the remote reference passed along with the
request.

On the server, the server−side remote reference layer receives the transport−level request and converts it into
a request for the server skeleton that matches the referenced object. The skeleton converts the remote request
into the appropriate method call on the actual server object, which involves unmarshalling the method
arguments into the server environment and passing them to the server object. As you might expect,

Preface (Java Enterprise in a Nutshell)

3.1.2. RMI Architecture 54

unmarshalling is the inverse procedure to the marshalling process on the client. Arguments sent as remote
references are converted into local stubs on the server, and arguments sent as serialized objects are converted
into local copies of the originals.

If the method call generates a return value or an exception, the skeleton marshals the object for transport back
to the client and forwards it through the server reference layer. This result is sent back using the appropriate
transport protocol, where it passes through the client reference layer and stub, is unmarshaled by the stub, and
is finally handed back to the client thread that invoked the remote method.

3.1.3. RMI Object Services

On top of its remote object architecture, RMI provides some basic object services you can use in your
distributed application. These include an object naming/registry service, a remote object activation service,
and distributed garbage collection.

3.1.3.1. Naming/registry service

When a server process wants to export some RMI−based service to clients, it does so by registering one or
more RMI−enabled objects with its local RMI registry (represented by the Registry interface). Each object
is registered with a name clients can use to reference it. A client can obtain a stub reference to the remote
object by asking for the object by name through the Naming interface. The Naming.lookup() method
takes the fully qualified name of a remote object and locates the object on the network. The object's fully
qualified name is in a URL−like syntax that includes the name of the object's host and the object's registered
name.

It's important to note that, although the Naming interface is a default naming service provided with RMI, the
RMI registry can be tied into other naming services by vendors. Sun has provided a binding to the RMI
registry through the Java Naming and Directory Interface (JNDI), for example. See Chapter 6, "JNDI", for
more details on how JNDI can be used to look up objects (remote or otherwise).

Once the lookup() method locates the object's host, it consults the RMI registry on that host and asks for
the object by name. If the registry finds the object, it generates a remote reference to the object and delivers it
to the client process, where it is converted into a stub reference that is returned to the caller. Once the client
has a remote reference to the server object, communication between the client and the server commences as
described earlier. We'll talk in more detail about the Naming and Registry interfaces later in this chapter.

3.1.3.2. Object activation service

The remote object activation service is new to RMI as of Version 1.2 of the Java 2 platform. It provides a
way for server objects to be started on an as−needed basis. Without remote activation, a server object has to
be registered with the RMI registry service from within a running Java virtual machine. A remote object
registered this way is only available during the lifetime of the Java VM that registered it. If the server VM
halts or crashes for some reason, the server object becomes unavailable and any existing client references to
the object become invalid. Any further attempts by clients to call methods through these now−invalid
references result in RMI exceptions being thrown back to the client.

The RMI activation service provides a way for a server object to be activated automatically when a client
requests it. This involves creating the server object within a new or existing virtual machine and obtaining a
reference to this newly created object for the client that caused the activation. A server object that wants to be
activated automatically needs to register an activation method with the RMI activation daemon running on its
host. We'll discuss the RMI activation service in more detail later in the chapter.

Preface (Java Enterprise in a Nutshell)

3.1.3. RMI Object Services 55

3.1.3.3. Distributed garbage collection

The last of the remote object services, distributed garbage collection, is a fairly automatic process that you as
an application developer should never have to worry about. Every server that contains RMI−exported objects
automatically maintains a list of remote references to the objects it serves. Each client that requests and
receives a reference to a remote object, either explicitly through the registry/naming service or implicitly as
the result of a remote method call, is issued this remote object reference through the remote reference layer of
the object's host process. The reference layer automatically keeps a record of this reference in the form of an
expirable "lease" on the object. When the client is done with the reference and allows the remote stub to go
out of scope, or when the lease on the object expires, the reference layer on the host automatically deletes the
record of the remote reference and notifies the client's reference layer that this remote reference has expired.
The concept of expirable leases, as opposed to strict on/off references, is used to deal with situations where a
client−side failure or a network failure keeps the client from notifying the server that it is done with its
reference to an object.

When an object has no further remote references recorded in the remote reference layer, it becomes a
candidate for garbage collection. If there are also no further local references to the object (this reference list is
kept by the Java VM itself as part of its normal garbage−collection algorithm), the object is marked as
garbage and picked up by the next run of the system garbage collector.

2.13. JDBC 2.0 3.2. Defining Remote
Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 3: Remote
Method Invocation

3.2. Defining Remote Objects

Now that you have a basic idea of how Java RMI works, we can explore the details of creating and using
distributed objects with RMI. As I mentioned earlier, defining a remote RMI object involves specifying a
remote interface for the object, then providing a class that implements this interface. The remote interface and
implementation class are then used by RMI to generate a client stub and server skeleton for your remote
object. The communication between local objects and remote objects is handled using these client stubs and
server skeletons. The relationships among stubs, skeletons, and the objects that use them are shown in Figure
3−2.

Preface (Java Enterprise in a Nutshell)

3.1.3.3. Distributed garbage collection 56

Figure 3−2. Relationships among remote object, stub, and skeleton classes

When a client gets a reference to a remote object (details on how this reference is obtained come later) and
then calls methods on this object reference, there needs to be a way for the method request to get transmitted
back to the actual object on the remote server and for the results of the method call to get transmitted back to
the client. This is what the generated stub and skeleton classes are for. They act as the communication link
between the client and your exported remote object, making it seem to the client that the object actually exists
within its Java VM.

The RMI compiler (rmic) automatically generates these stub and skeleton classes for you. Based on the
remote interface and implementation class you provide, rmic generates stub and skeleton classes that
implement the remote interface and act as go−betweens for the client application and the actual server object.
For the client stub class, the compiler generates an implementation of each remote method that simply
packages up (marshals) the method arguments and transmits them to the server. For the server skeleton class,
the RMI compiler generates another set of implementations of the remote methods, but these are designed to
receive the method arguments from the remote method call, unpackage them, and make the corresponding
method call on the object implementation. Whatever the method call generates (return data or an exception),
the results are packaged and transmitted back to the remote client. The client stub method (which is still
executing at this point) unpackages the results and delivers them to the client as the result of its remote
method call.

So, the first step in creating your remote objects is to define the remote interfaces for the types of objects you
need to use in a distributed object context. This isn't much different from defining the public interfaces in a
nondistributed application, with the following exceptions:

•
Every object you want to distribute using RMI has to directly or indirectly extend an interface that
extends the java.rmi.Remote interface.

•
Every method in the remote interface has to declare that it throws a
java.rmi.RemoteException or one of the parent classes of RemoteException.[1]

[1]Note that prior to Java 1.2, the RMI specification required that every method on a

Preface (Java Enterprise in a Nutshell)

3.2. Defining Remote Objects 57

remote interface had to throw RemoteException specifically. In Java 1.2, this has
been loosened to allow any superclass of RemoteException. The reason for this
change is to make it easier to define generic interfaces that support both local and
remote objects.

RMI imposes the first requirement to allow it to differentiate quickly between objects that are enabled for
remote distribution and those that are not. As we've already seen, during a remote method invocation, the RMI
runtime system needs to be able to determine whether each argument to the remote method is a Remote
object or not. The Remote interface, which is simply a tag interface that marks remote objects, makes it easy
to perform this check.

The second requirement is needed to deal with errors that can happen during a remote session. When a client
makes a method call on a remote object, any number of errors can occur, preventing the remote method call
from completing. These include client−side errors (e.g., an argument can't be marshaled), errors during the
transport of data between client and server (e.g., the network connection is dropped), and errors on the server
side (e.g., the method throws a local exception that needs to be sent back to the remote caller). The
RemoteException class is used by RMI as a base exception class for any of the different types of
problems that might occur during a remote method call. Any method you declare in a Remote interface is
assumed to be remotely callable, so every method has to declare that it might throw a RemoteException,
or one of its parent interfaces.

Example 3−3 shows a simple remote interface that declares two methods: doThis() and doThat(). These
methods could do anything that we want; in our Account example, we had remote methods to deposit,
withdraw, and transfer funds. Each method takes a single String argument and returns a String result.
Since we want to use this interface in an RMI setting, we've declared that the interface extends the Remote
interface. In addition, each method is declared as throwing a RemoteException.

Example 3−3. The ThisOrThatServer Interface

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface ThisOrThatServer extends Remote {
 public String doThis(String todo) throws RemoteException;
 public String doThat(String todo) throws RemoteException;
}

With the remote interface defined, the next thing we need to do is write a class that implements the interface.
Example 3−4 shows the ThisOrThatServerImpl class, which implements the ThisOrThatServer
interface.

Example 3−4. Implementation of the ThisOrThatServer

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;

public class ThisOrThatServerImpl
 extends UnicastRemoteObject implements ThisOrThatServer {

 public ThisOrThatServerImpl() throws RemoteException {}

 // Remotely accessible methods
 public String doThis(String todo) throws RemoteException {
 return doSomething("this", todo);
 }

Preface (Java Enterprise in a Nutshell)

3.2. Defining Remote Objects 58

 public String doThat(String todo) throws RemoteException {
 return doSomething("that", todo);
 }

 // Non−remote methods
 private String doSomething(String what, String todo) {
 String result = "Did " + what + " to " + todo + ".";
 return result;
 }
}

This class has implementations of the doThis() and doThat() methods declared in the
ThisOrThatServer interface; it also has a nonremote method, doSomething(), that is used to
implement the two remote methods. Notice that the doSomething() method doesn't have to be declared as
throwing a RemoteException, since it isn't a remotely callable method. Only the methods declared in the
remote interface can be invoked remotely. Any other methods you include in your implementation class are
considered nonremote (i.e., they are only callable from within the local Java virtual machine where the object
exists).

3.2.1. Key RMI Classes for Remote Object Implementations

You probably noticed that our ThisOrThatServerImpl class also extends the
UnicastRemoteObject class. This is a class in the java.rmi.server package that extends
java.rmi.server.RemoteServer, which itself extends java.rmi.ser−ver.RemoteObject,
the base class for all RMI remote objects. There are four key classes related to writing server object
implementations:

RemoteObject
RemoteObject implements both the Remote and java.rmi.server package, it is used by
both the Serializable interfaces. Although the RemoteObject class is in the client and server
portions of a remote object reference. Both client stubs and server implementations are subclassed
(directly or indirectly) from RemoteObject. A RemoteObject contains the remote reference for
a particular remote object.

RemoteObject is an abstract class that reimplements the equals(), hashCode(), and
toString() methods inherited from Object in a way that makes sense and is practical for remote
objects. The equals() method, for example, is implemented to return true if the internal remote
references of the two RemoteObject objects are equal, (i.e., if they both point to the same server
object).

RemoteServer
RemoteServer is an abstract class that extends RemoteObject. It defines a set of static
methods that are useful for implementing server objects in RMI, and it acts as a base class for classes
that define various semantics for remote objects. In principle, a remote object can behave according to
a simple point−to−point reference scheme; it can have replicated copies of itself scattered across the
network that need to be kept synchronized; or any number of other scenarios. JDK 1.1 supported only
point−to−point, nonpersistent remote references with the UnicastRemoteObject class. The Java
2 SDK 1.2 has introduced the RMI activation system, so it provides another subclass of
RemoteServer, Activatable.

UnicastRemoteObject
This is a concrete subclass of RemoteServer that implements point−to−point remote references
over TCP/IP networks. These references are nonpersistent: remote references to a server object are
only valid during the lifetime of the server object. Before the server object is created (inside a virtual
machine running on the host) or after the object has been destroyed, a client can't obtain remote

Preface (Java Enterprise in a Nutshell)

3.2.1. Key RMI Classes for Remote Object Implementations 59

references to the object. In addition, if the virtual machine containing the object exits (intentionally or
otherwise), any existing remote references on clients become invalid and generate
RemoteException objects if used.

Activatable
This concrete subclass of RemoteServer is part of the new RMI object activation facility in Java
1.2 and can be found in the java.rmi.activation package. It implements a server object that
supports persistent remote references. If a remote method request is received on the server host for an
Activatable object, and the target object is not executing at the time, the object can be started
automatically by the RMI activation daemon.

3.1. Introduction to RMI 3.3. Creating the Stubs and
Skeletons

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 3: Remote
Method Invocation

3.3. Creating the Stubs and Skeletons

After you define the remote Java interface and implementation class, you compile them into Java bytecodes
using a standard Java compiler. Then you use the RMI stub/skeleton compiler, rmic, to generate the stub and
skeleton interfaces that are used at either end of the RMI communication link, as was shown in Figure 3−1. In
its simplest form, you can run rmic with the fully qualified classname of your implementation class as the
only argument. For example, once we've compiled the ThisOrThatServer and
ThisOrThatServerImpl classes, we can generate the stubs and skeletons for the remote
ThisOrThatServer object with the following command (Unix version):

% rmic ThisOrThatServerImpl

If the RMI compiler is successful, this command generates the stub and skeleton classes,
ThisOrThatServerImpl_Stub and ThisOrThatServerImpl_Skel, in the current directory. The
rmic compiler has additional arguments that let you specify where the generated classes should be stored,
whether to print warnings, etc. For example, if you want the stub and skeleton classes to reside in the directory
/usr/local/classes, you can run the command using the −d option:

% rmic −d /usr/local/classes ThisOrThatServerImpl

This command generates the stub and skeleton classes in the specified directory. A full description of the rmic
utility and its options is given in Chapter 9, RMI Tools.

Preface (Java Enterprise in a Nutshell)

3.3. Creating the Stubs and Skeletons 60

3.2. Defining Remote
Objects

3.4. Accessing Remote
Objects as a Client

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 3: Remote
Method Invocation

3.4. Accessing Remote Objects as a Client

Now that we've defined a remote object interface and its server implementation and generated the stub and
skeleton classes that RMI uses to establish the link between the server object and the remote client, it's time to
look at how you make your remote objects available to remote clients.

3.4.1. The Registry and Naming Services

The first remote object reference in an RMI distributed application is typically obtained through the RMI
registry facility and the Naming interface. Every host that wants to export remote references to local Java
objects must be running an RMI registry daemon of some kind. A registry daemon listens (on a particular
port) for requests from remote clients for references to objects served on that host. The standard Sun Java
SDK distribution provides an RMI registry daemon, rmiregistry. This utility simply creates a Registry
object that listens to a specified port and then goes into a wait loop, waiting for local processes to register
objects with it or for clients to connect and look up RMI objects in its registry. You start the registry daemon
by running the rmiregistry command, with an optional argument that specifies a port to listen to:

objhost% rmiregistry 5000 &

Without the port argument, the RMI registry daemon listens on port 1099. Typically, you run the registry
daemon in the background (i.e., put an & at the end of the command on a Unix system or run start
rmiregistry [port] in a DOS window on a Windows system) or run it as a service at startup.

Once the RMI registry is running on a host, you can register remote objects with it using one of these classes:
the java.rmi.registry.Registry interface, the java.rmi.registry.LocateRegistry
class, or the java.rmi.Naming class.

A Registry object represents an interface to a local or remote RMI object registry. The bind() and
rebind() methods can register an object with a name in the local registry, where the name for an object can
be any unique string. If you try to bind() an object to a name that has already been used, the registry throws
an AlreadyBoundException. If you think that an object may already be bound to the name you want to
register, use the rebind() method instead. You can remove an object binding using the unbind()

Preface (Java Enterprise in a Nutshell)

3.4. Accessing Remote Objects as a Client 61

method. Note that these three methods (bind(), rebind(), and unbind()) can be called only by clients
running on the same host as the registry. If a remote client attempts to call these methods, the client receives a
java.rmi.AccessException. You can locate a particular object in the registry using the lookup()
method, while list() returns the names of all the objects registered with the local registry. Note that only
Remote objects can be bound to names in the Registry. Remote objects are capable of supporting remote
references. Standard Java classes are not, so they can't be exported to remote clients through the Registry.

The LocateRegistry class provides a set of static methods a client can use to get references to local and
remote registries, in the form of Registry objects. There are four versions of the static getRegistry()
method, so that you can get a reference to either a local registry or a remote registry running on a particular
host, listening to either the default port (1099) or a specified port. There's also a static createRegistry()
method that takes a port number as an argument. This method starts a registry running within the current Java
VM on the given local port and returns the Registry object it creates.

Using the LocateRegistry and Registry interfaces, we can register one of our
ThisOrThatServerImpl remote objects on the local host with the following code:

ThisOrThatServerImpl server = new ThisOrThatServerImpl();
Registry localRegistry = LocateRegistry.getRegistry();
try {
 localRegistry.bind("TTServer", server);
}
catch (RemoteException re) { // Handle failed remote operation }
catch (AlreadyBoundException abe) { // Already one there }
catch (AccessException ae) { // Shouldn't happen, but... }

If this operation is successful (i.e., it doesn't raise any exceptions), the local registry has a
ThisOrThatServerImpl remote object registered under the name "TTServer." Remote clients can now
look up the object using a combination of the LocateRegistry and Registry interfaces, or take the
simpler approach and use the Naming class.

The Naming class lets a client look up local and remote objects using a URL−like naming syntax. The URL
of a registered RMI remote object is typically in the format shown in Figure 3−3. Notice that the only required
element of the URL is the actual object name. The protocol defaults to rmi:, the hostname defaults to the local
host, and the port number defaults to 1099. Note that the default Naming class provided with Sun's Java SDK
accepts only the rmi: protocol on object URLs. If you attempt to use any other protocol, a
java.net.MalformedURLException is thrown by the lookup() method.

If we have a client running on a remote host that wants to look up the ThisOrThatServerImpl we
registered, and the ThisOrThatServerImpl object is running on a host named rmiremote.farley.org, the
client can get a remote reference to the object with one line of code:

ThisOrThatServer rmtServer =
 (ThisOrThatServer)Naming.lookup("rmi://rmiremote.farley.org/TTServer");

If we have a client running on the same host as the ThisOrThatServerImpl object, the remote reference
can be retrieved using the degenerate URL:

ThisOrThatServer rmtServer = (ThisOrThatServer)Naming.lookup("TTServer");

Preface (Java Enterprise in a Nutshell)

3.4. Accessing Remote Objects as a Client 62

Figure 3−3. Anatomy of an RMI object URL

Alternately, you can use the LocateRegistry and Registry interfaces to look up the same object,
using an extra line of code to find the remote Registry through the LocateRegistry interface:

Registry rmtRegistry = LocateRegistry.getRegistry("rmiremote.farley.org");
ThisOrThatServer rmtServer =
 (ThisOrThatServer)rmtRegistry.lookup("TTServer");

When you look up objects through an actual Registry object, you don't have the option of using the URL
syntax for the name, because you don't need it. The hostname and port of the remote host are specified when
you locate the Registry through the LocateRegistry interface, and the RMI protocol is implied, so all
you need is the registered name of the object. With the Naming class, you can reduce a remote object lookup
to a single method call, but the name must now include the host, port number, and registered object name,
bundled into a URL. Internally, the Naming object parses the host and port number from the URL for you,
finds the remote Registry using the LocateRegistry interface, and asks the Registry for the remote
object using the object name in the URL.

The principal use for the Registry and Naming classes in an RMI application is as a means to bootstrap
your distributed application. A server process typically exports just a few key objects through its local RMI
registry daemon. Clients look up these objects through the Naming facility to get remote references to them.
Any other remote objects that need to be shared between the two processes can be exported through remote
method calls.

3.4.2. Remote Method Arguments and Return Values

As I've already mentioned, a critical element of executing a remote method call is the marshalling and
unmarshalling of the method arguments and, once the method has executed, the reverse marshalling and
unmarshalling of the method's return value. RMI handles this process for you automatically, but you need to
understand how different types of objects are transmitted from the method caller to the server object and back
again and, more importantly, you need to know which types of objects can't be used in remote method calls at
all.

When you call a method on a remote object, the arguments to the method have to be serializable. That is, they
need to be primitive Java data types (like int, float, etc.) or Java objects that implement
java.io.Serializable. The same restriction applies to the return value of the remote method. This
restriction is enforced at runtime, when you actually make the remote method call, rather than at compile time,
when you generate the stubs and skeletons using the rmic compiler.

The RMI stub/skeleton layer decides how to send method arguments and return values over the network,
based on whether a particular object is Remote, Serializable, or neither:

•
If the object is a Remote object, a remote reference for the object is generated, and the reference is
marshaled and sent to the remote process. The remote reference is received on the other end and
converted into a stub for the original object. This process applies to both method arguments and return
values.

•
If the object is Serializable but not Remote, the object is serialized and streamed to the remote
process in byte form. The receiver converts the bytes into a copy of the original object.

•

Preface (Java Enterprise in a Nutshell)

3.4.1. The Registry and Naming Services 63

If the method argument or return value is not serializable (i.e., it's not a primitive data type or an
object that implements Serializable), the object can't be sent to the remote client, and a
java.rmi.MarshalException is thrown.

The principal difference between remote and nonremote objects is that remote objects are sent by reference,
while nonremote, serializable objects are sent by copy. In other words, a remote reference maintains a link to
the original object it references, so changes can be made to the original object through the remote stub. If the
server object calls update methods on an argument to a remote method, and you want the updates to be made
on the original object on the client side, the argument needs to be a Remote object that automatically exports
a stub to the server object. Similarly, if the return value of a remote method call is intended to be a reference
to an object living on the server, the server implementation needs to ensure that the object returned is a
Remote object.

3.4.3. Factory Classes

When a reference to a remote object is obtained through the RMI registry and then used to request additional
remote references, the registered remote object is often referred to as a factory class.

Factory classes are useful in distributed applications that use remote objects because in most cases you can't
predict beforehand the kind and number of remote objects that will need to be shared between two processes.
To make a remote object visible to clients through the RMI registry service, you need to explicitly create the
object inside a Java VM on the server and then register that object using the bind() or rebind() method
on the Registry. Using remote references obtained through method calls on factory objects, however, the
client application can dynamically request the creation of new remote objects, without the objects being
registered individually with the server registry.

As an example, suppose we're building a remote banking system, using the Account object we saw earlier in
the chapter. We want to set up a centralized server that provides account services to remote clients running on
PCs, embedded in ATMs, etc. On the server, we could run an RMI registry, create an Account object for
every account we have on record, and register each one with the RMI registry service using the account name.
In this scheme, registering accounts with the RMI registry goes something like this:

Registry local = LocateRegistry.getRegistry();
local.bind("Abrams, John", new AccountImpl("John Abrams"));
local.bind("Barts, Homer", new AccountImpl("Homer Barts"));
 .
 .
 .

As you can imagine, this is quite unwieldy in practice. Starting the server can take a long time, as thousands
of accounts need to be registered, many of them unnecessarily, since many accounts may not see any activity
before the next downtime. More importantly, accounts that are created or closed during the server's lifetime
somehow need to be added or removed from the RMI registry, as well as from the bank's database of
accounts. A much more sensible approach is to define a factory class for Account objects, along the lines of
the following interface:

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface AccountManager extends Remote {
 public Account getAccount(String name) throws RemoteException;
 public boolean newAccount(Account s) throws RemoteException;
}

The AccountManager lets a client ask for an account by name, using the getAccount() remote
method. The method returns a reference to an Account object that corresponds to the account. Once the

Preface (Java Enterprise in a Nutshell)

3.4.3. Factory Classes 64

client has the Account reference, transactions against the account can be done through method calls on the
Account object. The AccountManager also has a newAccount() method that allows clients to add
new accounts to the manager's underlying database.

The server implementation of the getAccount() method simply needs to look up the named account in the
account database, create an AccountImpl object to represent the account, and return the object to the
remote client as a remote reference. Since Account objects are Remote objects, the RMI remote reference
layer automatically creates a remote reference for the Account object, and the client that called the
getAccount() method receives a stub for the Account object on the server.

Using the factory object to find accounts is more manageable than using the RMI registry. The bank
maintains a database of accounts and their status, so the server implementation of the AccountManager
can access that database directly to find accounts and create corresponding Account remote objects. Trying
to keep the RMI registry in sync with the bank database makes the registry an unnecessary shadow of the
main database of accounts, giving the bank two databases to maintain.

3.3. Creating the Stubs and
Skeletons

3.5. Dynamically Loaded
Classes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 3: Remote
Method Invocation

3.5. Dynamically Loaded Classes

The RMI runtime system has a dynamic class−loading facility that loads the classes it needs while executing
remote method calls. In some situations, you don't need to worry much about how your application classes are
obtained by the various agents in an RMI application. This is especially true if you have direct access to all
hosts involved in the distributed system (i.e., if you can install your application classes in the local
CLASSPATH for each machine participating in the application). For instance, when discussing the earlier
Account example, I assumed that all the relevant classes (Account, AccountImpl, stub, and skeleton
classes) were installed on both the client and the server. However, if your distributed application involves
remote agents running on hosts that are not directly under your control, you need to understand how RMI
loads classes at runtime, so you can ensure that each remote agent can find the classes it needs in order to run.

As with any Java application, the Java runtime system is responsible for loading the classes needed to initiate
an RMI session. Starting an interaction with a remote object means loading the RMI API classes themselves,
as well as the base interface for the remote object and the stub class for the remote interface. On the server
side, the skeleton class for the remote object and the actual implementation class need to be loaded in order to
run the server object that is being remotely exported.

Preface (Java Enterprise in a Nutshell)

3.5. Dynamically Loaded Classes 65

The classes that are referenced directly by a given Java class are normally loaded by the same class loader that
loaded the class itself. So, in an RMI client that does a Naming lookup to find a remote object, the stub
interface for the remote object is loaded using the class loader for the class doing the lookup. If the RMI client
is a Java application (started using the java command to invoke the main() method on an object), the default
(local) class loader tries to find the remote interface locally, from the local CLASSPATH. If the RMI client is
an applet loaded in a web page, the AppletClassLoader tries to look for the remote interface on the
applet's host, in the codebase of the applet.

The RMI runtime system provides its own class loader, the RMIClassLoader, to augment the default class
loading process I just described. The RMIClassLoader loads stubs and skeleton classes for remote
interfaces, as well as the classes for objects used as remote method arguments or return values. These classes
usually aren't explicitly referenced by your RMI application itself, but they are needed by the RMI runtime
system for generating remote references and marshalling/unmarshalling method arguments and return values.

When it's loading the bytecodes for class definitions, the RMI runtime system first attempts to use the default
class loader for the local context (i.e., an AppletClassLoader for an applet or the system class loader for
a Java application). If the referenced class isn't found using the default local class loader, the
RMIClassLoader tries to load the class bytecodes remotely according to the procedures explained next.

3.5.1. Configuring Clients and Servers for Remote Class Loading

When the RMI runtime system marshals a remote object stub, method argument, or return value, it encodes a
URL in the marshaled bytestream to tell the process on the receiving end of the stream where to look for the
class file for the marshaled object. If the class for the object being marshaled was loaded by a nondefault class
loader (e.g., the AppletClassLoader or the RMIClassLoader), the codebase of that class loader is
encoded in the marshaled stream. If the class was loaded by the default class loader from the local
CLASSPATH, the value of the java.rmi.server.codebase property for the Java VM marshalling the
object is sent in the stream. This property is not set by default in the Java VM, so you need to make sure that
it's set to a URL that points to the location of the necessary class files. One way to do this is to include a
command−line argument when starting the Java VM, as in:

% java −Djava.rmi.server.codebase=http://objhost.org/classes/RMIProcess

Here we're starting a Java process with its codebase set to http://objhost.org/classes /. This means that any
remote process that needs to load classes for objects received from this process during an RMI session should
use this HTTP URL in order to find them (if the classes can't be found on the local CLASSPATH, that is). This
applies either if RMIProcess is serving remote objects itself through an RMI registry or if RMIProcess is
passing objects into methods it is calling on other remote objects. In the first case, a remote client that needs
to load the stub classes for the objects exported by RMIProcess uses the codebase to find these classes. In the
second case, a remote process uses the codebase to load the classes for method arguments that RMIProcess is
passing into remote method calls it makes.

If an RMI runtime system is trying to unmarshal an object stub, method argument, or return value and it
doesn't find the class using the default class loader (e.g., the system class loader, which looks on the local
CLASSPATH first), the RMIClassLoader can use the URL in the marshal stream to look for the class
bytecodes remotely. The RMIClassLoader takes the URL from the marshaled bytestream and opens a
URL connection to the specified host to load the needed classes. If both the local class search and this remote
URL search fail to find the required classes, the unmarshal operation generates an exception, and the remote
method call fails.

Note that in order for a Java runtime system to even attempt to load classes remotely, it has to have a security
manager installed that allows remote class loading. Thejava.rmi.RMISecurityManager can be used
for this. In both your RMI object server and clients, include the following line before any RMI calls:

Preface (Java Enterprise in a Nutshell)

3.5.1. Configuring Clients and Servers for Remote Class Loading 66

System.setSecurityManager(new RMISecurityManager());

If you don't set the security manager, the Java VM is allowed to look for classes only locally, and your RMI
calls will work only if all of the required classes can be found on the local CLASSPATH.

Another issue with dynamically loading remote classes is that the default Java security policy doesn't allow
all the networking operations required to resolve a class from a remote host. So, if you have an RMI client or
server that needs to resolve classes remotely, you need to use a policy file that opens up network permissions
to allow this. I'm not going to go into the details of network policies here or the syntax of the security policy
file,[2] but you will need to add the following line to the policy file on the RMI client:

[2]For details on Java security policies and policy files, see Java Security, by Scott Oaks
(O'Reilly).

permission java.net.SocketPermission "objhost.org", "accept,connect";

This line gives the RMI object server objhost.org the permission to open connections to the local machine.
This is needed to bypass the stricter rules imposed by the RMISecurityManager. Once you've made a
modified policy file, you can specify it on the command line when you start your RMI process, in a similar
way to setting the codebase property:

% java −Djava.security.policy=mypolicy.txt RMIProcess

As a simple example, suppose we want to use our earlier Account example to export an Account object on
one host and access that Account on another host where the only class available locally is the Account
interface class itself. On the server, we start an RMI registry[3] and run the RegAccount class as before, but
since we want remote clients to be able to load the stub classes remotely, we need to set the codebase property
to where the clients can find these classes:

[3] Note that in order for the RMI registry to recognize and pass along the codebase property
you specify, it has to be started in such a way that it can't find any of the remotely loaded
classes on its CLASSPATH. So start your RMI registry with a CLASSPATH that doesn't
include the stub/skeleton classes, etc., then run your RMI server with a CLASSPATH that
includes all required classes.

% java −Djava.server.rmi.codebase=http://objhost.org/classes/ RegAccount
Registered account.

We've setting the codebase to http://objhost.org/classes/, so we have to make sure that an HTTP server is
running on the objhost.org machine and that the necessary class files (e.g., the AccountImpl stub class) are
in the classes directory of that HTTP server's document root.

Now we can run the AccountClient class on the remote client as before, but the client's host machine
doesn't have the stub class for the Account remote object available locally. When the AccountClient
tries to look up the remote Account object, we want the stub class to be loaded remotely. Two simple
changes to ourAccount example make this possible. First, add a line to the AccountClient main()
method that sets the RMISecurityManager, in order to allow for remote class loading:

import java.rmi.Naming;
import java.rmi.RMISecurityManager;

public class AccountClient {
 public static void main(String argv[]) {
 try {
 // Set the RMI security manager,

Preface (Java Enterprise in a Nutshell)

3.5.1. Configuring Clients and Servers for Remote Class Loading 67

 // in case we need to load remote classes
 System.setSecurityManager(new RMISecurityManager());

 // Lookup account object
 Account jimAcct = (Account)Naming.lookup("rmi://objhost.org/JimF");
 .
 .
 .

The other change is to use a more lenient policy file when running AccountClient so the necessary
network operations can be performed. Again, I won't discuss the syntax of the policy file here, but assuming
we've put the required policy settings into a file named rmipolicy.txt, we can start the client like so:

% java −Djava.security.policy=rmipolicy.txt AccountClient
Deposited 12,000 into account owned by JimF
Balance now totals: 12000.0

3.5.2. Loading Classes from Applets

Virtually all the steps I just outlined for running an RMI client to allow it to remotely load classes apply to
applets as well. The only difference is that the classes for applets are loaded using an
AppletClassLoader, which checks the applet's codebase for any classes required to run the applet. The
default security policy for applets already allows for remote loading of classes, since this is how an applet
works in the first place, so there's no need to change the security policy when using RMI within an applet. All
you need to do to ensure that the applet finds the remote interface and stub class for the RMI object is to put
them in the server directory that corresponds to the applet's codebase.

3.4. Accessing Remote
Objects as a Client

3.6. Remote Object
Activation

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 3: Remote
Method Invocation

3.6. Remote Object Activation

Automatic activation of remote objects is a new feature in RMI as of Java 1.2. The activation subsystem in
RMI provides you with two basic features: the ability to have remote objects instantiated (activated)
on−demand by client requests, and the ability for remote object references to remain valid across server
crashes, making the references persistent. These features can be quite useful in certain types of distributed
applications.

Preface (Java Enterprise in a Nutshell)

3.5.2. Loading Classes from Applets 68

For example, think back to the AccountManager class we discussed when we talked about factory objects.
We might not want to keep the AccountManager running on our server 24 hours a day; perhaps it
consumes lots of server resources (memory, database connections, etc.), so we don't want it running unless it
is being used. Using the RMI activation service, we can set up the AccountManager so that it doesn't start
running until the first client requests an Account. In addition, after some period of inactivity, we can have
the AccountManager shut down to conserve server resources and then reactivated the next time a client
asks for an Account.

If a remote object is made activatable, it can be registered with the RMI registry without actually being
instantiated. Normally, RMI remote objects (based on the UnicastRemoteObject interface) provide only
nonpersistent references to themselves. Such a reference can be created for a client only if the referenced
object already exists in a remote Java VM. In addition, the remote reference is valid only during the lifetime
of the remote object. The remote object activation service adds support for persistent remote references that
can be created even if the remote object is not running at the time of the request and that can persist beyond
the lifetime of an individual server object.

The key features provided by the RMI activation service include:

•
The ability to automatically create remote objects, triggered by requests for references to these
objects.

•
Support for activation groups, in which groups of activatable remote objects are executed in the same
Java VM, which is automatically started by the activation service if needed.

•
The ability to restart remote objects if they exit or are destroyed due to a system failure of some kind.
This can add a certain degree of fault tolerance to RMI applications.

In the RMI activation system, activatable objects belong to activation groups, and each activation group runs
within its own Java VM. If you don't group your activatable objects, simply assigning a new activation group
to each activatable object you create, then each object runs inside a separate Java VM.

You typically define an activatable remote object by:

•
Subclassing your remote object implementation from the Activatable class provided in the
java.rmi.activation package

•
Providing activation constructors in the server implementation

•
Registering the object and its activation method with the activation service

If you want remote clients to directly access your activatable object, you also need to register the object with
the RMI registry, so that it can be found by name on the network. You can register an activatable class with
the registry without actually creating an instance of the remote object, as we'll see shortly.

You can also create an activatable object without subclassing the Activatable class. This might be
necessary if you need to extend another class and the Java single−inheritance limit keeps you from also
extending Activatable. For most of this section, we'll just discuss the case where you're subclassing
Activatable; I'll only mention this other approach when needed.

Preface (Java Enterprise in a Nutshell)

3.5.2. Loading Classes from Applets 69

3.6.1. Persistent Remote References

The primary difference between an activatable remote object and a nonactivatable one is that a remote
reference to an activatable object doesn't need to have a "live" object behind it. If an activatable object is not
running (e.g., it hasn't been constructed yet, or it has been garbage−collected by its Java VM, or its VM has
exited), a remote reference to the object can still be exported to a client. The client receives a stub, as usual,
and can make remote method invocations through the stub. When the first method is invoked, the activation
service running on the server sees that the object is not active and goes about activating the object for the
client. If the object doesn't have a VM to run in, the activation system starts one. The object is then activated
using information that has been registered with the activation system. This information includes the object's
class name, a URL that can load the class bytecodes if they're not found in the local CLASSPATH, and data to
pass into the object's activation constructor. Once the object has been activated, the method invocation takes
place, and the results are marshaled and sent back to the client.

As long as the object stays running, future method requests are handled as usual. If the object stops running
for some reason (e.g, it is garbage−collected, or its VM dies), the next method request triggers the activation
service again, and the object is reactivated. This is what is meant by persistent remote references: remote
references to activatable objects can persist across multiple lifetimes of the actual server object.

3.6.2. Defining an Activatable Remote Object

Naturally, before you can register and use an activatable object with the RMI activation system, you need to
define the remote interface and the server implementation for the object. The java.rmi.activation
package provides the classes you need to define an activatable remote object. You usually define a remote
object as activatable by subclassing it from Activatable and defining a special constructor that activates
the object. You also have to register the object with the activation service on the server host.

Other than that, the implementation of an activatable remote object is similar to that of a nonactivatable one.
You start with a remote interface that contains the methods you want to export from your object. The interface
should extend Remote, and each method should throw a RemoteException (or, as of Java 1.2, any parent
of RemoteException). The server implementation implements this interface and extends a concrete
implementation of the java.rmi.server.RemoteServer class. Since you're defining an activatable
remote object, you typically extend java.rmi.activation.Activatable directly and use its
constructors to initialize, register, and activate your remote object. If you choose not to extend
Activatable directly, you have to use the static exportObject() methods on the Activatable
class to register your object with the activation runtime system.

3.6.2.1. The Activatable class

The Activatable class has four constructors. Here are signatures for two of them:

protected Activatable(String src, MarshalledObject data,
 boolean restart, int port) throws RemoteException
protected Activatable(String src, MarshalledObject data,
 boolean restart, int port, RMIClientSocketFactory csfactory,
 RMIServerSocketFactory ssfactory) throws RemoteException

These two constructors are initialization constructors. You use them when you decide to proactively create
one of your remote objects and register it with the RMI activation service. In this case, the object already
exists when a client first makes a method request on it, but if the object is destroyed, the next client request
causes the object to be reactivated. These constructors register an object with the local activation service and
export the object so that it can receive remote method requests. Both constructors have the following
arguments in common:

•

Preface (Java Enterprise in a Nutshell)

3.6.1. Persistent Remote References 70

The String parameter is a URL that indicates where class bytecodes required by this object can be
located. This information is exported to a remote client so it can dynamically load classes required to
unmarshal method return values, for example.

•
The MarshalledObject parameter provides initialization data for the object; this parameter is
necessary because data is typically sent from the activation daemon's VM to the VM designated to run
the activatable object and the two might not be the same (more on this later).

•
The boolean flag indicates whether the object should be automatically recreated when its home VM
or its activation group is restarted (e.g., after a server restart).

•
The int parameter specifies the port on which the object is exported. A port of zero tells the RMI
runtime system to export the object on a random open port.

The second initialization constructor takes custom client and server socket factories that create socket
communications between the server and the clients of the object. Customized socket factories are a new
feature in RMI as of the Java 2 SDK 1.2. I won't discuss them in this chapter, but you can consult the RMI
API reference in Part 3, "API Quick Reference" for more details.

The other two Activatable constructors have the following signatures:

protected Activatable(ActivationID id, int port) throws RemoteException
protected Activatable(ActivationID id, int port,
 RMIClientSocketFactory csfactory, RMIServerSocketFactory ssfactory)
 throws RemoteException

These constructors are (re)activation constructors. The activation system uses them to activate a remote
object that has received a remote method request, but isn't currently active. The ActivationID is a
persistent ID issued by the activation system for the remote object, and the port number is the port that exports
the remote object. The second constructor again takes custom server and client socket factories.

The Activatable class also has a set of exportObject() methods that correspond to the constructors
I've just described. You can use these methods when an activatable object doesn't directly extend the
Activatable class. You call the appropriate exportObject() methods from within the constructors of
the class, so they serve the same function as calling the Activatable constructors during initialization of
an Activatable subclass.

3.6.2.2. Implementing an activatable object

As I already mentioned, you can implement an activatable remote object in two ways: derive the remote
object from the Activatable class directly and make the required calls to the Activatable constructors
in its constructors, or have the class implement a Remote interface and make the required calls to the static
exportObject() methods in its constructors.

In either case, when the activation system activates a remote object, it looks for a constructor on the class that
takes two arguments: an ActivationID and a MarshalledObject. The activation system calls this
constructor, passing in an ActivationID it generates for the object and the MarshalledObject
registered for the activatable object by the first constructor we just discussed.

This means you have to provide a constructor with this signature in your implementation of an activatable
object. In this constructor, you should call either one of the (re)activation constructors on the Activatable

Preface (Java Enterprise in a Nutshell)

3.6.2.2. Implementing an activatable object 71

parent class (if your class extends Activatable), or the corresponding
Activatable.exportObject() method (if you didn't extend Activatable). In this call, you pass
on the ActivationID issued by the activation system and you specify the port for the exported remote
object (a port number of 0 causes the object to be exported on a random open port).

In addition to this required constructor, you can define other constructors for your remote object
implementation as needed. If you want your object to be reactivatable, any additional constructors should call
one of the initialization constructors on Activatable (using super()) or the corresponding
exportObject() method, passing in a valid source URL and a MarshalledObject to be used as an
argument if the object is reactivated. If the object is destroyed at some point, and a subsequent remote method
request is received for it, the activation system reactivates the object by calling the required (re)activation
constructor on the object's class, passing in this MarshalledObject argument.

Example 3−5 shows an activatable implementation of the ThisOrThatServer interface from Example
3−3. The primary differences between this implementation and the nonactivatable one in Example 3−4 are
that this new implementation extends the java.rmi.activation.Activatable class instead of
UnicastRemoteObject, and its constructors support the activation system. This implementation also
includes a name that identifies the server.

Example 3−5. An Activatable Version of the ThisOrThatServer

import java.rmi.activation.*;
import java.rmi.MarshalledObject;
import java.rmi.RemoteException;
import java.io.IOException;

public class ActivatableThisOrThatServerImpl
 extends Activatable implements ThisOrThatServer {

 // Name for server
 private String myName = "";

 // "Regular" constructor used to create a "pre−activated" server
 public ActivatableThisOrThatServerImpl(String name, String src, int port)
 throws RemoteException, ActivationException, IOException {
 // Register and export object (on random open port)
 super(src, new MarshalledObject(name), false, port);
 // Save name
 myName = name;
 System.out.println("Initialization constructor called.");
 }

 // Constructor called by the activation runtime to (re)activate
 // and export the server
 protected ActivatableThisOrThatServerImpl(ActivationID id,
 MarshalledObject arg) throws RemoteException {
 // Export this object with the given activation id, on random port
 super(id, 0);
 System.out.println("Activating a server");
 // Check incoming data passed in with activation request
 try {
 Object oarg = arg.get();
 if (oarg instanceof String) {
 myName = (String)oarg;
 }
 else {
 System.out.println("Unknown argument received on activation: " +
 oarg);
 }
 }
 catch(Exception e) {

Preface (Java Enterprise in a Nutshell)

3.6.2.2. Implementing an activatable object 72

 System.out.println("Error retrieving argument to activation");
 }
 System.out.println("(Re)activation constructor called.");
 }

 // Remotely−accessible methods
 public String doThis(String todo) throws RemoteException {
 String result = doSomething("this", todo);
 return result;
 }

 public String doThat(String todo) throws RemoteException {
 String result = doSomething("that", todo);
 return result;
 }

 // Non−remote methods
 private String doSomething(String what, String todo) {
 String result = myName + ": " + what + " " + todo + " is done.";
 return result;
 }
}

The first constructor for ActivatableThisOrThatServerImpl is a public one, used to construct a
server with a given name. The constructor registers the new object with the activation system, passing in a
URL that acts as a codebase for finding the classes required for this class. It also passes in the name given to
the server, wrapped in a MarshalledObject. This ensures that the server is given the same name if it
needs to be reactivated later.

The second constructor is the required one used by the activation system. If an object of this type needs to be
activated (or reactivated after a crash of some sort), this constructor is called to create the remote object. The
constructor takes an ActivationID, issued by the activation system, and the MarshalledObject
registered for the object with the activation system. The constructor exports the object by calling the second
constructor on the Activatable class, then initializes itself with the data from the MarshalledObject.

3.6.3. Registering Activatable Objects

There are several ways to register an activatable object with its local activation system. In each case, the
activation system needs to be told how to create (or recreate) the object. The information the activation system
needs to activate an object is encapsulated in the ActivationDesc class. An ActivationDesc object
contains the name of the class for the remote object, a URL with the network location of the bytecodes for the
class, a MarshalledObject to be used as the initialization data for the object, and the group assignment
for the object.

The simplest way to register an Activatable object is to create an instance of the object. In our example,
we've derived our server implementation from the Activatable class, so the public constructor on the
ActivatableThisOrThatServerImpl class registers the object by calling the necessary constructor
on Activatable. Thus, we can create and register one of these as follows:

// Make an activation group for the object
ActivationGroupDesc gdesc = new ActivationGroupDesc(null, null);
ActivationGroupID gid = ActivationGroup.getSystem().registerGroup(gdesc);
ActivationGroup.createGroup(gid, gdesc, 0);

// Make a server object, which registers it with activation system
ThisOrThatServer server =
 new ActivatableThisOrThatServerImpl(serverName, codebaseURL, 0);

// Register with naming service

Preface (Java Enterprise in a Nutshell)

3.6.3. Registering Activatable Objects 73

LocateRegistry.getRegistry().rebind(serverName, server);

The first four lines are required to create an activation group for our activatable object. We'll talk more about
activation groups shortly. For now, all you need to know is that this code creates the default activation group
for the current VM. Any remote object that isn't specifically assigned to a group is placed in this default
group.

The activatable object itself is created by simply calling the public
ActivatableThisOrThatServerImpl constructor. This constructor registers the object with the
activation system by calling the appropriate Activatable constructor, as we've already discussed. Since
we haven't specified an activation group for the object, it is placed in the default group we just created. If we
hadn't created that default group, the activation system would throw an exception here, when the object is
registered.

Aside from the creation of the activation group, this example looks a lot like our other examples of registering
RMI objects. The difference here is that if the registering process dies off at some point, the activation system
can reactivate the activatable object in a new Java VM using the information provided in the
ActivationDesc for the object. In this case, we're relying on the Activatable constructor (which is
called by our ActivatableThisOrThatServerImpl constructor) to create and register an
ActivationDesc for our object.

When an object needs to be activated, the activation system first looks up the ActivationDesc for the
object and then looks for the class referenced in the ActivationDesc, using the URL to load the class
bytecodes. Once the class has been loaded, the activation system creates an instance of the class by calling the
activation constructor, which takes an ActivationID and a MarshalledObject as arguments. The
ActivationID is issued by the activation system, and the MarshalledObject contains the data
previously registered with the ActivationDesc. In our activatable ThisOrThatServer in Example
3−5, the activation system calls the second constructor on our ActivatableThisOrThatServerImpl
class. The new object passes the ActivationID up to the Activatable constructor so that it can be
recorded, and the name of the server is pulled from the MarshalledObject. The Activatable
constructor takes care of creating and registering an ActivationDesc for the object and exporting the
object with the activation system.

3.6.3.1. Registering an activatable object without instantiating

A more complicated, but often more useful way to register a remote object is to create an
ActivationDesc for it and then register the information directly with the activation system, without
creating an instance of the object. The static Activatable.register() method accepts an
ActivationDesc object and registers it with the activation system directly. Here's how we can do that:

// Make a codebase and activation argument for the object
String src = "http://objhost.org/classes";
MarshalledObject actArg = new MarshalledObject("MyServer");

// Create the ActivationDesc and get a stub for the object
ActivationDesc desc =
 new ActivationDesc("ActivatableThisOrThatServerImpl", src, actArg);
ThisOrThatServer serverStub =
 (ThisOrThatServer)Activatable.register(desc);

When we create the ActivationDesc for the object, we specify the name of the class to use for creating
the object, a codebase for finding the class, and a MarshalledObject that is passed to the object when it's
activated. The ActivationDesc is used in the call to the Activatable.register() method, which
returns a RemoteStub for the activatable object. Since we know this stub is for an object that implements
the ThisOrThatServer interface, we can safely cast it to a ThisOrThatServer. We can also use this

Preface (Java Enterprise in a Nutshell)

3.6.3.1. Registering an activatable object without instantiating 74

reference to register the remote object with the local RMI naming registry:

LocateRegistry.getRegistry().bind("ThisOrThatServer", serverStub);

Although I haven't shown it here, note that you also have to create an activation group for the object, just like
we did in our earlier example, before you can register it with the activation service.

So, to recap, we've registered a remote object with the activation system and the RMI naming registry without
actually creating the object itself. When a client tries to look up the object, it gets back a remote stub, with no
active object behind it on the server. When the client calls a method on the stub, however, the activation
system on the server creates the object, using the information in the ActivationDesc we provided.

3.6.3.2. Passing data with the MarshalledObject

The way you can pass arguments to activatable objects before they are activated is through the
MarshalledObject contained within the ActivationDesc for the object. However, once the
ActivationDesc is registered with the activation system, you can't dynamically update the contents of the
MarshalledObject. One way to have the arguments to an activatable object be dynamic is to bundle a
filename or URL into theMarshalledObject. At the point that the object is activated, it can read data
from the file or URL and use that data during activation.

3.6.4. Activation Groups

Every activatable RMI object belongs to an activation group. Each group of activatable objects runs within
the same Java VM on the server host. In essence, activation groups are a way of defining collections of
activatable remote objects that should share the same physical address space. We've already seen how to set
up an activation group, since we had to do this before registering our activatable object with the activation
system. In this section, we'll take a look at creating activation groups in a bit more detail and discuss what the
activation group is actually doing for you.

Activation groups in RMI are more than just a way of organizing remote objects. Each activation group is
responsible for monitoring, activating, and reactivating the objects it contains. The objects involved in
maintaining an activation group are shown in Figure 3−4. Note that you don't normally need to interact with
the underlying objects themselves. You simply set up your ActivationGroup objects and assign
activatable objects to them; the activation system does the rest for you.

Preface (Java Enterprise in a Nutshell)

3.6.3.2. Passing data with the MarshalledObject 75

Figure 3−4. The components of the activation system

An ActivationGroup is created when the first object in the group needs to be activated. The
Activator is responsible for creating a VM for the ActivationGroup to run in, and for starting the
ActivationGroup using the information in the registered object's ActivationGroupDesc, if it has
one. If the remote object doesn't have a specified group, a default one is created. The new
ActivationGroup object is then told to activate the requested remote object, by calling its
newInstance() method. The arguments the Activator passes into this method are the
ActivationID for the new object and the ActivationDesc that the Activator has registered for the
object.

The ActivationDesc gives an ActivationGroup everything it needs to activate the remote object.
The ActivationGroup takes the class name for the object and looks for the class bytecodes. First it
checks the local CLASSPATH, and if that pulls up nothing, it uses the URL in the ActivationDesc to load
the class from the given URL. Once the class is loaded, an instance of the class is created by calling the
activation constructor on the class (e.g., the constructor that has an ActivationID argument and a
MarshalledObject argument). The ActivationID and MarshalledObject come from the call to
the newInstance() method. The new, active remote object is returned to the Activator as a serialized
MarshalledObject. This is done for two reasons. First, the Activator runs in a separate Java VM, so
the active object reference needs to be transferred from one VM to another, and the easiest way to do this is to
serialize it and transmit it in that form. Second, since the object has been bundled into a
MarshalledObject, the Activator doesn't need to load the object's bytecodes unless absolutely
necessary. In most cases, the Activator doesn't need to interact directly with the object itself, so it doesn't
need to waste time loading unnecessary bytecodes.

Each ActivationGroup has an ActivationMonitor associated with it. The ActivationGroup
has to tell the ActivationMonitor whenever an object becomes active or inactive. An activatable object
is responsible for informing its ActivationGroup when it becomes active and inactive, by calling the
group's activeObject() and inactiveObject() methods, respectively. The ActivationGroup,
in turn, passes the information on to the ActivationMonitor by calling identical methods on the monitor
object. When the object becomes inactive, the ActivationMonitor makes note of it and arranges for the
object to be reactivated the next time a method request comes in for it. If an entire ActivationGroup
becomes inactive, the ActivationMonitor is informed through its inactiveGroup() method. The
next request for an object in that group causes the Activator to recreate the group.

3.6.4.1. Registering activation groups

An ActivationGroup is registered with the activation system in roughly the same way as an activatable
object. You have to create an ActivationGroupDesc object that contains the name of the class for the
group, the URL where the class bytecodes can be loaded, and a MarshalledObject that is given to the
ActivationGroup as initialization data. Unlike activatable objects, though, the class of a group has to be a
concrete subclass of ActivationGroup. You register the ActivationGroupDesc by calling the static
ActivationSystem.registerGroup() method, passing in the ActivationGroupDesc. The
ActivationSystem returns an ActivationGroupID that can assign specific objects to the group.

3.6.4.2. Assigning activatable objects to groups

You assign an activatable object to a group by specifying the group ID in the ActivationDesc registered
with the activation system. The ActivationGroupID returned by the
ActivationSystem.registerGroup() method can be passed into the ActivationDesc
constructor.

Preface (Java Enterprise in a Nutshell)

3.6.4. Activation Groups 76

Before you can register a remote object with the activation system, you need to create a group for it. For our
activatable ThisOrThatServer example, we can run Java code along the following lines on the object
server (note I've left out the exception handling):

// Make an activation group for the object
ActivationGroupDesc gdesc = new ActivationGroupDesc(null, null);
ActivationGroupID gid =
 ActivationGroup.getSystem().registerGroup(gdesc);
ActivationGroup.createGroup(gid, gdesc, 0);

// Set up ActivationDesc for object
String codebaseURL = "http://objhost.org/classes";
String serverName = "Fred";
MarshalledObject activationArg = new MarshalledObject(serverName);
ActivationDesc desc =
 new ActivationDesc(gid, "ActivatableThisOrThatServerImpl",
 codebaseURL, activationArg);
ThisOrThatServer serverRef =
 (ThisOrThatServer)Activatable.register(desc);
LocateRegistry.getRegistry().rebind(serverName, serverRef);

Here we're using the ActivatableThisOrThatServerImpl class and registering a remote object with
the activation system without actually instantiating it. Before we register our remote object, we create an
ActivationGroupDesc, then use it to register and create a new activation group with the activation
system. After we create the activation group (using the ActivationGroup.createGroup() method),
we use the ActivationGroupID for our new group to make an ActivationDesc for our remote
object, and we use that to register the object with the activation system. The activation system generates a
remote stub for our object, and we register that with the RMI naming registry.

Since each ActivationGroup is started within its own VM if it's initially activated by the activation
system, grouping objects is a convenient way to partition your remote objects into shared address spaces on
your server. For more details on the activation group interfaces in RMI, consult the
java.rmi.activation reference material in Chapter 14, The java.rmi.activation Package.

3.6.5. The Activation Daemon

The heart of the RMI activation system is the activation daemon, which runs on the host for an activatable
object. The activation daemon is responsible for intercepting remote method requests on activatable objects
and orchestrating the activation of the object, if needed.

The activation daemon provided with the Java SDK, rmid, runs a Java VM that includes a
java.rmi.activation.Activator object. The Activator is responsible for keeping a registry of
activatable objects, along with the information needed to activate them. This information is in two parts: an
ActivationDesc object and an optional ActivationGroupDesc. The ActivationGroupDesc
identifies the group of activatable objects to which the object should be added and describes how to start the
group if it doesn't exist. The ActivationDesc includes all information needed to activate the object itself.
An activatable object has to be registered nwith the activation system in one of the ways described earlier to
be started automatically by the Activator.

If a remote method request is received by the RMI runtime system on a host, and the target object hasn't been
created yet, the Activator is asked to activate it. The Activator looks up the ActivationDesc (and
ActivationGroupDesc, if present) for the object. If the object has an ActivationGroup assigned to
it, and the ActivationGroup doesn't exist yet, a Java VM is started for the group, and the
ActivationGroupDesc data is used to start an ActivationGroup object within the new VM. If the
object has no ActivationGroup associated with it, it's given its own ActivationGroup running in its
own VM. The group is then asked to start the requested object, using the ActivationDesc object

Preface (Java Enterprise in a Nutshell)

3.6.5. The Activation Daemon 77

registered for the object. Once the ActivationGroup activates the object within its VM, the Activator
is notified, and the now−active remote reference is returned to the RMI runtime system. The RMI runtime
system forwards the remote method request through the reference to the object, and the return value is
exported back to the client as usual.

3.6.5.1. The daemon's dual personality

When you start the rmid daemon, it creates an Activator and then listens on the default port of 1098 for
activation requests. There is also a −port command−line option that lets you specify a different port for the
VM to use. In addition to running the Activator, the rmid daemon also runs its own RMI Registry. If
needed, you can register local objects with the daemon's internal Registry by specifying the daemon's port
when you call the bind() or rebind() method of the Registry. For example, if rmid is running on its
default port of 1098:

RemoteObject server = ...
Registry local = LocateRegistry.getRegistry(1098);
local.bind(server, "Server");

This way, you can consolidate your activation system and your naming service into one VM on your server.

3.5. Dynamically Loaded
Classes

3.7. RMI and Native
Method Calls

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 3: Remote
Method Invocation

3.7. RMI and Native Method Calls

As I mentioned at the beginning of this chapter, RMI is a Java−only remote object scheme, so it doesn't
provide a direct connection between objects implemented in different languages, like CORBA does. But,
using Java's Native Interface API, it is possible to wrap existing C or C++ code with a Java interface and then
export this interface remotely through RMI.

To demonstrate, let's suppose we have some (legacy) native code that implements a service we want to export
through RMI to remote clients. We can create an implementation of our ThisOrThatServer interface that
uses this native code to implement the doSomething() method on our remote interface. The
implementation for a NativeThisOrThatServerImpl is shown in Example 3−6. The only significant
difference between this implementation and our original ThisOrThatServerImpl is that the

Preface (Java Enterprise in a Nutshell)

3.6.5.1. The daemon's dual personality 78

doSomething() method is declared native, so the method body is left empty.

Example 3−6. Remote Object Using a Native Method Implementation

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;

public class NativeThisOrThatServerImpl
 extends UnicastRemoteObject implements ThisOrThatServer {

 public NativeThisOrThatServerImpl() throws RemoteException {}

 // Remotely−accessible methods
 public String doThis(String todo) throws RemoteException {
 return doSomething("this", todo);
 }

 public String doThat(String todo) throws RemoteException {
 return doSomething("that", todo);
 }

 // Natively−implemented method
 native private String doSomething(String what, String todo);
}

We can compile this RMI class and generate the stubs and skeletons for it using the RMI compiler, just like
with our other RMI examples. But once this is done, we need to provide a native implementation for the
doSomething() method. To start, we can generate a C/C++ header file for the native method using the
javah tool:

% javah −jni −d . NativeThisOrThatServerImpl

The −jni option tells the javah tool to generate JNI−compliant header files (as opposed to header files based
on the earlier native method interface that shipped with Java 1.0). Invoking this command generates a JNI
C/C++ header file that looks something like the following:

/* DO NOT EDIT THIS FILE − it is machine generated */
#include <jni.h>
/* Header for class NativeThisOrThatServerImpl */
#ifndef _Included_NativeThisOrThatServerImpl
#define _Included_NativeThisOrThatServerImpl
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: NativeThisOrThatServerImpl
 * Method: doSomething
 * Signature: (Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;
 */
JNIEXPORT jstring JNICALL Java_NativeThisOrThatServerImpl_doSomething
 (JNIEnv *, jobject, jstring, jstring);
#ifdef __cplusplus
}
#endif
#endif

The only details worth noting in this header file are the inclusion of the jni.h header file, which is provided
with the Java SDK, and the single method declaration. The jni.h header file provides declarations and
definitions for all of the data structures and utility methods provided by the JNI API. The method declaration
has a signature that corresponds to the native method declared on our Java class. When you invoke the
doSomething() method on the NativeThisOrThatServerImpl, the Java VM looks for a native

Preface (Java Enterprise in a Nutshell)

3.7. RMI and Native Method Calls 79

method that matches this signature.

Now all we need to do is implement the C/C++ function declared in our JNI−generated header file. This is
where we tie our Java method to some legacy native code. In this case, suppose the native code is wrapped up
in a single C/C++ function called doSomethingNative(). This function is available in a native library on
the server platform (e.g., a DLL file on Windows or a shared library on Unix). We want to use our Java
method to invoke this native function, so we can implement the
Java_NativeThisOrThatServerImpl_doSomething() function along these lines:

#include <jni.h>
#include "NativeThisOrThatServerImpl.h"
#include "nativeDoSomething.h"
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Native implementation for method doSomething() on class
 * NativeThisOrThatServerImpl.
 */
JNIEXPORT jstring JNICALL Java_NativeThisOrThatServerImpl_doSomething
 (JNIEnv * env, jobject me, jstring what, jstring todo) {
 // Convert the Java strings to native strings
 const char* whatStr = (*env)−>GetStringUTFChars(env, what, 0);
 const char* todoStr = (*env)−>GetStringUTFChars(env, todo, 0);

 // Call the native method
 char* result = doSomethingNative(whatStr, todoStr);

 // Convert result back to Java string
 jstring res = (*env)−>NewStringUTF(env, result);
 return res;
}
#ifdef __cplusplus
}
#endif
#endif

The first part of the function just converts the Java strings (passed in as C jstring data structures) into
native char* strings. Then it passes the string arguments into the native doSomethingNative()
function, converts the result back into a jstring, and returns it. The JNI system handles the conversion of
the jstring into a Java String object in the VM environment.

Once we compile this C/C++ code (linking with the native library that contains the
doSomethingNative() function), we can export remote NativeThisOrThatServerImpl objects.
Then remote clients can call the doThis() or doThat() methods. These remote method calls in turn cause
the invocation of native code on the server, when the object implementation calls its native
doSomething() method.

Note that in order for the server object to find its native method, the native library containing the
doSomethingNative() function has to be loaded into the server object's VM using the
System.loadLibrary() method. You can do this in the application code that uses the native method or
by adding a static initializer to the class, you can have the library loaded automatically when the
NativeThisOrThatServerImpl class is referenced:

static { System.loadLibrary("methods"); }

The System.loadLibrary() method automatically converts the library name that you provide to a
platform−specific file name. So if the previous example is run on a Solaris machine, the Java VM looks for a
library file named libmethods.so. On a Windows machine, it looks for methods.dll.

Preface (Java Enterprise in a Nutshell)

3.7. RMI and Native Method Calls 80

3.7.1. RMI with JNI Versus CORBA

There are pros and cons to using RMI and JNI to export legacy native code using Java remote objects, as
opposed to using CORBA. With CORBA, a CORBA object implemented in the same language as the native
code (C/C++ for our example) is created and exported on the server. Remote Java clients can get a Java stub
to this CORBA object using JavaIDL, or any third−party Java CORBA implementation (see Chapter 4, "Java
IDL" for details).

One obvious advantage of the CORBA approach is that you don't need to have Java on the server. Since this
is presumably a legacy server, perhaps a mainframe of some sort, finding a stable Java VM and development
kit for the platform may be a problem. If a Java implementation isn't available or if installing additional
software on the legacy server isn't desirable, CORBA is your only option.

An advantage of the RMI/JNI approach is that you're running Java at both ends of the remote communication
and avoiding the use of CORBA entirely. CORBA is a very rich distributed object API, but it may be overkill
for your application. Using the simpler RMI API and keeping your code development strictly in Java (with
some minimal C/C++ to interface to the legacy code) might be an advantage to you in this case.

3.6. Remote Object
Activation

3.8. RMI over IIOP

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 3: Remote
Method Invocation

3.8. RMI over IIOP

A new and exciting possibility for connecting RMI objects to non−Java objects is the ability for RMI objects
to communicate directly with remote CORBA objects using IIOP, the CORBA network interface protocol.[4]
The standard RMI implementation provided with Java uses an RMI−specific protocol, JRMP, to communicate
over the network. RMI/IIOP allows RMI objects to use the CORBA network protocol, IIOP, to communicate
with other objects. This means that an RMI object using RMI/IIOP can communicate with a remote CORBA
object, regardless of the implementation language of the CORBA object. Likewise, a CORBA object can
interact with your Java RMI objects directly. This really gives you the best of both worlds, since you can then
implement your remote clients using RMI and use either CORBA or RMI/JNI on the server to interface to any
native legacy code.

[4]The RMI−IIOP tools and classes are an extension to the standard Java platform that has to
be downloaded separately from http://java.sun.com/products/rmi−iiop/.

Preface (Java Enterprise in a Nutshell)

3.7.1. RMI with JNI Versus CORBA 81

http://java.sun.com/products/rmi-iiop/

In order to convert your RMI objects to use IIOP, there are some changes you need to make:

•
Any implementation classes should extend the javax.rmi.PortableRemoteObject class,
rather than java.rmi.server.UnicastRemoteObject.

•
All your stub and skeleton classes need to be regenerated using the updated rmic compiler provided
with the RMI/IIOP installation. This updated compiler has an −iiop option that produces stubs and
ties (ties refers to skeletons in the CORBA vernacular). These stubs and ties handle the link between
client and server objects, but using IIOP rather than JRMP.

•
All use of the RMI Naming registry has to be converted to use JNDI to talk to a CORBA Naming
Service. Objects that you export are bound to names in the CORBA Naming Service through the
JNDI context, and remote objects you look up are accessed from the Naming Service through the
JNDI context.

•
Instead of using the standard Java casting operator on remote objects you look up, you should use the
javax.rmi.PortableRemoteObject.narrow() method.

To give you a taste for how to use RMI/IIOP with your RMI classes, let's convert our first Account
example to use RMI/IIOP. First, we need to update the AccountImpl class to extend
PortableRemoteObject. The following fragment of the IIOPAccountImpl class does that:

import javax.rmi.PortableRemoteObject;
import java.rmi.RemoteException;
import java.util.List;
import java.util.ListIterator;

public class IIOPAccountImpl extends PortableRemoteObject implements Account {
 // Remainder of implementation is identical

We can compile the updated IIOPAccountImpl using the regular Java compiler, then use the extended
rmic compiler included with RMI/IIOP to generate IIOP stubs and ties:

% rmic −iiop −d /home/myclasses IIOPAccountImpl

This generates an IIOPAccountImpl_Stub class and an IIOPAccountImpl_Tie class, which act as the IIOP stub
and tie for the remote object.

In the CORBA world, remote objects are looked up using the CORBA Naming Service, so we need to update
the RegAccount class to use JNDI to register an Account object with a CORBA Naming Service, rather
than the RMI registry. The updated IIOPRegAccount class looks like this:

import javax.naming.*;
import java.rmi.*;

public class IIOPRegAccount {
 public static void main(String argv[]) {
 try {
 // Make an Account with a given name
 IIOPAccountImpl acct = new IIOPAccountImpl("JimF");

 // Get a reference to CORBA naming service using JNDI
 Hashtable props = new Hashtable();
 props.put("java.naming.factory.initial",
 "com.sun.jndi.cosnaming.CNCtxFactory");

Preface (Java Enterprise in a Nutshell)

3.7.1. RMI with JNI Versus CORBA 82

 props.put("java.naming.provider.url", "iiop://objhost.org:900");
 Context ctx = new InitialContext(props);

 // Register our Account with the CORBA naming service
 ctx.rebind("JimF", acct);
 System.out.println("Registered account.");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Refer to Chapter 6, "JNDI", for details on the properties used to create the JNDI context and what they mean.
All you need to glean from this is that we're trying to connect to a naming service running on objhost.org,
listening to port 900. Once we are connected, we register the new IIOPAccountImpl object with the
naming service using the Context.rebind() method.

Finally, we need to update our client so that it works with RMI/IIOP. Instead of using an RMI registry to look
up the remote Account object, the client needs to use JNDI to connect to the same CORBA Naming Service
that now hosts our Account object and ask for the Account by name. The updated
IIOPAccountClient is shown here. Notice that we've also changed the client to use the
PortableRemoteObject.narrow() method, instead of just casting the object returned from the
lookup:

import javax.naming.*;
import java.rmi.RMISecurityManager;

public class IIOPAccountClient {
 public static void main(String argv[]) {
 try {
 // Lookup account object
 Hashtable props = new Hashtable();
 props.put("java.naming.factory.initial",
 "com.sun.jndi.cosnaming.CNCtxFactory");
 props.put("java.naming.provider.url", "iiop://objhost.org:900");
 Context ctx = new InitialContext(props);
 Account jimAcct =
 (Account)PortableRemoteObject.narrow(ctx.lookup("JimF"),
 Account.class);

 // Make deposit
 jimAcct.deposit(12000);

 // Report results and balance.
 System.out.println("Deposited 12,000 into account owned by " +
 jimAcct.getName());
 System.out.println("Balance now totals: " + jimAcct.getBalance());
 }
 catch (Exception e) {
 System.out.println("Error while looking up account:");
 e.printStackTrace();
 }
 }
}

In order to register the server object, we need a CORBA Naming Service running, just like we need an RMI
registry with standard RMI. The RMI/IIOP package includes a special naming service that is started using the
tnameserv utility. This tool is similar to the naming service provided with Java IDL (and discussed in Chapter
4, "Java IDL"), but this version is a CORBA Naming Service that also provides JNDI access. On objhost.org,
we need to start the naming service like so:

objhost% tnameserv −ORBInitialPort 900

Preface (Java Enterprise in a Nutshell)

3.7.1. RMI with JNI Versus CORBA 83

Now we can run IIOPRegAccount to register the Account object with the naming service, then run our
IIOPAccountClient to access the Account and make a deposit. All network communications are now
taking place using IIOP rather than the RMI protocol.

3.8.1. Accessing RMI Objects from CORBA

Since our Account object is now speaking IIOP, we can also access it from other, non−Java CORBA
clients. First, we need to get an IDL interface for the Account interface, which can be done using the rmic
compiler provided with RMI/IIOP. The −idl option generates an IDL mapping of a Java RMI interface using
the Java−to−IDL mapping defined by the CORBA standard. With this IDL mapping, we can generate
language−specific stubs that lets any CORBA client talk to our Java remote object. See Chapter 4, "Java IDL"
for more details on using IDL and generating language−specific interfaces from it.

3.7. RMI and Native
Method Calls

4. Java IDL

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 1: Introducing the
Java Enterprise APIs

Preface (Java Enterprise in a Nutshell)

3.8.1. Accessing RMI Objects from CORBA 84

Chapter 4. Java IDL
Contents:

The CORBA Architecture
Creating CORBA Objects
Putting It in the Public Eye
Finding Remote Objects
What If I Don't Know the Interface?

The Java IDL API, introduced in Version 1.2 of the Java 2 platform, provides an interface between Java
programs and distributed objects and services built using the Common Object Request Broker Architecture
(CORBA). CORBA is a standard defined by the Object Management Group (OMG). It describes an
architecture, interfaces, and protocols that distributed objects can use to interact with each other. Part of the
CORBA standard is the Interface Definition Language (IDL), which is an implementation−independent
language for describing the interfaces of remote−capable objects. There are standard mappings defined by the
OMG for converting IDL interfaces into C++ classes, C code, and Java classes, among other things. These
generated classes use the underlying CORBA framework to communicate with remote clients and give you
the basis for implementing and exporting your own distributed objects. Java IDL is an implementation of the
standard IDL−to−Java mapping and is provided by Sun with the standard Java SDK in the org.omg.CORBA
and org.omg.CosNaming packages and their subpackages.[1]

[1]The version of Java IDL shipped with Version 1.2 of Java 2 is compliant with the CORBA
2.x specification.

Like RMI, Java IDL gives you a way to access remote objects over the network. It also provides the tools you
need to make your objects accessible to other CORBA clients. If you export a Java class using Java IDL, you
can create an instance of that class and publish it through a naming/directory service. A remote client can find
this object, call methods on it, and receive data from it, just as if it were running on the client's local machine.
Unlike RMI, however, objects that are exported using CORBA can be accessed by clients implemented in any
language with an IDL binding (C, C++, Ada, etc.).

The CORBA standard is extensive, to say the least. In addition to the basic remote object architecture and the
syntax of IDL, it also includes specifications for several distributed object services, like an object naming
service, a security policy service, and persistent object services. It would be foolhardy to attempt to cover all
these topics completely in one chapter, so I won't. Instead, I'll just cover the basic features of the CORBA
architecture and the IDL syntax. We'll also look at the Naming Service, which is key to almost every CORBA
application because it provides a standard way to find remote CORBA objects on the network. With that
under our belts, we'll take a look at the Java IDL API and the idltojava compiler and how together they give
you an interface from your Java code to CORBA objects and services. They also give you the tools you need
to create your own CORBA objects, implemented in Java.

The rest of this chapter is broken down roughly into three parts. In the first part, we'll look at an overview of
the CORBA architecture and how it allows you to create, export, access, and manage remote objects. In the
second part, we'll explore the details of creating your own CORBA objects. Finally, we'll look at how clients
can remotely access your CORBA objects.

4.1. The CORBA Architecture

At its core, the CORBA architecture for distributed objects shares many features with the architecture used by
Java RMI. A description of a remote object is used to generate a client stub interface and a server skeleton
interface for the object. A client application invokes methods on a remote object using the client stub. The

Chapter 4. Java IDL 85

method request is transmitted through the underlying infrastructure to the remote host, where the server
skeleton for the object is asked to invoke the method on the object itself. Any data resulting from the method
call (return values, exceptions) is transmitted back to the client by the communication infrastructure.

But that's where the similarities between CORBA and RMI end. CORBA was designed from the start to be a
language−independent distributed object standard, so it is much more extensive and detailed in its
specification than RMI is (or needs to be). For the most part, these extra details are required in CORBA
because it needs to support languages that have different built−in features. Some languages, like C++, directly
support objects, while others, like C, don't. The CORBA standard needs to include a detailed specification of
an object model so that nonobject−oriented languages can take advantage of CORBA. Java includes built−in
support for communicating object interfaces and examining them abstractly (using Java bytecodes and the
Java Reflection API). Many other languages do not. So the CORBA specification includes details about a
Dynamic Invocation Interface and a Dynamic Skeleton Interface, which can be implemented in languages that
don't have their own facilities for these operations. In languages that do have these capabilities, like Java,
there needs to be a mapping between the built−in features and the features as defined by the CORBA
specification.

The rest of this section provides an overview of the major components that make up the CORBA architecture:
the Interface Definition Language, which is how CORBA interfaces are defined; the Object Request Broker
(ORB), which is responsible for handling all interactions between remote objects and the applications that use
them; the Naming Service, a standard service in CORBA that lets remote clients find remote objects on the
network; and the inter−ORB communication that handles the low−level communication between processes in
a CORBA context.

4.1.1. Interface Definition Language

The Interface Definition Language provides the primary way of describing data types in CORBA. IDL is
independent of any particular programming language. Mappings, or bindings, from IDL to specific
programming languages are defined and standardized as part of the CORBA specification. At the time of this
writing, standard bindings for C, C++, Smalltalk, Ada, COBOL, and Java have been approved by the OMG.
Chapter 10, "IDL Reference", contains a complete description of IDL syntax.

The central CORBA functions, services, and facilities, such as the ORB and the Naming Service, are also
specified in IDL. This means that a particular language binding also provides the bindings for the core
CORBA functions to that language. Sun's Java IDL API follows the Java IDL mapping defined by the OMG.
This allows you to run your CORBA−based Java code in any compliant Java implementation of the CORBA
standard, provided you stick to standard elements of the Java binding. Note, however, that Sun's
implementation includes some nonstandard elements; they are highlighted in this chapter where appropriate.

4.1.2. Object Request Broker

The core of the CORBA architecture is the Object Request Broker, as shown in Figure 4−1. Each machine
involved in a CORBA application must have an ORB running in order for processes on that machine to
interact with CORBA objects running in remote processes. Object clients and servers make requests through
their ORBs; the ORB is responsible for making the requests happen or indicating why they cannot. The client
ORB provides a stub for a remote object. Requests made on the stub are transferred from the client's ORB to
the ORB servicing the implementation of the target object. The request is passed onto the implementation
through its skeleton interface.

Preface (Java Enterprise in a Nutshell)

4.1.1. Interface Definition Language 86

Figure 4−1. Basic CORBA architecture

4.1.3. The Naming Service

The CORBA Naming Service provides a directory naming structure for remote objects. The tree always starts
with a root node, and subnodes of the object tree can be defined. Actual objects are stored by name at the
leaves of the tree. Figure 4−2 depicts an example set of objects[2] registered within a Naming Service
directory. The fully qualified name of an object in the directory is the ordered list of all of its parent nodes,
starting from the root node and including the leaf name of the object itself. So, the full name of the object
labeled "Fred" is "living thing," "animal," "man," "Fred," in that order.

[2]Example adapted from Categories, by Aristotle. Please pardon the categorization "man,"
as opposed to "human." This is the typical translation of Aristotle's original Greek, perhaps
because political correctness wasn't in fashion in 350 B.C.

Figure 4−2. A naming directory

Each branch in the directory tree is called a naming context, and leaf objects have bindings to specific names.
The org.omg.CosNaming.NamingContext interface represents each branch in the naming directory.
Each NamingContext can be asked to find an object within its branch of the tree by giving its name
relative to that naming context. You can get a reference to the root context of the naming directory from an
ORB using the resolve_initial_references() method. The standard name for the Naming Service

Preface (Java Enterprise in a Nutshell)

4.1.2. Object Request Broker 87

is "NameService", so the following code snippet gets the root NamingContext:

ORB myORB = ORB.init(...);
org.omg.CORBA.Object nameRef =
 myORB.resolve_initial_references("NameService");
NamingContext nc = NamingContextHelper.narrow(nameRef);

Note that we have to narrow the Object reference to a NamingContext reference using the
NamingContextHelper.narrow() method. Even though Java has a cast operation in its syntax, there's
no guarantee in the Java IDL binding that the object reference returned by the
resolve_initial_references() method is the correct type, since there's no guarantee that the local
environment has access to the language−specific definition of the object's interface.

This narrow() operation highlights one of the key differences between RMI and CORBA. In the Java
environment, class bytecodes are portable, and all remote object types are objects that can be specified by
their full class names. An RMI client can automatically download the bytecodes for a remote stub from the
object server, if the class for the stub cannot be found locally (see Chapter 3, Remote Method Invocation, for
more details on the mechanics of remote class loading). CORBA is a language−independent remote object
scheme, so there is no portable way to specify a remote object's type when a client obtains a stub reference.
As a result, the stub reference is initially represented by a basic ObjectImpl object that knows how to
forward methods requests to its server object. The client application is forced to "cast" this stub to the correct
local type, using the appropriate narrow() method. In the Java mapping of IDL, this means calling the
narrow() method on the corresponding helper class. The narrow() method converts the reference,
making a type−specific stub interface that also includes the remote object reference information needed to
forward method requests to the actual object implementation.

4.1.4. Inter−ORB Communication

Version 2.0 (and later) of the CORBA standard includes specifications for inter−ORB communication
protocols that can transmit object requests between various ORBs running on the network. The protocols are
independent of the particular ORB implementations running at either end of the communication link. An ORB
implemented in Java can talk to another ORB implemented in C, as long as they're both compliant with the
CORBA standard and use a standard communication protocol. The inter−ORB protocol is responsible for
delivering messages between two cooperating ORBs. These messages might be method requests, return types,
error messages, etc. The inter−ORB protocol also deals with differences between the two ORB
implementations, like machine−level byte ordering and alignment. As a CORBA application developer, you
shouldn't have to deal directly with the low−level communication protocol between ORBs. If you want two
ORBs to talk to each other, you just need to be sure that they both speak a common, standard inter−ORB
protocol.

The Internet Inter−ORB Protocol (IIOP) is an inter−ORB protocol based on TCP/IP. TCP/IP is by far the
most commonly used network protocol on the Internet, so IIOP is the most commonly used CORBA
communication protocol. There are other standard CORBA protocols defined for other network environments,
however. The DCE Common Inter−ORB Protocol (DCE−CIOP), for example, allows ORBs to communicate
on top of DCE−RPC.

3.8. RMI over IIOP 4.2. Creating CORBA
Objects

Preface (Java Enterprise in a Nutshell)

4.1.4. Inter−ORB Communication 88

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 4: Java IDL

4.2. Creating CORBA Objects

Now that you understand the various parts of the CORBA architecture, let's walk through the creation of
CORBA objects using Java IDL. In order to distribute a Java object over the network using CORBA, you
have to define your own CORBA−enabled interface and it implementation. This involves doing the following:

•
Writing an interface in the CORBA Interface Definition Language

•
Generating a Java base interface, plus a Java stub and skeleton class, using an IDL−to−Java compiler

•
Writing a server−side implementation of the Java interface in Java

4.2.1. An IDL Primer

This section provides a quick overview of writing a CORBA interface in IDL. A full reference on IDL syntax
is provided in Chapter 10, "IDL Reference", if you need more details.

The syntax of both Java and IDL were modeled to some extent on C++, so there are a lot of similarities
between the two in terms of syntax. Interfaces in IDL are declared much like classes in C++ and, thus, classes
or interfaces in Java. The major differences between IDL and Java are:

•
IDL is a declaration language. In IDL, you declare only the names and types for interfaces, data
members, methods, method parameters, etc. Method implementations are created in the
implementation language you choose (in this case Java), after you've used an IDL compiler to convert
your IDL interface to your target language.

•
IDL, like C++, includes non−class data structure definitions, like structs, unions, and enumerations.

•
Method parameters in IDL include modifiers that specify whether they are input, output, or
input/output variables. In Java, all primitive data types are passed by value, and all object data types
are passed by reference.

•

Preface (Java Enterprise in a Nutshell)

4.2. Creating CORBA Objects 89

An IDL file can include multiple public interfaces. Java allows multiple inner classes within a single
public class definition and multiple nonpublic classes per file, but only a single public class can be
defined in a given Java file.

•
Modules, which are similar to Java packages, can be nested within other modules in the same IDL
file, and interfaces in multiple distinct modules can be defined in the same IDL file. In Java, you can
define a class only within a single package in a single Java file.

4.2.1.1. Modules

Modules are declared in IDL using the module keyword, followed by a name for the module and an opening
brace that starts the module scope. Everything defined within the scope of this module (interfaces, constants,
other modules) falls within the module and is referenced in other IDL modules using the syntax
modulename::x. Suppose that you want all your classes to be contained in a module called corba, which is
part of a larger module called jen (an acronym for the title of this book). In IDL this is declared as follows:

// IDL
module jen {
 module corba {
 interface NeatExample ...
 };
};

If you want to reference the NeatExample interface in other IDL files, use the syntax
jen::corba::NeatExample, which may look familiar to readers who have done C++ programming.
Java programmers should note the semicolons following the closing braces on the module definitions, which
are required in IDL but not in Java. A semicolon is also required after the close of an interface definition.

4.2.1.2. Interfaces

Interfaces declared in IDL are mapped into classes or interfaces in Java. As I mentioned before, IDL is used
only to declare modules, interfaces, and their methods. Methods on IDL interfaces are always left abstract, to
be defined in the programming language you use to implement the interfaces.

The declaration of an interface includes an interface header and an interface body. The header specifies the
name of the interface and the interfaces it inherits from (if any). Here is an IDL interface header:

interface PrintServer : Server { ...

This header starts the declaration of an interface called PrintServer that inherits all the methods and data
members from the Server interface. An IDL interface can inherit from multiple interfaces; simply separate
the interface names with commas in the inheritance part of the header.

4.2.1.3. Data members and methods

The interface body declares all the data members (or attributes) and methods of an interface. Data members
are declared using the attribute keyword. At a minimum, the declaration includes a name and a type (see
Chapter 10, "IDL Reference" for a complete list of the basic data types available in IDL and the mapping to
Java types). The declaration can optionally specify whether the attribute is read−only or not, using the
readonly keyword. By default, every attribute you declare is readable and writable (for Java, this means
that the IDL compiler generates public read and write methods for it). Here is an example declaration for a

Preface (Java Enterprise in a Nutshell)

4.2.1.1. Modules 90

read−only string attribute:

readonly attribute string myString;

You declare a method by specifying its name, return type, and parameters, at a minimum. You can also
optionally declare exceptions the method might raise, the invocation semantics of the method, and the context
for the method call (see Chapter 10, "IDL Reference" for more details). Here is the declaration for a simple
method that returns a string:

string parseString(in string buffer);

This declares a method called parseString() that accepts a single string argument and returns a
string value.

4.2.1.4. A complete IDL example

Now let's tie all these basic elements together. Here's a complete IDL example that declares a module within
another module, which itself contains several interfaces:

module OS {
 module services {
 interface Server {
 readonly attribute string serverName;
 boolean init(in string sName);
 };

 interface Printable {
 boolean print(in string header);
 };

 interface PrintServer : Server {
 boolean printThis(in Printable p);
 };
 };
};

The first interface, Server, has a single read−only string attribute and an init() method that accepts a
string and returns a boolean. The Printable interface has a single print() method that accepts a
string header. Finally, the PrintServer interface extends the Server interface (hence inheriting all its
methods and attributes) and adds a printThis() method that accepts a Printable object and returns a
boolean. In all cases, we've declared our method arguments as input−only (i.e., pass−by−value), using the
in keyword.

4.2.2. Turning IDL Into Java

Once you've described your remote interfaces in IDL, you need to generate Java classes that act as a starting
point for implementing those remote interfaces in Java using an IDL−to−Java compiler. Every standard
IDL−to−Java compiler generates the following Java classes from an IDL interface:

•
A Java interface with the same name as the IDL interface. This can act as the basis for a Java
implementation of the interface (but you have to write it, since IDL doesn't provide any details about
method implementations).

•

Preface (Java Enterprise in a Nutshell)

4.2.1.4. A complete IDL example 91

A helper class whose name is the name of the IDL interface with "Helper" appended to it (e.g.,
ServerHelper). The primary purpose of this class is to provide a static narrow() method that
can safely cast CORBA Object references to the Java interface type. The helper class also provides
other useful static methods, such as read() and write() methods that allow you to read and write
an object of the corresponding type using I/O streams.

•
A holder class whose name is the name of the IDL interface with "Holder" appended to it (e.g.,
ServerHolder). This class is used when objects with this interface are used as out or inout
arguments in remote CORBA methods. Instead of being passed directly into the remote method, the
object is wrapped with its holder before being passed. When a remote method has parameters that are
declared as out or inout, the method has to be able to update the argument it is passed and return
the updated value. The only way to guarantee this, even for primitive Java data types, is to force out
and inout arguments to be wrapped in Java holder classes, which are filled with the output value of
the argument when the method returns.

The idltojava tool provided by Sun[3] can also generate two other classes:

[3] Although Java IDL is a standard part of Java 1.2, Sun still offers only the early−access
version of its idltojava compiler, which you have to download separately from
http://developer.java.sun.com/developer/earlyAccess/jdk12/idltojava.html.

•
A client stub class, called _interface−nameStub, that acts as a client−side implementation of the
interface and knows how to convert method requests into ORB requests that are forwarded to the
actual remote object. The stub class for an interface named Server is called _ServerStub.

•
A server skeleton class, called _interface−nameImplBase, that is a base class for a server−side
implementation of the interface. The base class can accept requests for the object from the ORB and
channel return values back through the ORB to the remote client. The skeleton class for an interface
named Server is called _ServerImplBase.

So, in addition to generating a Java mapping of the IDL interface and some helper classes for the Java
interface, the idltojava compiler also creates subclasses that act as an interface between a CORBA client and
the ORB and between the server−side implementation and the ORB. Chapter 12, "Java IDL Tools", provides a
complete reference for Sun's idltojava compiler. We use this IDL−to−Java tool in the examples in this
chapter. Remember, though, that any Java mapping of the CORBA standard should include its own
IDL−to−Java compiler to generate these Java classes from the IDL interfaces you write. In addition, the Java
that these tools generate should be compliant with the standard IDL mapping for Java, published by the OMG
in the CORBA standard.

4.2.2.1. A simple server class

The IDL interface shown in Example 4−1 is the IDL equivalent of the Java class we defined in Example 4−3
in the RMI chapter. The interface, named ThisOrThatServer, declares two methods, doThis() and
doThat(). As in the earlier RMI example, each method accepts a string that specifies what to do and returns
a string that indicates what was done. Since this is IDL, the string data type is string, and the parameters
are declared as in arguments, since we want them to be passed into the remote method by value.

Preface (Java Enterprise in a Nutshell)

4.2.2.1. A simple server class 92

http://developer.java.sun.com/developer/earlyAccess/jdk12/idltojava.html

Example 4−1. A ThisOrThatServer Declared in IDL

 interface ThisOrThatServer {
 string doThis(in string what);
 string doThat(in string what);
 };

We can run the idltojava compiler on this IDL interface using the following command line (Windows
version):

D:\>idltojava −fno−cpp ThisOrThatServer.idl

This command creates the five Java classes I just described: a Java version of the interface, a helper class, a
holder class, a client stub, and a server skeleton. I had to use the −fno−cpp option on my machine because I
don't have a C preprocessor installed for idltojava to use; this option tells the IDL compiler to use an alternate
parsing scheme while it converts the IDL to Java (see Chapter 12, "Java IDL Tools" for complete details on
the command−line arguments for idltojava).

The compiler creates the Java interface shown in Example 4−2, in a file named ThisOrThatServer.java. The
mapping is fairly straightforward for this simple example. The interface declaration is mapped directly to a
Java interface declaration, with the interface extending the org.omg.CORBA.Object interface. If we had
included any module definitions in our IDL specification, they would have been mapped into a package
statement at the beginning of the Java file. The IDL string type is converted into the Java String type,
and, since they don't require any special handling in a remote method call, the in method parameters in IDL
are mapped into regular Java input arguments.

Example 4−2. Java Interface for ThisOrThatServer

/*
 * File: ./THISORTHATSERVER.JAVA
 * From: THISORTHATSERVER.IDL
 * Date: Thu Apr 15 21:42:40 1999
 * By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
 */

public interface ThisOrThatServer
 extends org.omg.CORBA.Object {
 String doThis(String what)
;
 String doThat(String what)
;
}

You might notice that the IDL compiler has put the semicolons following the method declarations on separate
lines. To my knowledge, there's no good reason for this; it's just a quirk of the idltojava tool provided by Sun.

4.2.2.2. The helper class

The compiler also generates a helper class, called ThisOrThatServerHelper, as shown in Example
4−3. As I mentioned earlier, the helper class has methods that let you read and write ThisOrThatServer
objects to and from CORBA I/O streams, get the TypeCode for a ThisOrThatServer object, and, most
importantly, safely narrow a CORBA Object reference into a ThisOrThatServer reference.

Preface (Java Enterprise in a Nutshell)

4.2.2.1. A simple server class 93

Example 4−3. Helper Class for the ThisOrThatServer

/*
 * File: ./THISORTHATSERVERHELPER.JAVA
 * From: THISORTHATSERVER.IDL
 * Date: Thu Apr 15 21:42:40 1999
 * By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
 */

public class ThisOrThatServerHelper {
 // It is useless to have instances of this class
 private ThisOrThatServerHelper() { }

 public static void write(org.omg.CORBA.portable.OutputStream out,
 ThisOrThatServer that) {
 out.write_Object(that);
 }
 public static ThisOrThatServer
 read(org.omg.CORBA.portable.InputStream in) {
 return ThisOrThatServerHelper.narrow(in.read_Object());
 }
 public static ThisOrThatServer extract(org.omg.CORBA.Any a) {
 org.omg.CORBA.portable.InputStream in = a.create_input_stream();
 return read(in);
 }
 public static void insert(org.omg.CORBA.Any a, ThisOrThatServer that) {
 org.omg.CORBA.portable.OutputStream out = a.create_output_stream();
 write(out, that);
 a.read_value(out.create_input_stream(), type());
 }
 private static org.omg.CORBA.TypeCode _tc;
 synchronized public static org.omg.CORBA.TypeCode type() {
 if (_tc == null)
 _tc = org.omg.CORBA.ORB.init().create_interface_tc(id(),
 "ThisOrThatServer");
 return _tc;
 }
 public static String id() {
 return "IDL:ThisOrThatServer:1.0";
 }
 public static ThisOrThatServer narrow(org.omg.CORBA.Object that)
 throws org.omg.CORBA.BAD_PARAM {
 if (that == null)
 return null;
 if (that instanceof ThisOrThatServer)
 return (ThisOrThatServer) that;
 if (!that._is_a(id())) {
 throw new org.omg.CORBA.BAD_PARAM();
 }
 org.omg.CORBA.portable.Delegate dup =
 ((org.omg.CORBA.portable.ObjectImpl)that)._get_delegate();
 ThisOrThatServer result = new _ThisOrThatServerStub(dup);
 return result;
 }
}

In the implementation of the narrow() method, we can see how the helper class converts a CORBA
Object reference to a reference to a specific type. First, the narrow() method checks to see if the
Object parameter is already a ThisOrThatServer object (using the Java instanceof operator), then
it checks to see if the object passed in is a null pointer. If neither case is true, the Object should contain a
delegate of a ThisOrThatServer object. Every CORBA stub for a remote object contains an internal
Delegate object (from the org.omg.CORBA.portable package) that's used by the stub to invoke
remote requests. If the object's delegate is a ThisOrThatServer (checked using the objects's _is_a()
method), the delegate is used to create a new ThisOrThatServer stub. We'll take a look at the

Preface (Java Enterprise in a Nutshell)

4.2.2.2. The helper class 94

ThisOrThatServer stub class in a bit. If the object doesn't contain a delegate, the is_a() method
returns false, and the narrow() method throws a BAD_PARAM exception.

4.2.2.3. The holder class

The compiler generates a holder class for the ThisOrThatServer class, as shown in Example 4−4. The
holder class, called ThisOrThatServerHolder, is a wrapper used when ThisOrThatServer objects
are called for as out or inout arguments in an IDL method. All holder classes implement the
Streamable interface from the org.omg.CORBA.portable package. An ORB knows to pass
Streamable objects in method calls using the _read() and _write() methods of the Streamable
object; these methods handle whatever serialization the object needs.

Example 4−4. Holder Class for the ThisOrThatServer

/*
 * File: ./THISORTHATSERVERHOLDER.JAVA
 * From: THISORTHATSERVER.IDL
 * Date: Thu Apr 15 21:42:40 1999
 * By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
 */

public final class ThisOrThatServerHolder
 implements org.omg.CORBA.portable.Streamable{
 // instance variable
 public ThisOrThatServer value;
 // constructors
 public ThisOrThatServerHolder() {
 this(null);
 }
 public ThisOrThatServerHolder(ThisOrThatServer __arg) {
 value = __arg;
 }

 public void _write(org.omg.CORBA.portable.OutputStream out) {
 ThisOrThatServerHelper.write(out, value);
 }

 public void _read(org.omg.CORBA.portable.InputStream in) {
 value = ThisOrThatServerHelper.read(in);
 }

 public org.omg.CORBA.TypeCode _type() {
 return ThisOrThatServerHelper.type();
 }
}

A holder contains a single instance of a CORBA object (a ThisOrThatServer, in this example). When a
holder object is passed into a remote method call as an inout argument, its _write() method is invoked.
This method takes the object contained by the holder class, serializes it, and streams it through the ORB to the
remote object server. When the remote method call returns, the holder's _read() method is invoked to read
the (possibly updated) object from the remote object server, and the holder object replaces its internal value
with the updated object.

As an example of using the holder class, let's define another IDL interface that includes a method that uses a
ThisOrThatServer as an inout parameter:

// IDL

Preface (Java Enterprise in a Nutshell)

4.2.2.3. The holder class 95

interface ServerManager {
 boolean updateServer(inout ThisOrThatServer server);
};

The Java interface generated from this IDL interface uses the holder class for the ThisOrThatServer as
the type for the corresponding Java method parameter:

// Java
public interface ServerManager
 extends org.omg.CORBA.Object {
 boolean updateServer(ThisOrThatServerHolder server)
;
}

The ThisOrThatServerHolder class has public constructors that let you create a holder from an
existing ThisOrThatServer object, so that you can easily pass the object into this kind of method.

4.2.2.4. The client and server stubs

The idltojava compiler generates two more classes from our interface definition: a client stub
(_ThisOrThatServerStub) and a base class for a server implementation
(_ThisOrThatServerImplBase). The client stub, shown in Example 4−5, implements the generated
ThisOrThatServer Java interface and acts as a client−side proxy for a remote ThisOrThatServer
object. The stub has implementations of the doThis() and doThat() methods from the interface. Each
implementation just generates a request to the ORB to make a remote method call on the server−side object
that this stub is a proxy for. The method arguments are bundled up and passed along with the request to the
ORB. I'm not going to go into the details of the stub's method implementations because you shouldn't have to
worry much about them, but it is enlightening to look at the source code to see how your remote objects do
what they do in detail, using the core CORBA functions.

Example 4−5. ThisOrThatServer Stub Class Generated by IDL Compiler

/*
 * File: ./_THISORTHATSERVERSTUB.JAVA
 * From: THISORTHATSERVER.IDL
 * Date: Thu Apr 15 21:42:40 1999
 * By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
 */

public class _ThisOrThatServerStub
 extends org.omg.CORBA.portable.ObjectImpl
 implements ThisOrThatServer {

 public _ThisOrThatServerStub(org.omg.CORBA.portable.Delegate d) {
 super();
 _set_delegate(d);
 }

 private static final String _type_ids[] = {
 "IDL:ThisOrThatServer:1.0"
 };

 public String[] _ids() { return (String[]) _type_ids.clone(); }

 // IDL operations
 // Implementation of ::ThisOrThatServer::doThis
 public String doThis(String what)
 {
 org.omg.CORBA.Request r = _request("doThis");

Preface (Java Enterprise in a Nutshell)

4.2.2.4. The client and server stubs 96

 r.set_return_type(org.omg.CORBA.ORB.init().get_primitive_tc(
 org.omg.CORBA.TCKind.tk_string));
 org.omg.CORBA.Any _what = r.add_in_arg();
 _what.insert_string(what);
 r.invoke();
 String __result;
 __result = r.return_value().extract_string();
 return __result;
 }
 // Implementation of ::ThisOrThatServer::doThat
 public String doThat(String what)
 {
 org.omg.CORBA.Request r = _request("doThat");
 r.set_return_type(org.omg.CORBA.ORB.init().get_primitive_tc(
 org.omg.CORBA.TCKind.tk_string));
 org.omg.CORBA.Any _what = r.add_in_arg();
 _what.insert_string(what);
 r.invoke();
 String __result;
 __result = r.return_value().extract_string();
 return __result;
 }
};

When a Java client gets a reference to a remote ThisOrThatServer object, it is given one of these stub
objects. The client can make method calls on the stub object, and the stub converts these calls into
corresponding requests to the ORB to invoke the methods on the remote object and send back the results.

The base class for the server implementation, shown in Example 4−6, accepts requests that are intended for
the server implementation from the ORB. The base class converts a request into a method call on the server
object and then takes the result of the call and gives it back to the ORB to send to the client stub. All this work
is done in the server skeleton's invoke() method. The invoke() method figures out which method is
being called, unpacks the method arguments (if any) from the request, and calls the method directly on itself.

Note that the server skeleton doesn't have implementations of the doThis() or doThat() methods
declared in the interface. The idltojava compiler doesn't do everything for you; you still need to create a server
implementation for your interface.

Example 4−6. Implementation Base Class for ThisOrThatServer

/*
 * File: ./_THISORTHATSERVERIMPLBASE.JAVA
 * From: THISORTHATSERVER.IDL
 * Date: Thu Apr 15 21:42:40 1999
 * By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
 */

public abstract class _ThisOrThatServerImplBase extends
 org.omg.CORBA.DynamicImplementation implements ThisOrThatServer {
 // Constructor
 public _ThisOrThatServerImplBase() {
 super();
 }
 // Type strings for this class and its superclasses
 private static final String _type_ids[] = {
 "IDL:ThisOrThatServer:1.0"
 };

 public String[] _ids() { return (String[]) _type_ids.clone(); }

 private static java.util.Dictionary _methods = new java.util.Hashtable();
 static {

Preface (Java Enterprise in a Nutshell)

4.2.2.4. The client and server stubs 97

 _methods.put("doThis", new java.lang.Integer(0));
 _methods.put("doThat", new java.lang.Integer(1));
 }
 // DSI Dispatch call
 public void invoke(org.omg.CORBA.ServerRequest r) {
 switch (((java.lang.Integer) _methods.get(r.op_name())).intValue()) {
 case 0: // ThisOrThatServer.doThis
 {
 org.omg.CORBA.NVList _list = _orb().create_list(0);
 org.omg.CORBA.Any _what = _orb().create_any();
 _what.type(org.omg.CORBA.ORB.init().get_primitive_tc(
 org.omg.CORBA.TCKind.tk_string));
 _list.add_value("what", _what, org.omg.CORBA.ARG_IN.value);
 r.params(_list);
 String what;
 what = _what.extract_string();
 String ___result;
 ___result = this.doThis(what);
 org.omg.CORBA.Any __result = _orb().create_any();
 __result.insert_string(___result);
 r.result(__result);
 }
 break;
 case 1: // ThisOrThatServer.doThat
 {
 org.omg.CORBA.NVList _list = _orb().create_list(0);
 org.omg.CORBA.Any _what = _orb().create_any();
 _what.type(org.omg.CORBA.ORB.init().get_primitive_tc(
 org.omg.CORBA.TCKind.tk_string));
 _list.add_value("what", _what, org.omg.CORBA.ARG_IN.value);
 r.params(_list);
 String what;
 what = _what.extract_string();
 String ___result;
 ___result = this.doThat(what);
 org.omg.CORBA.Any __result = _orb().create_any();
 __result.insert_string(___result);
 r.result(__result);
 }
 break;
 default:
 throw new org.omg.CORBA.BAD_OPERATION(0,
 org.omg.CORBA.CompletionStatus.COMPLETED_MAYBE);
 }
 }
}

4.2.3. Writing the Implementation

So, we've written an IDL interface and generated the Java interface and support classes for it, including the
client stub and the server skeleton. Now we need to create concrete server−side implementations of all of the
methods on your interface. We do this by subclassing from the _xxxImplBase class generated by the
idltojava compiler. For our example, we need to subclass _ThisOrThatServerImplBase and
implement the doThis() and doThat() methods. The ThisOrThatServerImpl class in Example
4−7 does just that. Note that we've mimicked the method implementations from the RMI example in Chapter
3, "Remote Method Invocation". The only real difference is that this ThisOrThatServerImpl class
extends _ThisOrThatServerImplBase, while the one in Chapter 3, "Remote Method Invocation"
extends the UnicastRemoteObject.

Preface (Java Enterprise in a Nutshell)

4.2.3. Writing the Implementation 98

Example 4−7. Server−Side Implementation of ThisOrThatServer Interface

public class ThisOrThatServerImpl extends _ThisOrThatServerImplBase {

 public ThisOrThatServerImpl() {}

 // Remotely−accessible methods
 public String doThis(String what) {
 return doSomething("this", what);
 }

 public String doThat(String what) {
 return doSomething("that", what);
 }

 // Non−remote methods
 private String doSomething(String todo, String what) {
 String result = todo + " " + what + " is done.";
 System.out.println("Did " + todo + " to " + what);
 return result;
 }
}

4.1. The CORBA
Architecture

4.3. Putting It in the Public
Eye

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 4: Java IDL

4.3. Putting It in the Public Eye

We still need to do some work to make the Java implementation of our IDL interface available to remote
clients. There are two ways a client gets a reference to a remote object: it can get an initial object reference
using the ORB.resolve_initial_references() method and somehow find a reference to the object
through method calls on the initial object, or it can get a "stringified" reference to the remote object (an
Interoperable Object Reference) and convert it locally to a live object reference.

For the first case, the remote object needs to be registered in some way with a server−side ORB. In order for
you to register a remote object, you first have to get a reference to an ORB. We'll look at how to do that first,
then look at registering the remote object with a Naming Service. We discuss the stringified object reference
technique later in this chapter, when we look at how clients can access remote objects.

Preface (Java Enterprise in a Nutshell)

4.2.3. Writing the Implementation 99

4.3.1. Initializing the ORB

Since the ORB is so central to everything in a CORBA environment, the first thing any CORBA process
needs to do is get a reference to a local or remote ORB that it can use to find other objects, access CORBA
services, and handle remote method calls. A CORBA participant initializes its ORB reference by calling one
of the static init() methods on the ORB interface. Each of these methods returns an ORB object that can
find CORBA objects and services. The standard init() methods provided on an ORB are as follows (Sun's
Java IDL supports all of these standard initialization methods):

public static ORB ORB.init()
Returns a shared (static) ORB instance. Each call within the same runtime environment returns the
same ORB reference. If used within an applet context, the ORB has limited abilities.

public static ORB ORB.init(String[] args, Properties props)
Creates a new ORB using the given arguments and properties, as discussed in the following
paragraphs.

public static ORB ORB.init(Applet applet, Properties props)
Creates a new ORB within an applet context. The applet's codebase and host are used by the ORB as
the source of various services, such as the Naming Service.

There are two standard properties defined for an ORB that can be set in the call to init(), using either the
String arguments array or a Properties object. These are the ORBClass and ORBSingletonClass
properties, which specify the Java classes to use to create ORBs when an init() method is called.
(ORBSingletonClass is a shared ORB instance that is used mainly by generated classes to do things like
create TypeCode objects that identify the types of CORBA objects, while ORBClass is a fully functional
ORB.) You can use these properties to specify a custom ORB implementation. You may want to override the
default ORB implementation (com.sun.CORBA.iiop.ORB in Java IDL) with one of your own that has
particular performance characteristics. Or you may be running your CORBA code within an applet and want
to ensure that a valid ORB is available no matter what browser version your applet encounters.

Sun's Java IDL also adds two nonstandard properties: ORBInitialHost and ORBInitialPort. By
default, each ORB.init() method initializes an ORB that looks for its services locally. The current version
of the Java IDL API includes a single service, the Naming Service, and the ORB.init() methods assume
that the Naming Service is listening to port 900 on the local host. Java IDL adds these two nonstandard
properties to allow your local ORB to defer its services (naming, trading, etc.) to a remote ORB running on a
given host and listening on a given port. Be careful before you decide to depend on these properties in your
application or applet. They are only honored within Sun's Java IDL implementation of the CORBA standard.
If you want your CORBA application to be portable to any implementation of the standard IDL−to−Java
binding, and you want to use a remote Naming Service, you should stick to using a stringified reference to the
remote service, obtained through a secondary communication channel, as we'll discuss shortly.

Any of these properties can be specified within a Properties object or as a command−line option to a
Java application. As an example, if you want to specify a different host to use for finding services like the
Naming Service, one way to do this is to specify the host explicitly in the code that initializes the ORB, using
a Properties object:

Properties orbProps = new Properties();
orbProps.put("org.omg.CORBA.ORBInitialHost", "remote.orb.com");
ORB myOrb = ORB.init((String[])null, orbProps);

Alternately, you can take command−line arguments passed into your Java code and pass them to the
ORB.init() method to be parsed. Say we have a class named InitRemote with a main method
implemented as follows:

Preface (Java Enterprise in a Nutshell)

4.3.1. Initializing the ORB 100

public class InitRemote {
 public static void main(String[] argv) {
 try {
 ORB myOrb = ORB.init(argv, null);
 ...
 }
 }
}

In this case, we can specify any ORB properties on the command line using specific argument names:

orbhost% java InitRemote −ORBInitialHost remote.orb.com

Note that you can use the second ORB.init() method with both a String arguments array and a
Properties list specified, even though the examples here haven't shown that.

4.3.2. Registering with a Naming Service

One way to make a server object available to remote clients is to register it with the local CORBA Naming
Service under a specific name. A remote client can then get a reference to the root NamingContext for the
Naming Service and ask for the server object by name.

Example 4−8 shows a class whose main() method creates an instance of our ThisOrThatServer
implementation and then registers the object with the Naming Service. The program starts by getting a
reference to the local ORB. Then it asks the ORB for a reference to the Naming Service (using the standard
name "NameService") with the resolve_initial_references() method. This reference is actually
the root NamingContext, so we narrow the object reference using NamingContextHelper. We
register the ThisOrThatServer with the Naming Service by building an array of NameComponent
objects and then calling the rebind() method on the NamingContext. With the object registered, we go
into a wait state, waiting for client requests.

Example 4−8. Registering an Object with the Naming Service

import org.omg.CORBA.*;
import org.omg.CosNaming.*;

public class ServerNamingInit {
 public static void main(String[] argv) {
 try {
 // Obtain ORB reference
 ORB myORB = ORB.init(argv, null);

 // Make a ThisOrThatServer object to register with the ORB
 ThisOrThatServer impl = new ThisOrThatServerImpl();

 // Get the root name context
 org.omg.CORBA.Object objRef =
 myORB.resolve_initial_references("NameService");
 NamingContext nc = NamingContextHelper.narrow(objRef);

 // Register the local object with the Name Service
 NameComponent ncomp = new NameComponent("ThisOrThatServer", "");
 NameComponent[] name = {ncomp};
 nc.rebind(name, impl);

 // Go into a wait state, waiting for clients to connect
 System.out.println("Waiting for clients...");
 java.lang.Object dummy = new String("I wait...");
 synchronized (dummy) {

Preface (Java Enterprise in a Nutshell)

4.3.2. Registering with a Naming Service 101

 dummy.wait();
 }
 }
 catch (Exception e) {
 System.out.println("Error occurred while initializing server object:");
 e.printStackTrace();
 }
 }
}

Note that Example 4−8 imports the org.omg.CORBA and org.omg.CosNaming packages, which are the
two main packages in Java IDL. Because of the naming collision between java.lang.Object and
org.omg.CORBA.Object, we have to use the fully qualified names of these two classes when we use
them in CORBA applications that import org.orm.CORBA. Finally, note that this example binds the
ThisOrThatServer object within the root NamingContext using the name "ThisOrThatServer". We'll
see shortly how to create subcontexts and bind objects within them.

Before running this initialization of our CORBA object, we need to start a Naming Service on the host for the
object. A Naming Service daemon listens for Naming Service requests on a specific port and provides access
to the named object directory it manages. In Java IDL, the Naming Service is started using the tnameserv
command:

objhost% tnameserv &

With that done, we can run our initialization method to register our server object with the ORB:

objhost% java ServerNamingInit

4.3.3. Adding Objects to a Naming Context

Initially, a CORBA naming directory is empty, with only its root NamingContext and no objects. The
bind() method on a NamingContext object binds a server object to a name within the context. The
bind_new_context() method creates new subcontexts within a given NamingContext. Using a file
directory analogy, calling bind_new_context() on a NamingContext object is like making a new
subdirectory, while calling bind() puts a new file into a directory.

The Java IDL mapping uses arrays of NameComponent objects to represent the names of subcontexts
within a naming directory. Each NameComponent represents a component of the path to the named object.
A NameComponent contains id and kind string fields that serve to label the component in the path. Only
the id field is significant in determining name uniqueness. So a NameComponent with id set to "student"
and kind set to an empty string conflicts with a NameComponent with an id of "student" and kind
"doctoral," if both NameComponent objects are relative to the same subcontext. The NameComponent
class has a constructor that takes the id and kind values as arguments. Here's how to create a single
NameComponent:

NameComponent comp1 = new NameComponent("student", "doctoral");

A complete name path can be composed as an array of these objects:

NameComponent path[] = { comp1, comp2, ... };

The bind() method takes two arguments: an array of NameComponent objects as the relative name for
the object you're putting into the Naming Service and the server object itself. If you're binding a server object
using the root context of the Naming Service, the name is also the absolute name of the object in the overall
naming directory. If an object is already bound to the name, you can use the rebind() method with the

Preface (Java Enterprise in a Nutshell)

4.3.3. Adding Objects to a Naming Context 102

same arguments, causing the existing object bound to that name to be replaced by the new object. Note that
since the Naming Service is a CORBA service that can be accessed remotely by other CORBA clients, the
objects it contains need to be exportable to these remote clients. This means that only
org.omg.CORBA.Object references can be bound to names within a NamingContext.

The following code binds a few of our ThisOrThatServer objects to names within the root context of a
Naming Service:

// Get the root naming context
ORB myORB = ORB.init(...);
org.omg.CORBA.Object ref = myORB.resolve_initial_references("NameService");
NamingContext rootNC = NamingContextHelper.narrow(ref);

// Create a few servers
org.omg.CORBA.Object ref1 = new ThisOrThatServerImpl();
org.omg.CORBA.Object ref2 = new ThisOrThatServerImpl();

// Bind them to names in the Naming Service
NameComponent name1 = new NameComponent("server1", "");
NameComponent path1[] = { name1 };
NameComponent name2 = new NameComponent("server2", "");
NameComponent path2[] = { name2 };
rootNC.bind(path1, ref1);
rootNC.bind(path2, ref2);

Before you can bind an object to a name with multiple components, all the subcontexts (subdirectories) have
to be created using the bind_new_context() method on a NamingContext. The
bind_new_context() method takes an array of NameComponent objects as the relative path of the
new context and a reference to the NamingContext object to bind to that location in the overall directory.
A new NamingContext object can be created from an existing one by calling its new_context()
method. If a context already exists at the target name, you can use the rebind_context() method to
replace the existing context with a new one. This is useful for emptying out an entire subcontext without
removing each object individually.

Here is an example that binds some objects within various subcontexts:

// Get the root context, as before
NamingContext rootNC = ...;

// Create the components to the subcontext name
NameComponent comp1 = new NameComponent("servers", "");
NameComponent ttComp = new NameComponent("ThisOrThat", "");
NameComponent otherComp= new NameComponent("misc", "");

// Create each subcontext within the root context and bind them
// to their appropriate names
// Create a new context, bind it to the name "servers"
// off the root NamingContext
NamingContext context1 = rootNC.new_context();
NameComponent path1[] = { comp1 };
rootNC.bind_context(path1, context1);
// Create another context, bind it to the name "servers, ThisOrThat"
NamingContext ttDir = rootNC.new_context();
NameComponent path2_1[] = { comp1, ttComp };
rootNC.bind_context(path2_1, ttDir);
// Create another context, bind it to the name "servers, misc"
NamingContext otherDir = rootNC.new_context();
NameComponent path2_2[] = { comp1, otherComp };
rootNC.bind_context(path2_2, otherDir);

// Now we can bind servers to a name within any of the new subcontexts
org.omg.CORBA.Object ttRef = new ThisOrThatServerImpl();

Preface (Java Enterprise in a Nutshell)

4.3.3. Adding Objects to a Naming Context 103

org.omg.CORBA.Object otherRef = new SomeOtherServerImpl();

// Bind the other server to the "misc" branch of the "servers" dir.
NameComponent yetAnotherComp = new NameComponent("SomeOtherServer", "");
NameComponent otherPath[] = { comp1, otherComp, yetAnotherComp };
rootNC.bind(otherPath, otherRef);

// Bind the ThisOrThatServer to the appropriate branch under "servers"
NameComponent tt1Comp = new NameComponent("server1", "");
NameComponent ttPath[] = { comp1, ttComp, tt1Comp };
rootNC.bind(ttPath, ttRef);

If you try to bind an object or a subcontext to a name within a context that hasn't been created yet, a
org.omg.CosNaming.NamingContextPackage.NotFound exception is thrown.

Note that names used in the bind() or rebind() methods are relative to the NamingContext object
that they're called on. This means we can bind our ThisOrThatServer object in the previous example to
the same absolute name within the directory by replacing the last two lines of the example with the following:

NameComponent relObjPath[] = { tt1Comp };
ttDir.bind(relObjPath, ttRef);

The ttDir context is bound to the {"servers", "ThisOrThat"} subdirectory, so binding an object
to the name {"server1"} within this context is equivalent to binding it to the full path {"servers",
"ThisOrThat", "server1"} from the root context. You can use similar shorthand when binding new
contexts within a directory. In other words, you can bind a context to a relative name within a subcontext,
instead of an absolute name within the root context.

4.2. Creating CORBA
Objects

4.4. Finding Remote
Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 4: Java IDL

4.4. Finding Remote Objects

Now that we have registered our remote object with an ORB, it is available to CORBA client applications.
This means we are done with the setup of the remote object and can turn our attention to client applications
that want to use the object. As I said earlier, every CORBA process needs a reference to an ORB. Once a
client application has access to an ORB, the next thing for it to do is find remote objects to interact with. But
before we can discuss finding remote objects, we need to talk a bit about what remote object references look

Preface (Java Enterprise in a Nutshell)

4.4. Finding Remote Objects 104

like under CORBA.

The whole point of CORBA is to be able to distribute objects across the network and then use them from any
point on the network. In order for a local process to make requests of a remote object, it needs to have some
kind of reference to that remote object. This object reference needs to contain enough information for the local
ORB to find the ORB serving the target object and send the request to the remote ORB using an agreed−upon
protocol.

In most situations, a CORBA client has a reference to a remote object in the form of an object stub. The stub
encapsulates the actual object reference, providing what seems like a direct interface to the remote object in
the local environment. If the client is implemented in C++, Java, or some other object−oriented language, the
object stub is a native object in that language. Other, nonobject languages represent remote object references
in whatever way is dictated in the CORBA language binding for that language.

CORBA includes its own root object class, since some object programming languages may have different
inheritance structures. In the Java binding for CORBA, all CORBA object references (local or remote)
implement the org.omg.CORBA.Object interface. So, when a client of a remote CORBA object receives
a stub for the object, it actually gets an org.omg.CORBA.Object that serves as a proxy for the remote
object. The org.omg.CORBA.portable.ObjectImpl class provides default implementations for the
methods defined on org.omg.CORBA.Object. Java stubs and implementations for CORBA objects are
actually subclassed from the ObjectImpl class. Internally, ObjectImpl deals with delegating requests on
the object to the proper target object, whether it is a remote object or a local one. ObjectImpl implements
the org.omg.CORBA.Object interface and extends the java.lang.Object class, so it truly provides
a joining point between the CORBA and Java object environments.

A reference to an org.omg.CORBA.Object object that is connected to a remote object is all a client
needs to invoke methods on a remote object. Using the Dynamic Invocation Interface defined by the CORBA
standard, you can create method requests and send them to the remote object through the Object interface,
as we'll discuss later in this chapter. If your client has the actual Java interface for the remote object available
at compile time, however, you probably want to convert the Object reference into a reference of that type,
so that you can use the interface to call remote methods directly.

Converting an org.omg.COBRA.Object to a specific remote interface is done by narrowing the object
reference to the corresponding interface type, using type−specific helper classes to do the narrowing. We've
already seen how the Java IDL compiler, idltojava, creates a helper class from an IDL interface (e.g.,
ThisOrThatServerHelper). The helper class includes a narrow() method that converts an
org.omg.CORBA.Object reference to a reference of the given type. If the object reference you pass into
the narrow() method is not the type the helper expects, an org.omg.CORBA.BAD_PARAM exception is
thrown. This is a RuntimeException, so it doesn't have to be caught by your code, unless you're trying to
test the type of a CORBA reference for some reason.

With that background material out of the way, let's discuss actually finding remote object references. There
are many ways that an object reference can find its way through the ORB into a client application, but they all
boil down to one of these methods:

•
Getting an initial reference directly from the ORB

•
Getting an object reference through a method call on another remote object reference

•
Using a stringified object reference obtained through a secondary channel and converting it to a live
object reference

Preface (Java Enterprise in a Nutshell)

4.4. Finding Remote Objects 105

4.4.1. Initial ORB References

In addition to providing core object communication services, an ORB can also provide additional services,
such as a Naming Service, a Trading Service, a Security Service, etc. These services are represented as
CORBA objects and are available through the ORB automatically, based on how it is configured. The ORB
interface provides the resolve_initial_references() method for obtaining references to these
initial objects. Each CORBA service the ORB supports is represented by one or more object interfaces, and
these objects can be asked for using standard names. As we saw earlier when we registered a remote object,
the standard name for the Naming Service is "NameService."

Once you've initialized your ORB reference, you can ask the ORB for a list of the names of its initial objects
using the list_initial_references() method:

String names[] = myORB.list_initial_references();

This method returns an array of String objects that contains the names of all initial objects in the ORB.
These names can then be used to get references to the objects through the
resolve_initial_references() method.

Here's how we used resolve_initial_references() to obtain a reference to the Naming Service in
Example 4−8:

ORB myORB = ORB.init(...);
org.omg.CORBA.Object nameRef =
 myORB.resolve_initial_references("NameService");

Although the list_initial_references() and resolve_initial_references() methods
are a standard element of the ORB interface, how the ORB implements these initial object references is not
standardized. Sun's Java IDL implementation stores an ORB's initial object references as root objects in its
Naming Service.

4.4.2. Getting Objects from Other Remote Objects

In addition to getting remote objects directly from an ORB reference, a client can obtain remote objects from
other remote objects. A common variation on this approach is to get a reference to a Naming Service object
and then look up objects in the naming directory by name. Another variation (that we won't cover in detail in
this section) is to obtain an application−specific object reference, either directly from the ORB or through the
Naming Service, and use this initial reference to request other objects. An object used in this way in a
distributed application is sometimes called a factory object.

4.4.2.1. Using a naming context

Once you have a reference to a Naming Service that you can narrow to a NamingContext reference, you
can look up objects within the context by passing names to its resolve() method. As before, when we
were binding objects, a name is represented by an ordered array of NameComponent objects. Each
NameComponent (both the id field and the kind field) must exactly match the path to an object within the
context in order to successfully find the object. If an object is not found at a specified name, an
org.omg.CosNaming.NamingContextPackage.NotFound exception is thrown.

So, if a client wants to find the object we stored in the last binding example, it needs to do the following
(assuming that it already has a reference to the root naming context of the Naming Service):

Preface (Java Enterprise in a Nutshell)

4.4.1. Initial ORB References 106

// Set up path
NameComponent comp1 = new NameComponent("servers", "");
NameComponent comp2 = new NameComponent("ThisOrThat", "");
NameComponent serverName = new NameComponent("server1", "");
NameComponent objPath[] = { comp1, comp2, serverName };

// Find the object in the directory
org.omg.CORBA.Object objRef = rootNC.resolve(objPath);
ThisOrThatServer server = ThisOrThatServerHelper.narrow(objRef);

Note the use of the narrow() method on ThisOrThatServerHelper to "cast" the generic object
reference to a ThisOrThatServer object.

You can also use the resolve() method on a NamingContext to get a reference to a subcontext. Just
use the path to the context itself and narrow() it to a NamingContext reference:

NameComponent ttPath[] = { comp1, comp2 };
org.omg.CORBA.Object ncRef = rootNC.resolve(ttPath);
NamingContext ttContext = NamingContextHelper.narrow(ncRef);

4.4.2.2. Using multiple naming services

Suppose there are objects stored in multiple Naming Services (representing, for example, multiple
organizations offering CORBA−based services) that you want to access from your client. One way to do this
is to initialize an ORB reference for each one. Sun's Java IDL lets you specify an initial host and port for an
ORB when you initialize it. So, if each independent Naming Service has its own ORB behind it, you can
simply get a reference to each ORB and ask it for a reference to its Naming Service:

String host1 = "orbhost1.net";
int port1 = 1234;
String host2 = "orghost2.net";
int port2 = 2345;

// Initialize the first ORB reference
Properties props = new Properties();
props.put("org.omg.CORBA.ORBInitialHost", host1);
props.put("org.omg.CORBA.ORBInitialPort", String.valueOf(port1));
ORB orb1 = ORB.init((String[])null, props);

// Initialize another ORB reference
props.put("org.omg.CORBA.ORBInitialHost", host2);
props.put("org.omg.CORBA.ORBInitialPort", String.valueOf(port2));
ORB orb2 = ORB.init((String[])null, props);

// Get references to the Naming Services
org.omg.CORBA.Object nc1Ref =
 orb1.resolve_initial_references("NameService");
org.omg.CORBA.Object nc2Ref =
 orb2.resolve_initial_references("NameService");

// Narrow the Naming Service references to NamingContexts and use them
...

The only problem with this approach is that it depends on using a nonstandard feature of Sun's Java
implementation of the CORBA standard. If you try using this same code against a different Java
implementation of CORBA, it probably won't work.

Another option is to have one Naming Service hold references to other Naming Services located elsewhere
on the network. As we've seen, the interface to a Naming Service is a NamingContext object reference that

Preface (Java Enterprise in a Nutshell)

4.4.2.2. Using multiple naming services 107

represents the root of the naming tree for that name directory. Since the NamingContext is itself a
CORBA−exported object, one Naming Service can hold a reference to a NamingContext from another
Naming Service, acting as a bridge to the other Naming Service and its objects. To do this, you first have to
run some code on the server that is going to act as the bridge. This code gets a reference to the local Naming
Service and stores references to remote Naming Services in the local directory:

// Get the local ORB and main NamingContext
ORB myORB = ORB.init(...);
org.omg.CORBA.Object ncRef =
 orb.resolve_initial_references("NameService");
NamingContext localNC = NamingContextHelper.narrow(ncRef);

// Create a new subcontext to hold the remote contexts
NameComponent nodeName = new NameComponent("RemoteContexts", "");
NameComponent path[] = {nodeName};
NamingContext ncNode = localNC.bind_new_context(path);

// Get a reference to a remote Naming Service
// using Sun's non−standard ORB properties
Properties remoteORBProps = new Properties();
remoteORBProps.put("org.omg.CORBA.ORBInitialHost", "remote.orb.com");
ORB remoteORB = ORB.init((String[])null, remoteORBProps);
org.omg.CORBA.Object remoteNCRef =
 remoteORB.resolve_initial_references("NameService");
NamingContext remoteNC = NamingContextHelper.narrow(remoteNCRef);

// Store the remote reference in the local context
NameComponent sub = new NameComponent("Naming1", "");
NameComponent path2[] = {nodeName, sub};
localNC.bind(path2, remoteNC);

With this done, a remote client can get a reference to the main Naming Service directory and then look up
other remote directories within the bridge directory:

public class NamingClient {
 public static void main(String argv[]) {
 ORB orb = ORB.init(argv, null);
 org.omg.CORBA.Object ref = null;
 try {
 ref = orb.resolve_initial_references("NameService");
 }
 catch (InvalidName invN) {
 System.out.println("No primary NameService available.");
 System.exit(1);
 }
 NamingContext nameContext = NamingContextHelper.narrow(ref);
 NameComponent topNC = new NameComponent("RemoteContexts", "");
 NameComponent subNC = new NameComponent("Naming1", "");
 NameComponent path[] = {topNC, subNC };
 try {
 org.omg.CORBA.Object ref2 = nameContext.resolve(path);
 NamingContext nameContext2 = NamingContextHelper.narrow(ref2);
 System.out.println("Got secondary naming context...");
 }
 catch (Exception e) {
 System.out.println("Failed to resolve secondary NameService:");
 e.printStackTrace();
 }
 }
}

Using one Naming Service as a bridge to other remote named object directories is a useful tool to help
manage a constellation of remote objects, but the same question arises: how do we get references to the
remote NamingContext objects in order to store them in the bridge directory? In the previous bridge

Preface (Java Enterprise in a Nutshell)

4.4.2.2. Using multiple naming services 108

example, we're still using the nonstandard ORB properties provided by Sun's Java IDL implementation to
initialize references to multiple remote ORBs (and their Naming Services). What we really want to do is
initialize the bridge directory in a way that falls within the CORBA standard. One way is to do this is to use
stringified object references, which are the topic of the next section.

4.4.3. Stringified Object References

As we've seen, Sun's implementation of Java IDL provides a nonstandard way to initialize an ORB to
reference a remote Naming Service, so that one of the ORB's initial references is to the root context of the
remote Naming Service. But what do you do if you want an object from a remote Naming Service, and your
Java IDL implementation doesn't provide a way to directly initialize a reference to the remote service? Or,
worse yet, what if the object that you want isn't stored in a Naming Service or available through any other
CORBA service? How can your client get a reference to the object?

The CORBA standard comes to the rescue again. Part of the standard, called Interoperable Object References
(IORs), includes a syntax for representing a remote object reference in the form of a printable string of
characters. This stringified object reference includes enough information for a remote CORBA client to locate
the object's home ORB and convert the string to a runtime stub reference to the object. Two methods on the
ORB interface, object_to_string() and string_to_object(), let you convert a CORBA object
reference to string form and back again.

Example 4−9 shows how to create an instance of our server implementation of the ThisOrThatServer
interface, register it with the ORB, and generate a stringified object reference from the CORBA server object.
A stringified reference to a remote object is called an Interoperable Object Reference (IOR) because it uses a
format for object references that can be freely distributed between ORBs running a cross the network. In order
for the IOR you generate to be acceptable to another ORB, both your ORB and the remote ORB have to be
using the same inter−ORB communication protocol (IIOP, DCE−CIOP, etc.). In this example, our client and
host are both running IIOP.

Example 4−9. Registering an Object/Getting Its Stringified Object Reference

import org.omg.CORBA.*;

public class ServerInit {
 public static void main(String[] argv) {
 try {
 // Obtain ORB reference
 ORB myORB = ORB.init(argv, null);

 // Make a ThisOrThatServer object to register with the ORB
 ThisOrThatServer impl = new ThisOrThatServerImpl();

 // Register the local object with the ORB
 myORB.connect(impl);

 // Get a stringified reference to the object
 String sor = myORB.object_to_string(impl);
 System.out.println("ThisOrThatServer IOR: " + sor);

 // Go into a wait state, waiting for clients to connect
 java.lang.Object dummy = new String("I wait...");
 synchronized (dummy) {
 dummy.wait();
 }
 }
 catch (Exception e) {
 System.out.println("Error occurred while initializing server object:");

Preface (Java Enterprise in a Nutshell)

4.4.3. Stringified Object References 109

 e.printStackTrace();
 }
 }
}

The ServerInit class contains a main() method that is intended to be run on the server host for our
remote object. The main() method first initializes a connection to the local ORB and then creates an
instance of the ThisOrThatServerImpl class. This instance serves as the server implementation of our
remote object. We create a stringified reference to the object using the object_to_string() method on
the ORB and then output the stringified reference, so that it can be copied and sent to clients. Finally, by
doing a synchronous wait() on a local object, the main() method goes into a wait state. This wait() is
necessary to keep the ORB running so that it can respond to client requests. If we let the main() method
exit, the server object we created is destroyed, and the IOR we generated is no longer valid.

A sample client for our object is shown in Example 4−10. The client accepts a stringified object reference as
a command−line argument to its main() method. Then it initializes a local ORB reference and uses its
string_to_object() method to convert the stringified reference to a live object reference. To do this,
the ORB parses the encoded information in the stringified reference, makes a connection with the remote
ORB serving the object, and generates a CORBA object reference for the client.

Example 4−10. A Client Utilizing a Stringified Object Reference

import org.omg.CORBA.*;

public class ServerStringClient {
 public static void main(String[] argv) {
 // Get the stringified reference from our command−line arguments
 String sor = null;
 if (argv.length > 0) {
 sor = argv[0];
 }
 else {
 System.out.println("You forgot the object reference...");
 System.exit(1);
 }

 try {
 // Obtain ORB reference
 ORB myORB = ORB.init(argv, null);

 // Convert the stringified reference into a live object reference
 org.omg.CORBA.Object objRef = myORB.string_to_object(sor);

 // Narrow the object reference to a ThisOrThatServer
 // using the ThisOrThatServerHelper
 ThisOrThatServer server = ThisOrThatServerHelper.narrow(objRef);

 // Invoke some methods on the remote object through the stub
 server.doThis("something");
 server.doThat("something else");
 }
 catch (Exception e) {
 System.out.println("Error occurred while initializing server object:");
 e.printStackTrace();
 }
 }
}

Before we can run the client, the remote object has to be registered with its ORB, so that we can get the
stringified object reference:

Preface (Java Enterprise in a Nutshell)

4.4.3. Stringified Object References 110

objhost% java ServerInit
ThisOrThatServer IOR: IOR:000000000000002349444c3a6a656e2f636f7262612f546869
734f72546861745365727665723a312e30000000000001000000000000003000010000000000
0a6c6f63616c686f737400043200000018afabcafe00000002496bb469000000080000000000
000000

Somehow, you have to get this IOR to the client host. You could embed the stringified object reference
within a hidden field in a HTML page, so that a Java client can access it using a URL object. Or you could set
up a simple server on a given port on your host that broadcasts the stringified object reference to whoever
makes a socket connection. Or you could email the string to a colleague, and she can type the stringified
reference into the startup command for her CORBA client. In any case, the client is invoked with the IOR as a
command−line option:

clienthost% java ServerStringClient IOR:000000000000002349444c3a6a656e2f636f
7262612f546869734f72546861745365727665723a312e300000000000010000000000000030
000100000000000a6c6f63616c686f737400043200000018afabcafe00000002496bb4690000
00080000000000000000

The client uses the argument to reconstitute a remote reference to the server object, so that it can invoke
methods on the remote object.

4.3. Putting It in the Public
Eye

4.5. What If I Don't Know
the Interface?

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 4: Java IDL

4.5. What If I Don't Know the Interface?

In the examples we've seen so far, we've always assumed that the Java interfaces for the remote objects are
available at compile time. But what happens if they aren't? You might get a reference to a CORBA Object
from a Naming Service, for example, and not know what interface that object implements. I mentioned earlier
that you can use an org.omg.CORBA.Object reference directly to make requests and exchange data with
its remote object.

The CORBA standard defines two complementary APIs for this purpose: the Dynamic Invocation Interface
(DII) that a client can use to make remote method requests of a server object, and the Dynamic Skeleton
Interface (DSI) that a server−side skeleton can use to forward method invocations to its server implementation
object. Both of these APIs provide the same essential function: a dynamic interface to an object whose
interface is not known at compile time. The DII offers this functionality to clients of CORBA objects, and the
DSI provides it to the server−side skeletons that bridge the object implementation with the ORB.

Preface (Java Enterprise in a Nutshell)

4.5. What If I Don't Know the Interface? 111

The DII and DSI may seem like sidebar topics in the CORBA world, but in reality they are at the heart of
CORBA and how it works. When we generate Java stubs and skeletons from IDL interfaces, the code that is
generated uses the DII and DSI to execute remote method calls. The details of how this is done are shielded
from you, the developer, by the Java interface you use to interact with the remote object. But it's still
worthwhile to understand how CORBA objects implement their distributed nature, especially in situations
where the Java interface for the remote object is not there, and you need to deal directly with these details.

In this section, we take a look at how the DII works and how you might use it in a client. We won't cover the
DSI in this book, since its practical uses are even more limited for the average developer. Note, however, that
the API of the DSI is analogous to that of the DII, so you shouldn't have much trouble mapping the following
explanation to the DSI as well.

4.5.1. Dynamic Invocation Interface

The Dynamic Invocation Interface provides abstract representations of remote method requests and their
arguments. In simple terms, this means it includes objects that represent remote method requests and
parameters that are passed with these method requests. Methods on these objects allow you to set the
parameters to the request, make the request, and get the results. DII's central classes are:

Request
A request to invoke a method on a remote object. Created by the client and issued through the ORB to
the server object.

NamedValue
A named parameter to a method request. Conceptually, this is a name tied to an Any value. The name
of the value must match the name of the parameter as specified in the IDL interface the remote object
satisfies.

NVList
A list of NamedValue parameters used to represent an argument list passed into a remote method
request.

Any
A general argument value. An Any object can contain the Java equivalent of any basic IDL type or an
Object that can be described in IDL.

Context
A list of NamedValue objects used to specify any details of the client environment that shouldn't be
passed as method arguments.

Once you get an org.omg.CORBA.Object reference to a remote object (using any of the approaches
we've already covered), you can create and issue a method request to the object by building a parameter list
for the method call, making a NamedValue object to hold the result, making a Context object and putting
any useful environment values in it, and then using all of these items to create a Request object that
corresponds to a particular method on the object. Example 4−11 shows a sample DII client that gets a
reference to a remote object through a Naming Service and then makes a dynamic call to its doThis()
method.

Example 4−11. Client Using DII to Make Remote Method Call

import org.omg.CORBA.*;
import org.omg.CosNaming.*;

Preface (Java Enterprise in a Nutshell)

4.5.1. Dynamic Invocation Interface 112

public class DIISimpleClient {
 public static void main(String argv[]) {
 ORB myORB = ORB.init(argv, null);
 ORB singleORB = ORB.init();
 try {
 // Get a reference to the object
 org.omg.CORBA.Object ncRef =
 myORB.resolve_initial_references("NameService");
 NamingContext nc = NamingContextHelper.narrow(ncRef);
 NameComponent nComp = new NameComponent("ThisOrThatServer", "");
 NameComponent[] path = {nComp};
 org.omg.CORBA.Object objRef = nc.resolve(path);

 // Now make a dynamic call to the doThis method. The first step is
 // to build the argument list. In this case, there's a single String
 // argument to the method, so create an NVList of length 1. Next
 // create an Any object to hold the value of the argument and insert
 // the desired value. Finally, wrap the Any object with a NamedValue
 // and insert it into the NVList, specifying that it is an input
 // parameter.
 NVList argList = myORB.create_list(1);
 Any arg1 = myORB.create_any();
 arg1.insert_string("something");
 NamedValue nvArg =
 argList.add_value("what", arg1, org.omg.CORBA.ARG_IN.value);

 // Create an Any object to hold the return value of the method and
 // wrap it in a NamedValue
 Any result = myORB.create_any();
 result.insert_string("dummy");
 NamedValue resultVal = myORB.create_named_value("result", result,
 org.omg.CORBA.ARG_OUT.value);

 // Get the local context from the ORB.
 // NOTE: This call does not work in Java 1.2, and returns a
 // NOT_IMPLEMENTED exception. To make this work in Java 1.2, simply
 // remove this call to get_default_context(), and pass a null pointer
 // into the _create_request() call below. This example should work
 // as is with any compliant Java CORBA environment, however.
 Context ctx = myORB.get_default_context();

 // Create the method request using the default context, the name of
 // the method, the NVList argument list, and the NamedValue for the
 // result. Then invoke the method by calling invoke() on the Request.
 Request thisReq =
 objRef._create_request(ctx, "doThis", argList, resultVal);
 thisReq.invoke();

 // Get the return value from the Request object and output results.
 result = thisReq.result().value();
 System.out.println("doThis() returned: " + result.extract_string());
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Note that in most situations you will have the Java interface for the remote object available in your client
along with its helper class, so you'll be able to narrow the Object reference to a specific type. One exception
might be if you're building some kind of software development tool, and you want to provide a dynamic
execution utility for the CORBA code being developed. The previous example demonstrates how a CORBA
method call can be carried out at this lower level, in case you ever find it necessary to do so. And when you're
trying to fix a problem with your CORBA application, it's always better to understand what's going on under
the hood, so to speak.

Preface (Java Enterprise in a Nutshell)

4.5.1. Dynamic Invocation Interface 113

4.4. Finding Remote
Objects

5. Java Servlets

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 1: Introducing the
Java Enterprise APIs

Preface (Java Enterprise in a Nutshell)

4.5.1. Dynamic Invocation Interface 114

Chapter 5. Java Servlets
Contents:

The Servlet Life Cycle
Servlet Basics
Servlet Chaining
Custom Servlet Initialization
Thread Safety
Server−Side Includes
Cookies
Session Tracking
Databases and Non−HTML Content
The Servlet API 2.1

The Java Servlet API provides a standard way to extend the functionality of any kind of server that uses a
protocol based on requests and responses. Servlets are used primarily with web servers, where they provide a
Java−based replacement for CGI scripts. In other words, on a web server that supports servlets (and there are
many), you can use a Java servlet to create dynamic web content in much the same way you currently use a
CGI script. Servlets have many advantages over CGI scripts, however. For example, servlets are persistent
between invocations, which dramatically improves performance relative to CGI programs. Servlets are also
portable among operating systems and among servers. Finally, servlets have access to all the APIs of the Java
platform, so, for example, it is easy to create a servlet that interacts with a database, using the JDBC API.

In terms of enterprise computing, servlets are a natural fit if you are using the Web as your development
platform. You can take advantage of web browsers as universally available thin clients; the web server
becomes middleware that is responsible for running applications for these clients. Under this model, the user
makes a request of the web server, the server invokes a servlet designed to handle the request, the servlet
fulfills the request, and the result is returned to the user in the web browser. What's key here is that the servlet
can use JNDI, Java IDL, and other Java Enterprise APIs to perform whatever tasks are necessary to fulfill the
request.

This chapter demonstrates the basic techniques used to write servlets using Version 2.0 of the Java Servlet
API. It also covers how to handle some common web−development tasks, such as cookie manipulation and
session tracking, with servlets. The chapter concludes with an introduction to the new features of Version 2.1
of the Servlet API. This chapter assumes that you have some experience with web development; if you are
new to web development, you may want to brush up on web basics by consulting Webmaster in a Nutshell,
2nd Edition, by Stephen Spainhour and Robert Eckstein (O'Reilly). For a more complete treatment of servlets,
I recommend Java Servlet Programming, by Jason Hunter with William Crawford (O'Reilly).

5.1. The Servlet Life Cycle

When a client makes a request involving a servlet, the server loads and executes the appropriate Java classes.
Those classes generate content, and the server sends the content back to the client. In most cases, the client is
a web browser, the server is a web server, and the servlet returns standard HTML. From the web browser's
perspective, this isn't any different from requesting a page generated by a CGI script, or, indeed, standard
HTML. On the server side, however, there is one important difference: persistence.[1] Instead of shutting
down at the end of each request, the servlet can remain loaded, ready to handle subsequent requests. Figure
5−1 shows how this all fits together.

[1] Note that I'm using persistent to mean "enduring between invocations," not "written to
permanent storage," as it is sometimes used.

Chapter 5. Java Servlets 115

Figure 5−1. The servlet life cycle

The request−processing time for a servlet can vary, but it is typically quite fast when compared to a similar
CGI program. The real advantage of a servlet, however, is that you incur most of the startup overhead only
once. When a servlet loads, its init() method is called. You can use init() to create I/O intensive
resources, such as database connections, for use across multiple invocations. If you have a high−traffic site,
the performance benefits can be quite dramatic. Instead of putting up and tearing down a hundred thousand
database connections, the servlet needs to create a connection only once. The servlet's destroy() method
can clean up resources when the server shuts down.

Because servlets are persistent, you can actually remove a lot of filesystem and/or database accesses
altogether. For example, to implement a page counter, you can simply store a number in a static variable,
rather than consulting a file (or database) for every request. Using this technique, you need to read and write
to the disk only occasionally to preserve state. Since a servlet remains active, it can perform other tasks when
it is not servicing client requests, such as running a background processing thread (where clients connect to
the servlet to view the result) or even acting as an RMI host, enabling a single servlet to handle connections
from multiple types of clients. For example, if you write an order processing servlet, it can accept transactions
from both an HTML form and an applet using RMI.

The Servlet API includes numerous methods and classes for making application development easier. Most
common CGI tasks require a lot of fiddling on the programmer's part; even decoding HTML form parameters
can be a chore, to say nothing of dealing with cookies and session tracking. Libraries exist to help with these
tasks, but they are, of course, decidedly nonstandard. You can use the Servlet API to handle most routine
tasks, thus cutting development time and keeping things consistent for multiple developers on a project.

4.5. What If I Don't Know
the Interface?

5.2. Servlet Basics

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

5.1. The Servlet Life Cycle 116

Chapter 5: Java Servlets

5.2. Servlet Basics

The Servlet API consists of two packages, javax.servlet and javax.servlet.http. The javax is
there because servlets are a standard extension to Java, rather than a mandatory part of the API. This means
that while servlets are official Java, Java virtual machine developers are not required to include the classes for
them in their Java development and execution environments.

At one point, servlets were slated to become part of Version 1.2 of the Java 2 platform, and the API was even
included with some Java SDK beta releases. However, since the Servlet API is evolving much faster than the
core Java SDK, Sun decided to keep distribution separate. This has led to the revival of the Java Servlet
Development Kit (JSDK), which is currently available from Sun at http://java.sun.com/products/servlet/. The
JSDK includes the necessary servlet classes and a small servletrunner application for development and
testing. As of this writing, the latest available implementation is JSDK 2.1, based on Version 2.1 of the
Servlet API.

The examples in this chapter were developed using Sun's Java Web Server 1.1.3, unofficially considered the
reference implementation for servlets. As of this writing, a number of other products, including O'Reilly's
WebSite Pro and the W3C's JigSaw, have incorporated servlet support. Various third−party vendors,
including Live Software, New Atlanta, and IBM, have released add−on servlet modules for most other major
web server platforms, including the Netscape server family, Apache, and Microsoft IIS. I'm not going to
discuss how to load servlets on each server, since the various implementations differ in this regard. What's
important is that the servlets themselves are the same for each platform.

The three core elements of the Servlet API are the javax.servlet.Servlet interface, the
javax.servlet.GenericServlet class, and the javax.servlet. http.HttpServlet class.
Normally, you create a servlet by subclassing one of the two classes, although if you are adding servlet
capability to an existing object, you may find it easier to implement the interface.

The GenericServlet class is used for servlets that do not implement any particular communication
protocol. Here's a basic servlet that demonstrates servlet structure by printing a short message:

import javax.servlet.*;
import java.io.*;

public class BasicServlet extends GenericServlet {

 public void service(ServletRequest req, ServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/plain");
 PrintWriter out = resp.getWriter();

 out.println("Hello.");
 }
}

BasicServlet extends the GenericServlet class and implements one method: service().
Whenever a server wants to use the servlet, it calls this service() method, passing ServletRequest
and ServletResponse objects (we'll look at these in more detail shortly). The servlet tells the server what
type of response to expect, gets a PrintWriter from the response object, and transmits its output.

The GenericServlet class can also implement a filtering servlet that takes output from an unspecified
source and performs some kind of alteration. For example, a filter servlet might be used to prepend a header,

Preface (Java Enterprise in a Nutshell)

5.2. Servlet Basics 117

http://java.sun.com/products/servlet/

scan servlet output or raw HTML files for <DATE> tags and insert the current date, or remove <BLINK>
tags. A more advanced filtering servlet might insert content from a database into HTML templates. We'll talk
a little more about filtering later in this chapter.

Although most servlets today work with web servers, there's no requirement for that in GenericServlet:
the class implements just that, a generic servlet. As we'll see in a moment, the HttpServlet class is a
subclass of GenericServlet that is designed to work with the HTTP protocol. It is entirely possible to
develop other subclasses of GenericServlet that work with other server types. For example, a
Java−based FTP server might use servlets to return files and directory listings or perform other tasks.

5.2.1. HTTP Servlets

The HttpServlet class is an extension of GenericServlet that includes methods for handling
HTTP−specific data. HttpServlet defines a number of methods, such as doGet(), doPost(), and
doPut(), to handle particular types of HTTP requests (GET, POST, and so on). These methods are called by
the default implementation of the service() method, which figures out what kind of request is being made
and then invokes the appropriate method. Here's a simple HttpServlet:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorldServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<HTML>");
 out.println("<HEAD><TITLE>Have you seen this before?</TITLE></HEAD>");
 out.println("<BODY><H1>Hello, World!</H1><H6>Again.</H6></BODY></HTML>");
 }
}

HelloWorldServlet demonstrates many essential servlet concepts. The first thing to notice is that
HelloWorldServlet extends HttpServlet−−standard practice for an HTTP servlet.
HelloWorldServlet defines one method, doGet(), which is called whenever anyone requests a URL
that points to this servlet.[2] The doGet() method is actually called by the default service() method of
HttpServlet. The service() method is called by the web server when a request is made of
HelloWorldServlet; the method determines what kind of HTTP request is being made and dispatches
the request to the appropriatedoXXX() method (in this case, doGet()). doGet() is passed two objects,
HttpServletRequest and HttpServletResponse, that contain information about the request and
provide a mechanism for the servlet to produce output, respectively.

[2] In a standard Java Web Server installation, with the servlet installed in the standard
servlets directory, this URL is http://site:8080/servlet/HelloWorldServlet. Note that the name
of the directory (servlets) is unrelated to the use of "servlet" in the URL.

The doGet() method itself does three things. First, it sets the output type to "text/html", which indicates that
the servlet produces standard HTML as its output. Second, it calls the getWriter() method of the
HttpServletResponse parameter to get a java.io.PrintWriter that points to the client. Finally,
it uses the stream to send some HTML back to the client. This isn't really a whole lot different from the
BasicServlet example, but it gives us all the tools we'll need later on for more complex web applications.

Preface (Java Enterprise in a Nutshell)

5.2.1. HTTP Servlets 118

http://site:8080/servlet/HelloWorldServlet

If you define a doGet() method for a servlet, you may also want to override the getLastModified()
method of HttpServlet. The server calls getLastModified() to find out if the content delivered by a
servlet has changed. The default implementation of this method returns a negative number, which tells the
server that the servlet doesn't know when its content was last updated, so the server is forced to call doGet()
and return the servlet's output. If you have a servlet that changes its display data infrequently (such as a servlet
that verifies uptime on several server machines once every 15 minutes), you should implement
getLastModified() to allow browsers to cache responses. getLastModified() should return a long
value that represents the time the content was last modified as the number of milliseconds since midnight,
January 1, 1970, GMT.

A servlet should also implement getServletInfo(), which returns a string that contains information
about the servlet, such as name, author, and version (just like getAppletInfo() in applets). This method
is called by the web server and generally used for logging purposes.

5.2.2. Forms and Interaction

The problem with creating a servlet like HelloWorldServlet is that it doesn't do anything we can't
already do with HTML. If we are going to bother with a servlet at all, we should do something dynamic and
interactive with it. In many cases, this means processing the results of an HTML form. To make our example
less impersonal, let's have it greet the user by name. The HTML form that calls the servlet using a GET
request might look like this:

<HTML>
<HEAD><TITLE>Greetings Form</TITLE></HEAD>
<BODY>
<FORM METHOD=GET ACTION="/servlet/HelloServlet">
What is your name?
<INPUT TYPE=TEXT NAME=username SIZE=20>
<INPUT TYPE=SUBMIT VALUE="Introduce Yourself">
</FORM>
</BODY>
</HTML>

This form submits a form variable named username to the URL /servlet/HelloServlet. How does the web
server know to load this particular servlet? Most servlet implementations, including the Java Web Server,
allow you to place unpackaged servlets into a particular directory, and access them with a URI of
/servlet/ServletName. This is similar to the way most web servers support CGI programs.

The HelloServlet itself does little more than create an output stream, read the username form variable,
and print out a nice greeting for the user. Here's the code:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<HTML>");
 out.println("<HEAD><TITLE>Finally, interaction!</TITLE></HEAD>");
 out.println("<BODY><H1>Hello, " + req.getParameter("username") + "!</H1>");
 out.println("</BODY></HTML>");
 }

Preface (Java Enterprise in a Nutshell)

5.2.2. Forms and Interaction 119

}

All we've done differently here is use the getParameter() method of HttpServletRequest to
retrieve the value of a form variable.[3] When a server calls a servlet, it can also pass a set of request
parameters. With HTTP servlets, these parameters come from the HTTP request itself, in this case in the guise
of URL−encoded form variables. Note that a GenericServlet running in a web server also has access to
these parameters using the simpler SerlvetRequest object. When the HelloServlet runs, it inserts
the value of the username form variable into the HTML output, as shown in Figure 5−2.

[3] In the Java Web Server 1.1, the getParameter() method was deprecated in favor of
getParameterValues(), which returns a String array rather than a single string.
However, after an extensive write−in campaign, Sun took getParameter() off the
deprecated list for Version 2.0 of the Servlet API, so you can safely use this method in your
servlets.

Figure 5−2. Output from HelloServlet

5.2.3. POST, HEAD, and Other Requests

As I mentioned before, doGet() is just one of a collection of enabling methods for HTTP request types.
doPost() is the corresponding method for POST requests. The POST request is designed for posting
information to the server, although in practice it is also used for long parameterized requests and larger forms,
to get around limitations on the length of URLs.

If your servlet is performing database updates, charging a credit card, or doing anything that takes an explicit
client action, you should make sure this activity is happening in a doPost() method. That's because POST
requests are not idempotent, which means that they are not safely repeatable, and web browsers treat them
specially. For example, a browser cannot bookmark or, in some cases, reload a POST request. On the other
hand, GET requests are idempotent, so they can safely be bookmarked, and a browser is free to issue the
request repeatedly without necessarily consulting the user. You can see why you don't want to charge a credit
card in a GET method!

To create a servlet that can handle POST requests, all you have to do is override the default doPost()
method from HttpServlet and implement the necessary functionality in it. If necessary, your application
can implement different code in doPost() and doGet(). For instance, the doGet() method might
display a postable data entry form that the doPost() method processes. doPost() can even call
doGet() at the end to display the form again.

The less common HTTP request types, such as HEAD, PUT, TRACE, and DELETE, are handled by other
doXXX() dispatch methods. A HEAD request returns HTTP headers only, PUT and DELETE allow clients
to create and remove resources from the web server, and TRACE returns the request headers to the client.
Since most servlet programmers don't need to worry about these requests, the HttpServlet class includes

Preface (Java Enterprise in a Nutshell)

5.2.2. Forms and Interaction 120

a default implementation of each corresponding doXXX() method that either informs the client that the
request is unsupported or provides a minimal implementation. You can provide your own versions of these
methods, but the details of implementing PUT or DELETE functionality go rather beyond our scope.

5.2.4. Servlet Responses

In order to do anything useful, a servlet must send a response to each request that is made of it. In the case of
an HTTP servlet, the response can include three components: a status code, any number of HTTP headers, and
a response body.

The ServletResponse and HttpServletResponse interfaces include all the methods needed to
create and manipulate a servlet's output. We've already seen that you specify the MIME type for the data
returned by a servlet using the setContentType() method of the response object passed into the servlet.
With an HTTP servlet, the MIME type is generally "text/html," although some servlets return binary data: a
servlet that loads a GIF file from a database and sends it to the web browser should set a content type of
"image/gif" while a servlet that returns an Adobe Acrobat file should set it to "application/pdf".

ServletResponse and HttpServletResponse each define two methods for producing output
streams, getOutputStream() and getWriter(). The former returns a ServletOutputStream,
which can be used for textual or binary data. The latter returns a java.io.PrintWriter object, which is
used only for textual output. The getWriter() method examines the content−type to determine which
charset to use, so setContentType() should be called before getWriter().

HttpServletResponse also includes a number of methods for handling HTTP responses. Most of these
allow you to manipulate the HTTP header fields. For example, setHeader(), setIntHeader(), and
setDateHeader() allow you to set the value of a specified HTTP header, while containsHeader()
indicates whether a certain header has already been set. You can use either the setStatus() or
sendError() method to specify the status code sent back to the server. HttpServletResponse
defines a long list of integer constants that represent specific status codes (we'll see some of these shortly).
You typically don't need to worry about setting a status code, as the default code is 200 ("OK"), meaning that
the servlet sent a normal response. However, a servlet that is part of a complex application structure (such as
the file servlet included in the Java Web Server that handles the dispatching of HTML pages) may need to
use a variety of status codes. Finally, the sendRedirect() method allows you to issue a page redirect.
Calling this method sets the Location header to the specified location and uses the appropriate status code
for a redirect.

5.2.5. Servlet Requests

When a servlet is asked to handle a request, it typically needs specific information about the request so that it
can process the request appropriately. We've already seen how a servlet can retrieve the value of a form
variable and use that value in its output. A servlet may also need access to information about the environment
in which it is running. For example, a servlet may need to find out about the actual user who is accessing the
servlet, for authentication purposes.

The ServletRequest and HttpServletRequest interfaces provide access to this kind of
information. When a servlet is asked to handle a request, the server passes it a request object that implements
one of these interfaces. With this object, the servlet can find out about the actual request (e.g., protocol, URL,
type), access parts of the raw request (e.g., headers, input stream), and get any client−specific request
parameters (e.g., form variables, extra path information). For instance, the getProtocol() method returns
the protocol used by the request, while getRemoteHost() returns the name of the client host. The
interfaces also provide methods that let a servlet get information about the server (e.g., getServername(),
getServerPort()). As we saw earlier, the getParameter() method provides access to request

Preface (Java Enterprise in a Nutshell)

5.2.4. Servlet Responses 121

parameters such as form variables. There is also the getParameterValues() method, which returns an
array of strings that contains all the values for a particular parameter. This array generally contains only one
string, but some HTML form elements (as well as non−HTTP oriented services) do allow multiple selections
or options, so the method always returns an array, even if it has a length of one.

HttpServletRequest adds a few more methods for handling HTTP−specific request data. For instance,
getHeaderNames() returns an enumeration of the names of all the HTTP headers submitted with a
request, while getHeader() returns a particular header value. Other methods exist to handle cookies and
sessions, as we'll discuss later.

Example 5−1 shows a servlet that restricts access to users who are connecting via the HTTPS protocol, using
Digest style authentication, and coming from a government site (a domain ending in .gov).

Example 5−1. Checking Request Information to Restrict Servlet Access

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SecureRequestServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<HTML>");
 out.println("<HEAD><TITLE>Semi−Secure Request</TITLE></HEAD>");
 out.println("<BODY>");

 String remoteHost = req.getRemoteHost();
 String scheme = req.getScheme();
 String authType = req.getAuthType();

 if((remoteHost == null) || (scheme == null) || (authType == null)) {
 out.println("Request Information Was Not Available.");
 return;
 }

 if(scheme.equalsIgnoreCase("https") && remoteHost.endsWith(".gov")
 && authType.equals("Digest")) {
 out.println("Special, secret information.");
 }
 else {
 out.println("You are not authorized to view this data.");
 }

 out.println("</BODY></HTML>");
 }
}

5.2.6. Error Handling

Sometimes things just go wrong. When that happens, it's nice to have a clean way out. The Servlet API gives
you two ways of to deal with errors: you can manually send an error message back to the client or you can
throw a ServletException. The easiest way to handle an error is simply to write an error message to the
servlet's output stream. This is the appropriate technique to use when the error is part of a servlet's normal
operation, such as when a user forgets to fill in a required form field.

Preface (Java Enterprise in a Nutshell)

5.2.5. Servlet Requests 122

5.2.6.1. Status codes

When an error is a standard HTTP error, you should use the sendError() method of
HttpServletResponse to tell the server to send a standard error status code.
HttpServletResponse defines integer constants for all the major HTTP status codes. Table 5−1 lists the
most common status codes. For example, if a servlet cannot find a file the user has requested, it can send a
404 ("File Not Found") error and let the browser display it in its usual manner. In this case, we can replace the
typical setContentType() and getWriter() calls with something like this:

response.sendError(HttpServletResponse.SC_NOT_FOUND);

If you want to specify your own error message (in addition to the web server's default message for a particular
error code), you can call sendError() with an extra String parameter:

response.sendError(HttpServletResponse.SC_NOT_FOUND,
 "It's dark. I couldn't find anything.");

Table 5−1. Some Common HTTP Error Codes

Mnemonic Code Default Meaning

Content Message

SC_OK 200 OK
The client's request succeeded, and the
server's response contains the requested
data. This is the default status code.

SC_NO_CONTENT 204 No Content

The request succeeded, but there is no new
response body to return. A servlet may find
this code useful when it accepts data from a
form, but wants the browser view to stay at
the form. It avoids the "Document contains
no data" error message.

SC_MOVED_ PERMANENTLY 301 Moved Permanently

The requested resource has permanently
moved to a new location. Any future
reference should use the new location
given by the Location header. Most
browsers automatically access the new
location.

SC_MOVED_ TEMPORARILY 302 Moved Temporarily

The requested resource has temporarily
moved to another location, but future
references should still use the original URL
to access the resource. The temporary new
location is given by the Location
header. Most browsers automatically
access the new location.

SC_ UNAUTHORIZED 401 Unauthorized

The request lacked proper authorization.
Used in conjunction with the
WWW−Authenticate and
Authorization headers.

SC_NOT_FOUND 404 Not Found The requested resource is not available.

SC_INTERNAL_ SERVER_ERROR500
Internal Server
Error

An error occurred inside the server that
prevented it from fulfilling the request.

SC_NOT_ IMPLEMENTED 501 Not Implemented
The server does not support the
functionality needed to fulfill the request.

Preface (Java Enterprise in a Nutshell)

5.2.6.1. Status codes 123

SC_SERVICE_ UNAVAILABLE 503 Service Unavailable

The server is temporarily unavailable, but
service should be restored in the future. If
the server knows when it will be available
again, a Retry−After header may also
be supplied.

5.2.6.2. Servlet exceptions

The Servlet API includes two Exception subclasses, ServletException and its derivative,
UnavailableException. A servlet throws a ServletException to indicate a general servlet
problem. When a server catches this exception, it can handle the exception however it sees fit.

UnavailableException is a bit more useful, however. When a servlet throws this exception, it is
notifying the server that it is unavailable to service requests. You can throw an UnavailableException
when some factor beyond your servlet's control prevents it from dealing with requests. To throw an exception
that indicates permanent unavailability, use something like this:

throw new UnavailableException(this, "This is why you can't use the servlet.");

UnavailableException has a second constructor to use if the servlet is going to be temporarily
unavailable. With this constructor, you specify how many seconds the servlet is going to be unavailable, as
follows:

throw new UnavailableException(120, this, "Try back in two minutes");

One caveat: the servlet specification does not mandate that servers actually try again after the specified
interval. If you choose to rely on this capability, you should test it first.

5.2.6.3. A file serving servlet

Example 5−2 demonstrates both of these error−handling techniques, along with another method for reading
data from the server. FileServlet reads a pathname from a form parameter and returns the associated file.
Note that this servlet is designed only to return HTML files. If the file cannot be found, the servlet sends the
browser a 404 error. If the servlet lacks sufficient access privileges to load the file, it sends an
UnavailableException instead. Keep in mind that this servlet exists as a teaching exercise: you should
not deploy it on your web server. (For one thing, any security exception renders the servlet permanently
unavailable, and for another, it can serve files from the root of your hard drive.)

Example 5−2. Serving Files

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class FileServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 File r;
 FileReader fr;
 BufferedReader br;
 try {
 r = new File(req.getParameter("filename"));
 fr = new FileReader(r);

Preface (Java Enterprise in a Nutshell)

5.2.6.2. Servlet exceptions 124

 br = new BufferedReader(fr);
 if(!r.isFile()) { // Must be a directory or something else
 resp.sendError(resp.SC_NOT_FOUND);
 return;
 }
 }
 catch (FileNotFoundException e) {
 resp.sendError(resp.SC_NOT_FOUND);
 return;
 }
 catch (SecurityException se) { // Be unavailable permanently
 throw(new UnavailableException(this,
 "Servlet lacks appropriate privileges."));
 }

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();
 String text;
 while((text = br.readLine()) != null)
 out.println(text);

 br.close();
 }
}

5.2.7. Security

Servlets don't generally handle their own security arrangements. Instead, they typically rely on the
capabilities of the web server to limit access to them. The security capabilities of most web servers are limited
to basic on−or−off access to specific resources, controlled by username and password (or digital certificate),
with possible encryption−in−transmission using SSL. Most servers are limited to basic authentication, which
transmits passwords more or less in the clear, while some (including JWS) support the more advanced digest
authentication protocol, which works by transmitting a hash of the user's password and a server−generated
value, rather than the password itself. Both of these approaches look the same to the user; the familiar "Enter
username and password" window pops up in the web browser.

The HttpServletRequest interface includes a pair of basic methods for retrieving standard HTTP user
authentication information from the web server. If your web server is equipped to limit access, a servlet can
retrieve the username with getRemoteUser() and the authentication method (basic, digest, or SSL) with
getAuthType(). Consult your server documentation for details on using authentication to protect server
resources.

Why are these methods useful? Consider a web application that uses the web server's authentication support to
restrict access to authorized users, but needs to control access among that set of users. The username returned
by getRemoteUser() can be used to look up specific privileges in an access control database. This is
similar to what we did in Example 5−1, except access is now controlled by username, instead of hostname.

5.1. The Servlet Life Cycle 5.3. Servlet Chaining

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

5.2.7. Security 125

Chapter 5: Java Servlets

5.3. Servlet Chaining

So far, we have looked at servlets that take requests directly from the server and return their results directly to
the client. Servlets were designed as a generic server extension technology, however, rather than one devoted
solely to performing CGI−like functions. A servlet can just as easily take its input from another servlet, and a
servlet really doesn't care very much about where its output goes.

Most web servers that implement servlets have also implemented a feature called servlet chaining, where the
server routes a request through an administrator−defined chain of servlets. At the end of the sequence, the
server sends the output to the client. Alternately, some servers can be configured to route certain MIME types
through certain servlets. If a filtering servlet is configured to take all of the output with the MIME type
"servlet/filterme," another servlet can produce data with that MIME type, and that data will be passed to the
filtering servlet. The filtering servlet, after doing its work, can output HTML for the browser. MIME−based
filtering also allows servlets to filter objects that don't come from a servlet in the first place, such as HTML
files served by the web server.[4]

[4] It is interesting to note that the Java Web Server is completely servlet−based; it even uses
an internal servlet to serve static HTML files. JWS users can easily implement a filtering
servlet by chaining it to the end of the file servlet. To use servlet chaining in JWS, you
must activate the feature using the administration tool.

Example 5−3 demonstrates a basic servlet, derived from HttpServlet, that examines incoming text for a
<DATE> tag and replaces the tag with the current date. This servlet is never called on its own, but instead
after another servlet (such as, an HTML generator) has produced the actual content.

Example 5−3. Date Filtering Servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class DateFilter extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 PrintWriter out = resp.getWriter();

 String contentType = req.getContentType();
 if (contentType == null)
 return; // No incoming data

 // Note that if we were using MIME filtering we would have to set this to
 // something different to avoid an infinite loop
 resp.setContentType(contentType);

 BufferedReader br = new BufferedReader(req.getReader());

 String line = null;

Preface (Java Enterprise in a Nutshell)

5.3. Servlet Chaining 126

 Date d = new Date();
 while ((line = br.readLine()) != null) {
 int index;
 while ((index=line.indexOf("<DATE>")) >= 0)
 line = line.substring(0, index) + d + line.substring(index + 6);
 out.println(line);
 }

 br.close();
 }
}

The DateFilter servlet works by reading each line of input, scanning for the text <DATE>, and replacing
it with the current date. This example introduces the getReader() method of HttpServletRequest,
which returns a PrintReader that points to the original request body. When you call getReader() in an
HttpServlet, you can read the original HTTP form variables, if any. When this method is used within a
filtering servlet, it provides access to the output of the previous servlet in the chain.

5.2. Servlet Basics 5.4. Custom Servlet
Initialization

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 5: Java Servlets

5.4. Custom Servlet Initialization

At the beginning of this chapter, I talked about how a servlet's persistence can be used to build more efficient
web applications. This is accomplished via class variables and the init() method. When a server loads a
servlet for the first time, it calls the servlet's init() method and does not make any service calls until
init() has finished. In the default implementation, init() simply handles some basic housekeeping, but
a servlet can override the method to perform whatever one−time tasks are required. This often means doing
some sort of I/O−intensive resource creation, such as opening a database connection. You can also use the
init() method to create threads that perform various ongoing tasks. For instance, a servlet that monitors the
status of machines on a network might create a separate thread to periodically ping each machine. When an
actual request occurs, the service methods in the servlet can use the resources created in init(). Thus, the
status monitor servlet might display an HTML table with the status of the various machines. The default
init() implementation is not a do−nothing method, so you should remember to always call the
super.init() method as the first action in your own init() routines.[5]

[5] Note that you no longer have to do this with Version 2.1 of the Servlet API. The
specification has been changed so that you can simply override a no−argument init()

Preface (Java Enterprise in a Nutshell)

5.4. Custom Servlet Initialization 127

method, which is called by the Generic Servletinit(ServletConfig)
implementation.

The server passes the init() method a ServletConfig object, which can include specific servlet
configuration parameters (for instance, the list of machines to monitor). ServletConfig encapsulates the
servlet initialization parameters, which are accessed via the getInitParameter() and
getInitParameterNames() methods. GenericServlet and HttpServlet both implement the
ServletConfig interface, so these methods are always available in a servlet (one of the things the default
init() implementation does is store the ServletConfig object for these methods, which is why it is
important that you always call super.init()). Different web servers have different ways of setting
initialization parameters, so we aren't going to discuss how to set them. Consult your server documentation for
details.

Every servlet also has a destroy() method that can be overwritten. This method is called when, for
whatever reason, a server unloads a servlet. You can use this method to ensure that important resources are
freed, or that threads are allowed to finish executing unmolested. Unlike init(), the default implementation
of destroy() is a do−nothing method, so you don't have to worry about invoking the superclass'
destroy() method.

Example 5−4 shows a counter servlet that saves its state between server shutdowns. It uses the init()
method to first try to load a default value from a servlet initialization parameter. Next the init() method
tries to open a file named /data/counter.dat and read an integer from it. When the servlet is shut down, the
destroy() method creates a new counter.dat file with the current hit−count for the servlet.

Example 5−4. A Persistent Counter Servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class LifeCycleServlet extends HttpServlet {

 int timesAccessed;

 public void init(ServletConfig conf) throws ServletException {

 super.init(conf);

 // Get initial value
 try {
 timesAccessed = Integer.parseInt(getInitParameter("defaultStart"));
 }
 catch(NullPointerException e) {
 timesAccessed = 0;
 }
 catch(NumberFormatException e) {
 timesAccessed = 0;
 }

 // Try loading from the disk
 try {
 File r = new File("./data/counter.dat");
 DataInputStream ds = new DataInputStream(new FileInputStream(r));
 timesAccessed = ds.readInt();
 }
 catch (FileNotFoundException e) {
 // Handle error
 }
 catch (IOException e) {
 // This should be logged

Preface (Java Enterprise in a Nutshell)

5.4. Custom Servlet Initialization 128

 }
 finally {
 ds.close();
 }
 }

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 timesAccessed++;

 out.println("<HTML>");
 out.println("<HEAD>");
 out.println("<TITLE>Life Cycle Servlet</TITLE>");
 out.println("</HEAD><BODY>");

 out.println("I have been accessed " + timesAccessed + " time[s]");
 out.println("</BODY></HTML>");
 }

 public void destroy() {

 // Write the Integer to a file
 File r = new File("./data/counter.dat");
 try {
 DataOutputStream dout = new DataOutputStream(new FileOutputStream(r));
 dout.writeInt(timesAccessed);
 }
 catch(IOException e) {
 // This should be logged
 }
 finally {
 dout.close();
 }
 }
}

5.3. Servlet Chaining 5.5. Thread Safety

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 5: Java Servlets

Preface (Java Enterprise in a Nutshell)

5.4. Custom Servlet Initialization 129

5.5. Thread Safety

In a typical servlet scenario, only one copy of any particular servlet is loaded at any given time. Each servlet
might, however, be called upon to deal with multiple requests at the same time. This means that a servlet
needs to be thread−safe. If a servlet doesn't use any class variables (that is, any variables with a scope broader
than the service method itself), it is generally already thread−safe. If you are using any third−party libraries or
extensions, make sure that those components are also thread−safe. However, a servlet that maintains persistent
resources needs to make sure that nothing untoward happens to those resources. Imagine, for example, a
servlet that maintains a bank balance using an int in memory.[6] If two servlets try to access the balance at
the same time, we might get this sequence of events:

[6] Hey, bear with me on this one. It's certainly more than adequate for my salary...

User 1 connects to the servlet to make a $100 withdrawal.
The servlet checks the balance for User 1, finding $120.
User 2 connects to the servlet to make a $50 withdrawal.
The servlet checks the balance for User 2, finding $120.
The servlet debits $100 for User 1, leaving $20.
The servlet debits $50 for User 2, leaving −$30.
The programmer is fired.

Obviously, this is incorrect behavior, particularly that last bit. We want the servlet to perform the necessary
action for User 1, and then deal with User 2 (in this case, by giving him an insufficient funds message). We
can do this by surrounding sections of code with synchronized blocks. While a particular synchronized
block is executing, no other sections of code that are synchronized on the same object (usually the servlet or
the resource being protected) can execute. For more information on thread safety and synchronization, see
Java Threads by Scott Oaks and Henry Wong (O'Reilly).

Example 5−5 implements the ATM display for the First Bank of Java. The doGet() method displays the
current account balance and provides a small ATM control panel for making deposits and withdrawals, as
shown in Figure 5−3.[7] The control panel uses a POST request to send the transaction back to the servlet,
which performs the appropriate action and calls doGet() to redisplay the ATM screen with the updated
balance.

[7] Despite the fact that Java is a very large island, there's still only one account.

Preface (Java Enterprise in a Nutshell)

5.5. Thread Safety 130

Figure 5−3. The First Bank of Java ATM display

Example 5−5. An ATM Servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;
import java.io.*;

public class AtmServlet extends HttpServlet {

 Account act;

 public void init(ServletConfig conf) throws ServletException {
 super.init(conf);
 act = new Account();
 act.balance = 0;
 }

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 resp.setContentType("text/html");
 PrintWriter out = resp.getWriter();

 out.println("<HTML><BODY>");
 out.println("<H2>First Bank of Java ATM</H2>");
 out.println("Current Balance: " + act.balance + "
");
 out.println("<FORM METHOD=POST ACTION=/servlet/AtmServlet>");
 out.println("Amount: <INPUT TYPE=TEXT NAME=AMOUNT SIZE=3>
");
 out.println("<INPUT TYPE=SUBMIT NAME=DEPOSIT VALUE=\"Deposit\">");
 out.println("<INPUT TYPE=SUBMIT NAME=WITHDRAW VALUE=\"Withdraw\">");
 out.println("</FORM>");
 out.println("</BODY></HTML>");
 }

 public void doPost(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 int amt=0;

 try {
 amt = Integer.parseInt(req.getParameter("AMOUNT"));
 }
 catch (NullPointerException e) {
 // No Amount Parameter passed
 }
 catch (NumberFormatException e) {
 // Amount Parameter was not a number
 }

 synchronized(act) {
 if(req.getParameter("WITHDRAW") != null) && (amt < act.balance)
 act.balance = act.balance − amt;
 if(req.getParameter("DEPOSIT") != null) && (amt > 0)
 act.balance = act.balance + amt;
 } // end synchronized block

 doGet(req, resp); // Show ATM screen
 }

 public void destroy() {
 // This is where we would save the balance to a file
 }

Preface (Java Enterprise in a Nutshell)

5.5. Thread Safety 131

 class Account {
 public int balance;
 }
}

The doPost() method alters the account balance contained within an Account object act (since
Account is so simple, I've defined it as an inner class). In order to prevent multiple requests from accessing
the same account at once, any code that alters act is synchronized on act. This ensures that no other code
can alter act while a synchronized section is running.

The destroy() method is defined in the AtmServlet, but it contains no actual code. A real banking
servlet would obviously want to write the account balance to disk before being unloaded. And if the servlet
were using JDBC to store the balance in a database, it would also want to destroy all its database related
objects.

A more complex servlet than AtmServlet might need to synchronize its entire service method, limiting the
servlet to one request at a time. In these situations, it sometimes makes sense to modify the standard servlet
life cycle a little bit. We can do this by implementing the SingleThreadModel interface. This is a tag
interface that has no methods; it simply tells the server to create a pool of servlet instances, instead of a single
instance of the servlet. To handle an incoming request, the server uses a servlet from the pool and only allows
each copy of the servlet to serve one request at a time. Implementing this interface effectively makes a servlet
thread−safe, while allowing the server to deal with more than one connection at a time. Of course, using
SingleThreadModel does increase resource requirements and make it difficult to share data objects
within a servlet.

Another use for SingleThreadModel is to implement simple database connection sharing. Having
multiple database connections can improve performance and avoid connection overloading. Of course, for
more advanced or high−traffic applications, you generally want to manage connection pooling explicitly,
rather than trusting the web server to do it for you.

5.4. Custom Servlet
Initialization

5.6. Server−Side Includes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 5: Java Servlets

5.6. Server−Side Includes

Servlets are not confined to handling entire requests. Some web servers allow servlets to add small amounts
of dynamic content to otherwise static HTML pages. This is similar to the server−side include functionality
found in most web servers, but includes additional servlet−specific functionality. For example, let's assume
that we want to use a server−side include to add a randomly selected advertisement to a page. A page that uses

Preface (Java Enterprise in a Nutshell)

5.6. Server−Side Includes 132

the advertisement servlet is written just like a normal HTML page, except that it contains one or more
<SERVLET> tags and is saved with the .shtml extension. The <SERVLET> tag is similar to the <APPLET>
tag, which loads an applet within a page. When a client requests a .shtml page, the server finds all of the
<SERVLET> tags in the text and replaces them with the output from the appropriate servlets.

When you use a <SERVLET> tag, you must include a CODE parameter that identifies the servlet to be loaded.
This can be a class name or a servlet alias set up within the server. On some servers, you can specify an
optional CODEBASE parameter that loads the servlet code from a remote location. Any additional parameters
are treated as servlet initialization parameters. Each <SERVLET> tag must be matched by a closing
</SERVLET> tag. Between the opening and closing tags, you can include as many <PARAM> tags as
necessary, where you specify NAME and VALUE attributes for each one. The servlet can then access these
parameters with getParameter().

Now let's look at an HTML page that actually uses a servlet with a server−side include. Here's a sample .shtml
file:

<HTML>
<HEAD><TITLE>Today's News</TITLE></HEAD>
<BODY>
<H1>Headlines</H1>
<H2>Java Servlets Take Over Web!</H2>
<SERVLET CODE=AdMaker>
<PARAM NAME=pagetitle VALUE="Headlines">
</SERVLET>
</BODY>
</HTML>

The actual AdMaker servlet is shown in Example 5−6.

Example 5−6. An Advertising Servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class AdMaker extends HttpServlet {

 static String[] adText = { "Al's Web Services",
 "Bob's House of HDs",
 "Main St. Computers" };
 int currentAd = 0;

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 String adContent;
 PrintWriter out = resp.getWriter();
 synchronized(this) {
 adContent = adText[currentAd];
 currentAd++;
 if (currentAd >= adText.length)
 currentAd = 0;
 }
 String title = req.getParameter("pagetitle");
 if(title != null)
 out.println(title + " is brought to you by");
 else
 out.println("This page is brought to you by");
 out.println(adContent);
 }
}

Preface (Java Enterprise in a Nutshell)

5.6. Server−Side Includes 133

This servlet really isn't too different from the other ones we've looked at. It accesses parameters (in this case
from the <SERVLET> tag instead of a set of HTTP form values) and uses a PrintWriter to produce
HTML. It does not set a content type or manipulate any HTTP headers, however, because that information
may have been sent to the browser before the servlet begins executing.

Server−side includes can be a powerful tool, but they are not part of the standard Servlet API, and therefore
some servlet implementations may not support them at all. To make matters worse, some implementations
may work in a different manner (this is especially true of third−party servlet runners that plug into
non−Java−aware web servers). The example here was developed and tested with Java Web Server. If you
want to use server−side includes, you should read your server documentation first.

JavaServer Pages (commonly referred to as JSP) is another technology for accessing server−side Java
components directly in HTML pages. The overall effect is not unlike Microsoft's Active Server Pages (ASP).
As of this writing, Sun has just finalized the JSP 1.0 specification and several server vendors have announced
support for it.

5.5. Thread Safety 5.7. Cookies

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 5: Java Servlets

5.7. Cookies

Cookies spent a year or two as a little−known feature of Netscape Navigator before becoming the focus of a
raging debate on electronic privacy. Ethical and moral considerations aside, cookies allow a web server to
store small amounts of data on client systems. Cookies are generally used to store basic user identification or
configuration information. Because a cookie's value can uniquely identify a client, cookies are often used for
session tracking (although, as we'll see shortly, the Servlet API provides higher−level support for session
tracking).

To create a cookie, the server (or, more precisely, a web application running on the server) includes a
Cookie header with a specific value in an HTTP response. The browser then transmits a similar header with
that value back to the server with subsequent requests, subject to certain rules. The web application can then
use the cookie value to keep track of a particular user, handle session tracking, or whatever. Because cookies
use a single Cookie header, the syntax for a cookie allows for multiple name/value pairs in the overall
cookie value.

More information about the cookies is available from the original Netscape specification document at
http://home.netscape.com/newsref/std/cookie_spec.html. The Internet Engineering Task Force is currently
working on a standard cookie specification, defined in RFC−2109, available at

Preface (Java Enterprise in a Nutshell)

5.7. Cookies 134

http://home.netscape.com/newsref/std/cookie_spec.html

http://www.internic.net/rfc/rfc2109.txt.

The Servlet API includes a class, javax.servlet.http.Cookie, that abstracts cookie syntax and
makes it easy to work with cookies. In addition, HttpServletResponse provides an addCookie())
method, and HttpServletRequest provides a getCookies() method, to aid in writing cookies to and
reading cookies from the HTTP headers, respectively. To find a particular cookie, a servlet needs to read the
entire collection of values and look through it:

Cookie[] cookies;
cookies = req.getCookies();
String userid = null;

for (int i = 0; i < cookies.length; i++)
 if (cookies[i].getName().equals("userid"))
 userid = cookies[i].getValue();

A cookie can be read at any time, but can be created only before any content is sent to the client. This is
because cookies are sent using HTTP headers and these headers can be sent to the client before the regular
content. Once any data has been written to the client, the server can flush the output and send the headers at
any time, so you cannot create any new cookies safely. You must create new cookies before sending any
output. Here's an example of creating a cookie:

String userid = createUserID(); // Create a unique ID
Cookie c = new Cookie("userid", userid);
resp.addCookie(c); // Add the cookie to the HTTP headers

Note that a web browser is only required to accept 20 cookies per site and 300 total per user, and the browser
can limit each cookie's size to 4096 bytes.

Cookies can be customized to return information only in specific circumstances. In particular, a cookie can
specify a particular domain, a particular path, an age after which the cookie should be destroyed, and whether
or not the cookie requires a secure (HTTPS) connection. A cookie is normally returned only to the host that
specified it. For example, if a cookie is set by server1.company.com, it isn't returned to server2.company.com.
We can get around this limitation by setting the domain to .company.com with the setDomain() method of
Cookie. By the same token, a cookie is generally returned for pages only in the same directory as the servlet
that created the cookie or under that directory. We can get around this limitation using setPath(). Here's a
cookie that is returned to all pages on all top−level servers at company.com:

String userid = createUserID(); // Create a unique ID
Cookie c = new Cookie("userid", userid);
c.setDomain(".company.com"); // *.company.com, but not *.web.company.com
c.setPath("/"); // All pages
resp.addCookie(c); // Add the cookie to the HTTP headers

5.6. Server−Side Includes 5.8. Session Tracking

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

5.7. Cookies 135

http://www.internic.net/rfc/rfc2109.txt

Chapter 5: Java Servlets

5.8. Session Tracking

Very few web applications are confined to a single page, so having a mechanism for tracking users through a
site can often simplify application development. The Web, however, is an inherently stateless environment. A
client makes a request, the server fulfills it, and both promptly forget about each other. In the past,
applications that needed to deal with a user through multiple pages (for instance, a shopping cart) had to resort
to complicated dodges to hold onto state information, such as hidden fields in forms, setting and reading
cookies, or rewriting URLs to contain state information.

Fortunately, Version 2.0 of the Servlet API provides classes and methods specifically designed to handle
session tracking. A servlet can use the session−tracking API to delegate most of the user−tracking functions to
the server. The first time a user connects to a session−enabled servlet, the servlet simply creates a
javax.servlet.http.HttpSession object. The servlet can then bind data to this object, so
subsequent requests can read the data. After a certain amount of inactive time, the session object is destroyed.

A servlet uses the getSession() method of HttpServletRequest to retrieve the current session
object. This method takes a single boolean argument. If you pass true, and there is no current session
object, the method creates and returns a new HttpSession object. If you pass false, the method returns
null if there is no current session object. For example:

HttpSession thisUser = req.getSession(true);

When a new HttpSession is created, the server assigns a unique session ID that must somehow be
associated with the client. Since clients differ in what they support, the server has a few options that vary
slightly depending on the server implementation. In general, the server's first choice is to try to set a cookie on
the client (which means that getSession() must be called before you write any other data back to the
client). If cookie support is lacking, the API allows servlets to rewrite internal links to include the session ID,
using the encodeUrl() method of HttpServletResponse. This is optional, but recommended,
particularly if your servlets share a system with other, unknown servlets that may rely on uninterrupted
session tracking. However, this on−the−fly URL encoding can become a performance bottleneck because the
server needs to perform additional parsing on each incoming request to determine the correct session key from
the URL. (The performance hit is so significant that the Java Web Server disables URL encoding by default.)

To use URL encoding, you have to run all your internal links through encodeUrl(). Say you have a line of
code like this:

out.println("Check Out");

You should replace it with:

out.print("<A HREF=\"");
out.print(resp.encodeUrl("/servlet/CheckoutServlet");
out.println("\">Check Out");

JWS, in this case, adds an identifier beginning with $ to the end of the URL. Other servers have their own
methods. Thus, with JWS, the final output looks like this:

CheckOut"

Preface (Java Enterprise in a Nutshell)

5.8. Session Tracking 136

In addition to encoding your internal links, you need to use encodeRedirectUrl() to handle redirects
properly. This method works in the same manner as encodeUrl(). Note that in Version 2.1 of the Servlet
API, both methods have been deprecated in favor of identical methods that use the more standard "URL" in
their names: encodeURL() and encodeRedirectURL().

You can access the unique session ID via the getID() method of HttpSession. This is enough for most
applications, since a servlet can use some other storage mechanism (i.e., a flat file, memory, or a database) to
store the unique information (e.g., hit count or shopping cart contents) associated with each session. However,
the API makes it even easier to hold onto session−specific information by allowing servlets to bind objects to
a session using the putValue() method of HttpSession. Once an object is bound to a session, you can
use the getValue() method.

Objects bound using putValue() are available to all servlets running on the server. The system works by
assigning a user−defined name to each object (the String argument); this name is used to identify objects at
retrieval time. In order to avoid conflicts, the general practice is to name bound objects with names of the
form applicationname.objectname. For example:

session.putValue("myservlet.hitcount", new Integer(34));

Now that object can be retrieved with:

Integer hits = (Integer)session.getValue("myservlet.hitcount")

Example 5−7 demonstrates a basic session−tracking application that keeps track of the number of visits to the
site by a particular user. It works by storing a counter value in an HttpSession object and incrementing it
as necessary. When a new session is created (as indicated by isNew(), which returns true if the session ID
has not yet passed through the client and back to the server), or the counter object is not found, a new counter
object is created.

Example 5−7. Counting Visits with Sessions

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class VisitCounterServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException {

 PrintWriter out = resp.getWriter();
 resp.setContentType("text/html");

 HttpSession thisUser = req.getSession(true);
 Integer visits;

 if(!thisUser.isNew()) { //Don't check newly created sessions
 visits = (Integer)thisUser.getValue("visitcounter.visits");
 if(visits == null)
 visits = new Integer(1);
 else
 visits = new Integer(visits.intValue() + 1);
 }
 else
 visits = new Integer(1);

 // Put the new count in the session
 thisUser.putValue("visitcounter.visits", visits);

Preface (Java Enterprise in a Nutshell)

5.8. Session Tracking 137

 // Finally, display the results and give them the session ID too
 out.println("<HTML><HEAD><TITLE>Visit Counter</TITLE></HEAD>");
 out.println("<BODY>You have visited this page " + visits + " time[s]");
 out.println("since your last session expired.");
 out.println("Your Session ID is " + thisUser.getId());
 out.println("</BODY></HTML>");
 }
}

5.8.1. HttpSessionBindingListener

Sometimes it is useful to know when an object is getting bound or unbound from a session object. For
instance, in an application that binds a JDBC java.sql.Connection object to a session (something that,
by the way, is ill−advised in all but very low traffic sites), it is important that the Connection be explicitly
closed when the session is destroyed.

The javax.servlet.http.HttpSessionBindingListener interface handles this task. It
includes two methods, valueBound() and valueUnbound(), that are called whenever the object that
implements the interface is bound or unbound from a session, respectively. Each of these methods receives an
HttpSessionBindingEvent object that provides the name of the object being bound/unbound and the
session involved in the action. Here is an object that implements the HttpSessionBindingListener
interface in order to make sure that a database connection is closed properly:

class ConnectionHolder implements HttpSessionBindingListener {

 java.sql.Connection dbCon;

 public ConnectionHolder(java.sql.Connection con) {
 dbCon = con;
 }

 public void valueBound(HttpSessionBindingEvent event) {
 // Do nothing
 }

 public void valueUnbound(HttpSessionBindingEvent event) {
 dbCon.close();
 }
}

5.8.2. Session Contexts

Version 2.0 of the Servlet API included the getContext() method of HttpSession, coupled with an
interface named HttpSessionContext. Together, these allowed servlets to access other sessions running
in the same context. Unfortunately, this functionality also allowed a servlet to accidentally expose all the
session IDs in use on the server, meaning that an outsider with knowledge could spoof a session. To eliminate
this minor security risk, the session context functionality has been deprecated in Version 2.1 of the Servlet
API.

5.7. Cookies 5.9. Databases and
Non−HTML Content

Preface (Java Enterprise in a Nutshell)

5.8.1. HttpSessionBindingListener 138

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 5: Java Servlets

5.9. Databases and Non−HTML Content

Most web applications need to communicate with a database, either to generate dynamic content or collect
and store data from users, or both. With servlets, this communication is easily handled using the JDBC API
described in Chapter 2, "JDBC". Thanks to JDBC and the generally sensible design of the servlet life cycle,
servlets are an excellent intermediary between a database and web clients.

Most of the general JDBC principles discussed in Chapter 2, "JDBC" apply to servlets. However, servlet
developers should keep a few things in mind for optimal performance. First, JDBC Connection objects can
be created in the servlet's init() method. This allows the servlet to avoid reconnecting to the database (à la
CGI) with each request, saving up to a second or more on every single page request. If you anticipate high
volume, you may want to create several connections and rotate between them. An excellent freeware
connection−pooling system is available at http://www.javaexchange.com. Or, if you're using JDBC 2.0, the
javax.sql package provides a connection−pooling mechanism. Finally, if you plan on using JDBC's
transaction support, you need to create individual connections for each request or obtain exclusive use of a
pooled connection.

So far, all our servlets have produced standard HTML content. Of course, this is all most servlets ever do, but
it's not all that they can do. Say, for instance, that your company stores a large database of PDF documents
within an Oracle database, where they can be easily accessed. Now say you want to distribute these
documents on the Web. Luckily, servlets can dish out any form of content that can be defined with a MIME
header. All you have to do is set the appropriate content type and use a ServletOuputStream if you need
to transmit binary data. Example 5−8 shows how to pull an Adobe Acrobat document from an Oracle
database.

Example 5−8. A Servlet That Serves PDF Files from a Database

import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DBPDFReader extends HttpServlet {

 Connection con;

 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 try {
 Class.forName("oracle.jdbc.driver.OracleDriver");
 con = DriverManager.getConnection("jdbc:oracle:oci7:@DBHOST",

Preface (Java Enterprise in a Nutshell)

5.9. Databases and Non−HTML Content 139

http://www.javaexchange.com/

 "user", "passwd");
 }
 catch (ClassNotFoundException e) {
 throw new UnavailableException(this, "Couldn't load OracleDriver");
 }
 catch (SQLException e) {
 throw new UnavailableException(this, "Couldn't get db connection");
 }
 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 try {
 res.setContentType("application/pdf");
 ServletOutputStream out = res.getOutputStream();

 Statement stmt = con.createStatement();
 ResultSet rs = stmt.executeQuery(
 "SELECT PDF FROM PDF WHERE PDFID = " + req.getParameter("PDFID"));

 if (rs.next()) {
 BufferedInputStream pdfData =
 new BufferedInputStream(rs.getBinaryStream("PDF"));
 byte[] buf = new byte[4 * 1024]; // 4K buffer
 int len;
 while ((len = pdfData.read(buf, 0, buf.length)) != −1) {
 out.write(buf, 0, len);
 }
 }
 else {
 res.sendError(res.SC_NOT_FOUND);
 }
 }
 catch(SQLException e) {
 // Report it
 }
 }
}

5.8. Session Tracking 5.10. The Servlet API 2.1

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 5: Java Servlets

Preface (Java Enterprise in a Nutshell)

5.9. Databases and Non−HTML Content 140

5.10. The Servlet API 2.1

Sun made the specification for Version 2.1 of the Servlet API available in November 1998. This version of
the API includes some small "housekeeping" changes that make it more consistent and easier to use. For
example, method names have been standardized to capitalize "URL", meaning encodeUrl() has been
deprecated in favor of encodeURL(), and so forth. GenericServlet now implements
ServletContext directly and provides a no−argument init() method you can override in your own
servlets. The ServletContext interface contains two new methods, getMajorVersion() and
getMinorVersion(), that can determine the latest API version supported.

In addition to these small updates (and a few others noted in Part 3, "API Quick Reference"), Sun included a
few genuinely new features. Some are fairly minor. For example, a servlet can now specify a "root cause"
exception when creating a new ServletException object. The root cause can be read with the new
getRootCause() method of ServletException. This provides somewhat more information than the
old approach of creating a ServletException with the value returned by getMessage() from the
exception that actually caused the problem.

Other new features, including request dispatching and shared attributes, are more significant and are discussed
in the sections that follow. Note that as of this writing, few servlet engines support the new features in Version
2.1 of the Servlet API.

5.10.1. Request Dispatching

The new request dispatching functionality allows a servlet to delegate request handling to other components
on the server. A servlet can either forward an entire request to another servlet or include bits of content from
other components in its own output. In either case, this is done with a RequestDispatcher object that is
obtained from the ServletContext with its new getRequestDispatcher() method. When you call
this method, you specify the path to the servlet to which you are dispatching the request.

When you dispatch a request, you can set request attributes using the setAttribute() method of
ServletRequest and read them using the getAttribute() method. A list of available attributes is
returned by getAttributeNames(). All three of these methods are new in Version 2.1. Rather than
taking only String objects (like parameters), an attribute may be any valid Java object.

RequestDispatcher provides two methods for dispatching requests: forward() and include(). To
forward an entire request to another servlet, use the forward() method. When using forward(), the
ServletRequest object is updated to include the new target URL. If a ServletOutputStream or
PrintWriter has already been retrieved from the ServletResponse object, the forward() method
throws an IllegalStateException.

The include() method of RequestDispatcher causes the content of the dispatchee to be included in
the output of the main servlet−−just like a server−side include. To see how this works, let's look at part of a
servlet that does a keep−alive check on several different servers:

out.println("Uptime for our servers");

// Get a RequestDispatcher to the ServerMonitorServlet
RequestDispatcher d =
 getServletContext().getRequestDispatcher("/servlet/ServerMonitorServlet");

req.setAttribute("serverurl", new URL("http://www1.company.com"));
d.include(req, res);

req.setAttribute("serverurl", new URL("http://www2.company.com"));
d.include(req, res);

Preface (Java Enterprise in a Nutshell)

5.10. The Servlet API 2.1 141

5.10.2. Shared Attributes

The ServletContext interface includes a number of new methods that support the ability for servlets to
share attributes. The new setAttribute() method allows a servlet to set an attribute that can be shared
by any other servlets that live in its ServletContext. The getAttribute() method, which previously
allowed servlets to retrieve hardcoded server attributes, provides access to attribute values, while
getAttributeNames() returns an Enumeration of all the shared attributes.

Shared attributes open up some exciting new possibilities. Multiple servlets within a single web application
can easily share configuration information, as well as complex programmatic resources, such as a CORBA
object that handles user authentication or a database connection pool.

On a related note, Version 2.1 of the Servlet API deprecates all methods related to accessing other servlets
directly, due to the fact that they are inherently insecure. Thus, getServlet() and
getServletNames() join the already deprecated getServlets(). The problem here was that
getServlet() incorrectly allowed one servlet to call another servlet's life−cycle methods.

5.10.3. Resource Abstraction

Resource abstraction is a new feature that allows a servlet to access a resource on a web server, such as an
HTML file, without knowing where that resource actually lives. This functionality makes it much easier to
move servlets on a web server and even among web servers, such as for load−balancing purposes.

A servlet gets access to a resource using the new getResource() method of ServletContext. You
specify a URI path to the resource and get back a URL object that lets you examine the requested resource.
The web server controls how URI path parameters map to actual resources. Note that the resources handled by
this functionality cannot be an active resource, like another servlet or a CGI script; use the
RequestDispatcher for these kinds of resources.

Let's say we have a servlet that writes a complicated header for the content served by the page. To load the
actual content, all we have to do is:

URL content = getServletContext().getResource("/pages/page12.html");
out.print(content.getContent());

5.9. Databases and
Non−HTML Content

6. JNDI

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 1: Introducing the

Preface (Java Enterprise in a Nutshell)

5.10.2. Shared Attributes 142

Java Enterprise APIs

Preface (Java Enterprise in a Nutshell)

5.10.2. Shared Attributes 143

Chapter 6. JNDI
Contents:

JNDI Architecture
A JNDI Example
Introducing the Context
Looking Up Objects in a Context
The NamingShell Application
Listing the Children of a Context
Creating and Destroying Contexts
Binding Objects
Accessing Directory Services
Modifying Directory Entries
Creating Directory Entries
Searching a Directory

The Java Naming and Directory Interface (JNDI) is an API that supports accessing naming and directory
services in Java programs. The purpose of a naming service is to associate names with objects and provide a
way to access objects based on their names. You should be familiar with naming systems; you use them every
day when you browse the filesystem on your computer or surf the Web by typing in a URL. Objects in a
naming system can range from files in a filesystem and names located in Domain Name System (DNS)
records, to Enterprise JavaBeans (EJB) components in an application server and user profiles in an LDAP
(Lightweight Directory Access Protocol) directory. If you want to use Java to write an application such as a
search utility, a network−enabled desktop, an application launcher, an address book, a network management
utility, or a class browser−−in short, anything that accesses objects in a naming system−−JNDI is a good
candidate for writing that application.

As its name implies, JNDI doesn't just deal with naming services. JNDI also encompasses directory services,
which are a natural extension of naming services. The primary difference between the two is that a directory
service allows the association of attributes with objects, such as an email address attribute for a user object,
while a naming service does not. Thus, with a directory service, you can access the attributes of objects and
search for objects based on their attributes. You can use JNDI to access directory services like LDAP and
Novell Directory Services (NDS) directories.

As an enterprise programmer, you will most likely use JNDI to access Enterprise JavaBeans; the EJB
specification requires that you use JNDI to locate EJB components on the network. But you can also use JNDI
to find remote objects in an RMI registry on a remote server. And most enterprise Java suppliers, such as BEA
WebXPress, IBM, Novell, Sun, and SCO, support JNDI access to their naming systems.

6.1. JNDI Architecture

The architecture of JNDI is somewhat like the JDBC architecture, in that both provide a standard
protocol−independent API built on top of protocol−specific driver or provider implementations. This layer
insulates an application from the actual data source it is using, so, for example, it doesn't matter whether the
application is accessing an NDS or LDAP directory service.

The JNDI architecture includes both an application programming interface (API) and a service provider
interface (SPI), as shown in Figure 6−1. A Java application uses the JNDI API to access naming and directory
services, primarily through the Context and DirContext interfaces. The JNDI API is defined in the
javax.naming and javax.naming.directory packages. Note that JNDI is a standard extension to
the Java 2 platform; it is available at http://java.sun.com/products/jndi/. This chapter covers Version 1.1 of
JNDI.[1]

Chapter 6. JNDI 144

http://java.sun.com/products/jndi/

[1]As this book went to press, Sun released a public draft of Version 1.2 of the JNDI
specification. The information in this chapter is unchanged by this new version of the
specification.

Figure 6−1. The JNDI architecture

In order for an application to actually interact with a particular naming or directory service, there must be a
JNDI service provider for that service. This is where the JNDI SPI comes in. A service provider is a set of
classes that implements various JNDI interfaces for a specific naming or directory service, much like a JDBC
driver implements various JDBC interfaces for a particular database system. The provider can also implement
other interfaces that are not part of JNDI, such as Novell's NdsObject interface.

The classes and interfaces in the javax.naming.spi package are only of interest to developers who are
creating service providers. For instance, the NamingManager class defines methods for creating Context
objects and otherwise controlling the operation of the underlying service provider. As an application
programmer, you don't have to worry about the JNDI SPI. All you have to do is make sure that you have a
service provider for each naming or directory service you want to use. Sun maintains a list of available service
providers on the JNDI web page listed earlier.

5.10. The Servlet API 2.1 6.2. A JNDI Example

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

6.1. JNDI Architecture 145

Chapter 6: JNDI

6.2. A JNDI Example

Before we go any further, let's take a look at a simple JNDI example. To access an object in a naming system,
we need to create an initial context for the naming system, to give us an entry point into the naming system.
Once we have an initial context, we can look up an object by name.

Example 6−1 demonstrates the basic JNDI tasks of getting an initial context to a naming system and looking
up an object in that naming system. With slight modification, this code can be used to look up objects with
any JNDI provider. So, for example, you could use Lookup to look up Enterprise JavaBeans or remote
objects in an RMI registry and handle them however you like. All you have to change is the properties that
control the naming system being accessed.

Example 6−1. Looking Up an Object in a Naming System

import java.util.Properties;
import javax.naming.*;

public class Lookup {
 public static void main(String[] args) {
 String name = "";
 if (args.length > 0)
 name = args[0];

 try {
 // Create a Properties object and set properties appropriately
 Properties props = new Properties();
 props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
 props.put(Context.PROVIDER_URL, "file:///");

 // Create the initial context from the properties we just created
 Context initialContext = new InitialContext(props);

 // Look up the object
 Object obj = initialContext.lookup(name);
 if (name.equals(""))
 System.out.println("Looked up the initial context");
 else
 System.out.println(name + " is bound to: " + obj);
 }
 catch (NamingException nnfe) {
 System.out.println("Encountered a naming exception");
 }
 }
}

The first thing the Lookup application does is create a java.util.Properties object and use it to
store some String values. The keys used for these values are constants defined in the
javax.naming.Context class. Each constant corresponds to an underlying JNDI property name that is
meant to communicate specific information about the JNDI service the application is using.
Context.INITIAL_CONTEXT_FACTORY specifies the factory class that creates an initial context for the
service we want to use. The class com.sun.jndi.fscontext.RefFSContextFactory is a factory
class from the filesystem service provider from Sun. Context.PROVIDER_URL tells the factory class the
protocol, server name, and path to use in creating an initial context. We specify the URL file:/// to indicate the
root of the local filesystem. This works on any Unix or Windows filesystem.

Preface (Java Enterprise in a Nutshell)

6.2. A JNDI Example 146

Once we have created the Properties object, we pass it to the javax.naming.InitialContext
constructor, which returns the initial context object that is our entry point into this particular naming system.
Next, we call the lookup() method on initialContext, specifying the name we want to look up. This
call returns an object from the naming system, which, in this case, is a file or directory.

You can run Lookup from the command line and specify an optional name to look up. For example:

% java Lookup boot.ini
boot.ini is bound to: \boot.ini

If the name is instead a directory, the output looks a bit different:

% java Lookup winnt
winnt is bound to: com.sun.jndi.fscontext.RefFSContext@803adec0

Note that if we wanted to make Lookup more general, we might change it so that it reads its property values
from a properties file. Then changing the naming system is a simple matter of editing the properties file to
specify an appropriate factory object and URL. Depending on the value you use for the factory class, the
object you look up could be an Enterprise JavaBeans component, a reference to a remote object, or something
else.

JNDI throws naming exceptions when naming operations cannot be completed. The root naming exception,
javax.naming.NamingException, is a catch all for any JNDI exception. The javax.naming
package defines numerous subclasses of NamingException. A common naming exception,
NameNotFoundException, is thrown when a name cannot be found, either because it doesn't exist or it is
spelled incorrectly. JNDI throws a NoPermissionException when a program doesn't have sufficient
rights or permissions and an OperationNotSupportedException when an application uses a JNDI
method on an object that doesn't support that specific naming operation.

6.1. JNDI Architecture 6.3. Introducing the
Context

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 6: JNDI

6.3. Introducing the Context

A naming service associates names with objects. An association between a name and an object is called a
binding, and a set of such bindings is called a context. A name in a context can be bound to another context
that uses the same naming conventions; the bound context is called a subcontext. For example, in a filesystem,
a directory (such as /temp) is a context that contains bindings between filenames and objects that the system
can use to manipulate the files (often called file handles). If a directory contains a binding for another

Preface (Java Enterprise in a Nutshell)

6.3. Introducing the Context 147

directory (e.g., /temp/javax), the subdirectory is a subcontext.

JNDI represents a context in a naming system using the javax.naming.Context interface. This is the
key interface for interacting with naming services. A Context knows about its set of bindings in the naming
system, but little else. While you might be tempted to think of a Context as an exotic java.io.File
object, you should resist making that analogy, as it will just confuse you. Unlike a File object, which can tell
you its absolute and relative names as well as return a reference to its parent, a Context object can tell you
only about its bindings. A Context cannot go up a level, tell you its absolute pathname, or even tell you its
own name. When you think of a Context, think of an object that encapsulates its children as data and has
methods that perform operations on that data, not on the Context itself.

6.3.1. Using the InitialContext Class

The javax.naming.InitialContext class implements the Context interface and serves as our
entry point to a naming system. To use JNDI to access objects in a naming system, you must first create an
InitialContextobject. The InitialContext constructor takes a set of properties, in the form of a
java.util.Hashtable or one of its subclasses, such as a Properties object. Here is how we created
an InitialContext in the Lookup example:

Properties props = new Properties();
props.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
props.put(Context.PROVIDER_URL, "file:///");

// Create the initial context from the properties we just created
Context initialContext = new InitialContext(props);

The most fundamental property key is "java.naming.factory.initial", which corresponds to the
Context.INITIAL_CONTEXT_FACTORY constant. The value for this property specifies the name of a
factory class in a JNDI service provider. It is the job of this factory class to create an InitialContext that
is appropriate for its service and hand the object back to us. We have to give the factory class all the
information it needs to create an InitialContext in the form of other property values. For example, the
factory class learns the protocol, server name, and path to use from the "java.naming.provider.url" property
(Context.PROVIDER_URL).

The filesystem factory class (com.sun.jndi.fscontext.RefFSContxtFactory) doesn't require
much in the way of information. Other factory classes can be more demanding. For example, the factory class
in Sun's LDAP service provider requires the URL of the LDAP server and directory entry you want to access,
a username and password, and an authentication type. Here are some properties (shown in the file format used
by the Properties class) you might use to create an InitialContext with the LDAP factory class:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://192.168.1.20/o=Planetary,c=US
java.naming.security.authentication=simple
java.naming.security.principal=cn=kris
java.naming.security.credentials=secret

These properties create an InitialContext for an organization called "Planetary" in the global X.500
namespace.

6.3.2. Other Naming Systems

There are many companies that support JNDI, and therefore many naming system service providers. You can
find a reasonably comprehensive list of public JNDI providers from the JNDI page on the Sun web site

Preface (Java Enterprise in a Nutshell)

6.3.1. Using the InitialContext Class 148

(currently at http://java.sun.com/products/jndi/serviceproviders.html). You should contact the vendor of your
enterprise naming system or directory for more details regarding its specialized providers. Table 6−1 lists the
factory classes for some common JNDI providers.

Table 6−1. JNDI Factory Classes

Service Factory

Filesystem
com.sun.jndi.fscontext.FSContextFactory or
com.sun.jndi.fscontext.RefFSContextFactory

LDAPv3 com.sun.jndi.ldap.LdapCtxFactory

NDS com.novell.naming.service.nds.NdsInitialContextFactory

NIS com.sun.jndi.nis.NISCtxFactory

RMI registry com.sun.jndi.rmi.registry.RegistryContextFactory

6.2. A JNDI Example 6.4. Looking Up Objects in
a Context

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 6: JNDI

6.4. Looking Up Objects in a Context

Retrieving an object by name from a naming system or directory is called looking up the object. This is the
job of the lookup() method of Context. Performing a lookup is analogous to getting the number of a
friend from a telephone book by looking up his name. You can use JNDI to look up and retrieve an EJB
component from an application server or a remote object from a remote RMI registry.

When you call lookup(), you specify the name of the child of the Context you want to find. lookup()
returns a java.lang.Object that represents the child. Here's how we did it in Lookup:

Object obj = initialContext.lookup(name);

Calling lookup() retrieves an object from the underlying naming system. The JNDI service provider
determines the Java representation of these objects, and we have no way of affecting the provider's decision.
Depending on the naming system and the design of the provider, the object you retrieve may or may not
implement Context. For example, if you use the Sun filesystem provider, and your current context is a
directory, looking up a child that is a file returns an instance of java.io.File. Looking up a directory,
however, returns an instance of FSContext or RefFSContext, both of which implement Context. As
another example, say you use Novell's NDS provider, and the current context is an NDS tree. If you look up

Preface (Java Enterprise in a Nutshell)

6.3.2. Other Naming Systems 149

http://java.sun.com/products/jndi/serviceproviders.html

an organization, you get back an OrganizationDirContext that implements both Context and
Novell's NdsObject interface. The bottom line is that the class you get back from lookup() depends on
how the service provider is implemented.

JNDI leaves it up to the service provider to choose whether objects should implement Context. There are no
strict rules about when an object should implement it, but there are some general guidelines. An object with
children is a container, and the guideline for containers is that they should implement Context. This is
because we generally perform naming operations upon these objects. For example, in the filesystem,
directories can contain other objects, so the object that represents a directory should implement Context
(which is how Sun's filesystem provider behaves). If directories don't support Context methods, we cannot
use JNDI to look up any children of the directory.

Objects without children are leaves, and leaves may or may not implement Context, depending on how
they are used. For example, because files have no children to look up, the methods we perform on them lie
outside the naming system. The author of the Sun filesystem provider made a design choice that once we have
looked up a file, we're done with JNDI. So, we can read the input stream on a file or write an output stream to
it, but we cannot use JNDI to perform naming operations on the file.

6.3. Introducing the
Context

6.5. The NamingShell
Application

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 6: JNDI

6.5. The NamingShell Application

Earlier, we discussed how we might modify the Lookup example to make it more general, allowing us to
look up Enterprise JavaBeans and remote objects. The rest of the examples in this chapter are going to be
based on the NamingShell code shown in Example 6−2. NamingShell is an extensible JNDI shell that
enables us to perform naming operations in any JNDI−accessible naming system. The shell provides methods
for getting and setting the current object and other shell−related details, and it also keeps track of the name of
the current object, something a Context cannot do for itself.

Once you have loaded NamingShell, you can use the shell to execute JNDI−related commands, just as you
would use a regular shell to execute operating−system commands. I encourage you to download the code for
NamingShell right now, so that you can experiment with it as we proceed through the rest of the chapter.
NamingShell uses the name you type to locate a command dynamically from the filesystem. The shell has
no interpreter; however, NamingShell expects a command to implement the Command interface and its
execute() method. This means a command really interprets itself. A command throws a
CommandException when execution fails.

Preface (Java Enterprise in a Nutshell)

6.5. The NamingShell Application 150

As you can see, NamingShell itself contains very little real JNDI code. All the JNDI functionality is
implemented in the various Command classes we create to handle particular JNDI operations. The shell
simply supports the loading of commands and keeps track of various shell−related details.

Example 6−2. The NamingShell Class

import java.io.*;
import java.util.*;
import javax.naming.*;

class NamingShell {

 // Private variables
 private static Hashtable COMMAND_TABLE = new Hashtable();
 private static String JNDIPROPS_FILENAME = ".jndienv";
 private static String PROMPT = "[no initial context]";
 private static String VERSION = "1.0";
 private static Context CURRENT_CONTEXT, INITIAL_CONTEXT;
 private static String CURRENT_NAME, INITIAL_NAME;
 private static boolean RUNNING = true;

 // Shell operations
 private static void exit(int status) { System.exit(status); }

 // Accessor methods
 public static Hashtable getCommands() { return COMMAND_TABLE; }
 public static Context getCurrentContext() { return CURRENT_CONTEXT; }
 public static String getCurrentName() { return CURRENT_NAME; }
 public static String getDefaultPropsFilename() { return JNDIPROPS_FILENAME; }
 public static Context getInitialContext() { return INITIAL_CONTEXT; }
 public static String getInitialName() { return INITIAL_NAME; }
 public static String getPrompt() { return PROMPT; }
 public static void setCurrentContext(Context ctx) { CURRENT_CONTEXT = ctx; }
 public static void setInitialContext(Context ctx) { INITIAL_CONTEXT = ctx; }
 public static void setInitialName(String name) { INITIAL_NAME = name; }
 public static void setPrompt(String prompt) { PROMPT = prompt; }
 public static void setCurrentName(String name) {
 CURRENT_NAME = name;
 setPrompt(name);
 }

 // Executes a preinstantiated command we are sure is already
 // present in the table
 private static void execute(Command c, Vector v) {
 if (c == null) {
 System.out.println("No command was loaded; cannot execute the command.");
 return;
 }
 try {
 c.execute(CURRENT_CONTEXT, v);
 }
 catch (CommandException ce) {
 System.out.println(ce.getMessage());
 }
 }

 // Another private method that enables us to specify a command
 // by its string name and that loads the command first
 private static void execute(String s, Vector v) {
 execute(loadCommand(s), v);
 }

 // Loads the command specified in commandName; the help command
 // relies on this method

Preface (Java Enterprise in a Nutshell)

6.5. The NamingShell Application 151

 public static Command loadCommand(String commandName) {
 // The method returns a null command unless some of its
 // internal logic assigns a new reference to it
 Command theCommand = null;

 // First see if the command is already present in the hashtable
 if (COMMAND_TABLE.containsKey(commandName)) {
 theCommand = (Command)COMMAND_TABLE.get(commandName);
 return theCommand;
 }

 try {
 // Here we use a little introspection to see if a class
 // implements Command before we instantiate it
 Class commandInterface = Class.forName("Command");
 Class commandClass = Class.forName(commandName);

 // Check to see if the class is assignable from Command
 // and if so, put the instance in the command table
 if (!(commandInterface.isAssignableFrom(commandClass)))
 System.out.println("[" + commandName + "]: Not a command");
 else {
 theCommand = (Command)commandClass.newInstance();
 COMMAND_TABLE.put(commandName, theCommand);
 return theCommand;
 }
 }
 catch (ClassNotFoundException cnfe) {
 System.out.println("[" + commandName + "]: command not found");
 }
 catch (IllegalAccessException iae) {
 System.out.println("[" + commandName + "]: illegal acces");
 }
 catch (InstantiationException ie) {
 System.out.println("["+commandName+"]: command couldn't be instantiated");
 }
 finally {
 return theCommand; // theCommand is null if we get here
 }
 }

 // This method reads a line of input, gets the command and arguments
 // within the line of input, and then dynamically loads the command
 // from the current directory of the running shell
 private static void readInput() {
 // Get the input from System.in
 BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

 // Begin reading input
 try {
 while (RUNNING) {
 System.out.print(PROMPT + "% ");

 // Tokenize the line, read each token, and pass the token
 // into a convenient remaining arguments Vector that we
 // pass into the Command
 StringTokenizer tokenizer = new StringTokenizer(br.readLine());
 Vector remainingArgs = new Vector();
 String commandToken = "";
 if (tokenizer.hasMoreTokens()) {
 commandToken = tokenizer.nextToken();
 while (tokenizer.hasMoreTokens())
 remainingArgs.addElement(tokenizer.nextToken());
 }

 // Dynamically load the class for the appropriate command
 // based upon the case−sensitive name of the first token,

Preface (Java Enterprise in a Nutshell)

6.5. The NamingShell Application 152

 // which is the command token
 if (!(commandToken.equals("")))
 execute(commandToken, remainingArgs);
 }
 }
 catch (java.io.IOException ioe) {
 System.out.println("Caught an IO exception reading a line of input");
 }
 }
 // Constructor
 NamingShell(String[] args) {
 }

 // Main method that reads input until the user exits
 public static void main(String[] args) {
 System.out.println("NamingShell " + VERSION);
 System.out.println("Type help for more information or exit to quit");
 shell.readInput();
 System.out.println("Exiting");
 }
}

6.5.1. The Command Interface

The Command interface (shown in Example 6−3) describes a standard interface for a shell command. It has
an execute() method that contains the command logic and a help() method for displaying online help
for the command. If execute() encounters a naming exception (or some other exception), it throws a
CommandException (shown in Example 6−4), which stores the first exception as an instance variable so
that the shell can display the exception appropriately.

Example 6−3. The Command Interface

import java.util.Vector;
import javax.naming.Context;

public interface Command {
 public void execute(Context c, Vector v)
 throws CommandException;
 public void help();
}

Example 6−4. The CommandException Class

public class CommandException extends Exception {
 Exception e; // root exception
 CommandException(Exception e, String message) {
 super(message);
 this.e = e;
 }
 public Exception getRootException() {
 return e;
 }
}

6.5.2. Loading an Initial Context

As I said earlier, to use JNDI to look up an object in a naming system (or, in fact, to do anything with the

Preface (Java Enterprise in a Nutshell)

6.5.1. The Command Interface 153

naming system), you first have to create an InitialContext for that naming system. So, the first
command we need to implement is initctx, for loading an initial context into NamingShell. Example 6−5
shows an implementation of this command.

Example 6−5. The initctx Command

import java.io.*;
import java.util.*;
import javax.naming.*;

public class initctx implements Command {

 public void execute(Context c, Vector v) {
 String jndiPropsFilename;
 // If no properties file is specified, use the default file;
 // otherwise use the specified file
 if (v.isEmpty())
 jndiPropsFilename = NamingShell.getDefaultPropsFilename();
 else
 jndiPropsFilename = (String)v.firstElement();

 try {
 Properties props = new Properties();
 File jndiProps = new File(jndiPropsFilename);
 props.load(new FileInputStream(jndiProps));

 NamingShell.setInitialContext(new InitialContext(props));
 NamingShell.setInitialName("/");
 NamingShell.setCurrentContext(NamingShell.getInitialContext());
 NamingShell.setCurrentName(NamingShell.getInitialName());
 System.out.print("Created initial context using ");
 System.out.println(jndiProps.getAbsolutePath());
 }
 catch (NamingException ne) {
 System.out.println("Couldn't create the initial context");
 }
 catch (FileNotFoundException fnfe) {
 System.out.print("Couldn't find properties file: ");
 System.out.println(jndiPropsFilename);
 }
 catch (IOException ioe) {
 System.out.print("Problem loading the properties file: ");
 System.out.println(jndiPropsFilename);
 }
 catch (Exception e) {
 System.out.println("There was a problem starting the shell");
 }
 }

 public void help() { System.out.println("Usage: initctx [filename]"); }
}

The initctx command accepts an argument that specifies the name of a properties file to use in creating the
Properties object that is passed to the InitialContext constructor. If no filename is specified, initctx
looks for the default properties file specified by NamingShell. So, with NamingShell, all you have to do
to use a particular naming service is create an appropriate properties file for that service.

6.5.3. Running the Shell

With NamingShell and initctx, we have enough functionality to actually run the shell. Before you try
running the shell, make sure that the JNDI libraries (in jndi.jar) and any other specialized providers are

Preface (Java Enterprise in a Nutshell)

6.5.2. Loading an Initial Context 154

specified in your classpath. Here's how we might start NamingShell and establish an initial context, once
the classpath is set appropriately:

% java NamingShell
NamingShell 1.0
Type help for more information or exit to quit
[no initial context]% initctx
Created initial context using C:\temp\samples\book\.jndienv
/%

In this case, since we didn't specify a properties file, NamingShell looks for the .jndienv file in the current
directory. For the purpose of our next few examples, let's assume that this file contains property settings that
allow us to use the filesystem provider from Sun. You can change initial contexts at any time during the shell
session by running initctx with a new filename. After you have created an initial context, you can begin
performing naming operations by typing in commands. To exit the shell, simply use the exit command.[2] If
you are not sure how a command works, you can get help for that command by typing:

[2]The help and exit commands are implemented as separate classes, just like the
JNDI−related commands. We've not going to examine the code for these commands, as they
don't use JNDI. However, the code for these commands is provided in the example code that
is available online (at http://www.oreilly.com/catalog/jentnut/).

/% help command

6.4. Looking Up Objects in
a Context

6.6. Listing the Children of
a Context

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 6: JNDI

6.6. Listing the Children of a Context

A common JNDI operation is retrieving the list of names of an object's children. For example, an application
might get the names of Enterprise JavaBeans in a Java application server to see if one is running or list the
names of children of an InitialContext in order to populate a Swing JTree component. You list the
names of an object's children using the list() method of Context:

NamingEnumeration children = initialContext.list("");

The list() method returns a javax.naming.NamingEnumeration of
javax.naming.NameClassPair objects, where each NameClassPair contains the name and class of

Preface (Java Enterprise in a Nutshell)

6.6. Listing the Children of a Context 155

http://www.oreilly.com/catalog/jentnut/

a single child of the Context. Note that the NameClassPair is not the child itself. Its getName()
method, however, enables us to learn the name of the child, while getClassName() lets us access the
child's class name. The NamingEnumeration implements the java.util.Enumeration interface, so
it allows us to loop through the results of calling list() using the familiar enumeration methods. JNDI
actually uses NamingEnumeration as the return type of a number of naming operations; the actual objects
in the enumeration vary depending on the operation.

Example 6−6 shows the implementation of a list command for NamingShell. Because executing list()
requires a current Context, the execute() method queries the shell to determine whether one exists. If
there is no current Context, the method throws an exception.

Example 6−6. The list Command

import java.util.Vector;
import javax.naming.*;

public class list implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 String name = "";

 // An empty string is OK for a list operation as it means
 // list children of the current context.
 if (!(v.isEmpty()))
 name = (String)v.firstElement();

 // Check for current context; throw an exception if there isn't one
 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(),
 "Error: no current context.");

 // Call list() and then loop through the results, printing the names
 // and class names of the children
 try {
 NamingEnumeration enum = c.list(name);
 while (enum.hasMore()) {
 NameClassPair ncPair = (NameClassPair)enum.next();
 System.out.print(ncPair.getName() + " (type ");
 System.out.println(ncPair.getClassName() + ")");
 }
 }
 catch (NamingException e) {
 throw new CommandException(e, "Couldn't list " + name);
 }
 }

 public void help() { System.out.println("Usage: list [name]"); }
}

Let's continue with our example of using NamingShell with the filesystem provider. Say that we are
accessing a filesystem where we have unpacked a JAR file that contains, among others, a javax directory and
a naming subdirectory. If the current Context is the naming directory (ignoring for a moment how we set
the current Context; we'll see how to do that shortly), we can use the list command with the following
results:

naming% list
AuthenticationException.class (type java.io.File)
AuthenticationNotSupportedException.class (type java.io.File)
BinaryRefAddr.class (type java.io.File)
Binding.class (type java.io.File)
CannotProceedException.class (type java.io.File)

Preface (Java Enterprise in a Nutshell)

6.6. Listing the Children of a Context 156

CommunicationException.class (type java.io.File)
CompositeName.class (type java.io.File)
CompoundName.class (type java.io.File)
ConfigurationException.class (type java.io.File)
Context.class (type java.io.File)
ContextNotEmptyException.class (type java.io.File)
directory (type javax.naming.Context)
...

6.6.1. How Names Work

The list() method allows us to list the names of the children of any arbitrary child of a Context. We
just saw that we can list the names of the children of a Context itself (in this case, the naming directory) by
calling its list() method using an empty string as a parameter. Again, let's assume we have a Context
object for the naming subdirectory under javax. Here's how a call to get the names of the children of this
Context might look:

NamingEnumeration childrenOfNaming = namingContext.list("");

The result is a NamingEnumeration that contains NameClassPair objects representing all the children
of naming (i.e., the classes and subpackages of javax.naming), including the directory directory (i.e., the
javax.naming.directory subpackage).

To list the names of the children of an arbitrary child of a Context, we have to pass a name to list(). For
example, we can list the children of directory by specifying the String "directory" as a parameter to
list():

NamingEnumeration childrenOfDirectory = namingContext.list("directory");

The result here is a NamingEnumeration that contains NameClassPair objects representing all the
children of directory (i.e., the classes of javax.naming.directory, such as DirContext).

You can also specify a name using something called a compound name. A compound name is composed of
atomic names, like "naming" and "directory", that are separated by separator characters, which, in the case of
the filesystem provider, can be either a Unix−style forward slash (/) or a Windows−style backward slash (\).
Any JNDI method that takes a name as a parameter can accept a compound name.

Say we have a Context object for the javax directory. We can get a list of the children of directory as
follows:

NamingEnumeration childrenOfDirectory = javaxContext.list("naming/directory");

This call returns the same NamingEnumeration we got earlier. Now consider the following call:

NamingEnumeration childrenOfContext = javaxContext.list("naming/Context");

The compound name here specifies an object that is not a Context, so it has no children. In this case, the
call to list() throws a NamingException.

The separator character used in JNDI compound names varies across naming and directory services; the
separator is analogous to the separator used in java.io.File. Although the Sun filesystem provider
allows us to use the Unix−style forward slash and the Windows−style backward slash interchangeably, most
service providers are very picky about the separator character used for that service. Unfortunately, the JNDI
API does not provide a way to get the separator character programmatically the way java.io.File does.
Although the javax.naming.CompoundName class reads a property called "jndi.syntax.separator" that
contains the separator character, this property cannot be accessed outside the service provider. So, to find out

Preface (Java Enterprise in a Nutshell)

6.6.1. How Names Work 157

the separator character for a particular service provider, you have to consult the documentation or some
sample code for that provider.

6.6.2. Browsing a Naming System

So far, we know how to look up an object in a Context using lookup() and list the children of that
Context with list(). Browsing is a composite operation that involves repeated calls to list() and
lookup(), to see what objects are available in the naming system and to move around in those objects.

Context objects are the key to browsing. You start with a current Context and list the children of that
Context to see which child you (or, more likely, the user) are interested in. Once you have selected an
interesting child, you look up that child to get the actual child object. If the object implements Context, you
can use this new Context object to continue browsing, by calling list() again, selecting a child, and
looking up its object. If the object does not implement Context, however, you obviously cannot continue
browsing down that branch of the naming system. Once you have a Context object, it is always possible to
list its children and look up objects within it. So, for example, you can always use the InitialContext for
a naming system to go back and start browsing at the entry point to the naming system

Example 6−7 shows an implementation of a cd command for NamingShell. The cd command changes the
current context of NamingShell to the specified context; you use it in conjunction with the list command to
browse the naming system. The name of this command comes from the Unix cd command for changing
directories, since changing the directory on a Unix system is an analogous operation to changing the current
context when NamingShell is used with the filesystem provider. To change the current context back to the
initial context, use either cd / or cd \. Note, however, that you cannot use cd .., as Context objects do not
know about their parents, and therefore, we cannot go up the Context hierarchy.

Example 6−7. The cd Command

import java.util.Vector;
import javax.naming.*;

class cd implements Command {
 public void execute(Context ctx, Vector v) throws CommandException {
 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(), "No current context");
 else if (v.isEmpty())
 throw new CommandException(new Exception(), "No name specified");

 // Get args[0] and throw away the other args
 else {
 String name = (String)v.firstElement();
 try {
 if (name.equals("..")) {
 throw new CommandException(new Exception(),
 "Contexts don't know about their parents.");
 }
 else if (((name.equals("/")) || (name.equals("\\"))) {
 NamingShell.setCurrentContext(NamingShell.getInitialContext());
 NamingShell.setCurrentName(NamingShell.getInitialName());
 System.out.println("Current context now " + name);
 }
 else {
 Context c = (Context) (NamingShell.getCurrentContext()).lookup(name);
 NamingShell.setCurrentContext(c);
 NamingShell.setCurrentName(name);
 System.out.println("Current context now " + name);
 }
 }

Preface (Java Enterprise in a Nutshell)

6.6.2. Browsing a Naming System 158

 catch (NamingException ne) {
 throw new CommandException(ne, "Couldn't change to context " + name);
 }
 catch (ClassCastException cce) {
 throw new CommandException(cce, name + " not a Context");
 }
 }
 }

 public void help() { System.out.println("Usage: cd [name]"); }
}

Earlier, when we demonstrated the list command, I asked you to assume that the current Context for
NamingShell was the naming subdirectory. Now we can see just how to change the current Context to
that directory:

initctx% cd temp
Current context now temp
temp% cd javax
Current context now javax
javax% cd naming
Current context now naming

Of course, these commands assume we are starting from the initial context and that the naming directory is
available in the filesystem at /temp/javax/naming.

6.6.3. Listing the Bindings of a Context

The listBindings() method of Context provides an alternative means of accessing the children of a
Context. We've seen that list() returns a NamingEnumeration of NameValuePair objects, where
each NameValuePair provides access to the name and class name of a single child of the Context.
listBindings() also returns a NamingEnumeration, but, in this case, the enumeration contains
Binding objects. Binding is a subclass of NameValuePair that contains the actual child object, in
addition to its name and class. You can use the getObject() method of Binding to get the child object.

Just as with list(), we can pass an empty string to listBindings() to return the bindings for a
Context:

NamingEnumeration bindings = initialContext.listBindings("");

listBindings() is designed for situations where you need to perform some sort of operation on all the
children of a Context, and you want to save yourself the time and trouble of looking up each child
individually. Be aware, however, that listBindings() is potentially a very expensive operation, as it has
to get each child object from the underlying naming system. If you don't need all the objects, you are better
off using list() to get the names of the children and then just looking up the objects you need.

6.5. The NamingShell
Application

6.7. Creating and
Destroying Contexts

Preface (Java Enterprise in a Nutshell)

6.6.3. Listing the Bindings of a Context 159

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 6: JNDI

6.7. Creating and Destroying Contexts

With JNDI, you can create a context in a naming system using the createSubcontext() method of an
existing Context. All you have to specify in this call is the name of the new subcontext. Note that
Context does not provide a public constructor; creating a new context requires a parent Context (such as
an InitialContext) whose createSubcontext() method we can call.

When you call createSubcontext(), the JNDI service provider you are using looks at the class of the
Context whose method you are calling. Based on this class and the provider's own internal logic, the
provider creates a new object of a particular class. You don't get to pick the class of this object; the provider
has all the control over the class of the object it creates. (You do, however, have control over the class of
object that is created when using directory services, as we'll see shortly.) The documentation for a service
provider should tell you what kinds of objects createSubcontext() can create. Note that whatever
object the provider creates, it always implements Context; there is no way to use JNDI to create an object
that doesn't implement Context.

For example, if we are using the Sun filesystem provider, and our current Context is a directory, calling
createSubcontext() causes the provider to create a directory, not a file. This makes sense, as a
directory can have subordinates and thus implements Context. There is actually no way to create a file
using the JNDI API and the filesystem provider; you have to drop out of JNDI to do this, as we'll see in the
next section.

Example 6−8 shows the implementation of a create command for NamingShell command that
demonstrates how to use createSubcontext().

Example 6−8. The create Command

import java.util.Vector;
import javax.naming.*;

public class create implements Command {

 public void execute(Context c, Vector v) throws CommandException {

 // Check to see if we have the name we need to create a context
 if (v.isEmpty())
 throw new CommandException(new Exception(), "No name specified");

 String name = (String)v.firstElement();
 try {
 c.createSubcontext(name);
 System.out.println("Created " + name);
 }
 catch (NoPermissionException npe) {
 throw new CommandException(npe,
 "You don't have permission to create " + name + " at this context");
 }
 catch (NamingException ne) {
 throw new CommandException(ne, "Couldn't create " + name);

Preface (Java Enterprise in a Nutshell)

6.7. Creating and Destroying Contexts 160

 }
 }

 public void help() { System.out.println("Usage: create [name]"); }
}

command, in conjunction with the cd and list commands we've already seen:

/% create test
Created test
/% cd test
Current context now test
test% create another
Created another
test% list
another (type javax.naming.Context)

The destroySubcontext() method of Context destroys a context, as you might expect from its
name. Again, you have to specify the name of the context to be destroyed; you cannot destroy the current
object by specifying an empty name. Calling the destroySubcontext() method on a Context from
the Sun filesystem provider is analogous to removing a directory in the filesystem.

Example 6−9 shows the implementation of a destroy command for NamingShell. Note that it contains
several catch statements, to handle such exceptions as insufficient permission to destroy a context, trying to
destroy an object that doesn't implement the Context interface, and trying to destroy an object that has
children.

Example 6−9. The destroy Command

import java.util.Vector;
import javax.naming.*;

public class destroy implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 // Check to see if we have the name we need
 if (v.isEmpty())
 throw new CommandException(new Exception(), "No name specified");

 String name = (String)v.firstElement();

 try {
 c.destroySubcontext(name);
 System.out.println("Destroyed " + name);
 }
 catch (NameNotFoundException nnfe) {
 throw new CommandException(nnfe, "Couldn't find " + name);
 }
 catch (NotContextException nce) {
 throw new CommandException(nce,
 name + " is not a Context and couldn't be destroyed");
 }
 catch (ContextNotEmptyException cnee) {
 throw new CommandException(cnee,
 name + " is not empty and couldn't be destroyed");
 }
 catch (NamingException ne) {
 throw new CommandException(ne, name + " couldn't be destroyed");
 }
 }

 public void help() { System.out.println("Usage: destroy [name]"); }

Preface (Java Enterprise in a Nutshell)

6.7. Creating and Destroying Contexts 161

}

6.6. Listing the Children of
a Context

6.8. Binding Objects

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 6: JNDI

6.8. Binding Objects

A Context stores its subordinates as a set of Binding objects. A binding is an association between an
object and its name. Thus, as we've already seen, a Binding object contains an object, its name, and its
class. We can add a new Binding to a Context with the bind() method. For example, here's how to add
a binding for a new file object to an existing Context:

java.io.File newfile = java.io.File("c:\temp\newfile");
tempContext.bind("newfile", newfile);

Now, if we call list() on this Context, we'll see a new child named newfile. If you recall, in the
previous section, I said that you have to drop out of JNDI to create a new file when using the Sun filesystem
provider. The previous example shows what I meant. To create a file, we use the java.io.File
constructor, which is not part of JNDI. Then, to bind the file into the naming system, we use the bind()
method of Context.

If you try to bind a name to an object, and the name has already been used, the method throws a
NameAlreadyBoundException. If you want to bind a new object to an existing name, use the
rebind() method instead. Context also has an unbind() method you can use to remove a binding.

6.7. Creating and
Destroying Contexts

6.9. Accessing Directory
Services

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

6.8. Binding Objects 162

Chapter 6: JNDI

6.9. Accessing Directory Services

So far, we have only discussed JNDI in the context of naming services. Now it's time to turn to directory
services. At its root, a directory is merely a naming service whose objects have attributes as well as names.
Programming for a directory service, such as an LDAP directory, is roughly as hard as programming for a
relational database.

As we've seen, a binding in JNDI is an association between a name and an object. While this association is
sufficient for some naming services, a directory service needs to be able to associate more than just a name
with an object. Attributes associate specialized data with an object. In JNDI, an object with attributes as well
as a name is called a directory entry.

We've been talking about the filesystem as though it were a naming system because that is how Sun's
filesystem provider implements it. But if you think about it, a filesystem is really a directory system; files and
directories have attributes like permissions, user IDs, and group IDs (we just can't get at these attributes using
Sun's filesystem provider).

Most of the directories you'll interact with using JNDI are based on the X.500 directory services standard. For
example, both standard LDAP directories and Novell's NDS directories have been influenced by X.500. As
such, it is important that you know a little bit about X.500, so that you can understand how these directories
work.

6.9.1. X.500 Directories

X.500 is a directory services standard that was developed through a collaboration between ISO and CCITT in
the late 1980s. It is the "big daddy" of most directories in use today. Like all such collaborations between
standards bodies and treaty organizations, the X.500 specification has the bulk of an earthmover and is about
as maneuverable. But, like an earthmover, it can really get the big jobs done.

A large contributor to X.500's bulk is its schema, which is the directory type system. A directory schema is a
set of rules that govern the layout of the objects in the directory. The schema determines what classes of
objects can reside in a directory system, what classes of children and kinds of attributes an object is permitted
to have, and what classes of values those attributes can have. If you have worked with databases, be careful
not to confuse a directory schema with a database schema. A database schema is the layout of tables in the
database, while a directory schema is the set of rules that control the directory layout, not the layout itself.

During the mid 1990s, researchers at the University of Michigan began to examine ways of reducing the
complexity of the X.500 Directory Access Protocol (DAP). These researchers came up with the "lightweight"
DAP, or LDAP, which significantly slimmed down the protocol's bulk. LDAP has gathered considerable
support in the industry, so that it is now considered the standard Internet directory access protocol. Netscape is
in part responsible for the acceptance of LDAP, as it declared LDAP the preferred method for accessing
address books incorporated into its product line and developed the Netscape Directory Server, which is the
most popular general−purpose LDAP−based directory server in use today. Note that while the LDAP protocol
is simpler than the X.500 protocol, an LDAP directory still uses a directory schema.

Novell's NDS is another X.500−based directory. In the early 1990s, Novell released NetWare 4.0, which

Preface (Java Enterprise in a Nutshell)

6.9. Accessing Directory Services 163

included something called NetWare Directory Services (NDS), a directory that was heavily influenced by
X.500. NDS provides information about various networking services, such as printing and file services. As
Novell ported NDS to other non−NetWare platforms, the name of the directory morphed into Novell
Directory Services, and then NDS became its official name. As further proof of the acceptance of the LDAP
protocol, even Novell has declared that the LDAP protocol is the preferred directory access protocol for NDS.

JNDI supports the X.500−based notion of a directory schema. But it can just as easily support non−X.500
schemae, such as the informal schema of a filesystem. Keep in mind that what we are discussing in this
section applies to all directory services, not just X.500, LDAP, or NDS directories. As with naming services,
to access a particular directory service, all you need is a service provider for that service.

6.9.2. The DirContext Interface

javax.naming.directory.DirContext is JNDI's directory services interface. It extends Context
and provides modified methods that support operations involving attributes. Like a Context, a
DirContext encapsulates a set of name−to−object bindings. In addition, a DirContext contains a
javax.naming.directory.Attributes object for each bound object that holds the attributes and
values for that object.

The names of objects in X.500−based directories look a little different from the names we've seen so far for
filesystems. If you've worked with an LDAP directory, you've probably seen names like "cn=Billy Roberts,
o=Acme Products". This name is actually a compound name, while something like "o=Acme Products" is an
atomic name. By convention, in an LDAP directory, the part of the name before the equals sign (e.g., "cn",
"o") is stored as an attribute of the directory entry, and the rest of the name (e.g., "Billy Roberts", "Acme
Products") is stored as its value. This attribute is called the key attribute. Table 6−2 lists some commonly used
key attributes. Note that when a DirContext is used with an LDAP directory, it knows its name, unlike a
Context.

Table 6−2. Common Key Attributes

Attribute Meaning

"c" A country, such as the United States or Lithuania

"o" An organization or corporation, such as the Humane Society or Omni Consumer Products

"ou"
A division of an organization, such as the Public Relations Department or the Robotic Peace Officer
Division

"cn" The common name of an entity (often a user, where it can be a first name or a full name)

"sn" The surname (last name) of a user
The key attribute is closely tied to the directory entry's object class definition, otherwise known as its type.
For example, in an LDAP directory, an entry that has a key attribute of "cn" has an object class of "user",
while the key attribute "o" has an object class of "organization". The schema for a directory controls the object
classes that can be used in the directory. The object class of a directory entry is stored as an attribute. Note
that the values used for object classes are directory−dependent, so a user entry from one directory might have
a different object class than a user entry from another directory even though both have the high−level notion
of a user entry.

6.9.3. The Attributes Interface

The Attributes interface represents the set of attributes for a directory entry. It has accessor methods that
enable access to the entire set, as well as to specific attributes. In X.500−based directories, the name of an
attribute (also called an attribute ID), such as "name", "address", or "telephonenumber", determines the type

Preface (Java Enterprise in a Nutshell)

6.9.2. The DirContext Interface 164

of the attribute and is called the attribute type definition. An attribute type definition is part of a directory's
schema; the corresponding attribute syntax definition specifies the syntax for the attribute's value and whether
it can have multiple values, among other things.

We can retrieve all the attributes of a directory entry by calling the getAttributes() method of
DirContext, followed by the getAll() method of Attributes. getAttributes() returns an
Attributes object. Calling the getAll() method of this object returns a NamingEnumeration of
javax.naming.directory.Attribute objects, one for each attribute of the directory entry.

Example 6−10 shows the implementation of a listattrs command for NamingShell. This command prints
the attributes of a directory entry, as well as string representations of the attribute values.

Example 6−10. The listattrs Command

import java.util.Vector;
import javax.naming.*;
import javax.naming.directory.*;

class listattrs implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 String name = "";

 // An empty string is OK for a listattrs operation
 // as it means list attributes of the current context
 if (!(v.isEmpty()))
 name = (String)v.firstElement();

 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(), "No current context");

 try {
 // Get the Attributes and then get enumeration of Attribute objects
 Attributes attrs = ((DirContext)c).getAttributes(name);
 NamingEnumeration allAttr = attrs.getAll();
 while (allAttr.hasMore()) {
 Attribute attr = (Attribute)allAttr.next();
 System.out.println("Attribute: " + attr.getID());

 // Note that this can return human−unreadable garbage
 NamingEnumeration values = attr.getAll();
 while (values.hasMore())
 System.out.println("Value: " + values.next());
 }
 }
 catch (NamingException e) {
 throw new CommandException(e, "Couldn't list attributes of " + name);
 }
 catch (ClassCastException cce) {
 throw new CommandException(cce, "Not a directory context");
 }
 }

 public void help() { System.out.println("Usage: listattrs [name]"); }
}

To use the listattrs command, you need to have access to a live directory server. To experiment with a live
LDAP directory server, you might try the University of Michigan's server at ldap://ldap.itd.umich.edu/ or
Novell's test server at ldap://nldap.com/. Another option is to download and compile the OpenLDAP source
code from http://www.openldap.org/ and get an LDAP server running on your local network. To use the
University of Michigan's LDAP server with NamingShell, you need to create a properties file that contains

Preface (Java Enterprise in a Nutshell)

6.9.3. The Attributes Interface 165

http://ldap.itd.umich.edu/
http://nldap.com/
http://www.openldap.org/

the following properties:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://ldap.itd.umich.edu/

Make sure that the JAR file for the LDAP service provider is in the classpath of NamingShell when you
use this initial context information.

Once you have NamingShell set up to use a directory server, here's how you might use the listattrs
command:

o=NOVELL% listattrs cn=admin
Attribute: groupMembership
Value: cn=DEVNET SYSOP,ou=Groups,o=NOVELL
Attribute: revision
Value: 235
Attribute: uid
Value: admin
Attribute: objectClass
Value: top
Value: person
Value: organizationalPerson
Value: inetOrgPerson
Attribute: sn
Value: admin
Attribute: cn
Value: admin

The following code in listattrs retrieves the Attributes object of the named directory context and
enumerates the individual Attribute objects:

Attributes attrs = ((DirContext)c).getAttributes(name);
NamingEnumeration allAttr = attrs.getAll();

Calling getAttributes() with the name of a directory entry returns an Attributes object that
contains all the attributes for that entry. Another variation of getAttributes() allows you to pass the
name of a directory entry and an array of attribute names (as String objects). This method returns an
Attributes object that contains only the specified attributes. For example:

String[] attrIDs = {"name", "telephonenumber"};
Attributes partialAttrs = dirContext.getAttributes(name, attrIDs);

In listattrs, we used the getAll() method of Attributes to return an enumeration of
Attribute objects. The Attributes interface also provides a getIDs() method that returns an
enumeration of just the attribute names (or IDs) for the directory entry. If you know the attribute you want,
you can specify the attribute name in a call to the get() method, which returns a single Attribute object.
For example:

Attribute addr = attrs.get("address");

6.9.4. The Attribute Interface

The Attribute interface represents a single directory attribute. We've already seen this interface in the
listattrs command, where we used it to print the names and values of all the attributes of a directory context.

An attribute can have a single value or multiple values, as specified in the schema for the directory. For
example, a "name" attribute might have a single value (e.g., "Billy"), while a "telephonenumber" attribute
might have multiple values (e.g., "800 555 1212" and "303 444 6633").

Preface (Java Enterprise in a Nutshell)

6.9.4. The Attribute Interface 166

JNDI provides several methods for working with values in an attribute. For instance, we can get one or more
values, add or remove a single value, remove all values, and determine if a particular value is present.

The get() method of Attribute returns a single attribute value as a java.lang.Object. If the
attribute has only a single value, get() returns that value. If the attribute has multiple values, the service
provider determines the value that is returned. The following code shows how to get a single value from an
attribute:

DirContext user ... ; // Created somewhere else in the program
Attributes attrs = user.getAttributes("");
Attribute attr = attrs.get("telephonenumber");
Object onePhoneNumber = attr.get();

The getAll() method returns multiple attribute values as a NamingEnumeration of objects, as we saw
in listattrs. Here's how to print all values stored in an attribute:

Attribute attr = attrs.get("telephonenumber");
NamingEnumeration phoneNumbers = attr.getAll();
while (phoneNumbers.hasMore())
 System.out.println(phoneNumbers.next());

The add() method of Attribute enables us to add another value to an attribute:

Attribute attr = attrs.get("telephonenumber");
attr.add("520 765 4321"); // Add a new number

If we try to add a value to an attribute that doesn't support multiple values, the method does not throw an
exception. The attribute simply does not accept the new value. By the same token, you can use the
remove() method to remove a value from an attribute.

Attribute attr = attrs.get("telephonenumber");
attr.remove("303 444 6633"); // Remove the old number

To remove all the values from an attribute, you can call the clear() method. Note that none of these
method calls actually affect the directory entry; they simply modify the local Attribute object. To make a
permanent change, you have to call the modifyAttributes() method of DirContext and provide it
with a modified Attribute object, as discussed in the next section.

The contains() method lets you determine whether an attribute has a certain value, while size()
returns the number of values the attribute has:

Attribute attr = attrs.get("telephonenumber");
boolean itsThere = attr.contains("800 555 1212"); // Check for certain value
int valuesItHas = attr.size(); // Check how many values it has

6.8. Binding Objects 6.10. Modifying Directory
Entries

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

6.9.4. The Attribute Interface 167

Chapter 6: JNDI

6.10. Modifying Directory Entries

Modifying the attribute values of a directory entry involves using the modifyAttributes() method of
DirContext. One variant of this method takes the name of a directory entry, a modification type, and an
Attributes object that contains modified Attribute objects, while another variant takes a name and an
array of javax.naming.directory.ModificationItem objects. A ModificationItem
encapsulates a modified Attribute object and a modification type.

The only part of this operation that warrants much explanation is the creation of modified Attribute
objects. The javax.naming.directory.BasicAttributes and
javax.naming.directory.BasicAttribute classes implement the Attributes and
Attribute interfaces, respectively. These are the classes you'll typically use to create modified attribute
values.

For example, let's say we want to remove the phone number "303 444 6633" from a user entry's
"telephonenumber" attribute and replace it with the new number "520 765 4321." In the following code, we
create two BasicAttributes objects, newNumber and oldNumber, and use them in calls to
modifyAttributes():

DirContext user ... ; // Created somewhere else in the program

BasicAttribute newAttr = new BasicAttribute();
newAttr.add("telephonenumber", "520 765 4321");
BasicAttributes newNumber = new BasicAttributes();
newNumber.put(newAttr);

BasicAttributes oldNumber =
 new BasicAttributes("telephonenumber", "303 444 6633");

user.modifyAttributes("", DirContext.REMOVE_ATTRIBUTE, oldNumber);
user.modifyAttributes("", DirContext.ADD_ATTRIBUTE, newNumber);

In this code, we use two different techniques to create BasicAttributes objects. For newNumber, we
first create a new BasicAttribute and add a "telephonenumber" attribute to it. Then we create a new
BasicAttributes object and put the BasicAttribute in it. With oldNumber, we use the
convenience constructor of BasicAttributes to accomplish the same task in one line of code.

Now we use the two BasicAttributes objects in two calls to modifyAttributes(), one to remove
the old number and one to add the new. DirContext defines three constants we can use to specify the type
of modification we are doing: ADD_ATTRIBUTES, REMOVE_ATTRIBUTES, andREPLACE_ATTRIBUTES.
With any of these types, modifyAttributes() uses the ID of each Attribute object to determine
which attribute to modify by adding, removing, or replacing attribute values. The net result of our two calls is
that the old number is replaced with the new number. Of course, we could have done this with one call to
modifyAttributes() if we had used the REPLACE_ATTRIBUTES modification type.

The following code shows how to make the same change using the variant of modifyAttributes() that
takes an array of ModificationItem objects:

ModificationItem[] mods = new ModificationItem[2];
mods[0] = new ModificationItem(DirContext.REMOVE_ATTRIBUTE,

Preface (Java Enterprise in a Nutshell)

6.10. Modifying Directory Entries 168

 new BasicAttribute("telephonenumber", "303 444 6633"));
mods[1] = new ModificationItem(DirContext.ADD_ATTRIBUTE,
 new BasicAttribute("telephonenumber", "520 765 4321"));
user.modifyAttributes("", mods);

Again, this change could also have been done with a single ModificationItem, using
REPLACE_ATTRIBUTES.

Note that the examples here do not reflect any particular directory. In order to change a "telephonenumber"
attribute value for a particular directory, you need to consult the schema of that directory for the appropriate
attribute type and syntax definitions.

Note also that we have only discussed modifying existing attribute values, not adding new attributes
altogether. The reason is that adding new attribute IDs requires modifying the schema, or type system, of a
directory. JNDI supports schema access and modification, but the details on how to do so are beyond the
scope of this chapter.

6.9. Accessing Directory
Services

6.11. Creating Directory
Entries

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 6: JNDI

6.11. Creating Directory Entries

So far, we have been accessing directory entries that are already present in the directory. Now it's time to
learn how to create directory entries of our own, using the createSubcontext() method of
DirContext. As we discussed earlier, when you create a subcontext of a Context object, the service
provider controls the type of object that is created. With a DirContext, this is not the case; you actually
have complete control over the type of object you create with createSubcontext() (within the
constraints of the directory schema, of course).

As I noted earlier, the object class definition determines the type of a directory entry, and the entry stores its
object class as an attribute. So, in order to create a directory entry, we must pass the object class attribute and
some other attributes into the parent entry's createSubcontext() method.

Most directories require that you specify attributes for at least the object class definition (e.g., "objectclass=")
and key attribute (e.g., common name, "cn=") of a directory entry. Often directories require that you specify
more attributes than just these. The minimum set of attributes necessary for creating a directory entry are
called the mandatory attributes. They are mandatory because if you do not specify them,
createSubcontext() throws an InvalidAttributesException. Other attributes that are not
required, but that add more useful data to the entry, are called extended attributes.

Preface (Java Enterprise in a Nutshell)

6.11. Creating Directory Entries 169

Say we have a reference to a DirContext called orgUnit (where this directory entry lives in an LDAP v3
directory), and we want to create a user entry that is a child of orgUnit to represent the network user Billy
Roberts. Here's how we can create a user entry for Billy:[3]

[3] Note that I didn't implement a "create directory entry" command for NamingShell
because most public−access LDAP servers don't allow you to create new entries.

DirContext orgUnit = ... ; // Created somewhere else in the program

BasicAttributes mandatory = new BasicAttributes("cn", "Billy");
BasicAttribute objectclass = new BasicAttribute("objectclass", "user");
BasicAttribute surname = new BasicAttribute("surname", "Roberts");
mandatory.put(objectclass);
mandatory.put(surname);

orgUnit.createSubcontext("cn=Billy", mandatory);

Note that the createSubcontext() method of DirContext resembles the createSubcontext()
method of Context; the only difference is the addition of an Attributes parameter. In this example, we
create a BasicAttributes object and put three attributes in it. While all the attribute values here are
String objects (because that's what an LDAP directory requires), the JNDI API allows you to specify any
kind of object as an attribute value.

In this example, orgUnit represents an organizational unit, under which Billy Roberts' newly created user
entry resides. In an LDAP directory, an organizational unit is an object class definition that represents a
division of a company, and a user is an object class definition that represents a person who uses network
resources. It is natural that a division of a company can contain a person, but it doesn't necessarily work in the
opposite direction; it doesn't make sense that a user can contain an organizational unit. The LDAP schema
dictates these rules and also specifies the values we can use for the "objectclass" attribute (which is where
"user" came from in the example code).

When you are creating your own directory entries, be sure to consult the schema for the directory you are
using. If you attempt to create a type of entry that cannot reside under a particular DirContext, or you
specify an incorrect value for the "objectclass" attribute, createSubcontext() throws an exception.

6.10. Modifying Directory
Entries

6.12. Searching a
Directory

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 6: JNDI

Preface (Java Enterprise in a Nutshell)

6.11. Creating Directory Entries 170

6.12. Searching a Directory

One of the most useful features a directory service can offer is the ability to search its entries for ones that
have attribute values that meet certain criteria. JNDI supports this kind of searching in directory systems,
which means you can implement search functionality in your JNDI applications. DirContext provides a
number of different search() methods that allow you to specify what you are searching for and let you
control how the search operates.

6.12.1. Search Criteria

There are two ways to specify what you are searching for. The simpler technique is to create a set of attributes
that serve as the search criteria. In this case, you can either set an attribute value, meaning that an entry must
have that attribute value to match or leave the value empty, so that all entries that have the attribute match, no
matter what the value.

The more flexible way to specify search criteria is with a search filter string. A search filter allows you to
express search criteria using LDAP search syntax, specified in RFC−2254. Note that this syntax works with
all JNDI providers, not just LDAP; it's the JNDI standard for searching all kinds of directories. The search
filter is a String that takes the following general form:

(attribute operator value)

You can use an asterisk (*) to represent a wildcard. For example, here's how to search for all entries in an
LDAP directory:

(objectclass=*)

A search for all users takes the form of:

(objectclass=user)

You can also use the wildcard character to represent completion, just like in a Unix shell or a DOS prompt.
For example, here's a filter for searching for all users whose first names start with "k":

(cn=k*)

You can use operators other than equals (=), as in:

(revision<24)

You can also combine search filters with operators such as AND (&) and OR (|). The way to do this is to
wrap the entire expression in parentheses:

(&(objectclass=computer)(cn=Billy))

Finally, you can nest search expressions:

(&(|(objectclass=computer)(objectclass=user))(cn=Billy)))

Obviously, the attributes you specify in a search depend on the directory service you are searching.

Preface (Java Enterprise in a Nutshell)

6.12. Searching a Directory 171

6.12.2. Search Results

Regardless of how you specify the search criteria, the search() method you call returns a
NamingEnumeration of SearchResult objects. There is a SearchResult for each directory entry
that matches the search criteria. SearchResult is a direct subclass of Binding that stores a set of
Attributes along with the usual name, class name, and object. (As we'll see shortly, the object in a
SearchResult may be null, depending on the SearchControls you set.) Since a search operation
returns a NamingEnumeration, you must cast the object that the enumeration returns from the next()
method to a SearchResult object. Once you have done that, you can retrieve attributes with the
getAttributes() method and use methods inherited from Binding (and NameClassPair) to get
other information about the matching entry.

6.12.3. Search Controls

The search() methods that take a SearchControls object allow you to control how a search operates.
You can set the scope of a search, whether the search should return objects, and the maximum amount of time
the search should take, among other things. The easiest way to create a SearchControls object is to use
the default constructor and then call various set() methods to set particular search properties.

For example, the setSearchScope() method controls where the search should look for matching
directory entries. Most of the time, you set the scope of a SearchControls object to search an entire
subtree, but you can also limit the search to an object or its children. Table 6−3 lists the available search
scopes.

Table 6−3. SearchControls Search Scopes

Scope Meaning

OBJECT_SCOPE Searches only the object itself

ONELEVEL_SCOPESearches only the children of the search target

SUBTREE_SCOPESearches the entire subtree
The setReturningObjFlag() method determines whether the results of a search contain references to
the actual directory entries or only the names and class names of the entries. The default behavior is not to
return the actual entries, meaning that calling getObject() on a SearchResult returns null.

The SearchControls object also allows you to specify other aspects of the behavior of a search:

•
The number of milliseconds to wait for the directory to return the search results (by default, a search
can take as long as it takes)

•
The number of entries that can be returned from the search (by default, as many as are present)

•
Whether to follow links to finish the search (no by default)

•
What attributes if any to return (all by default)

In general, the default behavior is typically what you want for these parameters.

Preface (Java Enterprise in a Nutshell)

6.12.2. Search Results 172

6.12.4. A Search Command

Now that we've discussed how the various search() methods work, let's look at a real example. Example
6−11 shows the implementation of a search command for NamingShell. This example uses the
search() method that takes the name of the context to be searched, a search filter that describes the search
criteria, and a SearchControls object.

Example 6−11. The search Command

import java.util.Vector;
import javax.naming.*;
import javax.naming.directory.*;

class search implements Command {
 public void execute(Context c, Vector v) throws CommandException {

 if (NamingShell.getCurrentContext() == null)
 throw new CommandException(new Exception(), "No current context");
 else if (v.isEmpty())
 throw new CommandException(new Exception(), "No filter specified");
 String filter = (String)v.firstElement();
 try {
 SearchControls cons = new SearchControls();
 cons.setSearchScope(SearchControls.SUBTREE_SCOPE);
 NamingEnumeration results = ((DirContext)c).search("", filter, cons);
 while (results.hasMore()) {
 SearchResult result = (SearchResult)results.next();
 System.out.println(result.getName());
 }
 }
 catch (InvalidSearchFilterException isfe) {
 throw new CommandException(isfe,
 "The filter [" + filter + "] is invalid");
 }
 catch (NamingException e) {
 throw new CommandException(e, "The search for " + filter + " failed");
 }
 catch (ClassCastException cce) {
 throw new CommandException(cce, "Not a directory context");
 }
 }

 public void help() { System.out.println("Usage: search filter"); }
}

The search command always starts searching in the current context, so you need to move to the appropriate
location in the directory service using cd before you use search. search requires you to specify a search filter
as its first argument. Note that you cannot use any spaces in the filter, or the filter will be parsed as multiple
arguments and therefore not work. Here's how we might use the search command:

o=Novell% search (&(objectclass=person)(cn=a*))
cn=admin
cn=admin,ou=cook1,ou=user
cn=admin,ou=fj,ou=user
cn=admin,ou=Stanford,ou=user
cn=admin,ou=Ed Reed,ou=user
cn=admin,ou=antimony,ou=user
cn=admin,ou=keaves,ou=user
cn=admin,ou=acme,ou=user
cn=admin,ou=nld,ou=user
cn=admin,ou=wibble,ou=user
cn=admin,ou=xxx,ou=user

Preface (Java Enterprise in a Nutshell)

6.12.4. A Search Command 173

cn=admin,ou=piet,ou=user
cn=admin,ou=adamtest1,ou=user
cn=admin,ou=novell,ou=user
...

6.11. Creating Directory
Entries

7. Enterprise JavaBeans

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 1: Introducing the
Java Enterprise APIs

Preface (Java Enterprise in a Nutshell)

6.12.4. A Search Command 174

Chapter 7. Enterprise JavaBeans
Contents:

A Note on Evolving Standards
EJB Roles
Transaction Management
Implementing a Basic EJB Object
Implementing Session Beans
Implementing Entity Beans
Deploying an Enterprise JavaBeans Object
Using an Enterprise JavaBeans Object
Changes in EJB 1.1 Specification

The introduction of RMI and JavaBeans to the core Java APIs brought a standard distributed object
framework and a component model to Java. The Enterprise JavaBeans (EJB) architecture builds on these
foundations to provide a standard distributed component model.

So, you may ask, how are EJB[1] components different from regular distributed objects built using RMI or
local (nondistributed) components defined using the JavaBeans component model? Well, they aren't, really.
An EJB component is an RMI object, in the sense that it's exported as a remote object using RMI. And an EJB
component is also a JavaBeans component, since it has properties that can be introspected, and it uses the
JavaBeans conventions for defining accessor methods for its properties. An EJB is much more than the sum of
these parts, however. The EJB architecture provides a framework in which the enterprise bean developer can
easily take advantage of transaction processing, security, persistence, and resource−pooling facilities provided
by an EJB environment. These facilities don't come free, of course. You need to understand how they work
and what rules your EJB object needs to follow in order to participate in these services.

[1]For the sake of space on the page, strain on your eyes, and my time on the keyboard, I'm
going to abbreviate "Enterprise JavaBeans" as "EJB" throughout most of this chapter. I hope
you don't mind.

Enterprise JavaBeans are useful in any situation where regular distributed objects are useful. They excel,
however, in situations that take advantage of the component nature of EJB objects and the other services that
EJB objects can provide with relative ease, such as transaction processing and persistence. A good example is
an online banking application. A user sitting at home wants to connect to all her financial accounts, no matter
where and with whom they may live, and see them tied together into one convenient interface. The EJB
component architecture allows the various financial institutions to export user accounts as different
implementations of a common Account interface, just as we would do with other distributed object APIs.
But since these remote Account objects are also JavaBeans components, the client−side financial
application can introspect on the Account objects to determine specialized public properties that certain
accounts may have, so they can be shown to the client along with the common account properties. Also, the
Account objects can be made into transactional EJB objects, which allows the client to perform a number of
account operations within a single transaction, then either commit them all or roll them back. This can be a
critical feature in financial applications, especially if you need to ensure that a supporting transfer can be
executed before a withdrawal request is submitted. The transactional support in EJB ensures that if an error
occurs during the transfer and an exception is raised, the entire transaction can be rolled back, and the
client−side application can inform you of the reason.

The EJB component model insulates applications and beans (for the most part) from the details of the
component services included in the specification. A benefit of this separation is the ability to deploy the same
enterprise bean under different conditions, as needed by specific applications. The parameters used to control
a bean's transactional nature, persistence, resource pooling, and security management are specified in separate

Chapter 7. Enterprise JavaBeans 175

deployment descriptors, not embedded in the bean implementation or the client application. So, when a bean
is deployed in a distributed application, the properties of the deployment environment (client load levels,
database configuration, etc.) can be accounted for and reflected in the settings of the bean's deployment
options.

The EJB API is a standard extension to Java, available in the javax.ejb package and its subpackages. You
have to explicitly install this extension API in order to write code against the EJB interfaces. You can find the
latest version of the API at http://www.javasoft.com/products/ejb/. You should also note that EJB is just a
specification for how distributed components should work within the Java environment. In order to actually
create and use EJB objects, you need to install an EJB−enabled server.

Note that this chapter provides a basic introduction to Enterprise JavaBeans. For more complete coverage, see
Enterprise JavaBeans by Richard Monson−Haefel (O'Reilly).

7.1. A Note on Evolving Standards

The information and code examples in this chapter are based on Version 1.0 of the Enterprise JavaBeans
specification, released in March 1998. The code examples have been tested in two different EJB servers for
compatibility: Weblogic/BEA's Tengah server Version 3.1.2 and the 0.4 Version of the free reference EJB
server provided by the good folks at EJBHome (http://ejbhome.iona.com).

At the time of this writing, Sun has released a public draft of Version 1.1 of the EJB specification and has
plans for a 2.0 version, to be released at a later date. The information in this chapter is largely unchanged by
the incremental 1.1 update, but some details on the changes in 1.1 are described at the end of the chapter. It's
unclear how much of the material in this chapter will be applicable to EJB 2.0.

6.12. Searching a
Directory

7.2. EJB Roles

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 7: Enterprise
JavaBeans

7.2. EJB Roles

In Chapter 3, "Remote Method Invocation", I described two fundamental roles in the RMI environment: the
client of the remote object, and the object itself, which acts as a kind of server or service provider. These two
roles exist in the EJB environment as well, but EJB adds a third role, called the container provider. The
container provider is responsible for implementing all the extra services for an EJB object that I mentioned

Preface (Java Enterprise in a Nutshell)

7.1. A Note on Evolving Standards 176

http://www.javasoft.com/products/ejb/
http://ejbhome.iona.com/

earlier: transaction processing, security, object persistence, and resource pooling. If you're familiar with
CORBA, you can think of the EJB container as being roughly equivalent to the ORB in CORBA, with a few
of the CORBA services thrown in as well. In EJB, however, the container is strictly a server−side entity. The
client doesn't need its own container to use EJB objects, but an EJB object needs to have a container in order
to be exported for remote use. Figure 7−1 shows a conceptual diagram of how the three EJB roles interact
with each other.

Figure 7−1. The basic roles in an EJB environment

7.2.1. The EJB Client

An EJB client uses remote EJB objects to access data, perform tasks, and generally get things done. In the
EJB environment, the first action a client performs is to find the home interface for a type of EJB object that it
wants to use. This home interface is a kind of object factory, used to create new instances of the EJB type,
look up existing instances (only when using entity EJB objects, discussed later), and delete EJB objects. This
is a bit different from RMI, where the client first has to get a direct handle to an existing RMI object. In many
RMI applications, however, this first RMI object is a kind of object factory that creates other RMI object
references. So, in a sense, the use of home interfaces in EJB is just formalizing the role of factory objects in
distributed component applications.

EJB home interfaces are located by clients using JNDI (see Chapter 6, "JNDI", for more information). An
EJB server publishes the home interface for a particular EJB object under a particular name in a JNDI
namespace. The EJB client needs to specify the JNDI server and the name that the EJB home interface is
stored under in order to start things off. The following code shows a simple EJB client that uses remote
Person beans:

import javax.ejb.*;
import javax.naming.*;
import java.rmi.*;
import java.util.Properties;

public class PersonClient {
 public static void main(String[] args) {
 String name = args[0];

 try {
 // Get a JNDI context for our EJB server (EJBHome, in this case)
 Properties p = new Properties();

Preface (Java Enterprise in a Nutshell)

7.2. EJB Roles 177

 p.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.ejbhome.naming.spi.rmi.RMIInitCtxFactory");
 // Add URL, host or port options, if needed...;
 Context context = new InitialContext(p);

 // Get the home interface for Person beans
 PersonHome pHome =
 (PersonHome)context.lookup("People");

 // Create a named person
 Person person = pHome.create(name);

 // Use the remote stub interface to access the person's data
 . . .
 }
 catch (NoSuchPersonException nspe) {
 System.out.println("Invalid person: " + name);
 }
 catch (Exception e) {
 System.out.println("Error while creating/using person.");
 }
 }
}

We'll examine the details of this client a bit later in the chapter, but the example shows the fundamental steps
an EJB client performs:

•
Get a JNDI context from the EJB server.

•
Use this context to look up a home interface for the bean you want to use.

•
Use this home interface to create (or find) a bean.

•
Call methods on the bean.

7.2.2. The Enterprise JavaBeans Object

If you develop your own EJB object, you need to provide three Java interfaces/classes in order to fully
describe your EJB object to an EJB container:

•
A home interface

•
A remote interface

•
An enterprise bean implementation

The remote interface and the object implementation are similar to the corresponding RMI interfaces. A client
issues method requests through a stub derived from the remote interface and eventually these requests make
their way to the corresponding bean instance on the server. The home interface is a new twist: it acts as a bean
factory, providing a way for a client to create, locate, and destroy EJB objects that it uses. With the home
interface in the picture, the remote interface acts as the interface the client uses to interact with EJB objects,

Preface (Java Enterprise in a Nutshell)

7.2.2. The Enterprise JavaBeans Object 178

and the implementation is where the object itself does its thing.

Here is an example home interface for the Person bean used in the previous example:

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util.Hashtable;

public interface PersonHome extends EJBHome {
 // Create a new (nameless) person
 public Person create() throws RemoteException;

 // Create a named person.
 // Throws an exception if the person can't be found.
 public Person create(String name)
 throws RemoteException, NoSuchPersonException;

 // Lookup a Person by name (the "primary key")
 public Person findByPrimaryKey(PersonPK key)
 throws RemoteException, FinderException;

 // Lookup people with a given string in their name.
 public Enumeration findByPartialName(String fragment)
 throws RemoteException, FinderException;
}

This home interface includes methods to create Person beans and to find them if they already exist on the
server. The remote interface for our Person bean is shown here:

import javax.ejb.*;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Person extends Remote, EJBObject {
 public String getName() throws RemoteException;
 public void setName(String name) throws RemoteException;
}

This interface shows the business methods that are available to clients. When a client gets a reference to a
bean through the PersonHome interface, it is given a stub that implements the Person interface.

The EJB object implementation needs to implement all the business methods in the remote interface, plus
some methods used by the container to tell it about various events in its lifetime. The EJB object does not
need to implement the remote interface, which is another new twist compared to RMI, where the server object
always implements the remote interface. In EJB, the container arranges for method calls on the remote
interface to be transferred to the EJB object. You just need to ensure that the EJB object has methods that
match the signatures of the methods in the remote interface. We'll see an example of EJB object
implementation a bit later.

Various pieces of these Java classes (home, remote, and implementation) are provided for the sake of the
client, to allow a client to create EJB objects and call remote methods on them. Other pieces are provided for
the EJB container, to allow it to notify the EJB object about transaction− and persistence−related events, for
example.

In addition to the interfaces that describe the EJB object type, an EJB object also provides deployment
descriptors to its containers. The deployment descriptors tell the container the name to use for registering the
bean's home interface in JNDI, how to manage transactions for the bean, the access rights that remote
identities are given to invoke methods on the EJB, and how persistence of the EJB objects should be handled.
The container does all the heavy lifting with regard to providing these services, but the EJB object has to tell
the container how it would prefer to have these services managed.

Preface (Java Enterprise in a Nutshell)

7.2.2. The Enterprise JavaBeans Object 179

There are two fundamental types of Enterprise JavaBeans: session beans and entity beans.[2] A session bean
is accessed by a single client at a time and is nonpersistent. It lives for a specific period of time (a session),
and then gets removed by the server. An entity bean, on the other hand, represents a data entity stored in
persistent storage (e.g., a database or filesystem). It can be accessed by multiple clients concurrently and is
persistent beyond a client session or the lifetime of the EJB server.

[2]In Version 1.0 of the EJB specification, support for entity beans is optional in compliant
EJB servers.

To illustrate the difference between session and entity beans, suppose you're building an online banking
system using EJB components. An automated bank teller, which reports on account balances and executes
deposits and withdrawals on specified accounts, could be implemented as a session bean. A single client uses
the teller bean to perform services on bank accounts that are maintained in some separate persistent store (the
bank's database). A EJB object that directly represents a bank account, however, should be an entity bean.
Multiple clients can access the account to perform transactions, and the state of the account entity should be
persistent across the lifetime of the online banking server.

7.2.3. The EJB Container

Most readers need to be familiar only with EJB containers from the perspective of an EJB client or an EJB
object. For example, a Java application server that you might use to deploy an EJB−based application
provides an implementation of the EJB container role. EJB−enabled application servers, with their own EJB
containers and deployment tools, are available from Weblogic/BEA, Bluestone, IBM, Netscape, and Art
Technology Group, among others.

The EJB container represents the value−added features of EJB over standard remote objects built using RMI
or CORBA. The EJB container manages the details of transactional processing, resource pooling, and data
persistence for you, which reduces the burden on client applications and EJB objects and allows them to deal
with just the business at hand.

An EJB application server can contain multiple EJB containers, each managing multiple EJB objects. In this
chapter, I'll refer to EJB servers and EJB containers somewhat interchangeably, depending on the context. In
general, though, the container is strictly the runtime elements that interact directly with your EJB objects to
provide client proxy services and notifications, while the server is the other glue outside the core EJB standard
that integrates the EJB containers into a larger application management structure of some kind.

An EJB container is the heart of an EJB environment, in the same way an ORB is the heart of a CORBA
environment. The container registers EJB objects for remote access, manages transactions between clients and
EJB objects, provides access control over specific methods on the EJB, and manages the creation, pooling,
and destruction of enterprise beans. The container also registers the home interface for each type of bean
under a given name in a JNDI namespace, allowing remote clients to find the home interfaces and use them to
create enterprise beans.

Once you provide the EJB container with the home and remote interfaces and the implementation class for
your bean, along with a deployment descriptor, the container is responsible for generating the various classes
that connect these components, as shown in Figure 7−2. The home and remote interfaces you provide are RMI
Remote interfaces; the container generates both the client stubs and the server−side implementation for these
interfaces. When a client looks up a bean's home interface through JNDI, it receives an instance of the home
stub class. All methods invoked on this stub are remotely invoked, via RMI, on the corresponding home
implementation object on the EJB server. Similarly, if the client creates or finds any beans through the home
stub, the client receives remote object stubs, and methods invoked on the stubs are passed through RMI to
corresponding implementation objects on the server. These remote objects are linked, through the EJB

Preface (Java Enterprise in a Nutshell)

7.2.3. The EJB Container 180

container, to a corresponding enterprise bean object, which is an instance of your bean−implementation class.
Optionally, the EJB container may also generate a container−specific subclass of your bean implementation
(e.g., if it wants to augment some of your bean methods to facilitate synchronization with the container).

Figure 7−2. Relationship of bean−provider classes and container−generated classes

The container receives client requests to create, look up, and/or remove beans. It either handles them itself or
passes the requests to corresponding methods on the EJB object. Once the client obtains a reference to a
remote interface for an EJB object, the container intercedes in remote method calls on the bean, to provide the
bean with required transaction management and security measures. The container also provides support for
persistence of enterprise beans, either by storing/loading the bean state itself or by notifying the bean that it
needs to store or reload its state from persistent storage.

A container can maintain multiple EJB objects and object types during its lifetime. The container has some
freedom to manage resources on the server for performance or other reasons. For example, a container can
choose to temporarily serialize a bean and store it to the server filesystem or some other persistent store; this
is called passivating a bean. The EJB object is notified of this and given a chance to release any shared
resources or transient data that shouldn't be serialized. The bean is also notified after it is activated again, to
allow it to restore any transient state or reopen shared resources.

An EJB container can make any EJB object type available for remote use. When you deploy an EJB object
within an EJB server, you can specify how the container should manage the bean during runtime, in terms of
transaction management, resource pooling, access control, and data persistence. This is done using
deployment descriptors, which contain parameter settings for these various options. These settings can be
customized for each deployment of an EJB object. You might purchase an EJB object from a vendor and
deploy it on your EJB server with a particular set of container management options, while someone else who
purchased the same bean can deploy it with a different set of deployment options. We discuss the details of
the runtime options available in deployment descriptors and how to use them later in this chapter, when we
talk about deploying EJB components.

7.1. A Note on Evolving
Standards

7.3. Transaction
Management

Preface (Java Enterprise in a Nutshell)

7.2.3. The EJB Container 181

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 7: Enterprise
JavaBeans

7.3. Transaction Management

One of the value−added features that Enterprise JavaBeans provides over regular remote objects is
semiautomated transaction management. I'll periodically mention transaction−related issues when we look at
creating, deploying, and using EJB objects, so this section introduces some basic transaction−management
concepts. If you're not interested in using the transaction−management features of your EJB server, you can
safely skip this section and jump to the material on implementing EJB object. If you plan to make JDBC calls
from within your bean, however, you should note the information in the section on database transactions.

Transactions break up a series of interactions into units of work that can be either committed if they are
successfully executed or rolled back at any time before the transaction is committed. If a transaction is rolled
back, all parties involved in the transaction are responsible for restoring their state to its pretransaction
condition. Transaction support is especially important in a distributed environment, since agents may lose
network contact with each other or one agent may die while engaged in a series of interactions with another
agent.

The EJB container is the principal player in the area of transaction management, since it is responsible for
either generating transactions around client interactions with the bean, or detecting client−requested
transactions and then notifying the EJB objects about transaction boundaries (start and end). The Enterprise
JavaBeans architecture relies on the Java Transaction API (JTA) for transaction support. The JTA represents a
transaction with the javax.transaction.UserTransaction interface.[3] Complete coverage of the
JTA and the concepts of transaction−based processing are beyond the scope of this chapter, but a few words
of overview here should be enough for you to get an understanding of how this can be a valuable feature of
Enterprise JavaBeans. In addition, the JTA interfaces and classes are documented in Part 3, "API Quick
Reference".

[3]Note that shortly after the EJB 1.0 specification was released, the name of the (then beta)
JTA was changed, so that javax.jts.UserTransaction became
javax.transaction.UserTransaction. I'm using the new class name here, but
keep in mind that you might see the old package names in the EJB 1.0 documentation from
Sun.

A client or an EJB object can declare a new transaction by creating a UserTransaction object. The
transaction is started by calling the begin() method on the transaction object, and ended by calling either
the commit() method (for a successful completion) or the rollback() method (to abort the transaction
and revert to the state before the transaction began). The following code shows the (now cliché) example of a
banking transaction in an EJB context:

Preface (Java Enterprise in a Nutshell)

7.3. Transaction Management 182

// Get the JNDI context, and use it to get the Account home interface
Context ctx = new InitialContext(props);
AccountHome acctHome = (AccountHome)ctx.lookup("Accounts");

// Get two accounts
Account savings = acctHome.findByNameAndType("Jim Farley", "savings");
Account checking = acctHome.findByNameAndType("Jim Farley", "checking");

// Get a transaction object, using a JNDI lookup on the EJB context
javax.transaction.UserTransaction xaction =
 (UserTransaction)ctx.lookup("javax.transaction.UserTransaction");

// Perform a transaction
xaction.begin();
try {
 savings.deposit(1500.0);
 checking.transfer(savings, 750.0);
 xaction.commit();
}
// If anything goes wrong, roll back the work we've done.
catch (Exception e) {
 xaction.rollback();
}

This code might be seen in a client application using an EJB server for banking services. In this case, the
client is using the transaction to ensure that both the deposit to savings and the transfer to checking are
committed only if both operations are successful. If either one fails, the rollback() method is called on
the transaction to ensure that any changes are undone. An EJB object might use similar procedures if it is
managing its own transactions, the only difference being that the bean would be able to use its EJBContext
to get a transaction from its container:

xaction = myContext.getUserTransaction();

The use of the EJBContext in enterprise beans is covered later in the chapter.

In the context of an Enterprise JavaBeans component, transaction boundaries can be defined by the client of
the EJB object, the container, or the EJB object itself. In all cases, the EJB container decides how to handle
the transaction context whenever a remote method is invoked on an EJB object. During a bean's lifetime, the
container decides whether to execute the bean's business methods within the client's transaction or within a
transaction that the container defines, or to allow the bean to manage its own transaction boundaries. When it
is deployed, a bean can choose one of the following transaction−support attributes:

TX_NOT_SUPPORTED
The bean cannot support transactions, so its methods must be called without a transaction context. If
the client has initiated a transaction, it is suspended by the container before the bean's method is
invoked. After the method completes, the container resumes the client's transaction.

TX_SUPPORTS
The bean supports transactions if requested. If the client calls a method on the bean, while within a
transaction, the client's transaction context is passed to the bean as part of the bean's EJBContext.

TX_REQUIRED
The bean requires that all method requests be executed within a transaction context. If the client is
already in a transaction of its own, the transaction context is passed on to the bean in its
EJBContext. If not, the container creates a new transaction before calling the bean's method and
commits the transaction when the bean's method finishes, but before the method results are returned
to the client.

Preface (Java Enterprise in a Nutshell)

7.3. Transaction Management 183

TX_REQUIRES_NEW
The bean requires that all remote method requests be executed within a new transaction. The
container automatically starts a new transaction before calling a remote method on the bean, and
commits the transaction when the method finishes, but before the results are returned to the client. If
the client calls a remote method while within a transaction, the client's transaction is suspended by the
container before executing the bean's method within the new transaction and resumed after the new
transaction is committed.

TX_MANDATORY
The bean must be run within the context of a client−initiated transaction. If the client calls a remote
method on the bean without starting a transaction first, the container throws a
javax.jts.TransactionRequired Exception.

TX_BEAN_MANAGED
The bean manages all its own transaction boundaries and does not execute within the client's
transactions. If the client calls a remote method on the bean from within a client−generated
transaction, the client transaction is suspended for the duration of the execution of the remote method.
The bean's business methods are run within a transaction only if the bean explicitly creates one (the
container does not automatically generate a transaction for each method call). The bean's methods run
within the transaction until it is ended by the bean, and the container ensures that the transaction
context is provided in the bean's EJBContext as long as the transaction is open.

7.3.1. Making the EJB Server Aware of Database Transactions

In order for an EJB server to properly implement the various transaction levels listed previously, it needs to
be aware of JDBC connections and database transactions that you make from within your enterprise bean.
This is key to the EJB server's ability to provide your beans with semiautomatic transaction management.
While your bean methods are executing within a given transaction context, the EJB server needs to ensure all
database transactions that you make are held pending the commit or rollback of the transaction. If the
transaction is committed, the pending database updates are committed to their respective data sources. If the
transaction is rolled back, the pending database updates are rolled back as well.

To allow the EJB server to do this, your enterprise bean typically needs to acquire JDBC connections in a
manner specified by your EJB server. Unfortunately, the EJB 1.0 specification does not provide a standard
method for acquiring database connections from an EJB container. Until this oversight in the EJB
specification is amended, EJB server vendors have to provide their own methods for an EJB object to get
connections that are monitored by the EJB container. Most EJB vendors provide a way to define a pool of
JDBC connections and a means for requesting connections from this pool at runtime. BEA's WebLogic server,
for example, allows you to specify a connection pool in a server property file and then use a JDBC URL to
pull connections from this pool at runtime. An example properties entry might look like this:

weblogic.jdbc.connectionPool.myPool=\
 url=jdbc:weblogic:oracle,\
 driver=weblogic.jdbc.oci.Driver,\
 loginDelaySecs=1,\
 initialCapacity=5,\
 maxCapacity=10,\
 capacityIncrement=1,\
 props=user=jsmith;password=foobar;server=main

This line of the properties file asks the server to create a connection pool named myPool with the specified
JDBC driver and connection properties. The server reads this information from the properties file on startup
and creates the pool, and then your EJB object can ask for connections from the pool using a specific JDBC
URL:

Preface (Java Enterprise in a Nutshell)

7.3.1. Making the EJB Server Aware of Database Transactions 184

Connection conn = DriverManager.getConnection("jdbc:weblogic:jts:myPool");

This allows the WebLogic server to issue your bean a JDBC connection that is controlled by the server.
However, there is currently no consensus among EJB providers concerning support for this method of
providing JDBC connections to EJB objects and clients. Before using JDBC code in your enterprise beans,
make sure to consult your EJB server documentation to see specifically how it provides JDBC connection
management.

7.3.2. Transaction Isolation Levels

Normally, you would expect multiple transactions originating from multiple client requests on your bean to
be effectively serialized. In other words, if multiple client transactional requests are made of your bean, the
end effect of satisfying all these requests by timesharing the bean between each client/transaction should be
the same as if each request were serialized at the boundaries of each transaction. The ANSI SQL standard
defines three ways in which this transaction isolation rule can be violated:

Dirty reads
If transaction A updates a record in the database, followed by transaction B reading the record, then
transaction A performs a rollback on its update operation, the result is that transaction B has read an
invalid state of the record.

Nonrepeatable reads
If transaction A reads a record, followed by transaction B updating the same record, then transaction
A reads the same record a second time, transaction A has read two different values for the same
record.

Phantom reads
If transaction A performs a query on the database with a particular search criteria (WHERE clause),
followed by transaction B creating new records that satisfy the search criteria, followed by transaction
A repeating its query, transaction A sees new, phantom records in the results of the second query.

When you deploy your enterprise bean within an EJB container, you can specify what level of transaction
isolation you want it to enforce for you, using one of the following isolation levels:

TRANSACTION_READ_UNCOMMITTED
All the defined isolation violations are allowed.

TRANSACTION_READ_COMMITTED
Dirty reads are prevented, but nonrepeatable reads and phantom reads are allowed.

TRANSACTION_REPEATABLE_READ
Only phantom reads are allowed.

TRANSACTION_SERIALIZABLE
All the defined isolation violations are prevented, making concurrent transactions effectively
serialized.

These levels can be applied to an entire bean or to individual methods on the bean. If you don't specify one of
these isolation levels, the EJB server typically uses the default isolation level dictated by the database being
used for persistent storage. For more information on these isolation levels and their meaning, consult the
JDBC specification or the ODBC specification. Chapter 2, "JDBC", also briefly discusses database isolation
levels. I mention them here just so that you are aware that they exist and can seek out more information if the
details of transaction isolation are important for your enterprise beans.

Preface (Java Enterprise in a Nutshell)

7.3.2. Transaction Isolation Levels 185

7.2. EJB Roles 7.4. Implementing a Basic
EJB Object

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 7: Enterprise
JavaBeans

7.4. Implementing a Basic EJB Object

Now it's time to start talking about actually implementing an Enterprise JavaBeans component. No matter
whether you are creating an entity bean or a session bean, there are three Java interfaces/classes you need to
provide:

Home interface
The home interface is accessed directly by clients and used to create and/or find EJB objects of a
specific type.

Remote bean interface
The remote interface for the bean is also used directly by clients. When a client creates or finds an
EJB object through a home interface, it is given a reference to a stub that implements the remote
interface for the bean. The remote interface defines the methods the EJB object exports to remote
clients.

Bean implementation
The EJB object implementation itself must implement all the remote methods defined in its remote
interface, provide methods that correspond to the methods on its home interface for creating and/or
finding the bean, and also implement the methods used by the EJB container to manage the bean.

To demonstrate the various components that make up an Enterprise JavaBeans object, we'll look at a simple
example: a profile server. The profile server is a stateless session bean that provides profile information for
named users. This profile information consists of name/value pairs that might represent preferences in an
application, historical usage patterns, etc. You might see a profile server running behind an online information
service, allowing users to personalize the content and appearance of the site when they enter. After we've gone
through this general example of writing a bean, we'll look more closely at the differences between
implementing session beans and entity beans.

Table 7−1 shows how the methods of the home interface, the remote interface, and the bean implementation
are related to each other.

Preface (Java Enterprise in a Nutshell)

7.4. Implementing a Basic EJB Object 186

Table 7−1. Related Methods

Home Interface Method
Remote Interface

Method
EJB Object Method

remote−typecreate(args) throws
CreateException,
RemoteException;

N/A

public void
ejbCreate(args); // Session
beans publicprimary−key−type
ejbCreate(args); // Entity beans

remote−type or Enumeration
findBymethod(args) throws
FinderException,
RemoteException; // Entity beans only

N/A

publicprimary−key−type or
Enumeration
ejbFindBymethod(args); // Entity
beans only

public void remove();
public void
remove();

public void ejbRemove();

N/A
Business method
(must throw
RemoteException)

Business method, same signature
(must throw RemoteException)

7.4.1. Home Interface

The client needs a way to create a local reference to a profile server, so we have to provide a home interface
for our bean, as shown in Example 7−1. This home interface provides a single create() method that takes
no arguments and returns the bean's remote interface type, ProfileServer.

Example 7−1. Home Interface for the Profile Server Bean

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProfileServerHome extends EJBHome {
 public ProfileServer create() throws CreateException, RemoteException;
}

The home interface for an EJB object extends the javax.ejb.EJBHome interface. The home interface is
also an RMI remote interface, since EJBHome extends java.rmi.Remote. The home interface can
contain multiple create() methods that take various initialization arguments for the bean to be created. The
create() method returns a reference to our bean's remote interface (ProfileServer, in this case).

As shown in Table 7−1, for each create() method on the home interface, the EJB object implementation
must have a matching ejbCreate() method that takes the same arguments. The create() method on the
home interface has to declare that it throws java.rmi.RemoteException, since the home interface is an
RMI remote interface. It also has to throw javax.ejb.CreateException, in case some error occurs
during the EJB creation process (as opposed to some general RMI−related problem). If the corresponding
ejbCreate() method on the bean implementation throws any other exceptions, the create() method
has to include these in its throws clause as well. In this example, the bean's ejbCreate() method doesn't
throw any exceptions, so we don't need to add any additional exceptions here.

Home interfaces for entity beans can also include finder methods, used to find existing persistent entity beans
that were previously created. We'll discuss them in detail a bit later, when we talk about entity beans.

Preface (Java Enterprise in a Nutshell)

7.4. Implementing a Basic EJB Object 187

7.4.2. Remote Interface

You usually start putting together an EJB by defining its remote interface. This interface contains
declarations of the methods that are available to remote clients, so it really points to the heart of the EJB
object. The remote interface for our ProfileServer is shown in Example 7−2. A remote EJB interface
must extend the javax.ejb.EJBObject interface. EJBObject in turn extends the
java.rmi.Remote interface, which makes the EJB remote interface an RMI remote interface as well.

Example 7−2. Remote Interface for the Profile Server Bean

import javax.ejb.*;
import java.rmi.RemoteException;
import java.rmi.Remote;

public interface ProfileServer extends EJBObject {
 public Profile getProfile(String name)
 throws NoSuchPersonException, RemoteException;
}

The ProfileServer interface defines a single remote method, getProfile(), that accepts a username
as its only argument. It returns a Profile object, containing the profile information for the person named. If
the person's profile cannot be found on the server, a NoSuchPersonException is thrown. This is an
application−specific exception whose implementation isn't shown here. Since the ProfileServer
interface is an RMI remote interface, its methods must throw RemoteException in case some RMI
communication problem occurs during a method call. Also, the arguments and return values for the methods
have to be Serializable, and/or they need to be exportable RMI objects themselves. Our
getProfile() method returns a Profile object, which we'll implement as an RMI−exportable object.
The remote interface for Profile is shown in Example 7−3. The interface has only two remote methods,
one to set profile entry values and one to get those values. Note: the implementation of the Profile remote
interface isn't shown in this chapter.

Example 7−3. RMI Remote Interface for a Profile Object

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Profile extends Remote {
 public String getProfileEntry(String name) throws RemoteException;
 public void setProfileEntry(String name, String value)
 throws RemoteException;
}

When you deploy your EJB object, you can specify who is allowed to call each method on your bean through
the remote interface. In this case, we might want only certain clients to be able to query for user profiles, so
we might want to limit access to the getProfile() method on our ProfileServer bean. We discuss
the access control features of bean deployment descriptors later in the chapter.

7.4.3. The Bean Implementation

Now that we have a home interface that lets clients create EJB references and a remote interface that
describes the EJB methods, we need to actually implement the EJB object itself. Our
ProfileServerBean is shown in Example 7−4. If you are familiar with RMI, this should look like an
RMI server object, with some extra methods included. These extra methods are the hooks the EJB container
uses to manage the bean as a component. At the end of the class is the implementation of the

Preface (Java Enterprise in a Nutshell)

7.4.2. Remote Interface 188

getProfile() method from the remote interface. The ejbCreate() method is also included here, to
match the create() method on the home interface.

Example 7−4. The ProfileServerBean Implementation

import javax.ejb.*;
import java.rmi.RemoteException;

public class ProfileServerBean implements SessionBean {
 private SessionContext mContext = null;

 // Session bean methods
 public void ejbPassivate() {
 System.out.println("ProfileServerBean passivated.");
 }

 public void ejbActivate() {
 System.out.println("ProfileServerBean activated.");
 }

 public void ejbCreate() {
 System.out.println("ProfileServerBean created.");
 }

 public void ejbRemove() {
 System.out.println("ProfileServerBean removed.");
 }

 // Get session context from container
 public void setSessionContext(SessionContext context) {
 System.out.println("ProfileServerBean context set.");
 mContext = context;
 }

 // Business methods
 public Profile getProfile(String name) throws NoSuchPersonException {
 // Here, we just create a ProfileImpl and return it.
 ProfileImpl profile = null;
 try {
 profile = new ProfileImpl(name);
 }
 catch (RemoteException re) {
 System.out.println("Failed creating profile for " + name);
 re.printStackTrace();
 throw new NoSuchPersonException();
 }

 return profile;
 }
}

The class for an EJB object must implement the javax.ejb.EnterpriseBean interface. This is usually
done indirectly, through either the javax.ejb.SessionBean interface or the
javax.ejb.EntityBean interface. In our example, we're defining a session bean, so the
ProfileServerBean class implements the SessionBean interface.

The EJB class must be declared as public, to allow the container to introspect the class when generating the
classes that hook the bean to the container and to allow the container to invoke methods on the bean directly
where necessary. The bean class can optionally implement the bean's remote interface, but this isn't strictly
required. In our case, we haven't implemented the bean's remote ProfileServer interface in the
ProfileServerBean class. When the EJB server generates the classes that bridge the bean to the
container, it also provides a class that implements the remote interface and acts as a proxy to the EJB class

Preface (Java Enterprise in a Nutshell)

7.4.3. The Bean Implementation 189

itself.[4]

[4] Depending on the server implementation and how it chooses to generate these classes, it
may be useful for you to provide an EJB class that directly implements the remote interface,
since it might eliminate one level of method indirection. This is server−dependent, however,
so there's no guarantee that this will help (or hurt).

In fact, for practical reasons, you probably don't want your EJB implementation to implement the remote
interface for your bean. The remote interface has to extend the EJBObject interface, which includes a set of
abstract methods that clients can use to retrieve the bean's home interface, get the primary key for entity
beans, etc. When you deploy your bean, you'll use tools provided by the EJB container tools to generate stub
and skeleton classes for the remote interface that implement these methods from EJBObject. If you
implement the remote interface with your bean implementation class, you have to provide implementations
for the EJBObject methods as well.

All Enterprise JavaBean objects, whether they are session beans or entity beans, must implement the
following methods:

public void ejbActivate()
Called by the container when the bean has been deserialized from passive storage on the server.
Allows the bean to reclaim any resources freed during passivation (e.g., file handles, network
connections) or restore any other state not explicitly saved when the bean was serialized.

public void ejbPassivate()
Called by the container just before the bean is to be serialized and stored in passive storage (e.g.,
disk, database) on the server. Allows the bean to release any non−serializable resources (e.g., open
files, network connections).

public void ejbCreate(. . .)
Called after the client invokes one of the create() methods on the bean's home interface. The
bean and its home interface usually provide at least one create()/ejbCreate() pair to allow the
client to create new beans. Session beans are required to provide at least one create method, but create
methods are optional on entity beans, since entity beans can also be acquired using finder methods.
The container creates the bean object using one of its standard constructors and might create several
beans of the same type at server startup to act as a pool for future client requests. The ejbCreate()
method indicates that a client is ready to use the bean; the arguments indicate the identity or starting
state of the bean. For entity beans, the return type of an ejbCreate() method should be the bean's
primary key type (see the later section "Implementing Entity Beans" for more details).

public void ejbRemove()
Called by the container just before the bean is to be removed from the container and made eligible for
garbage collection. The container may call this when all remote and local references to the bean have
been removed.

These methods are used by the bean's container to notify the bean of various changes in its runtime state. In
our example, the ProfileServerBean doesn't need to perform any actions in these methods, so they are
included as empty methods that simply print messages to standard output, indicating that they have been
called.

7.3. Transaction
Management

7.5. Implementing Session
Beans

Preface (Java Enterprise in a Nutshell)

7.4.3. The Bean Implementation 190

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 7: Enterprise
JavaBeans

7.5. Implementing Session Beans

Now that we've seen a simple bean example, let's move on and talk about the specifics of implementing
session beans (we'll get to entity beans after that). A session bean is much like a regular remote object, with
the added benefit of being a JavaBeans component. The session bean serves as a remote extension of the
client, running on a remote EJB server. Usually, a session bean is used by a single client, and the state data
maintained by the session bean is owned by this client. The client acquires a reference to a session bean, and
asks it to perform services by calling methods on the bean. These method calls might retrieve or update data in
a remote database, filter data to be returned to the client, or update the session−related state information (if
any) that the client is maintaining with the bean.

A session bean doesn't live beyond the lifetime of its server. If your client has a reference to a session bean,
and the server restarts, that session bean reference is no longer valid. You can reacquire a session bean of the
same type from the same server, but it's not guaranteed to be in the same state as the bean you had before the
server restart. An EJB container also has the option of destroying a session bean after some timeout period
while the bean is in an inactive state on the server (i.e., if there are no client references to the session bean for
a period that exceeds the session timeout for the bean).

Stateful session beans can optionally receive notification of transaction boundaries from the EJB container.
The container notifies the bean when a new client transaction is beginning and when the client transaction has
either been completed or rolled back. If the session bean receives a rollback notification, it should manually
reset its state information.

Session beans implement the javax.ejb.SessionBean interface. This interface extends the
javax.ejb.EnterpriseBean interface and specifies ejbActivate(), ejbPassivate(),
ejbRemove(), and setSessionContext() methods.

In addition to the standard EJB object methods mentioned in the previous section, a session bean also needs to
implement a setSessionContext() method, as specified in the SessionBean interface. The container
calls this method on the session bean just after the bean has been created, passing in a
javax.ejb.SessionContext object that represents the runtime context for the bean. The session
context is valid for the life of the bean. The session bean can use the SessionContext to get a reference to
the remote object associated with the bean, by calling the getEJBObject() method on the context object.
Since the bean is not required to implement the remote interface for the bean, this object may be different
from the bean itself, and may implement a class generated by the server based on the remote interface, the
home interface, and the bean implementation you provided. More about that later, when we talk about
deploying EJB objects.

Preface (Java Enterprise in a Nutshell)

7.5. Implementing Session Beans 191

The SessionContext that the container passes to a session bean is also an EJBContext, which is a
general representation for runtime context information, regardless of whether the bean is an entity or session
bean. Among other things, the EJBContext has accessors that allow the bean to get a reference to its home
interface (getEJBHome()), a list of environment properties used to deploy the bean
(getEnvironment()), and the identity of the client that is currently executing a transaction with the bean
(getCallerIdentity()).

7.5.1. Stateless Versus Stateful Session Beans

Session beans can be either stateful or stateless. A stateless session bean does not maintain state across
method calls. If a client makes a series of remote method calls and/or transactions with the stateless bean, the
bean is in the same state at the start of each method call or transaction. Our ProfileServerBean is such a
bean. Stateless session beans of the same type can be considered identical to each other, and can be pooled
and reused by multiple clients. A stateless session bean can be used concurrently by multiple remote clients
without fear of conflicting with each other, since there is no shared state data that can be corrupted. Stateless
beans don't need to be passivated since they have no state that needs to be restored when they're reactivated.
The container simply destroys any stateless session beans it feels are no longer needed.

A stateful session bean, on the other hand, does maintain state that can be accessed and changed directly by
the client's interactions with the bean. A stateful session bean is generally not intended to be accessed by more
than a single remote client; the state of the stateful session bean along with its remote methods act as an
extension of the client that created the bean.

To illustrate the difference between stateless and stateful session beans, let's take our
ProfileServerBean and convert it to a stateful session bean. The ProfileServerBean is stateless
because all it does is accept requests for user profiles and return the profiles directly to the client as RMI
object references. The client then interacts with the Profile object directly, and the Profile manages the
state of the interaction, in the form of the values of the profile entries. If the profile were a stateful enterprise
bean itself, we wouldn't need the ProfileServer at all.

Example 7−5 shows the remote interface for a stateful Profile bean. It's similar to the remote interface for
the RMI−based Profile we used in the stateless ProfileServerBean example. It has setEntry()
and getEntry() methods that access entries using their names. The Profile bean also has accessors for
the name of its user.

Example 7−5. Remote Interface for the Stateful Session Bean

import javax.ejb.*;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Profile extends Remote, EJBObject {
 public String getName() throws RemoteException;
 public void setName(String name) throws RemoteException;
 public String getEntry(String key) throws RemoteException;
 public void setEntry(String key, String value) throws RemoteException;
}

The implementation of the stateful ProfileBean is shown in Example 7−6. It has the requisite
implementations for the bean methods needed by the container and includes two ejbCreate() methods:
one with no arguments that creates an unnamed profile and another that takes the name of the user of the
profile. The corresponding create() methods on the ProfileHome interface are shown in Example 7−7.
The state of this stateful session bean is maintained in a String field that holds the profile user's name and a
Properties object that keeps the profile entries. The principal design difference between the

Preface (Java Enterprise in a Nutshell)

7.5.1. Stateless Versus Stateful Session Beans 192

ProfileBean and the stateless ProfileServerBean is the state information stored on the
ProfileBean in its data members. The get/set accessors from the remote Profile interface are
implemented here as operations on these fields.

Example 7−6. Implementation of the Stateful Session Bean

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util.Properties;

public class ProfileBean implements SessionBean {
 // Name of the person owning the profile
 private String mName = "";
 // Entries in the profile (name/value pairs)
 private Properties mEntries = new Properties();

 // Store session context
 private SessionContext mContext = null;

 // Session bean methods
 public void ejbActivate() {
 System.out.println("ProfileBean activated.");
 }

 public void ejbRemove() {
 System.out.println("ProfileBean removed.");
 }

 public void ejbPassivate() {
 System.out.println("ProfileBean passivated.");
 }

 public void setSessionContext(SessionContext context) {
 System.out.println("ProfileBean context set.");
 mContext = context;
 }

 public void ejbCreate() {
 System.out.println("Nameless ProfileBean created.");
 }

 public void ejbCreate(String name) throws NoSuchPersonException {
 mName = name;
 System.out.println("ProfileBean created for " + mName + ".");
 }

 // Business methods
 public String getName() {
 return mName;
 }

 public void setName(String name) {
 mName = name;
 }

 public String getEntry(String key) {
 return mEntries.getProperty(key);
 }

 public void setEntry(String key, String value) {
 mEntries.put(key, value);
 }
}

Preface (Java Enterprise in a Nutshell)

7.5.1. Stateless Versus Stateful Session Beans 193

Example 7−7. Home Interface for the Stateful Session Bean

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProfileHome extends EJBHome {
 public Profile create() throws RemoteException, CreateException;
 public Profile create(String name) throws RemoteException, CreateException;
}

This stateful bean is used by clients to maintain a set of application−specific profile entries for a named user.
Here is an example client scenario:

// Get the Profile bean's home interface
ProfileHome pHome = ...
// Create a profile for a person
System.out.println("Creating profile for " + name);
Profile profile = pHome.create(name);
// Get/set some entries in the profile
System.out.println("Setting profile entries for " + name);
profile.setEntry("favoriteColor", "blue");
profile.setEntry("language", "German");
System.out.println("Getting profile entries for " + name);
System.out.println("\tFavorite color: " +
 profile.getEntry("favoriteColor"));
System.out.println("\tLanguage: " + profile.getEntry("language"));

After getting the home interface for the ProfileBean, the client creates a profile for a named user, sets the
values for some profile entries, and gets them back again.

An EJB container must be told at deployment time whether a session bean is stateful or stateless. The
container uses this information to determine how to handle pooling of the session beans and whether to
passivate the bean or not, among other things. Since stateless beans can be used by any client, the container
pools stateless beans and doles them out to clients as needed. If new stateless beans are needed, the container
creates them, and when they aren't needed (e.g., the rate of client requests decreases), they are simply
destroyed. In order to allow the container to fill its pool, any stateless session bean must provide a single
create() method with no arguments. Stateless beans implement only the no−argument creation method,
since they have no client state that could be affected by arguments. An additional restriction on stateless beans
is that they cannot participate in transaction synchronization and cannot implement the
SessionSynchronization interface, which is described in the next section.

7.5.2. Optional Transaction Support

Since session beans don't typically represent persistent shared data, and stateful session beans can only be
accessed by a single client at a time, user transaction boundaries may not be important to such a bean. If,
however, the session bean is managing database data for the user, it may want to know about the beginning
and ending of user transactions, so that it can cache data at the start and commit its database updates at the
end. For this reason, the EJB specification allows session beans to optionally implement the
javax.ejb.SessionSynchronization interface. By implementing this interface, the session bean
indicates that it wants the container to notify it about the beginning and end of transactions.

In this case, the bean must implement the three methods declared on the interface: afterBegins(),
beforeCompletion(), and afterCompletion(). The container calls the bean's afterBegin()
method just after a new transaction begins. This lets the bean allocate any resources it might need during the
transaction and cache database data, for example. Just before the transaction completes, the container calls the
bean's beforeCompletion() method. In this method, the bean can release any resources or cached data it
may have initialized during the transaction. The afterCompletion() method is called just after the

Preface (Java Enterprise in a Nutshell)

7.5.1. Stateless Versus Stateful Session Beans 194

transaction has completed. The container passes in a boolean value that is true if the transaction was
committed and false if the transaction was rolled back. The bean can use this notification to deal with
rollbacks, for example, allowing the bean to undo any changes made during the transaction.

7.4. Implementing a Basic
EJB Object

7.6. Implementing Entity
Beans

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 7: Enterprise
JavaBeans

7.6. Implementing Entity Beans

An entity bean represents data that is stored in a database or some other persistent storage. Entity beans are
persistent across client sessions and the lifetime of the server. Each entity bean of a given type has a unique
identity that can look up the same bean from multiple clients. No matter when or where you get a reference to
an entity bean with a given identity, the bean should reflect the current state of the persistent data it represents.
Multiple clients can access an entity bean at the same time. The EJB container manages these concurrent
transactions for the entity bean, ensuring that client transactions are properly isolated from each other. Note
that support for entity beans is not strictly required by the EJB 1.0 specification. This has been changed in the
EJB 1.1 specification, which makes entity bean support mandatory in EJB−compliant application servers.

An entity bean can be passivated by its container, but the meaning of being passivated is slightly different. A
container passivates an entity bean (calling its ejbPassivate() method in the process) when it wants to
disassociate the bean from the persistent data entity it has been representing. After being passivated, the bean
may be put into the container's pool of entity beans to associate with another client−requested entity or it may
be removed from the server altogether.

At a fundamental level, entity beans are implemented similarly to session beans. You need to provide a home
interface, a remote interface, and a bean implementation. An entity bean, however, requires some additional
methods in its home interface and bean implementation, to support the management of its persistent state and
to allow clients to look up the entity bean from persistent storage. Entity beans must also provide a class that
serves as its primary key, or index, into its persistent storage.

There are two ways persistent storage for an entity bean can be managed: by the EJB container or by the bean
itself. In the first case, called a container−managed entity bean, the bean leaves the database calls to the
container. The deployment tools provided with the EJB server are responsible for generating these database
calls in the classes it uses to deploy your bean. In the second case, called bean−managed entity beans, you
provide the database calls for managing your bean's persistent storage as part of your bean implementation.

Preface (Java Enterprise in a Nutshell)

7.6. Implementing Entity Beans 195

If you can rely on the EJB container to handle your entity bean's persistence, this can be a huge benefit, since
it saves you from having to add JDBC code to your beans. But the automated persistence support in EJB is
limited, and there are times when you'll need to manage persistence directly in your bean implementation. We
discuss the pros and cons of each of these scenarios a bit later in this section.

7.6.1. Primary Keys

If you develop an entity bean, you must provide the EJB container with a class that serves as the primary key
for the bean. A primary key includes all of the information needed to uniquely identify an item in persistent
storage. The primary key for a person's records in a database, for example, might be a first and last name, or a
social security number (for U.S. citizens), or some other identification number. If you're developing an EJB
object that represents a bank account, you might make the primary key an object that holds the account
number, which is a unique identifier for an Account object. An EJB container typically creates unique
identifiers for all session and entity beans, so that it can internally track individual beans. The primary key
used for entity beans is a more public unique identifier, in that clients can see the primary key for an entity
bean, and the primary key is used directly by the bean implementation to load/update its state from persistent
storage.

If we were to develop an entity−bean version of our ProfileBean (which we'll do shortly), the primary key
class might look something like the following:

public class ProfilePK implements java.io.Serializable {
 public String mName;
 public ProfilePK() {
 mName = null;
 }
 public ProfilePK(String name) {
 mName = name;
 }
}

Since there is a one−to−one correspondence between named users and their profiles, we just use the name of
the user as our primary key for an entity ProfileBean.

The primary key class for an entity bean must be derived from java.io.Serializable. If any of the
persistence of the entity bean is container−managed, the primary key class must also obey the following:

•
It must be a public class.

•
It must have a default constructor (one with no arguments) that is public.

•
All its data members must be public.

•
All of the names of the data members on the class must be names of container−managed data
members on the entity bean.

The primary key for our ProfileBean is really just a wrapper around a String field that holds a name.
We've done this to support the option of using container−managed persistence for the bean. We have to use
the ProfilePK class as the primary key, not just a String, because the EJB container needs to be able to
introspect on the primary key and match its fields with the corresponding fields on the bean class.

Preface (Java Enterprise in a Nutshell)

7.6.1. Primary Keys 196

7.6.2. Finder Methods

Since entity beans are persistent and can be accessed by multiple clients, clients have to be able to find them
as well as create them. To this end, an entity bean's home interface can provide findXXX() methods, and
the bean implementation has to have corresponding ejbFindXXX() methods that take the same arguments
and have the same return types. The findXXX() methods on the home interface can have any name, as long
as the method name begins with find. A bank account bean, for example, might define a findByName()
method that accepts a string that is the name of the person whose accounts are desired.

Each findXXX() method on the home interface must return either an instance of the bean's remote interface
or a collection of these objects. In the EJB 1.0 specification, only Enumeration objects can return
collections of entity beans, but the EJB 1.1 specification allows EJB implementations to also use Java 2
Collection types as return types for findXXX() methods. In our bank account example, the
findByName() method can return multiple accounts (e.g., if a person has both checking and savings
accounts), so it should be declared as returning an Enumeration.

The home interface for an entity−based ProfileBean is shown in Example 7−8. It provides two finder
methods: findByPrimaryKey() finds a profile by its primary key (which encapsulates the user's name),
and findByEntryValue() finds profiles that have a particular attribute value set. The first finder method
returns a single Profile object, since there is only a single Profile for each user. The second finder
method returns a collection of Profile objects (as an Enumeration), as multiple user profiles might have
a given attribute value. The findByPrimaryKey() method is a standard finder method defined by the
EJB specification; its only argument is always the primary key type for the entity bean.

Example 7−8. Home Interface for an Entity ProfileBean

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProfileHome extends EJBHome {
 public Profile create() throws RemoteException;
 public Profile create(String name)
 throws RemoteException, DuplicateProfileException;

 public Profile findByPrimaryKey(ProfilePK key)
 throws RemoteException, FinderException;
 public Enumeration findByEntryValue(String key, String value)
 throws RemoteException, FinderException;
}

A client can use the findXXX() methods on the home interface to determine if a bean (or beans) with a
given identity already exists in persistent storage. If a findXXX() method finds an appropriate bean (or
beans), a single primary key (or set of keys) is initialized to represent the unique identity of the bean(s) that
matched the client query, and these key(s) are returned to the client. If the identified bean cannot be found in
persistent storage, ajavax.ejb.FinderException is thrown. All findXXX() methods on the bean's
home interface must declare that they can throw FinderException and RemoteException (since the
method is an RMI remote method).

The EJB container intercepts the client's invocation of the finder method and invokes the corresponding
ejbFindXXX() method on an instance of the entity bean on the server. An entity bean of the appropriate
type is pulled from the container's pool and its ejbFindXXX() method is called with the client's arguments.
The ejbFindXXX() method on the bean should do the necessary queries to persistent storage to determine
if the requested data exists there, then create primary key instances and initialize them with the results of the
query. The primary key objects are the return value of the ejbFindXXX() method. The EJB container is
responsible for taking the key(s) returned by the ejbFindXXX() method and converting them to remote
objects, whose stubs are returned to the client that invoked the finder method.

Preface (Java Enterprise in a Nutshell)

7.6.2. Finder Methods 197

It's important to note that the entity bean that executes the ejbFindXXX() method doesn't necessarily
represent the entities being looked up by the client. The container uses the bean to call the method, takes the
primary key or keys returned, and then uses them to either create new beans or reinitialize existing beans.

An entity bean implementation must at a minimum provide an ejbFindByPrimaryKey() method that
accepts a primary key object as its argument. The implementation must also provide additional findXXX()
methods to match any other ejbfindXXX() methods on the home interface. Each ejbFind method must
have the same arguments and return types as the corresponding find method.

7.6.3. Entity Bean Implementation

I've already mentioned a few additional requirements on entity bean implementations, but here is a list of all
the additional methods an entity bean either must implement or has the option to implement:

public priKeyType ejbFindByPrimaryKey(priKeyType) throws FinderException
The only required finder method on an entity bean. Both the argument and the return type must be the
bean's primary key type.

public void ejbPostCreate()
If needed, an entity bean can optionally provide an ejbPostCreate() method for each
ejbCreate() method it provides, taking the same arguments. The container calls the
ejbPostCreate() method after the bean's ejbCreate() method has been called and after the
container has initialized the transaction context for the bean.

public void ejbLoad()
Called by the container to cause the bean instance to load its state from persistent storage. The
container can call this bean method any time after the bean has been created, to do an initial load from
persistent storage or to refresh the bean's state from the database.

public void ejbStore()
Called by the container to cause the bean to write its current runtime state to persistent storage. This
method can be called any time after a bean is created.

public void setEntityContext(EntityContext ctx)
The container calls this method after a new instance of the bean has been constructed, but before any
of its ejbCreate() methods are called. The bean is responsible for storing the context object.

public void unsetEntityContext(EntityContext ctx)
The container calls this method before the entity bean is destroyed.

Most of these methods, like ejbLoad() and ejbStore(), are invoked by the EJB container to notify the
bean about persistent store management.

In addition to these entity−specific methods on bean implementations, the semantics of some of the other
standard methods are slightly different for entity beans. Each ejbCreate() method, for example, should
not only assign any state data passed in as variables, but also create a record in persistent storage for the new
entity bean. The signatures of ejbCreate() methods on entity beans can be different too. For an entity
bean that manages its own persistence (a bean−managed entity bean), the ejbCreate() methods return the
primary key type for the bean. For a container−managed entity bean, the ejbCreate() methods return
void, the same as for session beans. TheejbRemove() method is called by the container when the bean is
to be removed from the server. The bean should also remove its state from the persistent storage in its
ejbRemove() implementation, since a request by a client to remove() an entity bean is really a request to
remove the record from persistent storage as well.

Preface (Java Enterprise in a Nutshell)

7.6.3. Entity Bean Implementation 198

7.6.3.1. A persistent ProfileBean

The major drawback in our stateful session ProfileBean is that the profile data it represents isn't
persistent. A profile is created by a client and updated through remote method calls, but once the
ProfileBean is removed by the server or the server crashes/restarts, the accumulated profile data is lost.
What we really want is a bean whose state is persistent stored in a relational database or some other persistent
storage, that can be reloaded at a later time, when the user reenters a profiled application. An entity EJB object
provides this functionality, and an EJB container that supports entity beans provides your bean with facilities
that make it easier to manage persistent state. It's also possible to have the container manage the persistence of
the bean for you, if that's desired.

Let's look at the implementation for the entity bean version of our ProfileBean, shown in Example 7−9.
We've already seen the home interface and remote interface for this entity bean in earlier examples. The
purpose of the bean is the same as our stateful session version: it represents a profile for a named application
user, maintaining a list of name/value pairs for various attributes and options. The difference is that this
ProfileBean represents a profile entity that exists as data in persistent storage (a database, in this case).
The most obvious differences in the actual code are the JDBC calls peppered throughout the class, where the
bean manages its persistent data. There are a few extra methods defined as well. Most of them are required by
the EJB specification for entity beans and a few are utility methods used by the JDBC code to connect to the
database and make updates.

Example 7−9. An Entity ProfileBean with Bean−Managed Persistence

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util.Properties;
import java.util.Enumeration;
import java.util.Vector;
import java.sql.*;

public class ProfileBean implements EntityBean {
 // Entries in the profile (name/value pairs)
 public Properties mEntries;

 // Store context (nonpersistent)
 private transient EntityContext mContext = null;

 // Entity bean methods

 // During activation, create our entry lookup table
 public void ejbActivate() {
 mEntries = new Properties();
 System.out.println("ProfileBean activated.");
 }

 // Load bean from persistent store. In this case, we're managing the dbase
 // storage, so we store our profile entries as independent records in a
 // separate "PROFILE_ENTRY" table.
 public void ejbLoad() throws RemoteException {
 try {
 // Get primary key from context, use it to load our data
 ProfilePK key = (ProfilePK)mContext.getPrimaryKey();
 loadFromDB(key);
 }
 catch (Exception e) {
 System.out.println("Failed to load ProfileBean: ");
 e.printStackTrace();
 throw new RemoteException("ejbLoad failed: ", e);
 }
 System.out.println("ProfileBean load finished.");

Preface (Java Enterprise in a Nutshell)

7.6.3.1. A persistent ProfileBean 199

 }

 protected void loadFromDB(ProfilePK key) throws FinderException {
 boolean found = false;
 try {
 // Get a connection and select our profile record
 Connection conn = newConnection();
 Statement s = conn.createStatement();
 s.executeQuery("select name from profile where name = `" + key.mName +
 "`");
 ResultSet rs = s.getResultSet();
 if (rs.next()) {
 found = true;
 // We found a profile record, so look up the entries
 s.executeQuery("select key, value from profile_entry where name = `"
 + key.mName + "`");
 rs = s.getResultSet();
 while (rs.next()) {
 String pKey = rs.getString(1);
 String pValue = rs.getString(2);
 mEntries.put(pKey, pValue);
 }
 }
 }
 catch (SQLException e) {
 throw new FinderException("Failed to load profile entries from DB: " +
 e.toString());
 }
 if (!found) {
 // No profile record found, throw a FinderException
 throw new FinderException("No profile found for " + key.mName);
 }
 }

 // Get connection (BEA/WebLogic−specific version)
 private Connection newConnection() throws SQLException {
 // Make sure that the JDBC driver is loaded
 try {
 Class.forName("weblogic.jdbc.oci.Driver");
 }
 catch (ClassNotFoundException cnfe) {
 System.out.println("Failed to load JDBC drivers.");
 }
 // Get the connection from the pool that we specified in the
 // WebLogic server properties file
 return DriverManager.getConnection("jdbc:weblogic:jts:myPool");
 }

 // Store bean to persistent store. Properties are stored as records in the
 // PROFILE_ENTRY table.
 public void ejbStore() throws RemoteException {
 // Get our primary key from our context
 ProfilePK key = (ProfilePK)mContext.getPrimaryKey();
 try {
 Connection conn = newConnection();
 // Clear out old profile entries
 Statement s = conn.createStatement();
 s.executeUpdate("delete from PROFILE_ENTRY where name = `" + key.mName
 + "`");
 Enumeration pKeys = mEntries.propertyNames();
 // Add each entry to the PROFILE_ENTRY table
 while (pKeys.hasMoreElements()) {
 String pKey = (String)pKeys.nextElement();
 String pValue = mEntries.getProperty(pKey);
 s.executeUpdate("insert into PROFILE_ENTRY (name,key,value) values "
 + "(`" + key.mName + "`, `" + pKey + "`, `"
 + pValue + "`)");

Preface (Java Enterprise in a Nutshell)

7.6.3.1. A persistent ProfileBean 200

 }
 // Close the statement and the connection, just to be tidy...
 s.close();
 conn.close();
 }
 catch (Exception e) {
 // Store operation failed, toss a RemoteException
 throw new RemoteException("ejbStore failed: ", e);
 }
 System.out.println("ProfileBean store finished.");
 }

 // Remove this named profile from the database
 public void ejbRemove() {
 // Get this profile's name
 ProfilePK key = (ProfilePK)mContext.getPrimaryKey();
 try {
 Connection conn = newConnection();
 // Clear out any profile entries
 Statement s = conn.createStatement();
 s.executeUpdate("delete from profile_entry where name = `" + key.mName
 + "`");
 // Clear out the profile itself
 s.executeUpdate("delete from profile where name = `" + key.mName
 + "`");

 s.close();
 conn.close();
 System.out.println("ProfileBean removed.");
 }
 catch (SQLException se) {
 System.out.println("Error removing profile for " + key.mName);
 se.printStackTrace();
 }
 }

 // When we're passivated, release our entries.
 public void ejbPassivate() {
 mEntries = null;
 System.out.println("ProfileBean passivated.");
 }

 // Get context from container
 public void setEntityContext(EntityContext context) {
 mContext = context;
 System.out.println("ProfileBean context set.");
 }

 // Container is removing our context...
 public void unsetEntityContext() throws RemoteException {
 mContext = null;
 System.out.println("ProfileBean context unset.");
 }

 // Since we're managing persistence here in the bean, we need to
 // implement the finder methods
 public ProfilePK ejbFindByPrimaryKey(ProfilePK key)
 throws FinderException, RemoteException {
 loadFromDB(key);
 return key;
 }

 public Enumeration ejbFindByEntryValue(String key, String value)
 throws RemoteException, FinderException {
 Vector userList = new Vector();
 // Get a new connection from the EJB server
 try {

Preface (Java Enterprise in a Nutshell)

7.6.3.1. A persistent ProfileBean 201

 Connection conn = newConnection();
 Statement s = conn.createStatement();
 // Issue a query for matching profile entries, grabbing just the name
 s.executeQuery("select distinct(name) from profile_entry where " +
 " key = `" + key + "` and value = `" + value + "`");
 // Convert the results in primary keys and return an enumeration
 ResultSet results = s.getResultSet();
 while (results.next()) {
 String name = results.getString(1);
 userList.addElement(new ProfilePK(name));
 }
 }
 catch (SQLException se) {
 // Failed to do database lookup
 throw new FinderException();
 }
 return userList.elements();
 }

 // Create method (corresponds to each create() method on the
 // home interface, ProfileHome). Nothing to initialize in this case
 public ProfilePK ejbCreate() {
 System.out.println("Nameless ProfileBean created.");
 return new ProfilePK();
 }

 // Create method with name of profile owner.
 public ProfilePK ejbCreate(String name) throws DuplicateProfileException {
 try {
 Connection conn = newConnection();
 Statement s = conn.createStatement();
 s.executeUpdate("insert into profile (name) values (`" + name + "`)");
 s.close();
 conn.close();
 }
 catch (SQLException se) {
 System.out.println("Error creating profile, assuming duplicate.");
 throw new DuplicateProfileException("SQL error creating profile for " +
 name + ": " + se.toString());
 }

 System.out.println("ProfileBean created for " + name + ".");
 return new ProfilePK(name);
 }

 // Post−creation notification. Nothing to do here, but we need
 // to provide an implementation.
 public void ejbPostCreate() {
 System.out.println("ProfileBean post−create called.");
 }

 // Post−creation notification. Nothing to do here, what we need
 // to provide an implementation.
 public void ejbPostCreate(String name) {
 System.out.println("ProfileBean post−create called for " + name + ".");
 }

 // Business methods
 public String getName() {
 ProfilePK key = (ProfilePK)mContext.getPrimaryKey();
 return key.mName;
 }

 public String getEntry(String key) {
 return mEntries.getProperty(key);
 }

Preface (Java Enterprise in a Nutshell)

7.6.3.1. A persistent ProfileBean 202

 public void setEntry(String key, String value) {
 mEntries.put(key, value);
 }
}

The structure of the entity ProfileBean is similar to the stateful session bean version in Example 7−6. A
Properties object holds the profile entries for the user, and the getEntry() and setEntry() remote
method implementations access this Properties object for the client. You might notice that there is no
data member on the entity ProfileBean to hold the name of the user. We can do this here because we're
not using the EJB container to manage the bean's persistence for us, so we're relying on the fact that the name
is found in the primary key object, and the primary key is stored for us in the EntityContext the container
gives us through the setEntityContext() method. If we were using container−managed persistence,
however, we'd have to have a field on the bean for the name, so that the container would know how to set it.
The getName() remote method on ProfileBean shows how we retrieve the username for the profile
using the getPrimaryKey() method on the EntityContext.

We've also removed the setName() remote method from the entity ProfileBean, since we don't want to
allow the client to change the name of an existing, active entity bean. The Profile remote interface for this
bean, not shown here, is similar to the Profile interface in Example 7−5, but does not have a setName()
method. Since the Profile is now a persistent entity bean and the name is the primary key, or identifying
attribute, of the bean, the name of the bean can only be set when the bean is created. While the entity bean is
active, it is associated with a profile entity for a specific user, and the client can only read the name associated
with the profile.

In the ProfileBean code, you'll notice many of the EJB−required methods, including ejbActivate(),
ejbPassivate(), ejbCreate(), and ejbRemove(). The ejbActivate() and
ejbPassivate() methods handle the movement of the bean out of and into the EJB server's entity bean
pool, respectively.

The ejbCreate() methods on the ProfileBean create a new profile entity in the database. There is a
matching ejbCreate() method for each create() method on our ProfileHome interface from
Example 7−8. The EJB container is responsible for intercepting the generated primary key object, converting
it to a remote Profile object, and returning a remote Profile stub to the client that called the
create() method on the ProfileHome interface. The ejbRemove() method on our ProfileBean
deletes all the records for this profile entity from the database.

The ProfileBean also contains methods specific to entity beans. For each ejbCreate() method, it has
a corresponding ejbPostCreate() method, which is called by the container after the ejbCreate()
method has returned, and the container has initialized the bean's transaction context. There's nothing more for
us to do in our ProfileBean at this point, so we just print a message to standard output in each
ejbPostCreate() method.

There is an ejbFindXXX() method in our entity ProfileBean that corresponds to each findXXX()
method in ProfileHome. The ejbFindByPrimaryKey() method simply takes the primary key passed
in as an argument and attempts to load the data for the entity from the database. If successful, it returns the
primary key back to the container, where it is converted to a remote Profile object to be returned to the
client. Note that it's not necessary for us to actually load all the profile data here in the finder method; we need
to verify only that the named entity exists in the database and either return the primary key to signal success or
throw an exception. The container takes the returned primary key and assigns it to one of the beans in its pool
(possibly the same one it called the finder method on, but not necessarily). Since we already have the
loadFromDB() method used in ejbLoad(), it is a simple matter to reuse it here in the finder method. If
the performance hit for loading the profile data twice is too great, we'd have to rewrite the finder method to
simply check the PROFILE table for a record matching the name in the primary key.

The ejbFindByEntryValue() method takes a key and value String arguments and attempts to find

Preface (Java Enterprise in a Nutshell)

7.6.3.1. A persistent ProfileBean 203

any and all profile entities with a matching key/value pair in the PROFILE_ENTRY table. Each name that has
such a record is converted to a primary key object and returned to the container in an Enumeration. The
container converts each primary key object into a remote Profile object and returns the set to the client. If
we encounter a database problem along the way, we throw a FinderException.

7.6.4. The Entity Context

The EJB container provides context information to an entity bean in the form of an EntityContext
object. The container sets this object using the bean's setEntityContext() method and removes it when
the bean is being removed by calling the bean's unsetEntityContext() method. Like
SessionContext, EntityContext provides the bean with access to its corresponding remotely
exported object through the getEJBObject() method. The EntityContext, in addition, gives an entity
bean access to its primary key through getPrimaryKey(). The declared return type of this method is
Object, but the object returned is of the bean's primary key type. Note that the data accessed through the
EntityContext might be changed by the EJB container during the bean's lifetime, as explained in the next
section. For this reason, you shouldn't store the EJB remote object reference or primary key in data variables
in the bean object, since they might not be valid for the entire lifetime of the bean. Our entity
ProfileBean, for example, stores the EntityContext reference in an instance variable, where it can
access the context data as needed during its lifetime.

7.6.5. Life Cycle of an Entity Bean

Before the first client asks for an entity bean by calling a create() or findXXX() method on its home
interface, an EJB container might decide to create a pool of entity beans to handle client requests for beans.
This potentially reduces the amount of time it takes for a client to receive a entity bean remote reference after
it makes a request for an entity bean. To add a bean to its pool, the container creates an instance of your bean
implementation class and sets its context using the setEntityContext() method. At this point, the entity
bean hasn't been associated with a particular data entity, so it doesn't have a corresponding remote object.

When a client calls a create() method on the bean's home interface, the container picks a bean out of the
pool and calls its corresponding ejbCreate() method. If the efbCreate() method is successful, it
returns one or more primary key objects to the container. For each primary key, the container picks an entity
bean out of its pool to be assigned to the entity represented by the key. Next, the container assigns the bean's
identity by setting the properties in its EntityContext object (e.g., its primary key and remote object
values). If the bean has an ejbPostCreate() method, that gets called after the bean's entity identity has
been set. The ejbCreate() method should create the entity in persistent storage, if the bean is managing its
own persistence.

Alternately, the client might call a findXXX() method on the home interface. The container picks one of
the pooled entity beans and calls the corresponding ejbFindXXX() method on it. If the finder method finds
one or more matching entities in persistent storage, the container uses pooled entity beans to represent these
entities. It picks entity beans out of the pool and calls their ejbActivate() methods. Before calling
ejbActivate(), the container sets the bean's context by assigning the corresponding primary key and
remote object reference in its context.

After an entity bean has been activated (either by being created through one of its ejbCreate() methods or
by being found and having its ejbActivate() method called), it is associated with a specific entity in
persistent storage, and with a specific remote object that has been exported to a remote client or clients. At
any point after this, the container can call the bean's ejbLoad() or ejbStore() method to force the bean
to read or write its state from/to persistent storage. The bean's business methods can also be invoked by clients
when it is in this state.

Preface (Java Enterprise in a Nutshell)

7.6.4. The Entity Context 204

At some point, the container may decide to put the bean back into its internal pool. This might happen after
all remote references to the bean have been released or after a certain period of inactivity with the bean. The
container might also do this as a reaction to client loading issues (e.g., time−sharing pooled beans between
client requests). When the container wants to remove the association between the bean and the remote object,
but doesn't want the object's state removed from persistent store, it calls the bean's ejbPassivate()
method. The bean can release any resources it allocated while in the active state, but it doesn't have to update
persistent storage for the entity it represents, as this was done the last time its ejbStore() method was
invoked by the container.

The bean can also lose its association with an entity when the client decides to remove the entity. The client
does this either by calling a remove() method on the bean's home interface or calling the remove()
method directly on an EJB object. When one of these things happens, the container calls the bean's
ejbRemove() method, and the bean should delete the data in persistent storage pertaining to the entity it
represents. After the ejbRemove() method completes, the container puts the bean back into its internal
pool.

7.6.6. Handles on Entity Beans

Every bean's remote interface extends the EJBObject interface. This interface allows the client to obtain a
serializable handle on the enterprise bean. This handle is a persistent reference to the bean that can be
serialized and then stored in local storage on the bean or emailed as an attachment to other users, for example.
Later, a client can deserialize the handle object and continue interacting with the bean it references. The
handle contains all of the information needed to reestablish a remote reference to the enterprise bean it
represents. Since this is only useful for beans that are still valid when the handle is reconstituted, it is usually
only applicable to entity beans.

The handle for a bean can be obtained using the getHandle() method on a remote bean object reference:

Profile profile = ...;
Handle pHandle = profile.getHandle();

getHandle() returns a javax.ejb.Handle object. The Handle interface itself does not extend
java.io.Serializable, but any class that implements it is required by the EJB specification to extend
Serializable. Typically, the Handle implementation is provided by the EJB container, which enforces
this restriction. So you can always assume that the Handle for an EJB object can be stored in serialized
format, if needed:

ObjectOutputStream oout = ...;
oout.writeObject(pHandle);

Later, you can read the object back from its serialized state and obtain a reference to the remote bean object,
using the getEJBObject() method on the handle:

ObjectInputStream oin = ...;
Handle pHandleIn = (Handle)oin.readObject();
Profile profileIn = (Profile)pHandleIn.getEJBObject();
profileIn.getEntry("favoriteColor");

7.6.7. Container−Managed Persistence

In our entity−based ProfileBean, shown in Example 7−9, the persistent state of the profile entity is
managed by the bean itself. There's JDBC code in the ProfileBean implementation that loads, stores, and
removes the entity's database entries. This is called bean−managed persistence : the EJB container calls the
appropriate methods on your entity bean, but your bean implementation is responsible for connecting to the

Preface (Java Enterprise in a Nutshell)

7.6.6. Handles on Entity Beans 205

database and making all of the necessary queries and updates to reflect the life cycle of the data entity.

As I mentioned earlier, the EJB specification provides another option: container−managed persistence. In
this case, you define data members on your entity bean implementation that hold the state of the entity and tell
the EJB container how to map these data members to persistent storage. If the persistent storage is a database,
you tell the container which columns in which tables hold the various data members of your entity. With
container−managed persistence, the container is responsible for loading, updating, and removing the entity
data from persistent storage, based on the mapping you provide. The container also implements all the finder
methods required by the bean's home interface.

If you want to take advantage of container−managed persistence, you have to indicate this to the EJB
container when you deploy the bean. You also provide the data mapping at deployment time. To see this in
action, let's use a simple entity bean that represents a person using just a first and last name:

import javax.ejb.*;
import java.rmi.RemoteException;
import jen.ejb.NoSuchPersonException;
import java.util.Properties;

public class PersonBean implements EntityBean {
 // First name of person
 public String mFirstName = "";
 // Last name
 public String mLastName = "";

 // Store context (nonpersistent)
 private transient EntityContext mContext = null;

 // No need for us to activate anything in this bean, but we need to
 // provide an implementation.
 public void ejbActivate() {
 System.out.println("ProfileBean activated.");
 }

 // Load bean from persistent store. Container is doing this for us, so
 // nothing to do here.
 public void ejbLoad() throws RemoteException {}

 // Store bean to persistent store. Container is doing this, so nothing
 // to do here, either.
 public void ejbStore() throws RemoteException {}

 // Nothing to do on a remove.
 public void ejbRemove() {}

 // No state to store on passivation (it's all in persistenct storage).
 public void ejbPassivate() {}

 // Get context from container.
 public void setEntityContext(EntityContext context) {
 mContext = context;
 }

 // Container is removing our context.
 public void unsetEntityContext() throws RemoteException {
 mContext = null;
 }

 // Create method (corresponds to each create() method on the
 // home interface). Nothing to initialize in this case.
 public void ejbCreate() {
 System.out.println("Nameless PersonBean created.");
 }

Preface (Java Enterprise in a Nutshell)

7.6.6. Handles on Entity Beans 206

 // Postcreation notification. Nothing to do here, but we need
 // to provide an implementation.
 public void ejbPostCreate() {
 System.out.println("PersonBean post−create called.");
 }

 // Create method with name of person.
 public void ejbCreate(String fname, String lname)
 throws NoSuchPersonException {
 mFirstName = fname;
 mLastName = lname;
 }

 // Postcreation notification. Nothing to do here, but we need
 // to provide an implementation.
 public void ejbPostCreate(String fname, String lname) {}

 // Business methods
 public String getFirstName() {
 return mFirstName;
 }

 public String getLastName() {
 return mLastName;
 }
}

We're going to focus on the bean implementation here; I leave it to you to sort out the home and remote
interfaces for this bean. The PersonBean has two data members, representing the first and last name of the
person. In comparison to our entity ProfileBean from earlier, this bean is much simpler, since the
ejbRemove(), ejbLoad(), and ejbStore() methods are empty. We're going to let the container
handle the loading and storing of the bean's data and the removal of any entities from the database, so we don't
need to do anything about these operations in our bean implementation.

In order for an EJB container to manage the persistence of this bean, we need to tell it what data members
should be stored persistently and where to store them in the database. We'll see some examples of
container−managed data mappings in the section on deploying enterprise beans, but to give you a sense of
how this works, here's the relevant section from a deployment descriptor file for BEA's WebLogic EJB server:

...
(persistentStoreProperties
 persistentStoreType jdbc
 (jdbc
 tableName PERSON
 . . .
 (attributeMap
 mFirstName FIRST_NAME
 mLastName LAST_NAME
)
)
)
...
containerManagedFields [mFirstName mLastName]
primaryKeyClassName PersonPK
...

In this part of the bean's deployment descriptor, we're telling the container that the mFirstName and
mLastName members of the PersonBean are stored persistently, and that they should be stored in the
FIRST_NAME and LAST_NAME columns of the PERSON table. We also have to tell the container which
JDBC connection pool to use to connect to the database, but I've omitted those details for now.

We also need to tell the container the primary key class for our entity bean. In this case, it's the PersonPK

Preface (Java Enterprise in a Nutshell)

7.6.6. Handles on Entity Beans 207

class, which looks like this:

public class PersonPK implements java.io.Serializable {
 public String mFirstName;
 public String mLastName;

 public PersonPK() {
 mFirstName = null;
 mLastName = null;
 }
 public PersonPK(String fname, String lname) {
 mFirstName = fname;
 mLastName = lname;
 }
}

Since we're using container−managed persistence, the primary key class for our bean has to include members
that match the corresponding members on the bean class. This allows the bean to map the key fields to bean
fields automatically and to generate the default finder methods for the bean.

If you choose container−managed persistence for your bean, the EJB container generates all the
ejbFindXXX() methods required for the finder methods on the home interface. It automatically generates
an ejbFindByPrimaryKey() method, based on the data−mapping information you provide at
deployment time. For any other ejbFindXXX() methods, you need to provide the container with a recipe
for implementing the methods. The EJB 1.0 specification doesn't provide a standard format for specifying
these additional finder methods for your bean, nor does it provide a means for you to specify some of the
finder methods yourself in the bean implementation and leave the rest for the EJB container to implement.
Some EJB providers allow you to provide code segments at deployment time for the finder methods, while
other providers define a descriptive scripting language that allows you to describe the logic of the method
implementation to the EJB container. In either case, the container takes this information and creates
implementations for the finder methods. These finder methods are located within one of the support classes it
generates, usually in a generated subclass of your home interface.

As an example, suppose we want to have a finder method for our PersonBean class called findFreds()
that finds all the people whose first name starts with "Fred." BEA's WebLogic server specifies a syntax for
describing the logic of a finder method in the bean's deployment descriptor file. The segment of the descriptor
that describes this finder method for a WebLogic server might look like this:

(finderDescriptors
 "findFreds()" "(like mFirstName Fred%)"
)

If you are implementing an entity bean with many complicated finder methods, or if you are concerned with
your bean being easily portable between EJB server providers, you may want to shy away from
container−managed persistence and stick with managing the persistent data yourself. With some EJB
providers, you may find that the format they provide for describing finder methods is too limited for your
purposes. And deploying the bean in different EJB servers means porting the descriptions of your finder
methods from server to server, which defeats the purpose of writing to a distributed component standard.

If your EJB object is using container−managed persistence, the container is handling the loading and storing
of persistent data. You still can provide ejbLoad() and ejbStore() methods on your bean
implementation, however. The ejbLoad() method is called just after the container has loaded the specified
data fields from persistent storage into your data members, and ejbStore() is called just before the
container writes your data members to persistent storage. If there is any conversion or bookkeeping you need
to handle, you can do that in these methods.

Container−managed beans also rely on the container to create and remove the entities they represent from
persistent storage. The bean can still provide ejbCreate() and ejbRemove() methods, however. The

Preface (Java Enterprise in a Nutshell)

7.6.6. Handles on Entity Beans 208

appropriate creation method is called just before the container creates the required records for the new entity
in the database. The bean can use these methods to initialize any data members the container accesses while
creating the records. The container also invokes the bean's ejbRemove() method just before the container
removes the necessary records from persistent storage. This lets you do any cleanup before the entity is
removed.

7.6.7.1. Handling complex data structures

Each EJB container is limited to some degree in the way that data on your bean implementation can be
mapped into persistent data fields. There is no standard format defined for the data mapping the container
supports, so it's possible a particular EJB provider won't support whatever complicated mapping you require
for your bean. For the most part, however, you can expect EJB providers to limit the format to a single
persistent data field being mapped to a single data member on your bean implementation. If the data structures
on your bean are too complicated for you to provide an explicit mapping to persistent data fields, you have to
decide how to deal with this.

In our entity ProfileBean example, we've stored the profile entries in a Properties object. We don't
know at deployment time how many entries there will be, so we can't enumerate a mapping to database fields.
We really want each entry in the Properties object to be stored in the PROFILE_ENTRY table in our
database, along with the name of the owner of the entry, which is exactly how we implemented our
bean−managed implementation in Example 7−9.

One option is to give up on container−managed persistence and manage it yourself in the bean
implementation. Another is to make each entry in the profile its own bean and store the entries in a list on the
profile bean. This would probably turn out to be too expensive in terms of interactions with the container and
memory, however. Each entry in the profile would need to be managed separately by the container, with all of
the relevant lifecycle notifications.

Another option is to serialize your data structures into individual data members on your bean and allow the
container to read/write the serialized bytes to database fields as binary data. In our entity ProfileBean
example, rather than using the PROFILE and PROFILE_ENTRY tables we used in the bean−managed
version, we can define a single table to hold the name of the profile owner, along with the serialized bytecodes
for the Properties object that represents the profile entries. We can then use the ejbStore() method on
our bean to convert the Properties object to an array of bytes:

public void ejbStore() throws RemoteException {
 try {
 ByteArrayOutputStream byteOut = new ByteArrayOutputStream();
 ObjectOutputStream objOut = new ObjectOutputStream(byteOut);
 objOut.writeObject(mEntries);
 mEntriesBytes = byteOut.toByteArray();
 }
 catch (Exception e) {
 throw new RemoteException("ejbStore failed: ", e);
 }
}

After the container calls our ejbStore() method, it can write the mEntriesBytes data member on our
bean to a raw data field in the database (e.g., a LONG BINARY field in a SQL database). On the reading end,
we can use the ejbLoad() method to convert the bytes loaded by the container to the mEntriesBytes
data member into a Properties object:

public void ejbLoad() throws RemoteException {
 try {
 ByteArrayInputStream byteIn = new ByteArrayInputStream(mEntriesBytes);
 ObjectInputStream objIn = new ObjectInputStream(byteIn);

Preface (Java Enterprise in a Nutshell)

7.6.7.1. Handling complex data structures 209

 mEntries = (Properties)objIn.readObject();
 }
 catch (Exception e) {
 throw new RemoteException("ejbLoad failed: ", e);
 }
}

This workaround allows us to deploy our entity ProfileBean with container−managed persistence, but it
makes our database records unusable for other, non−Java applications. There's no way, for example, to check
on a user's profile entries using a simple SQL query.

7.5. Implementing Session
Beans

7.7. Deploying an
Enterprise JavaBeans

Object

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 7: Enterprise
JavaBeans

7.7. Deploying an Enterprise JavaBeans Object

Once you've written the home and remote interfaces and the implementation of your enterprise bean, you
need to deploy your beans in an EJB container, which involves the following steps:

1.
Specifying the various deployment options for your bean, using the deployment tools provided by the
EJB container. These options include transaction support options, access control settings, and data
mappings (for container−managed entity beans).

2.
Using the container−provided tools to create a serialized deployment descriptor, which bundles up
your deployment options into a single serialized object.

3.
Generating the container−specific classes, as shown in Figure 7−2.

4.
Optionally packaging your enterprise beans into an EJB−JAR file.

As shown in Figure 7−2, the EJB container generates a set of classes that deploy your EJB object. It's up to
the EJB container to provide a tool or tools for generating these classes. Some may be command−line tools
that accept some sort of properties file that tells the EJB container about your bean, while others may be GUI

Preface (Java Enterprise in a Nutshell)

7.7. Deploying an Enterprise JavaBeans Object 210

tools that let you control the deployment options of your bean using a visual interface. Regardless of the
deployment/generation tool your EJB application server provides, it needs to be told the fully qualified names
for the home and remote interfaces for your EJB object and for the bean implementation class. It also needs to
be told how to deploy your bean, in terms of transaction support, client access to features of your bean, and
management of the persistent data (if any) associated with your bean. The baseline information and options
needed for deploying your enterprise bean are as follows:

Bean implementation class and interfaces
The fully qualified names of your bean implementation class and the home and remote interfaces for
your bean.

Bean type
Is the bean a session or entity bean? If it is a session bean, is it stateful or stateless? If it is an entity
bean, is its persistence bean−managed or container−managed?

JNDI name for home interface
The name under which the home interface for the bean is exported through JNDI by the server.
Clients use this name to look up the home interface.

Transaction support attribute
The level of transaction support required by the bean. Specify one of the values described earlier in
the chapter.

Transaction isolation level
The level of transaction isolation required by the bean. Specify one of the values described earlier in
the chapter.

Access control attributes
Which remote identities should have access to the methods on your bean? What identity should your
bean assume when it accesses resources (a database, other EJB objects, etc.)?

Session time−out (session beans only)
The maximum lifetime for a session bean.

Database/member mapping (container−managed entity beans only)
The data members on your bean that need to be stored persistently and their corresponding database
fields.

Reentrant flag (entity beans only)
Is your bean implementation reentrant (i.e., can the bean's methods make loopback calls to
themselves, directly or through other bean methods)? This property is always false for session
beans.

Primary key class (entity beans only)
The fully qualified name of the class that serves as the primary key for your entity bean.

Environment variables
Miscellaneous environment properties, either EJB server−specific or bean−specific, that are provided
to the bean in its EJBContext.

Some EJB containers may expand on this baseline list to include properties they need for extended services
they may provide or additional controls they provide to supplement the basic EJB deployment options.

All these deployment properties are represented as publicly accessible properties on the

Preface (Java Enterprise in a Nutshell)

7.7. Deploying an Enterprise JavaBeans Object 211

DeploymentDescriptor, SessionDescriptor, and EntityDescriptor classes in the
javax.ejb.deployment package. If you want to create an EJB−JAR package for your bean, the EJB
server tools typically allow you to bundle your deployment options into an instance of either the
SessionDescriptor or EntityDescriptor class and serialize the object to a file to be included in
the EJB−JAR file as the bean's deployment descriptor. See the later section "Packaging Enterprise Beans" for
more details.

At the time of this writing, the released EJB specification doesn't include a standard format for deployment
descriptor files. The EJB 1.1 public draft includes an XML−based deployment descriptor schema, but until the
1.1 specification is released and this standard deployment descriptor file format is widely supported, you need
to deal with the vendor−specific formats currently provided by each EJB server. Currently, the only way to
provide a portable deployment descriptor for your enterprise bean is to do the work of the server deployment
tools yourself. To do this, you have to write some Java code that creates an instance of the appropriate
DeploymentDescriptor subclass, fills in the properties on this object, and then serializes the descriptor
object to a file. If you need to do this, refer to Chapter 20, "The javax.ejb.deployment Package" for details on
DeploymentDescriptor and its subclasses. For the examples that follow, however, I'm going to show
snippets of deployment descriptor files for a particular EJB server, BEA's WebLogic application server.

7.7.1. Container−Managed Data Mapping

If you are deploying an entity bean with container−managed persistence, you need to tell the EJB container
which fields on your bean implementation are persistent and how to map them to persistent storage. For
example, suppose we are deploying our entity ProfileBean, using container−managed persistence. Let's
assume that we've made the modifications to our bean implementation we discussed in the section
"Container−Managed Persistence." In other words, we've created a table called PROFILE_BYTES with a
single LONG BINARY column named DATA to hold our serialized Properties object. Now we simply
have to tell the container that the mEntriesBytes member on our modified ProfileBean is mapped to
the DATA column on the PROFILE_BYTES table, with an entry in a textual deployment options file like this
example shown for BEA WebLogic server:

(persistentStoreProperties
 persistentStoreType jdbc
 (jdbc
 tableName PROFILE_BYTES
 ...
 (attributeMap
 mName NAME
 mEntriesBytes DATA
)
)
)
...
containerManagedFields [mName mEntriesBytes]

Based on these mappings, the EJB container generates all of the necessary JDBC calls in its generated classes.

7.7.2. Access−Control Deployment Attributes

There are precious few details in the EJB 1.0 specification about support for security in EJB containers, but
there is a construct provided for you to specify certain access control levels at deployment time.

Essentially, the EJB server should provide some means for mapping a client−provided identity (in the form of
a java.security.Identity object) to a named user or role on the EJB server itself. Then you, the bean
provider, can specify which users and/or roles can access each method on your bean. The EJB server allows

Preface (Java Enterprise in a Nutshell)

7.7.1. Container−Managed Data Mapping 212

you to specify access control levels in some server−specific way (ideally, using the same deployment tools as
the other deployment attributes). There should be a way to specify access for the entire bean, as well as for
individual methods. Any method without an access−control entry assumes the access level of the bean as a
default. So, for the various versions of our ProfileBean, we might want to allow anyone to get profile
entries off of the bean, but only allow profile administrators (users or applications) to set profile entries. We
might do this by specifying access−control entries such as:

(accessControlEntries
 DEFAULT [everyone]
 "setEntry(String, String)" [profileAdmin]
)

This allows any user who identifies himself as profileAdmin to invoke the setEntry() method on the
ProfileBean, while all other remote methods on the bean are accessible to everyone.

As a step towards standardizing the specification of client identities to the EJB server, there is a proposal
being considered by various EJB providers that involves the use of a reserved JNDI name entry to hold the
client's identity. The client would provide an Identity object to the EJB server as the value of the
Context.PROVIDER_IDENTITY property, passed in when the client creates its initial JNDI naming
context from the server. This issue should be settled in an upcoming update to the EJB specification.

In addition to specifying client access rules for your bean, you need to specify to the EJB server what identity
your bean should assume when it accesses controlled resources, such as other EJB objects and databases. This
is done using two deployment properties: run−as−mode and run−as−identity. The run−as−mode property
indicates whether the bean should assume the identity of the client that invoked it (CLIENT_IDENTITY), the
identity of some system−defined account (SYSTEM_IDENTITY), or the identity of some other specific user
account (SPECIFIED_IDENTITY). The SYSTEM_IDENTITY option causes the EJB server to use a
platform−specific privileged account. A server may use the root account on Unix systems or the
Administrator account on Windows NT systems, for example. Some EJB servers may use the account that
runs the server when the SYSTEM_IDENTITY is specified. The run−as−identity property is used when
run−as−mode is set to SPECIFIED_IDENTITY. The identity given in the run−as−identity property is the
identity the bean assumes when accessing system resources and other beans.

The run−as−mode and run−as−identity attributes are settable at the bean level or at the individual method
level, in the same way client access levels are applied. If you set these attributes for specific methods on your
bean, that means you want those methods to be executed using the specified identity for access−control
purposes. There are some restrictions imposed by the EJB specification, however. Within a single transaction,
all methods invoked on your bean must be run with the same identity. If a client transaction attempts to
execute methods you've deployed with different access−control identities, the server throws an RMI
RemoteException to the client. If your bean is a stateful session bean, all methods executed during a
session lifetime must be the same. If a client attempts, within the same session, to execute methods on your
bean that have different access−control identities associated with them, the EJB server throws an RMI
RemoteException.

7.7.3. Generating the Container Classes and Deployment Descriptor

Once you've specified all the deployment options for your bean, the container provides a utility for
converting these deployment properties to a serialized deployment descriptor. This deployment descriptor is a
serialized instance of either the EntityDescriptor or SessionDescriptor class from the
javax.ejb.deployment package. The container tools store all the deployment options you specified into
an instance of one of these classes, depending on what type of bean you're deploying, and serialize the object
to a file you specify, one for each type of bean that you are deploying. You can then use these deployment
descriptors to package your enterprise beans into EJB−JAR files, as described a bit later.

Preface (Java Enterprise in a Nutshell)

7.7.3. Generating the Container Classes and Deployment Descriptor 213

In addition to the deployment descriptor, you also need to use the EJB container's tools to generate the
container−specific classes that deploy your bean, as shown in Figure 7−2. In order to generate these classes,
the container tools need to take into account your deployment options. If you're deploying an entity bean, for
example, the tool needs to know whether the bean uses container−managed persistence or not, so that the tool
knows whether it needs to include JDBC code for the bean in its generated classes. The container tools
typically allow you to specify where to generate the deployment classes.

Once you have your compiled interfaces and bean implementation class, the deployment descriptor, and the
container−generated classes for your bean, you're ready to package your bean in an EJB−JAR file.

7.7.4. Packaging Enterprise JavaBeans

EJB−JAR files are the standard packaging format for Enterprise JavaBeans. They are normal Java archive
(JAR) files, created using the standard jar utility, but they contain specific files that provide all the
information needed for an EJB container to deploy the beans that are contained in the EJB−JAR file. An
EJB−JAR file can contain one or many beans.

An EJB−JAR file contains three components:

•
The class files for each bean, including their home and remote interfaces, and the bean
implementations.

•
A deployment descriptor, in the form of a serialized instance of either the EntityDescriptor or
SessionDescriptor classes from the javax.ejb.deployment package.

•
A manifest file, located in the file META−INF/MANIFEST.MF within the JAR file, with a section for
each bean that names its deployment descriptor within the JAR file.

The manifest file is a simple text file, with sections delimited by blank lines. Each section has name/value
pairs. The name starts the line, followed by a colon, followed by the value. EJB−JAR files define two tags:
"Name" and "Enterprise−Bean". The Name line specifies the serialized deployment descriptor for an
enterprise bean, while Enterprise−Bean marks the section as relevant to the EJB server and always has a value
of "True". Here's a typical manifest file that might be used for an EJB−JAR file that contains a few of our
bean examples:

Name: jen/ejb/stateless/ProfileServerBeanDD.ser
Enterprise−Bean: True

Name: jen/ejb/entity/beanManaged/ProfileBeanDD.ser
Enterprise−Bean: True

This manifest file describes two enterprise beans. The EJB−JAR file that contains this manifest must contain
the two serialized deployment descriptors named in the manifest file, all class files specified in the
deployment descriptors for the beans, and all container−generated classes for deploying the bean.

An EJB−JAR file contains everything an EJB container needs to deploy your bean. The container reads the
manifest file and, for each bean specified, loads the serialized deployment descriptor and checks its
parameters. The container looks in the JAR file for the class files needed for the bean and deploys the bean
using the additional parameters specified in the deployment descriptors.

Some EJB container/server providers include a utility to facilitate the creation of EJB−JAR files from your

Preface (Java Enterprise in a Nutshell)

7.7.4. Packaging Enterprise JavaBeans 214

bean classes. It's a simple matter, however, to create one using the standard jar utility provided with nearly
every Java SDK implementation. Assuming that you have created a manifest file, such as the one shown
earlier, in a file named ProfileManifest.txt, you can create an EJB−JAR file for the previous two
beans with the following command:

% jar cmf ProfileManifest.txt ProfileBeans.jar\
jen/ejb/stateless jen/ejb/entity/beanManaged

This command creates an EJB−JAR file named ProfileBeans.jar in the current directory. The jar utility
automatically places the manifest file in the proper location in the JAR file for you. Note that we're assuming
that the subdirectories we've included in the JAR file contain both the class files we need and the serialized
deployment decriptors mentioned in the manifest file.

7.6. Implementing Entity
Beans

7.8. Using an Enterprise
JavaBeans Object

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 7: Enterprise
JavaBeans

7.8. Using an Enterprise JavaBeans Object

So far, we've seen how to write an enterprise bean and how to deploy it through an EJB container. Now let's
look at how you use an enterprise bean as a client.

7.8.1. Finding Home Interfaces Through JNDI

Once an enterprise bean is deployed within an EJB container, the home interface for the bean has been
exported under a particular name using JNDI. As a client, you need to know how to connect to the JNDI
context of the remote EJB server, and you need to know the name for the bean home interface you're
interested in. A typical way to connect to the JNDI naming context is to specify the initial context factory for
JNDI and create a new naming context through it (for more details, see Chapter 6, "JNDI"):

Hashtable props = new Hashtable();
// Specify the context factory for our EJB server
props.put(Context.INITIAL_CONTEXT_FACTORY,
 "my.ejb.server.context.factory");
// Specify the URL for the context provider, if any
props.put(Context.PROVIDER_URL, "my.server.jndi.url");
// Trying looking up the context
javax.naming.Context ctx = null;
try {

Preface (Java Enterprise in a Nutshell)

7.8. Using an Enterprise JavaBeans Object 215

 ctx = new javax.naming.InitialContext(props);
}
catch (NamingException ne) {
 System.out.println("Failed to create JNDI context from EJB server");
}

In this example client, we make a Hashtable that contains two standard JNDI properties, the
INITIAL_CONTEXT_FACTORY and PROVIDER_URL properties. These property names are String
constants defined on the javax.naming.Context interface, whose values are
"java.naming.factory.initial" and "java.naming.provider.url", respectively. You can use the explicit string
values if you prefer, but the constant values are provided by the Context interface as a convenience, since
they're a bit easier to remember. The value of INITIAL_CONTEXT_FACTORY is the class name for a
context factory, provided by your JNDI provider (the EJB server, in this case), and PROVIDER_URL is a
URL used to connect remotely to the JNDI server running within the EJB server. The proper values for both
of these items should be provided by your EJB application server provider.

You can also specify the security principal under which you want to interact with the EJB/JNDI server, by
including the Context.SECURITY_PRINCIPAL property in the call to create your naming context. This
property value should be a java.security.Identity object that represents the identity of your client:

Hashtable props = new Hashtable();
// Initialized other connection properties...
java.security.Identity id = . . .;
props.put(Context.SECURITY_PRINCIPAL, id);
javax.naming.Context ctx = new javax.naming.InitialContext(props);
...

Some EJB server providers use this identity in determining access to bean features, as specified in the bean
deployment descriptors. The EJB 1.0 specification doesn't provide a standard for providing this identity,
however, so check the documentation on your EJB server for specific details. For more details on accessing
remote JNDI servers, see Chapter 6, "JNDI".

Now that we have a JNDI naming context from the EJB server, we can look up the home interface for the
bean we're interested in:

ProfileHome pHome = null;
try {
 pHome =
 (ProfileHome)ctx.lookup("jen.ejb.entity.beanManaged.ProfileHome");
}
catch (NamingException ne) {
 System.out.println("Failed to lookup home for ProfileBean.");
}

In this case, we've assumed that the bean provider has deployed its home interface on the EJB server under the
name "jen.ejb.entity.beanManaged.ProfileHome". With the home interface stub, our client can now create or
find beans located on the server.

7.8.2. Creating/Finding Beans

The home interface for the bean contains methods that allow a client to create new beans or find existing
beans (for entity beans). Continuing our example client, assuming we're using our entity ProfileBean
from Example 7−9 and its corresponding home interface, we can create a new ProfileBean and get a stub
reference to it as follows:

Profile profile = null;
try {
 profile = pHome.create("Kaitlyn");

Preface (Java Enterprise in a Nutshell)

7.8.2. Creating/Finding Beans 216

}
catch (DuplicatePersonException dpe) {
 System.out.println("Profile already exists for Kaitlyn.");
}
catch (RemoteException re) {
 System.out.println("Remote exception while creating profile.");
}

Here we're trying to create a new profile for someone named "Kaitlyn". We're using the create() method
defined on our ProfileHome interface, which we've declared to throw RemoteException and our own
DuplicatePersonException. In the client, we catch each of these exceptions and print a corresponding
error message if it occurs.

Now, if we thought a profile already existed for Kaitlyn, we could try finding it in persistent storage first,
using one of the finder methods on our home interface:

try {
 profile = pHome.findByPrimaryKey(new ProfilePK("Kaitlyn"));
}
catch (FinderException fe) {
 System.out.println("No profile found for Kaitlyn.");
}
catch (RemoteException re) {
 System.out.println("Remote exception while finding profile.");
}

If we weren't sure whether a profile for Kaitlyn had been created or not, we could try finding it first, using the
code above, then create one if needed:

if (profile == null) {
 // Create profile as before ...
}

7.8.3. Using Client−Side Transactions

I mentioned before that you can specify at deployment time how your bean handles transactions, using one of
the transaction attributes we already discussed. On the client−side, you can use the Java Transaction API
(JTA) to create your own transaction boundaries. These transactions are taken into account, along with the
bean's transaction−handling attributes, by the EJB container, to determine which transaction context to put the
bean into for each remote method call your client makes. Again, a complete description of the JTA is beyond
the scope of this chapter, but it's useful to take a quick look at how to create your own client transactions.

Continuing the example client we've been working with in this section, we've already found the home
interface for the ProfileBean and created/found a Profile for Kaitlyn. Now we want to make some
changes to Kaitlyn's profile, but we want to make sure that all our changes are made before we commit them.
To do this, we create our own "javax.transaction.UserTransaction"[5] and either commit it or roll it back,
depending on whether we get an exception while setting the profile entries:

[5]Note that shortly after the EJB 1.0 specification was released, the name of the (then beta)
JTA was changed, so that javax.jts.UserTransaction became
javax.transaction.UserTransaction. I'm using the new class name here, but
keep in mind that you might see the old package names in the EJB 1.0 documentation from
Sun.

javax.transaction.UserTransaction xact =
 (UserTransaction)jndiCtx.lookup("javax.transaction.UserTransaction");

Preface (Java Enterprise in a Nutshell)

7.8.3. Using Client−Side Transactions 217

xact.begin();
try {
 profile.setEntry("username", "kschmitz");
 profile.setEntry("password", "foobar");
 profile.setEntry("interestGroups", "dogs:cartoons:napping");
 xact.commit();
}
catch (RemoteException re) {
 xact.rollback();
}

We acquire the transaction from whatever transaction provider we're using on the client side. Here, we assume
that we've retrieved a "JNDI context" from the EJB server and use it to look up an instance of
"javax.transaction.UserTransaction" that the EJB server provides. When we use this transaction object, the
EJB server can manage the transaction around calls to enterprise bean methods. We begin the transaction
before starting our profile update. We make our updates to Kaitlyn's profile, and, if successful, we commit the
transaction. If we get an exception from the EJB server along the way, we rollback our changes by calling
rollback() on the transaction.

If the ProfileBean was deployed with a transaction attribute of TX_SUPPORTS, TX_REQUIRED, or
TX_MANDATORY, the EJB container should execute the bean methods within our client transaction context.
The corresponding database updates are committed to the database when we commit() our transaction or
rolled back if we rollback() our transaction. The bean does not need to know anything about the
transaction boundaries, even if it is managing its own persistence. The EJB container manages the association
between the client−specified transaction boundaries and the JDBC transactions initiated by the bean
implementation.

7.7. Deploying an
Enterprise JavaBeans
Object

7.9. Changes in EJB 1.1
Specification

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 7: Enterprise
JavaBeans

7.9. Changes in EJB 1.1 Specification

Shortly before publication of this book, Sun released a public draft of Version 1.1 of the EJB specification. In
this incremental release, Sun tightened up a few areas, changed its scheme for deployment descriptors, and
made various other updates to the specification. The major updates are described below, followed by a short
laundry list of the more significant changes.

Preface (Java Enterprise in a Nutshell)

7.9. Changes in EJB 1.1 Specification 218

7.9.1. XML−Based Deployment Descriptors

In EJB 1.1, the javax.ejb.deployment package is deprecated, and deployment descriptors for
enterprise beans are composed using XML, instead of serialized DeploymentDescriptor objects. In the
XML DTD defined in EJB 1.1, there's a clear separation of information regarding the structure of the
enterprise bean(s) from information regarding the use of the beans in a particular application. The structural
information for an enterprise bean includes components such as its various classes, environment variables the
bean recognizes, and the container−managed fields (for entity bean). Application−specific information
includes, for example, values for environment variables, the various client roles that are used for controlling
access to beans, and permission settings for these various roles.

Similar to the deployment descriptors defined in EJB 1.0, these XML−based deployment descriptors are
intended to include only structural information when a bean provider ships a collection of enterprise beans to
application developers, and both structural information and application−specific information when an
application provider ships an EJB−based application to an application deployer. The separation of these two
types of information in the XML deployment descriptor makes this process more straightforward than under
EJB 1.0.

The XML deployment descriptor for a set of enterprise beans can be provided separately or as part of an
EJB−JAR file. In an EJB−JAR file, the deployment descriptor must be in the file META−INF/ejb−jar.xml.

7.9.2. Entity Beans Required

In EJB 1.0, support for entity beans was optional for compliant EJB servers. In EJB 1.1, all compliant servers
must provide support for entity beans.

7.9.3. Home Handles

EJB 1.1 adds a new HomeHandle interface and a getHomeHandle() method on the EJBHome interface.
A HomeHandle is a serializable reference to a home interface for an enterprise bean, analogous to the
Handle interface, which represents a serializable reference to an EJB object. This allows a client to get a
handle for a home interface and serialize it to some persistent storage, like a filesystem or database. The
serialized HomeHandle can be deserialized later (in the same or another Java VM) and used to acquire a
reference to the same home interface.

7.9.4. Detailed Programming Restrictions for Bean Implementations

EJB 1.1 lists detailed restrictions on what an enterprise bean implementation should avoid in its business
methods in order to be portable across different EJB servers. These include rules against using sockets,
creating class loaders, and including writable static fields on EJB implementation classes.

7.9.5. Assorted Other Changes

In addition to changes already listed, the following are some of the more significant updates introduced in the
EJB 1.1 specification:

•
Finder methods on entity beans can now return java.util.Collection types from Version 1.2
of the Java 2 platform.

•

Preface (Java Enterprise in a Nutshell)

7.9.1. XML−Based Deployment Descriptors 219

Entity bean primary keys can now be java.lang.String objects.

•
All ejbCreate() methods on entity beans, including those with container−managed persistence,
must now return the bean's primary key type. Previously, container−managed entity beans had
ejbCreate() methods that returned null, and bean−managed beans returned their primary key
type. With this change, a container−managed bean can implement ejbCreate() methods that
return null, and this bean can optionally be subclassed to define a bean−managed bean that returns
an actual primary key.

•
All EJB clients should use the narrow() method on the javax.rmi.
PortableRemoteObject interface in order to cast remote and home object interfaces for
enterprise beans. This guarantees that clients will be compatible with EJB servers that use RMI−IIOP
for exporting enterprise beans.

7.8. Using an Enterprise
JavaBeans Object

Part 2. Enterprise
Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 2: Enterprise
Reference

Preface (Java Enterprise in a Nutshell)

7.9.1. XML−Based Deployment Descriptors 220

Chapter 8. SQL Reference
Contents:

Relational Databases
Data Types
Schema Manipulation Commands
Data Manipulation Commands
Functions
Return Codes

There are dozens of different database management systems on the market today, from nearly as many
vendors. Developing applications that are more or less database independent requires a standardized interface
to the underlying data. Since the early 1980s, this interface has been SQL, a sophisticated database
manipulation language.[1]

[1] The acronym expands out to either Structured Query Language (based on the original
IBM acronym from the 1970s) or Standard Query Language (which has been more popular in
recent years). Perhaps because of this confusion, most people just say SQL, pronounced either
see−quell or ess−cue−ell.

Unlike Java, SQL is a declarative language. It allows users to specify particular actions on the database and
retrieve the results of those actions. It specifies a set of standardized data types and standard error messages,
but it lacks procedural constructs. There are no conditionals or loops standard in SQL.

There are several versions of the SQL standard. SQL−86 and SQL−89 have been superceded by SQL−92,
which is supported by most database vendors, although there are a number of platform−specific variations.
Many databases also include additional data types, operators, and functions beyond those specified in the
SQL−92 standard. In addition, there are three levels of SQL−92 conformance: entry−level, intermediate, and
full. Many products support only the entry−level SQL−92 standard, leaving out some advanced features.
JDBC drivers are supposed to provide entry−level functionality and, for the most part, they do.

This chapter presents a brief introduction to the structure of a relational database system and a quick
reference to the most commonly used SQL commands. The complete set of SQL commands is simply too
large to cover here: even a concise SQL reference can run to several hundred pages. I have endeavored to
provide the information that most client−side programmers need. For a complete introduction to most aspects
of SQL, I highly recommend SQL Clearly Explained by Jan Harrington (AP Professional).

8.1. Relational Databases

Data storage and retrieval are two of the biggest tasks facing most enterprise applications. There are lots of
ways to store data on a disk, but for large−scale applications a relational database management system
(RDBMS) is far and away the most popular choice.

Data in an RDBMS is organized into tables, where these tables contain rows and columns. You can think of
an individual table as a spreadsheet with a little more organization: column data types are fixed and there may
be rules governing the formatting of each column. This alone is enough for a database system (plain DBMS).
A relational database system has one other key attribute: individual tables can be related based on some
common data. Figure 8−1 shows three tables in a relational structure. The CUSTOMERS table is related to the
ORDERS table based on the CUSTOMER_ID field, and the ORDERS table is related to the ITEMS table based
on the ORDER_ID field. SQL provides a standardized means of accessing the data in tables and working with
the relationships between tables.

Chapter 8. SQL Reference 221

Figure 8−1. Three related tables

The highest−level organizational concept in an RDBMS system is a cluster.[2] A cluster contains one or
more catalogs, which are usually the highest−level object a programmer ever has to deal with. A catalog
contains a group of schemas. A schema contains a group of tables and other objects and is generally assigned
to a particular application or user account. Generally, the database administrator is responsible for dealing
with clusters and catalogs. Most users work within a particular schema.

[2] The naming comes from the older SQL standards, where a cluster represented physical
storage space. This is no longer the case, but the name persists.

To reference a table within a particular schema, separate the schema name and the table name with a dot:

schema_name.table_name

To reference a particular column within a particular schema:

schema_name.table_name.column_name

To set a particular schema as the default, use the SET SCHEMA SQL statement:

SET SCHEMA schema_name

When you log into a database, you are generally assigned a default schema. When accessing tables within the
default schema, you may omit the schema name.

When creating new objects, the names you assign to them must be unique within the schema. SQL−92 allows
names up to 128 characters, including letters, numbers, and the underscore (_) character.

Part 2. Enterprise
Reference

8.2. Data Types

Preface (Java Enterprise in a Nutshell)

8.1. Relational Databases 222

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 8: SQL Reference

8.2. Data Types

Each column in a table has a particular data type associated with it. SQL−92 defines a fairly broad set of data
types. Different RDBMS packages provide extensions to these basic types, for multimedia data, Java objects,
and so on. Oracle's NUMBER data type, for instance, allows database designers to specify the exact precision
of integer and floating point data types. The basic SQL−92 types are listed in Table 8−1. The names in
parentheses are SQL−92 specified alternates for the main type names.

Table 8−1. SQL−92 Data Types

SQL Data Type Description

INTEGER (INT)
A signed integer value. The number of bits represented is
implementation−dependent.

SMALLINT
A smaller signed integer value, used when storage or memory is at a premium.
Generally 8 bits, but implementation−dependent.

NUMERIC

A signed fixed−precision decimal. When creating a NUMERIC, you must specify
the total length of the number (including the decimal point) and the number of
decimal places. NUMERIC(8, 4) allows three digits, a decimal point, and four
more digits.

DECIMAL
Defined the same way as a NUMERIC, but may store additional precision (more
decimal places).

REAL
A single−precision floating−point value. Range and accuracy are
implementation−dependent.

DOUBLEPRECISION
(DOUBLE)

A double−precision floating−point value. Range and accuracy are implementation
dependent, but are equal to or better than a REAL.

BIT
A fixed number (one or more) of bits. A length specifier (BIT(n)) is optional.
The default size is 1 bit.

BITVARYING
Storage for up to n bits (BIT VARYING (n)). Many databases have alternate
implementations of this data type, such as Oracle's VARBINARY.

DATE A date value (day, month, and year).

TIME A time value. Precision is implementation−dependent.

TIMESTAMP A date and time.

CHARACTER (CHAR)
A fixed−length character string. Specified as CHAR(n). Unused characters are
padded with blanks. The default size is 1.

CHARACTERVARYING
(VARCHAR)

A variable length string, up to size n. Specified as VARCHAR(n).

INTERVAL A date or time interval. Not directly supported by JDBC.
Note that the data types given here are not the same as those in Table 2−1 in Chapter 2, "JDBC". When
mapping between SQL types and Java types, a JDBC driver matches the physical data type (either SQL−92 or
database−specific) and the closest Java type. For example, calling the getType() method of ResultSet
on a BITVARYING field generally returns a Types.LONGVARBINARY value. This translation allows most
JDBC programs to switch between different databases without losing functionality. Also, many databases

Preface (Java Enterprise in a Nutshell)

8.2. Data Types 223

implement additional types: the FLOAT type is so common that many people think it is required by the
specification.

8.1. Relational Databases 8.3. Schema Manipulation
Commands

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 8: SQL Reference

8.3. Schema Manipulation Commands

SQL includes two broad classes of commands. The first are schema manipulation commands, which allow
the creation, modification, and deletion of high−level database objects such as tables. This section describes
these commands. I've provided a syntax summary for each command. In case you aren't familiar with the
style, items in square brackets are optional or not always required, while items in curly braces are either
always required or required within the context of some optional item. A vertical bar (|) indicates a choice,
while an ellipsis indicates that an entry may be repeated any number of times. Items in all uppercase are part
of the SQL statement, while items in lowercase constant width italic represent names and values that you
supply when using the statement.

8.3.1. CREATE TABLE

As its name says, the CREATETABLE command creates a table. Here's the syntax:

CREATE [[GLOBAL | LOCAL] TEMPORARY] TABLE table_name
 ({ column_name { data_type | domain_name } [column_size]
 [column_constraint ...] ... }
 [DEFAULT default_value], ...
 [table_constraint], ...
 [ON COMMIT { DELETE | PRESERVE } ROWS])

Here's a simple example:

CREATE TABLE BOOKS
 (
 TITLE VARCHAR (25) PRIMARY KEY,
 AUTHOR VARCHAR(25) NOT NULL DEFAULT `Unknown',
 EDITION INTEGER,
 PRICE NUMBER(6,2)
)

Preface (Java Enterprise in a Nutshell)

8.3. Schema Manipulation Commands 224

The PRIMARYKEY and NOTNULL identifiers are column constraints. The NOTNULL constraint prevents any
entry in a column being set to null. Here, it's combined it with a default value. PRIMARYKEY identifies the
column that's used as the primary key (or main unique identifier) for the table. If a table has a primary key
column (it doesn't have to), there can be only one such column, no row has a null value in the primary key
column, and no two rows have the same primary key.

A table constraint affects every row in the table. UNIQUE is a common example:

CREATE TABLE BOOKS
 (
 TITLE VARCHAR (25),
 AUTHOR VARCHAR(25),
 EDITION INTEGER,
 PRICE NUMBER(6,2),
 UNIQUE
)

Used as a table constraint, UNIQUE indicates that each row in the table must have a unique combination of
values. You can also specify particular columns that must form a unique combination:

UNIQUE(TITLE, AUTHOR, EDITION)

This mandates only unique title/author/edition combinations. Note that UNIQUE can also be used as a column
constraint.

We can use PRIMARYKEY as a table constraint to specify more than one column as the primary key:

CREATE TABLE BOOKS
 (
 TITLE VARCHAR (25) NOT NULL,
 AUTHOR VARCHAR(25) NOT NULL,
 EDITION INTEGER NOT NULL,
 PRICE NUMBER(6,2),
 PRIMARY KEY (TITLE, AUTHOR, EDITION)
)

Since entry−level SQL−92 requires that primary keys remain not null, we use NOTNULL column
constraints on the primary key columns in this case.

8.3.2. ALTER TABLE

The ALTERTABLE command allows you to modify the structure of an existing table. Here's the syntax:

ALTER TABLE table_name
 { ADD [COLUMN] column_name definition }
 { ALTER [COLUMN] column_name definition
 { SET DEFAULT default_value } | { DROP DEFAULT } }
 { DROP [COLUMN] COLUMN_NAME [RESTRICT | CASCADE] }
 { ADD table_constraint_definition }
 { DROP constraint_name [RESTRICT | CASCADE] }

Note that the modifications you can make are somewhat limited. While you can add and remove columns
(subject to the requirements of any constraints that may have been placed on the table), you cannot reorder
columns. To perform major changes, you generally need to create a new table and move the existing data from
the old table to the new table.

Here's a statement that adds two columns to a table:

Preface (Java Enterprise in a Nutshell)

8.3.2. ALTER TABLE 225

ALTER TABLE BOOKS
 ADD PUBLISHED_DATE DATE,
 ADD PUBLISHER CHAR (30) NOT NULL

Note that the ability to specify multiple operations in an ALTER TABLE command is not part of the SQL
specification, although most databases support this functionality.

Here's how to change the type of a column:[3]

[3] If you look back at the syntax for ALTER TABLE, you'll see that the official syntax for
this kind of operation is ALTER, although most databases use MODIFY instead.

ALTER TABLE BOOKS
 MODIFY PUBLISHER VARCHAR (25)

When this statement runs, the database attempts to convert all existing data into the new format. If this is
impossible, the modification fails. In the previous example, if any record has a publisher entry of more than
30 characters, the statement might fail (exact behavior depends on the implementation). If you are converting
from a character field to, say, an integer field, the whole ALTER TABLE command might fail entirely. At the
minimum, such a change requires that all entries contain a valid string representation of an integer.

To allow null values in the PUBLISHER column, use MODIFY:

ALTER TABLE BOOKS
 MODIFY PUBLISHER NULL

To remove the PUBLISHER column entirely, use DROP:

ALTER TABLE BOOKS
 DROP PUBLISHER

The ALTERTABLE command is not required for entry−level SQL−92 conformance. Due to its extreme
usefulness, however, it is supported by most DBMS packages, although it often varies from the standard.
More esoteric features, such as the RENAME command, are not supported by most packages. In general, it is
not safe to count on anything beyond the basic ADD, DROP, and MODIFY (ALTER) commands.

8.3.3. DROP

The DROP command allows you to permanently delete an object within the database. For example, to drop
the BOOKS table, execute this statement:

DROP TABLE BOOKS

DROP also can delete other database objects, such as indexes, views, and domains:

DROP INDEX index_name
DROP VIEW view_name
DROP DOMAIN domain_name

Once something has been dropped, it is usually gone for good−−certainly once the current transaction has
been committed, but often before.

8.2. Data Types 8.4. Data Manipulation
Commands

Preface (Java Enterprise in a Nutshell)

8.3.3. DROP 226

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 8: SQL Reference

8.4. Data Manipulation Commands

Empty tables aren't very useful, and, even once they've been populated with data, we need some way of
getting that data back out. The SQL data manipulation commands allow you to read data from a table and to
create, update, and remove existing data.

8.4.1. SELECT

The SELECT statement is the most important statement in SQL and also the most complex. It allows you to
retrieve data from a table or a set of tables. Here's the syntax:

SELECT [DISTINCT]
 { summary_function, ... }
 | { data_manipulation_expression, ... }
 | { column_name, ... }
FROM
 { { table_name [AS correlation_name] }
 | { subquery [AS correlation_name] }
 | joined_tables}
[WHERE predicate]
[GROUP BY column_name, ... [HAVING group_selection_predicate]]
[{ UNION | INTERSECT | EXCEPT } [ALL]
 [CORRESPONDING [BY (column_name, ...]]

select_statement | { TABLE table_name }
 | table_value_constructor]
[ORDER BY {{output_column [ASC | DESC]}, ...}
 | {{positive_integer [ASC | DESC]}, ...}]

The simplest possible SELECT, one that displays all columns of all rows of a single table, looks like this:

SELECT * FROM BOOKS

If this statement is executed in a command−line SQL interpreter, the output might look like this:

TITLE | AUTHOR | EDITION | PRICE
−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−
Me | Garrison Keillor | 1 | 24.99
Bleak House | Charles Dickens | 57 | 8.99
A Tale Of Two Cities | Charles Dickens | 312 | 4.99

To sort the output by title, we can add an ORDERBY clause to the statement:

Preface (Java Enterprise in a Nutshell)

8.4. Data Manipulation Commands 227

SELECT * FROM BOOKS ORDER BY TITLE

Now the output is:

TITLE | AUTHOR | EDITION | PRICE
−−−−−−−−−−−−−−−−−−−−−+−−−−−−−−−−−−−−−−−−+−−−−−−−−−+−−−−−−−
A Tale Of Two Cities | Charles Dickens | 312 | 4.99
Bleak House | Charles Dickens | 57 | 8.99
Me | Garrison Keillor | 1 | 24.99

To select just the TITLE and AUTHOR columns:

SELECT TITLE, AUTHOR FROM BOOKS

To select a subset of records, use the WHERE clause:

SELECT * FROM BOOKS WHERE PRICE < 10.0

This returns the Charles Dickens books, but not the Garrison Keillor book. You can have multiple criteria:

SELECT * FROM BOOKS WHERE PRICE < 10.0 OR EDITION = 1

This returns all three books. If we had specified a price less than 10 and an edition equal to 1, we wouldn't
have received any records back. The various predicates you can use are listed in Table 8−2. Note that not all
of the more esoteric ones (such as LIKE) are supported by all databases.

Table 8−2. SQL Predicates

Operator Meaning

= Equals

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

!= or < > Not equal to (some implementations may only support one of these)

LIKE Wildcard match

ISNULL Checks for a null value

IN Checks to see if a value is contained within a set

BETWEEN Checks to see if a date value is between two other date values
The final four predicates in the table can be used with the NOT modifier (e.g., NOTLIKE, ISNOTNULL, etc.).

8.4.1.1. String comparisons

The = operator can generally be used for exact string comparisons. The LIKE operator allows wildcard
searches using two wildcard characters: % to match any number of characters and _ to match at most one
character. Here's a query that selects all records that have a LAST_NAME that contains the letters "for":

SELECT LAST_NAME FROM CUSTOMERS WHERE LAST_NAME LIKE`%for%'

This matches last names like Buford, Crawford, and Trefor, but may not match Fordham, since most
databases implement LIKE in a case−sensitive manner (Microsoft Access is a notable exception to this rule).
Case−insensitive searches generally require a single−case version of the column or the use of a case−adjusting

Preface (Java Enterprise in a Nutshell)

8.4.1. SELECT 228

function (we'll discuss functions later in this chapter).

8.4.1.2. Subqueries and joins

The IN predicate allows you to check whether a value appears in another set of values. The simplest way to
use this feature is in a SQL statement like this:

SELECT * FROM BOOKS WHERE PRICE IN (5.95, 4.95, 7.95)

This is simply another form for:

SELECT * FROM BOOKS WHERE PRICE = 5.95 OR PRICE = 4.95 OR PRICE = 7.95

But we can do something more interesting with IN. Let's assume that we have a table, called PRICES, that
holds all the prices we want to search on. In this case, we can generate the set of values using another query,
as follows:

SELECT * FROM BOOKS WHERE PRICE IN
 SELECT PRICE FROM PRICES

Note that we didn't put parentheses around the second SELECT statement: use parentheses only when you are
specifying the entire list manually.

Subqueries like this are useful, but they still restrict the output columns to those of a single table.

Rather than using subqueries, two tables are normally connected via a join. A join allows a query to include
references to multiple tables and to restrict the output based on the relations between those tables. The basic
join is an equi−join (or inner join): data in two tables is linked based on a shared value. An order−tracking
database might include a CUSTOMERS table and an ORDERS table. The CUSTOMERS table has a customer
identifier (CUSTOMER_ID) as its primary key. The orders table also has a CUSTOMER_ID column, although
not as a primary key, since there may be more than one order per customer (see Figure 8−1 for a graphical
representation of these tables). Here's the SQL to combine the two tables based on the CUSTOMER_ID
column:

SELECT * FROM CUSTOMERS, ORDERS WHERE ORDERS.CUSTOMER_ID =
 CUSTOMERS.CUSTOMER_ID

Since it's an equi−join, it works just as well the other way around:

SELECT * FROM CUSTOMERS, ORDERS WHERE CUSTOMERS.CUSTOMER_ID =
 ORDERS.CUSTOMER_ID

In SQL−92, there is a JOIN operator that performs the same operation with a slightly different syntax:[4]

[4] Note that some databases allow you to use JOIN without the ON clause. In this case, the
join operates on columns that have the same name.

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDERS.TOTAL
 FROM CUSTOMERS INNER JOIN ORDERS ON CUSTOMERS.CUSTOMER_ID = ORDERS.CUSTOMER_ID

This example indicates the specific columns to return. Using the data shown in Figure 8−1, the output of this
query might look like this:

CUSTOMER_ID | NAME | ORDER_ID | TOTAL
−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−

Preface (Java Enterprise in a Nutshell)

8.4.1.2. Subqueries and joins 229

 1 | Bob Copier | 4 | 72.19
 1 | Bob Copier | 6 | 21.07

Note that some databases require you to use INNERJOIN instead of JOIN, while others allow just JOIN
because inner joins are the default join.

To join on more than one table, use multiple JOIN statements. Here we add an ITEMS table that includes the
ORDER_ID from the ORDERS table:

SELECT * FROM ITEMS JOIN ORDERS JOIN CUSTOMERS

This query joins the CUSTOMERS and ORDERS tables based on CUSTOMER_ID, and the ORDERS and
ITEMS tables based on ORDER_ID. The join is performed from left to right, so this three−table join goes
from the largest table to the smallest table.

As useful as the JOIN keyword is, it is not required for entry−level SQL−92 implementations, so here's a
three−column join using the syntax we started with:

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDER.TOTAL,
 ITEMS.ITEM_NO, ITEMS.COST FROM CUSTOMERS, ORDERS, ITEMS
 WHERE ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID
 AND ITEMS.ORDER_ID = ORDERS.ORDER_ID

Again, using the data shown in Figure 8−1, the output from this query might look as follows:

CUSTOMER_ID | NAME | ORDER_ID | TOTAL | ITEM_NO | COST
−−−−−−−−−−−−+−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−+−−−−−−−−−+−−−−−−−
 1 | Bob Copier | 4 | 72.19 | 1280 | 16.72
 1 | Bob Copier | 4 | 72.19 | 4129 | 41.10
 1 | Bob Copier | 4 | 72.19 | 3017 | 14.37

So far, all we've talked about is equi−joins, or inner joins. There are also outer joins, which do not require a
matching key in both tables. An outer join includes all the records from one table and any records from
another table that match the primary key of the first table. If there are no corresponding records in the second
table, those columns are simply left blank in the result. Outer joins are divided into left outer and right outer
joins: in a left join, the primary key table is on the left, and in a right join, it is on the right. Here's the syntax
for a LEFTJOIN (or LEFTOUTERJOIN) on CUSTOMERS and ORDERS:

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDERS.TOTAL
 FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.CUSTOMER_ID = ORDERS.CUSTOMER_ID

This includes all the customer records and order records for all the customers that have them. Here's some
possible output using the data shown in Figure 8−1:

CUSTOMER_ID | NAME | ORDER_ID | TOTAL
−−−−−−−−−−−−+−−−−−−−−−−−−−−+−−−−−−−−−−+−−−−−−−−
 1 | Bob Copier | 4 | 72.19
 1 | Bob Copier | 6 | 21.07
 2 | John Stapler | |

If we were to do a RIGHTJOIN on CUSTOMERS and ORDERS, the result would be the same as an inner join,
since there are no records in ORDERS that don't have a match in CUSTOMERS.

8.4.1.3. Groups

The GROUP BY clause allows you to collapse multiple records into groups with a common field. For
instance, to select all the records in the BOOKS table grouped by AUTHOR:

Preface (Java Enterprise in a Nutshell)

8.4.1.3. Groups 230

SELECT AUTHOR FROM BOOKS GROUP BY AUTHOR

This returns one row for each distinct author in the table. This query is not really that useful though, since we
can do the same thing with the DISTINCT keyword (SELECTDISTINCT). However, we can use an
aggregate function on each of the groups to do something more useful:

SELECT AUTHOR, COUNT(*) FROM BOOKS GROUP BY AUTHOR

This query returns two columns: the author and the number of books by that author in the table. Here's the
output, based on the BOOKS table we used earlier:

AUTHOR | COUNT(*)
−−−−−−−−−−−−−−−−−+−−−−−−−−−−
Charles Dickens | 2
Garrison Keillor | 1

We'll talk more about aggregate functions later in this chapter.

8.4.2. INSERT

The INSERT statement loads data into a table. Here's the syntax:

INSERT INTO table_name
 [(column_name, ...)]

subquery | { VALUES (val1, val2,...) } | DEFAULT VALUES

To load static data, simply specify the table and the actual data:

INSERT INTO CUSTOMERS VALUES (3, 'Tom Fax', '617 555−1214')

This statement inserts the values 3, "Tom Fax", and "617 555−1214" into the first three fields of a new row in
the CUSTOMERS table. If there are more than three fields in the CUSTOMERS table, this statement fails. If you
don't want to insert into every column, you can specify the columns you want to insert into:

INSERT INTO CUSTOMERS (CUSTOMER_ID, NAME) VALUES (3, 'Tom Fax')

Note, however, that this kind of statement can fail if we do not provide a value for a field that is specified as
NOTNULL.

To add more than one row at a time and to add data from other tables, we can specify a subquery rather than a
set of specific values. To fill the JUNKMAIL table with values from the CUSTOMERS and ADDRESSES
tables, run this query:

INSERT INTO JUNKMAIL (NAME, ADDR, CITY, STATE, ZIP)
 SELECT NAME, ADDR, CITY, STATE, ZIP FROM CUSTOMERS JOIN ADDRESSES

The database first performs a join on CUSTOMERS and ADDRESSES. It matches on the CUSTOMER_ID field
and outputs the NAME field from CUSTOMERS and the other fields from ADDRESSES. The rows from the join
are then inserted into the JUNKMAIL table, which can now be used to fill our mailboxes with catalogs.

8.4.3. UPDATE

The UPDATE statement modifies data in one or more existing rows. It consists of one or more SET
statements and an optional WHERE clause. If the WHERE clause is not present, the operation is performed on
every row in the table. Here's the syntax:

Preface (Java Enterprise in a Nutshell)

8.4.2. INSERT 231

UPDATE table_name
 SET { column_name = { value | NULL | DEFAULT }, ...}
 [{ WHERE predicate }
 | { WHERE CURRENT OF cursor_name }]

Here's an example that updates a few fields:

UPDATE ADDRESSES
 SET ADDR = '1282 Country Club Drive', STATE='CA' WHERE CUSTOMER_ID
 = 432

This statement sets the ADDR and STATE fields of the ADDRESSES table to particular values on all records
where CUSTOMER_ID equals 432. Sometimes we do want to run an UPDATE on all records. Here's an
example that makes sure all the STATE fields are in uppercase:

UPDATE ADDRESSES SET STATE = UPPER(STATE)

Note how we can use a field from the table itself in the SET statement.

The WHERECURRENTOF clause allows you to update the row at the current cursor location in a
multiple−table row. This is not something that JDBC programmers need to concern themselves with, although
it can be of interest to an underlying JDBC 2.0 driver.

8.4.4. DELETE

DELETE is very simple: it removes rows from a table. Here's the syntax:

DELETE FROM table_name
 [{ WHERE predicate }
 | { WHERE CURRENT OF cursor_name }]

To delete all the rows in ORDERS:

DELETE FROM ORDERS

To delete a specific record:

DELETE FROM ORDERS WHERE ORDER_ID = 32

Once a row has been deleted, there is no way to recover it.

8.3. Schema Manipulation
Commands

8.5. Functions

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

8.4.4. DELETE 232

Chapter 8: SQL Reference

8.5. Functions

SQL is not a procedural language, but it does provide some data transformation capabilities. In addition to the
string concatenation operator (||), the SQL−92 specification defines two sets of functions: aggregate
functions and value functions.

8.5.1. Aggregate Functions

In the section on the SELECT statement, we saw an aggregate function used to count the number of records
within a group. In the main, this is what aggregate functions do: they act on all the records of query, counting
rows, averaging fields, and so forth. For example, here's how to count the number of rows returned by a
SELECT statement:

SELECT COUNT(*) FROM CUSTOMERS

Instead of returning each row of the CUSTOMERS table, this query returns a single−column, single−row result
that contains the number of records in CUSTOMERS.

The other aggregate functions are AVG, SUM, MAX, and MIN. Unlike COUNT, which works on either a single
column or all columns, the other functions work only on a single column. AVG and SUM can be applied
against numerical data types only (integers, reals, etc.), while MAX and MIN work with any data type. Here are
some examples:

SELECT MIN(AGE) FROM GUESTS
SELECT MAX(NAME) FROM GUESTS
SELECT AVG(AGE), SUM(AGE) FROM GUESTS

8.5.2. Value Functions

Value functions work on particular column values and return modified data. Some of them also generate
values from system information.

8.5.2.1. Date/time functions

There are three date and time functions that retrieve the current date, current time, and current timestamp,
respectively, from the database:

CURRENT_DATE
CURRENT_TIME[(precision)]
CURRENT_TIMESTAMP[(precision)]

CURRENT_TIME and CURRENT_TIMESTAMP accept an optional precision level, which specifies the
decimal fractions of a second to be included in the time portion of the value. The current time zone is used
with all these functions.

Preface (Java Enterprise in a Nutshell)

8.5. Functions 233

Here's how you might use these functions in a query:

SELECT * FROM ORDERS WHERE ORDER_DATE = CURRENT_DATE
INSERT INTO VISITORS (VISIT_TS) VALUES (CURRENT_TIMESTAMP)

Some databases have platform−specific commands that duplicate this functionality (these commands often
predate SQL−92). Oracle's SYSDATE is one example. Note that these functions are not required for
entry−level SQL−92.

8.5.2.2. String manipulation functions

The concatenation operator, ||, has been around since before the SQL−92 standard. It allows you to
concatenate multiple column values and string literals. Say we have a table that contains FIRST_NAME and
LAST_NAME fields, and we want to display them in a "last, first" form. Here's a SQL statement that returns a
single column that does just that:

SELECT LAST_NAME || ', ' || FIRST_NAME FROM CUSTOMERS

In addition, the SQL−92 standard defines a number of other functions that can be used in SQL statements.
UPPER and LOWER convert a column into uppercase or lowercase, respectively:

SELECT UPPER(LAST_NAME) FROM CUSTOMERS
SELECT LOWER(FIRST_NAME) FROM CUSTOMERS

These functions can also be used in WHERE predicates, for example, to produce a case−insensitive search:

SELECT * FROM CUSTOMERS WHERE UPPER(FIRST_NAME) LIKE 'WILL%'

Most databases support UPPER and LOWER, but they are only required for full SQL−92 conformance, not
entry−level conformance.

The TRIM function removes characters from one or both ends of a string:

TRIM ([[LEADING | TRAILING | BOTH] [character] FROM] string)

Calling TRIM on a string trims leading and trailing whitespace. Here's how to trim just leading blanks:

SELECT TRIM(LEADING ' ' FROM FIRST_NAME) FROM CUSTOMERS

And here's how to trim all "−" characters from both sides of a string:

SELECT TRIM(BOTH '−' FROM FIRST_NAME) FROM CUSTOMERS

Like UPPER and LOWER, TRIM is only required for full SQL−92 conformance, although it is supported by
most database implementations.

The SUBSTRING command extracts a given number of characters from a larger string. It is defined as:

SUBSTRING (source_string FROM start_pos FOR number_of_characters)

For example, to get each customer's initials, we might use the following query:

SELECT SUBSTRING (FIRST_NAME FROM 1 FOR 1), SUBSTRING(LAST_NAME FROM 1 FOR 1)

SUBSTRING is only required for intermediate level SQL−92 conformance.

Preface (Java Enterprise in a Nutshell)

8.5.2.2. String manipulation functions 234

8.4. Data Manipulation
Commands

8.6. Return Codes

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 8: SQL Reference

8.6. Return Codes

The SQL−92 standard defines a set of SQLSTATE return codes. SQLSTATE is defined as a five−character
string, where the leftmost two characters define the error class, and the remaining three characters define the
error subclass. Some database vendors may extend these return codes; classes beginning with the numbers 5
through 9 and letters I through Z are reserved for such implementation−specific extensions. The SQLSTATE
code for a particular JDBC action can be retrieved via the getSQLState() method of SQLException.
Table 8−3 lists the SQLSTATE return codes defined in SQL−92.

Table 8−3. SQL−92 SQLSTATE Return Codes

Class Class Definition Subclass Subclass Definition

00 Successful completion 000 None

01 Warning 000 None

001 Cursor operation conflict

002 Disconnect error

003 Null value eliminated in set function

004 String data, right truncation

005 Insufficient item descriptor areas

006 Privilege not revoked

007 Privilege not granted

008 Implicit zero−bit padding

009
Search expression too long for
information schema

00A
Query expression too long for
information schema

02 No data 000 None

07 Dynamic SQL error 000 None

001
Using clause doesn't match dynamic
parameters

Preface (Java Enterprise in a Nutshell)

8.6. Return Codes 235

002
Using clause doesn't match target
specifications

003 Cursor specification can't be executed

004
Using clause required for dynamic
parameters

005
Prepared statement not a cursor
specification

006 Restricted data type attribute violation

007 Using clause required for result fields

008 Invalid descriptor count

009 Invalid descriptor index

08 Connection Exception 000 None

001
SQL−client unable to establish
SQL−connection

002 Connection name in use

003 Connection doesn't exist

004
SQL−server rejected establishment of
SQL−connection

006 Connection failure

007 Transaction resolution unknown

0A Feature not supported 000 None

001 Multiple server transactions

21 Cardinality violation 000 None

22 Data exception 000 None

001 String data, right truncation

002 Null value, no indicator

003 Numeric value out of range

005 Error in assignment

007 Invalid date−time format

008 Date−time field overflow

009 Invalid time zone displacement value

011 Substring error

012 Division by zero

015 Internal field overflow

018 Invalid character value for cast

019 Invalid escape character

021 Character not in repertoire

022 Indicator overflow

023 Invalid parameter value

024 Unterminated C string

025 Invalid escape sequence

026 String data, length mismatch

027 Trim error

23 Integrity constraint violation 000 None

24 Invalid cursor state 000 None

25 Invalid transaction state 000 None

Preface (Java Enterprise in a Nutshell)

8.6. Return Codes 236

26 Invalid SQL statement name 000 None

27 Triggered data change violation 000 None

28 Invalid authorization specification 000 None

2A
Syntax error or access rule violation in direct SQL
statement

000 None

2B Dependent privilege descriptors still exist 000 None

2C Invalid character set name 000 None

2D Invalid transaction termination 000 None

2E Invalid connection name 000 None

33 Invalid SQL descriptor name 000 None

34 Invalid cursor name 000 None

35 Invalid condition number 000 None

37
Syntax error or access rule violation in dynamic
SQL statement

000 None

3C Ambiguous cursor name 000 None

3F Invalid schema name 000 None

40 Transaction rollback 000 None

001 Serialization failure

002 Integrity constraint violation

003 Statement completion unknown

42 Syntax error or access rule violation 000 None

44 With check option violation 000 None

8.5. Functions 9. RMI Tools

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 2: Enterprise
Reference

Preface (Java Enterprise in a Nutshell)

8.6. Return Codes 237

Chapter 9. RMI Tools

rmic JDK 1.1 and later

The Java RMI Compiler
rmic [options] fully−qualified−classnames

Description: The rmic compiler generates the stub and skeleton classes for remote objects you've written.
Once you've compiled your remote objects using a standard Java compiler, like javac, you need to run rmic,
specifying the classnames of your remote implementation classes using their full package names.

Description: As an example, suppose you defined an interface named utils.remote.TimeServer that
extends java.rmi.Remote, and wrote an implementation of this interface named
utils.remote.TimeServerImpl. After compiling both with a Java compiler, you would run rmic,
specifying utils.remote.TimeServerImpl as the class name argument.

Description: Running rmic generates a skeleton class for each remote object type named xxx_Skel, where the
xxx is the name of the remote interface. The skeleton is responsible for receiving client requests on a server
object and dispatching these requests to the actual remote object. A stub class, named xxx_Stub, is also
generated. The stub class is used for client references to the remote object. When a client gets a reference to a
remote object, it receives an instance of the stub class, which forwards any method requests to the server
object over the network. In our example, the stub and skeleton classes would be called
utils.remote.TimeServer_Stub and utils.remote.TimeServer_Skel, respectively.

Description: Both the stub class and the skeleton class implement the same remote interface as your remote
object implementation, so they can be typecast to the remote interface.

−classpath pathlist
Provides the classpath rmic uses to find any required classes, overriding the environment
CLASSPATH or the default classpath. The directories in the list are separated by colons on Unix
environments, by semicolons in Windows environments.

−d path
The destination directory where the compiler should write the generated class files. If a −d option is
given, the package of the generated classes places the stubs and skeletons in their proper
subdirectories in the given destination. If the directories don't exist, rmic creates them for you. If no
−d option is given, the stubs and skeletons are still generated to fall within the same package as the
remote implementation, but the class files are placed in the current directory.

−depend
Forces the compiler to attempt to recompile interdependent classes whose class files are out of date
with each other. Without this option, the compiler attempts to recompile only class files explicitly
referenced in the command−line options.

−g
Includes debugging information in the generated stub and skeleton classes, for use with Java
debuggers.

−J
Passes the option immediately following the −J to the Java interpreter. There should be no spaces
between the −J and the option to be passed to the interpreter.

Chapter 9. RMI Tools 238

−keep
−keepgenerated

Keeps the Java source files for the stub and skeleton classes generated by the compiler. The Java files
are written to the same directory as the class files, with or without a −d option specified. Without the
−keepgenerated option, the Java source files are removed after the stub and skeleton classes are
generated.

−nowarn
Instructs the rmic compiler to eliminate warning messages from its output. Only errors encountered
during compilation are reported.

−vcompat
Creates a stub and skeleton classes that are compatible with both JDK 1.1 and the Java 2 SDK 1.2
versions of RMI. This option is enabled by default and does not need to be specified.

−verbose
Prints verbose messages as compilation takes place, including which class is being compiled and class
files that are loaded during compilation.

−v1.1
Creates stub and skeleton classes that are compatible with the JDK 1.1 version of RMI. These classes
may not run in a Java 2 runtime environment.

−v1.2
Creates stub and skeleton classes that are compatible with the Java 1.2 (Java 2) version of RMI. These
classes may not run in a Java 1.1 runtime environment.

CLASSPATH
An ordered list of directories, ZIP files, and/or JAR files that the rmic compiler should use to look for
classes. This list is separated by colons on Unix environments, semicolons on Windows
environments. The list is searched in order for a given class when it is encountered during
compilation. The compiler automatically appends the system classpath to the CLASSPATH, if it is
specified. If the CLASSPATH is not set in the environment, the compiler uses the current directory
and the system classpath as its classpath. The CLASSPATH environment variable is overridden by the
−classpath option to rmic.

rmiregistry JDK 1.1 and later

The Java RMI Object Registry
rmiregistry [port]

Description: The rmiregistry command starts a remote object naming registry on the current host. The RMI
registry binds remote objects to names, so that remote clients can request object references by name, using a
URL−like syntax, and use the object references to invoke methods.

Description: Internally, the rmiregistry command uses the java.rmi.registry.LocateRegistry
class to instantiate a registry object. If no port is provided, the default port for the registry is 1099. Typically,
the registry is run in the background on a server and remains running for the lifetime of the objects that it
contains. If the registry crashes, and the registry is running in a separate Java VM from the actual remote
objects, the remote objects are still available over RMI, and any remote references to these objects that existed
before the crash are still valid. But all the name bindings the objects had in the registry are lost and need to be

Preface (Java Enterprise in a Nutshell)

Chapter 9. RMI Tools 239

recreated after a new registry is started.

CLASSPATH
An ordered list of directories, ZIP files, and/or JAR files that the rmiregistry command should use to
look for classes. This list is separated by colons on Unix environments, semicolons on Windows
environments. The list is searched in order for a given class when it is encountered during execution.
The registry automatically appends the system classpath to the CLASSPATH, if it is specified. If the
CLASSPATH is not set in the environment, the daemon uses the current directory and the system
classpath as its classpath.

See Also: java.rmi.registry.LocateRegistry, java.rmi.Naming.

rmid Java2 SDK 1.2 and later

The RMI Activation Daemon
rmid [options]

Description: The rmid command starts an RMI activation daemon on the local host. The activation daemon
services all requests to register activatable objects and is responsible for activating objects due to client
requests to invoke methods on them.

Description: If no port option is given, the activation daemon runs on a default port of 1098. Internally, the
activation daemon creates a java.rmi.activation.Activator and its own RMI naming registry
(listening to port 1098). The daemon binds a java.rmi.activation.ActivationSystem object to
the name "java.rmi.activation.ActivationSystem" in its internal registry.

−CcmdlineOption
Uses the given option as a command−line option to the Java VM for each activation group started by
the daemon. This can pass default properties to the VM, for example, or set its memory limits to some
default value. The Java interpreter option should immediately follow the −C option, with no spaces.

−log path
Uses the given directory for any logging or temporary files needed by the activation daemon. If this
option is not specified, the daemon writes its log files to a new directory named log in the current
directory.

−port portnum
Uses this port for the internal registry started by the activation daemon. If this option is not given, the
daemon's internal naming registry runs by default on port 1098 of the local host. If you want the
activation daemon's registry to listen to the default registry port, you can start the daemon with this
command (Unix version):

$ rmid −port 1099 &

−stop
Stop any activation daemon currently running on the specified port, or the default port if none is
specified.

CLASSPATH
An ordered list of directories, ZIP files, and/or JAR files that the rmid daemon should use to look for
classes. This list is separated by colons on Unix environments, semicolons on Windows
environments. The list is searched in order for a given class when it is encountered during execution.
The daemon automatically appends the system classpath to the CLASSPATH, if it is specified. If the

Preface (Java Enterprise in a Nutshell)

Chapter 9. RMI Tools 240

CLASSPATH is not set in the environment, the daemon uses the current directory and the system
classpath as its classpath.

See Also: rmic, java.rmi.activation.Activator

serialver JDK 1.1 and later

The RMI Serial Version Utility
serialver [options] fully−qualified−classnames

Description: The serialver utility generates a serial version ID you can use to mark a given class definition to
track its versions as it evolves. The utility returns a static int member declaration you can paste into your Java
class definition. In other words, this command:

% serialver AccountImpl

Description: generates output something like:

AccountImpl: static final long serialVersionUID = 37849129093280989384L;

Description: If versioning of your remote object classes becomes a problem for clients, this utility can tag a
class with a version ID that can be checked to see if the proper version is being exported by your server for a
given client, or if its local version is out of date. Serial version IDs are used by Java object serialization to
uniquely identify class definitions.

−show
Uses the graphical version of the tool, which displays a GUI interface that allows you to type in a
fully qualified classname and press a button to see the serial version ID generated.

CLASSPATH
An ordered list of directories, ZIP files, and/or JAR files that the serialver utility should use to look
for classes. This list is separated by colons on Unix environments, semicolons on Windows
environments. The list is searched in order for a given class when it is encountered during execution.
The utility automatically appends the system classpath to the CLASSPATH, if it is specified. If the
CLASSPATH is not set in the environment, the utility uses the current directory and the system
classpath as its classpath.

8.6. Return Codes 10. IDL Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

Chapter 9. RMI Tools 241

Part 2: Enterprise
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 9. RMI Tools 242

Chapter 10. IDL Reference
Contents:

IDL Keywords
Identifiers
Comments
Basic Data Types
Constants and Literals
Naming Scopes
User−Defined Data Types
Exceptions
Module Declarations
Interface Declarations

This chapter serves as a quick reference for CORBA's language−independent Interface Definition Language
(IDL). It also provides a summary of the Java mapping of IDL (i.e., how IDL interface definitions are mapped
by an IDL−to−Java compiler into equivalent Java interfaces). For a complete, definitive reference on IDL and
the Java mapping of IDL, consult the IDL specification issued by the OMG ("IDL Syntax and Semantics,"
Chapter 3 of The Common Object Request Broker: Architecture and Specification, published by the OMG and
available at www.omg.org).

Since this reference combines an IDL reference with an overview of the Java mapping of IDL, I'll be using a
combination of IDL and Java examples throughout. In order to make it clear which language is being used in
each example, I've stolen a convention from the CORBA standards documents, where a comment preceding
the example code indicates the language that is in use.

IDL, as the name implies, is a language for defining object interfaces. IDL is language−neutral, so interfaces
defined in IDL can be converted to objects implemented in any language with an IDL mapping. One way to
think of the role IDL plays is to imagine that you already have a set of interacting objects defined and then
think of IDL as a way to export a subset of those interfaces so that they can be accessed by remote entities.
Any member variables or operations you define in the IDL interfaces are visible and accessible by remote
entities, providing they can obtain a reference to instances of these interfaces (see Chapter 4, "Java IDL", for
more details on the use of CORBA objects). If you proceed this way, the definitions of the variables and
operations on the IDL interfaces have to match those on the actual implementations you are exporting,
according to the rules of the IDL mapping to the language they are written in.

Of course, this is not the typical way that you use IDL in practice.[1] You usually want to do an abstract
design of a distributed application and its set of objects first, define the IDL interfaces for the objects that need
to be used remotely, then compile these IDL interfaces into language−specific interfaces. The next step is to
write implementations of the interfaces in whatever programming language you are using. You are free to add
additional operations and member variables to your language−specific implementations, but these features
won't be accessible remotely unless you add them to the corresponding IDL interface.

[1]One notable exception is the task of wrapping legacy code with a CORBA frontend, but
even here you normally use middleware objects to interface directly with the legacy code.

There are five high−level entities you can define in an IDL specification:

•
Modules, which act as namespaces

•

Chapter 10. IDL Reference 243

http://www.omg.org/

Interfaces to objects (with their operations and data attributes)

•
Data types

•
Constants

•
Exceptions

These high−level entities are listed here in roughly hierarchical order. Modules contain other modules,
interfaces, data types, constants, and exceptions. Interfaces contain data types, constants, and exceptions that
are specific to that interface, along with the operations and attributes for the interface. We'll look at the IDL
syntax that defines each of these, and, in each case, we'll see how the IDL is mapped into equivalent Java
code. Before we do that, though, we need to cover some of the basics of IDL: keywords, identifiers,
comments, and various types of literals.

10.1. IDL Keywords

Table 10−1 lists the reserved keywords in IDL. These keywords are case−sensitive, and they cannot be used
as identifiers in any IDL constructs.

Table 10−1. IDL Reserved Keywords

any default in oneway struct wchar

attribute double inout out switch wstring

boolean enum interface raises
TRUE

case exception long readonly
typedef

char FALSE module sequence
unsigned

const fixed Object short
union

context float octet string
void

9.1. RMI Tools 10.2. Identifiers

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 10: IDL
Reference

Preface (Java Enterprise in a Nutshell)

10.1. IDL Keywords 244

10.2. Identifiers

Identifiers name various IDL constructs, like modules, interfaces, and constants. In IDL, an identifier has to
follow these rules:

•
It contains alphanumeric characters from the ISO Latin−1[2] character set (e.g., a−z, A−Z, 0−9, plus
various characters with accents, graves, tildes, etc.), and the underscore character (_).

[2] ISO Latin−1 refers to the standard ISO 8859−1. You can find a listing of the
character set in the HTML 3.2 standard, at http://www.w3.org/TR/REC−html32.html.

•
It can be of any length, and all characters in an identifier are significant.

•
The first character must be an alphabetic character.

•
Identifiers are case−insensitive, in the sense that two identifiers that differ only by case are considered
a name collision and cause an IDL compiler error. This rule stems from the fact that IDL needs to be
mappable into many implementation languages, some of which are case−insensitive.

•
Identifiers must be spelled and capitalized consistently throughout an IDL file.

•
All IDL identifiers share the same namespace, so interfaces, modules, user−defined types, etc. within
the same scope must have unique identifiers. An interface named List and a module named List
within the same scope cause a name collision and an IDL compiler error. See Section 10.6, "Naming
Scopes" for more details.

10.2.1. Mapping Identifiers to Java

An IDL−to−Java compiler attempts to map all IDL identifiers unchanged into equivalent Java identifiers.

An exception is the case where a mapped identifier conflicts with an identifier created automatically by the
IDL compiler. IDL interfaces, for example, when they are mapped to Java, have two additional Java interfaces
created for them, named with the original interface name, with Helper and Holder appended (see Chapter
4, "Java IDL" for details on the purpose of these generated interfaces). So, an interface named List is
mapped into a Java interface named List, and also causes the creation of Java interfaces named
ListHelper and ListHolder. If there is another identifier in the IDL file you've named ListHelper
or ListHolder, its mapped Java identifier has an underscore prepended to it (e.g., _ListHelper,
_ListHolder) to avoid a conflict with the generated interface names. In general, identifiers automatically
generated by the IDL compiler have precedence over other identifiers declared explicitly in the IDL file.

The other exception to the general rule of directly mapping IDL identifiers to Java identifiers is with a
mapping that conflicts with a Java keyword. In this case, the mapped Java identifier has an underscore
prepended to it. If, for example, you declared a constant named package (not a reserved keyword in IDL), it
is mapped to a Java variable named _package.

Preface (Java Enterprise in a Nutshell)

10.2. Identifiers 245

http://www.w3.org/TR/REC-html32.html

10.1. IDL Keywords 10.3. Comments

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 10: IDL
Reference

10.3. Comments

Comments in IDL follow the format of C, C++, and Java comments. A block comment starts with the
character sequence /* and ends with the character sequence */. A line comment begins with the character
sequence //, and ends at the end of the line on which it begins.

10.3.1. Mapping Comments to Java

There are no rules for mapping IDL comments to Java. Many IDL−to−Java compilers simply drop comments
from IDL files during the conversion to Java, since in many cases the comments refer to the IDL code and
may not be totally relevant in the generated Java code.

10.2. Identifiers 10.4. Basic Data Types

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 10: IDL
Reference

Preface (Java Enterprise in a Nutshell)

10.3. Comments 246

10.4. Basic Data Types

IDL supports the basic data types shown in Table 10−2. In the same table, I've shown the Java type that each
is mapped to according to the standard IDL−to−Java mapping. Note that there isn't a standard mapping
defined for the fixed and long double IDL types. These data types were added to the IDL syntax
relatively recently, and the IDL Java mapping hasn't been updated to include these as of this writing. Another
important thing to note is that Java doesn't support unsigned types, such as unsigned short. So the IDL
short and unsigned short types are both mapped to the Java short data type. You should be aware
of this when writing implementations of IDL−generated Java interfaces, since it is up to you to either ensure
that their values remain positive or deal with the fact that their values may be set to negative values.

Table 10−2. IDL Basic Data Types, Sizes, and Java Mappings

IDL Type Specifier Required Size Java Data Type

short 16 bits short

long 32 bits int

long long 64 bits long

unsigned short 16 bits short

unsigned long 32 bits int

unsigned long long 64 bits long

char 8 bits char

wchar Implementation−dependentchar

string Unlimited java.lang.String

string<size> sizechars java.lang.String

wstring Unlimited java.lang.String

wstring<size> sizewchars java.lang.String

boolean Implementation−dependentboolean

octet 8 bits byte

anyfloat IEEE single−precision float

double IEEE double−precision double

long double IEEE double−extended Not defined

fixed 31 decimal digits Not defined

10.4.1. Strings and Characters

There are two character types included in IDL: char and wchar. A char represents an 8−bit character
from a single−byte character set, such as ASCII. A wchar represents a wide character from any character set,
including multibyte character sets like Kanji. The size of a wchar is implementation−specific.

I've included the IDL string and wstring data types in this table as well, although technically they
should be considered constructed data types (arrays of a basic data type, characters). Since they're so
frequently used, it's useful to have them together with all of the IDL basic data types.

A string is the equivalent of an array of char values, and a wstring is an array of wchar values. In
each case, there are two ways to specify a string type: with or without a size specification, in angle brackets
following the type name. If you provide a size specification in your IDL declaration (e.g., string<10>
name), the language mapping is responsible for enforcing the size limits of the string. If you don't provide a

Preface (Java Enterprise in a Nutshell)

10.4. Basic Data Types 247

size specification, the string is allowed to grow to any size, limited only by the implementation language.

If support for a multibyte character set is important for your application, it's best to declare all your character
and string data as wchar and wstring values. This way you'll be sure to get multibyte support in languages
that support it.

10.4.1.1. Mapping strings and characters to Java

In the IDL−to−Java mapping, both char and wchar are mapped to the Java char type, and both string
and wstring are mapped to the java.lang.String class. In Java, the char type represents a two−byte
Unicode character and can therefore support multibyte character sets by default.

When marshalling and unmarshalling data items during remote method calls, the ORB is responsible for
performing bounds checks on the data members being set. If a value exceeds the limits declared for the string
member in the IDL specification of the interface, an org.omg.CORBA.MARSHAL exception is thrown.

10.3. Comments 10.5. Constants and
Literals

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 10: IDL
Reference

10.5. Constants and Literals

Literals are explicit values inserted into IDL code. Sometimes a literal is used to specify a default value for an
interface attribute or to declare the value for a constant. Literals can be boolean (TRUE or FALSE), numeric
(integer, floating point, or fixed point), or character−based (a single character or a string).

Literals are most often used in IDL to initialize the values of constants. Constants are named variables that are
restricted from being modified after being initialized. In IDL, a constant is declared using the syntax:

// IDL
const type identifier = value;

where type is any valid basic data type or declared interface type, identifier is any valid IDL identifier, and
value is any IDL expression that evaluates to a literal value. The initialization expression can be a simple
literal or a complex expression combining multiple literals using logical or mathematical operators. You can
declare a few useful numeric constants as follows, for example:

Preface (Java Enterprise in a Nutshell)

10.4.1.1. Mapping strings and characters to Java 248

// IDL
const float half = 1 / 2;
const float quarter = 1 / 4;

Most of the operators present in C/C++, such as addition (+), subtraction (−), multiplication (*), division (/),
and the logical and bitwise operators (|, &, ^, ||, &&, etc.) are supported by IDL.

10.5.1. Mapping Constants to Java

If an IDL constant is declared within an interface definition, the constant is mapped to a public final
static member on the corresponding Java interface.

If the IDL constant is declared outside an interface definition, a Java interface is created to hold the constant
value as a public static final value. The generated interface has the same name as the IDL identifier
given to the constant, and the static class member has the name value. Consider the following IDL constant
declaration:

// IDL
const float PI = 3.14159;
interface GeometricOperators {
 ...

This causes the generation of the following Java interface:

// Java
public final class PI {
 public static final float value = (float) (3.14159D);
}

In your Java code, you can reference the constant value using PI.value.

10.5.2. Boolean Literals

There are two boolean literals (naturally) in IDL. They are specified using the keywords TRUE and FALSE.
Their IDL type is boolean. In Java, they are mapped to the boolean values true and false.

10.5.3. Numeric Literals

Integer literals, floating−point literals, and fixed−point literals comprise numeric literals in IDL.

10.5.3.1. Integer literals

An integer value in IDL can be declared in decimal, octal, or hexadecimal notation. Any sequence of digits
that does not start with a zero is considered a decimal integer value. If the sequence is all digits but starts with
a zero, it's assumed to be an octal value. If the literal starts with 0X or 0x, it's taken to be a hexadecimal
value.

10.5.3.2. Floating−point literals

A floating−point literal is a decimal integer, optionally followed by a decimal point and a fractional
component, and/or by the letter e or E followed by an exponent expressed as a decimal integer. Either the

Preface (Java Enterprise in a Nutshell)

10.5.1. Mapping Constants to Java 249

fractional component (with the decimal point) or the exponent (with the e or E) must be present for the literal
to be interpreted as a floating−point value and not an integer. Similarly, either the initial integer component or
the decimal point must be present. So, for example, these are valid floating−point literals:

2.34
0.314159e1
3E19
.0003413

10.5.3.3. Fixed−point literals

A fixed−point literal consists of a decimal integer, optionally followed by a decimal point and fractional
component (expressed as a decimal value), followed by the letter d or D. Either the integer component or the
fractional component must be present. The decimal point is optional. The trailing d or D must be present in
order for the literal to be interpreted as a fixed−point value. The following are all valid fixed−point literals:

1.50d
.025d
1.333D
12d

10.5.3.4. Mapping numeric literals to Java

Numeric literals are mapped by taking into account the context in which they are used. Typically, a literal
initializes a constant, so the declared type of the constant has to be checked to determine whether the literal is
valid for the type and how it should be mapped to a Java literal. For example, these two similar IDL constant
declarations:

// IDL
const short largeVal = 2e5;
const float largeFloatVal = 2e5;

are mapped by Sun's idltojava compiler to these Java declarations:

// Java
public static final short largeVal = (short) (2e5D);
public static final float largeFloatVal = (float) (2e5D);

Sun's idltojava compiler doesn't do any type checking on the IDL literal before converting it to its Java form
and inserting it into the cast operation shown previously. So it is possible for the idltojava compiler to
generate invalid Java code. For example:

// IDL
const float literalTest = TRUE;

is converted without warning by idltojava to:

// Java
public static final float literalTest = (float)(true);

10.5.4. Character Literals

A character literal is a character specification enclosed in single quotes (e.g., 'a'). Character literals can be
specified using only elements of the ISO 8859−1 character set. Some characters need to be specified with a
sequence of more than one character. These include characters that are nonprintable and the single− and

Preface (Java Enterprise in a Nutshell)

10.5.3.3. Fixed−point literals 250

double−quote characters that delimit string and character literals. These characters are specified with escape
sequences, which start with a backslash character (\). Table 10−3 lists the escape sequences supported by IDL
and the nonprintable characters they represent.

Table 10−3. IDL Escape Sequences

Escape Sequence Meaning

\a Alert

\\ Backslash

\b Backspace

\r Carriage return

\" Double quote

\f Form feed

\x##(e.g., \x4e) Hexadecimal number

\n Newline

\###(e.g., \012) Octal number

\? Question mark

\' Single quote

\t Tab

\v Vertical tab
Character literals, including the escape sequences listed in Table 10−3, are converted unchanged into Java
literals.

10.5.5. String Literals

A string literal is a sequence of characters delimited by double quote (") characters. If two string literals are
adjacent to each other in an IDL file, they are concatenated. So, in this example:

// IDL
const string acctHolder = "Jim" "Farley";

the generated Java code is:[3]

[3]There appears to be an error in Sun's idltojava compiler (with the version released as of
this writing, at least) that causes it to raise a syntax error when it encounters adjacent string
literals. The IDL specification dictates the behavior as described here, though.

// Java
public static final String acctHolder = "Jim Farley";

If you want to use the double−quote character in a string literal, you have to use its escape sequence (see
Table 10−3).

10.4. Basic Data Types 10.6. Naming Scopes

Preface (Java Enterprise in a Nutshell)

10.5.4. Character Literals 251

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 10: IDL
Reference

10.6. Naming Scopes

Each IDL file you create defines a namespace or naming scope for identifiers you declare within that file.
This namespace is further subdivided into nested scopes whenever you declare a new module, interface,
structure, union, or exception in your IDL file. You can think of the naming scope within an IDL file as a sort
of naming directory. By default, you start at the root of the directory, and each time you open a declaration of
one of these items, you start a new subdirectory of the naming directory, named after the identifier you use for
the item.

You can specify a scope using the :: delimiter, which is analogous to the / or \ delimiter in file directories.
The root scope for the IDL file is represented as :: by itself, and nested scopes are specified by adding their
names, such as ::utils::math::MatrixOps. The names in a scope name can refer to any identifiers
that might exist in each scope. In this example, utils and math might refer to modules (the math module
is declared within the utils module), and MatrixOps might refer to an interface declared within the math
module. The intermediate elements in a scoped name must refer to one of the IDL elements that define their
own scopes, but the final element in a scoped name can refer to any item with its own identifier, including
constants, data members on interfaces, etc.

Within any particular scope in the naming scope of an IDL file (including the root scope), all identifiers
within that scope must be unique. Separate nested scopes off of one parent scope can have identical identifiers
declared within them and can share identifiers with their parent scope as well, but two identifiers at the same
level within a scope can't be the same. As as example, the following is legal in an IDL file:

// IDL
module utils {
 interface math {
 const float PI = 3.14159;
 };
 interface baking {
 const string PI = "apple";
 };
};

The two definitions of PI (::utils::math::PI and ::utils::baking::PI) do not conflict, since
they each have distinct absolute scoped names within the IDL file. You cannot, however, declare a constant
named math within the utils module, since its fully scoped name is ::utils::math, which conflicts
with the name of the math interface.

Scoped names that begin with :: are absolute names, and are relative to the root file scope of the IDL file.
Names that don't start with :: are relative to the local scope in which they appear. So we can add two new

Preface (Java Enterprise in a Nutshell)

10.6. Naming Scopes 252

constants to our math interface that use scoped names to reference our versions of PI:

// IDL
module utils {
 interface math {
 const float PI = 3.14159;
 const float PIsquared = PI * PI;
 const string PIOfTheDay = ::utils::baking::PI;
 };
 interface baking {
 const string PI = "apple";
 };
};

The reference to PI in the definition of the PIsquared constant is relative to the ::utils::math scope,
so it refers to the float constant. The reference to PI in the PIOfTheDay definition is absolute and
references the string definition of PI in the baking interface.

10.5. Constants and
Literals

10.7. User−Defined Data
Types

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 10: IDL
Reference

10.7. User−Defined Data Types

In addition to the basic data types already described, IDL supports user−defined data types, which are
aggregations of these basic types. These complex data types include arrays, sequences, enumerations, and
constructed data types you define yourself using structs and unions. We'll go over each in detail in this
section.

A complex data type is used in IDL by first giving it a type name, then using the type name wherever you
would use a basic data− or interface−type name (e.g., declaring attributes, method arguments). There are a
few ways a name is assigned to a complex data type:

•
With structures, unions, and enumerations, the name is included in the declaration of the data type.

•
A typedef can be used to assign a name to a specific type (basic or complex).

Preface (Java Enterprise in a Nutshell)

10.7. User−Defined Data Types 253

Before we go on to see how complex data types are declared in IDL, let's take a look at how a typedef
assigns a type name to a complex data type.

10.7.1. Typedefs

A typedef associates a name with another data type. Here is the syntax of an IDL typedef:

typedef type identifier

The type can be any basic IDL data type, a user−defined data structure (structure, union, or enumeration), an
IDL interface type, or a sequence. The identifier can be a simple IDL identifier, or it can include dimension
specifications for an array. So the following are all valid typedef statements:

// IDL
typedef short myShort;
typedef long longArray[2][2];
typedef PrintServer pserver;

After declaring these typedefs in your IDL file, you can use myShort, longArray, and pserver as
type names when declaring method arguments, return values, or interface attributes.

10.7.1.1. Mapping typedefs to Java

If an IDL typedef refers to a basic IDL type, the Java equivalent to that type is used wherever the
typedef identifier is used. So our myShorttypedef in the previous section is replaced by the Java type
short wherever it's used.

Any typedefs that refer to user−defined types are replaced by the mapped Java class or interface for the
target IDL type. If the type used in an IDL typedef is itself a typedef, its target type is found, and so on,
until a final user−defined type or basic IDL type is found. Consider this example:

// IDL
struct LinkedList {
 any item;
 any next;
};

typedef LinkedList DefList;
typedef DefList MyList;

Wherever either DefList or MyList appears in the IDL file, it is mapped to the Java class generated for
the LinkedList type, since they both refer (directly or indirectly) to that type.

10.7.2. Arrays

Arrays can only be declared within the context of a typedef. Once you've assigned the array type to a type
name using the typedef, you can use the new type name to declare array members on interfaces. IDL
doesn't provide a way to initialize array values, so you cannot declare array constants in IDL, since constants
have to be initialized in their declaration.

To declare an array, simply add dimensions in brackets to a variable identifier. For example, to define a
two−dimensional array of short values:

Preface (Java Enterprise in a Nutshell)

10.7.1. Typedefs 254

// IDL
typedef short short2x2Array[2][2];

IDL requires that you explicitly specify each dimension of the array, in order to support mappings to
languages that have a similar requirement.

10.7.2.1. Mapping arrays to Java

Arrays are mapped into Java as arrays (naturally). So, if we use the short2x2Array type defined above in
an IDL interface:

// IDL
interface MatrixOps {
 attribute short2x2Array identity2D;
 ...

the corresponding Java code looks like so:

// Java
public interface MatrixOps {
 short[][] identity2D();
 void identity2D(short[][] arg);
 ...

We'll look more at how interface attributes are mapped to Java later, but you can infer from this that the
short IDL array is mapped to a short array in Java. The attribute is mapped to get() and set()
methods for that attribute. Since Java doesn't allow array type specifiers to include dimensions, our
declaration that the identity2D attribute be a 2−by−2 array has been lost in the mapping. It's up to you to
provide an implementation of this interface that enforces the intended dimensions of the array within the Java
interface.

In addition to mapping the array type to equivalent type specifiers, each array typedef in IDL causes the
generation of corresponding helper and holder classes in Java. The type name specified in the IDL typedef
is used as the prefix for the xxxHelper and xxxHolder class names. So our short2x2Array type has
short2x2ArrayHelper and short2x2ArrayHolder classes generated for it. The helper class
provides the static methods that read and write the array type over CORBA I/O streams, when the array type
is used as a method argument or return type. These methods enforce the array dimensions that you dictate in
your IDL typedef; if the array is not of the correct type when being marshalled, the write() method
throws an org.omg.CORBA.MARSHAL exception. The holder class is used whenever you use your array
type as an inout or out method argument. For more details on the purposes of helper and holder classes,
see Chapter 4, "Java IDL".

10.7.3. Sequences

An IDL sequence is a one−dimensional array. To declare a sequence, you need to declare the type of the
elements in the sequence, and optionally the maximum size of the sequence:

// IDL
typedef sequence<long, 2> longVector;
typedef sequence<short> unboundedShortVector;
typedef sequence<sequence<float, 2> > coordVector;

Like arrays, sequences have to be declared within a typedef and then the new type name can be used for
typing attributes, method arguments, and return values. Note that the elements in a sequence can themselves
be a sequence. Also notice that if you don't provide a bound for a sequence of sequences, you need to put a

Preface (Java Enterprise in a Nutshell)

10.7.2.1. Mapping arrays to Java 255

space between the two > brackets, so that they aren't parsed as a >> operator.

10.7.3.1. Mapping sequences to Java

Sequences are mapped to Java almost identically to arrays. A sequence of a given IDL type becomes a Java
array of the equivalent Java type, sequences of sequences become two−dimensional arrays, etc. A holder and
helper class are generated for each sequence typedef as well, using the type name specified in the
typedef. The write() method on the helper class enforces any size bounds you specify on the sequence,
throwing an org.omg.CORBA.MARSHAL exception if they don't match.

10.7.4. Structs

A fixed data structure is declared using the struct construct in IDL. A struct is declared using the
following syntax:

// IDL
struct type−name {
data−member;
data−member;
 ...
};

The type name is any valid identifier in IDL. Each data member is specified using a type specification and an
identifier that references the member (similar to attributes on an interface, described in Section 10.10.1,
"Attributes" in Section 10.10, "Interface Declarations"). You can use basic data types, arrays, sequences, and
any other typedefs as types for members of a struct. You can declare a recursive structure (a structure
that includes members of its own type) by using a sequence declaration:

// IDL
struct LispStringList {
 string car;
 sequence<LispStringList> cdr;
};

10.7.4.1. Mapping structs to Java

An IDL struct is mapped to a public final Java class with the same name as the struct. Each member
of the struct is mapped to a public instance member on the Java class. The Java class includes a default
constructor that leaves the member variables uninitialized and a constructor that accepts a value for each
member. Our example struct above is mapped to the following Java class:

// Java
public final class LispStringList {
 // instance variables
 public String car;
 public LispStringList[] cdr;
 // constructors
 public LispStringList() { }
 public LispStringList(String __car, LispStringList[] __cdr) {
 car = __car;
 cdr = __cdr;
 }
}

Each struct also has a Java holder class generated for it, which marshalls the data type when it's used as an

Preface (Java Enterprise in a Nutshell)

10.7.3.1. Mapping sequences to Java 256

inout or out method argument or as a method return value.

10.7.5. Enumerations

An enumeration in IDL declares an ordered list of identifiers, whose values are assigned in ascending order
according to their order in the enumeration. An enumeration is given a type name so that the elements of the
enumeration can be referenced. The syntax for declaring an IDL enumeration is:

// IDL
enum type−name { element−name, element−name, ... };

The elements in the enumeration are guaranteed to be assigned actual values so that the comparison operators
in the implementation language recognize the order of the elements as specified in the enum declaration. In
other words, the first element is less than the second, the second is less than the third, etc. An example enum
declaration follows:

// IDL
enum ErrorCode { BadValue, DimensionError, Overflow, Underflow };

10.7.5.1. Mapping enumerations to Java

Each enumerated type you declare in IDL is mapped to a publicfinal Java class of the same name as the
enumeration. The class holds a single privateint instance member called value. A single private
constructor is generated for the class, which takes an int argument that initializes the value member.

For each element of the enumeration, two components are added to the Java class: a static final int
data member and a static instance of the generated Java class. The static data member generated for each
element is given a value that enforces the order of the elements in the enumeration, and the static class
instance generated for each element is initialized with this same value. The static class instance is given the
same name as the element in the enumeration, and the static data member is given the element's name
prepended with an underscore. These two representations for each element of the enumeration let you
reference the element value using either a corresponding int value or the generated Java class type. If the
enumerated type is used as a method argument or return value in an IDL interface, your Java implementation
has to use the object versions of the elements.

Our example enumeration generates a Java class like the following:

// Java
public final class ErrorCode {
 public static final int _BadValue = 0,
 _DimensionError = 1,
 _Overflow = 2,
 _Underflow = 3;
 public static final ErrorCode BadValue = new ErrorCode(_BadValue);
 public static final ErrorCode DimensionError = new
 ErrorCode(_DimensionError);
 public static final ErrorCode Overflow = new ErrorCode(_Overflow);
 public static final ErrorCode Underflow = new ErrorCode(_Underflow);
 public int value() {
 return _value;
 }
 public static final ErrorCode from_int(int i) throws
 org.omg.CORBA.BAD_PARAM {
 switch (i) {
 case _BadValue:
 return BadValue;
 case _DimensionError:

Preface (Java Enterprise in a Nutshell)

10.7.5. Enumerations 257

 return DimensionError;
 case _Overflow:
 return Overflow;
 case _Underflow:
 return Underflow;
 default:
 throw new org.omg.CORBA.BAD_PARAM();
 }
 }
 private ErrorCode(int _value){
 this._value = _value;
 }
 private int _value;
}

So we can refer to the elements in the enumeration in our Java code using any of the following forms:

// Java
int error1 = ErrorCode._BadValue;
ErrorCode error2 = ErrorCode.Overflow;
int error2Val = error2.value();

Each enumerated type also has a holder class generated for it that is used whenever the enumerated type is
used in IDL as an out or inout method argument. Although not strictly required by the IDL Java mapping
defined by the OMG, an enumerated type might also have a helper class generated for it.

10.7.6. Unions

IDL unions are similar in nature to discriminated unions in C and C++. A single tag field, or discriminator,
determines the data element held by the union. Depending on the value of the discriminator field, a particular
instance of the union type may hold a different data member. The union is declared using a switch
statement to declare the various possible formats, or branches, of the union structure:

// IDL
union type−name switch (discriminator−type) {
 case tag−value:
 [data−element;]
 case tag−value:
 [data−element;]
 . . .
 [default:]
data−element;
};

The discriminator for the union is declared using only the type for the discriminator (no identifier is given to
the discriminator, since there is only a single discriminator per union type). The type for the discriminator
must be an integer, character, boolean, or enumerated type (string, struct, union, array, and
sequence are not allowed).

Each branch in the switch defines a data element that represents the value of the union if its discriminator
is a given value. Each data member identifier in a union switch has to be unique. Multiple cases can be
mapped to the same data element by listing them sequentially within the switch. A single optional
default case can be given for any values not given their own cases. Consider the following union:

// IDL
typedef Coord2d sequence<long, 2>;
typedef Coord3d sequence<long, 3>;
union MultiCoord switch (short) {
 case 1:
 long pos;

Preface (Java Enterprise in a Nutshell)

10.7.6. Unions 258

 case 2:
 Coord2d val2d;
 case 3:
 default:
 Coord3d val3d;
};

This declares a type named MultiCoord that represents a one−, two−, or three−dimensional coordinate,
depending on the value of its discriminator value. The default is for the coordinate to be three−dimensional, so
the case for a discriminator value of 3 is the same as the default case. Since a union can have only a single
data member per case, we have to use typedef types for the coordinate values. Depending on the
discriminator value, the union contains either a simple integer position, a Coord2D type that is declared as a
sequence of two integer values, or a Coord3D type that is a sequence of three integer values.

If the discriminator value is given a value not listed in a case, the union consists of the data member in the
default case, if present. If there is no default case, the union has only its discriminator value and no data
members.

10.7.6.1. Mapping unions to Java

Each IDL union is mapped to a public final Java class of the same name as the union identifier. The
class contains a single, default constructor. The class has some kind of data member for maintaining the value
of the union discriminator (the details of which are not dictated by the IDL−to−Java mapping) and a
discriminator() method for accessing it as a short value. The standard also doesn't specify how data
members for the union are implemented in the Java class. Each branch you specify in the IDL union is
mapped to an accessor method and modifier method for that branch, and these methods are named after the
identifier given to the data member in the branch. If you use one of the modifier methods to set that branch of
the union type, the discriminator is automatically set to the corresponding value. If you attempt to access the
value from a branch, and the union is not set to that branch, an org.omg.CORBA.BAD_OPERATION
exception is thrown. The return value types and method arguments for the discriminator() method and
the case accessor/modifier methods are determined based on the standard type conversion rules for mapping
IDL to Java.

Our MultiCoord union example is mapped to the following Java class by Sun's idltojava compiler:

// Java
public final class MultiCoord {
 // instance variables
 private boolean __initialized;
 private short __discriminator;
 private java.lang.Object __value;
 private short _default = 4;
 // constructor
 public MultiCoord() {
 __initialized = false;
 __value = null;
 }
 // discriminator accessor
 public short discriminator() throws org.omg.CORBA.BAD_OPERATION {
 if (!__initialized) {
 throw new org.omg.CORBA.BAD_OPERATION();
 }
 return __discriminator;
 }
 // branch constructors and get and set accessors
 public int pos() throws org.omg.CORBA.BAD_OPERATION {
 if (!__initialized) {
 throw new org.omg.CORBA.BAD_OPERATION();
 }

Preface (Java Enterprise in a Nutshell)

10.7.6.1. Mapping unions to Java 259

 switch (__discriminator) {
 case (short) (1L):
 break;
 default:
 throw new org.omg.CORBA.BAD_OPERATION();
 }
 return ((org.omg.CORBA.IntHolder) __value).value;
 }
 public void pos(int value) {
 __initialized = true;
 __discriminator = (short) (1L);
 __value = new org.omg.CORBA.IntHolder(value);
 }
 public int[] val2d() throws org.omg.CORBA.BAD_OPERATION {
 if (!__initialized) {
 throw new org.omg.CORBA.BAD_OPERATION();
 }
 switch (__discriminator) {
 case (short) (2L):
 break;
 default:
 throw new org.omg.CORBA.BAD_OPERATION();
 }
 return (int[]) __value;
 }
 public void val2d(int[] value) {
 __initialized = true;
 __discriminator = (short) (2L);
 __value = value;
 }
 public int[] val3d() throws org.omg.CORBA.BAD_OPERATION {
 if (!__initialized) {
 throw new org.omg.CORBA.BAD_OPERATION();
 }
 switch (__discriminator) {
 default:
 break;
 case (short) (1L):
 case (short) (2L):
 throw new org.omg.CORBA.BAD_OPERATION();
 }
 return (int[]) __value;
 }
 public void val3d(int[] value) {
 __initialized = true;
 __discriminator = (short) (3L);
 __value = value;
 }
}

Notice that Sun's idltojava compiler implements the data branches in the union using a single
java.lang.Object data member, which references an object of the appropriate type when the union is
put into a particular branch.

In this case, the default case and the third case share the same branch, so no accessor or modifier method is
generated for the default case. If we have a default case that is separate from all other explicit cases in the
union (i.e., has its own branch), an accessor and modifier method are generated for its branch as well. If two
explicit cases are mapped to the same branch in the switch, the Java modifier method generated for that
branch sets the discriminator value to the value of the first case included for that branch. In these cases,
another modifier method, which takes a second argument that is the value for the discriminator, is also
generated. As an example, if we want to use a Coord2D for both 1D and 2D coordinates, we can modify our
IDL union to have both case 1 and 2 use the same branch:

typedef sequence<long, 2> Coord2d;

Preface (Java Enterprise in a Nutshell)

10.7.6.1. Mapping unions to Java 260

typedef sequence<long, 3> Coord3d;
union MultiCoord switch (short) {
 case 1:
 case 2:
 Coord2d val2d;
 case 3:
 Coord3d val3d;
 default:
 Coord3d valDef;
};

In this situation, the generated Java has an additional method included for the val2d branch:

public void val2d(int discrim, int[] value) { ... }

This allows you to set the union to that branch and also specify which discriminator is intended. This can be
useful in some cases, such as our modified MultiCoord example, where the value of the discriminator
determines the usage for the object.[4]

[4]The current version of Sun's idltojava compiler, which originally shipped with the beta 2
of JDK 1.2, violates this part of the standard and does not generate the extra modifier method
for multicase branches.

If no explicit default case is given in the union and if the listed cases do not completely cover the possible
values for the discriminator, the generated Java class includes a single method named default() that takes
no arguments and returns a void. This serves as the modifier for the default case, setting the union
discriminator to some unused value.

The union class also has a holder class generated for it. Although not specified in the standard mapping, it
might also have a helper class generated, but you shouldn't depend on the helper class being present in the
generated Java.

10.6. Naming Scopes 10.8. Exceptions

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 10: IDL
Reference

Preface (Java Enterprise in a Nutshell)

10.7.6.1. Mapping unions to Java 261

10.8. Exceptions

You can define exceptions in IDL that signal errors or other unusual circumstances that may occur during a
remote method call. Exceptions are declared with a unique name and an optional set of data attributes:

// IDL
exception identifier { data−member; data−member; ...};

Each data member on the exception type is simply a type specification followed by a unique identifier for the
data member. The data provides the caller with additional information about what went wrong during the
remote method call.

Using our geometric examples from earlier, we might define an exception that is thrown when a
MultiCoord with unexpected dimensions is passed into a method:

// IDL
exception BadDimension {
 short expected;
 short passed;
};

A server object that raises one of these exceptions can set these data values, and the client making the request
can read these values and interpret what went wrong.

Exceptions can be declared within any module or interface scope in your IDL file.

10.8.1. Standard Exceptions

In addition to user−defined exceptions, there is a set of standard exceptions defined within the CORBA
module. These standard exceptions can be raised by any method, even though they are not listed explicitly in
the method definition. These exceptions can be referenced in IDL using the CORBA:: scope (e.g.,
CORBA::BAD_PARAM). The standard CORBA exceptions are listed in Table 10−4. Every standard CORBA
exception includes two data members: an unsigned long minor error code that can further specify the
type of error that occurred, and a completion_statusenum that can be either COMPLETED_YES,
COMPLETED_NO, or COMPLETED_MAYBE. These status values indicate that before the exception was
raised, the method was either completed, never initiated, or in an unknown state, respectively. A more
complete description of the standard exceptions (in their Java form) can be found in Chapter 28, "The
javax.transaction Package".

Table 10−4. Standard CORBA Exceptions

Exception Name Meaning

BAD_CONTEXT Failure while accessing the context object.

BAD_INV_ORDER Some methods were called out of their expected order.

BAD_OPERATION An invalid method was called.

BAD_PARAM An invalid argument was passed into a method.

BAD_TYPECODE A bad typecode was used.

COMM_FAILURE A communication failure occurred.

DATA_CONVERSION Error while converting data.

FREE_MEM Failed to free some memory.

IMP_LIMIT Some implementation limit was exceeded.

Preface (Java Enterprise in a Nutshell)

10.8. Exceptions 262

INITIALIZE The ORB initialization failed.

INTERNAL An internal ORB error occurred.

INTF_REPOS Error attempting to access interface repository.

INV_FLAG An invalid flag was given.

INV_IDENT Invalid identifier syntax was encountered.

INV_OBJREF An invalid object reference was encountered.

INVALID_TRANSACTION An invalid transaction was used.

MARSHAL An error occurred while marshalling method arguments or results.

NO_IMPLEMENT The implementation for the method is not available.

NO_MEMORY Failed to allocate dynamic memory needed to execute the request.

NO_PERMISSION Not allowed to execute the method.

NO_RESOURCES There were insufficient resources for the request.

NO_RESPONSE No response received for request.

OBJ_ADAPTER The object adapter encountered an error.

OBJECT_NOT_EXIST The referenced object does not exist on the server.

PERSIST_STORE An error occurred while accessing persistent storage.

TRANSACTION_REQUIRED An operation requiring a transaction was called without one.

TRANSACTION_ROLLEDBACK
A transactional operation didn't complete because its transaction was rolled
back.

TRANSIENT A transient error occurred, but the method can be tried again.

UNKNOWN An error occurred that the ORB could not interpret.

10.8.2. Mapping Exceptions to Java

Standard exceptions are mapped to exception classes in org.omg.CORBA that extend the
org.omg.CORBA.SystemException class. User−defined exceptions are mapped to public final
Java classes that extend org.omg.CORBA.UserException, which is derived directly from
java.lang.Exception. Otherwise, the exception is mapped to Java the same way as a struct, as
described earlier. Each data member is mapped to a public data member of the corresponding type, and a
set of constructors are defined for the exception class.

10.7. User−Defined Data
Types

10.9. Module Declarations

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 10: IDL
Reference

Preface (Java Enterprise in a Nutshell)

10.8.2. Mapping Exceptions to Java 263

10.9. Module Declarations

A module is a name−scoping construct in IDL. It is similar to a package in Java, or LISP or a namespace in
C++. A module is declared with the module keyword, followed by an identifier for the module, and then the
body of the module, enclosed in braces:

// IDL
module identifier { ... };

Modules can contain IDL interface definitions, constants, or user−defined types such as typedefs,
structs, unions, and enumerations.

10.9.1. Mapping Modules to Java

Modules in IDL are mapped to packages in Java, and nested modules are mapped to subpackages, with the
innermost module being mapped to the rightmost subpackage. Consider the following interfaces and modules
defined in IDL:

// IDL
module util{
 interface MatrixOps { . . . };

 module dbase {
 interface Query { . . . };
 };
};

The generated Java code includes an interface named MatrixOps, starting with this package statement:

// Java
package util;

and another interface named Query, with this package statement:

// Java
package util.dbase;

10.8. Exceptions 10.10. Interface
Declarations

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

10.9. Module Declarations 264

Chapter 10: IDL
Reference

10.10. Interface Declarations

An IDL interface is just a collection of data attributes and methods that define the semantics of the interface.
Declaring an interface is another way to create a new data type in IDL, but unlike structs and unions, an
interface can have both data members and methods that can be called on objects of its type. An interface is
also a name−scoping construct, similar to a module. You can declare an IDL interface and simply include a
set of constants you want associated with that interface name. In this case, you have to specify the interface
scope in order to refer to the constants from within other scopes.

An interface consists of the following elements:

// IDL
interface identifier [: inheritance−spec] {
interface−body
};

The interface identifier can be any valid IDL identifier. The body of the interface can contain any of the
following constructs:

•
A user−defined type (struct, union, typedef, enum)

•
A constant declaration

•
An interface−specific exception declaration

•
Data attributes

•
Methods or operations

We've already seen the syntax for the first three items in earlier sections of this IDL overview. They become
part of an interface simply by being declared within the braces of the body of the interface. In the next few
sections, we'll see how to define interface attributes and methods, and then we'll look at how inheritance of
IDL interfaces works.

10.10.1. Attributes

Attributes are data members that belong to an interface. To readers familiar with JavaBeans, declaring an
attribute on an interface is roughly analogous to adding a property to a JavaBeans component. An attribute in
an IDL interface indicates that the interface provides some way to read and (in most cases) write the attribute
value.

The syntax for declaring an attribute within an interface body is:

// IDL
[readonly] attribute type identifier [, identifier, ...];

Preface (Java Enterprise in a Nutshell)

10.10. Interface Declarations 265

The attribute is signified by the attribute keyword, followed by a type specification for the attribute and
an identifier name. You can declare multiple attributes of the same type by providing their identifiers in a
comma−delimited list after the type specifier:

// IDL
attribute short coord_x, coord_y, coord_z;

The type specifier can be any valid type, including IDL basic types, other interfaces, and user−defined types
previously defined or declared in a typedef. For example:

// IDL
enum ErrorCode { BadValue, DimensionError, Overflow, Underflow };

interface AttrTest {
 struct coord {
 short x;
 short y;
 };
 attribute ErrorCode lastError;
 readonly attribute coord COG;
 attribute string name;
};

The optional readonly keyword can precede the attribute declaration. This indicates that the attribute can
be read only externally and not directly written. This typically means that the value of this attribute is set only
as a side effect of some other method(s). In our example, the COG attribute may represent the
center−of−gravity of some geometric object, and we'll only want that to be recomputed as the result of other
methods that change the geometry of the object.

10.10.2. Methods

>Methods (or operations, to use the IDL vernacular) provide a way for remote clients to interact with the
objects defined by an interface. A method declaration in IDL is composed of an identifier for the method, the
type of data returned by the method, and a list of parameters that the method accepts. An IDL method can also
(optionally) be declared to use specific call semantics, to possibly raise certain exceptions during its
execution, and to accept certain context variables from the client environment.

The syntax of a method declaration within an IDL interface is:

// IDL
[call−semantics] return−type identifier ([param, param, ...])
 [exception−clause] [context−clause];

The only required elements in a method declaration are the method identifier and the return type, so an
example of the simplest form of method declaration is:

// IDL
boolean doSomething();

This method simply returns a boolean flag when it is complete. It doesn't accept any arguments, uses the
default call semantics, raises no nonstandard exceptions, and accepts no context variables from the client
environment.

The return type for an IDL method can be any valid type, including user−defined types such as structs and
other interfaces. If a method doesn't return any data, the return type should be declared as void.

The identifier for a method is a valid IDL identifier. In IDL, two methods in the same interface cannot have

Preface (Java Enterprise in a Nutshell)

10.10.2. Methods 266

the same identifier (i.e., there is no method overloading, as there is in C++ and Java).

10.10.2.1. Parameters

The parameters for a method on an interface are declared within the parentheses following the method
identifier and are separated by commas. The syntax for an individual method parameter is:

arg−direction arg−type identifier

The identifier is any valid IDL identifier, and the parameter type is any valid IDL type, including
user−defined types.

The direction specification indicates whether the parameter is passed into the server, returned from the server,
or both. The direction specification can have one of three values: in, out, or inout. An parameter tagged as
in is only passed from the client to the server object. An parameter tagged as out is not taken from the
client, but its value is set by the server and returned if the method returns successfully. An inout parameter
is passed in both directions; the data from the client is passed to the server, and the server may modify the data
and have the updates returned back to the client if the method returns successfully.

Here's a modified method declaration for doSomething() that specifies some parameters:

boolean doSomething(in string whatToDo, inout string whatToDoItTo);

The first parameter tells the server object what to do, so it is input−only. The second parameter is the thing to
be acted upon, so it is declared as inout to allow the modified object to be passed back to the client.

If a method raises an exception during its execution, the values of any out or inout parameters to the
method are undefined. They may or may not have been modified by the method before the exception was
raised, and execution was halted.

10.10.2.2. Exceptions

If a method on an interface can raise any exceptions during its execution, you have to declare this in IDL by
adding a clause to the method declaration that lists all the exceptions that can be raised by the method. This is
similar to the throws clause on Java methods. The syntax for the raises clause looks like:

// IDL
raises (exception−type, exception−type, ...)

Every exception you list in this clause has to be defined earlier in the IDL file.

Every method that you declare on an IDL interface can potentially throw one of the standard ORB exceptions
we mentioned earlier (see Table 10−4). You cannot list these standard exceptions in the raises clause for
your methods.

As an example, let's specify a BadDirective exception for our doSomething() method, which is raised
if the client passes in a string directive the server object doesn't understand. We can modify the method
declaration to look like the this:

// IDL
boolean doSomething(in string whatToDo, inout string whatToDoItTo)
 raises (BadDirective);

Again, we must have declared the BadDirective exception and any data it contains earlier in the IDL file.

Preface (Java Enterprise in a Nutshell)

10.10.2.1. Parameters 267

10.10.2.3. Context values

IDL supports the concept of a client context, which can contain name/value pairs that describe the client's
environment in some way. You might have an authenticated username stored in the client's context, for
example. The name of a context value is a string, and its value is an Any object. The interface to the context is
provided by the IDL Context interface, and a mapping of this interface must be provided in any
language−specific binding of the CORBA standard.

You can add a context clause to your method declarations that indicates which client context variables should
be propagated to the server when the method is invoked. The server object can then query these context
variables during the execution of the method. The syntax for adding a context clause to your method
declaration is:

// IDL
context (var−name, var−name, ...)

Each var−name is a string literal that names the context variable to be propagated to the server when the
method is called.

Suppose that when we invoke our doSomething() method, we want to be able to log who is making the
request. We can look for a username variable in the client context and assume it is the authenticated identity
of the client. We can specify that this context variable should be included in the method call by adding a
context clause to our method declaration:

// IDL
boolean doSomething(in string whatToDo, inout string whatToDoItTo)
 raises (BadDirective) context ("username");

A Java client might use this method like so:

// Java
// Get the context
Context ctx = ORB.get_default_context();

// Add a username to the context
Any username = new Any();
username.insert_string("JimF");
ctx.set_one_value("username", username);

// Call the remote method
obj.doSomething("anything", "entity");

Since we declared the doSomething() method to include the username context variable in its
invocations, this variable appears in the server's context and can be queried during execution of the
method.[5]

[5] Sun's implementation of the Java IDL binding (including its idltojava compiler) does not
support context variables. The Context interface is available in the Java IDL API, but
context clauses on IDL methods are not represented in the generated Java code, and no
context data is transferred to the server.

You might wonder when this context feature should be used, as opposed to just adding a method argument to
the method declaration. I could have just as easily added another string argument to my declaration for the
doSomething() method:

boolean doSomething(in string whatToDo, inout string whatToDoItTo,
 in string username) raises BadDirective;

Preface (Java Enterprise in a Nutshell)

10.10.2.3. Context values 268

One argument for using context variables is to make things easier on the client when certain data for a method
is optional. Rather than including an explicit argument and forcing the user to add a nil value of some kind to
the method call (null in Java, for example), you can make the optional data a context variable, and the user
can choose to set it or not. In most cases, though, you'll find that context variables are used rarely, if at all.

10.10.2.4. Call semantics

If you don't specify any call semantics at the start of your method declaration, the default semantics is
"at−most−once." This means that if a method call returns with no exceptions, the method was called a single
time on the server object. If an exception is raised, the method was called at most once (the exception
occurred either before the method was invoked, or during execution of the method).

You can choose to use alternate call semantics for your method by including a call attribute at the start of your
method declaration. In the current CORBA standard, only a single alternative, called "best−effort" semantics,
is available. In this case, whether the method call returns successfully or not, there's no guarantee that the
method was actually invoked on the server object. The difference between the default semantics and
"best−effort" semantics is roughly equivalent to the difference between TCP and UDP IP network connections
and their handling of data packets.

You specify best−effort call semantics by adding the keyword oneway to the start of your method
declaration:

// IDL
oneway void tryToDoSomething(in whatToDo);

If you specify that a method is oneway, the return type of the method has to be void, and it can't have any
out or inout arguments. The method is effectively called asynchronously, so the client can't synchronously
receive return data from the server object.

10.10.3. Interface Inheritance

You can inherit attributes and methods from another IDL interface by deriving your interface from it. The
syntax for declaring the inheritance of an interface in its header is:

interface identifier : parent−interface, parent−interface, ... {

The parent interfaces can be any pre−defined interfaces, in the same module as this interface or in different
modules. If the parent interfaces are from other modules, you need to use the :: scope specifier to identify
them.

10.10.3.1. Method and attribute inheritance

A derived interface inherits all the attributes and methods from its parent interfaces. Although IDL allows for
multiple inheritance, it's illegal to have two inherited attributes or methods with the same identifier. You also
can't declare an attribute or method within your interface with the same name as an inherited attribute or
method (i.e., you cannot overload a method or attribute). Say you have two interfaces declared as follows:

// IDL
interface A {
 boolean f(int float x);
};

interface B {

Preface (Java Enterprise in a Nutshell)

10.10.2.4. Call semantics 269

 void f();
};

You cannot define a new interface that derives from both these interfaces, since the definition of the method
f() would be ambiguous. Note that, unlike C++ and Java, IDL only uses the name for the method as its
unique identifier, and not the entire method signature. This rule is a result of IDL's multilanguage support,
since some languages may be similarly limited.

10.10.3.2. Constant, type, and exception inheritance

A derived interface also inherits any constants, user−defined types, and exceptions defined in its parent
interfaces. They can be referred to in the derived interface as if they had been defined within the interface. For
example, say we define the following base interface:

// IDL
interface Server {
 exception ServiceInterrupted {};
 boolean doSomething(in string what) raises (ServiceInterrupted);
};

We can use the ServiceInterrupted exception defined within the Server interface in another
interface by naming its scope:

// IDL
interface PrintServer {
 boolean printSomething(in string what)
 raises (Server::ServiceInterrupted);
};

Alternately, we can derive the PrintServer from the Server interface, and then the exception can be
used as if it existed in the PrintServer scope:

// IDL
interface PrintServer : Server {
 boolean printSomething(in string what) raises (ServiceInterrupted);
};

It is legal to define a constant, type, or exception in a derived interface that uses the same name as one of
these things in its parent interface. If you do this, though, you need to refer to them unambiguously in your
interface declaration, using fully scoped names if necessary. If you declare your own
ServiceInterrupted exception in the PrintServer interface, for example, you need to provide a
scope for the exception in the raises clause, in order for the IDL compiler to know which version you're
referring to:

// IDL
interface PrintServer : Server {
 exception ServiceInterrupted { string printerName; };
 boolean printSomething(in string what)
 raises (PrintServer::ServiceInterrupted);

If you don't, the IDL compiler throws back an error about ServiceInterrupted being ambiguous.

10.10.3.3. IDL early binding

It's important to realize that IDL does early binding of constants, user−defined types, and exceptions as it
compiles your IDL. This means that the definition of a constant, type, or exception is bound to a particular

Preface (Java Enterprise in a Nutshell)

10.10.3.2. Constant, type, and exception inheritance 270

reference within an interface as it's encountered in your IDL file, not after all definitions have been examined.
Consider the following IDL definitions:

// IDL
struct Coord {
 short x;
 short y;
};

interface GeometricObj {
 attribute Coord cog;
};

interface GeometricObj3D : GeometricObj {
 struct Coord {
 short x;
 short y;
 short z;
 };
 attribute Coord cog3D;
};

The cog attribute in the GeometricObj interface is off the global Coord type (with x and y members
only), since at the time the cog attribute is encountered in the IDL file, this is the binding definition for
Coord. The GeometricObj3D interface inherits this attribute with this type. However, the cog3D
attribute declared in the GeometricObj3D interface is of the GeometricObj3D::Coord type (with x,
y, and z members), since at that point, the Coord struct within the GeometricObj3D scope has been
defined and is the default reference of the relative Coord type used in the cog3D declaration.

10.10.4. Mapping Interfaces to Java

As you might expect, each interface you define in IDL is mapped to a public interface in Java. Helper and
holder class are also generated for each interface; the names of these interfaces are generated using the
identifier of the IDL interface, with Helper and Holder appended to it.

The Java interface extends the org.omg.CORBA.Object interface. Any inheritance specification you
provide in your IDL interface is mapped directly to interface inheritance in Java, using extends clauses. So
our earlier GeometricObj3D example that inherits from GeometricObj is mapped into a Java interface
that begins:

// Java
public interface GeometricObj3D
 extends org.omg.CORBA.Object, GeometricObj { ...

10.10.4.1. Helper and holder classes

The helper class generated for an interface includes a static narrow() method that allows you to safely cast
a CORBA Object reference to a reference of the interface type. If the Object isn't of the expected type, an
org.omg.CORBA.BAD_PARAM exception is thrown. The helper class also includes other static methods
that let you read or write objects of the interface type over I/O streams and insert/extract an object of this type
from an Any value.

The holder class is used whenever the interface is used as the type for an out or inout method parameter.
The holder class is responsible for marshalling the contents of the object to the server object for the method
call (for inout arguments), and then unmarshalling the (possibly updated) return value. The holder class has
a constructor defined that lets you wrap the holder around an existing instance of the original interface, and it

Preface (Java Enterprise in a Nutshell)

10.10.4. Mapping Interfaces to Java 271

has a public value member that lets you access the object argument both before and after the method call.

See Chapter 4, "Java IDL" for more details on helper and holder classes.

10.10.4.2. Attributes

Each attribute you declare on the IDL interface is mapped to two accessor methods, with the same name as
the attribute. So an attribute declared within an IDL interface as follows:

// IDL
attribute string name;

is mapped to these two methods on the corresponding Java interface:

// Java
String name();
void name(String n);

If you include the readonly tag in your IDL attribute declaration, the Java interface has only the read
accessor method, not the update accessor.

10.10.4.3. Methods

Methods declared on your IDL interface are mapped one−to−one to methods on the Java interface. The return
values and any in parameters are mapped directly to their corresponding types in Java. Any out or inout
parameters in the IDL method are mapped to their holder classes in the Java method. This includes basic IDL
types, which have their own holder classes defined for them in the standard Java mapping. So this IDL
method:

// IDL
boolean setPrintServer(in PrintServer server,
 out PrintServer previousServer,
 out long requestsHandled);

is mapped to the following Java method on the corresponding interface:

// Java
boolean setPrintServer(PrintServer server,
 PrintServerHolder previousServer,
 IntHolder requestsHandled);

Note that the last argument is declared a long in IDL, which is mapped to int in Java, so the IntHolder
class is used in the mapped Java method.

To use this method, we have to create holder objects for the output parameters, then check their values after
the method call:

// Java
PrintServer newServer = . . .;
PrintServerHolder prevHolder = new PrintServerHolder();
IntHolder numReqHolder = new IntHolder();
xxx.setPrintServer(newServer, prevHolder, numReqHolder);
int numReq = numReqHolder.value;
PrintServer prevServer = prevHolder.value;

We don't need to initialize the contents of the holders, since they are being used for out parameters. If they

Preface (Java Enterprise in a Nutshell)

10.10.4.2. Attributes 272

were used for inout parameters, we'd either have to initialize their contents at construction time or set their
value members directly.

If there is a raises clause on your IDL method declaration, it is mapped to an equivalent throws clause on
the Java method. The context clause and call semantics (oneway) on an IDL method declaration affect only
the implementation of the generated Java method, not its signature.

10.9. Module Declarations 11. CORBA Services
Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 2: Enterprise
Reference

Preface (Java Enterprise in a Nutshell)

10.10.4.2. Attributes 273

Chapter 11. CORBA Services Reference
Contents:

Naming Service
Security Service
Event Service
Persistent Object Service
Life Cycle Service
Concurrency Control Service
Externalization Service
Relationship Service
Transaction Service
Query Service
Licensing Service
Property Service
Time Service
Trading Service
Collection Service

The CORBA standard includes a rich set of object services. These services can be optionally offered by a
CORBA provider as part of its CORBA−compliant environment. Most vendors include a Naming Service,
since it is the principal means for finding CORBA objects. The other services, such as Security and Event
Services, are not required by all users, so they are often provided as optional add−ons.

This quick reference for the CORBA services is just that: a quick reference, not a comprehensive one. While it
is important for you to understand what the various CORBA services can offer, it is beyond the scope of this
book to provide a complete reference for all 15 of them. I've provided a short overview of each service, along
with a few of its particulars, such as its principal interfaces and other services that it depends upon. If any of
the services seem like a viable solution for your needs in a CORBA environment, you can get full details on
the specification for the services from the OMG (CORBA Services: Common Object Services Specification,
published by the OMG and available at www.omg.org).

Generally speaking, each of the CORBA services defines a standard, ordered, explicit way of doing
something. You may be able to do this activity in another way using only the core CORBA interfaces, but
whatever technique you use will be nonstandard, ad hoc, and implicit. As an example, you might construct a
means whereby your object is automatically notified of a change in another, possibly remote, object, just
using standard CORBA constructs. The Event Service provides a standardized set of interfaces for defining
these notification channels, so that outside agents can participate as well. When you are deciding between
developing a custom approach or using a CORBA service, you should consider the level at which you need to
depend on this service, your need for interoperability with other agents in this area, and the costs involved.

11.1. Naming Service

The Naming Service is the most commonly used service in CORBA, since it provides the principal way for
clients to find objects on the network. Remote object references can be bound to names within the Naming
Service, and clients can access these object references over the network by asking for them by name from the
Naming Service. There are more details on the Naming Service available in Chapter 4, Java IDL.

The principal interface in the Naming Service is the NamingContext. It represents a directory or
subdirectory of named objects. This interface can bind, look up, and unbind objects and subcontexts within
the naming directory. The names of objects within a NamingContext are composed of NameComponent
arrays. Browsing through the contents of a NamingContext can be done with a BindingIterator.

Chapter 11. CORBA Services Reference 274

http://www.omg.org/

10.10. Interface
Declarations

11.2. Security Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.2. Security Service

The CORBA Security Service provides the tools you need to secure a distributed application. It supports the
authentication of remote users of object services, access controls for key objects and services in the system,
auditing functions, the ability to establish secure communications channels between clients and object
services, and nonrepudiated events. Note that encryption functions (i.e., algorithms for encrypting data and
generating digital signatures) are not included in the Security Service specification. The Security Service is a
higher−level security framework that needs to use cryptography in its implementation, but this use is not
spelled out in the specification. Implementors are free to use whatever lower−level cryptographic APIs suit
their needs, as long as their use supports the higher−level specifications of the Security Service.

The Security Service framework layers security measures on top of the basic ORB object−to−object model
defined in the core CORBA architecture. Security measures are taken on either end of a secure
communication. Access control is defined down to the level of individual methods on objects, and access
rights can be delegated by one authenticated object to another.

The PrincipleAuthenticator interface authenticates identities. A Credentials object is assigned
to each user; it describes the user's security profile, including access rights, authenticated identities, etc. The
Current object provides details about the security features in effect in the current execution context. There
are also extensions to the org.omg.CORBA.Object interface, to support such actions as querying the
Credentials of an Object.

11.1. Naming Service 11.3. Event Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

11.2. Security Service 275

Chapter 11: CORBA
Services Reference

11.3. Event Service

The Event Service provides a flexible framework for asynchronous interaction between distributed objects.
The asynchronous method invocation facility provided by the Dynamic Invocation Interface is a very basic
form of the services the Event Service provides. These kinds of asynchronous communications can be useful
in situations where notification, rather than interaction, is needed. You may want your client to be notified
when data in a dynamically updated database is modified, for example. The Event Service provides a
framework for setting up these communications channels.

Agents engaged in event services are distinguished as event consumers or event suppliers. In both cases, the
agents can engage either in push or pull event communications. These four cases are represented by the
PushConsumer, PullConsumer, PushSupplier, and PullSupplier interfaces. Event
communications take place over EventChannel objects, to which consumers and suppliers of events are
connected.

11.2. Security Service 11.4. Persistent Object
Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.4. Persistent Object Service

This service provides a common framework for CORBA objects to interact with various underlying
persistence engines (relational databases, object databases, etc.) for the purpose of either accessing the
persistent state of other objects or storing their own state persistently. In a sense, the Persistent Object Service
can be thought of as middleware between CORBA objects and database protocols being defined by the Object
Data Management Group (ODMG).

Persistence can be managed at either the object level or the data−member level. Typically, an object is
allowed to control its own persistent state, but, if necessary, a client of an object can control particular
elements of the object's persistent state.

Preface (Java Enterprise in a Nutshell)

11.3. Event Service 276

The definers of the Persistent Object Service seemed to have a penchant for acronyms. A persistent object is
represented by the PO interface. Each PO has a PID, which is a unique identifier for its persistent data.
Methods on a PO allow you to load and store its state to persistent storage. Internally, a PO uses the persistent
object manager interface, POM. Interfaces to specific data storage services are provided by persistent data
services, represented as PDS objects.

The Persistent Object Service service depends on both the Externalization Service, for converting objects into
a format suitable for persistent storage media, and the Life Cycle Service, for creating, moving, and deleting
objects.

11.3. Event Service 11.5. Life Cycle Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.5. Life Cycle Service

This service defines a standard protocol by which clients of distributed objects can cause the creation,
copying, movement, and deletion of remote objects. The service is defined around the concept of object
factories, which are responsible for creating objects of specific types.

All objects participating in the Life Cycle Service implement the LifeCycleObject interface. There is no
specific interface defined for object factories, but they can be located using the FactoryFinder interface.

Some of the interfaces in this service reference Naming Service interfaces. Also, when dealing with connected
graphs of objects, the Relationship Service structures are referenced.

11.4. Persistent Object
Service

11.6. Concurrency Control
Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

11.5. Life Cycle Service 277

Chapter 11: CORBA
Services Reference

11.6. Concurrency Control Service

The Concurrency Control Service defines a framework for managing concurrent access to remote objects
from multiple clients. It is analogous to the multithreading support present in some programming languages,
such as C++ and Java, but in a distributed context. The Concurrency Control Service provides facilities for
interfacing with the Transaction Service to allow transactional clients to participate in concurrent access to
resources from within transaction contexts.

The Concurrency Control Service uses a model based on locks that are acquired by clients for defined
resources. Locks can be of different types (read, write, etc.), and different locking models can be specified,
such as multiple−possession, two−phase locks, etc. Clients that attempt to acquire a lock on a resource and are
refused because of conflicts with existing locks are queued on a first−come, first−serve basis.

Resources are implicitly represented by the LockSet interface, which request and relinquish locks on
resources. The TransactionalLockSet is an equivalent interface for transactional clients. Lock sets are
created using the LockSetFactory interface.

The transaction−related interfaces in this service depend on Transaction Service interfaces.

11.5. Life Cycle Service 11.7. Externalization
Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.7. Externalization Service

This service defines the means for converting objects into a form suitable for export over general media, such
as network streams or disk storage, and then re−constituting this data back into object references, potentially
in a different ORB and/or process. The service allows for pluggable data formats for externalized objects, but
a standard serialized format for objects is provided, to ensure that a baseline protocol can be shared among
users of the service.

Preface (Java Enterprise in a Nutshell)

11.6. Concurrency Control Service 278

The Externalization Service uses a Stream object for externalizing and internalizing objects. A
StreamFactory creates Stream objects. Specific sources or destinations for streams can be supported by
subclasses of the StreamFactory (e.g., FileStreamFactory). Objects that are to be externalized must
extend the Streamable interface.

This service uses the Life Cycle Service to create and destroy Stream and StreamFactory objects. The
Relationship Service manages the externalization of graphs of related objects.

11.6. Concurrency Control
Service

11.8. Relationship Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.8. Relationship Service

This service allows for the explicit definition of relationships among objects. Relationships are defined in
terms of type, roles within the relationship, and the cardinality of each role. An object fulfills a role when it
participates in a relationship. You can define an agent/proxy relationship, for example, in which a single
object fulfills the agent role and multiple objects serve as proxies for that agent.

The Relationship and Role interfaces are at the heart of the service. RelationshipFactory and
RoleFactory objects create Relationship and Role objects, respectively. A
RelationshipIterator can iterate through the relationships a given object plays roles in. In addition to
these generic relationship interfaces, the service also provides several specific relationship types, in their own
modules. Object graphs can be created using the interfaces in the CosGraphs module, containment
relationships can be created using the CosContainment module, and reference relationships are defined
using the CosReference module.

11.7. Externalization
Service

11.9. Transaction Service

Preface (Java Enterprise in a Nutshell)

11.8. Relationship Service 279

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.9. Transaction Service

Transactions are best defined using the tried−and−true ACID characteristics, which are familiar to database
researchers. ACID refers to units of work that are:

Atomic
Any and all actions carried out as part of the transaction are committed when the transaction is
committed or undone/cancelled if the transaction is cancelled (rolled back).

Consistent
The actions within a transaction produce results that are consistent.

Isolated
Transactions do not see each other's effects until they are committed. If a transaction is rolled back, its
effects are not seen by other contexts.

Durable
If a transaction completes successfully, its effects are made permanent.

The Transaction Service defines interfaces that allow distributed objects to create and engage in transactional
interactions. A transactional interaction can involve a series of remote method calls. If a significant error is
encountered along the way, the transaction can be rolled back, and the effects of all previous method calls are
undone, as if the transaction never started in the first place. When a transactional client starts a transaction and
then makes remote method calls, its transaction context is propagated along with the requests. Only
transactional objects (i.e., objects whose internal actions and side effects should be undone by a rollback of
the transaction and who participate in the Transaction Service protocol) heed the transaction context
information.

An important item to note about the Transaction Service, and about transaction APIs in general, is that they
principally provide a framework for the notification and management of transaction boundaries, but no
facilities to ease the rollback of transactions. The application objects still need to do the hard work of undoing
any work that was done during a transaction if it gets rolled back. In other words, the Transaction Service tells
you when to do it, but not how.

Transactions are usually managed using the Current interface, which starts and ends transactions.
Transactions can be directly manipulated using the Control interface, which contains a Terminator that
ends the transaction with either a commit or rollback, and a Coordinator that checks for relationships
between transactions. Resource objects can be registered as participating in transactions, which allows them
to be notified of transaction boundaries (commit, rollback).

The Transaction Service depends on both the Concurrency Control Service, for its locking services, and the
Persistent Object Service, to support the durability (persistence) of transaction effects on objects.

Preface (Java Enterprise in a Nutshell)

11.9. Transaction Service 280

11.8. Relationship Service 11.10. Query Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.10. Query Service

The Query Service provides a general object query mechanism for distributed objects. With this service,
collections of objects can be searched to generate subcollections, or subsets of objects within a collection can
be deleted or updated through a query. The facilities defined in the Query Service can be mapped to, but are
not limited to, persistent storage facilities, such as relational or object databases.

Collections of objects are represented by Collection objects, which are created using a
CollectionFactory. You iterate through a Collection of objects using an Iterator.
QueryEvaluator objects issue a Query against a given Collection. The result of evaluating a Query
can be of any type, but typically it is a Collection of some kind. A QueryManager is a type of
QueryEvaluator that allows you to create queries.

11.9. Transaction Service 11.11. Licensing Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

Preface (Java Enterprise in a Nutshell)

11.10. Query Service 281

11.11. Licensing Service

The Licensing Service is a protocol for controlled access to objects and services under a licensing model.
Conceptually, you can think of it as an extension of the Security Service, with some additional access
semantics having to do with consumable and expirable access. A license gives a user certain limited rights to
use a particular remote object or set of objects.

In the License Service model, a client makes a request for a licensed service from a service provider, giving
the provider some proof of ownership of a license. The provider then turns to a license manager to acquire a
license service, which it uses to verify the existence of a license and check its policy against the proposed
usage. The producer can then ask to be notified of license expiration during its use, or it can poll the license
service for changes in the license state.

The LicenseServiceManager provides access to license services specific to certain producers. The
ProducerSpecificLicenseService provides a producer with the methods needed to check on
license validity, and start and end license usage sessions.

The License Service depends on the Security Service for license verification and secure communications and
on the Event Service for asynchonous notification of license events to producers. Some implementations may
also use the Relationship, Property, and Query Services.

11.10. Query Service 11.12. Property Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.12. Property Service

This service defines name/value pairs that can be assigned to objects, without being explicitly defined or
required by their IDL interfaces. Properties can represent any application−specific attributes that can tag
objects for various purposes.

The Property Service provides interfaces for defining, initializing, and iterating through sets of properties, but
it does not specify how properties are associated with objects, as this is an implementation detail.

A set of properties is represented by the PropertySet interface, which allows you to create, modify, or
delete properties in the set. A property is represented as a string name and an Any value. A subclass of
PropertySet, PropertySetDef, allows you to query for metadata about the properties (e.g., whether
each is read/write or read−only). A PropertiesIterator can be used to iterate through the contents of a

Preface (Java Enterprise in a Nutshell)

11.11. Licensing Service 282

set, and a PropertySetFactory allows you to create new PropertySet objects.

11.11. Licensing Service 11.13. Time Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.13. Time Service

This service gives programs the ability to acquire an accurate value for the current time and an estimate of the
error of the value provided. The Time Service uses a Universal Time Coordinated time representation to
report time values. This representation uses time intervals of 100 nanoseconds, starting on midnight, October
15, 1582. The time reported is always relative to the Greenwich Mean Time (GMT).

The Time Service also provides facilities for generating time−based events, using timers and alarms, and for
the ordering and linear positioning of events in time.

An implementation of the Time Service is responsible for communicating with an accurate time source, such
as a Cesium clock or radio time broadcasts, for determining its time and error estimates.

Time is reported from a TimeService object in the form of UTO objects, which stand for universal time
objects. Time intervals are given in the form of TIO objects, or time interval objects. A timer event is
represented by a TimerEventT structure that includes the time the event triggered and any data that was
specified to be delivered with the event. A timer event is indirectly created through the
TimerEventService by registering a consumer for the event, which returns a TimerEventHandler
object that can set the trigger time for the event, set the data to be delivered with the event, or cancel the
event.

The timer event portion of the Time Service depends on an Event Service being available.

11.12. Property Service 11.14. Trading Service

Preface (Java Enterprise in a Nutshell)

11.13. Time Service 283

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.14. Trading Service

This service is analogous to a market−trading context, in which agents make buy offers for items they want
(bids) and sell offers for items that they have (asks), and the trading system is responsible for matching the
bids and asks to execute trades. In the Trading Service, objects describe the services that they can offer to the
system, and clients issue a description of the desired properties of an object. The Trading Service then
matches object services with clients seeking these services.

Buyers, or importers, of services use a Lookup interface to advertise their needs, while sellers, or exporters,
of services use a Register interface to advertise the properties of their services. If an importer receives
multiple hits on a query issued through the Lookup interface, it is given an OfferIterator to iterate
through the offers for any that it wants to accept. An Admin interface queries for all outstanding offers and
queries and controls parameters related to how the two are matched.

11.13. Time Service 11.15. Collection Service

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Chapter 11: CORBA
Services Reference

11.15. Collection Service

The Collection Service supports the grouping of objects into various types of collections, such as sets,
queues, and sequences. The service also includes representations for iterators of these collections and for
operations to be performed to elements of a collection.

The Collection interface is the root of a large family of subclasses that define specific types of
collections, such as Set, Heap, Stack, Queue, SortedSet, etc. There are also factory classes for these
that allow you to create collections of each type. Similarly, the Iterator interface is the root of the
hierarchy of iterator types, such as EqualityIterator and SequentialIterator. The
Operations interface is provided as a base class for any operation a user may perform on a collection.

Preface (Java Enterprise in a Nutshell)

11.14. Trading Service 284

11.14. Trading Service 12. Java IDL Tools

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 2: Enterprise
Reference

Preface (Java Enterprise in a Nutshell)

11.14. Trading Service 285

Chapter 12. Java IDL Tools

idltojava Java 2 SDK 1.2 and later

The Java IDL Compiler
idltojava [options] IDLfiles

Description: The idltojava compiler generates Java source files from IDL interface, module, and type
descriptions. The compiler ostensibly follows the standard IDL Java mapping defined by the OMG. Note that
according to the standard mapping, a single IDL construct may result in several Java constructs being
generated. A single IDL interface, for example, generates five Java source files.

Description: The idltojava compiler performs a preprocessing stage during compilation, much like a C or C++
compiler. The preprocessor accepts #define, #undefine, #include, and #pragma directives for
preprocessing. Some of the compiler options are related to this preprocessing stage. The #pragma directives
that idltojava accepts are:

#pragma prefix repos_prefix
Prepend the given prefix name to any repository names. Note that Java IDL does not support the
CORBA Interface Repository, so the usefulness of this option is questionable.

#pragma javaPackage rootPackage
Place all packages generated from the IDL file within the given root package.

Description: Note that #pragma directives must appear at the beginning of the IDL file.

−Dsymbol=value
Define the named symbol with the given value during preprocessing of the IDL file. This command,
for example:

% idltojava −DmaxArray=10 myFile.idl

causes the preprocessor to have the symbol maxArray defined as specified during preprocessing of
the IDL file myFile.idl.

−fflag−name
−fno−flag−name

This option turns on and off execution flags for the compiler. The option with just the flag name turns
on the named flag, and the option with no− followed by the flag name turns off the named flag. There
is no space after the −f in both cases.

The possible flags are listed in the following table:

Flag name Default Description

caseless off Compile the IDL without considering case when comparing identifiers.

client on Generate client−side Java stubs for the IDL entities encountered.

cpp on

Run a C/C++ preprocessor over the IDL files before compilation. An
error is reported and compilation stops if the preprocessor is not found.
Affected by the CPP and CPPARGS environment variables described in
the next section, or uses the defaults if none given.

Chapter 12. Java IDL Tools 286

list−flags off Print the value of all the flags used for compilation.

list−options off Print a list of the command−line options used for compilation.

map−included−files off Generate Java code for any IDL files included by #include directives.

portable on
Generate portable stub and skeleton Java classes (e.g., code that uses the
CORBA portability layer provided in the
org.omg.CORBA.portable package).

server on Generate server−side Java skeletons for the IDL entities encountered.

tie off
Generate xxxTie and xxxOperations classes for each server
skeleton, thus making them eligible for use in delegation−based
operation.

verbose off Print extensive messages on the compilation procedure.

version off Print the version number and timestamp for the idltojava compiler in use.

write−files on
Write the generated Java source files to the destination directory. If this
flag is off, the compiler is acting as simply an IDL syntax checker.

−Ipath
The given path should be used to search for files specified in #include directives found in the IDL
file. There is no space between the −I and the path.

−j path
The given path should be used as the destination for the generated Java source files. If a Java class is
mapped to a Java package, the compiler creates subdirectories in the given destination automatically
to store the Java files. There is a space between the −j and the path.

−Usymbol
The named symbol should be undefined when the compiler starts preprocessing the IDL files. There is
no space between the −U and the symbol name.

CPP
The full path to a C/C++ pre−processor to use when the cpp flag is on during compilation. If this
variable is not set in the environment, the idltojava compiler uses a default of /usr/ccs/lib/cpp on
Solaris and the Microsoft Visual C++ preprocessor on Windows systems.

CPPARGS
A list of arguments to be passed to the preprocessor.

Bugs: As of this writing, Sun still has not released a final version of idltojava to correspond to the final Java
IDL API included in the Java SDK 1.2. The current available version is the early−access version, which has
the following notable bugs:

•
Adjacent string literals cause a syntax error, instead of being concatenated as defined in the IDL
specification.

•
A special modifier method, accepting a discriminator value, is not generated in the Java code for IDL
unions with multicase branches.

•
Any context clauses on IDL method declarations are ignored silently.

Preface (Java Enterprise in a Nutshell)

Chapter 12. Java IDL Tools 287

tnameserv
Java 2 SDK 1.2 and

later

The Java IDL Naming Service

Daemontnameserv [options]

Description: The tnameserv daemon is the CORBA Naming Service daemon provided with Java IDL. The
Naming Service allows remote CORBA objects to be bound to names with the naming directory of the
service. Remote clients can connect to the Naming Service through standard CORBA APIs and ask for
references to these objects by name or browse through the objects bound to names in the directory.

Description: The daemon should be run in the background. The tnameserv implementation of the Naming
Service is a nonpersistent one (i.e., bindings created and stored in the naming context are only valid during the
lifetime of the tnameserv daemon).

−ORBInitialPort portnum
Listen to the specified port for client requests on the Naming Service. The default port is 900. This
option corresponds to the Java property org.omg.CORBA.ORBInitialPort.

11.15. Collection Service Part 3. API Quick
Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 12. Java IDL Tools 288

Chapter 13. The java.rmi Package
The java.rmi package is the main RMI package; it contains the principle objects used in RMI clients and
servers. Figure 13−1 shows the class hierarchy for this package.

The Remote interface and the Naming class define and locate RMI objects over the network. The
RMISecurityManager class provides additional security semantics required for RMI interactions. The
MarshalledObject class is used during remote method calls for certain method arguments. In addition,
this core package contains a number of basic RMI exception types used during remote object lookups and
remote method calls.

Figure 13−1. The java.rmi package

AccessException Java 1.1

java.rmi serializable checked PJ1.1(opt)
This subclass of RemoteException is thrown when you attempt to perform an improper operation on a
Naming or Registry object. A registry allows only local requests to bind, rebind, or unbind objects, so an
attempt to call one of these methods on a remote registry results in an AccessException being thrown.

public class AccessException extends
RemoteException {

Chapter 13. The java.rmi Package 289

//
Public Constructors
public AccessException (String s

);public AccessException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>AccessException

Thrown By: java.rmi.registry.Registry.{bind(), list(), lookup(), rebind(),
unbind()}

AlreadyBoundException Java 1.1

java.rmi serializable checked PJ1.1(opt)
An exception that's thrown when an attempt is made to bind an object to a name that is already bound.

public class AlreadyBoundException extends
Exception {

//
Public Constructors
public AlreadyBoundException

 ();public AlreadyBoundException (String s
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>AlreadyBoundException

Thrown By: Naming.bind(), java.rmi.registry.Registry.bind()

ConnectException Java 1.1

java.rmi serializable checked PJ1.1(opt)
A RemoteException that's thrown when a remote host refuses to connect during a remote method call.

public class ConnectException extends
RemoteException {

//
Public Constructors
public ConnectException (String s

);public ConnectException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>ConnectException

ConnectIOException Java 1.1

java.rmi serializable checked PJ1.1(opt)
A RemoteException that's thrown if there is an I/O error while attempting to make a remote method call.

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 290

public class ConnectIOException extends
RemoteException {

//
Public Constructors
public ConnectIOException (String s

);public ConnectIOException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>ConnectIOException

MarshalException Java 1.1

java.rmi serializable checked PJ1.1(opt)
A RemoteException that's thrown if an I/O error occurs while attempting to marshal any part of a remote
method call (header data or method arguments).

public class MarshalException extends
RemoteException {

//
Public Constructors
public MarshalException (String s

);public MarshalException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>MarshalException

MarshalledObject Java 1.2

java.rmi serializable
A MarshalledObject represents an object that has been serialized and marshalled according to the RMI
specification. If the original object was a remote object reference, the MarshalledObject contains a
serialized stub for the object. Otherwise, the object is serialized and tagged with a codebase URL that can be
used on the receiving end to find the class definition for the object, if needed.

The MarshalledObject constructor allows you to serialize an existing object into marshalled form. The
get() method returns a copy of the serialized object it contains. You can also compare the equality of the
serialized objects of two MarshalledObject objects.

MarshalledObject objects are used primarily by the RMI activation API, to allow for the passing of
initialization parameters for activated objects in a standard way, for example.

public final class MarshalledObject implements Serializable {

//
Public Constructors
public MarshalledObject (Object obj

) throws IOException;
//

Public Instance Methods
public Object get

 () throws IOException, ClassNotFoundException;
//

Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 291

}
Hierarchy: Object−−>MarshalledObject(Serializable)

Passed To: java.rmi.activation.Activatable.{Activatable(), exportObject()},
java.rmi.activation.ActivationDesc.ActivationDesc(),
java.rmi.activation.ActivationGroup.activeObject(),
java.rmi.activation.ActivationGroupDesc.ActivationGroupDesc(),
java.rmi.activation.ActivationMonitor.activeObject()

Returned By: java.rmi.activation.ActivationDesc.getData(),
java.rmi.activation.ActivationGroup.newInstance(),
java.rmi.activation.ActivationGroup_Stub.newInstance(),
java.rmi.activation.ActivationGroupDesc.getData(),
java.rmi.activation.ActivationInstantiator.newInstance(),
java.rmi.activation.Activator.activate()

Naming Java 1.1

java.rmi PJ1.1(opt)
This is the primary application interface to the naming service within the RMI registry. You can get
references to remote objects with the lookup() method. To bind local object implementations to names
within the local registry, use the bind() and rebind() methods. Locally bound objects can be removed
from the name registry using unbind(). To obtain all of the names for objects currently stored in the
registry, use the list() method.

Each name argument to the methods on the Naming interface takes the form of a URL (e.g.,
rmi://remoteHost:port/objName). If you are referencing a local object and the object is exported to the default
registry port, the URL can simply take the form of the object's name in the local registry, (e.g., objName).
This is possible because the rmi: protocol is assumed if it isn't present in the URL and the default host is the
local host.

Note that while the lookup() method can reference any remote RMI registry, the bind(), rebind(),
and unbind() methods can only be called on the local registry. Attempting to call these methods against a
remote registry results in an AccessException being thrown.

public final class Naming {

// No Constructor

//
Public Class Methodspublic static void bind (String name, Remote obj) throws AlreadyBoundException,

java.net.MalformedURLException, RemoteException;public static String[] list (String name

) throws RemoteException, java.net.MalformedURLException;public static Remote lookup (String name) throws NotBoundException,

java.net.MalformedURLException, RemoteException;
public static void rebind (String name, Remote obj) throws RemoteException,

java.net.MalformedURLException;
public static void unbind (String name) throws RemoteException, NotBoundException,

java.net.MalformedURLException;}

NoSuchObjectException Java 1.1

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 292

java.rmi serializable checked PJ1.1(opt)
This subclass of RemoteException is thrown when you attempt to invoke a method on a remote object
that is no longer available.

public class NoSuchObjectException extends
RemoteException {

//
Public Constructors
public NoSuchObjectException (String s

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>NoSuchObjectException

Thrown By: java.rmi.activation.Activatable.unexportObject(),
java.rmi.server.RemoteObject.toStub(),
java.rmi.server.UnicastRemoteObject.unexportObject()

NotBoundException Java 1.1

java.rmi serializable checked PJ1.1(opt)
An exception that is thrown by a Naming instance when a lookup is attempted using a name with no object
bound to it.

public class NotBoundException extends
Exception {

//
Public Constructors
public NotBoundException

 ();public NotBoundException (String s
);

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>NotBoundException

Thrown By: Naming.{lookup(), unbind()},
java.rmi.registry.Registry.{lookup(), unbind()}

Remote Java 1.1

java.rmi remote PJ1.1(opt)
Every remote object must implement the Remote interface. In addition, any methods you want to be
remotely callable must be defined within an interface that extends the Remote interface. This is a
place−holder interface that identifies all remote objects, but doesn't define any methods of its own.

public abstract
interface
Remote {

}
Implementations: java.rmi.activation.ActivationGroup_Stub,
java.rmi.activation.ActivationInstantiator,
java.rmi.activation.ActivationMonitor,

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 293

java.rmi.activation.ActivationSystem, java.rmi.activation.Activator,
java.rmi.dgc.DGC, java.rmi.registry.Registry,
java.rmi.server.RemoteObject, javax.ejb.EJBHome, javax.ejb.EJBObject

Passed To: Naming.{bind(), rebind()},
java.rmi.activation.Activatable.{exportObject(), unexportObject()},
java.rmi.activation.ActivationGroup.activeObject(),
java.rmi.registry.Registry.{bind(), rebind()},
java.rmi.server.RemoteObject.toStub(),
java.rmi.server.RemoteRef.invoke(),
java.rmi.server.ServerRef.exportObject(),
java.rmi.server.Skeleton.dispatch(),
java.rmi.server.UnicastRemoteObject.{exportObject(), unexportObject()}

Returned By: Naming.lookup(),
java.rmi.activation.Activatable.{exportObject(), register()},
java.rmi.activation.ActivationID.activate(),
java.rmi.registry.Registry.lookup(),
java.rmi.server.RemoteObject.toStub(),
java.rmi.server.UnicastRemoteObject.exportObject()

RemoteException Java 1.1

java.rmi serializable checked PJ1.1(opt)
This subclass of IOException is thrown when an error occurs during any remote object operation. The
RemoteException includes a Throwable data member that represents the nested exception that caused
the RemoteException to be thrown. For example, if an exception occurs on the server while executing a
remote method, the client receives a RemoteException (in the form of a ServerException, one of its
subclasses) with its Throwable data member initialized to the server−side exception that caused the
client−side RemoteException to be delivered.

public class RemoteException extends IOException {

//
Public Constructors
public RemoteException

 ();public RemoteException (String s
);public RemoteException (String s, Throwable ex

);
//

Public methods overriding Throwable
public String getMessage (); default:null

1.2 public void printStackTrace
 ();

1.2 public void printStackTrace (PrintStream ps
);

1.2 public void printStackTrace (PrintWriter pw
);

//
Public Instance Fields
public Throwable detail

 ;
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException

Subclasses: AccessException, java.rmi.ConnectException, ConnectIOException,
MarshalException, NoSuchObjectException, ServerError, ServerException,
ServerRuntimeException, StubNotFoundException, UnexpectedException,

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 294

java.rmi.UnknownHostException, UnmarshalException,
java.rmi.activation.ActivateFailedException,
java.rmi.server.ExportException,
java.rmi.server.SkeletonMismatchException,
java.rmi.server.SkeletonNotFoundException,
javax.transaction.InvalidTransactionException,
javax.transaction.TransactionRequiredException,
javax.transaction.TransactionRolledbackException

Thrown By: Too many methods to list.

RMISecurityException Java 1.1; Deprecated in Java 1.2

java.rmi serializable unchecked PJ1.1(opt)
A SecurityException thrown by the RMISecurityManager when a security violation is detected
during a remote operation.

public class RMISecurityException extends
SecurityException {

// Public Constructors

public RMISecurityException (String name
);

public RMISecurityException (String name, String arg
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>SecurityException−−>RMISecurityException

RMISecurityManager class Java 1.1

java.rmi PJ1.1(opt)
The RMISecurityManager enforces the security policy for classes that are loaded as stubs for remote
objects, by overriding all relevant access−check methods from the SecurityManager. By default, stub
objects are only allowed to perform class definition and class access operations. If you don't set the local
security manager as RMISecurityManager (using the System.setSecurityManager() method),
stub classes are only loadable from the local filesystem. Applets engaging in RMI calls do not need to use the
RMISecurityManager, since the security manager provided by the browser does the necessary access
control on loading remote classes, etc.

You don't normally need to interact with the RMISecurityManager directly within your application code,
except to set it as the system security manager before starting your RMI code.

public class RMISecurityManager
extends SecurityManager {

//
Public Constructors
public RMISecurityManager

 ();
}
Hierarchy: Object−−>SecurityManager−−>RMISecurityManager

ServerError class Java 1.1

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 295

java.rmi serializable checked PJ1.1(opt)
A nonrecoverable error that occurs while a server is executing a remote method. The nested Throwable
data member (inherited from RemoteException) contains the server−side exception that generated the
error.

public class ServerError extends
RemoteException {

//
Public Constructors
public ServerError (String s, Error err

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>ServerError

ServerException Java 1.1

java.rmi serializable checked PJ1.1(opt)
This exception is thrown if a RemoteException is thrown while the server object is executing a remote
method.

public class ServerException extends
RemoteException {

//
Public Constructors
public ServerException (String s

);public ServerException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>ServerException

ServerRuntimeException Java 1.1; Deprecated in Java 1.2

java.rmi serializable checked PJ1.1(opt)
An exception that occurs if a RuntimeException is thrown while a server object is executing a remote
method. The nested Throwable data member (inherited from RemoteException) contains the
server−side runtime exception that generated the exception.

public class ServerRuntimeException extends
RemoteException {

// Public Constructors

public ServerRuntimeException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>ServerRuntimeException

StubNotFoundException Java 1.1

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 296

java.rmi serializable checked PJ1.1(opt)
This exception can occur either when an object is being exported to participate in remote RMI calls or during
a remote method call. During export on the server, this exception is thrown if the stub class for the object
cannot be found or used for some reason (e.g., the stub class isn't in the CLASSPATH of the server process or
the stub class can't be instantiated). During a remote method call, the client can receive this exception if the
remote object hasn't been exported completely or correctly.

public class StubNotFoundException extends
RemoteException {

//
Public Constructors
public StubNotFoundException (String s

);public StubNotFoundException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>StubNotFoundException

UnexpectedException Java 1.1

java.rmi serializable checked PJ1.1(opt)
An UnexpectedException is thrown if an exception that isn't specified on a remote method's signature
is encountered during the return from a remote method call. The unexpected exception can occur on the server
or on the client. The nested Throwable object (inherited from RemoteException) contains the actual
exception that occurred.

public class UnexpectedException extends
RemoteException {

//
Public Constructors
public UnexpectedException (String s

);public UnexpectedException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>UnexpectedException

UnknownHostException Java 1.1

java.rmi serializable checked PJ1.1(opt)
This RemoteException is thrown if the host specified during a Naming lookup cannot be found.

public class UnknownHostException extends
RemoteException {

//
Public Constructors
public UnknownHostException (String s

);public UnknownHostException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>UnknownHostException

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 297

Thrown By: java.rmi.registry.RegistryHandler.registryStub()

UnmarshalException Java 1.1

java.rmi serializable checked PJ1.1(opt)
This RemoteException is thrown if an error occurs while unmarshalling the return value from a remote
method call. The source of the error could be an I/O error while sending the header or the value of the return
from the server to the client, or the fact that the class of the return object is not found.

public class UnmarshalException extends
RemoteException {

//
Public Constructors
public UnmarshalException (String s

);public UnmarshalException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>UnmarshalException

Reading a Quick
Reference Entry

14. The java.rmi.activation
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 13. The java.rmi Package 298

Chapter 14. The java.rmi.activation Package
The java.rmi.activation package contains the interfaces, classes, and exceptions that represent the
RMI activation system, introduced in Java 2. This RMI service allows you to define remote objects that are
not instantiated on the server until a client request triggers their activation. The activation system provides the
means to specify how a remote object is activated and how activated objects are grouped into Java VMs. The
activation also supports persistent remote references, or in other words, references to remote objects that can
persist beyond the lifetime of an individual server object. Figure 14−1 shows the class hierarchy for this
package.

Figure 14−1. The java.rmi.activation package

Activatable Java 1.2

java.rmi.activation serializable remote
This abstract subclass of java.rmi.server.RemoteServer represents a server object that is persistent
and activatable. This is in contrast to a java.rmi.server.UnicastRemoteObject, which represents
a server object that is only available during the lifetime of the server process. Both
UnicastRemoteObject objects and Activatable objects support only point−to−point
communication, however.

The Activatable class provides a set of constructors and a corresponding set of static
exportObject() methods that can be used to register and export server objects, either pre−instantiated or
not. The exportObject() methods are provided for server objects that choose not to extend the
Activatable class. Other static methods are the register() method, which can be used to register an
activatable object without instantiating it, the unexportObject() method, which removes the specified
object from the RMI runtime system, the unregister() method, which removes the activation registration

Chapter 14. The java.rmi.activation Package 299

for the given ActivationID, and the inactive() method, which tells the activation system that the
object associated with the given ActivationID should be inactivated. The getID() method is an
instance method that allows you to get the ActivationID for a server object.

public abstract class Activatable extends java.rmi.server.RemoteServer {

//
Protected Constructors
protected Activatable (ActivationID id, int port

) throws RemoteException;protected Activatable (ActivationID id, int port, java.rmi.server.RMIClientSocketFactory csf,
java.rmi.server.RMIServerSocketFactory ssf

) throws RemoteException;
protected Activatable (String location, MarshalledObject data, boolean restart, int port) throws

ActivationException, RemoteException;

protected Activatable (String location, MarshalledObject data, boolean restart, int port,
java.rmi.server.RMIClientSocketFactory csf, java.rmi.server.RMIServerSocketFactory ssf) throws

ActivationException, RemoteException;//
Public Class Methods
public static Remote exportObject (Remote obj, ActivationID id, int port

) throws RemoteException;public static ActivationID exportObject (Remote obj, String location, MarshalledObject data, boolean
restart, int port

) throws ActivationException, RemoteException;

public static Remote exportObject (Remote obj, ActivationID id, int port,
java.rmi.server.RMIClientSocketFactory csf, java.rmi.server.RMIServerSocketFactory ssf) throws

RemoteException;

public static ActivationID exportObject (Remote obj, String location, MarshalledObject data, boolean
restart, int port, java.rmi.server.RMIClientSocketFactory csf, java.rmi.server.RMIServerSocketFactory
ssf

) throws ActivationException, RemoteException;

public static boolean inactive (ActivationID id) throws UnknownObjectException, ActivationException,

RemoteException;
public static Remote register (ActivationDesc desc) throws UnknownGroupException,

ActivationException, RemoteException;public static boolean unexportObject (Remote obj, boolean force

) throws NoSuchObjectException;public static void unregister (ActivationID id) throws UnknownObjectException, ActivationException,

RemoteException;//
Protected Instance Methods
protected ActivationID getID

 ();
}
Hierarchy:
Object−−>java.rmi.server.RemoteObject(Remote,Serializable)−−>java.rmi.server.RemoteServer−−>Activatable

ActivateFailedException Java 1.2

java.rmi.activation serializable checked
This subclass of RemoteException is thrown to a client when a remote method call fails because the
object could not be activated.

public class ActivateFailedException extends
RemoteException {

//
Public Constructors
public ActivateFailedException (String s

);public ActivateFailedException (String s, Exception ex
);

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 300

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>ActivateFailedException

ActivationDesc Java 1.2

java.rmi.activation serializable
An ActivationDesc represents a description for how a remote object should be activated. It contains an
activation group ID for the object, the class name for the object to be instantiated, a codebase that can be used
to load the class description, if necessary, and a MarshalledObject that contains object−specific
initialization data. Once an ActivationDesc has been created, it can be used to register an object for
activation using the Activatable.register() method.

public final class ActivationDesc implements Serializable {

//
Public Constructorspublic ActivationDesc (String className, String location, MarshalledObject data) throws

ActivationException;
public ActivationDesc (ActivationGroupID groupID, String className, String location,
MarshalledObject data

);
public ActivationDesc (String className, String location, MarshalledObject data, boolean restart)

throws ActivationException;
public ActivationDesc (ActivationGroupID groupID, String className, String location,
MarshalledObject data, boolean restart

);//
Public Instance Methods
public String getClassName

 ();public MarshalledObject getData
 ();public ActivationGroupID getGroupID

 ();public String getLocation
 ();public boolean getRestartMode

 ();
//

Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();

}
Hierarchy: Object−−>ActivationDesc(Serializable)

Passed To: Activatable.register(), ActivationGroup.newInstance(),
ActivationGroup_Stub.newInstance(), ActivationInstantiator.newInstance(),
ActivationSystem.{registerObject(), setActivationDesc()}

Returned By: ActivationSystem.{getActivationDesc(), setActivationDesc()}

ActivationException Java 1.2

java.rmi.activation serializable checked
This is a base class used for all nonremote, activation−related exceptions (i.e., exceptions thrown between
components of the activation system or by the local activation system to clients invoking its methods).

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 301

public class ActivationException extends Exception {

//
Public Constructors
public ActivationException

 ();public ActivationException (String s
);public ActivationException (String s, Throwable ex

);
//

Public methods overriding Throwable
public String getMessage ();

default:null
public void printStackTrace

 ();public void printStackTrace (PrintWriter pw
);public void printStackTrace (PrintStream ps
);

//
Public Instance Fields
public Throwable detail

 ;
}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>ActivationException

Subclasses: UnknownGroupException, UnknownObjectException

Thrown By: Too many methods to list.

ActivationGroup Java 1.2

java.rmi.activation serializable remote
An ActivationGroup represents a group of activatable objects that are meant to run within the same Java
VM. The ActivationGroup serves as a go−between for the ActivationMonitor and the activatable
objects, forwarding messages about the active state of objects in its group. The activeObject() methods
forward a message to the activation system about a newly activated object in the group, while the
inactiveObject() method does the same for deactivated objects.

You can explicitly create your own ActivationGroup using the createGroup() method. If you don't
specify a group ID when you create an ActivationDesc for an activatable object, it is assigned to a
default group. When you create an ActivationGroup, you provide an ActivationGroupDesc object
that describes how the group is to be created (e.g, from what class the group object should be constructed, or
what Properties should be set for the group).

The ActivationGroup class is abstract, so you must provide a concrete implementation in order to create
groups. In addition to satisfying the interface defined in ActivationGroup, the subclass must also provide
a constructor that takes an ActivationGroupID and a MarshalledObject as arguments. This
constructor is invoked by the createGroup() method. A concrete subclass of ActivationGroup must
also implement the newInstance() method inherited from ActivationInstantiator.

public abstract class ActivationGroup extends java.rmi.server.UnicastRemoteObjectimplements
ActivationInstantiator {

//
Protected Constructors
protected ActivationGroup (ActivationGroupID groupID

) throws RemoteException;
//

Public Class Methodspublic static ActivationGroup createGroup (ActivationGroupID id, ActivationGroupDesc
desc, long incarnation) throws ActivationException; synchronized

public static ActivationGroupID currentGroupID (); synchronized

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 302

public static ActivationSystem getSystem () throws ActivationException;
synchronized

public static void setSystem (ActivationSystem system) throws ActivationException; synchronized

//
Public Instance Methodspublic abstract void activeObject (ActivationID id, Remote obj) throws

ActivationException, UnknownObjectException, RemoteException;
public boolean inactiveObject (ActivationID id) throws ActivationException,

UnknownObjectException, RemoteException;//
Methods implementing ActivationInstantiatorpublic abstract MarshalledObject newInstance (ActivationID id, ActivationDesc desc)

throws ActivationException, RemoteException;//
Protected Instance Methodsprotected void activeObject (ActivationID id, MarshalledObject mobj) throws

ActivationException, UnknownObjectException, RemoteException;protected void inactiveGroup
 () throws UnknownGroupException, RemoteException;

}
Hierarchy:
Object−−>java.rmi.server.RemoteObject(Remote,Serializable)−−>java.rmi.server.RemoteServer−−>java.rmi.server.UnicastRemoteObject−−>ActivationGroup(ActivationInstantiator(Remote))

Returned By: ActivationGroup.createGroup()

ActivationGroupDesc Java 1.2

java.rmi.activation serializable
An ActivationGroupDesc contains the information to create a new activation group. It includes the
class that should construct the group object, a codebase that can find the class description, if necessary, and a
MarshalledObject containing any additional initialization information required by the group. In
addition, each constructor allows you to specify a Properties list that overrides any default runtime
properties in the Java VM for the group and a CommandEnvironment object that allows you to customize
the Java executable that starts the group's VM and its command−line arguments.

public final class ActivationGroupDesc implements Serializable {

//
Public Constructorspublic ActivationGroupDesc (java.util.Properties overrides,
ActivationGroupDesc.CommandEnvironment cmd

);
public ActivationGroupDesc (String className, String location, MarshalledObject data,
java.util.Properties overrides, ActivationGroupDesc.CommandEnvironment cmd

);//
Inner Classes

;
//

Public Instance Methods
public String getClassName

 ();public ActivationGroupDesc.CommandEnvironment getCommandEnvironment
 ();public MarshalledObject getData

 ();public String getLocation
 ();public java.util.Properties getPropertyOverrides

 ();
//

Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 303

}
Hierarchy: Object−−>ActivationGroupDesc(Serializable)

Passed To: ActivationGroup.createGroup(), ActivationSystem.{registerGroup(),
setActivationGroupDesc()}

Returned By: ActivationSystem.{getActivationGroupDesc(),
setActivationGroupDesc()}

ActivationGroupDesc.CommandEnvironment Java 1.2

java.rmi.activation serializable
This inner class of ActivationGroupDesc specifies customized startup parameters for the Java VM for
an activation group. It contains a command path, which specifies where to find the Java executable to be run,
and an array of command−line arguments for the Java executable.

public static class ActivationGroupDesc.CommandEnvironment
implements Serializable {

//
Public Constructors
public CommandEnvironment (String cmdpath, String[] argv

);
//

Public Instance Methods
public String[] getCommandOptions

 ();public String getCommandPath
 ();

//
Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();

}
Hierarchy: Object−−>ActivationGroupDesc.CommandEnvironment(Serializable)

Passed To: ActivationGroupDesc.ActivationGroupDesc()

Returned By: ActivationGroupDesc.getCommandEnvironment()

ActivationGroupID Java 1.2

java.rmi.activation serializable
An ActivationGroupID uniquely identifies a group within the activation system. The
ActivationGroup can also use its ActivationGroupID to query for its ActivationSystem, if
needed. An ActivationGroupID is generated for a new group by the
ActivationSystem.registerGroup() method.

public class ActivationGroupID implements Serializable {

//
Public Constructors
public ActivationGroupID (ActivationSystem system

);
//

Public Instance Methods
public ActivationSystem getSystem

 ();
// Public methods overriding Object

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 304

public boolean equals (Object obj
);public int hashCode

 ();
}
Hierarchy: Object−−>ActivationGroupID(Serializable)

Passed To: ActivationDesc.ActivationDesc(),
ActivationGroup.{ActivationGroup(), createGroup()},
ActivationMonitor.inactiveGroup(), ActivationSystem.{activeGroup(),
getActivationGroupDesc(), setActivationGroupDesc(), unregisterGroup()}

Returned By: ActivationDesc.getGroupID(), ActivationGroup.currentGroupID(),
ActivationSystem.registerGroup()

ActivationID Java 1.2

java.rmi.activation serializable
An ActivationID uniquely identifies an activatable object within the activation system. It also contains
an opaque reference to the Activator responsible for activating the object, which it uses when its
activate() method is invoked. An ActivationID is generated for an activatable object by registering
it using the Activatable.register() method (the stub returned by this method is initialized with the
ActivationID) or by using one of the Activatable.exportObject() methods.

public class ActivationID implements Serializable {

//
Public Constructors
public ActivationID (Activator activator

);
//

Public Instance Methodspublic Remote activate (boolean force) throws ActivationException, UnknownObjectException,

RemoteException;//
Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();

}
Hierarchy: Object−−>ActivationID(Serializable)

Passed To: Activatable.{Activatable(), exportObject(), inactive(),
unregister()}, ActivationGroup.{activeObject(), inactiveObject(),
newInstance()}, ActivationGroup_Stub.newInstance(),
ActivationInstantiator.newInstance(), ActivationMonitor.{activeObject(),
inactiveObject()}, ActivationSystem.{getActivationDesc(),
setActivationDesc(), unregisterObject()}, Activator.activate()

Returned By: Activatable.{exportObject(), getID()},
ActivationSystem.registerObject()

ActivationInstantiator Java 1.2

java.rmi.activation remote
This interface represents an object that is responsible for activating objects, using its newInstance()

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 305

method. The arguments to the method provide the ActivationID for the object within the activation
system and the ActivationDesc provided for the object when it was registered, which includes the
information needed to activate the object. The ActivationGroup class implements this interface; concrete
subclasses of ActivationGroup must provide an implementation of the newInstance() method.

public abstract interface ActivationInstantiator extends Remote {

//
Public Instance Methodspublic abstract MarshalledObject newInstance (ActivationID id, ActivationDesc desc) throws

ActivationException, RemoteException;}
Hierarchy: (ActivationInstantiator(Remote))

Implementations: ActivationGroup, ActivationGroup_Stub

Passed To: ActivationSystem.activeGroup()

ActivationMonitor Java 1.2

java.rmi.activation remote
An ActivationMonitor monitors a single activation group. It must be notified by the group when
objects within the group become active or inactive or when the group as a whole becomes inactive. This lets
the ActivationMonitor know when an object needs to be (re)activated, for example.

public abstract interface ActivationMonitor extends Remote {

//
Public Instance Methodspublic abstract void activeObject (ActivationID id, MarshalledObject obj) throws

UnknownObjectException, RemoteException;
public abstract void inactiveGroup (ActivationGroupID id, long incarnation) throws

UnknownGroupException, RemoteException;
public abstract void inactiveObject (ActivationID id) throws UnknownObjectException,

RemoteException;}
Hierarchy: (ActivationMonitor(Remote))

Returned By: ActivationSystem.activeGroup()

ActivationSystem Java 1.2

java.rmi.activation remote
The ActivationSystem is the backbone of the activation runtime. It interacts with Activator objects
to activate objects and groups and ActivationMonitor objects to determine when such activations are
necessary. The ActivationSystem handling a particular Java VM can be obtained using the static
ActivationGroup.getSystem() method.

The methods on the ActivationSystem are largely used by other classes in the activation package to
implement various functions. The Activatable.register() method, for example, registers the
activatable object by calling the registerObject() method on the ActivationSystem.

public abstract interface ActivationSystem extends Remote {

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 306

//
Public Constants
public static final int SYSTEM_PORT ; =1098

//

Public Instance Methodspublic abstract ActivationMonitor activeGroup (ActivationGroupID id, ActivationInstantiator
group, long incarnation) throws UnknownGroupException, ActivationException,

RemoteException;

public abstract ActivationDesc getActivationDesc (ActivationID id) throws ActivationException,

UnknownObjectException, RemoteException;
public abstract ActivationGroupDesc getActivationGroupDesc (ActivationGroupID id) throws

ActivationException, UnknownGroupException, RemoteException;
public abstract ActivationGroupID registerGroup (ActivationGroupDesc desc) throws

ActivationException, RemoteException;
public abstract ActivationID registerObject (ActivationDesc desc) throws ActivationException,

UnknownGroupException, RemoteException;
public abstract ActivationDesc setActivationDesc (ActivationID id, ActivationDesc desc) throws

ActivationException, UnknownObjectException, UnknownGroupException, RemoteException;

public abstract ActivationGroupDesc setActivationGroupDesc (ActivationGroupID id,
ActivationGroupDesc desc) throws ActivationException, UnknownGroupException,

RemoteException;
public abstract void shutdown

 () throws RemoteException;public abstract void unregisterGroup (ActivationGroupID id) throws ActivationException,

UnknownGroupException, RemoteException;
public abstract void unregisterObject (ActivationID id) throws ActivationException,

UnknownObjectException, RemoteException;}
Hierarchy: (ActivationSystem(Remote))

Passed To: ActivationGroup.setSystem(), ActivationGroupID.ActivationGroupID()

Returned By: ActivationGroup.getSystem(), ActivationGroupID.getSystem()

Activator Java 1.2

java.rmi.activation remote
An Activator is responsible for activating remote objects and their groups. Its only method,
activate(), triggers the activation system protocol. The activator first finds the ActivationDesc
matching the given ActivationID and checks the activation information contained in it. If the target group
for the object is not active, the Activator starts its Java VM and activates the group object itself. Finally,
the Activator tells the group to (re)create the object by calling the newInstance() method on the
group.

public abstract interface Activator extends Remote {

//
Public Instance Methodspublic abstract MarshalledObject activate (ActivationID id, boolean force) throws ActivationException,

UnknownObjectException, RemoteException;}
Hierarchy: (Activator(Remote))

Passed To: ActivationID.ActivationID()

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 307

UnknownGroupException Java 1.2

java.rmi.activation serializable checked
This exception is thrown if an unregistered ActivationGroupID is used, either directly as a method
argument or indirectly within an ActivationDesc.

public class UnknownGroupException extends
ActivationException {

//
Public Constructors
public UnknownGroupException (String s

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>ActivationException−−>UnknownGroupException

Thrown By: Activatable.register(), ActivationGroup.inactiveGroup(),
ActivationMonitor.inactiveGroup(), ActivationSystem.{activeGroup(),
getActivationGroupDesc(), registerObject(), setActivationDesc(),
setActivationGroupDesc(), unregisterGroup()}

UnknownObjectException Java 1.2

java.rmi.activation serializable checked
This exception is thrown if an invalid ActivationID is passed as a method argument (e.g., the ID was not
generated by the current ActivationSystem).

public class UnknownObjectException extends
ActivationException {

//
Public Constructors
public UnknownObjectException (String s

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>ActivationException−−>UnknownObjectException

Thrown By: Activatable.{inactive(), unregister()},
ActivationGroup.{activeObject(), inactiveObject()},
ActivationID.activate(), ActivationMonitor.{activeObject(),
inactiveObject()}, ActivationSystem.{getActivationDesc(),
setActivationDesc(), unregisterObject()}, Activator.activate()

13.1. The java.rmi
Package

15. The java.rmi.dgc
Package

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 308

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 14. The java.rmi.activation Package 309

Chapter 15. The java.rmi.dgc Package
The java.rmi.dgc package contains an interface and two classes that support distributed garbage
collection in RMI. Distributed garbage collection is normally handled automatically by the RMI system, so
most applications do not need to use this package. Figure 15−1 shows the class hierarchy for this package.

Figure 15−1. The java.dgc.activation package

DGC Java 1.1

java.rmi.dgc remote PJ1.1(opt)
This interface provides an abstraction for the server side of distributed garbage collection, using the notion of
dirty and clean calls.

public abstract interface DGC extends Remote {

//
Public Instance Methodspublic abstract void clean (java.rmi.server.ObjID[] ids, long sequenceNum, VMID vmid, boolean strong)

throws RemoteException;
public abstract Lease dirty (java.rmi.server.ObjID[] ids, long sequenceNum, Lease lease) throws

RemoteException;}
Hierarchy: (DGC(Remote))

Lease Java 1.1

java.rmi.dgc serializable PJ1.1(opt)
This class encapsulates a unique virtual machine identifier and a lease duration that manages garbage
collection of distributed objects.

public final class Lease implements
Serializable {

//
Public Constructors
public Lease (VMID id, long duration

);
//

Public Instance Methods
public long getValue

 ();public VMID getVMID
 ();

}

Chapter 15. The java.rmi.dgc Package 310

Hierarchy: Object−−>Lease(Serializable)

Passed To: DGC.dirty()

Returned By: DGC.dirty()

VMID Java 1.1

java.rmi.dgc serializable PJ1.1(opt)
This class represents a virtual machine identifier that is unique across all Java virtual machines.

public final class VMID implements Serializable
{

//
Public Constructors
public VMID

 ();
//

Public Class Methods
public static boolean isUnique (); constant

//
Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();public String toString

 ();
}
Hierarchy: Object−−>VMID(Serializable)

Passed To: DGC.clean(), Lease.Lease()

Returned By: Lease.getVMID()

14.1. The
java.rmi.activation
Package

16. The java.rmi.registry
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 15. The java.rmi.dgc Package 311

Chapter 16. The java.rmi.registry Package
The java.rmi.registry package contains classes that provide an interface and an implementation for
the various elements of the RMI object naming registry. Figure 16−1 shows the class hierarchy for this
package.

Figure 16−1. The java.rmi.registry package

LocateRegistry Java 1.1

java.rmi.registry PJ1.1(opt)
This class provides a low−level interface to an RMI registry service, residing either on the local host or on a
remote server. On an object lookup, the Naming service parses the host and port from the remote object URL
and uses methods of LocateRegistry to connect to the remote registry. The various getRegistry()
methods provide the means to get a reference to the local registry or a stub to a remote registry running on a
given host and port. The createRegistry() methods create a registry running on the local host on the
given port number. The second form of the createRegistry() method allows you to specify custom
socket factories the registry uses when it communicates with clients and server objects.

public final class LocateRegistry {

// No Constructor

//
Public Class Methods
public static Registry createRegistry (int port

) throws RemoteException;

1.2
public static Registry createRegistry (int port, java.rmi.server.RMIClientSocketFactory csf,
java.rmi.server.RMIServerSocketFactory ssf

) throws RemoteException;public static Registry getRegistry
 () throws RemoteException;public static Registry getRegistry (String host

) throws RemoteException;public static Registry getRegistry (int port
) throws RemoteException;public static Registry getRegistry (String host, int port

) throws RemoteException;

1.2
public static Registry getRegistry (String host, int port, java.rmi.server.RMIClientSocketFactory csf)

throws RemoteException;}

Registry Java 1.1

java.rmi.registry remote PJ1.1(opt)
The Registry is an interface to the RMI object registry that runs on every node in a distributed RMI
system. While the Naming interface can look up objects stored in any registry on the network, a Registry
operates on a single registry on a single host. URL object names are passed into methods on the Naming

Chapter 16. The java.rmi.registry Package 312

service, which finds the right Registry stub using the LocateRegistry class, and then calls the
lookup() method on the remote (or local) Registry to get a stub for the remote object. A similar
sequence of calls takes place with the local Registry when bind(), rebind(), or unbind() are
called on the Naming interface.

The Registry stores objects under unique names. An object is assigned to a name in the Registry using
its bind() method. The object assigned to a particular name can be changed using the rebind() method.
Objects are removed from the Registry using the unbind() method. The lookup() method finds
objects by name in the Registry, while the list() method gets a list of the names of all objects currently
in the Registry.

public abstract interface Registry extends Remote {

//
Public Constants
public static final int REGISTRY_PORT ; =1099

//
Public Instance Methodspublic abstract void bind (String name, Remote obj) throws RemoteException,

AlreadyBoundException, AccessException;public abstract String[] list

 () throws RemoteException, AccessException;public abstract Remote lookup (String name) throws RemoteException, NotBoundException,

AccessException;
public abstract void rebind (String name, Remote obj) throws RemoteException,

AccessException;
public abstract void unbind (String name) throws RemoteException, NotBoundException,

AccessException;}
Hierarchy: (Registry(Remote))

Returned By: LocateRegistry.{createRegistry(), getRegistry()},
RegistryHandler.{registryImpl(), registryStub()}

RegistryHandler Java 1.1; Deprecated in Java 1.2

java.rmi.registry PJ1.1(opt)
This interface is mainly of interest to implementors of RMI registry services. It defines the interface to the
internal registry−handling implementation.

public abstract interface RegistryHandler {

// Deprecated Public Methods

public abstract Registry registryImpl (int port
) throws RemoteException;

#
public abstract Registry registryStub (String host, int port) throws RemoteException,

java.rmi.UnknownHostException;}

15.1. The java.rmi.dgc
Package

17. The java.rmi.server
Package

Preface (Java Enterprise in a Nutshell)

Chapter 16. The java.rmi.registry Package 313

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 16. The java.rmi.registry Package 314

Chapter 17. The java.rmi.server Package
The java.rmi.server package contains the classes that develop server implementations of remote
objects. Figure 17−1 shows the class hierarchy for this package.

The RemoteServer class in this package acts as the base class for all RMI server objects. A single subclass
of RemoteServer, UnicastRemoteObject, is provided in this package. It implements a nonpersistent,
point−to−point object communication scheme. Other subclasses of RemoteServer could be written to
implement multicast object communication, replicated objects, etc.

This package also contains several Exception subclasses relevant to the server implementation of a remote
object.

Figure 17−1. The java.rmi.server package

ExportException Java 1.1

java.rmi.server serializable checked PJ1.1(opt)
This RemoteException is thrown if an attempt is made to export a remote object on a port already in use.

Chapter 17. The java.rmi.server Package 315

public class ExportException extends
RemoteException {

//
Public Constructors
public ExportException (String s

);public ExportException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>ExportException

Subclasses: SocketSecurityException

LoaderHandler Java 1.1; Deprecated in Java 1.2

java.rmi.server PJ1.1(opt)
This defines the interface to the internal handler used by the RMIClassLoader to load classes over the
network.

public abstract interface LoaderHandler {

//
Public Constants
public static final String packagePrefix ; ="sun.rmi.server"

// Deprecated Public Methods

public abstract Object getSecurityContext (ClassLoader loader
);

#
public abstract Class loadClass (String name) throws

java.net.MalformedURLException, ClassNotFoundException;
#

public abstract Class loadClass (java.net.URL codebase, String name) throws

java.net.MalformedURLException, ClassNotFoundException;}

LogStream Java 1.1; Deprecated in Java 1.2

java.rmi.server PJ1.1(opt)
This class provides the server with an output stream to an error log. A LogStream cannot be created
directly by an application. Instead, a handle on a LogStream is obtained by calling the static log() method
with the name of the desired log. If the named log doesn't exist, the default log is returned. The default
PrintStream creates new LogStream objects can be retrieved through the getDefaultStream()
method and set using the setDefaultStream() method.

public class LogStream extends PrintStream {

// No Constructor

//
Public Constants
public static final int BRIEF ;

=10
public static final int SILENT ;

=0
public static final int VERBOSE ; =20

// Deprecated Public Methods

public static PrintStream getDefaultStream (); synchronized

public java.io.OutputStream getOutputStream (); synchronized

public static LogStream log (String name
);

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 316

public static int parseLevel (String s
);

public static void setDefaultStream (PrintStream newDefault); synchronized

public void setOutputStream (java.io.OutputStream out); synchronized

public String toString (); Overrides:Object

public void write (int b); Overrides:PrintStream

public void write (byte[] b, int off, int len); Overrides:PrintStream

}
Hierarchy:
Object−−>java.io.OutputStream−−>FilterOutputStream−−>PrintStream−−>LogStream

Returned By: LogStream.log()

ObjID Java 1.1

java.rmi.server serializable PJ1.1(opt)
An ObjID is used on an object server to uniquely identify exported remote objects. It is used in an RMI
server during distributed garbage collection.

The equals() method is overridden from Object to return true only if the objects identified by the two
ObjID values are equal. The ObjID class also has read() and write() methods that marshal and
unmarshal an ObjID from I/O streams.

public final class ObjID implements Serializable {

//
Public Constructors
public ObjID

 ();public ObjID (int num
);

// Public Constants

1.2 public static final int ACTIVATOR_ID ;
=1

public static final int DGC_ID ;
=2

public static final int REGISTRY_ID ; =0

//
Public Class Methods
public static ObjID read (ObjectInput in

) throws IOException;
//

Public Instance Methods
public void write (ObjectOutput out

) throws IOException;
//

Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();public String toString

 ();
}
Hierarchy: Object−−>ObjID(Serializable)

Passed To: java.rmi.dgc.DGC.{clean(), dirty()}

Returned By: ObjID.read()

Operation Java 1.1; Deprecated in Java 1.2

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 317

java.rmi.server PJ1.1(opt)
An Operation contains a description of a method on a remote object. This class is used only in the stub
classes generated by the rmic compiler. The Java 2 rmic compiler no longer uses the Operation class, so it is
deprecated, but still present in the Java 2 SDK 1.2 to support RMI stubs generated by the JDK 1.1 rmic
compiler.

public class Operation {

// Public Constructors

public Operation (String op
);

// Deprecated Public Methods

public String getOperation
 ();

public String toString (); Overrides:Object

}
Passed To: RemoteRef.newCall()

Returned By: Skeleton.getOperations()

RemoteCall Java 1.1; Deprecated in Java 1.2

java.rmi.server PJ1.1(opt)
RemoteCall is the interface used by stubs and skeletons to perform remote method calls. The
getInputStream() and getOutputStream() methods return streams that can marshal arguments, or
return values and then unmarshal them on the other end of the method call.

public abstract interface RemoteCall {

// Deprecated Public Methods

public abstract void done
 () throws IOException;

public abstract void executeCall
 () throws Exception;

public abstract ObjectInput getInputStream
 () throws IOException;

public abstract ObjectOutput getOutputStream
 () throws IOException;

#
public abstract ObjectOutput getResultStream (boolean success) throws IOException,

StreamCorruptedException;# public abstract void releaseInputStream
 () throws IOException;

public abstract void releaseOutputStream
 () throws IOException;

}
Passed To: RemoteRef.{done(), invoke()}, Skeleton.dispatch()

Returned By: RemoteRef.newCall()

RemoteObject Java 1.1

java.rmi.server serializable remote PJ1.1(opt)
The RemoteObject class reimplements key Object methods for remote objects. It also maintains a
RemoteRef object, which is a handle to the actual remote object. The equals() implementation returns
true only if the two referenced remote objects are equal. The hashCode() method is implemented so that

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 318

every remote stub that refers to the same remote object has the same hash code.

public abstract class RemoteObject implements Remote, Serializable {

//
Protected Constructors
protected RemoteObject

 ();protected RemoteObject (RemoteRef newref
);

// Public Class Methods

1.2 public static Remote toStub (Remote obj
) throws NoSuchObjectException;

// Public Instance Methods

1.2 public RemoteRef getRef
 ();

//
Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();public String toString

 ();
//

Protected Instance Fields
protected transient RemoteRef ref

 ;
}
Hierarchy: Object−−>RemoteObject(Remote,Serializable)

Subclasses: RemoteServer, RemoteStub

Passed To: RemoteRef.newCall()

RemoteRef Java 1.1

java.rmi.server serializable PJ1.1(opt)
A RemoteRef is a handle on the object that implements a remote object reference. Each RemoteObject
contains a RemoteRef that acts as its interface to the actual remote object it represents. Normally, you don't
need to interact directly with RemoteRef objects from your application code. Rather, application code
interacts with RemoteObject objects, which use their internal RemoteRef objects to perform remote
method invocations.

The newCall() method creates a call object for invoking a remote method on the referenced object. The
invoke() method actually executes a remote−method invocation. If a remote method returns successfully,
the done() method is called to clean up the connection to the remote object.

The remoteEquals(), remoteHashCode(), and remoteToString() methods on RemoteRef
are used by RemoteObject to implement the remote versions of the equals(), hashCode(), and
toString() methods.

public abstract interface RemoteRef extends Externalizable {

//
Public Constants
public static final String packagePrefix ; ="sun.rmi.server"

1.2public static final long serialVersionUID ; =3632638527362204081

//
Public Instance Methods
public abstract String getRefClass (ObjectOutput out

);

1.2
public abstract Object invoke (Remote obj, java.lang.reflect.Method method,
Object[] params, long opnum

) throws Exception;

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 319

public abstract boolean remoteEquals (RemoteRef obj
);public abstract int remoteHashCode

 ();public abstract String remoteToString
 ();

// Deprecated Public Methods

public abstract void done (RemoteCall call
) throws RemoteException;

public abstract void invoke (RemoteCall call
) throws Exception;

#
public abstract RemoteCall newCall (RemoteObject obj, Operation[] op, int
opnum, long hash

) throws RemoteException;}
Hierarchy: (RemoteRef(Externalizable(Serializable)))

Implementations: ServerRef

Passed To: java.rmi.activation.ActivationGroup_Stub.ActivationGroup_Stub(),
RemoteObject.RemoteObject(), RemoteRef.remoteEquals(),
RemoteServer.RemoteServer(), RemoteStub.{RemoteStub(), setRef()}

Returned By: RemoteObject.getRef()

Type Of: RemoteObject.ref

RemoteServer Java 1.1

java.rmi.server serializable remote PJ1.1(opt)
This class acts as an abstract base class for all remote object server implementations. The intent is for
subclasses to implement the semantics of the remote object (e.g., multicast remote objects, replicated objects).
As of JDK 1.1 and later, the only concrete sub−class provided is UnicastRemoteObject, which
implements a nonreplicated remote object. The java.activation.Activatable class is a new
abstract subclass in Java 2 that represents a server object that is persistent and activatable.

The getClientHost() method returns the name of the host for the client being served in the current
thread. The getLog() and setLog() methods access the call log for a RemoteServer.

public abstract class RemoteServer extends RemoteObject {

//
Protected Constructors
protected RemoteServer

 ();protected RemoteServer (RemoteRef ref
);

//
Public Class Methods
public static String getClientHost

 () throws ServerNotActiveException;public static PrintStream getLog
 ();public static void setLog (java.io.OutputStream out

);
}
Hierarchy: Object−−>RemoteObject(Remote,Serializable)−−>RemoteServer

Subclasses: java.rmi.activation.Activatable, UnicastRemoteObject

RemoteStub Java 1.1

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 320

java.rmi.server serializable remote PJ1.1(opt)
All client stub classes generated by the rmic compiler are derived from this abstract class. A client receives a
RemoteStub when it successfully looks up a remote object through the RMI registry. A client stub serves as
a client interface to the remote object it references, converting method calls on its interface to remote method
invocations on the remote object implementation.

public abstract class RemoteStub extends RemoteObject {

//
Protected Constructors
protected RemoteStub

 ();protected RemoteStub (RemoteRef ref
);

// Deprecated Protected Methods

protected static void setRef (RemoteStub stub, RemoteRef ref
);

}
Hierarchy: Object−−>RemoteObject(Remote,Serializable)−−>RemoteStub

Subclasses: java.rmi.activation.ActivationGroup_Stub

Passed To: RemoteStub.setRef()

Returned By: ServerRef.exportObject(), UnicastRemoteObject.exportObject()

RMIClassLoader Java 1.1

java.rmi.server PJ1.1(opt)
This class loads classes over the network using URLs. The class has two loadClass() methods, one for
loading a class from a given (absolute) URL and another for loading a class from a given (relative) URL,
starting at a particular codebase.

public class RMIClassLoader {

// No Constructor

// Public Class Methods

1.2public static String getClassAnnotation (Class cl

);public static Class loadClass (java.net.URL codebase, String name) throws

java.net.MalformedURLException, ClassNotFoundException;
1.2

public static Class loadClass (String codebase, String name) throws java.net.MalformedURLException,

ClassNotFoundException;// Deprecated Public Methods

public static Object getSecurityContext (ClassLoader loader
);

#
public static Class loadClass (String name) throws java.net.MalformedURLException,

ClassNotFoundException;}

RMIClientSocketFactory Java 1.2

java.rmi.server
This interface represents a source for client sockets that is used by the RMI internals to make client

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 321

connections during RMI calls. It is possible to provide a custom socket factory to be used with a particular
remote object, by using the appropriate constructors on the UnicastRemoteObject or Activatable
classes, or, with a particular registry, by using the appropriate LocateRegistry.createRegistry()
method. This can be useful in situations where a firewall lies between the client and the server object or
remote registry, and specialized sockets are needed to negotiate the firewall protocol.

The RMIClientSocketFactory associated with a remote object is used by any remote stub references to
establish connections with the server object.

public abstract interface RMIClientSocketFactory {

//
Public Instance Methods
public abstract java.net.Socket createSocket (String host, int port

) throws IOException;
}
Implementations: RMISocketFactory

Passed To: java.rmi.activation.Activatable.{Activatable(), exportObject()},
java.rmi.registry.LocateRegistry.{createRegistry(), getRegistry()},
UnicastRemoteObject.{exportObject(), UnicastRemoteObject()}

RMIFailureHandler Java 1.1

java.rmi.server PJ1.1(opt)
The failure() method on the current RMIFailureHandler is called when the RMI communication
system fails to create a Socket or ServerSocket. The current handler is set using the
setFailureHandler() method on RMISocketFactory. The failure() method returns a
boolean value that indicates whether the RMI system should retry the socket connection.

public abstract interface RMIFailureHandler {

//
Public Instance Methods
public abstract boolean failure (Exception ex

);
}
Passed To: RMISocketFactory.setFailureHandler()

Returned By: RMISocketFactory.getFailureHandler()

RMIServerSocketFactory Java 1.2

java.rmi.server
This interface represents a source for server sockets that is used by the RMI internals to make client
connections during RMI calls. It is possible to provide a custom socket factory to be used with a particular
remote object, by using the appropriate constructors on the UnicastRemoteObject or Activatable
classes, or, with a particular registry, by using the appropriate LocateRegistry.createRegistry()
method. This can be useful in situations where a firewall lies between the client and the server object or the
remote registry, and specialized sockets are needed to negotiate the firewall protocol.

The RMIServerSocketFactory creates ServerSocket objects that are used by remote objects to
accept client connections.

public abstract interface RMIServerSocketFactory {

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 322

//
Public Instance Methods
public abstract java.net.ServerSocket createServerSocket (int port

) throws IOException;
}
Implementations: RMISocketFactory

Passed To: java.rmi.activation.Activatable.{Activatable(), exportObject()},
java.rmi.registry.LocateRegistry.createRegistry(),
UnicastRemoteObject.{exportObject(), UnicastRemoteObject()}

RMISocketFactory Java 1.1

java.rmi.server PJ1.1(opt)
This abstract class provides an interface for the RMI internals to use to create sockets for both client and
server communications. It implements both the RMIClientSocketFactory and the
RMIServerSocketFactory interfaces, so it can create either Socket objects for clients or
ServerSocket objects for servers. The factory maintains a RMIFailureHandler to deal with failures
encountered while attempting to create sockets. If an error is encountered while creating a socket, the
failure() method on the current RMIFailureHandler is called. If the return value is true, the
RMISocketFactory attempts the socket creation again; otherwise the factory gives up and throws an
IOException.

Client sockets are created using the createSocket() method (inherited from
RMIClientSocketFactory), while server sockets are created using the createServerSocket()
method (inherited from RMIServerSocketFactory). The current RMISocketFactory for the
runtime system can be accessed using the static getSocketFactory() and setSocketFactory()
methods. The RMIFailureHandler for the current factory is accessed using the
getFailureHandler() and setFailureHandler() methods.

public abstract class RMISocketFactory implements RMIClientSocketFactory, RMIServerSocketFactory {

//
Public Constructors
public RMISocketFactory

 ();
// Public Class Methods

1.2public static RMISocketFactory getDefaultSocketFactory ();
synchronized

public static RMIFailureHandler getFailureHandler ();
synchronized

public static RMISocketFactory getSocketFactory ();
synchronized

public static void setFailureHandler (RMIFailureHandler fh);
synchronized

public static void setSocketFactory (RMISocketFactory fac) throws IOException; synchronized

//
Methods implementing RMIClientSocketFactory
public abstract java.net.Socket createSocket (String host, int port

) throws IOException;
//

Methods implementing RMIServerSocketFactory
public abstract java.net.ServerSocket createServerSocket (int port

) throws IOException;
}
Hierarchy:
Object−−>RMISocketFactory(RMIClientSocketFactory,RMIServerSocketFactory)

Passed To: RMISocketFactory.setSocketFactory()

Returned By: RMISocketFactory.{getDefaultSocketFactory(), getSocketFactory()}

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 323

ServerCloneException Java 1.1

java.rmi.server serializable checked PJ1.1(opt)
This exception is thrown if an attempt to clone a RemoteServer object fails while the clone is being
exported. The nested exception is the RemoteException that was thrown during the cloning operation.

public class ServerCloneException extends
CloneNotSupportedException {

//
Public Constructors
public ServerCloneException (String s

);public ServerCloneException (String s, Exception ex
);

//
Public methods overriding Throwable
public String getMessage

 ();
1.2 public void printStackTrace

 ();
1.2 public void printStackTrace (PrintStream ps

);
1.2 public void printStackTrace (PrintWriter pw

);
//

Public Instance Fields
public Exception detail

 ;
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>CloneNotSupportedException−−>ServerCloneException

ServerNotActiveException Java 1.1

java.rmi.server serializable checked PJ1.1(opt)
This exception is thrown if the getClientHost() method is called on a RemoteServer when the
server isn't handling a remote method call.

public class ServerNotActiveException extends
Exception {

//
Public Constructors
public ServerNotActiveException

 ();public ServerNotActiveException (String s
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>ServerNotActiveException

Thrown By: RemoteServer.getClientHost(), ServerRef.getClientHost()

ServerRef Java 1.1

java.rmi.server serializable PJ1.1(opt)
This is an interface to the server−side implementation of a remote object. The getClientHost() method
returns the name of the host whose remote method call is currently being serviced by the object
implementation. If the server object is not servicing a remote method call when getClientHost() is
called, a ServerNotActiveException is thrown. Using the data provided, the exportObject()

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 324

method either creates or finds a client stub for the given object implementation.

public abstract interface ServerRef extends RemoteRef {

// Public Constants

1.2public static final long serialVersionUID ; =−4557750989390278438

//
Public Instance Methodspublic abstract RemoteStub exportObject (Remote obj, Object data) throws

RemoteException;public abstract String getClientHost
 () throws ServerNotActiveException;

}
Hierarchy: (ServerRef(RemoteRef(Externalizable(Serializable))))

Skeleton Java 1.1; Deprecated in Java 1.2

java.rmi.server PJ1.1(opt)
Server−side skeleton classes generated by the rmic compiler implement the Skeleton interface. The
dispatch() method invokes a method on the server object, and getOperations() returns an array of
Operation objects that represent the methods available on the server object.

The Skeleton interface is used in classes generated by the rmic compiler in JDK 1.1. The Java 2 SDK 1.2
rmic compiler doesn't use the Skeleton interface for its skeleton classes, so it has been deprecated as of
Java 2.

public abstract interface Skeleton {

// Deprecated Public Methods

public abstract void dispatch (Remote obj, RemoteCall theCall, int opnum, long hash
) throws Exception;

public abstract Operation[] getOperations
 ();

}

SkeletonMismatchException
Java 1.1; Deprecated in Java

1.2

java.rmi.server serializable checked PJ1.1(opt)
This RemoteException is thrown during a remote method call if a mismatch is detected on the server
between the hash code of the client stub and the hash code of the server implementation. It is usually received
by the client wrapped in a ServerException.

public class SkeletonMismatchException extends
RemoteException {

// Public Constructors

public SkeletonMismatchException (String s
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>SkeletonMismatchException

SkeletonNotFoundException
Java 1.1; Deprecated in Java

1.2

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 325

java.rmi.server serializable checked PJ1.1(opt)
This RemoteException is thrown during the export of a remote object, if the corresponding skeleton class
for the object either cannot be found or loaded for some reason.

public class SkeletonNotFoundException extends
RemoteException {

//
Public Constructors
public SkeletonNotFoundException (String s

);public SkeletonNotFoundException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>SkeletonNotFoundException

SocketSecurityException Java 1.1

java.rmi.server serializable checked PJ1.1(opt)
This exception is a subclass of ExportException that is thrown if a socket security violation is
encountered while attempting to export a remote object. An example would be an attempt to export an object
on an illegal port.

public class SocketSecurityException extends
ExportException {

//
Public Constructors
public SocketSecurityException (String s

);public SocketSecurityException (String s, Exception ex
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>RemoteException−−>ExportException−−>SocketSecurityException

UID Java 1.1

java.rmi.server serializable PJ1.1(opt)
A UID is an identifier that is unique with respect to a particular host. UID objects are used internally by
RMI's distributed garbage collector and are generally not dealt with directly in application code.

public final class UID implements Serializable {

//
Public Constructors
public UID

 ();public UID (short num
);

//
Public Class Methods
public static UID read (DataInput in

) throws IOException;
//

Public Instance Methods
public void write (DataOutput out

) throws IOException;
//

Public methods overriding Object
public boolean equals (Object obj

);

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 326

public int hashCode
 ();public String toString

 ();
}
Hierarchy: Object−−>UID(Serializable)

Returned By: UID.read()

UnicastRemoteObject Java 1.1

java.rmi.server serializable remote PJ1.1(opt)
This class represents a nonreplicated remote object, or in other words, an object that lives as a singular
implementation on a server, with a point−to−point connection to each client through reference stubs. This
remote server class does not implement persistence, so client references to the object are valid only during the
lifetime of the object.

public class UnicastRemoteObject extends RemoteServer {

//
Protected Constructors
protected UnicastRemoteObject

 () throws RemoteException;
1.2protected UnicastRemoteObject (int port

) throws RemoteException;

1.2
protected UnicastRemoteObject (int port, RMIClientSocketFactory csf, RMIServerSocketFactory ssf)

throws RemoteException;//
Public Class Methods
public static RemoteStub exportObject (Remote obj

) throws RemoteException;
1.2public static Remote exportObject (Remote obj, int port

) throws RemoteException;

1.2
public static Remote exportObject (Remote obj, int port, RMIClientSocketFactory csf,
RMIServerSocketFactory ssf

) throws RemoteException;1.2public static boolean unexportObject (Remote obj, boolean force
) throws NoSuchObjectException;

//
Public methods overriding Object
public Object clone

 () throws CloneNotSupportedException;
}
Hierarchy:
Object−−>RemoteObject(Remote,Serializable)−−>RemoteServer−−>UnicastRemoteObject

Subclasses: java.rmi.activation.ActivationGroup

Unreferenced Java 1.1

java.rmi.server PJ1.1(opt)
If a server object implements this interface, the unreferenced() method is called by the RMI runtime
system when the last client reference to a remote object is dropped. A remote object shouldn't be garbage
collected until all its remote and local references are gone. So the unreferenced() method isn't a trigger
for an object to be finalized, but rather a chance for the remote object to respond appropriately when its client
reference count goes to zero. The unreferenced object could, for example, start a timer countdown to move the
object to persistent storage after a given idle time with respect to remote clients.

public abstract interface Unreferenced {

// Public Instance Methods

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 327

public abstract void unreferenced
 ();

}

15.1. The java.rmi.registry
Package

18. The java.sql Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 17. The java.rmi.server Package 328

Chapter 18. The java.sql Package
The java.sql package contains the entire JDBC API that sends SQL (Structured Query Language)
statements to relational databases and retrieves the results of executing those SQL statements. Figure 18−1
shows the class hierarchy of this package. The JDBC 1.0 API became part of the core Java API in Java 1.1.
The JDBC 2.0 API supports a variety of new features and is part of the Java 2 platform.

The Driver interface represents a specific JDBC implementation for a particular database system.
Connection represents a connection to a database. The Statement, PreparedStatement, and
CallableStatement interfaces support the execution of various kinds of SQL statements. ResultSet
is a set of results returned by the database in response to a SQL query. The ResultSetMetaData interface
provides metadata about a result set, while DatabaseMetaData provides metadata about the database as a
whole.

Figure 18−1. The java.sql Package

Array Java 1.2

java.sql
Provides an interface to SQL ARRAY objects. Each getArray() method returns a standard Java array of
objects of the type returned by getBaseType(). Two getArray() methods support a
java.util.Map parameter that can customize the SQL−type−to−Java−object mapping. The contents of the
array can also be returned as a ResultSet using the various getResultSet() methods.

public abstract interface Array {

//
Public Instance Methods
public abstract Object getArray

 () throws SQLException;public abstract Object getArray (java.util.Map map
) throws SQLException;public abstract Object getArray (long index, int count

) throws SQLException;public abstract Object getArray (long index, int count, java.util.Map map
) throws SQLException;public abstract int getBaseType

 () throws SQLException;public abstract String getBaseTypeName
 () throws SQLException;

Chapter 18. The java.sql Package 329

public abstract ResultSet getResultSet
 () throws SQLException;public abstract ResultSet getResultSet (java.util.Map map

) throws SQLException;public abstract ResultSet getResultSet (long index, int count
) throws SQLException;public abstract ResultSet getResultSet (long index, int count, java.util.Map map

) throws SQLException;
}
Passed To: PreparedStatement.setArray(), SQLOutput.writeArray(),
javax.sql.RowSet.setArray()

Returned By: CallableStatement.getArray(), ResultSet.getArray(),
SQLInput.readArray()

BatchUpdateException Java 1.2

java.sql serializable checked
This exception, which is a subclass of SQLException, is thrown when a batch update operation fails. The
exception includes a method, getUpdateCounts(), that returns an array of int values, where the values
correspond to the update counts for the successful update operations in the batch.

public class BatchUpdateException extends SQLException {

//
Public Constructors
public BatchUpdateException

 ();public BatchUpdateException (int[] updateCounts
);public BatchUpdateException (String reason, int[] updateCounts

);public BatchUpdateException (String reason, String SQLState, int[] updateCounts

);public BatchUpdateException (String reason, String SQLState, int vendorCode, int[]
updateCounts

);//
Public Instance Methods
public int[] getUpdateCounts (); default:null

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>SQLException−−>BatchUpdateException

Blob Java 1.2

java.sql
The Blob interface encapsulates a SQL BLOB field. The interface actually contains a pointer to the BLOB
within the database, rather than the complete (and potentially very large) object. Data can be retrieved via a
java.io.InputStream returned by getInputStream() or as an array of bytes returned by
getBytes(). The length() method returns the number of bytes in the BLOB. The position()
methods scan the contents of the Blob for a particular content sequence, represented by either another Blob
object or a byte array. (The position() methods do not provide the current read−index within the BLOB).

public abstract interface Blob {

//
Public Instance Methods
public abstract java.io.InputStream getBinaryStream

 () throws SQLException;public abstract byte[] getBytes (long pos, int length
) throws SQLException;public abstract long length

 () throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 330

public abstract long position (byte[] pattern, long start
) throws SQLException;public abstract long position (Blob pattern, long start

) throws SQLException;
}
Passed To: Blob.position(), PreparedStatement.setBlob(),
SQLOutput.writeBlob(), javax.sql.RowSet.setBlob()

Returned By: CallableStatement.getBlob(), ResultSet.getBlob(),
SQLInput.readBlob()

CallableStatement Java 1.1

java.sql PJ1.1(opt)
The CallableStatement interface allows programs to access SQL stored procedures within the
database. You create a CallableStatement with the prepareCall() method of Connection.
Question−mark characters (?) are used as placeholders for input and output values in the syntax that calls
stored procedures:

{? = call procedure_name[(?[,?...])]}
{call procedure_name[(?[,?...])]}

Parameters are numbered sequentially starting from 1. Input parameters are set with the same setXXX()
methods as in a PreparedStatement. Output parameters must be registered using the
registerOutParameter() methods, and may be retrieved after the statement executes using the
getXXX() methods, which are identical to those in ResultSet. To execute a statement, you call
execute(), which is inherited from PreparedStatement.

public abstract interface CallableStatement extends PreparedStatement {

// Public Instance Methods

1.2public abstract java.sql.Array getArray (int i
) throws SQLException;

1.2public abstract java.math.BigDecimal getBigDecimal (int parameterIndex
) throws SQLException;

1.2public abstract Blob getBlob (int i
) throws SQLException;public abstract boolean getBoolean (int parameterIndex

) throws SQLException;public abstract byte getByte (int parameterIndex
) throws SQLException;public abstract byte[] getBytes (int parameterIndex

) throws SQLException;
1.2public abstract Clob getClob (int i

) throws SQLException;public abstract java.sql.Date getDate (int parameterIndex
) throws SQLException;

1.2public abstract java.sql.Date getDate (int parameterIndex, java.util.Calendar cal
) throws SQLException;public abstract double getDouble (int parameterIndex

) throws SQLException;public abstract float getFloat (int parameterIndex
) throws SQLException;public abstract int getInt (int parameterIndex

) throws SQLException;public abstract long getLong (int parameterIndex
) throws SQLException;public abstract Object getObject (int parameterIndex

) throws SQLException;
1.2public abstract Object getObject (int i, java.util.Map map

) throws SQLException;
1.2public abstract Ref getRef (int i

) throws SQLException;public abstract short getShort (int parameterIndex
) throws SQLException;public abstract String getString (int parameterIndex

) throws SQLException;public abstract Time getTime (int parameterIndex
) throws SQLException;

1.2public abstract Time getTime (int parameterIndex, java.util.Calendar cal
) throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 331

public abstract Timestamp getTimestamp (int parameterIndex
) throws SQLException;

1.2
public abstract Timestamp getTimestamp (int parameterIndex, java.util.Calendar cal) throws

SQLException;public abstract void registerOutParameter (int parameterIndex, int sqlType
) throws SQLException;

1.2
public abstract void registerOutParameter (int paramIndex, int sqlType, String typeName) throws

SQLException;
public abstract void registerOutParameter (int parameterIndex, int sqlType, int scale) throws

SQLException;public abstract boolean wasNull
 () throws SQLException;

// Deprecated Public Methods

#
public abstract java.math.BigDecimal getBigDecimal (int parameterIndex, int scale) throws

SQLException;}
Hierarchy: (CallableStatement(PreparedStatement(Statement)))

Returned By: java.sql.Connection.prepareCall()

Clob Java 1.2

java.sql
The Clob interface encapsulates a SQL CLOB field. The interface actually contains a pointer to the CLOB
within the database, rather than the complete character string. Data is retrieved via getAsciiStream(),
which returns an InputStream, or via getCharacterStream(), which returns a Reader. The
getSubString() method returns a specific substring within the CLOB, while the position() methods
search the CLOB for a pattern and return the index of the pattern's first appearance.

public abstract interface Clob {

//
Public Instance Methods
public abstract java.io.InputStream getAsciiStream

 () throws SQLException;public abstract Reader getCharacterStream
 () throws SQLException;public abstract String getSubString (long pos, int length

) throws SQLException;public abstract long length
 () throws SQLException;public abstract long position (Clob searchstr, long start

) throws SQLException;public abstract long position (String searchstr, long start
) throws SQLException;

}
Passed To: Clob.position(), PreparedStatement.setClob(),
SQLOutput.writeClob(), javax.sql.RowSet.setClob()

Returned By: CallableStatement.getClob(), ResultSet.getClob(),
SQLInput.readClob()

Connection Java 1.1

java.sql PJ1.1(opt)
The Connection interface represents an individual database connection. The object includes factory
methods for Statement, PreparedStatement, and CallableStatement objects and a number of
transaction control methods (setAutoCommit(), commit(), rollback(), getAutoCommit(),

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 332

setTransactionIsolation(), and getTransactionIsolation()). Other methods provide
information about the database. The most important of these is getMetaData(), which returns a
DatabaseMetaData object. The getWarnings() method returns any warnings pending for this
connection.

Connection objects are created with the static DriverManager.getConnection() method.

public abstract interface Connection {

//
Public Constants
public static final int TRANSACTION_NONE ;

=0
public static final int TRANSACTION_READ_COMMITTED ;

=2
public static final int TRANSACTION_READ_UNCOMMITTED ;

=1
public static final int TRANSACTION_REPEATABLE_READ ;

=4
public static final int TRANSACTION_SERIALIZABLE ; =8

//
Public Instance Methods
public abstract void clearWarnings

 () throws SQLException;public abstract void close
 () throws SQLException;public abstract void commit

 () throws SQLException;public abstract Statement createStatement
 () throws SQLException;

1.2
public abstract Statement createStatement (int resultSetType, int resultSetConcurrency) throws

SQLException;public abstract boolean getAutoCommit
 () throws SQLException;public abstract String getCatalog

 () throws SQLException;public abstract DatabaseMetaData getMetaData
 () throws SQLException;public abstract int getTransactionIsolation

 () throws SQLException;
1.2public abstract java.util.Map getTypeMap

 () throws SQLException;public abstract SQLWarning getWarnings
 () throws SQLException;public abstract boolean isClosed

 () throws SQLException;public abstract boolean isReadOnly
 () throws SQLException;public abstract String nativeSQL (String sql

) throws SQLException;public abstract CallableStatement prepareCall (String sql
) throws SQLException;

1.2
public abstract CallableStatement prepareCall (String sql, int resultSetType, int
resultSetConcurrency

) throws SQLException;public abstract PreparedStatement prepareStatement (String sql
) throws SQLException;

1.2
public abstract PreparedStatement prepareStatement (String sql, int resultSetType, int
resultSetConcurrency

) throws SQLException;public abstract void rollback
 () throws SQLException;public abstract void setAutoCommit (boolean autoCommit

) throws SQLException;public abstract void setCatalog (String catalog
) throws SQLException;public abstract void setReadOnly (boolean readOnly

) throws SQLException;public abstract void setTransactionIsolation (int level
) throws SQLException;

1.2public abstract void setTypeMap (java.util.Map map
) throws SQLException;

}
Returned By: DatabaseMetaData.getConnection(), Driver.connect(),
DriverManager.getConnection(), Statement.getConnection(),
javax.sql.DataSource.getConnection(),
javax.sql.PooledConnection.getConnection(),

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 333

javax.sql.RowSetInternal.getConnection()

DatabaseMetaData Java 1.1

java.sql PJ1.1(opt)
The getMetaData() method of the Connection interface returns a DatabaseMetaData object that
encapsulates nonconnection−dependent information about the underlying database. A number of methods
return ResultSet objects that should be treated like any other ResultSet.

DatabaseMetaData methods that accept String parameters with names ending in "Pattern" allow for
simple wildcard searching. These methods treat the % character as matching any number of characters and the
_ character as matching any single character. If these parameters are set to null, pattern matching is not
performed.

public abstract interface DatabaseMetaData {

//
Public Constants
public static final int bestRowNotPseudo ;

=1
public static final int bestRowPseudo ;

=2
public static final int bestRowSession ;

=2
public static final int bestRowTemporary ;

=0
public static final int bestRowTransaction ;

=1
public static final int bestRowUnknown ;

=0
public static final int columnNoNulls ;

=0
public static final int columnNullable ;

=1
public static final int columnNullableUnknown ;

=2
public static final int importedKeyCascade ;

=0
public static final int importedKeyInitiallyDeferred ;

=5
public static final int importedKeyInitiallyImmediate ;

=6
public static final int importedKeyNoAction ;

=3
public static final int importedKeyNotDeferrable ;

=7
public static final int importedKeyRestrict ;

=1
public static final int importedKeySetDefault ;

=4
public static final int importedKeySetNull ;

=2
public static final int procedureColumnIn ;

=1
public static final int procedureColumnInOut ;

=2
public static final int procedureColumnOut ;

=4
public static final int procedureColumnResult ;

=3
public static final int procedureColumnReturn ;

=5
public static final int procedureColumnUnknown ;

=0
public static final int procedureNoNulls ;

=0
public static final int procedureNoResult ;

=1
public static final int procedureNullable ;

=1
public static final int procedureNullableUnknown ;

=2
public static final int procedureResultUnknown ;

=0
public static final int procedureReturnsResult ;

=2
public static final short tableIndexClustered ; =1

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 334

public static final short tableIndexHashed ;
=2

public static final short tableIndexOther ;
=3

public static final short tableIndexStatistic ;
=0

public static final int typeNoNulls ;
=0

public static final int typeNullable ;
=1

public static final int typeNullableUnknown ;
=2

public static final int typePredBasic ;
=2

public static final int typePredChar ;
=1

public static final int typePredNone ;
=0

public static final int typeSearchable ;
=3

public static final int versionColumnNotPseudo ;
=1

public static final int versionColumnPseudo ;
=2

public static final int versionColumnUnknown ; =0

//
Public Instance Methods
public abstract boolean allProceduresAreCallable

 () throws SQLException;public abstract boolean allTablesAreSelectable
 () throws SQLException;public abstract boolean dataDefinitionCausesTransactionCommit

 () throws SQLException;public abstract boolean dataDefinitionIgnoredInTransactions
 () throws SQLException;

1.2public abstract boolean deletesAreDetected (int type
) throws SQLException;public abstract boolean doesMaxRowSizeIncludeBlobs

 () throws SQLException;public abstract ResultSet getBestRowIdentifier (String catalog, String schema, String table, int
scope, boolean nullable

) throws SQLException;public abstract ResultSet getCatalogs
 () throws SQLException;public abstract String getCatalogSeparator

 () throws SQLException;public abstract String getCatalogTerm

 () throws SQLException;public abstract ResultSet getColumnPrivileges (String catalog, String schema, String table, String
columnNamePattern

) throws SQLException;
public abstract ResultSet getColumns (String catalog, String schemaPattern, String
tableNamePattern, String columnNamePattern

) throws SQLException;1.2public abstract java.sql.Connection getConnection

 () throws SQLException;
public abstract ResultSet getCrossReference (String primaryCatalog, String primarySchema, String
primaryTable, String foreignCatalog, String foreignSchema, String foreignTable) throws

SQLException;
public abstract String getDatabaseProductName

 () throws SQLException;public abstract String getDatabaseProductVersion
 () throws SQLException;public abstract int getDefaultTransactionIsolation
 () throws SQLException;public abstract int getDriverMajorVersion

 ();public abstract int getDriverMinorVersion
 ();public abstract String getDriverName

 () throws SQLException;public abstract String getDriverVersion

 () throws SQLException;public abstract ResultSet getExportedKeys (String catalog, String schema, String table) throws

SQLException;public abstract String getExtraNameCharacters
 () throws SQLException;public abstract String getIdentifierQuoteString

 () throws SQLException;public abstract ResultSet getImportedKeys (String catalog, String schema, String table) throws

SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 335

public abstract ResultSet getIndexInfo (String catalog, String schema, String table, boolean unique,
boolean approximate

) throws SQLException;public abstract int getMaxBinaryLiteralLength
 () throws SQLException;public abstract int getMaxCatalogNameLength
 () throws SQLException;public abstract int getMaxCharLiteralLength

 () throws SQLException;public abstract int getMaxColumnNameLength
 () throws SQLException;public abstract int getMaxColumnsInGroupBy
 () throws SQLException;public abstract int getMaxColumnsInIndex

 () throws SQLException;public abstract int getMaxColumnsInOrderBy
 () throws SQLException;public abstract int getMaxColumnsInSelect

 () throws SQLException;public abstract int getMaxColumnsInTable
 () throws SQLException;public abstract int getMaxConnections

 () throws SQLException;public abstract int getMaxCursorNameLength
 () throws SQLException;public abstract int getMaxIndexLength

 () throws SQLException;public abstract int getMaxProcedureNameLength
 () throws SQLException;public abstract int getMaxRowSize

 () throws SQLException;public abstract int getMaxSchemaNameLength
 () throws SQLException;public abstract int getMaxStatementLength

 () throws SQLException;public abstract int getMaxStatements
 () throws SQLException;public abstract int getMaxTableNameLength

 () throws SQLException;public abstract int getMaxTablesInSelect
 () throws SQLException;public abstract int getMaxUserNameLength

 () throws SQLException;public abstract String getNumericFunctions

 () throws SQLException;public abstract ResultSet getPrimaryKeys (String catalog, String schema, String table) throws

SQLException;
public abstract ResultSet getProcedureColumns (String catalog, String schemaPattern, String
procedureNamePattern, String columnNamePattern

) throws SQLException;
public abstract ResultSet getProcedures (String catalog, String schemaPattern, String
procedureNamePattern

) throws SQLException;public abstract String getProcedureTerm
 () throws SQLException;public abstract ResultSet getSchemas

 () throws SQLException;public abstract String getSchemaTerm
 () throws SQLException;public abstract String getSearchStringEscape

 () throws SQLException;public abstract String getSQLKeywords
 () throws SQLException;public abstract String getStringFunctions

 () throws SQLException;public abstract String getSystemFunctions

 () throws SQLException;public abstract ResultSet getTablePrivileges (String catalog, String schemaPattern, String
tableNamePattern

) throws SQLException;
public abstract ResultSet getTables (String catalog, String schemaPattern, String tableNamePattern,
String[] types

) throws SQLException;public abstract ResultSet getTableTypes
 () throws SQLException;public abstract String getTimeDateFunctions

 () throws SQLException;public abstract ResultSet getTypeInfo
 () throws SQLException;

1.2
public abstract ResultSet getUDTs (String catalog, String schemaPattern, String typeNamePattern,
int[] types

) throws SQLException;public abstract String getURL
 () throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 336

public abstract String getUserName

 () throws SQLException;public abstract ResultSet getVersionColumns (String catalog, String schema, String table) throws

SQLException;1.2public abstract boolean insertsAreDetected (int type
) throws SQLException;public abstract boolean isCatalogAtStart

 () throws SQLException;public abstract boolean isReadOnly
 () throws SQLException;public abstract boolean nullPlusNonNullIsNull

 () throws SQLException;public abstract boolean nullsAreSortedAtEnd
 () throws SQLException;public abstract boolean nullsAreSortedAtStart
 () throws SQLException;public abstract boolean nullsAreSortedHigh

 () throws SQLException;public abstract boolean nullsAreSortedLow
 () throws SQLException;

1.2public abstract boolean othersDeletesAreVisible (int type
) throws SQLException;

1.2public abstract boolean othersInsertsAreVisible (int type
) throws SQLException;

1.2public abstract boolean othersUpdatesAreVisible (int type
) throws SQLException;

1.2public abstract boolean ownDeletesAreVisible (int type
) throws SQLException;

1.2public abstract boolean ownInsertsAreVisible (int type
) throws SQLException;

1.2public abstract boolean ownUpdatesAreVisible (int type
) throws SQLException;public abstract boolean storesLowerCaseIdentifiers

 () throws SQLException;public abstract boolean storesLowerCaseQuotedIdentifiers
 () throws SQLException;public abstract boolean storesMixedCaseIdentifiers

 () throws SQLException;public abstract boolean storesMixedCaseQuotedIdentifiers
 () throws SQLException;public abstract boolean storesUpperCaseIdentifiers

 () throws SQLException;public abstract boolean storesUpperCaseQuotedIdentifiers
 () throws SQLException;public abstract boolean supportsAlterTableWithAddColumn

 () throws SQLException;public abstract boolean supportsAlterTableWithDropColumn
 () throws SQLException;public abstract boolean supportsANSI92EntryLevelSQL

 () throws SQLException;public abstract boolean supportsANSI92FullSQL
 () throws SQLException;public abstract boolean supportsANSI92IntermediateSQL

 () throws SQLException;
1.2public abstract boolean supportsBatchUpdates

 () throws SQLException;public abstract boolean supportsCatalogsInDataManipulation
 () throws SQLException;public abstract boolean supportsCatalogsInIndexDefinitions

 () throws SQLException;public abstract boolean supportsCatalogsInPrivilegeDefinitions
 () throws SQLException;public abstract boolean supportsCatalogsInProcedureCalls

 () throws SQLException;public abstract boolean supportsCatalogsInTableDefinitions
 () throws SQLException;public abstract boolean supportsColumnAliasing

 () throws SQLException;public abstract boolean supportsConvert
 () throws SQLException;public abstract boolean supportsConvert (int fromType, int toType

) throws SQLException;public abstract boolean supportsCoreSQLGrammar
 () throws SQLException;public abstract boolean supportsCorrelatedSubqueries

 () throws SQLException;public abstract boolean supportsDataDefinitionAndDataManipulationTransactions () throws

SQLException;public abstract boolean supportsDataManipulationTransactionsOnly
 () throws SQLException;public abstract boolean supportsDifferentTableCorrelationNames

 () throws SQLException;public abstract boolean supportsExpressionsInOrderBy
 () throws SQLException;public abstract boolean supportsExtendedSQLGrammar
 () throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 337

public abstract boolean supportsFullOuterJoins
 () throws SQLException;public abstract boolean supportsGroupBy

 () throws SQLException;public abstract boolean supportsGroupByBeyondSelect
 () throws SQLException;public abstract boolean supportsGroupByUnrelated

 () throws SQLException;public abstract boolean supportsIntegrityEnhancementFacility
 () throws SQLException;public abstract boolean supportsLikeEscapeClause

 () throws SQLException;public abstract boolean supportsLimitedOuterJoins
 () throws SQLException;public abstract boolean supportsMinimumSQLGrammar

 () throws SQLException;public abstract boolean supportsMixedCaseIdentifiers
 () throws SQLException;public abstract boolean supportsMixedCaseQuotedIdentifiers

 () throws SQLException;public abstract boolean supportsMultipleResultSets
 () throws SQLException;public abstract boolean supportsMultipleTransactions

 () throws SQLException;public abstract boolean supportsNonNullableColumns
 () throws SQLException;public abstract boolean supportsOpenCursorsAcrossCommit

 () throws SQLException;public abstract boolean supportsOpenCursorsAcrossRollback
 () throws SQLException;public abstract boolean supportsOpenStatementsAcrossCommit

 () throws SQLException;public abstract boolean supportsOpenStatementsAcrossRollback
 () throws SQLException;public abstract boolean supportsOrderByUnrelated

 () throws SQLException;public abstract boolean supportsOuterJoins
 () throws SQLException;public abstract boolean supportsPositionedDelete

 () throws SQLException;public abstract boolean supportsPositionedUpdate
 () throws SQLException;

1.2
public abstract boolean supportsResultSetConcurrency (int type, int concurrency) throws

SQLException;1.2public abstract boolean supportsResultSetType (int type
) throws SQLException;public abstract boolean supportsSchemasInDataManipulation

 () throws SQLException;public abstract boolean supportsSchemasInIndexDefinitions
 () throws SQLException;public abstract boolean supportsSchemasInPrivilegeDefinitions

 () throws SQLException;public abstract boolean supportsSchemasInProcedureCalls
 () throws SQLException;public abstract boolean supportsSchemasInTableDefinitions
 () throws SQLException;public abstract boolean supportsSelectForUpdate

 () throws SQLException;public abstract boolean supportsStoredProcedures
 () throws SQLException;public abstract boolean supportsSubqueriesInComparisons

 () throws SQLException;public abstract boolean supportsSubqueriesInExists
 () throws SQLException;public abstract boolean supportsSubqueriesInIns

 () throws SQLException;public abstract boolean supportsSubqueriesInQuantifieds
 () throws SQLException;public abstract boolean supportsTableCorrelationNames

 () throws SQLException;public abstract boolean supportsTransactionIsolationLevel (int level
) throws SQLException;public abstract boolean supportsTransactions

 () throws SQLException;public abstract boolean supportsUnion
 () throws SQLException;public abstract boolean supportsUnionAll

 () throws SQLException;
1.2public abstract boolean updatesAreDetected (int type

) throws SQLException;public abstract boolean usesLocalFilePerTable
 () throws SQLException;public abstract boolean usesLocalFiles

 () throws SQLException;
}
Returned By: java.sql.Connection.getMetaData()

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 338

DataTruncation Java 1.1

java.sql serializable checked PJ1.1(opt)
This subclass of SQLWarning is a special warning used when JDBC unexpectedly truncates a data value. It is
chained as a warning on read operations and thrown as an exception on write operations.

public class DataTruncation extends SQLWarning {

//
Public Constructors
public DataTruncation (int index, boolean parameter, boolean read, int dataSize, int transferSize

);
//

Public Instance Methods
public int getDataSize

 ();public int getIndex
 ();public boolean getParameter

 ();public boolean getRead
 ();public int getTransferSize

 ();
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>SQLException−−>SQLWarning−−>DataTruncation

Date Java 1.1

java.sql cloneable serializable comparable PJ1.1(opt)
A wrapper around the java.util.Date class that adjusts the time value (milliseconds since January 1,
1970 0:00:00 GMT) to conform to the SQL DATE specification. The DATE type only deals with the day,
month, and year, so the hours, minutes, seconds, and milliseconds are set to 00:00:00.00 in the current time
zone. The Date class also includes a static valueOf() method that decodes the JDBC Date escape syntax
yyyy−mm−dd into a Date value.

public class Date extends java.util.Date {

//
Public Constructors
public Date (long date

);
public Date (int year, int month, int day

);
//

Public Class Methods
public static java.sql.Date valueOf (String s

);
//

Public methods overriding Date
public void setTime (long date

);public String toString
 ();

// Deprecated Public Methods

public int getHours (); Overrides:Date

public int getMinutes (); Overrides:Date

public int getSeconds (); Overrides:Date

public void setHours (int i); Overrides:Date

public void setMinutes (int i); Overrides:Date

public void setSeconds (int i); Overrides:Date

}

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 339

Hierarchy:
Object−−>java.util.Date(Serializable,Cloneable,Comparable)−−>java.sql.Date

Passed To: PreparedStatement.setDate(), ResultSet.updateDate(),
SQLOutput.writeDate(), javax.sql.RowSet.setDate()

Returned By: CallableStatement.getDate(), java.sql.Date.valueOf(),
ResultSet.getDate(), SQLInput.readDate()

Driver Java 1.1

java.sql PJ1.1(opt)
Every JDBC driver must implement the Driver interface. Most programmers never need to deal with this
interface, except when using the DriverManager.registerDriver() method, which is generally not
recommended. The better way to register a driver is to load the driver by calling Class.forName() on the
driver class, which automatically registers the driver as well.

public abstract interface Driver {

//
Public Instance Methods
public abstract boolean acceptsURL (String url

) throws SQLException;public abstract java.sql.Connection connect (String url, java.util.Properties info
) throws SQLException;public abstract int getMajorVersion

 ();public abstract int getMinorVersion

 ();public abstract DriverPropertyInfo[] getPropertyInfo (String url, java.util.Properties info) throws

SQLException;public abstract boolean jdbcCompliant
 ();

}
Passed To: DriverManager.{deregisterDriver(), registerDriver()}

Returned By: DriverManager.getDriver()

DriverManager Java 1.1

java.sql PJ1.1(opt)
The DriverManager class is responsible for loading JDBC drivers and creating Connection objects. It
starts by loading all the drivers specified in the jdbc.drivers system property. Individual drivers can also
be loaded by calling Class.forName() with the driver class name.

Programs use the static DriverManager.getConnection() method to create individual database
connections. The driver manager creates the Connection using the appropriate driver, based on the JDBC
URL specified in the call to getConnection().

public class DriverManager {

// No Constructor

//
Public Class Methods
public static void deregisterDriver (Driver driver) throws SQLException;

synchronized
public static java.sql.Connection getConnection (String url) throws SQLException; synchronized

synchronized

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 340

public static java.sql.Connection getConnection (String url, java.util.Properties info)

throws SQLException;public static java.sql.Connection getConnection (String url, String user, String password)
throws SQLException; synchronized

public static Driver getDriver (String url) throws SQLException;
synchronized

public static java.util.Enumeration getDrivers ();
synchronized

public static int getLoginTimeout
 ();

1.2public static PrintWriter getLogWriter
 ();public static void println (String message);

synchronized
public static void registerDriver (Driver driver) throws SQLException;

synchronized
public static void setLoginTimeout (int seconds

);
1.2public static void setLogWriter (PrintWriter out); synchronized

// Deprecated Public Methods

public static PrintStream getLogStream
 ();

public static void setLogStream (PrintStream out); synchronized

}

DriverPropertyInfo Java 1.1

java.sql PJ1.1(opt)
The DriverPropertyInfo class contains the properties required to create a new database connection
using a particular driver. It is returned by the getDriverProperties() method of Driver. This class
is useful only for programmers who need to interact directly with the driver in a dynamic manner.

public class DriverPropertyInfo {

//
Public Constructors
public DriverPropertyInfo (String name, String value

);
//

Public Instance Fields
public String[] choices

 ;public String description
 ;public String name

 ;public boolean required
 ;public String value

 ;
}
Returned By: Driver.getPropertyInfo()

PreparedStatement Java 1.1

java.sql PJ1.1(opt)
The PreparedStatement interface allows programs to precompile SQL statements for increased
performance. You obtain a PreparedStatement object with the prepareStatement() method of
Connection. Parameters in the statement are denoted by ? characters in the SQL string and indexed from 1
to n. Individual parameter values are set using the setXXX() methods, while the clearParameters()
method clears all the parameters. Note that some JDBC drivers do not implement setObject() properly
when dealing with null field types. Once all parameters have been set, the statement is executed using
execute(), executeQuery(), or executeUpdate(). Unlike with the Statement object, the
execution methods take no parameters.

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 341

public abstract interface PreparedStatement extends Statement {

// Public Instance Methods

1.2public abstract void addBatch
 () throws SQLException;public abstract void clearParameters

 () throws SQLException;public abstract boolean execute
 () throws SQLException;public abstract ResultSet executeQuery

 () throws SQLException;public abstract int executeUpdate
 () throws SQLException;

1.2public abstract ResultSetMetaData getMetaData
 () throws SQLException;

1.2public abstract void setArray (int i, java.sql.Array x

) throws SQLException;public abstract void setAsciiStream (int parameterIndex, java.io.InputStream x, int length) throws

SQLException;
public abstract void setBigDecimal (int parameterIndex, java.math.BigDecimal x) throws

SQLException;
public abstract void setBinaryStream (int parameterIndex, java.io.InputStream x, int length) throws

SQLException;1.2public abstract void setBlob (int i, Blob x
) throws SQLException;public abstract void setBoolean (int parameterIndex, boolean x

) throws SQLException;public abstract void setByte (int parameterIndex, byte x
) throws SQLException;public abstract void setBytes (int parameterIndex, byte[] x

) throws SQLException;

1.2
public abstract void setCharacterStream (int parameterIndex, Reader reader, int length) throws

SQLException;1.2public abstract void setClob (int i, Clob x
) throws SQLException;public abstract void setDate (int parameterIndex, java.sql.Date x

) throws SQLException;

1.2
public abstract void setDate (int parameterIndex, java.sql.Date x, java.util.Calendar cal) throws

SQLException;public abstract void setDouble (int parameterIndex, double x
) throws SQLException;public abstract void setFloat (int parameterIndex, float x

) throws SQLException;public abstract void setInt (int parameterIndex, int x
) throws SQLException;public abstract void setLong (int parameterIndex, long x

) throws SQLException;public abstract void setNull (int parameterIndex, int sqlType
) throws SQLException;

1.2public abstract void setNull (int paramIndex, int sqlType, String typeName
) throws SQLException;public abstract void setObject (int parameterIndex, Object x

) throws SQLException;public abstract void setObject (int parameterIndex, Object x, int targetSqlType

) throws SQLException;public abstract void setObject (int parameterIndex, Object x, int targetSqlType, int scale) throws

SQLException;1.2public abstract void setRef (int i, Ref x
) throws SQLException;public abstract void setShort (int parameterIndex, short x

) throws SQLException;public abstract void setString (int parameterIndex, String x
) throws SQLException;public abstract void setTime (int parameterIndex, Time x

) throws SQLException;
1.2public abstract void setTime (int parameterIndex, Time x, java.util.Calendar cal

) throws SQLException;public abstract void setTimestamp (int parameterIndex, Timestamp x
) throws SQLException;

1.2
public abstract void setTimestamp (int parameterIndex, Timestamp x, java.util.Calendar cal) throws

SQLException;// Deprecated Public Methods

#
public abstract void setUnicodeStream (int parameterIndex, java.io.InputStream x, int length) throws

SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 342

}
Hierarchy: (PreparedStatement(Statement))

Implementations: CallableStatement

Returned By: java.sql.Connection.prepareStatement()

Ref Java 1.2

java.sql
The Ref interface provides a pointer to a structured data type within the database. The getBaseType()
method returns the name of the underlying type.

public abstract interface Ref {

//
Public Instance Methods
public abstract String getBaseTypeName

 () throws SQLException;
}
Passed To: PreparedStatement.setRef(), SQLOutput.writeRef(),
javax.sql.RowSet.setRef()

Returned By: CallableStatement.getRef(), ResultSet.getRef(),
SQLInput.readRef()

ResultSet Java 1.1

java.sql PJ1.1(opt)
The ResultSet interface represents a database result set, allowing programs to access the data in the result
set. ResultSet objects are usually generated by the execute(), executeUpdate(), and
executeQuery() methods of Statement and PreparedStatement. They are also returned by
certain metadata methods.

The JDBC 1.0 ResultSet allows you to scroll navigate through the data once from beginning to end,
iterating through rows using the next() method and retrieving individual fields using the getXXX()
methods. The getMetaData() method returns a ResultSetMetaData object that describes the
structure of the underlying data.

JDBC 2.0 introduces a number of new features: complete scrolling capabilities (the previous(),
first(), last(), and related methods), direct updating of data via the updateXXX() methods, and
insertion of new data rows using the insertRow() method. Since there are relatively few JDBC
2.0−compliant drivers (currently available as of this book's print date), you may want to avoid the JDBC 2.0
methods for the time being.

public abstract interface ResultSet {

// Public Constants

1.2public static final int CONCUR_READ_ONLY ; =1007

1.2public static final int CONCUR_UPDATABLE ; =1008

1.2public static final int FETCH_FORWARD ; =1000

1.2public static final int FETCH_REVERSE ; =1001

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 343

1.2public static final int FETCH_UNKNOWN ; =1002

1.2public static final int TYPE_FORWARD_ONLY ; =1003

1.2public static final int TYPE_SCROLL_INSENSITIVE ; =1004

1.2public static final int TYPE_SCROLL_SENSITIVE ; =1005

// Public Instance Methods

1.2public abstract boolean absolute (int row
) throws SQLException;

1.2public abstract void afterLast
 () throws SQLException;

1.2public abstract void beforeFirst
 () throws SQLException;

1.2public abstract void cancelRowUpdates
 () throws SQLException;public abstract void clearWarnings

 () throws SQLException;public abstract void close
 () throws SQLException;

1.2public abstract void deleteRow
 () throws SQLException;public abstract int findColumn (String columnName

) throws SQLException;
1.2public abstract boolean first

 () throws SQLException;
1.2public abstract java.sql.Array getArray (String colName

) throws SQLException;
1.2public abstract java.sql.Array getArray (int i

) throws SQLException;public abstract java.io.InputStream getAsciiStream (String columnName
) throws SQLException;public abstract java.io.InputStream getAsciiStream (int columnIndex

) throws SQLException;

1.2
public abstract java.math.BigDecimal getBigDecimal (String columnName) throws

SQLException;1.2public abstract java.math.BigDecimal getBigDecimal (int columnIndex

) throws SQLException;public abstract java.io.InputStream getBinaryStream (String columnName) throws

SQLException;public abstract java.io.InputStream getBinaryStream (int columnIndex
) throws SQLException;

1.2public abstract Blob getBlob (String colName
) throws SQLException;

1.2public abstract Blob getBlob (int i
) throws SQLException;public abstract boolean getBoolean (String columnName

) throws SQLException;public abstract boolean getBoolean (int columnIndex
) throws SQLException;public abstract byte getByte (String columnName

) throws SQLException;public abstract byte getByte (int columnIndex
) throws SQLException;public abstract byte[] getBytes (String columnName

) throws SQLException;public abstract byte[] getBytes (int columnIndex
) throws SQLException;

1.2public abstract Reader getCharacterStream (String columnName
) throws SQLException;

1.2public abstract Reader getCharacterStream (int columnIndex
) throws SQLException;

1.2public abstract Clob getClob (String colName
) throws SQLException;

1.2public abstract Clob getClob (int i
) throws SQLException;

1.2public abstract int getConcurrency
 () throws SQLException;public abstract String getCursorName

 () throws SQLException;public abstract java.sql.Date getDate (String columnName
) throws SQLException;public abstract java.sql.Date getDate (int columnIndex

) throws SQLException;

1.2
public abstract java.sql.Date getDate (String columnName, java.util.Calendar cal) throws

SQLException;
1.2

public abstract java.sql.Date getDate (int columnIndex, java.util.Calendar cal) throws

SQLException;public abstract double getDouble (String columnName
) throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 344

public abstract double getDouble (int columnIndex
) throws SQLException;

1.2public abstract int getFetchDirection
 () throws SQLException;

1.2public abstract int getFetchSize
 () throws SQLException;public abstract float getFloat (String columnName

) throws SQLException;public abstract float getFloat (int columnIndex
) throws SQLException;public abstract int getInt (String columnName
) throws SQLException;public abstract int getInt (int columnIndex

) throws SQLException;public abstract long getLong (String columnName
) throws SQLException;public abstract long getLong (int columnIndex

) throws SQLException;public abstract ResultSetMetaData getMetaData
 () throws SQLException;public abstract Object getObject (String columnName

) throws SQLException;public abstract Object getObject (int columnIndex
) throws SQLException;

1.2public abstract Object getObject (String colName, java.util.Map map
) throws SQLException;

1.2public abstract Object getObject (int i, java.util.Map map
) throws SQLException;

1.2public abstract Ref getRef (String colName
) throws SQLException;

1.2public abstract Ref getRef (int i
) throws SQLException;

1.2public abstract int getRow
 () throws SQLException;public abstract short getShort (String columnName

) throws SQLException;public abstract short getShort (int columnIndex
) throws SQLException;

1.2public abstract Statement getStatement
 () throws SQLException;public abstract String getString (String columnName

) throws SQLException;public abstract String getString (int columnIndex
) throws SQLException;public abstract Time getTime (String columnName

) throws SQLException;public abstract Time getTime (int columnIndex
) throws SQLException;

1.2
public abstract Time getTime (String columnName, java.util.Calendar cal) throws

SQLException;1.2public abstract Time getTime (int columnIndex, java.util.Calendar cal
) throws SQLException;public abstract Timestamp getTimestamp (String columnName

) throws SQLException;public abstract Timestamp getTimestamp (int columnIndex
) throws SQLException;

1.2
public abstract Timestamp getTimestamp (String columnName, java.util.Calendar cal) throws

SQLException;
1.2

public abstract Timestamp getTimestamp (int columnIndex, java.util.Calendar cal) throws

SQLException;1.2public abstract int getType
 () throws SQLException;public abstract SQLWarning getWarnings

 () throws SQLException;
1.2public abstract void insertRow

 () throws SQLException;
1.2public abstract boolean isAfterLast

 () throws SQLException;
1.2public abstract boolean isBeforeFirst

 () throws SQLException;
1.2public abstract boolean isFirst

 () throws SQLException;
1.2public abstract boolean isLast

 () throws SQLException;
1.2public abstract boolean last

 () throws SQLException;
1.2public abstract void moveToCurrentRow

 () throws SQLException;
1.2public abstract void moveToInsertRow

 () throws SQLException;public abstract boolean next
 () throws SQLException;

1.2public abstract boolean previous
 () throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 345

1.2public abstract void refreshRow
 () throws SQLException;

1.2public abstract boolean relative (int rows
) throws SQLException;

1.2public abstract boolean rowDeleted
 () throws SQLException;

1.2public abstract boolean rowInserted
 () throws SQLException;

1.2public abstract boolean rowUpdated
 () throws SQLException;

1.2public abstract void setFetchDirection (int direction
) throws SQLException;

1.2public abstract void setFetchSize (int rows
) throws SQLException;

1.2
public abstract void updateAsciiStream (String columnName, java.io.InputStream x, int length)

throws SQLException;
1.2

public abstract void updateAsciiStream (int columnIndex, java.io.InputStream x, int length)

throws SQLException;
1.2

public abstract void updateBigDecimal (String columnName, java.math.BigDecimal x) throws

SQLException;
1.2

public abstract void updateBigDecimal (int columnIndex, java.math.BigDecimal x) throws

SQLException;
1.2

public abstract void updateBinaryStream (String columnName, java.io.InputStream x, int
length

) throws SQLException;
1.2

public abstract void updateBinaryStream (int columnIndex, java.io.InputStream x, int length)

throws SQLException;1.2public abstract void updateBoolean (String columnName, boolean x
) throws SQLException;

1.2public abstract void updateBoolean (int columnIndex, boolean x
) throws SQLException;

1.2public abstract void updateByte (String columnName, byte x
) throws SQLException;

1.2public abstract void updateByte (int columnIndex, byte x
) throws SQLException;

1.2public abstract void updateBytes (String columnName, byte[] x
) throws SQLException;

1.2public abstract void updateBytes (int columnIndex, byte[] x
) throws SQLException;

1.2
public abstract void updateCharacterStream (String columnName, Reader reader, int length)

throws SQLException;
1.2

public abstract void updateCharacterStream (int columnIndex, Reader x, int length) throws

SQLException;1.2public abstract void updateDate (String columnName, java.sql.Date x
) throws SQLException;

1.2public abstract void updateDate (int columnIndex, java.sql.Date x
) throws SQLException;

1.2public abstract void updateDouble (String columnName, double x
) throws SQLException;

1.2public abstract void updateDouble (int columnIndex, double x
) throws SQLException;

1.2public abstract void updateFloat (String columnName, float x
) throws SQLException;

1.2public abstract void updateFloat (int columnIndex, float x
) throws SQLException;

1.2public abstract void updateInt (String columnName, int x
) throws SQLException;

1.2public abstract void updateInt (int columnIndex, int x
) throws SQLException;

1.2public abstract void updateLong (String columnName, long x
) throws SQLException;

1.2public abstract void updateLong (int columnIndex, long x
) throws SQLException;

1.2public abstract void updateNull (String columnName
) throws SQLException;

1.2public abstract void updateNull (int columnIndex
) throws SQLException;

1.2public abstract void updateObject (String columnName, Object x
) throws SQLException;

1.2public abstract void updateObject (int columnIndex, Object x
) throws SQLException;

1.2
public abstract void updateObject (String columnName, Object x, int scale) throws

SQLException;1.2public abstract void updateObject (int columnIndex, Object x, int scale
) throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 346

1.2public abstract void updateRow
 () throws SQLException;

1.2public abstract void updateShort (String columnName, short x
) throws SQLException;

1.2public abstract void updateShort (int columnIndex, short x
) throws SQLException;

1.2public abstract void updateString (String columnName, String x
) throws SQLException;

1.2public abstract void updateString (int columnIndex, String x
) throws SQLException;

1.2public abstract void updateTime (String columnName, Time x
) throws SQLException;

1.2public abstract void updateTime (int columnIndex, Time x
) throws SQLException;

1.2
public abstract void updateTimestamp (String columnName, Timestamp x) throws

SQLException;1.2public abstract void updateTimestamp (int columnIndex, Timestamp x
) throws SQLException;public abstract boolean wasNull

 () throws SQLException;
// Deprecated Public Methods

#
public abstract java.math.BigDecimal getBigDecimal (String columnName, int scale) throws

SQLException;
#

public abstract java.math.BigDecimal getBigDecimal (int columnIndex, int scale) throws

SQLException;
#

public abstract java.io.InputStream getUnicodeStream (String columnName) throws

SQLException;# public abstract java.io.InputStream getUnicodeStream (int columnIndex
) throws SQLException;

}
Implementations: javax.sql.RowSet

Returned By: Too many methods to list.

ResultSetMetaData Java 1.1

java.sql PJ1.1(opt)
This interface provides metainformation about the data underlying a particular ResultSet. In particular,
you can get information about the columns of the ResultSet with getColumnCount(),
getColumnLabel(), and getColumnTypeName().

public abstract interface ResultSetMetaData {

//
Public Constants
public static final int columnNoNulls ;

=0
public static final int columnNullable ;

=1
public static final int columnNullableUnknown ; =2

//
Public Instance Methods
public abstract String getCatalogName (int column

) throws SQLException;
1.2 public abstract String getColumnClassName (int column

) throws SQLException;public abstract int getColumnCount
 () throws SQLException;public abstract int getColumnDisplaySize (int column

) throws SQLException;public abstract String getColumnLabel (int column
) throws SQLException;public abstract String getColumnName (int column
) throws SQLException;public abstract int getColumnType (int column

) throws SQLException;public abstract String getColumnTypeName (int column
) throws SQLException;public abstract int getPrecision (int column

) throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 347

public abstract int getScale (int column
) throws SQLException;public abstract String getSchemaName (int column

) throws SQLException;public abstract String getTableName (int column
) throws SQLException;public abstract boolean isAutoIncrement (int column

) throws SQLException;public abstract boolean isCaseSensitive (int column
) throws SQLException;public abstract boolean isCurrency (int column

) throws SQLException;public abstract boolean isDefinitelyWritable (int column
) throws SQLException;public abstract int isNullable (int column

) throws SQLException;public abstract boolean isReadOnly (int column
) throws SQLException;public abstract boolean isSearchable (int column
) throws SQLException;public abstract boolean isSigned (int column

) throws SQLException;public abstract boolean isWritable (int column
) throws SQLException;

}
Implementations: javax.sql.RowSetMetaData

Returned By: PreparedStatement.getMetaData(), ResultSet.getMetaData()

SQLData Java 1.2

java.sql
Allows custom mapping of user−defined SQL types. This interface is generally implemented by a
development tool or driver vendor and is never called by the programmer directly.

public abstract interface SQLData {

//
Public Instance Methods
public abstract String getSQLTypeName

 () throws SQLException;public abstract void readSQL (SQLInput stream, String typeName
) throws SQLException;public abstract void writeSQL (SQLOutput stream

) throws SQLException;
}
Passed To: SQLOutput.writeObject()

SQLException Java 1.1

java.sql serializable checked PJ1.1(opt)
A SQLException object is thrown by any JDBC method that encounters an error. SQLException
extends the java.lang.Exception class and adds a vendor−specific error code and an XOPEN SQL
state code. SQLException objects can be chained together. The next exception in the chain is retrieved via
getNextException(), which returns null if there are no more exceptions available. The
setNextException() method adds an exception to the end of the chain.

public class SQLException extends Exception {

//
Public Constructors
public SQLException

 ();public SQLException (String reason
);public SQLException (String reason, String SQLState

);public SQLException (String reason, String SQLState, int vendorCode
);

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 348

//
Public Instance Methods
public int getErrorCode ();

default:0
public SQLException getNextException ();

default:null
public String getSQLState ();

default:null
public void setNextException (SQLException ex); synchronized

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>SQLException

Subclasses: BatchUpdateException, SQLWarning

Passed To: SQLException.setNextException(),
javax.sql.ConnectionEvent.ConnectionEvent()

Returned By: SQLException.getNextException(),
javax.sql.ConnectionEvent.getSQLException()

Thrown By: Too many methods to list.

SQLInput Java 1.2

java.sql
Represents an input stream for a user−defined SQL type. SQLInput is used by the driver and is never called
by the programmer directly.

public abstract interface SQLInput {

//
Public Instance Methods
public abstract java.sql.Array readArray

 () throws SQLException;public abstract java.io.InputStream readAsciiStream
 () throws SQLException;public abstract java.math.BigDecimal readBigDecimal

 () throws SQLException;public abstract java.io.InputStream readBinaryStream
 () throws SQLException;public abstract Blob readBlob

 () throws SQLException;public abstract boolean readBoolean
 () throws SQLException;public abstract byte readByte

 () throws SQLException;public abstract byte[] readBytes
 () throws SQLException;public abstract Reader readCharacterStream

 () throws SQLException;public abstract Clob readClob
 () throws SQLException;public abstract java.sql.Date readDate

 () throws SQLException;public abstract double readDouble
 () throws SQLException;public abstract float readFloat

 () throws SQLException;public abstract int readInt
 () throws SQLException;public abstract long readLong

 () throws SQLException;public abstract Object readObject
 () throws SQLException;public abstract Ref readRef

 () throws SQLException;public abstract short readShort
 () throws SQLException;public abstract String readString

 () throws SQLException;public abstract Time readTime
 () throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 349

public abstract Timestamp readTimestamp
 () throws SQLException;public abstract boolean wasNull

 () throws SQLException;
}
Passed To: SQLData.readSQL()

SQLOutput Java 1.2

java.sql
Represents an output stream for a user−defined SQL type. SQLOutput is used by the driver and is never
called by the programmer directly.

public abstract interface SQLOutput {

//
Public Instance Methods
public abstract void writeArray (java.sql.Array x

) throws SQLException;public abstract void writeAsciiStream (java.io.InputStream x
) throws SQLException;public abstract void writeBigDecimal (java.math.BigDecimal x

) throws SQLException;public abstract void writeBinaryStream (java.io.InputStream x
) throws SQLException;public abstract void writeBlob (Blob x

) throws SQLException;public abstract void writeBoolean (boolean x
) throws SQLException;public abstract void writeByte (byte x

) throws SQLException;public abstract void writeBytes (byte[] x
) throws SQLException;public abstract void writeCharacterStream (Reader x

) throws SQLException;public abstract void writeClob (Clob x
) throws SQLException;public abstract void writeDate (java.sql.Date x

) throws SQLException;public abstract void writeDouble (double x
) throws SQLException;public abstract void writeFloat (float x

) throws SQLException;public abstract void writeInt (int x
) throws SQLException;public abstract void writeLong (long x

) throws SQLException;public abstract void writeObject (SQLData x
) throws SQLException;public abstract void writeRef (Ref x

) throws SQLException;public abstract void writeShort (short x
) throws SQLException;public abstract void writeString (String x

) throws SQLException;public abstract void writeStruct (Struct x
) throws SQLException;public abstract void writeTime (Time x

) throws SQLException;public abstract void writeTimestamp (Timestamp x
) throws SQLException;

}
Passed To: SQLData.writeSQL()

SQLWarning Java 1.1

java.sql serializable checked PJ1.1(opt)
Represents a nonfatal warning condition. Warnings are silently chained to the object whose method produced
them. You can retrieve warnings with the getWarnings() method implemented by most JDBC classes.

public class SQLWarning extends SQLException {

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 350

//
Public Constructors
public SQLWarning

 ();public SQLWarning (String reason
);public SQLWarning (String reason, String SQLstate

);public SQLWarning (String reason, String SQLstate, int vendorCode
);

//
Public Instance Methods
public SQLWarning getNextWarning ();

default:null
public void setNextWarning (SQLWarning w

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>SQLException−−>SQLWarning

Subclasses: DataTruncation

Passed To: SQLWarning.setNextWarning()

Returned By: java.sql.Connection.getWarnings(), ResultSet.getWarnings(),
SQLWarning.getNextWarning(), Statement.getWarnings()

Statement Java 1.1

java.sql PJ1.1(opt)
The Statement interface executes SQL statements. Statement objects are returned by the
createStatement() method of Connection. The execute(), executeUpdate(), and
executeQuery() methods each take a Stringparameter that contains a SQL statement. execute()
returns a boolean value that indicates whether a ResultSet is available. The ResultSet can then be
retrieved with getResultSet(). executeUpdate() returns an update count and is used for INSERT,
UPDATE, DELETE, and other data manipulation statements. executeQuery() is used for
SELECTstatements, so it returns a ResultSet. There can be only one ResultSet active per query; the
current ResultSet is closed when a new SQL statement of any kind is executed.

public abstract interface Statement {

// Public Instance Methods

1.2 public abstract void addBatch (String sql
) throws SQLException;public abstract void cancel

 () throws SQLException;
1.2 public abstract void clearBatch

 () throws SQLException;public abstract void clearWarnings
 () throws SQLException;public abstract void close

 () throws SQLException;public abstract boolean execute (String sql
) throws SQLException;

1.2 public abstract int[] executeBatch
 () throws SQLException;public abstract ResultSet executeQuery (String sql

) throws SQLException;public abstract int executeUpdate (String sql
) throws SQLException;

1.2 public abstract java.sql.Connection getConnection
 () throws SQLException;

1.2 public abstract int getFetchDirection
 () throws SQLException;

1.2 public abstract int getFetchSize
 () throws SQLException;public abstract int getMaxFieldSize

 () throws SQLException;public abstract int getMaxRows
 () throws SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 351

public abstract boolean getMoreResults
 () throws SQLException;public abstract int getQueryTimeout

 () throws SQLException;public abstract ResultSet getResultSet
 () throws SQLException;

1.2 public abstract int getResultSetConcurrency
 () throws SQLException;

1.2 public abstract int getResultSetType
 () throws SQLException;public abstract int getUpdateCount

 () throws SQLException;public abstract SQLWarning getWarnings
 () throws SQLException;public abstract void setCursorName (String name

) throws SQLException;public abstract void setEscapeProcessing (boolean enable
) throws SQLException;

1.2 public abstract void setFetchDirection (int direction
) throws SQLException;

1.2 public abstract void setFetchSize (int rows
) throws SQLException;public abstract void setMaxFieldSize (int max

) throws SQLException;public abstract void setMaxRows (int max
) throws SQLException;public abstract void setQueryTimeout (int seconds

) throws SQLException;
}
Implementations: PreparedStatement

Returned By: java.sql.Connection.createStatement(), ResultSet.getStatement()

Struct Java 1.2

java.sql
The Struct interface provides a mapping for an SQL structured type. The getAttributes() method
returns an array of objects representing each attribute in the structured type. Custom type maps can be
specified by including a java.util.Map attribute.

public abstract interface Struct {

//
Public Instance Methods
public abstract Object[] getAttributes

 () throws SQLException;public abstract Object[] getAttributes (java.util.Map map
) throws SQLException;public abstract String getSQLTypeName

 () throws SQLException;
}
Passed To: SQLOutput.writeStruct()

Time Java 1.1

java.sql cloneable serializable comparable PJ1.1(opt)
A wrapper around the java.util.Date class that adjusts the time value (milliseconds since January 1,
1970 0:00:00 GMT) to conform to the SQL TIME specification. The TIME type only deals with the time of
day, so the date components are set to January 1, 1970 and should not be altered. The Time class also
includes a static valueOf() method that decodes the JDBC Time escape syntax hh:mm:ss into a Time
value.

public class Time extends java.util.Date {

//
Public Constructors
public Time (long time

);

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 352

public Time (int hour, int minute, int second
);

//
Public Class Methods
public static Time valueOf (String s

);
//

Public methods overriding Date
public void setTime (long time

);public String toString
 ();

// Deprecated Public Methods

public int getDate (); Overrides:Date

public int getDay (); Overrides:Date

public int getMonth (); Overrides:Date

public int getYear (); Overrides:Date

public void setDate (int i); Overrides:Date

public void setMonth (int i); Overrides:Date

public void setYear (int i); Overrides:Date

}
Hierarchy: Object−−>java.util.Date(Serializable,Cloneable,Comparable)−−>Time

Passed To: PreparedStatement.setTime(), ResultSet.updateTime(),
SQLOutput.writeTime(), javax.sql.RowSet.setTime()

Returned By: CallableStatement.getTime(), ResultSet.getTime(),
SQLInput.readTime(), Time.valueOf()

Timestamp Java 1.1

java.sql cloneable serializable comparable PJ1.1(opt)
Extends the java.util.Date class to function as an SQL TIMESTAMP value by adding a nanoseconds
component. The getTime() method returns the time in milliseconds since January 1, 1970 00:00:00 GMT
to the latest integral second. To include fractional seconds, divide the value returned by getNanos() by 1
million and add this to the result returned by getTime(). This allows accurate comparisons with
java.util.Date objects. The valueOf() method parses a String in the format
yyyy−mm−ddhh:mm:ss.fffffffff into a Timestamp.

public class Timestamp extends java.util.Date {

//
Public Constructors
public Timestamp (long time

);
public Timestamp (int year, int month, int date, int hour, int minute, int second, int nano

);
//

Public Class Methods
public static Timestamp valueOf (String s

);
//

Public Instance Methods
public boolean after (Timestamp ts

);public boolean before (Timestamp ts
);public boolean equals (Timestamp ts
);public int getNanos

 ();public void setNanos (int n
);

// Public methods overriding Date

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 353

1.2 public boolean equals (Object ts
);public String toString

 ();
}
Hierarchy:
Object−−>java.util.Date(Serializable,Cloneable,Comparable)−−>Timestamp

Passed To: PreparedStatement.setTimestamp(), ResultSet.updateTimestamp(),
SQLOutput.writeTimestamp(), Timestamp.{after(), before(), equals()},
javax.sql.RowSet.setTimestamp()

Returned By: CallableStatement.getTimestamp(), ResultSet.getTimestamp(),
SQLInput.readTimestamp(), Timestamp.valueOf()

Types Java 1.1

java.sql PJ1.1(opt)
The Types class defines a set of integer constants that represent SQL data types. The type names and
constant values are the ones specified in the XOPEN specification.

public class Types {

// No Constructor

// Public Constants

1.2 public static final int ARRAY ;
=2003

public static final int BIGINT ;
=−5

public static final int BINARY ;
=−2

public static final int BIT ; =−7

1.2 public static final int BLOB ;
=2004

public static final int CHAR ; =1

1.2 public static final int CLOB ;
=2005

public static final int DATE ;
=91

public static final int DECIMAL ; =3

1.2 public static final int DISTINCT ;
=2001

public static final int DOUBLE ;
=8

public static final int FLOAT ;
=6

public static final int INTEGER ; =4

1.2 public static final int JAVA_OBJECT ;
=2000

public static final int LONGVARBINARY ;
=−4

public static final int LONGVARCHAR ;
=−1

public static final int NULL ;
=0

public static final int NUMERIC ;
=2

public static final int OTHER ;
=1111

public static final int REAL ; =7

1.2 public static final int REF ;
=2006

public static final int SMALLINT ; =5

1.2 public static final int STRUCT ;
=2002

public static final int TIME ; =92

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 354

public static final int TIMESTAMP ;
=93

public static final int TINYINT ;
=−6

public static final int VARBINARY ;
=−3

public static final int VARCHAR ; =12

}

17.1. The java.rmi.server
Package

19. The javax.ejb Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 18. The java.sql Package 355

Chapter 19. The javax.ejb Package
The javax.ejb package is the primary package in the Enterprise JavaBeans API. It contains interfaces for
all the key entities you need to create and use EJB objects. It also contains a number of EJB−specific
exceptions. Figure 19−1 shows the class hierarchy of this package.

There are no concrete implementations provided for any of the interfaces in the javax.ejb package. EJB
providers build their own implementations based on the EJB specification and provide them in their
EJB−enabled servers. You should, however, build EJB server objects and clients strictly using the standard
interfaces defined in this package, in order to keep your code compatible with any standard EJB server.

Figure 19−1. The javax.ejb package

CreateException EJB 1.0

javax.ejb serializable checked
This exception must be thrown by all create() methods declared in an Enterprise JavaBeans object's home
interface. It is thrown if an error occurs during the process of creating the bean, as opposed to a
communications error with the server before or after the bean is created.

public class CreateException extends
Exception {

//
Public Constructors
public CreateException

 ();public CreateException (String message
);

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>CreateException

Subclasses: DuplicateKeyException

DuplicateKeyException EJB 1.0

Chapter 19. The javax.ejb Package 356

javax.ejb serializable checked
This extension of CreateException is thrown if a client attempts to create an entity bean using a primary
key that matches the key of an existing entity bean of the same type.

public class DuplicateKeyException extends
CreateException {

//
Public Constructors
public DuplicateKeyException

 ();public DuplicateKeyException (String message
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>CreateException−−>DuplicateKeyException

EJBContext EJB 1.0

javax.ejb
The EJBContext interface is the base interface for context objects provided to EJB objects by their
containers. EJBContext represents runtime context information the EJB object can use during method calls
to check on environment variables, query the identity of the caller, etc.

The getCallerIdentity() and isCallerInRole() methods are provided to allow the EJB object
to check on the identity of the caller, if it is known. The getEnvironment() method provides a
Properties list with any environment variables the EJB container exports to its EJB objects. The
getEJBHome() method returns an instance of the EJB object's home interface, which allows the EJB object
to query about its own type, implementing classes, etc.

The rest of the EJBContext methods are related to transaction support. The getUserTransaction()
method is the EJB object's access to the container−provided implementation of the
javax.transaction.UserTransaction interface. The getRollbackOnly() method tells the
EJB object if it is operating within a transaction that has been rolled back, and the setRollbackOnly()
method sets the current enclosing transaction, if any, to be rolled back.

public interface EJBContext {

//
Public Instance Methods
public abstract java.security.Identity getCallerIdentity

 ();public abstract EJBHome getEJBHome
 ();public abstract java.util.Properties getEnvironment

 ();public abstract boolean getRollbackOnly
 ();public abstract javax.jts.UserTransaction getUserTransaction

 () throws java.lang.IllegalStateException;public abstract boolean isCallerInRole (java.security.Identity role
);public abstract void setRollbackOnly

 ();
}
Implementations: EntityContext, SessionContext

EJBException EJB 1.0

Preface (Java Enterprise in a Nutshell)

Chapter 19. The javax.ejb Package 357

javax.ejb serializable checked
Thrown by an Enterprise JavaBeans implementation when it encounters an error during the execution of a
client−invoked business method or a container−invoked notification method. The container receives the
exception (since it serves as a proxy for all client interactions with the bean) and is responsible for converting
the EJBException to an appropriate subclass of java.rmi.RemoteException to be returned to the
client.

If the EJB object was operating within a container−defined transaction context when the exception was
thrown, the container does a rollback on the transaction before throwing the RemoteException to the
client. If the bean was operating within a client−defined transaction context, the container marks the
transaction for rollback and throws a javax.transaction.TransactionRolledbackException
(a subclass of RemoteException) to the client, to indicate that it should give up on its transaction.

public class EJBException extends Exception {

//
Public Constructors
public EJBException

 ();public EJBException (Exception ex
);public EJBException (String message

);
//

Public Instance Methods
public Exception getCausedByException ();default:null

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>EJBException

EJBHome EJB 1.0

javax.ejb remote
The EJBHome interface is the base interface for all home interfaces for Enterprise JavaBeans. If you develop
an Enterprise JavaBeans object, you have to provide a home interface for it that extends this interface. The
home interface allows clients to create beans of the corresponding type and to find them, if it is an entity bean.
When you extend the EJBHome interface to create a home interface for your EJB object type, you must
specify any create or finder methods for the bean you intend to provide for the client. The EJBHome interface
provides two remove() methods that let a client remove its reference to a bean from the container and a
getEJBMetaData() method that returns an EJBMetaData instance for the EJB object's type.

public interface EJBHome extends java.rmi.Remote {

//
Public Instance Methods
public abstract EJBMetaData getEJBMetaData

 () throws java.rmi.RemoteException;public abstract void remove (Object primaryKey
) throws java.rmi.RemoteException, RemoveException;public abstract void remove (Handle handle

) throws java.rmi.RemoteException, RemoveException;
}
Hierarchy: (EJBHome(java.rmi.Remote))

Returned By: EJBContext.getEJBHome(), EJBMetaData.getEJBHome(),
EJBObject.getEJBHome()

EJBMetaData EJB 1.0

Preface (Java Enterprise in a Nutshell)

Chapter 19. The javax.ejb Package 358

javax.ejb
This interface provides metadata on a particular type of Enterprise JavaBeans object. It allows you to query
for the bean type's home interface, the Class for its home interface, the Class of its primary key (for entity
beans only), the Class for its remote interface, and whether the bean is a session bean or an entity bean. This
metadata might be used by EJB development tools to introspect on additional aspects of EJB classes that
cannot be obtained from the Object introspection methods. Any implementation of this interface is required
to be serializable and must be valid for use over RMI.

public interface EJBMetaData {

//
Public Instance Methods
public abstract EJBHome getEJBHome

 ();public abstract Class getHomeInterfaceClass
 ();public abstract Class getPrimaryKeyClass

 ();public abstract Class getRemoteInterfaceClass
 ();public abstract boolean isSession

 ();
}
Returned By: EJBHome.getEJBMetaData()

EJBObject EJB 1.0

javax.ejb remote
This interface is the base interface for all remote interfaces for Enterprise JavaBeans. When a client acquires
a remote reference to an EJB object, it is given an instance of the EJBObject interface as a stub. If you
develop an Enterprise JavaBeans object, you must provide a remote interface for it by extending the
EJBObject interface. In the remote interface for your EJB object type, you specify the business methods on
your bean that are accessible by remote clients.

The EJBObject interface provides methods that allow a client to query the bean's home interface, get a
portable handle for the remote bean, get the primary key for the bean (if it is an entity bean), compare the bean
for equality with another bean, and remove the client's reference to the bean.

public interface EJBObject extends java.rmi.Remote {

//
Public Instance Methods
public abstract EJBHome getEJBHome

 () throws java.rmi.RemoteException;public abstract Handle getHandle
 () throws java.rmi.RemoteException;public abstract Object getPrimaryKey

 () throws java.rmi.RemoteException;public abstract boolean isIdentical (EJBObject obj
) throws java.rmi.RemoteException;public abstract void remove

 () throws java.rmi.RemoteException, RemoveException;
}
Hierarchy: (EJBObject(java.rmi.Remote))

Passed To: EJBObject.isIdentical()

Returned By: EntityContext.getEJBObject(), Handle.getEJBObject(),
SessionContext.getEJBObject()

EnterpriseBean EJB 1.0

Preface (Java Enterprise in a Nutshell)

Chapter 19. The javax.ejb Package 359

javax.ejb serializable
This interface is the base interface for all Enterprise JavaBeans implementations. If you develop an Enterprise
JavaBeans object, your bean implementation must extend this interface, usually by extending one of the
derived interfaces, SessionBean or EntityBean. The EnterpriseBean interface is a marker
interface only and does not define any methods.

public interface
EnterpriseBean
extends
Serializable {

}
Hierarchy: (EnterpriseBean(Serializable))

Implementations: EntityBean, SessionBean

EntityBean EJB 1.0

javax.ejb serializable
This interface is the base interface for all entity EJB objects. The methods defined on the EntityBean
interface are used by EJB containers to notify the entity bean about entity−specific events, such as the need to
(re)load its state from persistent storage.

The ejbActivate() and ejbPassivate() methods are called on the bean by the container when the
bean is associated and disassociated with a specific entity, respectively. The ejbLoad() and ejbStore()
methods are called when the entity bean needs to read and write its persistent state, respectively. The
ejbRemove() method is called when the entity associated with this bean should be removed from persistent
storage. When the container sets the entity bean's context, it calls the setEntityContext() method. The
container removes the association with a given context by calling the unsetEntityContext() method.

public interface EntityBean extends EnterpriseBean {

//
Public Instance Methods
public abstract void ejbActivate

 () throws java.rmi.RemoteException;public abstract void ejbLoad
 () throws java.rmi.RemoteException;public abstract void ejbPassivate

 () throws java.rmi.RemoteException;public abstract void ejbRemove
 () throws java.rmi.RemoteException, RemoveException;public abstract void ejbStore

 () throws java.rmi.RemoteException;public abstract void setEntityContext (EntityContext ctx
) throws java.rmi.RemoteException;public abstract void unsetEntityContext

 () throws java.rmi.RemoteException;
}
Hierarchy: (EntityBean(EnterpriseBean(Serializable)))

EntityContext EJB 1.0

javax.ejb
This extension of the EJBContext interface represents runtime context information for an entity bean. In
addition to the context provided by the EJBContext methods, EntityContext allows the entity bean to
query for its primary key and a remote reference to itself.

Preface (Java Enterprise in a Nutshell)

Chapter 19. The javax.ejb Package 360

public interface EntityContext extends EJBContext {

//
Public Instance Methods
public abstract EJBObject getEJBObject

 () throws java.lang.IllegalStateException;public abstract Object getPrimaryKey
 () throws java.lang.IllegalStateException;

}
Hierarchy: (EntityContext(EJBContext))

Passed To: EntityBean.setEntityContext()

FinderException EJB 1.0

javax.ejb serializable checked
This exception must be thrown by any finder methods declared on an entity bean's home interface. It is
thrown if an error occurred while the server attempted to find the requested entity or entities.

public class FinderException extends
Exception {

//
Public Constructors
public FinderException

 ();public FinderException (String message
);

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>FinderException

Subclasses: ObjectNotFoundException

Handle EJB 1.0

javax.ejb
A Handle represents a portable reference to a remote EJB object, in that it can be serialized, passed across
Java VM boundaries, and then used to reconstitute a remote reference to the same EJB object from which it
was acquired. You acquire a handle for an EJB object using the getHandle() method on its remote
EJBObject.

The Handle interface acts as a base interface for EJB type−specific handle classes, which are typically
generated for you by container deployment tools. Its only method is getEJBObject(), which returns a
remote reference to the EJB object that it represents.

public interface Handle {

//
Public Instance Methods
public abstract EJBObject getEJBObject

 () throws java.rmi.RemoteException;
}
Passed To: EJBHome.remove()

Returned By: EJBObject.getHandle()

ObjectNotFoundException EJB 1.0

Preface (Java Enterprise in a Nutshell)

Chapter 19. The javax.ejb Package 361

javax.ejb serializable checked
This subclass of FinderException is thrown by finder methods that are declared to return a single entity
bean, when the requested entity can't be found in the server's persistent storage.

public class ObjectNotFoundException extends
FinderException {

//
Public Constructors
public ObjectNotFoundException

 ();public ObjectNotFoundException (String message
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>FinderException−−>ObjectNotFoundException

RemoveException EJB 1.0

javax.ejb serializable checked
Thrown by the remove methods on an EJB home interface, when an attempt to remove a bean from its
container is rejected or fails at either the container or the EJB object level.

public class RemoveException extends
Exception {

//
Public Constructors
public RemoveException

 ();public RemoveException (String message
);

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>RemoveException

Thrown By: EJBHome.remove(), EJBObject.remove(), EntityBean.ejbRemove()

SessionBean EJB 1.0

javax.ejb serializable
This is the base interface for all session Enterprise JavaBeans implementations. The methods on this interface
are used by the EJB container to notify the bean about certain events.

The ejbActivate() and ejbPassivate() methods are invoked by the container when the bean
leaves/enters (respectively) a passive state in the container. After the ejbPassivate() method completes,
the container should be able to serialize the bean object and store it to disk or some other persistent storage, if
the container chooses. During the ejbActivate() method, the bean can restore any data or resources it
released when it was passivated. The container calls ejbRemove() on the bean just before the bean is
destroyed. The container sets the bean's context by calling its setSessionContext() method. The
session bean keeps the same context throughout its lifetime, so there is no corresponding unset method, as
there is for EntityBean.

public interface SessionBean extends EnterpriseBean {

// Public Instance Methods

Preface (Java Enterprise in a Nutshell)

Chapter 19. The javax.ejb Package 362

public abstract void ejbActivate
 () throws java.rmi.RemoteException;public abstract void ejbPassivate
 () throws java.rmi.RemoteException;public abstract void ejbRemove

 () throws java.rmi.RemoteException;public abstract void setSessionContext (SessionContext ctx
) throws java.rmi.RemoteException;

}
Hierarchy: (SessionBean(EnterpriseBean(Serializable)))

SessionContext EJB 1.0

javax.ejb
This extension of the EJBContext interface represents runtime context information for a session bean. In
addition to the context provided by the EJBContex methods, SessionContext allows the session bean
to query for a remote reference to itself.

public interface SessionContext extends EJBContext {

//
Public Instance Methods
public abstract EJBObject getEJBObject

 () throws java.lang.IllegalStateException;
}
Hierarchy: (SessionContext(EJBContext))

Passed To: SessionBean.setSessionContext()

SessionSynchronization EJB 1.0

javax.ejb
Session beans are not required to be transactional, but if you want your session bean to be notified of
transaction boundaries, you can have your bean implementation class extend the
SessionSynchronization interface. The EJB container invokes the methods on this interface to notify
your bean about the start and end of transactions.

The afterBegin() is called when a new transaction has started. Any business methods invoked on the
bean between this point and a subsequent call to its beforeCompletion() method execute within the
context of this transaction. The beforeCompletion() method is called on the bean when a transaction is
about to end. The afterCompletion() method is called after the transaction has ended, and the
boolean argument tells the bean whether the transaction was committed successfully (true) or rolled back
(false).

public interface SessionSynchronization {

//
Public Instance Methods
public abstract void afterBegin

 () throws java.rmi.RemoteException;public abstract void afterCompletion (boolean committed
) throws java.rmi.RemoteException;public abstract void beforeCompletion

 () throws java.rmi.RemoteException;
}

18.1. The java.sql Package 20. The
javax.ejb.deployment

Preface (Java Enterprise in a Nutshell)

Chapter 19. The javax.ejb Package 363

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 19. The javax.ejb Package 364

Chapter 20. The javax.ejb.deployment Package
The javax.ejb.deployment package defines classes used by EJB containers to encapsulate information
about EJB objects. An EJB container should provide a tool that creates an instance of the
EntityDescriptor or SessionDescriptor class for a bean, initializes its fields, and then serializes
that initialized instance. Then, when the bean is deployed into the EJB container, the container reads the
serialized deployment descriptor class and its properties to obtain configuration information for the bean.
Figure 20−1 shows the class hierarchy of this package.

Figure 20−1. The javax.ejb.deployment package class hierarchy

AccessControlEntry EJB 1.0

javax.ejb.deployment serializable
This is a serializable class that represents a security−related entry within a bean deployment descriptor. Each
AccessControlEntry included within a DeploymentDescriptor specifies a list of identities, in the
form of java.security.Identity objects, that should have access to a particular method on a bean. If
there is no method set for the entry, the entry is considered the default access control entry for the entire bean,
listing which identities should have access to the bean. Any method on a bean without its own
AccessControlEntry object uses the default entry for access control.

public class AccessControlEntry implements Serializable {

//
Public Constructors
public AccessControlEntry

 ();public AccessControlEntry (java.lang.reflect.Method method

);public AccessControlEntry (java.lang.reflect.Method method, java.security.Identity[]
identities

);//
Public Instance Methods
public java.security.Identity[] getAllowedIdentities ();

default:null
public java.security.Identity getAllowedIdentities (int index

);public java.lang.reflect.Method getMethod ();
default:null

public void setAllowedIdentities (java.security.Identity[] values
);public void setAllowedIdentities (int index, java.security.Identity value

);public void setMethod (java.lang.reflect.Method value
);

}
Hierarchy: Object−−>AccessControlEntry(Serializable)

Passed To: DeploymentDescriptor.setAccessControlEntries()

Chapter 20. The javax.ejb.deployment Package 365

Returned By: DeploymentDescriptor.getAccessControlEntries()

ControlDescriptor EJB 1.0

javax.ejb.deployment serializable
A ControlDescriptor is a component of a DeploymentDescriptor that specifies how a container
should manage the transaction and security features for a specific method on a bean. If no method is specified
in the ControlDescriptor, the features apply by default to all methods on the bean, unless a method has
its own ControlDescriptor.

The methods on the ControlDescriptor let you specify the transaction isolation level (using the
constant TRANSACTION_XXX members of the class), the identity under which to run the method, the run−as
mode (CLIENT_IDENTITY, SPECIFIED_IDENTITY, or SYSTEM_IDENTITY), and how transactions
should be managed for the method (using the TX_XXX constants).

public class ControlDescriptor implements Serializable {

//
Public Constructors
public ControlDescriptor

 ();public ControlDescriptor (java.lang.reflect.Method method
);

//
Public Constants
public static final int CLIENT_IDENTITY ;

=0
public static final int SPECIFIED_IDENTITY ;

=1
public static final int SYSTEM_IDENTITY ;

=2
public static final int TRANSACTION_READ_COMMITTED ;

=2
public static final int TRANSACTION_READ_UNCOMMITTED ;

=1
public static final int TRANSACTION_REPEATABLE_READ ;

=4
public static final int TRANSACTION_SERIALIZABLE ;

=8
public static final int TX_BEAN_MANAGED ;

=1
public static final int TX_MANDATORY ;

=5
public static final int TX_NOT_SUPPORTED ;

=0
public static final int TX_REQUIRED ;

=2
public static final int TX_REQUIRES_NEW ;

=4
public static final int TX_SUPPORTS ; =3

//
Public Instance Methods
public int getIsolationLevel ();

default:2
public java.lang.reflect.Method getMethod ();

default:null
public java.security.Identity getRunAsIdentity ();

default:null
public int getRunAsMode ();

default:1
public int getTransactionAttribute ();

default:3
public void setIsolationLevel (int value

);public void setMethod (java.lang.reflect.Method value
);public void setRunAsIdentity (java.security.Identity value

);public void setRunAsMode (int value
);public void setTransactionAttribute (int value

);
}
Hierarchy: Object−−>ControlDescriptor(Serializable)

Preface (Java Enterprise in a Nutshell)

Chapter 20. The javax.ejb.deployment Package 366

Passed To: DeploymentDescriptor.setControlDescriptors()

Returned By: DeploymentDescriptor.getControlDescriptors()

DeploymentDescriptor EJB 1.0

javax.ejb.deployment serializable
DeploymentDescriptor is a serializable class that contains all the parameters that tell an EJB container
how to deploy and manage a bean. A serialized DeploymentDescriptor object is packaged with the
relevant classes for an EJB object when it is deployed within an EJB container. The container deserializes the
DeploymentDescriptor object and reads the deployment information from it.

This abstract base class defines deployment properties that apply to any type of bean; the
SessionDescriptor and EntityDescriptor subclasses define additional properties specific to
deploying session beans and entity beans.

The DeploymentDescriptor provides access to a list of AccessControlEntry objects that specify
the access levels for the methods on the bean, as well as a list of ControlDescriptor objects that specify
how transactions and security features should be handled for specific methods on the bean. The descriptor also
contains the class names for the bean implementation class, its home interface, and its remote interface, as
well as a boolean flag that indicates whether the bean is reentrant.

public abstract class DeploymentDescriptor implements Serializable {

//
Public Constructors
public DeploymentDescriptor

 ();
//

Public Instance Methods
public AccessControlEntry[] getAccessControlEntries

 ();public AccessControlEntry getAccessControlEntries (int index
);public javax.naming.Name getBeanHomeName

 ();public ControlDescriptor[] getControlDescriptors
 ();public ControlDescriptor getControlDescriptors (int index

);public String getEnterpriseBeanClassName
 ();public java.util.Properties getEnvironmentProperties

 ();public String getHomeInterfaceClassName
 ();public boolean getReentrant

 ();public String getRemoteInterfaceClassName
 ();public boolean isReentrant

 ();public void setAccessControlEntries (AccessControlEntry[] values
);public void setAccessControlEntries (int index, AccessControlEntry value

);public void setBeanHomeName (javax.naming.Name value
);public void setControlDescriptors (ControlDescriptor[] value

);public void setControlDescriptors (int index, ControlDescriptor value
);public void setEnterpriseBeanClassName (String value

);public void setEnvironmentProperties (java.util.Properties value
);public void setHomeInterfaceClassName (String value

);public void setReentrant (boolean value
);public void setRemoteInterfaceClassName (String value

);

Preface (Java Enterprise in a Nutshell)

Chapter 20. The javax.ejb.deployment Package 367

//
Protected Instance Fields
protected int versionNumber

 ;
}
Hierarchy: Object−−>DeploymentDescriptor(Serializable)

Subclasses: EntityDescriptor, SessionDescriptor

EntityDescriptor EJB 1.0

javax.ejb.deployment serializable
This extension of DeploymentDescriptor adds deployment properties specific to entity beans. It
contains a list of bean properties whose persistence should be managed by the container, as well as the name
of the bean's primary key class.

public class EntityDescriptor extends DeploymentDescriptor {

//
Public Constructors
public EntityDescriptor

 ();
//

Public Instance Methods
public java.lang.reflect.Field[] getContainerManagedFields ();

default:null
public java.lang.reflect.Field getContainerManagedFields (int index

);public String getPrimaryKeyClassName ();
default:""

public void setContainerManagedFields (java.lang.reflect.Field[] values
);public void setContainerManagedFields (int index, java.lang.reflect.Field value

);public void setPrimaryKeyClassName (String value
);

}
Hierarchy: Object−−>DeploymentDescriptor(Serializable)−−>EntityDescriptor

SessionDescriptor EJB 1.0

javax.ejb.deployment serializable
This extension of DeploymentDescriptor class adds deployment properties specific to session beans.
Included are the bean's timeout period and whether it's stateful or stateless.

public class SessionDescriptor extends DeploymentDescriptor {

//
Public Constructors
public SessionDescriptor

 ();
//

Public Constants
public static final int STATEFUL_SESSION ;

=1
public static final int STATELESS_SESSION ; =0

//
Public Instance Methods
public int getSessionTimeout ();

default:0
public int getStateManagementType ();

default:1
public void setSessionTimeout (int value

);public void setStateManagementType (int value
);

}

Preface (Java Enterprise in a Nutshell)

Chapter 20. The javax.ejb.deployment Package 368

Hierarchy: Object−−>DeploymentDescriptor(Serializable)−−>SessionDescriptor

19.1. The javax.ejb
Package

21. The javax.jms Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 20. The javax.ejb.deployment Package 369

Chapter 21. The javax.jms Package
The javax.jms package implements the Java Message Service (JMS), which provides an API for
message−based communication between separate Java processes. Message−based communication is
asynchronous; a message addressed to a recipient or group is sent, and the recipient receives and acts on the
message at some later time. This is different from other network−based communication between clients, like
RMI, where the sender of a message waits for a response before continuing.

In the JMS model, clients of a message service send and receive messages through a provider that is
responsible for delivering messages. JMS 1.0 provides two models for messaging among clients:
point−to−point and publish/subscribe. In point−to−point messaging, a message is created by one client and
addressed for a single remote recipient. The provider is handed the message and delivers it to the one recipient
targeted by the message. This model revolves around message queues: a message sender queues outgoing
messages for delivery and a message recipient queues incoming messages for handling. The interfaces
provided in the javax.jms package for point−to−point messaging have "Queue" as their prefix
(QueueConnection, QueueSession, etc.). In publish/subscribe messaging, a hierarchical content tree is
established. Clients publish messages to specific nodes or topics in the tree, and these messages are delivered
to any clients that have subscribed to these nodes. Interfaces related to publish/subscribe messaging have
"Topic" as their prefix (TopicConnection, TopicSession, etc.). Point−to−point messaging is
analogous to typical email messaging; publish/subscribe messaging works like Internet newsgroups.

In a typical scenario, a JMS client gets a reference to a ConnectionFactory from the JMS provider
(usually through a JNDI lookup). The ConnectionFactory creates a Connection to the provider. With
the Connection, a client can create Session objects to send and receive messages. Within a single
Session, messages are sent and received in a serial order. Once the client has a Session, it can send and
receive Message objects composed of a header, optional properties, and a body. Different types of
Message objects can hold different contents in their body (e.g., text, binary data, name/value pairs).

Figure 21−1 shows the interfaces in the javax.jms package, while Figure 21−2 shows the classes and
exceptions.

Chapter 21. The javax.jms Package 370

Figure 21−1. The interfaces of the javax.jms package

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 371

Figure 21−2. The classes and exceptions of the javax.jms package

BytesMessage JMS 1.0

javax.jms
A BytesMessage is a Message that contains an uninterpreted stream of bytes as its body. This is
typically used to wrap an existing (non−JMS) message format so that it can be delivered over JMS. Data is
written to the message's binary body using its writeXXX() methods and read using its readXXX()
methods. Once a BytesMessage has been created (using a series of write calls), the reset() method can
put the message into read−only mode. Until this is done, the message is in write−only mode, and the contents
cannot be read.

public interface BytesMessage extends Message {

//
Public Instance Methods
public abstract boolean readBoolean

 () throws JMSException;public abstract byte readByte
 () throws JMSException;public abstract int readBytes (byte[] value

) throws JMSException;public abstract int readBytes (byte[] value, int length
) throws JMSException;public abstract char readChar

 () throws JMSException;public abstract double readDouble
 () throws JMSException;public abstract float readFloat

 () throws JMSException;public abstract int readInt
 () throws JMSException;public abstract long readLong

 () throws JMSException;public abstract short readShort
 () throws JMSException;public abstract int readUnsignedByte

 () throws JMSException;public abstract int readUnsignedShort
 () throws JMSException;public abstract String readUTF

 () throws JMSException;public abstract void reset
 () throws JMSException;

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 372

public abstract void writeBoolean (boolean value
) throws JMSException;public abstract void writeByte (byte value

) throws JMSException;public abstract void writeBytes (byte[] value
) throws JMSException;public abstract void writeBytes (byte[] value, int offset, int length

) throws JMSException;public abstract void writeChar (char value
) throws JMSException;public abstract void writeDouble (double value

) throws JMSException;public abstract void writeFloat (float value
) throws JMSException;public abstract void writeInt (int value

) throws JMSException;public abstract void writeLong (long value
) throws JMSException;public abstract void writeObject (Object value

) throws JMSException;public abstract void writeShort (short value
) throws JMSException;public abstract void writeUTF (String value
) throws JMSException;

}
Hierarchy: (BytesMessage(Message))

Returned By: Session.createBytesMessage()

Connection JMS 1.0

javax.jms
A JMS client needs to have a Connection to the JMS provider in order to send or receive messages. The
javax.jms.Connection interface for messaging is roughly analogous to the
java.sql.Connection interface in JDBC−−one connects a client to a messaging service, while the other
connects a client to a persistent data service. JMS Connection objects are generally expensive to create,
because setup requires network communication with the provider. Thus, a client normally has only one, or
very few, Connection objects to its JMS provider.

A Connection can either be in running mode (messages are being sent and received through the
connection), or it can be stopped. When a Connection is in stopped mode, it can send messages, but not
receive them. A newly created Connection is in stopped mode so that you can finish setting up your client
(e.g., creating Session objects; creating MessageConsumer and/or MessageProducer objects). A
Connection can be started and stopped using stop() and start() multiple times, if necessary. When
you're done with a Connection, you should free up its resources by calling its close() method.

A Connection object creates sessions for message exchanges. The methods for creating sessions are
defined by extensions of the Connection interface (QueueConnection and TopicConnection).

public interface Connection {

//
Public Instance Methods
public abstract void close

 () throws JMSException;public abstract String getClientID
 () throws JMSException;public abstract ConnectionMetaData getMetaData

 () throws JMSException;public abstract void setClientID (String clientID
) throws JMSException;public abstract void setExceptionListener (ExceptionListener listener

) throws JMSException;public abstract void start
 () throws JMSException;public abstract void stop
 () throws JMSException;

}
Implementations: QueueConnection, TopicConnection

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 373

ConnectionConsumer JMS 1.0

javax.jms
A ConnectionConsumer is used in situations where messages need to be read concurrently by multiple
agents within the same process (e.g., within an application server running multiple message−based
applications). The ConnectionConsumer delivers messages to one or more Session objects that are
associated with MessageListener objects for individual clients. It contains a reference to a
ServerSessionPool that accesses the Session objects concurrently reading messages.
ConnectionConsumer is typically used by an application server to provide a message−handling service
for client applications; applications normally don't need to use the interface directly.

public interface ConnectionConsumer {

//
Public Instance Methods
public abstract void close

 () throws JMSException;public abstract ServerSessionPool getServerSessionPool
 () throws JMSException;

}
Returned By: QueueConnection.createConnectionConsumer(),
TopicConnection.{createConnectionConsumer(),
createDurableConnectionConsumer()}

ConnectionFactory JMS 1.0

javax.jms
A messaging client uses a ConnectionFactory to get a Connection object to a message provider. A
ConnectionFactory is usually acquired through a JNDI lookup. The ConnectionFactory interface
doesn't define methods for creating Connection objects; these methods are provided by extensions to this
interface (e.g., QueueConnectionFactory, TopicConnectionFactory).

public interface
ConnectionFactory {

}
Implementations: QueueConnectionFactory, TopicConnectionFactory

ConnectionMetaData JMS 1.0

javax.jms
The Connection.getMetaData() method returns a ConnectionMetaData object that holds
information about the JMS connection, including the version of JMS being used by the provider and version
information about the provider itself.

public interface ConnectionMetaData {

//
Public Instance Methods
public abstract int getJMSMajorVersion

 () throws JMSException;public abstract int getJMSMinorVersion
 () throws JMSException;public abstract String getJMSProviderName

 () throws JMSException;public abstract String getJMSVersion
 () throws JMSException;

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 374

public abstract int getProviderMajorVersion
 () throws JMSException;public abstract int getProviderMinorVersion
 () throws JMSException;public abstract String getProviderVersion

 () throws JMSException;
}
Returned By: javax.jms.Connection.getMetaData()

DeliveryMode JMS 1.0

javax.jms
This interface defines constants that represent delivery modes a JMS provider can support.
NON_PERSISTENT delivery implies that a significant failure by the provider before a message can be
delivered causes the message to be lost. PERSISTENT delivery mode implies that the provider stores
messages to persistent storage, so that the messages survive a crash by the provider. A message sender
specifies the delivery mode for a Message in its header, using the Message.setJMSDeliveryMode()
method, and the provider is responsible for honoring the delivery mode.

public interface DeliveryMode {

//
Public Constants
public static final int NON_PERSISTENT ;

=1
public static final int PERSISTENT ; =2

}

Destination JMS 1.0

javax.jms
A Destination represents a delivery address for a message. This interface is simply a marker interface,
without any methods or members, since JMS does not attempt to define an addressing syntax. An
implementor of a JMS provider needs to provide implementations of this interface that define its
message−addressing syntax. Destination objects might be published by a JMS provider using JNDI. In
this case, a JMS client needs to assemble the name of the queue in the syntax expected by the provider and
then do a JNDI lookup to get a reference to the Destination.

public interface
Destination {

}
Implementations: Queue, Topic

Passed To: Message.{setJMSDestination(), setJMSReplyTo()}

Returned By: Message.{getJMSDestination(), getJMSReplyTo()}

ExceptionListener JMS 1.0

javax.jms
An ExceptionListener gets asynchronous notification of errors that occur with a Connection to a
JMS provider. If a client registers an ExceptionListener with a Connection using the
Connection.setExceptionListener() method, the provider calls the onException() method
on the ExceptionListener when any error occurs, passing it the exception that describes the error.

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 375

public interface ExceptionListener {

//
Public Instance Methods
public abstract void onException (JMSException exception

);
}
Passed To: javax.jms.Connection.setExceptionListener()

IllegalStateException JMS 1.0

javax.jms serializable checked
Thrown if a request is made of a provider at a time when the request cannot be satisfied.

public class IllegalStateException extends JMSException {

//
Public Constructors
public IllegalStateException (String reason

);public IllegalStateException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>IllegalStateException

InvalidClientIDException JMS 1.0

javax.jms serializable checked
Thrown by the Connection.setClientID() method when an invalid client ID is given.

public class InvalidClientIDException extends JMSException {

//
Public Constructors
public InvalidClientIDException (String reason

);public InvalidClientIDException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>InvalidClientIDException

InvalidDestinationException JMS 1.0

javax.jms serializable checked
Thrown when the provider encounters a destination it cannot understand or is no longer accessible by the
provider (e.g., a topic has been removed from a publish/subscribe context, or a queue associated with a user
account has been removed because the account has been closed).

public class InvalidDestinationException extends JMSException {

//
Public Constructors
public InvalidDestinationException (String reason

);public InvalidDestinationException (String reason, String errorCode
);

}

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 376

Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>InvalidDestinationException

InvalidSelectorException JMS 1.0

javax.jms serializable checked
Thrown when a malformed selector is given to a provider (e.g., as part of a MessageSelector).

public class InvalidSelectorException extends JMSException {

//
Public Constructors
public InvalidSelectorException (String reason

);public InvalidSelectorException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>InvalidSelectorException

JMSException JMS 1.0

javax.jms serializable checked
This is the base class for all JMS−related exceptions. It provides a provider−specific error code and a nested
exception that is the source of the error.

public class JMSException extends Exception {

//
Public Constructors
public JMSException (String reason

);public JMSException (String reason, String errorCode
);

//
Public Instance Methods
public String getErrorCode

 ();public Exception getLinkedException
 ();public void setLinkedException (Exception ex); synchronized

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>JMSException

Subclasses: javax.jms.IllegalStateException, InvalidClientIDException,
InvalidDestinationException, InvalidSelectorException,
JMSSecurityException, MessageEOFException, MessageFormatException,
MessageNotReadableException, MessageNotWriteableException,
ResourceAllocationException, TransactionInProgressException,
TransactionRolledBackException

Passed To: ExceptionListener.onException()

Thrown By: Too many methods to list.

JMSSecurityException JMS 1.0

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 377

javax.jms serializable checked
Thrown by a provider when a request cannot be satisfied for security reasons (e.g., a client−provided
name/password fails authentication).

public class JMSSecurityException extends JMSException {

//
Public Constructors
public JMSSecurityException (String reason

);public JMSSecurityException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>JMSSecurityException

MapMessage JMS 1.0

javax.jms
A MapMessage has a set of name/value pairs as its message body. The name of a property is a String,
and the value is a Java primitive type. There are getXXX() and setXXX() methods for each primitive type,
plus getObject() and setObject() methods for situations where the type of the value is not known
until runtime. If a property is set to a value of a certain type, it has to be read back using a get method
appropriate for that type, according to this table:

If written as:

Can be read as:

boolean byte char short int long float double String byte[]

boolean

X

X
byte

X
X X

X
X

char

X

X

short
X X

X
X

int

X
X

X

long
X

X

float

X X
X

double

X
X

String X X X X X X X X
X

byte[]

X
If a value is read using an inappropriate get method, a MessageFormatException is thrown. The
getMapNames() methods returns an Enumeration of names for the values in the MapMessage. A
client that receives a MapMessage can read only the contents of the message until it calls clearBody()
on the message. If a client tries to write values to the message before this, a
MessageNotWriteableException is thrown.

public interface MapMessage extends Message {

//
Public Instance Methods
public abstract boolean getBoolean (String name

) throws JMSException;public abstract byte getByte (String name
) throws JMSException;public abstract byte[] getBytes (String name

) throws JMSException;public abstract char getChar (String name
) throws JMSException;public abstract double getDouble (String name

) throws JMSException;

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 378

public abstract float getFloat (String name
) throws JMSException;public abstract int getInt (String name

) throws JMSException;public abstract long getLong (String name
) throws JMSException;public abstract java.util.Enumeration getMapNames

 () throws JMSException;public abstract Object getObject (String name
) throws JMSException;public abstract short getShort (String name

) throws JMSException;public abstract String getString (String name
) throws JMSException;public abstract boolean itemExists (String name

) throws JMSException;public abstract void setBoolean (String name, boolean value
) throws JMSException;public abstract void setByte (String name, byte value

) throws JMSException;public abstract void setBytes (String name, byte[] value
) throws JMSException;public abstract void setBytes (String name, byte[] value, int offset, int length

) throws JMSException;public abstract void setChar (String name, char value
) throws JMSException;public abstract void setDouble (String name, double value

) throws JMSException;public abstract void setFloat (String name, float value
) throws JMSException;public abstract void setInt (String name, int value

) throws JMSException;public abstract void setLong (String name, long value
) throws JMSException;public abstract void setObject (String name, Object value

) throws JMSException;public abstract void setShort (String name, short value
) throws JMSException;public abstract void setString (String name, String value

) throws JMSException;
}
Hierarchy: (MapMessage(Message))

Returned By: Session.createMapMessage()

Message JMS 1.0

javax.jms
The Message interface is the base interface for all messages in JMS. A Message is composed of a set of
predefined header fields, an optional set of application−specific properties, and a body that contains the
content of the message. A set and get method are provided for each header field supported by a JMS
message. The possible header fields include:

JMSCorrelationID
A String that identifies another message (e.g., original message for a response) with which this
message is related. The ID value is dictated by either the JMS provider or the application.

JMSDeliveryMode
One of the static values of the DeliveryMode interface.

JMSDestination
The target of this message, as a Destination object.

JMSExpiration
The time (in milliseconds since the epoch) when the message will expire. Each client specifies a
time−to−live for the messages they send, so this header field is automatically set at send time to the
current time plus the client's time−to−live.

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 379

JMSMessageID
A unique String identifier for this message. The provider sets this field automatically when a
message is sent.

JMSPriority
A value from 0 to 9 (9 is highest) that indicates the urgency of the message. JMS providers are
supposed to attempt to deliver messages with a priority from 5 to 9 before attempting to deliver
lower−priority messages.

JMSRedelivered
An indicator that the message was delivered to the client earlier but no acknowledgment was received.

JMSReplyTo
A Destination where the receiver can send a reply to the message.

JMSTimestamp
The time (in milliseconds since the epoch) at which a message was given to a JMS provider for
sending.

JMSType
A String that indicates the type of the message. There are no standard values for a message's type;
they can be provider− or application−specific.

Properties with names prefixed by "JMSX" are reserved for use by the JMS standard.

Properties can be added to a message using the setXXXProperty() methods and read using the
getXXXProperty() methods. If a property is written with a value of a given type, it needs to be read from
the message according to the following table:

If written as:

Can be read as:

boolean byte short int long float double String

boolean

X

X

byte
X X X

X
X

short
X X

X
X

int

X
X

X

long
X

X

float

X X X

double

X X

String X X X X X X X X
If in invalid get method is used for a property, a MessageFormatException is thrown.

public interface Message {

//
Public Constants
public static final int DEFAULT_DELIVERY_MODE ;

=−1
public static final int DEFAULT_PRIORITY ;

=−1
public static final int DEFAULT_TIME_TO_LIVE ; =−1

//
Public Instance Methods
public abstract void acknowledge

 () throws JMSException;public abstract void clearBody
 () throws JMSException;

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 380

public abstract void clearProperties
 () throws JMSException;public abstract boolean getBooleanProperty (String name

) throws JMSException;public abstract byte getByteProperty (String name
) throws JMSException;public abstract double getDoubleProperty (String name

) throws JMSException;public abstract float getFloatProperty (String name
) throws JMSException;public abstract int getIntProperty (String name

) throws JMSException;public abstract String getJMSCorrelationID
 () throws JMSException;public abstract byte[] getJMSCorrelationIDAsBytes

 () throws JMSException;public abstract int getJMSDeliveryMode
 () throws JMSException;public abstract Destination getJMSDestination

 () throws JMSException;public abstract long getJMSExpiration
 () throws JMSException;public abstract String getJMSMessageID

 () throws JMSException;public abstract int getJMSPriority
 () throws JMSException;public abstract boolean getJMSRedelivered

 () throws JMSException;public abstract Destination getJMSReplyTo
 () throws JMSException;public abstract long getJMSTimestamp

 () throws JMSException;public abstract String getJMSType
 () throws JMSException;public abstract long getLongProperty (String name

) throws JMSException;public abstract Object getObjectProperty (String name
) throws JMSException;public abstract java.util.Enumeration getPropertyNames

 () throws JMSException;public abstract short getShortProperty (String name
) throws JMSException;public abstract String getStringProperty (String name

) throws JMSException;public abstract boolean propertyExists (String name
) throws JMSException;public abstract void setBooleanProperty (String name, boolean value

) throws JMSException;public abstract void setByteProperty (String name, byte value
) throws JMSException;public abstract void setDoubleProperty (String name, double value

) throws JMSException;public abstract void setFloatProperty (String name, float value
) throws JMSException;public abstract void setIntProperty (String name, int value

) throws JMSException;public abstract void setJMSCorrelationID (String correlationID
) throws JMSException;public abstract void setJMSCorrelationIDAsBytes (byte[] correlationID

) throws JMSException;public abstract void setJMSDeliveryMode (int deliveryMode
) throws JMSException;public abstract void setJMSDestination (Destination destination

) throws JMSException;public abstract void setJMSExpiration (long expiration
) throws JMSException;public abstract void setJMSMessageID (String id

) throws JMSException;public abstract void setJMSPriority (int priority
) throws JMSException;public abstract void setJMSRedelivered (boolean redelivered

) throws JMSException;public abstract void setJMSReplyTo (Destination replyTo
) throws JMSException;public abstract void setJMSTimestamp (long timestamp

) throws JMSException;public abstract void setJMSType (String type
) throws JMSException;public abstract void setLongProperty (String name, long value

) throws JMSException;public abstract void setObjectProperty (String name, Object value
) throws JMSException;public abstract void setShortProperty (String name, short value

) throws JMSException;public abstract void setStringProperty (String name, String value
) throws JMSException;

}

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 381

Implementations: BytesMessage, MapMessage, ObjectMessage, StreamMessage,
TextMessage

Passed To: MessageListener.onMessage(), QueueRequestor.request(),
QueueSender.send(), TopicPublisher.publish(), TopicRequestor.request()

Returned By: MessageConsumer.{receive(), receiveNoWait()},
QueueRequestor.request(), Session.createMessage(),
TopicRequestor.request()

MessageConsumer JMS 1.0

javax.jms
A JMS client uses a MessageConsumer to receive messages. A client creates a message consumer by
specifying a Destination from which to receive messages and an optional message selector that filters
messages according to their header fields and property values. The methods for creating
MessageConsumer objects are defined in subinterfaces of the Connection interface.

A message selector is a filter string whose syntax is based on the SQL92 conditional expression syntax. See
the JMS specification for more details on the syntax of message selectors.

A client can use a MessageConsumer synchronously by polling it with its receive methods or
asynchronously by registering a MessageListener with the consumer. When a message arrives that
matches the sending Destination and the message selector, the onMessage() method on the registered
listener is called.

A MessageConsumer should be freed by calling its close() method, to free up any resources allocated
for it by the provider.

public interface MessageConsumer {

//
Public Instance Methods
public abstract void close

 () throws JMSException;public abstract MessageListener getMessageListener
 () throws JMSException;public abstract String getMessageSelector

 () throws JMSException;public abstract Message receive
 () throws JMSException;public abstract Message receive (long timeOut

) throws JMSException;public abstract Message receiveNoWait
 () throws JMSException;public abstract void setMessageListener (MessageListener listener

) throws JMSException;
}
Implementations: QueueReceiver, TopicSubscriber

MessageEOFException JMS 1.0

javax.jms serializable checked
Thrown if the end of a StreamMessage or BytesMessage is reached before it is expected.

public class MessageEOFException extends JMSException {

// Public Constructors

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 382

public MessageEOFException (String reason
);public MessageEOFException (String reason, String errorCode

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>MessageEOFException

MessageFormatException JMS 1.0

javax.jms serializable checked
Thrown when an attempt is made to read data from a message as the wrong data type or to write data to a
message in a type it does not support.

public class MessageFormatException extends JMSException {

//
Public Constructors
public MessageFormatException (String reason

);public MessageFormatException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>MessageFormatException

MessageListener JMS 1.0

javax.jms
A MessageListener is registered by a client with a MessageConsumer, to allow the client to
asynchronously receive messages. When the consumer receives a message, the listener's onMessage()
method is invoked. The consumer waits until the onMessage() method is complete before delivering the
next message.

public interface MessageListener {

//
Public Instance Methods
public abstract void onMessage (Message message

);
}
Passed To: MessageConsumer.setMessageListener(), Session.setMessageListener()

Returned By: MessageConsumer.getMessageListener(),
Session.getMessageListener()

MessageNotReadableException JMS 1.0

javax.jms serializable checked
Thrown if a client attempts to read data from a write−only message (e.g., a StreamMessage whose
contents have not yet been reset).

public class MessageNotReadableException extends JMSException {

//
Public Constructors
public MessageNotReadableException (String reason

);

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 383

public MessageNotReadableException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>MessageNotReadableException

MessageNotWriteableException JMS 1.0

javax.jms serializable checked
Thrown when an attempt is made to write data to a read−only message (e.g., a received MapMessage that
has not yet had its clearBody() method called).

public class MessageNotWriteableException extends JMSException {

//
Public Constructors
public MessageNotWriteableException (String reason

);public MessageNotWriteableException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>MessageNotWriteableException

MessageProducer JMS 1.0

javax.jms
A client uses a MessageProducer to send messages. A MessageProducer can be tied to a specific
Destination, and any messages sent through the producer are addressed to the Destination specified
when it was created. If a Destination is not specified when a MessageProducer is created, a
Destination has to provide for each message sent. Methods to create MessageProducer objects are
provided by subinterfaces of the Session interface (e.g., TopicSession, QueueSession).

A MessageProducer has a default delivery mode, priority, and time−to−live for messages it sends. There
are get and set methods for these default properties. If these properties are specified on a message, they
override the defaults of the MessageProducer.

public interface MessageProducer {

//
Public Instance Methods
public abstract void close

 () throws JMSException;public abstract int getDeliveryMode
 () throws JMSException;public abstract boolean getDisableMessageID

 () throws JMSException;public abstract boolean getDisableMessageTimestamp
 () throws JMSException;public abstract int getPriority

 () throws JMSException;public abstract int getTimeToLive
 () throws JMSException;public abstract void setDeliveryMode (int deliveryMode

) throws JMSException;public abstract void setDisableMessageID (boolean value
) throws JMSException;public abstract void setDisableMessageTimestamp (boolean value

) throws JMSException;public abstract void setPriority (int deliveryMode
) throws JMSException;public abstract void setTimeToLive (int timeToLive

) throws JMSException;
}

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 384

Implementations: QueueSender, TopicPublisher

ObjectMessage JMS 1.0

javax.jms
This is a message that contains a single serialized Java object as its body. Only a Serializable object can
be used as the body of an ObjectMessage. When an ObjectMessage is received, it is read−only until
the clearBody() method is called on it.

public interface ObjectMessage extends Message {

//
Public Instance Methods
public abstract Serializable getObject

 () throws JMSException;public abstract void setObject (Serializable object
) throws JMSException;

}
Hierarchy: (ObjectMessage(Message))

Returned By: Session.createObjectMessage()

Queue JMS 1.0

javax.jms
A Queue is a Destination specific to point−to−point messaging. The Queue has a String name
whose syntax is dictated by the provider. Queue objects are created using the createQueue() method on
a QueueSession.

public interface Queue extends Destination {

//
Public Instance Methods
public abstract String getQueueName

 () throws JMSException;public abstract String toString
 ();

}
Hierarchy: (Queue(Destination))

Implementations: TemporaryQueue

Passed To: QueueConnection.createConnectionConsumer(),
QueueRequestor.QueueRequestor(), QueueSender.send(),
QueueSession.{createBrowser(), createReceiver(), createSender()}

Returned By: QueueBrowser.getQueue(), QueueReceiver.getQueue(),
QueueSender.getQueue(), QueueSession.createQueue()

QueueBrowser JMS 1.0

javax.jms
A QueueBrowser peeks at the contents of a message queue without actually removing messages. A
QueueBrowser has an optional message selector that can filter the messages checked for on the queue.
QueueBrowser objects are created using the createBrowser() methods on QueueSession.

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 385

public interface QueueBrowser {

//
Public Instance Methods
public abstract void close

 () throws JMSException;public abstract java.util.Enumeration getEnumeration
 () throws JMSException;public abstract String getMessageSelector

 () throws JMSException;public abstract Queue getQueue
 () throws JMSException;

}
Returned By: QueueSession.createBrowser()

QueueConnection JMS 1.0

javax.jms
A QueueConnection is a Connection specific to a point−to−point messaging provider. The
QueueConnection allows clients to create QueueSession objects using the
createQueueSession() method.

public interface QueueConnection extends javax.jms.Connection {

//
Public Instance Methodspublic abstract ConnectionConsumer createConnectionConsumer (Queue queue, String
messageSelector, ServerSessionPool sessionPool, int maxMessages

) throws JMSException;
public abstract QueueSession createQueueSession (boolean transacted, int acknowledgeMode) throws

JMSException;}
Hierarchy: (QueueConnection(javax.jms.Connection))

Implementations: XAQueueConnection

Returned By: QueueConnectionFactory.createQueueConnection()

QueueConnectionFactory JMS 1.0

javax.jms
A QueueConnectionFactory is exported by point−to−point providers to allow clients to create
QueueConnection objects to the provider. The default createQueueConnection() method creates a
connection under the default user identity of the client JVM, while the other constructor accepts a name and
password that authenticates the connection request.

public interface QueueConnectionFactory extends ConnectionFactory {

//
Public Instance Methods
public abstract QueueConnection createQueueConnection

 () throws JMSException;public abstract QueueConnection createQueueConnection (String userName, String password) throws

JMSException;}
Hierarchy: (QueueConnectionFactory(ConnectionFactory))

Implementations: XAQueueConnectionFactory

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 386

QueueReceiver JMS 1.0

javax.jms
A QueueReceiver is a MessageConsumer specific to point−to−point messaging. The getQueue()
method returns the Queue associated with the receiver. QueueReceiver objects are created using the
createReceiver() methods on QueueSession.

public interface QueueReceiver extends MessageConsumer {

//
Public Instance Methods
public abstract Queue getQueue

 () throws JMSException;
}
Hierarchy: (QueueReceiver(MessageConsumer))

Returned By: QueueSession.createReceiver()

QueueRequestor JMS 1.0

javax.jms
QueueRequestor is a utility class provided for situations in which a client wants to send a message to a
specific destination and wait for a response. A QueueRequestor is constructed with a QueueSession
and a destination Queue, and then its request() method is called with the Message to be sent. The
QueueRequestor sets the reply−to destination on the message to a temporary Queue that it creates. It
sends the message and waits for a response. The response Message is the return value of the request()
method.

public class QueueRequestor {

//
Public Constructors
public QueueRequestor (QueueSession session, Queue queue

) throws JMSException;
//

Public Instance Methods
public void close

 () throws JMSException;public Message request (Message message
) throws JMSException;

}

QueueSender JMS 1.0

javax.jms
A QueueSender is a MessageProducer that sends messages in a point−to−point context.
QueueSender objects are created using the createQueue() method on QueueSession, specifying a
default Queue as the target of messages. A client can override the default message target by using one of the
send() methods on the QueueSender that accepts a target Queue. If a send() method is called without
a target Queue, and the QueueSender does not have a default target Queue defined (e.g., it was created
with a null target Queue), an InvalidDestinationException is thrown.

public interface QueueSender extends MessageProducer {

//
Public Instance Methods
public abstract Queue getQueue

 () throws JMSException;public abstract void send (Message message
) throws JMSException;

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 387

public abstract void send (Queue queue, Message message

) throws JMSException;public abstract void send (Message message, int deliveryMode, int priority, long timeToLive) throws

JMSException;
public abstract void send (Queue queue, Message message, int deliveryMode, int priority, long
timeToLive

) throws JMSException;}
Hierarchy: (QueueSender(MessageProducer))

Returned By: QueueSession.createSender()

QueueSession JMS 1.0

javax.jms runnable
The QueueSession is a Session specific to a point−to−point messaging context. It provides methods for
creating point−to−point message consumers (QueueReceiver), producers (QueueSender), and
destinations (Queue), as well as utilities objects such as QueueBrowser and TemporaryQueue.

public interface QueueSession extends Session {

//
Public Instance Methods
public abstract QueueBrowser createBrowser (Queue queue

) throws JMSException;public abstract QueueBrowser createBrowser (Queue queue, String messageSelector) throws

JMSException;public abstract Queue createQueue (String queueName
) throws JMSException;public abstract QueueReceiver createReceiver (Queue queue

) throws JMSException;public abstract QueueReceiver createReceiver (Queue queue, String messageSelector) throws

JMSException;public abstract QueueSender createSender (Queue queue
) throws JMSException;public abstract TemporaryQueue createTemporaryQueue
 () throws JMSException;

}
Hierarchy: (QueueSession(Session(Runnable)))

Passed To: QueueRequestor.QueueRequestor()

Returned By: QueueConnection.createQueueSession(),
XAQueueSession.getQueueSession()

ResourceAllocationException JMS 1.0

javax.jms serializable checked
Thrown when a request is made of a provider, and it cannot be completed due to resource issues.

public class ResourceAllocationException extends JMSException {

//
Public Constructors
public ResourceAllocationException (String reason

);public ResourceAllocationException (String reason, String errorCode
);

}

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 388

Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>ResourceAllocationException

ServerSession JMS 1.0

javax.jms
A ServerSession is used by an application server when it needs to separate Session objects to
individual threads, for concurrent access to and handling of flows of messages. The ServerSession
represents a JMS Session tied to a thread. A ConnectionConsumer keeps a pool of ServerSession
objects, which it handles messages as they arrive. The ConnectionConsumer assigns one or more
messages to the Session contained in the ServerSession, and then calls the ServerSession's
start() method. The ServerSession calls start() on the Thread for the Session, which
eventually calls the run() method of the Session (Session implements the java.lang.Runnable
interface).

public interface ServerSession {

//
Public Instance Methods
public abstract Session getSession

 () throws JMSException;public abstract void start
 () throws JMSException;

}
Returned By: ServerSessionPool.getServerSession()

ServerSessionPool JMS 1.0

javax.jms
A ConnectionConsumer uses a ServerSessionPool to manage a pool of ServerSession
objects. The ServerSessionPool can manage the pool any way it likes and can block if the pool is
exhausted.

public interface ServerSessionPool {

//
Public Instance Methods
public abstract ServerSession getServerSession

 () throws JMSException;
}
Passed To: QueueConnection.createConnectionConsumer(),
TopicConnection.{createConnectionConsumer(),
createDurableConnectionConsumer()}

Returned By: ConnectionConsumer.getServerSessionPool()

Session JMS 1.0

javax.jms runnable
A Session provides a client with the means for creating messages, message producers, and message
consumers. Extensions of Session create type−specific versions of these objects (e.g., QueueSender and
TopicPublisher).

Within a Session, messages are sent and received in a serial order. The Session interface also provides

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 389

facilities for JMS providers that chose to provide transactional support in their Session implementations. A
transaction is started when the Session is created. In a messaging context, a transaction consists of a series
of message transmissions and receipts. Committing a messaging transaction (by calling commit() on the
corresponding Session) causes all pending transmissions to be sent and all pending receipts to be finalized
and acknowledged. If a transaction is aborted (by calling the rollback() method on the Session), the
outgoing messages are destroyed, and incoming messages are cancelled. A new transaction is started as soon
as the current one is committed or rolled back.

public interface Session extends Runnable {

//
Public Constants
public static final int AUTO_ACKNOWLEDGE ;

=1
public static final int CLIENT_ACKNOWLEDGE ;

=2
public static final int DUPS_OK_ACKNOWLEDGE ; =3

//
Public Instance Methods
public abstract void close

 () throws JMSException;public abstract void commit
 () throws JMSException;public abstract BytesMessage createBytesMessage

 () throws JMSException;public abstract MapMessage createMapMessage
 () throws JMSException;public abstract Message createMessage

 () throws JMSException;public abstract ObjectMessage createObjectMessage
 () throws JMSException;public abstract ObjectMessage createObjectMessage (Serializable object

) throws JMSException;public abstract StreamMessage createStreamMessage
 () throws JMSException;public abstract TextMessage createTextMessage

 () throws JMSException;public abstract TextMessage createTextMessage (StringBuffer stringBuffer
) throws JMSException;public abstract MessageListener getMessageListener

 () throws JMSException;public abstract boolean getTransacted
 () throws JMSException;public abstract void recover

 () throws JMSException;public abstract void rollback
 () throws JMSException;public abstract void setMessageListener (MessageListener listener

) throws JMSException;
}
Hierarchy: (Session(Runnable))

Implementations: QueueSession, TopicSession, XASession

Returned By: ServerSession.getSession()

StreamMessage JMS 1.0

javax.jms
A StreamMessage is a Message whose body consists of a stream of serialized Java primitive data items.
It is similar in many ways to a BytesMessage, except that the contents of a StreamMessage are read in
the same order they are written by the sender. Otherwise, StreamMessage has a similar set of read/write
methods and similar rules about how certain data types are read from the message as BytesMessage.

public interface StreamMessage extends Message {

//
Public Instance Methods
public abstract boolean readBoolean

 () throws JMSException;

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 390

public abstract byte readByte
 () throws JMSException;public abstract int readBytes (byte[] value

) throws JMSException;public abstract char readChar
 () throws JMSException;public abstract double readDouble

 () throws JMSException;public abstract float readFloat
 () throws JMSException;public abstract int readInt

 () throws JMSException;public abstract long readLong
 () throws JMSException;public abstract Object readObject

 () throws JMSException;public abstract short readShort
 () throws JMSException;public abstract String readString

 () throws JMSException;public abstract void reset
 () throws JMSException;public abstract void writeBoolean (boolean value

) throws JMSException;public abstract void writeByte (byte value
) throws JMSException;public abstract void writeBytes (byte[] value

) throws JMSException;public abstract void writeBytes (byte[] value, int offset, int length
) throws JMSException;public abstract void writeChar (char value

) throws JMSException;public abstract void writeDouble (double value
) throws JMSException;public abstract void writeFloat (float value

) throws JMSException;public abstract void writeInt (int value
) throws JMSException;public abstract void writeLong (long value

) throws JMSException;public abstract void writeObject (Object value
) throws JMSException;public abstract void writeShort (short value

) throws JMSException;public abstract void writeString (String value
) throws JMSException;

}
Hierarchy: (StreamMessage(Message))

Returned By: Session.createStreamMessage()

TemporaryQueue JMS 1.0

javax.jms
A TemporaryQueue is a Queue used internally by a QueueConnection.

public interface TemporaryQueue extends Queue {

//
Public Instance Methods
public abstract void delete

 () throws JMSException;
}
Hierarchy: (TemporaryQueue(Queue(Destination)))

Returned By: QueueSession.createTemporaryQueue()

TemporaryTopic JMS 1.0

javax.jms
A TemporaryTopic is a Topic used internally by a TopicConnection.

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 391

public interface TemporaryTopic extends Topic {

//
Public Instance Methods
public abstract void delete

 () throws JMSException;
}
Hierarchy: (TemporaryTopic(Topic(Destination)))

Returned By: TopicSession.createTemporaryTopic()

TextMessage JMS 1.0

javax.jms
A TextMessage is a Message whose body is a String. The contents of the message can be retrieved
using the getText() method. The text of the message might be simple ASCII, or it could be structured
according to a syntax like HTML or XML.

public interface TextMessage extends Message {

//
Public Instance Methods
public abstract String getText

 () throws JMSException;public abstract void setText (String string
) throws JMSException;

}
Hierarchy: (TextMessage(Message))

Returned By: Session.createTextMessage()

Topic JMS 1.0

javax.jms
A Topic is an address for a message in a publish/subscribe context. The Topic interface simply defines a
String name for the topic. Providers define how topics are defined and grouped into a hierarchy.

public interface Topic extends Destination {

//
Public Instance Methods
public abstract String getTopicName

 () throws JMSException;public abstract String toString
 ();

}
Hierarchy: (Topic(Destination))

Implementations: TemporaryTopic

Passed To: TopicConnection.{createConnectionConsumer(),
createDurableConnectionConsumer()}, TopicPublisher.publish(),
TopicRequestor.TopicRequestor(), TopicSession.{createDurableSubscriber(),
createPublisher(), createSubscriber()}

Returned By: TopicPublisher.getTopic(), TopicSession.createTopic(),
TopicSubscriber.getTopic()

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 392

TopicConnection JMS 1.0

javax.jms
A TopicConnection is a Connection to a publish/subscribe−based JMS provider. It provides methods
for creating TopicSession objects, as well as ConnectionConsumer objects.

public interface TopicConnection extends javax.jms.Connection {

//
Public Instance Methodspublic abstract ConnectionConsumer createConnectionConsumer (Topic topic, String messageSelector,
ServerSessionPool sessionPool, int maxMessages

) throws JMSException;
public abstract ConnectionConsumer createDurableConnectionConsumer (Topic topic, String
messageSelector, ServerSessionPool sessionPool, int maxMessages

) throws JMSException;
public abstract TopicSession createTopicSession (boolean transacted, int acknowledgeMode) throws

JMSException;}
Hierarchy: (TopicConnection(javax.jms.Connection))

Implementations: XATopicConnection

Returned By: TopicConnectionFactory.createTopicConnection()

TopicConnectionFactory JMS 1.0

javax.jms
A TopicConnectionFactory is exported by publish/subscribe providers to allow clients to create
TopicConnection objects to the provider. The default createTopicConnection() method creates
a connection under the default user identity of the client JVM, while the other constructor accepts a name and
password that authenticates the connection request.

public interface TopicConnectionFactory extends ConnectionFactory {

//
Public Instance Methods
public abstract TopicConnection createTopicConnection

 () throws JMSException;public abstract TopicConnection createTopicConnection (String userName, String password) throws

JMSException;}
Hierarchy: (TopicConnectionFactory(ConnectionFactory))

Implementations: XATopicConnectionFactory

TopicPublisher JMS 1.0

javax.jms
A TopicPublisher is a MessageProducer specific to a publish/subscribe context.
TopicPublisher objects are created using the createPublisher() method on a TopicSession.
A TopicPublisher is created with a Topic under which it publishes messages. A client can override the
default Topic using one of the publish() methods that accepts a Topic as an argument along with the
Message to be sent. Sending a Message without a Topic (i.e., the TopicPublisher was created with

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 393

a nullTopic, and the Message was sent without specifying a Topic) causes an
InvalidDestinationException to be thrown.

public interface TopicPublisher extends MessageProducer {

//
Public Instance Methods
public abstract Topic getTopic

 () throws JMSException;public abstract void publish (Message message
) throws JMSException;public abstract void publish (Topic topic, Message message

) throws JMSException;public abstract void publish (Message message, int deliveryMode, int priority, long timeToLive) throws

JMSException;
public abstract void publish (Topic topic, Message message, int deliveryMode, int priority, long
timeToLive

) throws JMSException;}
Hierarchy: (TopicPublisher(MessageProducer))

Returned By: TopicSession.createPublisher()

TopicRequestor JMS 1.0

javax.jms
TopicRequestor is a utility class provided for situations where a client wants to send a message to a
specific Topic and wait for a response. The TopicRequestor is constructed with a TopicSession and
a destination Topic, and then its request() method is called with the Message to be sent. The
TopicRequestor sets the reply−to destination on the message to a temporary Topic it creates. It sends
the message and waits for a response. The response Message is the return value of the request() method.

public class TopicRequestor {

//
Public Constructors
public TopicRequestor (TopicSession session, Topic topic

) throws JMSException;
//

Public Instance Methods
public void close

 () throws JMSException;public Message request (Message message
) throws JMSException;

}

TopicSession JMS 1.0

javax.jms runnable
A TopicSession is a Session specific to a publish/subscribe context. It provides methods for creating
publish/subscribe message consumers (TopicSubscriber), message producers (TopicPublisher),
and message destinations (Topic). It also has methods for creating utilities objects such as
TemporaryTopic.

public interface TopicSession extends Session {

//
Public Instance Methodspublic abstract TopicSubscriber createDurableSubscriber (Topic topic, String name) throws

JMSException;
public abstract TopicSubscriber createDurableSubscriber (Topic topic, String name, String
messageSelector, boolean noLocal

) throws JMSException;

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 394

public abstract TopicPublisher createPublisher (Topic topic
) throws JMSException;public abstract TopicSubscriber createSubscriber (Topic topic

) throws JMSException;public abstract TopicSubscriber createSubscriber (Topic topic, String messageSelector, boolean noLocal)

throws JMSException;public abstract TemporaryTopic createTemporaryTopic
 () throws JMSException;public abstract Topic createTopic (String topicName

) throws JMSException;public abstract void unsubscribe (String name
) throws JMSException;

}
Hierarchy: (TopicSession(Session(Runnable)))

Passed To: TopicRequestor.TopicRequestor()

Returned By: TopicConnection.createTopicSession(),
XATopicSession.getTopicSession()

TopicSubscriber JMS 1.0

javax.jms
A TopicSubscriber is a MessageConsumer specific to a publish/subscribe context. TopicSubscriber
objects are created using the createSubscriber() and createDurableSubscriber() methods on
the TopicSession. A TopicSubscriber is created with a Topic to subscribe to and can optionally be
created with a message selector that filters the messages received by the subscriber. If a client is both
publishing and subscribing to the same Topic, the no−local attribute on the TopicSubscriber specifies
whether to filter out messages published by the same connection.

If a TopicSubscriber is created as durable (using createDurableSubscriber() on the
TopicSession), the provider collects messages for this subscriber even when the subscriber is inactive.
The provider keeps these messages until the subscriber receives them, or until they expire according to the
sender's time−to−live header attribute. In order for the client to retrieve the messages collected under a
durable TopicSubscriber after it has reactivated itself, it has to create a new TopicSubscriber
under the same Topic with the same client ID.

public interface TopicSubscriber extends MessageConsumer {

//
Public Instance Methods
public abstract boolean getNoLocal

 () throws JMSException;public abstract Topic getTopic
 () throws JMSException;

}
Hierarchy: (TopicSubscriber(MessageConsumer))

Returned By: TopicSession.{createDurableSubscriber(), createSubscriber()}

TransactionInProgressException JMS 1.0

javax.jms serializable checked
Thrown if an invalid request is made during a transactional session (e.g., attempting to commit() a session
while a message is still being sent).

public class TransactionInProgressException extends JMSException {

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 395

//
Public Constructors
public TransactionInProgressException (String reason

);public TransactionInProgressException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>TransactionInProgressException

TransactionRolledBackException JMS 1.0

javax.jms serializable checked
Thrown by the Session.commit() method if the transaction needs to be rolled back because of some
internal error.

public class TransactionRolledBackException extends JMSException {

//
Public Constructors
public TransactionRolledBackException (String reason

);public TransactionRolledBackException (String reason, String errorCode
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>JMSException−−>TransactionRolledBackException

XAConnection JMS 1.0

javax.jms
This interface represents a Connection to a provider that supports transactional messaging, according to
the X/Open XA protocol for transactional processing. Subinterfaces of XAConnection generate
transactional sessions in the form of XASession objects.

public interface
XAConnection {

}
Implementations: XAQueueConnection, XATopicConnection

XAConnectionFactory JMS 1.0

javax.jms
A transactional JMS provider exports an XAConnectionFactory for clients to use to create
XAConnection objects. Clients typically find a provider's XAConnectionFactory using a JNDI
lookup.

public interface
XAConnectionFactory {

}
Implementations: XAQueueConnectionFactory, XATopicConnectionFactory

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 396

XAQueueConnection JMS 1.0

javax.jms
An XAQueueConnection is a Connection to a transactional provider of point−to−point messaging. It
extends the QueueConnection interface with a createXAQueueSession() method, which creates a
transactional XAQueueSession.

public interface XAQueueConnection extends javax.jms.XAConnection,
QueueConnection {

//
Public Instance Methods
public abstract XAQueueSession createXAQueueSession

 () throws JMSException;
}
Hierarchy:
(XAQueueConnection(javax.jms.XAConnection,QueueConnection(javax.jms.Connection)))

Returned By: XAQueueConnectionFactory.createXAQueueConnection()

XAQueueConnectionFactory JMS 1.0

javax.jms
An XAQueueConnectionFactory is a QueueConnectionFactory that creates
XAQueueConnection objects to a transactional point−to−point JMS provider.

public interface XAQueueConnectionFactory extends XAConnectionFactory, QueueConnectionFactory {

//
Public Instance Methods
public abstract XAQueueConnection createXAQueueConnection

 () throws JMSException;public abstract XAQueueConnection createXAQueueConnection (String userName, String password)

throws JMSException;}
Hierarchy:
(XAQueueConnectionFactory(XAConnectionFactory,QueueConnectionFactory(ConnectionFactory)))

XAQueueSession JMS 1.0

javax.jms runnable
An XAQueueSession is a wrapper around a QueueSession. It represents a transactional session with a
JMS point−to−point provider.

public interface XAQueueSession extends XASession {

//
Public Instance Methods
public abstract QueueSession getQueueSession

 () throws JMSException;
}
Hierarchy: (XAQueueSession(XASession(Session(Runnable))))

Returned By: XAQueueConnection.createXAQueueSession()

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 397

XASession JMS 1.0

javax.jms runnable
An XASession is a Session with a provider that supports transactional messaging according to the
X/Open XA protocol for transactional processing. The XASession contains a
javax.transaction.xa.XAResource object that represents the association of the Session with a
transaction context.

public interface XASession extends Session {

//
Public Instance Methods
public abstract javax.transaction.xa.XAResource getXAResource

 ();
}
Hierarchy: (XASession(Session(Runnable)))

Implementations: XAQueueSession, XATopicSession

XATopicConnection JMS 1.0

javax.jms
An XATopicConnection represents a Connection to a transactional provider of publish/subscribe
messaging. It extends the TopicConnection interface with a createXATopicSession() method,
which creates a transactional XATopicSession.

public interface XATopicConnection extends javax.jms.XAConnection,
TopicConnection {

//
Public Instance Methods
public abstract XATopicSession createXATopicSession

 () throws JMSException;
}
Hierarchy:
(XATopicConnection(javax.jms.XAConnection,TopicConnection(javax.jms.Connection)))

Returned By: XATopicConnectionFactory.createXATopicConnection()

XATopicConnectionFactory JMS 1.0

javax.jms
An XATopicConnectionFactory is a TopicConnectionFactory that creates
XATopicConnection objects to a transactional publish/subscribe JMS provider.

public interface XATopicConnectionFactory extends XAConnectionFactory, TopicConnectionFactory {

//
Public Instance Methods
public abstract XATopicConnection createXATopicConnection

 () throws JMSException;public abstract XATopicConnection createXATopicConnection (String userName, String password)

throws JMSException;}
Hierarchy:

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 398

(XATopicConnectionFactory(XAConnectionFactory,TopicConnectionFactory(ConnectionFactory)))

XATopicSession JMS 1.0

javax.jms runnable
An XATopicSession is a wrapper around a TopicSession. It represents a transactional session with a
JMS publish/subscribe provider.

public interface XATopicSession extends XASession {

//
Public Instance Methods
public abstract TopicSession getTopicSession

 () throws JMSException;
}
Hierarchy: (XATopicSession(XASession(Session(Runnable))))

Returned By: XATopicConnection.createXATopicSession()

20.1. The
javax.ejb.deployment
Package

22. The javax.naming
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 21. The javax.jms Package 399

Chapter 22. The javax.naming Package
The javax.naming package contains the core interfaces, classes, and exceptions for performing naming
operations with JNDI. Context represents named objects in a naming system, while InitialContext
provides an entry point into a naming system. Binding is the association between a name and an object in a
naming system. NamingException is the root of a large collection of naming exceptions defined by JNDI.
Figure 22−1 shows the classes and interfaces of the javax.naming package, while Figure 22−2 shows the
exception hierarchy.

Figure 22−1. The classes and interfaces of the javax.naming package

Chapter 22. The javax.naming Package 400

Figure 22−2. The exception hierarchy of the javax.naming package

AuthenticationException JNDI 1.1

javax.naming serializable checked
Thrown when JNDI encounters an error authenticating to the naming system, such as when a bad username
or password is used.

public class AuthenticationException extends
NamingSecurityException {

//
Public Constructors
public AuthenticationException

 ();public AuthenticationException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NamingSecurityException−−>AuthenticationException

AuthenticationNotSupportedException JNDI 1.1

javax.naming serializable checked
Thrown when the requested type of authentication is not supported.

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 401

public class AuthenticationNotSupportedException extends
NamingSecurityException {

//
Public Constructors
public AuthenticationNotSupportedException

 ();public AuthenticationNotSupportedException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NamingSecurityException−−>AuthenticationNotSupportedException

BinaryRefAddr JNDI 1.1

javax.naming serializable
A concrete subclass of RefAddr that provides a binary representation of a communications endpoint, such
as an IP address.

public class BinaryRefAddr extends RefAddr {

//
Public Constructors
public BinaryRefAddr (String addrType, byte[] src

);public BinaryRefAddr (String addrType, byte[] src, int offset, int count
);

//
Public methods overriding RefAddr
public boolean equals (Object obj

);public Object getContent
 ();public int hashCode

 ();public String toString
 ();

}
Hierarchy: Object−−>RefAddr(Serializable)−−>BinaryRefAddr

Binding JNDI 1.1

javax.naming serializable
This class represents the association between a name and an object. The listBindings() method of
Context returns a NamingEnumeration of Binding objects.

public class Binding extends NameClassPair {

//
Public Constructors
public Binding (String name, Object obj

);public Binding (String name, String className, Object obj
);public Binding (String name, Object obj, boolean isRelative
);public Binding (String name, String className, Object obj, boolean isRelative

);
//

Public Instance Methods
public Object getObject

 ();public void setObject (Object obj
);

//
Public methods overriding NameClassPair
public String getClassName

 ();public String toString
 ();

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 402

}
Hierarchy: Object−−>NameClassPair(Serializable)−−>javax.naming.Binding

Subclasses: javax.naming.directory.SearchResult

CannotProceedException JNDI 1.1

javax.naming serializable checked
Thrown when a service provider cannot further resolve a name, such as when a component of a name resides
in another service provider.

public class CannotProceedException extends NamingException {

//
Public Constructors
public CannotProceedException

 ();public CannotProceedException (String explanation
);

//
Public Instance Methods
public Name getAltName ();

default:null
public javax.naming.Context getAltNameCtx ();

default:null
public java.util.Hashtable getEnvironment ();

default:null
public Name getRemainingNewName ();

default:null
public void setAltName (Name altName

);public void setAltNameCtx (javax.naming.Context altNameCtx
);public void setEnvironment (java.util.Hashtable environment

);public void setRemainingNewName (Name newName
);

//
Protected Instance Fields
protected Name altName

 ;protected javax.naming.Context altNameCtx
 ;protected java.util.Hashtable environment

 ;protected Name remainingNewName
 ;

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>CannotProceedException

Passed To: javax.naming.spi.DirectoryManager.getContinuationDirContext(),
javax.naming.spi.NamingManager.getContinuationContext()

CommunicationException JNDI 1.1

javax.naming serializable checked
Thrown when a JNDI method is unable to communicate with the naming service for some reason.

public class CommunicationException extends
NamingException {

//
Public Constructors
public CommunicationException

 ();public CommunicationException (String explanation
);

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 403

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>CommunicationException

CompositeName JNDI 1.1

javax.naming cloneable serializable
This class represents a sequence of names that span multiple namespaces. Each component of a
CompositeName is a String name. The CompositeName does not know to which naming system each
name component belongs. JNDI uses the forward slash character ("/") to separate constituent name
components.

public class CompositeName implements Name {

//
Public Constructors
public CompositeName

 ();public CompositeName (String n
) throws InvalidNameException;

//
Protected Constructors
protected CompositeName (java.util.Enumeration comps

);
//

Methods implementing Name
public Name add (String comp

) throws InvalidNameException;public Name add (int posn, String comp
) throws InvalidNameException;public Name addAll (Name suffix

) throws InvalidNameException;public Name addAll (int posn, Name n
) throws InvalidNameException;public Object clone

 ();public int compareTo (Object obj
);public boolean endsWith (Name n
);public String get (int posn

);public java.util.Enumeration getAll
 ();public Name getPrefix (int posn

);public Name getSuffix (int posn
);public boolean isEmpty ();

default:true
public Object remove (int posn

) throws InvalidNameException;public int size
 ();public boolean startsWith (Name n

);
//

Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();public String toString

 ();
}
Hierarchy: Object−−>CompositeName(Name(Cloneable,Serializable))

CompoundName JNDI 1.1

javax.naming cloneable serializable
This class represents a name that is made up of atomic names from a single name space.

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 404

public class CompoundName implements Name {

//
Public Constructors
public CompoundName (String n, java.util.Properties syntax

) throws InvalidNameException;
//

Protected Constructors
protected CompoundName (java.util.Enumeration comps, java.util.Properties syntax

);
//

Methods implementing Name
public Name add (String comp

) throws InvalidNameException;public Name add (int posn, String comp
) throws InvalidNameException;public Name addAll (Name suffix

) throws InvalidNameException;public Name addAll (int posn, Name n
) throws InvalidNameException;public Object clone

 ();public int compareTo (Object obj
);public boolean endsWith (Name n
);public String get (int posn

);public java.util.Enumeration getAll
 ();public Name getPrefix (int posn

);public Name getSuffix (int posn
);public boolean isEmpty

 ();public Object remove (int posn
) throws InvalidNameException;public int size

 ();public boolean startsWith (Name n
);

//
Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();public String toString

 ();
//

Protected Instance Fields
protected transient NameImpl impl

 ;protected transient java.util.Properties mySyntax
 ;

}
Hierarchy: Object−−>CompoundName(Name(Cloneable,Serializable))

ConfigurationException JNDI 1.1

javax.naming serializable checked
Thrown when JNDI has experienced a configuration problem, such as a missing environment property or a
misconfigured security protocol.

public class ConfigurationException extends
NamingException {

//
Public Constructors
public ConfigurationException

 ();public ConfigurationException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>ConfigurationException

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 405

Context JNDI 1.1

javax.naming
This interface represents an object in a naming system. A Context keeps track of a set of name−to−object
bindings for its subordinates in the naming system, so it defines methods to examine and update these
bindings. The lookup() method looks up a subordinate object, while list() and listBindings()
provide access to all of the subordinates.

A Context only knows about its subordinates, not about itself or what is above it in the naming system.
Thus, there are no methods to get the name of a Context or move up in the naming hierarchy.

public abstract interface Context {

//
Public Constants
public static final String AUTHORITATIVE ;

="java.naming.authoritative"
public static final String BATCHSIZE ;

="java.naming.batchsize"
public static final String DNS_URL ;

="java.naming.dns.url"
public static final String INITIAL_CONTEXT_FACTORY ;

="java.naming.factory.initial"
public static final String LANGUAGE ;

="java.naming.language"
public static final String OBJECT_FACTORIES ;

="java.naming.factory.object"
public static final String PROVIDER_URL ;

="java.naming.provider.url"
public static final String REFERRAL ;

="java.naming.referral"
public static final String SECURITY_AUTHENTICATION ;

="java.naming.security.authentication"
public static final String SECURITY_CREDENTIALS ;

="java.naming.security.credentials"
public static final String SECURITY_PRINCIPAL ;

="java.naming.security.principal"
public static final String SECURITY_PROTOCOL ;

="java.naming.security.protocol"
public static final String URL_PKG_PREFIXES ; ="java.naming.factory.url.pkgs"

//
Public Instance Methodspublic abstract Object addToEnvironment (String propName,
Object propVal

) throws NamingException;
public abstract void bind (Name name, Object obj) throws

NamingException;
public abstract void bind (String name, Object obj) throws

NamingException;public abstract void close

 () throws NamingException;public abstract Name composeName (Name name, Name prefix)

throws NamingException;
public abstract String composeName (String name, String prefix)

throws NamingException;
public abstract javax.naming.Context createSubcontext (Name
name

) throws NamingException;
public abstract javax.naming.Context createSubcontext (String
name

) throws NamingException;
public abstract void destroySubcontext (Name name) throws

NamingException;
public abstract void destroySubcontext (String name) throws

NamingException;

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 406

public abstract java.util.Hashtable getEnvironment () throws

NamingException;public abstract NameParser getNameParser (Name name) throws

NamingException;
public abstract NameParser getNameParser (String name) throws

NamingException;
public abstract NamingEnumeration list (Name name) throws

NamingException;
public abstract NamingEnumeration list (String name) throws

NamingException;
public abstract NamingEnumeration listBindings (Name name)

throws NamingException;
public abstract NamingEnumeration listBindings (String name)

throws NamingException;
public abstract Object lookup (Name name) throws

NamingException;
public abstract Object lookup (String name) throws

NamingException;
public abstract Object lookupLink (Name name) throws

NamingException;
public abstract Object lookupLink (String name) throws

NamingException;
public abstract void rebind (Name name, Object obj) throws

NamingException;
public abstract void rebind (String name, Object obj) throws

NamingException;
public abstract Object removeFromEnvironment (String
propName

) throws NamingException;
public abstract void rename (Name oldName, Name newName)

throws NamingException;
public abstract void rename (String oldName, String newName)

throws NamingException;
public abstract void unbind (Name name) throws

NamingException;
public abstract void unbind (String name) throws

NamingException;}
Implementations: InitialContext, javax.naming.directory.DirContext

Passed To: CannotProceedException.setAltNameCtx(),
javax.naming.spi.NamingManager.getObjectInstance(),
javax.naming.spi.ObjectFactory.getObjectInstance()

Returned By: CannotProceedException.getAltNameCtx(),
javax.naming.Context.createSubcontext(),
InitialContext.{createSubcontext(), getDefaultInitCtx(),
getURLOrDefaultInitCtx()}, ReferralException.getReferralContext(),
javax.naming.spi.InitialContextFactory.getInitialContext(),
javax.naming.spi.NamingManager.{getContinuationContext(),
getInitialContext(), getURLContext()}

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 407

Type Of: CannotProceedException.altNameCtx, InitialContext.defaultInitCtx

ContextNotEmptyException JNDI 1.1

javax.naming serializable checked
Thrown when the destroySubcontext() method is called to destroy a Context that is not empty.

public class ContextNotEmptyException extends
NamingException {

//
Public Constructors
public ContextNotEmptyException

 ();public ContextNotEmptyException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>ContextNotEmptyException

InitialContext JNDI 1.1

javax.naming
This class represents the starting point for accessing a naming system. Typically, you set the value of the
java.naming.factory.initial property (represented by the constant
Context.INITIAL_CONTEXT_FACTORY) to the fully qualified package name of a factory class in a
JNDI service provider. This factory class creates an InitialContext that is appropriate for the naming
system you are using.

public class InitialContext implements javax.naming.Context {

//
Public Constructors
public InitialContext

 () throws NamingException;public InitialContext (java.util.Hashtable environment
) throws NamingException;

//
Methods implementing Context
public Object addToEnvironment (String propName, Object propVal

) throws NamingException;public void bind (String name, Object obj
) throws NamingException;public void bind (Name name, Object obj
) throws NamingException;public void close

 () throws NamingException;public String composeName (String name, String prefix
) throws NamingException;public Name composeName (Name name, Name prefix
) throws NamingException;public javax.naming.Context createSubcontext (String name

) throws NamingException;public javax.naming.Context createSubcontext (Name name
) throws NamingException;public void destroySubcontext (Name name

) throws NamingException;public void destroySubcontext (String name
) throws NamingException;public java.util.Hashtable getEnvironment

 () throws NamingException;public NameParser getNameParser (String name
) throws NamingException;public NameParser getNameParser (Name name
) throws NamingException;public NamingEnumeration list (Name name

) throws NamingException;public NamingEnumeration list (String name
) throws NamingException;

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 408

public NamingEnumeration listBindings (Name name
) throws NamingException;public NamingEnumeration listBindings (String name
) throws NamingException;public Object lookup (Name name

) throws NamingException;public Object lookup (String name
) throws NamingException;public Object lookupLink (Name name

) throws NamingException;public Object lookupLink (String name
) throws NamingException;public void rebind (Name name, Object obj

) throws NamingException;public void rebind (String name, Object obj
) throws NamingException;public Object removeFromEnvironment (String propName

) throws NamingException;public void rename (Name oldName, Name newName
) throws NamingException;public void rename (String oldName, String newName
) throws NamingException;public void unbind (Name name

) throws NamingException;public void unbind (String name
) throws NamingException;

//
Protected Instance Methods
protected javax.naming.Context getDefaultInitCtx

 () throws NamingException;protected javax.naming.Context getURLOrDefaultInitCtx (Name name
) throws NamingException;protected javax.naming.Context getURLOrDefaultInitCtx (String name
) throws NamingException;

//
Protected Instance Fields
protected javax.naming.Context defaultInitCtx

 ;protected boolean gotDefault
 ;protected java.util.Hashtable myProps

 ;
}
Hierarchy: Object−−>InitialContext(javax.naming.Context)

Subclasses: javax.naming.directory.InitialDirContext

InsufficientResourcesException JNDI 1.1

javax.naming serializable checked
Thrown when there are insufficient system resources, such as memory or disk space, to perform an operation.

public class InsufficientResourcesException extends
NamingException {

//
Public Constructors
public InsufficientResourcesException

 ();public InsufficientResourcesException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>InsufficientResourcesException

InterruptedNamingException JNDI 1.1

javax.naming serializable checked
Thrown when a naming operation has been interrupted.

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 409

public class InterruptedNamingException extends
NamingException {

//
Public Constructors
public InterruptedNamingException

 ();public InterruptedNamingException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>InterruptedNamingException

InvalidNameException JNDI 1.1

javax.naming serializable checked
Thrown when a specified name violates the syntax of a particular naming system.

public class InvalidNameException extends
NamingException {

//
Public Constructors
public InvalidNameException

 ();public InvalidNameException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>InvalidNameException

Thrown By: CompositeName.{add(), addAll(), CompositeName(), remove()},
CompoundName.{add(), addAll(), CompoundName(), remove()}, Name.{add(),
addAll(), remove()}

LimitExceededException JNDI 1.1

javax.naming serializable checked
Thrown when a method fails because it has exceeded a user− or system−specified limit.

public class LimitExceededException extends
NamingException {

//
Public Constructors
public LimitExceededException

 ();public LimitExceededException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>LimitExceededException

Subclasses: SizeLimitExceededException, TimeLimitExceededException

LinkException JNDI 1.1

javax.naming serializable checked

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 410

Thrown when a method cannot resolve a link.

public class LinkException extends NamingException {

//
Public Constructors
public LinkException

 ();public LinkException (String explanation
);

//
Public Instance Methods
public String getLinkExplanation ();

default:null
public Name getLinkRemainingName ();

default:null
public Name getLinkResolvedName ();

default:null
public Object getLinkResolvedObj ();

default:null
public void setLinkExplanation (String msg

);public void setLinkRemainingName (Name name
);public void setLinkResolvedName (Name name

);public void setLinkResolvedObj (Object obj
);

//
Public methods overriding NamingException
public String toString

 ();public String toString (boolean detail
);

//
Protected Instance Fields
protected String linkExplanation

 ;protected Name linkRemainingName
 ;protected Name linkResolvedName

 ;protected Object linkResolvedObj
 ;

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>LinkException

Subclasses: LinkLoopException, MalformedLinkException

LinkLoopException JNDI 1.1

javax.naming serializable checked
Thrown when a loop is detected when resolving a link or when JNDI has reached a limit on link counts.

public class LinkLoopException extends
LinkException {

//
Public Constructors
public LinkLoopException

 ();public LinkLoopException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>LinkException−−>LinkLoopException

LinkRef JNDI 1.1

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 411

javax.naming cloneable serializable
LinkRef is a subclass of Reference that contains a name, called the link name, that is bound to an atomic
name in a context.

public class LinkRef extends javax.naming.Reference {

//
Public Constructors
public LinkRef (String linkName

);public LinkRef (Name linkName
);

//
Public Instance Methods
public String getLinkName

 () throws NamingException;
}
Hierarchy: Object−−>javax.naming.Reference(Cloneable,Serializable)−−>LinkRef

MalformedLinkException JNDI 1.1

javax.naming serializable checked
Thrown when a link name is improperly constructed.

public class MalformedLinkException extends
LinkException {

//
Public Constructors
public MalformedLinkException

 ();public MalformedLinkException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>LinkException−−>MalformedLinkException

Name JNDI 1.1

javax.naming cloneable serializable
This interface represents the name of an object in a naming system. A Name can be either a compound name
or a composite name. This interface is used primarily by developers who are writing JNDI service providers,
not by JNDI application developers. As an application developer, you can use String objects instead of
Name objects to specify names in Context and javax.naming.directory.DirContext method
calls.

public abstract interface Name extends Cloneable, Serializable {

//
Public Instance Methods
public abstract Name add (String comp

) throws InvalidNameException;public abstract Name add (int posn, String comp
) throws InvalidNameException;public abstract Name addAll (Name suffix

) throws InvalidNameException;public abstract Name addAll (int posn, Name n
) throws InvalidNameException;public abstract Object clone

 ();public abstract int compareTo (Object obj
);public abstract boolean endsWith (Name n
);

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 412

public abstract String get (int posn
);public abstract java.util.Enumeration getAll

 ();public abstract Name getPrefix (int posn
);public abstract Name getSuffix (int posn
);public abstract boolean isEmpty

 ();public abstract Object remove (int posn
) throws InvalidNameException;public abstract int size

 ();public abstract boolean startsWith (Name n
);

}
Hierarchy: (Name(Cloneable,Serializable))

Implementations: CompositeName, CompoundName

Passed To: Too many methods to list.

Returned By: Too many methods to list.

Type Of: CannotProceedException.{altName, remainingNewName},
LinkException.{linkRemainingName, linkResolvedName},
NamingException.{remainingName, resolvedName},
javax.naming.spi.ResolveResult.remainingName

NameAlreadyBoundException JNDI 1.1

javax.naming serializable checked
Thrown when a binding operation fails because the name is already bound.

public class NameAlreadyBoundException extends
NamingException {

//
Public Constructors
public NameAlreadyBoundException

 ();public NameAlreadyBoundException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NameAlreadyBoundException

NameClassPair JNDI 1.1

javax.naming serializable
This class represents the name and class of an object bound to a Context. The list() method of Context
returns an NamingEnumeration of NameClassPair objects. Note that NameClassPair does not
represent the object itself; that is the job of its subclass Binding.

public class NameClassPair implements Serializable {

//
Public Constructors
public NameClassPair (String name, String className

);public NameClassPair (String name, String className, boolean isRelative
);

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 413

//
Public Instance Methods
public String getClassName

 ();public String getName
 ();public boolean isRelative

 ();public void setClassName (String name
);public void setName (String name

);public void setRelative (boolean r
);

//
Public methods overriding Object
public String toString

 ();
}
Hierarchy: Object−−>NameClassPair(Serializable)

Subclasses: javax.naming.Binding

NameNotFoundException JNDI 1.1

javax.naming serializable checked
Thrown when a component of a name cannot be resolved because it is not bound.

public class NameNotFoundException extends
NamingException {

//
Public Constructors
public NameNotFoundException

 ();public NameNotFoundException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NameNotFoundException

NameParser JNDI 1.1

javax.naming
This interface is for parsing names from a hierarchical namespace. A NameParser knows the syntactic
information, such as left−to−right orientation and the name separator, needed to parse names.

public abstract interface NameParser {

//
Public Instance Methods
public abstract Name parse (String name

) throws NamingException;
}
Returned By: javax.naming.Context.getNameParser(),
InitialContext.getNameParser()

NamingEnumeration JNDI 1.1

javax.naming

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 414

This interface represents a list of items returned from a JNDI operation. It extends
java.util.Enumeration, so a NamingEnumeration can be treated as a normal enumeration.

public abstract interface NamingEnumeration extends
java.util.Enumeration {

//
Public Instance Methods
public abstract boolean hasMore

 () throws NamingException;public abstract Object next
 () throws NamingException;

}
Hierarchy: (NamingEnumeration(java.util.Enumeration))

Returned By: Too many methods to list.

NamingException JNDI 1.1

javax.naming serializable checked
The base class of all exceptions thrown by Context and javax.naming.directory.DirContext
methods. NamingException can include information about where the operation failed, such as the portion
of a name that has been resolved and the portion that remains to be resolved. A NamingException can
also include a root cause exception, which is the exception object that caused the naming exception to be
thrown.

public class NamingException extends Exception {

//
Public Constructors
public NamingException

 ();public NamingException (String explanation
);

//
Public Instance Methods
public void appendRemainingComponent (String name

);public void appendRemainingName (Name name
);public String getExplanation ();

default:null
public Name getRemainingName ();

default:null
public Name getResolvedName ();

default:null
public Object getResolvedObj ();

default:null
public Throwable getRootCause ();

default:null
public void setRemainingName (Name name

);public void setResolvedName (Name name
);public void setResolvedObj (Object obj

);public void setRootCause (Throwable e
);public String toString (boolean detail

);
//

Public methods overriding Throwable
public String toString

 ();
//

Protected Instance Fields
protected Name remainingName

 ;protected Name resolvedName
 ;protected Object resolvedObj

 ;protected Throwable rootException
 ;

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 415

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>NamingException

Subclasses: Too many classes to list.

Thrown By: Too many methods to list.

NamingSecurityException JNDI 1.1

javax.naming serializable checked
The abstract superclass of all security−related naming exceptions.

public abstract class NamingSecurityException extends
NamingException {

//
Public Constructors
public NamingSecurityException

 ();public NamingSecurityException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NamingSecurityException

Subclasses: AuthenticationException, AuthenticationNotSupportedException,
NoPermissionException

NoInitialContextException JNDI 1.1

javax.naming serializable checked
Thrown when JNDI cannot create an initial context.

public class NoInitialContextException extends
NamingException {

//
Public Constructors
public NoInitialContextException

 ();public NoInitialContextException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NoInitialContextException

NoPermissionException JNDI 1.1

javax.naming serializable checked
Thrown when there is an attempt to perform an operation that is forbidden by the underlying naming system
due to insufficient privileges.

public class NoPermissionException extends
NamingSecurityException {

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 416

//
Public Constructors
public NoPermissionException

 ();public NoPermissionException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NamingSecurityException−−>NoPermissionException

NotContextException JNDI 1.1

javax.naming serializable checked
Thrown when there is an attempt to perform a Context−related operation on an object that is not a
Context.

public class NotContextException extends
NamingException {

//
Public Constructors
public NotContextException

 ();public NotContextException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NotContextException

OperationNotSupportedException JNDI 1.1

javax.naming serializable checked
Thrown when the provider's implementation of Context does not support a method that has been invoked
(e.g., trying to list the subordinates of a leaf object like a print job that by definition cannot have any children).

public class OperationNotSupportedException extends
NamingException {

//
Public Constructors
public OperationNotSupportedException

 ();public OperationNotSupportedException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>OperationNotSupportedException

PartialResultException JNDI 1.1

javax.naming serializable checked
Thrown when an operation cannot be completed and has returned only a partial result (e.g., returning only a
partial list of subordinates).

public class PartialResultException extends
NamingException {

// Public Constructors

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 417

public PartialResultException
 ();public PartialResultException (String explanation

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>PartialResultException

RefAddr JNDI 1.1

javax.naming serializable
This abstract class represents the address of a communications end point. It is used by Reference to
represent the communication mechanism and address of a reference. Concrete implementations support
addresses such as URLs, DNS names, and IP addresses.

public abstract class RefAddr implements
Serializable {

//
Protected Constructors
protected RefAddr (String addrType

);
//

Public Instance Methods
public abstract Object getContent

 ();public String getType
 ();

//
Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();public String toString

 ();
//

Protected Instance Fields
protected String addrType

 ;
}
Hierarchy: Object−−>RefAddr(Serializable)

Subclasses: BinaryRefAddr, StringRefAddr

Passed To: javax.naming.Reference.{add(), Reference()}

Returned By: javax.naming.Reference.get()

Reference JNDI 1.1

javax.naming cloneable serializable
This class represents an object external to a naming system that is referred to by an object in the naming
system. A Reference contains an address for retrieving the object from its naming system. The address is a
communications end point that enables JNDI to contact the object. The address can be any concrete subclass
of RefAddr, such as a StringRefAddr for representing a URL or DNS name. A Reference also
contains the class name of the referenced object.

public class Reference implements Cloneable, Serializable {

//
Public Constructors
public Reference (String className

);

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 418

public Reference (String className, RefAddr addr
);public Reference (String className, String factory, String factoryLocation

);public Reference (String className, RefAddr addr, String factory, String factoryLocation
);

//
Public Instance Methods
public void add (RefAddr addr

);public void add (int posn, RefAddr addr
);public void clear

 ();public RefAddr get (String addrType
);public RefAddr get (int posn

);public java.util.Enumeration getAll
 ();public String getClassName

 ();public String getFactoryClassLocation
 ();public String getFactoryClassName

 ();public Object remove (int posn
);public int size

 ();
//

Public methods overriding Object
public Object clone

 ();public boolean equals (Object obj
);public int hashCode

 ();public String toString
 ();

//
Protected Instance Fields
protected java.util.Vector addrs

 ;protected String classFactory
 ;protected String classFactoryLocation

 ;protected String className
 ;

}
Hierarchy: Object−−>javax.naming.Reference(Cloneable,Serializable)

Subclasses: LinkRef

Returned By: Referenceable.getReference()

Referenceable JNDI 1.1

javax.naming
This interface is implemented by an object that can provide a reference to itself in the form of a Reference
object.

public abstract interface Referenceable {

//
Public Instance Methods
public abstract javax.naming.Reference getReference

 () throws NamingException;
}

ReferralException JNDI 1.1

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 419

javax.naming serializable checked
Thrown when a referral cannot be continued, such as when more information is required. Note that this is an
abstract class.

public abstract class ReferralException extends NamingException {

//
Protected Constructors
protected ReferralException

 ();protected ReferralException (String explanation
);

//
Public Instance Methods
public abstract javax.naming.Context getReferralContext

 () throws NamingException;public abstract Object getReferralInfo
 ();public abstract boolean skipReferral

 ();
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>ReferralException

ServiceUnavailableException JNDI 1.1

javax.naming serializable checked
Thrown when the name service is not available for some reason.

public class ServiceUnavailableException extends
NamingException {

//
Public Constructors
public ServiceUnavailableException

 ();public ServiceUnavailableException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>ServiceUnavailableException

SizeLimitExceededException JNDI 1.1

javax.naming serializable checked
Thrown when a method produces a result that exceeds a size limit.

public class SizeLimitExceededException extends
LimitExceededException {

//
Public Constructors
public SizeLimitExceededException

 ();public SizeLimitExceededException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>LimitExceededException−−>SizeLimitExceededException

StringRefAddr JNDI 1.1

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 420

javax.naming serializable
A concrete subclass of RefAddr that provides a string form of the address of a communications end point.

public class StringRefAddr extends RefAddr {

//
Public Constructors
public StringRefAddr (String addrType, String addr

);
//

Public methods overriding RefAddr
public Object getContent

 ();
}
Hierarchy: Object−−>RefAddr(Serializable)−−>StringRefAddr

TimeLimitExceededException JNDI 1.1

javax.naming serializable checked
Thrown when a method does not finish within a certain time limit.

public class TimeLimitExceededException extends
LimitExceededException {

//
Public Constructors
public TimeLimitExceededException

 ();public TimeLimitExceededException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>LimitExceededException−−>TimeLimitExceededException

21.1. The javax.jms
Package

23. The
javax.naming.directory

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 22. The javax.naming Package 421

Chapter 23. The javax.naming.directory Package
The javax.naming.directory package contains the core interfaces, classes, and exceptions for
performing directory operations with JNDI. DirContext defines the interface to directory services, while
Attribute represents an attribute that is associated with a directory entry. Figure 23−1 shows the hierarchy
of this package.

Figure 23−1. The javax.naming.directory package

Attribute JNDI 1.1

javax.naming.directory cloneable serializable
This interface represents an attribute associated with a directory entry. The directory schema determines the
classes of attributes that a directory entry with a certain object class definition is permitted to have. The class
of a particular attribute is called the attribute type definition. The name of an attribute, called the attribute ID,
is determined by the attribute type definition and has a String representation that refers to that particular
attribute. Each attribute can have zero or more values of a particular class. The class of values an attribute is
permitted to have is called the attribute syntax definition.

The directory schema, and therefore the attribute type and syntax definitions, depend on the underlying
directory your JNDI application is using. You can use getAttributeDefinition() to determine the
type definition for a particular attribute and getAttributeSyntaxDefinition() to determine the

Chapter 23. The javax.naming.directory Package 422

attribute syntax definition.

The get() method returns a single attribute value as a java.lang.Object, while getAll() returns
multiple attribute values as a javax.naming.NamingEnumeration of objects. If the attribute has only
a single value, get() returns that value. If the attribute has multiple values, the service provider determines
the value that is returned.

Updates performed on Attribute do not affect the directory entry. To modify the directory entry, you
must call the modifyAttributes() method of DirContext with an Attributes object that contains
a modified Attribute.

public abstract interface Attribute extends Cloneable, Serializable {

//
Public Instance Methods
public abstract boolean add (Object attrVal

);public abstract void clear
 ();public abstract Object clone

 ();public abstract boolean contains (Object attrVal
);public abstract Object get

 () throws NamingException;public abstract NamingEnumeration getAll
 () throws NamingException;public abstract DirContext getAttributeDefinition

 () throws NamingException;public abstract DirContext getAttributeSyntaxDefinition
 () throws NamingException;public abstract String getID

 ();public abstract boolean remove (Object attrval
);public abstract int size

 ();
}
Hierarchy: (Attribute(Cloneable,Serializable))

Implementations: BasicAttribute

Passed To: Attributes.put(), BasicAttributes.put(),
ModificationItem.ModificationItem()

Returned By: Attributes.{get(), put(), remove()}, BasicAttributes.{get(),
put(), remove()}, ModificationItem.getAttribute()

AttributeInUseException JNDI 1.1

javax.naming.directory serializable checked
Thrown when there is an attempt to add an attribute already present in the directory entry.

public class AttributeInUseException extends
NamingException {

//
Public Constructors
public AttributeInUseException

 ();public AttributeInUseException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>AttributeInUseException

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 423

AttributeModificationException JNDI 1.1

javax.naming.directory serializable checked
Thrown when modifyAttributes() method of DirContext cannot be executed because the
operation contradicts the directory schema. You can retrieve an array of modification items JNDI could not
perform using getUnexecutedModifications().

public class AttributeModificationException extends NamingException {

//
Public Constructors
public AttributeModificationException

 ();public AttributeModificationException (String explanation
);

//
Public Instance Methods
public ModificationItem[] getUnexecutedModifications ();

default:null
public void setUnexecutedModifications (ModificationItem[] e

);
//

Public methods overriding NamingException
public String toString

 ();
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>AttributeModificationException

Attributes JNDI 1.1

javax.naming.directory cloneable serializable
This interface represents a collection of attributes associated with a directory entry. Individual attributes are
unordered, and the Attributes object can have zero or more attributes. The getAll() method returns an
enumeration of Attribute objects, while getIDs() returns an enumeration of just the attribute names (or
IDs) for the directory entry. If you know the attribute you want, you can specify the attribute name in a call to
the get() method, which returns a single Attribute object.

An Attributes object can be case−sensitive or insensitive. In an LDAP or NDS directory, a
case−insensitive attribute corresponds to "case ignore string." This means when searching for a particular
attribute or comparing two attributes, case sensitivity can affect the results.

Updates performed on an Attributes object do not affect the directory entry. To modify the directory
entry, you must call the modifyAttributes() method of DirContext using the updated
Attributes object.

When creating a set of attributes for use in an application, you typically use a BasicAttributes object.

public abstract interface Attributes extends Cloneable,
Serializable {

//
Public Instance Methods
public abstract Object clone

 ();public abstract Attribute get (String attrID
);public abstract NamingEnumeration getAll
 ();public abstract NamingEnumeration getIDs
 ();public abstract boolean isCaseIgnored

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 424

public abstract Attribute put (Attribute attr
);public abstract Attribute put (String attrID, Object val

);public abstract Attribute remove (String attrID
);public abstract int size

 ();
}
Hierarchy: (Attributes(Cloneable,Serializable))

Implementations: BasicAttributes

Passed To: Too many methods to list.

Returned By: DirContext.getAttributes(), InitialDirContext.getAttributes(),
SearchResult.getAttributes()

BasicAttribute JNDI 1.1

javax.naming.directory cloneable serializable
This class is a basic implementation of the Attribute interface. BasicAttribute has a convenience
constructor that enables you to create the object with attribute data by using a string that represents the
attribute ID and a java.lang.Object that represents the attribute value. This constructor is equivalent to
creating a BasicAttribute object with the attribute ID as a parameter and then calling the add()
method.

public class BasicAttribute implements Attribute {

//
Public Constructors
public BasicAttribute (String id

);public BasicAttribute (String id, Object value
);

//
Methods implementing Attribute
public boolean add (Object attrVal

);public void clear
 ();public Object clone

 ();public boolean contains (Object attrVal
);public Object get

 () throws NamingException;public NamingEnumeration getAll
 () throws NamingException;public DirContext getAttributeDefinition

 () throws NamingException;public DirContext getAttributeSyntaxDefinition
 () throws NamingException;public String getID

 ();public boolean remove (Object attrval
);public int size

 ();
//

Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();public String toString

 ();
//

Protected Instance Fields
protected String attrID

 ;protected transient java.util.Vector values
 ;

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 425

}
Hierarchy: Object−−>BasicAttribute(Attribute(Cloneable,Serializable))

BasicAttributes JNDI 1.1

javax.naming.directory cloneable serializable
This class is a basic implementation of the Attributes interface. BasicAttributes has a convenience
constructor that enables you to create the set of attributes with attribute data by using a string that represents
an attribute ID, and a java.lang.Object that represents an attribute value. This constructor is equivalent
to creating a BasicAttributes object with an empty constructor and then calling the two−argument
put() method.

You can construct a BasicAttributes object as case−sensitive or insensitive. In an LDAP or NDS
directory, a case−insensitive attribute corresponds to "case ignore string."

public class BasicAttributes implements Attributes {

//
Public Constructors
public BasicAttributes

 ();public BasicAttributes (boolean ignoreCase
);public BasicAttributes (String attrID, Object val

);public BasicAttributes (String attrID, Object val, boolean ignoreCase
);

//
Methods implementing Attributes
public Object clone

 ();public Attribute get (String attrID
);public NamingEnumeration getAll
 ();public NamingEnumeration getIDs
 ();public boolean isCaseIgnored ();

default:false
public Attribute put (Attribute attr

);public Attribute put (String attrID, Object val
);public Attribute remove (String attrID

);public int size
 ();

//
Public methods overriding Object
public String toString

 ();
}
Hierarchy: Object−−>BasicAttributes(Attributes(Cloneable,Serializable))

DirContext JNDI 1.1

javax.naming.directory
This interface provides a Java representation of a directory entry and is a subclass of
javax.naming.Context. The practical difference between a Context and a DirContext is the
association of attributes with a DirContext and the consequent methods for retrieving and modifying
attribute data.

The directory schema determines the classes of directory entries that can be present in a directory. You can
access the directory schema using getSchema(). The class of a directory entry is its object class definition.
You can access the object class definition using the getSchemaClassDefinition() method. Most

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 426

directory providers distribute documents that describe their directory schemae. Consult your directory service
provider for a schema definition.

The getAttributes() method returns an Attributes object that contains either all the attributes of
an entry or just those attributes specified in a String array. createSubcontext() creates a new
directory entry, while modifyAttributes() changes attributes values. The various search() methods
allow you to search directory entries, using optional search filters and SearchControls objects.

public abstract interface DirContext extends javax.naming.Context {

//
Public Constants
public static final int ADD_ATTRIBUTE ;

=1
public static final int REMOVE_ATTRIBUTE ;

=3
public static final int REPLACE_ATTRIBUTE ; =2

//
Public Instance Methods
public abstract void bind (Name name, Object obj, Attributes attrs

) throws NamingException;public abstract void bind (String name, Object obj, Attributes attrs
) throws NamingException;public abstract DirContext createSubcontext (Name name, Attributes attrs

) throws NamingException;public abstract DirContext createSubcontext (String name, Attributes attrs) throws

NamingException;public abstract Attributes getAttributes (Name name
) throws NamingException;public abstract Attributes getAttributes (String name
) throws NamingException;public abstract Attributes getAttributes (Name name, String[] attrIds

) throws NamingException;public abstract Attributes getAttributes (String name, String[] attrIds
) throws NamingException;public abstract DirContext getSchema (Name name

) throws NamingException;public abstract DirContext getSchema (String name
) throws NamingException;public abstract DirContext getSchemaClassDefinition (Name name

) throws NamingException;public abstract DirContext getSchemaClassDefinition (String name

) throws NamingException;public abstract void modifyAttributes (String name, ModificationItem[] mods) throws

NamingException;
public abstract void modifyAttributes (Name name, ModificationItem[] mods) throws

NamingException;
public abstract void modifyAttributes (Name name, int mod_op, Attributes attrs) throws

NamingException;
public abstract void modifyAttributes (String name, int mod_op, Attributes attrs) throws

NamingException;public abstract void rebind (Name name, Object obj, Attributes attrs
) throws NamingException;public abstract void rebind (String name, Object obj, Attributes attrs

) throws NamingException;public abstract NamingEnumeration search (String name, Attributes matchingAttributes) throws

NamingException;
public abstract NamingEnumeration search (Name name, Attributes matchingAttributes) throws

NamingException;
public abstract NamingEnumeration search (String name, String filter, SearchControls cons) throws

NamingException;
public abstract NamingEnumeration search (Name name, Attributes matchingAttributes, String[]
attributesToReturn

) throws NamingException;
public abstract NamingEnumeration search (Name name, String filter, SearchControls cons) throws

NamingException;

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 427

public abstract NamingEnumeration search (String name, Attributes matchingAttributes, String[]
attributesToReturn

) throws NamingException;public abstract NamingEnumeration search (String name, String filterExpr, Object[] filterArgs,
SearchControls cons

) throws NamingException;
public abstract NamingEnumeration search (Name name, String filterExpr, Object[] filterArgs,
SearchControls cons

) throws NamingException;}
Hierarchy: (DirContext(javax.naming.Context))

Implementations: InitialDirContext

Returned By: Attribute.{getAttributeDefinition(),
getAttributeSyntaxDefinition()},
BasicAttribute.{getAttributeDefinition(),
getAttributeSyntaxDefinition()}, DirContext.{createSubcontext(),
getSchema(), getSchemaClassDefinition()},
InitialDirContext.{createSubcontext(), getSchema(),
getSchemaClassDefinition()},
javax.naming.spi.DirectoryManager.getContinuationDirContext()

InitialDirContext JNDI 1.1

javax.naming.directory
This class represents the starting context for performing directory operations and is a subclass of
javax.naming.InitialContext. Use this class when your application must perform directory
operations on an initial context.

public class InitialDirContext extends InitialContextimplements DirContext {

//
Public Constructors
public InitialDirContext

 () throws NamingException;public InitialDirContext (java.util.Hashtable environment
) throws NamingException;

//
Methods implementing DirContext
public void bind (String name, Object obj, Attributes attrs

) throws NamingException;public void bind (Name name, Object obj, Attributes attrs
) throws NamingException;public DirContext createSubcontext (String name, Attributes attrs

) throws NamingException;public DirContext createSubcontext (Name name, Attributes attrs
) throws NamingException;public Attributes getAttributes (String name

) throws NamingException;public Attributes getAttributes (Name name
) throws NamingException;public Attributes getAttributes (Name name, String[] attrIds

) throws NamingException;public Attributes getAttributes (String name, String[] attrIds
) throws NamingException;public DirContext getSchema (String name

) throws NamingException;public DirContext getSchema (Name name
) throws NamingException;public DirContext getSchemaClassDefinition (String name

) throws NamingException;public DirContext getSchemaClassDefinition (Name name
) throws NamingException;public void modifyAttributes (Name name, ModificationItem[] mods

) throws NamingException;public void modifyAttributes (String name, ModificationItem[] mods
) throws NamingException;public void modifyAttributes (String name, int mod_op, Attributes attrs

) throws NamingException;

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 428

public void modifyAttributes (Name name, int mod_op, Attributes attrs
) throws NamingException;public void rebind (Name name, Object obj, Attributes attrs

) throws NamingException;public void rebind (String name, Object obj, Attributes attrs

) throws NamingException;public NamingEnumeration search (String name, Attributes matchingAttributes) throws

NamingException;
public NamingEnumeration search (Name name, Attributes matchingAttributes) throws

NamingException;
public NamingEnumeration search (Name name, String filter, SearchControls cons) throws

NamingException;
public NamingEnumeration search (Name name, Attributes matchingAttributes, String[]
attributesToReturn

) throws NamingException;
public NamingEnumeration search (String name, String filter, SearchControls cons) throws

NamingException;
public NamingEnumeration search (String name, Attributes matchingAttributes, String[]
attributesToReturn

) throws NamingException;
public NamingEnumeration search (String name, String filterExpr, Object[] filterArgs, SearchControls
cons

) throws NamingException;
public NamingEnumeration search (Name name, String filterExpr, Object[] filterArgs, SearchControls
cons

) throws NamingException;}
Hierarchy:
Object−−>InitialContext(javax.naming.Context)−−>InitialDirContext(DirContext(javax.naming.Context))

InvalidAttributeIdentifierException JNDI 1.1

javax.naming.directory serializable checked
Thrown when there is an attempt to create an attribute with an attribute ID that doesn't exist in the directory's
schema.

public class InvalidAttributeIdentifierException extends
NamingException {

//
Public Constructors
public InvalidAttributeIdentifierException

 ();public InvalidAttributeIdentifierException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>InvalidAttributeIdentifierException

InvalidAttributesException JNDI 1.1

javax.naming.directory serializable checked
Thrown when an add or modification operation has specified an inappropriate attribute type for the object
class specified by the directory's schema.

public class InvalidAttributesException extends
NamingException {

// Public Constructors

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 429

public InvalidAttributesException
 ();public InvalidAttributesException (String explanation

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>InvalidAttributesException

InvalidAttributeValueException JNDI 1.1

javax.naming.directory serializable checked
Thrown when an add or modification operation has specified an inappropriate value for the attribute type
specified by the directory's schema.

public class InvalidAttributeValueException extends
NamingException {

//
Public Constructors
public InvalidAttributeValueException

 ();public InvalidAttributeValueException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>InvalidAttributeValueException

InvalidSearchControlsException JNDI 1.1

javax.naming.directory serializable checked
Thrown when a SearchControls object is invalid.

public class InvalidSearchControlsException extends
NamingException {

//
Public Constructors
public InvalidSearchControlsException

 ();public InvalidSearchControlsException (String msg
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>InvalidSearchControlsException

InvalidSearchFilterException JNDI 1.1

javax.naming.directory serializable checked
Thrown when a search filter is invalid.

public class InvalidSearchFilterException extends
NamingException {

//
Public Constructors
public InvalidSearchFilterException

 ();public InvalidSearchFilterException (String msg
);

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 430

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>InvalidSearchFilterException

ModificationItem JNDI 1.1

javax.naming.directory serializable
This class encapsulates an attribute that is to be modified and a code that determines the type of modification
being performed.

public class ModificationItem implements Serializable {

//
Public Constructors
public ModificationItem (int mod_op, Attribute attr

);
//

Public Instance Methods
public Attribute getAttribute

 ();public int getModificationOp
 ();

//
Public methods overriding Object
public String toString

 ();
}
Hierarchy: Object−−>ModificationItem(Serializable)

Passed To: AttributeModificationException.setUnexecutedModifications(),
DirContext.modifyAttributes(), InitialDirContext.modifyAttributes()

Returned By: AttributeModificationException.getUnexecutedModifications()

NoSuchAttributeException JNDI 1.1

javax.naming.directory serializable checked
Thrown when a method attempts to access a nonexistent attribute.

public class NoSuchAttributeException extends
NamingException {

//
Public Constructors
public NoSuchAttributeException

 ();public NoSuchAttributeException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>NoSuchAttributeException

SchemaViolationException JNDI 1.1

javax.naming.directory serializable checked
Thrown when a method violates schema rules.

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 431

public class SchemaViolationException extends
NamingException {

//
Public Constructors
public SchemaViolationException

 ();public SchemaViolationException (String explanation
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NamingException−−>SchemaViolationException

SearchControls JNDI 1.1

javax.naming.directory serializable
This class represents the information needed to control the behavior of the search() method of
DirContext. Contains information that determines the scope of search, the maximum number of results
returned by a search, the maximum amount of time permitted to return search results, and other data you can
use to fine−tune the behavior of search operations.

public class SearchControls implements Serializable {

//
Public Constructors
public SearchControls

 ();public SearchControls (int scope, long countlim, int timelim, String[] attrs, boolean retobj,
boolean deref

);//
Public Constants
public static final int OBJECT_SCOPE ;

=0
public static final int ONELEVEL_SCOPE ;

=1
public static final int SUBTREE_SCOPE ; =2

//
Public Instance Methods
public long getCountLimit ();

default:0
public boolean getDerefLinkFlag ();

default:false
public String[] getReturningAttributes ();

default:null
public boolean getReturningObjFlag ();

default:false
public int getSearchScope ();

default:1
public int getTimeLimit ();

default:0
public void setCountLimit (long limit

);public void setDerefLinkFlag (boolean on
);public void setReturningAttributes (String[] attrs

);public void setReturningObjFlag (boolean on
);public void setSearchScope (int scope

);public void setTimeLimit (int ms
);

}
Hierarchy: Object−−>SearchControls(Serializable)

Passed To: DirContext.search(), InitialDirContext.search()

SearchResult JNDI 1.1

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 432

javax.naming.directory serializable
This class represents a result of performing a search() method on a DirContext. It is a subclass of
javax.naming.Binding. You can perform directory operations on a SearchResult without first
having to look up the object in the directory. Each search() method actually returns an
NamingEnumeration of SearchResults objects.

public class SearchResult extends javax.naming.Binding {

//
Public Constructors
public SearchResult (String name, Object obj, Attributes attrs

);public SearchResult (String name, String className, Object obj, Attributes attrs
);public SearchResult (String name, Object obj, Attributes attrs, boolean isRelative
);public SearchResult (String name, String className, Object obj, Attributes attrs, boolean isRelative

);
//

Public Instance Methods
public Attributes getAttributes

 ();public void setAttributes (Attributes attrs
);

//
Public methods overriding Binding
public String toString

 ();
}
Hierarchy:
Object−−>NameClassPair(Serializable)−−>javax.naming.Binding−−>SearchResult

22.1. The javax.naming
Package

24. The javax.naming.spi
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 23. The javax.naming.directory Package 433

Chapter 24. The javax.naming.spi Package
The javax.naming.spi package defines the service provider interface (SPI) for JNDI. Only system
programmers who are developing JNDI providers need to use this package; JNDI application programmers
can ignore it. The classes and interfaces in this package allow JNDI service providers to be plugged in
underneath the JNDI API. Figure 24−1 shows the hierarchy of this package.

Figure 24−1. The javax.naming.spi package

DirectoryManager JNDI 1.1

javax.naming.spi
DirectoryManager is a subclass of NamingManager that contains a method for creating
javax.naming.directory.DirContext objects.

public class DirectoryManager extends NamingManager {

// No Constructor

//
Public Class Methodspublic static javax.naming.directory.DirContext getContinuationDirContext (CannotProceedException
cpe

) throws NamingException;}
Hierarchy: Object−−>NamingManager−−>DirectoryManager

InitialContextFactory JNDI 1.1

javax.naming.spi
This interface represents a factory that creates an initial context for a naming or directory service. The initial
context serves as the entry point into the service. A JNDI service provider always includes an
InitialContextFactory that can be used as the value of the java.naming.factory.initial
property

public abstract interface InitialContextFactory {

//
Public Instance Methodspublic abstract javax.naming.Context getInitialContext (java.util.Hashtable environment) throws

NamingException;}

Chapter 24. The javax.naming.spi Package 434

Returned By: InitialContextFactoryBuilder.createInitialContextFactory()

InitialContextFactoryBuilder JNDI 1.1

javax.naming.spi
This interface represents a builder that creates initial context factories. A program can override the default
initial context factory builder by calling
NamingManager.setInitialContextFactoryBuilder() and specifying a new builder. Such a
builder must implement this interface.

public abstract interface InitialContextFactoryBuilder {

//
Public Instance Methodspublic abstract InitialContextFactory createInitialContextFactory (java.util.Hashtable environment)

throws NamingException;}
Passed To: NamingManager.setInitialContextFactoryBuilder()

NamingManager JNDI 1.1

javax.naming.spi
The NamingManager class contains methods for creating javax.naming.Context objects and
otherwise controlling the operation of the underlying service provider.

public class NamingManager {

// No Constructor

//
Public Class Methodspublic static javax.naming.Context getContinuationContext (CannotProceedException cpe)

throws NamingException;
public static javax.naming.Context getInitialContext (java.util.Hashtable environment)

throws NamingException;
public static Object getObjectInstance (Object refInfo, Name name, javax.naming.Context
nameCtx, java.util.Hashtable environment

) throws Exception;
public static javax.naming.Context getURLContext (String scheme, java.util.Hashtable
environment

) throws NamingException;public static boolean hasInitialContextFactoryBuilder ();
synchronizedpublic static void setInitialContextFactoryBuilder (InitialContextFactoryBuilder builder)

throws NamingException;
synchronized

public static void setObjectFactoryBuilder (ObjectFactoryBuilder builder) throws
NamingException;

synchronized

}
Subclasses: DirectoryManager

ObjectFactory JNDI 1.1

javax.naming.spi

Preface (Java Enterprise in a Nutshell)

Chapter 24. The javax.naming.spi Package 435

This interface represents a factory for creating objects. JNDI supports the dynamic loading of object
implementations with object factories. For example, say you have a naming system that binds file objects to
names in the namespace. If the filesystem service provider binds filenames to Reference objects, a
Reference object can create a file object through an object factory. This means that a call to lookup() a
filename (in the appropriate Context) returns an actual file object the programmer can manipulate as
necessary. An ObjectFactory is responsible for creating objects of a specific type.

public abstract interface ObjectFactory {

//
Public Instance Methodspublic abstract Object getObjectInstance (Object obj, Name name, javax.naming.Context nameCtx,
java.util.Hashtable environment

) throws Exception;}
Returned By: ObjectFactoryBuilder.createObjectFactory()

ObjectFactoryBuilder JNDI 1.1

javax.naming.spi
This interface represents a builder that creates object factories. A program can override the default object
factory builder by calling NamingManager.setObjectFactoryBuilder() and specifying a new
builder. Such a builder must implement this interface.

public abstract interface ObjectFactoryBuilder {

//
Public Instance Methodspublic abstract ObjectFactory createObjectFactory (Object obj, java.util.Hashtable info) throws

NamingException;}
Passed To: NamingManager.setObjectFactoryBuilder()

Resolver JNDI 1.1

javax.naming.spi
The Resolver interface contains methods that are implemented by objects that can act as intermediate
contexts for naming resolution purposes.

public abstract interface Resolver {

//
Public Instance Methods
public abstract ResolveResult resolveToClass (Name name, Class contextType

) throws NamingException;public abstract ResolveResult resolveToClass (String name, Class contextType) throws

NamingException;}

ResolveResult JNDI 1.1

javax.naming.spi
This class represents the result of resolving a name.

public class ResolveResult {

Preface (Java Enterprise in a Nutshell)

Chapter 24. The javax.naming.spi Package 436

//
Public Constructors
public ResolveResult (Object robj, Name rname

);public ResolveResult (Object robj, String rcomp
);

//
Protected Constructors
protected ResolveResult

 ();
//

Public Instance Methods
public void appendRemainingComponent (String name

);public void appendRemainingName (Name name
);public Name getRemainingName

 ();public Object getResolvedObj
 ();public void setRemainingName (Name name

);public void setResolvedObj (Object obj
);

//
Protected Instance Fields
protected Name remainingName

 ;protected Object resolvedObj
 ;

}
Returned By: Resolver.resolveToClass()

23.1. The
javax.naming.directory
Package

25. The javax.servlet
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 24. The javax.naming.spi Package 437

Chapter 25. The javax.servlet Package
The javax.servlet package is the core of the Servlet API. It contains the classes necessary for a
standard, protocol−independent servlet. Every servlet must implement the Servlet interface in one form or
another. The abstract GenericServlet class provides the framework for developing basic servlets. The
package also includes a variety of utility classes that communicate with the server and the client. Figure 25−1
shows the class hierarchy of this package.

Figure 25−1. The javax.servlet package

GenericServlet Servlets 1.0

javax.servlet serializable
The GenericServlet class provides a basic implementation of the Servlet and ServletConfig
interfaces. If you are creating a protocol−independent servlet, you probably want to subclass this class rather
than implement the Servlet interface directly. Note that the service() method is declared as abstract;
this is the only method you have to override to implement a generic servlet.

GenericServlet includes basic implementations of the init() and destroy() methods, which
perform basic setup and cleanup tasks, respectively. The init() method that takes a ServletConfig
object stores that object for later use. This means that if you override the method and fail to call the
super.init(ServletConfig) method, you won't be able to use the ServletConfig methods later.
In Version 2.1 of the Servlet API, you can override a no−argument version of init() that is dispatched by
the default init(ServletConfig) method of GenericServlet.

public abstract class GenericServlet implements Servlet, ServletConfig, Serializable {

//
Public Constructors
public GenericServlet

 ();
// Public Instance Methods

2.1public void init () throws ServletException;
empty

public void log (String msg
);

2.1public void log (String message, Throwable t
);

//
Methods implementing Servlet
public void destroy

 ();

Chapter 25. The javax.servlet Package 438

public ServletConfig getServletConfig
 ();public String getServletInfo

 ();public void init (ServletConfig config

) throws ServletException;public abstract void service (ServletRequest req, ServletResponse res) throws ServletException,

IOException;//
Methods implementing ServletConfig
public String getInitParameter (String name

);public java.util.Enumeration getInitParameterNames
 ();public ServletContext getServletContext

 ();
}
Hierarchy: Object−−>GenericServlet(Servlet,ServletConfig,Serializable)

Subclasses: javax.servlet.http.HttpServlet

RequestDispatcher Servlets 2.1

javax.servlet
RequestDispatcher allows a servlet to delegate some or all of the processing of a request to another
resource on the web server. A RequestDispatcher object is retrieved by calling the
getRequestDispatcher() method on the ServletContext object. The forward() method
passes a request on to another servlet for processing, while the include() method includes the output of
another servlet in the output of the current servlet.

public interface RequestDispatcher {

//
Public Instance Methodspublic abstract void forward (ServletRequest request, ServletResponse response) throws

ServletException, IOException;
public abstract void include (ServletRequest request, ServletResponse response) throws ServletException,

IOException;}
Returned By: ServletContext.getRequestDispatcher()

Servlet Servlets 1.0

javax.servlet
The Servlet interface defines the basic structure of a servlet. All servlets implement this interface, either
directly or by subclassing a class that does. The interface declares the basic servlet functionality: initializing a
servlet, handling client requests, and destroying a servlet.

init() is called when the servlet is first initialized. Since init() creates resources the servlet can reuse, it
is guaranteed to finish executing before the servlet handles any client requests. The server calls the
service() method for each client request. The servlet interacts with the client via ServletRequest and
ServletResponse objects passed to service(). destroy() is called to clean up resources (such as
database connections) or save state when the server shuts down. The getServletInfo() method should
return a String that describes a servlet, and the getServletConfig() method should return the
ServletConfig object that was passed to the init() method.

Preface (Java Enterprise in a Nutshell)

Chapter 25. The javax.servlet Package 439

public interface Servlet {

//
Public Instance Methods
public abstract void destroy

 ();public abstract ServletConfig getServletConfig
 ();public abstract String getServletInfo

 ();public abstract void init (ServletConfig config

) throws ServletException;public abstract void service (ServletRequest req, ServletResponse res) throws ServletException,

IOException;}
Implementations: GenericServlet

Passed To: UnavailableException.UnavailableException()

Returned By: ServletContext.getServlet(), UnavailableException.getServlet()

ServletConfig Servlets 1.0

javax.servlet
A ServletConfig object passes configuration information from the server to a servlet. ServletConfig
supports initialization parameters (also known simply as init parameters) defined by the server administrator
for a particular servlet. These parameters are accessed via the getInitParameter() and
getInitParameterNames() methods. ServletConfig also includes a ServletContext object,
accessible via getServletContext(), for direct interaction with the server.

public interface ServletConfig {

//
Public Instance Methods
public abstract String getInitParameter (String name

);public abstract java.util.Enumeration getInitParameterNames
 ();public abstract ServletContext getServletContext

 ();
}
Implementations: GenericServlet

Passed To: GenericServlet.init(), Servlet.init()

Returned By: GenericServlet.getServletConfig(), Servlet.getServletConfig()

ServletContext Servlets 1.0

javax.servlet
ServletContext defines methods that allow a servlet to interact with the host server. This includes
reading server−specific attributes, finding information about particular files located on the server, and writing
to the server log files. If there are several virtual servers running, each one may return a different
ServletContext.

Servlets can also use ServletContext to interact with other servlets loaded on the same server. In Version
1.0 of the Servlet API, this was done via the getServlets() method. In Version 2.0, getServlets()
was deprecated in favor of getServlet() and getServletNames(). In Version 2.1, getServlet()
and getServletNames() were both deprecated in favor of the new setAttribute() and

Preface (Java Enterprise in a Nutshell)

Chapter 25. The javax.servlet Package 440

getAttribute() methods.

public interface ServletContext {

//
Public Instance Methods
public abstract Object getAttribute (String name

);
2.1 public abstract java.util.Enumeration getAttributeNames

 ();
2.1 public abstract ServletContext getContext (String uripath

);
2.1 public abstract int getMajorVersion

 ();public abstract String getMimeType (String file
);

2.1 public abstract int getMinorVersion
 ();public abstract String getRealPath (String path

);
2.1 public abstract RequestDispatcher getRequestDispatcher (String urlpath

);
2.1 public abstract java.net.URL getResource (String path

) throws java.net.MalformedURLException;
2.1 public abstract java.io.InputStream getResourceAsStream (String path

);public abstract String getServerInfo
 ();public abstract void log (String msg

);
2.1 public abstract void log (String message, Throwable throwable

);
2.1 public abstract void removeAttribute (String name

);
2.1 public abstract void setAttribute (String name, Object object

);
// Deprecated Public Methods

public abstract Servlet getServlet (String name
) throws ServletException;

2.0#public abstract java.util.Enumeration getServletNames
 ();

public abstract java.util.Enumeration getServlets
 ();

2.0#public abstract void log (Exception exception, String msg
);

}
Returned By: GenericServlet.getServletContext(),
ServletConfig.getServletContext(), ServletContext.getContext()

ServletException Servlets 1.0

javax.servlet serializable checked
A generic Exception class used for basic servlet errors. In version 2.1, a servlet can specify a
Throwable root cause for this exception (using the constructors that accept Throwable parameters). The
root cause can be retrieved with the getRootCause() method.

public class ServletException extends Exception {

// Public Constructors

2.0 public ServletException
 ();

2.1 public ServletException (Throwable rootCause
);public ServletException (String message

);
2.1 public ServletException (String message, Throwable rootCause

);
// Public Instance Methods

2.1 public Throwable getRootCause (); default:null

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>ServletException

Preface (Java Enterprise in a Nutshell)

Chapter 25. The javax.servlet Package 441

Subclasses: UnavailableException

Thrown By: GenericServlet.{init(), service()}, RequestDispatcher.{forward(),
include()}, Servlet.{init(), service()}, ServletContext.getServlet(),
javax.servlet.http.HttpServlet.{doDelete(), doGet(), doOptions(),
doPost(), doPut(), doTrace(), service()}

ServletInputStream Servlets 1.0

javax.servlet
ServletInputStream provides an input stream for reading data from a client request. A servlet can get a
ServletInputStream by calling the getInputStream() method of ServletRequest. While
ServletInputStream does contain a readLine() method for reading textual data one line at a time,
this functionality was taken over by BufferedReader objects and the getReader() method of
ServletRequest in Version 2.0 of the Servlet API. Thus, ServletInputStream should be used only
to read binary data, generally in the context of a filtering servlet.

public abstract class ServletInputStream extends java.io.InputStream
{

//
Protected Constructors
protected ServletInputStream

 ();
//

Public Instance Methods
public int readLine (byte] b, int off, int len

) throws IOException;
}
Hierarchy: Object−−>java.io.InputStream−−>ServletInputStream

Passed To: javax.servlet.http.HttpUtils.parsePostData()

Returned By: ServletRequest.getInputStream()

ServletOutputStream Servlets 1.0

javax.servlet
ServletOutputStream provides an output stream for sending binary data back to a client. A servlet can
get a ServletOutputStream by calling the getOutputStream() method of ServletResponse.
ServletOutputStream was the only available output method in Version 1.0 of the Servlet API. For text
and HTML output, it has been supplanted by PrintWriter objects produced by the getWriter()
method of ServletResponse. The various print() and println() methods should therefore be
regarded as legacies.

public abstract class ServletOutputStream extends
java.io.OutputStream {

//
Protected Constructors
protected ServletOutputStream

 ();
//

Public Instance Methods
public void print (long l

) throws IOException;public void print (float f
) throws IOException;public void print (double d

) throws IOException;

Preface (Java Enterprise in a Nutshell)

Chapter 25. The javax.servlet Package 442

public void print (int i
) throws IOException;public void print (String s

) throws IOException;public void print (boolean b
) throws IOException;public void print (char c

) throws IOException;public void println
 () throws IOException;public void println (long l

) throws IOException;public void println (float f
) throws IOException;public void println (double d

) throws IOException;public void println (int i
) throws IOException;public void println (String s

) throws IOException;public void println (boolean b
) throws IOException;public void println (char c

) throws IOException;
}
Hierarchy: Object−−>java.io.OutputStream−−>ServletOutputStream

Returned By: ServletResponse.getOutputStream()

ServletRequest Servlets 1.0

javax.servlet
A ServletRequest object encapsulates information about a client request. The server passes a
ServletRequest object to the service() method of a servlet. ServletRequest provides access to
request parameters, such as form values or other request−specific parameters. These are accessed using the
getParameterNames(), getParameter(), and getParameterValues() methods. Raw request
data can be read by the getReader() method (for textual data) and the getInputStream() method
(for binary data). The getContentType(), getContentLength(), and
getCharacterEncoding() methods can help retrieve this information. Other methods provide
information about the client (getRemoteAddr(), getRemoteHost()), the request itself
(getScheme(), getProtocol()), and the server (getServerName(), getServerPort()).
Version 2.1 also adds the getAttribute() and setAttribute() methods, which are generally used
with the new RequestDispatcher interface.

public interface ServletRequest {

//
Public Instance Methods
public abstract Object getAttribute (String name

);
2.1 public abstract java.util.Enumeration getAttributeNames

 ();
2.0 public abstract String getCharacterEncoding

 ();public abstract int getContentLength
 ();public abstract String getContentType
 ();public abstract ServletInputStream getInputStream

 () throws IOException;public abstract String getParameter (String name
);public abstract java.util.Enumeration getParameterNames

 ();public abstract String[] getParameterValues (String name
);public abstract String getProtocol

 ();
2.0 public abstract BufferedReader getReader

 () throws IOException;public abstract String getRemoteAddr
 ();public abstract String getRemoteHost

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 25. The javax.servlet Package 443

public abstract String getScheme
 ();public abstract String getServerName

 ();public abstract int getServerPort
 ();

2.1 public abstract void setAttribute (String key, Object o
);

// Deprecated Public Methods

public abstract String getRealPath (String path
);

}
Implementations: javax.servlet.http.HttpServletRequest

Passed To: GenericServlet.service(), RequestDispatcher.{forward(),
include()}, Servlet.service(), javax.servlet.http.HttpServlet.service()

ServletResponse Servlets 1.0

javax.servlet
The ServletResponse object sends MIME−encoded data back to the client. The interface defines a
getOutputStream() method that returns a ServletOutputStream for sending binary data and a
getWriter() method that returns a PrintWriter for sending textual data. The setContentType()
and setContentLength() methods can explicitly set the content type and content length (often necessary
for keep−alive connections and other tasks). If you call setContentType(), you should do so before you
call getWriter(), as getWriter() consults the content type to determine which charset to use.

public interface ServletResponse {

// Public Instance Methods

2.0 public abstract String getCharacterEncoding
 ();public abstract ServletOutputStream getOutputStream

 () throws IOException;
2.0 public abstract PrintWriter getWriter

 () throws IOException;public abstract void setContentLength (int len
);public abstract void setContentType (String type

);
}
Implementations: javax.servlet.http.HttpServletResponse

Passed To: GenericServlet.service(), RequestDispatcher.{forward(),
include()}, Servlet.service(), javax.servlet.http.HttpServlet.service()

SingleThreadModel Servlets 2.0

javax.servlet
SingleThreadModel is a tag interface that tells the server to create a pool of servlet instances to serve
individual requests. In this case, the server ensures that each instance of the servlet handles only one service
request at a time. SingleThreadModel provides easy thread safety, but imposes performance penalties.

public interface
SingleThreadModel {

}

UnavailableException Servlets 1.0

Preface (Java Enterprise in a Nutshell)

Chapter 25. The javax.servlet Package 444

javax.servlet serializable checked
An UnavailableException indicates that a servlet is unable to handle client requests, either
temporarily or permanently. To specify temporary unavailability, use the three−argument constructor and
specify the duration of the servlet's downtime. If a servlet specifies temporary unavailability, the server may
(but is not required to) attempt to reload the servlet after the specified interval.

public class UnavailableException extends ServletException {

//
Public Constructors
public UnavailableException (Servlet servlet, String msg

);public UnavailableException (int seconds, Servlet servlet, String msg
);

//
Public Instance Methods
public Servlet getServlet

 ();public int getUnavailableSeconds
 ();public boolean isPermanent

 ();
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>ServletException−−>UnavailableException

24.1. The javax.naming.spi
Package

26. The javax.servlet.http
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 25. The javax.servlet Package 445

Chapter 26. The javax.servlet.http Package
The javax.servlet.http package supports the development of servlets that use the HTTP protocol.
The classes in this package extend the basic servlet functionality to support various HTTP specific features,
including request and response headers, different request methods, and cookies. The abstract HttpServlet
class extends javax.servlet.GenericServlet and serves as the base class for HTTP servlets.
HttpServlet−Request and HttpServletResponse allow additional interaction with the client.
Finally, since the HTTP protocol is inherently stateless, the package also includes HttpSession and some
related classes to support session tracking. Figure 26−1 shows the class hierarchy of this package.

Figure 26−1. The javax.servlet.http package

Cookie Servlets 2.0

javax.servlet.http cloneable
The Cookie class provides servlets with an easy way to read, create, and manipulate HTTP−style cookies.
Cookies provide a way to store a small amount of information on the client and are typically used for session
tracking or storing user−configuration information. The getCookies() method of
HttpServletRequest returns an array of Cookie objects. To set a new cookie on the client, a servlet
creates a new Cookie object and uses the addCookie() method of HttpServletResponse. This must
be done before sending any other content, since cookies are created within the HTTP header stream. The
various methods of the Cookie class allow a servlet to set and get various attributes of a Cookie object,
such as its path and domain.

public class Cookie implements Cloneable {

//
Public Constructors
public Cookie (String name, String value

);
//

Public Instance Methods
public String getComment

 ();

Chapter 26. The javax.servlet.http Package 446

public String getDomain
 ();public int getMaxAge

 ();public String getName
 ();public String getPath

 ();public boolean getSecure
 ();public String getValue

 ();public int getVersion
 ();public void setComment (String purpose

);public void setDomain (String pattern
);public void setMaxAge (int expiry

);public void setPath (String uri
);public void setSecure (boolean flag

);public void setValue (String newValue
);public void setVersion (int v

);
//

Public methods overriding Object
public Object clone

 ();
}
Hierarchy: Object−−>Cookie(Cloneable)

Passed To: HttpServletResponse.addCookie()

Returned By: HttpServletRequest.getCookies()

HttpServlet Servlets 1.0

javax.servlet.http serializable
The abstract HttpServlet class serves as a framework for servlets that generate content for the World
Wide Web using the HTTP protocol. Rather than overriding the service() method, you should override
one or more of the method−specific request handlers (doGet(), doPost(), doPut(), etc.). The default
service() implementation dispatches incoming requests to the appropriate methods, and so should not be
overridden. The default implementations of doGet(), doPost(), doDelete(), and doPut() all return
an HTTP BAD_REQUEST error, so if you want to handle one of these kinds of requests, you must override the
appropriate method.

A web server calls getLastModified() in response to conditional GET requests. The default
implementation returns −1. If you know when the output of your servlet last changed, you can return that
time, specified in milliseconds since midnight, January 1, 1970 GMT, instead. This allows web browsers to
cache your servlet's response.

public abstract class HttpServlet extends GenericServletimplements Serializable {

//
Public Constructors
public HttpServlet

 ();
//

Public methods overriding GenericServlet
public void service (ServletRequest req, ServletResponse res

) throws ServletException, IOException;
// Protected Instance Methods

2.0
protected void doDelete (HttpServletRequest req, HttpServletResponse resp) throws ServletException,

IOException;

Preface (Java Enterprise in a Nutshell)

Chapter 26. The javax.servlet.http Package 447

protected void doGet (HttpServletRequest req, HttpServletResponse resp) throws ServletException,

IOException;
2.0

protected void doOptions (HttpServletRequest req, HttpServletResponse resp) throws ServletException,

IOException;
protected void doPost (HttpServletRequest req, HttpServletResponse resp) throws ServletException,

IOException;
2.0

protected void doPut (HttpServletRequest req, HttpServletResponse resp) throws ServletException,

IOException;
2.0

protected void doTrace (HttpServletRequest req, HttpServletResponse resp) throws ServletException,

IOException;protected long getLastModified (HttpServletRequest req

);protected void service (HttpServletRequest req, HttpServletResponse resp) throws ServletException,

IOException;}
Hierarchy:
Object−−>GenericServlet(Servlet,ServletConfig,Serializable)−−>HttpServlet(Serializable)

HttpServletRequest Servlets 1.0

javax.servlet.http
HttpServletRequest extends javax.servlet.ServletRequest and provides a number of
methods that make it easy to access specific information related to an HTTP request. This includes methods
for directly accessing HTTP headers: getHeader(), getIntHeader(), getDateHeader(), and
getHeaderNames(). Other methods return various information about the request, including
getMethod(), which returns the request method (GET, POST, etc), getPathInfo(), which returns any
extra path information attached to the request, getPathTranslated(), which translates the extra path
information into a filesystem path, and getServletPath(), which returns the URI pointing to the current
servlet, minus any extra path information. The interface also includes the getCookies() method for
retrieving cookie data and getSession() for accessing the current HttpSession object.

public interface HttpServletRequest extends ServletRequest {

//
Public Instance Methods
public abstract String getAuthType

 ();
2.0 public abstract Cookie[] getCookies

 ();public abstract long getDateHeader (String name
);public abstract String getHeader (String name

);public abstract java.util.Enumeration getHeaderNames
 ();public abstract int getIntHeader (String name

);public abstract String getMethod
 ();public abstract String getPathInfo
 ();public abstract String getPathTranslated

 ();public abstract String getQueryString
 ();public abstract String getRemoteUser
 ();

2.0 public abstract String getRequestedSessionId
 ();public abstract String getRequestURI

 ();public abstract String getServletPath
 ();

2.1 public abstract HttpSession getSession
 ();

Preface (Java Enterprise in a Nutshell)

Chapter 26. The javax.servlet.http Package 448

2.0 public abstract HttpSession getSession (boolean create
);

2.0 public abstract boolean isRequestedSessionIdFromCookie
 ();

2.1 public abstract boolean isRequestedSessionIdFromURL
 ();

2.0 public abstract boolean isRequestedSessionIdValid
 ();

// Deprecated Public Methods

2.0#public abstract boolean isRequestedSessionIdFromUrl
 ();

}
Hierarchy: (HttpServletRequest(ServletRequest))

Passed To: HttpServlet.{doDelete(), doGet(), doOptions(), doPost(), doPut(),
doTrace(), getLastModified(), service()}, HttpUtils.getRequestURL()

HttpServletResponse Servlets 1.0

javax.servlet.http
HttpServletResponse extends javax.servlet.ServletResponse and provides additional
methods for HTTP−specific actions and a set of HTTP response code constants. The containsHeader(),
setHeader(), setDateHeader(), and setIntHeader() methods allow servlets to set and update
specific HTTP response headers. The addCookie() method writes a cookie, represented by a Cookie
object, to the client. The sendError() and setStatus() methods allow servlets to set specific HTTP
result codes, along with an optional customized error message. The encodeUrl() and
encodeRedirectUrl() methods (deprecated in 2.1 in favor of encodeURL() and
encodeRedirectURL()) methods support session tracking without the use of cookies. The
sendRedirect() method handles an HTTP page redirect.

public interface HttpServletResponse extends ServletResponse {

//
Public Constants
public static final int SC_ACCEPTED ;

=202
public static final int SC_BAD_GATEWAY ;

=502
public static final int SC_BAD_REQUEST ; =400

2.0 public static final int SC_CONFLICT ; =409

2.0 public static final int SC_CONTINUE ;
=100

public static final int SC_CREATED ;
=201

public static final int SC_FORBIDDEN ; =403

2.0 public static final int SC_GATEWAY_TIMEOUT ; =504

2.0 public static final int SC_GONE ; =410

2.0 public static final int SC_HTTP_VERSION_NOT_SUPPORTED ;
=505

public static final int SC_INTERNAL_SERVER_ERROR ; =500

2.0 public static final int SC_LENGTH_REQUIRED ; =411

2.0 public static final int SC_METHOD_NOT_ALLOWED ;
=405

public static final int SC_MOVED_PERMANENTLY ;
=301

public static final int SC_MOVED_TEMPORARILY ; =302

2.0 public static final int SC_MULTIPLE_CHOICES ;
=300

public static final int SC_NO_CONTENT ; =204

2.0 public static final int SC_NON_AUTHORITATIVE_INFORMATION ; =203

2.0 public static final int SC_NOT_ACCEPTABLE ; =406

Preface (Java Enterprise in a Nutshell)

Chapter 26. The javax.servlet.http Package 449

public static final int SC_NOT_FOUND ;
=404

public static final int SC_NOT_IMPLEMENTED ;
=501

public static final int SC_NOT_MODIFIED ;
=304

public static final int SC_OK ; =200

2.0 public static final int SC_PARTIAL_CONTENT ; =206

2.0 public static final int SC_PAYMENT_REQUIRED ; =402

2.0 public static final int SC_PRECONDITION_FAILED ; =412

2.0 public static final int SC_PROXY_AUTHENTICATION_REQUIRED ; =407

2.0 public static final int SC_REQUEST_ENTITY_TOO_LARGE ; =413

2.0 public static final int SC_REQUEST_TIMEOUT ; =408

2.0 public static final int SC_REQUEST_URI_TOO_LONG ; =414

2.0 public static final int SC_RESET_CONTENT ; =205

2.0 public static final int SC_SEE_OTHER ;
=303

public static final int SC_SERVICE_UNAVAILABLE ; =503

2.0 public static final int SC_SWITCHING_PROTOCOLS ;
=101

public static final int SC_UNAUTHORIZED ; =401

2.0 public static final int SC_UNSUPPORTED_MEDIA_TYPE ; =415

2.0 public static final int SC_USE_PROXY ; =305

// Public Instance Methods

2.0 public abstract void addCookie (Cookie cookie
);public abstract boolean containsHeader (String name

);
2.1 public abstract String encodeRedirectURL (String url

);
2.1 public abstract String encodeURL (String url

);public abstract void sendError (int sc
) throws IOException;public abstract void sendError (int sc, String msg

) throws IOException;public abstract void sendRedirect (String location
) throws IOException;public abstract void setDateHeader (String name, long date

);public abstract void setHeader (String name, String value
);public abstract void setIntHeader (String name, int value
);public abstract void setStatus (int sc

);
// Deprecated Public Methods

2.0#public abstract String encodeRedirectUrl (String url
);

2.0#public abstract String encodeUrl (String url
);

public abstract void setStatus (int sc, String sm
);

}
Hierarchy: (HttpServletResponse(ServletResponse))

Passed To: HttpServlet.{doDelete(), doGet(), doOptions(), doPost(), doPut(),
doTrace(), service()}

HttpSession Servlets 2.0

javax.servlet.http
The HttpSession interface is the core of the session tracking functionality introduced in Version 2.0 of
the Servlet API. A servlet obtains an HttpSession objects from the getSession() method of

Preface (Java Enterprise in a Nutshell)

Chapter 26. The javax.servlet.http Package 450

HttpServletRequest. The putValue() and removeValue() methods bind Java objects to a
particular session. When possible, bound objects should be (but do not need to be) serializable.
getValueNames() returns a String array that contains the names of all objects bound to the session.

public interface HttpSession {

//
Public Instance Methods
public abstract long getCreationTime

 ();public abstract String getId
 ();public abstract long getLastAccessedTime

 ();
2.1 public abstract int getMaxInactiveInterval

 ();public abstract Object getValue (String name
);public abstract String[] getValueNames

 ();public abstract void invalidate
 ();public abstract boolean isNew

 ();public abstract void putValue (String name, Object value
);public abstract void removeValue (String name

);
2.1 public abstract void setMaxInactiveInterval (int interval

);
// Deprecated Public Methods

public abstract HttpSessionContext getSessionContext
 ();

}
Passed To: HttpSessionBindingEvent.HttpSessionBindingEvent()

Returned By: HttpServletRequest.getSession(),
HttpSessionBindingEvent.getSession(), HttpSessionContext.getSession()

HttpSessionBindingEvent Servlets 2.0

javax.servlet.http serializable event
An HttpSessionBindingEvent is passed to the appropriate method of an
HttpSessionBindingListener when an object is bound to or unbound from an HttpSession. The
getName() method returns the name to which the bound object has been assigned, and the
getSession() method provides a reference to the session the object is being bound to.

public class HttpSessionBindingEvent extends java.util.EventObject {

//
Public Constructors
public HttpSessionBindingEvent (HttpSession session, String name

);
//

Public Instance Methods
public String getName

 ();public HttpSession getSession
 ();

}
Hierarchy:
Object−−>java.util.EventObject(Serializable)−−>HttpSessionBindingEvent

Passed To: HttpSessionBindingListener.{valueBound(), valueUnbound()}

HttpSessionBindingListener Servlets 2.0

Preface (Java Enterprise in a Nutshell)

Chapter 26. The javax.servlet.http Package 451

javax.servlet.http event listener
An object that implements HttpSessionBindingListener is notified with calls to valueBound()
and valueUnbound() when it is bound to and unbound from an HttpSession, respectively. The
valueUnbound() method is also called when a session is deleted for inactivity or at server shutdown.

public interface HttpSessionBindingListener extends
java.util.EventListener {

//
Public Instance Methods
public abstract void valueBound (HttpSessionBindingEvent event

);public abstract void valueUnbound (HttpSessionBindingEvent event
);

}
Hierarchy: (HttpSessionBindingListener(java.util.EventListener))

HttpSessionContext Servlets 2.0; Deprecated in Servlets 2.1

javax.servlet.http
HttpSessionContext provides access to all of the currently active sessions on the server. Note that this
class is deprecated as of Version 2.1 of the Servlet API, due to a minor security risk whereby a servlet could
expose all the session IDs in use on the server.

public interface HttpSessionContext {

// Deprecated Public Methods

public abstract java.util.Enumeration getIds
 ();

public abstract HttpSession getSession (String sessionId
);

}
Returned By: HttpSession.getSessionContext()

HttpUtils Servlets 1.0

javax.servlet.http
The HttpUtils class contains three static methods that perform useful HTTP−related tasks.
getRequestURL() forms a functional approximation of the original request URL, including scheme,
server name, server port, extra path information, and query string, based on an HttpServletRequest
object. The parsePostData() and parseQueryString() methods parse URL−encoded form
variables from an InputStream or a String. In most cases, a servlet should use the getParameter(),
getParameterValues(), and getParameterNames() methods of HttpServletRequest
instead.

public class HttpUtils {

//
Public Constructors
public HttpUtils

 ();
//

Public Class Methods
public static StringBuffer getRequestURL (HttpServletRequest req

);public static java.util.Hashtable parsePostData (int len, ServletInputStream in
);public static java.util.Hashtable parseQueryString (String s

);

Preface (Java Enterprise in a Nutshell)

Chapter 26. The javax.servlet.http Package 452

}

25.1. The javax.servlet
Package

27. The javax.sql Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 26. The javax.servlet.http Package 453

Chapter 27. The javax.sql Package
The javax.sql package contains the JDBC 2.0 Standard Extension API. The classes and interfaces in this
package provide new functionality, such as connection pooling, that do not fall under the scope of the original
JDBC API and can therefore be safely packaged separately. The DataSource interface serves as a factory
for Connectionobjects; DataSource objects can be registered with a JNDI server, making it possible to
get the name of a database from a name service. PooledConnectionsupports connection pooling, which
allows an application to handle multiple database connections in a fairly transparent manner. RowSet extends
the ResultSetinterface to a JavaBeans component that can be manipulated at design time and used with
non−SQL data sources. Figure 27−1 shows the class hierarchy of the javax.sql package.

Figure 27−1. The javax.sql package

ConnectionEvent JDBC 2.0 Extension

javax.sql serializable event
Provides information about a pooled connection when an event occurs on the connection. If the event is an
error event, ConnectionEvent includes the SQLException that is about to be thrown to the application.

public class ConnectionEvent extends java.util.EventObject {

//
Public Constructors
public ConnectionEvent (PooledConnection con

);public ConnectionEvent (PooledConnection con, java.sql.SQLException ex
);

//
Public Instance Methods
public java.sql.SQLException getSQLException

 ();
}
Hierarchy: Object−−>java.util.EventObject(Serializable)−−>ConnectionEvent

Passed To: ConnectionEventListener.{connectionClosed(),
connectionErrorOccurred()}

ConnectionEventListener JDBC 2.0 Extension

Chapter 27. The javax.sql Package 454

javax.sql event listener
An object that implements ConnectionEventListener registers to receive event notifications from
PooledConnection objects. The connectionClosed() method is called when the close() method
of the PooledConnection object is called, while the connectionErrorOccurred() method is
called immediately before an SQLException is thrown to indicate a fatal error condition (one that renders
the connection unusable in the future).

public abstract interface ConnectionEventListener extends
java.util.EventListener {

//
Public Instance Methods
public abstract void connectionClosed (ConnectionEvent event

);public abstract void connectionErrorOccurred (ConnectionEvent event
);

}
Hierarchy: (ConnectionEventListener(java.util.EventListener))

Passed To: PooledConnection.{addConnectionEventListener(),
removeConnectionEventListener()}

ConnectionPoolDataSource JDBC 2.0 Extension

javax.sql
A factory for PooledConnection objects. Can be registered with a JNDI service or used standalone (for
example, in a servlet).

public abstract interface ConnectionPoolDataSource {

//
Public Instance Methods
public abstract int getLoginTimeout

 () throws java.sql.SQLException;public abstract PrintWriter getLogWriter
 () throws java.sql.SQLException;public abstract PooledConnection getPooledConnection

 () throws java.sql.SQLException;public abstract PooledConnection getPooledConnection (String user, String password) throws

java.sql.SQLException;public abstract void setLoginTimeout (int seconds
) throws java.sql.SQLException;public abstract void setLogWriter (PrintWriter out
) throws java.sql.SQLException;

}

DataSource JDBC 2.0 Extension

javax.sql
A factory for java.sql.Connection objects. Can be registered with a JNDI service, so that an
application can get the name of a database from a name service.

public abstract interface DataSource {

//
Public Instance Methods
public abstract java.sql.Connection getConnection

 () throws java.sql.SQLException;public abstract java.sql.Connection getConnection (String username, String password) throws

java.sql.SQLException;public abstract int getLoginTimeout
 () throws java.sql.SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 27. The javax.sql Package 455

public abstract PrintWriter getLogWriter
 () throws java.sql.SQLException;public abstract void setLoginTimeout (int seconds

) throws java.sql.SQLException;public abstract void setLogWriter (PrintWriter out
) throws java.sql.SQLException;

}

PooledConnection JDBC 2.0 Extension

javax.sql
PooledConnection provides an application−level hook into the JDBC Standard Extension's connection
pooling functionality. Call getConnection() to retrieve a standard java.sql.Connection object for
database access from the connection pool. Use close() to return this connection to the pool.

public abstract interface PooledConnection {

//
Event Registration Methods (by event name)
public abstract void addConnectionEventListener (ConnectionEventListener listener

);public abstract void removeConnectionEventListener (ConnectionEventListener listener
);

//
Public Instance Methods
public abstract void close

 () throws java.sql.SQLException;public abstract java.sql.Connection getConnection
 () throws java.sql.SQLException;

}
Implementations: javax.sql.XAConnection

Passed To: ConnectionEvent.ConnectionEvent()

Returned By: ConnectionPoolDataSource.getPooledConnection()

RowSet JDBC 2.0 Extension

javax.sql
RowSet extends the java.sql.ResultSet interface so that RowSet objects are JavaBeans components
and can be manipulated by visual programming tools. A RowSet can be implemented on top of any
JDBC−compliant ResultSet. The setCommand() method specifies what data the row set should contain
(for a database generated set, this might be an SQL statement).

public abstract interface RowSet extends java.sql.ResultSet {

//
Event Registration Methods (by event name)
public abstract void addRowSetListener (RowSetListener listener

);public abstract void removeRowSetListener (RowSetListener listener
);

//
Public Instance Methods
public abstract void clearParameters

 () throws java.sql.SQLException;public abstract void execute
 () throws java.sql.SQLException;public abstract String getCommand

 ();public abstract String getDataSourceName
 ();public abstract boolean getEscapeProcessing

 () throws java.sql.SQLException;public abstract int getMaxFieldSize
 () throws java.sql.SQLException;public abstract int getMaxRows

 () throws java.sql.SQLException;public abstract String getPassword
 ();

Preface (Java Enterprise in a Nutshell)

Chapter 27. The javax.sql Package 456

public abstract int getQueryTimeout
 () throws java.sql.SQLException;public abstract int getTransactionIsolation

 ();public abstract java.util.Map getTypeMap
 () throws java.sql.SQLException;public abstract String getUrl

 () throws java.sql.SQLException;public abstract String getUsername
 ();public abstract boolean isReadOnly
 ();public abstract void setArray (int i, java.sql.Array x

) throws java.sql.SQLException;public abstract void setAsciiStream (int parameterIndex, java.io.InputStream x, int length) throws

java.sql.SQLException;
public abstract void setBigDecimal (int parameterIndex, java.math.BigDecimal x) throws

java.sql.SQLException;
public abstract void setBinaryStream (int parameterIndex, java.io.InputStream x, int length) throws

java.sql.SQLException;public abstract void setBlob (int i, java.sql.Blob x
) throws java.sql.SQLException;public abstract void setBoolean (int parameterIndex, boolean x

) throws java.sql.SQLException;public abstract void setByte (int parameterIndex, byte x
) throws java.sql.SQLException;public abstract void setBytes (int parameterIndex, byte[] x

) throws java.sql.SQLException;public abstract void setCharacterStream (int parameterIndex, Reader reader, int length) throws

java.sql.SQLException;public abstract void setClob (int i, java.sql.Clob x
) throws java.sql.SQLException;public abstract void setCommand (String cmd

) throws java.sql.SQLException;public abstract void setConcurrency (int concurrency
) throws java.sql.SQLException;public abstract void setDataSourceName (String name
) throws java.sql.SQLException;public abstract void setDate (int parameterIndex, java.sql.Date x

) throws java.sql.SQLException;public abstract void setDate (int parameterIndex, java.sql.Date x, java.util.Calendar cal) throws

java.sql.SQLException;public abstract void setDouble (int parameterIndex, double x
) throws java.sql.SQLException;public abstract void setEscapeProcessing (boolean enable

) throws java.sql.SQLException;public abstract void setFloat (int parameterIndex, float x
) throws java.sql.SQLException;public abstract void setInt (int parameterIndex, int x

) throws java.sql.SQLException;public abstract void setLong (int parameterIndex, long x
) throws java.sql.SQLException;public abstract void setMaxFieldSize (int max

) throws java.sql.SQLException;public abstract void setMaxRows (int max
) throws java.sql.SQLException;public abstract void setNull (int parameterIndex, int sqlType

) throws java.sql.SQLException;public abstract void setNull (int paramIndex, int sqlType, String typeName) throws

java.sql.SQLException;public abstract void setObject (int parameterIndex, Object x

) throws java.sql.SQLException;public abstract void setObject (int parameterIndex, Object x, int targetSqlType) throws

java.sql.SQLException;
public abstract void setObject (int parameterIndex, Object x, int targetSqlType, int scale) throws

java.sql.SQLException;public abstract void setPassword (String password
) throws java.sql.SQLException;public abstract void setQueryTimeout (int seconds
) throws java.sql.SQLException;public abstract void setReadOnly (boolean value

) throws java.sql.SQLException;public abstract void setRef (int i, java.sql.Ref x
) throws java.sql.SQLException;public abstract void setShort (int parameterIndex, short x

) throws java.sql.SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 27. The javax.sql Package 457

public abstract void setString (int parameterIndex, String x
) throws java.sql.SQLException;public abstract void setTime (int parameterIndex, java.sql.Time x

) throws java.sql.SQLException;public abstract void setTime (int parameterIndex, java.sql.Time x, java.util.Calendar cal) throws

java.sql.SQLException;
public abstract void setTimestamp (int parameterIndex, java.sql.Timestamp x) throws

java.sql.SQLException;
public abstract void setTimestamp (int parameterIndex, java.sql.Timestamp x, java.util.Calendar cal)

throws java.sql.SQLException;public abstract void setTransactionIsolation (int level
) throws java.sql.SQLException;public abstract void setType (int type

) throws java.sql.SQLException;public abstract void setTypeMap (java.util.Map map
) throws java.sql.SQLException;public abstract void setUrl (String url

) throws java.sql.SQLException;public abstract void setUsername (String name
) throws java.sql.SQLException;

}
Hierarchy: (RowSet(java.sql.ResultSet))

Passed To: RowSetEvent.RowSetEvent()

RowSetEvent JDBC 2.0 Extension

javax.sql serializable event
Generated when an important event, such as a change in a column's value, occurs within a RowSet.

public class RowSetEvent extends
java.util.EventObject {

//
Public Constructors
public RowSetEvent (RowSet source

);
}
Hierarchy: Object−−>java.util.EventObject(Serializable)−−>RowSetEvent

Passed To: RowSetListener.{cursorMoved(), rowChanged(), rowSetChanged()}

RowSetInternal JDBC 2.0 Extension

javax.sql
Implemented by a RowSet object that wishes to support the reader/writer row−loading paradigm. Contains
additional methods used by RowSetReader and RowSetWriter.

public abstract interface RowSetInternal {

//
Public Instance Methods
public abstract java.sql.Connection getConnection

 () throws java.sql.SQLException;public abstract java.sql.ResultSet getOriginal
 () throws java.sql.SQLException;public abstract java.sql.ResultSet getOriginalRow

 () throws java.sql.SQLException;public abstract Object[] getParams
 () throws java.sql.SQLException;public abstract void setMetaData (RowSetMetaData md

) throws java.sql.SQLException;
}

Preface (Java Enterprise in a Nutshell)

Chapter 27. The javax.sql Package 458

Passed To: RowSetReader.readData(), RowSetWriter.writeData()

RowSetListener JDBC 2.0 Extension

javax.sql event listener
Implemented by an object that wishes to be informed of events generated by a RowSet.

public abstract interface RowSetListener extends
java.util.EventListener {

//
Public Instance Methods
public abstract void cursorMoved (RowSetEvent event

);public abstract void rowChanged (RowSetEvent event
);public abstract void rowSetChanged (RowSetEvent event

);
}
Hierarchy: (RowSetListener(java.util.EventListener))

Passed To: RowSet.{addRowSetListener(), removeRowSetListener()}

RowSetMetaData JDBC 2.0 Extension

javax.sql
Extends java.sql.ResultSetMetaData to support the functionality of RowSet objects.

public abstract interface RowSetMetaData extends java.sql.ResultSetMetaData {

//
Public Instance Methodspublic abstract void setAutoIncrement (int columnIndex, boolean property) throws

java.sql.SQLException;public abstract void setCaseSensitive (int columnIndex, boolean property

) throws java.sql.SQLException;public abstract void setCatalogName (int columnIndex, String catalogName) throws

java.sql.SQLException;public abstract void setColumnCount (int columnCount
) throws java.sql.SQLException;public abstract void setColumnDisplaySize (int columnIndex, int size

) throws java.sql.SQLException;public abstract void setColumnLabel (int columnIndex, String label

) throws java.sql.SQLException;public abstract void setColumnName (int columnIndex, String columnName) throws

java.sql.SQLException;public abstract void setColumnType (int columnIndex, int SQLType

) throws java.sql.SQLException;public abstract void setColumnTypeName (int columnIndex, String typeName) throws

java.sql.SQLException;public abstract void setCurrency (int columnIndex, boolean property
) throws java.sql.SQLException;public abstract void setNullable (int columnIndex, int property

) throws java.sql.SQLException;public abstract void setPrecision (int columnIndex, int precision
) throws java.sql.SQLException;public abstract void setScale (int columnIndex, int scale

) throws java.sql.SQLException;public abstract void setSchemaName (int columnIndex, String schemaName) throws

java.sql.SQLException;public abstract void setSearchable (int columnIndex, boolean property
) throws java.sql.SQLException;public abstract void setSigned (int columnIndex, boolean property

) throws java.sql.SQLException;

Preface (Java Enterprise in a Nutshell)

Chapter 27. The javax.sql Package 459

public abstract void setTableName (int columnIndex, String tableName
) throws java.sql.SQLException;

}
Hierarchy: (RowSetMetaData(java.sql.ResultSetMetaData))

Passed To: RowSetInternal.setMetaData()

RowSetReader JDBC 2.0 Extension

javax.sql
Loads data into a RowSet that implements RowSetInternal. The extensions to ResultSet introduced
in JDBC 2.0 insert data.

public abstract interface RowSetReader {

//
Public Instance Methods
public abstract void readData (RowSetInternal caller

) throws java.sql.SQLException;
}

RowSetWriter JDBC 2.0 Extension

javax.sql
Writes data from a RowSet that implements RowSetInternal. The data from the RowSet can be
written back to a data source (not necessarily a database).

public abstract interface RowSetWriter {

//
Public Instance Methods
public abstract boolean writeData (RowSetInternal caller

) throws java.sql.SQLException;
}

XAConnection JDBC 2.0 Extension

javax.sql
An extended version of PooledConnection that can be used in a distributed transaction environment,
using the Java Transaction API (in the javax.transaction package).

public abstract interface XAConnection extends PooledConnection {

//
Public Instance Methods
public abstract javax.transaction.xa.XAResource getXAResource

 () throws java.sql.SQLException;
}
Hierarchy: (XAConnection(PooledConnection))

Returned By: XADataSource.getXAConnection()

XADataSource JDBC 2.0 Extension

javax.sql
A factory for XAConnection objects.

Preface (Java Enterprise in a Nutshell)

Chapter 27. The javax.sql Package 460

public abstract interface XADataSource {

//
Public Instance Methods
public abstract int getLoginTimeout

 () throws java.sql.SQLException;public abstract PrintWriter getLogWriter
 () throws java.sql.SQLException;public abstract javax.sql.XAConnection getXAConnection

 () throws java.sql.SQLException;public abstract javax.sql.XAConnection getXAConnection (String user, String password) throws

java.sql.SQLException;public abstract void setLoginTimeout (int seconds
) throws java.sql.SQLException;public abstract void setLogWriter (PrintWriter out
) throws java.sql.SQLException;

}

26.1. The javax.servlet.http
Package

28. The javax.transaction
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 27. The javax.sql Package 461

Chapter 28. The javax.transaction Package
The javax.transaction package is the main package in the Java Transaction API (JTA). The JTA
defines the interfaces needed to interact with a transaction manager. A transaction manager sits in between an
application and some shared resource, such as a relational database or a messaging service, and ensures that
transactional interactions between the two are handled correctly. An application server interacts directly with
the transaction manager on behalf of client applications. An application server uses the
TransactionManager interface and Transaction objects, while a client application acquires
UserTransaction objects through the application server. Figure 28−1 shows the class hierarchy for the
javax.transaction package.

Figure 28−1. The javax.transaction package

HeuristicCommitException JTA 1.0

javax.transaction serializable checked
Thrown when an attempt is made to roll back a resource whose updates have been committed due to a
heuristic decision (e.g., a resource lost contact with the transaction manager and decided to commit after one
phase of a two−phase commit).

public class HeuristicCommitException extends
Exception {

//
Public Constructors
public HeuristicCommitException

 ();public HeuristicCommitException (String msg
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>HeuristicCommitException

Chapter 28. The javax.transaction Package 462

HeuristicMixedException JTA 1.0

javax.transaction serializable checked
Thrown by the commit() methods on Transaction and UserTransaction to indicate that some
updates were rolled back due to a heuristic decision (e.g., some resources involved in a transaction lost contact
with the transaction manager and decided to rollback, but some others had already committed).

public class HeuristicMixedException extends
Exception {

//
Public Constructors
public HeuristicMixedException

 ();public HeuristicMixedException (String msg
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>HeuristicMixedException

Thrown By: Transaction.commit(), TransactionManager.commit(),
UserTransaction.commit()

HeuristicRollbackException JTA 1.0

javax.transaction serializable checked
Thrown by the commit() methods on Transaction and UserTransaction to indicate that the
transaction has been rolled back due to a heuristic decision (e.g., the resource lost contact with the transaction
manager and decided to abort the transaction).

public class HeuristicRollbackException extends
Exception {

//
Public Constructors
public HeuristicRollbackException

 ();public HeuristicRollbackException (String msg
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>HeuristicRollbackException

Thrown By: Transaction.commit(), TransactionManager.commit(),
UserTransaction.commit()

InvalidTransactionException JTA 1.0

javax.transaction serializable checked
Thrown when an attempt is made to operate on a transaction that is in an invalid state.

public class InvalidTransactionException extends
java.rmi.RemoteException {

// Public Constructors

Preface (Java Enterprise in a Nutshell)

Chapter 28. The javax.transaction Package 463

public InvalidTransactionException
 ();public InvalidTransactionException (String msg

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>java.rmi.RemoteException−−>InvalidTransactionException

Thrown By: TransactionManager.resume()

NotSupportedException JTA 1.0

javax.transaction serializable checked
Thrown when a request is made for an unsupported operation. Typically thrown by the transaction manager
when an attempt is made to create a nested exception and these are not supported by the transaction manager.

public class NotSupportedException extends
Exception {

//
Public Constructors
public NotSupportedException

 ();public NotSupportedException (String msg
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>NotSupportedException

Thrown By: TransactionManager.begin(), UserTransaction.begin()

RollbackException JTA 1.0

javax.transaction serializable checked
Thrown when an invalid operation is requested on a transaction that has either rolled back or been marked for
rollback−only (e.g., calling TransactionManager.enlistResource() on such a transaction).

public class RollbackException extends
Exception {

//
Public Constructors
public RollbackException

 ();public RollbackException (String msg
);

}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>RollbackException

Thrown By: Transaction.{commit(), enlistResource(),
registerSynchronization()}, TransactionManager.commit(),
UserTransaction.commit()

Status JTA 1.0

javax.transaction

Preface (Java Enterprise in a Nutshell)

Chapter 28. The javax.transaction Package 464

This interface simply serves to hold static integer status codes for transactions. The
Transaction.getStatus() method can query the status of a transaction, and these codes indicate the
meaning of the returned value.

public abstract interface Status {

//
Public Constants
public static final int STATUS_ACTIVE ;

=0
public static final int STATUS_COMMITTED ;

=3
public static final int STATUS_COMMITTING ;

=8
public static final int STATUS_MARKED_ROLLBACK ;

=1
public static final int STATUS_NO_TRANSACTION ;

=6
public static final int STATUS_PREPARED ;

=2
public static final int STATUS_PREPARING ;

=7
public static final int STATUS_ROLLEDBACK ;

=4
public static final int STATUS_ROLLING_BACK ;

=9
public static final int STATUS_UNKNOWN ; =5

}

Synchronization JTA 1.0

javax.transaction
A Synchronization object gets notification of the end of a transaction. The Synchronization
interface must be implemented by a concrete application class, which can then request callbacks from the
transaction manager. The Synchronization object is registered with an active transaction by calling the
Transaction.registerSynchronization() method, passing in the Synchronization object.
An exception is thrown if the transaction is not active or has already been marked for rollback. Before the
transaction manager starts the commit on the transaction, it calls the beforeCompletion() method on
any registered Synchronization objects. After the transaction completes, the transaction manager calls
the afterCompletion() method.

public abstract interface Synchronization {

//
Public Instance Methods
public abstract void afterCompletion (int status

);public abstract void beforeCompletion
 ();

}
Passed To: Transaction.registerSynchronization()

SystemException JTA 1.0

javax.transaction serializable checked
Thrown by the transaction manager when a significant error occurs that effectively disables the manager.

public class SystemException extends
Exception {

//
Public Constructors
public SystemException

 ();public SystemException (String s
);

Preface (Java Enterprise in a Nutshell)

Chapter 28. The javax.transaction Package 465

public SystemException (int errcode
);

//
Public Instance Fields
public int errorCode

 ;
}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>SystemException

Thrown By: Transaction.{commit(), delistResource(), enlistResource(),
getStatus(), registerSynchronization(), rollback(), setRollbackOnly()},
TransactionManager.{begin(), commit(), getStatus(), getTransaction(),
resume(), rollback(), setRollbackOnly(), setTransactionTimeout(),
suspend()}, UserTransaction.{begin(), commit(), getStatus(), rollback(),
setRollbackOnly(), setTransactionTimeout()}

Transaction JTA 1.0

javax.transaction
A Transaction represents a global transaction managed by the transaction manager. When the
TransactionManager interface is used directly (e.g., by an application server) to create and control
transactions, Transaction objects represent the transactions created. The
TransactionManager.getTransaction() method gets the transaction associated with the current
thread. With the Transaction object, the caller can commit() or rollback() the Transaction,
enlist or remove resources from the transaction, and get the status of the Transaction. The
setRollbackOnly() method flags the Transaction so that it can be only rolled back, not committed.
The registerSynchronization() method registers a Synchronization callback object with the
Transaction.

public abstract interface Transaction {

//
Public Instance Methodspublic abstract void commit () throws RollbackException, HeuristicMixedException,

HeuristicRollbackException, SecurityException, javax.transaction.SystemException;
public abstract boolean delistResource (javax.transaction.xa.XAResource xaRes, int flag) throws

java.lang.IllegalStateException, javax.transaction.SystemException;
public abstract boolean enlistResource (javax.transaction.xa.XAResource xaRes) throws

RollbackException, java.lang.IllegalStateException, javax.transaction.SystemException;public abstract int getStatus

 () throws javax.transaction.SystemException;public abstract void registerSynchronization (Synchronization sync) throws RollbackException,

java.lang.IllegalStateException, javax.transaction.SystemException;
public abstract void rollback () throws java.lang.IllegalStateException,

javax.transaction.SystemException;
public abstract void setRollbackOnly () throws java.lang.IllegalStateException,

javax.transaction.SystemException;}
Passed To: TransactionManager.resume()

Returned By: TransactionManager.{getTransaction(), suspend()}

TransactionManager JTA 1.0

Preface (Java Enterprise in a Nutshell)

Chapter 28. The javax.transaction Package 466

javax.transaction
The TransactionManager interface is used by a transactional application server, such as an EJB server,
to create and manage transactions on behalf of client applications. The application server can use the
TransactionManager interface to create new transactions for the current thread, suspend and resume the
current transaction, and commit or rollback the transaction. The setTransactionTimeout() method
sets the timeout (in seconds) for any subsequent transactions started through the TransactionManager.

public abstract interface TransactionManager {

//
Public Instance Methods
public abstract void begin

 () throws NotSupportedException, javax.transaction.SystemException;
public abstract void commit () throws RollbackException, HeuristicMixedException,
HeuristicRollbackException, SecurityException, java.lang.IllegalStateException,

javax.transaction.SystemException;
public abstract int getStatus

 () throws javax.transaction.SystemException;public abstract Transaction getTransaction

 () throws javax.transaction.SystemException;public abstract void resume (Transaction tobj) throws InvalidTransactionException,

java.lang.IllegalStateException, javax.transaction.SystemException;
public abstract void rollback () throws java.lang.IllegalStateException, SecurityException,

javax.transaction.SystemException;
public abstract void setRollbackOnly () throws java.lang.IllegalStateException,

javax.transaction.SystemException;public abstract void setTransactionTimeout (int seconds
) throws javax.transaction.SystemException;public abstract Transaction suspend

 () throws javax.transaction.SystemException;
}

TransactionRequiredException JTA 1.0

javax.transaction serializable checked
Thrown when a transaction−related operation is requested, but there is no active transaction.

public class TransactionRequiredException extends
java.rmi.RemoteException {

//
Public Constructors
public TransactionRequiredException

 ();public TransactionRequiredException (String msg
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>java.rmi.RemoteException−−>TransactionRequiredException

TransactionRolledbackException JTA 1.0

javax.transaction serializable checked
Thrown when an operation requested on a particular transaction is irrelevant because the transaction has been
rolled back.

public class TransactionRolledbackException extends
java.rmi.RemoteException {

Preface (Java Enterprise in a Nutshell)

Chapter 28. The javax.transaction Package 467

//
Public Constructors
public TransactionRolledbackException

 ();public TransactionRolledbackException (String msg
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>IOException−−>java.rmi.RemoteException−−>TransactionRolledbackException

UserTransaction JTA 1.0

javax.transaction
UserTransaction is the interface used by client applications to manage transactions. Typically, a
transactional application server publishes a UserTransaction through JNDI, so a client gets a reference
to the UserTransaction using a lookup on the JNDI Context. The client can use the
UserTransaction to begin() a new transaction in the current thread. If there is already an active
transaction in the current thread and the transaction manager does not support nested transactions, a
NotSupportedException is thrown. The client can either commit() or rollback() the current
transaction when it is complete. The setRollbackOnly() method flags the current transaction so that it
can be only rolled back. The setTransactionTimeout() method sets the timeout, in seconds, of any
subsequent transactions started through the transaction manager.

public abstract interface UserTransaction {

//
Public Instance Methods
public abstract void begin

 () throws NotSupportedException, javax.transaction.SystemException;
public abstract void commit () throws RollbackException, HeuristicMixedException,
HeuristicRollbackException, SecurityException, java.lang.IllegalStateException,

javax.transaction.SystemException;
public abstract int getStatus

 () throws javax.transaction.SystemException;public abstract void rollback () throws java.lang.IllegalStateException, SecurityException,

javax.transaction.SystemException;
public abstract void setRollbackOnly () throws java.lang.IllegalStateException,

javax.transaction.SystemException;public abstract void setTransactionTimeout (int seconds
) throws javax.transaction.SystemException;

}

27.1. The javax.sql
Package

29. The
javax.transaction.xa

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

Chapter 28. The javax.transaction Package 468

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 28. The javax.transaction Package 469

Chapter 29. The javax.transaction.xa Package
The javax.transaction.xa package represents a Java mapping of certain elements of the X/Open XA
interface specification. The XA interface defines a standard two−way communication protocol between a
transaction manager and a resource manager, such as a relational database, so that they can engage in
distributed transactional processing. These interfaces are used internally by the JTA to implement its
transaction management services. Normally, you shouldn't have to use these interfaces directly in application
code. Figure 29−1 shows the class hierarchy of the package.

Figure 29−1. The javax.transaction.xa package

XAException JTA 1.0

javax.transaction.xa serializable checked
Thrown by a resource manager when an error occurs while handling a request from the transaction manager.
The static error codes allow the transaction manager to determine the cause of the error.

public class XAException extends Exception {

//
Public Constructors
public XAException

 ();public XAException (String s
);public XAException (int errcode

);
//

Public Constants
public static final int XA_HEURCOM ;

=7
public static final int XA_HEURHAZ ;

=8
public static final int XA_HEURMIX ;

=5
public static final int XA_HEURRB ;

=6
public static final int XA_NOMIGRATE ;

=9
public static final int XA_RBBASE ;

=100
public static final int XA_RBCOMMFAIL ;

=101
public static final int XA_RBDEADLOCK ;

=102
public static final int XA_RBEND ;

=107
public static final int XA_RBINTEGRITY ;

=103
public static final int XA_RBOTHER ;

=104
public static final int XA_RBPROTO ;

=105
public static final int XA_RBROLLBACK ;

=100
public static final int XA_RBTIMEOUT ;

=106
public static final int XA_RBTRANSIENT ; =107

Chapter 29. The javax.transaction.xa Package 470

public static final int XA_RDONLY ;
=3

public static final int XA_RETRY ;
=4

public static final int XAER_ASYNC ;
=−2

public static final int XAER_DUPID ;
=−8

public static final int XAER_INVAL ;
=−5

public static final int XAER_NOTA ;
=−4

public static final int XAER_OUTSIDE ;
=−9

public static final int XAER_PROTO ;
=−6

public static final int XAER_RMERR ;
=−3

public static final int XAER_RMFAIL ; =−7

//
Public Instance Fields
public int errorCode

 ;
}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>XAException

Thrown By: XAResource.{commit(), end(), forget(), getTransactionTimeout(),
isSameRM(), prepare(), recover(), rollback(), setTransactionTimeout(),
start()}

XAResource JTA 1.0

javax.transaction.xa
The XAResource interface is implemented by shared resources that want to engage in distributed
transactions. A single resource manager (e.g., a database server or message service) can export multiple
transactional resources (database connections, sessions with a message service), represented as XAResource
objects. The transaction manager uses the XAResource interface to associate a resource with a transaction
using the start() method, to ask the resource to commit() or rollback() any work done while it was
associated with a transaction, and finally to end() the association with a transaction. Other methods on
XAResource manage the association of the resource with the transaction context.

public abstract interface XAResource {

//
Public Constants
public static final int TMENDRSCAN ;

=8388608
public static final int TMFAIL ;

=536870912
public static final int TMJOIN ;

=2097152
public static final int TMNOFLAGS ;

=0
public static final int TMONEPHASE ;

=1073741824
public static final int TMRESUME ;

=134217728
public static final int TMSTARTRSCAN ;

=16777216
public static final int TMSUCCESS ;

=67108864
public static final int TMSUSPEND ;

=33554432
public static final int XA_OK ;

=0
public static final int XA_RDONLY ; =3

//
Public Instance Methods
public abstract void commit (Xid xid, boolean onePhase

) throws XAException;public abstract void end (Xid xid, int flags
) throws XAException;

Preface (Java Enterprise in a Nutshell)

Chapter 29. The javax.transaction.xa Package 471

public abstract void forget (Xid xid
) throws XAException;public abstract int getTransactionTimeout

 () throws XAException;public abstract boolean isSameRM (XAResource xares
) throws XAException;public abstract int prepare (Xid xid

) throws XAException;public abstract Xid[] recover (int flag
) throws XAException;public abstract void rollback (Xid xid
) throws XAException;public abstract boolean setTransactionTimeout (int seconds

) throws XAException;public abstract void start (Xid xid, int flags
) throws XAException;

}
Passed To: Transaction.{delistResource(), enlistResource()},
XAResource.isSameRM()

Returned By: javax.jms.XASession.getXAResource(),
javax.sql.XAConnection.getXAResource()

Xid JTA 1.0

javax.transaction.xa
An Xid is an identifier for a transaction. This interface is used by transaction managers and resource
managers as the representation for transactions. The methods on the interface allow these two entities to query
for specific components of the transaction identifier.

public abstract interface Xid {

//
Public Constants
public static final int MAXBQUALSIZE ;

=64
public static final int MAXGTRIDSIZE ; =64

//
Public Instance Methods
public abstract byte[] getBranchQualifier

 ();public abstract int getFormatId
 ();public abstract byte[] getGlobalTransactionId

 ();
}
Passed To: XAResource.{commit(), end(), forget(), prepare(), rollback(),
start()}

Returned By: XAResource.recover()

28.1. The javax.transaction
Package

30. The org.omg.CORBA
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Preface (Java Enterprise in a Nutshell)

Chapter 29. The javax.transaction.xa Package 472

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 29. The javax.transaction.xa Package 473

Chapter 30. The org.omg.CORBA Package
The org.omg.CORBA package contains the bulk of the Java classes in the Java IDL API. The classes in this
package represent the mapping between Java and the CORBA module defined in IDL in the CORBA
standard. That means this package includes the bulk of the interfaces, constants, etc., that make up CORBA.
Key classes in this package are the ORB class, which is a Java implementation of an ORB, and the Object
interface, which serves as the root class for all CORBA objects. Figure 30−1 shows the hierarchy of interfaces
defined in org.omg.CORBA, Figure 30−2 shows the class hierarchy, and Figure 30−1 shows the exceptions.

Figure 30−1. The interfaces in the org.omg.CORBA package

Chapter 30. The org.omg.CORBA Package 474

Figure 30−2. The classes in the org.omg.CORBA package

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 475

Figure 30−3. The exceptions in the org.omg.CORBA package

Any Java 1.2

org.omg.CORBA serializable
A wrapper for any IDL type, whether user−defined or a basic type. You can access the TypeCode for the
contents of an Any object using the type() methods. Use the extract_XXX() and insert_XXX()
methods to get to the data itself.

An Any object is the value in a NamedValue object. Any objects are used often in the Dynamic Invocation
Interface, to compose arguments to method requests.

public abstract class Any implements org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public Any

 ();
//

Public Instance Methods
public abstract org.omg.CORBA.portable.InputStream create_input_stream

 ();public abstract org.omg.CORBA.portable.OutputStream create_output_stream
 ();

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 476

public abstract boolean equal (Any a
);public abstract Any extract_any

 () throws BAD_OPERATION;public abstract boolean extract_boolean
 () throws BAD_OPERATION;public abstract char extract_char

 () throws BAD_OPERATION;public abstract double extract_double
 () throws BAD_OPERATION;public java.math.BigDecimal extract_fixed

 ();public abstract float extract_float
 () throws BAD_OPERATION;public abstract int extract_long

 () throws BAD_OPERATION;public abstract long extract_longlong
 () throws BAD_OPERATION;public abstract org.omg.CORBA.Object extract_Object

 () throws BAD_OPERATION;public abstract byte extract_octet
 () throws BAD_OPERATION;public abstract short extract_short
 () throws BAD_OPERATION;public abstract String extract_string

 () throws BAD_OPERATION;public abstract TypeCode extract_TypeCode
 () throws BAD_OPERATION;public abstract int extract_ulong

 () throws BAD_OPERATION;public abstract long extract_ulonglong
 () throws BAD_OPERATION;public abstract short extract_ushort

 () throws BAD_OPERATION;public Serializable extract_Value
 () throws BAD_OPERATION;public abstract char extract_wchar
 () throws BAD_OPERATION;public abstract String extract_wstring

 () throws BAD_OPERATION;public abstract void insert_any (Any a
);public abstract void insert_boolean (boolean b

);public abstract void insert_char (char c
) throws DATA_CONVERSION;public abstract void insert_double (double d

);public void insert_fixed (java.math.BigDecimal value
);public void insert_fixed (java.math.BigDecimal value, TypeCode type

);public abstract void insert_float (float f
);public abstract void insert_long (int l

);public abstract void insert_longlong (long l
);public abstract void insert_Object (org.omg.CORBA.Object o

);public abstract void insert_Object (org.omg.CORBA.Object o, TypeCode t
) throws BAD_OPERATION;public abstract void insert_octet (byte b

);public abstract void insert_short (short s
);public abstract void insert_Streamable (org.omg.CORBA.portable.Streamable s

);public abstract void insert_string (String s
) throws DATA_CONVERSION, MARSHAL;public abstract void insert_TypeCode (TypeCode t

);public abstract void insert_ulong (int l
);public abstract void insert_ulonglong (long l

);public abstract void insert_ushort (short s
);public void insert_Value (Serializable v

);public void insert_Value (Serializable v, TypeCode t
) throws MARSHAL;public abstract void insert_wchar (char c

);public abstract void insert_wstring (String s

) throws MARSHAL;public abstract void read_value (org.omg.CORBA.portable.InputStream is, TypeCode t) throws

MARSHAL;

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 477

public abstract TypeCode type
 ();public abstract void type (TypeCode t

);public abstract void write_value (org.omg.CORBA.portable.OutputStream os
);

// Deprecated Public Methods

public abstract org.omg.CORBA.Principal extract_Principal
 () throws BAD_OPERATION;

public abstract void insert_Principal (org.omg.CORBA.Principal p
);

}
Hierarchy: Object−−>Any(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: Too many methods to list.

Returned By: Any.extract_any(), DynAny.{get_any(), to_any()},
DynArray.get_elements(), DynSequence.get_elements(), NamedValue.value(),
ORB.create_any(), Request.{add_in_arg(), add_inout_arg(),
add_named_in_arg(), add_named_inout_arg(), add_named_out_arg(),
add_out_arg(), return_value()}, TypeCode.member_label(),
org.omg.CORBA.portable.InputStream.read_any()

Type Of: AnyHolder.value, NameValuePair.value, UnionMember.label,
UnknownUserException.except

AnyHolder Java 1.2

org.omg.CORBA
The holder class for Any objects. The AnyHolder class is used primarily to wrap out and inout
arguments to methods when composing Dynamic Invocation Interface requests.

public final class AnyHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public AnyHolder

 ();public AnyHolder (Any initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public Any value

 ;
}
Hierarchy: Object−−>AnyHolder(org.omg.CORBA.portable.Streamable)

ARG_IN Java 1.2

org.omg.CORBA
This interface defines a value constant that is used to specify an input method argument when creating a
named value with the ORB.create_named_value() method. The last argument to this method is an
integer flag that indicates the argument mode for the named value as it is used in a dynamic method

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 478

invocation. The integer flag can be either ARG_IN.value, ARG_OUT.value, or ARG_INOUT.value, to
indicate what type of method argument the named value represents. Here's an example that assumes you have
a reference to an ORB named myOrb and an Any object named myAny that holds the argument value:

org.omg.CORBA.NamedValue inArg =
 myOrb.create_named_value("MethodArg1", myAny, org.omg.CORBA.ARG_IN.value);

The inArg named value can now be used in a Dynamic Invocation Interface call to a method that has an in
argument named MethodArg1. See also ARG_INOUT and ARG_OUT.

public abstract interface ARG_IN {

//
Public Constants
public static final int value ; =1

}

ARG_INOUT Java 1.2

org.omg.CORBA
This interface defines a single constant used with the ORB.create_named_value() method. See
ARG_IN for details.

public abstract interface
ARG_INOUT {

//
Public Constants
public static final int value ; =3

}

ARG_OUT Java 1.2

org.omg.CORBA
This interface defines a single constant used with the ORB.create_named_value() method. See
ARG_IN for details.

public abstract interface
ARG_OUT {

//
Public Constants
public static final int value ; =2

}

BAD_CONTEXT Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a context object cannot be processed.

public final class BAD_CONTEXT extends org.omg.CORBA.SystemException
{

//
Public Constructors
public BAD_CONTEXT

 ();public BAD_CONTEXT (String s
);

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 479

public BAD_CONTEXT (int minor, CompletionStatus completed
);public BAD_CONTEXT (String s, int minor, CompletionStatus completed

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>BAD_CONTEXT

BAD_INV_ORDER Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when methods are called out of order. For example, if you call the
arguments() method on a ServerRequest object, then try to reset the arguments by calling the method
again, a BAD_INV_ORDER exception is thrown.

public final class BAD_INV_ORDER extends org.omg.CORBA.SystemException
{

//
Public Constructors
public BAD_INV_ORDER

 ();public BAD_INV_ORDER (String s
);public BAD_INV_ORDER (int minor, CompletionStatus completed

);public BAD_INV_ORDER (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>BAD_INV_ORDER

BAD_OPERATION Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an invalid method is invoked. If, for example, you call an
extract_XXX() method on an Any object for a type it does not contain, a BAD_OPERATION is thrown.

public final class BAD_OPERATION extends org.omg.CORBA.SystemException
{

//
Public Constructors
public BAD_OPERATION

 ();public BAD_OPERATION (String s
);public BAD_OPERATION (int minor, CompletionStatus completed

);public BAD_OPERATION (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>BAD_OPERATION

Thrown By: Any.{extract_any(), extract_boolean(), extract_char(),
extract_double(), extract_float(), extract_long(), extract_longlong(),
extract_Object(), extract_octet(), extract_Principal(), extract_short(),
extract_string(), extract_TypeCode(), extract_ulong(),
extract_ulonglong(), extract_ushort(), extract_Value(), extract_wchar(),
extract_wstring(), insert_Object()}

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 480

BAD_PARAM Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an invalid argument is passed into a remote method. This
exception defines a single error code value for the SystemException.minor data member:

Minor Code Meaning

1 A null value was passed into a remote method.

public final class BAD_PARAM extends org.omg.CORBA.SystemException
{

//
Public Constructors
public BAD_PARAM

 ();public BAD_PARAM (String s
);public BAD_PARAM (int minor, CompletionStatus completed

);public BAD_PARAM (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>BAD_PARAM

Thrown By: CompletionStatus.from_int(), DefinitionKind.from_int(),
SetOverrideType.from_int(), TCKind.from_int(),
org.omg.CosNaming.BindingIteratorHelper.narrow(),
org.omg.CosNaming.BindingType.from_int(),
org.omg.CosNaming.NamingContextHelper.narrow(), NotFoundReason.from_int()

BAD_TYPECODE Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an invalid TypeCode is specified.

public final class BAD_TYPECODE extends org.omg.CORBA.SystemException
{

//
Public Constructors
public BAD_TYPECODE

 ();public BAD_TYPECODE (String s
);public BAD_TYPECODE (int minor, CompletionStatus completed

);public BAD_TYPECODE (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>BAD_TYPECODE

BooleanHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java boolean values.

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 481

public final class BooleanHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public BooleanHolder

 ();public BooleanHolder (boolean initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public boolean value

 ;
}
Hierarchy: Object−−>BooleanHolder(org.omg.CORBA.portable.Streamable)

Bounds Java 1.2

org.omg.CORBA serializable checked
An exception thrown when a value that falls out of the valid bounds is passed into a method (e.g., when an
index passed into a list object is greater than the size of the list).

public final class Bounds extends
UserException {

//
Public Constructors
public Bounds

 ();public Bounds (String reason
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>org.omg.CORBA.Bounds

Thrown By: ContextList.{item(), remove()}, ExceptionList.{item(), remove()},
NVList.{item(), remove()}, TypeCode.member_visibility()

ByteHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java byte values.

public final class ByteHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public ByteHolder

 ();public ByteHolder (byte initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 482

//
Public Instance Fields
public byte value

 ;
}
Hierarchy: Object−−>ByteHolder(org.omg.CORBA.portable.Streamable)

CharHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java char values.

public final class CharHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public CharHolder

 ();public CharHolder (char initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public char value

 ;
}
Hierarchy: Object−−>CharHolder(org.omg.CORBA.portable.Streamable)

COMM_FAILURE Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a communications failure occurs during a remote operation.
Sun's Java IDL defines the following minor error code values for this exception, stored in the minor data
member inherited from SystemException:

Minor Code Meaning

1 Unable to connect to the required remote ORB.

2
A write to a socket failed, either because the socket has been closed by the remote peer or
because the socket connection has been aborted.

3 A write to a socket failed because the connection was closed on this side of the socket.

6 Multiple attempts to connect to the remote server have failed.

public final class COMM_FAILURE extends org.omg.CORBA.SystemException
{

//
Public Constructors
public COMM_FAILURE

 ();public COMM_FAILURE (String s
);public COMM_FAILURE (int minor, CompletionStatus completed

);public COMM_FAILURE (String s, int minor, CompletionStatus completed
);

}

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 483

Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>COMM_FAILURE

CompletionStatus Java 1.2

org.omg.CORBA serializable
When an org.omg.CORBA.SystemException is thrown, it contains a CompletionStatus object
that indicates whether the method invocation was completed before the exception was encountered.
CompletionStatus has three static instances, COMPLETED_YES, COMPLETED_MAYBE, and
COMPLETED_NO, and three static int members, _COMPLETED_YES, _COMPLETED_MAYBE and
_COMPLETED_NO. When you receive a CompletionStatus, you can either compare it to one of the
static instances or compare its value (queried using the value() method) to one of the static int values.

public class CompletionStatus implements
org.omg.CORBA.portable.IDLEntity {

//
Protected Constructors
protected CompletionStatus (int _value

);
//

Public Constants
public static final int _COMPLETED_MAYBE ;

=2
public static final int _COMPLETED_NO ;

=1
public static final int _COMPLETED_YES ;

=0
public static final CompletionStatus COMPLETED_MAYBE

 ;public static final CompletionStatus COMPLETED_NO
 ;public static final CompletionStatus COMPLETED_YES
 ;

//
Public Class Methods
public static CompletionStatus from_int (int i

) throws BAD_PARAM;
//

Public Instance Methods
public int value

 ();
}
Hierarchy:
Object−−>CompletionStatus(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: Too many methods to list.

Returned By: CompletionStatus.from_int()

Type Of: CompletionStatus.{COMPLETED_MAYBE, COMPLETED_NO, COMPLETED_YES},
org.omg.CORBA.SystemException.completed

Context Java 1.2

org.omg.CORBA
A Context object contains a list of properties, stored as NamedValue objects, that is passed along with a
method request to indicate properties of the client context. Every ORB has a default context, accessed using
the ORB.get_default_context() method. Contexts can be linked in a hierarchy of contexts. If a
search for a property is made on a Context object, and the search within the object fails, the search is
continued in the parent Context, and so on until the root context is reached. You can create a new child of a
Context using its create_child() method. Other methods on the Context class let you get, set, and

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 484

delete values from the Context.

public abstract class Context {

//
Public Constructors
public Context

 ();
//

Public Instance Methods
public abstract String context_name

 ();public abstract org.omg.CORBA.Context create_child (String child_ctx_name
);public abstract void delete_values (String propname

);public abstract NVList get_values (String start_scope, int op_flags, String pattern
);public abstract org.omg.CORBA.Context parent

 ();public abstract void set_one_value (String propname, Any propvalue
);public abstract void set_values (NVList values

);
}
Passed To: org.omg.CORBA.Object._create_request(), Request.ctx(),
org.omg.CORBA.portable.Delegate.create_request(),
org.omg.CORBA.portable.ObjectImpl._create_request(),
org.omg.CORBA.portable.OutputStream.write_Context()

Returned By: org.omg.CORBA.Context.{create_child(), parent()},
ORB.get_default_context(), Request.ctx(), ServerRequest.ctx(),
org.omg.CORBA.portable.InputStream.read_Context()

ContextList Java 1.2

org.omg.CORBA
A ContextList is a list of context property names only (i.e., a list of String objects). A
ContextList along with an NVList that contains NamedValue objects represents the relevant subset of
a Context that is passed along with a remote method call.

public abstract class ContextList {

//
Public Constructors
public ContextList

 ();
//

Public Instance Methods
public abstract void add (String ctx

);public abstract int count
 ();public abstract String item (int index

) throws org.omg.CORBA.Bounds;public abstract void remove (int index
) throws org.omg.CORBA.Bounds;

}
Passed To: org.omg.CORBA.Object._create_request(),
org.omg.CORBA.portable.Delegate.create_request(),
org.omg.CORBA.portable.ObjectImpl._create_request(),
org.omg.CORBA.portable.OutputStream.write_Context()

Returned By: ORB.create_context_list(), Request.contexts()

CTX_RESTRICT_SCOPE Java 1.2

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 485

org.omg.CORBA
This interface contains a static value member that can be used as a flag to the search routine accessible
through the Context.get_values() method. Using CTX_RESTRICT_SCOPE.value as the flag to
this method indicates that the search for context values should be restricted to the scope specified in the first
method argument, or to the context object that invokes the method, if the scope is null. For example, this
call to the search method:

Context ctx = ... // get context somehow
NVList myVals = ctx.get_values(null, org.omg.CORBA.CTX_RESTRICT_SCOPE.value, "username");

searches the context represented by the context object for values named "username".

public abstract interface
CTX_RESTRICT_SCOPE {

//
Public Constants
public static final int value ; =15

}

Current Java 1.2

org.omg.CORBA
The Current interface represents an optional feature provided by CORBA that allows the ORB and
CORBA services to export information about the thread in which they are running. Sun's Java IDL does not
use this feature. If an ORB or service provider decides to provide this information, it should create a concrete
subclass of this interface and make it available through the ORB's resolve_initial_references()
method.

public abstract interface
Current extends
org.omg.CORBA.Object {

}
Hierarchy: (Current(org.omg.CORBA.Object))

Returned By: ORB.get_current()

DATA_CONVERSION Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when the ORB fails to convert some piece of data, such as during the
conversion of a stringified object reference. Sun's Java IDL defines the following minor error code values for
this exception, stored in the minor data member inherited from SystemException:

Minor Code Meaning

1
A bad hexadecimal character was found while converting a stringified object reference back to
an object reference.

2 The byte length of a stringified object reference is odd, when it must be even.

3
The "IOR:" preface is missing from the stringified object reference passed into
string_to_object().

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 486

4
The resolve_initial_references() method failed because the location (host and port
number) of the remote ORB specified is invalid or unspecified, or the remote server doesn't
support the Java IDL bootstrap protocol.

public final class DATA_CONVERSION extends org.omg.CORBA.SystemException
{

//
Public Constructors
public DATA_CONVERSION

 ();public DATA_CONVERSION (String s
);public DATA_CONVERSION (int minor, CompletionStatus completed

);public DATA_CONVERSION (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>DATA_CONVERSION

Thrown By: Any.{insert_char(), insert_string()}

DefinitionKind Java 1.2

org.omg.CORBA serializable
Used by an IRObject to indicate what type of repository object it represents (e.g., method, attribute). To
determine the type of an IRObject, either compare the value member of DefinitionKind to the static
int members of this class or compare the DefinitionKind object itself to the static instances defined in
this class.

public class DefinitionKind implements
org.omg.CORBA.portable.IDLEntity {

//
Protected Constructors
protected DefinitionKind (int _value

);
//

Public Constants
public static final int _dk_Alias ;

=9
public static final int _dk_all ;

=1
public static final int _dk_Array ;

=16
public static final int _dk_Attribute ;

=2
public static final int _dk_Constant ;

=3
public static final int _dk_Enum ;

=12
public static final int _dk_Exception ;

=4
public static final int _dk_Fixed ;

=19
public static final int _dk_Interface ;

=5
public static final int _dk_Module ;

=6
public static final int _dk_Native ;

=23
public static final int _dk_none ;

=0
public static final int _dk_Operation ;

=7
public static final int _dk_Primitive ;

=13
public static final int _dk_Repository ;

=17
public static final int _dk_Sequence ;

=15
public static final int _dk_String ; =14

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 487

public static final int _dk_Struct ;
=10

public static final int _dk_Typedef ;
=8

public static final int _dk_Union ;
=11

public static final int _dk_Value ;
=20

public static final int _dk_ValueBox ;
=21

public static final int _dk_ValueMember ;
=22

public static final int _dk_Wstring ;
=18

public static final DefinitionKind dk_Alias
 ;public static final DefinitionKind dk_all

 ;public static final DefinitionKind dk_Array
 ;public static final DefinitionKind dk_Attribute

 ;public static final DefinitionKind dk_Constant
 ;public static final DefinitionKind dk_Enum

 ;public static final DefinitionKind dk_Exception
 ;public static final DefinitionKind dk_Fixed

 ;public static final DefinitionKind dk_Interface
 ;public static final DefinitionKind dk_Module

 ;public static final DefinitionKind dk_Native
 ;public static final DefinitionKind dk_none

 ;public static final DefinitionKind dk_Operation
 ;public static final DefinitionKind dk_Primitive

 ;public static final DefinitionKind dk_Repository
 ;public static final DefinitionKind dk_Sequence

 ;public static final DefinitionKind dk_String
 ;public static final DefinitionKind dk_Struct
 ;public static final DefinitionKind dk_Typedef

 ;public static final DefinitionKind dk_Union
 ;public static final DefinitionKind dk_Value
 ;public static final DefinitionKind dk_ValueBox

 ;public static final DefinitionKind dk_ValueMember
 ;public static final DefinitionKind dk_Wstring

 ;
//

Public Class Methods
public static DefinitionKind from_int (int i

) throws BAD_PARAM;
//

Public Instance Methods
public int value

 ();
}
Hierarchy:
Object−−>DefinitionKind(org.omg.CORBA.portable.IDLEntity(Serializable))

Returned By: DefinitionKind.from_int(), IRObject.def_kind()

Type Of: DefinitionKind.{dk_Alias, dk_all, dk_Array, dk_Attribute,
dk_Constant, dk_Enum, dk_Exception, dk_Fixed, dk_Interface, dk_Module,
dk_Native, dk_none, dk_Operation, dk_Primitive, dk_Repository,
dk_Sequence, dk_String, dk_Struct, dk_Typedef, dk_Union, dk_Value,
dk_ValueBox, dk_ValueMember, dk_Wstring}

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 488

DomainManager Java 1.2

org.omg.CORBA
The DomainManager interface represents an object that manages a group of objects (a domain) under a
common set of access policies. A set of policies control access to certain operations over the objects in a given
domain. You can access the DomainManager for an org.omg.CORBA.Object by using its
_get_domain_managers() method, which returns an array of DomainManager objects, one for each
domain of the Object. DomainManagerobjects can be hierarchical, in that a domain can contain other
DomainManager objects. Since the DomainManager is an Object, you can use its
_get_domain_managers() method to traverse the manager hierarchy.

DomainManager defines a single method, get_domain_policy(), that allows you to get the policy of
a given type for the objects in the domain. The policy is represented by a Policy object. The type of policy
is indicated with an integer identifier, where the possible values are application−specific. The CORBA
Security service, for example, defines its own set of policy types. If the policy type you pass into
get_domain_policy() is not supported by the ORB, or if the domain doesn't define that type of policy,
an BAD_PARAM system exception is thrown.

The DomainManager interface, and the corresponding methods on the org.omg.CORBA.Object
interface, are really just a placeholder for future support for object domains in the CORBA standard. There are
currently no interfaces defined for adding objects and policies to domains, for example. The OMG intends to
provide this in a management facility specification in the future.

public abstract interface DomainManager extends org.omg.CORBA.Object {

//
Public Instance Methods
public abstract org.omg.CORBA.Policy get_domain_policy (int policy_type

);
}
Hierarchy: (DomainManager(org.omg.CORBA.Object))

Returned By: org.omg.CORBA.Object._get_domain_managers(),
org.omg.CORBA.portable.Delegate.get_domain_managers(),
org.omg.CORBA.portable.ObjectImpl._get_domain_managers()

DoubleHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java double values.

public final class DoubleHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public DoubleHolder

 ();public DoubleHolder (double initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
// Public Instance Fields

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 489

public double value
 ;

}
Hierarchy: Object−−>DoubleHolder(org.omg.CORBA.portable.Streamable)

DynamicImplementation Java 1.2

org.omg.CORBA
The abstract base class for servant object implementations in the Dynamic Skeleton Interface. Derived
servant classes must implement the invoke() method, which is called by the ORB to handle requests on the
object represented by the servant.

public abstract class DynamicImplementation extends
org.omg.CORBA.portable.ObjectImpl {

//
Public Constructors
public DynamicImplementation

 ();
//

Public Instance Methods
public abstract void invoke (ServerRequest request

);
}
Hierarchy:
Object−−>org.omg.CORBA.portable.ObjectImpl(org.omg.CORBA.Object)−−>DynamicImplementation

Subclasses: org.omg.CosNaming._BindingIteratorImplBase,
org.omg.CosNaming._NamingContextImplBase

DynAny Java 1.2

org.omg.CORBA
The DynAny interface forms the core of CORBA's facility for the dynamic introspection of Any values for
which the implementation class is not available. This facility has similar goals as Java's built−in introspection
facilities, but CORBA provides it as IDL interfaces so that it can be used no matter what implementation
language is chosen. The CORBA facility allows services and objects to determine the type and contents of a
value passed into a method, without having access to its implementation interface. The service or object can
wrap an incoming Any value with DynAny to probe its properties and structure.

DynAny objects should not be exported outside the processes in which they are created. If you attempt to
create a stringified reference to a DynAny object using the ORB.object_to_string() method, a
MARSHAL exception is thrown.

The DynAny interface provides a series of get_XXX() and insert_XXX() methods that can be used to
access or modify the contents of the Any value if it is an IDL basic type. The TypeCode for the contents can
also be accessed, using the type() method. If the Any value holds a complex data type, such as a struct, the
next(), seek(), rewind(), and current_component() methods on the DynAny interface can
iterate through the data members of the contents.

There are various subtypes of DynAny that provide access to the components of specific IDL complex types,
such as structs, enums, and unions. These subtypes and basic DynAny objects can be created using the
create_dyn_XXX() methods available on the ORB interface.

public abstract interface DynAny extends org.omg.CORBA.Object {

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 490

//
Public Instance Methods
public abstract void assign (DynAny dyn_any

) throws org.omg.CORBA.DynAnyPackage.Invalid;public abstract DynAny copy
 ();public abstract DynAny current_component

 ();public abstract void destroy
 ();public abstract void from_any (Any value

) throws org.omg.CORBA.DynAnyPackage.Invalid;public abstract Any get_any
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract boolean get_boolean

 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract char get_char
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract double get_double

 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract float get_float
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract int get_long

 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract long get_longlong
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract byte get_octet

 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract org.omg.CORBA.Object get_reference () throws

org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract short get_short
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract String get_string

 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract TypeCode get_typecode
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract int get_ulong

 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract long get_ulonglong
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract short get_ushort

 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract Serializable get_val
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract char get_wchar

 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract String get_wstring
 () throws org.omg.CORBA.DynAnyPackage.TypeMismatch;public abstract void insert_any (Any value

) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_boolean (boolean value) throws

org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_char (char value

) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_double (double value) throws

org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_float (float value
) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_long (int value

) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_longlong (long value) throws

org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_octet (byte value

) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_reference (org.omg.CORBA.Object value) throws

org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_short (short value
) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_string (String value

) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_typecode (TypeCode value) throws

org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_ulong (int value

) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_ulonglong (long value) throws

org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_ushort (short value
) throws org.omg.CORBA.DynAnyPackage.InvalidValue;

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 491

public abstract void insert_val (Serializable value) throws

org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_wchar (char value

) throws org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract void insert_wstring (String value) throws

org.omg.CORBA.DynAnyPackage.InvalidValue;public abstract boolean next
 ();public abstract void rewind
 ();public abstract boolean seek (int index

);public abstract Any to_any
 () throws org.omg.CORBA.DynAnyPackage.Invalid;public abstract TypeCode type

 ();
}
Hierarchy: (DynAny(org.omg.CORBA.Object))

Implementations: DynArray, DynEnum, DynFixed, DynSequence, DynStruct,
DynUnion, DynValue

Passed To: DynAny.assign()

Returned By: DynAny.{copy(), current_component()}, DynUnion.{discriminator(),
member()}, ORB.{create_basic_dyn_any(), create_dyn_any()}

DynArray Java 1.2

org.omg.CORBA
A DynAny object associated with an array. The get_elements() and set_elements() methods
allow for access to the elements of the array, as Any values.

public abstract interface DynArray extends org.omg.CORBA.Object, DynAny {

//
Public Instance Methods
public abstract Any[] get_elements

 ();public abstract void set_elements (Any[] value
) throws org.omg.CORBA.DynAnyPackage.InvalidSeq;

}
Hierarchy: (DynArray(org.omg.CORBA.Object,DynAny(org.omg.CORBA.Object)))

Returned By: ORB.create_dyn_array()

DynEnum Java 1.2

org.omg.CORBA
A DynAny object associated with the Java mapping of an IDL enum type. The methods on the interface
allow you to access the value of the enumerated type as either a String or an int.

public abstract interface DynEnum extends
org.omg.CORBA.Object, DynAny {

//
Public Instance Methods
public abstract String value_as_string

 ();public abstract void value_as_string (String arg
);

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 492

public abstract int value_as_ulong
 ();public abstract void value_as_ulong (int arg

);
}
Hierarchy: (DynEnum(org.omg.CORBA.Object,DynAny(org.omg.CORBA.Object)))

Returned By: ORB.create_dyn_enum()

DynFixed Java 1.2

org.omg.CORBA
A DynAny object associated with the Java mapping of an IDL fixed type.

public abstract interface DynFixed extends org.omg.CORBA.Object, DynAny {

//
Public Instance Methods
public abstract byte[] get_value

 ();public abstract void set_value (byte[] val
) throws org.omg.CORBA.DynAnyPackage.InvalidValue;

}
Hierarchy: (DynFixed(org.omg.CORBA.Object,DynAny(org.omg.CORBA.Object)))

DynSequence Java 1.2

org.omg.CORBA
A DynAny object associated with the Java mapping of an IDL sequence type.

public abstract interface DynSequence extends org.omg.CORBA.Object, DynAny {

//
Public Instance Methods
public abstract Any[] get_elements

 ();public abstract int length
 ();public abstract void length (int arg

);public abstract void set_elements (Any[] value
) throws org.omg.CORBA.DynAnyPackage.InvalidSeq;

}
Hierarchy: (DynSequence(org.omg.CORBA.Object,DynAny(org.omg.CORBA.Object)))

Returned By: ORB.create_dyn_sequence()

DynStruct Java 1.2

org.omg.CORBA
A DynAny object associated with the Java mapping of an IDL struct type. In addition to the DynAny
methods that allow you to traverse the components of the struct, the DynStruct interface provides
methods that allow you to access an array of all of the members of the struct and to access their names
within the struct.

public abstract interface DynStruct extends org.omg.CORBA.Object, DynAny {

// Public Instance Methods

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 493

public abstract TCKind current_member_kind
 ();public abstract String current_member_name

 ();public abstract NameValuePair[] get_members

 ();public abstract void set_members (NameValuePair[] value) throws

org.omg.CORBA.DynAnyPackage.InvalidSeq;}
Hierarchy: (DynStruct(org.omg.CORBA.Object,DynAny(org.omg.CORBA.Object)))

Returned By: ORB.create_dyn_struct()

DynUnion Java 1.2

org.omg.CORBA
A DynAny object associated with the Java mapping of an IDL union type. Methods on the interface allow
you to access the discriminator value of the union and the current member of the union, as a DynAny object.

public abstract interface DynUnion extends
org.omg.CORBA.Object, DynAny {

//
Public Instance Methods
public abstract DynAny discriminator

 ();public abstract TCKind discriminator_kind
 ();public abstract DynAny member

 ();public abstract TCKind member_kind
 ();public abstract String member_name

 ();public abstract void member_name (String arg
);public abstract boolean set_as_default

 ();public abstract void set_as_default (boolean arg
);

}
Hierarchy: (DynUnion(org.omg.CORBA.Object,DynAny(org.omg.CORBA.Object)))

Returned By: ORB.create_dyn_union()

DynValue Java 1.2

org.omg.CORBA
A DynAny object associated with a value being passed using the proposed Objects−by−Value extension to
CORBA. This extension to CORBA allows arguments to be passed by value, rather than strictly be reference,
as they are in the core CORBA standard. Sun's implementation of the Java IDL binding does not yet
implement the Objects−by−Value extension, but the relevant interfaces are included in the API.

public abstract interface DynValue extends org.omg.CORBA.Object, DynAny {

//
Public Instance Methods
public abstract TCKind current_member_kind

 ();public abstract String current_member_name
 ();public abstract NameValuePair[] get_members
 ();

public abstract void set_members (NameValuePair[] value) throws

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 494

org.omg.CORBA.DynAnyPackage.InvalidSeq;

}
Hierarchy: (DynValue(org.omg.CORBA.Object,DynAny(org.omg.CORBA.Object)))

Environment Java 1.2

org.omg.CORBA
After a Dynamic Invocation Interface Request has been invoked, any exception it may have thrown can be
accessed by retrieving the Environment from the Request using its env() method. The exception that
was thrown can then be retrieved from the Environment using its exception() method.

public abstract class Environment {

//
Public Constructors
public Environment

 ();
//

Public Instance Methods
public abstract void clear

 ();public abstract Exception exception
 ();public abstract void exception (Exception except

);
}
Returned By: ORB.create_environment(), Request.env()

ExceptionList Java 1.2

org.omg.CORBA
This class represents a list of exceptions that can be thrown by a remote method, in the form of the
TypeCode objects for the corresponding Exception classes. An ExceptionList can be created using
the ORB.create_exception_list() method; the TypeCode for each required exception can be
created using the ORB.create_exception_tc() method. Once completed, the ExceptionList can
create a Dynamic Invocation Interface Request object.

public abstract class ExceptionList {

//
Public Constructors
public ExceptionList

 ();
//

Public Instance Methods
public abstract void add (TypeCode exc

);public abstract int count
 ();public abstract TypeCode item (int index

) throws org.omg.CORBA.Bounds;public abstract void remove (int index
) throws org.omg.CORBA.Bounds;

}
Passed To: org.omg.CORBA.Object._create_request(),
org.omg.CORBA.portable.Delegate.create_request(),
org.omg.CORBA.portable.ObjectImpl._create_request()

Returned By: ORB.create_exception_list(), Request.exceptions()

FixedHolder Java 1.2

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 495

org.omg.CORBA
The holder class for IDL fixed values, which are tentatively mapped to the java.math.BigDecimal
class. A FixedHolder wraps a BigDecimal value.

public final class FixedHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public FixedHolder

 ();public FixedHolder (java.math.BigDecimal initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public java.math.BigDecimal value

 ;
}
Hierarchy: Object−−>FixedHolder(org.omg.CORBA.portable.Streamable)

FloatHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java float values.

public final class FloatHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public FloatHolder

 ();public FloatHolder (float initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public float value

 ;
}
Hierarchy: Object−−>FloatHolder(org.omg.CORBA.portable.Streamable)

FREE_MEM Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an attempt to free memory fails.

public final class FREE_MEM extends org.omg.CORBA.SystemException
{

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 496

//
Public Constructors
public FREE_MEM

 ();public FREE_MEM (String s
);public FREE_MEM (int minor, CompletionStatus completed

);public FREE_MEM (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>FREE_MEM

IDLType Java 1.2

org.omg.CORBA serializable
IDLType is an extension of IRObject that represents IDL basic types in the Interface Repository. It
allows you to query the TypeCode of the type it represents. See the IRObject interface for more details on
the Interface Repository.

public abstract interface IDLType
extends org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity,
IRObject {

//
Public Instance Methods
public abstract TypeCode type

 ();
}
Hierarchy:
(IDLType(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable),IRObject(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable))))

Passed To: StructMember.StructMember(), UnionMember.UnionMember(),
ValueMember.ValueMember()

Type Of: StructMember.type_def, UnionMember.type_def, ValueMember.type_def

IMP_LIMIT Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when some implementation limit has been exceeded.

public final class IMP_LIMIT extends org.omg.CORBA.SystemException
{

//
Public Constructors
public IMP_LIMIT

 ();public IMP_LIMIT (String s
);public IMP_LIMIT (int minor, CompletionStatus completed

);public IMP_LIMIT (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>IMP_LIMIT

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 497

INITIALIZE Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an error occurs while initializing an ORB.

public final class INITIALIZE extends org.omg.CORBA.SystemException
{

//
Public Constructors
public INITIALIZE

 ();public INITIALIZE (String s
);public INITIALIZE (int minor, CompletionStatus completed

);public INITIALIZE (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>INITIALIZE

INTERNAL Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an ORB encounters an internal error. Sun's Java IDL defines the
following minor error code values for this exception, stored in the minor data member inherited from
SystemException:

Minor Code Meaning

3 An IIOP reply message contained a bad status.

6
The repository ID of a user exception had an incorrect length during an unmarshalling
operation.

7
The ORB failed to get the local hostname through the
InetAddress.getLocalHost().getHostName() method.

8
The ORB was unable to create a listener port on its designated port because the port was in use,
the creation of the daemon thread failed, or a security violation occurred.

9 An IIOP locate message contained a bad status.

10 An error was encountered while creating a stringified object reference.

11 An IIOP message contained a bad GIOP v1.0 message type.

14 An error occurred while unmarshalling a user exception.

18 The ORB failed during internal initialization.

public final class INTERNAL extends org.omg.CORBA.SystemException
{

//
Public Constructors
public INTERNAL

 ();public INTERNAL (String s
);public INTERNAL (int minor, CompletionStatus completed

);public INTERNAL (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>INTERNAL

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 498

INTF_REPOS Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an error occurs while attempting to use the interface repository.

public final class INTF_REPOS extends org.omg.CORBA.SystemException
{

//
Public Constructors
public INTF_REPOS

 ();public INTF_REPOS (String s
);public INTF_REPOS (int minor, CompletionStatus completed

);public INTF_REPOS (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>INTF_REPOS

IntHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java int values.

public final class IntHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public IntHolder

 ();public IntHolder (int initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public int value

 ;
}
Hierarchy: Object−−>IntHolder(org.omg.CORBA.portable.Streamable)

INV_FLAG Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an invalid flag is specified in a method call.

public final class INV_FLAG extends org.omg.CORBA.SystemException
{

//
Public Constructors
public INV_FLAG

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 499

public INV_FLAG (String s
);public INV_FLAG (int minor, CompletionStatus completed

);public INV_FLAG (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>INV_FLAG

INV_IDENT Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an invalid identifier is specified.

public final class INV_IDENT extends org.omg.CORBA.SystemException
{

//
Public Constructors
public INV_IDENT

 ();public INV_IDENT (String s
);public INV_IDENT (int minor, CompletionStatus completed

);public INV_IDENT (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>INV_IDENT

INV_OBJREF Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an invalid object reference is used. Sun's Java IDL defines the
following minor error code values for this exception, stored in the minor data member inherited from
SystemException:

Minor Code Meaning

1 A stringified object reference had no profile.

public final class INV_OBJREF extends org.omg.CORBA.SystemException
{

//
Public Constructors
public INV_OBJREF

 ();public INV_OBJREF (String s
);public INV_OBJREF (int minor, CompletionStatus completed

);public INV_OBJREF (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>INV_OBJREF

INV_POLICY Java 1.2

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 500

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an incompatibility between Policy objects is encountered
during a remote method call.

public class INV_POLICY extends org.omg.CORBA.SystemException {

//
Public Constructors
public INV_POLICY

 ();public INV_POLICY (String s
);public INV_POLICY (int minor, CompletionStatus completed

);public INV_POLICY (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>INV_POLICY

INVALID_TRANSACTION Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a transaction error occurs during a remote method call.

public final class INVALID_TRANSACTION extends org.omg.CORBA.SystemException
{

//
Public Constructors
public INVALID_TRANSACTION

 ();public INVALID_TRANSACTION (String s
);public INVALID_TRANSACTION (int minor, CompletionStatus completed

);public INVALID_TRANSACTION (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>INVALID_TRANSACTION

IRObject Java 1.2

org.omg.CORBA serializable
All the informational interfaces used and exported by the Interface Repository derive from the IRObject
interface. The Interface Repository is a component of the ORB that stores definitions of object interfaces.
These interface definitions are used by the ORB at runtime to check the correctness of method requests and to
support Dynamic Invocation Interface requests. They can also be used within development tools, to provide
information about remote interfaces for browsing and linking them. The Interface Repository is analogous to a
table schema in a relational database, in that it describes the type of objects an ORB is supporting. The
Interface Repository uses a set of IDL interfaces (e.g., InterfaceDef, AttributeDef) to represent the
modules, interfaces, attributes, methods, etc., it manages. All of these interfaces derive from the IRObject
interface.

The IRObject has a def_kind() method that indicates the type of definition the object represents
(module, attribute, etc.).

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 501

public abstract interface IRObject extends
org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity {

//
Public Instance Methods
public abstract DefinitionKind def_kind

 ();public abstract void destroy
 ();

}
Hierarchy:
(IRObject(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable)))

Implementations: IDLType

LongHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java long values.

public final class LongHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public LongHolder

 ();public LongHolder (long initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public long value

 ;
}
Hierarchy: Object−−>LongHolder(org.omg.CORBA.portable.Streamable)

MARSHAL Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when the ORB fails to marshal or unmarshal method arguments, return
values or exceptions. Sun's Java IDL defines the following minor error code values for this exception, stored
in the minor data member inherited from SystemException:

Minor Code Meaning

4 An error occurred while unmarshalling an object reference.

5
An attempt was made to marshal or unmarshal an IDL type that is not supported in this
implementation, such as wchar or wstring.

6
While marshalling or unmarshalling, a character not within the ISO Latin−1 set was
encountered.

public final class MARSHAL extends org.omg.CORBA.SystemException
{

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 502

//
Public Constructors
public MARSHAL

 ();public MARSHAL (String s
);public MARSHAL (int minor, CompletionStatus completed

);public MARSHAL (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>MARSHAL

Thrown By: Any.{insert_string(), insert_Value(), insert_wstring(),
read_value()}

NamedValue Java 1.2

org.omg.CORBA
This class represents a remote method argument or return value. It consists of an argument name (as a
String), its value (as an Any object), and an argument mode, which can one of ARG_IN.value,
ARG_OUT.value, ARG_INOUT.value, or zero. If the argument mode is zero, the NamedValue
represents a Context property value. NamedValue objects are used in Dynamic Invocation Interface and
Dynamic Skeleton Interface operations (e.g., to build the argument list for a client−side method Request
object).

public abstract class NamedValue
{

//
Public Constructors
public NamedValue

 ();
//

Public Instance Methods
public abstract int flags

 ();public abstract String name
 ();public abstract Any value

 ();
}
Passed To: org.omg.CORBA.Object._create_request(),
org.omg.CORBA.portable.Delegate.create_request(),
org.omg.CORBA.portable.ObjectImpl._create_request()

Returned By: NVList.{add(), add_item(), add_value(), item()},
ORB.create_named_value(), Request.result()

NameValuePair Java 1.2

org.omg.CORBA serializable
A DynStruct object uses NameValuePair objects to represent its data members. It consists of a
String name and a value represented as an Any object.

public final class NameValuePair implements
org.omg.CORBA.portable.IDLEntity {

// Public Constructors

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 503

public NameValuePair
 ();public NameValuePair (String __id, Any __value

);
//

Public Instance Fields
public String id

 ;public Any value
 ;

}
Hierarchy:
Object−−>NameValuePair(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: DynStruct.set_members(), DynValue.set_members()

Returned By: DynStruct.get_members(), DynValue.get_members()

NO_IMPLEMENT Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a call is made on a method that is not implemented. Sun's Java
IDL defines the following minor error code values for this exception, stored in the minor data member
inherited from SystemException:

Minor Code Meaning

1
An attempt to use the Dynamic Skeleton Interface was made. The DSI is not implemented in
Sun's Java IDL implementation.

public final class NO_IMPLEMENT extends org.omg.CORBA.SystemException
{

//
Public Constructors
public NO_IMPLEMENT

 ();public NO_IMPLEMENT (String s
);public NO_IMPLEMENT (int minor, CompletionStatus completed

);public NO_IMPLEMENT (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>NO_IMPLEMENT

NO_MEMORY Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when insufficient dynamic memory is available to carry out a request.

public final class NO_MEMORY extends org.omg.CORBA.SystemException
{

//
Public Constructors
public NO_MEMORY

 ();public NO_MEMORY (String s
);public NO_MEMORY (int minor, CompletionStatus completed

);public NO_MEMORY (String s, int minor, CompletionStatus completed
);

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 504

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>NO_MEMORY

NO_PERMISSION Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a client does not have sufficient permission to make a request.

public final class NO_PERMISSION extends org.omg.CORBA.SystemException
{

//
Public Constructors
public NO_PERMISSION

 ();public NO_PERMISSION (String s
);public NO_PERMISSION (int minor, CompletionStatus completed

);public NO_PERMISSION (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>NO_PERMISSION

NO_RESOURCES Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when resources cannot be allocated to execute a request, on either the
client or the server.

public final class NO_RESOURCES extends org.omg.CORBA.SystemException
{

//
Public Constructors
public NO_RESOURCES

 ();public NO_RESOURCES (String s
);public NO_RESOURCES (int minor, CompletionStatus completed

);public NO_RESOURCES (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>NO_RESOURCES

NO_RESPONSE Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a server response to an asynchronous remote method call is not
yet available.

public final class NO_RESPONSE extends org.omg.CORBA.SystemException
{

// Public Constructors

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 505

public NO_RESPONSE
 ();public NO_RESPONSE (String s

);public NO_RESPONSE (int minor, CompletionStatus completed
);public NO_RESPONSE (String s, int minor, CompletionStatus completed

);
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>NO_RESPONSE

NVList Java 1.2

org.omg.CORBA
A list of NamedValue objects. An NVList can be created using either the ORB.create_list()
method or the ORB.create_operation_list() method. The latter method initializes the list with
NamedValue objects that describe the arguments to the method definition you pass into the
create_operation_list() method.

public abstract class NVList {

//
Public Constructors
public NVList

 ();
//

Public Instance Methods
public abstract NamedValue add (int flags

);public abstract NamedValue add_item (String item_name, int flags
);public abstract NamedValue add_value (String item_name, Any val, int flags

);public abstract int count
 ();public abstract NamedValue item (int index

) throws org.omg.CORBA.Bounds;public abstract void remove (int index
) throws org.omg.CORBA.Bounds;

}
Passed To: org.omg.CORBA.Context.set_values(),
org.omg.CORBA.Object._create_request(), ServerRequest.{arguments(),
params()}, org.omg.CORBA.portable.Delegate.create_request(),
org.omg.CORBA.portable.ObjectImpl._create_request()

Returned By: org.omg.CORBA.Context.get_values(), ORB.{create_list(),
create_operation_list()}, Request.arguments()

OBJ_ADAPTER Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when an error is encountered by an object adapter in the ORB. Sun's
Java IDL defines the following minor error code values for this exception, stored in the minor data member
inherited from SystemException:

Minor Code Meaning

1 On the server, no adapter matching the one referenced in the object reference was found.

2 Same as above, but error occurred during a locate request.

4 An error occurred while attempting to connect a servant to the ORB.

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 506

public final class OBJ_ADAPTER extends org.omg.CORBA.SystemException
{

//
Public Constructors
public OBJ_ADAPTER

 ();public OBJ_ADAPTER (String s
);public OBJ_ADAPTER (int minor, CompletionStatus completed

);public OBJ_ADAPTER (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>OBJ_ADAPTER

Object Java 1.2

org.omg.CORBA
This is the base interface for all CORBA objects. An Object can be either a reference (stub) to a remote
CORBA object or a local object implementation. The methods declared in the Object interface allow you to
create Dynamic Invocation Interface requests on the object, get its Interface Repository definition, and check
the equivalence of two objects, among other things. The org.omg.CORBA.portable.ObjectImpl
class provides a default, concrete implementation of the Object interface.

public abstract interface Object {

//
Public Instance Methodspublic abstract Request _create_request (org.omg.CORBA.Context ctx, String operation, NVList
arg_list, NamedValue result

);
public abstract Request _create_request (org.omg.CORBA.Context ctx, String operation, NVList
arg_list, NamedValue result, ExceptionList exclist, ContextList ctxlist

);public abstract org.omg.CORBA.Object _duplicate
 ();public abstract DomainManager[] _get_domain_managers

 ();public abstract org.omg.CORBA.Object _get_interface_def
 ();public abstract org.omg.CORBA.Policy _get_policy (int policy_type

);public abstract int _hash (int maximum
);public abstract boolean _is_a (String repositoryIdentifier

);public abstract boolean _is_equivalent (org.omg.CORBA.Object other
);public abstract boolean _non_existent

 ();public abstract void _release
 ();public abstract Request _request (String operation

);public abstract org.omg.CORBA.Object _set_policy_override (org.omg.CORBA.Policy[] policies,
SetOverrideType set_add

);}
Implementations: Current, DomainManager, DynAny, DynArray, DynEnum, DynFixed,
DynSequence, DynStruct, DynUnion, DynValue, IDLType, IRObject,
org.omg.CORBA.Policy, org.omg.CORBA.portable.ObjectImpl,
org.omg.CosNaming.BindingIterator, org.omg.CosNaming.NamingContext

Passed To: Too many methods to list.

Returned By: Any.extract_Object(), DynAny.get_reference(),
org.omg.CORBA.Object.{_duplicate(), _get_interface_def(),

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 507

_set_policy_override()}, ORB.{resolve_initial_references(),
string_to_object()}, Request.target(),
org.omg.CORBA.portable.Delegate.{duplicate(), get_interface_def(),
set_policy_override()}, org.omg.CORBA.portable.InputStream.read_Object(),
org.omg.CORBA.portable.ObjectImpl.{_duplicate(), _get_interface_def(),
_set_policy_override()},
org.omg.CosNaming._NamingContextImplBase.resolve(),
org.omg.CosNaming._NamingContextStub.resolve(),
org.omg.CosNaming.NamingContext.resolve()

Type Of: ObjectHolder.value

OBJECT_NOT_EXIST Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a request is made of a server object that no longer exists. Sun's
Java IDL defines the following minor error code values for this exception, stored in the minor data member
inherited from SystemException:

Minor Code Meaning

1 The target of a locate request sent back a response indicating it did not know the object.

2
A method request was received by a server whose ID does not match the server ID referenced in
the object reference.

4 The skeleton referenced in the object reference was not found on the server.

public final class OBJECT_NOT_EXIST extends org.omg.CORBA.SystemException
{

//
Public Constructors
public OBJECT_NOT_EXIST

 ();public OBJECT_NOT_EXIST (String s
);public OBJECT_NOT_EXIST (int minor, CompletionStatus completed

);public OBJECT_NOT_EXIST (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>OBJECT_NOT_EXIST

ObjectHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java
org.omg.CORBA.Object values.

public final class ObjectHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public ObjectHolder

 ();public ObjectHolder (org.omg.CORBA.Object initial
);

// Methods implementing Streamable

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 508

public void _read (org.omg.CORBA.portable.InputStream input
);public TypeCode _type

 ();public void _write (org.omg.CORBA.portable.OutputStream output
);

//
Public Instance Fields
public org.omg.CORBA.Object value

 ;
}
Hierarchy: Object−−>ObjectHolder(org.omg.CORBA.portable.Streamable)

ORB Java 1.2

org.omg.CORBA
The ORB class is at the heart of the CORBA API. The ORB class provides CORBA clients and server objects
access to the basic CORBA functions needed to engage in remote object operations. The static init()
methods let you initialize a reference to an ORB. ORB provides access to initial objects and service through its
resolve_initial_references() method. It also provides constructor methods that allow you to
create key objects needed to perform remote method requests, like Any and NamedValue objects. The ORB
also allows you to convert a CORBA object reference to a portable stringified form and back again, using its
object_to_string() and string_to_object() methods.

public abstract class ORB {

//
Public Constructors
public ORB

 ();
//

Public Class Methods
public static ORB init

 ();public static ORB init (String[] args, java.util.Properties props
);public static ORB init (java.applet.Applet app, java.util.Properties props

);
//

Public Instance Methods
public void connect (org.omg.CORBA.Object obj

);public TypeCode create_abstract_interface_tc (String id, String name
);public abstract TypeCode create_alias_tc (String id, String name, TypeCode original_type

);public abstract Any create_any
 ();public abstract TypeCode create_array_tc (int length, TypeCode element_type

);public DynAny create_basic_dyn_any (TypeCode type) throws

org.omg.CORBA.ORBPackage.InconsistentTypeCode;public abstract ContextList create_context_list
 ();public DynAny create_dyn_any (Any value

);public DynArray create_dyn_array (TypeCode type) throws

org.omg.CORBA.ORBPackage.InconsistentTypeCode;
public DynEnum create_dyn_enum (TypeCode type) throws

org.omg.CORBA.ORBPackage.InconsistentTypeCode;
public DynSequence create_dyn_sequence (TypeCode type) throws

org.omg.CORBA.ORBPackage.InconsistentTypeCode;
public DynStruct create_dyn_struct (TypeCode type) throws

org.omg.CORBA.ORBPackage.InconsistentTypeCode;
public DynUnion create_dyn_union (TypeCode type) throws

org.omg.CORBA.ORBPackage.InconsistentTypeCode;public abstract TypeCode create_enum_tc (String id, String name, String[] members
);

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 509

public abstract Environment create_environment
 ();public abstract ExceptionList create_exception_list

 ();public abstract TypeCode create_exception_tc (String id, String name, StructMember[] members
);public TypeCode create_fixed_tc (short digits, short scale

);public abstract TypeCode create_interface_tc (String id, String name
);public abstract NVList create_list (int count

);public abstract NamedValue create_named_value (String s, Any any, int flags
);public TypeCode create_native_tc (String id, String name

);public NVList create_operation_list (org.omg.CORBA.Object oper
);public abstract org.omg.CORBA.portable.OutputStream create_output_stream

 ();public org.omg.CORBA.Policy create_policy (int type, Any val
) throws PolicyError;public TypeCode create_recursive_tc (String id

);public abstract TypeCode create_sequence_tc (int bound, TypeCode element_type
);public abstract TypeCode create_string_tc (int bound

);public abstract TypeCode create_struct_tc (String id, String name, StructMember[] members

);public abstract TypeCode create_union_tc (String id, String name, TypeCode discriminator_type,
UnionMember[] members

);public TypeCode create_value_box_tc (String id, String name, TypeCode boxed_type

);public TypeCode create_value_tc (String id, String name, short type_modifier, TypeCode concrete_base,
ValueMember[] members

);public abstract TypeCode create_wstring_tc (int bound
);public void disconnect (org.omg.CORBA.Object obj

);public abstract org.omg.CORBA.Context get_default_context
 ();public abstract Request get_next_response

 () throws WrongTransaction;public abstract TypeCode get_primitive_tc (TCKind tcKind
);public boolean get_service_information (short service_type, ServiceInformationHolder service_info

);public abstract String[] list_initial_services
 ();public abstract String object_to_string (org.omg.CORBA.Object obj

);public void perform_work
 ();public abstract boolean poll_next_response

 ();public abstract org.omg.CORBA.Object resolve_initial_references (String object_name) throws

org.omg.CORBA.ORBPackage.InvalidName;public void run
 ();public abstract void send_multiple_requests_deferred (Request[] req

);public abstract void send_multiple_requests_oneway (Request[] req
);public void shutdown (boolean wait_for_completion

);public abstract org.omg.CORBA.Object string_to_object (String str
);public boolean work_pending

 ();
//

Protected Instance Methods
protected abstract void set_parameters (String[] args, java.util.Properties props

);protected abstract void set_parameters (java.applet.Applet app, java.util.Properties props
);

// Deprecated Public Methods

public abstract TypeCode create_recursive_sequence_tc (int bound, int offset
);

public Current get_current
 ();

}

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 510

Returned By: ORB.init(), org.omg.CORBA.portable.Delegate.orb(),
org.omg.CORBA.portable.InputStream.orb(),
org.omg.CORBA.portable.ObjectImpl._orb(),
org.omg.CORBA.portable.OutputStream.orb()

PERSIST_STORE Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a server encounters an error with its persistent storage.

public final class PERSIST_STORE extends org.omg.CORBA.SystemException
{

//
Public Constructors
public PERSIST_STORE

 ();public PERSIST_STORE (String s
);public PERSIST_STORE (int minor, CompletionStatus completed

);public PERSIST_STORE (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>PERSIST_STORE

Policy Java 1.2

org.omg.CORBA
This is the base interface for objects that represent usage policies for ORBs and other CORBA services.
Policies for certain objects or domains of objects can be obtained from a DomainManager, which in turn
can be obtained from the Object in question using its _get_domain_managers() method. The
policy_type() method on Policy provides access to an integer type indicator, where the allowable
values are implementation−specific.

public abstract interface Policy extends
org.omg.CORBA.Object {

//
Public Instance Methods
public abstract org.omg.CORBA.Policy copy

 ();public abstract void destroy
 ();public abstract int policy_type

 ();
}
Hierarchy: (org.omg.CORBA.Policy(Object))

Passed To: org.omg.CORBA.Object._set_policy_override(),
org.omg.CORBA.portable.Delegate.set_policy_override(),
org.omg.CORBA.portable.ObjectImpl._set_policy_override()

Returned By: DomainManager.get_domain_policy(),
org.omg.CORBA.Object._get_policy(), ORB.create_policy(),
org.omg.CORBA.Policy.copy(),
org.omg.CORBA.portable.Delegate.get_policy(),
org.omg.CORBA.portable.ObjectImpl._get_policy()

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 511

PolicyError Java 1.2

org.omg.CORBA serializable checked
An exception thrown when an error occurs during creation of a Policy object.

public final class PolicyError extends UserException {

//
Public Constructors
public PolicyError

 ();public PolicyError (short __reason
);public PolicyError (String reason_string, short __reason

);
//

Public Instance Fields
public short reason

 ;
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>PolicyError

Thrown By: ORB.create_policy()

Principal Java 1.2; Deprecated in Java 1.2

org.omg.CORBA
This deprecated class was used in previous versions of the CORBA standard to hold the identity of a client, in
the form of an array of bytes that represents the encoded name of the client. This functionality has now been
assumed by the Security Service, but the class is still available in the Java IDL API to provide temporary
backward compatibility with previous CORBA applications.

public abstract class Principal {

//
Public Constructors
public Principal

 ();
// Deprecated Public Methods

public abstract byte[] name
 ();

public abstract void name (byte[] value
);

}
Passed To: Any.insert_Principal(), PrincipalHolder.PrincipalHolder(),
org.omg.CORBA.portable.OutputStream.write_Principal()

Returned By: Any.extract_Principal(),
org.omg.CORBA.portable.InputStream.read_Principal()

Type Of: PrincipalHolder.value

PrincipalHolder Java 1.2; Deprecated in Java 1.2

org.omg.CORBA
This deprecated class is the holder class for out and inout remote method arguments that are mapped to
Java Principal objects.

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 512

public final class PrincipalHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public PrincipalHolder

 ();public PrincipalHolder (org.omg.CORBA.Principal initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public org.omg.CORBA.Principal value

 ;
}
Hierarchy: Object−−>PrincipalHolder(org.omg.CORBA.portable.Streamable)

Request Java 1.2

org.omg.CORBA
A Request represents a remote method request under the Dynamic Invocation Interface. Request objects
are created by calling the create_request() method on the org.omg.CORBA.Object reference for
the remote object that will service the method request. The Request contains the name of the method to be
invoked, an NVList containing NamedValue objects that represent the method arguments, and the return
value for the method, if appropriate. It can also contain a description of the exceptions the method can throw
and the client context values that the method accepts.

You add method arguments to a Request by calling one of its add_XXX() methods, which all return an
Any object that you can initialize with the value of the argument. Once the Request has been initialized
with its arguments and any other information, the method can be invoked synchronously using the
invoke() method, asynchronously using send_deferred(), or in one−way mode using
send_oneway(). Immediately after the invoke() method returns, any return values or thrown
exceptions are available for you to query. After calling the send_deferred() method, you can poll and
retrieve the method response by calling the poll_response() and get_response() methods. If the
response is ready, get_response() initializes the internal return value or exception in the Request
object, and it can be retrieved using the return_value() method. After calling send_oneway(), no
return value or exception is returned. You can use send_oneway() on methods even if they weren't
declared as oneway in the corresponding IDL for the interface.

public abstract class Request {

//
Public Constructors
public Request

 ();
//

Public Instance Methods
public abstract Any add_in_arg

 ();public abstract Any add_inout_arg
 ();public abstract Any add_named_in_arg (String name

);public abstract Any add_named_inout_arg (String name
);public abstract Any add_named_out_arg (String name

);public abstract Any add_out_arg
 ();public abstract NVList arguments
 ();public abstract ContextList contexts

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 513

public abstract org.omg.CORBA.Context ctx
 ();public abstract void ctx (org.omg.CORBA.Context c

);public abstract Environment env
 ();public abstract ExceptionList exceptions

 ();public abstract void get_response
 () throws WrongTransaction;public abstract void invoke

 ();public abstract String operation
 ();public abstract boolean poll_response

 ();public abstract NamedValue result
 ();public abstract Any return_value

 ();public abstract void send_deferred
 ();public abstract void send_oneway

 ();public abstract void set_return_type (TypeCode tc
);public abstract org.omg.CORBA.Object target

 ();
}
Passed To: ORB.{send_multiple_requests_deferred(),
send_multiple_requests_oneway()}

Returned By: org.omg.CORBA.Object.{_create_request(), _request()},
ORB.get_next_response(),
org.omg.CORBA.portable.Delegate.{create_request(), request()},
org.omg.CORBA.portable.ObjectImpl.{_create_request(), _request()}

ServerRequest Java 1.2

org.omg.CORBA
The server−side equivalent of the client−side Request object. A ServerRequest is used in the Dynamic
Skeleton Interface to invoke a method on a server object through its DynamicImplementation.

public abstract class ServerRequest {

//
Public Constructors
public ServerRequest

 ();
//

Public Instance Methods
public void arguments (NVList args

);public abstract org.omg.CORBA.Context ctx
 ();public String operation

 ();public void set_exception (Any any
);public void set_result (Any any

);
// Deprecated Public Methods

public void except (Any any
);

public String op_name
 ();

public void params (NVList params
);

public void result (Any any
);

}
Passed To: DynamicImplementation.invoke(),
org.omg.CosNaming._BindingIteratorImplBase.invoke(),

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 514

org.omg.CosNaming._NamingContextImplBase.invoke()

ServiceDetail Java 1.2

org.omg.CORBA serializable
A component of a ServiceInformation object that describes a service available through an ORB. Each
ServiceDetail stores an integer type code and an array of bytes that contains information about the
service. The semantics of the type code and the format of the byte data are implementation−specific.

public final class ServiceDetail implements
org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public ServiceDetail

 ();public ServiceDetail (int service_detail_type, byte[] service_detail
);

//
Public Instance Fields
public byte[] service_detail

 ;public int service_detail_type
 ;

}
Hierarchy:
Object−−>ServiceDetail(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: ServiceDetailHelper.{insert(), write()},
ServiceInformation.ServiceInformation()

Returned By: ServiceDetailHelper.{extract(), read()}

Type Of: ServiceInformation.service_details

ServiceDetailHelper Java 1.2

org.omg.CORBA
The helper class for the ServiceDetail class, used internally to read and write ServiceDetail
objects when they are used as remote method arguments or return values.

public class ServiceDetailHelper {

// No Constructor

//
Public Class Methods
public static ServiceDetail extract (Any a

);public static String id
 ();public static void insert (Any a, ServiceDetail that

);public static ServiceDetail read (org.omg.CORBA.portable.InputStream in
);public static TypeCode type ();

synchronized
public static void write (org.omg.CORBA.portable.OutputStream out, ServiceDetail that

);
}

ServiceInformation Java 1.2

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 515

org.omg.CORBA serializable
This class represents information about a service available through an ORB. You query for information about
a service using the ORB.get_service_information() method, which returns a
ServiceInformation object. The ServiceInformation object consists of a set of
ServiceDetail objects, each representing a particular piece of information about the service.

public final class ServiceInformation implements org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public ServiceInformation

 ();public ServiceInformation (int[] __service_options, ServiceDetail[] __service_details
);

//
Public Instance Fields
public ServiceDetail[] service_details

 ;public int[] service_options
 ;

}
Hierarchy:
Object−−>ServiceInformation(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: ServiceInformationHelper.{insert(), write()},
ServiceInformationHolder.ServiceInformationHolder()

Returned By: ServiceInformationHelper.{extract(), read()}

Type Of: ServiceInformationHolder.value

ServiceInformationHelper Java 1.2

org.omg.CORBA
The helper class for ServiceInformation objects, used internally to read and write
ServiceInformation objects when they are used as remote method arguments or return values.

public class ServiceInformationHelper {

// No Constructor

//
Public Class Methods
public static ServiceInformation extract (Any a

);public static String id
 ();public static void insert (Any a, ServiceInformation that

);public static ServiceInformation read (org.omg.CORBA.portable.InputStream in
);public static TypeCode type ();

synchronizedpublic static void write (org.omg.CORBA.portable.OutputStream out, ServiceInformation
that

);}

ServiceInformationHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 516

ServiceInformation objects.

public final class ServiceInformationHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public ServiceInformationHolder

 ();public ServiceInformationHolder (ServiceInformation arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public ServiceInformation value

 ;
}
Hierarchy:
Object−−>ServiceInformationHolder(org.omg.CORBA.portable.Streamable)

Passed To: ORB.get_service_information()

SetOverrideType Java 1.2

org.omg.CORBA serializable
The static instances on the SetOverrideType class are used in calls to the
set_policy_overrides() method on org.omg.CORBA.Object. This method allows you to
override security−related policies that are imposed on an object by a CORBA Security Service by passing in
an array of Policy objects and a SetOverrideType object. There are two static SetOverrideType
instances that can be passed in as the second argument to this method.
SetOverrideType.ADD_OVERRIDE indicates that the policies being passed in should be added to any
existing policies that apply to the object, while SetOverrideType.SET_OVERRIDE indicates that the
policies being provided should replace any existing policies on the object.

public class SetOverrideType implements
org.omg.CORBA.portable.IDLEntity {

//
Protected Constructors
protected SetOverrideType (int _value

);
//

Public Constants
public static final int _ADD_OVERRIDE ;

=1
public static final int _SET_OVERRIDE ;

=0
public static final SetOverrideType ADD_OVERRIDE

 ;public static final SetOverrideType SET_OVERRIDE
 ;

//
Public Class Methods
public static SetOverrideType from_int (int i

) throws BAD_PARAM;
//

Public Instance Methods
public int value

 ();
}
Hierarchy:
Object−−>SetOverrideType(org.omg.CORBA.portable.IDLEntity(Serializable))

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 517

Passed To: org.omg.CORBA.Object._set_policy_override(),
org.omg.CORBA.portable.Delegate.set_policy_override(),
org.omg.CORBA.portable.ObjectImpl._set_policy_override()

Returned By: SetOverrideType.from_int()

Type Of: SetOverrideType.{ADD_OVERRIDE, SET_OVERRIDE}

ShortHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java short values.

public final class ShortHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public ShortHolder

 ();public ShortHolder (short initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public short value

 ;
}
Hierarchy: Object−−>ShortHolder(org.omg.CORBA.portable.Streamable)

StringHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are mapped to Java String values.

public final class StringHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public StringHolder

 ();public StringHolder (String initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public String value

 ;
}
Hierarchy: Object−−>StringHolder(org.omg.CORBA.portable.Streamable)

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 518

StructMember Java 1.2

org.omg.CORBA serializable
A class that represents a member of an IDL struct type. StructMember objects can create TypeCode
objects for IDL struct and exception values with the ORB.create_struct_tc() and
ORB.create_exception_tc() methods.

public final class StructMember implements org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public StructMember

 ();public StructMember (String __name, TypeCode __type, IDLType __type_def
);

//
Public Instance Fields
public String name

 ;public TypeCode type
 ;public IDLType type_def

 ;
}
Hierarchy:
Object−−>StructMember(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: ORB.{create_exception_tc(), create_struct_tc()}

SystemException Java 1.2

org.omg.CORBA serializable unchecked
This is the base class for all standard CORBA exceptions. A SystemException can be thrown by any
CORBA remote method call. Many CORBA API methods throw SystemException objects as well. The
SystemException class provides an integer minor code that can be optionally used by a subclass to
indicate a more precise reason for an exception. The class also provides a CompletionStatus object that
can indicate to the caller whether the method invocation was completed or not when the exception was
encountered.

Subclasses of SystemException represent the many errors that can occur while a remote method request
is being processed by the client's ORB, transferred to the server ORB, executed on the server object, and
having its response transferred back to the client. A SystemException can originate on the client or on the
server, before, during, or after the actual execution of the method on the remote object.

Since SystemException extends java.lang.RuntimeException, these exceptions don't need to
be declared in method signatures. But remember that any remote method declared in an IDL interface can
throw any of the subclasses of SystemException, just as any local Java method can throw any subclass of
RuntimeException during execution.

public abstract class SystemException extends RuntimeException {

//
Protected Constructors
protected SystemException (String reason, int minor, CompletionStatus completed

);
//

Public methods overriding Throwable
public String toString

 ();
// Public Instance Fields

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 519

public CompletionStatus completed
 ;public int minor

 ;
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException

Subclasses: Too many classes to list.

Thrown By: org.omg.CORBA.portable.InvokeHandler._invoke()

TCKind Java 1.2

org.omg.CORBA
A class that represents the type of a TypeCode object. The TCKind class contains a set of static int values
that correspond to the built−in IDL data types. It also contains a set of static TCKind instances that
correspond to each of these IDL types. The TCKind of a TypeCode can be obtained using its kind()
method, and its value can be compared to these static data members to determine the type of the TypeCode.

public class TCKind {

//
Protected Constructors
protected TCKind (int _value

);
//

Public Constants
public static final int _tk_abstract_interface ;

=32
public static final int _tk_alias ;

=21
public static final int _tk_any ;

=11
public static final int _tk_array ;

=20
public static final int _tk_boolean ;

=8
public static final int _tk_char ;

=9
public static final int _tk_double ;

=7
public static final int _tk_enum ;

=17
public static final int _tk_except ;

=22
public static final int _tk_fixed ;

=28
public static final int _tk_float ;

=6
public static final int _tk_long ;

=3
public static final int _tk_longdouble ;

=25
public static final int _tk_longlong ;

=23
public static final int _tk_native ;

=31
public static final int _tk_null ;

=0
public static final int _tk_objref ;

=14
public static final int _tk_octet ;

=10
public static final int _tk_Principal ;

=13
public static final int _tk_sequence ;

=19
public static final int _tk_short ;

=2
public static final int _tk_string ;

=18
public static final int _tk_struct ;

=15
public static final int _tk_TypeCode ; =12

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 520

public static final int _tk_ulong ;
=5

public static final int _tk_ulonglong ;
=24

public static final int _tk_union ;
=16

public static final int _tk_ushort ;
=4

public static final int _tk_value ;
=29

public static final int _tk_value_box ;
=30

public static final int _tk_void ;
=1

public static final int _tk_wchar ;
=26

public static final int _tk_wstring ;
=27

public static final TCKind tk_abstract_interface
 ;public static final TCKind tk_alias

 ;public static final TCKind tk_any
 ;public static final TCKind tk_array

 ;public static final TCKind tk_boolean
 ;public static final TCKind tk_char

 ;public static final TCKind tk_double
 ;public static final TCKind tk_enum

 ;public static final TCKind tk_except
 ;public static final TCKind tk_fixed

 ;public static final TCKind tk_float
 ;public static final TCKind tk_long
 ;public static final TCKind tk_longdouble

 ;public static final TCKind tk_longlong
 ;public static final TCKind tk_native

 ;public static final TCKind tk_null
 ;public static final TCKind tk_objref

 ;public static final TCKind tk_octet
 ;public static final TCKind tk_Principal

 ;public static final TCKind tk_sequence
 ;public static final TCKind tk_short

 ;public static final TCKind tk_string
 ;public static final TCKind tk_struct
 ;public static final TCKind tk_TypeCode

 ;public static final TCKind tk_ulong
 ;public static final TCKind tk_ulonglong

 ;public static final TCKind tk_union
 ;public static final TCKind tk_ushort
 ;public static final TCKind tk_value

 ;public static final TCKind tk_value_box
 ;public static final TCKind tk_void

 ;public static final TCKind tk_wchar
 ;public static final TCKind tk_wstring

 ;
//

Public Class Methods
public static TCKind from_int (int i

) throws BAD_PARAM;
// Public Instance Methods

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 521

public int value
 ();

}
Passed To: ORB.get_primitive_tc()

Returned By: DynStruct.current_member_kind(), DynUnion.{discriminator_kind(),
member_kind()}, DynValue.current_member_kind(), TCKind.from_int(),
TypeCode.kind()

Type Of: Too many fields to list.

TRANSACTION_REQUIRED Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a remote method that must be run within a transaction is invoked
outside of any transaction.

public final class TRANSACTION_REQUIRED extends org.omg.CORBA.SystemException
{

//
Public Constructors
public TRANSACTION_REQUIRED

 ();public TRANSACTION_REQUIRED (String s
);public TRANSACTION_REQUIRED (int minor, CompletionStatus completed

);public TRANSACTION_REQUIRED (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>TRANSACTION_REQUIRED

TRANSACTION_ROLLEDBACK Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a remote method that was invoked within a transaction could not
be completed because the enclosing transaction was rolled back.

public final class TRANSACTION_ROLLEDBACK extends org.omg.CORBA.SystemException
{

//
Public Constructors
public TRANSACTION_ROLLEDBACK

 ();public TRANSACTION_ROLLEDBACK (String s
);public TRANSACTION_ROLLEDBACK (int minor, CompletionStatus completed

);public TRANSACTION_ROLLEDBACK (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>TRANSACTION_ROLLEDBACK

TRANSIENT Java 1.2

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 522

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when a transient (i.e., not necessarily repeatable) error occurs during a
remote method call. Since the error might not occur again, it is possible to try making the same request again.

public final class TRANSIENT extends org.omg.CORBA.SystemException
{

//
Public Constructors
public TRANSIENT

 ();public TRANSIENT (String s
);public TRANSIENT (int minor, CompletionStatus completed

);public TRANSIENT (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>TRANSIENT

TypeCode Java 1.2

org.omg.CORBA serializable
A TypeCode object describes the IDL type of a CORBA object, analogously to how the Java Class for an
object (obtained using the getClass() method on java.lang.Object) describes its Java type. At a
minimum, a TypeCode object contains a TCKind element that specifies the IDL data type it represents. For
structured IDL types, like struct and union, it also contains additional information about the data type.
The member_XXX() methods can obtain information about the members of struct, union, enum, and
exception types, while the length() method gives the length of string, sequence and array
types.

public abstract class TypeCode implements org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public TypeCode

 ();
//

Public Instance Methods
public TypeCode concrete_base_type

 () throws org.omg.CORBA.TypeCodePackage.BadKind;public abstract TypeCode content_type
 () throws org.omg.CORBA.TypeCodePackage.BadKind;public abstract int default_index

 () throws org.omg.CORBA.TypeCodePackage.BadKind;public abstract TypeCode discriminator_type
 () throws org.omg.CORBA.TypeCodePackage.BadKind;public abstract boolean equal (TypeCode tc

);public boolean equivalent (TypeCode tc
);public short fixed_digits

 () throws org.omg.CORBA.TypeCodePackage.BadKind;public short fixed_scale
 () throws org.omg.CORBA.TypeCodePackage.BadKind;public TypeCode get_compact_typecode

 ();public abstract String id
 () throws org.omg.CORBA.TypeCodePackage.BadKind;public abstract TCKind kind

 ();public abstract int length
 () throws org.omg.CORBA.TypeCodePackage.BadKind;public abstract int member_count

 () throws org.omg.CORBA.TypeCodePackage.BadKind;public abstract Any member_label (int index) throws org.omg.CORBA.TypeCodePackage.BadKind,

org.omg.CORBA.TypeCodePackage.Bounds;

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 523

public abstract String member_name (int index) throws org.omg.CORBA.TypeCodePackage.BadKind,

org.omg.CORBA.TypeCodePackage.Bounds;public abstract TypeCode member_type (int index) throws

org.omg.CORBA.TypeCodePackage.BadKind, org.omg.CORBA.TypeCodePackage.Bounds;
public short member_visibility (int index) throws org.omg.CORBA.TypeCodePackage.BadKind,

org.omg.CORBA.Bounds;public abstract String name
 () throws org.omg.CORBA.TypeCodePackage.BadKind;public short type_modifier
 () throws org.omg.CORBA.TypeCodePackage.BadKind;

}
Hierarchy: Object−−>TypeCode(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: Too many methods to list.

Returned By: Too many methods to list.

Type Of: StructMember.type, TypeCodeHolder.value, UnionMember.type,
ValueMember.type

TypeCodeHolder Java 1.2

org.omg.CORBA
The holder class for out and inout remote method arguments that are TypeCode objects.

public final class TypeCodeHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public TypeCodeHolder

 ();public TypeCodeHolder (TypeCode initial
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream input

);public TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream output

);
//

Public Instance Fields
public TypeCode value

 ;
}
Hierarchy: Object−−>TypeCodeHolder(org.omg.CORBA.portable.Streamable)

UnionMember Java 1.2

org.omg.CORBA serializable
A class that represents a member of an IDL union type. UnionMember objects can create TypeCode
objects for IDL union types with the ORB.create_union_tc() method.

public final class UnionMember implements org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public UnionMember

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 524

public UnionMember (String __name, Any __label, TypeCode __type, IDLType __type_def
);

//
Public Instance Fields
public Any label

 ;public String name
 ;public TypeCode type

 ;public IDLType type_def
 ;

}
Hierarchy:
Object−−>UnionMember(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: ORB.create_union_tc()

UNKNOWN Java 1.2

org.omg.CORBA serializable unchecked
A standard CORBA exception thrown when the ORB encounters an error it can't interpret. Sun's Java IDL
defines the following minor error code values for this exception, stored in the minor data member inherited
from SystemException:

Minor Code Meaning

1
During unmarshalling of the response to a method request, a user exception was returned by the
server implementation that is not in the set of exceptions expected by the client.

3 The server implementation threw an unknown runtime exception.

public final class UNKNOWN extends org.omg.CORBA.SystemException
{

//
Public Constructors
public UNKNOWN

 ();public UNKNOWN (String s
);public UNKNOWN (int minor, CompletionStatus completed

);public UNKNOWN (String s, int minor, CompletionStatus completed
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>RuntimeException−−>org.omg.CORBA.SystemException−−>UNKNOWN

UnknownUserException Java 1.2

org.omg.CORBA serializable checked
This exception class can wrap any user exceptions that are thrown during Dynamic Invocation Interface
remote method calls. If an exception is thrown by the server object during such a call, the client can call the
env() method on its Request object to get the request's Environment. The exception contained within
the Environment is an UnknownUserException. The actual user exception the server threw is
contained in the except data member of the UnknownUserException, which is an Any object.

public final class UnknownUserException
extends UserException {

//
Public Constructors
public UnknownUserException

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 525

public UnknownUserException (Any a
);

//
Public Instance Fields
public Any except

 ;
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>UnknownUserException

UserException Java 1.2

org.omg.CORBA serializable checked
This is the base class for all user exceptions that are defined in IDL and mapped to Java. It extends
java.lang.Exception directly, so it represents a Java exception that must be declared in method
signatures and caught in application code that calls these methods. Unlike the SystemException, the
UserException class doesn't declare any data members for describing the exception to the caller. A
subclass must do this to suit the type of exception it represents. It does, however, inherit the message property
from Throwable, which can store a descriptive message on the exception to describe the reason.

public abstract class UserException extends
Exceptionimplements
org.omg.CORBA.portable.IDLEntity {

//
Protected Constructors
protected UserException

 ();protected UserException (String reason
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))

Subclasses: org.omg.CORBA.Bounds, PolicyError, UnknownUserException,
WrongTransaction, org.omg.CORBA.DynAnyPackage.Invalid,
org.omg.CORBA.DynAnyPackage.InvalidSeq,
org.omg.CORBA.DynAnyPackage.InvalidValue,
org.omg.CORBA.DynAnyPackage.TypeMismatch,
org.omg.CORBA.ORBPackage.InconsistentTypeCode,
org.omg.CORBA.ORBPackage.InvalidName,
org.omg.CORBA.TypeCodePackage.BadKind,
org.omg.CORBA.TypeCodePackage.Bounds, AlreadyBound, CannotProceed,
org.omg.CosNaming.NamingContextPackage.InvalidName, NotEmpty, NotFound

ValueMember Java 1.2

org.omg.CORBA serializable
A class that represents a member of an object passed by value using the proposed Objects−by−Value
extension to CORBA. ValueMember objects can create TypeCode objects for values with the
ORB.create_value_tc() method.

public final class ValueMember implements org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public ValueMember

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 526

public ValueMember (String __name, String __id, String __defined_in, String __version, TypeCode
__type, IDLType __type_def, short __access

);//
Public Instance Fields
public short access

 ;public String defined_in
 ;public String id

 ;public String name
 ;public TypeCode type

 ;public IDLType type_def
 ;public String version

 ;
}
Hierarchy:
Object−−>ValueMember(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: ORB.create_value_tc()

WrongTransaction Java 1.2

org.omg.CORBA serializable checked
A user exception thrown when an attempt is made to get the response to a deferred method request from a
different transaction than the original request. If a client makes an asynchronous Dynamic Invocation
Interface method request using the Request.send_deferred() method within a given transaction and
then later makes a call to the Request object's get_response() method from within a different
transaction, a WrongTransaction exception is thrown. This exception can also be thrown if the
ORB.get_next_response() method is called from a different transaction than the original method
request.

public class WrongTransaction extends
UserException {

//
Public Constructors
public WrongTransaction

 ();public WrongTransaction (String reason
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>WrongTransaction

Thrown By: ORB.get_next_response(), Request.get_response()

29.1. The
javax.transaction.xa
Package

31. The
org.omg.CORBA.DynAnyPackage

Package

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 527

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 30. The org.omg.CORBA Package 528

Chapter 31. The org.omg.CORBA.DynAnyPackage
Package
The org.omg.CORBA.DynAnyPackage package defines the exceptions used by the
org.omg.CORBA.DynAny interface and its subinterfaces. Figure 31−1 shows the class hierarchy of this
package.

Figure 31−1. The org.omg.CORBA.DynAnyPackage package

Invalid Java 1.2

org.omg.CORBA.DynAnyPackage serializable checked
An exception thrown whenever a bad DynAny or Any object is encountered in a dynamic introspection
operation.

public final class Invalid extends
UserException {

//
Public Constructors
public Invalid

 ();public Invalid (String reason
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>Invalid

Thrown By: DynAny.{assign(), from_any(), to_any()}

InvalidSeq Java 1.2

org.omg.CORBA.DynAnyPackage serializable checked
An exception thrown whenever an invalid Java array is encountered in a dynamic introspection operation.

public final class InvalidSeq extends
UserException {

//
Public Constructors
public InvalidSeq

 ();public InvalidSeq (String reason
);

Chapter 31. The org.omg.CORBA.DynAnyPackage Package 529

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>InvalidSeq

Thrown By: DynArray.set_elements(), DynSequence.set_elements(),
DynStruct.set_members(), DynValue.set_members()

InvalidValue Java 1.2

org.omg.CORBA.DynAnyPackage serializable checked
An exception thrown when a bad value is inserted into a DynAny object.

public final class InvalidValue extends
UserException {

//
Public Constructors
public InvalidValue

 ();public InvalidValue (String reason
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>InvalidValue

Thrown By: DynAny.{insert_any(), insert_boolean(), insert_char(),
insert_double(), insert_float(), insert_long(), insert_longlong(),
insert_octet(), insert_reference(), insert_short(), insert_string(),
insert_typecode(), insert_ulong(), insert_ulonglong(), insert_ushort(),
insert_val(), insert_wchar(), insert_wstring()}, DynFixed.set_value()

TypeMismatch Java 1.2

org.omg.CORBA.DynAnyPackage serializable checked
An exception thrown when you ask for a value from a DynAny object that doesn't match the type that it
contains.

public final class TypeMismatch extends
UserException {

//
Public Constructors
public TypeMismatch

 ();public TypeMismatch (String reason
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>TypeMismatch

Thrown By: DynAny.{get_any(), get_boolean(), get_char(), get_double(),
get_float(), get_long(), get_longlong(), get_octet(), get_reference(),
get_short(), get_string(), get_typecode(), get_ulong(), get_ulonglong(),
get_ushort(), get_val(), get_wchar(), get_wstring()}

Preface (Java Enterprise in a Nutshell)

Chapter 31. The org.omg.CORBA.DynAnyPackage Package 530

30.1. The
org.omg.CORBA
Package

32. The
org.omg.CORBA.ORBPackage

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 31. The org.omg.CORBA.DynAnyPackage Package 531

Chapter 32. The org.omg.CORBA.ORBPackage
Package
The org.omg.CORBA.ORBPackage package defines the exceptions thrown by the
org.omg.CORBA.ORB interface. Figure 32−1 shows the class hierarchy of this package.

Figure 32−1. The org.omg.CORBA.ORBPackage package

InconsistentTypeCode Java 1.2

org.omg.CORBA.ORBPackage serializable checked
An exception thrown by the ORB.create_dyn_XXX() methods when the TypeCode argument does not
match the type of the DynAny subclass requested.

public final class InconsistentTypeCode extends
UserException {

//
Public Constructors
public InconsistentTypeCode

 ();public InconsistentTypeCode (String reason
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>InconsistentTypeCode

Thrown By: ORB.{create_basic_dyn_any(), create_dyn_array(),
create_dyn_enum(), create_dyn_sequence(), create_dyn_struct(),
create_dyn_union()}

InvalidName Java 1.2

org.omg.CORBA.ORBPackage serializable checked
An exception thrown by the ORB.resolve_initial_references() method when the name passed
in does not have a corresponding object in the ORB's initial reference list.

public class InvalidName extends
UserException {

//
Public Constructors
public InvalidName

 ();public InvalidName (String reason
);

}

Chapter 32. The org.omg.CORBA.ORBPackage Package 532

Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>org.omg.CORBA.ORBPackage.InvalidName

Thrown By: ORB.resolve_initial_references()

31.1. The
org.omg.CORBA.DynAnyPackage
Package

33. The
org.omg.CORBA.portable

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 32. The org.omg.CORBA.ORBPackage Package 533

Chapter 33. The org.omg.CORBA.portable Package
The org.omg.CORBA.portable package contains interfaces, classes, and exceptions used by the
portability layer of the CORBA API. The portability layer provides facilities that allow code to be shared
between different ORB providers. Figure 33−1 shows the class hierarchy of this package.

Figure 33−1. The org.omg.CORBA.portable package

ApplicationException Java 1.2

org.omg.CORBA.portable serializable checked
An exception is used by the Delegate and ObjectImpl layer of a stub to indicate that an exception was
thrown during a remote method invocation. The ApplicationException provides an
org.omg.CORBA.portable.InputStream that reads the marshalled exception object.

public class ApplicationException extends Exception {

//
Public Constructors
public ApplicationException (String id, org.omg.CORBA.portable.InputStream ins

);
//

Public Instance Methods
public String getId

 ();public org.omg.CORBA.portable.InputStream getInputStream
 ();

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>ApplicationException

Thrown By: Delegate.invoke(), ObjectImpl._invoke()

Delegate Java 1.2

Chapter 33. The org.omg.CORBA.portable Package 534

org.omg.CORBA.portable
A Delegate is responsible for implementing all methods on org.omg.CORBA.Object. An Object
contains a Delegate and forwards its methods to it. This allows for portability between ORB
implementations, since an Object obtained from one ORB can contain a Delegate specific to that ORB,
but the Object can still be used within another ORB.

public abstract class Delegate {

//
Public Constructors
public Delegate

 ();
//

Public Instance Methodspublic abstract Request create_request (org.omg.CORBA.Object obj, org.omg.CORBA.Context
ctx, String operation, NVList arg_list, NamedValue result

);

public abstract Request create_request (org.omg.CORBA.Object obj, org.omg.CORBA.Context
ctx, String operation, NVList arg_list, NamedValue result, ExceptionList exclist, ContextList
ctxlist

);
public abstract org.omg.CORBA.Object duplicate (org.omg.CORBA.Object obj

);public boolean equals (org.omg.CORBA.Object self, Object obj
);public DomainManager[] get_domain_managers (org.omg.CORBA.Object self

);public org.omg.CORBA.Object get_interface_def (org.omg.CORBA.Object self
);public org.omg.CORBA.Policy get_policy (org.omg.CORBA.Object self, int policy_type

);public abstract int hash (org.omg.CORBA.Object obj, int max
);public int hashCode (org.omg.CORBA.Object self

);
public org.omg.CORBA.portable.InputStream invoke (org.omg.CORBA.Object self,
org.omg.CORBA.portable.OutputStream output) throws ApplicationException,

RemarshalException;
public abstract boolean is_a (org.omg.CORBA.Object obj, String repository_id

);public abstract boolean is_equivalent (org.omg.CORBA.Object obj, org.omg.CORBA.Object
other

);public boolean is_local (org.omg.CORBA.Object self);
constant

public abstract boolean non_existent (org.omg.CORBA.Object obj
);public ORB orb (org.omg.CORBA.Object obj

);public abstract void release (org.omg.CORBA.Object obj

);public void releaseReply (org.omg.CORBA.Object self, org.omg.CORBA.portable.InputStream
input

);public abstract Request request (org.omg.CORBA.Object obj, String operation

);public org.omg.CORBA.portable.OutputStream request (org.omg.CORBA.Object self, String
operation, boolean responseExpected

);public void servant_postinvoke (org.omg.CORBA.Object self, ServantObject servant);
emptypublic ServantObject servant_preinvoke (org.omg.CORBA.Object self, String operation, Class

expectedType);
constant

public org.omg.CORBA.Object set_policy_override (org.omg.CORBA.Object self,
org.omg.CORBA.Policy[] policies, SetOverrideType set_add

);public String toString (org.omg.CORBA.Object self
);

}
Passed To: ObjectImpl._set_delegate(),
org.omg.CosNaming._BindingIteratorStub._BindingIteratorStub(),
org.omg.CosNaming._NamingContextStub._NamingContextStub()

Preface (Java Enterprise in a Nutshell)

Chapter 33. The org.omg.CORBA.portable Package 535

Returned By: ObjectImpl._get_delegate()

IDLEntity Java 1.2

org.omg.CORBA.portable serializable
This interface marks certain IDL−generated classes. The RMI/IIOP extensions to CORBA look for this
marker interface, since it indicates that a Java object being marshalled or unmarshalled has a helper class that
can serialize the object.

public abstract
interface
IDLEntity
extends
Serializable {

}
Hierarchy: (IDLEntity(Serializable))

Implementations: Any, CompletionStatus, DefinitionKind, IDLType, IRObject,
NameValuePair, ServiceDetail, ServiceInformation, SetOverrideType,
StructMember, TypeCode, UnionMember, UserException, ValueMember,
org.omg.CosNaming.Binding, org.omg.CosNaming.BindingIterator,
org.omg.CosNaming.BindingType, org.omg.CosNaming.NameComponent,
org.omg.CosNaming.NamingContext, AlreadyBound, CannotProceed,
org.omg.CosNaming.NamingContextPackage.InvalidName, NotEmpty, NotFound,
NotFoundReason

InputStream Java 1.2

org.omg.CORBA.portable
An InputStream is used for unmarshalling IDL−generated objects. The InputStream provides a series
of read_XXX() methods for unmarshalling basic IDL types.

public abstract class InputStream extends java.io.InputStream {

//
Public Constructors
public InputStream

 ();
//

Public Instance Methods
public ORB orb

 ();public abstract Any read_any
 ();public abstract boolean read_boolean

 ();public abstract void read_boolean_array (boolean[] value, int offset, int length
);public abstract char read_char

 ();public abstract void read_char_array (char[] value, int offset, int length
);public org.omg.CORBA.Context read_Context

 ();public abstract double read_double
 ();public abstract void read_double_array (double[] value, int offset, int length

);public java.math.BigDecimal read_fixed
 ();public abstract float read_float

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 33. The org.omg.CORBA.portable Package 536

public abstract void read_float_array (float[] value, int offset, int length
);public abstract int read_long

 ();public abstract void read_long_array (int[] value, int offset, int length
);public abstract long read_longlong

 ();public abstract void read_longlong_array (long[] value, int offset, int length
);public abstract org.omg.CORBA.Object read_Object

 ();public org.omg.CORBA.Object read_Object (Class clz
);public abstract byte read_octet

 ();public abstract void read_octet_array (byte[] value, int offset, int length
);public abstract short read_short

 ();public abstract void read_short_array (short[] value, int offset, int length
);public abstract String read_string

 ();public abstract TypeCode read_TypeCode
 ();public abstract int read_ulong

 ();public abstract void read_ulong_array (int[] value, int offset, int length
);public abstract long read_ulonglong

 ();public abstract void read_ulonglong_array (long[] value, int offset, int length
);public abstract short read_ushort

 ();public abstract void read_ushort_array (short[] value, int offset, int length
);public abstract char read_wchar

 ();public abstract void read_wchar_array (char[] value, int offset, int length
);public abstract String read_wstring

 ();
//

Public methods overriding InputStream
public int read

 () throws IOException;
// Deprecated Public Methods

public abstract org.omg.CORBA.Principal read_Principal
 ();

}
Hierarchy: Object−−>java.io.InputStream−−>org.omg.CORBA.portable.InputStream

Passed To: Too many methods to list.

Returned By: Any.create_input_stream(),
ApplicationException.getInputStream(), Delegate.invoke(),
ObjectImpl._invoke(),
org.omg.CORBA.portable.OutputStream.create_input_stream()

InvokeHandler Java 1.2

org.omg.CORBA.portable
This interface is used during dynamic method invocations. An InvokeHandler is responsible, through its
_invoke() method, for finding a named method, reading marshalled arguments from the given
org.omg.CORBA.portable.InputStream, and returning the response in the form of an
org.omg.CORBA.portable.OutputStream generated from the given ResponseHandler.

public abstract interface InvokeHandler {

// Public Instance Methods

Preface (Java Enterprise in a Nutshell)

Chapter 33. The org.omg.CORBA.portable Package 537

public abstract org.omg.CORBA.portable.OutputStream _invoke (String method,
org.omg.CORBA.portable.InputStream input, ResponseHandler handler) throws

org.omg.CORBA.SystemException;}

ObjectImpl Java 1.2

org.omg.CORBA.portable
ObjectImpl is the base class for all stub classes; it provides default implementations for the methods
declared in the orb.omg.CORBA.Object interface. ObjectImpl contains a Delegate object that acts
as a proxy for the Object methods.

public abstract class ObjectImpl implements org.omg.CORBA.Object {

//
Public Constructors
public ObjectImpl

 ();
//

Public Instance Methods
public Delegate _get_delegate

 ();public abstract String[] _ids

 ();public org.omg.CORBA.portable.InputStream _invoke (org.omg.CORBA.portable.OutputStream output)

throws ApplicationException, RemarshalException;public boolean _is_local
 ();public ORB _orb

 ();public void _releaseReply (org.omg.CORBA.portable.InputStream input
);public org.omg.CORBA.portable.OutputStream _request (String operation, boolean responseExpected

);public void _servant_postinvoke (ServantObject servant
);public ServantObject _servant_preinvoke (String operation, Class expectedType

);public void _set_delegate (Delegate delegate
);

//
Methods implementing Objectpublic Request _create_request (org.omg.CORBA.Context ctx, String operation, NVList arg_list,
NamedValue result

);
public Request _create_request (org.omg.CORBA.Context ctx, String operation, NVList arg_list,
NamedValue result, ExceptionList exceptions, ContextList contexts

);public org.omg.CORBA.Object _duplicate
 ();public DomainManager[] _get_domain_managers

 ();public org.omg.CORBA.Object _get_interface_def
 ();public org.omg.CORBA.Policy _get_policy (int policy_type

);public int _hash (int maximum
);public boolean _is_a (String repository_id

);public boolean _is_equivalent (org.omg.CORBA.Object that
);public boolean _non_existent

 ();public void _release
 ();public Request _request (String operation

);public org.omg.CORBA.Object _set_policy_override (org.omg.CORBA.Policy[] policies,
SetOverrideType set_add

);//
Public methods overriding Object
public boolean equals (Object obj

);public int hashCode
 ();

Preface (Java Enterprise in a Nutshell)

Chapter 33. The org.omg.CORBA.portable Package 538

public String toString
 ();

}
Hierarchy: Object−−>ObjectImpl(org.omg.CORBA.Object)

Subclasses: DynamicImplementation, org.omg.CosNaming._BindingIteratorStub,
org.omg.CosNaming._NamingContextStub

OutputStream Java 1.2

org.omg.CORBA.portable
An OutputStream marshals IDL−generated objects. The OutputStream provides a series of
write_XXX() methods for marshalling basic IDL types.

public abstract class OutputStream extends java.io.OutputStream {

//
Public Constructors
public OutputStream

 ();
//

Public Instance Methods
public abstract org.omg.CORBA.portable.InputStream create_input_stream

 ();public ORB orb
 ();public abstract void write_any (Any value

);public abstract void write_boolean (boolean value
);public abstract void write_boolean_array (boolean[] value, int offset, int length

);public abstract void write_char (char value
);public abstract void write_char_array (char[] value, int offset, int length

);public void write_Context (org.omg.CORBA.Context ctx, ContextList contexts
);public abstract void write_double (double value

);public abstract void write_double_array (double[] value, int offset, int length
);public void write_fixed (java.math.BigDecimal value

);public abstract void write_float (float value
);public abstract void write_float_array (float[] value, int offset, int length

);public abstract void write_long (int value
);public abstract void write_long_array (int[] value, int offset, int length

);public abstract void write_longlong (long value
);public abstract void write_longlong_array (long[] value, int offset, int length

);public abstract void write_Object (org.omg.CORBA.Object value
);public abstract void write_octet (byte value

);public abstract void write_octet_array (byte[] value, int offset, int length
);public abstract void write_short (short value

);public abstract void write_short_array (short[] value, int offset, int length
);public abstract void write_string (String value

);public abstract void write_TypeCode (TypeCode value
);public abstract void write_ulong (int value

);public abstract void write_ulong_array (int[] value, int offset, int length
);public abstract void write_ulonglong (long value

);public abstract void write_ulonglong_array (long[] value, int offset, int length
);

Preface (Java Enterprise in a Nutshell)

Chapter 33. The org.omg.CORBA.portable Package 539

public abstract void write_ushort (short value
);public abstract void write_ushort_array (short[] value, int offset, int length

);public abstract void write_wchar (char value
);public abstract void write_wchar_array (char[] value, int offset, int length

);public abstract void write_wstring (String value
);

//
Public methods overriding OutputStream
public void write (int b

) throws IOException;
// Deprecated Public Methods

public abstract void write_Principal (org.omg.CORBA.Principal value
);

}
Hierarchy:
Object−−>java.io.OutputStream−−>org.omg.CORBA.portable.OutputStream

Passed To: Too many methods to list.

Returned By: Any.create_output_stream(), ORB.create_output_stream(),
Delegate.request(), InvokeHandler._invoke(), ObjectImpl._request(),
ResponseHandler.{createExceptionReply(), createReply()}

RemarshalException Java 1.2

org.omg.CORBA.portable serializable checked
An exception thrown by the Delegate._invoke() and ObjectImpl.invoke() methods when a
marshalling error occurs during the method invocation.

public final class
RemarshalException extends
Exception {

//
Public Constructors
public RemarshalException

 ();
}
Hierarchy: Object−−>Throwable(Serializable)−−>Exception−−>RemarshalException

Thrown By: Delegate.invoke(), ObjectImpl._invoke()

ResponseHandler Java 1.2

org.omg.CORBA.portable
A ResponseHandler is responsible for generating an
org.omg.CORBA.portable.OutputStream that is used by an object servant to write marshalled
method responses (return value or exception).

public abstract interface ResponseHandler {

//
Public Instance Methods
public abstract org.omg.CORBA.portable.OutputStream createExceptionReply

 ();public abstract org.omg.CORBA.portable.OutputStream createReply
 ();

}

Preface (Java Enterprise in a Nutshell)

Chapter 33. The org.omg.CORBA.portable Package 540

Passed To: InvokeHandler._invoke()

ServantObject Java 1.2

org.omg.CORBA.portable
ServantObject is a wrapper for an object that can handle method requests for a remote object. The
ObjectImpl class defers method requests to a ServantObject acquired from its internal Delegate.

public class ServantObject
{

//
Public Constructors
public ServantObject

 ();
//

Public Instance Fields
public Object servant

 ;
}
Passed To: Delegate.servant_postinvoke(), ObjectImpl._servant_postinvoke()

Returned By: Delegate.servant_preinvoke(), ObjectImpl._servant_preinvoke()

Streamable Java 1.2

org.omg.CORBA.portable
All holder classes extend this interface, which defines methods for marshalling and unmarshalling objects of
the type corresponding to the holder class.

public abstract interface Streamable {

//
Public Instance Methods
public abstract void _read (org.omg.CORBA.portable.InputStream istream

);public abstract TypeCode _type
 ();public abstract void _write (org.omg.CORBA.portable.OutputStream ostream

);
}
Implementations: Too many classes to list.

Passed To: Any.insert_Streamable()

32.1. The
org.omg.CORBA.ORBPackage
Package

34. The
org.omg.CORBA.TypeCodePackage

Package

Preface (Java Enterprise in a Nutshell)

Chapter 33. The org.omg.CORBA.portable Package 541

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 33. The org.omg.CORBA.portable Package 542

Chapter 34. The
org.omg.CORBA.TypeCodePackage Package
The org.omg.CORBA.TypeCodePackage package defines exceptions that are thrown by the
org.omg.CORBA.TypeCode class. Figure 34−1 shows the class hierarchy of this package.

Figure 34−1. The org.omg.CORBA.TypeCodePackage package

BadKind Java 1.2

org.omg.CORBA.TypeCodePackage serializable checked
An exception thrown when a method is called on a TypeCode object that isn't valid for the type it
represents.

public final class BadKind extends
UserException {

//
Public Constructors
public BadKind

 ();public BadKind (String reason
);

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>BadKind

Thrown By: TypeCode.{concrete_base_type(), content_type(), default_index(),
discriminator_type(), fixed_digits(), fixed_scale(), id(), length(),
member_count(), member_label(), member_name(), member_type(),
member_visibility(), name(), type_modifier()}

Bounds Java 1.2

org.omg.CORBA.TypeCodePackage serializable checked
An exception thrown when you request member information from a TypeCode using an index that is
beyond the valid member index of the type.

public final class Bounds extends
UserException {

//
Public Constructors
public Bounds

 ();public Bounds (String reason
);

Chapter 34. The org.omg.CORBA.TypeCodePackage Package 543

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>org.omg.CORBA.TypeCodePackage.Bounds

Thrown By: TypeCode.{member_label(), member_name(), member_type()}

33.1. The
org.omg.CORBA.portable
Package

35. The
org.omg.CosNaming

Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 34. The org.omg.CORBA.TypeCodePackage Package 544

Chapter 35. The org.omg.CosNaming Package
The org.omg.CosNaming package is a Java mapping of the IDL interfaces defined by the CORBA
Naming Service. The principal interface in the service is the NamingContext, which represents a directory
of named object references. The package also contains various support classes that allow you to iterate
through an NamingContext and query its contents. Figure 35−1 shows the class hierarchy of this package.

Figure 35−1. The org.omg.CosNaming package

_BindingIteratorImplBase Java 1.2

org.omg.CosNaming serializable
The IDL−generated skeleton class for the BindingIterator interface.

public abstract class _BindingIteratorImplBase extends
org.omg.CORBA.DynamicImplementationimplements BindingIterator {

//
Public Constructors
public _BindingIteratorImplBase

 ();
//

Methods implementing BindingIterator
public abstract void destroy

 ();

Chapter 35. The org.omg.CosNaming Package 545

public abstract boolean next_n (int how_many, BindingListHolder bl
);public abstract boolean next_one (BindingHolder b

);
//

Public methods overriding DynamicImplementation
public void invoke (org.omg.CORBA.ServerRequest r

);
//

Public methods overriding ObjectImpl
public String[] _ids

 ();
}
Hierarchy:
Object−−>org.omg.CORBA.portable.ObjectImpl(org.omg.CORBA.Object)−−>org.omg.CORBA.DynamicImplementation−−>_BindingIteratorImplBase(BindingIterator(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable)))

_BindingIteratorStub Java 1.2

org.omg.CosNaming serializable
The IDL−generated stub class for the BindingIterator interface.

public class _BindingIteratorStub extends
org.omg.CORBA.portable.ObjectImplimplements BindingIterator {

//
Public Constructors
public _BindingIteratorStub (org.omg.CORBA.portable.Delegate d

);
//

Methods implementing BindingIterator
public void destroy

 ();public boolean next_n (int how_many, BindingListHolder bl
);public boolean next_one (BindingHolder b

);
//

Public methods overriding ObjectImpl
public String[] _ids

 ();
}
Hierarchy:
Object−−>org.omg.CORBA.portable.ObjectImpl(org.omg.CORBA.Object)−−>_BindingIteratorStub(BindingIterator(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable)))

_NamingContextImplBase Java 1.2

org.omg.CosNaming serializable
The IDL−generated skeleton class for the NamingContext interface.

public abstract class _NamingContextImplBase extends
org.omg.CORBA.DynamicImplementationimplements NamingContext {

//
Public Constructors
public _NamingContextImplBase

 ();
//

Methods implementing NamingContextpublic abstract void bind (NameComponent[] n, org.omg.CORBA.Object obj) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName, AlreadyBound;
public abstract void bind_context (NameComponent[] n, NamingContext nc) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName, AlreadyBound;
public abstract NamingContext bind_new_context (NameComponent[] n) throws NotFound,

AlreadyBound, CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;public abstract void destroy
 () throws NotEmpty;

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 546

public abstract void list (int how_many, BindingListHolder bl, BindingIteratorHolder bi
);public abstract NamingContext new_context

 ();public abstract void rebind (NameComponent[] n, org.omg.CORBA.Object obj) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;
public abstract void rebind_context (NameComponent[] n, NamingContext nc) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;
public abstract org.omg.CORBA.Object resolve (NameComponent[] n) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;
public abstract void unbind (NameComponent[] n) throws NotFound, CannotProceed,

org.omg.CosNaming.NamingContextPackage.InvalidName;//
Public methods overriding DynamicImplementation
public void invoke (org.omg.CORBA.ServerRequest r

);
//

Public methods overriding ObjectImpl
public String[] _ids

 ();
}
Hierarchy:
Object−−>org.omg.CORBA.portable.ObjectImpl(org.omg.CORBA.Object)−−>org.omg.CORBA.DynamicImplementation−−>_NamingContextImplBase(NamingContext(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable)))

_NamingContextStub Java 1.2

org.omg.CosNaming serializable
The IDL−generated stub class for the NamingContext interface.

public class _NamingContextStub extends org.omg.CORBA.portable.ObjectImplimplements
NamingContext {

//
Public Constructors
public _NamingContextStub (org.omg.CORBA.portable.Delegate d

);
//

Methods implementing NamingContextpublic void bind (NameComponent[] n, org.omg.CORBA.Object obj) throws NotFound, CannotProceed,

org.omg.CosNaming.NamingContextPackage.InvalidName, AlreadyBound;
public void bind_context (NameComponent[] n, NamingContext nc) throws NotFound, CannotProceed,

org.omg.CosNaming.NamingContextPackage.InvalidName, AlreadyBound;
public NamingContext bind_new_context (NameComponent[] n) throws NotFound, AlreadyBound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;public void destroy
 () throws NotEmpty;public void list (int how_many, BindingListHolder bl, BindingIteratorHolder bi

);public NamingContext new_context

 ();public void rebind (NameComponent[] n, org.omg.CORBA.Object obj) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;
public void rebind_context (NameComponent[] n, NamingContext nc) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;
public org.omg.CORBA.Object resolve (NameComponent[] n) throws NotFound, CannotProceed,

org.omg.CosNaming.NamingContextPackage.InvalidName;
public void unbind (NameComponent[] n) throws NotFound, CannotProceed,

org.omg.CosNaming.NamingContextPackage.InvalidName;//
Public methods overriding ObjectImpl
public String[] _ids

 ();

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 547

}
Hierarchy:
Object−−>org.omg.CORBA.portable.ObjectImpl(org.omg.CORBA.Object)−−>_NamingContextStub(NamingContext(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable)))

Binding Java 1.2

org.omg.CosNaming serializable
A Binding describes a name binding within a naming context. It contains a NameComponent array,
which represents the name associated with the binding, and a BindingType, which indicates whether the
bound object is a regular object or a NamingContext.

public final class Binding implements org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public Binding

 ();public Binding (NameComponent[] __binding_name, BindingType __binding_type
);

//
Public Instance Fields
public NameComponent[] binding_name

 ;public BindingType binding_type
 ;

}
Hierarchy:
Object−−>org.omg.CosNaming.Binding(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: BindingHelper.{insert(), write()}, BindingHolder.BindingHolder(),
BindingListHelper.{insert(), write()},
BindingListHolder.BindingListHolder()

Returned By: BindingHelper.{extract(), read()}, BindingListHelper.{extract(),
read()}

Type Of: BindingHolder.value, BindingListHolder.value

BindingHelper Java 1.2

org.omg.CosNaming
The helper class for the Binding class.

public class BindingHelper {

// No Constructor

//
Public Class Methods
public static org.omg.CosNaming.Binding extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, org.omg.CosNaming.Binding that

);public static org.omg.CosNaming.Binding read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronizedpublic static void write (org.omg.CORBA.portable.OutputStream out,
org.omg.CosNaming.Binding that

);}

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 548

BindingHolder Java 1.2

org.omg.CosNaming
The holder class for out and inout IDL method arguments that are mapped to Java Binding objects.

public final class BindingHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public BindingHolder

 ();public BindingHolder (org.omg.CosNaming.Binding __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public org.omg.CosNaming.Binding value

 ;
}
Hierarchy: Object−−>BindingHolder(org.omg.CORBA.portable.Streamable)

Passed To: _BindingIteratorImplBase.next_one(),
_BindingIteratorStub.next_one(), BindingIterator.next_one()

BindingIterator Java 1.2

org.omg.CosNaming serializable
If you request a set of name/object bindings from a NamingContext using its list() method, the
BindingListHolder you pass in is filled with any results, up to its maximum capacity. If the
NamingContext contains more bound objects than the binding array you provide can hold, the
BindingIteratorHolder argument is initialized to contain a BindingIterator that allows you to
iterate through the rest of the bindings in the context. You can iterate through the remainder of the bindings
one at a time, using the next_one() method, or in sets, using the next_n() method.

public abstract interface BindingIterator extends
org.omg.CORBA.Object, org.omg.CORBA.portable.IDLEntity {

//
Public Instance Methods
public abstract void destroy

 ();public abstract boolean next_n (int how_many, BindingListHolder bl
);public abstract boolean next_one (BindingHolder b

);
}
Hierarchy:
(BindingIterator(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable)))

Implementations: _BindingIteratorImplBase, _BindingIteratorStub

Passed To: BindingIteratorHelper.{insert(), write()},
BindingIteratorHolder.BindingIteratorHolder()

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 549

Returned By: BindingIteratorHelper.{extract(), narrow(), read()}

Type Of: BindingIteratorHolder.value

BindingIteratorHelper Java 1.2

org.omg.CosNaming
The helper class for the BindingIterator class.

public class BindingIteratorHelper {

// No Constructor

//
Public Class Methods
public static BindingIterator extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, BindingIterator that

);public static BindingIterator narrow (org.omg.CORBA.Object that) throws

org.omg.CORBA.BAD_PARAM;public static BindingIterator read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronized
public static void write (org.omg.CORBA.portable.OutputStream out, BindingIterator that

);
}

BindingIteratorHolder Java 1.2

org.omg.CosNaming
The holder class for out and inout IDL method arguments that are mapped to Java BindingIterator
objects.

public final class BindingIteratorHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public BindingIteratorHolder

 ();public BindingIteratorHolder (BindingIterator __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public BindingIterator value

 ;
}
Hierarchy: Object−−>BindingIteratorHolder(org.omg.CORBA.portable.Streamable)

Passed To: _NamingContextImplBase.list(), _NamingContextStub.list(),
NamingContext.list()

BindingListHelper Java 1.2

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 550

org.omg.CosNaming
The helper class for the BindingList class, which is the Java mapping for Binding arrays.

public class BindingListHelper {

// No Constructor

//
Public Class Methods
public static org.omg.CosNaming.Binding[] extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, org.omg.CosNaming.Binding[] that

);public static org.omg.CosNaming.Binding[] read (org.omg.CORBA.portable.InputStream
in

);public static org.omg.CORBA.TypeCode type ();
synchronizedpublic static void write (org.omg.CORBA.portable.OutputStream out,

org.omg.CosNaming.Binding[] that
);}

BindingListHolder Java 1.2

org.omg.CosNaming
The holder class for out and inout IDL method arguments that are mapped to Java BindingList
objects.

public final class BindingListHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public BindingListHolder

 ();public BindingListHolder (org.omg.CosNaming.Binding[] __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public org.omg.CosNaming.Binding[] value

 ;
}
Hierarchy: Object−−>BindingListHolder(org.omg.CORBA.portable.Streamable)

Passed To: _BindingIteratorImplBase.next_n(), _BindingIteratorStub.next_n(),
_NamingContextImplBase.list(), _NamingContextStub.list(),
BindingIterator.next_n(), NamingContext.list()

BindingType Java 1.2

org.omg.CosNaming serializable
A BindingType indicates what type of object is involved in a given binding, a regular object or a
NamingContext. Its value() method returns an int value that can be compared to the two static int
values on the class, to differentiate between these two cases.

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 551

public final class BindingType implements org.omg.CORBA.portable.IDLEntity {

// No Constructor

//
Public Constants
public static final int _ncontext ;

=1
public static final int _nobject ;

=0
public static final BindingType ncontext

 ;public static final BindingType nobject
 ;

//
Public Class Methods
public static final BindingType from_int (int i

) throws org.omg.CORBA.BAD_PARAM;
//

Public Instance Methods
public int value

 ();
}
Hierarchy:
Object−−>BindingType(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: org.omg.CosNaming.Binding.Binding(), BindingTypeHelper.{insert(),
write()}, BindingTypeHolder.BindingTypeHolder()

Returned By: BindingType.from_int(), BindingTypeHelper.{extract(), read()}

Type Of: org.omg.CosNaming.Binding.binding_type, BindingType.{ncontext,
nobject}, BindingTypeHolder.value

BindingTypeHelper Java 1.2

org.omg.CosNaming
The helper class for the BindingType class.

public class BindingTypeHelper {

// No Constructor

//
Public Class Methods
public static BindingType extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, BindingType that

);public static BindingType read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronized
public static void write (org.omg.CORBA.portable.OutputStream out, BindingType that

);
}

BindingTypeHolder Java 1.2

org.omg.CosNaming
The holder class for out and inout IDL method arguments that are mapped to Java BindingType
objects.

public final class BindingTypeHolder implements
org.omg.CORBA.portable.Streamable {

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 552

//
Public Constructors
public BindingTypeHolder

 ();public BindingTypeHolder (BindingType __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public BindingType value

 ;
}
Hierarchy: Object−−>BindingTypeHolder(org.omg.CORBA.portable.Streamable)

IstringHelper Java 1.2

org.omg.CosNaming
The helper class for the Istring class. The Istring class is used in the Naming Service as a placeholder
for an internationalized string type. (Note that IString is just a typedef in the CORBA specification at
this point; the OMG hasn't defined an internationalized string interface yet. That's why you cannot find a
definition for IString anywhere in Java IDL.)

public class IstringHelper {

// No Constructor

//
Public Class Methods
public static String extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, String that

);public static String read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronized
public static void write (org.omg.CORBA.portable.OutputStream out, String that

);
}

NameComponent Java 1.2

org.omg.CosNaming serializable
A NameComponent represents one element in a name binding for an object. The name of an object in a
NamingContext is composed of a sequence of NameComponent objects. Each NameComponent
represents a subcontext that the object falls within, and the last NameComponent is the object's name within
its closest context. Consider an object bound to the name apple−146 within a context bound to the name
fruit within the root context. This object has two NameComponent objects in its fully qualified name
within the root context: fruit, apple−146.

A NameComponent contains an id member, which represents the name associated with the component, and
a kind member, which can optionally be used to further differentiate branches in a naming directory. The
Naming Service does not consider the kind field on NameComponent objects when determining the
uniqueness of name bindings, so each ordered list of id fields extracted from a fully qualified name binding
must be unique.

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 553

public final class NameComponent implements
org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public NameComponent

 ();public NameComponent (String __id, String __kind
);

//
Public Instance Fields
public String id

 ;public String kind
 ;

}
Hierarchy:
Object−−>NameComponent(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: Too many methods to list.

Returned By: NameComponentHelper.{extract(), read()}, NameHelper.{extract(),
read()}

Type Of: org.omg.CosNaming.Binding.binding_name, NameComponentHolder.value,
NameHolder.value, CannotProceed.rest_of_name, NotFound.rest_of_name

NameComponentHelper Java 1.2

org.omg.CosNaming
The helper class for the NameComponent class.

public class NameComponentHelper {

// No Constructor

//
Public Class Methods
public static NameComponent extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, NameComponent that

);public static NameComponent read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronizedpublic static void write (org.omg.CORBA.portable.OutputStream out, NameComponent
that

);}

NameComponentHolder Java 1.2

org.omg.CosNaming
The holder class for out and inout IDL method arguments that are mapped to NameComponent objects.

public final class NameComponentHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public NameComponentHolder

 ();public NameComponentHolder (NameComponent __arg
);

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 554

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public NameComponent value

 ;
}
Hierarchy: Object−−>NameComponentHolder(org.omg.CORBA.portable.Streamable)

NameHelper Java 1.2

org.omg.CosNaming
The helper class generated for the Name typedef declared in the IDL module for the Naming Service
specification. The IDL typedef associates the type Name to a sequence of NameComponent objects.

public class NameHelper {

// No Constructor

//
Public Class Methods
public static NameComponent[] extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, NameComponent[] that

);public static NameComponent[] read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronizedpublic static void write (org.omg.CORBA.portable.OutputStream out, NameComponent[]
that

);}

NameHolder Java 1.2

org.omg.CosNaming
The holder class for out and inout IDL method arguments that are typed as an IDL Name. An IDL
typedef in the Naming Service specification associates the type Name to a sequence of NameComponent
objects, so any in arguments using this type are mapped to NameComponent arrays in Java, and any out
or inout arguments are mapped to NameHolder objects.

public final class NameHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public NameHolder

 ();public NameHolder (NameComponent[] __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public NameComponent[] value

 ;

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 555

}
Hierarchy: Object−−>NameHolder(org.omg.CORBA.portable.Streamable)

NamingContext Java 1.2

org.omg.CosNaming serializable
A NamingContext represents a naming directory structure, where objects are bound to unique branches, or
names, in the naming directory. The full name each object is given in the NamingContext must be unique.
New branches in the naming directory are created by binding a NamingContext to a name within another,
root NamingContext. The child context represents a subdirectory, or subcontext, within the parent context.

Objects are bound to names in a context using the bind() and rebind() methods. The rebind()
method allows you to reassign a name to a new object, if the name has already been bound. You can bind
contexts using the bind_context(), bind_new_context(), and rebind_context() methods. If
you want to simply create a new context without binding it to a name, use the new_context() method.
Bound objects in the context can be found using the resolve() (for singular objects) and list()
methods. The unbind() method lets you remove objects from their bindings in the context.

Objects can be bound to names in multiple NamingContext objects at the same time. Their names within
each context are independent. The same object can also be bound to multiple, different names in a single
context.

public abstract interface NamingContext extends org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity {

//
Public Instance Methodspublic abstract void bind (NameComponent[] n, org.omg.CORBA.Object obj) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName, AlreadyBound;
public abstract void bind_context (NameComponent[] n, NamingContext nc) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName, AlreadyBound;
public abstract NamingContext bind_new_context (NameComponent[] n) throws NotFound,

AlreadyBound, CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;public abstract void destroy
 () throws NotEmpty;public abstract void list (int how_many, BindingListHolder bl, BindingIteratorHolder bi

);public abstract NamingContext new_context

 ();public abstract void rebind (NameComponent[] n, org.omg.CORBA.Object obj) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;
public abstract void rebind_context (NameComponent[] n, NamingContext nc) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;
public abstract org.omg.CORBA.Object resolve (NameComponent[] n) throws NotFound,

CannotProceed, org.omg.CosNaming.NamingContextPackage.InvalidName;
public abstract void unbind (NameComponent[] n) throws NotFound, CannotProceed,

org.omg.CosNaming.NamingContextPackage.InvalidName;}
Hierarchy:
(NamingContext(org.omg.CORBA.Object,org.omg.CORBA.portable.IDLEntity(Serializable)))

Implementations: _NamingContextImplBase, _NamingContextStub

Passed To: _NamingContextImplBase.{bind_context(), rebind_context()},
_NamingContextStub.{bind_context(), rebind_context()},

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 556

NamingContext.{bind_context(), rebind_context()},
NamingContextHelper.{insert(), write()},
NamingContextHolder.NamingContextHolder(), CannotProceed.CannotProceed()

Returned By: _NamingContextImplBase.{bind_new_context(), new_context()},
_NamingContextStub.{bind_new_context(), new_context()},
NamingContext.{bind_new_context(), new_context()},
NamingContextHelper.{extract(), narrow(), read()}

Type Of: NamingContextHolder.value, CannotProceed.cxt

NamingContextHelper Java 1.2

org.omg.CosNaming
The helper class for the NamingContext interface.

public class NamingContextHelper {

// No Constructor

//
Public Class Methods
public static NamingContext extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, NamingContext that

);public static NamingContext narrow (org.omg.CORBA.Object that) throws

org.omg.CORBA.BAD_PARAM;public static NamingContext read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronized
public static void write (org.omg.CORBA.portable.OutputStream out, NamingContext that

);
}

NamingContextHolder Java 1.2

org.omg.CosNaming
The holder class for out and inout IDL method arguments that are mapped to Java NamingContext
objects.

public final class NamingContextHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public NamingContextHolder

 ();public NamingContextHolder (NamingContext __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public NamingContext value

 ;
}

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 557

Hierarchy: Object−−>NamingContextHolder(org.omg.CORBA.portable.Streamable)

34.1. The
org.omg.CORBA.TypeCodePackage
Package

36. The
org.omg.CosNaming.

NamingContextPackage
Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 35. The org.omg.CosNaming Package 558

Chapter 36. The org.omg.CosNaming.
NamingContextPackage Package
The org.omg.CosNaming.NamingContextPackage package defines the exceptions thrown by
various methods on the org.omg.CORBA.CosNaming.NamingContext interface. This package
consists of these exceptions, along with their helper and holder interfaces. Figure 36−1 shows the class
hierarchy for the package.

Figure 36−1. The org.omg.CosNaming.NamingContextPackage package

AlreadyBound Java 1.2

org.omg.CosNaming.NamingContextPackageserializable checked
An exception thrown by the bind(), bind_context(), and bind_new_context() methods on
NamingContext when you attempt to bind an object to a name that already has an object bound to it.

public final class AlreadyBound extends
org.omg.CORBA.UserExceptionimplements
org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public AlreadyBound

 ();
}
Hierarchy:

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 559

Object−−>Throwable(Serializable)−−>Exception−−>org.omg.CORBA.UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>AlreadyBound(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: AlreadyBoundHelper.{insert(), write()},
AlreadyBoundHolder.AlreadyBoundHolder()

Returned By: AlreadyBoundHelper.{extract(), read()}

Thrown By: _NamingContextImplBase.{bind(), bind_context(),
bind_new_context()}, _NamingContextStub.{bind(), bind_context(),
bind_new_context()}, NamingContext.{bind(), bind_context(),
bind_new_context()}

Type Of: AlreadyBoundHolder.value

AlreadyBoundHelper Java 1.2

org.omg.CosNaming.NamingContextPackage
The helper class for the AlreadyBound exception.

public class AlreadyBoundHelper {

// No Constructor

//
Public Class Methods
public static AlreadyBound extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, AlreadyBound that

);public static AlreadyBound read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronized
public static void write (org.omg.CORBA.portable.OutputStream out, AlreadyBound that

);
}

AlreadyBoundHolder Java 1.2

org.omg.CosNaming.NamingContextPackage
The holder class for out and inout IDL method arguments that are mapped to Java AlreadyBound
exceptions.

public final class AlreadyBoundHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public AlreadyBoundHolder

 ();public AlreadyBoundHolder (AlreadyBound __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public AlreadyBound value

 ;

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 560

}
Hierarchy: Object−−>AlreadyBoundHolder(org.omg.CORBA.portable.Streamable)

CannotProceed Java 1.2

org.omg.CosNaming.NamingContextPackageserializable checked
An exception thrown by any of the bind or rebind methods on the NamingContext interface, when the
NamingContext has given up trying to bind the object to the name specified, for some reason not covered
by the other exceptions thrown by these methods. The CannotProceed exception contains a
NamingContext that is the last context it attempted to traverse, and a NameComponent array, which is
the remainder of the name specified in the method call, relative to the context.

public final class CannotProceed extends org.omg.CORBA.UserExceptionimplements
org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public CannotProceed

 ();public CannotProceed (NamingContext __cxt, NameComponent[] __rest_of_name
);

//
Public Instance Fields
public NamingContext cxt

 ;public NameComponent[] rest_of_name
 ;

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>org.omg.CORBA.UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>CannotProceed(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: CannotProceedHelper.{insert(), write()},
CannotProceedHolder.CannotProceedHolder()

Returned By: CannotProceedHelper.{extract(), read()}

Thrown By: _NamingContextImplBase.{bind(), bind_context(),
bind_new_context(), rebind(), rebind_context(), resolve(), unbind()},
_NamingContextStub.{bind(), bind_context(), bind_new_context(), rebind(),
rebind_context(), resolve(), unbind()}, NamingContext.{bind(),
bind_context(), bind_new_context(), rebind(), rebind_context(),
resolve(), unbind()}

Type Of: CannotProceedHolder.value

CannotProceedHelper Java 1.2

org.omg.CosNaming.NamingContextPackage
The helper class for the CannotProceed exception.

public class CannotProceedHelper {

// No Constructor

//
Public Class Methods
public static CannotProceed extract (org.omg.CORBA.Any a

);public static String id
 ();

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 561

public static void insert (org.omg.CORBA.Any a, CannotProceed that
);public static CannotProceed read (org.omg.CORBA.portable.InputStream in

);public static org.omg.CORBA.TypeCode type ();
synchronized

public static void write (org.omg.CORBA.portable.OutputStream out, CannotProceed that
);

}

CannotProceedHolder Java 1.2

org.omg.CosNaming.NamingContextPackage
The holder class for out and inout IDL method arguments that are mapped to Java CannotProceed
exceptions.

public final class CannotProceedHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public CannotProceedHolder

 ();public CannotProceedHolder (CannotProceed __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public CannotProceed value

 ;
}
Hierarchy: Object−−>CannotProceedHolder(org.omg.CORBA.portable.Streamable)

InvalidName Java 1.2

org.omg.CosNaming.NamingContextPackageserializable checked
An exception thrown by any of the NamingContext methods for binding, resolving, or unbinding objects,
when the specified name is invalid (e.g., it contains invalid characters).

public final class InvalidName extends
org.omg.CORBA.UserExceptionimplements
org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public InvalidName

 ();
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>org.omg.CORBA.UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>org.omg.CosNaming.NamingContextPackage.InvalidName(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: InvalidNameHelper.{insert(), write()},
InvalidNameHolder.InvalidNameHolder()

Returned By: InvalidNameHelper.{extract(), read()}

Thrown By: _NamingContextImplBase.{bind(), bind_context(),
bind_new_context(), rebind(), rebind_context(), resolve(), unbind()},

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 562

_NamingContextStub.{bind(), bind_context(), bind_new_context(), rebind(),
rebind_context(), resolve(), unbind()}, NamingContext.{bind(),
bind_context(), bind_new_context(), rebind(), rebind_context(),
resolve(), unbind()}

Type Of: InvalidNameHolder.value

InvalidNameHelper Java 1.2

org.omg.CosNaming.NamingContextPackage
The helper class for the InvalidName exception.

public class InvalidNameHelper {

// No Constructor

//
Public Class Methodspublic static org.omg.CosNaming.NamingContextPackage.InvalidName extract
(org.omg.CORBA.Any a

);public static String id

 ();public static void insert (org.omg.CORBA.Any a,
org.omg.CosNaming.NamingContextPackage.InvalidName that

);
public static org.omg.CosNaming.NamingContextPackage.InvalidName read
(org.omg.CORBA.portable.InputStream in

);public static org.omg.CORBA.TypeCode type ();
synchronizedpublic static void write (org.omg.CORBA.portable.OutputStream out,

org.omg.CosNaming.NamingContextPackage.InvalidName that
);}

InvalidNameHolder Java 1.2

org.omg.CosNaming.NamingContextPackage
The holder class for out and inout IDL method arguments that are mapped to Java InvalidName
exceptions.

public final class InvalidNameHolder implements org.omg.CORBA.portable.Streamable {

//
Public Constructors
public InvalidNameHolder

 ();public InvalidNameHolder (org.omg.CosNaming.NamingContextPackage.InvalidName __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public org.omg.CosNaming.NamingContextPackage.InvalidName value

 ;
}
Hierarchy: Object−−>InvalidNameHolder(org.omg.CORBA.portable.Streamable)

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 563

NotEmpty Java 1.2

org.omg.CosNaming.NamingContextPackageserializable checked
An exception thrown by the NamingContext.destroy() method, if you attempt to destroy a
NamingContext that still has bindings within it.

public final class NotEmpty extends
org.omg.CORBA.UserExceptionimplements
org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public NotEmpty

 ();
}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>org.omg.CORBA.UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>NotEmpty(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: NotEmptyHelper.{insert(), write()},
NotEmptyHolder.NotEmptyHolder()

Returned By: NotEmptyHelper.{extract(), read()}

Thrown By: _NamingContextImplBase.destroy(), _NamingContextStub.destroy(),
NamingContext.destroy()

Type Of: NotEmptyHolder.value

NotEmptyHelper Java 1.2

org.omg.CosNaming.NamingContextPackage
The helper class for the NotEmpty exception.

public class NotEmptyHelper {

// No Constructor

//
Public Class Methods
public static NotEmpty extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, NotEmpty that

);public static NotEmpty read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronized
public static void write (org.omg.CORBA.portable.OutputStream out, NotEmpty that

);
}

NotEmptyHolder Java 1.2

org.omg.CosNaming.NamingContextPackage
The holder class for out and inout IDL method arguments that are mapped to Java NotEmpty
exceptions.

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 564

public final class NotEmptyHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public NotEmptyHolder

 ();public NotEmptyHolder (NotEmpty __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public NotEmpty value

 ;
}
Hierarchy: Object−−>NotEmptyHolder(org.omg.CORBA.portable.Streamable)

NotFound Java 1.2

org.omg.CosNaming.NamingContextPackageserializable checked
An exception thrown by any of the NamingContext methods for binding, resolving, or unbinding object
names, when a specified name is not found as a binding within the NamingContext. The NotFound
exception contains a NameComponent array, which represents the remainder of the name after the first
component mismatch was found, and a NotFoundReason object, that contains an int value that indicates
whether the operation failed because one of the components in the name was not found, one of the
intermediate components was bound to a regular object instead of a context, or the final component was not
bound to an object.

public final class NotFound extends org.omg.CORBA.UserExceptionimplements
org.omg.CORBA.portable.IDLEntity {

//
Public Constructors
public NotFound

 ();public NotFound (NotFoundReason __why, NameComponent[] __rest_of_name
);

//
Public Instance Fields
public NameComponent[] rest_of_name

 ;public NotFoundReason why
 ;

}
Hierarchy:
Object−−>Throwable(Serializable)−−>Exception−−>org.omg.CORBA.UserException(org.omg.CORBA.portable.IDLEntity(Serializable))−−>NotFound(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: NotFoundHelper.{insert(), write()},
NotFoundHolder.NotFoundHolder()

Returned By: NotFoundHelper.{extract(), read()}

Thrown By: _NamingContextImplBase.{bind(), bind_context(),
bind_new_context(), rebind(), rebind_context(), resolve(), unbind()},
_NamingContextStub.{bind(), bind_context(), bind_new_context(), rebind(),
rebind_context(), resolve(), unbind()}, NamingContext.{bind(),
bind_context(), bind_new_context(), rebind(), rebind_context(),
resolve(), unbind()}

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 565

Type Of: NotFoundHolder.value

NotFoundHelper Java 1.2

org.omg.CosNaming.NamingContextPackage
The helper class for the NotFound exception.

public class NotFoundHelper {

// No Constructor

//
Public Class Methods
public static NotFound extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, NotFound that

);public static NotFound read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronized
public static void write (org.omg.CORBA.portable.OutputStream out, NotFound that

);
}

NotFoundHolder Java 1.2

org.omg.CosNaming.NamingContextPackage
The holder class for out and inout IDL method arguments that are mapped to Java NotFound
exceptions.

public final class NotFoundHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public NotFoundHolder

 ();public NotFoundHolder (NotFound __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public NotFound value

 ;
}
Hierarchy: Object−−>NotFoundHolder(org.omg.CORBA.portable.Streamable)

NotFoundReason Java 1.2

org.omg.CosNaming.NamingContextPackage serializable
NotFoundReason objects are used in NotFound exceptions to indicate the reason an object binding was
not found in a NamingContext. It has a value() method that returns an int which can then be
compared to its three static int members to determine the reason for the failure. A value of
_missing_node indicates that an intermediate component of the name specified was not found in the
context, _not_context indicates that an intermediate component name was not bound to a

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 566

NamingContext, and _not_object indicates that an object was not bound to the final component in the
name.

public final class NotFoundReason implements org.omg.CORBA.portable.IDLEntity {

// No Constructor

//
Public Constants
public static final int _missing_node ;

=0
public static final int _not_context ;

=1
public static final int _not_object ;

=2
public static final NotFoundReason missing_node

 ;public static final NotFoundReason not_context
 ;public static final NotFoundReason not_object

 ;
//

Public Class Methods
public static final NotFoundReason from_int (int i

) throws org.omg.CORBA.BAD_PARAM;
//

Public Instance Methods
public int value

 ();
}
Hierarchy:
Object−−>NotFoundReason(org.omg.CORBA.portable.IDLEntity(Serializable))

Passed To: NotFound.NotFound(), NotFoundReasonHelper.{insert(), write()},
NotFoundReasonHolder.NotFoundReasonHolder()

Returned By: NotFoundReason.from_int(), NotFoundReasonHelper.{extract(),
read()}

Type Of: NotFound.why, NotFoundReason.{missing_node, not_context,
not_object}, NotFoundReasonHolder.value

NotFoundReasonHelper Java 1.2

org.omg.CosNaming.NamingContextPackage
The helper class for the NotFoundReason class.

public class NotFoundReasonHelper {

// No Constructor

//
Public Class Methods
public static NotFoundReason extract (org.omg.CORBA.Any a

);public static String id
 ();public static void insert (org.omg.CORBA.Any a, NotFoundReason that

);public static NotFoundReason read (org.omg.CORBA.portable.InputStream in
);public static org.omg.CORBA.TypeCode type ();

synchronizedpublic static void write (org.omg.CORBA.portable.OutputStream out, NotFoundReason
that

);}

NotFoundReasonHolder Java 1.2

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 567

org.omg.CosNaming.NamingContextPackage
The holder class for out and inout IDL method arguments that are mapped to Java NotFoundReason
objects.

public final class NotFoundReasonHolder implements
org.omg.CORBA.portable.Streamable {

//
Public Constructors
public NotFoundReasonHolder

 ();public NotFoundReasonHolder (NotFoundReason __arg
);

//
Methods implementing Streamable
public void _read (org.omg.CORBA.portable.InputStream in

);public org.omg.CORBA.TypeCode _type
 ();public void _write (org.omg.CORBA.portable.OutputStream out

);
//

Public Instance Fields
public NotFoundReason value

 ;
}
Hierarchy: Object−−>NotFoundReasonHolder(org.omg.CORBA.portable.Streamable)

35.1. The
org.omg.CosNaming
Package

37. Class, Method, and
Field Index

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Chapter 36. The org.omg.CosNaming. NamingContextPackage Package 568

Chapter 37. Class, Method, and Field Index
The following index allows you to look up a class or interface and find out what package it is defined in. It
also allows you to look up a method or field and find out what class it is defined in. Use it when you want to
look up a class but don't know its package or when you want to look up a method but don't know its class.

_ADD_OVERRIDE: SetOverrideType

_BindingIteratorImplBase: org.omg.CosNaming

_BindingIteratorStub: org.omg.CosNaming

_COMPLETED_MAYBE: CompletionStatus

_COMPLETED_NO: CompletionStatus

_COMPLETED_YES: CompletionStatus

_create_request(): Object, ObjectImpl

_dk_Alias: DefinitionKind

_dk_all: DefinitionKind

_dk_Array: DefinitionKind

_dk_Attribute: DefinitionKind

_dk_Constant: DefinitionKind

_dk_Enum: DefinitionKind

_dk_Exception: DefinitionKind

_dk_Fixed: DefinitionKind

_dk_Interface: DefinitionKind

_dk_Module: DefinitionKind

_dk_Native: DefinitionKind

_dk_none: DefinitionKind

_dk_Operation: DefinitionKind

_dk_Primitive: DefinitionKind

_dk_Repository: DefinitionKind

_dk_Sequence: DefinitionKind

_dk_String: DefinitionKind

Chapter 37. Class, Method, and Field Index 569

_dk_Struct: DefinitionKind

_dk_Typedef: DefinitionKind

_dk_Union: DefinitionKind

_dk_Value: DefinitionKind

_dk_ValueBox: DefinitionKind

_dk_ValueMember: DefinitionKind

_dk_Wstring: DefinitionKind

_duplicate(): Object, ObjectImpl

_get_delegate(): ObjectImpl

_get_domain_managers(): Object, ObjectImpl

_get_interface_def(): Object, ObjectImpl

_get_policy(): Object, ObjectImpl

_hash(): Object, ObjectImpl

_ids(): _BindingIteratorImplBase, _BindingIteratorStub, _NamingContextImplBase,
_NamingContextStub, ObjectImpl

_invoke(): InvokeHandler, ObjectImpl

_is_a(): Object, ObjectImpl

_is_equivalent(): Object, ObjectImpl

_is_local(): ObjectImpl

_missing_node: NotFoundReason

_NamingContextImplBase: org.omg.CosNaming

_NamingContextStub: org.omg.CosNaming

_ncontext: BindingType

_nobject: BindingType

_non_existent(): Object, ObjectImpl

_not_context: NotFoundReason

_not_object: NotFoundReason

_orb(): ObjectImpl

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 570

_read(): AlreadyBoundHolder, AnyHolder, BindingHolder, BindingIteratorHolder,
BindingListHolder, BindingTypeHolder, BooleanHolder, ByteHolder, CannotProceedHolder,
CharHolder, DoubleHolder, FixedHolder, FloatHolder, IntHolder, InvalidNameHolder,
LongHolder, NameComponentHolder, NameHolder, NamingContextHolder,
NotEmptyHolder, NotFoundHolder, NotFoundReasonHolder, ObjectHolder, PrincipalHolder,
ServiceInformationHolder, ShortHolder, Streamable, StringHolder, TypeCodeHolder

_release(): Object, ObjectImpl

_releaseReply(): ObjectImpl

_request(): Object, ObjectImpl

_servant_postinvoke(): ObjectImpl

_servant_preinvoke(): ObjectImpl

_set_delegate(): ObjectImpl

_SET_OVERRIDE: SetOverrideType

_set_policy_override(): Object, ObjectImpl

_tk_abstract_interface: TCKind

_tk_alias: TCKind

_tk_any: TCKind

_tk_array: TCKind

_tk_boolean: TCKind

_tk_char: TCKind

_tk_double: TCKind

_tk_enum: TCKind

_tk_except: TCKind

_tk_fixed: TCKind

_tk_float: TCKind

_tk_long: TCKind

_tk_longdouble: TCKind

_tk_longlong: TCKind

_tk_native: TCKind

_tk_null: TCKind

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 571

_tk_objref: TCKind

_tk_octet: TCKind

_tk_Principal: TCKind

_tk_sequence: TCKind

_tk_short: TCKind

_tk_string: TCKind

_tk_struct: TCKind

_tk_TypeCode: TCKind

_tk_ulong: TCKind

_tk_ulonglong: TCKind

_tk_union: TCKind

_tk_ushort: TCKind

_tk_value: TCKind

_tk_value_box: TCKind

_tk_void: TCKind

_tk_wchar: TCKind

_tk_wstring: TCKind

_type(): AlreadyBoundHolder, AnyHolder, BindingHolder, BindingIteratorHolder,
BindingListHolder, BindingTypeHolder, BooleanHolder, ByteHolder, CannotProceedHolder,
CharHolder, DoubleHolder, FixedHolder, FloatHolder, IntHolder, InvalidNameHolder,
LongHolder, NameComponentHolder, NameHolder, NamingContextHolder,
NotEmptyHolder, NotFoundHolder, NotFoundReasonHolder, ObjectHolder, PrincipalHolder,
ServiceInformationHolder, ShortHolder, Streamable, StringHolder, TypeCodeHolder

_write(): AlreadyBoundHolder, AnyHolder, BindingHolder, BindingIteratorHolder,
BindingListHolder, BindingTypeHolder, BooleanHolder, ByteHolder, CannotProceedHolder,
CharHolder, DoubleHolder, FixedHolder, FloatHolder, IntHolder, InvalidNameHolder,
LongHolder, NameComponentHolder, NameHolder, NamingContextHolder,
NotEmptyHolder, NotFoundHolder, NotFoundReasonHolder, ObjectHolder, PrincipalHolder,
ServiceInformationHolder, ShortHolder, Streamable, StringHolder, TypeCodeHolder

absolute(): ResultSet

acceptsURL(): Driver

access: ValueMember

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 572

AccessControlEntry: javax.ejb.deployment

AccessException: java.rmi

acknowledge(): Message

Activatable: java.rmi.activation

activate(): ActivationID, Activator

ActivateFailedException: java.rmi.activation

ActivationDesc: java.rmi.activation

ActivationException: java.rmi.activation

ActivationGroup: java.rmi.activation

ActivationGroup_Stub: java.rmi.activation

ActivationGroupDesc: java.rmi.activation

ActivationGroupDesc.CommandEnvironment: java.rmi.activation

ActivationGroupID: java.rmi.activation

ActivationID: java.rmi.activation

ActivationInstantiator: java.rmi.activation

ActivationMonitor: java.rmi.activation

ActivationSystem: java.rmi.activation

Activator: java.rmi.activation

ACTIVATOR_ID: ObjID

activeGroup(): ActivationSystem

activeObject(): ActivationGroup, ActivationMonitor

add(): Attribute, BasicAttribute, CompositeName, CompoundName, ContextList,
ExceptionList, Name, NVList, Reference

ADD_ATTRIBUTE: DirContext

add_in_arg(): Request

add_inout_arg(): Request

add_item(): NVList

add_named_in_arg(): Request

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 573

add_named_inout_arg(): Request

add_named_out_arg(): Request

add_out_arg(): Request

ADD_OVERRIDE: SetOverrideType

add_value(): NVList

addAll(): CompositeName, CompoundName, Name

addBatch(): PreparedStatement, Statement

addConnectionEventListener(): PooledConnection

addCookie(): HttpServletResponse

addRowSetListener(): RowSet

addrs: Reference

addrType: RefAddr

addToEnvironment(): Context, InitialContext

after(): Timestamp

afterBegin(): SessionSynchronization

afterCompletion(): SessionSynchronization, Synchronization

afterLast(): ResultSet

allProceduresAreCallable(): DatabaseMetaData

allTablesAreSelectable(): DatabaseMetaData

AlreadyBound: org.omg.CosNaming.NamingContextPackage

AlreadyBoundException: java.rmi

AlreadyBoundHelper: org.omg.CosNaming.NamingContextPackage

AlreadyBoundHolder: org.omg.CosNaming.NamingContextPackage

altName: CannotProceedException

altNameCtx: CannotProceedException

Any: org.omg.CORBA

AnyHolder: org.omg.CORBA

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 574

appendRemainingComponent(): NamingException, ResolveResult

appendRemainingName(): NamingException, ResolveResult

ApplicationException: org.omg.CORBA.portable

ARG_IN: org.omg.CORBA

ARG_INOUT: org.omg.CORBA

ARG_OUT: org.omg.CORBA

arguments(): Request, ServerRequest

ARRAY: Types

Array: java.sql

assign(): DynAny

Attribute: javax.naming.directory

AttributeInUseException: javax.naming.directory

AttributeModificationException: javax.naming.directory

Attributes: javax.naming.directory

attrID: BasicAttribute

AuthenticationException: javax.naming

AuthenticationNotSupportedException: javax.naming

AUTHORITATIVE: Context

AUTO_ACKNOWLEDGE: Session

BAD_CONTEXT: org.omg.CORBA

BAD_INV_ORDER: org.omg.CORBA

BAD_OPERATION: org.omg.CORBA

BAD_PARAM: org.omg.CORBA

BAD_POLICY: org.omg.CORBA

BAD_POLICY_TYPE: org.omg.CORBA

BAD_POLICY_VALUE: org.omg.CORBA

BAD_TYPECODE: org.omg.CORBA

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 575

BadKind: org.omg.CORBA.TypeCodePackage

BasicAttribute: javax.naming.directory

BasicAttributes: javax.naming.directory

BATCHSIZE: Context

BatchUpdateException: java.sql

before(): Timestamp

beforeCompletion(): SessionSynchronization, Synchronization

beforeFirst(): ResultSet

begin(): TransactionManager, UserTransaction

bestRowNotPseudo: DatabaseMetaData

bestRowPseudo: DatabaseMetaData

bestRowSession: DatabaseMetaData

bestRowTemporary: DatabaseMetaData

bestRowTransaction: DatabaseMetaData

bestRowUnknown: DatabaseMetaData

BIGINT: Types

BINARY: Types

BinaryRefAddr: javax.naming

bind(): _NamingContextImplBase, _NamingContextStub, Context, DirContext,
InitialContext, InitialDirContext, Naming, NamingContext, Registry

bind_context(): _NamingContextImplBase, _NamingContextStub, NamingContext

bind_new_context(): _NamingContextImplBase, _NamingContextStub, NamingContext

Binding: javax.naming, org.omg.CosNaming

binding_name: Binding

binding_type: Binding

BindingHelper: org.omg.CosNaming

BindingHolder: org.omg.CosNaming

BindingIterator: org.omg.CosNaming

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 576

BindingIteratorHelper: org.omg.CosNaming

BindingIteratorHolder: org.omg.CosNaming

BindingListHelper: org.omg.CosNaming

BindingListHolder: org.omg.CosNaming

BindingType: org.omg.CosNaming

BindingTypeHelper: org.omg.CosNaming

BindingTypeHolder: org.omg.CosNaming

BIT: Types

Blob: java.sql

BLOB: Types

BooleanHolder: org.omg.CORBA

Bounds: org.omg.CORBA, org.omg.CORBA.TypeCodePackage

BRIEF: LogStream

ByteHolder: org.omg.CORBA

BytesMessage: javax.jms

CallableStatement: java.sql

cancel(): Statement

cancelRowUpdates(): ResultSet

CannotProceed: org.omg.CosNaming.NamingContextPackage

CannotProceedException: javax.naming

CannotProceedHelper: org.omg.CosNaming.NamingContextPackage

CannotProceedHolder: org.omg.CosNaming.NamingContextPackage

CHAR: Types

CharHolder: org.omg.CORBA

choices: DriverPropertyInfo

classFactory: Reference

classFactoryLocation: Reference

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 577

className: Reference

clean(): DGC

clear(): Attribute, BasicAttribute, Environment, Reference

clearBatch(): Statement

clearBody(): Message

clearParameters(): PreparedStatement, RowSet

clearProperties(): Message

clearWarnings(): Connection, ResultSet, Statement

CLIENT_ACKNOWLEDGE: Session

CLIENT_IDENTITY: ControlDescriptor

Clob: java.sql

CLOB: Types

clone(): Attribute, Attributes, BasicAttribute, BasicAttributes, CompositeName,
CompoundName, Cookie, Name, Reference, UnicastRemoteObject

close(): Connection, ConnectionConsumer, Context, InitialContext, MessageConsumer,
MessageProducer, PooledConnection, QueueBrowser, QueueRequestor, ResultSet, Session,
Statement, TopicRequestor

columnNoNulls: DatabaseMetaData, ResultSetMetaData

columnNullable: DatabaseMetaData, ResultSetMetaData

columnNullableUnknown: DatabaseMetaData, ResultSetMetaData

COMM_FAILURE: org.omg.CORBA

CommandEnvironment: java.rmi.activation.ActivationGroupDesc

commit(): Connection, Session, Transaction, TransactionManager, UserTransaction,
XAResource

CommunicationException: javax.naming

compareTo(): CompositeName, CompoundName, Name

completed: SystemException

COMPLETED_MAYBE: CompletionStatus

COMPLETED_NO: CompletionStatus

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 578

COMPLETED_YES: CompletionStatus

CompletionStatus: org.omg.CORBA

composeName(): Context, InitialContext

CompositeName: javax.naming

CompoundName: javax.naming

concrete_base_type(): TypeCode

CONCUR_READ_ONLY: ResultSet

CONCUR_UPDATABLE: ResultSet

ConfigurationException: javax.naming

connect(): Driver, ORB

ConnectException: java.rmi

ConnectIOException: java.rmi

Connection: java.sql, javax.jms

connectionClosed(): ConnectionEventListener

ConnectionConsumer: javax.jms

connectionErrorOccurred(): ConnectionEventListener

ConnectionEvent: javax.sql

ConnectionEventListener: javax.sql

ConnectionFactory: javax.jms

ConnectionMetaData: javax.jms

ConnectionPoolDataSource: javax.sql

contains(): Attribute, BasicAttribute

containsHeader(): HttpServletResponse

content_type(): TypeCode

Context: javax.naming, org.omg.CORBA

context_name(): Context

ContextList: org.omg.CORBA

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 579

ContextNotEmptyException: javax.naming

contexts(): Request

ControlDescriptor: javax.ejb.deployment

Cookie: javax.servlet.http

copy(): DynAny, Policy

count(): ContextList, ExceptionList, NVList

create_abstract_interface_tc(): ORB

create_alias_tc(): ORB

create_any(): ORB

create_array_tc(): ORB

create_basic_dyn_any(): ORB

create_child(): Context

create_context_list(): ORB

create_dyn_any(): ORB

create_dyn_array(): ORB

create_dyn_enum(): ORB

create_dyn_sequence(): ORB

create_dyn_struct(): ORB

create_dyn_union(): ORB

create_enum_tc(): ORB

create_environment(): ORB

create_exception_list(): ORB

create_exception_tc(): ORB

create_fixed_tc(): ORB

create_input_stream(): Any, OutputStream

create_interface_tc(): ORB

create_list(): ORB

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 580

create_named_value(): ORB

create_native_tc(): ORB

create_operation_list(): ORB

create_output_stream(): Any, ORB

create_policy(): ORB

create_recursive_sequence_tc(): ORB

create_recursive_tc(): ORB

create_request(): Delegate

create_sequence_tc(): ORB

create_string_tc(): ORB

create_struct_tc(): ORB

create_union_tc(): ORB

create_value_box_tc(): ORB

create_value_tc(): ORB

create_wstring_tc(): ORB

createBrowser(): QueueSession

createBytesMessage(): Session

createConnectionConsumer(): QueueConnection, TopicConnection

createDurableConnectionConsumer(): TopicConnection

createDurableSubscriber(): TopicSession

CreateException: javax.ejb

createExceptionReply(): ResponseHandler

createGroup(): ActivationGroup

createInitialContextFactory(): InitialContextFactoryBuilder

createMapMessage(): Session

createMessage(): Session

createObjectFactory(): ObjectFactoryBuilder

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 581

createObjectMessage(): Session

createPublisher(): TopicSession

createQueue(): QueueSession

createQueueConnection(): QueueConnectionFactory

createQueueSession(): QueueConnection

createReceiver(): QueueSession

createRegistry(): LocateRegistry

createReply(): ResponseHandler

createSender(): QueueSession

createServerSocket(): RMIServerSocketFactory, RMISocketFactory

createSocket(): RMIClientSocketFactory, RMISocketFactory

createStatement(): Connection

createStreamMessage(): Session

createSubcontext(): Context, DirContext, InitialContext, InitialDirContext

createSubscriber(): TopicSession

createTemporaryQueue(): QueueSession

createTemporaryTopic(): TopicSession

createTextMessage(): Session

createTopic(): TopicSession

createTopicConnection(): TopicConnectionFactory

createTopicSession(): TopicConnection

createXAQueueConnection(): XAQueueConnectionFactory

createXAQueueSession(): XAQueueConnection

createXATopicConnection(): XATopicConnectionFactory

createXATopicSession(): XATopicConnection

ctx(): Request, ServerRequest

CTX_RESTRICT_SCOPE: org.omg.CORBA

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 582

Current: org.omg.CORBA

current_component(): DynAny

current_member_kind(): DynStruct, DynValue

current_member_name(): DynStruct, DynValue

currentGroupID(): ActivationGroup

cursorMoved(): RowSetListener

cxt: CannotProceed

DATA_CONVERSION: org.omg.CORBA

DatabaseMetaData: java.sql

dataDefinitionCausesTransactionCommit(): DatabaseMetaData

dataDefinitionIgnoredInTransactions(): DatabaseMetaData

DataSource: javax.sql

DataTruncation: java.sql

DATE: Types

Date: java.sql

DECIMAL: Types

def_kind(): IRObject

DEFAULT_DELIVERY_MODE: Message

default_index(): TypeCode

DEFAULT_PRIORITY: Message

DEFAULT_TIME_TO_LIVE: Message

defaultInitCtx: InitialContext

defined_in: ValueMember

DefinitionKind: org.omg.CORBA

Delegate: org.omg.CORBA.portable

delete(): TemporaryQueue, TemporaryTopic

delete_values(): Context

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 583

deleteRow(): ResultSet

deletesAreDetected(): DatabaseMetaData

delistResource(): Transaction

DeliveryMode: javax.jms

DeploymentDescriptor: javax.ejb.deployment

deregisterDriver(): DriverManager

description: DriverPropertyInfo

Destination: javax.jms

destroy(): _BindingIteratorImplBase, _BindingIteratorStub, _NamingContextImplBase,
_NamingContextStub, BindingIterator, DynAny, GenericServlet, IRObject, NamingContext,
Policy, Servlet

destroySubcontext(): Context, InitialContext

detail: ActivationException, RemoteException, ServerCloneException

DGC: java.rmi.dgc

DGC_ID: ObjID

DirContext: javax.naming.directory

DirectoryManager: javax.naming.spi

dirty(): DGC

disconnect(): ORB

discriminator(): DynUnion

discriminator_kind(): DynUnion

discriminator_type(): TypeCode

dispatch(): Skeleton

DISTINCT: Types

dk_Alias: DefinitionKind

dk_all: DefinitionKind

dk_Array: DefinitionKind

dk_Attribute: DefinitionKind

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 584

dk_Constant: DefinitionKind

dk_Enum: DefinitionKind

dk_Exception: DefinitionKind

dk_Fixed: DefinitionKind

dk_Interface: DefinitionKind

dk_Module: DefinitionKind

dk_Native: DefinitionKind

dk_none: DefinitionKind

dk_Operation: DefinitionKind

dk_Primitive: DefinitionKind

dk_Repository: DefinitionKind

dk_Sequence: DefinitionKind

dk_String: DefinitionKind

dk_Struct: DefinitionKind

dk_Typedef: DefinitionKind

dk_Union: DefinitionKind

dk_Value: DefinitionKind

dk_ValueBox: DefinitionKind

dk_ValueMember: DefinitionKind

dk_Wstring: DefinitionKind

DNS_URL: Context

doDelete(): HttpServlet

doesMaxRowSizeIncludeBlobs(): DatabaseMetaData

doGet(): HttpServlet

DomainManager: org.omg.CORBA

done(): RemoteCall, RemoteRef

doOptions(): HttpServlet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 585

doPost(): HttpServlet

doPut(): HttpServlet

doTrace(): HttpServlet

DOUBLE: Types

DoubleHolder: org.omg.CORBA

Driver: java.sql

DriverManager: java.sql

DriverPropertyInfo: java.sql

duplicate(): Delegate

DuplicateKeyException: javax.ejb

DUPS_OK_ACKNOWLEDGE: Session

DynamicImplementation: org.omg.CORBA

DynAny: org.omg.CORBA

DynArray: org.omg.CORBA

DynEnum: org.omg.CORBA

DynFixed: org.omg.CORBA

DynSequence: org.omg.CORBA

DynStruct: org.omg.CORBA

DynUnion: org.omg.CORBA

DynValue: org.omg.CORBA

ejbActivate(): EntityBean, SessionBean

EJBContext: javax.ejb

EJBException: javax.ejb

EJBHome: javax.ejb

ejbLoad(): EntityBean

EJBMetaData: javax.ejb

EJBObject: javax.ejb

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 586

ejbPassivate(): EntityBean, SessionBean

ejbRemove(): EntityBean, SessionBean

ejbStore(): EntityBean

encodeRedirectUrl(): HttpServletResponse

encodeRedirectURL(): HttpServletResponse

encodeUrl(): HttpServletResponse

encodeURL(): HttpServletResponse

end(): XAResource

endsWith(): CompositeName, CompoundName, Name

enlistResource(): Transaction

EnterpriseBean: javax.ejb

EntityBean: javax.ejb

EntityContext: javax.ejb

EntityDescriptor: javax.ejb.deployment

env(): Request

environment: CannotProceedException

Environment: org.omg.CORBA

equal(): Any, TypeCode

equals(): ActivationDesc, ActivationGroupDesc, ActivationGroupID, ActivationID,
BasicAttribute, BinaryRefAddr, CommandEnvironment, CompositeName, CompoundName,
Delegate, MarshalledObject, ObjectImpl, ObjID, RefAddr, Reference, RemoteObject,
Timestamp, UID, VMID

equivalent(): TypeCode

errorCode: SystemException, XAException

except: UnknownUserException

except(): ServerRequest

exception(): Environment

ExceptionList: org.omg.CORBA

ExceptionListener: javax.jms

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 587

exceptions(): Request

execute(): PreparedStatement, RowSet, Statement

executeBatch(): Statement

executeCall(): RemoteCall

executeQuery(): PreparedStatement, Statement

executeUpdate(): PreparedStatement, Statement

ExportException: java.rmi.server

exportObject(): Activatable, ServerRef, UnicastRemoteObject

extract(): AlreadyBoundHelper, BindingHelper, BindingIteratorHelper, BindingListHelper,
BindingTypeHelper, CannotProceedHelper, InvalidNameHelper, IstringHelper,
NameComponentHelper, NameHelper, NamingContextHelper, NotEmptyHelper,
NotFoundHelper, NotFoundReasonHelper, ServiceDetailHelper, ServiceInformationHelper

extract_any(): Any

extract_boolean(): Any

extract_char(): Any

extract_double(): Any

extract_fixed(): Any

extract_float(): Any

extract_long(): Any

extract_longlong(): Any

extract_Object(): Any

extract_octet(): Any

extract_Principal(): Any

extract_short(): Any

extract_string(): Any

extract_TypeCode(): Any

extract_ulong(): Any

extract_ulonglong(): Any

extract_ushort(): Any

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 588

extract_Value(): Any

extract_wchar(): Any

extract_wstring(): Any

failure(): RMIFailureHandler

FETCH_FORWARD: ResultSet

FETCH_REVERSE: ResultSet

FETCH_UNKNOWN: ResultSet

findColumn(): ResultSet

FinderException: javax.ejb

first(): ResultSet

fixed_digits(): TypeCode

fixed_scale(): TypeCode

FixedHolder: org.omg.CORBA

flags(): NamedValue

FLOAT: Types

FloatHolder: org.omg.CORBA

forget(): XAResource

forward(): RequestDispatcher

FREE_MEM: org.omg.CORBA

from_any(): DynAny

from_int(): BindingType, CompletionStatus, DefinitionKind, NotFoundReason,
SetOverrideType, TCKind

GenericServlet: javax.servlet

get(): Attribute, Attributes, BasicAttribute, BasicAttributes, CompositeName,
CompoundName, MarshalledObject, Name, Reference

get_any(): DynAny

get_boolean(): DynAny

get_char(): DynAny

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 589

get_compact_typecode(): TypeCode

get_current(): ORB

get_default_context(): ORB

get_domain_managers(): Delegate

get_domain_policy(): DomainManager

get_double(): DynAny

get_elements(): DynArray, DynSequence

get_float(): DynAny

get_interface_def(): Delegate

get_long(): DynAny

get_longlong(): DynAny

get_members(): DynStruct, DynValue

get_next_response(): ORB

get_octet(): DynAny

get_policy(): Delegate

get_primitive_tc(): ORB

get_reference(): DynAny

get_response(): Request

get_service_information(): ORB

get_short(): DynAny

get_string(): DynAny

get_typecode(): DynAny

get_ulong(): DynAny

get_ulonglong(): DynAny

get_ushort(): DynAny

get_val(): DynAny

get_value(): DynFixed

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 590

get_values(): Context

get_wchar(): DynAny

get_wstring(): DynAny

getAccessControlEntries(): DeploymentDescriptor

getActivationDesc(): ActivationSystem

getActivationGroupDesc(): ActivationSystem

getAll(): Attribute, Attributes, BasicAttribute, BasicAttributes, CompositeName,
CompoundName, Name, Reference

getAllowedIdentities(): AccessControlEntry

getAltName(): CannotProceedException

getAltNameCtx(): CannotProceedException

getArray(): Array, CallableStatement, ResultSet

getAsciiStream(): Clob, ResultSet

getAttribute(): ModificationItem, ServletContext, ServletRequest

getAttributeDefinition(): Attribute, BasicAttribute

getAttributeNames(): ServletContext, ServletRequest

getAttributes(): DirContext, InitialDirContext, SearchResult, Struct

getAttributeSyntaxDefinition(): Attribute, BasicAttribute

getAuthType(): HttpServletRequest

getAutoCommit(): Connection

getBaseType(): Array

getBaseTypeName(): Array, Ref

getBeanHomeName(): DeploymentDescriptor

getBestRowIdentifier(): DatabaseMetaData

getBigDecimal(): CallableStatement, ResultSet

getBinaryStream(): Blob, ResultSet

getBlob(): CallableStatement, ResultSet

getBoolean(): CallableStatement, MapMessage, ResultSet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 591

getBooleanProperty(): Message

getBranchQualifier(): Xid

getByte(): CallableStatement, MapMessage, ResultSet

getByteProperty(): Message

getBytes(): Blob, CallableStatement, MapMessage, ResultSet

getCallerIdentity(): EJBContext

getCatalog(): Connection

getCatalogName(): ResultSetMetaData

getCatalogs(): DatabaseMetaData

getCatalogSeparator(): DatabaseMetaData

getCatalogTerm(): DatabaseMetaData

getCausedByException(): EJBException

getChar(): MapMessage

getCharacterEncoding(): ServletRequest, ServletResponse

getCharacterStream(): Clob, ResultSet

getClassAnnotation(): RMIClassLoader

getClassName(): ActivationDesc, ActivationGroupDesc, Binding, NameClassPair,
Reference

getClientHost(): RemoteServer, ServerRef

getClientID(): Connection

getClob(): CallableStatement, ResultSet

getColumnClassName(): ResultSetMetaData

getColumnCount(): ResultSetMetaData

getColumnDisplaySize(): ResultSetMetaData

getColumnLabel(): ResultSetMetaData

getColumnName(): ResultSetMetaData

getColumnPrivileges(): DatabaseMetaData

getColumns(): DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 592

getColumnType(): ResultSetMetaData

getColumnTypeName(): ResultSetMetaData

getCommand(): RowSet

getCommandEnvironment(): ActivationGroupDesc

getCommandOptions(): CommandEnvironment

getCommandPath(): CommandEnvironment

getComment(): Cookie

getConcurrency(): ResultSet

getConnection(): DatabaseMetaData, DataSource, DriverManager, PooledConnection,
RowSetInternal, Statement

getContainerManagedFields(): EntityDescriptor

getContent(): BinaryRefAddr, RefAddr, StringRefAddr

getContentLength(): ServletRequest

getContentType(): ServletRequest

getContext(): ServletContext

getContinuationContext(): NamingManager

getContinuationDirContext(): DirectoryManager

getControlDescriptors(): DeploymentDescriptor

getCookies(): HttpServletRequest

getCountLimit(): SearchControls

getCreationTime(): HttpSession

getCrossReference(): DatabaseMetaData

getCursorName(): ResultSet

getData(): ActivationDesc, ActivationGroupDesc

getDatabaseProductName(): DatabaseMetaData

getDatabaseProductVersion(): DatabaseMetaData

getDataSize(): DataTruncation

getDataSourceName(): RowSet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 593

getDate(): CallableStatement, ResultSet, Time

getDateHeader(): HttpServletRequest

getDay(): Time

getDefaultInitCtx(): InitialContext

getDefaultSocketFactory(): RMISocketFactory

getDefaultStream(): LogStream

getDefaultTransactionIsolation(): DatabaseMetaData

getDeliveryMode(): MessageProducer

getDerefLinkFlag(): SearchControls

getDisableMessageID(): MessageProducer

getDisableMessageTimestamp(): MessageProducer

getDomain(): Cookie

getDouble(): CallableStatement, MapMessage, ResultSet

getDoubleProperty(): Message

getDriver(): DriverManager

getDriverMajorVersion(): DatabaseMetaData

getDriverMinorVersion(): DatabaseMetaData

getDriverName(): DatabaseMetaData

getDrivers(): DriverManager

getDriverVersion(): DatabaseMetaData

getEJBHome(): EJBContext, EJBMetaData, EJBObject

getEJBMetaData(): EJBHome

getEJBObject(): EntityContext, Handle, SessionContext

getEnterpriseBeanClassName(): DeploymentDescriptor

getEnumeration(): QueueBrowser

getEnvironment(): CannotProceedException, Context, EJBContext, InitialContext

getEnvironmentProperties(): DeploymentDescriptor

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 594

getErrorCode(): JMSException, SQLException

getEscapeProcessing(): RowSet

getExplanation(): NamingException

getExportedKeys(): DatabaseMetaData

getExtraNameCharacters(): DatabaseMetaData

getFactoryClassLocation(): Reference

getFactoryClassName(): Reference

getFailureHandler(): RMISocketFactory

getFetchDirection(): ResultSet, Statement

getFetchSize(): ResultSet, Statement

getFloat(): CallableStatement, MapMessage, ResultSet

getFloatProperty(): Message

getFormatId(): Xid

getGlobalTransactionId(): Xid

getGroupID(): ActivationDesc

getHandle(): EJBObject

getHeader(): HttpServletRequest

getHeaderNames(): HttpServletRequest

getHomeInterfaceClass(): EJBMetaData

getHomeInterfaceClassName(): DeploymentDescriptor

getHours(): Date

getId(): ApplicationException, HttpSession

getID(): Activatable, Attribute, BasicAttribute

getIdentifierQuoteString(): DatabaseMetaData

getIDs(): Attributes, BasicAttributes

getIds(): HttpSessionContext

getImportedKeys(): DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 595

getIndex(): DataTruncation

getIndexInfo(): DatabaseMetaData

getInitialContext(): InitialContextFactory, NamingManager

getInitParameter(): GenericServlet, ServletConfig

getInitParameterNames(): GenericServlet, ServletConfig

getInputStream(): ApplicationException, RemoteCall, ServletRequest

getInt(): CallableStatement, MapMessage, ResultSet

getIntHeader(): HttpServletRequest

getIntProperty(): Message

getIsolationLevel(): ControlDescriptor

getJMSCorrelationID(): Message

getJMSCorrelationIDAsBytes(): Message

getJMSDeliveryMode(): Message

getJMSDestination(): Message

getJMSExpiration(): Message

getJMSMajorVersion(): ConnectionMetaData

getJMSMessageID(): Message

getJMSMinorVersion(): ConnectionMetaData

getJMSPriority(): Message

getJMSProviderName(): ConnectionMetaData

getJMSRedelivered(): Message

getJMSReplyTo(): Message

getJMSTimestamp(): Message

getJMSType(): Message

getJMSVersion(): ConnectionMetaData

getLastAccessedTime(): HttpSession

getLastModified(): HttpServlet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 596

getLinkedException(): JMSException

getLinkExplanation(): LinkException

getLinkName(): LinkRef

getLinkRemainingName(): LinkException

getLinkResolvedName(): LinkException

getLinkResolvedObj(): LinkException

getLocation(): ActivationDesc, ActivationGroupDesc

getLog(): RemoteServer

getLoginTimeout(): ConnectionPoolDataSource, DataSource, DriverManager,
XADataSource

getLogStream(): DriverManager

getLogWriter(): ConnectionPoolDataSource, DataSource, DriverManager, XADataSource

getLong(): CallableStatement, MapMessage, ResultSet

getLongProperty(): Message

getMajorVersion(): Driver, ServletContext

getMapNames(): MapMessage

getMaxAge(): Cookie

getMaxBinaryLiteralLength(): DatabaseMetaData

getMaxCatalogNameLength(): DatabaseMetaData

getMaxCharLiteralLength(): DatabaseMetaData

getMaxColumnNameLength(): DatabaseMetaData

getMaxColumnsInGroupBy(): DatabaseMetaData

getMaxColumnsInIndex(): DatabaseMetaData

getMaxColumnsInOrderBy(): DatabaseMetaData

getMaxColumnsInSelect(): DatabaseMetaData

getMaxColumnsInTable(): DatabaseMetaData

getMaxConnections(): DatabaseMetaData

getMaxCursorNameLength(): DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 597

getMaxFieldSize(): RowSet, Statement

getMaxInactiveInterval(): HttpSession

getMaxIndexLength(): DatabaseMetaData

getMaxProcedureNameLength(): DatabaseMetaData

getMaxRows(): RowSet, Statement

getMaxRowSize(): DatabaseMetaData

getMaxSchemaNameLength(): DatabaseMetaData

getMaxStatementLength(): DatabaseMetaData

getMaxStatements(): DatabaseMetaData

getMaxTableNameLength(): DatabaseMetaData

getMaxTablesInSelect(): DatabaseMetaData

getMaxUserNameLength(): DatabaseMetaData

getMessage(): ActivationException, RemoteException, ServerCloneException

getMessageListener(): MessageConsumer, Session

getMessageSelector(): MessageConsumer, QueueBrowser

getMetaData(): Connection, PreparedStatement, ResultSet

getMethod(): AccessControlEntry, ControlDescriptor, HttpServletRequest

getMimeType(): ServletContext

getMinorVersion(): Driver, ServletContext

getMinutes(): Date

getModificationOp(): ModificationItem

getMonth(): Time

getMoreResults(): Statement

getName(): Cookie, HttpSessionBindingEvent, NameClassPair

getNameParser(): Context, InitialContext

getNanos(): Timestamp

getNextException(): SQLException

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 598

getNextWarning(): SQLWarning

getNoLocal(): TopicSubscriber

getNumericFunctions(): DatabaseMetaData

getObject(): Binding, CallableStatement, MapMessage, ObjectMessage, ResultSet

getObjectInstance(): NamingManager, ObjectFactory

getObjectProperty(): Message

getOperation(): Operation

getOperations(): Skeleton

getOriginal(): RowSetInternal

getOriginalRow(): RowSetInternal

getOutputStream(): LogStream, RemoteCall, ServletResponse

getParameter(): DataTruncation, ServletRequest

getParameterNames(): ServletRequest

getParameterValues(): ServletRequest

getParams(): RowSetInternal

getPassword(): RowSet

getPath(): Cookie

getPathInfo(): HttpServletRequest

getPathTranslated(): HttpServletRequest

getPooledConnection(): ConnectionPoolDataSource

getPrecision(): ResultSetMetaData

getPrefix(): CompositeName, CompoundName, Name

getPrimaryKey(): EJBObject, EntityContext

getPrimaryKeyClass(): EJBMetaData

getPrimaryKeyClassName(): EntityDescriptor

getPrimaryKeys(): DatabaseMetaData

getPriority(): MessageProducer

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 599

getProcedureColumns(): DatabaseMetaData

getProcedures(): DatabaseMetaData

getProcedureTerm(): DatabaseMetaData

getPropertyInfo(): Driver

getPropertyNames(): Message

getPropertyOverrides(): ActivationGroupDesc

getProtocol(): ServletRequest

getProviderMajorVersion(): ConnectionMetaData

getProviderMinorVersion(): ConnectionMetaData

getProviderVersion(): ConnectionMetaData

getQueryString(): HttpServletRequest

getQueryTimeout(): RowSet, Statement

getQueue(): QueueBrowser, QueueReceiver, QueueSender

getQueueName(): Queue

getQueueSession(): XAQueueSession

getRead(): DataTruncation

getReader(): ServletRequest

getRealPath(): ServletContext, ServletRequest

getReentrant(): DeploymentDescriptor

getRef(): CallableStatement, RemoteObject, ResultSet

getRefClass(): RemoteRef

getReference(): Referenceable

getReferralContext(): ReferralException

getReferralInfo(): ReferralException

getRegistry(): LocateRegistry

getRemainingName(): NamingException, ResolveResult

getRemainingNewName(): CannotProceedException

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 600

getRemoteAddr(): ServletRequest

getRemoteHost(): ServletRequest

getRemoteInterfaceClass(): EJBMetaData

getRemoteInterfaceClassName(): DeploymentDescriptor

getRemoteUser(): HttpServletRequest

getRequestDispatcher(): ServletContext

getRequestedSessionId(): HttpServletRequest

getRequestURI(): HttpServletRequest

getRequestURL(): HttpUtils

getResolvedName(): NamingException

getResolvedObj(): NamingException, ResolveResult

getResource(): ServletContext

getResourceAsStream(): ServletContext

getRestartMode(): ActivationDesc

getResultSet(): Array, Statement

getResultSetConcurrency(): Statement

getResultSetType(): Statement

getResultStream(): RemoteCall

getReturningAttributes(): SearchControls

getReturningObjFlag(): SearchControls

getRollbackOnly(): EJBContext

getRootCause(): NamingException, ServletException

getRow(): ResultSet

getRunAsIdentity(): ControlDescriptor

getRunAsMode(): ControlDescriptor

getScale(): ResultSetMetaData

getSchema(): DirContext, InitialDirContext

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 601

getSchemaClassDefinition(): DirContext, InitialDirContext

getSchemaName(): ResultSetMetaData

getSchemas(): DatabaseMetaData

getSchemaTerm(): DatabaseMetaData

getScheme(): ServletRequest

getSearchScope(): SearchControls

getSearchStringEscape(): DatabaseMetaData

getSeconds(): Date

getSecure(): Cookie

getSecurityContext(): LoaderHandler, RMIClassLoader

getServerInfo(): ServletContext

getServerName(): ServletRequest

getServerPort(): ServletRequest

getServerSession(): ServerSessionPool

getServerSessionPool(): ConnectionConsumer

getServlet(): ServletContext, UnavailableException

getServletConfig(): GenericServlet, Servlet

getServletContext(): GenericServlet, ServletConfig

getServletInfo(): GenericServlet, Servlet

getServletNames(): ServletContext

getServletPath(): HttpServletRequest

getServlets(): ServletContext

getSession(): HttpServletRequest, HttpSessionBindingEvent, HttpSessionContext,
ServerSession

getSessionContext(): HttpSession

getSessionTimeout(): SessionDescriptor

getShort(): CallableStatement, MapMessage, ResultSet

getShortProperty(): Message

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 602

getSocketFactory(): RMISocketFactory

getSQLException(): ConnectionEvent

getSQLKeywords(): DatabaseMetaData

getSQLState(): SQLException

getSQLTypeName(): SQLData, Struct

getStateManagementType(): SessionDescriptor

getStatement(): ResultSet

getStatus(): Transaction, TransactionManager, UserTransaction

getString(): CallableStatement, MapMessage, ResultSet

getStringFunctions(): DatabaseMetaData

getStringProperty(): Message

getSubString(): Clob

getSuffix(): CompositeName, CompoundName, Name

getSystem(): ActivationGroup, ActivationGroupID

getSystemFunctions(): DatabaseMetaData

getTableName(): ResultSetMetaData

getTablePrivileges(): DatabaseMetaData

getTables(): DatabaseMetaData

getTableTypes(): DatabaseMetaData

getText(): TextMessage

getTime(): CallableStatement, ResultSet

getTimeDateFunctions(): DatabaseMetaData

getTimeLimit(): SearchControls

getTimestamp(): CallableStatement, ResultSet

getTimeToLive(): MessageProducer

getTopic(): TopicPublisher, TopicSubscriber

getTopicName(): Topic

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 603

getTopicSession(): XATopicSession

getTransacted(): Session

getTransaction(): TransactionManager

getTransactionAttribute(): ControlDescriptor

getTransactionIsolation(): Connection, RowSet

getTransactionTimeout(): XAResource

getTransferSize(): DataTruncation

getType(): RefAddr, ResultSet

getTypeInfo(): DatabaseMetaData

getTypeMap(): Connection, RowSet

getUDTs(): DatabaseMetaData

getUnavailableSeconds(): UnavailableException

getUnexecutedModifications(): AttributeModificationException

getUnicodeStream(): ResultSet

getUpdateCount(): Statement

getUpdateCounts(): BatchUpdateException

getUrl(): RowSet

getURL(): DatabaseMetaData

getURLContext(): NamingManager

getURLOrDefaultInitCtx(): InitialContext

getUsername(): RowSet

getUserName(): DatabaseMetaData

getUserTransaction(): EJBContext

getValue(): Cookie, HttpSession, Lease

getValueNames(): HttpSession

getVersion(): Cookie

getVersionColumns(): DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 604

getVMID(): Lease

getWarnings(): Connection, ResultSet, Statement

getWriter(): ServletResponse

getXAConnection(): XADataSource

getXAResource(): XAConnection, XASession

getYear(): Time

gotDefault: InitialContext

Handle: javax.ejb

hash(): Delegate

hashCode(): ActivationDesc, ActivationGroupDesc, ActivationGroupID, ActivationID,
BasicAttribute, BinaryRefAddr, CommandEnvironment, CompositeName, CompoundName,
Delegate, MarshalledObject, ObjectImpl, ObjID, RefAddr, Reference, RemoteObject, UID,
VMID

hasInitialContextFactoryBuilder(): NamingManager

hasMore(): NamingEnumeration

HeuristicCommitException: javax.transaction

HeuristicMixedException: javax.transaction

HeuristicRollbackException: javax.transaction

HttpServlet: javax.servlet.http

HttpServletRequest: javax.servlet.http

HttpServletResponse: javax.servlet.http

HttpSession: javax.servlet.http

HttpSessionBindingEvent: javax.servlet.http

HttpSessionBindingListener: javax.servlet.http

HttpSessionContext: javax.servlet.http

HttpUtils: javax.servlet.http

id: NameComponent, NameValuePair, ValueMember

id(): AlreadyBoundHelper, BindingHelper, BindingIteratorHelper, BindingListHelper,
BindingTypeHelper, CannotProceedHelper, InvalidNameHelper, IstringHelper,
NameComponentHelper, NameHelper, NamingContextHelper, NotEmptyHelper,

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 605

NotFoundHelper, NotFoundReasonHelper, ServiceDetailHelper, ServiceInformationHelper,
TypeCode

IDLEntity: org.omg.CORBA.portable

IDLType: org.omg.CORBA

IllegalStateException: javax.jms

IMP_LIMIT: org.omg.CORBA

impl: CompoundName

importedKeyCascade: DatabaseMetaData

importedKeyInitiallyDeferred: DatabaseMetaData

importedKeyInitiallyImmediate: DatabaseMetaData

importedKeyNoAction: DatabaseMetaData

importedKeyNotDeferrable: DatabaseMetaData

importedKeyRestrict: DatabaseMetaData

importedKeySetDefault: DatabaseMetaData

importedKeySetNull: DatabaseMetaData

inactive(): Activatable

inactiveGroup(): ActivationGroup, ActivationMonitor

inactiveObject(): ActivationGroup, ActivationMonitor

include(): RequestDispatcher

InconsistentTypeCode: org.omg.CORBA.ORBPackage

init(): GenericServlet, ORB, Servlet

INITIAL_CONTEXT_FACTORY: Context

InitialContext: javax.naming

InitialContextFactory: javax.naming.spi

InitialContextFactoryBuilder: javax.naming.spi

InitialDirContext: javax.naming.directory

INITIALIZE: org.omg.CORBA

InputStream: org.omg.CORBA.portable

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 606

insert(): AlreadyBoundHelper, BindingHelper, BindingIteratorHelper, BindingListHelper,
BindingTypeHelper, CannotProceedHelper, InvalidNameHelper, IstringHelper,
NameComponentHelper, NameHelper, NamingContextHelper, NotEmptyHelper,
NotFoundHelper, NotFoundReasonHelper, ServiceDetailHelper, ServiceInformationHelper

insert_any(): Any, DynAny

insert_boolean(): Any, DynAny

insert_char(): Any, DynAny

insert_double(): Any, DynAny

insert_fixed(): Any

insert_float(): Any, DynAny

insert_long(): Any, DynAny

insert_longlong(): Any, DynAny

insert_Object(): Any

insert_octet(): Any, DynAny

insert_Principal(): Any

insert_reference(): DynAny

insert_short(): Any, DynAny

insert_Streamable(): Any

insert_string(): Any, DynAny

insert_TypeCode(): Any

insert_typecode(): DynAny

insert_ulong(): Any, DynAny

insert_ulonglong(): Any, DynAny

insert_ushort(): Any, DynAny

insert_val(): DynAny

insert_Value(): Any

insert_wchar(): Any, DynAny

insert_wstring(): Any, DynAny

insertRow(): ResultSet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 607

insertsAreDetected(): DatabaseMetaData

InsufficientResourcesException: javax.naming

INTEGER: Types

INTERNAL: org.omg.CORBA

InterruptedNamingException: javax.naming

INTF_REPOS: org.omg.CORBA

IntHolder: org.omg.CORBA

INV_FLAG: org.omg.CORBA

INV_IDENT: org.omg.CORBA

INV_OBJREF: org.omg.CORBA

INV_POLICY: org.omg.CORBA

Invalid: org.omg.CORBA.DynAnyPackage

INVALID_TRANSACTION: org.omg.CORBA

invalidate(): HttpSession

InvalidAttributeIdentifierException: javax.naming.directory

InvalidAttributesException: javax.naming.directory

InvalidAttributeValueException: javax.naming.directory

InvalidClientIDException: javax.jms

InvalidDestinationException: javax.jms

InvalidName: org.omg.CORBA.ORBPackage, org.omg.CosNaming.NamingContextPackage

InvalidNameException: javax.naming

InvalidNameHelper: org.omg.CosNaming.NamingContextPackage

InvalidNameHolder: org.omg.CosNaming.NamingContextPackage

InvalidSearchControlsException: javax.naming.directory

InvalidSearchFilterException: javax.naming.directory

InvalidSelectorException: javax.jms

InvalidSeq: org.omg.CORBA.DynAnyPackage

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 608

InvalidTransactionException: javax.transaction

InvalidValue: org.omg.CORBA.DynAnyPackage

invoke(): _BindingIteratorImplBase, _NamingContextImplBase, Delegate,
DynamicImplementation, RemoteRef, Request

InvokeHandler: org.omg.CORBA.portable

IRObject: org.omg.CORBA

is_a(): Delegate

is_equivalent(): Delegate

is_local(): Delegate

isAfterLast(): ResultSet

isAutoIncrement(): ResultSetMetaData

isBeforeFirst(): ResultSet

isCallerInRole(): EJBContext

isCaseIgnored(): Attributes, BasicAttributes

isCaseSensitive(): ResultSetMetaData

isCatalogAtStart(): DatabaseMetaData

isClosed(): Connection

isCurrency(): ResultSetMetaData

isDefinitelyWritable(): ResultSetMetaData

isEmpty(): CompositeName, CompoundName, Name

isFirst(): ResultSet

isIdentical(): EJBObject

isLast(): ResultSet

isNew(): HttpSession

isNullable(): ResultSetMetaData

isPermanent(): UnavailableException

isReadOnly(): Connection, DatabaseMetaData, ResultSetMetaData, RowSet

isReentrant(): DeploymentDescriptor

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 609

isRelative(): NameClassPair

isRequestedSessionIdFromCookie(): HttpServletRequest

isRequestedSessionIdFromUrl(): HttpServletRequest

isRequestedSessionIdFromURL(): HttpServletRequest

isRequestedSessionIdValid(): HttpServletRequest

isSameRM(): XAResource

isSearchable(): ResultSetMetaData

isSession(): EJBMetaData

isSigned(): ResultSetMetaData

IstringHelper: org.omg.CosNaming

isUnique(): VMID

isWritable(): ResultSetMetaData

item(): ContextList, ExceptionList, NVList

itemExists(): MapMessage

JAVA_OBJECT: Types

jdbcCompliant(): Driver

JMSException: javax.jms

JMSSecurityException: javax.jms

kind: NameComponent

kind(): TypeCode

label: UnionMember

LANGUAGE: Context

last(): ResultSet

Lease: java.rmi.dgc

length(): Blob, Clob, DynSequence, TypeCode

LimitExceededException: javax.naming

LinkException: javax.naming

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 610

linkExplanation: LinkException

LinkLoopException: javax.naming

LinkRef: javax.naming

linkRemainingName: LinkException

linkResolvedName: LinkException

linkResolvedObj: LinkException

list(): _NamingContextImplBase, _NamingContextStub, Context, InitialContext, Naming,
NamingContext, Registry

list_initial_services(): ORB

listBindings(): Context, InitialContext

loadClass(): LoaderHandler, RMIClassLoader

LoaderHandler: java.rmi.server

LocateRegistry: java.rmi.registry

log(): GenericServlet, LogStream, ServletContext

LogStream: java.rmi.server

LongHolder: org.omg.CORBA

LONGVARBINARY: Types

LONGVARCHAR: Types

lookup(): Context, InitialContext, Naming, Registry

lookupLink(): Context, InitialContext

MalformedLinkException: javax.naming

MapMessage: javax.jms

MARSHAL: org.omg.CORBA

MarshalException: java.rmi

MarshalledObject: java.rmi

MAXBQUALSIZE: Xid

MAXGTRIDSIZE: Xid

member(): DynUnion

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 611

member_count(): TypeCode

member_kind(): DynUnion

member_label(): TypeCode

member_name(): DynUnion, TypeCode

member_type(): TypeCode

member_visibility(): TypeCode

Message: javax.jms

MessageConsumer: javax.jms

MessageEOFException: javax.jms

MessageFormatException: javax.jms

MessageListener: javax.jms

MessageNotReadableException: javax.jms

MessageNotWriteableException: javax.jms

MessageProducer: javax.jms

minor: SystemException

missing_node: NotFoundReason

ModificationItem: javax.naming.directory

modifyAttributes(): DirContext, InitialDirContext

moveToCurrentRow(): ResultSet

moveToInsertRow(): ResultSet

myProps: InitialContext

mySyntax: CompoundName

name: DriverPropertyInfo, StructMember, UnionMember, ValueMember

Name: javax.naming

name(): NamedValue, Principal, TypeCode

NameAlreadyBoundException: javax.naming

NameClassPair: javax.naming

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 612

NameComponent: org.omg.CosNaming

NameComponentHelper: org.omg.CosNaming

NameComponentHolder: org.omg.CosNaming

NamedValue: org.omg.CORBA

NameHelper: org.omg.CosNaming

NameHolder: org.omg.CosNaming

NameNotFoundException: javax.naming

NameParser: javax.naming

NameValuePair: org.omg.CORBA

Naming: java.rmi

NamingContext: org.omg.CosNaming

NamingContextHelper: org.omg.CosNaming

NamingContextHolder: org.omg.CosNaming

NamingEnumeration: javax.naming

NamingException: javax.naming

NamingManager: javax.naming.spi

NamingSecurityException: javax.naming

narrow(): BindingIteratorHelper, NamingContextHelper

nativeSQL(): Connection

ncontext: BindingType

new_context(): _NamingContextImplBase, _NamingContextStub, NamingContext

newCall(): RemoteRef

newInstance(): ActivationGroup, ActivationGroup_Stub, ActivationInstantiator

next(): DynAny, NamingEnumeration, ResultSet

next_n(): _BindingIteratorImplBase, _BindingIteratorStub, BindingIterator

next_one(): _BindingIteratorImplBase, _BindingIteratorStub, BindingIterator

NO_IMPLEMENT: org.omg.CORBA

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 613

NO_MEMORY: org.omg.CORBA

NO_PERMISSION: org.omg.CORBA

NO_RESOURCES: org.omg.CORBA

NO_RESPONSE: org.omg.CORBA

nobject: BindingType

NoInitialContextException: javax.naming

non_existent(): Delegate

NON_PERSISTENT: DeliveryMode

NoPermissionException: javax.naming

NoSuchAttributeException: javax.naming.directory

NoSuchObjectException: java.rmi

not_context: NotFoundReason

not_object: NotFoundReason

NotBoundException: java.rmi

NotContextException: javax.naming

NotEmpty: org.omg.CosNaming.NamingContextPackage

NotEmptyHelper: org.omg.CosNaming.NamingContextPackage

NotEmptyHolder: org.omg.CosNaming.NamingContextPackage

NotFound: org.omg.CosNaming.NamingContextPackage

NotFoundHelper: org.omg.CosNaming.NamingContextPackage

NotFoundHolder: org.omg.CosNaming.NamingContextPackage

NotFoundReason: org.omg.CosNaming.NamingContextPackage

NotFoundReasonHelper: org.omg.CosNaming.NamingContextPackage

NotFoundReasonHolder: org.omg.CosNaming.NamingContextPackage

NotSupportedException: javax.transaction

NULL: Types

nullPlusNonNullIsNull(): DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 614

nullsAreSortedAtEnd(): DatabaseMetaData

nullsAreSortedAtStart(): DatabaseMetaData

nullsAreSortedHigh(): DatabaseMetaData

nullsAreSortedLow(): DatabaseMetaData

NUMERIC: Types

NVList: org.omg.CORBA

OBJ_ADAPTER: org.omg.CORBA

Object: org.omg.CORBA

OBJECT_FACTORIES: Context

OBJECT_NOT_EXIST: org.omg.CORBA

OBJECT_SCOPE: SearchControls

object_to_string(): ORB

ObjectFactory: javax.naming.spi

ObjectFactoryBuilder: javax.naming.spi

ObjectHolder: org.omg.CORBA

ObjectImpl: org.omg.CORBA.portable

ObjectMessage: javax.jms

ObjectNotFoundException: javax.ejb

ObjID: java.rmi.server

ONELEVEL_SCOPE: SearchControls

onException(): ExceptionListener

onMessage(): MessageListener

op_name(): ServerRequest

Operation: java.rmi.server

operation(): Request, ServerRequest

OperationNotSupportedException: javax.naming

ORB: org.omg.CORBA

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 615

orb(): Delegate, InputStream, OutputStream

OTHER: Types

othersDeletesAreVisible(): DatabaseMetaData

othersInsertsAreVisible(): DatabaseMetaData

othersUpdatesAreVisible(): DatabaseMetaData

OutputStream: org.omg.CORBA.portable

ownDeletesAreVisible(): DatabaseMetaData

ownInsertsAreVisible(): DatabaseMetaData

ownUpdatesAreVisible(): DatabaseMetaData

packagePrefix: LoaderHandler, RemoteRef

params(): ServerRequest

parent(): Context

parse(): NameParser

parseLevel(): LogStream

parsePostData(): HttpUtils

parseQueryString(): HttpUtils

PartialResultException: javax.naming

perform_work(): ORB

PERSIST_STORE: org.omg.CORBA

PERSISTENT: DeliveryMode

Policy: org.omg.CORBA

policy_type(): Policy

PolicyError: org.omg.CORBA

poll_next_response(): ORB

poll_response(): Request

PooledConnection: javax.sql

position(): Blob, Clob

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 616

prepare(): XAResource

prepareCall(): Connection

PreparedStatement: java.sql

prepareStatement(): Connection

previous(): ResultSet

Principal: org.omg.CORBA

PrincipalHolder: org.omg.CORBA

print(): ServletOutputStream

println(): DriverManager, ServletOutputStream

printStackTrace(): ActivationException, RemoteException, ServerCloneException

PRIVATE_MEMBER: org.omg.CORBA

procedureColumnIn: DatabaseMetaData

procedureColumnInOut: DatabaseMetaData

procedureColumnOut: DatabaseMetaData

procedureColumnResult: DatabaseMetaData

procedureColumnReturn: DatabaseMetaData

procedureColumnUnknown: DatabaseMetaData

procedureNoNulls: DatabaseMetaData

procedureNoResult: DatabaseMetaData

procedureNullable: DatabaseMetaData

procedureNullableUnknown: DatabaseMetaData

procedureResultUnknown: DatabaseMetaData

procedureReturnsResult: DatabaseMetaData

propertyExists(): Message

PROVIDER_URL: Context

PUBLIC_MEMBER: org.omg.CORBA

publish(): TopicPublisher

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 617

put(): Attributes, BasicAttributes

putValue(): HttpSession

Queue: javax.jms

QueueBrowser: javax.jms

QueueConnection: javax.jms

QueueConnectionFactory: javax.jms

QueueReceiver: javax.jms

QueueRequestor: javax.jms

QueueSender: javax.jms

QueueSession: javax.jms

read(): AlreadyBoundHelper, BindingHelper, BindingIteratorHelper, BindingListHelper,
BindingTypeHelper, CannotProceedHelper, InputStream, InvalidNameHelper, IstringHelper,
NameComponentHelper, NameHelper, NamingContextHelper, NotEmptyHelper,
NotFoundHelper, NotFoundReasonHelper, ObjID, ServiceDetailHelper,
ServiceInformationHelper, UID

read_any(): InputStream

read_boolean(): InputStream

read_boolean_array(): InputStream

read_char(): InputStream

read_char_array(): InputStream

read_Context(): InputStream

read_double(): InputStream

read_double_array(): InputStream

read_fixed(): InputStream

read_float(): InputStream

read_float_array(): InputStream

read_long(): InputStream

read_long_array(): InputStream

read_longlong(): InputStream

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 618

read_longlong_array(): InputStream

read_Object(): InputStream

read_octet(): InputStream

read_octet_array(): InputStream

read_Principal(): InputStream

read_short(): InputStream

read_short_array(): InputStream

read_string(): InputStream

read_TypeCode(): InputStream

read_ulong(): InputStream

read_ulong_array(): InputStream

read_ulonglong(): InputStream

read_ulonglong_array(): InputStream

read_ushort(): InputStream

read_ushort_array(): InputStream

read_value(): Any

read_wchar(): InputStream

read_wchar_array(): InputStream

read_wstring(): InputStream

readArray(): SQLInput

readAsciiStream(): SQLInput

readBigDecimal(): SQLInput

readBinaryStream(): SQLInput

readBlob(): SQLInput

readBoolean(): BytesMessage, SQLInput, StreamMessage

readByte(): BytesMessage, SQLInput, StreamMessage

readBytes(): BytesMessage, SQLInput, StreamMessage

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 619

readChar(): BytesMessage, StreamMessage

readCharacterStream(): SQLInput

readClob(): SQLInput

readData(): RowSetReader

readDate(): SQLInput

readDouble(): BytesMessage, SQLInput, StreamMessage

readFloat(): BytesMessage, SQLInput, StreamMessage

readInt(): BytesMessage, SQLInput, StreamMessage

readLine(): ServletInputStream

readLong(): BytesMessage, SQLInput, StreamMessage

readObject(): SQLInput, StreamMessage

readRef(): SQLInput

readShort(): BytesMessage, SQLInput, StreamMessage

readSQL(): SQLData

readString(): SQLInput, StreamMessage

readTime(): SQLInput

readTimestamp(): SQLInput

readUnsignedByte(): BytesMessage

readUnsignedShort(): BytesMessage

readUTF(): BytesMessage

REAL: Types

reason: PolicyError

rebind(): _NamingContextImplBase, _NamingContextStub, Context, DirContext,
InitialContext, InitialDirContext, Naming, NamingContext, Registry

rebind_context(): _NamingContextImplBase, _NamingContextStub, NamingContext

receive(): MessageConsumer

receiveNoWait(): MessageConsumer

recover(): Session, XAResource

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 620

ref: RemoteObject

Ref: java.sql

REF: Types

RefAddr: javax.naming

Reference: javax.naming

Referenceable: javax.naming

REFERRAL: Context

ReferralException: javax.naming

refreshRow(): ResultSet

register(): Activatable

registerDriver(): DriverManager

registerGroup(): ActivationSystem

registerObject(): ActivationSystem

registerOutParameter(): CallableStatement

registerSynchronization(): Transaction

Registry: java.rmi.registry

REGISTRY_ID: ObjID

REGISTRY_PORT: Registry

RegistryHandler: java.rmi.registry

registryImpl(): RegistryHandler

registryStub(): RegistryHandler

relative(): ResultSet

release(): Delegate

releaseInputStream(): RemoteCall

releaseOutputStream(): RemoteCall

releaseReply(): Delegate

remainingName: NamingException, ResolveResult

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 621

remainingNewName: CannotProceedException

RemarshalException: org.omg.CORBA.portable

Remote: java.rmi

RemoteCall: java.rmi.server

remoteEquals(): RemoteRef

RemoteException: java.rmi

remoteHashCode(): RemoteRef

RemoteObject: java.rmi.server

RemoteRef: java.rmi.server

RemoteServer: java.rmi.server

RemoteStub: java.rmi.server

remoteToString(): RemoteRef

remove(): Attribute, Attributes, BasicAttribute, BasicAttributes, CompositeName,
CompoundName, ContextList, EJBHome, EJBObject, ExceptionList, Name, NVList,
Reference

REMOVE_ATTRIBUTE: DirContext

removeAttribute(): ServletContext

removeConnectionEventListener(): PooledConnection

RemoveException: javax.ejb

removeFromEnvironment(): Context, InitialContext

removeRowSetListener(): RowSet

removeValue(): HttpSession

rename(): Context, InitialContext

REPLACE_ATTRIBUTE: DirContext

Request: org.omg.CORBA

request(): Delegate, QueueRequestor, TopicRequestor

RequestDispatcher: javax.servlet

required: DriverPropertyInfo

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 622

reset(): BytesMessage, StreamMessage

resolve(): _NamingContextImplBase, _NamingContextStub, NamingContext

resolve_initial_references(): ORB

resolvedName: NamingException

resolvedObj: NamingException, ResolveResult

Resolver: javax.naming.spi

ResolveResult: javax.naming.spi

resolveToClass(): Resolver

ResourceAllocationException: javax.jms

ResponseHandler: org.omg.CORBA.portable

rest_of_name: CannotProceed, NotFound

result(): Request, ServerRequest

ResultSet: java.sql

ResultSetMetaData: java.sql

resume(): TransactionManager

return_value(): Request

rewind(): DynAny

RMIClassLoader: java.rmi.server

RMIClientSocketFactory: java.rmi.server

RMIFailureHandler: java.rmi.server

RMISecurityException: java.rmi

RMISecurityManager: java.rmi

RMIServerSocketFactory: java.rmi.server

RMISocketFactory: java.rmi.server

rollback(): Connection, Session, Transaction, TransactionManager, UserTransaction,
XAResource

RollbackException: javax.transaction

rootException: NamingException

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 623

rowChanged(): RowSetListener

rowDeleted(): ResultSet

rowInserted(): ResultSet

RowSet: javax.sql

rowSetChanged(): RowSetListener

RowSetEvent: javax.sql

RowSetInternal: javax.sql

RowSetListener: javax.sql

RowSetMetaData: javax.sql

RowSetReader: javax.sql

RowSetWriter: javax.sql

rowUpdated(): ResultSet

run(): ORB

SC_ACCEPTED: HttpServletResponse

SC_BAD_GATEWAY: HttpServletResponse

SC_BAD_REQUEST: HttpServletResponse

SC_CONFLICT: HttpServletResponse

SC_CONTINUE: HttpServletResponse

SC_CREATED: HttpServletResponse

SC_FORBIDDEN: HttpServletResponse

SC_GATEWAY_TIMEOUT: HttpServletResponse

SC_GONE: HttpServletResponse

SC_HTTP_VERSION_NOT_SUPPORTED: HttpServletResponse

SC_INTERNAL_SERVER_ERROR: HttpServletResponse

SC_LENGTH_REQUIRED: HttpServletResponse

SC_METHOD_NOT_ALLOWED: HttpServletResponse

SC_MOVED_PERMANENTLY: HttpServletResponse

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 624

SC_MOVED_TEMPORARILY: HttpServletResponse

SC_MULTIPLE_CHOICES: HttpServletResponse

SC_NO_CONTENT: HttpServletResponse

SC_NON_AUTHORITATIVE_INFORMATION: HttpServletResponse

SC_NOT_ACCEPTABLE: HttpServletResponse

SC_NOT_FOUND: HttpServletResponse

SC_NOT_IMPLEMENTED: HttpServletResponse

SC_NOT_MODIFIED: HttpServletResponse

SC_OK: HttpServletResponse

SC_PARTIAL_CONTENT: HttpServletResponse

SC_PAYMENT_REQUIRED: HttpServletResponse

SC_PRECONDITION_FAILED: HttpServletResponse

SC_PROXY_AUTHENTICATION_REQUIRED: HttpServletResponse

SC_REQUEST_ENTITY_TOO_LARGE: HttpServletResponse

SC_REQUEST_TIMEOUT: HttpServletResponse

SC_REQUEST_URI_TOO_LONG: HttpServletResponse

SC_RESET_CONTENT: HttpServletResponse

SC_SEE_OTHER: HttpServletResponse

SC_SERVICE_UNAVAILABLE: HttpServletResponse

SC_SWITCHING_PROTOCOLS: HttpServletResponse

SC_UNAUTHORIZED: HttpServletResponse

SC_UNSUPPORTED_MEDIA_TYPE: HttpServletResponse

SC_USE_PROXY: HttpServletResponse

SchemaViolationException: javax.naming.directory

search(): DirContext, InitialDirContext

SearchControls: javax.naming.directory

SearchResult: javax.naming.directory

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 625

SECURITY_AUTHENTICATION: Context

SECURITY_CREDENTIALS: Context

SECURITY_PRINCIPAL: Context

SECURITY_PROTOCOL: Context

seek(): DynAny

send(): QueueSender

send_deferred(): Request

send_multiple_requests_deferred(): ORB

send_multiple_requests_oneway(): ORB

send_oneway(): Request

sendError(): HttpServletResponse

sendRedirect(): HttpServletResponse

serialVersionUID: RemoteRef, ServerRef

servant: ServantObject

servant_postinvoke(): Delegate

servant_preinvoke(): Delegate

ServantObject: org.omg.CORBA.portable

ServerCloneException: java.rmi.server

ServerError: java.rmi

ServerException: java.rmi

ServerNotActiveException: java.rmi.server

ServerRef: java.rmi.server

ServerRequest: org.omg.CORBA

ServerRuntimeException: java.rmi

ServerSession: javax.jms

ServerSessionPool: javax.jms

service(): GenericServlet, HttpServlet, Servlet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 626

service_detail: ServiceDetail

service_detail_type: ServiceDetail

service_details: ServiceInformation

service_options: ServiceInformation

ServiceDetail: org.omg.CORBA

ServiceDetailHelper: org.omg.CORBA

ServiceInformation: org.omg.CORBA

ServiceInformationHelper: org.omg.CORBA

ServiceInformationHolder: org.omg.CORBA

ServiceUnavailableException: javax.naming

Servlet: javax.servlet

ServletConfig: javax.servlet

ServletContext: javax.servlet

ServletException: javax.servlet

ServletInputStream: javax.servlet

ServletOutputStream: javax.servlet

ServletRequest: javax.servlet

ServletResponse: javax.servlet

Session: javax.jms

SessionBean: javax.ejb

SessionContext: javax.ejb

SessionDescriptor: javax.ejb.deployment

SessionSynchronization: javax.ejb

set_as_default(): DynUnion

set_elements(): DynArray, DynSequence

set_exception(): ServerRequest

set_members(): DynStruct, DynValue

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 627

set_one_value(): Context

SET_OVERRIDE: SetOverrideType

set_parameters(): ORB

set_policy_override(): Delegate

set_result(): ServerRequest

set_return_type(): Request

set_value(): DynFixed

set_values(): Context

setAccessControlEntries(): DeploymentDescriptor

setActivationDesc(): ActivationSystem

setActivationGroupDesc(): ActivationSystem

setAllowedIdentities(): AccessControlEntry

setAltName(): CannotProceedException

setAltNameCtx(): CannotProceedException

setArray(): PreparedStatement, RowSet

setAsciiStream(): PreparedStatement, RowSet

setAttribute(): ServletContext, ServletRequest

setAttributes(): SearchResult

setAutoCommit(): Connection

setAutoIncrement(): RowSetMetaData

setBeanHomeName(): DeploymentDescriptor

setBigDecimal(): PreparedStatement, RowSet

setBinaryStream(): PreparedStatement, RowSet

setBlob(): PreparedStatement, RowSet

setBoolean(): MapMessage, PreparedStatement, RowSet

setBooleanProperty(): Message

setByte(): MapMessage, PreparedStatement, RowSet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 628

setByteProperty(): Message

setBytes(): MapMessage, PreparedStatement, RowSet

setCaseSensitive(): RowSetMetaData

setCatalog(): Connection

setCatalogName(): RowSetMetaData

setChar(): MapMessage

setCharacterStream(): PreparedStatement, RowSet

setClassName(): NameClassPair

setClientID(): Connection

setClob(): PreparedStatement, RowSet

setColumnCount(): RowSetMetaData

setColumnDisplaySize(): RowSetMetaData

setColumnLabel(): RowSetMetaData

setColumnName(): RowSetMetaData

setColumnType(): RowSetMetaData

setColumnTypeName(): RowSetMetaData

setCommand(): RowSet

setComment(): Cookie

setConcurrency(): RowSet

setContainerManagedFields(): EntityDescriptor

setContentLength(): ServletResponse

setContentType(): ServletResponse

setControlDescriptors(): DeploymentDescriptor

setCountLimit(): SearchControls

setCurrency(): RowSetMetaData

setCursorName(): Statement

setDataSourceName(): RowSet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 629

setDate(): PreparedStatement, RowSet, Time

setDateHeader(): HttpServletResponse

setDefaultStream(): LogStream

setDeliveryMode(): MessageProducer

setDerefLinkFlag(): SearchControls

setDisableMessageID(): MessageProducer

setDisableMessageTimestamp(): MessageProducer

setDomain(): Cookie

setDouble(): MapMessage, PreparedStatement, RowSet

setDoubleProperty(): Message

setEnterpriseBeanClassName(): DeploymentDescriptor

setEntityContext(): EntityBean

setEnvironment(): CannotProceedException

setEnvironmentProperties(): DeploymentDescriptor

setEscapeProcessing(): RowSet, Statement

setExceptionListener(): Connection

setFailureHandler(): RMISocketFactory

setFetchDirection(): ResultSet, Statement

setFetchSize(): ResultSet, Statement

setFloat(): MapMessage, PreparedStatement, RowSet

setFloatProperty(): Message

setHeader(): HttpServletResponse

setHomeInterfaceClassName(): DeploymentDescriptor

setHours(): Date

setInitialContextFactoryBuilder(): NamingManager

setInt(): MapMessage, PreparedStatement, RowSet

setIntHeader(): HttpServletResponse

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 630

setIntProperty(): Message

setIsolationLevel(): ControlDescriptor

setJMSCorrelationID(): Message

setJMSCorrelationIDAsBytes(): Message

setJMSDeliveryMode(): Message

setJMSDestination(): Message

setJMSExpiration(): Message

setJMSMessageID(): Message

setJMSPriority(): Message

setJMSRedelivered(): Message

setJMSReplyTo(): Message

setJMSTimestamp(): Message

setJMSType(): Message

setLinkedException(): JMSException

setLinkExplanation(): LinkException

setLinkRemainingName(): LinkException

setLinkResolvedName(): LinkException

setLinkResolvedObj(): LinkException

setLog(): RemoteServer

setLoginTimeout(): ConnectionPoolDataSource, DataSource, DriverManager,
XADataSource

setLogStream(): DriverManager

setLogWriter(): ConnectionPoolDataSource, DataSource, DriverManager, XADataSource

setLong(): MapMessage, PreparedStatement, RowSet

setLongProperty(): Message

setMaxAge(): Cookie

setMaxFieldSize(): RowSet, Statement

setMaxInactiveInterval(): HttpSession

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 631

setMaxRows(): RowSet, Statement

setMessageListener(): MessageConsumer, Session

setMetaData(): RowSetInternal

setMethod(): AccessControlEntry, ControlDescriptor

setMinutes(): Date

setMonth(): Time

setName(): NameClassPair

setNanos(): Timestamp

setNextException(): SQLException

setNextWarning(): SQLWarning

setNull(): PreparedStatement, RowSet

setNullable(): RowSetMetaData

setObject(): Binding, MapMessage, ObjectMessage, PreparedStatement, RowSet

setObjectFactoryBuilder(): NamingManager

setObjectProperty(): Message

setOutputStream(): LogStream

SetOverrideType: org.omg.CORBA

setPassword(): RowSet

setPath(): Cookie

setPrecision(): RowSetMetaData

setPrimaryKeyClassName(): EntityDescriptor

setPriority(): MessageProducer

setQueryTimeout(): RowSet, Statement

setReadOnly(): Connection, RowSet

setReentrant(): DeploymentDescriptor

setRef(): PreparedStatement, RemoteStub, RowSet

setRelative(): NameClassPair

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 632

setRemainingName(): NamingException, ResolveResult

setRemainingNewName(): CannotProceedException

setRemoteInterfaceClassName(): DeploymentDescriptor

setResolvedName(): NamingException

setResolvedObj(): NamingException, ResolveResult

setReturningAttributes(): SearchControls

setReturningObjFlag(): SearchControls

setRollbackOnly(): EJBContext, Transaction, TransactionManager, UserTransaction

setRootCause(): NamingException

setRunAsIdentity(): ControlDescriptor

setRunAsMode(): ControlDescriptor

setScale(): RowSetMetaData

setSchemaName(): RowSetMetaData

setSearchable(): RowSetMetaData

setSearchScope(): SearchControls

setSeconds(): Date

setSecure(): Cookie

setSessionContext(): SessionBean

setSessionTimeout(): SessionDescriptor

setShort(): MapMessage, PreparedStatement, RowSet

setShortProperty(): Message

setSigned(): RowSetMetaData

setSocketFactory(): RMISocketFactory

setStateManagementType(): SessionDescriptor

setStatus(): HttpServletResponse

setString(): MapMessage, PreparedStatement, RowSet

setStringProperty(): Message

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 633

setSystem(): ActivationGroup

setTableName(): RowSetMetaData

setText(): TextMessage

setTime(): Date, PreparedStatement, RowSet, Time

setTimeLimit(): SearchControls

setTimestamp(): PreparedStatement, RowSet

setTimeToLive(): MessageProducer

setTransactionAttribute(): ControlDescriptor

setTransactionIsolation(): Connection, RowSet

setTransactionTimeout(): TransactionManager, UserTransaction, XAResource

setType(): RowSet

setTypeMap(): Connection, RowSet

setUnexecutedModifications(): AttributeModificationException

setUnicodeStream(): PreparedStatement

setUrl(): RowSet

setUsername(): RowSet

setValue(): Cookie

setVersion(): Cookie

setYear(): Time

ShortHolder: org.omg.CORBA

shutdown(): ActivationSystem, ORB

SILENT: LogStream

SingleThreadModel: javax.servlet

size(): Attribute, Attributes, BasicAttribute, BasicAttributes, CompositeName,
CompoundName, Name, Reference

SizeLimitExceededException: javax.naming

Skeleton: java.rmi.server

SkeletonMismatchException: java.rmi.server

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 634

SkeletonNotFoundException: java.rmi.server

skipReferral(): ReferralException

SMALLINT: Types

SocketSecurityException: java.rmi.server

SPECIFIED_IDENTITY: ControlDescriptor

SQLData: java.sql

SQLException: java.sql

SQLInput: java.sql

SQLOutput: java.sql

SQLWarning: java.sql

start(): Connection, ServerSession, XAResource

startsWith(): CompositeName, CompoundName, Name

STATEFUL_SESSION: SessionDescriptor

STATELESS_SESSION: SessionDescriptor

Statement: java.sql

Status: javax.transaction

STATUS_ACTIVE: Status

STATUS_COMMITTED: Status

STATUS_COMMITTING: Status

STATUS_MARKED_ROLLBACK: Status

STATUS_NO_TRANSACTION: Status

STATUS_PREPARED: Status

STATUS_PREPARING: Status

STATUS_ROLLEDBACK: Status

STATUS_ROLLING_BACK: Status

STATUS_UNKNOWN: Status

stop(): Connection

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 635

storesLowerCaseIdentifiers(): DatabaseMetaData

storesLowerCaseQuotedIdentifiers(): DatabaseMetaData

storesMixedCaseIdentifiers(): DatabaseMetaData

storesMixedCaseQuotedIdentifiers(): DatabaseMetaData

storesUpperCaseIdentifiers(): DatabaseMetaData

storesUpperCaseQuotedIdentifiers(): DatabaseMetaData

Streamable: org.omg.CORBA.portable

StreamMessage: javax.jms

string_to_object(): ORB

StringHolder: org.omg.CORBA

StringRefAddr: javax.naming

STRUCT: Types

Struct: java.sql

StructMember: org.omg.CORBA

StubNotFoundException: java.rmi

SUBTREE_SCOPE: SearchControls

supportsAlterTableWithAddColumn(): DatabaseMetaData

supportsAlterTableWithDropColumn(): DatabaseMetaData

supportsANSI92EntryLevelSQL(): DatabaseMetaData

supportsANSI92FullSQL(): DatabaseMetaData

supportsANSI92IntermediateSQL(): DatabaseMetaData

supportsBatchUpdates(): DatabaseMetaData

supportsCatalogsInDataManipulation(): DatabaseMetaData

supportsCatalogsInIndexDefinitions(): DatabaseMetaData

supportsCatalogsInPrivilegeDefinitions(): DatabaseMetaData

supportsCatalogsInProcedureCalls(): DatabaseMetaData

supportsCatalogsInTableDefinitions(): DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 636

supportsColumnAliasing(): DatabaseMetaData

supportsConvert(): DatabaseMetaData

supportsCoreSQLGrammar(): DatabaseMetaData

supportsCorrelatedSubqueries(): DatabaseMetaData

supportsDataDefinitionAndDataManipulationTransactions(): DatabaseMetaData

supportsDataManipulationTransactionsOnly(): DatabaseMetaData

supportsDifferentTableCorrelationNames(): DatabaseMetaData

supportsExpressionsInOrderBy(): DatabaseMetaData

supportsExtendedSQLGrammar(): DatabaseMetaData

supportsFullOuterJoins(): DatabaseMetaData

supportsGroupBy(): DatabaseMetaData

supportsGroupByBeyondSelect(): DatabaseMetaData

supportsGroupByUnrelated(): DatabaseMetaData

supportsIntegrityEnhancementFacility(): DatabaseMetaData

supportsLikeEscapeClause(): DatabaseMetaData

supportsLimitedOuterJoins(): DatabaseMetaData

supportsMinimumSQLGrammar(): DatabaseMetaData

supportsMixedCaseIdentifiers(): DatabaseMetaData

supportsMixedCaseQuotedIdentifiers(): DatabaseMetaData

supportsMultipleResultSets(): DatabaseMetaData

supportsMultipleTransactions(): DatabaseMetaData

supportsNonNullableColumns(): DatabaseMetaData

supportsOpenCursorsAcrossCommit(): DatabaseMetaData

supportsOpenCursorsAcrossRollback(): DatabaseMetaData

supportsOpenStatementsAcrossCommit(): DatabaseMetaData

supportsOpenStatementsAcrossRollback(): DatabaseMetaData

supportsOrderByUnrelated(): DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 637

supportsOuterJoins(): DatabaseMetaData

supportsPositionedDelete(): DatabaseMetaData

supportsPositionedUpdate(): DatabaseMetaData

supportsResultSetConcurrency(): DatabaseMetaData

supportsResultSetType(): DatabaseMetaData

supportsSchemasInDataManipulation(): DatabaseMetaData

supportsSchemasInIndexDefinitions(): DatabaseMetaData

supportsSchemasInPrivilegeDefinitions(): DatabaseMetaData

supportsSchemasInProcedureCalls(): DatabaseMetaData

supportsSchemasInTableDefinitions(): DatabaseMetaData

supportsSelectForUpdate(): DatabaseMetaData

supportsStoredProcedures(): DatabaseMetaData

supportsSubqueriesInComparisons(): DatabaseMetaData

supportsSubqueriesInExists(): DatabaseMetaData

supportsSubqueriesInIns(): DatabaseMetaData

supportsSubqueriesInQuantifieds(): DatabaseMetaData

supportsTableCorrelationNames(): DatabaseMetaData

supportsTransactionIsolationLevel(): DatabaseMetaData

supportsTransactions(): DatabaseMetaData

supportsUnion(): DatabaseMetaData

supportsUnionAll(): DatabaseMetaData

suspend(): TransactionManager

Synchronization: javax.transaction

SYSTEM_IDENTITY: ControlDescriptor

SYSTEM_PORT: ActivationSystem

SystemException: javax.transaction, org.omg.CORBA

tableIndexClustered: DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 638

tableIndexHashed: DatabaseMetaData

tableIndexOther: DatabaseMetaData

tableIndexStatistic: DatabaseMetaData

target(): Request

TCKind: org.omg.CORBA

TemporaryQueue: javax.jms

TemporaryTopic: javax.jms

TextMessage: javax.jms

TIME: Types

Time: java.sql

TimeLimitExceededException: javax.naming

Timestamp: java.sql

TIMESTAMP: Types

TINYINT: Types

tk_abstract_interface: TCKind

tk_alias: TCKind

tk_any: TCKind

tk_array: TCKind

tk_boolean: TCKind

tk_char: TCKind

tk_double: TCKind

tk_enum: TCKind

tk_except: TCKind

tk_fixed: TCKind

tk_float: TCKind

tk_long: TCKind

tk_longdouble: TCKind

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 639

tk_longlong: TCKind

tk_native: TCKind

tk_null: TCKind

tk_objref: TCKind

tk_octet: TCKind

tk_Principal: TCKind

tk_sequence: TCKind

tk_short: TCKind

tk_string: TCKind

tk_struct: TCKind

tk_TypeCode: TCKind

tk_ulong: TCKind

tk_ulonglong: TCKind

tk_union: TCKind

tk_ushort: TCKind

tk_value: TCKind

tk_value_box: TCKind

tk_void: TCKind

tk_wchar: TCKind

tk_wstring: TCKind

TMENDRSCAN: XAResource

TMFAIL: XAResource

TMJOIN: XAResource

TMNOFLAGS: XAResource

TMONEPHASE: XAResource

TMRESUME: XAResource

TMSTARTRSCAN: XAResource

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 640

TMSUCCESS: XAResource

TMSUSPEND: XAResource

to_any(): DynAny

Topic: javax.jms

TopicConnection: javax.jms

TopicConnectionFactory: javax.jms

TopicPublisher: javax.jms

TopicRequestor: javax.jms

TopicSession: javax.jms

TopicSubscriber: javax.jms

toString(): AttributeModificationException, BasicAttribute, BasicAttributes, BinaryRefAddr,
Binding, CompositeName, CompoundName, Date, Delegate, LinkException, LogStream,
ModificationItem, NameClassPair, NamingException, ObjectImpl, ObjID, Operation, Queue,
RefAddr, Reference, RemoteObject, SearchResult, SystemException, Time, Timestamp,
Topic, UID, VMID

toStub(): RemoteObject

Transaction: javax.transaction

TRANSACTION_NONE: Connection

TRANSACTION_READ_COMMITTED: Connection, ControlDescriptor

TRANSACTION_READ_UNCOMMITTED: Connection, ControlDescriptor

TRANSACTION_REPEATABLE_READ: Connection, ControlDescriptor

TRANSACTION_REQUIRED: org.omg.CORBA

TRANSACTION_ROLLEDBACK: org.omg.CORBA

TRANSACTION_SERIALIZABLE: Connection, ControlDescriptor

TransactionInProgressException: javax.jms

TransactionManager: javax.transaction

TransactionRequiredException: javax.transaction

TransactionRolledBackException: javax.jms

TransactionRolledbackException: javax.transaction

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 641

TRANSIENT: org.omg.CORBA

TX_BEAN_MANAGED: ControlDescriptor

TX_MANDATORY: ControlDescriptor

TX_NOT_SUPPORTED: ControlDescriptor

TX_REQUIRED: ControlDescriptor

TX_REQUIRES_NEW: ControlDescriptor

TX_SUPPORTS: ControlDescriptor

type: StructMember, UnionMember, ValueMember

type(): AlreadyBoundHelper, Any, BindingHelper, BindingIteratorHelper,
BindingListHelper, BindingTypeHelper, CannotProceedHelper, DynAny, IDLType,
InvalidNameHelper, IstringHelper, NameComponentHelper, NameHelper,
NamingContextHelper, NotEmptyHelper, NotFoundHelper, NotFoundReasonHelper,
ServiceDetailHelper, ServiceInformationHelper

type_def: StructMember, UnionMember, ValueMember

TYPE_FORWARD_ONLY: ResultSet

type_modifier(): TypeCode

TYPE_SCROLL_INSENSITIVE: ResultSet

TYPE_SCROLL_SENSITIVE: ResultSet

TypeCode: org.omg.CORBA

TypeCodeHolder: org.omg.CORBA

TypeMismatch: org.omg.CORBA.DynAnyPackage

typeNoNulls: DatabaseMetaData

typeNullable: DatabaseMetaData

typeNullableUnknown: DatabaseMetaData

typePredBasic: DatabaseMetaData

typePredChar: DatabaseMetaData

typePredNone: DatabaseMetaData

Types: java.sql

typeSearchable: DatabaseMetaData

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 642

UID: java.rmi.server

UnavailableException: javax.servlet

unbind(): _NamingContextImplBase, _NamingContextStub, Context, InitialContext,
Naming, NamingContext, Registry

UnexpectedException: java.rmi

unexportObject(): Activatable, UnicastRemoteObject

UnicastRemoteObject: java.rmi.server

UnionMember: org.omg.CORBA

UNKNOWN: org.omg.CORBA

UnknownGroupException: java.rmi.activation

UnknownHostException: java.rmi

UnknownObjectException: java.rmi.activation

UnknownUserException: org.omg.CORBA

UnmarshalException: java.rmi

Unreferenced: java.rmi.server

unreferenced(): Unreferenced

unregister(): Activatable

unregisterGroup(): ActivationSystem

unregisterObject(): ActivationSystem

unsetEntityContext(): EntityBean

unsubscribe(): TopicSession

UNSUPPORTED_POLICY: org.omg.CORBA

UNSUPPORTED_POLICY_VALUE: org.omg.CORBA

updateAsciiStream(): ResultSet

updateBigDecimal(): ResultSet

updateBinaryStream(): ResultSet

updateBoolean(): ResultSet

updateByte(): ResultSet

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 643

updateBytes(): ResultSet

updateCharacterStream(): ResultSet

updateDate(): ResultSet

updateDouble(): ResultSet

updateFloat(): ResultSet

updateInt(): ResultSet

updateLong(): ResultSet

updateNull(): ResultSet

updateObject(): ResultSet

updateRow(): ResultSet

updatesAreDetected(): DatabaseMetaData

updateShort(): ResultSet

updateString(): ResultSet

updateTime(): ResultSet

updateTimestamp(): ResultSet

URL_PKG_PREFIXES: Context

UserException: org.omg.CORBA

UserTransaction: javax.transaction

usesLocalFilePerTable(): DatabaseMetaData

usesLocalFiles(): DatabaseMetaData

value: AlreadyBoundHolder, AnyHolder, ARG_IN, ARG_INOUT, ARG_OUT,
BAD_POLICY, BAD_POLICY_TYPE, BAD_POLICY_VALUE, BindingHolder,
BindingIteratorHolder, BindingListHolder, BindingTypeHolder, BooleanHolder, ByteHolder,
CannotProceedHolder, CharHolder, CTX_RESTRICT_SCOPE, DoubleHolder,
DriverPropertyInfo, FixedHolder, FloatHolder, IntHolder, InvalidNameHolder, LongHolder,
NameComponentHolder, NameHolder, NameValuePair, NamingContextHolder,
NotEmptyHolder, NotFoundHolder, NotFoundReasonHolder, ObjectHolder, PrincipalHolder,
PRIVATE_MEMBER, PUBLIC_MEMBER, ServiceInformationHolder, ShortHolder,
StringHolder, TypeCodeHolder, UNSUPPORTED_POLICY,
UNSUPPORTED_POLICY_VALUE, VM_ABSTRACT, VM_CUSTOM, VM_NONE,
VM_TRUNCATABLE

value(): BindingType, CompletionStatus, DefinitionKind, NamedValue, NotFoundReason,
SetOverrideType, TCKind

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 644

value_as_string(): DynEnum

value_as_ulong(): DynEnum

valueBound(): HttpSessionBindingListener

ValueMember: org.omg.CORBA

valueOf(): Date, Time, Timestamp

values: BasicAttribute

valueUnbound(): HttpSessionBindingListener

VARBINARY: Types

VARCHAR: Types

VERBOSE: LogStream

version: ValueMember

versionColumnNotPseudo: DatabaseMetaData

versionColumnPseudo: DatabaseMetaData

versionColumnUnknown: DatabaseMetaData

versionNumber: DeploymentDescriptor

VM_ABSTRACT: org.omg.CORBA

VM_CUSTOM: org.omg.CORBA

VM_NONE: org.omg.CORBA

VM_TRUNCATABLE: org.omg.CORBA

VMID: java.rmi.dgc

wasNull(): CallableStatement, ResultSet, SQLInput

why: NotFound

work_pending(): ORB

write(): AlreadyBoundHelper, BindingHelper, BindingIteratorHelper, BindingListHelper,
BindingTypeHelper, CannotProceedHelper, InvalidNameHelper, IstringHelper, LogStream,
NameComponentHelper, NameHelper, NamingContextHelper, NotEmptyHelper,
NotFoundHelper, NotFoundReasonHelper, ObjID, OutputStream, ServiceDetailHelper,
ServiceInformationHelper, UID

write_any(): OutputStream

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 645

write_boolean(): OutputStream

write_boolean_array(): OutputStream

write_char(): OutputStream

write_char_array(): OutputStream

write_Context(): OutputStream

write_double(): OutputStream

write_double_array(): OutputStream

write_fixed(): OutputStream

write_float(): OutputStream

write_float_array(): OutputStream

write_long(): OutputStream

write_long_array(): OutputStream

write_longlong(): OutputStream

write_longlong_array(): OutputStream

write_Object(): OutputStream

write_octet(): OutputStream

write_octet_array(): OutputStream

write_Principal(): OutputStream

write_short(): OutputStream

write_short_array(): OutputStream

write_string(): OutputStream

write_TypeCode(): OutputStream

write_ulong(): OutputStream

write_ulong_array(): OutputStream

write_ulonglong(): OutputStream

write_ulonglong_array(): OutputStream

write_ushort(): OutputStream

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 646

write_ushort_array(): OutputStream

write_value(): Any

write_wchar(): OutputStream

write_wchar_array(): OutputStream

write_wstring(): OutputStream

writeArray(): SQLOutput

writeAsciiStream(): SQLOutput

writeBigDecimal(): SQLOutput

writeBinaryStream(): SQLOutput

writeBlob(): SQLOutput

writeBoolean(): BytesMessage, SQLOutput, StreamMessage

writeByte(): BytesMessage, SQLOutput, StreamMessage

writeBytes(): BytesMessage, SQLOutput, StreamMessage

writeChar(): BytesMessage, StreamMessage

writeCharacterStream(): SQLOutput

writeClob(): SQLOutput

writeData(): RowSetWriter

writeDate(): SQLOutput

writeDouble(): BytesMessage, SQLOutput, StreamMessage

writeFloat(): BytesMessage, SQLOutput, StreamMessage

writeInt(): BytesMessage, SQLOutput, StreamMessage

writeLong(): BytesMessage, SQLOutput, StreamMessage

writeObject(): BytesMessage, SQLOutput, StreamMessage

writeRef(): SQLOutput

writeShort(): BytesMessage, SQLOutput, StreamMessage

writeSQL(): SQLData

writeString(): SQLOutput, StreamMessage

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 647

writeStruct(): SQLOutput

writeTime(): SQLOutput

writeTimestamp(): SQLOutput

writeUTF(): BytesMessage

WrongTransaction: org.omg.CORBA

XA_HEURCOM: XAException

XA_HEURHAZ: XAException

XA_HEURMIX: XAException

XA_HEURRB: XAException

XA_NOMIGRATE: XAException

XA_OK: XAResource

XA_RBBASE: XAException

XA_RBCOMMFAIL: XAException

XA_RBDEADLOCK: XAException

XA_RBEND: XAException

XA_RBINTEGRITY: XAException

XA_RBOTHER: XAException

XA_RBPROTO: XAException

XA_RBROLLBACK: XAException

XA_RBTIMEOUT: XAException

XA_RBTRANSIENT: XAException

XA_RDONLY: XAException, XAResource

XA_RETRY: XAException

XAConnection: javax.jms, javax.sql

XAConnectionFactory: javax.jms

XADataSource: javax.sql

XAER_ASYNC: XAException

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 648

XAER_DUPID: XAException

XAER_INVAL: XAException

XAER_NOTA: XAException

XAER_OUTSIDE: XAException

XAER_PROTO: XAException

XAER_RMERR: XAException

XAER_RMFAIL: XAException

XAException: javax.transaction.xa

XAQueueConnection: javax.jms

XAQueueConnectionFactory: javax.jms

XAQueueSession: javax.jms

XAResource: javax.transaction.xa

XASession: javax.jms

XATopicConnection: javax.jms

XATopicConnectionFactory: javax.jms

XATopicSession: javax.jms

Xid: javax.transaction.xa

36.1. The
org.omg.CosNaming.
NamingContextPackage
Package

38. How to Use This
Quick Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 649

Reference

Preface (Java Enterprise in a Nutshell)

Chapter 37. Class, Method, and Field Index 650

How to Use This Quick Reference
Contents:

Finding a Quick−Reference Entry
Reading a Quick−Reference Entry

The quick−reference section that follows packs a lot of information into a small space. This introduction
explains how to get the most out of that information. It describes how the quick reference is organized and
how to read the individual entries.

1. Finding a Quick−Reference Entry

The quick reference is organized into chapters, one per package. Each chapter begins with an overview of the
package and includes a hierarchy diagram for the classes and interfaces in the package. Following this
overview are quick−reference entries for all the classes and interfaces in the package.

Entries are organized alphabetically by class and package name, so that related classes are grouped near each
other. Thus, in order to find an entry for a particular class, you must also know the name of the package that
contains that class. Usually, the package name is obvious from the context, and you should have no trouble
looking up the quick−reference entry you want. Use the chapter tabs and the "dictionary−style" headers,
which are located at the upper outside corner of each page, to help you find packages and classes.

Occasionally, you may need to look up a class for which you do not already know the package. In this case,
refer to Chapter 37, "Class, Method, and Field Index". This index allows you to look up a class by class name
and find the package it is part of. (The index also allows you to look up a method or field name and find the
class or classes define it.)

Part 3. API Quick
Reference

Reading a
Quick−Reference Entry

Copyright © 2001 O'Reilly & Associates. All rights reserved.

How to Use This Quick
Reference

2. Reading a Quick−Reference Entry

Each quick−reference entry contains quite a bit of information. The sections that follow describe the structure
of a quick−reference entry, explaining what information is available, where it is found, and what it means.

How to Use This Quick Reference 651

While reading the following descriptions, you will find it helpful to flip through the reference section itself to
find examples of the features being described.

2.1. Class Name, Package Name, Availability, and Flags

Each quick−reference entry begins with a four−part title that specifies the name, package, and availability of
the class, and may also specify various additional flags that describe the class. The class name appears in bold
at the upper left of the title. The package name appears, in smaller print, in the lower− left, below the class
name.

The upper−right portion of the title indicates the availability of the class; it specifies the earliest release that
contained the class. If a class was introduced in Java 1.1, for example, this portion of the title reads "Java 1.1".
If the class was introduced in Version 1.2 of the Java 2 platform, the availability reads "Java 1.2," for
simplicity's sake. If the class is part of a standard extension, this portion of the title specifies the name (or
acronym) of the standard extension and the earliest version in which the class appeared. For example, the
availability might read "Servlets 2.0" or "JNDI 1.1." The availability section of the title is also indicates
whether a class has been deprecated, and, if so, in what release. For example, it might read "Java 1.1;
Deprecated in Java 1.2."

In the lower−right corner of the title you may find a list of flags that describe the class. The possible flags and
their meanings are as follows:

checked
The class is a checked exception, which means that it extends java.lang.Exception, but not
java.lang.RuntimeException. In other words, it must be declared in the throws clause of
any method that may throw it.

cloneable
The class, or a superclass, implements java.lang.Cloneable.

collection
The class, or a superclass, implements java.util.Collection or java.util.Map.

comparable
The class, or a superclass, implements java.lang.Comparable.

error
The class extends java.lang.Error.

event
The class extends java.util.EventObject.

event adapter
The class, or a superclass, implements java.util.EventListener, and the class name ends
with "Adapter."

event listener
The class, or a superclass, implements java.util.EventListener.

layout manager
The class, or a superclass, implements java.awt.LayoutManager.

PJ1.1

Preface (Java Enterprise in a Nutshell)

2.1. Class Name, Package Name, Availability, and Flags 652

The class or interface is part of the Personal Java 1.1 platform.

PJ1.1(mod)
The class or interface is supported, in modified form, by the Personal Java 1.1 platform.

PJ1.1(opt)
The class or interface is an optional part of the Personal Java 1.1 platform. Support for the class is
implementation−dependent.

remote
The class, or a superclass, implements java.rmi.Remote.

runnable
The class, or a superclass, implements java.lang.Runnable.

serializable
The class, or a superclass, implements java.io.Serializable and may be serialized.

unchecked
The class is an unchecked exception, which means it extends java.lang.RuntimeException
and, therefore, does not need to be declared in the throws clause of a method that may throw it.

2.2. Description

The title of each quick−reference entry is followed by a short description of the most important features of the
class or interface. This description may be anywhere from a couple of sentences to several paragraphs long.

2.3. Synopsis

The most important part of every quick−reference entry is the class synopsis, which follows the title and
description. The synopsis for a class looks a lot like the source code for the class, except that the method
bodies are omitted, and some additional annotations are added. If you know Java syntax, you can read the
class synopsis.

The first line of the synopsis contains information about the class itself. It begins with a list of class modifiers,
such as public, abstract, and final. These modifiers are followed by the class or interface
keyword and then by the name of the class. The class name may be followed by an extends clause that
specifies the superclass and an implements clause that specifies any interfaces the class implements.

The class definition line is followed by a list of the fields and methods the class defines. Once again, if you
understand basic Java syntax, you should have no trouble making sense of these lines. The listing for each
member includes the modifiers, type, and name of the member. For methods, the synopsis also includes the
type and name of each method parameter and an optional throws clause that lists the exceptions the method
can throw. The member names are in boldface, so that it is easy to scan the list of members looking for the
one you want. The names of method parameters are in italics to indicate that they are not to be used literally.
The member listings are printed on alternating gray and white backgrounds to keep them visually separate.

2.3.1. Member availability and flags

Each member listing is a single line that defines the API for that member. These listings use Java syntax, so
their meaning is immediately clear to any Java programmer. There is some auxiliary information associated
with each member synopsis, however, that requires explanation.

Preface (Java Enterprise in a Nutshell)

2.2. Description 653

Recall that each quick−reference entry begins with a title section that includes the release in which the class
was first defined. When a member is introduced into a class after the initial release of the class, the version in
which the member was introduced appears, in small print, to the left of the member synopsis. For example, if
a class was first introduced in Java 1.1, but had a new method added in Version 1.2 of Java 2, the title contains
the string "Java 1.1," and the listing for the new member is preceded by the number "1.2." Furthermore, if a
member has been deprecated, that fact is indicated with a hash mark (#) to the left of the member synopsis.

The area to the right of the member synopsis displays a variety of flags that provide additional information
about the member. Some of these flags indicate additional specification details that do not appear in the
member API itself. Other flags contain implementation−specific information. This information can be quite
useful in understanding the class and in debugging your code, but be aware that it may differ between
implementations. The implementation−specific flags displayed in this book are based on Sun's
implementation of Java for Microsoft Windows.

The following flags may be displayed to the right of a member synopsis:

native
An implementation−specific flag that indicates that a method is implemented in native code.
Although native is a Java keyword and can appear in method signatures, it is part of the method
implementation, not part of its specification. Therefore, this information is included with the member
flags, rather than as part of the member listing. This flag is useful as a hint about the expected
performance of a method.

synchronized
An implementation−specific flag that indicates a method implementation is declared
synchronized, meaning that it obtains a lock on the object or class before executing. Like the
native keyword, the synchronized keyword is part of the method implementation, not part of
the specification, so it appears as a flag, not in the method synopsis itself. This flag is a useful hint
that the method is probably implemented in a thread−safe manner.

Whether or not a method is thread−safe is part of the method specification, and this information
should appear (although it often does not) in the method documentation. There are a number of
different ways to make a method thread−safe, however, and declaring the method with the
synchronized keyword is only one possible implementation. In other words, a method that does
not bear the synchronized flag can still be thread−safe.

Overrides:
Indicates that a method overrides a method in one of its superclasses. The flag is followed by the
name of the superclass that the method overrides. This is a specification detail, not an implementation
detail. As we'll see in the next section, overriding methods are usually grouped together in their own
section of the class synopsis. The Overrides: flag is used only when an overriding method is not
grouped in that way.

Implements:
Indicates that a method implements a method in an interface. The flag is followed by the name of the
interface that is implemented. This is a specification detail, not an implementation detail. As we'll see
in the next section, methods that implement an interface are usually grouped into a special section of
the class synopsis. The Implements: flag is used only for methods that are not grouped in this
way.

empty
Indicates that the implementation of the method has an empty body. This can be a hint to the
programmer that the method may need to be overridden in a subclass.

Preface (Java Enterprise in a Nutshell)

2.2. Description 654

constant
An implementation flag that indicates a method has a trivial implementation. Only methods with a
void return type can be truly empty. Any method declared to return a value must have at least a
return statement. The "constant" flag indicates the method implementation is empty except for a
return statement that returns a constant value. Such a method might have a body like return
null; or return false;. Like the "empty" flag, this flag indicates that a method may need to be
overridden.

default:
This flag is used with property accessor methods that read the value of a property (i.e., methods
whose names begins with "get" and take no arguments). The flag is followed by the default value of
the property. Strictly speaking, default property values are a specification detail. In practice, however,
these defaults are not always documented, and care should be taken, because the default values may
change between implementations.

Not all property accessors have a "default:" flag. A default value is determined by dynamically
loading the class in question, instantiating it using a no−argument constructor, and then calling the
method to find what it returns. This technique can be used only on classes that can be dynamically
loaded and instantiated and that have no−argument constructors, so default values are shown for those
classes only. Furthermore, note that when a class is instantiated using a different constructor, the
default values for its properties may be different.

bound
This flag is used with property accessor methods for bound properties of JavaBeans components. The
presence of this flag means that calling the method generates a
java.beans.PropertyChangeEvent. This is a specification detail, but it is sometimes not
documented. Information about bound properties is obtained from the BeanInfo object for the class.

constrained
Indicates that a JavaBeans component property is constrained. In other words, the method may throw
a java.beans.PropertyVetoException. This is a specification detail, not an
implementation detail.

expert
Indicates that the BeanInfo object for this class specifies this method is intended for use by experts
only. This hint is intended for visual programming tools, but users of this book may find the hint
useful as well.

hidden
Indicates that the BeanInfo object for this class specifies this method is for internal use only. This
is a hint that visual programming tools should hide the property or event from the programmer. This
book does not hide these methods, of course, but this flag indicates you should probably avoid using
the method.

preferred
Indicates that the BeanInfo object for this class specifies that this method is an accessor for a
default or preferred property or event. This is a hint to visual programming tools to display the
property or event in a prominent way, and it may also be a useful hint to readers of this book.

=
For staticfinal fields, this flag is followed by the constant value of the field. Only constants of
primitive and String types and constants with the value null are displayed. Some constant values
are specification details, while others are implementation details. The reason that symbolic constants
are defined, however, is so you can write code that does not rely directly upon the constant value. Use

Preface (Java Enterprise in a Nutshell)

2.2. Description 655

this flag to help you understand the class, but do not rely upon the constant values in your own
programs.

2.3.2. Functional grouping of members

Within a class synopsis, the members are not listed in strict alphabetical order. Instead, they are broken into
functional groups and listed alphabetically within each group. Constructors, methods, fields, and inner classes
are listed separately. Instance methods are kept separate from static (class) methods. Constants are separated
from nonconstant fields; public members are listed separately from protected members. Grouping members by
category breaks a class down into smaller, more comprehensible segments, making the class easier to
understand. This grouping also makes it easier for you to find a desired member.

Functional groups are separated from each other in a class synopsis with Java comments, such as "// Public
Constructors", "// Inner Classes", and "// Methods Implementing Servlet". The various functional categories
are as follows (in the order in which they appear in a class synopsis):

Constructors
Displays the constructors for the class. Public constructors and protected constructors are displayed
separately in subgroupings. If a class defines no constructor at all, the Java compiler adds a default
no−argument constructor that is displayed here. If a class defines only private constructors, it cannot
be instantiated, and a special, empty grouping entitled "No Constructor" indicates this fact.
Constructors are listed first because the first thing you do with most classes is instantiate them by
calling a constructor.

Constants
Displays all constants (i.e., fields that are declared static and final) defined by the class. Public
and protected constants are displayed in separate subgroups. Constants are listed here, near the top of
the class synopsis, because constant values are often used throughout the class as legal values for
method parameters and return values.

Inner Classes
Groups all inner classes and interfaces defined by the class or interface. For each inner class, there is a
single−line synopsis. Each inner class also has its own quick−reference entry that includes a full class
synopsis for the inner class. Like constants, inner classes are listed near the top of the class synopsis
because they are often used by other members of the class.

Static Methods
Lists the static methods (class methods) of the class, broken down into subgroups for public static
methods and protected static methods.

Event Listener Registration Methods
Lists the public instance methods that register and deregister event listener objects with the class. The
names of these methods begin with the words "add" and "remove" and end in "Listener." These
methods are always passed a java.util.EventListener object, and are typically defined in
pairs, so the pairs are listed together. The methods are listed alphabetically by event name, rather than
by method name.

Public Instance Methods
Contains all public instance methods that are not grouped elsewhere.

Implementing Methods
Groups the methods that implement the same interface. There is one subgroup for each interface
implemented by the class. Methods defined by the same interface are almost always related to each
other, so this is a useful functional grouping of methods.

Preface (Java Enterprise in a Nutshell)

2.3.2. Functional grouping of members 656

Overriding Methods
Groups the methods that override methods of a superclass broken into subgroups by superclass. This
is typically a useful grouping, because it helps to make it clear how a class modifies the default
behavior of its superclasses. In practice, it is also often true that methods that override the same
superclass are functionally related to each other.

Protected Instance Methods
Contains all protected instance methods that are not grouped elsewhere.

Fields
Lists all nonconstant fields of the class, breaking them down into subgroups for public and protected
static fields, and public and protected instance fields. Many classes do not define any publicly
accessible fields. For those that do, many object−oriented programmers prefer not to use those fields
directly, but instead to use accessor methods when such methods are available.

Deprecated Members
Deprecated methods and deprecated fields are grouped at the very bottom of the class synopsis. Use
of these members is strongly discouraged.

2.4. Class Hierarchy

For any class or interface that has a nontrivial class hierarchy, the class synopsis is followed by a "Hierarchy"
section. This section lists all superclasses of the class, as well as any interfaces implemented by those
superclasses. It may also list any interfaces extended by an interface. In the hierarchy listing, arrows indicate
superclass to subclass relationships, while the interfaces implemented by a class follow the class name in
parentheses. For example, the following hierarchy indicates that javax.servlet.ServletException
extends Exception, which extends Throwable (which implements Serializable), which extends
Object:

Object−−>Throwable(Serializable)−−>Exception−−>ServletException

If a class has subclasses, the "Hierarchy" section is followed by a "Subclasses" section that lists those
subclasses. If an interface has implementations, the "Hierarchy" section is followed by an "Implementations"
section that lists those implementations. While the "Hierarchy" section shows ancestors of the class, the
"Subclasses" or "Implementations" section shows descendants.

2.5. Cross References

The class hierarchy section of a quick−reference entry is followed by a number of optional "cross reference"
sections that indicate other, related classes and methods that may be of interest. These sections are:

Passed To
This section lists all methods and constructors that are passed an object of this type as an argument.
This is useful when you have an object of a given type and want to figure out what you can do with it.

Returned By
This section lists all methods (but not constructors) that return an object of this type. This is useful
when you know that you want to work with an object of this type, but don't know how to obtain one.

Thrown By
For checked exception classes, this section lists all methods and constructors that throw exceptions of
this type. This material helps you figure out when a given exception or error may be thrown. Note,

Preface (Java Enterprise in a Nutshell)

2.4. Class Hierarchy 657

however, that this section is based on the exception types listed in the throws clauses of methods
and constructors. Subclasses of RuntimeException and Error do not have to be listed in
throws clauses, so it is not possible to generate a complete cross reference of methods that throw
these types of unchecked exceptions.

Type Of
This section lists all of the fields and constants that are of this type, which can help you figure out
how to obtain an object of this type.

2.6. A Note About Class Names

Throughout the quick reference, you'll notice that classes are sometimes referred to by class name alone and at
other times referred to by class name and package name. If package names were always used, the class
synopses would become long and hard to read. On the other hand, if package names were never used, it would
sometimes be difficult to know what class was being referred to. The rules for including or omitting the
package name are complex. They can be summarized approximately as follows, however:

•
If the class name alone is ambiguous, the package name is always used.

•
If the class is part of java.lang or java.io, the package name is omitted.

•
If the class being referred to is part of the current package (and has a quick−ref entry in the current
chapter), the package name is omitted. The package name is also omitted if the class being referred to
is part of a package that contains the current package. And it is sometimes omitted if the class being
referred to is part of a subpackage of the current package.

How to Use This Quick
Reference

13. The java.rmi Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Java Enterprise in a
Nutshell

Preface (Java Enterprise in a Nutshell)

2.6. A Note About Class Names 658

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into
potentially dry subjects.

The animal appearing on the cover of Java Enterprise in a Nutshell is a sand dollar (Echinarachnius parma).
The sand dollar is a flattened, rigid, disk−shaped marine invertebrate related to sea urchins and sea stars. It is
found in large numbers on the sandy bottoms in the coastal waters of many parts of the world. The sand
dollar's shell, or test, is often perforated with petal−shaped slots arranged around a central point. The mouth is
located in this central position on the underside of the shell. The shell is covered with spines of varying
lengths. These spines aid the sand dollar in locomotion and enable it to burrow just below the surface of the
sandy bottom. In this sand, the sand dollar finds the tiny organic material it feeds on, pushing the food
towards its mouth with tiny tube feet. Additional tube feet on the upper side of the sand dollar are used for
breathing.

The sand dollar's flower−like appearance and its abundance in many parts of the world have made it a favorite
of shell collectors. Scientists have also taken an interest in this small invertebrate. The sand dollar is
frequently used in the study of mitosis, the process of cell division. It is believed that a better understanding of
mitosis may lead to a better understanding of cancer.

Mary Anne Weeks Mayo was the production editor and copyeditor for Java Enterprise in a Nutshell, Maureen
Dempsey and Jane Ellin provided quality control, and Paulette Miley proofread the book. Kimo Carter
provided production assistance. Lenny Muellner provided SGML support. Ellen Troutman Zaig wrote the
index.

Edie Freedman designed the cover of this book, using a 19th−century engraving from the Dover Pictorial
Archive. Kathleen Wilson produced the cover layout with Quark XPress 3.3 using Adobe's ITC Garamond
font. The interior layouts were designed by Edie Freedman and Nancy Priest, with modifications by Alicia
Cech and Lenny Muellner implemented the layout in gtroff. Interior fonts are Adobe ITC Garamond and
Adobe ITC Franklin Gothic. The illustrations that appear in the book were produced by Robert Romano and
Rhon Porter using Macromedia FreeHand 8 and Adobe Photoshop 5. This colophon was written by
Clairemarie Fisher O'Leary.

Index

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.

Java™ Enterprise in a Nutshell
by David Flanagan, Jim Farley, William Crawford and Kris Magnusson

Preface (Java Enterprise in a Nutshell)

Colophon 659

ISBN 1−56592−483−5E

Print book published 1999 by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

This electronic publication is intended for use by one individual. As such, you may make copies for your own
personal use. However, you may not provide copies to others, or make this publication available to others over
a LAN or other network. You may not reprint, offer for sale, or otherwise re−use material from this
publication without the explicit written permission of O'Reilly & Associates, Inc.

You can purchase print editions of these books directly from O'Reilly & Associates, Inc. or from bookstores
that carry O'Reilly & Associates books.

Logos and Trademarks

Java™ and all Java−based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly & Associates, Inc. is independent of
Sun Microsystems.

The O'Reilly logo is a registered trademark of O'Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the designations have
been printed in caps or initial caps. The use of the Gabriel® Original Tinkertoy® Construction Set image in
association with Java™ Distributed Computing is a trademark of O'Reilly & Associates, Inc.

Disclaimer

While every precaution has been taken in the preparation of this product, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

Questions, comments, and suggestions to bookquestions@ora.com.

Table of Contents 0.1 Preface

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3: API Quick
Reference

Preface (Java Enterprise in a Nutshell)

Logos and Trademarks 660

http://www.oreilly.com/
http://www.oreilly.com/order/bookstores.html
mailto:bookquestions@ora.com

How to Use This Quick Reference
Contents:

Finding a Quick−Reference Entry
Reading a Quick−Reference Entry

The quick−reference section that follows packs a lot of information into a small space. This introduction
explains how to get the most out of that information. It describes how the quick reference is organized and
how to read the individual entries.

1. Finding a Quick−Reference Entry

The quick reference is organized into chapters, one per package. Each chapter begins with an overview of the
package and includes a hierarchy diagram for the classes and interfaces in the package. Following this
overview are quick−reference entries for all the classes and interfaces in the package.

Entries are organized alphabetically by class and package name, so that related classes are grouped near each
other. Thus, in order to find an entry for a particular class, you must also know the name of the package that
contains that class. Usually, the package name is obvious from the context, and you should have no trouble
looking up the quick−reference entry you want. Use the chapter tabs and the "dictionary−style" headers,
which are located at the upper outside corner of each page, to help you find packages and classes.

Occasionally, you may need to look up a class for which you do not already know the package. In this case,
refer to Chapter 37, "Class, Method, and Field Index". This index allows you to look up a class by class name
and find the package it is part of. (The index also allows you to look up a method or field name and find the
class or classes define it.)

Part 3. API Quick
Reference

Reading a
Quick−Reference Entry

Copyright © 2001 O'Reilly & Associates. All rights reserved.

How to Use This Quick
Reference

2. Reading a Quick−Reference Entry

Each quick−reference entry contains quite a bit of information. The sections that follow describe the structure
of a quick−reference entry, explaining what information is available, where it is found, and what it means.

How to Use This Quick Reference 661

While reading the following descriptions, you will find it helpful to flip through the reference section itself to
find examples of the features being described.

2.1. Class Name, Package Name, Availability, and Flags

Each quick−reference entry begins with a four−part title that specifies the name, package, and availability of
the class, and may also specify various additional flags that describe the class. The class name appears in bold
at the upper left of the title. The package name appears, in smaller print, in the lower− left, below the class
name.

The upper−right portion of the title indicates the availability of the class; it specifies the earliest release that
contained the class. If a class was introduced in Java 1.1, for example, this portion of the title reads "Java 1.1".
If the class was introduced in Version 1.2 of the Java 2 platform, the availability reads "Java 1.2," for
simplicity's sake. If the class is part of a standard extension, this portion of the title specifies the name (or
acronym) of the standard extension and the earliest version in which the class appeared. For example, the
availability might read "Servlets 2.0" or "JNDI 1.1." The availability section of the title is also indicates
whether a class has been deprecated, and, if so, in what release. For example, it might read "Java 1.1;
Deprecated in Java 1.2."

In the lower−right corner of the title you may find a list of flags that describe the class. The possible flags and
their meanings are as follows:

checked
The class is a checked exception, which means that it extends java.lang.Exception, but not
java.lang.RuntimeException. In other words, it must be declared in the throws clause of
any method that may throw it.

cloneable
The class, or a superclass, implements java.lang.Cloneable.

collection
The class, or a superclass, implements java.util.Collection or java.util.Map.

comparable
The class, or a superclass, implements java.lang.Comparable.

error
The class extends java.lang.Error.

event
The class extends java.util.EventObject.

event adapter
The class, or a superclass, implements java.util.EventListener, and the class name ends
with "Adapter."

event listener
The class, or a superclass, implements java.util.EventListener.

layout manager
The class, or a superclass, implements java.awt.LayoutManager.

PJ1.1

Preface (Java Enterprise in a Nutshell)

2.1. Class Name, Package Name, Availability, and Flags 662

The class or interface is part of the Personal Java 1.1 platform.

PJ1.1(mod)
The class or interface is supported, in modified form, by the Personal Java 1.1 platform.

PJ1.1(opt)
The class or interface is an optional part of the Personal Java 1.1 platform. Support for the class is
implementation−dependent.

remote
The class, or a superclass, implements java.rmi.Remote.

runnable
The class, or a superclass, implements java.lang.Runnable.

serializable
The class, or a superclass, implements java.io.Serializable and may be serialized.

unchecked
The class is an unchecked exception, which means it extends java.lang.RuntimeException
and, therefore, does not need to be declared in the throws clause of a method that may throw it.

2.2. Description

The title of each quick−reference entry is followed by a short description of the most important features of the
class or interface. This description may be anywhere from a couple of sentences to several paragraphs long.

2.3. Synopsis

The most important part of every quick−reference entry is the class synopsis, which follows the title and
description. The synopsis for a class looks a lot like the source code for the class, except that the method
bodies are omitted, and some additional annotations are added. If you know Java syntax, you can read the
class synopsis.

The first line of the synopsis contains information about the class itself. It begins with a list of class modifiers,
such as public, abstract, and final. These modifiers are followed by the class or interface
keyword and then by the name of the class. The class name may be followed by an extends clause that
specifies the superclass and an implements clause that specifies any interfaces the class implements.

The class definition line is followed by a list of the fields and methods the class defines. Once again, if you
understand basic Java syntax, you should have no trouble making sense of these lines. The listing for each
member includes the modifiers, type, and name of the member. For methods, the synopsis also includes the
type and name of each method parameter and an optional throws clause that lists the exceptions the method
can throw. The member names are in boldface, so that it is easy to scan the list of members looking for the
one you want. The names of method parameters are in italics to indicate that they are not to be used literally.
The member listings are printed on alternating gray and white backgrounds to keep them visually separate.

2.3.1. Member availability and flags

Each member listing is a single line that defines the API for that member. These listings use Java syntax, so
their meaning is immediately clear to any Java programmer. There is some auxiliary information associated
with each member synopsis, however, that requires explanation.

Preface (Java Enterprise in a Nutshell)

2.2. Description 663

Recall that each quick−reference entry begins with a title section that includes the release in which the class
was first defined. When a member is introduced into a class after the initial release of the class, the version in
which the member was introduced appears, in small print, to the left of the member synopsis. For example, if
a class was first introduced in Java 1.1, but had a new method added in Version 1.2 of Java 2, the title contains
the string "Java 1.1," and the listing for the new member is preceded by the number "1.2." Furthermore, if a
member has been deprecated, that fact is indicated with a hash mark (#) to the left of the member synopsis.

The area to the right of the member synopsis displays a variety of flags that provide additional information
about the member. Some of these flags indicate additional specification details that do not appear in the
member API itself. Other flags contain implementation−specific information. This information can be quite
useful in understanding the class and in debugging your code, but be aware that it may differ between
implementations. The implementation−specific flags displayed in this book are based on Sun's
implementation of Java for Microsoft Windows.

The following flags may be displayed to the right of a member synopsis:

native
An implementation−specific flag that indicates that a method is implemented in native code.
Although native is a Java keyword and can appear in method signatures, it is part of the method
implementation, not part of its specification. Therefore, this information is included with the member
flags, rather than as part of the member listing. This flag is useful as a hint about the expected
performance of a method.

synchronized
An implementation−specific flag that indicates a method implementation is declared
synchronized, meaning that it obtains a lock on the object or class before executing. Like the
native keyword, the synchronized keyword is part of the method implementation, not part of
the specification, so it appears as a flag, not in the method synopsis itself. This flag is a useful hint
that the method is probably implemented in a thread−safe manner.

Whether or not a method is thread−safe is part of the method specification, and this information
should appear (although it often does not) in the method documentation. There are a number of
different ways to make a method thread−safe, however, and declaring the method with the
synchronized keyword is only one possible implementation. In other words, a method that does
not bear the synchronized flag can still be thread−safe.

Overrides:
Indicates that a method overrides a method in one of its superclasses. The flag is followed by the
name of the superclass that the method overrides. This is a specification detail, not an implementation
detail. As we'll see in the next section, overriding methods are usually grouped together in their own
section of the class synopsis. The Overrides: flag is used only when an overriding method is not
grouped in that way.

Implements:
Indicates that a method implements a method in an interface. The flag is followed by the name of the
interface that is implemented. This is a specification detail, not an implementation detail. As we'll see
in the next section, methods that implement an interface are usually grouped into a special section of
the class synopsis. The Implements: flag is used only for methods that are not grouped in this
way.

empty
Indicates that the implementation of the method has an empty body. This can be a hint to the
programmer that the method may need to be overridden in a subclass.

Preface (Java Enterprise in a Nutshell)

2.2. Description 664

constant
An implementation flag that indicates a method has a trivial implementation. Only methods with a
void return type can be truly empty. Any method declared to return a value must have at least a
return statement. The "constant" flag indicates the method implementation is empty except for a
return statement that returns a constant value. Such a method might have a body like return
null; or return false;. Like the "empty" flag, this flag indicates that a method may need to be
overridden.

default:
This flag is used with property accessor methods that read the value of a property (i.e., methods
whose names begins with "get" and take no arguments). The flag is followed by the default value of
the property. Strictly speaking, default property values are a specification detail. In practice, however,
these defaults are not always documented, and care should be taken, because the default values may
change between implementations.

Not all property accessors have a "default:" flag. A default value is determined by dynamically
loading the class in question, instantiating it using a no−argument constructor, and then calling the
method to find what it returns. This technique can be used only on classes that can be dynamically
loaded and instantiated and that have no−argument constructors, so default values are shown for those
classes only. Furthermore, note that when a class is instantiated using a different constructor, the
default values for its properties may be different.

bound
This flag is used with property accessor methods for bound properties of JavaBeans components. The
presence of this flag means that calling the method generates a
java.beans.PropertyChangeEvent. This is a specification detail, but it is sometimes not
documented. Information about bound properties is obtained from the BeanInfo object for the class.

constrained
Indicates that a JavaBeans component property is constrained. In other words, the method may throw
a java.beans.PropertyVetoException. This is a specification detail, not an
implementation detail.

expert
Indicates that the BeanInfo object for this class specifies this method is intended for use by experts
only. This hint is intended for visual programming tools, but users of this book may find the hint
useful as well.

hidden
Indicates that the BeanInfo object for this class specifies this method is for internal use only. This
is a hint that visual programming tools should hide the property or event from the programmer. This
book does not hide these methods, of course, but this flag indicates you should probably avoid using
the method.

preferred
Indicates that the BeanInfo object for this class specifies that this method is an accessor for a
default or preferred property or event. This is a hint to visual programming tools to display the
property or event in a prominent way, and it may also be a useful hint to readers of this book.

=
For staticfinal fields, this flag is followed by the constant value of the field. Only constants of
primitive and String types and constants with the value null are displayed. Some constant values
are specification details, while others are implementation details. The reason that symbolic constants
are defined, however, is so you can write code that does not rely directly upon the constant value. Use

Preface (Java Enterprise in a Nutshell)

2.2. Description 665

this flag to help you understand the class, but do not rely upon the constant values in your own
programs.

2.3.2. Functional grouping of members

Within a class synopsis, the members are not listed in strict alphabetical order. Instead, they are broken into
functional groups and listed alphabetically within each group. Constructors, methods, fields, and inner classes
are listed separately. Instance methods are kept separate from static (class) methods. Constants are separated
from nonconstant fields; public members are listed separately from protected members. Grouping members by
category breaks a class down into smaller, more comprehensible segments, making the class easier to
understand. This grouping also makes it easier for you to find a desired member.

Functional groups are separated from each other in a class synopsis with Java comments, such as "// Public
Constructors", "// Inner Classes", and "// Methods Implementing Servlet". The various functional categories
are as follows (in the order in which they appear in a class synopsis):

Constructors
Displays the constructors for the class. Public constructors and protected constructors are displayed
separately in subgroupings. If a class defines no constructor at all, the Java compiler adds a default
no−argument constructor that is displayed here. If a class defines only private constructors, it cannot
be instantiated, and a special, empty grouping entitled "No Constructor" indicates this fact.
Constructors are listed first because the first thing you do with most classes is instantiate them by
calling a constructor.

Constants
Displays all constants (i.e., fields that are declared static and final) defined by the class. Public
and protected constants are displayed in separate subgroups. Constants are listed here, near the top of
the class synopsis, because constant values are often used throughout the class as legal values for
method parameters and return values.

Inner Classes
Groups all inner classes and interfaces defined by the class or interface. For each inner class, there is a
single−line synopsis. Each inner class also has its own quick−reference entry that includes a full class
synopsis for the inner class. Like constants, inner classes are listed near the top of the class synopsis
because they are often used by other members of the class.

Static Methods
Lists the static methods (class methods) of the class, broken down into subgroups for public static
methods and protected static methods.

Event Listener Registration Methods
Lists the public instance methods that register and deregister event listener objects with the class. The
names of these methods begin with the words "add" and "remove" and end in "Listener." These
methods are always passed a java.util.EventListener object, and are typically defined in
pairs, so the pairs are listed together. The methods are listed alphabetically by event name, rather than
by method name.

Public Instance Methods
Contains all public instance methods that are not grouped elsewhere.

Implementing Methods
Groups the methods that implement the same interface. There is one subgroup for each interface
implemented by the class. Methods defined by the same interface are almost always related to each
other, so this is a useful functional grouping of methods.

Preface (Java Enterprise in a Nutshell)

2.3.2. Functional grouping of members 666

Overriding Methods
Groups the methods that override methods of a superclass broken into subgroups by superclass. This
is typically a useful grouping, because it helps to make it clear how a class modifies the default
behavior of its superclasses. In practice, it is also often true that methods that override the same
superclass are functionally related to each other.

Protected Instance Methods
Contains all protected instance methods that are not grouped elsewhere.

Fields
Lists all nonconstant fields of the class, breaking them down into subgroups for public and protected
static fields, and public and protected instance fields. Many classes do not define any publicly
accessible fields. For those that do, many object−oriented programmers prefer not to use those fields
directly, but instead to use accessor methods when such methods are available.

Deprecated Members
Deprecated methods and deprecated fields are grouped at the very bottom of the class synopsis. Use
of these members is strongly discouraged.

2.4. Class Hierarchy

For any class or interface that has a nontrivial class hierarchy, the class synopsis is followed by a "Hierarchy"
section. This section lists all superclasses of the class, as well as any interfaces implemented by those
superclasses. It may also list any interfaces extended by an interface. In the hierarchy listing, arrows indicate
superclass to subclass relationships, while the interfaces implemented by a class follow the class name in
parentheses. For example, the following hierarchy indicates that javax.servlet.ServletException
extends Exception, which extends Throwable (which implements Serializable), which extends
Object:

Object−−>Throwable(Serializable)−−>Exception−−>ServletException

If a class has subclasses, the "Hierarchy" section is followed by a "Subclasses" section that lists those
subclasses. If an interface has implementations, the "Hierarchy" section is followed by an "Implementations"
section that lists those implementations. While the "Hierarchy" section shows ancestors of the class, the
"Subclasses" or "Implementations" section shows descendants.

2.5. Cross References

The class hierarchy section of a quick−reference entry is followed by a number of optional "cross reference"
sections that indicate other, related classes and methods that may be of interest. These sections are:

Passed To
This section lists all methods and constructors that are passed an object of this type as an argument.
This is useful when you have an object of a given type and want to figure out what you can do with it.

Returned By
This section lists all methods (but not constructors) that return an object of this type. This is useful
when you know that you want to work with an object of this type, but don't know how to obtain one.

Thrown By
For checked exception classes, this section lists all methods and constructors that throw exceptions of
this type. This material helps you figure out when a given exception or error may be thrown. Note,

Preface (Java Enterprise in a Nutshell)

2.4. Class Hierarchy 667

however, that this section is based on the exception types listed in the throws clauses of methods
and constructors. Subclasses of RuntimeException and Error do not have to be listed in
throws clauses, so it is not possible to generate a complete cross reference of methods that throw
these types of unchecked exceptions.

Type Of
This section lists all of the fields and constants that are of this type, which can help you figure out
how to obtain an object of this type.

2.6. A Note About Class Names

Throughout the quick reference, you'll notice that classes are sometimes referred to by class name alone and at
other times referred to by class name and package name. If package names were always used, the class
synopses would become long and hard to read. On the other hand, if package names were never used, it would
sometimes be difficult to know what class was being referred to. The rules for including or omitting the
package name are complex. They can be summarized approximately as follows, however:

•
If the class name alone is ambiguous, the package name is always used.

•
If the class is part of java.lang or java.io, the package name is omitted.

•
If the class being referred to is part of the current package (and has a quick−ref entry in the current
chapter), the package name is omitted. The package name is also omitted if the class being referred to
is part of a package that contains the current package. And it is sometimes omitted if the class being
referred to is part of a subpackage of the current package.

How to Use This Quick
Reference

13. The java.rmi Package

Copyright © 2001 O'Reilly & Associates. All rights reserved.

by David Flanagan, Jim Farley, William Crawford and Kris Magnusson
ISBN 1−56592−483−5E
First edition, published September 1999.
(See the catalog page for this book.)

Preface (Java Enterprise in a Nutshell)

2.6. A Note About Class Names 668

http://www.oreilly.com/catalog/jentnut

Search the text of Java™ Enterprise in a Nutshell: A Desktop Quick Reference.

Table of Contents

Copyright
Preface

Part 1: Introducing the Java Enterprise APIs

Chapter 1: Introduction
Chapter 2: JDBC
Chapter 3: Remote Method Invocation
Chapter 4: Java IDL
Chapter 5: Java Servlets
Chapter 6: JNDI
Chapter 7: Enterprise JavaBeans

Part 2: Enterprise Reference

Chapter 8: SQL Reference
Chapter 9: RMI Tools
Chapter 10: IDL Reference
Chapter 11: CORBA Services Reference
Chapter 12: Java IDL Tools

Part 3: API Quick Reference

How to Use This Quick Reference
Chapter 13: The java.rmi Package
Chapter 14: The java.rmi.activation Package
Chapter 15: The java.rmi.dgc Package
Chapter 16: The java.rmi.registry Package
Chapter 17: The java.rmi.server Package
Chapter 18: The java.sql Package
Chapter 19: The javax.ejb Package
Chapter 20: The javax.ejb.deployment Package
Chapter 21: The javax.jms Package
Chapter 22: The javax.naming Package
Chapter 23: The javax.naming.directory Package
Chapter 24: The javax.naming.spi Package
Chapter 25: The javax.servlet Package
Chapter 26: The javax.servlet.http Package
Chapter 27: The javax.sql Package
Chapter 28: The javax.transaction Package
Chapter 29: The javax.transaction.xa Package
Chapter 30: The org.omg.CORBA Package
Chapter 31: The org.omg.CORBA.DynAnyPackage Package
Chapter 32: The org.omg.CORBA.ORBPackage Package
Chapter 33: The org.omg.CORBA.portable Package
Chapter 34: The org.omg.CORBA.TypeCodePackage Package
Chapter 35: The org.omg.CosNaming Package
Chapter 36: The org.omg.CosNaming.NamingContextPackage Package
Chapter 37: Class, Method, and Field Index

Preface (Java Enterprise in a Nutshell)

Table of Contents 669

Colophon
Index

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Java™ Enterprise in a
Nutshell: A Desktop Quick

Reference

Preface (Java Enterprise in a Nutshell)

Table of Contents 670

Part 1. Introducing the Java Enterprise APIs
Part I is an introduction to the key Enterprise APIs. These chapters provide enough information for you to get
started using these APIs right away.

0.7. Acknowledgments 1. Introduction

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Java™ Enterprise in a
Nutshell: A Desktop Quick

Reference

Part 1. Introducing the Java Enterprise APIs 671

Part 2. Enterprise Reference
Part II contains reference material on two enterprise−related technologies, SQL and IDL, and on the tools
provided with Sun's Java Development Kit for RMI and Java IDL.

7.9. Changes in EJB 1.1
Specification

8. SQL Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Java™ Enterprise in a
Nutshell: A Desktop Quick

Reference

Part 2. Enterprise Reference 672

Part 3. API Quick Reference
Part III is the real heart of this book: quick−reference material for the Java Enterprise APIs. Please read "How
to Use This Quick Reference" to learn how to get the most out of this material.

12. Java IDL Tools How to Use This Quick
Reference

Copyright © 2001 O'Reilly & Associates. All rights reserved.

Part 3. API Quick Reference 673

	Table of Contents
	Preface
	0.1. Contents of This Book
	0.2. Related Books
	0.3. Java Programming Resources Online
	0.4. Examples Online
	0.5. Conventions Used in This Book
	0.6. We'd Like to Hear from You
	0.7. Acknowledgments
	0.7.1. David Flanagan
	0.7.2. Jim Farley
	0.7.3. William Crawford
	0.7.4. Kris Magnusson

	1.1. Enterprise Computing Defined
	1.2. Enterprise Computing Demystified
	1.3. The Java Enterprise APIs
	1.3.1. JDBC: Working with Databases
	1.3.2. RMI: Remote Method Invocation
	1.3.3. Java IDL: CORBA Distributed Objects
	1.3.4. JNDI: Accessing Naming and Directory Services
	1.3.5. Enterprise JavaBeans
	1.3.6. Servlets
	1.3.7. JMS: Enterprise Messaging
	1.3.8. JTA: Managing Distributed Transactions
	1.4.1. Enabling E-Commerce for a Mail-Order Enterprise
	1.4.2. Updating CornCo with Enterprise JavaBeans

	1.4. Enterprise Computing Scenarios
	1.5. Java Enterprise APIs Versus Jini
	2.1. JDBC Architecture
	2.2. JDBC Basics
	2.3. JDBC Drivers
	2.3.1. JDBC URLs
	2.3.2. The JDBC-ODBC Bridge

	2.4. Connecting to the Database
	2.5. Statements
	2.5.1. Multiple Result Sets
	2.6.1. Handling Nulls
	2.6.2. Large Data Types
	2.6.3. Dates and Times

	2.6. Results
	2.7. Handling Errors
	2.7.1. SQL Warnings

	2.8. Prepared Statements
	2.9. Metadata
	2.9.1. DatabaseMetaData
	2.9.2. ResultSetMetaData

	2.10. Transactions
	2.11. Stored Procedures
	2.12. Escape Sequences
	2.13. JDBC 2.0
	2.13.1. Results Handling
	2.13.2. Batch Updates
	2.13.3. Java-Aware Databases
	2.13.4. BLOBs and CLOBs
	2.13.5. The JDBC Standard Extension

	3.1. Introduction to RMI
	3.1.1. RMI in Action
	3.1.2. RMI Architecture
	3.1.3. RMI Object Services
	3.1.3.1. Naming/registry service
	3.1.3.2. Object activation service
	3.1.3.3. Distributed garbage collection
	3.2.1. Key RMI Classes for Remote Object Implementations

	3.2. Defining Remote Objects
	3.3. Creating the Stubs and Skeletons
	3.4. Accessing Remote Objects as a Client
	3.4.1. The Registry and Naming Services
	3.4.2. Remote Method Arguments and Return Values
	3.4.3. Factory Classes

	3.5. Dynamically Loaded Classes
	3.5.1. Configuring Clients and Servers for Remote Class Loading
	3.5.2. Loading Classes from Applets

	3.6. Remote Object Activation
	3.6.1. Persistent Remote References
	3.6.2. Defining an Activatable Remote Object
	3.6.2.1. The Activatable class
	3.6.2.2. Implementing an activatable object
	3.6.3. Registering Activatable Objects
	3.6.3.1. Registering an activatable object without instantiating
	3.6.3.2. Passing data with the MarshalledObject
	3.6.4. Activation Groups
	3.6.4.1. Registering activation groups
	3.6.4.2. Assigning activatable objects to groups
	3.6.5. The Activation Daemon
	3.6.5.1. The daemon's dual personality
	3.7.1. RMI with JNI Versus CORBA

	3.7. RMI and Native Method Calls
	3.8. RMI over IIOP
	3.8.1. Accessing RMI Objects from CORBA

	4.1. The CORBA Architecture
	4.1.1. Interface Definition Language
	4.1.2. Object Request Broker
	4.1.3. The Naming Service
	4.1.4. Inter-ORB Communication

	4.2. Creating CORBA Objects
	4.2.1. An IDL Primer
	4.2.1.1. Modules
	4.2.1.2. Interfaces
	4.2.1.3. Data members and methods
	4.2.1.4. A complete IDL example
	4.2.2. Turning IDL Into Java
	4.2.2.1. A simple server class
	4.2.2.2. The helper class
	4.2.2.3. The holder class
	4.2.2.4. The client and server stubs
	4.2.3. Writing the Implementation

	4.3. Putting It in the Public Eye
	4.3.1. Initializing the ORB
	4.3.2. Registering with a Naming Service
	4.3.3. Adding Objects to a Naming Context

	4.4. Finding Remote Objects
	4.4.1. Initial ORB References
	4.4.2. Getting Objects from Other Remote Objects
	4.4.2.1. Using a naming context
	4.4.2.2. Using multiple naming services
	4.4.3. Stringified Object References

	4.5. What If I Don't Know the Interface?
	4.5.1. Dynamic Invocation Interface

	5.1. The Servlet Life Cycle
	5.2. Servlet Basics
	5.2.1. HTTP Servlets
	5.2.2. Forms and Interaction
	5.2.3. POST, HEAD, and Other Requests
	5.2.4. Servlet Responses
	5.2.5. Servlet Requests
	5.2.6. Error Handling
	5.2.6.1. Status codes
	5.2.6.2. Servlet exceptions
	5.2.6.3. A file serving servlet
	5.2.7. Security
	5.8.1. HttpSessionBindingListener
	5.8.2. Session Contexts

	5.3. Servlet Chaining
	5.4. Custom Servlet Initialization
	5.5. Thread Safety
	5.6. Server-Side Includes
	5.7. Cookies
	5.8. Session Tracking
	5.9. Databases and Non-HTML Content
	5.10. The Servlet API 2.1
	5.10.1. Request Dispatching
	5.10.2. Shared Attributes
	5.10.3. Resource Abstraction

	6.1. JNDI Architecture
	6.2. A JNDI Example
	6.3. Introducing the Context
	6.3.1. Using the InitialContext Class
	6.3.2. Other Naming Systems
	6.5.1. The Command Interface
	6.5.2. Loading an Initial Context
	6.5.3. Running the Shell
	6.6.1. How Names Work
	6.6.2. Browsing a Naming System
	6.6.3. Listing the Bindings of a Context

	6.4. Looking Up Objects in a Context
	6.5. The NamingShell Application
	6.6. Listing the Children of a Context
	6.7. Creating and Destroying Contexts
	6.8. Binding Objects
	6.9. Accessing Directory Services
	6.9.1. X.500 Directories
	6.9.2. The DirContext Interface
	6.9.3. The Attributes Interface
	6.9.4. The Attribute Interface

	6.10. Modifying Directory Entries
	6.11. Creating Directory Entries
	6.12. Searching a Directory
	6.12.1. Search Criteria
	6.12.2. Search Results
	6.12.3. Search Controls
	6.12.4. A Search Command
	7.2.1. The EJB Client
	7.2.2. The Enterprise JavaBeans Object
	7.2.3. The EJB Container

	7.1. A Note on Evolving Standards
	7.2. EJB Roles
	7.3. Transaction Management
	7.3.1. Making the EJB Server Aware of Database Transactions
	7.3.2. Transaction Isolation Levels
	7.4.1. Home Interface
	7.4.2. Remote Interface
	7.4.3. The Bean Implementation

	7.4. Implementing a Basic EJB Object
	7.5. Implementing Session Beans
	7.5.1. Stateless Versus Stateful Session Beans
	7.5.2. Optional Transaction Support

	7.6. Implementing Entity Beans
	7.6.1. Primary Keys
	7.6.2. Finder Methods
	7.6.3. Entity Bean Implementation
	7.6.3.1. A persistent ProfileBean
	7.6.4. The Entity Context
	7.6.5. Life Cycle of an Entity Bean
	7.6.6. Handles on Entity Beans
	7.6.7. Container-Managed Persistence
	7.6.7.1. Handling complex data structures

	7.7. Deploying an Enterprise JavaBeans Object
	7.7.1. Container-Managed Data Mapping
	7.7.2. Access-Control Deployment Attributes
	7.7.3. Generating the Container Classes and Deployment Descriptor
	7.7.4. Packaging Enterprise JavaBeans

	7.8. Using an Enterprise JavaBeans Object
	7.8.1. Finding Home Interfaces Through JNDI
	7.8.2. Creating/Finding Beans
	7.8.3. Using Client-Side Transactions

	7.9. Changes in EJB 1.1 Specification
	7.9.1. XML-Based Deployment Descriptors
	7.9.2. Entity Beans Required
	7.9.3. Home Handles
	7.9.4. Detailed Programming Restrictions for Bean Implementations
	7.9.5. Assorted Other Changes

	8.1. Relational Databases
	8.2. Data Types
	8.3. Schema Manipulation Commands
	8.3.1. CREATE TABLE
	8.3.2. ALTER TABLE
	8.3.3. DROP

	8.4. Data Manipulation Commands
	8.4.1. SELECT
	8.4.1.1. String comparisons
	8.4.1.2. Subqueries and joins
	8.4.1.3. Groups
	8.4.2. INSERT
	8.4.3. UPDATE
	8.4.4. DELETE

	8.5. Functions
	8.5.1. Aggregate Functions
	8.5.2. Value Functions
	8.5.2.1. Date/time functions
	8.5.2.2. String manipulation functions

	8.6. Return Codes
	10.1. IDL Keywords
	10.2. Identifiers
	10.2.1. Mapping Identifiers to Java

	10.3. Comments
	10.3.1. Mapping Comments to Java
	10.4.1. Strings and Characters
	10.4.1.1. Mapping strings and characters to Java

	10.4. Basic Data Types
	10.5. Constants and Literals
	10.5.1. Mapping Constants to Java
	10.5.2. Boolean Literals
	10.5.3. Numeric Literals
	10.5.3.1. Integer literals
	10.5.3.2. Floating-point literals
	10.5.3.3. Fixed-point literals
	10.5.3.4. Mapping numeric literals to Java
	10.5.4. Character Literals
	10.5.5. String Literals

	10.6. Naming Scopes
	10.7. User-Defined Data Types
	10.7.1. Typedefs
	10.7.1.1. Mapping typedefs to Java
	10.7.2. Arrays
	10.7.2.1. Mapping arrays to Java
	10.7.3. Sequences
	10.7.3.1. Mapping sequences to Java
	10.7.4. Structs
	10.7.4.1. Mapping structs to Java
	10.7.5. Enumerations
	10.7.5.1. Mapping enumerations to Java
	10.7.6. Unions
	10.7.6.1. Mapping unions to Java

	10.8. Exceptions
	10.8.1. Standard Exceptions
	10.8.2. Mapping Exceptions to Java

	10.9. Module Declarations
	10.9.1. Mapping Modules to Java

	10.10. Interface Declarations
	10.10.1. Attributes
	10.10.2. Methods
	10.10.2.1. Parameters
	10.10.2.2. Exceptions
	10.10.2.3. Context values
	10.10.2.4. Call semantics
	10.10.3. Interface Inheritance
	10.10.3.1. Method and attribute inheritance
	10.10.3.2. Constant, type, and exception inheritance
	10.10.3.3. IDL early binding
	10.10.4. Mapping Interfaces to Java
	10.10.4.1. Helper and holder classes
	10.10.4.2. Attributes
	10.10.4.3. Methods

	11.1. Naming Service
	11.2. Security Service
	11.3. Event Service
	11.4. Persistent Object Service
	11.5. Life Cycle Service
	11.6. Concurrency Control Service
	11.7. Externalization Service
	11.8. Relationship Service
	11.9. Transaction Service
	11.10. Query Service
	11.11. Licensing Service
	11.12. Property Service
	11.13. Time Service
	11.14. Trading Service
	11.15. Collection Service
	1. Finding a Quick-Reference Entry
	2. Reading a Quick-Reference Entry
	2.1. Class Name, Package Name, Availability, and Flags
	2.2. Description
	2.3. Synopsis
	2.3.1. Member availability and flags
	2.3.2. Functional grouping of members
	2.4. Class Hierarchy
	2.5. Cross References
	2.6. A Note About Class Names

	Colophon
	 Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.
	Logos and Trademarks
	Disclaimer

	1. Finding a Quick-Reference Entry
	2. Reading a Quick-Reference Entry
	2.1. Class Name, Package Name, Availability, and Flags
	2.2. Description
	2.3. Synopsis
	2.3.1. Member availability and flags
	2.3.2. Functional grouping of members
	2.4. Class Hierarchy
	2.5. Cross References
	2.6. A Note About Class Names
	Table of Contents
	 Part 1: Introducing the Java Enterprise APIs
	 Part 2: Enterprise Reference
	 Part 3: API Quick Reference

	Chapter 1. Introduction
	Chapter 2. JDBC
	Chapter 3. Remote Method Invocation
	Chapter 4. Java IDL
	Chapter 5. Java Servlets
	Chapter 6. JNDI
	Chapter 7. Enterprise JavaBeans
	Chapter 8. SQL Reference
	Chapter 9. RMI Tools
	Chapter 10. IDL Reference
	Chapter 11. CORBA Services Reference
	Chapter 12. Java IDL Tools
	Chapter 13. The java.rmi Package
	Chapter 14. The java.rmi.activation Package
	Chapter 15. The java.rmi.dgc Package
	Chapter 16. The java.rmi.registry Package
	Chapter 17. The java.rmi.server Package
	Chapter 18. The java.sql Package
	Chapter 19. The javax.ejb Package
	Chapter 20. The javax.ejb.deployment Package
	Chapter 21. The javax.jms Package
	Chapter 22. The javax.naming Package
	Chapter 23. The javax.naming.directory Package
	Chapter 24. The javax.naming.spi Package
	Chapter 25. The javax.servlet Package
	Chapter 26. The javax.servlet.http Package
	Chapter 27. The javax.sql Package
	Chapter 28. The javax.transaction Package
	Chapter 29. The javax.transaction.xa Package
	Chapter 30. The org.omg.CORBA Package
	Chapter 31. The org.omg.CORBA.DynAnyPackage Package
	Chapter 32. The org.omg.CORBA.ORBPackage Package
	Chapter 33. The org.omg.CORBA.portable Package
	Chapter 34. The org.omg.CORBA.TypeCodePackage Package
	Chapter 35. The org.omg.CosNaming Package
	Chapter 36. The org.omg.CosNaming. NamingContextPackage Package
	Chapter 37. Class, Method, and Field Index
	How to Use This Quick Reference
	How to Use This Quick Reference
	Part 1. Introducing the Java Enterprise APIs
	Part 2. Enterprise Reference
	Part 3. API Quick Reference

