Preface (Java Enterprise in a Nutshell)

Preface (Java Enterprise in a Nutshell)

Table of Contents

= =Tt~ PR POPPPRPRN
0.1.CoNteNtIf TRIS BOOK......ciiiiiiiiiiiiiiiieee ettt e ettt e e e e s e e e e e e e e e nnnbneeeeeeeeenann 1
O = F- 1= Te =0T] PP ERPRPP z
0.3.JavaProgrammingResourCeONIINE..........cooiiiiii i e 2
O e T g g o1 =T @ o1 1 a1 PPTPPPPPPPPP 3
0.5.Convention2Jsedin TRISBOOK...........uuiiiiiieiiiiiiee e e e e eeaeas 4
0.6.We'dLIKe t0 HEAMIOM YOU.........iiiiiiiiie ittt e e e et e e e e e e e e eeeeeeaans 5
0.7. ACKNOWIEAGMENLS. ... 6
0.7.1.David Flanagan...........cooouiiiiiiii e, 6
TN 110 ol = =Y PP PP 6
0.7.3.WIllIAM CrAWTOIT. .. .eeeiiieeiiiiiiieeie ettt e e et e e e e e e st e e e e e e e annneeeees 6
O B 131V = Vo [T TS PSPPI 6
1.1. EnterpriseComputingDefiNEd.cooiiiiii i 8
1.2. EnterpriseComputingDEMYSHfIEU.........uuuiiiiiiiiiiiiiiiiiiiieieee e eeeerreeeeeeereeeeeeeeeeeaeeees 8
1.3. ThE JAVAENTEIPIISOAPIS. . .eeiiiiiee ittt ettt e e e e e e e e et e e et e aaaaaaaaaeas 9
1.3.1.JDBC:Working with Databases...............cooooiiiiiiiii e 10
1.3.2.RMI: RemoteMethodINVOCALION.uiiiieiiiiiiiiiii e 10
1.3.3.JavalDL: CORBA DistributedODjECLS..........uuvuiiiiiiiiiiiiiiiiiiiiieiieeiieeereeeeeer e eeeeeeeeeeeeees 11
1.3.4.JNDI: AccessingNamingandDireCtory SEIVICES.......ccceeeeeeeeeiieiiinsaineennenanes 11
1.3.5.Enterpris@lavaBeans.............coouuiiiiiiiii e 12
R I SRS 1T Y[(PP 12
1.3.7.JMS: ENterprisSeMESSaQING.........cccovviiiiiiieeieee e, 13
1.3.8.JTA: ManagingDistributedTranSacCtiONS...............uuuuururiuuiiiiiiiiiiiirerererrreereerreeee—————— 13
1.4.1.EnablingE—Commercdor aMail-OrderEnterpriSe.........ccccccvvviiiiiiiiiiiiiiiiiieee 14
1.4.2.UpdatingCornCowith EnterpriseJavaBeans..............uuuuvvviuiiiriiimierirnrierieseereseserseene. 15
1.4. EnterprisS€COMPULINGSCENANIOS.cciieiiieeieee e, 16
1.5.JavaENterpriSEAPIS VEIrSUSIINL.....ccciiii i e i et bbb e e s s s s s sssssesseesseeeeees 17
P N 3 1 @ N (o] T (= Tox (1 =TS PRSRR 18
2.2, IDBCBASICS. ... tttttttee et ittt e e e ettt e e e et et e e e e e — b ——t et e e e e e e bttt et e e e e e e et e e e e e e e e e e nna b e e aaeeas 2
P2 T 111 @ I 1= RSP RSP PP PPRPR 2(
2.3 L. IDBCURLS. ...ttt ettt et e e e e et e e e e e e r e e e e s 21
2.3.2.The IDBC—ODBCBIIAGE.c.uttteiiiieeee ittt e e e et a e e e e e s s e e eeeeeeaannnes 23
2.4.CoNNECtNGO thE DAtADASE.uvvviiiiiiiiiiiiieiieeeeeeee ettt et et e aaeaaaaaaaaaans 24
S S =1L 1 4[] 0 £ F PP P PP PRPPPPPPPPPIN 2:
2.5. 1. MUIple RESUISELS.o 25
2.6. 1. HANAINGNUIISeueiiiieiiiiiii et e e e e e e e e e e s e eeeeeeeeeeeeeaeeeeeeeeeeaeeeaaeeaaeaaeeess 26
A I =T (o =T B = =)Y o= 27
L R A B = 1 (=22 L o T = RO PPPRRR 28
2.8, RESUILS. ..ttt ettt e ettt e e e e e et e e e e e e e bttt et e e e e e et ar et e e e e e e nnb b e eeaeeeas 2
2.7 HANAINGEITOIS ...coiiieiiieeeeee e, 3C
A N (@ T VY= T 1 o To [P PPPPPTPPPP 31
2.8. PrepareBtateMEeNIS........oviiiiiee e 31
S Y1 = o == PR PPRPRP 3
2.9.1.DatabaseMetabDala...........uuuiiiiieiiiiiiiiiii e 33
2.9.2.RESUISEIMELADEALA eeeeiieeeeiiiiiee it ettt e e e e e e e e e e e e e e e e s e eeaeeeas 34
P2 O R I =T T ot 1T o 1< RSP RRPPUPPRPR 34
P2 Y (o] £=To o CoTot=T o [0 = SUP RS PPPPR 36
A Yotz Vo L= ST <o [U 1] o = U 38
B2 N 11T @ TP PPRPR PP 4
2.13.1.ReSURSHANAIING ... ———— 41
2.13.2.BatChUPAAtES.......coeiieeieeeeeeeeeeeeee e 43
2.13.3.Java—AwarDatabases.coiiiiiiiiiii e 43

Preface (Java Enterprise in a Nutshell)

Table of Contents

Preface
2.13.4.BLOBSANUCLOBS......cciiiiieiiiiiie ettt e et e ettt e e e e st e e e e annaeeeeanreeeas 45
2.13.5.The IDBC StandardEXIENSION.uuuiiieeeiiiiiiiiieeee e e et e e e e e e s st ee e e e e s s nnnareeeeaeas 46
10 I [g1 o T 0T 1o 1 (o 3 o 1Y PP PPPPPRR 47
0 I 1Y 1 1o 1T o PP RERTP P 47
N B Y Y (o] T (=T o (1 = PRSPPI 49
T IR = 41V | I @] o] =Tox T =T AV ot PP 49
3.1.3.1.NamMING/reQISIIYSEIVICE. ...cceiiiiiiiieiieee e 50
3.1.3.2.0DbjeCtactivatiONSEIVICE.ccoie i 53
3.1.3.3.DistributedgarbagecolleCtion..............cooovviiiiiiiii 55
3.2.1.Key RMI Classegor RemoteObjectimplementations............cccccuvvvvvvviiiviiniiinnnnnnninn, 55
I B Lo {1 TaTo N R L=t aqL01 = @] o] =Tox 1= PP PPPPPPPPP 55
3.3. Creatingthe StubsandSKEIEIONS ... 56
3.4.AccessingRemMOoteOD|ECISASA CIIENL..........uuuuiuriiiiiiiiiiiiiiirieereaeaeeaeee e ereeesesseessesreesreesaersrresereeeees 56
3.4.1.TheRegistryandNamiNgSerVICEScooeiiieeeeiiecec e narrenes 59
3.4.2.RemoteMethodArgumentsandReturnValues...............cccoe . 60
3B.4.3.FACIONYCIASSES. ... oo 61
3.5.DynamicallyLoadedCIasSES.........ccoooiiiii i 61
3.5.1.ConfiguringClientsandServerdor RemoteClassLoading............cccccooeveiiieei. 63
3.5.2.LoadingClassesrom ApPPIets..........coooviiiiii 64
3.6. REMOLEODJECIACHVALION......eeviiiieiiiiiiieeeeeeeeee ettt e aaaaaaas 65
3.6.1.PersisteNREeMOtEREIEIENCES..........uviiiiiiie e 66
3.6.2.Defining an ActivatableRemOtEODJECL.uuvviiiiiiiiiiiiiiiiiiieeeeeeeeee e 68
3.6.2.1. The ACHVALADIECIASS ... eeeiiiiie et a e e eeaeeas 68
3.6.2.2.Implementinganactivatableohject...............coooii i 70
3.6.3.RegisteringActivatableObjects..........ccoovviiiiiiiii 70
3.6.3.1.Registeringanactivatableobjectwithoutinstantiating............cccccccevivvviiiviniiiinninnnn. 70
3.6.3.2.Passinglatawith the MarshalledObJeCt...............uvviiiiiiiiiiiiiiiiiiieiieereeeeeee e 71
3.6.4. ACHVALION GIOUPS. .. e i et ————— 73
3.6.4.1.ReqiSteriNQACIVAtIONGIOUDS.......uuuururiurrirriiirtturerrreerrersrersersarrrrrsererrrrrrrer——e——————————— 74
3.6.4.2.Assigningactivatableobjectsto groups..........cooooe i 75
3.6.5. The ACHIVAtION DAEBIMON.......ciiiiiiiiiiiee ettt e e e e e et e e e e e s s s r e eeeeeeeaannes 75
3.6.5.1.Thedaemon'slual personality..........cccccccvviiiiiiiiiiii 76
3.7.2.RMI With INTVEIrSUSCORBA........ooiiieiiiiiie ettt ee e et e e e nnaeaeans 76
3.7.RMI andNative MethOACalIS............uuuiiiiiiiiiiiiiiee e e e as 77
IS TN = 1Y, LI 1YY 11 = PRSPPI 7€
3.8.1.AccessingRMI Objectsfrom CORBA.........oooviiiii 78
4.1. The CORBA AIrCIITECIUIE.ttt e e e e et e e e e e e e e e e e e e ennnneees 81
4.1.1.InterfaceDefinitioN LANQUAGE.ovvviiiiiiiiiiieeeeeee e 81
4.1.2.0DjECtREQUESBIOKEL. ———— 84
4.1.3. TheNAMINGSEIVICE.o 85
4.1.4.Inter—ORBCOMMUNICATIONevieeeiiiiiiiiiiiee e e e et ee e e e e e s s e e e e e e e s s r e e e e e e e ennnneeees 85
4.2.CreatiNgCORBA ODJECES. e e ee e e e s saesesssssssssssssssssssssssssssssssessennsees 86
N T 1 I 101 P PRRPT TR 86
0 T Y/ To [S PP ESRRT PP 87
O N [(=T o = Tt = SRR PPRRTR 88
4.2.1.3.DatamemberaandmethOods..........ooiiiiiiiiie e 89
4.2.1.4.A completelDL @XamPIe.......ccoooi i ———— 89
4.2.2.TumningIDL INTOJAVA.......ccoi i ——— 90
A Y N Y141 11T Y Y AV =T (o F= L PSPPI 90
4.2.2.2.ThENEIPEICIASS.....cco oo 90
4.2.2.3.TNENOIAEICIASS.ttt ettt e e e e e e e e e reeeeeeeaans 91

Preface (Java Enterprise in a Nutshell)

Table of Contents

Preface
4.2.2.4.TheclientandServerstUbS............uuuiiiiii e 91
4.2.3.Writing the IMPlemMENtationL............uuuuiiiiiiiiiiiiiiiiie e 92
4.3.Puttinglt iNthePUBIICEYE. ... 93
4.3.1.InitIaliziNng thEORB.......ooieeeeeeeeeeeeee 95
4.3.2.Registeringnvith aNamiNGSErVICE..........cooiiiiii i 96
4.3.3.Adding Objectsto aNamingCoNteXt...........cooviiiiiiiiiii e, 98
4.4, FINAINGREMOIEODJECTS.ceeiiiiiiieeeeee e 99
4.4.1.1nitial ORB REEIEINCES.eiiiiiiiii i e e e e 100
4.4.2.GettingObjectsfrom OtherRemoteODbJECLS...........uuviiiiiiiiiiiiiiiiiiiiiiiveeeee e, 101
4.4.2.1.USINGANAMINGCONTEXLE.uvviiviiiiiiieiieeeeeeesieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeaaeaaaaaaaaaaaaaaaaaaaaans 102
4.4.2.2.Usingmultiple NamiNgSEIVICES.........coooiii it 104
4.4.3.5tringifiled ODJECIRETEIENCES.uuuiiiiiiiiiiiiiiiit e e e e e e e e eeeaaees 106
4.5. Whatlf | DONTKNOW the INterfaCe?........eiiiiiiie e 106
4.5.1.DynamicINvOCatioNINIEITACE.vvvieiiieieieeeieee ettt 106
5.1 . TheServIetLife CYCIO.......co o s 107
5.2, SBIVIBIBASICS. ...t ieeeeiiitit ettt ettt e e e e ettt e e e e e e e bt e e e e e e e bbbttt e e e e e e a e eeaae s 10¢
ST I I S 1T 1= ST 111
5.2.2.FOrmSandINteraClion...........ooiuuiiiiiiiee it e e e e e e e e e e e e e e e e 112
5.2.3.POST,HEAD, andOtherREQUESLS..........uuuuuiiuiiiiiiiiiiiiiiiuieiirrreseirrrarerrrereereeeee——————— 115
5.2.4.SErVIEtRESPONSES.o 115
5.2.5.SEIVIEIREQUESIS.o 117
I oI = g o]l F= TaTo | T s o O PRSP PPPRUPPR 118
I I] = 111 oo Lo [P TP PPTPPPPPRRPR 119
5.2.6.2.SEIVIEEXCEPLIONS. ... ——————— 120
5.2.6.3. A file SEIVINGSEIVIEL.......ccoi i 121
L 1= Yo U 1Y/ PP PRSP 121
5.8.1.HttpSessionBindingLIStENEL..........cccooii i 122
5.8.2. SESSIOMTONTEXES. ...iie ittt e e ettt e e e e et e e e e e ettt e e e e e e s s e e e e e e e e e a b eeaeas 123
RIS T= T AV =1 (@4 o F= T o 1T o PP PPPPPPPP 124
5.4. CusStomMServIetiNItIAliZAION...........ciiiiiiiiiiiii e e e e e s e e e e e e 124
B . TRIEAASATELY....ccc i ——— 12¢
5.6. SeIVEr—SIABNCIUTESt e e e e e e e e e e e e e et e e e e e e e e e nnnnreeees 126
I ©0 To (1= PP PP PPPRPPPRNS 12
R TR =TIy [0 gl = od (] o PP PPPPPPPP 130
5.9. Database8ndNON—HTML CONENL.......cutiiiiiiiiiiiiiie et e e e s e e e e e e e nneeees 132
5.10. TRESEIVIEIAPT 2.1ttt e e et e e et e e e e ettt e e e e anbaeeeeansteeeeennsneeeennnes 134
5.10.1.RequeSDISPAICNING......cccoii i ———— 136
5.10.2.Shar@dAtIIDULES. ... 138
5.10.3.RESOUICEADSIIACTION.iiiiiiiieiiie e ettt e e e e e e e e e e e et eeeeeeeeaannes 138
L I | Y (o] T (=T ox (1 = PRSP PPPPPRRR 139
LI AN LN D Tl = Ty 4] o] =PRI 141
6.3. INtrodUCINGtNE CONIEXL......cviiiiieiiiee e, 141
6.3.1.Usingthe InitialConteXtClass.........coovviiiiiiii e, 142
6.3.2.0therNaMING SYSTEIMS. .. .uuuiiriiiiiiiiiiieiieeteeereeeseeeeeeereeeeeeseereseeeeerererrreerreraeetaeeaaeeaeeaaeeess 142
6.5.1. The CommMaNANtEITACE...........uuiiiiiie e e e ee e e e e e e anes 144
6.5.2.Loadinganinitial CoNtEeXL.........c.oooiiiiiiiii s 144
6.5.3.RUNNINGINESNEIL....c.ooiiiiii 146
6.6. L. HOW NAMESWOIK ..ottt e e e e e e e e e e e e e eeeas 147
6.6.2.BrowsingaNamiNgSYSIEML.........ccooiiiiiiii s 148
6.6.3.Listing the BindingSOf @ CONtEXL.........uuuuuiiiiiiiiiiiiiiiiiiiieiiiesreeereereeeseeereeeeeeeeeeeeeeeeeeeae 148
6.4.L00KING UP ODjJECESIN @ CONTEXLciiiiieieei i e e e anebanbearanneeanennnee 149

Preface (Java Enterprise in a Nutshell)

Table of Contents

Preface
6.5. The NamingShellAPPlICALION........c.cvviiiiiiiee 150
6.6. Listing the Childrenof @CONIEXL..........ccciiiiiiii e aareennrennee 153
6.7. CreatingandDestrOYiNGCONIEXLS.uuiieiiiiiiieeeieeeeee et e et e et e e e e e e e e e e e e e e e e e aaaaaaaaaaaeas 153
6.8.BINAING ODJECES.o —————————— 154
6.9. ACCESSINGDINECIONY SEIVICES. ... uuuuuuuuiiiititttiutttatteartaaaeesbaaaee e eesaessssssssssssssssssssssssssssssessssssenseneesees 155
(O I 51001 B I (=Tt (o] 1= PRSP PRRPR 157
6.9.2. The DIrCONIEXIINIEITACEeiiiiieiiiiiiieiie e 158
6.9.3. The AttHDULESINIEITACEcci i 159
6.9.4. The AttrIDULE INTEITACE. ..o 160
(SO Y T To 113V TaTo I DI =To (o] YA = g [T TSP 162
I O =T\ i e DT g=To (0] YA =1 o = PP 163
S T=T T fod a1 Lo s T (=Tt (o] V2R 163
L D RS T =TT ol o O 11 =] - PP PPPPPRRR 164
6.12.2.SCAICHRESUILS. ...ttt e e e e e e e e a e e e e e ane 164
N e BT =TT ol o O0] o] (o] LS TSP 166
6.12.4.A SearChCOMMANG.........ouiiiiiiiiiiii et e e e e s eeeeas 168
A I 1= = = Y @1 1= o) PP PRI 169
7.2.2. TheEnterpriseJavaBean©DhJeCL..............uuuuuiiiiiiiiiiiiiiiiiiiisiireireeiseereesreeeeeeeeeeeeeeeeeee—. 171
7.2.3. TNEEJIB CONTAINET.....ciiiiiiieiieeee ettt e e e e et e e e e e e et b e e e e e e e s annnaeeeaeas 171
7.1.A NOteONEVOIVING StANAArdS...........coooiiii e 172
A7 = 1= (o] = PR PRPRR 17:
7.3. TranSaCtioNVIANAGEMENL.ttt e e e e e e aesasssasssssssssssssssssssssssasssesssenseeeenees 173
7.3.1.Making the EJB ServerAware of Databasdransactions...............eeeevveeeveeeveeeeeennnnn. 175
7.3.2.TransactionSOlatiONLEVEIS............eiiiiiiiiiiiiieee e 176
A o (o]0 =T) =] = Lo = PP PPUPPPPRRRR 176
7.4.2. REMOLEINTEITACE.ci ittt e e e e e e e as 177
7.4.3. TheBeanImplementatiOn.............couvvviiiiiiiiiieiieeee e 178
7.4. Implementinga BaSICEIJB ODJECL........cciiiiiiiiiiiiiieeeeeeeeeeeeee e 180
7.5. IMplementingSESSIOMBEANS.ccoiiii it bbb e abrraarararar e 182
7.5.1.Statelesd/ersusStatefulSEeSSIOMBEANS.ooiiiiiiiie e 184
7.5.2.0ptioNal TranSaCHIOMBUPPOLL.vevireiierireeeeeeeeerreeeeeereeeseeeseeeeeresrrereerrerrrerererrreraeeraees 185
7.6.IMplementingENTItY BEANS........uuuuiiiiiiiiiiiiiiiiiiiiieiiiee e eeessseeesssssseessaessessassseessersseeseeeeeeeeeees 186
7.6, L. PHIMAIYKBY S ..o —————————— 187
7.6.2.FINAEIMETINOUS ...ttt e e e et e e e e e s st eeeaeeeeane 188
7.6.3.Entity Beanimplementation...............oooo s 188
7.6.3.1.A persistenProfileBean..............oo i 191
7.6.4. TREENTLY CONIEXL. ... uuuiiitiiitiiiiiitiit et ae e b s e ses s aessbessesssssssssssssssssssnnsnnnsnes 192
7.6.5.Life Cycleof aNENLity BEAN....... ittt veeeesssseesseesseesseeeeeeseeeeeees 194
7.6.6.HaNdIeSON ENtity BEANS........ccoooi it 195
7.6.7.Container—ManageBersiSteNCE..........coooei i 196
7.6.7.1.HandlingCcompleXdataStrUCUIES.........uuuuuuuueririiiiuiiiierieersrerrerrsrsreserssseeeereeereeree————— 197
7.7.DeployinganEnterprise]avaBean©DhjecCL...........cooovviiiiiiiiiiiiii 198
7.7.1.Container—-ManageDataMapPiNg...........uuuuururrrureeiieerrerreerrreererererreerrerereeeeerre .. 199
7.7.2.Access—ControDeploymentAttriDULES............uuiviiiiviiiiiiiiiiiiiiiieiiere e 204
7.7.3.Generatinghe ContainerClassesandDeploymentDescriptar...............c.ccoeeeee e, 204
7.7.4.PackagindenterpriselavaBeans. ... 205
7.8.UsinganEnterprise]avaBean©DbjeCL...........covviviiiiiiiiiiiiieeee 205
7.8.1.FindingHomelnterfacesThroughINDL...........c.cccccoii 209
7.8.2.Creating/FiNndINGBEANSocviiiiiiiiieee e 210
7.8.3.Using Client=SideTranSactiOnS............ccouviiiiiiiiiieiee e, 212
7.9.Changesn EJB 1.1 SPeCIfiCatiON.........ccoiiii i ee i raanee 212

Preface (Java Enterprise in a Nutshell)

Table of Contents

Preface
7.9.1. XML-BasedDeploymentDesCriptorS.........cccvvviiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 213
7.9.2.Entity BEanNSREQUITEM........coiiiiiiiiiiee e nnarane 214
7.9. 3. HOMEHANAIES. ...t e e e e a e e e e e e nnnees 215
7.9.4.DetailedProgrammingRestrictionsor Beanimplementations..............cc.evvvvvvvnneee. 215
7.9.5.AsS0rtedOtherChanges.........coooo oot 216
8.1. RelatioNaIDAtADASES.cei ittt a e e e s e e e e e e e aaan 217
G JZa B L= L= W I/ 01 PP 21¢
8.3.SchemaVanipulatioNCOMMEANGS.........evviiiiiiiieiiieieeee et a e e e e e e e e e e aaaaeeas 219
8.3 . L.CREATETABLE.ottt ettt e e et e e e e e e et e e e e e e e e annnes 219
8.3.2.ALTER TABLE ...ttt ettt e e e e ettt e e e e e e e e e e e e e e e anne 219
SRS I 1 B 1 (@] PP PRPR PP 219
8.4.DataManipulatioNnCOMMANGS.............oooeiiiiiiiiii e r e 219
S S| = I 3 P EOP PRI 221
8.4.1.1.StHNQG COMPAIISONS.....cevviriieiiieiiiiiieeeeeee ettt ettt ettt e e et e e et e e e e et e e e e e e e taeteaaeaaaeaaaaaaaaaaaaaas 221
8.4.1.2.SUbqUENERNAJOINS.....cci i i ee e nnaraae 223
G JR I J 1 o 1 o 17U 224
S | 1] =t O P EOP RPN 224
B B UP D ATE . ..ttt et e e et e e e e e e b ara e e e e e e e anne 225
B4 A DELETE ... oottt ettt e e e et e e e e e e e e e e e e e e anne 226
ST U] ot [o KRR PRI 22
8.5.1. AQQregatErUNCLIONS.uuuiiuiiiiiiitiiittittitereebreeaaesebeseessssesssssseesseeseessseeeeeeseeeeeereeeeeeeeeeees 227
8.5.2.VaAlUB FUNCLIONSeiiiiie ittt e e e e e r e e e e e e et eeeeeeeaannes 228
8.5.2.1. Date/tIMEIUNCLIONSuuiiiiiiee ettt e e e e e e e st e e e e e e e s s nnnbeeeeeeas 229
8.5.2.2.StringmanipulationfUnCLiONS..........uuuuuuiiiiiiiiiieiieeiieeieeeeereeee e eeeeeeeeeesrereeerrreeeeeeeees 230
S T = (B [0o [RO 23]
O I =Y (o PP 231
07 T [T 11T PR PPPPPRRPR 23:
10.2.1.MappingldentifierStO JAVAL.........uuuuuiuiiiiiiiiiiiiieeeireiieseressessssesseesseeseesseeeserereeaeerereeeee 233
O T @0 1 010 0 =T 0 1K= TSP PP PT PP PRUPPPPPPPPPN 23
10.3.1.MappingCommENII0 JAVA...........ceeiviiiiieiiieieeeeeeeeee e, 233
10.4.1.StringSandCRaraCterS.........ccoooe e ——— 233
10.4.1.1 Mappingstringsandcharacterso Java............ccccceevveeieiiiiiiieieeeeeeeeeeeee 234
O ST TSy [od B = W I 0= PP 235
10.5.C0oNStANTRNALITEIAIS.t e e e e e s e e e e e e s bbb e e e e e e e e e nnnreees 238
10.5.1.MappingCoNStANTE0 JAVA........ccceeiiiiiiiitiiaaaaaa bbb abbeaeeasesssssssassssssssesseeseees 243
10.5.2.BOO0IEANLITEIAIS.evieiiie ettt ettt e e e e e e e e e e e e e e e ann 244
L10.5.3.NUMEIICLITEIAIS. ...ceiiieiiiiiiieiee et e e e e e a e e e e e ree s 245
10.5.3.1INtegerliterals.o ——————— 245
10.5.3.2 Floating—pointliteralS.............ccuvvviiiiiiiiiiiie e, 246
ORI) (=T B o Lo [a1 (=Y = | PP PPPPPPP 246
10.5.3.4 MappingnumericliteralSto Java..............ccovviiiiiiiiiiiie 247
10.5.4.CharaCtehiteralS...........uueiiiiieee i 247
10.5.5.StINGLILEIAlISo e 248
L0.6. NAIMINGSCOPES. . vetveeieeiieeeeie ettt ettt ettt ettt ettt e et e e e e e et e e et e aaaeaaeans 248
10.7.USEr—DefiINemMataTYPES. ...ccviiiiieiiieieeeeeeee et 249
O I Y/ o T= o 1= £ PP PPPPPPPPP 249
10.7.1.1.MappingtypedefSO JAVA.........uuuuuiiiiriiiiiiiiiieriireisesessessssssessessseeseesseeereeseeeeerereeeeee 249
O DR A N 4 -\ V£ SRS 249
10.7.2. 1 MApPPINGAITAYSIO JAVA.......uuuuuuuuuuruuniiuniiuutiautsrressrerrsersrssasesrsseeseree———————————————————. 249
O DA 30 Y=o [L= Lo PP 250
10.7.3.1.MappingSeqUENCEE JAVA.........cciiieiieeeeee e e e e ee e e aaaeanreaneannees 250

Preface (Java Enterprise in a Nutshell)

Table of Contents

Preface
OB F o £ TP PPOUPPPPPPPPIN: 250
10.7.4. 1 MaAPPINGSITUCISIO JAVA. ... uuvvvveivreiirriireieeeiesssesseeeseessesesassseeseeseeesseesseeereereeereerreereees 251
10.7. 5. ENUMEIALIONS ...ttt e e e e ettt e e e e e e ettt e e e e e e s e nabsnraeeeaeeaanns 252
10.7.5.1. Mappingenumeration$o JAVA...........ccceiveiiieiiee e, 253
O ST T o L= PSPPSRI 254
10.7.6. 1. MapPIiNQUNIONSIO JAVAuuuurerrrrrrrriresreessesssesreeessessesssseseeeeeeeeerererrrrrerrererrrrrrreeeen 254
O ST ol =T T PP 25¢
10.8.1.StandartEXCEPLIONScoe i ——————— 255
10.8.2.MappingEXCePtiONF0 JAVA........ccovviiiiiiiiiieeeeeeeeeeeeeeeeee e, 255
O Y [oTo (] oY B T=Tod = T =i o o P EEPP P PRPR 256
10.9.1.MapPIiNgMOAUIESIO JAVA.......uuveirriiiiiiiiiiieiiiiiieeseeereeseeeeeeeeeeeeeeeeeseseeseeeeeeereeearereeereeees 256
10.20.INterfaCeDECIATALIONS. ... ettt e e e e et e e e e e e e s e e e e e e e e e nbb e e e e e e e e eans 256
L1010, L ALIDULES. ...ttt e e e e e e e e e e e e eaaeas 257
OB 0 T2 =1 1 T Yo LSRR PP PPPPPPRI 257
J0O.10.2. L PAIrAIMELELS. ...ttt ettt e e e e et e e e e et e e e 258
10.10.2. 2 EXCEPLONS.....ciiiiiieiieeeeeee e 259
10.10.2. 3 CONIEXIVAIUES. ...ttt e e e e e e e e e e et e e e e e e e s eaeas 262
10.10.2.4Call SEMANTICSccieieeiiiie e e e ettt e e ettt e e e e e r e e e e e e s e bbb e e e e e e e e s anennneeeeas 262
10.20.3.INterfaCelNNEITANCE.ciie it 263
10.10.3.1 MethodandattributeiNNeritanCe.ccoviiiiiiiiiiee e 264
10.10.3.2Constantfype,andexceptionnheritance............ccvvvvvveeviieiieiiieeiieeieeeeeeeeeeeeee e, 264
10.10.3.3IDL earlybinding........ccoooiiiiiiiii - 265
10.10.4.MappingInterfacedo Java..........ccooovviiiiiiiiiii 265
10.10.4.1HelperandholderClasses..........oooiiiiiii e 266
L0.10.4. 2 ALTIDULES. ...ttt e et e e e e e e e et e e e e e e as 267
L10.10.4.3MEINOUS.cci ittt s e e e e e e e e et b et e e e e e e e et e e e e e e e ann 267
0 I V=T T g T FS =T [=PSRN 268
11,2, SECUNMTYSEIVICE ..o 269
G T V=T) Y= Vo = PO EPRP PP 26¢
11.4. PersiStENODJECISEIVICE. ... oo i bbb e b an e nbaarrrrrre 269
L11.5.Life CYCIE SEIVICE...coiiiiiiieieeee 270
11.6.CoNCUITENCYCONIIOISEIVICE.o 270
O (=T g F= [4= 14 o] § ST=T AV o = OO PPRR T UOTPPPPRRPR 271
11.8.RelatiONSNIISEIVICE.o 271
N T I T ST Tt 1o £ 1= Yo =TSP PPPPRPRPPO 272
N O @ U =TV =T oY/ o] TP 272
0 o= TS T o Y= T = SO OPPPUPPPPPPPPP 274
0 2 0T o 1T YA L= Vo =T PPPPPPPPP 274
I I T T TS T =T Vo OO PP RRTP T OPTIPRPR 27°
0 0 Vo [o IS 1= Vo =P PPPPPPPP 276
3 RSN O] | [=Tox Lo IS =T ool PP PPPRPR PP 276
1. Findinga QUICK—REferenNCENIIY.........oovviiiiiii 277
2. Readinga QUICK—REfEreNCENIIYcooiiiiiiie 278
2.1.ClassName,PackagéName Availability, andFlags.........cccccvvvevveeiiiiiiiiiieiieeiieeeeeee 278
2.2.DESCIIPLON. ...ceiiiiiieee e, 279
PG T Y 10T o £ USRI 280
2.3.1.Memberavailabilityandflags.........cccccoiiii . 281
2.3.2.Functionalgroupingof MEMDbELS...........ooooi i 282
2.4, ClassHIEIaICNY ... ———————— 282
2.5, CrOSSREIEIENCES......cc ittt e e et e e e e e e s eeaens 283
2.6.A NOtE ADOUL CIASSNAIMES.....cciiiiiiitiiiii ettt e e e e e e e e s eeeeas 284

Preface (Java Enterprise in a Nutshell)

Table of Contents

Preface
(0701 o]] 1 o] ¢ [PPSR UUPPRURPPPP 28
Copyright© 20010'Reilly & Associateslnc. All rightsreserved............cccvvvvvevvvvvnnnee. 286
LOgoSaNATrademMarkS.........ccviiiiiiiiiiiiiiei e, 289
31T F= 1 1= PO PPPPPRPPT 29¢
1. Findinga QUICK—REferenNCENIIY.........covviiiiiii 310
2. Readinga QUICK—REfEreNCENIIY........cooiiiiiiieeee 312
2.1.ClassName,PackagéName Availability, andFlags.........cccccvvveevieiiiiiiieiiieiieeiieeeeeeee, 315
2.2. DESCIIPLON. ...ceiiiei e, 329
2.3, SYNOPSIS. . eeieeeiieeieie ittt 356
2.3.1.Memberavailabilityandflags.........cccccoiiii . 365
2.3.2.Functionalgroupingof MemMDbELS...........ooooiiiiii 370
2.4, ClassHIEIaICNY ... ———————————— 400
2.5, CrOSSREIBIENCES.ci i ittt e e et e e e e e e e e b eeaaeas 422
2.6.A NOtE ADOUL CIASSNAIMES.....cciiiiiiiiiiiiii ettt e e e e e e s s eeeeas 434
I 1o] (=To) l @0] (=] o £ PP 438
Partl: Introducingthe JavaENnterpriS@APIS.........cooooiiiiii i 446
Part2: ENterpriSEREIEIENCE.uuuiiiiiiiiiiiiiiiiiiee ittt e e e e e e s eeeeeeeeeeeeeeereeeeeraeeeaeees 454
Part3: APl QUICKREIEIENCE.ooviiiceee et 462
Chapter L. INtrOQUCHION. ... aar b narraaees 47(
(O{gE=T o1 LT g2 |] = O PPU PRSP TRT 47
Chapter 3. RemoteMethOd INVOCATION........uuuuiiiiiiiiiiiiiiiieiieeereeieeee e s e eeeeeeeeseesaerereeeeeerrerrerrrreeaeeraeees 529
(O{ T o1 (=T g BN - V7= | PP 53
(O{FoT o] LT ST F= A= BT V] 1= PRSPPI 53¢
(O T o] L= 700 1N 0 PP 54
Chapter 7. ENterprise JAVABEANS.ccovviiiiiiiiiieeee et 545
Chapter 8. SQL REIEIENCE.......uuuuiiiiiiiiiiiitiiieiitee et e e e e e et e e e e e ettt et e e e ettt taett e e et aeaataaeetaetaaaeaaaaaaaaaaaaaaaaaaaaens 55¢
(O{ T o] C=T e TR = 41,1 I I Yo P PPTPPSRPPPP 56
Chapter 10.IDL REIEIENCE......coiiiiieeeeeeeeeee e 651
Chapter 11. CORBA ServiCESREEIENCE.uuuiiiiiiiiiiiiiiiii e seeeeeeeeeeseeeeeeeeeeeeeeeeeees 651
Chapter 12.JaValDL TOOIS.......cco oot 651
Chapter 13. The Java.rmMi PACKAQE.........uuuuiiiiiiiiiiiiiiiiiiiiiiiiieieesieseseeeeesseessssssessseesaeesseesaeeereeaeeteeeraeesterraeeaeeess 652
Chapter 14. The java.rmi.activation Package..........cccccovviiiiiiiii 653
Chapter 15. The Java.rmi.dgC PaACKAQE........uuuuuriiiiiiiiiiiiiiiiieiseeieeseessessssessseeseeseeeeseeeseesaeeesreeeerrerreeerteeeaeereeess 653

Vii

Preface (Java Enterprise in a Nutshell)

Table of Contents

Chapter 16. The java.rmi.registry PacCKage..........c.uuvviiiiiiiiiiiiiii e, 653
Chapter 17.The java.rmi.Server PaCkage.............oooo i 656
Chapter 18.The Java.SOIPaCKAQE..........cooo i 657
Chapter 19. The JavaxX.€J PACKAQE.........uvviiiiiiiieeeieeeeeeeeee e 657
Chapter 20. The javax.ejb.deploymentPackage............ooooiiiiiiii oo 658
Chapter 21. The Javax.JmS PacCKage........ccooo i 659
Chapter 22. The javax.naming PacCKage.............ooooiiiiiiii s 659
Chapter 23. The javax.naming.direCtory PacCKage..........cccoeeiiiiiiiiiiiii e enaeenneennees 660
Chapter 24. The javax.naming.SpiPackage............ooouiiiiiiiiii e, 660
Chapter 25. The JavaX.SerVIEtPaACKAGE.uuuiiiiiiiiiiiiiiiiiiieeiie et ee e e e e eesseesaeeeeeeeeeeeeeeeeeeteeeaeeeaeees 661
Chapter 26. The javax.servlet.http Package. ..., 661
Chapter 27.The JaVaX.SOIPACKAQGE...........ccvviiiiiiieeiieeeeee ettt 661
Chapter 28. The javax.transaction Package............coooiiviiiiiiiii i, 662
Chapter 29. The javax.transSaction. XaPaCKaQE.........uuuuuiuiuiiiiiiiiiiiiiiiiiiiierieeiresreseessseserresereereeer—er—reereraee——. 663
Chapter 30.The org.omg.CORBAPACKAGE..........ccoveiiieiie . 663
Chapter 31. The org.omg.CORBA.DynAnyPackagePackage..............ccoeeeeiiiiii i 663
Chapter 32. The org.omg.CORBA.ORBPackagePackage..........ccooeeieiiieiiiiiicceccce e 666
Chapter 33. The org.omg.CORBA.portable Package..........cccccccovviiiiiii 667
Chapter 34.The org.omg.CORBA.TypeCodePackag®ackage...............ccccee et 667
Chapter 35. The org.omg.CosNamingPaCKaQE............ccovvviiiiiiiiii 668
Chapter 36. The org.omg.CosNamingNamingContextPackagePackage.............cccccoee. 669
Chapter 37.Class,Method, and Field INAEX ... sssssessessssesseeseees 669
How t0 USEThIS QUICK REFEBIENCE.cciieeeeeii ettt e e e e e e e e e e e e e e e eraaaaans 669
HOow t0 USEThIS QUICK REFEBIENCE.cciieeeeetii ettt et e e e e e e e e e e e e e e e eraaaaans 669
Part 1. Introducing the JAVaENterpriSE APIS..........uuuuuiiiiiiiiiiiiiiiiiiiieiieeereeeeeeseeeeseeseeessesseeesseeeeeereeraeerreeaaeess 671

viii

Part 2. Enterprise Reference

Part 3. APl Quick Reference

Preface (Java Enterprise in a Nutshell)

Table of Contents

Preface

This book is a desktop quick reference for Java programmers who are writing enterprise applications. The fi
part of the book provides a fast—paced introduction to the key Java Enterprise APIs: JDBC™, RMI, Java IDL
(CORBA), servlets, JNDI, and Enterprise JavaBeans™. These chapters are followed by a quick-reference
section that succinctly details every class of those APIs, as well as a few other Enterprise APIs.

This book complements the best-selling Java in a Nutshell and the forthcoming Java Foundation Classes ir
Nutshell. Java in a Nutshell introduces the Java programming language itself and provides an API quick
reference for the core packages and classes of the Java platform, while Java Foundation in a Nutshell offers
fast—paced tutorial on the Java APIs that comprise the Java Foundation Classes (JFC) and provides
corresponding quick-reference material.

0.1. Contents of This Book

This book is divided into three parts:

Part 1, "Introducing the Java Enterprise APIs"
The chapters in this part introduce the key Enterprise APIs and provide enough information so that
you can start using them right away.

Part 2, "Enterprise Reference"
This part contains two reference chapters that help you work with technologies key to the Enterprise
APIs: SQL and IDL. It also contains chapters that cover the tools provided with Sun's Java
Development Kit for RMI and Java IDL.

Part 3, "API Quick Reference"
This part is a quick reference for the Java Enterprise APIs; it forms the bulk of the book. Please be
sure to read the How To Use This Quick Reference section, which appears at the beginning of this
part. It explains how to get the most out of this book.

€ PREVIOUS HOME NEXT »

Copyright BOOK INDEX 0.2. Related Books
SO B ™ s e
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in o Nutshell, Foundation Closses Jnvnlonns Serviet Security Distributed

ino Nutsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

§8% JAVA ENTERPRISE IN A NUTSHELL =

4 PREVIOUS Preface NEXT »

Preface 1

Preface (Java Enterprise in a Nutshell)

0.2. Related Books

O'Reilly & Associates publishes an entire series of books on Java programming. These books include Java
a Nutshell and Java Foundation Classes in a Nutshell, which, as mentioned above, are companions to this
book.

A related reference work is the Java Power Reference. It is an electronic Java quick—reference on CD—-RON
that uses the Java in a Nutshell style. But since it is designed for viewing in a web browser, it is fully
hyperlinked and includes a powerful search engine. It is wider in scope but narrower in depth than the Java
a Nutshell books. Java Power Reference covers all the APIs of the Java 2 platform, plus the APIs of many
standard extensions. But it does not include tutorial chapters on the various APIs, nor does it include
descriptions of the individual classes.

You can find a complete list of O'Reilly's Java books at http://java.oreilly.com. Books of particular interest to
enterprise programmers include the following:

Java Servlet Programming, by Jason Hunter with William Crawford
A guide to writing servlets that covers dynamic web content, maintaining state information, session
tracking, database connectivity using JDBC, and applet—servlet communication.

Java Distributed Computing, by Jim Farley
A programmer's guide to writing distributed applications with Java.

Database Programming with JDBC and Java, by George Reese
An advanced tutorial on JDBC that presents a robust model for developing Java database programs

Enterprise JavaBeans, by Richard Monson-Haefel
A thorough introduction to EJB for the enterprise software developer.

€ PREVIOUS HOME NEXT

0.1. Contents of This Book BOOK INDEX 0.3. Java Programming
Resources Online

Java” } \ § M = o) B %
. 3 < == g B > [a
Enterprise .] 3 g @)<\ /
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

4 PREVIOUS Preface NEXT »

0.3. Java Programming Resources Online

This book is designed for speedy access to frequently needed information. It does not, and cannot, tell you
everything you need to know about the Java Enterprise APIs. In addition to the books listed in the previous
section, there are several valuable (and free) electronic sources of information about Java programming.

0.2. Related Books 2

http://java.oreilly.com/

Preface (Java Enterprise in a Nutshell)

Sun's main web site for all things related to Java is http://java.sun.com. The web site specifically for Java
developers is http://developer.java.sun.com. Much of the content on this developer site is password—protect
and access to it requires (free) registration.

Some of the Enterprise APIs covered in this book are part of the core Java 2 platform, so if you have
downloaded the JDK, you have the classes for APIs such as JDBC, RMI, and Java IDL. Other APIs are
standard extensions, however, so if you want to use, say, JNDI or servlets, you have to download the classe
separately. The best way to get the latest APIs is to start on Sun's Products and APIs page at
http://java.sun.com/products/ and find the appropriate API from there.

Sun distributes electronic documentation for all Java classes and methods in its javadoc HTML format.
Although this documentation is rough or outdated in places, it is still an excellent starting point when you
need to know more about a particular Java package, class, method, or field. If you do not already have the
javadoc files with your Java distribution, see http://java.sun.com/docs/ for a link to the latest available
version.

Finally, don't forget O'Reilly's Java web site. http://java.oreilly.com contains Java news and commentary anc
a monthly tips—and-tricks column by O'Reilly Java author Jonathan Knudsen.

4 PREVIOUS HOME NEXT »
0.2. Related Books BOOK INDEX 0.4. Examples Online
Java:)‘ b-aq g
Enterprise
Bookshelf Java™ Java™ Juvo Enterprise Jnvu Java™ Juw
Home Enterprise in a Nutshell, Foundation Classes Jnvnﬂonns Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@ JAVA ENTERPRISE IN A NUTSHELL™

4 PREVIOUS Preface NEXT »

0.4. Examples Online

The examples in this book are available online and can be downloaded from the home page for the book at
http://lwww.oreilly.com/catalog/jentnut. You may also want to visit this site to see if any important notes or
errata about the book have been published there.

4 PREVIOUS HOME NEXT B
0.3. Java Programming BOOK INDEX 0.5. Conventions Used in
Resources Online This Book

Lnterprlse)<
Bookshelf Java™ Java™ Javo Enterprise Jnvu Javc Juvu
Home Enterprise in a Nutshell, Foundation Classes Jnvn!emn Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

0.4. Examples Online 3

http://java.sun.com/
http://developer.java.sun.com/
http://java.sun.com/products/
http://java.sun.com/docs/
http://java.oreilly.com/
http://www.oreilly.com/catalog/jentnut

Preface (Java Enterprise in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA. ENTERPRISE N A NuTseL ™

@ PREVIOUS Preface NEXT »

0.5. Conventions Used in This Book

The following formatting conventions are used in this book:

Italic
Is used for emphasis and to signify the first use of a term. Italic is also used for commands, email
addresses, web sites, FTP sites, file and directory names, and newsgroups.

Bold
Is occasionally used to refer to particular keys on a computer keyboard or to portions of a user
interface, such as the Back button or the Options menu.

Letter Gothic
Is used in all Java code and generally for anything that you would type literally when programming,
including options, keywords, data types, constants, method names, variables class names, and
interface names.

Letter Gothic Oblique
Is used for the names of function arguments, and generally as a placeholder to indicate an item that
should be replaced with an actual value in your program.

Franklin Gothic Book Condensed
Is used for the Java class synopses in Part lll. This very narrow font allows us to fit a lot of
information on the page without a lot of distracting line breaks. This font is also used for code entities
in the descriptions in Part lIl.

Franklin Gothic Demi Condensed
Is used for highlighting class, method, field, property, and constructor names in Part I, which makes
it easier to scan the class synopses.

Franklin Gothic Book Compressed lItalic
Is used for method parameter names and comments in Part Ill.

4 PREVIOUS HOME NEXT »
0.4. Examples Online BOOK INDEX 0.6. We'd Like to Hear
from You

Java” } M
Enterprise)<
Bookshelf Java™ vau Enterprise Jnvu Juvc Juw
Home Enterprise ina NMstIl Foundation Classes Jnvnknns Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

0.5. Conventions Used in This Book 4

Preface (Java Enterprise in a Nutshell)

&% JAVA ENTERPRISE INA NutstErL ™

@ PREVIOUS Preface NEXT »

0.6. We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability, but you may find that
features have changed (or even that we have made mistakes!). Please let us know about any errors you fin
well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (FAX)

You can send us messages electronically. To be put on the mailing list or request a catalog, send email to:
info@oreilly.com
To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions. You cal
access this page at:

http://www.oreilly.com/catalog/jentnut/
For more information about this book and others, see the O'Rellly web site:

http://www.oreilly.com

4 PREVIOUS HOME NEXT »
0.5. Conventions Used in BOOK INDEX 0.7. Acknowledgments
This Book

& ® 0

R

Bookshelf Java™ Java™ Java™ Enterprise Jova™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISE N NutsEr, ™

@ PREVIOUS Preface NEXT »

0.6. We'd Like to Hear from You 5

http://www.oreilly.com/catalog/jentnut/
http://www.oreilly.com/

Preface (Java Enterprise in a Nutshell)

0.7. Acknowledgments

This book is an outgrowth of the best—selling Java in a Nutshell. We'd like to thank all the readers who made
that book a success and who wrote in with comments, suggestions, and praise.

The authors would like to say a big thank you to the book's technical reviewers, whose constructive criticism
has done much to improve this work: Andy Deitsch, Jason Hunter, William Smith, and Gary Letourneau.

0.7.1. David Flanagan

Java Enterprise in a Nutshell is a book I've wished | could write for some time now. Time constraints and my
own lack of expertise in enterprise computing have kept me from doing it myself, and so | am deeply gratefu
to Jim Farley, William Crawford, and Kris Magnusson, who are experts and who did all the hard work to
make this book a reality. | owe an extra thanks to Jim Farley for taking the time to help me understand
Enterprise JavaBeans and the JTA and JTS transaction APIs. Paula Ferguson also earns my sincere thank:
she had the unenviable task of editing material from four independent authors and fitting it seamlessly
together into a single book.

0.7.2. Jim Farley

A writing project of any kind requires a much larger cast of characters than those listed on the cover. Paula
Ferguson deserves mention above all, not only for doing her usual excellent editing job, but also for roping i
four disobedient authors, as opposed to the usual one disobedient author. I'd like to thank David Flanagan f
putting together the API listings and the introductory chapter, as well as providing great technical review
comments, all of which helped integrate this into the "Java ... Nutshell" set. Technical reviewers are the
unsung heroes of writing projects such as this one, so many thanks to Andy Deitsch, Bill Smith, Jason Huntt
and Gary Letourneau.

To my wife Sandy Mallalieu, who has somehow not only accepted the fact that her husband enjoys spendin
much of his free time on writing projects like this, but is also supportive and inspiring through it all-—well,
what else is there to say? My extended family, and the folks at the Harvard Business School, were supportiy
as always, and getting through efforts such as this makes me appreciate them both all the more. And for the
late—night inspiration, my undying gratitude to Madeline and to Declan MacManus.

0.7.3. William Crawford

Writing projects would be impossible without the support of everyone at Invantage, especially Martin
Streeter, Nicholas Riley, and Stephen Braverman. Jason Hunter's knowledge of servlet programming was a
boon to Chapter 5. | would also like to thank the staff of the Emotion Cybernet Cafe in Hanoi, Vietnam,
where | wrote most of the class summaries for the java.sql package, paying six cents a minute for
computer time. And we wouldn't be here without David Flanagan.

I have enjoyed support, encouragement, and grudging tolerance from William F. Crawford, William E.
Crawford, Francine Crawford, and Faith Crawford, as well as from Joel Pomerantz, Sam Carner, and Isaac
Kohane.

Finally, my heartfelt thanks goes to our editor, Paula Ferguson, for her extreme patience with me over the g
year and a half.

0.7.4. Kris Magnusson

| found a good deal of pleasure in writing the JNDI-related material for this book. And | have many people t
thank for the opportunity——too many to list here. But some deserve special mention.

0.7. Acknowledgments 6

Preface (Java Enterprise in a Nutshell)

In particular | thank my partner and wife Kristen Dalzen for all her support, without which my work would
not have been possible. She is the Empress of the Blue People, and she has enriched my life beyond
description. She has been brave to bear the abandonment.

At O'Reilly, David Flanagan provided invaluable assistance in writing my portions of this book; clearly he is
an asset to the entire Java community. My editor, Paula Ferguson, was equally invaluable; she tightened up
my language and code like a vise. And my other editor, Mike Loukides, is a good sport for giving me time off
from my other book to work on this one.

My Novell experience has been a period of immense personal growth for me. My officemates Bruce "Stocks
Bergeson, Jim Sermersheim, and Kent Boogert have been key players in that drama, as were Alan Landes,
Alvin Tedjamulia, Chris Stone, Don Lavange, Don Thomas, Ed Lane, Erni Messenger, Michael J. Simpson,
Mike Flathers, Mike MacKay, Ric Buhler, Scott Pead, Steve Holbrook, Steve Weitzeil, and Trisha Turner.
Here's to a fruitful second act.

Outside of work, Don Yacktman and Dr. Sean Luke were instrumental in sharing their object-oriented
architecture expertise over the years. And Yan Fang and her support for my computer and other habits help
immensely with my transition from fresh economics graduate to software guy.

Thanks, everyone!

4 PREVIOUS HOME NEXT »
0.6. We'd Like to Hear BOOK INDEX Part 1. Introducing the
from You Java Enterprise APIs
5.0 B e e
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in o Nutshell, Foundation Closses Jnvnlonns Serviet Security Distributed
ino Nutsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

§8% JAVA ENTERPRISE IN A NUTSHELL =

@ PREVIOUS Part 1: Introducing the NEXT »
Java Enterprise APIs

0.7. Acknowledgments 7

Chapter 1. Introduction

Contents:

Enterprise Computing Defined
Enterprise Computing Demystified
The Java Enterprise APIs
Enterprise Computing Scenarios
Java Enterprise APIs Versus Jini

This book is an introduction to, and quick reference for, the Java Enterprise APls. Some of these APIs are a
core part of the Java platform, while others are standard extensions to the platform. Together, however, the)
enable Java programs to use and interact with a suite of distributed network services that are commonly use
in enterprise computing.

Just before this book went to press, Sun announced a new Java platform for enterprise computing. Java 2
Platform, Enterprise Edition, or J2EE, is the standard Java 2 platform with a number of extensions for
enterprise computing. As of this writing, J2EE is still in its alpha stages; it will be some time before a
complete specification and implementation are delivered. From the preliminary specifications, however, it
appears that most of the enterprise—computing technologies that will be part of J2EE are already documents
in this book. In the months ahead, you will undoubtedly hear quite a bit about Java 2 Platform, Enterprise
Edition. Although you won't find that name used explicitly here, you can rest assured that this book
documents the building blocks of J2EE.

1.1. Enterprise Computing Defined

Before we go any further, let's be clear. The term enterprise computing is simply a synonym for distributed
computing: computation done by groups of programs interacting over a network.

Anyone can write distributed applications: you don't have to work for a major corporation, university,
government agency, or any other kind of large—scale "enterprise" to program with the Java Enterprise APIs.
Small businesses may not have the same enterprise—scale distributed computing needs large organizations
have, but most still engage in plenty of distributed computing. With the explosive growth of the Internet and
of network services, just about anyone can find a reason to write distributed applications. One such reason i
that it is fun. When distributed computing is used to leverage the power of the network, the results can be
amazingly cool!

So, if the Java Enterprise APIs aren't used exclusively by enterprises, why aren't they called the Java
Distributed Computing APIs? The reasons are simple. First, enterprise is a hot buzzword these
days—-everyone in the networking industry wants to be doing enterprise something. Second, large enterpris
have lots of money to spend on costly hardware for running their expensive network server software. Since
the enterprise is where the money is, we get the word enterprise in the APIs.

4 PREVIOUS HOME NEXT »
Part 1. Introducing the BOOK INDEX 1.2. Enterprise Computing
Java Enterprise APIs Demystified
Java i | S el | O | e | A
Enterprise 7| e 3 g @ 7<'\/ ‘
o]) A\ 2 H { \
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Chapter 1. Introduction 8

Preface (Java Enterprise in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@JAVA‘,ENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 1: Introduction TS

1.2. Enterprise Computing Demystified

Enterprise computing has a reputation for complexity and, for the uninitiated, it is often surrounded by a
shroud of mystery. Here are some reasons enterprise computing can seem intimidating:

Enterprise computing usually takes place in a heterogeneous network: one in which the computers
range from large mainframes and supercomputers down to PCs (including both top—of-the-line
Pentium llls and outdated 386s). The computers were purchased at different times from a variety of
different vendors and run two or three or more different operating systems. The only common
denominator is that all the computers in the network speak the same fundamental network protocol
(usually TCP/IP).

A variety of server applications run on top of the heterogeneous network hardware. An enterprise
might have database software from three different companies, each of which defines different,
incompatible extensions.

Enterprise computing involves the use of many different network protocols and standards. Some
standards overlap in small or significant ways. Many have been extended in various vendor—specific
nonstandard ways. Some are quite old and use a vocabulary and terminology that dates back to an
earlier era of computing. This creates a confusing alphabet soup of acronyms.

Enterprise computing has only recently emerged as an integrated discipline of its own. Although
enterprise development models are today becoming more cohesive and encompassing, many
enterprises are still left with lots of "legacy systems" that are aggregated in an ad—hoc way.

Enterprise programmers, like many of us in the high—tech world, tend to make their work seem more
complicated that it actually is. This is a natural human tendency—-to be part of the "in" group and
keep outsiders out——but this tendency seems somehow magnified within the computer industry.

Java helps to alleviate these intimidating aspects of enterprise computing. First, since Java is
platform—-independent, the heterogenous nature of the network ceases to be an issue. Second, the Java
Enterprise APIs form a single, standard layer on top of various proprietary or vendor-enhanced APIs. For
example, the JDBC API provides a single, standard, consistent way to interact with a relational database
server, regardless of the database vendor and regardless of the underlying network protocol the database
server uses to communicate with clients. Finally, recall that many enterprise protocols and standards were
developed before the days of object-oriented programming. The object-oriented power and elegance of the
Java language allow the Java Enterprise APIs to be simpler, easier to use, and easier to understand than th
non-Java APIs upon which they are layered.

The messages you should take away from this discussion are:

1.2. Enterprise Computing Demystified 9

Preface (Java Enterprise in a Nutshell)

Enterprise computing is for everyone.

Any programmer can write distributed applications using the Java Enterprise APIs.

With that said, it is important to understand that distributed computing actually is somewhat more
complicated than nondistributed computing. Just as using threads in a program introduces complexities that
not exist in single-threaded programs, using network services in a program introduces complexities that do
not exist in programs that run entirely on one computer. While multithreaded programs have to deal with the
issues of thread synchronization and deadlock, distributed applications have to deal with the possibilities of
network failure and the complexities of distributed transaction processing. Do not fear, however: the
complexities of distributed computing are not overwhelming, and, with a little study, any programmer can
master them.

4 PREVIOUS HOME NEXT »
1.1. Enterprise Computing BOOK INDEX 1.3. The Java Enterprise
Defined APIs
e 4 .) ! - I' — 7
. ;‘Java? . } : Q ol 4 B ,x_
Enterprise ‘ : : { N/
Bookshelf Java™ Java™ J.cva"' Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

4@ PREVIOUS Chapter 1: Introduction uxr »

1.3. The Java Enterprise APIs

The Java Enterprise APls provide support for a number of the most commonly used distributed computing
technologies and network services. These APIs are described in the sections that follow. The APIs are
building blocks for distributed applications. At the end of the chapter, I'll present some enterprise computing
scenarios that illustrate how these separate APIs can be used together to produce an enterprise application

1.3.1. JDBC: Working with Databases

JDBC (Java Database Connectivity) is the Java Enterprise API for working with relational database system:
JDBC allows a Java program to send SQL query and update statements to a database server and to retriev
and iterate through query results returned by the server. JDBC also allows you to get meta—-information abo
the database and its tables from the database server.

The JDBC API is independent of vendor—specific APIs defined by particular database systems. The JDBC
architecture relies upon a Driver class that hides the details of communicating with a database server. Each
database server product requires a custom Driver implementation to allow Java programs to communicate
with it. Major database vendors have made JDBC drivers available for their products. In addition, a "bridge"
driver exists to enable Java programs to communicate with databases through existing ODBC drivers.

1.3. The Java Enterprise APIs 10

Preface (Java Enterprise in a Nutshell)

The JDBC API is found in the java.sql package, which was introduced in Java 1.1. Version 1.2 of the Java
2 platform adds a number of new classes to this package to support advanced database features. Java 1.2
provides additional features in the javax.sql standard extension package. javax.sql includes classes

for treating database query results as JavaBeans, for pooling database connections, and for obtaining datat
connection information from a name service. The extension package also supports scrollable result sets, ba
updates, and the storage of Java objects in databases.

The JDBC API is simple and well-designed. Programmers who are familiar with SQL and database
programming in general should find it very easy to work with databases in Java. See Chapter 2, "JDBC", for
details on JDBC, and Chapter 8, "SQL Reference", for a quick reference to SQL.

1.3.2. RMI: Remote Method Invocation

Remote method invocation is a programming model that provides a high—level, generic approach to
distributed computing. This model extends the object-oriented programming paradigm to distributed
client—server programming; it allows a client to communicate with a server by invoking methods on remote
objects that reside on the server. You invoke remote methods using the same syntax you would use to invol
methods of a normal local object. This model for distributed computing can be implemented in a number of
ways. One of those ways is the Java Remote Method Invocation (RMI) APIl. RMI is implemented in the
java.rmi package and its subpackages, which were introduced in Java 1.1 and have been enhanced for
Version 1.2 of the Java 2 platform.

The Java RMI implementation is full-featured, but still simple and easy to use. It gains much of its simplicity
by being built on top of a network—centric and dynamically extensible platform, of course. But it also gains
simplicity by requiring both client and server to be implemented in Java. This requirement ensures that both
client and server share a common set of data types and have access to the object serialization and
deserialization features of tfgva.io package, for example. On the other hand, this means that RMI

cannot be used with distributed objects written in languages other than Java, such as objects that exist on
legacy servers.[1] It also means that servers written using RMI can be used only by clients written in Java. |i
practice, RMI is an excellent distributed object solution for situations where it is clear that clients and servers
will always be written in Java. Fortunately, there are many such situations.

[1]0One way to work around this restriction is to use native methods to create Java wrappers
that interface directly with the legacy objects that are written in other languages.

The java.rmi package makes it easy to create networked, object-oriented programs. Programmers who
have spent time writing networked applications using lower—level technologies are usually amazed by the
power of RMI. By making RMI so easy, java.rmi points the way to future applications and systems that
consist of loose groups of objects interacting with each other over a network. These objects may act both as
clients, by calling methods of other objects, and as servers, by exposing their own methods to other objects.
See Chapter 3, "Remote Method Invocation", for a tutorial on using RMI.

1.3.3. Java IDL: CORBA Distributed Objects

As we've just seen, RMI is a distributed object solution that works well when both client and server are
written in Java. It does not work, however, in heterogenous environments where clients and servers may be
written in arbitrary languages. For environments like these, the Java 2 platform includes a CORBA-based
solution for remote method invocation on distributed objects.

CORBA (Common Object Request Broker Architecture) is a widely used standard defined by the Object
Management Group (OMG). This standard is implemented as a core part of the Java 2 platform in the
org.omg.CORBA package and its subpackages. The implementation includes an Object Request Broker
(ORB) that a Java application can use to communicate, as both a client and a server, with other ORBs, and

1.3.2. RMI: Remote Method Invocation 11

Preface (Java Enterprise in a Nutshell)

thus with other CORBA objects.

The interfaces to remote CORBA objects are described in a platform- and language-independent way with
the Interface Description Language (IDL). Sun provides an IDL compiler (in "early access" release at the tim
of this writing) that translates an IDL description of a remote interface into the Java stub classes needed for
implementing the IDL interface in Java or for connecting to a remote implementation of the interface from
your Java code.

A number of Java implementations of the CORBA standard are available from various vendors. This book
documents Sun's implementation, known as Java IDL. It is covered in detail in Chapter 4, "Java IDL". The
syntax of the IDL language itself is summarized in Chapter 10, "IDL Reference".

1.3.4. INDI: Accessing Naming and Directory Services

JNDI (Java Naming and Directory Interface) is the Java Enterprise API for working with networked naming
and directory services. It allows Java programs to use hame servers and directory servers to look up object:
data by name and search for objects or data according to a set of specified attribute values. JNDI is
implemented in the javax.naming package and its subpackages as a standard extension to the Java 2
platform.

The JNDI API is not specific to any particular name or directory server protocol. Instead, it is a generic API
that is general enough to work with any name or directory server. To support a particular protocol, you plug
service provider for that protocol into a JNDI installation. Service providers have been implemented for the
most common protocols, such as NIS, LDAP, and Novell's NDS. Service providers have also been written tc
interact with the RMI and CORBA object registries. JNDI is covered in detail in Chapter 6, "JNDI".

1.3.5. Enterprise JavaBeans

Enterprise JavaBeans do for server—side enterprise programs what JavaBeans do for client-side GUIs.
Enterprise JavaBeans (EJB) is a component model for units of business logic and business data. Thin client
programming models that take business logic out of the client and put it on a server or in a middle tier have
many advantages in enterprise applications. However, the task of writing this middleware has always been
complicated by the fact that business logic must be mixed in with code for handling transactions, security,
networking, and so on.

The EJB model separates high—level business logic from low-level housekeeping chores. A bean in the EJE
model is an RMI remote object that implements business logic or represents business data. The difference
between an enterprise bean and a run—of-the—mill RMI remote object is that EJB components run within an
EJB container, which in turn runs within an EJB server. The container and server may provide features suct
as transaction management, resource pooling, lifecycle management, security, name services, distribution
services, and so on. With all these services provided by the container and server, enterprise beans (and
enterprise bean programmers) are free to focus purely on business logic. The particular set of services
provided by an EJB server is implementation—dependent. The EJB specification is strongest in the areas of
transaction management and resource pooling, so these are features that are expected in all EJB server
implementations.

The EJB specification is a document that specifies the contracts to be maintained and conventions to be
followed by EJB servers, containers, and beans. Writing EJB components is easy: you simply write code to
implement your business logic, taking care to follow the rules and conventions imposed by the EJB model.

Unlike the other Java Enterprise APIs, EJB is not really an API; it is a framework for component-based
enterprise computing. The key to understanding Enterprise JavaBeans lies in the interactions among beans
containers, and the EJB server. These interactions are described in detail in Chapter 7, "Enterprise
JavaBeans". There is, of course, an AP| associated with the EJB application framework, in the form of the

1.3.4. JNDI: Accessing Naming and Directory Services 12

Preface (Java Enterprise in a Nutshell)

javax.ejb and javax.ejb.deployment packages. You'll find complete API quick-reference
information for these packages in Part 3, "API Quick Reference".

1.3.6. Servlets

A servlet is a piece of Java code that runs within a server to provide a service to a client. The name servlet i
takeoff on applet——a servlet is a server—side applet. The Java Servlet API provides a generic mechanism fo
extending the functionality of any kind of server that uses a protocol based on requests and responses.

Right now, servlets are used primarily by web servers. On the growing number of web servers that support
them, servlets are a Java—based replacement for CGI scripts. They can also replace competing technologie
such as Microsoft's Active Server Pages (ASP) or Netscape's Server—Side JavaScript. The advantage of
servlets over these other technologies is that servlets are portable among operating systems and among
servers. Servlets are persistent between invocations, which gives them major performance benefits over CC
programs. Servlets also have full access to the rest of the Java platform, so features such as database acce
are automatically supported.

The Servlet API differs from many other Java Enterprise APlIs in that it is not a Java layer on top of an
existing network service or protocol. Instead, servlets are a Java—specific enhancement to the world of
enterprise computing. With the advent of the Internet and the World Wide Web, many enterprises are
interested in taking advantage of web browsers——a universally available thin—client that can run on any
desktop. Under this model, the web server becomes enterprise middleware and is responsible for running
applications for clients. Servlets are a perfect fit here. The user makes a request to the web server, the web
server invokes the appropriate servlet, and the servlet uses JNDI, JDBC, and other Java Enterprise APIs to
fulfill the request, returning the result to the user, usually in the form of HTML-formatted text.

The Servlet APl is a standard extension to the Java 2 platform, implemented in the javax.servlet and
javax.servlet.http packages. The javax.servlet package defines classes that represent generic

client requests and server responses, while the javax.servlet.http package provides specific support

for the HTTP protocol, including classes for tracking multiple client requests that are all part of a single clien
session. See Chapter 5, "Java Servlets", for details on servlet programming.

1.3.7. JMS: Enterprise Messaging

JMS (Java Message Service) is the Java Enterprise API for working with networked messaging services an
for writing message-oriented middleware (fondly referred to as MOM).

The word "message" means different things in different contexts. In the context of JMS, a message is chunk
data that is sent from one system to another. The data serves as a kind of event notification and is almost
always intended to be read by a computer program, not by a human. In a nondistributed system, an Event
object notifies the program that some important event (such as the user clicking a mouse button) has occurr
In a distributed system, a message serves a similar purpose: it notifies some part of the system that an
interesting event has occurred. So you can think of a networked message service as a distributed event
notification system.

Like JNDI and JDBC, JMS is an API layered on top of existing, vendor-specific messaging services. In orde
to use JMS in your applications, you need to obtain a JMS provider implementation that supports your
particular message server.

Although JMS is an important part of the Java Enterprise APls, its use is not nearly as universal as APIs suc

as JDBC and JNDI, so this book does not contain a tutorial chapter on JMS. Chapter 21, "The javax.jms
Package", does contain a complete API quick reference for the javax.jms package, however.

1.3.6. Servlets 13

Preface (Java Enterprise in a Nutshell)

1.3.8. JTA: Managing Distributed Transactions

The JTA, or Java Transaction API, is a Java Enterprise API for managing distributed transactions. Distribute
transactions are one of the things that make distributed systems more complicated than nondistributed
programs. To understand distributed transactions, you must first understand simple, nondistributed
transactions.

A transaction is a group of several operations that must behave atomically—-as if they constituted a single,
indivisible operation. Consider a banking application that allows a user to transfer money from a checking
account to a savings account. If the two account balances are stored in a database, the application must
perform two database updates to handle a transfer: it must subtract money from the checking account and &
money to the savings account. These two operations must behave atomically. To see why, imagine what
would happen if the database server crashed after money had been subtracted from the checking account k
before it had been added to the savings account. The customer would lose money!

To make multiple operations atomic, we use transactions. In our banking example, we first begin a
transaction, then perform the two database updates. While these updates are in progress, no other threads
see the updated account balances. If both updates complete successfully, we end the transaction by commi
it. This makes the updated account balances available to any other clients of the database. On the other hai
if either of the database updates fails, we roll back the transaction, reverting the accounts to their original
balances. Other clients are again given access to the database, and they see no changes in the account
balances. The JDBC API supports transactions on databases. The database server is required to do some
complex work to support transactions, but for the application programmer, the API is easy: simply begin a
transaction, perform the desired operations, and then either commit or rollback the transaction.

Distributed transactions are, unfortunately, quite a bit more complex than the simple transactions just
described. Imagine, for example, a program that transfers money from an account stored in one database tc
another account stored in a different database running on a different server. In this case, there are two diffel
servers involved in the transaction, so the process of committing or rolling back the transaction must be
externally coordinated. Distributed transactions are performed using a complex procedure known as the
two—phase commit protocol; the details of the protocol are not important here. What is important is that we
could write our account transfer code so that it implements the two—phase commit protocol itself,
coordinating the entire distributed transaction with the two database servers. This would be tedious and
error—prone, however. In practice, distributed transactions are coordinated by a specialized distributed
transaction service.

This brings us, finally, to the JTA. The JTA is a Java API for working with transaction services. It defines a
Java binding for the standard XA API for distributed transactions (XA is a standard defined by the Open
Group). Using the JTA, we can write a program that communicates with a distributed transaction service an
uses that service to coordinate a distributed transaction that involves a transfer of money between database
records in two different databases.

Unfortunately, however, using the JTA in this way is still complex and error—prone. Modern enterprise
applications are typically designed to run within some kind of application server, such as an Enterprise
JavaBeans server. The server uses JTA to handle distributed transactions transparently for the application.
Under this model, JTA becomes a low-level API used by server implementors, not by typical enterprise
programmers. Therefore, this book doesn't include a tutorial chapter on JTA. It does, however, contain a
complete API quick reference for the javax.transaction and javax.transactions.xa packages

(see Chapter 28, "The javax.transaction Package" and Chapter 29, "The javax.transaction.xa Package").

4 PREVIOUS HOME NEXT »
1.2. Enterprise Computing BOOK INDEX 1.4. Enterprise Computing
Demystified Scenarios

1.3.8. JTA: Managing Distributed Transactions 14

Preface (Java Enterprise in a Nutshell)

i ¥ %] — ; /
Java® i@ | § h‘-&,’ o %
Enterprise — 3 @ 7<\/
Bookshelf Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

& JAVA ENTERPRISE IN A NUTSHELL ™

4 PREVIOUS Chapter 1: Introduction "ty

1.4. Enterprise Computing Scenarios

The previous sections have been rapid—fire introductions to the Java Enterprise APIs. Don't worry if you
didn't understand all the information presented there: the rest of the chapters in this Part cover the APIs in
more detail. The important message you should take from this chapter is that the Java Enterprise APIs are
building blocks that work together to enable you to write distributed Java applications for enterprise
computing. The network infrastructure of every enterprise is unique, and the Java Enterprise APIs can be
combined in any number of ways to meet the specific needs and goals of a particular enterprise.

Figure 1-1 shows a network schematic for a hypothetical enterprise. It illustrates some of the many possible
interconnections among network services and shows the Java Enterprise APIs that facilitate those
interconnections. The figure is followed by example scenarios that demonstrate how the Java Enterprise AP
might be used to solve typical enterprise computing problems. You may find it useful to refer to Figure 1-1
while reading through the scenarios, but note that the figure does not illustrate the specific scenarios preser
here.

1.4. Enterprise Computing Scenarios 15

Preface (Java Enterprise in a Nutshell)

..

+ Internet) Enterprise Intranef

Database Servers

JOBC JDBC

INDI LDAP Novell
—

..........

NG deOoOo A4
é ther ' sgssm ::: D D H qi-b g
g nWoh K’m" é ::'— Legacy Distributed Obil(“;‘ __: ?\:M'@ é
é rowser E 'E —bD |:| [:l :‘ E E

: Sttt (084 (0 7Y] [ttt :

Other Enterprise Services

> Message P é
s Service 1 :

Transaction '
i » Service M

..

Figure 1-1. The distributed computing architecture of a hypothetical enterprise

1.4.1. Enabling E-Commerce for a Mail-Order Enterprise

CornCo Inc. runs a successful catalog—based mail-order business selling fresh flavored popcorn. They wan
to expand into the exciting world of electronic commerce over the Internet. Here's how they might do it:[2]

[2]This example is intended to illustrate only how the Java Enterprise APIs can be used
together. | have ignored efficiency considerations, so the resulting design might not actually
be practical for a large—scale e—~commerce web site.

A customer visits the company's web site, www.cornco.com, and uses a web browser to interact witt
the company's web server. This allows the customer to view the company's products and make
selections to purchase.

The web server uses a shopping—cart servlet to keep track of the products the customer has chosen
buy. The HTTP protocol is itself stateless, but servlets can persist between client requests, so this
shopping—cart servlet can remember the customer's selections even while the customer continues tc
browse the web site.

When the customer is done browsing and is ready to purchase the selected products, the web serve
invokes a different checkout servlet. This servlet performs a number of important tasks, using severe
Enterprise APls.

1.4. Ehterprise Computing Scenarios 16

Preface (Java Enterprise in a Nutshell)

The checkout servlet uses JDBC to retrieve the list of products to be purchased (stored in a databas
by the shopping—cart servlet).

Next, the servlet queries the customer for a shipping address, a billing address, and other required
information, and then uses JDBC again to store this information in a customer database. This databe
can be used, for example, by the CornCo marketing department for direct mail purposes.

The servlet then sends the customer's billing address and total purchase price to the billing server.
This server is a legacy application, specific to CornCo, that has a honstandard interface. Fortunately
however, the billing server exports itself as a CORBA object, so the servlet can treat the entire serve
as a CORBA remote object and invoke the necessary methods on it.

In order to ensure the very freshest product, CornCo maintains warehouses throughout the world.
CornCo is a growing company, so the list of warehouses is frequently updated. The checkout servlet
uses JNDI to contact a directory server and then uses the directory server to find a warehouse that i
close to the customer and has the customer's requested products in stock.

Having located a warehouse that can fulfill the customer's order, the checkout servlet uses JMS to
contact the company's enterprise messaging service. It uses this service to send the customer's orde
the selected warehouse in the form of a message. This message is delivered to and queued up on tt
local computer at the warehouse.

1.4.2. Updating CornCo with Enterprise JavaBeans

You may have noticed a flaw in the previous scenario. The checkout servlet sends billing information to one
server, and then sends fulfillment information to another server. But it performs these two actions
independently, without any attempt to maintain transactional integrity and make them behave atomically. In
other words, if a network failure or server crash were to occur after the billing information had been sent, bu
before the fulfillment information had been sent, the customer might receive a bill for popcorn that was neve
shipped.

The designers of the e-commerce system described in the previous section were aware of this problem, bu
since distributed transactions are complex, and CornCo did not own a transaction management server, they
simply chose to ignore it. In practice, the number of customers who would have problems would be small, a
it was easier for the original programmers to let the customer service department sort out any irregularities.

But now, CornCo has hired a new Vice President of Information Systems. She's tough as nails, and likes all
her i's dotted and her t's crossed. She won't stand for this sloppy state of affairs. As her first official act as VI
she buys a high—end application server with Enterprise JavaBeans support and gives her e—commerce tear
the job of revamping the online ordering system to use it. The modified design might work like this:

The customer interacts with the web server and the shopping—cart servlet in the same way as before

The checkout servlet is totally rewritten. Now it is merely a frontend for an Enterprise JavaBeans
component that handles the interactions with the ordering and fulfilment servers and with the
marketing database. The servlet uses JNDI to look up the enterprise bean, and then uses RMI to
invoke methods on the bean (recall that all enterprise beans are RMI remote objects).

1.4.2. Updating CornCo with Enterprise JavaBeans 17

Preface (Java Enterprise in a Nutshell)

The major functionality of the checkout servlet is moved to a new checkout bean. The bean stores
customer data in the marketing database using JDBC, sends billing information to the billing server
using CORBA, looks up a warehouse using JNDI, and sends shipping information to the warehouse
using JMS. The bean does not explicitly coordinate all these activities into a distributed transaction,
however. Instead, when the bean is deployed within the EJB server, the system administrator
configures the bean so that the server automatically wraps a distributed transaction around all of its
actions. That is, when the checkout() method of the bean is called, it always behaves as an atomic
operation.

In order for this automatic distributed transaction management to work, another change is required ir
the conversion from checkout servlet to checkout bean. The checkout servlet managed all its own
connections to other enterprise services, but enterprise beans do not typically do this. Instead, they
rely on their server for connection management. Thus, when the checkout bean wants to connect to
the marketing database or the enterprise messaging system, for example, it asks the EJB server to
establish that connection for it. The server doesn't need to know what the bean does with the
connection, but it does need to manage the connection, if it is to perform transaction management ol
the connection.

4 PREVIOUS HOME NEXT »
1.3. The Java Enterprise BOOK INDEX 1.5. Java Enterprise APIs
APIs Versus Jini
B @ @ ‘ ﬁ‘ s @
Bookshelf Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nlmlwll Fomdalmn (lusses JavoBeans™, Serviet Security Distributed
ino Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

4@ PREVIOUS Chapter 1: Introduction uxr »

1.5. Java Enterprise APIs Versus Jini

Jini™ is the latest networking initiative from Sun. It is related to, but mostly incompatible with, the Java
Enterprise APls. Jini is a next—generation networking system designed to enable instantaneous networking
between unrelated devices, without external communication. Jini is a system for distributed computing; it
includes a name service, a distributed transaction service, and a distributed event service. Although these
services overlap with JNDI, JTS, and JMS, Jini is fundamentally different from the Java Enterprise APIs. The
Enterprise APIs are designed to bring Java into existing enterprises and to interoperate with existing protoce
and services. Jini, on the other hand, is a next—generation networking system that was designed from scratc
with no concern for compatibility with today's distributed systems. Jini is a powerful and interesting
technology, but covering it is beyond the scope of this book.

4 PREVIOUS HOME NEXT »
1.4. Enterprise Computing BOOK INDEX 2.JDBC
Scenarios

1.5. Java Enterprise APIs Versus Jini 18

Preface (Java Enterprise in a Nutshell)

; 5 P se N » :
se & L
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

& JAVA ENTERPRISE VA NUTSHELL ™

@ PREVIOUS Part 1: Introducing the NEXT »
Java Enterprise APIs

1.5. Java Enterprise APIs Versus Jini

19

Chapter 2. JDBC

Contents:

JDBC Architecture
JDBC Basics

JDBC Drivers
Connecting to the Database
Statements

Results

Handling Errors
Prepared Statements
Metadata
Transactions

Stored Procedures
Escape Sequences
JDBC 2.0

The JDBCJ1] API provides Java applications with mid—-level access to most database systems, via the
Structured Query Language (SQL). JDBC is a key enterprise API, as it's hard to imagine an enterprise
application that doesn't use a database in some way. This chapter starts by demonstrating the central conce
and classes that comprise the original JDBC API (JDBC 1.0), which was introduced as an add-on to Java 1
and included as part of the core Java 1.1 API. It concludes with an introduction to the new JDBC 2.0 feature
that are provided as part of Version 1.2 of the Java 2 platform.

[1]According to Sun, JDBC is not an acronym for Java Database Connectivity, although most
people assume it is.

A word of caution: while the java.sgl package is less complicated than, say, the RMI packages, it does
require grounding in general database concepts and the SQL language itself. This book does include a brief
SQL reference (see Chapter 8, "SQL Reference", but if you have never worked with a relational database
system before, this chapter is not the place to start. For a more complete treatment of JDBC and general
database concepts, | recommend Database Programming with JDBC and Java by George Reese (O'Reilly).

2.1. JDBC Architecture

Different database systems have surprisingly little in common: just a similar purpose and a mostly compatib
guery language. Beyond that, every database has its own API that you must learn to write programs that
interact with the database. This has meant that writing code capable of interfacing with databases from mort
than one vendor has been a daunting challenge. Cross—database APls exist, most notably Microsoft's ODB
API, but these tend to find themselves, at best, limited to a particular platform.

JDBC is Sun's attempt to create a platform—neutral interface between databases and Java. With JDBC, you
can count on a standard set of database access features and (usually) a particular subset of SQL, SQL-92.
JDBC API defines a set of interfaces that encapsulate major database functionality, including running querie
processing results, and determining configuration information. A database vendor or third—party developer
writes a JDBC driver, which is a set of classes that implements these interfaces for a particular database
system. An application can use a number of drivers interchangeably. Figure 2-1 shows how an application
uses JDBC to interact with one or more databases without knowing about the underlying driver
implementations.

Chapter 2. JDBC 20

Preface (Java Enterprise in a Nutshell)

ResultSet ResultSet ResuliSet
| {
Statement PreparedStatement CallableStatement
Connection
DriverManager
1
1 1 1
Oracle Driver m:fiﬁ“ Sybase Driver
ODBC Driver
Oracle Sybase
Dotabase I Dutabase
0ODBC
Dotabase

Figure 2-1. JDBC-database interaction

4 PREVIOUS HOME NEXT
1.5. Java Enterprise APIs BOOK INDEX 2.2. JDBC Basics
Versus Jini

BT @0

iy
Java™ Java™ Enterprise Java™ Java™ Java™
Enterprise in a Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

 JAVA ENTERPRISE IN A NUTSHELL ™

@ PREVIOUS Chapter 2: JDBC "t e

2.2. JDBC Basics

Before we discuss all of the individual components of JDBC, let's look at a simple example that incorporates
most of the major pieces of JDBC functionality. Example 2-1 loads a driver, connects to the database,
executes some SQL, and retrieves the results. It also keeps an eye out for any database-related errors.

Example 2-1. A Simple JDBC Example
import java.sql.*;

public class JDBCSample {

2.1. JDBC Architecture 21

Preface (Java Enterprise in a Nutshell)

public static void main(java.lang.String[] args) {

}

}

try {
/I This is where we load the driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
}
catch (ClassNotFoundException e) {
System.out.printin("Unable to load Driver Class");
return;

}

try {
/I All database access is within a try/catch block. Connect to database,
I specifying particular database, username, and password
Connection con = DriverManager.getConnection("jdbc:odbc:companydb”,

),

/I Create and execute an SQL Statement
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT FIRST_NAME FROM EMPLOYEES");

/I Display the SQL Results

while(rs.next()) {
System.out.printin(rs.getString("FIRST_NAME"));

}

/I Make sure our database resources are released
rs.close();

stmt.close();

con.close();

}

catch (SQLException se) {
/I Inform user of any SQL errors
System.out.printin("SQL Exception: " + se.getMessage());
se.printStackTrace(System.out);

}

Example 2-1 starts out by loading a JDBC driver class (in this case, Sun's JDBC-ODBC Bridge). Then it
creates a database connection, represented by a Connection object, using that driver. With the database
connection, we can create a Statement object to represent an SQL statement. Executing an SQL statement
produces a ResultSet that contains the results of a query. The program displays the results and then cleans
up the resources it has used. If an error occurs, a SQLEXxception is thrown, so our program traps that
exception and displays some of the information it encapsulates.

Clearly, there is a lot going on in this simple program. Every Java application that uses JDBC follows these
basic steps, so the following sections discuss each step in much more detail.

4 PREVIOUS HOME NEXT »
2.1. JDBC Architecture BOOK INDEX 2.3. JDBC Drivers
Aauad (' - o9 o

Java Mm.j .
Enterprise] =
Bookshelf Java™ chvu“' Enterprise Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming

Copyright © 2001 O'Reilly & Associates. All rights reserved.

2.1. JDBC Architecture

22

Preface (Java Enterprise in a Nutshell)

@JAVA‘,ENT ERPRISE IN A NUTSHELL =2

4 PREVIOUS Chapter 2: JDBC Ny e

2.3. JDBC Drivers

Before you can use a driver, the driver must be registered with the JDBC DriverManager. This is
typically done by loading the driver class using the Class.forName() method:

try {
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Class.forName("com.oracle.jdbc.OracleDriver");

}
catch (ClassNotFoundException e) {
/* Handle Exception */

}

One reason most programs call Class.forName() is that this method accepts a String argument,
meaning that the program can store driver selection information dynamically (e.g., in a properties file).

Another way to register drivers is to add the driver classes to the jdbc.drivers property. To use this
technique, add a line like the following to ~/.hotjava/properties (on Windows systems this file can be found ir
your Java SDK installation directory):

jdbc.drivers=com.oracle.jdbc.OracleDriver:foo.driver.dbDriver:com.al.AlDriver;

Separate the names of individual drivers with colons and be sure the line ends with a semicolon. Programs
rarely use this approach, as it requires additional configuration work on the part of end users. Every user ne
to have the appropriate JDBC driver classes specified in his properties file.

JDBC drivers are available for most database platforms, from a number of vendors and in a number of
different flavors. There are four categories of drivers:

Type 1 JDBC-ODBC Bridge Drivers
Type 1 drivers use a bridge technology to connect a Java client to an ODBC database system. The
JDBC-0ODBC Bridge from Sun and InterSolv is the only extant example of a Type 1 driver. Type 1
drivers require some sort of non-Java software to be installed on the machine running your code, ar
they are implemented using native code.

Type 2 Native—-API Partly Java Drivers
Type 2 drivers use a native code library to access a database, wrapping a thin layer of Java around
native library. For example, with Oracle databases, the native access might be through the Oracle C
Interface (OCI) libraries that were originally designed for C/C++ programmers. Type 2 drivers are
implemented with native code, so they may perform better than all-Java drivers, but they also add a
element of risk, as a defect in the native code can crash the Java Virtual Machine.

Type 3 Net—protocol All-Java Drivers
Type 3 drivers define a generic network protocol that interfaces with a piece of custom middleware.
The middleware component might use any other type of driver to provide the actual database acces:
BEA's WebLogic product line (formerly known as WebLogic Tengah and before that as
jdbcKona/T3) is an example. These drivers are especially useful for applet deployment, since the
actual JDBC classes can be written entirely in Java and downloaded by the client on the fly.

2.3. JDBC Drivers 23

Preface (Java Enterprise in a Nutshell)

Type 4 Native—protocol All-Java Drivers
Type 4 drivers are written entirely in Java. They understand database-specific networking protocols
and can access the database directly without any additional software. These drivers are also well
suited for applet programming, provided that the Java security manager allows TCP/IP connections t
the database server.

When you are selecting a driver, you need to balance speed, reliability, and portability. Different applications
have different needs. A standalone, GUI-intensive program that always runs on a Windows NT system wiill
benefit from the additional speed of a Type 2, native—code driver. An applet might need to use a Type 3 driv
to get around a firewall. A servlet that is deployed across multiple platforms might require the flexibility of a
Type 4 driver.

A list of currently available JDBC drivers is available at http://java.sun.com/products/jdbc/jdbc.drivers.html.

2.3.1. JIDBC URLs

A JDBC driver uses a JDBC URL to identify and connect to a particular database. These URLs are generall
of the form:

jdbc:driver:databasename

The actual standard is quite fluid, however, as different databases require different information to connect
successfully. For example, the Oracle JDBC-Thin driver uses a URL of the form:

jdbc:oracle:thin: @site:port:database

while the JDBC-ODBC Bridge uses:

jdbc:odbc:datasource;odbcoptions

The only requirement is that a driver be able to recognize its own URLSs.

2.3.2. The JDBC-ODBC Bridge

The JDBC-ODBC Bridge ships with JDK 1.1 and the Java 2 SDK for Windows and Solaris systems. The
bridge provides an interface between JDBC and database drivers written using Microsoft's Open DataBase
Connectivity (ODBC) API. The bridge was originally written to allow the developer community to get up and
running quickly with JDBC. Since the bridge makes extensive use of native method calls, it is not
recommended for long—term or high—volume deployment.

The bridge is not a required component of the Java SDK, so it is not supported by most web browsers or
other runtime environments. Using the bridge in an applet requires a browser with a JVM that supports the
JDBC-ODBC Bridge, as well as a properly configured ODBC driver and data source on the client side.
Finally, due to different implementations of the native methods interface, the bridge does not work with somi
development environments, most notably Microsoft Visual J++.

The JDBC URL subprotocol odbc has been reserved for the bridge. Like most JDBC URLs, it allows
programs to encode extra information about the connection. ODBC URLSs are of the form:

jdbc:odbc:datasourcenamel[;attribute—name=attribute—value]*

For instance, a JDBC URL pointing to an ODBC data source named companydb with the CacheSize
attribute set to 10 looks like this:

2.3.1. JIDBC URLs 24

http://java.sun.com/products/jdbc/jdbc.drivers.html

Preface (Java Enterprise in a Nutshell)

jdbc:odbc:companydb;CacheSize=10

4 PREVIOUS HOME NEXT »
2.2. JDBC Basics BOOK INDEX 2.4. Connecting to the
Database
8. @ BN s
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@]AVAWENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 2: JDBC T

2.4. Connecting to the Database

The java.sgl.Connection object, which encapsulates a single connection to a particular database,

forms the basis of all JDBC data—handling code. An application can maintain multiple connections, up to the
limits imposed by the database system itself. A standard small office or web server Oracle installation can
support 50 or so connections, while a major corporate database could host several thousand. The
DriverManager.getConnection() method creates a connection:

Connection con = DriverManager.getConnection("url”, "user”, "password");

You pass three arguments to getConnection(): a JDBC URL, a database username, and a password. For
databases that do not require explicit logins, the user and password strings should be left blank. When the
method is called, the DriverManager queries each registered driver, asking if it understands the URL. If a
driver recognizes the URL, it returns a Connection object. Because the getConnection() method

checks each driver in turn, you should avoid loading more drivers than are necessary for your application.

The getConnection() method has two other variants that are less frequently used. One variant takes a
single String argument and tries to create a connection to that JDBC URL without a username or password.
The other version takes a JDBC URL and a java.util.Properties object that contains a set of

name/value pairs. You generally need to provide at least username=value and password=value pairs.

When a Connection has outlived its usefulness, you should be sure to explicitly close it by calling its

close() method. This frees up any memory being used by the object, and, more importantly, it releases any
other database resources the connection may be holding on to. These resources (cursors, handles, and so
can be much more valuable than a few bytes of memory, as they are often quite limited. This is particularly
important in applications such as servlets that might need to create and destroy thousands of JDBC
connections between restarts. Because of the way some JDBC drivers are designed, it is not safe to rely on
Java's garbage collection to remove unneeded JDBC connections.

The JDBC 2.0 standard extension, discussed later in this chapter, provides a facility for connection pooling,
whereby an application can maintain several open database connections and spread the load among them.
is often necessary for enterprise—level applications, such as servlets, that may be called upon to perform ter
of thousands of database transactions a day.

2.4. Connecting to the Database 25

Preface (Java Enterprise in a Nutshell)

4 PREVIOUS HOME NEXT »

2.3. JDBC Drivers BOOK INDEX 2.5. Statements
SO B E " ase
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in o Nutshell, Foundation Closses Jnvnlonns Serviet Security Distributed

ino Nutsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

§8% JAVA ENTERPRISE IN A NUTSHELL ™

@ PREVIOUS Chapter 2: JDBC T

2.5. Statements

Once you have created a Connection, you can begin using it to execute SQL statements. This is usually
done via Statement objects. There are actually three kinds of statements in JDBC:

Statement
Represents a basic SQL statement

PreparedStatement
Represents a precompiled SQL statement, which can offer improved performance

CallableStatement
Allows JDBC programs complete access to stored procedures within the database itself

We're just going to discuss the Statement object for now; PreparedStatement and
CallableStatement are covered in detail later in this chapter.

To get a Statement object, you call the createStatement() method of a Connection:
Statement stmt = con.createStatement();

Once you have created a Statement, you use it to execute SQL statements. A statement can either be a
query that returns results or an operation that manipulates the database in some way. If you are performing
guery, use the executeQuery() method of the Statement object:

ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMERS");

Here we've used executeQuery() to run a SELECT statement. This call returns a ResultSet object that
contains the results of the query (we'll take a closer look at ResultSet in the next section).

Statement also provides an executeUpdate() method, for running SQL statements that do not return
results, such as the UPDATE and DELETE statements. executeUpdate() returns an integer that indicates
the number of rows in the database that were altered.

If you don't know whether a SQL statement is going to return results (such as when the user is entering the

2.5. Statements 26

Preface (Java Enterprise in a Nutshell)

statement in a form field), you can use the execute() method of Statement. This method returns true
if there is a result associated with the statement. In this case, the ResultSet can be retrieved using the
getResultSet() method and the number of updated rows can be retrieved using getUpdateCount():

Statement unknownSQL = con.createStatement();
iflunknownSQL.execute(sqlString)) {

ResultSet rs = unknownSQL.getResultSet();

/I display the results

}
else {
System.out.printin("Rows updated: " + unknownSQL.getUpdateCount());

}

It is important to remember that a Statement object represents a single SQL statement. A call to
executeQuery(), executeUpdate(), or execute() implicitly closes any active ResultSet

associated with the Statement. In other words, you need to be sure you are done with the results from a
query before you execute another query with the same Statement object. If your application needs to
execute more than one simultaneous query, you need to use multiple Statement objects. As a general rule,
calling the close() method of any JDBC object also closes any dependent objects, such as a Statement
generated by a Connection or a ResultSet generated by a Statement, but well-written JDBC code

closes everything explicitly.

2.5.1. Multiple Result Sets

It is possible to write a SQL statement that returns more than one ResultSet or update count (exact
methods of doing so vary depending on the databasestakement object supports this functionality via

the getMoreResults() method. Calling this method implicitly closes any existing ResultSet and

moves to the next set of results for the statement. getMoreResults() returns true if there is another
ResultSet available to be retrieved by getResultSet(). However, the method returns false if the

next statement is an update, even if there is another set of results waiting farther down the line. To be sure
you've processed all the results for a Statement, you need to check that getMoreResults() returns

false and that getUpdateCount() returns —1.

We can modify the previous execute() example to handle multiple results:

Statement unknownSQL = con.createStatement();
unknownSQL.execute(sqlString);
while (true) {
rs = unknownSQL.getResultSet();
if(rs != null)
/I display the results
else
/I process the update data

/I Advance and quit if done

if((unknownSQL.getMoreResults() == false) &&
(unknownSQL.getUpdateCount() == -1))
break;

}

Statements that return multiple results are actually quite rare. They generally arise from stored procedures c
SQL implementations that allow multiple statements to be executed in a batch. Under SyBase, for instance,
multiple SELECT statements may be separated by newline (\n) characters.

€ PREVIOUS HOME NEXT
2.4. Connecting to the BOOK INDEX 2.6. Results
Database

2.5.1. Multiple Result Sets 27

Preface (Java Enterprise in a Nutshell)

Enterprise
Bookshelf Java™ Javo Jnvu Java™ Juva
Home Enterprise in a Nutshell, Foundation Classes Jnquonns Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

& JAVA ENTERPRISE N NuTSHELL™

4 PREVIOUS Chapter 2: JDBC NEXT »

2.6. Results

When a SQL query executes, the results form a pseudo—table that contains all rows that fit the query
parameters. For instance, here's a textual representation of the results of the query string "SELECT NAME,
CUSTOMER_ID, PHONE FROM CUSTOMERS":

NAME CUSTOMER_ID PHONE
Jane Markham 1617 555-1212
Louis Smith 2617 555-1213
Woodrow Lang 3508 555-7171
Dr. John Smith 4 (011) 42 323-1239

This kind of textual representation is not very useful for Java programs. Instead, JDBC uses the
java.sgl.ResultSet interface to encapsulate the query results as Java primitive types and objects. You
can think of a ResultSet as an object that represents an underlying table of query results, where you use
method calls to navigate between rows and retrieve particular column values.

A Java program might handle the previous query as follows:

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(
"SELECT NAME, CUSTOMER_ID, PHONE FROM CUSTOMERS");

while(rs.next()) {
System.out.print("Customer #" + rs.getString("CUSTOMER_ID"));
System.out.print(", " + rs.getString("NAME"));
System.out.printin(", is at " + rs.getString("PHONE");

rs.close();
stmt.close();

Here's the resulting output:

Customer #1, Jane Markham, is at 617 555-1212
Customer #2, Louis Smith, is at 617 555-1213
Customer #3, Woodrow Lang, is at 508 555-7171
Customer #4, Dr. John Smith, is at (011) 42 323-1239

The code loops through each row of the ResultSet using the next()method. When you start working

with a ResultSet, you are positioned before the first row of results. That means you have to call next()
once just to access the first row. Each time you call next(), you move to the next row. If there are no more

2.6. Results 28

Preface (Java Enterprise in a Nutshell)

rows to read, next() returns false. Note that with the JDBC 1.0 ResultSet, you can only move
forward through the results and, since there is no way to go back to the beginning, you can read them only
once. The JDBC 2.0 ResultSet, which we discuss later, overcomes these limitations.

Individual column values are read using the getString() method. getString() is one of a family of

getXXX() methods, each of which returns data of a particular type. There are two versions of each
getXXX() method: one that takes the case-insensitive String name of the column to be read (e.g.,
"PHONE", "CUSTOMER_ID") and one that takes a SQL-style column index. Note that column indexes run
from 1 to n, unlike Java array indexes, which run from 0 to n—1, where n is the number of columns.

The most important getXXX() method is getObject(), which can return any kind of data packaged in an
object wrapper. For example, callinggetObject() on an integer field returns an Integer object, while
calling it on a date field yields a java.sql.Date object. Table 2-1 lists the different getXXX() methods,
along with the corresponding SQL data type and Java data type. Where the return type for a getXXX()
method is different from the Java type, the return type is shown in parentheses. Note that the
java.sgl.Types class defines integer constants that represent the standard SQL data types.

Table 2-1. SQL Data Types, Java Types, and Default getXXX() Methods

SQL Data Type Java Type GetXXX() Method
CHAR String getString()
VARCHAR String getString()
LONGVARCHAR |String getString()
NUMERIC java.math.BigDecimal getBigDecimal()
DECIMAL java.math.BigDecimal getBigDecimal()
BIT Boolean (boolean) getBoolean()
TINYINT Integer (byte) getByte()
SMALLINT Integer (short) getShort()
INTEGER Integer (int) getint()

BIGINT Long (long) getLong()
REAL Float (float) getFloat()
FLOAT Double (double) getDouble()
DOUBLE Double (double) getDouble()
BINARY byte]] getBytes()
VARBINARY byte]] getBytes()
LONGVARBINARYbyte[] getBytes()
DATE java.sgl.Date getDate()

TIME java.sqgl.Time getTime()
TIMESTAMP java.sgl. Timestamp getTimestamp()

Note that this table merely lists the default mappings according to the JDBC specification, and some drivers
do not follow these mappings exactly. Also, a certain amount of casting is permitted. For instance, the
getString() method returns a String representation of just about any data type.

2.6.1. Handling Nulls
Sometimes database columns contain null, or empty, values. However, because of the way certain databas

APIs are written, it is impossible for JDBC to provide a method to determine before the fact whether or not a
column is null.[2] Methods that don't return an object of some sort are especially vulnerable. getint(),

2.6. Results 29

Preface (Java Enterprise in a Nutshell)

for instance, resorts to returning a value of —1. JDBC deals with this problem via the wasNull() method,
which indicates whether or not the last column read was null:

[2] The driver can figure this out after reading the object, but since some driver
implementations and database connection protocols allow you to reliably read a value from a
column only once, implementing an isNull() method requires the ResultSet to cache

the entire row in memory. While many programs do exactly this, it is not appropriate
behavior for the lowest-level result handler.

int numberinStock = rs.getint("STOCK");
if(rs.wasNull())

System.out.printin("Result was null");
else

System.out.printin("In Stock: " + numberIinStock);

Alternately, you can call getObject() and test to see if the result is null:[3]

[3]Some drivers, including early versions of Oracle's JDBC drivers, don't properly support
this behavior.

Object numberIinStock = rs.getObject("STOCK");
if(numberinStock == null)
System.out.printin("Result was null");

2.6.2. Large Data Types

You can retrieve large chunks of data from a ResultSet as a stream. This can be useful when reading
images from a database or loading large documents from a data store, for example. The relevant ResultSet
methods are getAsciiStream(), getBinaryStream(), and getUnicodeStream(), where each

method has column name and column index variants, just like the other getXXX() methods. Each of these
methods returns an InputStream. Here's a code sample that retrieves an image from a PICTURES table
and writes the image to an OutputStream of some kind (this might be a ServletOutputStream for a

Java servlet that produces a GIF from a database):

ResultSet rs =
stmt.executeQuery("SELECT IMAGE FROM PICTURES WHERE PID =" +
req.getParameter("PID"));

if (rs.next()) {
BufferedInputStream gifData =
new BufferedIinputStream(rs.getBinaryStream("IMAGE"));
byte[] buf = new byte[4 * 1024]; // 4K buffer
int len;
while ((len = gifData.read(buf, 0, buf.length)) != -1) {
out.write(buf, 0, len);
}
}

The JDBC 2.0 API includes Blob and Clob objects to handle large data types; we discuss these objects latel
in this chapter.

2.6.2. Large Data Types 30

Preface (Java Enterprise in a Nutshell)

2.6.3. Dates and Times

JDBC defines three classes devoted to storing date and time information: java.sql.Date,

java.sgl.Time, and java.sql.Timestamp. These correspond to the SQL DATE, TIME, and

TIMESTAMP types. The java.util.Date class is not suitable for any of them, so JDBC defines a hew set
of wrapper classes that extend (or limit) the standard Date class to fit the JDBC mold.

The SQL DATE type contains only a date, so the java.sgl.Date class contains only a day, month, and
year. SQL TIME (java.sgl.Time) includes only a time of day, without date information. SQL
TIMESTAMP (java.sgl.Timestamp) includes both, but at nanosecond precision (the standard Date
class is incapable of handling more than milliseconds).

Since different DBMS packages have different methods of encoding date and time information, JDBC
supports the ISO date escape sequences, and individual drivers are required to translate these sequences i
whatever form the underlying DBMS requires. The syntax for dates, times, and timestamps is:

{d 'yyyy-mm-dd}
{t'hnh:mm:ss'}
{ts 'yyyy-mm-dd hh:mm:ss.ms.microseconds.ns'}

A TIMESTAMP only needs to be specified up to seconds; the remaining values are optional. Here is an
example that uses a date escape sequence (where dateSQL is a Statement of some sort):

dateSQL.execute("INSERT INTO FRIENDS(BIRTHDAY) VALUES ({d '1978-12-14)");

4 PREVIOUS HOME NEXT »
2.5. Statements BOOK INDEX 2.7. Handling Errors
; pr—— y " Q ¥ — ,‘.' B :
Enterprise ‘ : : [N/
Bookshelf Java™ Java™ J.cva"' Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 2: JDBC T

2.7. Handling Errors

Any JDBC object that encounters an error serious enough to halt execution throws a SQLEXxception. For
example, database connection errors, malformed SQL statements, and insufficient database privileges all
throw SQLEXxception objects.

The SQLEXxception class extends the normal java.lang.Exception class and defines an additional
method called getNextException(). This allows JDBC classes to chain a series of SQLException
objects together. SQLException also defines the getSQLState() and getErrorCode() methods to
provide additional information about an error. The value returned by getSQLState() is one of the
ANSI-92 SQL state codes; these codes are listed in Chapter 8, "SQL Reference". getErrorCode()

2.6.3. Dates and Times 31

Preface (Java Enterprise in a Nutshell)

returns a vendor-specific error code.

An extremely conscientious application might have a catch block that looks something like this:

try {
/I Actual database code

catch (SQLException e) {
while(e = null) {
System.out.printin("\nSQL Exception:");
System.out.printin(e.getMessage());
System.out.printin("ANSI-92 SQL State: " + e.getSQLState());
System.out.printin("Vendor Error Code: " + e.getErrorCode());
e = e.getNextException();

}
}

2.7.1. SQL Warnings

JDBC classes also have the option of generating (but not throwing) a SQLWarning exception when
something is not quite right, but at the same time, not sufficiently serious to warrant halting the entire
program. For example, attempting to set a transaction isolation mode that is not supported by the underlying
database might generate a warning rather than an exception. Remember, exactly what qualifies as a warnin
condition varies by database.

SQLWarning encapsulates the same information as SQLException and is used in a similar fashion.
However, unlike SQLEXxception objects, which are caught in try/catch blocks, warnings are retrieved
using the getWarnings() methods of the Connection, Statement, ResultSet,

CallableStatement, and PreparedStatement interfaces. SQLWarning implements the

getMessage(), getSQLState(), and getErrorCode() methods in the same manner as
SQLEXxception.

If you are debugging an application, and you want to be aware of every little thing that goes wrong within the
database, you might use a printWarnings() method like this one:

void printWarnings(SQLWarning warn) {
while (warn != null) {
System.out.printin("\nSQL Warning:");
System.out.printin(warn.getMessage());
System.out.printin("ANSI-92 SQL State: " + warn.getSQLState());
System.out.printin("Vendor Error Code: " + warn.getErrorCode());
warn = warn.getNextWarning();
}
}

Then you could use the printWarnings() method as follows:

/I Database initialization code here

ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMERS");
printWarnings(stmt.getWarnings());

printWarnings(rs.getWarnings());

/I Rest of database code

€ PREVIOUS HOME NEXT »

2.6. Results BOOK INDEX 2.8. Prepared Statements

2.7.1. SQL Warnings 32

Preface (Java Enterprise in a Nutshell)

Java: RES | § b-é,g -y, o N\
N . i N -) ~ -
Enterprise - : P 7 \g @ -7<\/
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in o Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 2: JDBC Ny e

2.8. Prepared Statements

The PreparedStatement object is a close relative of the Statement object. Both accomplish roughly

the same thing: running SQL statements. PreparedStatement, however, allows you to precompile your

SQL and run it repeatedly, adjusting specific parameters as necessary. Since processing SQL strings is a la
part of a database's overhead, getting compilation out of the way at the start can significantly improve
performance. With proper use, it can also simplify otherwise tedious database tasks.

As with Statement, you create a PreparedStatement object from a Connection object. In this
case, though, the SQL is specified at creation instead of execution, using the prepareStatement()
method of Connection:

PreparedStatement pstmt = con.prepareStatement(
"INSERT INTO EMPLOYEES (NAME, PHONE) VALUES (?, ?)");

This SQL statement inserts a new row into the EMPLOYEES table, setting the NAME and PHONE columns
certain values. Since the whole point of a PreparedStatement is to be able to execute the statement
repeatedly, we don't specify values in the call to prepareStatement(), but instead use question marks

(?) to indicate parameters for the statement. To actually run the statement, we specify values for the
parameters and then execute the statement:

pstmt.clearParameters();
pstmt.setString(1, "Jimmy Adelphi");
pstmt.setString(2, "201 555-7823");
pstmt.executeUpdate();

Before setting parameters, we clear out any previously specified parameters with the
clearParameters() method. Then we can set the value for each parameter (indexed from 1 to the
number of question marks) using the setString() method. PreparedStatement defines numerous
setXXX() methods for specifying different types of parameters; see the java.sql reference material later
in this book for a complete list. Finally, we use the executeUpdate() method to run the SQL.

The setObject() method can insert Java object types into the database, provided that those objects can be
converted to standard SQL types. setObject() comes in three flavors:

setObject(int parameterindex, Object x, int targetSqlType, int scale)
setObject(int parameterindex, Object x, int targetSqlType)
setObject(int parameterindex, Object x)

Calling setObject() with only a parameter index and an Object causes the method to try and
automatically map the Object to a standard SQL type (see Table 2-1). Calling setObject() with a type

2.8. Prepared Statements 33

Preface (Java Enterprise in a Nutshell)

specified allows you to control the mapping. The setXXX() methods work a little differently, in that they
attempt to map Java primitive types to JDBC types.

You can use PreparedStatement to insert null values into a database, either by calling the
setNull() method or by passing a null value to one of the setXXX() methods that take an Obiject. In
either case, you must specify the target SQL type.

Let's clarify with an example. We want to set the first parameter of a prepared statement to the value of an
Integer object, while the second parameter, which is a VARCHAR, should be null. Here's some code that
does that:

Integer i = new Integer(32);
pstmt.setObject(1, i, Types.INTEGER);
pstmt.setObject(2, null, Types.VARCHAR);
/I or pstmt.setNull(2, Types.VARCHAR);

4 PREVIOUS HOME NEXT »
2.7. Handling Errors BOOK INDEX 2.9. Metadata
. 2 : " -) a
Java o | Yy el | O | e | A
Enterprise " 3 @ @ 7<\ /
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

@ PREVIOUS Chapter 2: JDBC T

2.9. Metadata

Most JDBC programs are designed to work with a specific database and particular tables in that database; t
program knows exactly what kind of data it is dealing with. Some applications, however, need to dynamicall
discover information about result set structures or underlying database configurations. This information is
called metadata, and JDBC provides two classes for dealing with it: DatabaseMetaData and
ResultSetMetaData. If you are developing a JDBC application that will be deployed outside a known
environment, you need to be familiar with these interfaces.

2.9.1. DatabaseMetaData

You can retrieve general information about the structure of a database with the
java.sgl.DatabaseMetaData interface. By making thorough use of this class, a program can tailor its
SQL and use of JDBC on the fly, to accommodate different levels of database and JDBC driver support.

Database metadata is associated with a particular connection, so DatabaseMetaData objects are created
with the getMetaData() method of Connection:

DatabaseMetaData dbmeta = con.getMetaData();

2.9. Metadata 34

Preface (Java Enterprise in a Nutshell)

DatabaseMetaData provides an overwhelming number of methods you can call to get actual
configuration information about the database. Some of these return String objects (getURL()), some
return boolean values (nullsAreSortedHigh()), and still others return integers
(getMaxConnections()). The full list is given in Chapter 17, "The java.rmi.server Package".

A number of other methods return ResultSet objects. These methods, such as getColumns(),
getTableTypes(), and getPrivileges(), generally encapsulate complex or variable-length
information. The getTables() method, for instance, returns a ResultSet that contains the name of
every table in the database and a good deal of extra information besides.

Many of the DatabaseMetaData methods take string patterns as arguments, allowing for simple wildcard
searching. A percent sign (%) substitutes for any number of characters, and an underscore (_) calls for a
single character match. Thus, %CUSTOMER% matches NEW_CUSTOMERS, CUSTOMER, and CUSTOM
while CUSTOMER% matches only CUSTOMER and CUSTOMERS. All of these patterns are case-sensitivi

Example 2-2 shows a simple program that displays some basic database characteristics, a list of tables, an
list of indexes on each table. The program assumes a JDBC driver with full support for all the
DatabaseMetaData commands.

Example 2-2. DBViewer Program

import java.sql.*;
import java.util.StringTokenizer;

public class DBViewer {

final static String jdbcURL = "jdbc:odbc:customerdsn®;
final static String jdbcDriver = "sun.jdbc.odbc.JdbcOdbcDriver";

public static void main(java.lang.String[] args) {

System.out.printin("-—— Database Viewer ——-");
try {
Class.forName(jdbcDriver);
Connection con = DriverManager.getConnection(jdbcURL, ™', ");

DatabaseMetaData dbmd = con.getMetaData();

System.out.printin("Driver Name: " + dbmd.getDriverName());
System.out.printin("Database Product: " + dbmd.getDatabaseProductName());
System.out.printin("SQL Keywords Supported:");
StringTokenizer st = new StringTokenizer(dbmd.getSQLKeywords(), ",");
while(st.hasMoreTokens())

System.out.printin(" " + st.nextToken());

/I Get a ResultSet that contains all of the tables in this database

/I We specify a table_type of "TABLE" to prevent seeing system tables,

/I views and so forth

String[] tableTypes = { "TABLE" };

ResultSet allTables = dbmd.getTables(null,null,null,tableTypes);

while(allTables.next()) {
String table_name = allTables.getString("TABLE_NAME");
System.out.printin("Table Name: " + table_name);
System.out.printin("Table Type: " + allTables.getString("TABLE_TYPE"));
System.out.printin("Indexes: ");

/I Get a list of all the indexes for this table
ResultSet indexList = dbmd.getindexInfo(null,null,table_name,false,false);
while(indexList.next()) {

System.out.printin(" Index Name: "+indexList.getString("INDEX_NAME"));

2.9.1. DatabaseMetaData 35

Preface (Java Enterprise in a Nutshell)

System.out.printin(" Column Name:"+indexList.getString("COLUMN_NAME"));
}

indexList.close();

}

allTables.close();
con.close();
}
catch (ClassNotFoundException e) {
System.out.printin("Unable to load database driver class");
}
catch (SQLException e) {
System.out.printin("SQL Exception: " + e.getMessage());
}
}
}

Here's some sample output when this program is run against a Microsoft Access database via the
JDBC-ODBC bridge (snipped slightly to prevent several pages of uninteresting text):

——— Database Viewer ———
Driver Name: JDBC-ODBC Bridge (odbcjt32.dll)
Database Product: ACCESS
SQL Keywords Supported:
ALPHANUMERIC
AUTOINCREMENT
BINARY
BYTE
FLOATS8

Table Name: Customers
Table Type: TABLE
Indexes:
Index Name: PrimaryKey
Column Name:CustNo
Index Name: Addressindex
Column Name:Address

2.9.2. ResultSetMetaData

The ResultSetMetaData interface provides information about the structure of a particular ResultSet.
Data provided by ResultSetMetaData includes the number of available columns, the names of those
columns, and the kind of data available in each. Example 2—-3 shows a short program that displays the
contents of a table and shows the data type for each column.

Example 2-3. TableViewer Program

import java.sql.*;
import java.util.StringTokenizer;

public class TableViewer {
final static String jdbcURL = "jdbc:oracle:customerdb";
final static String jdbcDriver = "oracle.jdbc.OracleDriver";
final static String table = "CUSTOMERS";

public static void main(java.lang.String[] args) {

System.out.printin("-—— Table Viewer ——-");

2.9.2. ResultSetMetaData 36

Preface (Java Enterprise in a Nutshell)

try {
Class.forName(jdbcDriver);
Connection con = DriverManager.getConnection(jdbcURL, "™, "™);
Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM "+ table);

ResultSetMetaData rsmd = rs.getMetaData();

int columnCount = rsmd.getColumnCount();

for(int col = 1; col <= columnCount; col++) {
System.out.print(rsmd.getColumnLabel(col));
System.out.print(" (" + rsmd.getColumnTypeName(col)+")");
if(col < columnCount)

System.out.print(", ");
}
System.out.printin();

while(rs.next()) {
for(int col = 1; col <= columnCount; col++) {
System.out.print(rs.getString(col));
if(col < columnCount)
System.out.print(", ");
}

System.out.printin();
}

rs.close();
stmt.close();
con.close();
}
catch (ClassNotFoundException e) {
System.out.printin("Unable to load database driver class");
}
catch (SQLException e) {
System.out.printin("SQL Exception: " + e.getMessage());
}
}
}

The key methods used here are getColumnCount(), getColumnLabel(), and

getColumnTypeName(). Note that type names returned by getColumnTypeName() are
database—specific (e.g., Oracle refers to a string value as a VARCHAR; Microsoft Access calls it TEXT).
Here's some sample output for TableViewer:

——— Table Viewer ———

CustNo (SHORT), CustName (VARCHAR), CustAddress (VARCHAR)
1, Jane Markham, 12 Stevens St

2, Louis Smith, 45 Morrison Lane

3, Woodrow Lang, 4 Times Square

4 PREVIOUS HOME NEXT »
2.8. Prepared Statements BOOK INDEX 2.10. Transactions
Jua: i S
Enterprise)<\ /
Bookshelf Java™ Java™ Enterprise Java™
Home Enterprise in o Nutshell, Foundation Closses JovoBeans™, Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

2.9.2. ResultSetMetaData 37

Preface (Java Enterprise in a Nutshell)

@JAVA‘,ENT ERPRISE IN A NUTSHELL =2

4 PREVIOUS Chapter 2: JDBC Ny e

2.10. Transactions

A transaction is a group of several operations that must behave atomically, or as if they are a single,
indivisible operation. With regards to databases, transactions allow you to combine one or more database
actions into a single atomic unit. If you have an application that needs to execute multiple SQL statements t
fulfill one goal (say, an inventory management system that needs to move items from an INVENTORY table
a SHIPPING table), you probably want to use JDBC's transaction services to accomplish the goal.

Working with a transaction involves the following steps: start the transaction, perform its component
operations, and then either commit the transaction if all the component operations succeed or roll it back if
one of the operations fails. The ability to roll back a transaction is the key feature. This means that if any one
SQL statement fails, the entire operation fails, and it is as though none of the component operations took
place. Therefore it is impossible to end up with a situation where, for example, the INVENTORY table has
been debited, but the SHIPPING table has not been credited.

Another issue with transactions and databases concerns when changes to the database become visible to t
rest of the system. Transactions can operate at varying levels of isolation from the rest of the database. At il
most isolated level, the results of all the component SQL statements become visible to the rest of the syster
only when the transaction is committed. In other words, nobody sees the reduced inventory before the
shipping data is updated.

The Connection object in JDBC is responsible for transaction management. With JDBC, you are always
using transactions in some form. By default, a new connection starts out in transaction auto—commit mode,
which means that every SQL statement is executed as an individual transaction that is immediately committ
to the database.

To perform a transaction that uses multiple statements, you have to call the setAutoCommit() method

with a false argument. (You can check the status of auto—commit with the getAutoCommit() method.)

Now you can execute the SQL statements that comprise your transaction. When you are done, you call the
commit() method to commit the transaction or the rollback() method to undo it. Here's an example:

try {
con.setAutoCommit(false);

// run some SQL

stmt.executeUpdate("UPDATE INVENTORY SET ONHAND = 10 WHERE ID =5");
stmt.executeUpdate("INSERT INTO SHIPPING (QTY) VALUES (5)");
con.commit();

}
catch (SQLException e) {

con.rollback(); //undo the results of the transaction

}

When auto—commit is set to false, you must remember to call commit() (or rollback()) at the end
of each transaction, or your changes will be lost.

JDBC supports a number of transaction isolation modes that allow you to control how the database deals wi
transaction conflicts——in other words, who sees what when. JDBC defines five modes, some of which may
not be supported by all databases. The default mode varies depending on the underlying database and drivi
Higher isolation levels yield poorer performance. Here are the five standard options, which are defined as
integer constants in the Connection interface:

2.10. Transactions 38

Preface (Java Enterprise in a Nutshell)

TRANSACTION_NONE
Transactions are either disabled or not supported.

TRANSACTION_READ_UNCOMMITTED
Minimal transaction support that allows dirty reads. In other words, other transactions can see the
results of a transaction's SQL statements before the transaction commits itself. If you roll back your
transaction, other transactions may be left with invalid data.

TRANSACTION_READ_COMMITTED
Transactions are prevented from reading rows with uncommitted changes, or in other words, dirty
reads are not allowed.

TRANSACTION_REPEATABLE_READ
Protects against repeatable reads as well as dirty reads. Say one transaction reads a row that is
subsequently altered (and committed) by another transaction. If the first transaction reads the row
again, the first transaction does not get a different value the second time around. The new data is
visible to the first transaction only after it calls commit() and performs another read.

TRANSACTION_SERIALIZABLE
Provides all the support of TRANSACTION_REAPEATABLE_READ and guards against row
insertions as well. Say one transaction reads a set of rows, and then another transaction adds a row
the set. If the first transaction reads the set again, it does not see the newly added row. Put another
way, this level of isolation forces the database to treat transactions as if they occurred one at a time.

Transaction isolation modes are set by the setTransactionlsolation() method. For example:
con.setTransactionlsolation(TRANSACTION_READ_COMMITTED);

You can use the DatabaseMetaData class to determine the transaction support of the underlying
database. The most useful methods are getDefaultTransactionlsolation(),
supportsTransactions(), supportsTransactionlsolationLevel(), and
supportsDataDefinitionAndDataManipulationTransactions() (which may very well be

the longest method name in the Java API).

An application that uses transactions is a prime candidate for also using a connection pool (available in JDB
2.0). Since each database transaction requires its own Connection object, an application that performs mult
simultaneous transactions (for instance, spawning threads that perform database updates) needs multiple
connections available. Maintaining a pool of connections is much more efficient than creating a new one
whenever you need a new transaction.

4 PREVIOUS HOME NEXT »
2.9. Metadata BOOK INDEX 2.11. Stored Procedures
Java: RIS, | § oatiy e () >a N\
‘ _ . & Q
Enterprise 7 3 ; @' @)<
- A AR N
Bookshelf Java™ Java Java™ Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

2.10. Transactions 39

Preface (Java Enterprise in a Nutshell)

%]AVA.,ENT ERPRISE IN A NUTSHELL =2

4 PREVIOUS Chapter 2: JDBC Ny e

2.11. Stored Procedures

Most RDBMS systems include some sort of internal programming language (e.g., Oracle's PL/SQL). These
languages allow database developers to embed procedural application code directly within the database an
then call that code from other applications. The advantage of this approach is that the code can be written jt
once and then used in multiple different applications (even with different platforms and languages). It also
allows application code to be divorced from the underlying table structure. If stored procedures handle all of
the SQL, and applications just call the procedures, only the stored procedures need to be modified if the tab
structure is changed later on.

Here is an Oracle PL/SQL stored procedure:[4]

[4] If it looks familiar, that's because it is from George Reese's Database Programming with
JDBC (O'Reilly).

CREATE OR REPLACE PROCEDURE sp_interest
(id IN INTEGER

bal IN OUT FLOAT) IS

BEGIN

SELECT balance

INTO bal

FROM accounts

WHERE account_id = id;

bal := bal + bal * 0.03;
UPDATE accounts

SET balance = bal
WHERE account_id = id;

END;

This PL/SQL procedure takes two input values, an account ID and a balance, and returns an updated balan

The CallableStatement interface is the JDBC object that supports stored procedures. The

Connection class has a prepareCall() method that is very similar to the prepareStatement()

method we used to create a PreparedStatement. Because each database has its own syntax for accessing
stored procedures, JDBC defines a standardized escape syntax for accessing stored procedures with
CallableStatement. The syntax for a stored procedure that does not return a result set is:

{call procedure_name[(?[,?...])]}
The syntax for a stored procedure that returns a result is:
{? = call procedure_name[(?[,?...)]}

In this syntax, each question mark (?) represents a placeholder for a procedure parameter or a return value.
Note that the parameters are optional. The JDBC driver is responsible for translating the escape syntax into
the database's own stored procedure syntax.

2.11. Stored Procedures 40

Preface (Java Enterprise in a Nutshell)

Here's a code fragment that uses CallableStatement to run the sp_interest stored procedure:

CallableStatment cstmt = con.prepareCall("{call sp_interest(?,?)}");
cstmt.registerOutParameter(2, Types.FLOAT);

cstmt.setint(1, accountID);

cstmt.setFloat(2, 2343.23);

cstmt.execute();

out.printin("New Balance:" + cstmt.getFloat(2));

In this example, we first create a CallableStatement using the prepareCall() method and passing

in the appropriate escape syntax for the stored procedure. Since this stored procedure has an output param
(actually, in this case, an INOUT parameter, which means it also serves as an input parameter), we use the
registerOutParameter() method to identify that parameter as an output of type FLOAT. Note that just

as with prepared statements, substituted parameters are numbered from 1 to n, left to right. Any time you he
an output parameter in a stored procedure, you need to register its type using registerOutParameter()
before you execute the stored procedure.

Next we set the two input parameters, the account ID and the balance, using the appropriate setXXX()
methods. Finally, we execute the stored procedure and then gstRhaat() method to display the new
balance. The getXXX() methods of CallableStatement are similar to those of the ResultSet.

You need to use CallableStatement only with stored procedures that have output values, such as the
one we just saw. You can use either of the other statement objects to execute stored procedures that take
parameters but don't return anything.

4 PREVIOUS HOME NEXT »

2.10. Transactions BOOK INDEX 2.12. Escape Sequences
S.@ BT
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@]AVAWENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 2: JDBC T

2.12. Escape Sequences

Escape sequences allow JDBC programs to package certain database commands in a database-independ
manner. Since different databases implement different features (especially scalar SQL functions) in different
ways, in order to be truly portable, JDBC needs to provide a way to access at least a subset of that
functionality in a standard way. We've already seen escape sequences twice: with the various SQL date anc
time functions, and with the CallableStatement object.

A JDBC escape sequences consists of a pair of curly braces, a keyword, and a set of parameters. Thus, cal

is the keyword for stored procedures, while d, t, and ts are keywords for dates and times. One keyword we
haven't seen yet is escape. This keyword specifies the character that is used to escape wildcard characters

2.12. Escape Sequences 41

Preface (Java Enterprise in a Nutshell)

a LIKE statement:

stmt.executeQuery(
"SELECT * FROM ApiDocs WHERE Field_Name like TRANS_%' {escape '\'}");

Normally, the underscore (_) character is treated as a single—character wildcard, while the percent sign (%
the multiple—character wildcard. By specifying the backslash (\) as the escape character, we can match on t
underscore character itself. Note that the escape keyword can also be used outside wildcard searches. For
example, SQL string termination characters (such as the single quote) need to be escaped when appearing
within strings.

The fn keyword allows the use of internal scalar database functions. Scalar functions are a fairly standard
component of most database architectures, even though the actual implementations vary. For instance, matr
databases support the SOUNDEX(string) function, which translates a character string into a numerical
representation of its sound. Another function, DIFFERENCE(string1,string2), computes the

difference between the soundex values for two strings. If the values are close enough, you can assume the
words sound the same ("Beacon" and "Bacon"). If your database supports DIFFERENCE, you can use it by
executing a SQL statement that looks like this:

{fn DIFFERENCE("Beacon", "Bacon")}

Available scalar functions differ depending on the database being used. In addition, some drivers, such as
Oracle's, do not support the {fn} escape mechanism at all.

The last escape keyword is 0j, which is used for outer joins. The syntax is simply:
{oj outer—join}

Outer joins are not supported by some databases and are sufficiently complex (and unrelated to the JDBC /
per se) as to be beyond the scope of this chapter. For more information, consult the SQL documentation for
your database.

Note that when performance is an issue, you can use the setEscapeProcessing() method of
Statement to turn off escape—-sequence processing.

4 PREVIOUS HOME NEXT »
2.11. Stored Procedures BOOK INDEX 2.13.JDBC 2.0
Aauad® } N (' / = o Yo \
Enterprise : 3 [N/
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

@ PREVIOUS Chapter 2: JDBC T

2.12. Escape Sequences 42

Preface (Java Enterprise in a Nutshell)

2.13.JDBC 2.0

The original JDBC API (JDBC 1.0) was first introduced as an add—on package for JDK 1.0, and it became a
part of the core Java API with Java 1.1. In May 1998, Sun released the specification for JDBC 2.0. This new
version of the API provides support for extended result handling, Java—aware databases, BLOB fields, and
other minor improvements. All in all, there are enough new features in JDBC 2.0 to warrant a separate secti
in this chapter. The new version of the API is backward—compatible; code written for JDBC 1.0 compiles anc
runs just fine under JDBC 2.0.

The updated API ships with Version 1.2 of the Java 2 platform and is also available for download separately
As of early 1999, there are very few JDBC 2.0—compliant drivers available, although Sun and InterSolv are
working towards an updated version of the JDBC-ODBC Bridge.

2.13.1. Results Handling

With JDBC 1.0, the functionality provided by the ResultSet interface is rather limited. There is no

support for updates of any kind and access to rows is limited to a single, sequential read (i.e., first row, secc
row, third row, etc., and no going back). JDBC 2.0 supports scrollable and updateable result sets, which
allows for advanced record navigation and in—place data manipulation.

With scrolling, you can move forward and backward through the results of a query, rather than just using the
next() method to move to the next row. In terms of scrolling, there are now three distinct types of

ResultSet objects: forward—only (as in JDBC 1.0), scroll-insensitive, and scroll-sensitive. A
scroll-insensitive result set generally does not reflect changes to the underlying data, while scroll-sensitive
ones do. In fact, the number of rows in a sensitive result set does not even need to be fixed.

As of JDBC 2.0, result sets are also updateable. From this perspective, there are two different kinds of resul
sets: read—only result sets that do not allow changes to the underlying data and updateable result sets that
allow such changes, subject to transaction limitations and so on.

To create an updateable, scroll-sensitive result set, we pass two extra arguments to the
createStatement() method:

Statement stmt = con.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATEABLE);

If you do not pass any arguments to createStatement(), you get a forward—only, read—only result set,
just as you would using JDBC 1.0. Note that if you specify a scrollable result set (either sensitive or
insensitive), you must also specify whether or not the result set is updateable. After you have created a
scrollable ResultSet, use the methods listed in Table 2-2 to navigate through it. As with JDBC 1.0, when
you start working with a ResultSet, you are positioned before the first row of results.

Table 2-2. JDBC 2.0 Record Scrolling Functions

Method Function
first() Move to the first record.
last() Move to the last record.
next() Move to the next record.
previous() Move to the previous record.
beforeFirst() Move to immediately before the first record.
afterLast() Move to immediately after the last record.

2.13. JDBC 2.0 43

Preface (Java Enterprise in a Nutshell)

absolute(int) Move to an absolute row number. Takes a positive or negative argument.

Move backward or forward a specified number of rows. Takes a positive or negatiye
argument.
The JDBC 2.0 API also includes a number of methods that tell you where you are in a ResultSet. You can
think of your position in a ResultSet as the location of a cursor in the results. The isFirst() and

isLast() methods return true if the cursor is located on the first or last record, respectively.

isAfterLast() returns true if the cursor is after the last row in the result set, while

isBefareFirst() returns true if the cursor is before the first row.

relative(int)

With an updateable ResultSet, you can change data in an existing row, insert an entirely new row, or
delete an existing row. To change data in an existing row, you use thegdateXXX() methods of

ResultSet. Let's assume we want to update the CUSTOMER_ID field of the first row we retrieve (okay, it's
a contrived example, but bear with me):

Statement stmt = con.createStatement(ResultSet. TYPE_SCROLL_SENSITIVE,
ResultSet. CONCUR_UPDATEABLE);
ResultSet rs = stmt.executeQuery("SELECT NAME, CUSTOMER_ID FROM CUSTOMERS");

rs.first();
rs.updatelnt(2, 35243);
rs.updateRow();

Here we use first() to navigate to the first row of the result set and then call updatelnt() to change

the value of the customer ID column in the result set. After making the change, call updateRow() to

actually make the change in the database. If you forget to call updateRow() before moving to another row

in the result set, any changes you made are lost. If you need to make a number of changes in a single row,
can do that with multiple calls to updateXXX() methods and then a single call to updateRow(). Just be

sure you call updateRow() before moving on to another row.

The technique for inserting a row is similar to updating data in an existing row, with a few important
differences. The first step is to move to what is called the insert row, using the moveTolnsertRow()
method. The insert row is a blank row associated with the ResultSet that contains all the fields, but no
data; you can think of it as a pseudo-row where you can compose a new row. After you have moved to the
insert row, use updateXXX() methods to load new data into the insert row and then call insertRow() to
append the new row to the ResultSet and the underlying database Here's an example that adds a new
customer to the database:

ResultSet rs = stmt.executeQuery("SELECT NAME, CUSTOMER_ID FROM CUSTOMERS");
rs.moveTolnsertRow();

rs.updateString(1, "Tom Flynn");

rs.updatelnt(2, 35244);

rs.insertRow();

Note that you do not have to supply a value for every column, as long as the columns you omit can accept
null values. If you don't specify a value for a column that cannot be null, you'll get a SQLEXxception.

After you call insertRow(), you can create another new row, or you can move back to the ResultSet

using the various navigation methods shown in Table 2-2. One final navigation method that isn't listed in the
table ismoveToCurrentRow(). This method takes you back to where you were before you called
moveTolnsertRow(); it can only be called while you are in the insert row.

Deleting a row from an updateable result set is easy. Simply move to the row you want to delete and call the
deleteRow() method. Here's how to delete the last record in a ResultSet:

rs.last();
rs.deleteRow();

2.13.JDBC 2.0 44

Preface (Java Enterprise in a Nutshell)

Calling deleteRow() also deletes the row from the underlying database.

Note that not all ResultSet objects are updateable. In general, the query must reference only a single table
without any joins. Due to differences in database implementations, there is no single set of requirements for
what makes an updateable ResultSet.

As useful as scrollable and updateable result sets are, the JDBC 2.0 specification does not require driver
vendors to support them. If you are building middleware or some other kind of system that requires interacti
with a wide range of database drivers, you should avoid this functionality for the time being. The extended
JDBC 2.0 DatabaseMetaData object can provide information about scrolling and concurrency support.

2.13.2. Batch Updates

The original JDBC standard isn't very efficient when it comes to loading large amounts of information into a
database. Even if you use a PreparedStatement, your program still executes a separate query for each
piece of data inserted. If your software is inserting 10,000 rows into the database, there may be performanc
problems.

The new addBatch() method of Statement allows you to lump multiple update statements as a unit and
execute them at once. You call addBatch() after you create the statement and before execution:

con.setAutoCommit(false); // If some fail, we want to rollback the rest
Statement stmt = con.createStatement();

stmt.addBatch("INSERT INTO CUSTOMERS VALUES (1, "J Smith", "617 555-1323");
stmt.addBatch("INSERT INTO CUSTOMERS VALUES (2, "A Smith", "617 555-1132");
stmt.addBatch("INSERT INTO CUSTOMERS VALUES (3, "C Smith", "617 555-1238");
stmt.addBatch("INSERT INTO CUSTOMERS VALUES (4, "K Smith", "617 555-7823");

int[] upCounts = stmt.executeBatch();
con.commit();

Notice that we turn transaction auto—commit off before creating the batch. This is because we want to roll
back all the SQL statements if one or more of them fail to execute properly. After calling addBatch()
multiple times to create our batch, we call executeBatch() to send the SQL statements off to the database
to be executed as a batch. Batch statements are executed in the order they are added to the batch.
executeBatch() returns an array of update counts, where each value in the array represents the number of
rows affected by the corresponding batch statement. If you need to remove the statements from a pending
batch job, you can call clearBatch(), as long as you call it before calling executeBatch().

Note that you can use only SQL statements that return an update count (e.g., CREATE, DROP, INSERT,
UPDATE, DELETE) as part of a batch. If you include a statement that returns a result set, such as SELECT
you get a SQLException when you execute the batch. If one of the statements in a batch cannot be
executed for some reason, executeBatch() throws a BatchUpdateException. This exception,

derived from SQLException, contains an array of update counts for the batch statements that executed
successfully before the exception was thrown.

The addBatch() method works slightly differently for PreparedStatement and

CallableStatement objects. To use batch updating with a PreparedStatement, create the statement
normally, set the input parameters, and then call the addBatch() method with no arguments. Repeat as
necessary and then call executeBatch() when you're finished:

con.setAutoCommit(false); // If some fail, we want to rollback the rest
PreparedStatement stmt = con.prepareStatement(

2.13.2. Batch Updates 45

Preface (Java Enterprise in a Nutshell)

stmt.setint(1,1);

stmt.setString(2, "J Smith");
stmt.setString(3, "617 555-1323");
stmt.addBatch();

stmt.setInt(1,2);

stmt.setString(2, "A Smith");
stmt.setString(3, "617 555-1132");
stmt.addBatch();

int[] upCounts = stmt.executeBatch();
con.commit();

This batch functionality also works with CallableStatement objects for stored procedures. The catch is
that each stored procedure must return an update count and may not take any OUT or INOUT parameters.

2.13.3. Java—Aware Databases

Java is object-oriented; relational databases are not. As a result, it's decidedly difficult to shoehorn a Java
object into a stubbornly primitive—oriented database table. Luckily, the wind is changing, and newer databas
systems, including object—oriented database management systems (OODBMS) and Java-relational databa
management systems,[5] provide direct support for storing and manipulating objects. Where a regular
relational database can store only a limited number of primitive types, a JDBMS system can store entire,
arbitrary Java objects.

[5] This is Sun's term. | have yet to see any packages actually marketed as Java-relational
databases, but many newer packages, including Personal Oracle, are capable of storing Java
classes. A number of these products also use Java as a trigger language, generally in a JDBC
structure.

Say we want to store a customized Java Account object in the ACCOUNTS table in a database. With a
standard DBMS and JDBC 1.0, we have to pull each piece of data (account number, account holder, balanc
etc.) out of the Account object and write it to a complicated database table. To get data out, we reverse the
process. Short of serializing the Account object and writing it to a binary field (a rather complex operation),
we're stuck with this clumsy approach.[6]

[6] There is a commercial product, called Java Blend, that automatically handles mapping
objects to database records and vice versa. See
http://www.javasoft.com/products/java—blend/index.html for more information.

With JDBC 2.0, the getObject() method has been extended to support these new Java—aware databases.
Provided that the database supports a Java—object type, we can read the Account object just like any
primitive type:

ResultSet rs = stmt.executeQuery("SELECT ACCOUNT FROM ACCOUNTS");

rs.next();
Account a = (Account)rs.getObject(1);

To store an object, we use a PreparedStatement and the setObject() method:

Account a = new Account();
/I Fill in appropriate fields in Account object

PreparedStatement stmt = con.prepareStatement(
"INSERT INTO ACCOUNTS (ACCOUNT) VALUE (?)");

2.13.3. Java—-Aware Databases 46

http://www.javasoft.com/products/java-blend/index.html

Preface (Java Enterprise in a Nutshell)

stmt.setObject(1, a);
stmt.executeUpdate();

A column that stores a Java object has a type of Types.JAVA_OBJECT. The JDBC API does not take any
special steps to locate the bytecodes associated with any particular class, so you should make sure that any
necessary objects can be instantiated with a call to Class.forName().

2.13.4. BLOBs and CLOBs

Binary large objects (BLOBSs) and character large objects (CLOBS) store large amounts of binary or charact
data. Different database vendors have different names for these fields. For example, on Oracle7 systems, tt
are known as LONG and LONG RAW fields, while Microsoft Access refers to them as OLE object fields.
Oracle8 introduces actual BLOB and CLOB types. JDBC 1.0 makes programs retrieve BLOB and CLOB da
using the getBinaryStream() or getAsciiStream() methods (a third method,

getUnicodeStream(), has been deprecated in favor of the new getCharacterStream() method,

which returns a Reader).

In JIDBC 2.0, the ResultSet interface includes getBlob() and getClob() methods, which return

Blob and Clob objects, respectively. The Blob and Clob objects themselves allow access to their data via
streams (the getBinaryStream() method of Blob and the getCharacterStream() method of

Clob) or direct-read methods (the getBytes() method of Blob and the getSubString() method of

Clob).

In addition, you can set Blob and Clob objects when you are working with a PreparedStatement,
using the setBlob() and setClob() methods. There are update methods for streams, but no
updateBlob() and updateClob()methods. Note that the lifespan of a Blob or Clob object is limited
to the transaction that created it.

2.13.5. The JDBC Standard Extension

The javax.sql package is a standard extension for JDBC 2.0 that includes support for a variety of
enterprise—development activities. For example, the standard extension lets you use JNDI for connecting to
database, making it possible to obtain the name of a database from a name service, rather than using a
hardcoded name. Another key feature is the ability to treat the results of a database query as a JavaBeans
component, using the RowSet interface. The PooledConnection interface offers connection—pooling
functionality, so that your application can have a cache of open database connections. The standard extens
also provides support for distributed transactions by allowing a JDBC driver to utilize the standard two—phas
commit protocol used by the Java Transaction API (JTA), which facilitates the use of JDBC in Enterprise
JavaBeans components.

4 PREVIOUS HOME NEXT »
2.12. Escape Sequences BOOK INDEX 3. Remote Method
Invocation

JM g | § M 9 Nin %

\ 4 o . < ‘Y s ; » &)
ErNgse ~ M Ny A
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™

Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

2.13.4. BLOBs and CLOBs 47

Preface (Java Enterprise in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISE INA NutstErL ™

@ PREVIOUS Part 1: Introducing the HEXT »
Java Enterprise APIs

2.13.4. BLOBs and CLOBs

48

Chapter 3. Remote Method Invocation

Contents:

Introduction to RMI

Defining Remote Objects

Creating the Stubs and Skeletons
Accessing Remote Objects as a Client
Dynamically Loaded Classes

Remote Object Activation

RMI and Native Method Calls

RMI over [IOP

This chapter examines the Java Remote Method Invocation (RMI) API--Java's native scheme for creating
and using remote objects. Java RMI provides the following elements:

Remote object implementations

Client interfaces, or stubs, to remote objects

A remote object registry for finding objects on the network

A network protocol for communication between remote objects and their client

A facility for automatically creating (activating) remote objects on—-demand

Each of these elements (except the last one) has a Java interface defined for it within the java.rmi package
and its subpackages, which comprise the RMI API. Using these interfaces, you can develop remote objects
and the clients that use them to create a distributed application that resides on hosts across the network.

3.1. Introduction to RMI

RMI is the distributed object system that is built into the core Java environment. You can think of RMI as a
built—in facility for Java that allows you to interact with objects that are actually running in Java virtual
machines on remote hosts on the network. With RMI (and other distributed object APIs we discuss in this
book), you can get a reference to an object that "lives" in a remote process and invoke methods on it as if it
were a local object running within the same virtual machine as your code (hence the name, "Remote Metho
Invocation API").

RMI was added to the core Java API in Version 1.1 of the JDK (and enhanced for Version 1.2 of the Java 2
platform), in recognition of the critical need for support for distributed objects in distributed—application
development. Prior to RMI, writing a distributed application involved basic socket programming, where a
"raw" communication channel was used to pass messages and data between two remote processes. Now, \
RMI and distributed objects, you can "export" an object as a remote object, so that other remote
processes/agents can access it directly as a Java object. So, instead of defining a low—-level message protol
and data transmission format between processes in your distributed application, you use Java interfaces as
"protocol" and the exported method arguments become the data transmission format. The distributed object
system (RMI in this case) handles all the underlying networking needed to make your remote method calls

Chapter 3. Remote Method Invocation 49

Preface (Java Enterprise in a Nutshell)

work.

Java RMI is a Java-only distributed object scheme; the objects in an RMI-based distributed application hav
to be implemented in Java. Some other distributed object schemes, most notably CORBA, are
language-independent, which means that the objects can be implemented in any language that has a defin
binding. With CORBA, for example, bindings exist for C, C++, Java, Smalltalk, and Ada, among other
languages.

The advantages of RMI primarily revolve around the fact that it is "Java—native." Since RMI is part of the
core Java API and is built to work directly with Java objects within the Java VM, the integration of its remote
object facilities into a Java application is almost seamless. You really can use RMI-enabled objects as if the
live in the local Java environment. And since Java RMI is built on the assumption that both the client and
server are Java objects, RMI can extend the internal garbage—collection mechanisms of the standard Java \
to provide distributed garbage collection of remotely exported objects.

If you have a distributed application with heterogeneous components, some of which are written in Java anc
some that aren't, you have a few choices. You can use RMI, wrapping the non-Java code with RMI-enable
Java objects using the Java Native Interface (JNI). At the end of this chapter, we discuss this first option in
some detail, to give you a feeling for where it could be useful and where it wouldn't. Another option is to use
another object distribution scheme, such as CORBA, that supports language—independent object interfaces
Chapter 4, "Java IDL", covers the Java interface to CORBA that is included in the Java 2 SDK. A third optiol
involves the new RMI/IIOP functionality that allows RMI objects to communicate directly with remote
CORBA objects over IIOP. We also discuss this option in some detail at the end of this chapter.

3.1.1. RMI in Action

Before we start examining the details of using RMI, let's look at a simple RMI remote object at work. We car
create an Account object that represents some kind of bank account and then use RMI to export it as a
remote object so that remote clients (e.g., ATMs, personal finance software running on a PC) can access it
carry out transactions.

The first step is to define the interface for our remote object. Example 3—-1 shows the Account interface.
You can tell that it's an RMI object because it extends the java.rmi.Remote interface. Another signal that
this is meant for remote access is that each method can throw a java.rmi.RemoteException. The

Account interface includes methods to get the account name and balance and to make deposits, withdrawal
and transfers.

Example 3-1. A Remote Account Interface

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.util.List;

public interface Account extends Remote {
public String getName() throws RemoteException;
public float getBalance() throws RemoteException;
public void withdraw(float amt) throws RemoteException;
public void deposit(float amt) throws RemoteException;
public void transfer(float amt, Account src) throws RemoteException;
public void transfer(List amts, List srcs) throws RemoteException;

}

The next step is to create an implementation of this interface, which leads to the Accountimpl class shown
in Example 3—-2. This class implements all the methods listed in the Account interface and adds a
constructor that takes the name of the new account to be created. Notice that the Accountlmpl class

3.1.1. RMI in Action 50

Preface (Java Enterprise in a Nutshell)

implements the Account interface, but it also extends the java.rmi.UnicastRemoteObiject class.
This RMI class provides some of the basic remote functionality for server objects.

Example 3-2. Implementation of the Remote Account Interface

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;

import java.util.List;

import java.ultil.Listlterator;

public class Accountimpl extends UnicastRemoteObject implements Account {
private float mBalance = 0;

private String mName =",

/I Create a new account with the given name
public Accountimpl(String name) throws RemoteException {
mName = name;

}

public String getName() throws RemoteException {
return mName;

}

public float getBalance() throws RemoteException {
return mBalance;

}

/I Withdraw some funds

public void withdraw(float amt) throws RemoteException {
mBalance —= amt;
/I Make sure balance never drops below zero
mBalance = Math.max(mBalance, 0);

}

/I Deposit some funds
public void deposit(float amt) throws RemoteException {
mBalance += amt;

}

/I Move some funds from another (remote) account into this one
public void transfer(float amt, Account src) throws RemoteException {
src.withdraw(amt);
this.deposit(amt);
}

/I Make several transfers from other (remote) accounts into this one
public void transfer(List amts, List srcs) throws RemoteException {
Listlterator amtCurs = amts.listlterator();
Listlterator srcCurs = srcs.listlterator();
/I lterate through the accounts and the amounts to be transferred from
/I each (assumes amounts are given as Float objects)
while (amtCurs.hasNext() && srcCurs.hasNext()) {
Float amt = (FloatyamtCurs.next();
Account src = (Account)srcCurs.next();
this.transfer(amt.floatValue(), src);
}
}
}

Once the remote interface and an implementation of it are complete, you need to compile both Java files wit
your favorite Java compiler. After this is done, you use the RMI stub/skeleton compiler to generate a client
stub and a server skeleton for the Accountimpl object. The stub and skeleton handle the communication
between the client application and the server object. With Sun's Java SDK, the RMI compiler is called rmic,
and you can invoke it for this example like so:

3.1.1. RMl in Action 51

Preface (Java Enterprise in a Nutshell)

% rmic —d /home/classes Accountimpl

The stub and skeleton classes are generated and stored in the directory given by the —d option (/home/clas:
in this case). This example assumes that the Accountimpl class is already in your CLASSPATH before you
run the RMI compiler.

There's just one more thing we need to do before we can actually use our remote object: register it with an
RMI registry, so that remote clients can find it on the network. The utility class that follows, RegAccount,
does this by creating an Accountimpl object and then binding it to a name in the local registry using the
java.rmi.Naming interface. After it's done registering the object, the class goes into a wait(), which

allows remote clients to connect to the remote object:

import java.rmi.Naming;

public class RegAccount {
public static void main(String argv(]) {

try {
/l Make an Account with a given name
Accountimpl acct = new Accountimpl("JimF");

/I Register it with the local naming registry
Naming.rebind("JimF", acct);
System.out.printin("Registered account.");

catch (Exception e) {
e.printStackTrace();

}
}
}

After you compile the RegAccount class, you can run its main() method to register an Account with
the local RMI registry. First, however, you need to start the registry. With Sun's Java SDK, the registry can k
started using the rmiregistry utility. On a Unix machine, this can be done like so:

objhost% rmiregistry &

Once the registry is started, you can invoke the main() method on the RegAccount class simply by
running it:

objhost% java RegAccount
Registered account.

Now we have a remote Account object that is ready and waiting for a client to access it and call its
methods. The following client code does just this, by first looking up the remote Account object using the
java.rmi.Naming interface (and assuming that the Account object was registered on a machine named
objhost.org), and then calling the deposit method on the Account object:

import java.rmi.Naming;

public class AccountClient {
public static void main(String argv[]) {
try {
/I Lookup account object
Account jimAcct = (Account)Naming.lookup(“rmi://objhost.org/JimF");

/I Make deposit
jimAcct.deposit(12000);

/l Report results and balance.
System.out.printin("Deposited 12,000 into account owned by " +

3.1.1. RMI in Action 52

Preface (Java Enterprise in a Nutshell)

jimAcct.getName());
System.out.printin("Balance now totals: " + jimAcct.getBalance());

}

catch (Exception e) {
System.out.printin("Error while looking up account:");
e.printStackTrace();

}
}
}

The first time you run this client, here's what you'd do:

% java AccountClient
Deposited 12,000 into account owned by JimF
Balance now totals: 12000.0

For the sake of this example, I've assumed that the client process is running on a machine with all the
necessary classes available locally (the Account interface and the stub and skeleton classes generated fron
the Accountlmpl implementation). Later in the chapter, we'll see how to deal with loading these classes
remotely when the client doesn't have them locally.

3.1.2. RMI Architecture

Now that we've seen a complete example of an RMI object in action, let's look at what makes remote object
work, starting with an overview of the underlying RMI architecture. There are three layers that comprise the
basic remote—object communication facilities in RMI:

The stub/skeleton layer, which provides the interface that client and server application objects use to
interact with each other.

The remote reference layer, which is the middleware between the stub/skeleton layer and the
underlying transport protocol. This layer handles the creation and management of remote object
references.

The transport protocol layer, which is the binary data protocol that sends remote object requests ove
the wire.

These layers interact with each other as shown in Figure 3-1. In this figure, the server is the application that
provides remotely accessible objects, while the client is any remote application that communicates with thes
server objects.

In a distributed object system, the distinctions between clients and servers can get pretty blurry at times.
Consider the case where one process registers a remote—enabled object with the RMI naming service, and
number of remote processes are accessing it. We might be tempted to call the first process the server and t
other processes the clients. But what if one of the clients calls a method on the remote object, passing a
reference to an RMI object that's local to the client. Now the server has a reference to and is using an objec!
exported from the client, which turns the tables somewhat. The "server" is really the server for one object ar
the client of another object, and the "client" is a client and a server, too. For the sake of discussion, I'll refer
a process in a distributed application as a server or client if its role in the overall system is generally limited 1
one or the other. In peer—-to—peer systems, where there is no clear client or server, I'll refer to elements of th
system in terms of application—specific roles (e.g., chat participant, chat facilitator).

3.1.2. RMI Architecture 53

Preface (Java Enterprise in a Nutshell)

Smbﬁtee’klon

Remote Reference |
Layer i Remate Reference

Manager

' R Tramsport
Layer

Remote Reference
Manager

{

Y

i

Server Process

Figure 3—1. The RMI runtime architecture

As you can see in Figure 3-1, a client makes a request of a remote object using a client-side stub; the serv
object receives this request from a server—side object skeleton. A client initiates a remote method invocatior
by calling a method on a stub object. The stub maintains an internal reference to the remote object it
represents and forwards the method invocation request through the remote reference layer by marshalling tl
method arguments into serialized form and asking the remote reference layer to forward the method reques
and arguments to the appropriate remote object. Marshalling involves converting local objects into portable
form so that they can be transmitted to a remote process. Each object is checked as it is marshaled, to
determine whether it implements the java.rmi.Remote interface. If it does, its remote reference is used as
its marshaled data. If it isn't a Remote object, the argument is serialized into bytes that are sent to the remot
host and reconstituted into a copy of the local object. If the argument is neither Remote nor

Serializable, the stub throws a java.rmi.MarshalException back to the client.

If the marshalling of method arguments succeeds, the client-side remote reference layer receives the remo
reference and marshaled arguments from the stub. This layer converts the client request into low—level RMI
transport requests according to the type of remote object communication being used. In RMI, remote object:
can (potentially) run under several different communication styles, such as point-to—point object references
replicated objects, or multicast objects. The remote reference layer is responsible for knowing which
communication style is in effect for a given remote object and generating the corresponding transport-level
requests. In the current version of RMI (Version 1.2 of Java 2), the only communication style provided out of
the box is point—to—point object references, so this is the only style we'll discuss in this chapter. For a
point—-to—point communication, the remote reference layer constructs a single network-level request and
sends it over the wire to the sole remote object that corresponds to the remote reference passed along with
request.

On the server, the server—side remote reference layer receives the transport—level request and converts it ir
a request for the server skeleton that matches the referenced object. The skeleton converts the remote requ
into the appropriate method call on the actual server object, which involves unmarshalling the method
arguments into the server environment and passing them to the server object. As you might expect,

3.1.2. RMI Architecture 54

Preface (Java Enterprise in a Nutshell)

unmarshalling is the inverse procedure to the marshalling process on the client. Arguments sent as remote
references are converted into local stubs on the server, and arguments sent as serialized objects are conve
into local copies of the originals.

If the method call generates a return value or an exception, the skeleton marshals the object for transport be
to the client and forwards it through the server reference layer. This result is sent back using the appropriate
transport protocol, where it passes through the client reference layer and stub, is unmarshaled by the stub, :
is finally handed back to the client thread that invoked the remote method.

3.1.3. RMI Object Services

On top of its remote object architecture, RMI provides some basic object services you can use in your
distributed application. These include an object naming/registry service, a remote object activation service,
and distributed garbage collection.

3.1.3.1. Naming/registry service

When a server process wants to export some RMI-based service to clients, it does so by registering one or
more RMI-enabled objects with its local RMI registry (represented by the Registry interface). Each object

is registered with a name clients can use to reference it. A client can obtain a stub reference to the remote
object by asking for the object by name through the Naming interface. The Naming.lookup() method

takes the fully qualified name of a remote object and locates the object on the network. The object's fully
gualified name is in a URL-like syntax that includes the name of the object's host and the object's registerec
name.

It's important to note that, although the Naming interface is a default naming service provided with RMI, the
RMI registry can be tied into other naming services by vendors. Sun has provided a binding to the RMI
registry through the Java Naming and Directory Interface (JNDI), for example. See Chapter 6, "IJNDI", for
more details on how JNDI can be used to look up objects (remote or otherwise).

Once the lookup() method locates the object's host, it consults the RMI registry on that host and asks for
the object by name. If the registry finds the object, it generates a remote reference to the object and delivers
to the client process, where it is converted into a stub reference that is returned to the caller. Once the client
has a remote reference to the server object, communication between the client and the server commences :
described earlier. We'll talk in more detail about the Naming and Registry interfaces later in this chapter.

3.1.3.2. Object activation service

The remote object activation service is new to RMI as of Version 1.2 of the Java 2 platform. It provides a
way for server objects to be started on an as—needed basis. Without remote activation, a server object has 1
be registered with the RMI registry service from within a running Java virtual machine. A remote object
registered this way is only available during the lifetime of the Java VM that registered it. If the server VM
halts or crashes for some reason, the server object becomes unavailable and any existing client references
the object become invalid. Any further attempts by clients to call methods through these now-invalid
references result in RMI exceptions being thrown back to the client.

The RMI activation service provides a way for a server object to be activated automatically when a client
requests it. This involves creating the server object within a new or existing virtual machine and obtaining a
reference to this newly created object for the client that caused the activation. A server object that wants to |
activated automatically needs to register an activation method with the RMI activation daemon running on it
host. We'll discuss the RMI activation service in more detail later in the chapter.

3.1.3. RMI Object Services 55

Preface (Java Enterprise in a Nutshell)

3.1.3.3. Distributed garbage collection

The last of the remote object services, distributed garbage collection, is a fairly automatic process that you &
an application developer should never have to worry about. Every server that contains RMI-exported object
automatically maintains a list of remote references to the objects it serves. Each client that requests and
receives a reference to a remote object, either explicitly through the registry/naming service or implicitly as
the result of a remote method call, is issued this remote object reference through the remote reference layelr
the object's host process. The reference layer automatically keeps a record of this reference in the form of a
expirable "lease" on the object. When the client is done with the reference and allows the remote stub to go
out of scope, or when the lease on the object expires, the reference layer on the host automatically deletes
record of the remote reference and notifies the client's reference layer that this remote reference has expire:
The concept of expirable leases, as opposed to strict on/off references, is used to deal with situations where
client-side failure or a network failure keeps the client from notifying the server that it is done with its
reference to an object.

When an object has no further remote references recorded in the remote reference layer, it becomes a
candidate for garbage collection. If there are also no further local references to the object (this reference list
kept by the Java VM itself as part of its normal garbage—collection algorithm), the object is marked as
garbage and picked up by the next run of the system garbage collector.

4 PREVIOUS HOME NEXT »
2.13. JDBC 2.0 BOOK INDEX 3.2. Defining Remote
Objects
e 4 .) ! - I' — 7
. ;‘Java? . } : Q ol 4 B ,x_
Enterprise ‘ : : { N/
Bookshelf Java™ Java™ J.cva"' Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 3: Remote NEXT »
Method Invocation

3.2. Defining Remote Objects

Now that you have a basic idea of how Java RMI works, we can explore the details of creating and using
distributed objects with RMI. As | mentioned earlier, defining a remote RMI object involves specifying a
remote interface for the object, then providing a class that implements this interface. The remote interface a
implementation class are then used by RMI to generate a client stub and server skeleton for your remote
object. The communication between local objects and remote objects is handled using these client stubs an
server skeletons. The relationships among stubs, skeletons, and the objects that use them are shown in Fig
3-2.

3.1.3.3. Distributed garbage collection 56

Preface (Java Enterprise in a Nutshell)

o Define remote Remote
inferfaces interfoce -
| Implementation |
© Define server / “| of remote interfoce |
implementations / /
' '
© g:}:;:: :::"fg m{ Stub doss Skeleton class

v

i é
o 2 ; Remoie object
(lient objects "<—> Stub object)<= 9{ Skeleton object) > implementations 'I

- [interfoce/doss [Imterfoce/closs (O Objects created () Objects crected
¢ written by you generoted from rmic . by you by RMI '
* inheritance l generated by mic v inslnces <> (ommuni(ntiunf

Figure 3-2. Relationships among remote object, stub, and skeleton classes

When a client gets a reference to a remote object (details on how this reference is obtained come later) and
then calls methods on this object reference, there needs to be a way for the method request to get transmitt
back to the actual object on the remote server and for the results of the method call to get transmitted back 1
the client. This is what the generated stub and skeleton classes are for. They act as the communication link
between the client and your exported remote object, making it seem to the client that the object actually exis
within its Java VM.

The RMI compiler (rmic) automatically generates these stub and skeleton classes for you. Based on the
remote interface and implementation class you provide, rmic generates stub and skeleton classes that
implement the remote interface and act as go—betweens for the client application and the actual server obje
For the client stub class, the compiler generates an implementation of each remote method that simply
packages up (marshals) the method arguments and transmits them to the server. For the server skeleton cl:
the RMI compiler generates another set of implementations of the remote methods, but these are designed
receive the method arguments from the remote method call, unpackage them, and make the corresponding
method call on the object implementation. Whatever the method call generates (return data or an exception
the results are packaged and transmitted back to the remote client. The client stub method (which is still
executing at this point) unpackages the results and delivers them to the client as the result of its remote
method call.

So, the first step in creating your remote objects is to define the remote interfaces for the types of objects yo
need to use in a distributed object context. This isn't much different from defining the public interfaces in a
nondistributed application, with the following exceptions:

Every object you want to distribute using RMI has to directly or indirectly extend an interface that
extends the java.rmi.Remote interface.

Every method in the remote interface has to declare that it throws a
java.rmi.RemoteException or one of the parent classes of RemoteException.[1]

[1]Note that prior to Java 1.2, the RMI specification required that every method on a

3.2. Defining Remote Objects 57

Preface (Java Enterprise in a Nutshell)

remote interface had to throw RemoteException specifically. In Java 1.2, this has
been loosened to allow any superclass of RemoteException. The reason for this
change is to make it easier to define generic interfaces that support both local and
remote objects.

RMI imposes the first requirement to allow it to differentiate quickly between objects that are enabled for
remote distribution and those that are not. As we've already seen, during a remote method invocation, the R
runtime system needs to be able to determine whether each argument to the remote method is a Remote
object or not. The Remote interface, which is simply a tag interface that marks remote objects, makes it eas
to perform this check.

The second requirement is needed to deal with errors that can happen during a remote session. When a clie
makes a method call on a remote object, any number of errors can occur, preventing the remote method cal
from completing. These include client-side errors (e.g., an argument can't be marshaled), errors during the
transport of data between client and server (e.g., the network connection is dropped), and errors on the sen
side (e.g., the method throws a local exception that needs to be sent back to the remote caller). The
RemoteException class is used by RMI as a base exception class for any of the different types of

problems that might occur during a remote method call. Any method you declare in a Remote interface is
assumed to be remotely callable, so every method has to declare that it might throw a RemoteException,

or one of its parent interfaces.

Example 3-3 shows a simple remote interface that declares two methods: doThis() and doThat(). These
methods could do anything that we want; in our Account example, we had remote methods to deposit,
withdraw, and transfer funds. Each method takes a single String argument and returns a String result.
Since we want to use this interface in an RMI setting, we've declared that the interface extends the Remote
interface. In addition, each method is declared as throwing a RemoteException.

Example 3-3. The ThisOrThatServer Interface

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface ThisOrThatServer extends Remote {
public String doThis(String todo) throws RemoteException;
public String doThat(String todo) throws RemoteException;

}

With the remote interface defined, the next thing we need to do is write a class that implements the interface
Example 3-4 shows the ThisOrThatServerlmpl class, which implements the ThisOrThatServer
interface.

Example 3—-4. Implementation of the ThisOrThatServer

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;

public class ThisOrThatServerimpl
extends UnicastRemoteObject implements ThisOrThatServer {

public ThisOrThatServerimpl() throws RemoteException {}
/I Remotely accessible methods

public String doThis(String todo) throws RemoteException {
return doSomething(“this", todo);

}

3.2. Defining Remote Objects 58

Preface (Java Enterprise in a Nutshell)

public String doThat(String todo) throws RemoteException {
return doSomething(“that", todo);

}

/I Non-remote methods

private String doSomething(String what, String todo) {
String result = "Did " + what + " to " + todo + ".";
return result;

}
}

This class has implementations of the doThis() and doThat() methods declared in the

ThisOrThatServer interface; it also has a nonremote method, doSomething(), that is used to

implement the two remote methods. Notice that the doSomething() method doesn't have to be declared as
throwing a RemoteException, since it isn't a remotely callable method. Only the methods declared in the
remote interface can be invoked remotely. Any other methods you include in your implementation class are
considered nonremote (i.e., they are only callable from within the local Java virtual machine where the objec
exists).

3.2.1. Key RMI Classes for Remote Object Implementations

You probably noticed that our ThisOrThatServerimpl class also extends the

UnicastRemoteObject class. This is a class in the java.rmi.server package that extends
java.rmi.server.RemoteServer, which itself extends java.rmi.ser—ver.RemoteObiject,

the base class for all RMI remote objects. There are four key classes related to writing server object
implementations:

RemoteObject
RemoteObject implements both the Remote and java.rmi.server package, it is used by
both the Serializable interfaces. Although the RemoteObject class is in the client and server
portions of a remote object reference. Both client stubs and server implementations are subclassed
(directly or indirectly) from RemoteObject. A RemoteObject contains the remote reference for
a particular remote object.

RemoteObject is an abstract class that reimplements the equals(), hashCode(), and

toString() methods inherited from Object in a way that makes sense and is practical for remote
objects. The equals() method, for example, is implemented to return true if the internal remote
references of the two RemoteObject objects are equal, (i.e., if they both point to the same server
object).

RemoteServer
RemoteServer is an abstract class that extends RemoteObject. It defines a set of static
methods that are useful for implementing server objects in RMI, and it acts as a base class for class
that define various semantics for remote objects. In principle, a remote object can behave according
a simple point-to—point reference scheme; it can have replicated copies of itself scattered across the
network that need to be kept synchronized; or any number of other scenarios. JDK 1.1 supported on
point—to—point, nonpersistent remote references with the UnicastRemoteObject class. The Java
2 SDK 1.2 has introduced the RMI activation system, so it provides another subclass of
RemoteServer, Activatable.

UnicastRemoteObject
This is a concrete subclass of RemoteServer that implements point-to—point remote references
over TCP/IP networks. These references are nonpersistent: remote references to a server object are
only valid during the lifetime of the server object. Before the server object is created (inside a virtual
machine running on the host) or after the object has been destroyed, a client can't obtain remote

3.2.1. Key RMI Classes for Remote Object Implementations 59

Preface (Java Enterprise in a Nutshell)

references to the object. In addition, if the virtual machine containing the object exits (intentionally or
otherwise), any existing remote references on clients become invalid and generate
RemoteException objects if used.

Activatable
This concrete subclass of RemoteServer is part of the new RMI object activation facility in Java
1.2 and can be found in the java.rmi.activation package. It implements a server object that
supports persistent remote references. If a remote method request is received on the server host for
Activatable object, and the target object is not executing at the time, the object can be started
automatically by the RMI activation daemon.

4 PREVIOUS HOME NEXT »
3.1. Introduction to RMI BOOK INDEX 3.3. Creating the Stubs and
Skeletons
S.C B Nase
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes Jnvnlenns"', Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 3: Remote NEXT »
Method Invocation

3.3. Creating the Stubs and Skeletons

After you define the remote Java interface and implementation class, you compile them into Java bytecodes
using a standard Java compiler. Then you use the RMI stub/skeleton compiler, rmic, to generate the stub ar
skeleton interfaces that are used at either end of the RMI communication link, as was shown in Figure 3-1.
its simplest form, you can run rmic with the fully qualified classname of your implementation class as the
only argument. For example, once we've compiled the ThisOrThatServer and

ThisOrThatServerimpl classes, we can generate the stubs and skeletons for the remote

ThisOrThatServer object with the following command (Unix version):

% rmic ThisOrThatServerimpl

If the RMI compiler is successful, this command generates the stub and skeleton classes,
ThisOrThatServerimpl_Stub and ThisOrThatServerlmpl_Skel, in the current directory. The

rmic compiler has additional arguments that let you specify where the generated classes should be stored,
whether to print warnings, etc. For example, if you want the stub and skeleton classes to reside in the direct
lusr/local/classes, you can run the command using the —d option:

% rmic —d /usr/local/classes ThisOrThatServerimpl

This command generates the stub and skeleton classes in the specified directory. A full description of the rn
utility and its options is given in Chapter 9, RMI Tools.

3.3. Creating the Stubs and Skeletons 60

Preface (Java Enterprise in a Nutshell)

4 PREVIOUS HOME NEXT »
3.2. Defining Remote BOOK INDEX 3.4. Accessing Remote
Objects Objects as a Client
B @ @ ‘ﬁ‘ @ D
Bookshelf Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in a Nutshell, Foondnmm (lusses JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 3: Remote NEXT »
Method Invocation

3.4. Accessing Remote Objects as a Client

Now that we've defined a remote object interface and its server implementation and generated the stub and
skeleton classes that RMI uses to establish the link between the server object and the remote client, it's time
look at how you make your remote objects available to remote clients.

3.4.1. The Registry and Naming Services

The first remote object reference in an RMI distributed application is typically obtained through the RMI
registry facility and the Naming interface. Every host that wants to export remote references to local Java
objects must be running an RMI registry daemon of some kind. A registry daemon listens (on a particular
port) for requests from remote clients for references to objects served on that host. The standard Sun Java
SDK distribution provides an RMI registry daemon, rmiregistry. This utility simply creates a Registry

object that listens to a specified port and then goes into a wait loop, waiting for local processes to register
objects with it or for clients to connect and look up RMI objects in its registry. You start the registry daemon
by running the rmiregistry command, with an optional argument that specifies a port to listen to:

objhost% rmiregistry 5000 &

Without the port argument, the RMI registry daemon listens on port 1099. Typically, you run the registry
daemon in the background (i.e., put an & at the end of the command on a Unix system or run start
rmiregistry [port] in a DOS window on a Windows system) or run it as a service at startup.

Once the RMI registry is running on a host, you can register remote objects with it using one of these classe
the java.rmi.registry.Registry interface, the java.rmi.registry.LocateRegistry
class, or the java.rmi.Naming class.

A Registry object represents an interface to a local or remote RMI object registry. The bind() and

rebind() methods can register an object with a name in the local registry, where the name for an object can
be any unique string. If you try to bind() an object to a name that has already been used, the registry throws
an AlreadyBoundException. If you think that an object may already be bound to the name you want to
register, use the rebind() method instead. You can remove an object binding using the unbind()

3.4. Accessing Remote Objects as a Client 61

Preface (Java Enterprise in a Nutshell)

method. Note that these three methods (bind(), rebind(), and unbind()) can be called only by clients

running on the same host as the registry. If a remote client attempts to call these methods, the client receive
java.rmi.AccessException. You can locate a particular object in the registry using the lookup()

method, while list() returns the names of all the objects registered with the local registry. Note that only
Remote objects can be bound to names in the Registry. Remote objects are capable of supporting remote
references. Standard Java classes are not, so they can't be exported to remote clients through the Registry.

The LocateRegistry class provides a set of static methods a client can use to get references to local and
remote registries, in the form of Registry objects. There are four versions of the static getRegistry()

method, so that you can get a reference to either a local registry or a remote registry running on a particular
host, listening to either the default port (1099) or a specified port. There's also a static createRegistry()
method that takes a port number as an argument. This method starts a registry running within the current Je
VM on the given local port and returns the Registry object it creates.

Using the LocateRegistry and Registry interfaces, we can register one of our
ThisOrThatServerimpl remote objects on the local host with the following code:

ThisOrThatServerImpl server = new ThisOrThatServerimpl();
Registry localRegistry = LocateRegistry.getRegistry();

try {
localRegistry.bind("TTServer", server);

}

catch (RemoteException re) { // Handle failed remote operation }
catch (AlreadyBoundException abe) { // Already one there }
catch (AccessException ae) { // Shouldn't happen, but... }

If this operation is successful (i.e., it doesn't raise any exceptions), the local registry has a
ThisOrThatServerlmpl remote object registered under the name "TTServer." Remote clients can now
look up the object using a combination of the LocateRegistry and Registry interfaces, or take the
simpler approach and use the Naming class.

The Naming class lets a client look up local and remote objects using a URL-like naming syntax. The URL
of a registered RMI remote object is typically in the format shown in Figure 3—3. Notice that the only requirec
element of the URL is the actual object name. The protocol defaults to rmi:, the hostname defaults to the loc
host, and the port number defaults to 1099. Note that the default Naming class provided with Sun's Java SC
accepts only the rmi: protocol on object URLSs. If you attempt to use any other protocol, a
java.net.MalformedURLException is thrown by the lookup() method.

If we have a client running on a remote host that wants to look up the ThisOrThatServerimpl we
registered, and the ThisOrThatServerlmpl object is running on a host named rmiremote.farley.org, the
client can get a remote reference to the object with one line of code:

ThisOrThatServer rmtServer =
(ThisOrThatServer)Naming.lookup("rmi://rmiremote.farley.org/TTServer");

If we have a client running on the same host as the ThisOrThatServerImpl object, the remote reference
can be retrieved using the degenerate URL:

ThisOrThatServer rmtServer = (ThisOrThatServer)Naming.lookup("TTServer");

rmi://objhost.org:1099/objName

3.4. Accessing Remote Objects as a Client 62

Preface (Java Enterprise in a Nutshell)

Figure 3-3. Anatomy of an RMI object URL

Alternately, you can use the LocateRegistry and Registry interfaces to look up the same object,
using an extra line of code to find the remote Registry through the LocateRegistry interface:

Registry rmtRegistry = LocateRegistry.getRegistry("rmiremote.farley.org");
ThisOrThatServer rmtServer =
(ThisOrThatServer)rmtRegistry.lookup("TTServer");

When you look up objects through an actual Registry object, you don't have the option of using the URL
syntax for the name, because you don't need it. The hostname and port of the remote host are specified wh
you locate the Registry through the LocateRegistry interface, and the RMI protocol is implied, so all

you need is the registered name of the object. With the Naming class, you can reduce a remote object lookt
to a single method call, but the name must now include the host, port number, and registered object name,
bundled into a URL. Internally, the Naming object parses the host and port number from the URL for you,
finds the remote Registry using the LocateRegistry interface, and asks the Registry for the remote

object using the object name in the URL.

The principal use for the Registry and Naming classes in an RMI application is as a means to bootstrap
your distributed application. A server process typically exports just a few key objects through its local RMI
registry daemon. Clients look up these objects through the Naming facility to get remote references to them.
Any other remote objects that need to be shared between the two processes can be exported through remo
method calls.

3.4.2. Remote Method Arguments and Return Values

As I've already mentioned, a critical element of executing a remote method call is the marshalling and
unmarshalling of the method arguments and, once the method has executed, the reverse marshalling and
unmarshalling of the method's return value. RMI handles this process for you automatically, but you need to
understand how different types of objects are transmitted from the method caller to the server object and ba
again and, more importantly, you need to know which types of objects can't be used in remote method calls
all.

When you call a method on a remote object, the arguments to the method have to be serializable. That is, t
need to be primitive Java data types (like int, float, etc.) or Java objects that implement

java.io.Serializable. The same restriction applies to the return value of the remote method. This

restriction is enforced at runtime, when you actually make the remote method call, rather than at compile tin
when you generate the stubs and skeletons using the rmic compiler.

The RMI stub/skeleton layer decides how to send method arguments and return values over the network,
based on whether a particular object is Remote, Serializable, or neither:

If the object is a Remote object, a remote reference for the object is generated, and the reference is
marshaled and sent to the remote process. The remote reference is received on the other end and
converted into a stub for the original object. This process applies to both method arguments and retu
values.

If the object is Serializable but not Remote, the object is serialized and streamed to the remote
process in byte form. The receiver converts the bytes into a copy of the original object.

3.4.1. The Registry and Naming Services 63

Preface (Java Enterprise in a Nutshell)

If the method argument or return value is not serializable (i.e., it's not a primitive data type or an
object that implements Serializable), the object can't be sent to the remote client, and a
java.rmi.MarshalException is thrown.

The principal difference between remote and nonremote objects is that remote objects are sent by reference
while nonremote, serializable objects are sent by copy. In other words, a remote reference maintains a link t
the original object it references, so changes can be made to the original object through the remote stub. If tf
server object calls update methods on an argument to a remote method, and you want the updates to be m:
on the original object on the client side, the argument needs to be a Remote object that automatically export
a stub to the server object. Similarly, if the return value of a remote method call is intended to be a reference
to an object living on the server, the server implementation needs to ensure that the object returned is a
Remote object.

3.4.3. Factory Classes

When a reference to a remote object is obtained through the RMI registry and then used to request addition
remote references, the registered remote object is often referred to as a factory class.

Factory classes are useful in distributed applications that use remote objects because in most cases you ca
predict beforehand the kind and number of remote objects that will need to be shared between two processe
To make a remote object visible to clients through the RMI registry service, you need to explicitly create the
object inside a Java VM on the server and then register that object using the bind() or rebind() method

on the Registry. Using remote references obtained through method calls on factory objects, however, the
client application can dynamically request the creation of new remote objects, without the objects being
registered individually with the server registry.

As an example, suppose we're building a remote banking system, using the Account object we saw earlier i
the chapter. We want to set up a centralized server that provides account services to remote clients running
PCs, embedded in ATMs, etc. On the server, we could run an RMI registry, create an Account object for
every account we have on record, and register each one with the RMI registry service using the account nat
In this scheme, registering accounts with the RMI registry goes something like this:

Registry local = LocateRegistry.getRegistry();
local.bind("Abrams, John", new Accountimpl("John Abrams"));
local.bind("Barts, Homer", new Accountimpl("Homer Barts"));

As you can imagine, this is quite unwieldy in practice. Starting the server can take a long time, as thousand:
of accounts need to be registered, many of them unnecessarily, since many accounts may not see any activ
before the next downtime. More importantly, accounts that are created or closed during the server's lifetime
somehow need to be added or removed from the RMI registry, as well as from the bank's database of
accounts. A much more sensible approach is to define a factory class for Account objects, along the lines of
the following interface:

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface AccountManager extends Remote {
public Account getAccount(String name) throws RemoteException;
public boolean newAccount(Account s) throws RemoteException;

}

The AccountManager lets a client ask for an account by name, using the getAccount() remote
method. The method returns a reference to an Account object that corresponds to the account. Once the

3.4.3. Factory Classes 64

Preface (Java Enterprise in a Nutshell)

client has the Account reference, transactions against the account can be done through method calls on the
Account object. The AccountManager also has a newAccount() method that allows clients to add
new accounts to the manager's underlying database.

The server implementation of the getAccount() method simply needs to look up the named account in the
account database, create an Accountimpl object to represent the account, and return the object to the
remote client as a remote reference. Since Account objects are Remote objects, the RMI remote reference
layer automatically creates a remote reference for the Account object, and the client that called the
getAccount() method receives a stub for the Account object on the server.

Using the factory object to find accounts is more manageable than using the RMI registry. The bank
maintains a database of accounts and their status, so the server implementation of the AccountManager
can access that database directly to find accounts and create corresponding Account remote objects. Trying
to keep the RMI registry in sync with the bank database makes the registry an unnecessary shadow of the
main database of accounts, giving the bank two databases to maintain.

4 PREVIOUS HOME NEXT »
3.3. Creating the Stubs and BOOK INDEX 3.5. Dynamically Loaded
Skeletons Classes
- v .) = J— :
S @ BN aes e
<IN 15e : 3] f \
erprise) | N
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 3: Remote NEXT »
Method Invocation

3.5. Dynamically Loaded Classes

The RMI runtime system has a dynamic class—loading facility that loads the classes it needs while executing
remote method calls. In some situations, you don't need to worry much about how your application classes :
obtained by the various agents in an RMI application. This is especially true if you have direct access to all
hosts involved in the distributed system (i.e., if you can install your application classes in the local
CLASSPATH for each machine participating in the application). For instance, when discussing the earlier
Account example, | assumed that all the relevant classes (Account, Accountimpl, stub, and skeleton
classes) were installed on both the client and the server. However, if your distributed application involves
remote agents running on hosts that are not directly under your control, you need to understand how RMI
loads classes at runtime, so you can ensure that each remote agent can find the classes it needs in order to

As with any Java application, the Java runtime system is responsible for loading the classes needed to initia
an RMI session. Starting an interaction with a remote object means loading the RMI API classes themselve:s
as well as the base interface for the remote object and the stub class for the remote interface. On the servelr
side, the skeleton class for the remote object and the actual implementation class need to be loaded in orde
run the server object that is being remotely exported.

3.5. Dynamically Loaded Classes 65

Preface (Java Enterprise in a Nutshell)

The classes that are referenced directly by a given Java class are normally loaded by the same class loadel
loaded the class itself. So, in an RMI client that does a Naming lookup to find a remote object, the stub
interface for the remote object is loaded using the class loader for the class doing the lookup. If the RMI clie
is a Java application (started using the java command to invoke the main() method on an object), the defaul
(local) class loader tries to find the remote interface locally, from the local CLASSPATH. If the RMI client is
an applet loaded in a web page, the AppletClassLoader tries to look for the remote interface on the

applet's host, in the codebase of the applet.

The RMI runtime system provides its own class loader, the RMIClassLoader, to augment the default class
loading process | just described. The RMIClassLoader loads stubs and skeleton classes for remote
interfaces, as well as the classes for objects used as remote method arguments or return values. These cla
usually aren't explicitly referenced by your RMI application itself, but they are needed by the RMI runtime
system for generating remote references and marshalling/unmarshalling method arguments and return valu

When it's loading the bytecodes for class definitions, the RMI runtime system first attempts to use the defau
class loader for the local context (i.e., an AppletClassLoader for an applet or the system class loader for

a Java application). If the referenced class isn't found using the default local class loader, the
RMIClassLoader tries to load the class bytecodes remotely according to the procedures explained next.

3.5.1. Configuring Clients and Servers for Remote Class Loading

When the RMI runtime system marshals a remote object stub, method argument, or return value, it encodes
URL in the marshaled bytestream to tell the process on the receiving end of the stream where to look for the
class file for the marshaled object. If the class for the object being marshaled was loaded by a nondefault cl:
loader (e.g., the AppletClassLoader or the RMIClassLoader), the codebase of that class loader is

encoded in the marshaled stream. If the class was loaded by the default class loader from the local
CLASSPATH, the value of the java.rmi.server.codebase property for the Java VM marshalling the

object is sent in the stream. This property is not set by default in the Java VM, so you need to make sure the
it's set to a URL that points to the location of the necessary class files. One way to do this is to include a
command-line argument when starting the Java VM, as in:

% java —Djava.rmi.server.codebase=http://objhost.org/classes/RMIProcess

Here we're starting a Java process with its codebase set to http://objhost.org/classes /. This means that any
remote process that needs to load classes for objects received from this process during an RMI session shc
use this HTTP URL in order to find them (if the classes can't be found on the local CLASSPATH, that is). Th
applies either if RMIProcess is serving remote objects itself through an RMI registry or if RMIProcess is
passing objects into methods it is calling on other remote objects. In the first case, a remote client that need
to load the stub classes for the objects exported by RMIProcess uses the codebase to find these classes. In
second case, a remote process uses the codebase to load the classes for method arguments that RMIProce
passing into remote method calls it makes.

If an RMI runtime system is trying to unmarshal an object stub, method argument, or return value and it
doesn't find the class using the default class loader (e.g., the system class loader, which looks on the local
CLASSPATH first), the RMIClassLoader can use the URL in the marshal stream to look for the class
bytecodes remotely. The RMIClassLoader takes the URL from the marshaled bytestream and opens a

URL connection to the specified host to load the needed classes. If both the local class search and this rem
URL search fail to find the required classes, the unmarshal operation generates an exception, and the remo
method call fails.

Note that in order for a Java runtime system to even attempt to load classes remotely, it has to have a secul

manager installed that allows remote class loading jatgermi.RMISecurityManager can be used
for this. In both your RMI object server and clients, include the following line before any RMI calls:

3.5.1. Configuring Clients and Servers for Remote Class Loading 66

Preface (Java Enterprise in a Nutshell)

System.setSecurityManager(new RMISecurityManager());

If you don't set the security manager, the Java VM is allowed to look for classes only locally, and your RMI
calls will work only if all of the required classes can be found on the local CLASSPATH.

Another issue with dynamically loading remote classes is that the default Java security policy doesn't allow
all the networking operations required to resolve a class from a remote host. So, if you have an RMI client o
server that needs to resolve classes remotely, you need to use a policy file that opens up network permissic
to allow this. I'm not going to go into the details of network policies here or the syntax of the security policy
file,[2] but you will need to add the following line to the policy file on the RMI client:

[2]For details on Java security policies and policy files, see Java Security, by Scott Oaks
(O'Reilly).

permission java.net.SocketPermission "objhost.org", "accept,connect”;

This line gives the RMI object server objhost.org the permission to open connections to the local machine.
This is needed to bypass the stricter rules imposed by the RMISecurityManager. Once you've made a
modified policy file, you can specify it on the command line when you start your RMI process, in a similar
way to setting the codebase property:

% java —Djava.security.policy=mypolicy.txt RMIProcess

As a simple example, suppose we want to use our earlier Account example to export an Account object on
one host and access that Account on another host where the only class available locally is the Account
interface class itself. On the server, we start an RMI registry[3] and run the RegAccount class as before, but
since we want remote clients to be able to load the stub classes remotely, we need to set the codebase proj
to where the clients can find these classes:

[3] Note that in order for the RMI registry to recognize and pass along the codebase property
you specify, it has to be started in such a way that it can't find any of the remotely loaded
classes on its CLASSPATH. So start your RMI registry with a CLASSPATH that doesn't
include the stub/skeleton classes, etc., then run your RMI server with a CLASSPATH that
includes all required classes.

% java —Djava.server.rmi.codebase=http://objhost.org/classes/ RegAccount
Registered account.

We've setting the codebase to http://objhost.org/classes/, so we have to make sure that an HTTP server is
running on the objhost.org machine and that the necessary class files (e.g., the Accountlmpl stub class) are
in the classes directory of that HTTP server's document root.

Now we can run the AccountClient class on the remote client as before, but the client's host machine
doesn't have the stub class for the Account remote object available locally. When the AccountClient
tries to look up the remote Account object, we want the stub class to be loaded remotely. Two simple
changes to ouiiccount example make this possible. First, add a line to the AccountClient main()
method that sets the RMISecurityManager, in order to allow for remote class loading:

import java.rmi.Naming;
import java.rmi.RMISecurityManager;

public class AccountClient {
public static void main(String argv(]) {

try {
/I Set the RMI security manager,

3.5.1. Configuring Clients and Servers for Remote Class Loading 67

Preface (Java Enterprise in a Nutshell)

/I in case we need to load remote classes
System.setSecurityManager(new RMISecurityManager());

I/l Lookup account object
Account jimAcct = (Account)Naming.lookup("rmi://objhost.org/JimF");

The other change is to use a more lenient policy file when running AccountClient so the necessary
network operations can be performed. Again, | won't discuss the syntax of the policy file here, but assuming
we've put the required policy settings into a file named rmipolicy.txt, we can start the client like so:

% java —Djava.security.policy=rmipolicy.txt AccountClient
Deposited 12,000 into account owned by JimF
Balance now totals: 12000.0

3.5.2. Loading Classes from Applets

Virtually all the steps | just outlined for running an RMI client to allow it to remotely load classes apply to
applets as well. The only difference is that the classes for applets are loaded using an

AppletClassLoader, which checks the applet's codebase for any classes required to run the applet. The
default security policy for applets already allows for remote loading of classes, since this is how an applet
works in the first place, so there's no need to change the security policy when using RMI within an applet. A
you need to do to ensure that the applet finds the remote interface and stub class for the RMI object is to pu
them in the server directory that corresponds to the applet's codebase.

4 PREVIOUS HOME NEXT »
3.4. Accessing Remote BOOK INDEX 3.6. Remote Object
Objects as a Client Activation
5.0 B e e
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes Jnvnlenns"', Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

§8% JAVA ENTERPRISE IN A NUTSHELL ™

@ PREVIOUS Chapter 3: Remote NEXT »
Method Invocation

3.6. Remote Object Activation

Automatic activation of remote objects is a new feature in RMI as of Java 1.2. The activation subsystem in
RMI provides you with two basic features: the ability to have remote objects instantiated (activated)
on—-demand by client requests, and the ability for remote object references to remain valid across server
crashes, making the references persistent. These features can be quite useful in certain types of distributed
applications.

3.5.2. Loading Classes from Applets 68

Preface (Java Enterprise in a Nutshell)

For example, think back to the AccountManager class we discussed when we talked about factory objects.
We might not want to keep the AccountManager running on our server 24 hours a day; perhaps it
consumes lots of server resources (memory, database connections, etc.), so we don't want it running unless
is being used. Using the RMI activation service, we can set up the AccountManager so that it doesn't start
running until the first client requests an Account. In addition, after some period of inactivity, we can have
the AccountManager shut down to conserve server resources and then reactivated the next time a client
asks for an Account.

If a remote object is made activatable, it can be registered with the RMI registry without actually being
instantiated. Normally, RMI remote objects (based on the UnicastRemoteObject interface) provide only
nonpersistent references to themselves. Such a reference can be created for a client only if the referenced
object already exists in a remote Java VM. In addition, the remote reference is valid only during the lifetime
of the remote object. The remote object activation service adds support for persistent remote references tha
can be created even if the remote object is not running at the time of the request and that can persist beyon
the lifetime of an individual server object.

The key features provided by the RMI activation service include:

The ability to automatically create remote objects, triggered by requests for references to these
objects.

Support for activation groups, in which groups of activatable remote objects are executed in the sam
Java VM, which is automatically started by the activation service if needed.

The ability to restart remote objects if they exit or are destroyed due to a system failure of some kind
This can add a certain degree of fault tolerance to RMI applications.

In the RMI activation system, activatable objects belong to activation groups, and each activation group run:
within its own Java VM. If you don't group your activatable objects, simply assigning a new activation group
to each activatable object you create, then each object runs inside a separate Java VM.

You typically define an activatable remote object by:

Subclassing your remote object implementation from the Activatable class provided in the
java.rmi.activation package

Providing activation constructors in the server implementation

Registering the object and its activation method with the activation service

If you want remote clients to directly access your activatable object, you also need to register the object with
the RMI registry, so that it can be found by name on the network. You can register an activatable class with
the registry without actually creating an instance of the remote object, as we'll see shortly.

You can also create an activatable object without subclassing the Activatable class. This might be
necessary if you need to extend another class and the Java single-inheritance limit keeps you from also
extending Activatable. For most of this section, we'll just discuss the case where you're subclassing
Activatable; I'll only mention this other approach when needed.

3.5.2. Loading Classes from Applets 69

Preface (Java Enterprise in a Nutshell)

3.6.1. Persistent Remote References

The primary difference between an activatable remote object and a nonactivatable one is that a remote
reference to an activatable object doesn't need to have a "live" object behind it. If an activatable object is no
running (e.g., it hasn't been constructed yet, or it has been garbage—collected by its Java VM, or its VM has
exited), a remote reference to the object can still be exported to a client. The client receives a stub, as usual
and can make remote method invocations through the stub. When the first method is invoked, the activation
service running on the server sees that the object is not active and goes about activating the object for the
client. If the object doesn't have a VM to run in, the activation system starts one. The object is then activatec
using information that has been registered with the activation system. This information includes the object's
class name, a URL that can load the class bytecodes if they're not found in the local CLASSPATH, and date
pass into the object's activation constructor. Once the object has been activated, the method invocation take
place, and the results are marshaled and sent back to the client.

As long as the object stays running, future method requests are handled as usual. If the object stops runnin
for some reason (e.g, it is garbage—collected, or its VM dies), the next method request triggers the activatior
service again, and the object is reactivated. This is what is meant by persistent remote references: remote
references to activatable objects can persist across multiple lifetimes of the actual server object.

3.6.2. Defining an Activatable Remote Object

Naturally, before you can register and use an activatable object with the RMI activation system, you need to
define the remote interface and the server implementation for the object. The java.rmi.activation

package provides the classes you need to define an activatable remote object. You usually define a remote
object as activatable by subclassing it from Activatable and defining a special constructor that activates

the object. You also have to register the object with the activation service on the server host.

Other than that, the implementation of an activatable remote object is similar to that of a nonactivatable one
You start with a remote interface that contains the methods you want to export from your object. The interfa
should extend Remote, and each method should throw a RemoteException (or, as of Java 1.2, any parent
of RemoteException). The server implementation implements this interface and extends a concrete
implementation of the java.rmi.server.RemoteServer class. Since you're defining an activatable

remote object, you typically extend java.rmi.activation.Activatable directly and use its

constructors to initialize, register, and activate your remote object. If you choose not to extend

Activatable directly, you have to use the static exportObject() methods on the Activatable

class to register your object with the activation runtime system.

3.6.2.1. The Activatable class

The Activatable class has four constructors. Here are signatures for two of them:

protected Activatable(String src, MarshalledObject data,
boolean restart, int port) throws RemoteException

protected Activatable(String src, MarshalledObject data,
boolean restart, int port, RMIClientSocketFactory csfactory,
RMIServerSocketFactory ssfactory) throws RemoteException

These two constructors are initialization constructors. You use them when you decide to proactively create
one of your remote objects and register it with the RMI activation service. In this case, the object already
exists when a client first makes a method request on it, but if the object is destroyed, the next client request
causes the object to be reactivated. These constructors register an object with the local activation service at
export the object so that it can receive remote method requests. Both constructors have the following
arguments in common:

3.6.1.Persistent Remote References 70

Preface (Java Enterprise in a Nutshell)

The String parameter is a URL that indicates where class bytecodes required by this object can be
located. This information is exported to a remote client so it can dynamically load classes required tc
unmarshal method return values, for example.

The MarshalledObject parameter provides initialization data for the object; this parameter is
necessary because data is typically sent from the activation daemon's VM to the VM designated to r
the activatable object and the two might not be the same (more on this later).

The boolean flag indicates whether the object should be automatically recreated when its home VM
or its activation group is restarted (e.g., after a server restart).

The int parameter specifies the port on which the object is exported. A port of zero tells the RMI
runtime system to export the object on a random open port.

The second initialization constructor takes custom client and server socket factories that create socket
communications between the server and the clients of the object. Customized socket factories are a hew
feature in RMI as of the Java 2 SDK 1.2. | won't discuss them in this chapter, but you can consult the RMI
API reference in Part 3, "API Quick Reference" for more details.

The other two Activatable constructors have the following signatures:

protected Activatable(ActivationID id, int port) throws RemoteException
protected Activatable(ActivationID id, int port,
RMIClientSocketFactory csfactory, RMIServerSocketFactory ssfactory)
throws RemoteException

These constructors are (re)activation constructors. The activation system uses them to activate a remote
object that has received a remote method request, but isn't currently active. The ActivationID is a

persistent ID issued by the activation system for the remote object, and the port number is the port that expc
the remote object. The second constructor again takes custom server and client socket factories.

The Activatable class also has a set of exportObject() methods that correspond to the constructors

I've just described. You can use these methods when an activatable object doesn't directly extend the
Activatable class. You call the appropriate exportObject() methods from within the constructors of

the class, so they serve the same function as calling the Activatable constructors during initialization of
an Activatable subclass.

3.6.2.2. Implementing an activatable object

As | already mentioned, you can implement an activatable remote object in two ways: derive the remote
object from the Activatable class directly and make the required calls to the Activatable constructors

in its constructors, or have the class implement a Remote interface and make the required calls to the static
exportObject() methods in its constructors.

In either case, when the activation system activates a remote object, it looks for a constructor on the class tt
takes two arguments: an ActivationID and a MarshalledObject. The activation system calls this

constructor, passing in an ActivationID it generates for the object and the MarshalledObject

registered for the activatable object by the first constructor we just discussed.

This means you have to provide a constructor with this signature in your implementation of an activatable
object. In this constructor, you should call either one of the (re)activation constructors on the Activatable

3.6.2.2. Implementing an activatable object 71

Preface (Java Enterprise in a Nutshell)

parent class (if your class extends Activatable), or the corresponding

Activatable.exportObject() method (if you didn't extend Activatable). In this call, you pass

on the ActivationID issued by the activation system and you specify the port for the exported remote
object (a port number of O causes the object to be exported on a random open port).

In addition to this required constructor, you can define other constructors for your remote object
implementation as needed. If you want your object to be reactivatable, any additional constructors should ce
one of the initialization constructors on Activatable (using super()) or the corresponding

exportObject() method, passing in a valid source URL and a MarshalledObiject to be used as an

argument if the object is reactivated. If the object is destroyed at some point, and a subsequent remote mett
request is received for it, the activation system reactivates the object by calling the required (re)activation
constructor on the object's class, passing in this MarshalledObject argument.

Example 3-5 shows an activatable implementation of the ThisOrThatServer interface from Example

3-3. The primary differences between this implementation and the nonactivatable one in Example 3—-4 are
that this new implementation extends the java.rmi.activation.Activatable class instead of
UnicastRemoteObject, and its constructors support the activation system. This implementation also
includes a name that identifies the server.

Example 3-5. An Activatable Version of the ThisOrThatServer

import java.rmi.activation.*;
import java.rmi.MarshalledObject;
import java.rmi.RemoteException;
import java.io.|OException;

public class ActivatableThisOrThatServerimpl
extends Activatable implements ThisOrThatServer {

/I Name for server
private String myName ="";

/I "Regular" constructor used to create a "pre—activated" server
public ActivatableThisOrThatServerimpl(String name, String src, int port)
throws RemoteException, ActivationException, IOException {
/I Register and export object (on random open port)
super(src, new MarshalledObject(name), false, port);
/I Save name
myName = name;
System.out.printin("Initialization constructor called.");

}

/I Constructor called by the activation runtime to (re)activate
/[and export the server
protected ActivatableThisOrThatServerimpl(ActivationID id,
MarshalledObject arg) throws RemoteException {
/I Export this object with the given activation id, on random port
super(id, 0);
System.out.printin("Activating a server");
/I Check incoming data passed in with activation request
try {
Object oarg = arg.get();
if (oarg instanceof String) {
myName = (String)oarg;

}
else {
System.out.printin("Unknown argument received on activation: " +
oarg);
}

catch(Exception e) {

3.6.2.2. Implementing an activatable object 72

Preface (Java Enterprise in a Nutshell)

System.out.printin("Error retrieving argument to activation");

}

System.out.printin("(Re)activation constructor called.");

}

/I Remotely—accessible methods

public String doThis(String todo) throws RemoteException {
String result = doSomething("this", todo);
return result;

}

public String doThat(String todo) throws RemoteException {
String result = doSomething(“that", todo);
return result;

}

/I Non-remote methods

private String doSomething(String what, String todo) {
String result = myName + ": " + what + " " + todo + " is done.";
return result;

}
}

The first constructor for ActivatableThisOrThatServerimpl is a public one, used to construct a

server with a given name. The constructor registers the new object with the activation system, passing in a
URL that acts as a codebase for finding the classes required for this class. It also passes in the name given
the server, wrapped in a MarshalledObject. This ensures that the server is given the same name if it

needs to be reactivated later.

The second constructor is the required one used by the activation system. If an object of this type needs to |
activated (or reactivated after a crash of some sort), this constructor is called to create the remote object. Tt
constructor takes an ActivationID, issued by the activation system, and the MarshalledObject

registered for the object with the activation system. The constructor exports the object by calling the second
constructor on the Activatable class, then initializes itself with the data from the MarshalledObject.

3.6.3. Registering Activatable Objects

There are several ways to register an activatable object with its local activation system. In each case, the
activation system needs to be told how to create (or recreate) the object. The information the activation syst
needs to activate an object is encapsulated in the ActivationDesc class. An ActivationDesc object

contains the name of the class for the remote object, a URL with the network location of the bytecodes for tt
class, a MarshalledObject to be used as the initialization data for the object, and the group assignment

for the object.

The simplest way to register an Activatable object is to create an instance of the object. In our example,
we've derived our server implementation from the Activatable class, so the public constructor on the
ActivatableThisOrThatServerimpl class registers the object by calling the necessary constructor

on Activatable. Thus, we can create and register one of these as follows:

/I Make an activation group for the object

ActivationGroupDesc gdesc = new ActivationGroupDesc(null, null);
ActivationGroupID gid = ActivationGroup.getSystem().registerGroup(gdesc);
ActivationGroup.createGroup(gid, gdesc, 0);

/l Make a server object, which registers it with activation system
ThisOrThatServer server =
new ActivatableThisOrThatServerimpl(serverName, codebaseURL, 0);

/I Register with naming service

3.6.3. Registering Activatable Objects 73

Preface (Java Enterprise in a Nutshell)

LocateRegistry.getRegistry().rebind(serverName, server);

The first four lines are required to create an activation group for our activatable object. We'll talk more about
activation groups shortly. For now, all you need to know is that this code creates the default activation grour
for the current VM. Any remote object that isn't specifically assigned to a group is placed in this default

group.

The activatable object itself is created by simply calling the public

ActivatableThisOrThatServerlmpl constructor. This constructor registers the object with the

activation system by calling the appropriate Activatable constructor, as we've already discussed. Since

we haven't specified an activation group for the object, it is placed in the default group we just created. If we
hadn't created that default group, the activation system would throw an exception here, when the object is
registered.

Aside from the creation of the activation group, this example looks a lot like our other examples of registerin
RMI objects. The difference here is that if the registering process dies off at some point, the activation syste
can reactivate the activatable object in a new Java VM using the information provided in the

ActivationDesc for the object. In this case, we're relying on the Activatable constructor (which is

called by our ActivatableThisOrThatServerimpl constructor) to create and register an

ActivationDesc for our object.

When an object needs to be activated, the activation system first looks up the ActivationDesc for the
object and then looks for the class referenced in the ActivationDesc, using the URL to load the class
bytecodes. Once the class has been loaded, the activation system creates an instance of the class by callin
activation constructor, which takes an ActivationID and a MarshalledObject as arguments. The
ActivationID is issued by the activation system, and the MarshalledObject contains the data
previously registered with the ActivationDesc. In our activatable ThisOrThatServer in Example

3-5, the activation system calls the second constructor on our ActivatableThisOrThatServerimpl
class. The new object passes the ActivationID up to the Activatable constructor so that it can be
recorded, and the name of the server is pulled from the MarshalledObject. The Activatable
constructor takes care of creating and registering an ActivationDesc for the object and exporting the
object with the activation system.

3.6.3.1. Registering an activatable object without instantiating

A more complicated, but often more useful way to register a remote object is to create an
ActivationDesc for it and then register the information directly with the activation system, without
creating an instance of the object. The static Activatable.register() method accepts an
ActivationDesc object and registers it with the activation system directly. Here's how we can do that:

/I Make a codebase and activation argument for the object
String src = "http://objhost.org/classes™;
MarshalledObject actArg = new MarshalledObject("MyServer");

/I Create the ActivationDesc and get a stub for the object
ActivationDesc desc =
new ActivationDesc("ActivatableThisOrThatServerimpl”, src, actArg);
ThisOrThatServer serverStub =
(ThisOrThatServer)Activatable.register(desc);

When we create the ActivationDesc for the object, we specify the name of the class to use for creating
the object, a codebase for finding the class, and a MarshalledObject that is passed to the object when it's
activated. The ActivationDesc is used in the call to the Activatable.register() method, which

returns a RemoteStub for the activatable object. Since we know this stub is for an object that implements
the ThisOrThatServer interface, we can safely cast it to a ThisOrThatServer. We can also use this

3.6.3.1. Registering an activatable object without instantiating 74

Preface (Java Enterprise in a Nutshell)

reference to register the remote object with the local RMI haming registry:
LocateRegistry.getRegistry().bind("ThisOrThatServer", serverStub);

Although | haven't shown it here, note that you also have to create an activation group for the object, just lik
we did in our earlier example, before you can register it with the activation service.

So, to recap, we've registered a remote object with the activation system and the RMI naming registry witho
actually creating the object itself. When a client tries to look up the object, it gets back a remote stub, with n
active object behind it on the server. When the client calls a method on the stub, however, the activation
system on the server creates the object, using the information in the ActivationDesc we provided.

3.6.3.2. Passing data with the MarshalledObject

The way you can pass arguments to activatable objects before they are activated is through the
MarshalledObject contained within the ActivationDesc for the object. However, once the

ActivationDesc is registered with the activation system, you can't dynamically update the contents of the
MarshalledObject. One way to have the arguments to an activatable object be dynamic is to bundle a
filename or URL into tharshalledObject. At the point that the object is activated, it can read data

from the file or URL and use that data during activation.

3.6.4. Activation Groups

Every activatable RMI object belongs to an activation group. Each group of activatable objects runs within
the same Java VM on the server host. In essence, activation groups are a way of defining collections of
activatable remote objects that should share the same physical address space. We've already seen how to
up an activation group, since we had to do this before registering our activatable object with the activation
system. In this section, we'll take a look at creating activation groups in a bit more detail and discuss what tf
activation group is actually doing for you.

Activation groups in RMI are more than just a way of organizing remote objects. Each activation group is
responsible for monitoring, activating, and reactivating the objects it contains. The objects involved in
maintaining an activation group are shown in Figure 3—4. Note that you don't normally need to interact with
the underlying objects themselves. You simply set up your ActivationGroup objects and assign

activatable objects to them; the activation system does the rest for you.

Remate Requests
\

ActivationMonit T~
.. Adtive/Inactive
/- \ Hoffications

Advation Forworded \
qulwm Roquests - ActivationGroup
L
Activator Adivation Procedures |

3.6.3.2. Passing data with the MarshalledObject 75

Preface (Java Enterprise in a Nutshell)

Figure 3—4. The components of the activation system

An ActivationGroup is created when the first object in the group needs to be activated. The
Activator is responsible for creating a VM for the ActivationGroup to run in, and for starting the
ActivationGroup using the information in the registered object's ActivationGroupDesc, if it has
one. If the remote object doesn't have a specified group, a default one is created. The new
ActivationGroup object is then told to activate the requested remote object, by calling its
newlnstance() method. The arguments the Activator passes into this method are the
ActivationID for the new object and the ActivationDesc that the Activator has registered for the
object.

The ActivationDesc gives an ActivationGroup everything it needs to activate the remote object.

The ActivationGroup takes the class name for the object and looks for the class bytecodes. First it
checks the local CLASSPATH, and if that pulls up nothing, it uses the URL in the ActivationDesc to load
the class from the given URL. Once the class is loaded, an instance of the class is created by calling the
activation constructor on the class (e.g., the constructor that has an ActivationID argument and a
MarshalledObject argument). The ActivationID and MarshalledObject come from the call to

the newlnstance() method. The new, active remote object is returned to the Activator as a serialized
MarshalledObject. This is done for two reasons. First, the Activator runs in a separate Java VM, so

the active object reference needs to be transferred from one VM to another, and the easiest way to do this i
serialize it and transmit it in that form. Second, since the object has been bundled into a
MarshalledObject, the Activator doesn't need to load the object's bytecodes unless absolutely

necessary. In most cases, the Activator doesn't need to interact directly with the object itself, so it doesn't
need to waste time loading unnecessary bytecodes.

Each ActivationGroup has an ActivationMonitor associated with it. The ActivationGroup

has to tell the ActivationMonitor whenever an object becomes active or inactive. An activatable object
is responsible for informing its ActivationGroup when it becomes active and inactive, by calling the
group's activeObject() and inactiveObject() methods, respectively. The ActivationGroup,

in turn, passes the information on to the ActivationMonitor by calling identical methods on the monitor
object. When the object becomes inactive, the ActivationMonitor makes note of it and arranges for the
object to be reactivated the next time a method request comes in for it. If an entire ActivationGroup
becomes inactive, the ActivationMonitor is informed through its inactiveGroup() method. The

next request for an object in that group causes the Activator to recreate the group.

3.6.4.1. Registering activation groups

An ActivationGroup is registered with the activation system in roughly the same way as an activatable
object. You have to create an ActivationGroupDesc object that contains the name of the class for the
group, the URL where the class bytecodes can be loaded, and a MarshalledObiject that is given to the
ActivationGroup as initialization data. Unlike activatable objects, though, the class of a group has to be a
concrete subclass of ActivationGroup. You register the ActivationGroupDesc by calling the static
ActivationSystem.registerGroup() method, passing in the ActivationGroupDesc. The

ActivationSystem returns an ActivationGroupID that can assign specific objects to the group.

3.6.4.2. Assigning activatable objects to groups

You assign an activatable object to a group by specifying the group ID in the ActivationDesc registered
with the activation system. The ActivationGroupID returned by the

ActivationSystem.registerGroup() method can be passed into the ActivationDesc

constructor.

3.6.4. Activation Groups 76

Preface (Java Enterprise in a Nutshell)

Before you can register a remote object with the activation system, you need to create a group for it. For oul
activatable ThisOrThatServer example, we can run Java code along the following lines on the object
server (note I've left out the exception handling):

/ Make an activation group for the object

ActivationGroupDesc gdesc = new ActivationGroupDesc(null, null);

ActivationGrouplID gid =
ActivationGroup.getSystem().registerGroup(gdesc);

ActivationGroup.createGroup(gid, gdesc, 0);

/I Set up ActivationDesc for object
String codebaseURL = "http://objhost.org/classes";
String serverName = "Fred";
MarshalledObject activationArg = new MarshalledObject(serverName);
ActivationDesc desc =
new ActivationDesc(gid, "ActivatableThisOrThatServerimpl",
codebaseURL, activationArg);
ThisOrThatServer serverRef =
(ThisOrThatServer)Activatable.register(desc);
LocateRegistry.getRegistry().rebind(serverName, serverRef);

Here we're using the ActivatableThisOrThatServerimpl class and registering a remote object with

the activation system without actually instantiating it. Before we register our remote object, we create an
ActivationGroupDesc, then use it to register and create a new activation group with the activation

system. After we create the activation group (using the ActivationGroup.createGroup() method),

we use the ActivationGroupID for our new group to make an ActivationDesc for our remote

object, and we use that to register the object with the activation system. The activation system generates a
remote stub for our object, and we register that with the RMI naming registry.

Since each ActivationGroup is started within its own VM if it's initially activated by the activation

system, grouping objects is a convenient way to partition your remote objects into shared address spaces ol
your server. For more details on the activation group interfaces in RMI, consult the

java.rmi.activation reference material in Chapter 14, The java.rmi.activation Package.

3.6.5. The Activation Daemon

The heart of the RMI activation system is the activation daemon, which runs on the host for an activatable
object. The activation daemon is responsible for intercepting remote method requests on activatable objects
and orchestrating the activation of the object, if needed.

The activation daemon provided with the Java SDK, rmid, runs a Java VM that includes a
java.rmi.activation.Activator object. The Activator is responsible for keeping a registry of

activatable objects, along with the information needed to activate them. This information is in two parts: an
ActivationDesc object and an optional ActivationGroupDesc. The ActivationGroupDesc

identifies the group of activatable objects to which the object should be added and describes how to start the
group if it doesn't exist. The ActivationDesc includes all information needed to activate the object itself.

An activatable object has to be registered nwith the activation system in one of the ways described earlier tc
be started automatically by the Activator.

If a remote method request is received by the RMI runtime system on a host, and the target object hasn't be
created yet, the Activator is asked to activate it. The Activator looks up the ActivationDesc (and
ActivationGroupDesc, if present) for the object. If the object has an ActivationGroup assigned to

it, and the ActivationGroup doesn't exist yet, a Java VM is started for the group, and the
ActivationGroupDesc data is used to start an ActivationGroup object within the new VM. If the

object has no ActivationGroup associated with it, it's given its own ActivationGroup running in its

own VM. The group is then asked to start the requested object, using the ActivationDesc object

3.6.5. The Activation Daemon 77

Preface (Java Enterprise in a Nutshell)

registered for the object. Once the ActivationGroup activates the object within its VM, the Activator

is notified, and the now—active remote reference is returned to the RMI runtime system. The RMI runtime
system forwards the remote method request through the reference to the object, and the return value is
exported back to the client as usual.

3.6.5.1. The daemon's dual personality

When you start the rmid daemon, it creates an Activator and then listens on the default port of 1098 for
activation requests. There is also a —port command-line option that lets you specify a different port for the
VM to use. In addition to running the Activator, the rmid daemon also runs its own RMI Registry. If
needed, you can register local objects with the daemon's internal Registry by specifying the daemon's port
when you call the bind() or rebind() method of the Registry. For example, if rmid is running on its

default port of 1098:

RemoteObject server = ...
Registry local = LocateRegistry.getRegistry(1098);
local.bind(server, "Server");

This way, you can consolidate your activation system and your naming service into one VM on your server.

4 PREVIOUS HOME NEXT »
3.5. Dynamically Loaded BOOK INDEX 3.7. RMI and Native
Classes Method Calls
8. @ BN s
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@]AVAWENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 3: Remote NEXT »
Method Invocation

3.7. RMI and Native Method Calls

As | mentioned at the beginning of this chapter, RMI is a Java—only remote object scheme, so it doesn't
provide a direct connection between objects implemented in different languages, like CORBA does. But,
using Java's Native Interface API, it is possible to wrap existing C or C++ code with a Java interface and the
export this interface remotely through RMI.

To demonstrate, let's suppose we have some (legacy) native code that implements a service we want to ex|
through RMI to remote clients. We can create an implementation of our ThisOrThatServer interface that
uses this native code to implement the doSomething() method on our remote interface. The

implementation for a NativeThisOrThatServerImpl is shown in Example 3-6. The only significant

difference between this implementation and our original ThisOrThatServerlmpl is that the

3.6.5.1. The daemon's dual personality 78

Preface (Java Enterprise in a Nutshell)

doSomething() method is declared native, so the method body is left empty.

Example 3-6. Remote Object Using a Native Method Implementation

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;

public class NativeThisOrThatServerimpl
extends UnicastRemoteObject implements ThisOrThatServer {

public NativeThisOrThatServerimpl() throws RemoteException {}

/I Remotely—accessible methods
public String doThis(String todo) throws RemoteException {
return doSomething(“this", todo);

}

public String doThat(String todo) throws RemoteException {
return doSomething(“that", todo);

}

/I Natively—implemented method
native private String doSomething(String what, String todo);

}

We can compile this RMI class and generate the stubs and skeletons for it using the RMI compiler, just like
with our other RMI examples. But once this is done, we need to provide a native implementation for the
doSomething() method. To start, we can generate a C/C++ header file for the native method using the
javah tool:

% javah —jni —d . NativeThisOrThatServerimpl

The —jni option tells the javah tool to generate JNI-compliant header files (as opposed to header files based
on the earlier native method interface that shipped with Java 1.0). Invoking this command generates a JNI
C/C++ header file that looks something like the following:

/* DO NOT EDIT THIS FILE - it is machine generated */

#include <jni.h>

/* Header for class NativeThisOrThatServerimpl */

#ifndef _Included_NativeThisOrThatServerimpl

#define _Included_NativeThisOrThatServerimpl

#ifdef __cplusplus

extern "C" {

#endif

/*

* Class: NativeThisOrThatServerimpl

* Method: doSomething

* Signature: (Ljava/lang/String;Ljava/lang/String;)Ljava/lang/String;
*/

JNIEXPORT jstring JNICALL Java_NativeThisOrThatServerimpl_doSomething
(INIENnv *, jobject, jstring, jstring);

#ifdef __cplusplus

}

#endif

#endif

The only details worth noting in this header file are the inclusion of the jni.h header file, which is provided
with the Java SDK, and the single method declaration. The jni.h header file provides declarations and
definitions for all of the data structures and utility methods provided by the JNI API. The method declaration
has a signature that corresponds to the native method declared on our Java class. When you invoke the
doSomething() method on the NativeThisOrThatServerimpl, the Java VM looks for a native

3.7. RMI and Native Method Calls 79

Preface (Java Enterprise in a Nutshell)

method that matches this signature.

Now all we need to do is implement the C/C++ function declared in our JNI-generated header file. This is
where we tie our Java method to some legacy native code. In this case, suppose the native code is wrappe
in a single C/C++ function called doSomethingNative(). This function is available in a native library on

the server platform (e.g., a DLL file on Windows or a shared library on Unix). We want to use our Java
method to invoke this native function, so we can implement the
Java_NativeThisOrThatServerimpl_doSomething() function along these lines:

#include <jni.h>

#include "NativeThisOrThatServerimpl.h"

#include "nativeDoSomething.h"

#ifdef __cplusplus

extern "C" {

#endif

/*

* Native implementation for method doSomething() on class

* NativeThisOrThatServerimpl.

*/

JNIEXPORT jstring JNICALL Java_NativeThisOrThatServerimpl_doSomething
(INIENnv * env, jobject me, jstring what, jstring todo) {
/I Convert the Java strings to native strings
const char* whatStr = (*env)—>GetStringUTFChars(env, what, 0);
const char* todoStr = (*env)—>GetStringUTFChars(env, todo, 0);

/I Call the native method
char* result = doSomethingNative(whatStr, todoStr);

/I Convert result back to Java string
jstring res = (*env)—>NewStringUTF(env, result);
return res;

}
#ifdef __cplusplus

}
#endif

#endif

The first part of the function just converts the Java strings (passed in as C jstring data structures) into
native char* strings. Then it passes the string arguments into the native doSomethingNative()

function, converts the result back into a jstring, and returns it. The JNI system handles the conversion of
the jstring into a Java String object in the VM environment.

Once we compile this C/C++ code (linking with the native library that contains the

doSomethingNative() function), we can export remote NativeThisOrThatServerlmpl objects.

Then remote clients can call the doThis() or doThat() methods. These remote method calls in turn cause
the invocation of native code on the server, when the object implementation calls its native
doSomething() method.

Note that in order for the server object to find its native method, the native library containing the
doSomethingNative() function has to be loaded into the server object's VM using the
System.loadLibrary() method. You can do this in the application code that uses the native method or
by adding a static initializer to the class, you can have the library loaded automatically when the
NativeThisOrThatServerimpl class is referenced:

static { System.loadLibrary("methods"); }

The System.loadLibrary() method automatically converts the library name that you provide to a
platform-specific file name. So if the previous example is run on a Solaris machine, the Java VM looks for a
library file named libmethods.so. On a Windows machine, it looks for methods.dll.

3.7. RMI and Native Method Calls 80

Preface (Java Enterprise in a Nutshell)

3.7.1. RMI with JNI Versus CORBA

There are pros and cons to using RMI and JNI to export legacy native code using Java remote objects, as
opposed to using CORBA. With CORBA, a CORBA object implemented in the same language as the native
code (C/C++ for our example) is created and exported on the server. Remote Java clients can get a Java st
to this CORBA object using JavalDL, or any third—party Java CORBA implementation (see Chapter 4, "Java
IDL" for details).

One obvious advantage of the CORBA approach is that you don't need to have Java on the server. Since th
is presumably a legacy server, perhaps a mainframe of some sort, finding a stable Java VM and developme
kit for the platform may be a problem. If a Java implementation isn't available or if installing additional
software on the legacy server isn't desirable, CORBA is your only option.

An advantage of the RMI/JNI approach is that you're running Java at both ends of the remote communicatic
and avoiding the use of CORBA entirely. CORBA is a very rich distributed object API, but it may be overkill
for your application. Using the simpler RMI API and keeping your code development strictly in Java (with
some minimal C/C++ to interface to the legacy code) might be an advantage to you in this case.

4 PREVIOUS HOME NEXT »
3.6. Remote Object BOOK INDEX 3.8. RMI over IIOP
Activation
S B Nse
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes Jnvnlenns"', Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 3: Remote NEXT »
Method Invocation

3.8. RMI over IIOP

A new and exciting possibility for connecting RMI objects to hon—-Java objects is the ability for RMI objects
to communicate directly with remote CORBA objects using IIOP, the CORBA network interface protocol.[4]
The standard RMI implementation provided with Java uses an RMI-specific protocol, JRMP, to communicat
over the network. RMI/IIOP allows RMI objects to use the CORBA network protocol, 1I0OP, to communicate
with other objects. This means that an RMI object using RMI/IIOP can communicate with a remote CORBA
object, regardless of the implementation language of the CORBA object. Likewise, a CORBA object can
interact with your Java RMI objects directly. This really gives you the best of both worlds, since you can ther
implement your remote clients using RMI and use either CORBA or RMI/INI on the server to interface to an
native legacy code.

[4]The RMI-IIOP tools and classes are an extension to the standard Java platform that has to
be downloaded separately from http://java.sun.com/products/rmi-iiop/.

3.7.1. RMI with JNI Versus CORBA 81

http://java.sun.com/products/rmi-iiop/

Preface (Java Enterprise in a Nutshell)

In order to convert your RMI objects to use IIOP, there are some changes you need to make:

Any implementation classes should extend the javax.rmi.PortableRemoteObject class,
rather than java.rmi.server.UnicastRemoteObject.

All your stub and skeleton classes need to be regenerated using the updated rmic compiler provided
with the RMI/IIOP installation. This updated compiler has an —iiop option that produces stubs and
ties (ties refers to skeletons in the CORBA vernacular). These stubs and ties handle the link betweer
client and server objects, but using IIOP rather than JRMP.

All use of the RMI Naming registry has to be converted to use JNDI to talk to a CORBA Naming
Service. Objects that you export are bound to names in the CORBA Naming Service through the
JNDI context, and remote objects you look up are accessed from the Naming Service through the
JNDI context.

Instead of using the standard Java casting operator on remote objects you look up, you should use t
javax.rmi.PortableRemoteObject.narrow() method.

To give you a taste for how to use RMI/IIOP with your RMI classes, let's convert our first Account
example to use RMI/IIOP. First, we need to update the Accountimpl class to extend
PortableRemoteObject. The following fragment of the IIOPAccountimpl class does that:

import javax.rmi.PortableRemoteObject;
import java.rmi.RemoteException;
import java.util.List;

import java.util.Listlterator;

public class IIOPAccountimpl extends PortableRemoteObject implements Account {
/I Remainder of implementation is identical

We can compile the updated IIOPAccountimpl using the regular Java compiler, then use the extended
rmic compiler included with RMI/IIOP to generate IIOP stubs and ties:

% rmic —iiop —d /home/myclasses IIOPAccountimpl

This generates an IIOPAccountimpl_Stub class and an IIOPAccountimpl_Tie class, which act as the 1IOP st
and tie for the remote object.

In the CORBA world, remote objects are looked up using the CORBA Naming Service, so we need to updat
the RegAccount class to use JNDI to register an Account object with a CORBA Naming Service, rather
than the RMI registry. The updated IIOPRegAccount class looks like this:

import javax.naming.*;
import java.rmi.*;

public class IIOPRegAccount {
public static void main(String argv[]) {
try {
/I Make an Account with a given name
IIOPAccountimpl acct = new [IOPAccountimpl("JimF");

/I Get a reference to CORBA naming service using JNDI

Hashtable props = new Hashtable();

props.put(“java.naming.factory.initial”,
"com.sun.jndi.cosnaming.CNCtxFactory");

3.7.1. RMI with JNI Versus CORBA 82

Preface (Java Enterprise in a Nutshell)

props.put(“java.naming.provider.url”, "iiop://objhost.org:900");
Context ctx = new InitialContext(props);

/I Register our Account with the CORBA naming service
ctx.rebind("JimF", acct);
System.out.printin("Registered account.");

}

catch (Exception e) {
e.printStackTrace();

}

}
}

Refer to Chapter 6, "JNDI", for details on the properties used to create the JNDI context and what they mea
All you need to glean from this is that we're trying to connect to a naming service running on objhost.org,
listening to port 900. Once we are connected, we register the new IIOPAccountimpl object with the

naming service using the Context.rebind() method.

Finally, we need to update our client so that it works with RMI/IIOP. Instead of using an RMI registry to look
up the remote Account object, the client needs to use JNDI to connect to the same CORBA Naming Service
that now hosts our Account object and ask for the Account by name. The updated

IIOPAccountClient is shown here. Notice that we've also changed the client to use the
PortableRemoteObject.narrow() method, instead of just casting the object returned from the

lookup:

import javax.naming.*;
import java.rmi.RMISecurityManager;

public class IIOPAccountClient {
public static void main(String argv(]) {
try {

/I Lookup account object

Hashtable props = new Hashtable();

props.put(“java.naming.factory.initial”,

"com.sun.jndi.cosnaming.CNCtxFactory");

props.put(“java.naming.provider.url”, "iiop://objhost.org:900");

Context ctx = new InitialContext(props);

Account jimAcct =
(Account)PortableRemoteObject.narrow(ctx.lookup("JimF"),

Account.class);

/I Make deposit
jimAcct.deposit(12000);

/I Report results and balance.

System.out.printin("Deposited 12,000 into account owned by " +
jimAcct.getName());

System.out.printin("Balance now totals: " + jimAcct.getBalance());

}

catch (Exception e) {
System.out.printin("Error while looking up account:");
e.printStackTrace();

}
}
}

In order to register the server object, we need a CORBA Naming Service running, just like we need an RMI
registry with standard RMI. The RMI/IIOP package includes a special naming service that is started using th
tnameserv utility. This tool is similar to the naming service provided with Java IDL (and discussed in Chapte
4, "Java IDL"), but this version is a CORBA Naming Service that also provides JNDI access. On objhost.org
we need to start the naming service like so:

objhost% tnameserv —ORBInitialPort 900

3.7.1. RMI with JNI Versus CORBA 83

Preface (Java Enterprise in a Nutshell)

Now we can run IIOPRegAccount to register the Account object with the naming service, then run our
IIOPAccountClient to access the Account and make a deposit. All network communications are now
taking place using IIOP rather than the RMI protocol.

3.8.1. Accessing RMI Objects from CORBA

Since our Account object is now speaking IIOP, we can also access it from other, non—Java CORBA
clients. First, we need to get an IDL interface for the Account interface, which can be done using the rmic
compiler provided with RMI/IIOP. The —idl option generates an IDL mapping of a Java RMI interface using
the Java—-to—-IDL mapping defined by the CORBA standard. With this IDL mapping, we can generate
language-specific stubs that lets any CORBA client talk to our Java remote object. See Chapter 4, "Java ID
for more details on using IDL and generating language—specific interfaces from it.

4 PREVIOUS HOME NEXT »
3.7. RMI and Native BOOK INDEX 4. Java IDL
Method Calls
Java)‘ M %
Enterprise
Bookshelf Java™ Java™ Juvo Enterprise Jnvu Java™ Juw
Home Enterprise in a Nutshell, Foundation Classes Jnvnﬂonns Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@ JAVA ENTERPRISE IN A NUTSHELL™

@ PREVIOUS Part 1: Introducing the NEXT »
Java Enterprise APIs

3.8.1. Accessing RMI Objects from CORBA 84

Chapter 4. Java IDL

Contents:

The CORBA Architecture

Creating CORBA Objects

Putting It in the Public Eye

Finding Remote Objects

What If | Don't Know the Interface?

The Java IDL API, introduced in Version 1.2 of the Java 2 platform, provides an interface between Java
programs and distributed objects and services built using the Common Object Request Broker Architecture
(CORBA). CORBA is a standard defined by the Object Management Group (OMG). It describes an
architecture, interfaces, and protocols that distributed objects can use to interact with each other. Part of the
CORBA standard is the Interface Definition Language (IDL), which is an implementation—-independent
language for describing the interfaces of remote—capable objects. There are standard mappings defined by
OMG for converting IDL interfaces into C++ classes, C code, and Java classes, among other things. These
generated classes use the underlying CORBA framework to communicate with remote clients and give you
the basis for implementing and exporting your own distributed objects. Java IDL is an implementation of the
standard IDL-to—Java mapping and is provided by Sun with the standard Java SDK in the org.omg.CORBA
and org.omg.CosNaming packages and their subpackages.[1]

[1]The version of Java IDL shipped with Version 1.2 of Java 2 is compliant with the CORBA
2.x specification.

Like RMI, Java IDL gives you a way to access remote objects over the network. It also provides the tools yo
need to make your objects accessible to other CORBA clients. If you export a Java class using Java IDL, yo
can create an instance of that class and publish it through a naming/directory service. A remote client can fil
this object, call methods on it, and receive data from it, just as if it were running on the client's local machine
Unlike RMI, however, objects that are exported using CORBA can be accessed by clients implemented in al
language with an IDL binding (C, C++, Ada, etc.).

The CORBA standard is extensive, to say the least. In addition to the basic remote object architecture and tl
syntax of IDL, it also includes specifications for several distributed object services, like an object naming
service, a security policy service, and persistent object services. It would be foolhardy to attempt to cover all
these topics completely in one chapter, so | won't. Instead, I'll just cover the basic features of the CORBA
architecture and the IDL syntax. We'll also look at the Naming Service, which is key to almost every CORBA
application because it provides a standard way to find remote CORBA objects on the network. With that
under our belts, we'll take a look at the Java IDL API and the idltojava compiler and how together they give
you an interface from your Java code to CORBA objects and services. They also give you the tools you nee
to create your own CORBA objects, implemented in Java.

The rest of this chapter is broken down roughly into three parts. In the first part, we'll look at an overview of
the CORBA architecture and how it allows you to create, export, access, and manage remote objects. In the
second part, we'll explore the details of creating your own CORBA objects. Finally, we'll look at how clients
can remotely access your CORBA objects.

4.1. The CORBA Architecture

At its core, the CORBA architecture for distributed objects shares many features with the architecture used |
Java RMI. A description of a remote object is used to generate a client stub interface and a server skeleton
interface for the object. A client application invokes methods on a remote object using the client stub. The

Chapter 4. Java IDL 85

Preface (Java Enterprise in a Nutshell)

method request is transmitted through the underlying infrastructure to the remote host, where the server
skeleton for the object is asked to invoke the method on the object itself. Any data resulting from the methoc
call (return values, exceptions) is transmitted back to the client by the communication infrastructure.

But that's where the similarities between CORBA and RMI end. CORBA was designed from the start to be &
language-independent distributed object standard, so it is much more extensive and detailed in its
specification than RMI is (or needs to be). For the most part, these extra details are required in CORBA
because it needs to support languages that have different built—in features. Some languages, like C++, direc
support objects, while others, like C, don't. The CORBA standard needs to include a detailed specification o
an object model so that nonobject-oriented languages can take advantage of CORBA. Java includes built-i
support for communicating object interfaces and examining them abstractly (using Java bytecodes and the
Java Reflection API). Many other languages do not. So the CORBA specification includes details about a
Dynamic Invocation Interface and a Dynamic Skeleton Interface, which can be implemented in languages th
don't have their own facilities for these operations. In languages that do have these capabilities, like Java,
there needs to be a mapping between the built-in features and the features as defined by the CORBA
specification.

The rest of this section provides an overview of the major components that make up the CORBA architectur
the Interface Definition Language, which is how CORBA interfaces are defined; the Object Request Broker

(ORB), which is responsible for handling all interactions between remote objects and the applications that u:
them; the Naming Service, a standard service in CORBA that lets remote clients find remote objects on the

network; and the inter—-ORB communication that handles the low—-level communication between processes i
a CORBA context.

4.1.1. Interface Definition Language

The Interface Definition Language provides the primary way of describing data types in CORBA. IDL is
independent of any particular programming language. Mappings, or bindings, from IDL to specific
programming languages are defined and standardized as part of the CORBA specification. At the time of thi
writing, standard bindings for C, C++, Smalltalk, Ada, COBOL, and Java have been approved by the OMG.
Chapter 10, "IDL Reference", contains a complete description of IDL syntax.

The central CORBA functions, services, and facilities, such as the ORB and the Naming Service, are also
specified in IDL. This means that a particular language binding also provides the bindings for the core
CORBA functions to that language. Sun's Java IDL API follows the Java IDL mapping defined by the OMG.
This allows you to run your CORBA-based Java code in any compliant Java implementation of the CORBA
standard, provided you stick to standard elements of the Java binding. Note, however, that Sun's
implementation includes some nonstandard elements; they are highlighted in this chapter where appropriate

4.1.2. Object Request Broker

The core of the CORBA architecture is the Object Request Broker, as shown in Figure 4-1. Each machine
involved in a CORBA application must have an ORB running in order for processes on that machine to
interact with CORBA objects running in remote processes. Object clients and servers make requests throug
their ORBs; the ORB is responsible for making the requests happen or indicating why they cannot. The clier
ORB provides a stub for a remote object. Requests made on the stub are transferred from the client's ORB
the ORB servicing the implementation of the target object. The request is passed onto the implementation
through its skeleton interface.

4.1.1. Interface Definition Language 86

Preface (Java Enterprise in a Nutshell)

CLIENT ; { SERVER]
Client Application
Stub Interfoce Skeleton Interface
(dynomiic or] ¢ (dynamic or
IDL-generated) ; s object-specific)

t t

Object Request Broker - q Object Request Broker

Figure 4-1. Basic CORBA architecture

4.1.3. The Naming Service

The CORBA Naming Service provides a directory naming structure for remote objects. The tree always star
with a root node, and subnodes of the object tree can be defined. Actual objects are stored by name at the
leaves of the tree. Figure 4-2 depicts an example set of objects[2] registered within a Naming Service
directory. The fully qualified name of an object in the directory is the ordered list of all of its parent nodes,
starting from the root node and including the leaf name of the object itself. So, the full name of the object
labeled "Fred" is "living thing," "animal,” "man," "Fred," in that order.

[2]Example adapted from Categories, by Aristotle. Please pardon the categorization "man,"
as opposed to "human." This is the typical translation of Aristotle's original Greek, perhaps
because political correctness wasn't in fashion in 350 B.C.

Naming confexts

Figure 4-2. A naming directory

Each branch in the directory tree is called a naming context, and leaf objects have bindings to specific name
The org.omg.CosNaming.NamingContext interface represents each branch in the naming directory.

Each NamingContext can be asked to find an object within its branch of the tree by giving its name

relative to that naming context. You can get a reference to the root context of the naming directory from an
ORB using the resolve _initial_references() method. The standard name for the Naming Service

4.1.2. Object Request Broker 87

Preface (Java Enterprise in a Nutshell)

is "NameService", so the following code snippet gets the root NamingContext:

ORB myORB = ORB.init(...);

org.omg.CORBA.Object nameRef =
myORB.resolve_initial_references("NameService");

NamingContext nc = NamingContextHelper.narrow(nameRef);

Note that we have to narrow the Object reference to a NamingContext reference using the
NamingContextHelper.narrow() method. Even though Java has a cast operation in its syntax, there's
no guarantee in the Java IDL binding that the object reference returned by the
resolve_initial_references() method is the correct type, since there's no guarantee that the local
environment has access to the language—specific definition of the object's interface.

This narrow() operation highlights one of the key differences between RMI and CORBA. In the Java
environment, class bytecodes are portable, and all remote object types are objects that can be specified by
their full class names. An RMI client can automatically download the bytecodes for a remote stub from the
object server, if the class for the stub cannot be found locally (see Chapter 3, Remote Method Invocation, fo
more details on the mechanics of remote class loading). CORBA is a language-independent remote object
scheme, so there is no portable way to specify a remote object's type when a client obtains a stub reference
As a result, the stub reference is initially represented by a basic Objectimpl object that knows how to
forward methods requests to its server object. The client application is forced to "cast" this stub to the correc
local type, using the appropriate narrow() method. In the Java mapping of IDL, this means calling the
narrow() method on the corresponding helper class. The narrow() method converts the reference,

making a type-specific stub interface that also includes the remote object reference information needed to
forward method requests to the actual object implementation.

4.1.4. Inter—-ORB Communication

Version 2.0 (and later) of the CORBA standard includes specifications for inter—-ORB communication
protocols that can transmit object requests between various ORBs running on the network. The protocols ar
independent of the particular ORB implementations running at either end of the communication link. An ORE
implemented in Java can talk to another ORB implemented in C, as long as they're both compliant with the
CORBA standard and use a standard communication protocol. The inter—ORB protocol is responsible for
delivering messages between two cooperating ORBs. These messages might be method requests, return ty
error messages, etc. The inter—ORB protocol also deals with differences between the two ORB
implementations, like machine-level byte ordering and alignment. As a CORBA application developer, you
shouldn't have to deal directly with the low—level communication protocol between ORBs. If you want two
ORBs to talk to each other, you just need to be sure that they both speak a common, standard inter—-ORB
protocol.

The Internet Inter—ORB Protocol (IIOP) is an inter—ORB protocol based on TCP/IP. TCP/IP is by far the
most commonly used network protocol on the Internet, so IIOP is the most commonly used CORBA
communication protocol. There are other standard CORBA protocols defined for other network environment
however. The DCE Common Inter—ORB Protocol (DCE-CIOP), for example, allows ORBs to communicate
on top of DCE-RPC.

€ PREVIOUS HOME NEXT »
3.8. RMI over IIOP BOOK INDEX 4.2. Creating CORBA
Objects

4.1.4. Inter-ORB Communication 88

Preface (Java Enterprise in a Nutshell)

e v 3) - —) a
Java” } \ (b‘*) B %
| é N :) . B
Enterprise Pese N : \g @)<\ /
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Closses JavoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISE IN A NUTSHELL ™

@ PREVIOUS Chapter 4: Java IDL "ty

4.2. Creating CORBA Objects

Now that you understand the various parts of the CORBA architecture, let's walk through the creation of
CORBA objects using Java IDL. In order to distribute a Java object over the network using CORBA, you
have to define your own CORBA-enabled interface and it implementation. This involves doing the following:

Writing an interface in the CORBA Interface Definition Language

Generating a Java base interface, plus a Java stub and skeleton class, using an IDL-to—Java compi

Writing a server—side implementation of the Java interface in Java

4.2.1. An IDL Primer

This section provides a quick overview of writing a CORBA interface in IDL. A full reference on IDL syntax
is provided in Chapter 10, "IDL Reference", if you need more details.

The syntax of both Java and IDL were modeled to some extent on C++, so there are a lot of similarities
between the two in terms of syntax. Interfaces in IDL are declared much like classes in C++ and, thus, class
or interfaces in Java. The major differences between IDL and Java are:

IDL is a declaration language. In IDL, you declare only the names and types for interfaces, data
members, methods, method parameters, etc. Method implementations are created in the
implementation language you choose (in this case Java), after you've used an IDL compiler to conve
your IDL interface to your target language.

IDL, like C++, includes non-class data structure definitions, like structs, unions, and enumerations.

Method parameters in IDL include modifiers that specify whether they are input, output, or
input/output variables. In Java, all primitive data types are passed by value, and all object data types
are passed by reference.

4.2. Creating CORBA Objects 89

Preface (Java Enterprise in a Nutshell)

An IDL file can include multiple public interfaces. Java allows multiple inner classes within a single
public class definition and multiple nonpublic classes per file, but only a single public class can be
defined in a given Java file.

Modules, which are similar to Java packages, can be nested within other modules in the same IDL
file, and interfaces in multiple distinct modules can be defined in the same IDL file. In Java, you can
define a class only within a single package in a single Java file.

4.2.1.1. Modules

Modules are declared in IDL using the module keyword, followed by a name for the module and an opening
brace that starts the module scope. Everything defined within the scope of this module (interfaces, constant:
other modules) falls within the module and is referenced in other IDL modules using the syntax
modulename::x. Suppose that you want all your classes to be contained in a module called corba, which is
part of a larger module called jen (an acronym for the title of this book). In IDL this is declared as follows:

/I IDL
module jen {
module corba {
interface NeatExample ...

L
h

If you want to reference the NeatExample interface in other IDL files, use the syntax
jen::corba::NeatExample, which may look familiar to readers who have done C++ programming.

Java programmers should note the semicolons following the closing braces on the module definitions, whict
are required in IDL but not in Java. A semicolon is also required after the close of an interface definition.

4.2.1.2. Interfaces

Interfaces declared in IDL are mapped into classes or interfaces in Java. As | mentioned before, IDL is usec
only to declare modules, interfaces, and their methods. Methods on IDL interfaces are always left abstract, t
be defined in the programming language you use to implement the interfaces.

The declaration of an interface includes an interface header and an interface body. The header specifies the
name of the interface and the interfaces it inherits from (if any). Here is an IDL interface header:

interface PrintServer : Server { ...

This header starts the declaration of an interface called PrintServer that inherits all the methods and data
members from the Server interface. An IDL interface can inherit from multiple interfaces; simply separate
the interface hames with commas in the inheritance part of the header.

4.2.1.3. Data members and methods

The interface body declares all the data members (or attributes) and methods of an interface. Data member
are declared using the attribute keyword. At a minimum, the declaration includes a name and a type (see
Chapter 10, "IDL Reference" for a complete list of the basic data types available in IDL and the mapping to
Java types). The declaration can optionally specify whether the attribute is read-only or not, using the
readonly keyword. By default, every attribute you declare is readable and writable (for Java, this means
that the IDL compiler generates public read and write methods for it). Here is an example declaration for a

4.2.1.1. Modules 90

Preface (Java Enterprise in a Nutshell)

read-only string attribute:
readonly attribute string myString;

You declare a method by specifying its name, return type, and parameters, at a minimum. You can also
optionally declare exceptions the method might raise, the invocation semantics of the method, and the conte
for the method call (see Chapter 10, "IDL Reference" for more details). Here is the declaration for a simple
method that returns a string:

string parseString(in string buffer);

This declares a method called parseString() that accepts a single string argument and returns a
string value.

4.2.1.4. A complete IDL example

Now let's tie all these basic elements together. Here's a complete IDL example that declares a module withi
another module, which itself contains several interfaces:

module OS {
module services {
interface Server {
readonly attribute string serverName;
boolean init(in string sName);

g

interface Printable {
boolean print(in string header);

g

interface PrintServer : Server {
boolean printThis(in Printable p);
h

h
2

The first interface, Server, has a single read—only string attribute and an init() method that accepts a

string and returns a boolean. The Printable interface has a single print() method that accepts a

string header. Finally, the PrintServer interface extends the Server interface (hence inheriting all its
methods and attributes) and adds a printThis() method that accepts a Printable object and returns a
boolean. In all cases, we've declared our method arguments as input-only (i.e., pass—by-value), using the
in keyword.

4.2.2. Turning IDL Into Java

Once you've described your remote interfaces in IDL, you need to generate Java classes that act as a starti
point for implementing those remote interfaces in Java using an IDL-to—Java compiler. Every standard
IDL-to—Java compiler generates the following Java classes from an IDL interface:

A Java interface with the same name as the IDL interface. This can act as the basis for a Java
implementation of the interface (but you have to write it, since IDL doesn't provide any details about
method implementations).

4.2.1.4. A complete IDL example 91

Preface (Java Enterprise in a Nutshell)

A helper class whose name is the name of the IDL interface with "Helper" appended to it (e.qg.,
ServerHelper). The primary purpose of this class is to provide a static narrow() method that

can safely cast CORBA Obiject references to the Java interface type. The helper class also provides
other useful static methods, such as read() and write() methods that allow you to read and write

an object of the corresponding type using I/O streams.

A holder class whose name is the name of the IDL interface with "Holder" appended to it (e.g.,
ServerHolder). This class is used when objects with this interface are used as out or inout
arguments in remote CORBA methods. Instead of being passed directly into the remote method, the
object is wrapped with its holder before being passed. When a remote method has parameters that ¢
declared as out or inout, the method has to be able to update the argument it is passed and return
the updated value. The only way to guarantee this, even for primitive Java data types, is to force out
and inout arguments to be wrapped in Java holder classes, which are filled with the output value of
the argument when the method returns.

The idltojava tool provided by Sun[3] can also generate two other classes:

[3] Although Java IDL is a standard part of Java 1.2, Sun still offers only the early—access
version of its idltojava compiler, which you have to download separately from
http://developer.java.sun.com/developer/earlyAccess/jdk12/idltojava.html.

A client stub class, called _interface—nameStub, that acts as a client-side implementation of the
interface and knows how to convert method requests into ORB requests that are forwarded to the
actual remote object. The stub class for an interface named Server is called _ServerStub.

A server skeleton class, called _interface-namelmplBase, that is a base class for a server-side
implementation of the interface. The base class can accept requests for the object from the ORB ant
channel return values back through the ORB to the remote client. The skeleton class for an interface
named Server is called _ServerimplBase.

So, in addition to generating a Java mapping of the IDL interface and some helper classes for the Java
interface, the idltojava compiler also creates subclasses that act as an interface between a CORBA client ar
the ORB and between the server—side implementation and the ORB. Chapter 12, "Java IDL Tools", provide:
complete reference for Sun's idltojava compiler. We use this IDL-to—Java tool in the examples in this
chapter. Remember, though, that any Java mapping of the CORBA standard should include its own
IDL-to—Java compiler to generate these Java classes from the IDL interfaces you write. In addition, the Jav
that these tools generate should be compliant with the standard IDL mapping for Java, published by the OM
in the CORBA standard.

4.2.2.1. A simple server class

The IDL interface shown in Example 4-1 is the IDL equivalent of the Java class we defined in Example 4-3
in the RMI chapter. The interface, named ThisOrThatServer, declares two methods, doThis() and

doThat(). As in the earlier RMI example, each method accepts a string that specifies what to do and returns
a string that indicates what was done. Since this is IDL, the string data type is string, and the parameters
are declared as in arguments, since we want them to be passed into the remote method by value.

4.2.2.1. A simple server class 92

http://developer.java.sun.com/developer/earlyAccess/jdk12/idltojava.html

Preface (Java Enterprise in a Nutshell)

Example 4-1. A ThisOrThatServer Declared in IDL

interface ThisOrThatServer {

string doThis(in string what);
string doThat(in string what);
h

We can run the idltojava compiler on this IDL interface using the following command line (Windows
version):

D:\>idltojava —fno—cpp ThisOrThatServer.idl

This command creates the five Java classes | just described: a Java version of the interface, a helper class,
holder class, a client stub, and a server skeleton. | had to use the —fno—cpp option on my machine because
don't have a C preprocessor installed for idltojava to use; this option tells the IDL compiler to use an alternat
parsing scheme while it converts the IDL to Java (see Chapter 12, "Java IDL Tools" for complete details on

the command-line arguments for idltojava).

The compiler creates the Java interface shown in Example 4-2, in a file named ThisOrThatServer.java. The
mapping is fairly straightforward for this simple example. The interface declaration is mapped directly to a
Java interface declaration, with the interface extending the org.omg.CORBA.Object interface. If we had
included any module definitions in our IDL specification, they would have been mapped into a package
statement at the beginning of the Java file. The IDL string type is converted into the Java String type,

and, since they don't require any special handling in a remote method call, the in method parameters in IDL
are mapped into regular Java input arguments.

Example 4-2. Java Interface for ThisOrThatServer

/*

* File: /THISORTHATSERVER.JAVA

* From: THISORTHATSERVER.IDL

* Date: Thu Apr 15 21:42:40 1999

* By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
*/

public interface ThisOrThatServer
extends org.omg.CORBA.Object {
String doThis(String what)
’ String doThat(String what)
}
You might notice that the IDL compiler has put the semicolons following the method declarations on separat
lines. To my knowledge, there's no good reason for this; it's just a quirk of the idltojava tool provided by Sun

4.2.2.2. The helper class

The compiler also generates a helper class, called ThisOrThatServerHelper, as shown in Example
4-3. As | mentioned earlier, the helper class has methods that let you read and write ThisOrThatServer
objects to and from CORBA I/O streams, get the TypeCode for a ThisOrThatServer object, and, most
importantly, safely narrow a CORBA Object reference into a ThisOrThatServer reference.

4.2.2.1. A simple server class 93

Preface (Java Enterprise in a Nutshell)

Example 4-3. Helper Class for the ThisOrThatServer

/*

* File: ./THISORTHATSERVERHELPER.JAVA

* From: THISORTHATSERVER.IDL

* Date: Thu Apr 15 21:42:40 1999

* By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
*/

public class ThisOrThatServerHelper {
I It is useless to have instances of this class
private ThisOrThatServerHelper() {}

public static void write(org.omg.CORBA.portable.OutputStream out,
ThisOrThatServer that) {
out.write_Object(that);
}
public static ThisOrThatServer
read(org.omg.CORBA.portable.InputStream in) {
return ThisOrThatServerHelper.narrow(in.read_Object());
}
public static ThisOrThatServer extract(org.omg.CORBA.Any a) {
org.omg.CORBA.portable.InputStream in = a.create_input_stream();
return read(in);
}
public static void insert(org.omg.CORBA.Any a, ThisOrThatServer that) {
org.omg.CORBA .portable.OutputStream out = a.create_output_stream();
write(out, that);
a.read_value(out.create_input_stream(), type());
}
private static org.omg.CORBA.TypeCode _tc;
synchronized public static org.omg.CORBA.TypeCode type() {
if (_tc == null)
_tc = org.omg.CORBA.ORB.init().create_interface_tc(id(),
"ThisOrThatServer");
return _tc;
}
public static String id() {
return "IDL:ThisOrThatServer:1.0";
}
public static ThisOrThatServer narrow(org.omg.CORBA.Object that)
throws org.omg.CORBA.BAD_PARAM {
if (that == null)
return null;
if (that instanceof ThisOrThatServer)
return (ThisOrThatServer) that;
if (Ithat._is_a(id())) {
throw new org.omg.CORBA.BAD_PARAM();
}
org.omg.CORBA.portable.Delegate dup =
((org.omg.CORBA.portable.Objectimpl)that)._get_delegate();
ThisOrThatServer result = new _ThisOrThatServerStub(dup);
return result;

}
}

In the implementation of the narrow() method, we can see how the helper class converts a CORBA
Object reference to a reference to a specific type. First, the narrow() method checks to see if the

Object parameter is already a ThisOrThatServer object (using the Java instanceof operator), then

it checks to see if the object passed in is a null pointer. If neither case is true, the Object should contain a
delegate of a ThisOrThatServer object. Every CORBA stub for a remote object contains an internal
Delegate object (from the org.omg.CORBA.portable package) that's used by the stub to invoke

remote requests. If the object's delegate is a ThisOrThatServer (checked using the objects's _is_a()
method), the delegate is used to create a new ThisOrThatServer stub. We'll take a look at the

4.2.2.2. The helper class 94

Preface (Java Enterprise in a Nutshell)

ThisOrThatServer stub class in a bit. If the object doesn't contain a delegate, the is_a() method
returns false, and the narrow() method throws a BAD_PARAM exception.

4.2.2.3. The holder class

The compiler generates a holder class for the ThisOrThatServer class, as shown in Example 4-4. The
holder class, called ThisOrThatServerHolder, is a wrapper used when ThisOrThatServer objects

are called for as out or inout arguments in an IDL method. All holder classes implement the
Streamable interface from the org.omg.CORBA.portable package. An ORB knows to pass
Streamable objects in method calls using the _read() and _write() methods of the Streamable

object; these methods handle whatever serialization the object needs.

Example 4-4. Holder Class for the ThisOrThatServer

/*

* File: ./THISORTHATSERVERHOLDER.JAVA

* From: THISORTHATSERVER.IDL

* Date: Thu Apr 15 21:42:40 1999

* By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
*/

public final class ThisOrThatServerHolder
implements org.omg.CORBA.portable.Streamable{
/I instance variable
public ThisOrThatServer value;
/I constructors
public ThisOrThatServerHolder() {
this(null);

public ThisOrThatServerHolder(ThisOrThatServer __arg) {
value = __arg;

}

public void _write(org.omg.CORBA.portable.OutputStream out) {
ThisOrThatServerHelper.write(out, value);

}

public void _read(org.omg.CORBA .portable.InputStream in) {
value = ThisOrThatServerHelper.read(in);

}

public org.omg.CORBA.TypeCode _type() {
return ThisOrThatServerHelper.type();

}
}

A holder contains a single instance of a CORBA object (a ThisOrThatServer, in this example). When a
holder object is passed into a remote method call as an inout argument, its _write() method is invoked.

This method takes the object contained by the holder class, serializes it, and streams it through the ORB to
remote object server. When the remote method call returns, the holder's _read() method is invoked to read
the (possibly updated) object from the remote object server, and the holder object replaces its internal value
with the updated object.

As an example of using the holder class, let's define another IDL interface that includes a method that uses
ThisOrThatServer as an inout parameter:

/I DL

4.2.2.3. The holder class 95

Preface (Java Enterprise in a Nutshell)

interface ServerManager {
boolean updateServer(inout ThisOrThatServer server);

I3

The Java interface generated from this IDL interface uses the holder class for the ThisOrThatServer as
the type for the corresponding Java method parameter:

/I Java
public interface ServerManager
extends org.omg.CORBA.Object {
boolean updateServer(ThisOrThatServerHolder server)

)

}

The ThisOrThatServerHolder class has public constructors that let you create a holder from an
existing ThisOrThatServer object, so that you can easily pass the object into this kind of method.

4.2.2.4. The client and server stubs

The idltojava compiler generates two more classes from our interface definition: a client stub
(_ThisOrThatServerStub) and a base class for a server implementation

(_ThisOrThatServerimplBase). The client stub, shown in Example 4-5, implements the generated
ThisOrThatServer Java interface and acts as a client-side proxy for a remote ThisOrThatServer

object. The stub has implementations of the doThis() and doThat() methods from the interface. Each
implementation just generates a request to the ORB to make a remote method call on the server-side objec
that this stub is a proxy for. The method arguments are bundled up and passed along with the request to the
ORB. I'm not going to go into the details of the stub's method implementations because you shouldn't have 1
worry much about them, but it is enlightening to look at the source code to see how your remote objects do
what they do in detail, using the core CORBA functions.

Example 4-5. ThisOrThatServer Stub Class Generated by IDL Compiler

/*

* File: ./_THISORTHATSERVERSTUB.JAVA

* From: THISORTHATSERVER.IDL

* Date: Thu Apr 15 21:42:40 1999

* By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
*/

public class _ThisOrThatServerStub
extends org.omg.CORBA.portable.Objectimpl
implements ThisOrThatServer {

public _ThisOrThatServerStub(org.omg.CORBA.portable.Delegate d) {
super();
_set_delegate(d);

}

private static final String _type_ids[] = {
"IDL:ThisOrThatServer:1.0"

h

public String[] _ids() { return (String[]) _type_ids.clone(); }

/I DL operations

/I Implementation of ::ThisOrThatServer::doThis

public String doThis(String what)

org.omg.CORBA.Request r = _request("doThis");

4.2.2.4. The client and server stubs 96

Preface (Java Enterprise in a Nutshell)

r.set_return_type(org.omg.CORBA.ORB.init().get_primitive_tc(
org.omg.CORBA.TCKind.tk_string));
org.omg.CORBA.Any _what = r.add_in_arg();
_what.insert_string(what);
r.invoke();
String __result;
__result = r.return_value().extract_string();
return __result;
}
/I Implementation of ::ThisOrThatServer::doThat
public String doThat(String what)

{
org.omg.CORBA.Request r = _request("doThat");
r.set_return_type(org.omg.CORBA.ORB.init().get_primitive_tc(

org.omg.CORBA.TCKind.tk_string));
org.omg.CORBA.Any _what = r.add_in_arg();
_what.insert_string(what);
r.invoke();
String __result;
__result = r.return_value().extract_string();
return __result;
}
I3

When a Java client gets a reference to a remote ThisOrThatServer object, it is given one of these stub
objects. The client can make method calls on the stub object, and the stub converts these calls into
corresponding requests to the ORB to invoke the methods on the remote object and send back the results.

The base class for the server implementation, shown in Example 4-6, accepts requests that are intended fo
the server implementation from the ORB. The base class converts a request into a method call on the serve
object and then takes the result of the call and gives it back to the ORB to send to the client stub. All this wo
is done in the server skeleton's invoke() method. The invoke() method figures out which method is

being called, unpacks the method arguments (if any) from the request, and calls the method directly on itsel

Note that the server skeleton doesn't have implementations of the doThis() or doThat() methods
declared in the interface. The idltojava compiler doesn't do everything for you; you still need to create a serv
implementation for your interface.

Example 4-6. Implementation Base Class for ThisOrThatServer

/*

* File: ./_THISORTHATSERVERIMPLBASE.JAVA

* From: THISORTHATSERVER.IDL

* Date: Thu Apr 15 21:42:40 1999

* By: C:\JDK12~1.1\BIN\IDLTOJ~1.EXE Java IDL 1.2 Aug 18 1998 16:25:34
*

public abstract class _ThisOrThatServerImplBase extends
org.omg.CORBA.Dynamiclmplementation implements ThisOrThatServer {
/I Constructor
public _ThisOrThatServerimplBase() {
super();
}
Il Type strings for this class and its superclasses
private static final String _type_ids[] = {
"IDL:ThisOrThatServer:1.0"
h

public String[] _ids() { return (String[]) _type_ids.clone(); }

private static java.util.Dictionary _methods = new java.util. Hashtable();
static {

4.2.2.4. The client and server stubs 97

Preface (Java Enterprise in a Nutshell)

_methods.put("doThis", new java.lang.Integer(0));
_methods.put("doThat", new java.lang.Integer(1));
}
/I DSI Dispatch call
public void invoke(org.omg.CORBA.ServerRequest r) {
switch (((java.lang.Integer) _methods.get(r.op_name())).intValue()) {
case 0: // ThisOrThatServer.doThis
{
org.omg.CORBA.NVList _list = _orb().create_list(0);
org.omg.CORBA.Any _what = _orb().create_any();
_what.type(org.omg.CORBA.ORB.init().get_primitive_tc(
org.omg.CORBA.TCKind.tk_string));
_list.add_value("what", _what, org.omg.CORBA.ARG_IN.value);
r.params(_list);
String what;
what = _what.extract_string();
String ___result;

__result = this.doThis(what);
org.omg.CORBA.Any __result = _orb().create_any();
__result.insert_string(___result);
r.result(__result);

}
break;

case 1: // ThisOrThatServer.doThat
{
org.omg.CORBA.NVList _list = _orb().create_list(0);
org.omg.CORBA.Any _what = _orb().create_any();
_what.type(org.omg.CORBA.ORB.init().get_primitive_tc(

org.omg.CORBA.TCKind.tk_string));

_list.add_value("what", _what, org.omg.CORBA.ARG_IN.value);
r.params(_list);
String what;
what = _what.extract_string();
String ___result;

___result = this.doThat(what);
org.omg.CORBA.Any __result = _orb().create_any();
__result.insert_string(___result);
r.result(__result);

}
break;
default:
throw new org.omg.CORBA.BAD_OPERATION(O,
org.omg.CORBA.CompletionStatus. COMPLETED_MAYBE);

4.2.3. Writing the Implementation

So, we've written an IDL interface and generated the Java interface and support classes for it, including the
client stub and the server skeleton. Now we need to create concrete server—side implementations of all of tf
methods on your interface. We do this by subclassing from the _xxxImplBase class generated by the
idltojava compiler. For our example, we need to subclass _ThisOrThatServerimplBase and

implement the doThis() and doThat() methods. The ThisOrThatServerImpl class in Example

4-7 does just that. Note that we've mimicked the method implementations from the RMI example in Chaptel
3, "Remote Method Invocation”. The only real difference is that this ThisOrThatServerImpl class

extends _ThisOrThatServerimplBase, while the one in Chapter 3, "Remote Method Invocation”

extends the UnicastRemoteObject.

4.2.3. Writing the Implementation 98

Preface (Java Enterprise in a Nutshell)

Example 4-7. Server-Side Implementation of ThisOrThatServer Interface

public class ThisOrThatServerlmpl extends _ThisOrThatServerimplBase {
public ThisOrThatServerimpl() {}

/I Remotely—accessible methods
public String doThis(String what) {
return doSomething(“this", what);

}

public String doThat(String what) {
return doSomething("that", what);

}

/I Non-remote methods

private String doSomething(String todo, String what) {
String result = todo + " " + what + " is done.";
System.out.printin("Did " + todo + " to " + what);
return result;

}
}
4 PREVIOUS HOME NEXT »
4.1. The CORBA BOOK INDEX 4.3. Putting It in the Public
Architecture Eye
Java R, | & ooty S ARAN
Enterprise '] 5 7<\ /
Bookshelf Java™ J.cvn“' Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISE INA NutstEr, ™

@ PREVIOUS Chapter 4: Java IDL TS

4.3. Putting It in the Public Eye

We still need to do some work to make the Java implementation of our IDL interface available to remote
clients. There are two ways a client gets a reference to a remote object: it can get an initial object reference
using the ORB.resolve_initial_references() method and somehow find a reference to the object

through method calls on the initial object, or it can get a "stringified" reference to the remote object (an
Interoperable Object Reference) and convert it locally to a live object reference.

For the first case, the remote object needs to be registered in some way with a server—side ORB. In order fc
you to register a remote object, you first have to get a reference to an ORB. We'll look at how to do that first
then look at registering the remote object with a Naming Service. We discuss the stringified object reference
technique later in this chapter, when we look at how clients can access remote objects.

4.2.3. Writing the Implementation 99

Preface (Java Enterprise in a Nutshell)

4.3.1. Initializing the ORB

Since the ORB is so central to everything in a CORBA environment, the first thing any CORBA process
needs to do is get a reference to a local or remote ORB that it can use to find other objects, access CORBA
services, and handle remote method calls. A CORBA patrticipant initializes its ORB reference by calling one
of the static init() methods on the ORB interface. Each of these methods returns an ORB object that can
find CORBA objects and services. The standard init() methods provided on an ORB are as follows (Sun's
Java IDL supports all of these standard initialization methods):

public static ORB ORB.init()
Returns a shared (static) ORB instance. Each call within the same runtime environment returns the
same ORB reference. If used within an applet context, the ORB has limited abilities.

public static ORB ORB.init(String[] args, Properties props)
Creates a new ORB using the given arguments and properties, as discussed in the following
paragraphs.

public static ORB ORB.init(Applet applet, Properties props)
Creates a new ORB within an applet context. The applet's codebase and host are used by the ORB
the source of various services, such as the Naming Service.

There are two standard properties defined for an ORB that can be set in the call to init(), using either the
String arguments array or a Properties object. These are the ORBClass and ORBSingletonClass
properties, which specify the Java classes to use to create ORBs when an init() method is called.
(ORBSingletonClass is a shared ORB instance that is used mainly by generated classes to do things like
create TypeCode objects that identify the types of CORBA objects, while ORBClass is a fully functional
ORB.) You can use these properties to specify a custom ORB implementation. You may want to override th
default ORB implementation (com.sun.CORBA.iiop.ORB in Java IDL) with one of your own that has
particular performance characteristics. Or you may be running your CORBA code within an applet and want
to ensure that a valid ORB is available no matter what browser version your applet encounters.

Sun's Java IDL also adds two nonstandard properties: ORBInitialHost and ORBInitialPort. By

default, each ORB.init() method initializes an ORB that looks for its services locally. The current version

of the Java IDL API includes a single service, the Naming Service, and the ORB.init() methods assume

that the Naming Service is listening to port 900 on the local host. Java IDL adds these two nonstandard
properties to allow your local ORB to defer its services (naming, trading, etc.) to a remote ORB running on a
given host and listening on a given port. Be careful before you decide to depend on these properties in your
application or applet. They are only honored within Sun's Java IDL implementation of the CORBA standard.
If you want your CORBA application to be portable to any implementation of the standard IDL-to-Java
binding, and you want to use a remote Naming Service, you should stick to using a stringified reference to tt
remote service, obtained through a secondary communication channel, as we'll discuss shortly.

Any of these properties can be specified within a Properties object or as a command-line option to a

Java application. As an example, if you want to specify a different host to use for finding services like the
Naming Service, one way to do this is to specify the host explicitly in the code that initializes the ORB, using
a Properties object:

Properties orbProps = new Properties();
orbProps.put("org.omg.CORBA.ORBInitialHost", "remote.orb.com");
ORB myOrb = ORB.init((String[])null, orbProps);

Alternately, you can take command-line arguments passed into your Java code and pass them to the
ORB.init() method to be parsed. Say we have a class hamed InitRemote with a main method
implemented as follows:

4.3.1. Initializing the ORB 100

Preface (Java Enterprise in a Nutshell)

public class InitRemote {
public static void main(String[] argv) {

try {
ORB myOrb = ORB.init(argv, null);

=
}
}

In this case, we can specify any ORB properties on the command line using specific argument names:
orbhost% java InitRemote —ORBInitialHost remote.orb.com

Note that you can use the second ORB.init() method with both a String arguments array and a
Properties list specified, even though the examples here haven't shown that.

4.3.2. Registering with a Naming Service

One way to make a server object available to remote clients is to register it with the local CORBA Naming
Service under a specific name. A remote client can then get a reference to the root NamingContext for the
Naming Service and ask for the server object by name.

Example 4-8 shows a class whose main() method creates an instance of our ThisOrThatServer
implementation and then registers the object with the Naming Service. The program starts by getting a
reference to the local ORB. Then it asks the ORB for a reference to the Naming Service (using the standard
name "NameService") with the resolve_initial_references() method. This reference is actually

the root NamingContext, so we narrow the object reference using NamingContextHelper. We

register the ThisOrThatServer with the Naming Service by building an array of NameComponent

objects and then calling the rebind() method on the NamingContext. With the object registered, we go

into a wait state, waiting for client requests.

Example 4-8. Registering an Object with the Naming Service

import org.omg.CORBA.*;
import org.omg.CosNaming.*;

public class ServerNaminglnit {
public static void main(String[] argv) {
try {
// Obtain ORB reference
ORB myORB = ORB.init(argv, null);

/I Make a ThisOrThatServer object to register with the ORB
ThisOrThatServer impl = new ThisOrThatServerimpl();

/I Get the root name context

org.omg.CORBA.Object objRef =
myORB.resolve_initial_references("NameService");

NamingContext nc = NamingContextHelper.narrow(objRef);

/I Register the local object with the Name Service

NameComponent ncomp = new NameComponent("ThisOrThatServer", ");
NameComponent[] name = {ncomp},

nc.rebind(name, impl);

/I Go into a wait state, waiting for clients to connect
System.out.printin("Waiting for clients...");
java.lang.Object dummy = new String("l wait...");
synchronized (dummy) {

4.3.2. Registering with a Naming Service 101

Preface (Java Enterprise in a Nutshell)

dummy.wait();

}
}

catch (Exception e) {
System.out.printin("Error occurred while initializing server object:");
e.printStackTrace();

}
}
}

Note that Example 4-8 imports the org.omg.CORBA and org.omg.CosNaming packages, which are the
two main packages in Java IDL. Because of the naming collision between java.lang.Object and
org.omg.CORBA.Object, we have to use the fully qualified names of these two classes when we use
them in CORBA applications that import org.orm.CORBA. Finally, note that this example binds the
ThisOrThatServer object within the root NamingContext using the name "ThisOrThatServer". We'll

see shortly how to create subcontexts and bind objects within them.

Before running this initialization of our CORBA object, we need to start a Naming Service on the host for the
object. A Naming Service daemon listens for Naming Service requests on a specific port and provides acce:
to the named object directory it manages. In Java IDL, the Naming Service is started using the tnameserv
command:

objhost% tnameserv &
With that done, we can run our initialization method to register our server object with the ORB:

objhost% java ServerNaminglnit

4.3.3. Adding Objects to a Naming Context

Initially, a CORBA naming directory is empty, with only its root NamingContext and no objects. The
bind() method on a NamingContext object binds a server object to a name within the context. The
bind_new_context() method creates new subcontexts within a given NamingContext. Using a file
directory analogy, calling bind_new_context() on a NamingContext object is like making a new
subdirectory, while calling bind() puts a new file into a directory.

The Java IDL mapping uses arrays of NameComponent objects to represent the names of subcontexts
within a naming directory. Each NameComponent represents a component of the path to the named object.
A NameComponent contains id and kind string fields that serve to label the component in the path. Only
the id field is significant in determining name uniqueness. So a NameComponent with id set to "student”
and kind set to an empty string conflicts with a NameComponent with an id of "student" and kind

"doctoral," if both NameComponent objects are relative to the same subcontext. The NameComponent
class has a constructor that takes the id and kind values as arguments. Here's how to create a single
NameComponent:

NameComponent compl = new NameComponent("student”, "doctoral");
A complete name path can be composed as an array of these objects:
NameComponent path[] = { comp1, comp2, ... };

The bind() method takes two arguments: an array of NameComponent objects as the relative name for

the object you're putting into the Naming Service and the server object itself. If you're binding a server objec
using the root context of the Naming Service, the name is also the absolute name of the object in the overal
naming directory. If an object is already bound to the name, you can use the rebind() method with the

4.3.3. Adding Objects to a Naming Context 102

Preface (Java Enterprise in a Nutshell)

same arguments, causing the existing object bound to that name to be replaced by the new object. Note tha
since the Naming Service is a CORBA service that can be accessed remotely by other CORBA clients, the
objects it contains need to be exportable to these remote clients. This means that only
org.omg.CORBA.Object references can be bound to names within a NamingContext.

The following code binds a few of our ThisOrThatServer objects to names within the root context of a
Naming Service:

/I Get the root naming context

ORB myORB = ORB.init(...);

org.omg.CORBA.Objectref = myORB.resolve_initial_references("NameService");
NamingContext rootNC = NamingContextHelper.narrow(ref);

/I Create a few servers
org.omg.CORBA.Object refl = new ThisOrThatServerimpl();
org.omg.CORBA.Object ref2 = new ThisOrThatServerimpl();

/I Bind them to names in the Naming Service

NameComponent namel = new NameComponent("serverl”, ");
NameComponent pathl[] = { namel };

NameComponent name2 = new NameComponent("server2", ");
NameComponent path2[] = { name2 };

rootNC.bind(path1, refl);

rootNC.bind(path2, ref2);

Before you can bind an object to a name with multiple components, all the subcontexts (subdirectories) havi
to be created using the bind_new_context() method on a NamingContext. The

bind_new_context() method takes an array of NameComponent objects as the relative path of the

new context and a reference to the NamingContext object to bind to that location in the overall directory.

A new NamingContext object can be created from an existing one by calling its new_context()

method. If a context already exists at the target name, you can use the rebind_context() method to

replace the existing context with a new one. This is useful for emptying out an entire subcontext without
removing each object individually.

Here is an example that binds some objects within various subcontexts:

/I Get the root context, as before
NamingContext rootNC = ...;

/I Create the components to the subcontext name

NameComponent compl = new NameComponent(“servers”, "™);
NameComponent ttComp = new NameComponent("ThisOrThat", ");
NameComponent otherComp= new NameComponent("misc”, ");

/I Create each subcontext within the root context and bind them
/I to their appropriate names

/I Create a new context, bind it to the name "servers"

/I off the root NamingContext

NamingContext contextl = rootNC.new_context();
NameComponent pathl[] = { compl };
rootNC.bind_context(pathl, contextl);

/I Create another context, bind it to the name "servers, ThisOrThat"
NamingContext ttDir = rootNC.new_context();
NameComponent path2_1[] = { comp1, ttComp };
rootNC.bind_context(path2_1, ttDir);

/I Create another context, bind it to the name "servers, misc"
NamingContext otherDir = rootNC.new_context();
NameComponent path2_2[] = { comp1, otherComp };
rootNC.bind_context(path2_2, otherDir);

/I Now we can bind servers to a name within any of the new subcontexts
org.omg.CORBA.Object ttRef = new ThisOrThatServerimpl();

4.3.3. Adding Objects to a Naming Context 103

Preface (Java Enterprise in a Nutshell)
org.omg.CORBA.Object otherRef = new SomeOtherServerimpl();

/I Bind the other server to the "misc" branch of the "servers" dir.

NameComponent yetAnotherComp = new NameComponent("SomeOtherServer", ");
NameComponent otherPath[] = { comp1, otherComp, yetAnotherComp };
rootNC.bind(otherPath, otherRef);

/I Bind the ThisOrThatServer to the appropriate branch under "servers"
NameComponent tt1Comp = new NameComponent(“serverl", ");
NameComponent ttPath[] = { comp1, ttComp, tt1Comp };
rootNC.bind(ttPath, ttRef);

If you try to bind an object or a subcontext to a name within a context that hasn't been created yet, a
org.omg.CosNaming.NamingContextPackage.NotFound exception is thrown.

Note that names used in the bind() or rebind() methods are relative to the NamingContext object
that they're called on. This means we can bind our ThisOrThatServer object in the previous example to
the same absolute name within the directory by replacing the last two lines of the example with the following

NameComponent relObjPath[] = { tt1Comp };
ttDir.bind(relObjPath, ttRef);

The ttDir context is bound to the {'servers", "ThisOrThat"} subdirectory, so binding an object

to the name {"serverl"} within this context is equivalent to binding it to the full path {"servers",
"ThisOrThat", "serverl"} from the root context. You can use similar shorthand when binding new
contexts within a directory. In other words, you can bind a context to a relative name within a subcontext,
instead of an absolute name within the root context.

4 PREVIOUS HOME NEXT »
4.2. Creating CORBA BOOK INDEX 4.4. Finding Remote
Objects Objects
8@ B e
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes Jnvnlenns"', Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

§8% JAVA ENTERPRISE IN A NUTSHELL ™

@ PREVIOUS Chapter 4: Java IDL T

4.4. Finding Remote Objects

Now that we have registered our remote object with an ORB, it is available to CORBA client applications.
This means we are done with the setup of the remote object and can turn our attention to client applications
that want to use the object. As | said earlier, every CORBA process needs a reference to an ORB. Once a
client application has access to an ORB, the next thing for it to do is find remote objects to interact with. But
before we can discuss finding remote objects, we need to talk a bit about what remote object references loo

4.4, Finding Remote Objects 104

Preface (Java Enterprise in a Nutshell)

like under CORBA.

The whole point of CORBA is to be able to distribute objects across the network and then use them from an
point on the network. In order for a local process to make requests of a remote object, it needs to have som
kind of reference to that remote object. This object reference needs to contain enough information for the lor
ORSB to find the ORB serving the target object and send the request to the remote ORB using an agreed-ug
protocol.

In most situations, a CORBA client has a reference to a remote object in the form of an object stub. The stul
encapsulates the actual object reference, providing what seems like a direct interface to the remote object ir
the local environment. If the client is implemented in C++, Java, or some other object-oriented language, th
object stub is a native object in that language. Other, nonobject languages represent remote object referenc
in whatever way is dictated in the CORBA language binding for that language.

CORBA includes its own root object class, since some object programming languages may have different
inheritance structures. In the Java binding for CORBA, all CORBA object references (local or remote)
implement the org.omg.CORBA.Object interface. So, when a client of a remote CORBA object receives
a stub for the object, it actually gets an org.omg.CORBA.Object that serves as a proxy for the remote
object. The org.omg.CORBA.portable.Objectimpl class provides default implementations for the

methods defined on org.omg.CORBA.Object. Java stubs and implementations for CORBA objects are
actually subclassed from the Objectimpl class. Internally, Objectimpl deals with delegating requests on
the object to the proper target object, whether it is a remote object or a local one. Objectimpl implements
the org.omg.CORBA.Object interface and extends the java.lang.Object class, so it truly provides

a joining point between the CORBA and Java object environments.

A reference to an org.omg.CORBA.Object object that is connected to a remote object is all a client

needs to invoke methods on a remote object. Using the Dynamic Invocation Interface defined by the CORB,
standard, you can create method requests and send them to the remote object through the Object interface,
as we'll discuss later in this chapter. If your client has the actual Java interface for the remote object availab
at compile time, however, you probably want to convert the Object reference into a reference of that type,
so that you can use the interface to call remote methods directly.

Converting an org.omg.COBRA.Object to a specific remote interface is done by narrowing the object
reference to the corresponding interface type, using type—specific helper classes to do the narrowing. We've
already seen how the Java IDL compiler, idltojava, creates a helper class from an IDL interface (e.g.,
ThisOrThatServerHelper). The helper class includes a narrow() method that converts an
org.omg.CORBA.Object reference to a reference of the given type. If the object reference you pass into

the narrow() method is not the type the helper expects, an org.omg.CORBA.BAD_PARAM exception is
thrown. This is a RuntimeException, so it doesn't have to be caught by your code, unless you're trying to
test the type of a CORBA reference for some reason.

With that background material out of the way, let's discuss actually finding remote object references. There
are many ways that an object reference can find its way through the ORB into a client application, but they &
boil down to one of these methods:

Getting an initial reference directly from the ORB

Getting an object reference through a method call on another remote object reference

Using a stringified object reference obtained through a secondary channel and converting it to a live
object reference

4.4, Finding Remote Objects 105

Preface (Java Enterprise in a Nutshell)

4.4.1. Initial ORB References

In addition to providing core object communication services, an ORB can also provide additional services,
such as a Naming Service, a Trading Service, a Security Service, etc. These services are represented as
CORBA objects and are available through the ORB automatically, based on how it is configured. The ORB
interface provides the resolve_initial_references() method for obtaining references to these

initial objects. Each CORBA service the ORB supports is represented by one or more object interfaces, and
these objects can be asked for using standard names. As we saw earlier when we registered a remote obje
the standard name for the Naming Service is "NameService."

Once you've initialized your ORB reference, you can ask the ORB for a list of the names of its initial objects
using the list_initial_references() method:

String names[] = myORB.list_initial_references();

This method returns an array of String objects that contains the names of all initial objects in the ORB.
These names can then be used to get references to the objects through the
resolve_initial_references() method.

Here's how we used resolve_initial_references() to obtain a reference to the Naming Service in
Example 4-8:

ORB myORB = ORB.init(...);
org.omg.CORBA.Object nameRef =
myORB.resolve_initial_references("NameService");

Although the list_initial_references() and resolve_initial_references() methods

are a standard element of the ORB interface, how the ORB implements these initial object references is not
standardized. Sun's Java IDL implementation stores an ORB's initial object references as root objects in its
Naming Service.

4.4.2. Getting Objects from Other Remote Objects

In addition to getting remote objects directly from an ORB reference, a client can obtain remote objects from
other remote objects. A common variation on this approach is to get a reference to a Naming Service object
and then look up objects in the naming directory by name. Another variation (that we won't cover in detail in
this section) is to obtain an application—specific object reference, either directly from the ORB or through the
Naming Service, and use this initial reference to request other objects. An object used in this way in a
distributed application is sometimes called a factory object.

4.4.2.1. Using a naming context

Once you have a reference to a Naming Service that you can narrow to a NamingContext reference, you
can look up objects within the context by passing names to its resolve() method. As before, when we
were binding objects, a name is represented by an ordered array of NameComponent objects. Each
NameComponent (both the id field and the kind field) must exactly match the path to an object within the
context in order to successfully find the object. If an object is not found at a specified name, an
org.omg.CosNaming.NamingContextPackage.NotFound exception is thrown.

So, if a client wants to find the object we stored in the last binding example, it needs to do the following
(assuming that it already has a reference to the root naming context of the Naming Service):

4.4.1. Initial ORB References 106

Preface (Java Enterprise in a Nutshell)

/I Set up path

NameComponent compl = new NameComponent("servers", ");
NameComponent comp2 = new NameComponent("ThisOrThat", ");
NameComponent serverName = new NameComponent("serverl", ");
NameComponent objPath[] = { compl, comp2, serverName };

/I Find the object in the directory
org.omg.CORBA.Object objRef = rootNC.resolve(objPath);
ThisOrThatServer server = ThisOrThatServerHelper.narrow(objRef);

Note the use of the narrow() method on ThisOrThatServerHelper to "cast" the generic object
reference to a ThisOrThatServer object.

You can also use the resolve() method on a NamingContext to get a reference to a subcontext. Just
use the path to the context itself and narrow() it to a NamingContext reference:

NameComponent ttPath[] = { comp1, comp2 };
org.omg.CORBA.Object ncRef = rootNC.resolve(ttPath);
NamingContext ttContext = NamingContextHelper.narrow(ncRef);

4.4.2.2. Using multiple naming services

Suppose there are objects stored in multiple Naming Services (representing, for example, multiple
organizations offering CORBA-based services) that you want to access from your client. One way to do this
is to initialize an ORB reference for each one. Sun's Java IDL lets you specify an initial host and port for an
ORB when you initialize it. So, if each independent Naming Service has its own ORB behind it, you can
simply get a reference to each ORB and ask it for a reference to its Naming Service:

String hostl1 = "orbhostl.net";
int portl = 1234;
String host2 = "orghost2.net";
int port2 = 2345;

/I Initialize the first ORB reference

Properties props = new Properties();
props.put("org.omg.CORBA.ORBInitialHost", host1);
props.put("org.omg.CORBA.ORBInitialPort", String.valueOf(port1));
ORB orb1 = ORB.init((String[])null, props);

/I Initialize another ORB reference
props.put("org.omg.CORBA.ORBInitialHost", host2);
props.put("org.omg.CORBA.ORBInitialPort", String.valueOf(port2));
ORB orb2 = ORB.init((String[])null, props);

/I Get references to the Naming Services

org.omg.CORBA.Object nc1Ref =
orbl.resolve_initial_references("NameService");

org.omg.CORBA.Object nc2Ref =
orb2.resolve_initial_references("NameService");

/I Narrow the Naming Service references to NamingContexts and use them

The only problem with this approach is that it depends on using a nonstandard feature of Sun's Java
implementation of the CORBA standard. If you try using this same code against a different Java
implementation of CORBA, it probably won't work.

Another option is to have one Naming Service hold references to other Naming Services located elsewhere
on the network. As we've seen, the interface to a Naming Service is a NamingContext object reference that

4.4.2.2. Using multiple naming services 107

Preface (Java Enterprise in a Nutshell)

represents the root of the naming tree for that name directory. Since the NamingContext is itself a
CORBA-exported object, one Naming Service can hold a reference to a NamingContext from another
Naming Service, acting as a bridge to the other Naming Service and its objects. To do this, you first have to
run some code on the server that is going to act as the bridge. This code gets a reference to the local Namir
Service and stores references to remote Naming Services in the local directory:

/I Get the local ORB and main NamingContext

ORB myORB = ORB.init(...);

org.omg.CORBA.Object ncRef =
orb.resolve_initial_references("NameService");

NamingContext locaINC = NamingContextHelper.narrow(ncRef);

/I Create a new subcontext to hold the remote contexts

NameComponent nodeName = new NameComponent("RemoteContexts", "");
NameComponent path[] = {nodeName};

NamingContext ncNode = localNC.bind_new_context(path);

/I Get a reference to a remote Naming Service

/I using Sun's non-standard ORB properties

Properties remoteORBProps = new Properties();

remoteORBProps.put("org.omg.CORBA.ORBInitialHost", "remote.orb.com");

ORB remoteORB = ORB.init((String[])null, remoteORBProps);

org.omg.CORBA.Object remoteNCRef =
remoteORB.resolve_initial_references("NameService");

NamingContext remoteNC = NamingContextHelper.narrow(remoteNCRef);

/I Store the remote reference in the local context
NameComponent sub = new NameComponent("Namingl1", ");
NameComponent path2[] = {nodeName, sub};
localNC.bind(path2, remoteNC);

With this done, a remote client can get a reference to the main Naming Service directory and then look up
other remote directories within the bridge directory:

public class NamingClient {
public static void main(String argv(]) {
ORB orb = ORB.init(argv, null);
org.omg.CORBA.Object ref = null;

try {
ref = orb.resolve_initial_references("NameService");

catch (InvalidName invN) {
System.out.printin("No primary NameService available.");
System.exit(1);

}

NamingContext nameContext = NamingContextHelper.narrow(ref);

NameComponent topNC = new NameComponent("RemoteContexts"”, ");

NameComponent subNC = new NameComponent("Namingl", ");

NameComponent path[] = {topNC, subNC };

try {
org.omg.CORBA.Object ref2 = nameContext.resolve(path);
NamingContext nameContext2 = NamingContextHelper.narrow(ref2);
System.out.printin("Got secondary naming context...");

}

catch (Exception e) {
System.out.printin("Failed to resolve secondary NameService:");
e.printStackTrace();

}

}
}

Using one Naming Service as a bridge to other remote named object directories is a useful tool to help
manage a constellation of remote objects, but the same question arises: how do we get references to the
remote NamingContext objects in order to store them in the bridge directory? In the previous bridge

4.4.2.2. Using multiple naming services 108

Preface (Java Enterprise in a Nutshell)

example, we're still using the nonstandard ORB properties provided by Sun's Java IDL implementation to
initialize references to multiple remote ORBs (and their Naming Services). What we really want to do is
initialize the bridge directory in a way that falls within the CORBA standard. One way is to do this is to use
stringified object references, which are the topic of the next section.

4.4.3. Stringified Object References

As we've seen, Sun's implementation of Java IDL provides a nonstandard way to initialize an ORB to
reference a remote Naming Service, so that one of the ORB's initial references is to the root context of the
remote Naming Service. But what do you do if you want an object from a remote Naming Service, and your
Java IDL implementation doesn't provide a way to directly initialize a reference to the remote service? Or,
worse yet, what if the object that you want isn't stored in a Naming Service or available through any other
CORBA service? How can your client get a reference to the object?

The CORBA standard comes to the rescue again. Part of the standard, called Interoperable Object Referen
(IORs), includes a syntax for representing a remote object reference in the form of a printable string of
characters. This stringified object reference includes enough information for a remote CORBA client to locat
the object's home ORB and convert the string to a runtime stub reference to the object. Two methods on the
ORSB interface, object_to_string() and string_to_object(), let you convert a CORBA object

reference to string form and back again.

Example 4-9 shows how to create an instance of our server implementation of the ThisOrThatServer
interface, register it with the ORB, and generate a stringified object reference from the CORBA server objec
A stringified reference to a remote object is called an Interoperable Object Reference (IOR) because it uses
format for object references that can be freely distributed between ORBs running a cross the network. In orc
for the IOR you generate to be acceptable to another ORB, both your ORB and the remote ORB have to be
using the same inter—ORB communication protocol (IIOP, DCE-CIOP, etc.). In this example, our client and
host are both running 110OP.

Example 4-9. Registering an Object/Getting Its Stringified Object Reference

import org.omg.CORBA.*;

public class Serverlnit {
public static void main(String[] argv) {
try {
I/ Obtain ORB reference
ORB myORB = ORB.init(argv, null);

/I Make a ThisOrThatServer object to register with the ORB
ThisOrThatServer impl = new ThisOrThatServerimpl();

/I Register the local object with the ORB
myORB.connect(impl);

/I Get a stringified reference to the object
String sor = myORB.object_to_string(impl);
System.out.printin("ThisOrThatServer IOR: " + sor);

/I Go into a wait state, waiting for clients to connect
java.lang.Object dummy = new String("l wait...");
synchronized (dummy) {
dummy.wait();
}
}

catch (Exception e) {
System.out.printin("Error occurred while initializing server object:");

4.4.3. Stringified Object References 109

Preface (Java Enterprise in a Nutshell)

e.printStackTrace();

}
}
}

The Serverlnit class contains a main() method that is intended to be run on the server host for our
remote object. The main() method first initializes a connection to the local ORB and then creates an
instance of the ThisOrThatServerimpl class. This instance serves as the server implementation of our
remote object. We create a stringified reference to the object using the object_to_string() method on

the ORB and then output the stringified reference, so that it can be copied and sent to clients. Finally, by
doing a synchronous wait() on a local object, the main() method goes into a wait state. This wait() is
necessary to keep the ORB running so that it can respond to client requests. If we let the main() method
exit, the server object we created is destroyed, and the IOR we generated is no longer valid.

A sample client for our object is shown in Example 4-10. The client accepts a stringified object reference as
a command-line argument to its main() method. Then it initializes a local ORB reference and uses its
string_to_object() method to convert the stringified reference to a live object reference. To do this,

the ORB parses the encoded information in the stringified reference, makes a connection with the remote
ORB serving the object, and generates a CORBA object reference for the client.

Example 4-10. A Client Utilizing a Stringified Object Reference

import org.omg.CORBA.*;

public class ServerStringClient {
public static void main(String[] argv) {

/I Get the stringified reference from our command-line arguments

String sor = null;

if (argv.length > 0) {
sor = argv[0];

}

else {
System.out.printin("You forgot the object reference...");
System.exit(1);

}

try {
/I Obtain ORB reference

ORB myORB = ORB.init(argv, null);

/I Convert the stringified reference into a live object reference
org.omg.CORBA.Object objRef = myORB.string_to_object(sor);

/I Narrow the object reference to a ThisOrThatServer
/I using the ThisOrThatServerHelper
ThisOrThatServer server = ThisOrThatServerHelper.narrow(objRef);

/I Invoke some methods on the remote object through the stub
server.doThis("something");
server.doThat("something else™);

}

catch (Exception e) {
System.out.printin("Error occurred while initializing server object:");
e.printStackTrace();

}
}
}

Before we can run the client, the remote object has to be registered with its ORB, so that we can get the
stringified object reference:

4.4 3. Stringified Object References 110

Preface (Java Enterprise in a Nutshell)

objhost% java Serverlnit

ThisOrThatServer IOR: IOR:000000000000002349444¢c3a6a656e2f63617262612f546869
734f72546861745365727665723a312e30000000000001000000000000003000010000000000
0a6¢6f63616c686f737400043200000018afabcafe00000002496bb469000000080000000000
000000

Somehow, you have to get this IOR to the client host. You could embed the stringified object reference
within a hidden field in a HTML page, so that a Java client can access it using a URL object. Or you could s
up a simple server on a given port on your host that broadcasts the stringified object reference to whoever
makes a socket connection. Or you could email the string to a colleague, and she can type the stringified
reference into the startup command for her CORBA client. In any case, the client is invoked with the IOR as
command-line option:

clienthost% java ServerStringClient IOR:000000000000002349444c3a6a656e2f636f
7262612f546869734f72546861745365727665723a312e300000000000010000000000000030
000100000000000a6c6f63616c686f737400043200000018afabcafe00000002496bb4690000
00080000000000000000

The client uses the argument to reconstitute a remote reference to the server object, so that it can invoke
methods on the remote object.

€ PREVIOUS HOME NEXT »
4.3. Putting It in the Public BOOK INDEX 4.5. What If | Don't Know
Eye the Interface?
S B ™ \ @ A
Bookshelf Juvc Java™ Java™ Jnvu Java™ Java™
Home erprise in o Nutshell, Foundation Closses Jnvnlenns | Serviet Security Distributed
ino Nuishsll 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 4: Java IDL T

4.5. What If | Don't Know the Interface?

In the examples we've seen so far, we've always assumed that the Java interfaces for the remote objects ar
available at compile time. But what happens if they aren't? You might get a reference to a CORBA Obiject
from a Naming Service, for example, and not know what interface that object implements. | mentioned earlie
that you can use an org.omg.CORBA.Object reference directly to make requests and exchange data with
its remote object.

The CORBA standard defines two complementary APIs for this purpose: the Dynamic Invocation Interface
(DI that a client can use to make remote method requests of a server object, and the Dynamic Skeleton
Interface (DSI) that a server—side skeleton can use to forward method invocations to its server implementati
object. Both of these APIs provide the same essential function: a dynamic interface to an object whose
interface is not known at compile time. The DIl offers this functionality to clients of CORBA objects, and the
DSl provides it to the server—side skeletons that bridge the object implementation with the ORB.

4. 5. What If | Don't Know the Interface? 111

Preface (Java Enterprise in a Nutshell)

The DIl and DSI may seem like sidebar topics in the CORBA world, but in reality they are at the heart of
CORBA and how it works. When we generate Java stubs and skeletons from IDL interfaces, the code that i
generated uses the DIl and DSI to execute remote method calls. The details of how this is done are shielde
from you, the developer, by the Java interface you use to interact with the remote object. But it's still
worthwhile to understand how CORBA objects implement their distributed nature, especially in situations
where the Java interface for the remote object is not there, and you need to deal directly with these details.

In this section, we take a look at how the DIl works and how you might use it in a client. We won't cover the
DSl in this book, since its practical uses are even more limited for the average developer. Note, however, th
the API of the DSl is analogous to that of the DI, so you shouldn't have much trouble mapping the following
explanation to the DSI as well.

4.5.1. Dynamic Invocation Interface

The Dynamic Invocation Interface provides abstract representations of remote method requests and their
arguments. In simple terms, this means it includes objects that represent remote method requests and
parameters that are passed with these method requests. Methods on these objects allow you to set the
parameters to the request, make the request, and get the results. Dll's central classes are:

Request
A request to invoke a method on a remote object. Created by the client and issued through the ORB
the server object.

NamedValue
A named parameter to a method request. Conceptually, this is a name tied to an Any value. The nan
of the value must match the name of the parameter as specified in the IDL interface the remote obje

satisfies.

NVList
A list of NamedValue parameters used to represent an argument list passed into a remote method
request.

Any
A general argument value. An Any object can contain the Java equivalent of any basic IDL type or al
Object that can be described in IDL.

Context

A list of NamedValue objects used to specify any details of the client environment that shouldn't be
passed as method arguments.

Once you get an org.omg.CORBA.Object reference to a remote object (using any of the approaches

we've already covered), you can create and issue a method request to the object by building a parameter lis
for the method call, making a NamedValue object to hold the result, making a Context object and putting
any useful environment values in it, and then using all of these items to create a Request object that
corresponds to a particular method on the object. Example 4-11 shows a sample DIl client that gets a
reference to a remote object through a Naming Service and then makes a dynamic call to its doThis()
method.

Example 4-11. Client Using DIl to Make Remote Method Call

import org.omg.CORBA.*;
import org.omg.CosNaming.*;

4.5.1. Dynamic Invocation Interface 112

Preface (Java Enterprise in a Nutshell)

public class DIISimpleClient {
public static void main(String argv[]) {

ORB myORB = ORB.init(argv, null);

ORB singleORB = ORB.init();

try {
/I Get a reference to the object
org.omg.CORBA.Object ncRef =

myORB.resolve_initial_references("NameService");

NamingContext nc = NamingContextHelper.narrow(ncRef);
NameComponent nComp = new NameComponent("ThisOrThatServer", ");
NameComponent[] path = {nComp};
org.omg.CORBA.Object objRef = nc.resolve(path);

/I Now make a dynamic call to the doThis method. The first step is
/I to build the argument list. In this case, there's a single String
/I argument to the method, so create an NVList of length 1. Next
// create an Any object to hold the value of the argument and insert
/ the desired value. Finally, wrap the Any object with a NamedValue
/I and insert it into the NVList, specifying that it is an input
[/l parameter.
NVList argList = myORB.create_list(1);
Any argl = myORB.create_any();
argl.insert_string("something");
NamedValue nvArg =

argList.add_value("what", argl, org.omg.CORBA.ARG_IN.value);

/I Create an Any object to hold the return value of the method and

/I wrap it in a NamedValue

Any result = myORB.create_any();

result.insert_string("dummy");

NamedValue resultVal = myORB.create_named_value("result”, result,
org.omg.CORBA.ARG_OUT.value);

/I Get the local context from the ORB.

/I NOTE: This call does not work in Java 1.2, and returns a

/I NOT_IMPLEMENTED exception. To make this work in Java 1.2, simply
/I remove this call to get_default_context(), and pass a null pointer

/I into the _create_request() call below. This example should work

/I as is with any compliant Java CORBA environment, however.

Context ctx = myORB.get_default_context();

/I Create the method request using the default context, the name of
/I the method, the NVList argument list, and the NamedValue for the
/l result. Then invoke the method by calling invoke() on the Request.
Request thisReq =

objRef._create_request(ctx, "doThis", argList, resultVal);
thisReq.invoke();

/I Get the return value from the Request object and output results.
result = thisReq.result().value();
System.out.printin("doThis() returned: " + result.extract_string());

}

catch (Exception e) {
e.printStackTrace();

}
}
}

Note that in most situations you will have the Java interface for the remote object available in your client
along with its helper class, so you'll be able to narrow the Object reference to a specific type. One exception
might be if you're building some kind of software development tool, and you want to provide a dynamic
execution utility for the CORBA code being developed. The previous example demonstrates how a CORBA
method call can be carried out at this lower level, in case you ever find it necessary to do so. And when you
trying to fix a problem with your CORBA application, it's always better to understand what's going on under
the hood, so to speak.

4.5.1. Dynamic Invocation Interface 113

Preface (Java Enterprise in a Nutshell)

4 PREVIOUS
4.4. Finding Remote

HOME
BOOK INDEX

5. Java Servlets

NEXT »

Objects

Bookshelf Java™
Home Enterprise
in a Nutshell

ina Nutshll, Fmdnho- (lassos

3rd Edition

Lk

in o Nutshell

Enterprise
JovoBeons™,
2nd Edition

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

Java™
Serviet
Programming

@ L

Java™
Security

4 PREVIOUS

Part 1: Introducing the
Java Enterprise APIs

NEXT »

4.5.1. Dynamic Invocation Interface

Java™
Distributed
Computing

114

Chapter 5. Java Servlets

Contents:

The Servlet Life Cycle

Servlet Basics

Servlet Chaining

Custom Servlet Initialization

Thread Safety

Server-Side Includes

Cookies

Session Tracking

Databases and Non—-HTML Content
The Servlet API 2.1

The Java Servlet API provides a standard way to extend the functionality of any kind of server that uses a
protocol based on requests and responses. Servlets are used primarily with web servers, where they provid
Java-based replacement for CGI scripts. In other words, on a web server that supports servlets (and there :
many), you can use a Java servlet to create dynamic web content in much the same way you currently use
CGl script. Servlets have many advantages over CGI scripts, however. For example, servlets are persistent
between invocations, which dramatically improves performance relative to CGI programs. Servlets are also
portable among operating systems and among servers. Finally, servlets have access to all the APIs of the J
platform, so, for example, it is easy to create a servlet that interacts with a database, using the JDBC API.

In terms of enterprise computing, servlets are a natural fit if you are using the Web as your development
platform. You can take advantage of web browsers as universally available thin clients; the web server
becomes middleware that is responsible for running applications for these clients. Under this model, the use
makes a request of the web server, the server invokes a servlet designed to handle the request, the servlet
fulfills the request, and the result is returned to the user in the web browser. What's key here is that the serv
can use JNDI, Java IDL, and other Java Enterprise APIs to perform whatever tasks are necessary to fulfill tt
request.

This chapter demonstrates the basic techniques used to write servlets using Version 2.0 of the Java Servlet
API. It also covers how to handle some common web-development tasks, such as cookie manipulation and
session tracking, with servlets. The chapter concludes with an introduction to the new features of Version 2.
of the Servlet API. This chapter assumes that you have some experience with web development; if you are
new to web development, you may want to brush up on web basics by consulting Webmaster in a Nutshell,
2nd Edition, by Stephen Spainhour and Robert Eckstein (O'Reilly). For a more complete treatment of servle
| recommend Java Servlet Programming, by Jason Hunter with William Crawford (O'Reilly).

5.1. The Servlet Life Cycle

When a client makes a request involving a servlet, the server loads and executes the appropriate Java clas:
Those classes generate content, and the server sends the content back to the client. In most cases, the clie
a web browser, the server is a web server, and the servlet returns standard HTML. From the web browser's
perspective, this isn't any different from requesting a page generated by a CGI script, or, indeed, standard
HTML. On the server side, however, there is one important difference: persistence.[1] Instead of shutting
down at the end of each request, the servlet can remain loaded, ready to handle subsequent requests. Figu
5-1 shows how this all fits together.

[1] Note that I'm using persistent to mean "enduring between invocations," not "written to
permanent storage," as it is sometimes used.

Chapter 5. Java Servlets 115

Preface (Java Enterprise in a Nutshell)

Java Servlet-based
Web Server JVM
Request for Serviet A > — :
Request for Serviet 8 > W A
Request for Serviet A > e

Figure 5-1. The servlet life cycle

The request-processing time for a servlet can vary, but it is typically quite fast when compared to a similar
CGlI program. The real advantage of a servlet, however, is that you incur most of the startup overhead only
once. When a servlet loads, its init() method is called. You can use init() to create 1/O intensive

resources, such as database connections, for use across multiple invocations. If you have a high-traffic site
the performance benefits can be quite dramatic. Instead of putting up and tearing down a hundred thousand
database connections, the servlet needs to create a connection only once. The servlet's destroy() method
can clean up resources when the server shuts down.

Because servlets are persistent, you can actually remove a lot of filesystem and/or database accesses
altogether. For example, to implement a page counter, you can simply store a number in a static variable,
rather than consulting a file (or database) for every request. Using this technique, you need to read and writ
to the disk only occasionally to preserve state. Since a servlet remains active, it can perform other tasks wh
it is not servicing client requests, such as running a background processing thread (where clients connect to
the servlet to view the result) or even acting as an RMI host, enabling a single servlet to handle connections
from multiple types of clients. For example, if you write an order processing servlet, it can accept transactior
from both an HTML form and an applet using RMI.

The Servlet API includes numerous methods and classes for making application development easier. Most
common CGl tasks require a lot of fiddling on the programmer's part; even decoding HTML form parameters
can be a chore, to say nothing of dealing with cookies and session tracking. Libraries exist to help with thes
tasks, but they are, of course, decidedly nonstandard. You can use the Servlet API to handle most routine
tasks, thus cutting development time and keeping things consistent for multiple developers on a project.

4 PREVIOUS HOME NEXT »

4.5. What If | Don't Know BOOK INDEX 5.2. Servlet Basics
the Interface?

. @B R T se@ 0

Lnterpﬂse
Bookshelf Java™ Java™ Java™ Enterprise Juvu Java™ Juvc
Home Enterprise in o Nutshell, Foundotion Closses JavoBeons™, Serviet Security Distributed

ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

% JAVA_ENTERPRISE IN A NUTSHELL =

5.1. The Servlet Life Cycle 116

Preface (Java Enterprise in a Nutshell)

4@ PREVIOUS Chapter 5: Java Servlets Nt ®

5.2. Servlet Basics

The Servlet API consists of two packages, javax.servlet and javax.servlet.http. The javax is

there because servlets are a standard extension to Java, rather than a mandatory part of the API. This meal
that while servlets are official Java, Java virtual machine developers are not required to include the classes
them in their Java development and execution environments.

At one point, servlets were slated to become part of Version 1.2 of the Java 2 platform, and the APl was eve
included with some Java SDK beta releases. However, since the Servlet APl is evolving much faster than th
core Java SDK, Sun decided to keep distribution separate. This has led to the revival of the Java Servlet
Development Kit (JSDK), which is currently available from Sun at http://java.sun.com/products/servlet/. The
JSDK includes the necessary servlet classes and a small servletrunner application for development and
testing. As of this writing, the latest available implementation is JSDK 2.1, based on Version 2.1 of the
Servlet API.

The examples in this chapter were developed using Sun's Java Web Server 1.1.3, unofficially considered th
reference implementation for servlets. As of this writing, a number of other products, including O'Reilly's
WebSite Pro and the W3C's JigSaw, have incorporated servlet support. Various third—party vendors,
including Live Software, New Atlanta, and IBM, have released add—on servlet modules for most other major
web server platforms, including the Netscape server family, Apache, and Microsoft IIS. I'm not going to
discuss how to load servlets on each server, since the various implementations differ in this regard. What's
important is that the servlets themselves are the same for each platform.

The three core elements of the Servlet API are the javax.servlet.Servlet interface, the
javax.servlet.GenericServlet class, and the javax.servlet. http.HttpServlet class.

Normally, you create a servlet by subclassing one of the two classes, although if you are adding servlet
capability to an existing object, you may find it easier to implement the interface.

The GenericServlet class is used for servlets that do not implement any particular communication
protocol. Here's a basic servlet that demonstrates servlet structure by printing a short message:

import javax.servlet.*;
import java.io.*;

public class BasicServlet extends GenericServlet {

public void service(ServletRequest req, ServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/plain");
PrintWriter out = resp.getWriter();

out.printin("Hello.");

}
}

BasicServlet extends the GenericServlet class and implements one method: service().

Whenever a server wants to use the servlet, it calls this service() method, passing ServietRequest

and ServletResponse objects (we'll look at these in more detail shortly). The servlet tells the server what
type of response to expect, gets a PrintWriter from the response object, and transmits its output.

The GenericServlet class can also implement a filtering servlet that takes output from an unspecified
source and performs some kind of alteration. For example, a filter servlet might be used to prepend a heade

5.2. Servlet Basics 117

http://java.sun.com/products/servlet/

Preface (Java Enterprise in a Nutshell)

scan servlet output or raw HTML files for <DATE> tags and insert the current date, or remove <BLINK>
tags. A more advanced filtering servlet might insert content from a database into HTML templates. We'll talk
a little more about filtering later in this chapter.

Although most servlets today work with web servers, there's no requirement for that in GenericServlet:
the class implements just that, a generic servlet. As we'll see in a moment, the HttpServlet class is a
subclass of GenericServlet that is designed to work with the HTTP protocol. It is entirely possible to
develop other subclasses of GenericServlet that work with other server types. For example, a
Java—-based FTP server might use servlets to return files and directory listings or perform other tasks.

5.2.1. HTTP Servlets

The HttpServlet class is an extension of GenericServlet that includes methods for handling

HTTP-specific data. HttpServlet defines a number of methods, such as doGet(), doPost(), and

doPut(), to handle particular types of HTTP requests (GET, POST, and so on). These methods are called by
the default implementation of the service() method, which figures out what kind of request is being made
and then invokes the appropriate method. Here's a simple HttpServlet:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorldServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
PrintWriter out = resp.getWriter();

out.printin("<HTML>");
out.printin("<HEAD><TITLE>Have you seen this before?</TITLE></HEAD>");
out.printin("<BODY><H1>Hello, World!</H1><H6>Again.</H6></BODY></HTML>");

}
}

HelloWorldServlet demonstrates many essential servlet concepts. The first thing to notice is that
HelloWorldServlet extends HttpServlet——standard practice for an HTTP servlet.

HelloWorldServlet defines one method, doGet(), which is called whenever anyone requests a URL
that points to this servlet.[2] The doGet() method is actually called by the default service() method of
HttpServlet. The service() method is called by the web server when a request is made of
HelloWorldServlet; the method determines what kind of HTTP request is being made and dispatches
the request to the appropriateXXX() method (in this case, doGet()). doGet() is passed two objects,
HttpServletRequest and HttpServletResponse, that contain information about the request and
provide a mechanism for the servlet to produce output, respectively.

[2] In a standard Java Web Server installation, with the servlet installed in the standard
servlets directory, this URL is http://site:8080/serviet/HelloWorldServlet. Note that the name
of the directory (servlets) is unrelated to the use of "servlet" in the URL.

The doGet() method itself does three things. First, it sets the output type to "text/html", which indicates that
the servlet produces standard HTML as its output. Second, it calls the getWriter() method of the
HttpServletResponse parameter to get a java.io.PrintWriter that points to the client. Finally,

it uses the stream to send some HTML back to the client. This isn't really a whole lot different from the
BasicServlet example, but it gives us all the tools we'll need later on for more complex web applications.

5.2.1. HTTP Servlets 118

http://site:8080/servlet/HelloWorldServlet

Preface (Java Enterprise in a Nutshell)

If you define a doGet() method for a servlet, you may also want to override the getLastModified()

method of HttpServlet. The server calls getLastModified() to find out if the content delivered by a

servlet has changed. The default implementation of this method returns a negative number, which tells the
server that the servlet doesn't know when its content was last updated, so the server is forced to call doGet(
and return the servlet's output. If you have a servlet that changes its display data infrequently (such as a ser
that verifies uptime on several server machines once every 15 minutes), you should implement
getLastModified() to allow browsers to cache responses. getLastModified() should return a long

value that represents the time the content was last modified as the number of milliseconds since midnight,
January 1, 1970, GMT.

A servlet should also implement getServletinfo(), which returns a string that contains information
about the servlet, such as name, author, and version (just like getAppletinfo() in applets). This method
is called by the web server and generally used for logging purposes.

5.2.2. Forms and Interaction

The problem with creating a servlet like HelloWorldServlet is that it doesn't do anything we can't

already do with HTML. If we are going to bother with a servlet at all, we should do something dynamic and
interactive with it. In many cases, this means processing the results of an HTML form. To make our example
less impersonal, let's have it greet the user by name. The HTML form that calls the servlet using a GET
request might look like this:

<HTML>

<HEAD><TITLE>Greetings Form</TITLE></HEAD>
<BODY>

<FORM METHOD=GET ACTION="/servlet/HelloServlet">
What is your name?

<INPUT TYPE=TEXT NAME=username SIZE=20>
<INPUT TYPE=SUBMIT VALUE="Introduce Yourself'>
</FORM>

</BODY>

</HTML>

This form submits a form variable named username to the URL /serviet/HelloServlet. How does the web
server know to load this particular servlet? Most servlet implementations, including the Java Web Server,
allow you to place unpackaged servlets into a particular directory, and access them with a URI of
[servlet/ServletName. This is similar to the way most web servers support CGI programs.

The HelloServlet itself does little more than create an output stream, read the username form variable,
and print out a nice greeting for the user. Here's the code:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloServlet extends HttpServlet {

public void doGet(HttpServiletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
PrintWriter out = resp.getWriter();

out.printin("<HTML>");

out.printin("<HEAD><TITLE>Finally, interaction!</TITLE></HEAD>");
out.printin("<BODY><H1>Hello, " + req.getParameter("username”) + "I</H1>");
out.printin("</BODY></HTML>");

5.2.2. Forms and Interaction 119

Preface (Java Enterprise in a Nutshell)

}

All we've done differently here is use the getParameter() method of HttpServletRequest to

retrieve the value of a form variable.[3] When a server calls a servlet, it can also pass a set of request
parameters. With HTTP servlets, these parameters come from the HTTP request itself, in this case in the gL
of URL—-encoded form variables. Note that a GenericServlet running in a web server also has access to
these parameters using the simpler SerlvetRequest object. When the HelloServlet runs, it inserts

the value of the username form variable into the HTML output, as shown in Figure 5-2.

[3] In the Java Web Server 1.1, the getParameter() method was deprecated in favor of
getParameterValues(), which returns a String array rather than a single string.

However, after an extensive write—in campaign, Sun took getParameter() off the
deprecated list for Version 2.0 of the Servlet API, so you can safely use this method in your

servlets.

#Y Finally, Interaction! - Nelscape | . |O] x]

File Edt View Go Comewnicator Help

e § “Bookmatks 4 Gnln-lhﬂru'.t‘l,".’rl1le'u.-;-r.(rnHth‘:r-r.m L] Fi/” Wnat's Related m

; ..

Hello, Joe! j
i

o Document: Done: Gk e A N2

Figure 5-2. Output from HelloServlet

5.2.3. POST, HEAD, and Other Requests

As | mentioned before, doGet() is just one of a collection of enabling methods for HTTP request types.
doPost() is the corresponding method for POST requests. The POST request is designed for posting
information to the server, although in practice it is also used for long parameterized requests and larger forn
to get around limitations on the length of URLSs.

If your servlet is performing database updates, charging a credit card, or doing anything that takes an explic
client action, you should make sure this activity is happening in a doPost() method. That's because POST
requests are not idempotent, which means that they are not safely repeatable, and web browsers treat therr
specially. For example, a browser cannot bookmark or, in some cases, reload a POST request. On the othe
hand, GET requests are idempotent, so they can safely be bookmarked, and a browser is free to issue the
request repeatedly without necessarily consulting the user. You can see why you don't want to charge a cre
card in a GET method!

To create a servlet that can handle POST requests, all you have to do is override the default doPost()
method from HttpServlet and implement the necessary functionality in it. If necessary, your application
can implement different code in doPost() and doGet(). For instance, the doGet() method might
display a postable data entry form that the doPost() method processes. doPost() can even call
doGet() at the end to display the form again.

The less common HTTP request types, such as HEAD, PUT, TRACE, and DELETE, are handled by other
doXXX() dispatch methods. A HEAD request returns HTTP headers only, PUT and DELETE allow clients
to create and remove resources from the web server, and TRACE returns the request headers to the client.
Since most servlet programmers don't need to worry about these requests, the HttpServlet class includes

5.2.2. Forms and Interaction 120

Preface (Java Enterprise in a Nutshell)

a default implementation of each corresponding doXXX() method that either informs the client that the
request is unsupported or provides a minimal implementation. You can provide your own versions of these
methods, but the details of implementing PUT or DELETE functionality go rather beyond our scope.

5.2.4. Servlet Responses

In order to do anything useful, a servlet must send a response to each request that is made of it. In the case
an HTTP servlet, the response can include three components: a status code, any number of HTTP headers
a response body.

The ServletResponse and HttpServletResponse interfaces include all the methods needed to

create and manipulate a servlet's output. We've already seen that you specify the MIME type for the data
returned by a servlet using the setContentType() method of the response object passed into the servlet.
With an HTTP servlet, the MIME type is generally "text/html," although some servlets return binary data: a
servlet that loads a GIF file from a database and sends it to the web browser should set a content type of
"image/gif" while a servlet that returns an Adobe Acrobat file should set it to "application/pdf".

ServletResponse and HttpServiletResponse each define two methods for producing output
streams, getOutputStream() and getWriter(). The former returns a ServletOutputStream,

which can be used for textual or binary data. The latter returns a java.io.PrintWriter object, which is
used only for textual output. The getWriter() method examines the content-type to determine which
charset to use, so setContentType() should be called before getWriter().

HttpServletResponse also includes a number of methods for handling HTTP responses. Most of these
allow you to manipulate the HTTP header fields. For example, setHeader(), setintHeader(), and
setDateHeader() allow you to set the value of a specified HTTP header, while containsHeader()

indicates whether a certain header has already been set. You can use either the setStatus() or

sendError() method to specify the status code sent back to the server. HttpServletResponse

defines a long list of integer constants that represent specific status codes (we'll see some of these shortly).
You typically don't need to worry about setting a status code, as the default code is 200 ("OK"), meaning the
the servlet sent a normal response. However, a servlet that is part of a complex application structure (such «
the file servlet included in the Java Web Server that handles the dispatching of HTML pages) may need to
use a variety of status codes. Finally, the sendRedirect() method allows you to issue a page redirect.
Calling this method sets the Location header to the specified location and uses the appropriate status code
for a redirect.

5.2.5. Servlet Requests

When a servlet is asked to handle a request, it typically needs specific information about the request so that
can process the request appropriately. We've already seen how a servlet can retrieve the value of a form
variable and use that value in its output. A servlet may also need access to information about the environme
in which it is running. For example, a servlet may need to find out about the actual user who is accessing the
servlet, for authentication purposes.

The ServletRequest and HttpServletRequest interfaces provide access to this kind of

information. When a servlet is asked to handle a request, the server passes it a request object that impleme
one of these interfaces. With this object, the servlet can find out about the actual request (e.qg., protocol, UR
type), access parts of the raw request (e.g., headers, input stream), and get any client—specific request
parameters (e.g., form variables, extra path information). For instance, the getProtocol() method returns

the protocol used by the request, while getRemoteHost() returns the nhame of the client host. The

interfaces also provide methods that let a servlet get information about the server (e.g., getServername(),
getServerPort()). As we saw earlier, the getParameter() method provides access to request

5.2.4. Servlet Responses 121

Preface (Java Enterprise in a Nutshell)

parameters such as form variables. There is also the getParameterValues() method, which returns an

array of strings that contains all the values for a particular parameter. This array generally contains only one
string, but some HTML form elements (as well as non—HTTP oriented services) do allow multiple selections
or options, so the method always returns an array, even if it has a length of one.

HttpServletRequest adds a few more methods for handling HTTP-specific request data. For instance,
getHeaderNames() returns an enumeration of the names of all the HTTP headers submitted with a
request, while getHeader() returns a particular header value. Other methods exist to handle cookies and
sessions, as we'll discuss later.

Example 5-1 shows a servlet that restricts access to users who are connecting via the HTTPS protocol, usi
Digest style authentication, and coming from a government site (a domain ending in .gov).

Example 5-1. Checking Request Information to Restrict Servlet Access

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SecureRequestServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
PrintWriter out = resp.getWriter();

out.printin("<HTML>");
out.printin("<HEAD><TITLE>Semi-Secure Request</TITLE></HEAD>");
out.printin("<BODY>");

String remoteHost = req.getRemoteHost();
String scheme = req.getScheme();
String authType = req.getAuthType();

if((remoteHost == null) || (scheme == null) || (authType == null)) {
out.printin("Request Information Was Not Available.");
return;

}

if(scheme.equalsignoreCase("https") && remoteHost.endsWith(".gov")
&& authType.equals("Digest")) {
out.printin("Special, secret information.");

}
else {
out.printin("You are not authorized to view this data.");

}

out.printin("</BODY></HTML>");

}
}

5.2.6. Error Handling

Sometimes things just go wrong. When that happens, it's nice to have a clean way out. The Servlet API give
you two ways of to deal with errors: you can manually send an error message back to the client or you can
throw a ServletException. The easiest way to handle an error is simply to write an error message to the
servlet's output stream. This is the appropriate technique to use when the error is part of a servlet's normal
operation, such as when a user forgets to fill in a required form field.

5.2.5. Servlet Requests 122

Preface (Java Enterprise in a Nutshell)

5.2.6.1. Status codes

When an error is a standard HTTP error, you should use the sendError() method of

HttpServletResponse to tell the server to send a standard error status code.

HttpServletResponse defines integer constants for all the major HTTP status codes. Table 5-1 lists the
most common status codes. For example, if a servlet cannot find a file the user has requested, it can send &
404 ("File Not Found") error and let the browser display it in its usual manner. In this case, we can replace tl
typical setContentType() and getWriter() calls with something like this:

response.sendError(HttpServletResponse.SC_NOT_FOUND);

If you want to specify your own error message (in addition to the web server's default message for a particul
error code), you can call sendError() with an extra String parameter:

response.sendError(HttpServletResponse.SC_NOT_FOUND,
"It's dark. | couldn't find anything.");

Table 5-1. Some Common HTTP Error Codes

Mnemonic Cod Default Meaning
Content Message

The client's request succeeded, and the
SC_OK 200 [OK server's response contains the requested
data. This is the default status code.

The request succeeded, but there is no hew
response body to return. A servlet may {ind
this code useful when it accepts data frgm a
form, but wants the browser view to stay at
the form. It avoids the "Document contajns
no data" error message.

The requested resource has permanently
moved to a new location. Any future
SC_MOVED_ PERMANENTLY |301 |Moved Permanentfjc erence should use the new location
given by the Location header. Most
browsers automatically access the new

location.

The requested resource has temporarily
moved to another location, but future
references should still use the original URL
SC_MOVED_ TEMPORARILY |302 |Moved Temporarilyjto access the resource. The temporary new
location is given by the Location
header. Most browsers automatically
access the new location.

The request lacked proper authorization|.
Used in conjunction with the

SC_NO_CONTENT 204 [No Content

SC_ UNAUTHORIZED 401 |Unauthorized WWW-—Authenticate and
Authorization headers.
SC _NOT_FOUND 404 |Not Found The requested resource is not available
Internal Server An error occurred inside the server that

SC_INTERNAL_ SERVER_ERROJS00 Error prevented it from fulfilling the request.

The server does not support the
functionality needed to fulfill the request

SC_NOT_ IMPLEMENTED 501 [Not Implemented

5.2.6.1. Status codes 123

Preface (Java Enterprise in a Nutshell)

The server is temporarily unavailable, but
service should be restored in the future.|If
SC_SERVICE_UNAVAILABLE |503 |Service Unavailabl@he server knows when it will be available
again, a Retry—After header may also
be supplied.

5.2.6.2. Servlet exceptions

The Servlet API includes two Exception subclasses, ServletException and its derivative,
UnavailableException. A servlet throws a ServletException to indicate a general servlet
problem. When a server catches this exception, it can handle the exception however it sees fit.

UnavailableException is a bit more useful, however. When a servlet throws this exception, it is

notifying the server that it is unavailable to service requests. You can throw an UnavailableException

when some factor beyond your servlet's control prevents it from dealing with requests. To throw an exceptio
that indicates permanent unavailability, use something like this:

throw new UnavailableException(this, "This is why you can't use the servlet.");

UnavailableException has a second constructor to use if the servlet is going to be temporarily
unavailable. With this constructor, you specify how many seconds the servlet is going to be unavailable, as
follows:

throw new UnavailableException(120, this, "Try back in two minutes");

One caveat: the servlet specification does not mandate that servers actually try again after the specified
interval. If you choose to rely on this capability, you should test it first.

5.2.6.3. A file serving serviet

Example 5-2 demonstrates both of these error—handling techniques, along with another method for reading
data from the server. FileServlet reads a pathname from a form parameter and returns the associated file.
Note that this servlet is designed only to return HTML files. If the file cannot be found, the servlet sends the
browser a 404 error. If the servlet lacks sufficient access privileges to load the file, it sends an
UnavailableException instead. Keep in mind that this servlet exists as a teaching exercise: you should

not deploy it on your web server. (For one thing, any security exception renders the servlet permanently
unavailable, and for another, it can serve files from the root of your hard drive.)

Example 5-2. Serving Files

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class FileServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServietResponse resp)
throws ServletException, IOException {

Filer;

FileReader fr;

BufferedReader br;

try {
r = new File(req.getParameter("filename"));
fr = new FileReader(r);

5.2.6.2. Servlet exceptions 124

Preface (Java Enterprise in a Nutshell)

br = new BufferedReader(fr);

if('r.isFile()) { // Must be a directory or something else
resp.sendError(resp.SC_NOT_FOUND);
return;

}

}
catch (FileNotFoundException €) {

resp.sendError(resp.SC_NOT_FOUND);
return;

}

catch (SecurityException se) { // Be unavailable permanently
throw(new UnavailableException(this,
"Servlet lacks appropriate privileges."));

}

resp.setContentType("text/html");

PrintWriter out = resp.getWriter();

String text;

while((text = br.readLine()) != null)
out.printin(text);

br.close();

}
}

5.2.7. Security

Servlets don't generally handle their own security arrangements. Instead, they typically rely on the
capabilities of the web server to limit access to them. The security capabilities of most web servers are limite
to basic on—or—off access to specific resources, controlled by username and password (or digital certificate)
with possible encryption—in—transmission using SSL. Most servers are limited to basic authentication, which
transmits passwords more or less in the clear, while some (including JWS) support the more advanced dige
authentication protocol, which works by transmitting a hash of the user's password and a server—generated
value, rather than the password itself. Both of these approaches look the same to the user; the familiar "Ent
username and password" window pops up in the web browser.

The HttpServletRequest interface includes a pair of basic methods for retrieving standard HTTP user
authentication information from the web server. If your web server is equipped to limit access, a servlet can
retrieve the username with getRemoteUser() and the authentication method (basic, digest, or SSL) with
getAuthType(). Consult your server documentation for details on using authentication to protect server
resources.

Why are these methods useful? Consider a web application that uses the web server's authentication suppc
restrict access to authorized users, but needs to control access among that set of users. The username retu
by getRemoteUser() can be used to look up specific privileges in an access control database. This is

similar to what we did in Example 5-1, except access is now controlled by username, instead of hostname.

4 PREVIOUS HOME NEXT »
5.1. The Servlet Life Cycle BOOK INDEX 5.3. Servlet Chaining
- ¢ | § ' = ~ /
Enterprise : 3 : { N/
Bookshelf Java™ Java™ Jba\'u“' Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

5.2.7. Security 125

Preface (Java Enterprise in a Nutshell)

%]AVA.,ENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 5: Java Servlets TS

5.3. Servlet Chaining

So far, we have looked at servlets that take requests directly from the server and return their results directly
the client. Servlets were designed as a generic server extension technology, however, rather than one devo
solely to performing CGl-like functions. A servlet can just as easily take its input from another servlet, and a
servlet really doesn't care very much about where its output goes.

Most web servers that implement servlets have also implemented a feature called servlet chaining, where tt
server routes a request through an administrator—defined chain of servlets. At the end of the sequence, the
server sends the output to the client. Alternately, some servers can be configured to route certain MIME typ
through certain servlets. If a filtering servlet is configured to take all of the output with the MIME type
"servlet/filterme," another servlet can produce data with that MIME type, and that data will be passed to the
filtering servlet. The filtering servlet, after doing its work, can output HTML for the browser. MIME-based
filtering also allows servlets to filter objects that don't come from a servlet in the first place, such as HTML
files served by the web server.[4]

[4] It is interesting to note that the Java Web Server is completely servlet-based; it even uses
an internal servlet to serve static HTML files. JWS users can easily implement a filtering
servlet by chaining it to the end of the file servlet. To use servlet chaining in JWS, you

must activate the feature using the administration tool.

Example 5-3 demonstrates a basic servlet, derived from HttpServlet, that examines incoming text for a
<DATE> tag and replaces the tag with the current date. This servlet is never called on its own, but instead
after another servlet (such as, an HTML generator) has produced the actual content.

Example 5-3. Date Filtering Servlet

import javax.servlet.*;

import javax.servlet.http.*;

import java.io.*;

import java.util.*;

public class DateFilter extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

PrintWriter out = resp.getWriter();
String contentType = req.getContentType();
if (contentType == null)
return; // No incoming data
/I Note that if we were using MIME filtering we would have to set this to
/I something different to avoid an infinite loop
resp.setContentType(contentType);
BufferedReader br = new BufferedReader(req.getReader());

String line = null;

5.3. Servlet Chaining 126

Preface (Java Enterprise in a Nutshell)

Date d = new Date();
while ((line = br.readLine()) != null) {
int index;
while ((index=line.indexOf("<DATE>")) >= 0)
line = line.substring(0, index) + d + line.substring(index + 6);
out.printin(line);

}

br.close();

}
}

The DateFilter servlet works by reading each line of input, scanning for the text <DATE>, and replacing
it with the current date. This example introduces the getReader() method of HttpServletRequest,

which returns a PrintReader that points to the original request body. When you call getReader() in an
HttpServlet, you can read the original HTTP form variables, if any. When this method is used within a
filtering servlet, it provides access to the output of the previous servlet in the chain.

4 PREVIOUS HOME NEXT »
5.2. Servlet Basics BOOK INDEX 5.4. Custom Servlet
Initialization

. , ; n -) v a

Java Pa | § bﬁﬂ ”s) - A
Enterprise : 3 3 @ @ 7<\ /
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™

Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

4@ PREVIOUS Chapter 5: Java Servlets NIXT ®

5.4. Custom Servlet Initialization

At the beginning of this chapter, | talked about how a servlet's persistence can be used to build more efficier
web applications. This is accomplished via class variables and the init() method. When a server loads a
servlet for the first time, it calls the servlet's init() method and does not make any service calls until

init() has finished. In the default implementation, init() simply handles some basic housekeeping, but

a servlet can override the method to perform whatever one—time tasks are required. This often means doing
some sort of I/O—-intensive resource creation, such as opening a database connection. You can also use the
init() method to create threads that perform various ongoing tasks. For instance, a servlet that monitors the
status of machines on a network might create a separate thread to periodically ping each machine. When at
actual request occurs, the service methods in the servlet can use the resources created in init(). Thus, the
status monitor servlet might display an HTML table with the status of the various machines. The default
init() implementation is not a do—nothing method, so you should remember to always call the

super.init() method as the first action in your own init() routines.[5]

[5] Note that you no longer have to do this with Version 2.1 of the Servlet API. The
specification has been changed so that you can simply override a no—argument init()

5.4. Custom Servlet Initialization 127

Preface (Java Enterprise in a Nutshell)

method, which is called by the Generic Servletinit(ServletConfig)
implementation.

The server passes the init() method a ServletConfig object, which can include specific servlet

configuration parameters (for instance, the list of machines to monitor). ServletConfig encapsulates the
servlet initialization parameters, which are accessed via the getlnitParameter() and
getinitParameterNames() methods. GenericServlet and HttpServlet both implement the

ServletConfig interface, so these methods are always available in a servlet (one of the things the default
init() implementation does is store the ServletConfig object for these methods, which is why it is

important that you always call super.init()). Different web servers have different ways of setting

initialization parameters, so we aren't going to discuss how to set them. Consult your server documentation
details.

Every servlet also has a destroy() method that can be overwritten. This method is called when, for
whatever reason, a server unloads a servlet. You can use this method to ensure that important resources at
freed, or that threads are allowed to finish executing unmolested. Unlike init(), the default implementation

of destroy() is a do—nothing method, so you don't have to worry about invoking the superclass'

destroy() method.

Example 5-4 shows a counter servlet that saves its state between server shutdowns. It uses the init()
method to first try to load a default value from a servlet initialization parameter. Next the init() method

tries to open a file named /data/counter.dat and read an integer from it. When the servlet is shut down, the
destroy() method creates a new counter.dat file with the current hit—count for the servlet.

Example 5-4. A Persistent Counter Servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class LifeCycleServlet extends HttpServlet {
int timesAccessed;
public void init(ServletConfig conf) throws ServletException {
super.init(conf);

/I Get initial value

try {
timesAccessed = Integer.parselnt(getinitParameter("defaultStart"));

}

catch(NullPointerException e) {
timesAccessed = 0;

}

catch(NumberFormatException e) {
timesAccessed = 0;

}

/I Try loading from the disk

try {
File r = new File("./data/counter.dat");
DatalnputStream ds = new DatalnputStream(new FilelnputStream(r));
timesAccessed = ds.readInt();

}

catch (FileNotFoundException e) {
/I Handle error

}

catch (IOException €) {
/I This should be logged

5.4. Custom Servlet Initialization 128

Preface (Java Enterprise in a Nutshell)

}
finally {
ds.close();
}
}

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
PrintWriter out = resp.getWriter();

timesAccessed++;

out.printin("<HTML>");

out.printin("<HEAD>");

out.printin("<TITLE>Life Cycle Servlet</TITLE>");
out.printin("</HEAD><BODY>");

out.printin("l have been accessed " + timesAccessed + " time[s]");
out.printin("</BODY></HTML>");

}
public void destroy() {

/I Write the Integer to a file

File r = new File("./data/counter.dat");

try {
DataOutputStream dout = new DataOutputStream(new FileOutputStream(r));
dout.writelnt(timesAccessed);

}

catch(IOException e) {
/I This should be logged

}
finally {
dout.close();
}
}
}
4 PREVIOUS HOME NEXT »
5.3. Servlet Chaining BOOK INDEX 5.5. Thread Safety
f— . /
Y A » k\
&4 Ly ‘ @ ‘)<\/
Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

 JAVA.ENTERPRISE IN A NUTSHELL =2

4@ PREVIOUS Chapter 5: Java Servlets nxy »

5.4. Custom Servlet Initialization

129

Preface (Java Enterprise in a Nutshell)

5.5. Thread Safety

In a typical servlet scenario, only one copy of any particular servlet is loaded at any given time. Each servlet
might, however, be called upon to deal with multiple requests at the same time. This means that a servlet
needs to be thread—-safe. If a servlet doesn't use any class variables (that is, any variables with a scope bro:x
than the service method itself), it is generally already thread—safe. If you are using any third—party libraries c
extensions, make sure that those components are also thread—-safe. However, a servlet that maintains persi
resources needs to make sure that nothing untoward happens to those resources. Imagine, for example, a
servlet that maintains a bank balance using an int in memory.[6] If two servlets try to access the balance at
the same time, we might get this sequence of events:

[6] Hey, bear with me on this one. It's certainly more than adequate for my salary...

User 1 connects to the servlet to make a $100 withdrawal.
The servlet checks the balance for User 1, finding $120.
User 2 connects to the servlet to make a $50 withdrawal.
The servlet checks the balance for User 2, finding $120.
The servlet debits $100 for User 1, leaving $20.

The servlet debits $50 for User 2, leaving —$30.

The programmer is fired.

Obviously, this is incorrect behavior, particularly that last bit. We want the servlet to perform the necessary
action for User 1, and then deal with User 2 (in this case, by giving him an insufficient funds message). We
can do this by surrounding sections of code with synchronized blocks. While a particular synchronized
block is executing, no other sections of code that are synchronized on the same object (usually the servlet a
the resource being protected) can execute. For more information on thread safety and synchronization, see
Java Threads by Scott Oaks and Henry Wong (O'Reilly).

Example 5-5 implements the ATM display for the First Bank of Java. The doGet() method displays the
current account balance and provides a small ATM control panel for making deposits and withdrawals, as
shown in Figure 5-3.[7] The control panel uses a POST request to send the transaction back to the servlet,
which performs the appropriate action and calls doGet() to redisplay the ATM screen with the updated
balance.

[7] Despite the fact that Java is a very large island, there's still only one account.

¥t Netscape (=] E3
Fle Eck View Go Commurecator Help
v - . - »
J A & 2 w3 & FH R
Back Reload Home Seach Netscape Pint Secunly
§ " Bookmarks A Location: [hitp./7127.0.1:8080/ seeviet/AlmS erviet =] F7 what's Related

First Bank of Java ATM

Cutrent Balance: 384

Amount |“l n]
Daposit Withdraw

o’ Document: Dore i dw QD N2

5.5. Thread Safety 130

Preface (Java Enterprise in a Nutshell)

Figure 5-3. The First Bank of Java ATM display

Example 5-5. An ATM Servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

import java.io.*;

public class AtmServlet extends HttpServlet {
Account act;

public void init(ServletConfig conf) throws ServletException {
super.init(conf);
act = new Account();
act.balance = 0;

}

public void doGet(HttpServiletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

resp.setContentType("text/html");
PrintWriter out = resp.getWriter();

out.printin("<HTML><BODY>");

out.printin("<H2>First Bank of Java ATM</H2>");

out.printin("Current Balance: " + act.balance + "
");
out.printin("<FORM METHOD=POST ACTION=/servlet/AtmServlet>"),

out.printin("Amount: <INPUT TYPE=TEXT NAME=AMOUNT SIZE=3>
");
out.printin("<INPUT TYPE=SUBMIT NAME=DEPOSIT VALUE=\"Deposit\">");
out.printin("<INPUT TYPE=SUBMIT NAME=WITHDRAW VALUE=\"Withdraw\">");
out.printin("</FORM>");

out.printin("</BODY></HTML>");

}

public void doPost(HttpServietRequest req, HttpServletResponse resp)
throws ServletException, IOException {

int amt=0;

try {
amt = Integer.parselnt(req.getParameter("AMOUNT"));

catch (NullPointerException e) {
/l No Amount Parameter passed

catch (NumberFormatException e) {
/I Amount Parameter was not a number

}

synchronized(act) {
if(req.getParameter("WITHDRAW") != null) && (amt < act.balance)
act.balance = act.balance — amt;
if(req.getParameter("DEPOSIT") != null) && (amt > 0)
act.balance = act.balance + amt;
} /1 end synchronized block

doGet(req, resp); /I Show ATM screen
}

public void destroy() {
/I This is where we would save the balance to a file

}

5.5. Thread Safety 131

Preface (Java Enterprise in a Nutshell)

class Account {
public int balance;

}
}

The doPost() method alters the account balance contained within an Account object act (since

Account is so simple, I've defined it as an inner class). In order to prevent multiple requests from accessing
the same account at once, any code that alters act is synchronized on act. This ensures that no other code
can alter act while a synchronized section is running.

The destroy() method is defined in the AtmServlet, but it contains no actual code. A real banking

servlet would obviously want to write the account balance to disk before being unloaded. And if the servlet
were using JDBC to store the balance in a database, it would also want to destroy all its database related
objects.

A more complex servlet than AtmServlet might need to synchronize its entire service method, limiting the
servlet to one request at a time. In these situations, it sometimes makes sense to modify the standard servle
life cycle a little bit. We can do this by implementing the SingleThreadModel interface. This is a tag

interface that has no methods; it simply tells the server to create a pool of servlet instances, instead of a sin
instance of the servlet. To handle an incoming request, the server uses a servlet from the pool and only allo
each copy of the servlet to serve one request at a time. Implementing this interface effectively makes a serv
thread—safe, while allowing the server to deal with more than one connection at a time. Of course, using
SingleThreadModel does increase resource requirements and make it difficult to share data objects

within a servlet.

Another use for SingleThreadModel is to implement simple database connection sharing. Having

multiple database connections can improve performance and avoid connection overloading. Of course, for
more advanced or high—-traffic applications, you generally want to manage connection pooling explicitly,
rather than trusting the web server to do it for you.

4 PREVIOUS HOME NEXT »
5.4. Custom Servlet BOOK INDEX 5.6. Server-Side Includes
Initialization
8. @ BN s
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@]AVAWENT ERPRISE IN A NUTSHELL =2

4@ PREVIOUS Chapter 5: Java Servlets NIXT ®

5.6. Server—-Side Includes

Servlets are not confined to handling entire requests. Some web servers allow servlets to add small amount
of dynamic content to otherwise static HTML pages. This is similar to the server—side include functionality
found in most web servers, but includes additional servlet—specific functionality. For example, let's assume
that we want to use a server-side include to add a randomly selected advertisement to a page. A page that

5.6. Server-Side Includes 132

Preface (Java Enterprise in a Nutshell)

the advertisement servlet is written just like a normal HTML page, except that it contains one or more
<SERVLET> tags and is saved with the .shtml extension. The <SERVLET> tag is similar to the <APPLET>
tag, which loads an applet within a page. When a client requests a .shtml page, the server finds all of the
<SERVLET> tags in the text and replaces them with the output from the appropriate servlets.

When you use a <SERVLET> tag, you must include a CODE parameter that identifies the servlet to be load
This can be a class hame or a servlet alias set up within the server. On some servers, you can specify an
optional CODEBASE parameter that loads the servlet code from a remote location. Any additional paramete
are treated as servlet initialization parameters. Each <SERVLET> tag must be matched by a closing
</SERVLET> tag. Between the opening and closing tags, you can include as many <PARAM> tags as
necessary, where you specify NAME and VALUE attributes for each one. The servlet can then access these
parameters with getParameter().

Now let's look at an HTML page that actually uses a servlet with a server—side include. Here's a sample .shi
file:

<HTML>

<HEAD><TITLE>Today's News</TITLE></HEAD>
<BODY>

<H1>Headlines</H1>

<H2>Java Servlets Take Over Web!</H2>
<SERVLET CODE=AdMaker>

<PARAM NAME=pagetitle VALUE="Headlines">
</SERVLET>

</BODY>

</HTML>

The actual AdMaker servlet is shown in Example 5-6.

Example 5-6. An Advertising Servlet

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class AdMaker extends HttpServlet {

static String[] adText = { "Al's Web Services",
"Bob's House of HDs",
"Main St. Computers" };

int currentAd = 0;

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

String adContent;
PrintWriter out = resp.getWriter();
synchronized(this) {

adContent = adText[currentAd];

currentAd++;

if (currentAd >= adText.length)

currentAd = 0;

}
String title = req.getParameter("pagetitle");
if(title != null)

out.printin(title + " is brought to you by");
else

out.printin("This page is brought to you by");
out.printin(adContent);

5.6. Server-Side Includes 133

Preface (Java Enterprise in a Nutshell)

This servlet really isn't too different from the other ones we've looked at. It accesses parameters (in this cas
from the <SERVLET> tag instead of a set of HTTP form values) and uses a PrintWriter to produce

HTML. It does not set a content type or manipulate any HTTP headers, however, because that information
may have been sent to the browser before the servlet begins executing.

Server-side includes can be a powerful tool, but they are not part of the standard Servlet API, and therefore
some servlet implementations may not support them at all. To make matters worse, some implementations
may work in a different manner (this is especially true of third—party servlet runners that plug into
non-Java—aware web servers). The example here was developed and tested with Java Web Server. If you
want to use server—side includes, you should read your server documentation first.

JavaServer Pages (commonly referred to as JSP) is another technology for accessing server—side Java
components directly in HTML pages. The overall effect is not unlike Microsoft's Active Server Pages (ASP).
As of this writing, Sun has just finalized the JSP 1.0 specification and several server vendors have announc
support for it.

4 PREVIOUS HOME NEXT »

5.5. Thread Safety BOOK INDEX 5.7. Cookies
B @ @ ‘ M‘ a4 K,
Bookshelf Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nlmlwll Fomdalmn (lusses JavoBeans™, Serviet Security Distributed

ino Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 5: Java Servlets NXT ®

5.7. Cookies

Cookies spent a year or two as a little—known feature of Netscape Navigator before becoming the focus of &
raging debate on electronic privacy. Ethical and moral considerations aside, cookies allow a web server to
store small amounts of data on client systems. Cookies are generally used to store basic user identification
configuration information. Because a cookie's value can uniquely identify a client, cookies are often used for
session tracking (although, as we'll see shortly, the Servlet API provides higher—level support for session
tracking).

To create a cookie, the server (or, more precisely, a web application running on the server) includes a
Cookie header with a specific value in an HTTP response. The browser then transmits a similar header with
that value back to the server with subsequent requests, subject to certain rules. The web application can the
use the cookie value to keep track of a particular user, handle session tracking, or whatever. Because cooki
use a single Cookie header, the syntax for a cookie allows for multiple name/value pairs in the overall
cookie value.

More information about the cookies is available from the original Netscape specification document at
http://home.netscape.com/newsref/std/cookie_spec.html. The Internet Engineering Task Force is currently
working on a standard cookie specification, defined in RFC-2109, available at

5.7. Cookies 134

http://home.netscape.com/newsref/std/cookie_spec.html

Preface (Java Enterprise in a Nutshell)

http://www.internic.net/rfc/rfc2109.txt.

The Servlet APl includes a class, javax.servlet.http.Cookie, that abstracts cookie syntax and

makes it easy to work with cookies. In addition, HttpServletResponse provides an addCookie())

method, and HttpServletRequest provides a getCookies() method, to aid in writing cookies to and

reading cookies from the HTTP headers, respectively. To find a particular cookie, a servlet needs to read th
entire collection of values and look through it:

Cookie[] cookies;
cookies = req.getCookies();
String userid = null;

for (inti=0; i < cookies.length; i++)
if (cookies][i].getName().equals("userid"))
userid = cookies[i].getValue();

A cookie can be read at any time, but can be created only before any content is sent to the client. This is
because cookies are sent using HTTP headers and these headers can be sent to the client before the regul
content. Once any data has been written to the client, the server can flush the output and send the headers
any time, so you cannot create any new cookies safely. You must create new cookies before sending any
output. Here's an example of creating a cookie:

String userid = createUserID(); /I Create a unique ID
Cookie ¢ = new Cookie("userid", userid);
resp.addCookie(c); /l Add the cookie to the HTTP headers

Note that a web browser is only required to accept 20 cookies per site and 300 total per user, and the brows
can limit each cookie's size to 4096 bytes.

Cookies can be customized to return information only in specific circumstances. In particular, a cookie can
specify a particular domain, a particular path, an age after which the cookie should be destroyed, and wheth
or not the cookie requires a secure (HTTPS) connection. A cookie is normally returned only to the host that
specified it. For example, if a cookie is set by serverl.company.com, it isn't returned to server2.company.co
We can get around this limitation by setting the domain to .company.com with the setDomain() method of
Cookie. By the same token, a cookie is generally returned for pages only in the same directory as the servle
that created the cookie or under that directory. We can get around this limitation using setPath(). Here's a
cookie that is returned to all pages on all top—level servers at company.com:

String userid = createUserID(); // Create a unique ID
Cookie ¢ = new Cookie("userid", userid);
c.setDomain(".company.com"); // *.company.com, but not *.web.company.com

c.setPath("/"); /I All pages
resp.addCookie(c); // Add the cookie to the HTTP headers
4 PREVIOUS HOME NEXT »
5.6. Server-Side Includes BOOK INDEX 5.8. Session Tracking
& P - ,\ Q) - /— .
Enterprise : 3 : [N/
Bookshelf Java™ Java™ Jba\'u“' Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

5.7. Cookies 135

http://www.internic.net/rfc/rfc2109.txt

Preface (Java Enterprise in a Nutshell)

@JAVA‘,ENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 5: Java Servlets TS

5.8. Session Tracking

Very few web applications are confined to a single page, so having a mechanism for tracking users through
site can often simplify application development. The Web, however, is an inherently stateless environment. .
client makes a request, the server fulfills it, and both promptly forget about each other. In the past,
applications that needed to deal with a user through multiple pages (for instance, a shopping cart) had to re:
to complicated dodges to hold onto state information, such as hidden fields in forms, setting and reading
cookies, or rewriting URLS to contain state information.

Fortunately, Version 2.0 of the Servlet API provides classes and methods specifically designed to handle
session tracking. A servlet can use the session-tracking API to delegate most of the user—tracking functions
the server. The first time a user connects to a session—enabled servlet, the servlet simply creates a
javax.servlet.http.HttpSession object. The servlet can then bind data to this object, so

subsequent requests can read the data. After a certain amount of inactive time, the session object is destro

A servlet uses the getSession() method of HttpServletRequest to retrieve the current session

object. This method takes a single boolean argument. If you pass true, and there is no current session
object, the method creates and returns a new HttpSession object. If you pass false, the method returns
null if there is no current session object. For example:

HttpSession thisUser = req.getSession(true);

When a new HttpSession is created, the server assigns a unique session ID that must somehow be
associated with the client. Since clients differ in what they support, the server has a few options that vary
slightly depending on the server implementation. In general, the server's first choice is to try to set a cookie
the client (which means that getSession() must be called before you write any other data back to the

client). If cookie support is lacking, the API allows servlets to rewrite internal links to include the session ID,
using the encodeUrl() method of HttpServletResponse. This is optional, but recommended,

particularly if your servlets share a system with other, unknown servlets that may rely on uninterrupted
session tracking. However, this on—-the—fly URL encoding can become a performance bottleneck because tt
server needs to perform additional parsing on each incoming request to determine the correct session key fi
the URL. (The performance hit is so significant that the Java Web Server disables URL encoding by default.

To use URL encoding, you have to run all your internal links through encodeUrl(). Say you have a line of
code like this:

out.printin("Check Out");
You should replace it with:

out.print("<A HREF=\"");
out.print(resp.encodeUrl("/servlet/CheckoutServlet");
out.printin("\">Check Out");

JWS, in this case, adds an identifier beginning with $ to the end of the URL. Other servers have their own
methods. Thus, with JWS, the final output looks like this:

CheckOut"

5.8. Session Tracking 136

Preface (Java Enterprise in a Nutshell)

In addition to encoding your internal links, you need to use encodeRedirectUrl() to handle redirects
properly. This method works in the same manner as encodeUrl(). Note that in Version 2.1 of the Servlet
API, both methods have been deprecated in favor of identical methods that use the more standard "URL" in
their names: encodeURL() and encodeRedirectURL().

You can access the unique session ID via the getID() method of HttpSession. This is enough for most
applications, since a servlet can use some other storage mechanism (i.e., a flat file, memory, or a database)
store the unique information (e.g., hit count or shopping cart contents) associated with each session. Howey
the API makes it even easier to hold onto session—specific information by allowing servlets to bind objects tc
a session using the putValue() method of HitpSession. Once an object is bound to a session, you can

use the getValue() method.

Objects bound using putValue() are available to all servlets running on the server. The system works by
assigning a user—defined name to each object (the String argument); this name is used to identify objects at
retrieval time. In order to avoid conflicts, the general practice is to name bound objects with names of the
form applicationname.objectname. For example:

session.putValue("myservlet.hitcount”, new Integer(34));
Now that object can be retrieved with:
Integer hits = (Integer)session.getValue("myservlet.hitcount")

Example 5-7 demonstrates a basic session—tracking application that keeps track of the number of visits to t
site by a particular user. It works by storing a counter value in an HttpSession object and incrementing it

as necessary. When a new session is created (as indicated by isNew(), which returns true if the session ID
has not yet passed through the client and back to the server), or the counter object is not found, a hew coun
object is created.

Example 5-7. Counting Visits with Sessions

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class VisitCounterServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {

PrintWriter out = resp.getWriter();
resp.setContentType("text/html");

HttpSession thisUser = req.getSession(true);
Integer visits;

if('thisUser.isNew()) { /IDon't check newly created sessions
visits = (Integer)thisUser.getValue("visitcounter.visits");
if(visits == null)
visits = new Integer(1);
else
visits = new Integer(visits.intValue() + 1);
}
else
visits = new Integer(1);

// Put the new count in the session
thisUser.putValue("visitcounter.visits", visits);

5.8. Session Tracking 137

Preface (Java Enterprise in a Nutshell)

// Finally, display the results and give them the session ID too
out.printin("<HTML><HEAD><TITLE>Visit Counter</TITLE></HEAD>");
out.printin("<BODY>You have visited this page " + visits + " time[s]");
out.printin("since your last session expired.");

out.printin("Your Session ID is " + thisUser.getld());
out.printin("</BODY></HTML>");

5.8.1. HttpSessionBindingListener

Sometimes it is useful to know when an object is getting bound or unbound from a session object. For

instance, in an application that binds a JDBC java.sgl.Connection object to a session (something that,

by the way, is ill-advised in all but very low traffic sites), it is important that the Connection be explicitly
closed when the session is destroyed.

The javax.servlet.http.HttpSessionBindingListener interface handles this task. It

includes two methods, valueBound() and valueUnbound(), that are called whenever the object that
implements the interface is bound or unbound from a session, respectively. Each of these methods receives
HttpSessionBindingEvent object that provides the name of the object being bound/unbound and the
session involved in the action. Here is an object that implements the HttpSessionBindingListener

interface in order to make sure that a database connection is closed properly:

class ConnectionHolder implements HttpSessionBindingListener {
java.sqgl.Connection dbCon;

public ConnectionHolder(java.sql.Connection con) {
dbCon = con;

}

public void valueBound(HttpSessionBindingEvent event) {
/I Do nothing

}

public void valueUnbound(HttpSessionBindingEvent event) {
dbCon.close();

}
}

5.8.2. Session Contexts

Version 2.0 of the Servlet API included the getContext() method of HttpSession, coupled with an

interface named HttpSessionContext. Together, these allowed servlets to access other sessions running

in the same context. Unfortunately, this functionality also allowed a servlet to accidentally expose all the
session IDs in use on the server, meaning that an outsider with knowledge could spoof a session. To elimin:
this minor security risk, the session context functionality has been deprecated in Version 2.1 of the Servlet
API.

€ PREVIOUS HOME NEXT

5.7. Cookies BOOK INDEX 5.9. Databases and
Non-HTML Content

5.8.1. HttpSessionBindingListener 138

Preface (Java Enterprise in a Nutshell)

— v 3) = j— s
Java® @ | § ooy , 3o N,
Enterprise D et 3 \g 7<\/
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in o Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 5: Java Servlets T

5.9. Databases and Non—HTML Content

Most web applications need to communicate with a database, either to generate dynamic content or collect
and store data from users, or both. With servlets, this communication is easily handled using the JDBC API
described in Chapter 2, "JDBC". Thanks to JDBC and the generally sensible design of the servlet life cycle,
servlets are an excellent intermediary between a database and web clients.

Most of the general JDBC principles discussed in Chapter 2, "JDBC" apply to servlets. However, servlet
developers should keep a few things in mind for optimal performance. First, JDBC Connection objects can
be created in the servlet's init() method. This allows the servlet to avoid reconnecting to the database (a la
CGl) with each request, saving up to a second or more on every single page request. If you anticipate high
volume, you may want to create several connections and rotate between them. An excellent freeware
connection—pooling system is available at http://www.javaexchange.com. Or, if you're using JDBC 2.0, the
javax.sgl package provides a connection—pooling mechanism. Finally, if you plan on using JDBC's
transaction support, you need to create individual connections for each request or obtain exclusive use of a
pooled connection.

So far, all our servlets have produced standard HTML content. Of course, this is all most servlets ever do, b
it's not all that they can do. Say, for instance, that your company stores a large database of PDF documents
within an Oracle database, where they can be easily accessed. Now say you want to distribute these
documents on the Web. Luckily, servlets can dish out any form of content that can be defined with a MIME
header. All you have to do is set the appropriate content type and use a ServletOuputStream if you need

to transmit binary data. Example 5-8 shows how to pull an Adobe Acrobat document from an Oracle
database.

Example 5-8. A Servlet That Serves PDF Files from a Database

import java.io.*;

import java.sql.*;

import javax.servlet.*;
import javax.servlet.http.*;

public class DBPDFReader extends HttpServlet {
Connection con;
public void init(ServletConfig config) throws ServletException {

super.init(config);

try {
Class.forName("oracle.jdbc.driver.OracleDriver");

con = DriverManager.getConnection("jdbc:oracle:oci7:@DBHOST",

5.9. Databases and Non—HTML Content 139

http://www.javaexchange.com/

Preface (Java Enterprise in a Nutshell)

"user", "passwd");

}
catch (ClassNotFoundException e) {
throw new UnavailableException(this, "Couldn't load OracleDriver");
}
catch (SQLException €) {
throw new UnavailableException(this, "Couldn't get db connection®);
}
}

public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException {

try {
res.setContentType("application/pdf");

ServletOutputStream out = res.getOutputStream();

Statement stmt = con.createStatement();
ResultSet rs = stmt.executeQuery(
"SELECT PDF FROM PDF WHERE PDFID =" + req.getParameter("PDFID"));

if (rs.next()) {
BufferedinputStream pdfData =
new BufferedinputStream(rs.getBinaryStream("PDF"));
byte[] buf = new byte[4 * 1024]; // 4K buffer
int len;
while ((len = pdfData.read(buf, 0, buf.length)) != -1) {
out.write(buf, 0, len);

}
}
else {
res.sendError(res.SC_NOT_FOUND);
}
}
catch(SQLException e) {
/I Report it
}
}
}
4 PREVIOUS HOME NEXT »
5.8. Session Tracking BOOK INDEX 5.10. The Servlet API 2.1
f— . /
\g) ¥ » %
N & @ N
Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

 JAVA.ENTERPRISE IN A NUTSHELL =2

4@ PREVIOUS Chapter 5: Java Servlets nxy »

5.9. Databases and Non-HTML Content

140

Preface (Java Enterprise in a Nutshell)

5.10. The Serviet API 2.1

Sun made the specification for Version 2.1 of the Servlet API available in November 1998. This version of
the API includes some small "housekeeping" changes that make it more consistent and easier to use. For
example, method names have been standardized to capitalize "URL", meaning encodeUrl() has been
deprecated in favor of encodeURL(), and so forth. GenericServlet now implements

ServletContext directly and provides a no—argument init() method you can override in your own

servlets. The ServletContext interface contains two new methods, getMajorVersion() and
getMinorVersion(), that can determine the latest API version supported.

In addition to these small updates (and a few others noted in Part 3, "API Quick Reference"), Sun included ¢
few genuinely new features. Some are fairly minor. For example, a servlet can now specify a "root cause"
exception when creating a new ServletException object. The root cause can be read with the new
getRootCause() method of ServletException. This provides somewhat more information than the

old approach of creating a ServletException with the value returned by getMessage() from the

exception that actually caused the problem.

Other new features, including request dispatching and shared attributes, are more significant and are discus
in the sections that follow. Note that as of this writing, few servlet engines support the new features in Versic
2.1 of the Servlet API.

5.10.1. Request Dispatching

The new request dispatching functionality allows a servlet to delegate request handling to other components
on the server. A servlet can either forward an entire request to another servlet or include bits of content from
other components in its own output. In either case, this is done with a RequestDispatcher object that is
obtained from the ServletContext with its new getRequestDispatcher() method. When you call

this method, you specify the path to the servlet to which you are dispatching the request.

When you dispatch a request, you can set request attributes using the setAttribute() method of
ServletRequest and read them using the getAttribute() method. A list of available attributes is
returned by getAttributeNames(). All three of these methods are new in Version 2.1. Rather than
taking only String objects (like parameters), an attribute may be any valid Java object.

RequestDispatcher provides two methods for dispatching requests: forward() and include(). To
forward an entire request to another servlet, use the forward() method. When using forward(), the
ServletRequest object is updated to include the new target URL. If a ServletOutputStream or
PrintWriter has already been retrieved from the ServletResponse object, the forward() method
throws an lllegalStateException.

The include() method of RequestDispatcher causes the content of the dispatchee to be included in
the output of the main servlet——just like a server-side include. To see how this works, let's look at part of a
servlet that does a keep—alive check on several different servers:

out.printin("Uptime for our servers");

/I Get a RequestDispatcher to the ServerMonitorServlet

RequestDispatcher d =
getServletContext().getRequestDispatcher("/serviet/ServerMonitorServlet");

req.setAttribute("serverurl”, new URL("http://www1.company.com"));
d.include(req, res);

req.setAttribute("serverurl”, new URL("http://www2.company.com"));
d.include(req, res);

5.10. The Serviet APl 2.1 141

Preface (Java Enterprise in a Nutshell)

5.10.2. Shared Attributes

The ServletContext interface includes a number of new methods that support the ability for servlets to
share attributes. The new setAttribute() method allows a servlet to set an attribute that can be shared
by any other servlets that live in its ServletContext. The getAttribute() method, which previously
allowed servlets to retrieve hardcoded server attributes, provides access to attribute values, while
getAttributeNames() returns an Enumeration of all the shared attributes.

Shared attributes open up some exciting new possibilities. Multiple servlets within a single web application
can easily share configuration information, as well as complex programmatic resources, such as a CORBA
object that handles user authentication or a database connection pool.

On a related note, Version 2.1 of the Servlet API deprecates all methods related to accessing other servlets
directly, due to the fact that they are inherently insecure. Thus, getServlet() and

getServletNames() join the already deprecated getServlets(). The problem here was that

getServlet() incorrectly allowed one servlet to call another servlet's life—cycle methods.

5.10.3. Resource Abstraction

Resource abstraction is a new feature that allows a servlet to access a resource on a web server, such as a
HTML file, without knowing where that resource actually lives. This functionality makes it much easier to
move servlets on a web server and even among web servers, such as for load—balancing purposes.

A servlet gets access to a resource using the new getResource() method of ServletContext. You

specify a URI path to the resource and get back a URL object that lets you examine the requested resource
The web server controls how URI path parameters map to actual resources. Note that the resources handle
this functionality cannot be an active resource, like another servlet or a CGI script; use the
RequestDispatcher for these kinds of resources.

Let's say we have a servlet that writes a complicated header for the content served by the page. To load the
actual content, all we have to do is:

URL content = getServletContext().getResource("/pages/pagel12.html");
out.print(content.getContent());

4 PREVIOUS HOME NEXT »

5.9. Databases and BOOK INDEX 6. JNDI
Non—-HTML Content

. @B H T ese

Lntetprlse
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@]AVAWENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Part 1: Introducing the NEXT »

5.10.2. Shared Attributes 142

Preface (Java Enterprise in a Nutshell)

Java Enterprise APIs

5.10.2. Shared Attributes 143

Chapter 6. INDI

Contents:

JNDI Architecture

A INDI Example

Introducing the Context

Looking Up Objects in a Context
The NamingShell Application
Listing the Children of a Context
Creating and Destroying Contexts
Binding Objects

Accessing Directory Services
Modifying Directory Entries
Creating Directory Entries
Searching a Directory

The Java Naming and Directory Interface (JNDI) is an API that supports accessing naming and directory
services in Java programs. The purpose of a naming service is to associate names with objects and provide
way to access objects based on their names. You should be familiar with naming systems; you use them ev
day when you browse the filesystem on your computer or surf the Web by typing in a URL. Objects in a
naming system can range from files in a filesystem and names located in Domain Name System (DNS)
records, to Enterprise JavaBeans (EJB) components in an application server and user profiles in an LDAP
(Lightweight Directory Access Protocol) directory. If you want to use Java to write an application such as a
search utility, a network—enabled desktop, an application launcher, an address book, a network managemelt
utility, or a class browser—-in short, anything that accesses objects in a naming system—--JNDI is a good
candidate for writing that application.

As its name implies, JNDI doesn't just deal with naming services. JNDI also encompasses directory service:
which are a natural extension of naming services. The primary difference between the two is that a directory
service allows the association of attributes with objects, such as an email address attribute for a user object
while a naming service does not. Thus, with a directory service, you can access the attributes of objects anc
search for objects based on their attributes. You can use JNDI to access directory services like LDAP and
Novell Directory Services (NDS) directories.

As an enterprise programmer, you will most likely use JNDI to access Enterprise JavaBeans; the EJB
specification requires that you use JNDI to locate EJB components on the network. But you can also use JN
to find remote objects in an RMI registry on a remote server. And most enterprise Java suppliers, such as B
WebXPress, IBM, Novell, Sun, and SCO, support JNDI access to their naming systems.

6.1. JNDI Architecture

The architecture of JNDI is somewhat like the JDBC architecture, in that both provide a standard
protocol-independent API built on top of protocol-specific driver or provider implementations. This layer
insulates an application from the actual data source it is using, so, for example, it doesn't matter whether the
application is accessing an NDS or LDAP directory service.

The JNDI architecture includes both an application programming interface (API) and a service provider
interface (SPI), as shown in Figure 6-1. A Java application uses the JNDI API to access naming and directc
services, primarily through the Context and DirContext interfaces. The JNDI APl is defined in the
javax.naming and javax.naming.directory packages. Note that JNDI is a standard extension to

the Java 2 platform; it is available at http://java.sun.com/products/jndi/. This chapter covers Version 1.1 of
JNDL.[1]

Chapter 6. INDI 144

http://java.sun.com/products/jndi/

Preface (Java Enterprise in a Nutshell)

[1]As this book went to press, Sun released a public draft of Version 1.2 of the JNDI
specification. The information in this chapter is unchanged by this new version of the
specification.

Binding Attributes
1 |
Conlex! DirContext
I— InifialContext
\ppiication
Service Provider Interface =~ [——V——
NomingManoger
|
| 1 1
i Filesystem Service LDAP Service RMI Service '
: Provider Provider Provider '
LDAP RMI
Flasystom Directory Regisiry

Figure 6-1. The JNDI architecture

In order for an application to actually interact with a particular naming or directory service, there must be a
JNDI service provider for that service. This is where the JNDI SPI comes in. A service provider is a set of
classes that implements various JNDI interfaces for a specific naming or directory service, much like a JDB(
driver implements various JDBC interfaces for a particular database system. The provider can also impleme
other interfaces that are not part of INDI, such as Novell's NdsObject interface.

The classes and interfaces in the javax.naming.spi package are only of interest to developers who are
creating service providers. For instance, the NamingManager class defines methods for creating Context
objects and otherwise controlling the operation of the underlying service provider. As an application
programmer, you don't have to worry about the JNDI SPI. All you have to do is make sure that you have a
service provider for each naming or directory service you want to use. Sun maintains a list of available servi
providers on the JNDI web page listed earlier.

4 PREVIOUS HOME NEXT »
5.10. The Servlet API 2.1 BOOK INDEX 6.2. A JNDI Example
} "i\. Q’.r\ : M" /-\) - .. k\
s | M i g @ 7<\/
Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEIN A NUTSHELL =

6.1. INDI Architecture 145

Preface (Java Enterprise in a Nutshell)

@ PREVIOUS Chapter 6: JNDI TS

6.2. A JNDI Example

Before we go any further, let's take a look at a simple JNDI example. To access an object in a naming syste
we need to create an initial context for the naming system, to give us an entry point into the naming system.
Once we have an initial context, we can look up an object by name.

Example 6—1 demonstrates the basic JNDI tasks of getting an initial context to a naming system and looking
up an object in that naming system. With slight modification, this code can be used to look up objects with
any JNDI provider. So, for example, you could use Lookup to look up Enterprise JavaBeans or remote
objects in an RMI registry and handle them however you like. All you have to change is the properties that
control the naming system being accessed.

Example 6-1. Looking Up an Object in a Naming System

import java.util.Properties;
import javax.naming.*;

public class Lookup {
public static void main(String[] args) {
String name =",
if (args.length > 0)
name = args[0];

try {
/I Create a Properties object and set properties appropriately
Properties props = new Properties();
props.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");
props.put(Context.PROVIDER_URL, "file://I");

/I Create the initial context from the properties we just created
Context initialContext = new InitialContext(props);

I/l Look up the object
Object obj = initialContext.lookup(name);
if (name.equals("))
System.out.printin("Looked up the initial context");
else
System.out.printin(name + " is bound to: " + obj);

}

catch (NamingException nnfe) {
System.out.printin("Encountered a nhaming exception");

}
}
}

The first thing the Lookup application does is create a java.util.Properties object and use it to

store some String values. The keys used for these values are constants defined in the
javax.naming.Context class. Each constant corresponds to an underlying JNDI property name that is

meant to communicate specific information about the JNDI service the application is using.
Context.INITIAL_CONTEXT_FACTORY specifies the factory class that creates an initial context for the
service we want to use. The class com.sun.jndi.fscontext.RefFSContextFactory is a factory

class from the filesystem service provider from Sun. Context.PROVIDER_URL tells the factory class the
protocol, server name, and path to use in creating an initial context. We specify the URL file:/// to indicate th
root of the local filesystem. This works on any Unix or Windows filesystem.

6.2. A JNDI Example 146

Preface (Java Enterprise in a Nutshell)

Once we have created the Properties object, we pass it to the javax.naming.InitialContext

constructor, which returns the initial context object that is our entry point into this particular naming system.
Next, we call the lookup() method on initialContext, specifying the name we want to look up. This

call returns an object from the naming system, which, in this case, is a file or directory.

You can run Lookup from the command line and specify an optional name to look up. For example:

% java Lookup boot.ini
boot.ini is bound to: \boot.ini

If the name is instead a directory, the output looks a bit different:

% java Lookup winnt
winnt is bound to: com.sun.jndi.fscontext.RefFSContext@803adecO

Note that if we wanted to make Lookup more general, we might change it so that it reads its property values
from a properties file. Then changing the naming system is a simple matter of editing the properties file to
specify an appropriate factory object and URL. Depending on the value you use for the factory class, the
object you look up could be an Enterprise JavaBeans component, a reference to a remote object, or somett
else.

JNDI throws naming exceptions when naming operations cannot be completed. The root naming exception,
javax.naming.NamingException, is a catch all for any JNDI exception. The javax.naming

package defines numerous subclasses of NamingException. A common naming exception,
NameNotFoundException, is thrown when a name cannot be found, either because it doesn't exist or it is
spelled incorrectly. INDI throws a NoPermissionException when a program doesn't have sufficient

rights or permissions and an OperationNotSupportedException when an application uses a JNDI

method on an object that doesn't support that specific naming operation.

4 PREVIOUS HOME NEXT »
6.1. JNDI Architecture BOOK INDEX 6.3. Introducing the
Context
B @ @ ‘ﬁ‘ @ D
Bookshelf Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nlmlwll, Foondnmm (lusses JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 6: JNDI T

6.3. Introducing the Context

A naming service associates names with objects. An association between a name and an object is called a
binding, and a set of such bindings is called a context. A name in a context can be bound to another context
that uses the same naming conventions; the bound context is called a subcontext. For example, in a filesyst
a directory (such as /temp) is a context that contains bindings between filenames and objects that the systel
can use to manipulate the files (often called file handles). If a directory contains a binding for another

6.3. Introducing the Context 147

Preface (Java Enterprise in a Nutshell)

directory (e.g., /templ/javax), the subdirectory is a subcontext.

JNDI represents a context in a naming system using the javax.naming.Context interface. This is the

key interface for interacting with naming services. A Context knows about its set of bindings in the naming
system, but little else. While you might be tempted to think of a Context as an exotic java.io.File

object, you should resist making that analogy, as it will just confuse you. Unlike a File object, which can tell
you its absolute and relative names as well as return a reference to its parent, a Context object can tell you
only about its bindings. A Context cannot go up a level, tell you its absolute pathname, or even tell you its
own name. When you think of a Context, think of an object that encapsulates its children as data and has
methods that perform operations on that data, not on the Context itself.

6.3.1. Using the InitialContext Class

The javax.naming.InitialContext class implements the Context interface and serves as our

entry point to a naming system. To use JNDI to access objects in a naming system, you must first create an
InitialContextobject. The InitialContext constructor takes a set of properties, in the form of a
java.util.Hashtable or one of its subclasses, such as a Properties object. Here is how we created

an InitialContext in the Lookup example:

Properties props = new Properties();
props.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");

props.put(Context. PROVIDER_URL, "file://[");

/I Create the initial context from the properties we just created
Context initialContext = new InitialContext(props);

The most fundamental property key is "java.naming.factory.initial", which corresponds to the
Context.INITIAL_CONTEXT_FACTORY constant. The value for this property specifies the name of a
factory class in a JNDI service provider. It is the job of this factory class to create an InitialContext that

is appropriate for its service and hand the object back to us. We have to give the factory class all the
information it needs to create an InitialContext in the form of other property values. For example, the
factory class learns the protocol, server name, and path to use from the "java.naming.provider.url" property
(Context.PROVIDER_URL).

The filesystem factory class (com.sun.jndi.fscontext.RefFSContxtFactory) doesn't require

much in the way of information. Other factory classes can be more demanding. For example, the factory cla
in Sun's LDAP service provider requires the URL of the LDAP server and directory entry you want to access
a username and password, and an authentication type. Here are some properties (shown in the file format L
by the Properties class) you might use to create an InitialContext with the LDAP factory class:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=ldap://192.168.1.20/0=Planetary,c=US
java.naming.security.authentication=simple
java.naming.security.principal=cn=kris
java.naming.security.credentials=secret

These properties create an InitialContext for an organization called "Planetary” in the global X.500
namespace.

6.3.2. Other Naming Systems

There are many companies that support JNDI, and therefore many naming system service providers. You ¢
find a reasonably comprehensive list of public INDI providers from the JNDI page on the Sun web site

6.3.1. Using the InitialContext Class 148

Preface (Java Enterprise in a Nutshell)

(currently at http://java.sun.com/products/jndi/serviceproviders.html). You should contact the vendor of your
enterprise naming system or directory for more details regarding its specialized providers. Table 6-1 lists th
factory classes for some common JNDI providers.

Table 6-1. JNDI Factory Classes

Service Factory

com.sun.jndi.fscontext.FSContextFactory or
com.sun.jndi.fscontext.RefFSContextFactory

LDAPv3 com.sun.jndi.ldap.LdapCtxFactory

NDS com.novell.naming.service.nds.NdslInitialContextFactory
NIS com.sun.jndi.nis.NISCtxFactory

RMI registry|com.sun.jndi.rmi.registry.RegistryContextFactory

Filesystem

4 PREVIOUS HOME NEXT »
6.2. A JNDI Example BOOK INDEX 6.4. Looking Up Objects in
a Context

e P . = j— Vo
| : .y i F . &«)
Enterprise - , \g @)<\ /
Bookshelf Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Classes JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL

@ PREVIOUS Chapter 6: JNDI T

6.4. Looking Up Objects in a Context

Retrieving an object by name from a naming system or directory is called looking up the object. This is the
job of the lookup() method of Context. Performing a lookup is analogous to getting the number of a

friend from a telephone book by looking up his name. You can use JNDI to look up and retrieve an EJB
component from an application server or a remote object from a remote RMI registry.

When you call lookup(), you specify the name of the child of the Context you want to find. lookup()
returns a java.lang.Object that represents the child. Here's how we did it in Lookup:

Object obj = initialContext.lookup(name);

Calling lookup() retrieves an object from the underlying naming system. The JNDI service provider
determines the Java representation of these objects, and we have no way of affecting the provider's decisio
Depending on the naming system and the design of the provider, the object you retrieve may or may not
implement Context. For example, if you use the Sun filesystem provider, and your current context is a
directory, looking up a child that is a file returns an instance of java.io.File. Looking up a directory,

however, returns an instance of FSContext or RefFSContext, both of which implement Context. As

another example, say you use Novell's NDS provider, and the current context is an NDS tree. If you look up

6.3.2. Other Naming Systems 149

http://java.sun.com/products/jndi/serviceproviders.html

Preface (Java Enterprise in a Nutshell)

an organization, you get back an OrganizationDirContext that implements both Context and
Novell's NdsObiject interface. The bottom line is that the class you get back from lookup() depends on
how the service provider is implemented.

JNDI leaves it up to the service provider to choose whether objects should implement Context. There are nc
strict rules about when an object should implement it, but there are some general guidelines. An object with
children is a container, and the guideline for containers is that they should implement Context. This is
because we generally perform naming operations upon these objects. For example, in the filesystem,
directories can contain other objects, so the object that represents a directory should implement Context
(which is how Sun's filesystem provider behaves). If directories don't support Context methods, we cannot
use JNDI to look up any children of the directory.

Objects without children are leaves, and leaves may or may not implement Context, depending on how
they are used. For example, because files have no children to look up, the methods we perform on them lie
outside the naming system. The author of the Sun filesystem provider made a design choice that once we h
looked up a file, we're done with JNDI. So, we can read the input stream on a file or write an output stream t
it, but we cannot use JNDI to perform naming operations on the file.

4 PREVIOUS HOME NEXT »
6.3. Introducing the BOOK INDEX 6.5. The NamingShell
Context Application
S. @B H"Nse@
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes Jnvnlenns"', Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 6: JNDI T

6.5. The NamingShell Application

Earlier, we discussed how we might modify the Lookup example to make it more general, allowing us to
look up Enterprise JavaBeans and remote objects. The rest of the examples in this chapter are going to be
based on the NamingShell code shown in Example 6-2. NamingShell is an extensible JNDI shell that
enables us to perform naming operations in any JNDI-accessible haming system. The shell provides metho
for getting and setting the current object and other shell-related details, and it also keeps track of the name
the current object, something a Context cannot do for itself.

Once you have loaded NamingShell, you can use the shell to execute JNDI-related commands, just as you
would use a regular shell to execute operating—system commands. | encourage you to download the code f
NamingShell right now, so that you can experiment with it as we proceed through the rest of the chapter.
NamingShell uses the name you type to locate a command dynamically from the filesystem. The shell has
no interpreter; however, NamingShell expects a command to implement the Command interface and its
execute() method. This means a command really interprets itself. A command throws a
CommandException when execution fails.

6.5. The NamingShell Application 150

Preface (Java Enterprise in a Nutshell)

As you can see, NamingShell itself contains very little real JINDI code. All the JNDI functionality is
implemented in the various Command classes we create to handle particular JNDI operations. The shell
simply supports the loading of commands and keeps track of various shell-related details.

Example 6-2. The NamingShell Class

import java.io.*;
import java.util.*;
import javax.naming.*;

class NamingShell {

/I Private variables

private static Hashtable COMMAND_TABLE = new Hashtable();
private static String JNDIPROPS_FILENAME = ".jndienv";
private static String PROMPT = "[no initial context]";

private static String VERSION = "1.0";

private static Context CURRENT_CONTEXT, INITIAL_CONTEXT;
private static String CURRENT_NAME, INITIAL_NAME;

private static boolean RUNNING = true;

/I Shell operations
private static void exit(int status) { System.exit(status); }

/I Accessor methods
public static Hashtable getCommands() { return COMMAND_TABLE; }
public static Context getCurrentContext() { return CURRENT_CONTEXT,; }
public static String getCurrentName() { return CURRENT_NAME; }
public static String getDefaultPropsFilename() { return INDIPROPS_FILENAME; }
public static Context getlinitialContext() { return INITIAL_CONTEXT; }
public static String getlnitialName() { return INITIAL_NAME; }
public static String getPrompt() { return PROMPT; }
public static void setCurrentContext(Context ctx) { CURRENT_CONTEXT = ctx; }
public static void setInitialContext(Context ctx) { INITIAL_CONTEXT = ctx; }
public static void setInitialName(String name) { INITIAL_NAME = name; }
public static void setPrompt(String prompt) { PROMPT = prompt; }
public static void setCurrentName(String name) {

CURRENT_NAME = name;

setPrompt(name);

}

/I Executes a preinstantiated command we are sure is already
/l present in the table
private static void execute(Command c, Vector v) {
if (c ==null) {
System.out.printin("No command was loaded; cannot execute the command.");
return;
}

try {
c.execute(CURRENT_CONTEXT, v);

catch (CommandException ce) {
System.out.printin(ce.getMessage());
}
}

/I Another private method that enables us to specify a command

/Il by its string name and that loads the command first

private static void execute(String s, Vector v) {
execute(loadCommand(s), v);

}

/I Loads the command specified in commandName; the help command
/I relies on this method

6.5. The NamingShell Application 151

Preface (Java Enterprise in a Nutshell)

public static Command loadCommand(String commandName) {
/I The method returns a null command unless some of its
/l internal logic assigns a new reference to it
Command theCommand = null;

/I First see if the command is already present in the hashtable

if (COMMAND_TABLE.containsKey(commandName)) {
theCommand = (Command)COMMAND_TABLE.get(commandName);
return theCommand;

}

try {
// Here we use a little introspection to see if a class

/l implements Command before we instantiate it
Class commandinterface = Class.forName("Command");
Class commandClass = Class.forName(commandName);

/I Check to see if the class is assignable from Command

/I and if so, put the instance in the command table

if (I(commandInterface.isAssignableFrom(commandClass)))
System.out.printin("[" + commandName + "]: Not a command");

else {
theCommand = (Command)commandClass.newlnstance();
COMMAND_TABLE.put(commandName, theCommand);
return theCommand;

}

}

catch (ClassNotFoundException cnfe) {
System.out.printin("[* + commandName + "]: command not found");
}
catch (lllegalAccessException iae) {
System.out.printin("[" + commandName + "]: illegal acces");
}
catch (InstantiationException ie) {
System.out.printin("["+commandName+"]: command couldn't be instantiated");
}
finally {
return theCommand,; /l theCommand is null if we get here
}
}

/I This method reads a line of input, gets the command and arguments
/I within the line of input, and then dynamically loads the command
/I from the current directory of the running shell
private static void readlnput() {
/I Get the input from System.in
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

/I Begin reading input
try {
while (RUNNING) {
System.out.print(PROMPT + "% ");

Il Tokenize the line, read each token, and pass the token
Il into a convenient remaining arguments Vector that we
// pass into the Command
StringTokenizer tokenizer = new StringTokenizer(br.readLine());
Vector remainingArgs = new Vector();
String commandToken ="";
if (tokenizer.hasMoreTokens()) {
commandToken = tokenizer.nextToken();
while (tokenizer.hasMoreTokens())
remainingArgs.addElement(tokenizer.nextToken());

}

/I Dynamically load the class for the appropriate command
// based upon the case-sensitive name of the first token,

6.5. The NamingShell Application 152

Preface (Java Enterprise in a Nutshell)

/I which is the command token
if ({(commandToken.equals(")))
execute(commandToken, remainingArgs);
}
}

catch (java.io.|OException ioe) {
System.out.printin("Caught an 10 exception reading a line of input");
}
}

/I Constructor
NamingShell(String[] args) {

}

/l Main method that reads input until the user exits

public static void main(String[] args) {
System.out.printin("NamingShell " + VERSION);
System.out.printin("Type help for more information or exit to quit");
shell.readInput();
System.out.printin("Exiting");

}

}

6.5.1. The Command Interface

The Command interface (shown in Example 6—3) describes a standard interface for a shell command. It has
an execute() method that contains the command logic and a help() method for displaying online help

for the command. If execute() encounters a naming exception (or some other exception), it throws a
CommandException (shown in Example 6—4), which stores the first exception as an instance variable so
that the shell can display the exception appropriately.

Example 6-3. The Command Interface

import java.util.Vector;
import javax.naming.Context;

public interface Command {
public void execute(Context ¢, Vector v)
throws CommandException;
public void help();

}

Example 6—4. The CommandException Class

public class CommandException extends Exception {
Exception e; // root exception
CommandException(Exception e, String message) {
super(message);
this.e = g;
}
public Exception getRootException() {
return e;
}
}

6.5.2. Loading an Initial Context

As | said earlier, to use JNDI to look up an object in a naming system (or, in fact, to do anything with the

6.5.1. The Command Interface 153

Preface (Java Enterprise in a Nutshell)

naming system), you first have to create an InitialContext for that naming system. So, the first
command we need to implement is initctx, for loading an initial context into NamingShell. Example 6-5
shows an implementation of this command.

Example 6-5. The initctx Command

import java.io.*;
import java.util.*;
import javax.naming.*;

public class initctx implements Command {

public void execute(Context ¢, Vector v) {
String jndiPropsFilename;
/' If no properties file is specified, use the default file;
/I otherwise use the specified file
if (v.isEmpty())
jndiPropsFilename = NamingShell.getDefaultPropsFilename();
else
jndiPropsFilename = (String)v.firstElement();

try {
Properties props = new Properties();
File jndiProps = new File(jndiPropsFilename);
props.load(new FilelnputStream(jndiProps));

NamingShell.setlnitialContext(new InitialContext(props));
NamingShell.setlnitialName("/");
NamingShell.setCurrentContext(NamingShell.getlnitialContext());
NamingShell.setCurrentName(NamingShell.getlnitialName());
System.out.print("Created initial context using ");
System.out.printin(jndiProps.getAbsolutePath());

catch (NamingException ne) {
System.out.printin("Couldn't create the initial context");

catch (FileNotFoundException fnfe) {
System.out.print("Couldn't find properties file:);
System.out.printin(jndiPropsFilename);

catch (IOException ioe) {
System.out.print("Problem loading the properties file: ");
System.out.printin(jndiPropsFilename);

catch (Exception e) {
System.out.printin("There was a problem starting the shell");

}
}

public void help() { System.out.printin("Usage: initctx [filename]"); }

}

The initctx command accepts an argument that specifies the name of a properties file to use in creating the
Properties object that is passed to the InitialContext constructor. If no filename is specified, initctx

looks for the default properties file specified by NamingShell. So, with NamingShell, all you have to do

to use a particular naming service is create an appropriate properties file for that service.

6.5.3. Running the Shell

With NamingShell and initctx, we have enough functionality to actually run the shell. Before you try
running the shell, make sure that the JNDI libraries (in jndi.jar) and any other specialized providers are

6.5.2. Loading an Initial Context 154

Preface (Java Enterprise in a Nutshell)

specified in your classpath. Here's how we might start NamingShell and establish an initial context, once
the classpath is set appropriately:

% java NamingShell

NamingShell 1.0

Type help for more information or exit to quit

[no initial context]% initctx

Created initial context using C:\temp\samples\book\.jndienv
1%

In this case, since we didn't specify a properties file, NamingShell looks for the .jndienv file in the current
directory. For the purpose of our next few examples, let's assume that this file contains property settings tha
allow us to use the filesystem provider from Sun. You can change initial contexts at any time during the shel
session by running initctx with a new filename. After you have created an initial context, you can begin
performing naming operations by typing in commands. To exit the shell, simply use the exit command.[2] If
you are not sure how a command works, you can get help for that command by typing:

[2]The help and exit commands are implemented as separate classes, just like the
JNDI-related commands. We've not going to examine the code for these commands, as they
don't use JNDI. However, the code for these commands is provided in the example code that
is available online (at http://www.oreilly.com/catalog/jentnut/).

/% help command

4 PREVIOUS HOME NEXT »
6.4. Looking Up Objects in BOOK INDEX 6.6. Listing the Children of
a Context a Context

g } M \
Enterprise @
Bookshelf Java™ Enterprise Jnvu Java™ Juva
Home Enterprise ina Nlmbell Fowndnmn (lnsses JavaBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

@ PREVIOUS Chapter 6: JNDI T

6.6. Listing the Children of a Context

A common JNDI operation is retrieving the list of names of an object's children. For example, an application
might get the names of Enterprise JavaBeans in a Java application server to see if one is running or list the
names of children of an InitialContext in order to populate a Swing JTree component. You list the

names of an object's children using the list() method of Context:

NamingEnumeration children = initialContext.list("");

The list() method returns a javax.naming.NamingEnumeration of
javax.naming.NameClassPair objects, where each NameClassPair contains the name and class of

6.6. Listing the Children of a Context 155

http://www.oreilly.com/catalog/jentnut/

Preface (Java Enterprise in a Nutshell)

a single child of the Context. Note that the NameClassPair is not the child itself. Its getName()

method, however, enables us to learn the name of the child, while getClassName() lets us access the
child's class name. The NamingEnumeration implements the java.util. Enumeration interface, so

it allows us to loop through the results of calling list() using the familiar enumeration methods. JNDI
actually uses NamingEnumeration as the return type of a number of naming operations; the actual objects
in the enumeration vary depending on the operation.

Example 6-6 shows the implementation of a list command for NamingShell. Because executing list()
requires a current Context, the execute() method queries the shell to determine whether one exists. If
there is no current Context, the method throws an exception.

Example 6-6. The list Command

import java.util.Vector;
import javax.naming.*;

public class list implements Command {
public void execute(Context ¢, Vector v) throws CommandException {

String name =",

/I An empty string is OK for a list operation as it means
/I list children of the current context.
if (1(v.isEmpty()))

name = (String)v.firstElement();

/I Check for current context; throw an exception if there isn't one
if (NamingShell.getCurrentContext() == null)
throw new CommandException(new Exception(),
"Error: no current context.");

/I Call list() and then loop through the results, printing the names
/I and class names of the children
try {
NamingEnumeration enum = c.list(hame);
while (enum.hasMore()) {
NameClassPair ncPair = (NameClassPair)enum.next();
System.out.print(ncPair.getName() + " (type ");
System.out.printin(ncPair.getClassName() + ")");
}
}

catch (NamingException e) {
throw new CommandException(e, "Couldn't list " + name);

}
}

public void help() { System.out.printin("Usage: list [name]"); }
}

Let's continue with our example of using NamingShell with the filesystem provider. Say that we are
accessing a filesystem where we have unpacked a JAR file that contains, among others, a javax directory a
a naming subdirectory. If the current Context is the naming directory (ignoring for a moment how we set

the current Context; we'll see how to do that shortly), we can use the list command with the following
results:

naming%o list

AuthenticationException.class (type java.io.File)
AuthenticationNotSupportedException.class (type java.io.File)
BinaryRefAddr.class (type java.io.File)

Binding.class (type java.io.File)
CannotProceedException.class (type java.io.File)

6.6. Listing the Children of a Context 156

Preface (Java Enterprise in a Nutshell)

CommunicationException.class (type java.io.File)
CompositeName.class (type java.io.File)
CompoundName.class (type java.io.File)
ConfigurationException.class (type java.io.File)
Context.class (type java.io.File)
ContextNotEmptyException.class (type java.io.File)
directory (type javax.naming.Context)

6.6.1. How Names Work

The list() method allows us to list the names of the children of any arbitrary child of a Context. We

just saw that we can list the names of the children of a Context itself (in this case, the naming directory) by
calling its list() method using an empty string as a parameter. Again, let's assume we have a Context
object for the naming subdirectory under javax. Here's how a call to get the names of the children of this
Context might look:

NamingEnumeration childrenOfNaming = namingContext.list("");

The result is a NamingEnumeration that contains NameClassPair objects representing all the children
of naming (i.e., the classes and subpackages of javax.naming), including the directory directory (i.e., the
javax.naming.directory subpackage).

To list the names of the children of an arbitrary child of a Context, we have to pass a name to list(). For
example, we can list the children of directory by specifying the String "directory" as a parameter to
list():

NamingEnumeration childrenOfDirectory = namingContext.list("directory");

The result here is a NamingEnumeration that contains NameClassPair objects representing all the
children of directory (i.e., the classes of javax.naming.directory, such as DirContext).

You can also specify a name using something called a compound name. A compound name is composed 0
atomic names, like "naming" and "directory"”, that are separated by separator characters, which, in the case

the filesystem provider, can be either a Unix—style forward slash (/) or a Windows-style backward slash (\).

Any JNDI method that takes a name as a parameter can accept a compound name.

Say we have a Context object for the javax directory. We can get a list of the children of directory as
follows:

NamingEnumeration childrenOfDirectory = javaxContext.list("naming/directory");
This call returns the same NamingEnumeration we got earlier. Now consider the following call:
NamingEnumeration childrenOfContext = javaxContext.list("naming/Context");

The compound name here specifies an object that is not a Context, so it has no children. In this case, the
call to list() throws a NamingException.

The separator character used in INDI compound names varies across naming and directory services; the
separator is analogous to the separator used in java.io.File. Although the Sun filesystem provider

allows us to use the Unix-style forward slash and the Windows-style backward slash interchangeably, mos
service providers are very picky about the separator character used for that service. Unfortunately, the JNDI
API does not provide a way to get the separator character programmatically the way java.io.File does.
Although the javax.naming.CompoundName class reads a property called "jndi.syntax.separator" that
contains the separator character, this property cannot be accessed outside the service provider. So, to find

6.6.1. How Names Work 157

Preface (Java Enterprise in a Nutshell)

the separator character for a particular service provider, you have to consult the documentation or some
sample code for that provider.

6.6.2. Browsing a Naming System

So far, we know how to look up an object in a Context using lookup() and list the children of that
Context with list(). Browsing is a composite operation that involves repeated calls to list() and
lookup(), to see what objects are available in the naming system and to move around in those objects.

Context objects are the key to browsing. You start with a current Context and list the children of that
Context to see which child you (or, more likely, the user) are interested in. Once you have selected an
interesting child, you look up that child to get the actual child object. If the object implements Context, you
can use this new Context object to continue browsing, by calling list() again, selecting a child, and

looking up its object. If the object does not implement Context, however, you obviously cannot continue
browsing down that branch of the naming system. Once you have a Context object, it is always possible to
list its children and look up objects within it. So, for example, you can always use the InitialContext for

a naming system to go back and start browsing at the entry point to the naming system

Example 6—7 shows an implementation of a cd command for NamingShell. The cd command changes the
current context of NamingShell to the specified context; you use it in conjunction with the list command to
browse the naming system. The name of this command comes from the Unix cd command for changing
directories, since changing the directory on a Unix system is an analogous operation to changing the curren
context when NamingShell is used with the filesystem provider. To change the current context back to the
initial context, use either cd / or cd \. Note, however, that you cannot use cd .., as Context objects do not
know about their parents, and therefore, we cannot go up the Context hierarchy.

Example 6-7. The cd Command

import java.util.Vector;
import javax.naming.*;

class cd implements Command {
public void execute(Context ctx, Vector v) throws CommandException {
if (NamingShell.getCurrentContext() == null)
throw new CommandException(new Exception(), "No current context");
else if (v.isEmpty())
throw new CommandException(new Exception(), "No name specified");

/I Get args[0] and throw away the other args
else {
String name = (String)v.firstElement();
try {
if (name.equals("..")) {
throw new CommandException(new Exception(),
"Contexts don't know about their parents.");
}
else if (((name.equals("/")) || (name.equals("\"))) {
NamingShell.setCurrentContext(NamingShell.getinitialContext());
NamingShell.setCurrentName(NamingShell.getlnitialName());
System.out.printin("Current context now " + name);
}
else {
Context ¢ = (Context) (NamingShell.getCurrentContext()).lookup(name);
NamingShell.setCurrentContext(c);
NamingShell.setCurrentName(name);
System.out.printin("Current context now " + name);
}
}

6.6.2. Browsing a Naming System 158

Preface (Java Enterprise in a Nutshell)

catch (NamingException ne) {
throw new CommandException(ne, "Couldn't change to context " + name);

}

catch (ClassCastException cce) {
throw new CommandException(cce, name + " not a Context");

}
}
}

public void help() { System.out.printin("Usage: cd [name]"); }
}

Earlier, when we demonstrated the list command, | asked you to assume that the current Context for
NamingShell was the naming subdirectory. Now we can see just how to change the current Context to
that directory:

initctx% cd temp

Current context now temp
temp% cd javax

Current context now javax
javax% cd naming

Current context now naming

Of course, these commands assume we are starting from the initial context and that the naming directory is
available in the filesystem at /temp/javax/naming.

6.6.3. Listing the Bindings of a Context

The listBindings() method of Context provides an alternative means of accessing the children of a
Context. We've seen that list() returns a NamingEnumeration of NameValuePair objects, where

each NameValuePair provides access to the name and class name of a single child of the Context.
listBindings() also returns a NamingEnumeration, but, in this case, the enumeration contains

Binding objects. Binding is a subclass of NameValuePair that contains the actual child object, in
addition to its name and class. You can use the getObject() method of Binding to get the child object.

Just as with list(), we can pass an empty string to listBindings() to return the bindings for a
Context:

NamingEnumeration bindings = initialContext.listBindings(");

listBindings() is designed for situations where you need to perform some sort of operation on all the
children of a Context, and you want to save yourself the time and trouble of looking up each child
individually. Be aware, however, that listBindings() is potentially a very expensive operation, as it has

to get each child object from the underlying naming system. If you don't need all the objects, you are better
off using list() to get the names of the children and then just looking up the objects you need.

4 PREVIOUS HOME NEXT »
6.5. The NamingShell BOOK INDEX 6.7. Creating and
Application Destroying Contexts
Java ras | U |vew | O - A\
y . ‘ o R | p - «)
Enterprise ; : g @ ?<\/
Bookshelf Java™ Java™ Jba\'u“' Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

6.6.3. Listing the Bindings of a Context 159

Preface (Java Enterprise in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

%]AVA.,ENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 6: JNDI TS

6.7. Creating and Destroying Contexts

With JNDI, you can create a context in a naming system using the createSubcontext() method of an
existing Context. All you have to specify in this call is the name of the new subcontext. Note that

Context does not provide a public constructor; creating a new context requires a parent Context (such as
an InitialContext) whose createSubcontext() method we can call.

When you call createSubcontext(), the JNDI service provider you are using looks at the class of the
Context whose method you are calling. Based on this class and the provider's own internal logic, the
provider creates a new object of a particular class. You don't get to pick the class of this object; the provider
has all the control over the class of the object it creates. (You do, however, have control over the class of
object that is created when using directory services, as we'll see shortly.) The documentation for a service
provider should tell you what kinds of objects createSubcontext() can create. Note that whatever

object the provider creates, it always implements Context; there is no way to use JNDI to create an object
that doesn't implement Context.

For example, if we are using the Sun filesystem provider, and our current Context is a directory, calling
createSubcontext() causes the provider to create a directory, not a file. This makes sense, as a

directory can have subordinates and thus implements Context. There is actually no way to create a file
using the JNDI API and the filesystem provider; you have to drop out of JNDI to do this, as we'll see in the
next section.

Example 6—8 shows the implementation of a create command for NamingShell command that
demonstrates how to use createSubcontext().

Example 6-8. The create Command

import java.util.Vector;
import javax.naming.*;

public class create implements Command {
public void execute(Context ¢, Vector v) throws CommandException {

/I Check to see if we have the name we need to create a context

if (v.isEmpty())
throw new CommandException(new Exception(), "No name specified");

String name = (String)v.firstElement();
try {

c.createSubcontext(name);

System.out.printin("Created " + name);
}
catch (NoPermissionException npe) {

throw new CommandException(npe,

"You don't have permission to create " + name + " at this context");

}
catch (NamingException ne) {

throw new CommandException(ne, "Couldn't create " + name);

6.7. Creating and Destroying Contexts 160

Preface (Java Enterprise in a Nutshell)

}
}

public void help() { System.out.printin("Usage: create [name]"); }

}

command, in conjunction with the cd and list commands we've already seen:

/% create test

Created test

/% cd test

Current context now test

test% create another

Created another

test% list

another (type javax.naming.Context)

The destroySubcontext() method of Context destroys a context, as you might expect from its

name. Again, you have to specify the name of the context to be destroyed; you cannot destroy the current
object by specifying an empty nhame. Calling the destroySubcontext() method on a Context from

the Sun filesystem provider is analogous to removing a directory in the filesystem.

Example 6-9 shows the implementation of a destroy command for NamingShell. Note that it contains
several catch statements, to handle such exceptions as insufficient permission to destroy a context, trying tc
destroy an object that doesn't implement the Context interface, and trying to destroy an object that has
children.

Example 6-9. The destroy Command

import java.util.Vector;
import javax.naming.*;

public class destroy implements Command {
public void execute(Context ¢, Vector v) throws CommandException {

/I Check to see if we have the name we need
if (v.isEmpty())
throw new CommandException(new Exception(), "No name specified");

String name = (String)v.firstElement();

try {
c.destroySubcontext(name);

System.out.printin("Destroyed " + name);
}
catch (NameNotFoundException nnfe) {
throw new CommandException(nnfe, "Couldn't find " + name);
}
catch (NotContextException nce) {
throw new CommandException(nce,
name + " is not a Context and couldn't be destroyed");
}
catch (ContextNotEmptyException cnee) {
throw new CommandException(cnee,
name + " is not empty and couldn't be destroyed");
}
catch (NamingException ne) {
throw new CommandException(ne, name + " couldn't be destroyed");
}
}

public void help() { System.out.printin("Usage: destroy [name]"); }

6.7. Creating and Destroying Contexts 161

Preface (Java Enterprise in a Nutshell)

}
4 PREVIOUS HOME NEXT »
6.6. Listing the Children of BOOK INDEX 6.8. Binding Objects
a Context
Java i | Sy | b e, > A
8. @ B AL KD,
Bookshelf Java™ J;lvo'" Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISE INA NutstErL ™

@ PREVIOUS Chapter 6: JNDI TS

6.8. Binding Objects

A Context stores its subordinates as a set of Binding objects. A binding is an association between an
object and its name. Thus, as we've already seen, a Binding object contains an object, its name, and its
class. We can add a new Binding to a Context with the bind() method. For example, here's how to add
a binding for a new file object to an existing Context:

java.io.File newfile = java.io.File("c:\temp\newfile");
tempContext.bind("newfile", newfile);

Now, if we call list() on this Context, we'll see a new child named newfile. If you recall, in the

previous section, | said that you have to drop out of JNDI to create a new file when using the Sun filesystem
provider. The previous example shows what | meant. To create a file, we use the java.io.File

constructor, which is not part of INDI. Then, to bind the file into the naming system, we use the bind()
method of Context.

If you try to bind a name to an object, and the name has already been used, the method throws a
NameAlreadyBoundException. If you want to bind a new object to an existing name, use the
rebind() method instead. Context also has an unbind() method you can use to remove a binding.

4 PREVIOUS HOME NEXT »
6.7. Creating and BOOK INDEX 6.9. Accessing Directory
Destroying Contexts Services
¢ 3) / ; /
. R \3 I -
Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in o Nutshell, Foundotion Closses JavoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

6.8. Binding Objects 162

Preface (Java Enterprise in a Nutshell)

@JAVA‘,ENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 6: JNDI TS

6.9. Accessing Directory Services

So far, we have only discussed JNDI in the context of naming services. Now it's time to turn to directory
services. At its root, a directory is merely a naming service whose objects have attributes as well as names.
Programming for a directory service, such as an LDAP directory, is roughly as hard as programming for a
relational database.

As we've seen, a binding in JNDI is an association between a name and an object. While this association is
sufficient for some naming services, a directory service needs to be able to associate more than just a name
with an object. Attributes associate specialized data with an object. In JNDI, an object with attributes as well
as a name is called a directory entry.

We've been talking about the filesystem as though it were a naming system because that is how Sun's
filesystem provider implements it. But if you think about it, a filesystem is really a directory system; files and
directories have attributes like permissions, user IDs, and group IDs (we just can't get at these attributes usi
Sun's filesystem provider).

Most of the directories you'll interact with using JNDI are based on the X.500 directory services standard. Fc
example, both standard LDAP directories and Novell's NDS directories have been influenced by X.500. As
such, it is important that you know a little bit about X.500, so that you can understand how these directories
work.

6.9.1. X.500 Directories

X.500 is a directory services standard that was developed through a collaboration between ISO and CCITT
the late 1980s. It is the "big daddy" of most directories in use today. Like all such collaborations between
standards bodies and treaty organizations, the X.500 specification has the bulk of an earthmover and is abo
as maneuverable. But, like an earthmover, it can really get the big jobs done.

A large contributor to X.500's bulk is its schema, which is the directory type system. A directory schema is a
set of rules that govern the layout of the objects in the directory. The schema determines what classes of
objects can reside in a directory system, what classes of children and kinds of attributes an object is permitt
to have, and what classes of values those attributes can have. If you have worked with databases, be carefi
not to confuse a directory schema with a database schema. A database schema is the layout of tables in the
database, while a directory schema is the set of rules that control the directory layout, not the layout itself.

During the mid 1990s, researchers at the University of Michigan began to examine ways of reducing the
complexity of the X.500 Directory Access Protocol (DAP). These researchers came up with the "lightweight"
DAP, or LDAP, which significantly slimmed down the protocol's bulk. LDAP has gathered considerable
support in the industry, so that it is now considered the standard Internet directory access protocol. Netscap
in part responsible for the acceptance of LDAP, as it declared LDAP the preferred method for accessing
address books incorporated into its product line and developed the Netscape Directory Server, which is the
most popular general-purpose LDAP-based directory server in use today. Note that while the LDAP protoc
is simpler than the X.500 protocol, an LDAP directory still uses a directory schema.

Novell's NDS is another X.500-based directory. In the early 1990s, Novell released NetWare 4.0, which

6.9. Accessing Directory Services 163

Preface (Java Enterprise in a Nutshell)

included something called NetWare Directory Services (NDS), a directory that was heavily influenced by
X.500. NDS provides information about various networking services, such as printing and file services. As
Novell ported NDS to other non—-NetWare platforms, the name of the directory morphed into Novell
Directory Services, and then NDS became its official name. As further proof of the acceptance of the LDAP
protocol, even Novell has declared that the LDAP protocol is the preferred directory access protocol for NDS

JNDI supports the X.500-based notion of a directory schema. But it can just as easily support non—X.500
schemae, such as the informal schema of a filesystem. Keep in mind that what we are discussing in this
section applies to all directory services, not just X.500, LDAP, or NDS directories. As with naming services,
to access a particular directory service, all you need is a service provider for that service.

6.9.2. The DirContext Interface

javax.naming.directory.DirContext is JNDI's directory services interface. It extends Context

and provides modified methods that support operations involving attributes. Like a Context, a
DirContext encapsulates a set of name-to—object bindings. In addition, a DirContext contains a
javax.naming.directory.Attributes object for each bound object that holds the attributes and
values for that object.

The names of objects in X.500-based directories look a little different from the names we've seen so far for
filesystems. If you've worked with an LDAP directory, you've probably seen names like "cn=Billy Roberts,
o=Acme Products". This name is actually a compound name, while something like "o=Acme Products" is an
atomic name. By convention, in an LDAP directory, the part of the name before the equals sign (e.g., "cn",
"0") is stored as an attribute of the directory entry, and the rest of the name (e.g., "Billy Roberts", "Acme
Products") is stored as its value. This attribute is called the key attribute. Table 6-2 lists some commonly us
key attributes. Note that when a DirContext is used with an LDAP directory, it knows its name, unlike a
Context.

Table 6—2. Common Key Attributes

Attribute Meaning

"c" A country, such as the United States or Lithuania

"0" An organization or corporation, such as the Humane Society or Omni Consumer Products

"ou" A_d_iv_ision of an organization, such as the Public Relations Department or the Robotic Peacg Office
Division

"cn" The common name of an entity (often a user, where it can be a first name or a full name)

"sn" The surname (last name) of a user

The key attribute is closely tied to the directory entry's object class definition, otherwise known as its type.
For example, in an LDAP directory, an entry that has a key attribute of "cn" has an object class of "user",
while the key attribute "0" has an object class of "organization". The schema for a directory controls the obje
classes that can be used in the directory. The object class of a directory entry is stored as an attribute. Note
that the values used for object classes are directory—dependent, so a user entry from one directory might he
a different object class than a user entry from another directory even though both have the high—level notior
of a user entry.

6.9.3. The Attributes Interface

The Attributes interface represents the set of attributes for a directory entry. It has accessor methods that
enable access to the entire set, as well as to specific attributes. In X.500-based directories, the name of an
attribute (also called an attribute ID), such as "name", "address", or "telephonenumber", determines the type

6.9.2. The DirContext Interface 164

Preface (Java Enterprise in a Nutshell)

of the attribute and is called the attribute type definition. An attribute type definition is part of a directory's
schema,; the corresponding attribute syntax definition specifies the syntax for the attribute's value and wheth
it can have multiple values, among other things.

We can retrieve all the attributes of a directory entry by calling the getAttributes() method of
DirContext, followed by the getAll() method of Attributes. getAttributes() returns an
Attributes object. Calling the getAll() method of this object returns a NamingEnumeration of
javax.naming.directory.Attribute objects, one for each attribute of the directory entry.

Example 6—10 shows the implementation of a listattrs command for NamingShell. This command prints
the attributes of a directory entry, as well as string representations of the attribute values.

Example 6-10. The listattrs Command

import java.util.Vector;
import javax.naming.*;
import javax.naming.directory.*;

class listattrs implements Command {
public void execute(Context ¢, Vector v) throws CommandException {

String name =",

/I An empty string is OK for a listattrs operation
/I as it means list attributes of the current context
if (1(v.isEmpty()))

name = (String)v.firstElement();

if (NamingShell.getCurrentContext() == null)
throw new CommandException(new Exception(), "No current context");

try {
/I Get the Attributes and then get enumeration of Attribute objects

Attributes attrs = ((DirContext)c).getAttributes(hame);
NamingEnumeration allAttr = attrs.getAll();
while (allAttr.nasMore()) {
Attribute attr = (Attribute)allAttr.next();
System.out.printin("Attribute: " + attr.getID());

/I Note that this can return human-unreadable garbage
NamingEnumeration values = attr.getAll();
while (values.hasMore())
System.out.printin("Value: " + values.next());
}

}

catch (NamingException e) {
throw new CommandException(e, "Couldn't list attributes of " + name);

}

catch (ClassCastException cce) {
throw new CommandException(cce, "Not a directory context");

}
}

public void help() { System.out.printin("Usage: listattrs [name]"); }
}

To use the listattrs command, you need to have access to a live directory server. To experiment with a live
LDAP directory server, you might try the University of Michigan's server at Idap://Idap.itd.umich.edu/ or
Novell's test server at Idap://nldap.com/. Another option is to download and compile the OpenLDAP source
code from http://www.openldap.org/ and get an LDAP server running on your local network. To use the
University of Michigan's LDAP server with NamingShell, you need to create a properties file that contains

6.9.3. The Attributes Interface 165

http://ldap.itd.umich.edu/
http://nldap.com/
http://www.openldap.org/

Preface (Java Enterprise in a Nutshell)

the following properties:

java.naming.factory.initial=com.sun.jndi.ldap.LdapCtxFactory
java.naming.provider.url=Idap://Idap.itd.umich.edu/

Make sure that the JAR file for the LDAP service provider is in the classpath of NamingShell when you
use this initial context information.

Once you have NamingShell set up to use a directory server, here's how you might use the listattrs
command:

0=NOVELL% listattrs cn=admin
Attribute: groupMembership
Value: cn=DEVNET SYSOP,ou=Groups,0=NOVELL
Attribute: revision

Value: 235

Attribute: uid

Value: admin

Attribute: objectClass

Value: top

Value: person

Value: organizationalPerson
Value: inetOrgPerson

Attribute: sn

Value: admin

Attribute: cn

Value: admin

The following code in listattrs retrieves the Attributes object of the named directory context and
enumerates the individual Attribute objects:

Attributes attrs = ((DirContext)c).getAttributes(name);
NamingEnumeration allAttr = attrs.getAll();

Calling getAttributes() with the name of a directory entry returns an Attributes object that

contains all the attributes for that entry. Another variation of getAttributes() allows you to pass the
name of a directory entry and an array of attribute names (as String objects). This method returns an
Attributes object that contains only the specified attributes. For example:

String[] attrIDs = {"name", "telephonenumber"};
Attributes partialAttrs = dirContext.getAttributes(name, attriDs);

In listattrs, we used the getAll() method of Attributes to return an enumeration of

Attribute objects. The Attributes interface also provides a getlDs() method that returns an

enumeration of just the attribute names (or IDs) for the directory entry. If you know the attribute you want,
you can specify the attribute name in a call to the get() method, which returns a single Attribute object.
For example:

Attribute addr = attrs.get("address");

6.9.4. The Attribute Interface

The Attribute interface represents a single directory attribute. We've already seen this interface in the
listattrs command, where we used it to print the names and values of all the attributes of a directory context.

An attribute can have a single value or multiple values, as specified in the schema for the directory. For

example, a "name" attribute might have a single value (e.g., "Billy"), while a "telephonenumber" attribute
might have multiple values (e.g., "800 555 1212" and "303 444 6633").

6.9.4. The Attribute Interface 166

Preface (Java Enterprise in a Nutshell)

JNDI provides several methods for working with values in an attribute. For instance, we can get one or more
values, add or remove a single value, remove all values, and determine if a particular value is present.

The get() method of Attribute returns a single attribute value as a java.lang.Object. If the

attribute has only a single value, get() returns that value. If the attribute has multiple values, the service
provider determines the value that is returned. The following code shows how to get a single value from an
attribute:

DirContext user ... ; /I Created somewhere else in the program
Attributes attrs = user.getAttributes(");

Attribute attr = attrs.get("telephonenumber");

Object onePhoneNumber = attr.get();

The getAll() method returns multiple attribute values as a NamingEnumeration of objects, as we saw
in listattrs. Here's how to print all values stored in an attribute:

Attribute attr = attrs.get("telephonenumber");

NamingEnumeration phoneNumbers = attr.getAll();

while (phoneNumbers.hasMore())
System.out.printin(phoneNumbers.next());

The add() method of Attribute enables us to add another value to an attribute:

Attribute attr = attrs.get("telephonenumber");
attr.add("520 765 4321"); /l Add a new number

If we try to add a value to an attribute that doesn't support multiple values, the method does not throw an
exception. The attribute simply does not accept the new value. By the same token, you can use the
remove() method to remove a value from an attribute.

Attribute attr = attrs.get("telephonenumber");
attr.remove("303 444 6633"); // Remove the old number

To remove all the values from an attribute, you can call the clear() method. Note that none of these
method calls actually affect the directory entry; they simply modify the local Attribute object. To make a
permanent change, you have to call the modifyAttributes() method of DirContext and provide it

with a modified Attribute object, as discussed in the next section.

The contains() method lets you determine whether an attribute has a certain value, while size()
returns the number of values the attribute has:

Attribute attr = attrs.get("telephonenumber");
boolean itsThere = attr.contains("800 555 1212"); // Check for certain value
int valuesltHas = attr.size(); // Check how many values it has

4 PREVIOUS HOME NEXT »
6.8. Binding Objects BOOK INDEX 6.10. Modifying Directory
Entries
Java ras | U |vew | O - A\
y . ‘ o T | p - «)
Enterprise ; : g @ ?<\/
Bookshelf Java™ Java™ Jba\'u“' Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

6.9.4. The Attribute Interface 167

Preface (Java Enterprise in a Nutshell)

@JAVA‘,ENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 6: JNDI TS

6.10. Modifying Directory Entries

Modifying the attribute values of a directory entry involves using the modifyAttributes() method of
DirContext. One variant of this method takes the name of a directory entry, a modification type, and an
Attributes object that contains modified Attribute objects, while another variant takes a name and an
array of javax.naming.directory.Modificationltem objects. A Modificationltem

encapsulates a modified Attribute object and a modification type.

The only part of this operation that warrants much explanation is the creation of modified Attribute
objects. The javax.naming.directory.BasicAttributes and

javax.naming.directory.BasicAttribute classes implement the Attributes and

Attribute interfaces, respectively. These are the classes you'll typically use to create modified attribute
values.

For example, let's say we want to remove the phone number "303 444 6633" from a user entry's
"telephonenumber” attribute and replace it with the new number "520 765 4321." In the following code, we
create two BasicAttributes objects, newNumber and oldNumber, and use them in calls to
modifyAttributes():

DirContext user ... ; // Created somewhere else in the program

BasicAttribute newAttr = new BasicAttribute();
newAttr.add("telephonenumber”, "520 765 4321");
BasicAttributes newNumber = new BasicAttributes();
newNumber.put(newAttr);

BasicAttributes oldNumber =
new BasicAttributes("telephonenumber”, "303 444 6633");

user.modifyAttributes("™, DirContext. REMOVE_ATTRIBUTE, oldNumber);
user.modifyAttributes(™, DirContext. ADD_ATTRIBUTE, newNumber);

In this code, we use two different techniques to create BasicAttributes objects. For newNumber, we
first create a new BasicAttribute and add a "telephonenumber" attribute to it. Then we create a new
BasicAttributes object and put the BasicAttribute in it. With oldNumber, we use the

convenience constructor of BasicAttributes to accomplish the same task in one line of code.

Now we use the two BasicAttributes objects in two calls to modifyAttributes(), one to remove

the old number and one to add the new. DirContext defines three constants we can use to specify the type
of modification we are doing: ADD_ATTRIBUTES, REMOVE_ATTRIBUTES, andREPLACE_ATTRIBUTES.
With any of these types, modifyAttributes() uses the ID of each Attribute object to determine

which attribute to modify by adding, removing, or replacing attribute values. The net result of our two calls is
that the old number is replaced with the new number. Of course, we could have done this with one call to
modifyAttributes() if we had used the REPLACE_ATTRIBUTES modification type.

The following code shows how to make the same change using the variant of modifyAttributes() that
takes an array of Modificationltem objects:

Modificationltem[] mods = new Modificationltem[2];
mods[0] = new Modificationltem(DirContext. REMOVE_ATTRIBUTE,

6.10. Modifying Directory Entries 168

Preface (Java Enterprise in a Nutshell)

new BasicAttribute("telephonenumber”, "303 444 6633"));
mods[1] = new Modificationltem(DirContext. ADD_ATTRIBUTE,

new BasicAttribute("telephonenumber”, "520 765 4321"));
user.modifyAttributes("™, mods);

Again, this change could also have been done with a single Modificationltem, using
REPLACE_ATTRIBUTES.

Note that the examples here do not reflect any particular directory. In order to change a "telephonenumber"
attribute value for a particular directory, you need to consult the schema of that directory for the appropriate
attribute type and syntax definitions.

Note also that we have only discussed modifying existing attribute values, not adding new attributes
altogether. The reason is that adding new attribute IDs requires modifying the schema, or type system, of a
directory. JNDI supports schema access and modification, but the details on how to do so are beyond the
scope of this chapter.

4 PREVIOUS HOME NEXT »
6.9. Accessing Directory BOOK INDEX 6.11. Creating Directory
Services Entries
8. @ BN s
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@]AVAWENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 6: JNDI T

6.11. Creating Directory Entries

So far, we have been accessing directory entries that are already present in the directory. Now it's time to
learn how to create directory entries of our own, using the createSubcontext() method of

DirContext. As we discussed earlier, when you create a subcontext of a Context object, the service
provider controls the type of object that is created. With a DirContext, this is not the case; you actually
have complete control over the type of object you create with createSubcontext() (within the

constraints of the directory schema, of course).

As | noted earlier, the object class definition determines the type of a directory entry, and the entry stores its
object class as an attribute. So, in order to create a directory entry, we must pass the object class attribute &
some other attributes into the parent entry's createSubcontext() method.

Most directories require that you specify attributes for at least the object class definition (e.g., "objectclass="
and key attribute (e.g., common name, "cn=") of a directory entry. Often directories require that you specify
more attributes than just these. The minimum set of attributes necessary for creating a directory entry are
called the mandatory attributes. They are mandatory because if you do not specify them,
createSubcontext() throws an InvalidAttributesException. Other attributes that are not

required, but that add more useful data to the entry, are called extended attributes.

6.11. Creating Directory Entries 169

Preface (Java Enterprise in a Nutshell)

Say we have a reference to a DirContext called orgUnit (where this directory entry lives in an LDAP v3
directory), and we want to create a user entry that is a child of orgUnit to represent the network user Billy
Roberts. Here's how we can create a user entry for Billy:[3]

[3] Note that I didn't implement a "create directory entry" command for NamingShell
because most public-access LDAP servers don't allow you to create new entries.

DirContext orgUnit = ... ; // Created somewhere else in the program

BasicAttributes mandatory = new BasicAttributes("cn”, "Billy");
BasicAttribute objectclass = new BasicAttribute("objectclass”, "user");
BasicAttribute surname = new BasicAttribute("surname”, "Roberts");
mandatory.put(objectclass);

mandatory.put(surname);

orgUnit.createSubcontext("cn=Billy", mandatory);

Note that the createSubcontext() method of DirContext resembles the createSubcontext()

method of Context; the only difference is the addition of an Attributes parameter. In this example, we
create a BasicAttributes object and put three attributes in it. While all the attribute values here are
String objects (because that's what an LDAP directory requires), the JNDI API allows you to specify any
kind of object as an attribute value.

In this example, orgUnit represents an organizational unit, under which Billy Roberts' newly created user
entry resides. In an LDAP directory, an organizational unit is an object class definition that represents a
division of a company, and a user is an object class definition that represents a person who uses network
resources. It is natural that a division of a company can contain a person, but it doesn't necessarily work in t
opposite direction; it doesn't make sense that a user can contain an organizational unit. The LDAP schema
dictates these rules and also specifies the values we can use for the "objectclass" attribute (which is where
"user" came from in the example code).

When you are creating your own directory entries, be sure to consult the schema for the directory you are
using. If you attempt to create a type of entry that cannot reside under a particular DirContext, or you
specify an incorrect value for the "objectclass” attribute, createSubcontext() throws an exception.

4 PREVIOUS HOME NEXT
6.10. Modifying Directory BOOK INDEX 6.12. Searching a
Entries Directory

Java” } bdq
Enterprise @
Bookshelf Java™ Enterprise Jnvu Java™ Juva
Home Enterprise ina Nlmbell Fowndnmn (lnsses JavaBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

@ PREVIOUS Chapter 6: JNDI T

6.11. Creating Directory Entries 170

Preface (Java Enterprise in a Nutshell)

6.12. Searching a Directory

One of the most useful features a directory service can offer is the ability to search its entries for ones that
have attribute values that meet certain criteria. JNDI supports this kind of searching in directory systems,
which means you can implement search functionality in your JNDI applications. DirContext provides a
number of different search() methods that allow you to specify what you are searching for and let you
control how the search operates.

6.12.1. Search Criteria

There are two ways to specify what you are searching for. The simpler technique is to create a set of attribu
that serve as the search criteria. In this case, you can either set an attribute value, meaning that an entry mi
have that attribute value to match or leave the value empty, so that all entries that have the attribute match,
matter what the value.

The more flexible way to specify search criteria is with a search filter string. A search filter allows you to
express search criteria using LDAP search syntax, specified in RFC-2254. Note that this syntax works with
all INDI providers, not just LDAP; it's the JNDI standard for searching all kinds of directories. The search
filter is a String that takes the following general form:

(attribute operator value)

You can use an asterisk (*) to represent a wildcard. For example, here's how to search for all entries in an
LDAP directory:

(objectclass=*)
A search for all users takes the form of:
(objectclass=user)

You can also use the wildcard character to represent completion, just like in a Unix shell or a DOS prompt.
For example, here's a filter for searching for all users whose first names start with "k":

(cn=k*)
You can use operators other than equals (=), as in:
(revision<24)

You can also combine search filters with operators such as AND (&) and OR (]). The way to do this is to
wrap the entire expression in parentheses:

(&(objectclass=computer)(cn=Billy))
Finally, you can nest search expressions:
(&(](objectclass=computer)(objectclass=user))(cn=Billy)))

Obviously, the attributes you specify in a search depend on the directory service you are searching.

6.12. Searching a Directory 171

Preface (Java Enterprise in a Nutshell)

6.12.2. Search Results

Regardless of how you specify the search criteria, the search() method you call returns a
NamingEnumeration of SearchResult objects. There is a SearchResult for each directory entry

that matches the search criteria. SearchResult is a direct subclass of Binding that stores a set of
Attributes along with the usual name, class name, and object. (As we'll see shortly, the object in a
SearchResult may be null, depending on the SearchControls you set.) Since a search operation
returns a NamingEnumeration, you must cast the object that the enumeration returns from the next()
method to a SearchResult object. Once you have done that, you can retrieve attributes with the
getAttributes() method and use methods inherited from Binding (and NameClassPair) to get

other information about the matching entry.

6.12.3. Search Controls

The search() methods that take a SearchControls object allow you to control how a search operates.

You can set the scope of a search, whether the search should return objects, and the maximum amount of t
the search should take, among other things. The easiest way to create a SearchControls object is to use
the default constructor and then call various set() methods to set particular search properties.

For example, the setSearchScope() method controls where the search should look for matching
directory entries. Most of the time, you set the scope of a SearchControls object to search an entire
subtree, but you can also limit the search to an object or its children. Table 6-3 lists the available search
scopes.

Table 6-3. SearchControls Search Scopes

Scope Meaning
OBJECT_SCOPE |Searches only the object itself
ONELEVEL_SCOPBearches only the children of the search target
SUBTREE_SCOPHSearches the entire subtree
The setReturningObjFlag() method determines whether the results of a search contain references to

the actual directory entries or only the names and class names of the entries. The default behavior is not to
return the actual entries, meaning that calling getObject() on a SearchResult returns null.

The SearchControls object also allows you to specify other aspects of the behavior of a search:

The number of milliseconds to wait for the directory to return the search results (by default, a search
can take as long as it takes)

The number of entries that can be returned from the search (by default, as many as are present)

Whether to follow links to finish the search (no by default)

What attributes if any to return (all by default)

In general, the default behavior is typically what you want for these parameters.

6.12.2. Search Results 172

Preface (Java Enterprise in a Nutshell)

6.12.4. A Search Command

Now that we've discussed how the various search() methods work, let's look at a real example. Example

6-11 shows the implementation of a search command for NamingShell. This example uses the

search() method that takes the name of the context to be searched, a search filter that describes the search

criteria, and a SearchControls object.

Example 6-11. The search Command

import java.util.Vector;
import javax.naming.*;
import javax.naming.directory.*;

class search implements Command {
public void execute(Context ¢, Vector v) throws CommandException {

if (NamingShell.getCurrentContext() == null)
throw new CommandException(new Exception(), "No current context");
else if (v.isEmpty())
throw new CommandException(new Exception(), "No filter specified");
String filter = (String)v.firstElement();
try {
SearchControls cons = new SearchControls();
cons.setSearchScope(SearchControls. SUBTREE_SCOPE);
NamingEnumeration results = ((DirContext)c).search("™, filter, cons);
while (results.hasMore()) {
SearchResult result = (SearchResult)results.next();
System.out.printin(result.getName());

}

catch (InvalidSearchFilterException isfe) {
throw new CommandException(isfe,
"The filter [* + filter + "] is invalid");

catch (NamingException e) {
throw new CommandException(e, "The search for " + filter + " failed");

catch (ClassCastException cce) {
throw new CommandException(cce, "Not a directory context");

}
}

public void help() { System.out.printin("Usage: search filter"); }
}

The search command always starts searching in the current context, so you need to move to the appropriats
location in the directory service using cd before you use search. search requires you to specify a search filte
as its first argument. Note that you cannot use any spaces in the filter, or the filter will be parsed as multiple

arguments and therefore not work. Here's how we might use the search command:

0=Novell% search (&(objectclass=person)(cn=a*))
cn=admin
cn=admin,ou=cook1,ou=user
cn=admin,ou=fj,ou=user
cn=admin,ou=Stanford,ou=user
cn=admin,ou=Ed Reed,ou=user
cn=admin,ou=antimony,ou=user
cn=admin,ou=keaves,ou=user
cn=admin,ou=acme,ou=user
cn=admin,ou=nld,ou=user
cn=admin,ou=wibble,ou=user
cn=admin,ou=xxx,ou=user

6.12.4. A Search Command 173

Preface (Java Enterprise in a Nutshell)

ch=admin,ou=piet,ou=user
cn=admin,ou=adamtestl,ou=user
cn=admin,ou=novell,ou=user

4 PREVIOUS HOME NEXT »
6.11. Creating Directory BOOK INDEX 7. Enterprise JavaBeans
Entries
& /
L1 §) o K
i S«
bl & L
Java™ Java™ Enterprise Jave™ Java™ Java™
Enterprise in a Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

b JAVA ENTERPRISE IN A NUTSHELL =

NEXT »

4 PREVIOUS Part 1: Introducing the
Java Enterprise APIs

6.12.4. A Search Command

174

Chapter 7. Enterprise JavaBeans

Contents:

A Note on Evolving Standards

EJB Roles

Transaction Management

Implementing a Basic EJB Object
Implementing Session Beans
Implementing Entity Beans

Deploying an Enterprise JavaBeans Object
Using an Enterprise JavaBeans Object
Changes in EJB 1.1 Specification

The introduction of RMI and JavaBeans to the core Java APIs brought a standard distributed object
framework and a component model to Java. The Enterprise JavaBeans (EJB) architecture builds on these
foundations to provide a standard distributed component model.

So, you may ask, how are EJB[1] components different from regular distributed objects built using RMI or
local (nondistributed) components defined using the JavaBeans component model? Well, they aren't, really.
An EJB component is an RMI object, in the sense that it's exported as a remote object using RMI. And an E
component is also a JavaBeans component, since it has properties that can be introspected, and it uses the
JavaBeans conventions for defining accessor methods for its properties. An EJB is much more than the sun
these parts, however. The EJB architecture provides a framewaork in which the enterprise bean developer c:
easily take advantage of transaction processing, security, persistence, and resource—pooling facilities provic
by an EJB environment. These facilities don't come free, of course. You need to understand how they work
and what rules your EJB object needs to follow in order to participate in these services.

[1]For the sake of space on the page, strain on your eyes, and my time on the keyboard, I'm
going to abbreviate "Enterprise JavaBeans" as "EJB" throughout most of this chapter. | hope
you don't mind.

Enterprise JavaBeans are useful in any situation where regular distributed objects are useful. They excel,
however, in situations that take advantage of the component nature of EJB objects and the other services tt
EJB objects can provide with relative ease, such as transaction processing and persistence. A good exampl
an online banking application. A user sitting at home wants to connect to all her financial accounts, no matte
where and with whom they may live, and see them tied together into one convenient interface. The EJB
component architecture allows the various financial institutions to export user accounts as different
implementations of a common Account interface, just as we would do with other distributed object APIs.

But since these remote Account objects are also JavaBeans components, the client-side financial
application can introspect on the Account objects to determine specialized public properties that certain
accounts may have, so they can be shown to the client along with the common account properties. Also, the
Account objects can be made into transactional EJB objects, which allows the client to perform a number of
account operations within a single transaction, then either commit them all or roll them back. This can be a
critical feature in financial applications, especially if you need to ensure that a supporting transfer can be
executed before a withdrawal request is submitted. The transactional support in EJB ensures that if an error
occurs during the transfer and an exception is raised, the entire transaction can be rolled back, and the
client—side application can inform you of the reason.

The EJB component model insulates applications and beans (for the most part) from the details of the

component services included in the specification. A benefit of this separation is the ability to deploy the sam
enterprise bean under different conditions, as needed by specific applications. The parameters used to cont
a bean's transactional nature, persistence, resource pooling, and security management are specified in sep:

Chapter 7. Enterprise JavaBeans 175

Preface (Java Enterprise in a Nutshell)

deployment descriptors, not embedded in the bean implementation or the client application. So, when a bea
is deployed in a distributed application, the properties of the deployment environment (client load levels,
database configuration, etc.) can be accounted for and reflected in the settings of the bean's deployment
options.

The EJB APl is a standard extension to Java, available in the javax.ejb package and its subpackages. You
have to explicitly install this extension API in order to write code against the EJB interfaces. You can find the
latest version of the API at http://www.javasoft.com/products/ejb/. You should also note that EJB is just a
specification for how distributed components should work within the Java environment. In order to actually
create and use EJB obijects, you need to install an EJB—enabled server.

Note that this chapter provides a basic introduction to Enterprise JavaBeans. For more complete coverage,
Enterprise JavaBeans by Richard Monson—-Haefel (O'Reilly).

7.1. A Note on Evolving Standards

The information and code examples in this chapter are based on Version 1.0 of the Enterprise JavaBeans
specification, released in March 1998. The code examples have been tested in two different EJB servers for
compatibility: Weblogic/BEA's Tengah server Version 3.1.2 and the 0.4 Version of the free reference EJB
server provided by the good folks at EJBHome (http://ejbhome.iona.com).

At the time of this writing, Sun has released a public draft of Version 1.1 of the EJB specification and has
plans for a 2.0 version, to be released at a later date. The information in this chapter is largely unchanged b
the incremental 1.1 update, but some details on the changes in 1.1 are described at the end of the chapter.
unclear how much of the material in this chapter will be applicable to EJB 2.0.

4 PREVIOUS HOME NEXT »
6.12. Searching a BOOK INDEX 7.2. EJB Roles
Directory
5.0 B e e
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes Jnvnlenns"', Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

4@ PREVIOUS Chapter 7: Enterprise NXT ®
JavaBeans

7.2. EJB Roles

In Chapter 3, "Remote Method Invocation”, | described two fundamental roles in the RMI environment: the
client of the remote object, and the object itself, which acts as a kind of server or service provider. These twi
roles exist in the EJB environment as well, but EJB adds a third role, called the container provider. The
container provider is responsible for implementing all the extra services for an EJB object that | mentioned

7.1. A Note on Evolving Standards 176

http://www.javasoft.com/products/ejb/
http://ejbhome.iona.com/

Preface (Java Enterprise in a Nutshell)

earlier: transaction processing, security, object persistence, and resource pooling. If you're familiar with
CORBA, you can think of the EJB container as being roughly equivalent to the ORB in CORBA, with a few
of the CORBA services thrown in as well. In EJB, however, the container is strictly a server—side entity. The
client doesn't need its own container to use EJB objects, but an EJB object needs to have a container in ord
to be exported for remote use. Figure 7-1 shows a conceptual diagram of how the three EJB roles interact
with each other.

EJB Container
{manage tronsactions,
resource pooling, persistence)

Business methods,
lifecycle mothods

Figure 7—-1. The basic roles in an EJB environment

7.2.1. The EJB Client

An EJB client uses remote EJB objects to access data, perform tasks, and generally get things done. In the
EJB environment, the first action a client performs is to find the home interface for a type of EJB object that
wants to use. This home interface is a kind of object factory, used to create new instances of the EJB type,
look up existing instances (only when using entity EJB objects, discussed later), and delete EJB objects. Th
is a bit different from RMI, where the client first has to get a direct handle to an existing RMI object. In many
RMI applications, however, this first RMI object is a kind of object factory that creates other RMI object
references. So, in a sense, the use of home interfaces in EJB is just formalizing the role of factory objects in
distributed component applications.

EJB home interfaces are located by clients using JNDI (see Chapter 6, "JNDI", for more information). An
EJB server publishes the home interface for a particular EJB object under a particular name in a JNDI
namespace. The EJB client needs to specify the JNDI server and the name that the EJB home interface is
stored under in order to start things off. The following code shows a simple EJB client that uses remote
Person beans:

import javax.ejb.*;

import javax.naming.*;
import java.rmi.*;

import java.util.Properties;

public class PersonClient {
public static void main(String[] args) {
String name = args[0];

try {
/I Get a INDI context for our EJB server (EJBHome, in this case)

Properties p = new Properties();

7.2. EJB Roles 177

Preface (Java Enterprise in a Nutshell)

p.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ejbhome.naming.spi.rmi.RMlInitCtxFactory");

// Add URL, host or port options, if needed...;

Context context = new InitialContext(p);

/I Get the home interface for Person beans
PersonHome pHome =
(PersonHome)context.lookup("People™);

/I Create a named person
Person person = pHome.create(name);

/I Use the remote stub interface to access the person's data

}...

catch (NoSuchPersonException nspe) {
System.out.printin("Invalid person: " + name);

}

catch (Exception e) {
System.out.printin("Error while creating/using person.");

}
}
}

We'll examine the details of this client a bit later in the chapter, but the example shows the fundamental stey
an EJB client performs:

Get a JNDI context from the EJB server.

Use this context to look up a home interface for the bean you want to use.

Use this home interface to create (or find) a bean.

Call methods on the bean.

7.2.2. The Enterprise JavaBeans Object

If you develop your own EJB object, you need to provide three Java interfaces/classes in order to fully
describe your EJB object to an EJB container:

A home interface

A remote interface

An enterprise bean implementation

The remote interface and the object implementation are similar to the corresponding RMI interfaces. A clien
issues method requests through a stub derived from the remote interface and eventually these requests ma
their way to the corresponding bean instance on the server. The home interface is a new twist: it acts as a b
factory, providing a way for a client to create, locate, and destroy EJB objects that it uses. With the home

interface in the picture, the remote interface acts as the interface the client uses to interact with EJB objects

7.2.2. The Enterprise JavaBeans Object 178

Preface (Java Enterprise in a Nutshell)

and the implementation is where the object itself does its thing.

Here is an example home interface for the Person bean used in the previous example:

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util. Hashtable;

public interface PersonHome extends EJBHome {
/I Create a new (nameless) person
public Person create() throws RemoteException;

/I Create a named person.
/I Throws an exception if the person can't be found.
public Person create(String name)

throws RemoteException, NoSuchPersonException;

/I Lookup a Person by name (the "primary key")
public Person findByPrimaryKey(PersonPK key)
throws RemoteException, FinderException;

/I Lookup people with a given string in their name.
public Enumeration findByPartialName(String fragment)
throws RemoteException, FinderException;

}

This home interface includes methods to create Person beans and to find them if they already exist on the
server. The remote interface for our Person bean is shown here:

import javax.ejb.*;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Person extends Remote, EJBObject {
public String getName() throws RemoteException;
public void setName(String name) throws RemoteException;

}

This interface shows the business methods that are available to clients. When a client gets a reference to a
bean through the PersonHome interface, it is given a stub that implements the Person interface.

The EJB object implementation needs to implement all the business methods in the remote interface, plus
some methods used by the container to tell it about various events in its lifetime. The EJB object does not
need to implement the remote interface, which is another new twist compared to RMI, where the server obje
always implements the remote interface. In EJB, the container arranges for method calls on the remote
interface to be transferred to the EJB object. You just need to ensure that the EJB object has methods that
match the signatures of the methods in the remote interface. We'll see an example of EJB object
implementation a bit later.

Various pieces of these Java classes (home, remote, and implementation) are provided for the sake of the
client, to allow a client to create EJB objects and call remote methods on them. Other pieces are provided fc
the EJB container, to allow it to notify the EJB object about transaction— and persistence-related events, for
example.

In addition to the interfaces that describe the EJB object type, an EJB object also provides deployment
descriptors to its containers. The deployment descriptors tell the container the hame to use for registering th
bean's home interface in JNDI, how to manage transactions for the bean, the access rights that remote
identities are given to invoke methods on the EJB, and how persistence of the EJB objects should be handle
The container does all the heavy lifting with regard to providing these services, but the EJB object has to tell
the container how it would prefer to have these services managed.

7.2.2. The Enterprise JavaBeans Object 179

Preface (Java Enterprise in a Nutshell)

There are two fundamental types of Enterprise JavaBeans: session beans and entity beans.[2] A session be
is accessed by a single client at a time and is nonpersistent. It lives for a specific period of time (a session),
and then gets removed by the server. An entity bean, on the other hand, represents a data entity stored in
persistent storage (e.g., a database or filesystem). It can be accessed by multiple clients concurrently and is
persistent beyond a client session or the lifetime of the EJB server.

[2]In Version 1.0 of the EJB specification, support for entity beans is optional in compliant
EJB servers.

To illustrate the difference between session and entity beans, suppose you're building an online banking
system using EJB components. An automated bank teller, which reports on account balances and executes
deposits and withdrawals on specified accounts, could be implemented as a session bean. A single client uc
the teller bean to perform services on bank accounts that are maintained in some separate persistent store |
bank's database). A EJB object that directly represents a bank account, however, should be an entity bean.
Multiple clients can access the account to perform transactions, and the state of the account entity should b
persistent across the lifetime of the online banking server.

7.2.3. The EJB Container

Most readers need to be familiar only with EJB containers from the perspective of an EJB client or an EJB
object. For example, a Java application server that you might use to deploy an EJB-based application
provides an implementation of the EJB container role. EJB—enabled application servers, with their own EJB
containers and deployment tools, are available from Weblogic/BEA, Bluestone, IBM, Netscape, and Art
Technology Group, among others.

The EJB container represents the value—added features of EJB over standard remote objects built using RN
or CORBA. The EJB container manages the details of transactional processing, resource pooling, and data
persistence for you, which reduces the burden on client applications and EJB objects and allows them to de
with just the business at hand.

An EJB application server can contain multiple EJB containers, each managing multiple EJB objects. In this
chapter, I'll refer to EJB servers and EJB containers somewhat interchangeably, depending on the context. |
general, though, the container is strictly the runtime elements that interact directly with your EJB objects to
provide client proxy services and natifications, while the server is the other glue outside the core EJB standz
that integrates the EJB containers into a larger application management structure of some kind.

An EJB container is the heart of an EJB environment, in the same way an ORB is the heart of a CORBA
environment. The container registers EJB objects for remote access, manages transactions between clients
EJB objects, provides access control over specific methods on the EJB, and manages the creation, pooling,
and destruction of enterprise beans. The container also registers the home interface for each type of bean
under a given name in a JNDI hamespace, allowing remote clients to find the home interfaces and use then
create enterprise beans.

Once you provide the EJB container with the home and remote interfaces and the implementation class for
your bean, along with a deployment descriptor, the container is responsible for generating the various class
that connect these components, as shown in Figure 7-2. The home and remote interfaces you provide are |
Remote interfaces; the container generates both the client stubs and the server—side implementation for the
interfaces. When a client looks up a bean's home interface through JNDI, it receives an instance of the hom
stub class. All methods invoked on this stub are remotely invoked, via RMI, on the corresponding home
implementation object on the EJB server. Similarly, if the client creates or finds any beans through the home
stub, the client receives remote object stubs, and methods invoked on the stubs are passed through RMI to
corresponding implementation objects on the server. These remote objects are linked, through the EJB

7.2.3. The EJB Container 180

Preface (Java Enterprise in a Nutshell)

container, to a corresponding enterprise bean object, which is an instance of your bean-implementation cla:
Optionally, the EJB container may also generate a container—specific subclass of your bean implementation
(e.g., if it wants to augment some of your bean methods to facilitate synchronization with the container).

Home Inlerfoce

Create/Tind/remore ! Create/Tind/remove U‘?
; / Contoiner
Home :

Home
I Remote stubs Stub Implementation Neticotions
: Business methodk/remore Bean)
' Implemeatotion
Remote Interfoce
- v Contoiner-generofed
B Subcloss (opfionol)
Remote Object | . © _ | Remote Object
Stub i |implementation
Ramove '

D Infevfoces/dasses provided by bean providsr
' D Interfoves/dasses provided by £18 container
Client : Server

..

Figure 7-2. Relationship of bean—provider classes and container—generated classes

The container receives client requests to create, look up, and/or remove beans. It either handles them itself
passes the requests to corresponding methods on the EJB object. Once the client obtains a reference to a
remote interface for an EJB object, the container intercedes in remote method calls on the bean, to provide
bean with required transaction management and security measures. The container also provides support fol
persistence of enterprise beans, either by storing/loading the bean state itself or by notifying the bean that it
needs to store or reload its state from persistent storage.

A container can maintain multiple EJB objects and object types during its lifetime. The container has some
freedom to manage resources on the server for performance or other reasons. For example, a container cat
choose to temporarily serialize a bean and store it to the server filesystem or some other persistent store; th
is called passivating a bean. The EJB object is notified of this and given a chance to release any shared
resources or transient data that shouldn't be serialized. The bean is also notified after it is activated again, tc
allow it to restore any transient state or reopen shared resources.

An EJB container can make any EJB object type available for remote use. When you deploy an EJB object
within an EJB server, you can specify how the container should manage the bean during runtime, in terms c
transaction management, resource pooling, access control, and data persistence. This is done using
deployment descriptors, which contain parameter settings for these various options. These settings can be
customized for each deployment of an EJB object. You might purchase an EJB object from a vendor and
deploy it on your EJB server with a particular set of container management options, while someone else wh
purchased the same bean can deploy it with a different set of deployment options. We discuss the details of
the runtime options available in deployment descriptors and how to use them later in this chapter, when we
talk about deploying EJB components.

4 PREVIOUS HOME NEXT
7.1. A Note on Evolving BOOK INDEX 7.3. Transaction
Standards Management

7.2.3. The EJB Container 181

Preface (Java Enterprise in a Nutshell)

g RS | e (e | D | e | A
. : - . . 4 - e -
Enterprise ; ap. : g @ 7<\ /
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 7: Enterprise Ny e
JavaBeans

7.3. Transaction Management

One of the value—added features that Enterprise JavaBeans provides over regular remote objects is
semiautomated transaction management. I'll periodically mention transaction-related issues when we 00Kk ¢
creating, deploying, and using EJB objects, so this section introduces some basic transaction—-management
concepts. If you're not interested in using the transaction—management features of your EJB server, you cat
safely skip this section and jump to the material on implementing EJB object. If you plan to make JDBC call
from within your bean, however, you should note the information in the section on database transactions.

Transactions break up a series of interactions into units of work that can be either committed if they are
successfully executed or rolled back at any time before the transaction is committed. If a transaction is rollec
back, all parties involved in the transaction are responsible for restoring their state to its pretransaction
condition. Transaction support is especially important in a distributed environment, since agents may lose
network contact with each other or one agent may die while engaged in a series of interactions with another
agent.

The EJB container is the principal player in the area of transaction management, since it is responsible for
either generating transactions around client interactions with the bean, or detecting client-requested
transactions and then notifying the EJB objects about transaction boundaries (start and end). The Enterprise
JavaBeans architecture relies on the Java Transaction API (JTA) for transaction support. The JTA represen
transaction with the javax.transaction.UserTransaction interface.[3] Complete coverage of the

JTA and the concepts of transaction—based processing are beyond the scope of this chapter, but a few wort
of overview here should be enough for you to get an understanding of how this can be a valuable feature of
Enterprise JavaBeans. In addition, the JTA interfaces and classes are documented in Part 3, "API Quick
Reference".

[3]Note that shortly after the EJB 1.0 specification was released, the name of the (then beta)
JTA was changed, so that javax.jts.UserTransaction became
javax.transaction.UserTransaction. I'm using the new class name here, but

keep in mind that you might see the old package names in the EJB 1.0 documentation from
Sun.

A client or an EJB object can declare a new transaction by creating a UserTransaction object. The
transaction is started by calling the begin() method on the transaction object, and ended by calling either
the commit() method (for a successful completion) or the rollback() method (to abort the transaction

and revert to the state before the transaction began). The following code shows the (now cliché) example of
banking transaction in an EJB context:

7.3. Transaction Management 182

Preface (Java Enterprise in a Nutshell)

/I Get the JNDI context, and use it to get the Account home interface
Context ctx = new InitialContext(props);
AccountHome acctHome = (AccountHome)ctx.lookup("Accounts");

/I Get two accounts
Account savings = acctHome.findByNameAndType("Jim Farley", "savings");

Account checking = acctHome.findByNameAndType("Jim Farley", "checking");

/I Get a transaction object, using a JNDI lookup on the EJB context
javax.transaction.UserTransaction xaction =
(UserTransaction)ctx.lookup(“javax.transaction.UserTransaction");

/I Perform a transaction
xaction.begin();

try {
savings.deposit(1500.0);
checking.transfer(savings, 750.0);
xaction.commit();

}

/' If anything goes wrong, roll back the work we've done.
catch (Exception e) {
xaction.rollback();

}

This code might be seen in a client application using an EJB server for banking services. In this case, the
client is using the transaction to ensure that both the deposit to savings and the transfer to checking are
committed only if both operations are successful. If either one fails, the rollback() method is called on

the transaction to ensure that any changes are undone. An EJB object might use similar procedures if it is
managing its own transactions, the only difference being that the bean would be able to use its EJBContext
to get a transaction from its container:

xaction = myContext.getUserTransaction();

The use of the EJBContext in enterprise beans is covered later in the chapter.

In the context of an Enterprise JavaBeans component, transaction boundaries can be defined by the client ¢
the EJB object, the container, or the EJB object itself. In all cases, the EJB container decides how to handle
the transaction context whenever a remote method is invoked on an EJB object. During a bean's lifetime, th
container decides whether to execute the bean's business methods within the client's transaction or within a
transaction that the container defines, or to allow the bean to manage its own transaction boundaries. When
is deployed, a bean can choose one of the following transaction—support attributes:

TX_NOT_SUPPORTED
The bean cannot support transactions, so its methods must be called without a transaction context. |
the client has initiated a transaction, it is suspended by the container before the bean's method is
invoked. After the method completes, the container resumes the client's transaction.

TX_SUPPORTS
The bean supports transactions if requested. If the client calls a method on the bean, while within a
transaction, the client's transaction context is passed to the bean as part of the bean's EJBContext.

TX_REQUIRED
The bean requires that all method requests be executed within a transaction context. If the client is
already in a transaction of its own, the transaction context is passed on to the bean in its
EJBContext. If not, the container creates a new transaction before calling the bean's method and
commits the transaction when the bean's method finishes, but before the method results are returne
to the client.

7.3. Transaction Management 183

Preface (Java Enterprise in a Nutshell)

TX_REQUIRES_NEW
The bean requires that all remote method requests be executed within a new transaction. The
container automatically starts a new transaction before calling a remote method on the bean, and
commits the transaction when the method finishes, but before the results are returned to the client. I
the client calls a remote method while within a transaction, the client's transaction is suspended by tt
container before executing the bean's method within the new transaction and resumed after the new
transaction is committed.

TX_MANDATORY
The bean must be run within the context of a client-initiated transaction. If the client calls a remote
method on the bean without starting a transaction first, the container throws a
javax.jts.TransactionRequired Exception.

TX_BEAN_MANAGED
The bean manages all its own transaction boundaries and does not execute within the client's
transactions. If the client calls a remote method on the bean from within a client—generated
transaction, the client transaction is suspended for the duration of the execution of the remote metho
The bean's business methods are run within a transaction only if the bean explicitly creates one (the
container does not automatically generate a transaction for each method call). The bean's methods 1
within the transaction until it is ended by the bean, and the container ensures that the transaction
context is provided in the bean's EJBContext as long as the transaction is open.

7.3.1. Making the EJB Server Aware of Database Transactions

In order for an EJB server to properly implement the various transaction levels listed previously, it needs to
be aware of JDBC connections and database transactions that you make from within your enterprise bean.
This is key to the EJB server's ability to provide your beans with semiautomatic transaction management.
While your bean methods are executing within a given transaction context, the EJB server needs to ensure
database transactions that you make are held pending the commit or rollback of the transaction. If the
transaction is committed, the pending database updates are committed to their respective data sources. If tf
transaction is rolled back, the pending database updates are rolled back as well.

To allow the EJB server to do this, your enterprise bean typically needs to acquire JDBC connections in a
manner specified by your EJB server. Unfortunately, the EJB 1.0 specification does not provide a standard
method for acquiring database connections from an EJB container. Until this oversight in the EJB
specification is amended, EJB server vendors have to provide their own methods for an EJB object to get
connections that are monitored by the EJB container. Most EJB vendors provide a way to define a pool of
JDBC connections and a means for requesting connections from this pool at runtime. BEA's WebLogic serv
for example, allows you to specify a connection pool in a server property file and then use a JDBC URL to
pull connections from this pool at runtime. An example properties entry might look like this:

weblogic.jdbc.connectionPool.myPool=\
url=jdbc:weblogic:oracle,\
driver=weblogic.jdbc.oci.Driver,\
loginDelaySecs=1,\
initialCapacity=5,\
maxCapacity=10,\
capacitylncrement=1,\
props=user=jsmith;password=foobar;server=main

This line of the properties file asks the server to create a connection pool named myPool with the specified
JDBC driver and connection properties. The server reads this information from the properties file on startup
and creates the pool, and then your EJB object can ask for connections from the pool using a specific JDBC
URL:

7.3.1. Making the EJB Server Aware of Database Transactions 184

Preface (Java Enterprise in a Nutshell)

Connection conn = DriverManager.getConnection("jdbc:weblogic:jts:myPool");

This allows the WebLogic server to issue your bean a JDBC connection that is controlled by the server.
However, there is currently no consensus among EJB providers concerning support for this method of
providing JDBC connections to EJB objects and clients. Before using JDBC code in your enterprise beans,
make sure to consult your EJB server documentation to see specifically how it provides JDBC connection
management.

7.3.2. Transaction Isolation Levels

Normally, you would expect multiple transactions originating from multiple client requests on your bean to
be effectively serialized. In other words, if multiple client transactional requests are made of your bean, the
end effect of satisfying all these requests by timesharing the bean between each client/transaction should b
the same as if each request were serialized at the boundaries of each transaction. The ANSI SQL standard
defines three ways in which this transaction isolation rule can be violated:

Dirty reads
If transaction A updates a record in the database, followed by transaction B reading the record, then
transaction A performs a rollback on its update operation, the result is that transaction B has read an
invalid state of the record.

Nonrepeatable reads
If transaction A reads a record, followed by transaction B updating the same record, then transaction
A reads the same record a second time, transaction A has read two different values for the same
record.

Phantom reads
If transaction A performs a query on the database with a particular search criteria (WHERE clause),
followed by transaction B creating new records that satisfy the search criteria, followed by transactiol
A repeating its query, transaction A sees new, phantom records in the results of the second query.

When you deploy your enterprise bean within an EJB container, you can specify what level of transaction
isolation you want it to enforce for you, using one of the following isolation levels:

TRANSACTION_READ_UNCOMMITTED
All the defined isolation violations are allowed.

TRANSACTION_READ_COMMITTED
Dirty reads are prevented, but nonrepeatable reads and phantom reads are allowed.

TRANSACTION_REPEATABLE_READ
Only phantom reads are allowed.

TRANSACTION_SERIALIZABLE
All the defined isolation violations are prevented, making concurrent transactions effectively
serialized.

These levels can be applied to an entire bean or to individual methods on the bean. If you don't specify one
these isolation levels, the EJB server typically uses the default isolation level dictated by the database being
used for persistent storage. For more information on these isolation levels and their meaning, consult the
JDBC specification or the ODBC specification. Chapter 2, "JDBC", also briefly discusses database isolation
levels. | mention them here just so that you are aware that they exist and can seek out more information if tf
details of transaction isolation are important for your enterprise beans.

7.3.2. Transaction Isolation Levels 185

Preface (Java Enterprise in a Nutshell)

4 PREVIOUS HOME NEXT »
7.2. EJB Roles BOOK INDEX 7.4. Implementing a Basic
EJB Object
B @ @ ‘ﬁ| Ak A" EY,
Bookshelf Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nlmlwll, Foondniml (lusses JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

§8% JAVA ENTERPRISE IN A NUTSHELL ™

4@ PREVIOUS Chapter 7: Enterprise NXT ®
JavaBeans

7.4. Implementing a Basic EJB Object

Now it's time to start talking about actually implementing an Enterprise JavaBeans component. No matter
whether you are creating an entity bean or a session bean, there are three Java interfaces/classes you nee
provide:

Home interface
The home interface is accessed directly by clients and used to create and/or find EJB objects of a
specific type.

Remote bean interface
The remote interface for the bean is also used directly by clients. When a client creates or finds an
EJB object through a home interface, it is given a reference to a stub that implements the remote
interface for the bean. The remote interface defines the methods the EJB object exports to remote
clients.

Bean implementation
The EJB object implementation itself must implement all the remote methods defined in its remote
interface, provide methods that correspond to the methods on its home interface for creating and/or
finding the bean, and also implement the methods used by the EJB container to manage the bean.

To demonstrate the various components that make up an Enterprise JavaBeans object, we'll look at a simpl
example: a profile server. The profile server is a stateless session bean that provides profile information for
named users. This profile information consists of name/value pairs that might represent preferences in an
application, historical usage patterns, etc. You might see a profile server running behind an online informatic
service, allowing users to personalize the content and appearance of the site when they enter. After we've g
through this general example of writing a bean, we'll look more closely at the differences between
implementing session beans and entity beans.

Table 7-1 shows how the methods of the home interface, the remote interface, and the bean implementatio
are related to each other.

7.4. Implementing a Basic EJB Object 186

Preface (Java Enterprise in a Nutshell)

Table 7-1. Related Methods

Home Interface Method Remote Interface EJB Object Method
Method

public void

ejbCreate(args); // Session
beans publicprimary—key-type
ejbCreate(args); // Entity beans

remote—typecreate(args) throws
CreateException, N/A
RemoteException;

remote—type or Enumeration publicprimary—key—type or
findBymethod(args) throws N/A Enumeration
FinderException, ejbFindBymethod(args); // Entity
RemoteException; // Entity beans only beans only
public void remove(); rp:rt:]g(\:/;gl_d public void ejpbRemove();
Business method . .
Business method, same signature
N/A (must throw .
. (must throw RemoteException)
RemoteException)

7.4.1. Home Interface

The client needs a way to create a local reference to a profile server, so we have to provide a home interfac
for our bean, as shown in Example 7-1. This home interface provides a single create() method that takes
no arguments and returns the bean's remote interface type, ProfileServer.

Example 7-1. Home Interface for the Profile Server Bean

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProfileServerHome extends EJBHome {
public ProfileServer create() throws CreateException, RemoteException;

}

The home interface for an EJB object extends the javax.ejb.EJBHome interface. The home interface is
also an RMI remote interface, since EJBHome extends java.rmi.Remote. The home interface can

contain multiple create() methods that take various initialization arguments for the bean to be created. The
create() method returns a reference to our bean's remote interface (ProfileServer, in this case).

As shown in Table 7-1, for each create() method on the home interface, the EJB object implementation
must have a matching ejbCreate() method that takes the same arguments. The create() method on the
home interface has to declare that it throws java.rmi.RemoteException, since the home interface is an
RMI remote interface. It also has to throw javax.ejb.CreateException, in case some error occurs

during the EJB creation process (as opposed to some general RMI-related problem). If the corresponding
ejbCreate() method on the bean implementation throws any other exceptions, the create() method

has to include these in its throws clause as well. In this example, the bean's ejbCreate() method doesn't
throw any exceptions, so we don't need to add any additional exceptions here.

Home interfaces for entity beans can also include finder methods, used to find existing persistent entity beal
that were previously created. We'll discuss them in detail a bit later, when we talk about entity beans.

7.4. Implementing a Basic EJB Object 187

Preface (Java Enterprise in a Nutshell)

7.4.2. Remote Interface

You usually start putting together an EJB by defining its remote interface. This interface contains
declarations of the methods that are available to remote clients, so it really points to the heart of the EJB
object. The remote interface for our ProfileServer is shown in Example 7-2. A remote EJB interface
must extend the javax.ejb.EJBODbject interface. EJBObject in turn extends the

java.rmi.Remote interface, which makes the EJB remote interface an RMI remote interface as well.

Example 7-2. Remote Interface for the Profile Server Bean

import javax.ejb.*;
import java.rmi.RemoteException;
import java.rmi.Remote;

public interface ProfileServer extends EJBODbject {
public Profile getProfile(String name)
throws NoSuchPersonException, RemoteException;

}

The ProfileServer interface defines a single remote method, getProfile(), that accepts a username

as its only argument. It returns a Profile object, containing the profile information for the person named. If
the person's profile cannot be found on the server, a NoSuchPersonException is thrown. This is an
application—specific exception whose implementation isn't shown here. Since the ProfileServer

interface is an RMI remote interface, its methods must throw RemoteException in case some RMI
communication problem occurs during a method call. Also, the arguments and return values for the method:
have to be Serializable, and/or they need to be exportable RMI objects themselves. Our

getProfile() method returns a Profile object, which we'll implement as an RMI-exportable object.

The remote interface for Profile is shown in Example 7-3. The interface has only two remote methods,
one to set profile entry values and one to get those values. Note: the implementation of the Profile remote
interface isn't shown in this chapter.

Example 7-3. RMI Remote Interface for a Profile Object

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Profile extends Remote {
public String getProfileEntry(String name) throws RemoteException;
public void setProfileEntry(String name, String value)
throws RemoteException;
}

When you deploy your EJB object, you can specify who is allowed to call each method on your bean throug
the remote interface. In this case, we might want only certain clients to be able to query for user profiles, so
we might want to limit access to the getProfile() method on our ProfileServer bean. We discuss

the access control features of bean deployment descriptors later in the chapter.

7.4.3. The Bean Implementation

Now that we have a home interface that lets clients create EJB references and a remote interface that
describes the EJB methods, we need to actually implement the EJB object itself. Our

ProfileServerBean is shown in Example 7-4. If you are familiar with RMI, this should look like an

RMI server object, with some extra methods included. These extra methods are the hooks the EJB containe
uses to manage the bean as a component. At the end of the class is the implementation of the

7.4.2. Remote Interface 188

Preface (Java Enterprise in a Nutshell)

getProfile() method from the remote interface. The ejbCreate() method is also included here, to
match the create() method on the home interface.

Example 7-4. The ProfileServerBean Implementation

import javax.ejb.*;
import java.rmi.RemoteException;

public class ProfileServerBean implements SessionBean {
private SessionContext mContext = null;

/I Session bean methods
public void ejbPassivate() {
System.out.printin("ProfileServerBean passivated.");

}

public void ejbActivate() {
System.out.printin("ProfileServerBean activated.");

}

public void ejbCreate() {
System.out.printin("ProfileServerBean created.");

}

public void ejpRemove() {
System.out.printin("ProfileServerBean removed.");

}

/I Get session context from container

public void setSessionContext(SessionContext context) {
System.out.printin("ProfileServerBean context set.");
mContext = context;

}

/I Business methods

public Profile getProfile(String name) throws NoSuchPersonException {
/I Here, we just create a Profilelmpl and return it.
Profilelmpl profile = null;

try {
profile = new Profilelmpl(name);

}

catch (RemoteException re) {
System.out.printin("Failed creating profile for " + name);
re.printStackTrace();
throw new NoSuchPersonException();

}

return profile;

}
}

The class for an EJB object must implement the javax.ejb.EnterpriseBean interface. This is usually
done indirectly, through either the javax.ejb.SessionBean interface or the

javax.ejb.EntityBean interface. In our example, we're defining a session bean, so the
ProfileServerBean class implements the SessionBean interface.

The EJB class must be declared as public, to allow the container to introspect the class when generating the
classes that hook the bean to the container and to allow the container to invoke methods on the bean directl
where necessary. The bean class can optionally implement the bean's remote interface, but this isn't strictly
required. In our case, we haven't implemented the bean's remote ProfileServer interface in the
ProfileServerBean class. When the EJB server generates the classes that bridge the bean to the

container, it also provides a class that implements the remote interface and acts as a proxy to the EJB class

7.4.3. The Bean Implementation 189

Preface (Java Enterprise in a Nutshell)

itself.[4]

[4] Depending on the server implementation and how it chooses to generate these classes, it
may be useful for you to provide an EJB class that directly implements the remote interface,
since it might eliminate one level of method indirection. This is server—dependent, however,
so there's no guarantee that this will help (or hurt).

In fact, for practical reasons, you probably don't want your EJB implementation to implement the remote
interface for your bean. The remote interface has to extend the EJBObject interface, which includes a set of
abstract methods that clients can use to retrieve the bean's home interface, get the primary key for entity
beans, etc. When you deploy your bean, you'll use tools provided by the EJB container tools to generate stu
and skeleton classes for the remote interface that implement these methods from EJBObject. If you
implement the remote interface with your bean implementation class, you have to provide implementations
for the EJBObject methods as well.

All Enterprise JavaBean objects, whether they are session beans or entity beans, must implement the
following methods:

public void ejbActivate()
Called by the container when the bean has been deserialized from passive storage on the server.
Allows the bean to reclaim any resources freed during passivation (e.g., file handles, network
connections) or restore any other state not explicitly saved when the bean was serialized.

public void ejbPassivate()
Called by the container just before the bean is to be serialized and stored in passive storage (e.g.,
disk, database) on the server. Allows the bean to release any non-serializable resources (e.g., open
files, network connections).

public void ejbCreate(. . .)
Called after the client invokes one of the create() methods on the bean's home interface. The
bean and its home interface usually provide at least one create()/ejbCreate() pair to allow the
client to create new beans. Session beans are required to provide at least one create method, but cr
methods are optional on entity beans, since entity beans can also be acquired using finder methods.
The container creates the bean object using one of its standard constructors and might create sever;
beans of the same type at server startup to act as a pool for future client requests. The ejbCreate()
method indicates that a client is ready to use the bean; the arguments indicate the identity or starting
state of the bean. For entity beans, the return type of an ejbCreate() method should be the bean's
primary key type (see the later section "Implementing Entity Beans" for more details).

public void ejpRemove()
Called by the container just before the bean is to be removed from the container and made eligible ft
garbage collection. The container may call this when all remote and local references to the bean hav
been removed.

These methods are used by the bean's container to notify the bean of various changes in its runtime state. |
our example, the ProfileServerBean doesn't need to perform any actions in these methods, so they are
included as empty methods that simply print messages to standard output, indicating that they have been
called.

4 PREVIOUS HOME NEXT »
7.3. Transaction BOOK INDEX 7.5. Implementing Session
Management Beans

7.4.3. The Bean Implementation 190

Preface (Java Enterprise in a Nutshell)

g RS | e (e | D | e | A
| . ‘ N ") & . S
8.9 B YT s @
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 7: Enterprise Ny e
JavaBeans

7.5. Implementing Session Beans

Now that we've seen a simple bean example, let's move on and talk about the specifics of implementing
session beans (we'll get to entity beans after that). A session bean is much like a regular remote object, witf
the added benefit of being a JavaBeans component. The session bean serves as a remote extension of the
client, running on a remote EJB server. Usually, a session bean is used by a single client, and the state date
maintained by the session bean is owned by this client. The client acquires a reference to a session bean, a
asks it to perform services by calling methods on the bean. These method calls might retrieve or update dat
a remote database, filter data to be returned to the client, or update the session-related state information (if
any) that the client is maintaining with the bean.

A session bean doesn't live beyond the lifetime of its server. If your client has a reference to a session bean
and the server restarts, that session bean reference is no longer valid. You can reacquire a session bean of
same type from the same server, but it's not guaranteed to be in the same state as the bean you had before
server restart. An EJB container also has the option of destroying a session bean after some timeout period
while the bean is in an inactive state on the server (i.e., if there are no client references to the session bean
a period that exceeds the session timeout for the bean).

Stateful session beans can optionally receive notification of transaction boundaries from the EJB container.

The container notifies the bean when a new client transaction is beginning and when the client transaction
either been completed or rolled back. If the session bean receives a rollback notification, it should manually
reset its state information.

Session beans implement the javax.ejb.SessionBean interface. This interface extends the
javax.ejb.EnterpriseBean interface and specifies ejbActivate(), ejbPassivate(),
ejbRemove(), and setSessionContext() methods.

In addition to the standard EJB object methods mentioned in the previous section, a session bean also neec
implement a setSessionContext() method, as specified in the SessionBean interface. The container

calls this method on the session bean just after the bean has been created, passing in a
javax.ejb.SessionContext object that represents the runtime context for the bean. The session

context is valid for the life of the bean. The session bean can use the SessionContext to get a reference to
the remote object associated with the bean, by calling the getEJBObject() method on the context object.
Since the bean is not required to implement the remote interface for the bean, this object may be different
from the bean itself, and may implement a class generated by the server based on the remote interface, the
home interface, and the bean implementation you provided. More about that later, when we talk about
deploying EJB objects.

7.5. Implementing Session Beans 191

Preface (Java Enterprise in a Nutshell)

The SessionContext that the container passes to a session bean is also an EJBContext, which is a

general representation for runtime context information, regardless of whether the bean is an entity or sessio
bean. Among other things, the EJBContext has accessors that allow the bean to get a reference to its home
interface (getEJBHome()), a list of environment properties used to deploy the bean

(getEnvironment()), and the identity of the client that is currently executing a transaction with the bean
(getCallerldentity()).

7.5.1. Stateless Versus Stateful Session Beans

Session beans can be either stateful or stateless. A stateless session bean does not maintain state across
method calls. If a client makes a series of remote method calls and/or transactions with the stateless bean, 1
bean is in the same state at the start of each method call or transaction. Our ProfileServerBean is such a
bean. Stateless session beans of the same type can be considered identical to each other, and can be pool
and reused by multiple clients. A stateless session bean can be used concurrently by multiple remote client:
without fear of conflicting with each other, since there is no shared state data that can be corrupted. Statele:
beans don't need to be passivated since they have no state that needs to be restored when they're reactivat
The container simply destroys any stateless session beans it feels are no longer needed.

A stateful session bean, on the other hand, does maintain state that can be accessed and changed directly
the client's interactions with the bean. A stateful session bean is generally not intended to be accessed by n
than a single remote client; the state of the stateful session bean along with its remote methods act as an
extension of the client that created the bean.

To illustrate the difference between stateless and stateful session beans, let's take our

ProfileServerBean and convert it to a stateful session bean. The ProfileServerBean is stateless

because all it does is accept requests for user profiles and return the profiles directly to the client as RMI
object references. The client then interacts with the Profile object directly, and the Profile manages the
state of the interaction, in the form of the values of the profile entries. If the profile were a stateful enterprise
bean itself, we wouldn't need the ProfileServer at all.

Example 7-5 shows the remote interface for a stateful Profile bean. It's similar to the remote interface for
the RMI-based Profile we used in the stateless ProfileServerBean example. It has setEntry()

and getEntry() methods that access entries using their names. The Profile bean also has accessors for
the name of its user.

Example 7-5. Remote Interface for the Stateful Session Bean

import javax.ejb.*;
import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Profile extends Remote, EJBODbject {
public String getName() throws RemoteException;
public void setName(String name) throws RemoteException;
public String getEntry(String key) throws RemoteException;
public void setEntry(String key, String value) throws RemoteException;

}

The implementation of the stateful ProfileBean is shown in Example 7-6. It has the requisite
implementations for the bean methods needed by the container and includes two ejbCreate() methods:

one with no arguments that creates an unnamed profile and another that takes the name of the user of the
profile. The corresponding create() methods on the ProfileHome interface are shown in Example 7-7.

The state of this stateful session bean is maintained in a String field that holds the profile user's name and a
Properties object that keeps the profile entries. The principal design difference between the

7.5.1. Stateless Versus Stateful Session Beans 192

Preface (Java Enterprise in a Nutshell)

ProfileBean and the stateless ProfileServerBean is the state information stored on the
ProfileBean in its data members. The get/set accessors from the remote Profile interface are
implemented here as operations on these fields.

Example 7-6. Implementation of the Stateful Session Bean

import javax.ejb.*;
import java.rmi.RemoteException;
import java.util.Properties;

public class ProfileBean implements SessionBean {
/I Name of the person owning the profile
private String mName =",
/I Entries in the profile (name/value pairs)
private Properties mEntries = new Properties();

/I Store session context
private SessionContext mContext = null;

/I Session bean methods
public void ejbActivate() {
System.out.printin("ProfileBean activated.");

}

public void ejpRemove() {
System.out.printin("ProfileBean removed.");

}

public void ejbPassivate() {
System.out.printin("ProfileBean passivated.");

}

public void setSessionContext(SessionContext context) {
System.out.printin("ProfileBean context set.");
mContext = context;

}

public void ejbCreate() {
System.out.printin("Nameless ProfileBean created.");

}

public void ejbCreate(String name) throws NoSuchPersonException {
mName = name;
System.out.printin("ProfileBean created for " + mName + ".");

}

/I Business methods
public String getName() {
return mName;

}

public void setName(String name) {
mName = name;

}

public String getEntry(String key) {
return mEntries.getProperty(key);

}

public void setEntry(String key, String value) {
mEntries.put(key, value);

}
}

7.5.1. Stateless Versus Stateful Session Beans

193

Preface (Java Enterprise in a Nutshell)

Example 7-7. Home Interface for the Stateful Session Bean

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProfileHome extends EJBHome {
public Profile create() throws RemoteException, CreateException;
public Profile create(String name) throws RemoteException, CreateException;

}

This stateful bean is used by clients to maintain a set of application—specific profile entries for a named user
Here is an example client scenario:

/I Get the Profile bean's home interface

ProfileHome pHome = ...

/I Create a profile for a person

System.out.printin("Creating profile for " + name);

Profile profile = pHome.create(name);

/I Get/set some entries in the profile

System.out.printin("Setting profile entries for " + name);

profile.setEntry(“favoriteColor", "blue");

profile.setEntry("language”, "German");

System.out.printin("Getting profile entries for " + name);

System.out.printin("\tFavorite color: " +
profile.getEntry("favoriteColor"));

System.out.printin("\tLanguage: " + profile.getEntry("language"));

After getting the home interface for the ProfileBean, the client creates a profile for a named user, sets the
values for some profile entries, and gets them back again.

An EJB container must be told at deployment time whether a session bean is stateful or stateless. The
container uses this information to determine how to handle pooling of the session beans and whether to
passivate the bean or not, among other things. Since stateless beans can be used by any client, the contain
pools stateless beans and doles them out to clients as needed. If new stateless beans are needed, the cont
creates them, and when they aren't needed (e.g., the rate of client requests decreases), they are simply
destroyed. In order to allow the container to fill its pool, any stateless session bean must provide a single
create() method with no arguments. Stateless beans implement only the no—argument creation method,
since they have no client state that could be affected by arguments. An additional restriction on stateless be
is that they cannot participate in transaction synchronization and cannot implement the
SessionSynchronization interface, which is described in the next section.

7.5.2. Optional Transaction Support

Since session beans don't typically represent persistent shared data, and stateful session beans can only be
accessed by a single client at a time, user transaction boundaries may not be important to such a bean. If,
however, the session bean is managing database data for the user, it may want to know about the beginnin
and ending of user transactions, so that it can cache data at the start and commit its database updates at th
end. For this reason, the EJB specification allows session beans to optionally implement the
javax.ejb.SessionSynchronization interface. By implementing this interface, the session bean

indicates that it wants the container to notify it about the beginning and end of transactions.

In this case, the bean must implement the three methods declared on the interface: afterBegins(),
beforeCompletion(), and afterCompletion(). The container calls the bean's afterBegin()

method just after a new transaction begins. This lets the bean allocate any resources it might need during tt
transaction and cache database data, for example. Just before the transaction completes, the container call
bean's beforeCompletion() method. In this method, the bean can release any resources or cached data it
may have initialized during the transaction. The afterCompletion() method is called just after the

7.5.1. Stateless Versus Stateful Session Beans 194

Preface (Java Enterprise in a Nutshell)

transaction has completed. The container passes in a boolean value that is true if the transaction was
committed and false if the transaction was rolled back. The bean can use this notification to deal with
rollbacks, for example, allowing the bean to undo any changes made during the transaction.

4 PREVIOUS HOME NEXT »
7.4. Implementing a Basic BOOK INDEX 7.6. Implementing Entity
EJB Object Beans
5. @ @ ‘ ﬁ e e
Bookshelf Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina Nlmlwll Fomdalmn (lusses JavoBeans™, Serviet Security Distributed
ino Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

4@ PREVIOUS Chapter 7: Enterprise NXT ®
JavaBeans

7.6. Implementing Entity Beans

An entity bean represents data that is stored in a database or some other persistent storage. Entity beans a
persistent across client sessions and the lifetime of the server. Each entity bean of a given type has a uniqu
identity that can look up the same bean from multiple clients. No matter when or where you get a reference |
an entity bean with a given identity, the bean should reflect the current state of the persistent data it represe
Multiple clients can access an entity bean at the same time. The EJB container manages these concurrent
transactions for the entity bean, ensuring that client transactions are properly isolated from each other. Note
that support for entity beans is not strictly required by the EJB 1.0 specification. This has been changed in tt
EJB 1.1 specification, which makes entity bean support mandatory in EJB—compliant application servers.

An entity bean can be passivated by its container, but the meaning of being passivated is slightly different. /£
container passivates an entity bean (calling its ejbPassivate() method in the process) when it wants to
disassociate the bean from the persistent data entity it has been representing. After being passivated, the b
may be put into the container's pool of entity beans to associate with another client-requested entity or it me
be removed from the server altogether.

At a fundamental level, entity beans are implemented similarly to session beans. You need to provide a hon
interface, a remote interface, and a bean implementation. An entity bean, however, requires some additiona
methods in its home interface and bean implementation, to support the management of its persistent state a
to allow clients to look up the entity bean from persistent storage. Entity beans must also provide a class thz
serves as its primary key, or index, into its persistent storage.

There are two ways persistent storage for an entity bean can be managed: by the EJB container or by the b
itself. In the first case, called a container-managed entity bean, the bean leaves the database calls to the

container. The deployment tools provided with the EJB server are responsible for generating these databast
calls in the classes it uses to deploy your bean. In the second case, called bean—managed entity beans, yol
provide the database calls for managing your bean's persistent storage as part of your bean implementation

7.6. Implementing Entity Beans 195

Preface (Java Enterprise in a Nutshell)

If you can rely on the EJB container to handle your entity bean's persistence, this can be a huge benefit, sin
it saves you from having to add JDBC code to your beans. But the automated persistence support in EJB is
limited, and there are times when you'll need to manage persistence directly in your bean implementation. V
discuss the pros and cons of each of these scenarios a bit later in this section.

7.6.1. Primary Keys

If you develop an entity bean, you must provide the EJB container with a class that serves as the primary ke
for the bean. A primary key includes all of the information needed to uniquely identify an item in persistent
storage. The primary key for a person's records in a database, for example, might be a first and last name, «
social security number (for U.S. citizens), or some other identification number. If you're developing an EJB
object that represents a bank account, you might make the primary key an object that holds the account
number, which is a unique identifier for an Account object. An EJB container typically creates unique
identifiers for all session and entity beans, so that it can internally track individual beans. The primary key
used for entity beans is a more public unique identifier, in that clients can see the primary key for an entity
bean, and the primary key is used directly by the bean implementation to load/update its state from persiste
storage.

If we were to develop an entity—bean version of our ProfileBean (which we'll do shortly), the primary key
class might look something like the following:

public class ProfilePK implements java.io.Serializable {
public String mName;
public ProfilePK() {
mName = null;

public ProfilePK(String name) {
mName = name;

}
}

Since there is a one—to—one correspondence between named users and their profiles, we just use the name
the user as our primary key for an entity ProfileBean.

The primary key class for an entity bean must be derived from java.io.Serializable. If any of the
persistence of the entity bean is container-managed, the primary key class must also obey the following:

It must be a public class.

It must have a default constructor (one with no arguments) that is public.

All its data members must be public.

All of the names of the data members on the class must be names of container-managed data
members on the entity bean.

The primary key for our ProfileBean is really just a wrapper around a String field that holds a name.

We've done this to support the option of using container—managed persistence for the bean. We have to us
the ProfilePK class as the primary key, not just a String, because the EJB container needs to be able to
introspect on the primary key and match its fields with the corresponding fields on the bean class.

7.6.1. Primary Keys 196

Preface (Java Enterprise in a Nutshell)

7.6.2. Finder Methods

Since entity beans are persistent and can be accessed by multiple clients, clients have to be able to find the
as well as create them. To this end, an entity bean's home interface can provide findXXX() methods, and
the bean implementation has to have corresponding ejbFindXXX() methods that take the same arguments
and have the same return types. The findXXX() methods on the home interface can have any name, as long
as the method name begins with find. A bank account bean, for example, might define a findByName()
method that accepts a string that is the name of the person whose accounts are desired.

Each findXXX() method on the home interface must return either an instance of the bean's remote interface
or a collection of these objects. In the EJB 1.0 specification, only Enumeration objects can return
collections of entity beans, but the EJB 1.1 specification allows EJB implementations to also use Java 2
Collection types as return types for findXXX() methods. In our bank account example, the

findByName() method can return multiple accounts (e.g., if a person has both checking and savings
accounts), so it should be declared as returning an Enumeration.

The home interface for an entity—based ProfileBean is shown in Example 7-8. It provides two finder
methaods: findByPrimaryKey() finds a profile by its primary key (which encapsulates the user's name),
and findByEntryValue() finds profiles that have a particular attribute value set. The first finder method
returns a single Profile object, since there is only a single Profile for each user. The second finder
method returns a collection of Profile objects (as an Enumeration), as multiple user profiles might have
a given attribute value. The findByPrimaryKey() method is a standard finder method defined by the
EJB specification; its only argument is always the primary key type for the entity bean.

Example 7-8. Home Interface for an Entity ProfileBean

import javax.ejb.*;
import java.rmi.RemoteException;

public interface ProfileHome extends EJBHome {
public Profile create() throws RemoteException;
public Profile create(String name)
throws RemoteException, DuplicateProfileException;

public Profile findByPrimaryKey(ProfilePK key)
throws RemoteException, FinderException;

public Enumeration findByEntryValue(String key, String value)
throws RemoteException, FinderException;

}

A client can use the findXXX() methods on the home interface to determine if a bean (or beans) with a
given identity already exists in persistent storage. If a findXXX() method finds an appropriate bean (or
beans), a single primary key (or set of keys) is initialized to represent the unique identity of the bean(s) that
matched the client query, and these key(s) are returned to the client. If the identified bean cannot be found i
persistent storage,javax.ejb.FinderException is thrown. All findXXX() methods on the bean's

home interface must declare that they can throw FinderException and RemoteException (since the

method is an RMI remote method).

The EJB container intercepts the client's invocation of the finder method and invokes the corresponding
ejbFindXXX() method on an instance of the entity bean on the server. An entity bean of the appropriate
type is pulled from the container's pool and its ejbFindXXX() method is called with the client's arguments.
The ejbFindXXX() method on the bean should do the necessary queries to persistent storage to determine
if the requested data exists there, then create primary key instances and initialize them with the results of th
guery. The primary key objects are the return value of the ejbFindXXX() method. The EJB container is
responsible for taking the key(s) returned by the ejbFindXXX() method and converting them to remote
objects, whose stubs are returned to the client that invoked the finder method.

7.6.2. Finder Methods 197

Preface (Java Enterprise in a Nutshell)

It's important to note that the entity bean that executes the ejbFindXXX() method doesn't necessarily
represent the entities being looked up by the client. The container uses the bean to call the method, takes tf
primary key or keys returned, and then uses them to either create new beans or reinitialize existing beans.

An entity bean implementation must at a minimum provide an ejbFindByPrimaryKey() method that
accepts a primary key object as its argument. The implementation must also provide additional findXXX()
methods to match any other ejbfindXXX() methods on the home interface. Each ejbFind method must
have the same arguments and return types as the corresponding find method.

7.6.3. Entity Bean Implementation

I've already mentioned a few additional requirements on entity bean implementations, but here is a list of all
the additional methods an entity bean either must implement or has the option to implement:

public priKeyType ejbFindByPrimaryKey(priKeyType) throws FinderException
The only required finder method on an entity bean. Both the argument and the return type must be tt
bean's primary key type.

public void ejbPostCreate()
If needed, an entity bean can optionally provide an ejbPostCreate() method for each
ejbCreate() method it provides, taking the same arguments. The container calls the
ejbPostCreate() method after the bean's ejbCreate() method has been called and after the
container has initialized the transaction context for the bean.

public void ejbLoad()
Called by the container to cause the bean instance to load its state from persistent storage. The
container can call this bean method any time after the bean has been created, to do an initial load frc
persistent storage or to refresh the bean's state from the database.

public void ejbStore()
Called by the container to cause the bean to write its current runtime state to persistent storage. This
method can be called any time after a bean is created.

public void setEntityContext(EntityContext ctx)
The container calls this method after a new instance of the bean has been constructed, but before ai
of its ejbCreate() methods are called. The bean is responsible for storing the context object.

public void unsetEntityContext(EntityContext ctx)
The container calls this method before the entity bean is destroyed.

Most of these methods, like ejbLoad() and ejbStore(), are invoked by the EJB container to notify the
bean about persistent store management.

In addition to these entity—specific methods on bean implementations, the semantics of some of the other
standard methods are slightly different for entity beans. Each ejbCreate() method, for example, should

not only assign any state data passed in as variables, but also create a record in persistent storage for the r
entity bean. The signatures of ejbCreate() methods on entity beans can be different too. For an entity

bean that manages its own persistence (a bean—-managed entity bean), the ejbCreate() methods return the
primary key type for the bean. For a container—-managed entity bean, the ejbCreate() methods return

void, the same as for session beans. TdjpRemove() method is called by the container when the bean is

to be removed from the server. The bean should also remove its state from the persistent storage in its
ejbRemove() implementation, since a request by a client to remove() an entity bean is really a request to
remove the record from persistent storage as well.

7.6.3. Entity Bean Implementation 198

Preface (Java Enterprise in a Nutshell)

7.6.3.1. A persistent ProfileBean

The major drawback in our stateful session ProfileBean is that the profile data it represents isn't

persistent. A profile is created by a client and updated through remote method calls, but once the
ProfileBean is removed by the server or the server crashes/restarts, the accumulated profile data is lost.
What we really want is a bean whose state is persistent stored in a relational database or some other persis
storage, that can be reloaded at a later time, when the user reenters a profiled application. An entity EJB ob
provides this functionality, and an EJB container that supports entity beans provides your bean with facilities
that make it easier to manage persistent state. It's also possible to have the container manage the persisten
the bean for you, if that's desired.

Let's look at the implementation for the entity bean version of our ProfileBean, shown in Example 7-9.
We've already seen the home interface and remote interface for this entity bean in earlier examples. The
purpose of the bean is the same as our stateful session version: it represents a profile for a named applicati
user, maintaining a list of name/value pairs for various attributes and options. The difference is that this
ProfileBean represents a profile entity that exists as data in persistent storage (a database, in this case).
The most obvious differences in the actual code are the JDBC calls peppered throughout the class, where tl
bean manages its persistent data. There are a few extra methods defined as well. Most of them are requirec
the EJB specification for entity beans and a few are utility methods used by the JDBC code to connect to the
database and make updates.

Example 7-9. An Entity ProfileBean with Bean—-Managed Persistence

import javax.ejb.*;

import java.rmi.RemoteException;
import java.util.Properties;

import java.util. Enumeration;
import java.util.Vector;

import java.sql.*;

public class ProfileBean implements EntityBean {
/I Entries in the profile (name/value pairs)
public Properties mEntries;

/I Store context (nonpersistent)
private transient EntityContext mContext = null;

/I Entity bean methods

/I During activation, create our entry lookup table
public void ejbActivate() {
mEntries = new Properties();
System.out.printin("ProfileBean activated.");

}

/I Load bean from persistent store. In this case, we're managing the dbase
I/ storage, so we store our profile entries as independent records in a
I/ separate "PROFILE_ENTRY" table.
public void ejbLoad() throws RemoteException {
try {
/I Get primary key from context, use it to load our data
ProfilePK key = (ProfilePK)mContext.getPrimaryKey();
loadFromDB(key);
}
catch (Exception e) {
System.out.printin("Failed to load ProfileBean: ");
e.printStackTrace();
throw new RemoteException("ejbLoad failed: ", €);

}

System.out.printin("ProfileBean load finished.");

7.6.3.1. A persistent ProfileBean 199

Preface (Java Enterprise in a Nutshell)

}

protected void loadFromDB(ProfilePK key) throws FinderException {
boolean found = false;
try {
/I Get a connection and select our profile record
Connection conn = newConnection();
Statement s = conn.createStatement();
s.executeQuery("select name from profile where name = ™ + key.mName +
)
ResultSet rs = s.getResultSet();
if (rs.next()) {
found = true;
Il We found a profile record, so look up the entries
s.executeQuery("select key, value from profile_entry where name ="
+ key.mName +"™);
rs = s.getResultSet();
while (rs.next()) {
String pKey = rs.getString(1);
String pValue = rs.getString(2);
mEntries.put(pKey, pValue);
}
}
}
catch (SQLException €) {
throw new FinderException("Failed to load profile entries from DB: " +
e.toString());
}

if (ffound) {
/I No profile record found, throw a FinderException
throw new FinderException("No profile found for " + key.mName);
}
}

/I Get connection (BEA/WebLogic—specific version)
private Connection newConnection() throws SQLException {
/I Make sure that the JDBC driver is loaded
try {
Class.forName("weblogic.jdbc.oci.Driver");
}
catch (ClassNotFoundException cnfe) {
System.out.printin("Failed to load JDBC drivers.");
}
/I Get the connection from the pool that we specified in the
/l WebLogic server properties file
return DriverManager.getConnection("jdbc:weblogic:jts:myPool");

}

/I Store bean to persistent store. Properties are stored as records in the
/I PROFILE_ENTRY table.
public void ejbStore() throws RemoteException {
/I Get our primary key from our context
ProfilePK key = (ProfilePK)mContext.getPrimaryKey();
try {
Connection conn = newConnection();
/I Clear out old profile entries
Statement s = conn.createStatement();
s.executeUpdate("delete from PROFILE_ENTRY where name = ™" + key.mName
),
Enumeration pKeys = mEntries.propertyNames();
/I Add each entry to the PROFILE_ENTRY table
while (pKeys.hasMoreElements()) {
String pKey = (String)pKeys.nextElement();
String pValue = mEntries.getProperty(pKey);
s.executeUpdate("insert into PROFILE_ENTRY (name,key,value) values "
+"(" + key.mName +", ™ + pKey + ", ™
+ pValue + ")");

7.6.3.1. A persistent ProfileBean 200

Preface (Java Enterprise in a Nutshell)

}

/I Close the statement and the connection, just to be tidy...
s.close();
conn.close();
}
catch (Exception e) {
/I Store operation failed, toss a RemoteException
throw new RemoteException("ejbStore failed: ", e);
}

System.out.printin("ProfileBean store finished.");

}

/I Remove this named profile from the database
public void ejpRemove() {
/I Get this profile's name
ProfilePK key = (ProfilePK)mContext.getPrimaryKey();
try {
Connection conn = newConnection();
/I Clear out any profile entries
Statement s = conn.createStatement();
s.executeUpdate("delete from profile_entry where name = ™" + key.mName
),
/I Clear out the profile itself
s.executeUpdate("delete from profile where name =™ + key.mName
),
s.close();
conn.close();
System.out.printin("ProfileBean removed.");
}
catch (SQLException se) {
System.out.printin("Error removing profile for " + key.mName);
se.printStackTrace();
}
}

/I When we're passivated, release our entries.
public void ejbPassivate() {
mEntries = null;
System.out.printin("ProfileBean passivated.");

}

/I Get context from container

public void setEntityContext(EntityContext context) {
mContext = context;
System.out.printin("ProfileBean context set.");

}

/I Container is removing our context...

public void unsetEntityContext() throws RemoteException {
mContext = null;
System.out.printin("ProfileBean context unset.");

}

/I Since we're managing persistence here in the bean, we need to
/I implement the finder methods
public ProfilePK ejbFindByPrimaryKey(ProfilePK key)

throws FinderException, RemoteException {

loadFromDB(key);

return key;

}

public Enumeration ejbFindByEntryValue(String key, String value)
throws RemoteException, FinderException {
Vector userList = new Vector();
/I Get a new connection from the EJB server

try {

7.6.3.1. A persistent ProfileBean

201

Preface (Java Enterprise in a Nutshell)

Connection conn = newConnection();
Statement s = conn.createStatement();
Il lssue a query for matching profile entries, grabbing just the name
s.executeQuery("select distinct(hname) from profile_entry where " +
"key =™+ key + " and value = ™" + value +"™");
/I Convert the results in primary keys and return an enumeration
ResultSet results = s.getResultSet();
while (results.next()) {
String name = results.getString(1);
userList.addElement(new ProfilePK(name));
}
}
catch (SQLException se) {
/I Failed to do database lookup
throw new FinderException();

}

return userList.elements();

}

/I Create method (corresponds to each create() method on the
/I home interface, ProfileHome). Nothing to initialize in this case
public ProfilePK ejbCreate() {

System.out.printin("Nameless ProfileBean created.");

return new ProfilePK();

}

/I Create method with name of profile owner.
public ProfilePK ejbCreate(String name) throws DuplicateProfileException {
try {
Connection conn = newConnection();
Statement s = conn.createStatement();
s.executeUpdate("insert into profile (hame) values (" + name + ")");
s.close();
conn.close();
}
catch (SQLException se) {
System.out.printin("Error creating profile, assuming duplicate.");
throw new DuplicateProfileException("SQL error creating profile for " +
name +": " + se.toString());
}

System.out.printin("ProfileBean created for " + name + ".");
return new ProfilePK(name);

}

I/l Post—creation notification. Nothing to do here, but we need
/ to provide an implementation.
public void ejbPostCreate() {

System.out.printin("ProfileBean post—create called.");

}

/I Post—creation notification. Nothing to do here, what we need

/ to provide an implementation.

public void ejbPostCreate(String name) {
System.out.printin("ProfileBean post—create called for " + name + ".");

}

/I Business methods

public String getName() {
ProfilePK key = (ProfilePK)mContext.getPrimaryKey();
return key.mName;

}

public String getEntry(String key) {
return mEntries.getProperty(key);

}

7.6.3.1. A persistent ProfileBean 202

Preface (Java Enterprise in a Nutshell)

public void setEntry(String key, String value) {
mEntries.put(key, value);

}
}

The structure of the entity ProfileBean is similar to the stateful session bean version in Example 7-6. A
Properties object holds the profile entries for the user, and the getEntry() and setEntry() remote

method implementations access this Properties object for the client. You might notice that there is no

data member on the entity ProfileBean to hold the name of the user. We can do this here because we're
not using the EJB container to manage the bean's persistence for us, so we're relying on the fact that the ne
is found in the primary key object, and the primary key is stored for us in the EntityContext the container
gives us through the setEntityContext() method. If we were using container—-managed persistence,
however, we'd have to have a field on the bean for the name, so that the container would know how to set it
The getName() remote method on ProfileBean shows how we retrieve the username for the profile

using the getPrimaryKey() method on the EntityContext.

We've also removed the setName() remote method from the entity ProfileBean, since we don't want to
allow the client to change the name of an existing, active entity bean. The Profile remote interface for this
bean, not shown here, is similar to the Profile interface in Example 7-5, but does not have a setName()
method. Since the Profile is now a persistent entity bean and the name is the primary key, or identifying
attribute, of the bean, the name of the bean can only be set when the bean is created. While the entity bean
active, it is associated with a profile entity for a specific user, and the client can only read the name associat
with the profile.

In the ProfileBean code, you'll notice many of the EJB-required methods, including ejbActivate(),
ejbPassivate(), ejbCreate(), and ejpRemove(). The ejbActivate() and

ejbPassivate() methods handle the movement of the bean out of and into the EJB server's entity bean
pool, respectively.

The ejbCreate() methods on the ProfileBean create a new profile entity in the database. There is a
matching ejbCreate() method for each create() method on our ProfileHome interface from

Example 7-8. The EJB container is responsible for intercepting the generated primary key object, convertin
it to a remote Profile object, and returning a remote Profile stub to the client that called the

create() method on the ProfileHome interface. The ejpRemove() method on our ProfileBean

deletes all the records for this profile entity from the database.

The ProfileBean also contains methods specific to entity beans. For each ejbCreate() method, it has

a corresponding ejbPostCreate() method, which is called by the container after the ejbCreate()

method has returned, and the container has initialized the bean's transaction context. There's nothing more
us to do in our ProfileBean at this point, so we just print a message to standard output in each
ejbPostCreate() method.

There is an ejbFindXXX() method in our entity ProfileBean that corresponds to each findXXX()

method in ProfileHome. The ejbFindByPrimaryKey() method simply takes the primary key passed

in as an argument and attempts to load the data for the entity from the database. If successful, it returns the
primary key back to the container, where it is converted to a remote Profile object to be returned to the
client. Note that it's not necessary for us to actually load all the profile data here in the finder method; we ne
to verify only that the named entity exists in the database and either return the primary key to signal succes:
throw an exception. The container takes the returned primary key and assigns it to one of the beans in its pc
(possibly the same one it called the finder method on, but not necessarily). Since we already have the
loadFromDB() method used in ejbLoad(), it is a simple matter to reuse it here in the finder method. If

the performance hit for loading the profile data twice is too great, we'd have to rewrite the finder method to
simply check the PROFILE table for a record matching the name in the primary key.

The ejbFindByEntryValue() method takes a key and value String arguments and attempts to find

7.6.3.1. A persistent ProfileBean 203

Preface (Java Enterprise in a Nutshell)

any and all profile entities with a matching key/value pair in the PROFILE_ENTRY table. Each name that ha
such a record is converted to a primary key object and returned to the container in an Enumeration. The
container converts each primary key object into a remote Profile object and returns the set to the client. If
we encounter a database problem along the way, we throw a FinderException.

7.6.4. The Entity Context

The EJB container provides context information to an entity bean in the form of an EntityContext

object. The container sets this object using the bean's setEntityContext() method and removes it when
the bean is being removed by calling the bean's unsetEntityContext() method. Like

SessionContext, EntityContext provides the bean with access to its corresponding remotely

exported object through the getEJBObject() method. The EntityContext, in addition, gives an entity

bean access to its primary key through getPrimaryKey(). The declared return type of this method is
Object, but the object returned is of the bean's primary key type. Note that the data accessed through the
EntityContext might be changed by the EJB container during the bean's lifetime, as explained in the next
section. For this reason, you shouldn't store the EJB remote object reference or primary key in data variable
in the bean object, since they might not be valid for the entire lifetime of the bean. Our entity

ProfileBean, for example, stores the EntityContext reference in an instance variable, where it can

access the context data as needed during its lifetime.

7.6.5. Life Cycle of an Entity Bean

Before the first client asks for an entity bean by calling a create() or findXXX() method on its home
interface, an EJB container might decide to create a pool of entity beans to handle client requests for beans
This potentially reduces the amount of time it takes for a client to receive a entity bean remote reference afte
it makes a request for an entity bean. To add a bean to its pool, the container creates an instance of your be
implementation class and sets its context using the setEntityContext() method. At this point, the entity

bean hasn't been associated with a particular data entity, so it doesn't have a corresponding remote object.

When a client calls a create() method on the bean's home interface, the container picks a bean out of the
pool and calls its corresponding ejbCreate() method. If the efbCreate() method is successful, it

returns one or more primary key objects to the container. For each primary key, the container picks an entity
bean out of its pool to be assigned to the entity represented by the key. Next, the container assigns the bea
identity by setting the properties in its EntityContext object (e.g., its primary key and remote object

values). If the bean has an ejbPostCreate() method, that gets called after the bean's entity identity has
been set. The ejbCreate() method should create the entity in persistent storage, if the bean is managing its
own persistence.

Alternately, the client might call a findXXX() method on the home interface. The container picks one of

the pooled entity beans and calls the corresponding ejbFindXXX() method on it. If the finder method finds
one or more matching entities in persistent storage, the container uses pooled entity beans to represent the:
entities. It picks entity beans out of the pool and calls their ejbActivate() methods. Before calling
ejbActivate(), the container sets the bean's context by assigning the corresponding primary key and

remote object reference in its context.

After an entity bean has been activated (either by being created through one of its ejbCreate() methods or
by being found and having its ejbActivate() method called), it is associated with a specific entity in
persistent storage, and with a specific remote object that has been exported to a remote client or clients. At
any point after this, the container can call the bean's ejbLoad() or ejbStore() method to force the bean

to read or write its state from/to persistent storage. The bean's business methods can also be invoked by cli
when it is in this state.

7.6.4. The Entity Context 204

Preface (Java Enterprise in a Nutshell)

At some point, the container may decide to put the bean back into its internal pool. This might happen after
all remote references to the bean have been released or after a certain period of inactivity with the bean. Th
container might also do this as a reaction to client loading issues (e.g., time—sharing pooled beans between
client requests). When the container wants to remove the association between the bean and the remote obj
but doesn't want the object's state removed from persistent store, it calls the bean's ejbPassivate()

method. The bean can release any resources it allocated while in the active state, but it doesn't have to upd
persistent storage for the entity it represents, as this was done the last time its ejbStore() method was
invoked by the container.

The bean can also lose its association with an entity when the client decides to remove the entity. The client
does this either by calling a remove() method on the bean's home interface or calling the remove()

method directly on an EJB object. When one of these things happens, the container calls the bean's
ejbRemove() method, and the bean should delete the data in persistent storage pertaining to the entity it
represents. After the ejoRemove() method completes, the container puts the bean back into its internal
pool.

7.6.6. Handles on Entity Beans

Every bean's remote interface extends the EJBObject interface. This interface allows the client to obtain a
serializable handle on the enterprise bean. This handle is a persistent reference to the bean that can be
serialized and then stored in local storage on the bean or emailed as an attachment to other users, for exarn
Later, a client can deserialize the handle object and continue interacting with the bean it references. The
handle contains all of the information needed to reestablish a remote reference to the enterprise bean it
represents. Since this is only useful for beans that are still valid when the handle is reconstituted, it is usuall:
only applicable to entity beans.

The handle for a bean can be obtained using the getHandle() method on a remote bean object reference:

Profile profile = ...;
Handle pHandle = profile.getHandle();

getHandle() returns a javax.ejb.Handle object. The Handle interface itself does not extend
java.io.Serializable, but any class that implements it is required by the EJB specification to extend
Serializable. Typically, the Handle implementation is provided by the EJB container, which enforces
this restriction. So you can always assume that the Handle for an EJB object can be stored in serialized
format, if needed:

ObjectOutputStream oout = ...;
oout.writeObject(pHandle);

Later, you can read the object back from its serialized state and obtain a reference to the remote bean objec
using the getEJBObject() method on the handle:

ObjectinputStream oin = ...;

Handle pHandleln = (Handle)oin.readObject();
Profile profileIn = (Profile)pHandleln.getEJBObject();
profileln.getEntry(“favoriteColor");

7.6.7. Container—Managed Persistence

In our entity—based ProfileBean, shown in Example 7-9, the persistent state of the profile entity is

managed by the bean itself. There's JDBC code in the ProfileBean implementation that loads, stores, and
removes the entity's database entries. This is called bean—managed persistence : the EJB container calls th
appropriate methods on your entity bean, but your bean implementation is responsible for connecting to the

7.6.6. Handles on Entity Beans 205

Preface (Java Enterprise in a Nutshell)

database and making all of the necessary queries and updates to reflect the life cycle of the data entity.

As | mentioned earlier, the EJB specification provides another option: container—-managed persistence. In
this case, you define data members on your entity bean implementation that hold the state of the entity and
the EJB container how to map these data members to persistent storage. If the persistent storage is a datak
you tell the container which columns in which tables hold the various data members of your entity. With
container—-managed persistence, the container is responsible for loading, updating, and removing the entity
data from persistent storage, based on the mapping you provide. The container also implements all the finds
methods required by the bean's home interface.

If you want to take advantage of container—-managed persistence, you have to indicate this to the EJB
container when you deploy the bean. You also provide the data mapping at deployment time. To see this in
action, let's use a simple entity bean that represents a person using just a first and last name:

import javax.ejb.*;

import java.rmi.RemoteException;
import jen.ejb.NoSuchPersonException;
import java.util.Properties;

public class PersonBean implements EntityBean {
/I First name of person
public String mFirstName =",
/I Last name
public String mLastName ="";

/I Store context (nonpersistent)
private transient EntityContext mContext = null;

/I No need for us to activate anything in this bean, but we need to
/I provide an implementation.
public void ejbActivate() {

System.out.printin("ProfileBean activated.");

}

/I Load bean from persistent store. Container is doing this for us, so
/l nothing to do here.
public void ejbLoad() throws RemoteException {}

/I Store bean to persistent store. Container is doing this, so nothing
/I to do here, either.
public void ejbStore() throws RemoteException {}

/I Nothing to do on a remove.
public void ejpRemove() {}

/I No state to store on passivation (it's all in persistenct storage).
public void ejbPassivate() {}

/I Get context from container.
public void setEntityContext(EntityContext context) {
mContext = context;

}

/I Container is removing our context.
public void unsetEntityContext() throws RemoteException {
mContext = null;

}

/I Create method (corresponds to each create() method on the
/I home interface). Nothing to initialize in this case.
public void ejbCreate() {

System.out.printin("Nameless PersonBean created.");

}

7.6.6. Handles on Entity Beans 206

Preface (Java Enterprise in a Nutshell)

I/l Postcreation notification. Nothing to do here, but we need

/ to provide an implementation.

public void ejbPostCreate() {
System.out.printin("PersonBean post—create called.");

}

/I Create method with name of person.

public void ejbCreate(String fname, String Iname)
throws NoSuchPersonException {
mFirstName = fname;
mLastName = Iname;

}

// Postcreation notification. Nothing to do here, but we need
/ to provide an implementation.
public void ejbPostCreate(String fname, String Iname) {}

/I Business methods
public String getFirstName() {
return mFirstName;

}

public String getLastName() {
return mLastName;

}
}

We're going to focus on the bean implementation here; | leave it to you to sort out the home and remote
interfaces for this bean. The PersonBean has two data members, representing the first and last name of the
person. In comparison to our entity ProfileBean from earlier, this bean is much simpler, since the
ejbRemove(), ejbLoad(), and ejbStore() methods are empty. We're going to let the container

handle the loading and storing of the bean's data and the removal of any entities from the database, so we ¢
need to do anything about these operations in our bean implementation.

In order for an EJB container to manage the persistence of this bean, we need to tell it what data members
should be stored persistently and where to store them in the database. We'll see some examples of
container—-managed data mappings in the section on deploying enterprise beans, but to give you a sense of
how this works, here's the relevant section from a deployment descriptor file for BEA's WebLogic EJB serve

(persistentStoreProperties
persistentStoreType jdbc

(jdbc
tableName PERSON
(attributeMap
mFirstName FIRST_NAME
mLastName LAST_NAME

)
)
)

containerManagedFields [mFirstName mLastName]
primaryKeyClassName PersonPK

In this part of the bean's deployment descriptor, we're telling the container that the mFirstName and
mLastName members of the PersonBean are stored persistently, and that they should be stored in the
FIRST_NAME and LAST_NAME columns of the PERSON table. We also have to tell the container which
JDBC connection pool to use to connect to the database, but I've omitted those details for now.

We also need to tell the container the primary key class for our entity bean. In this case, it's the PersonPK

7.6.6. Handles on Entity Beans 207

Preface (Java Enterprise in a Nutshell)

class, which looks like this:

public class PersonPK implements java.io.Serializable {
public String mFirstName;
public String mLastName;

public PersonPK() {
mFirstName = null;
mLastName = null;

public PersonPK(String fname, String Iname) {
mFirstName = fname;
mLastName = Iname;

}
}

Since we're using container-managed persistence, the primary key class for our bean has to include memb
that match the corresponding members on the bean class. This allows the bean to map the key fields to bee
fields automatically and to generate the default finder methods for the bean.

If you choose container—-managed persistence for your bean, the EJB container generates all the
ejbFindXXX() methods required for the finder methods on the home interface. It automatically generates
an ejbFindByPrimaryKey() method, based on the data—mapping information you provide at

deployment time. For any other ejbFindXXX() methods, you need to provide the container with a recipe
for implementing the methods. The EJB 1.0 specification doesn't provide a standard format for specifying
these additional finder methods for your bean, nor does it provide a means for you to specify some of the
finder methods yourself in the bean implementation and leave the rest for the EJB container to implement.
Some EJB providers allow you to provide code segments at deployment time for the finder methods, while
other providers define a descriptive scripting language that allows you to describe the logic of the method
implementation to the EJB container. In either case, the container takes this information and creates
implementations for the finder methods. These finder methods are located within one of the support classes
generates, usually in a generated subclass of your home interface.

As an example, suppose we want to have a finder method for our PersonBean class called findFreds()

that finds all the people whose first name starts with "Fred." BEA's WebLogic server specifies a syntax for
describing the logic of a finder method in the bean's deployment descriptor file. The segment of the descript
that describes this finder method for a WebLogic server might look like this:

(finderDescriptors
"findFreds()" "(like mFirstName Fred%)"

)

If you are implementing an entity bean with many complicated finder methods, or if you are concerned with
your bean being easily portable between EJB server providers, you may want to shy away from
container—-managed persistence and stick with managing the persistent data yourself. With some EJB
providers, you may find that the format they provide for describing finder methods is too limited for your
purposes. And deploying the bean in different EJB servers means porting the descriptions of your finder
methods from server to server, which defeats the purpose of writing to a distributed component standard.

If your EJB object is using container-managed persistence, the container is handling the loading and storing
of persistent data. You still can provide ejbLoad() and ejbStore() methods on your bean

implementation, however. The ejbLoad() method is called just after the container has loaded the specified
data fields from persistent storage into your data members, and ejbStore() is called just before the
container writes your data members to persistent storage. If there is any conversion or bookkeeping you nee
to handle, you can do that in these methods.

Container-managed beans also rely on the container to create and remove the entities they represent from
persistent storage. The bean can still provide ejbCreate() and ejpRemove() methods, however. The

7.6.6. Handles on Entity Beans 208

Preface (Java Enterprise in a Nutshell)

appropriate creation method is called just before the container creates the required records for the new entit
in the database. The bean can use these methods to initialize any data members the container accesses wt
creating the records. The container also invokes the bean's ejpRemove() method just before the container
removes the necessary records from persistent storage. This lets you do any cleanup before the entity is
removed.

7.6.7.1. Handling complex data structures

Each EJB container is limited to some degree in the way that data on your bean implementation can be
mapped into persistent data fields. There is no standard format defined for the data mapping the container
supports, so it's possible a particular EJB provider won't support whatever complicated mapping you require
for your bean. For the most part, however, you can expect EJB providers to limit the format to a single
persistent data field being mapped to a single data member on your bean implementation. If the data structt
on your bean are too complicated for you to provide an explicit mapping to persistent data fields, you have t
decide how to deal with this.

In our entity ProfileBean example, we've stored the profile entries in a Properties object. We don't

know at deployment time how many entries there will be, so we can't enumerate a mapping to database fiels
We really want each entry in the Properties object to be stored in the PROFILE_ENTRY table in our
database, along with the name of the owner of the entry, which is exactly how we implemented our
bean—-managed implementation in Example 7-9.

One option is to give up on container—-managed persistence and manage it yourself in the bean
implementation. Another is to make each entry in the profile its own bean and store the entries in a list on th
profile bean. This would probably turn out to be too expensive in terms of interactions with the container anc
memory, however. Each entry in the profile would need to be managed separately by the container, with all
the relevant lifecycle notifications.

Another option is to serialize your data structures into individual data members on your bean and allow the
container to read/write the serialized bytes to database fields as binary data. In our entity ProfileBean
example, rather than using the PROFILE and PROFILE_ENTRY tables we used in the bean—-managed
version, we can define a single table to hold the name of the profile owner, along with the serialized bytecoc
for the Properties object that represents the profile entries. We can then use the ejbStore() method on

our bean to convert the Properties object to an array of bytes:

public void ejbStore() throws RemoteException {
try {
ByteArrayOutputStream byteOut = new ByteArrayOutputStream();
ObjectOutputStream objOut = new ObjectOutputStream(byteOut);
objOut.writeObject(mEntries);
mEntriesBytes = byteOut.toByteArray();
}
catch (Exception e) {
throw new RemoteException("ejbStore failed: ", e);
}
}

After the container calls our ejbStore() method, it can write the mEntriesBytes data member on our

bean to a raw data field in the database (e.g., a LONG BINARY field in a SQL database). On the reading en
we can use the ejbLoad() method to convert the bytes loaded by the container to the mEntriesBytes

data member into a Properties object:

public void ejbLoad() throws RemoteException {

try {
ByteArraylnputStream byteln = new ByteArraylnputStream(mEntriesBytes);
ObjectinputStream objln = new ObjectinputStream(byteln);

7.6.7.1. Handling complex data structures 209

Preface (Java Enterprise in a Nutshell)

mEntries = (Properties)objln.readObject();
}

catch (Exception e) {
throw new RemoteException("ejbLoad failed: ", e);
}
}

This workaround allows us to deploy our entity ProfileBean with container-managed persistence, but it
makes our database records unusable for other, non—Java applications. There's no way, for example, to che
on a user's profile entries using a simple SQL query.

4 PREVIOUS HOME NEXT »
7.5. Implementing Session BOOK INDEX 7.7. Deploying an
Beans Enterprise JavaBeans
Object
Java i bdq \
Enterprise
Bookshelf Java™ Javo™ Enterprise Jnvu Java™ Juw
Home Enterprise in a Nutshell, Foondnmm (lnsses Jnvnknm Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

§% JAVA ENTERPRISE IN A NUTSHELL™™

4@ PREVIOUS Chapter 7: Enterprise NIXT ®
JavaBeans

7.7. Deploying an Enterprise JavaBeans Object

Once you've written the home and remote interfaces and the implementation of your enterprise bean, you
need to deploy your beans in an EJB container, which involves the following steps:

1.

Specifying the various deployment options for your bean, using the deployment tools provided by the
EJB container. These options include transaction support options, access control settings, and data
mappings (for container-managed entity beans).

2.

Using the container—provided tools to create a serialized deployment descriptor, which bundles up
your deployment options into a single serialized object.

3.
Generating the container-specific classes, as shown in Figure 7-2.

4.
Optionally packaging your enterprise beans into an EJB-JAR file.

As shown in Figure 7-2, the EJB container generates a set of classes that deploy your EJB object. It's up to
the EJB container to provide a tool or tools for generating these classes. Some may be command-line tools
that accept some sort of properties file that tells the EJB container about your bean, while others may be Gl

7.7. Deploying an Enterprise JavaBeans Object 210

Preface (Java Enterprise in a Nutshell)

tools that let you control the deployment options of your bean using a visual interface. Regardless of the
deployment/generation tool your EJB application server provides, it needs to be told the fully qualified name
for the home and remote interfaces for your EJB object and for the bean implementation class. It also needs
be told how to deploy your bean, in terms of transaction support, client access to features of your bean, and
management of the persistent data (if any) associated with your bean. The baseline information and options
needed for deploying your enterprise bean are as follows:

Bean implementation class and interfaces
The fully qualified names of your bean implementation class and the home and remote interfaces for
your bean.

Bean type
Is the bean a session or entity bean? If it is a session bean, is it stateful or stateless? If it is an entity
bean, is its persistence bean—managed or container-managed?

JNDI name for home interface
The name under which the home interface for the bean is exported through JNDI by the server.
Clients use this name to look up the home interface.

Transaction support attribute
The level of transaction support required by the bean. Specify one of the values described earlier in
the chapter.

Transaction isolation level
The level of transaction isolation required by the bean. Specify one of the values described earlier in
the chapter.

Access control attributes
Which remote identities should have access to the methods on your bean? What identity should you
bean assume when it accesses resources (a database, other EJB objects, etc.)?

Session time—out (session beans only)
The maximum lifetime for a session bean.

Database/member mapping (container—-managed entity beans only)
The data members on your bean that need to be stored persistently and their corresponding databas
fields.

Reentrant flag (entity beans only)
Is your bean implementation reentrant (i.e., can the bean's methods make loopback calls to
themselves, directly or through other bean methods)? This property is always false for session
beans.

Primary key class (entity beans only)
The fully qualified name of the class that serves as the primary key for your entity bean.

Environment variables
Miscellaneous environment properties, either EJB server—specific or bean—specific, that are provide«
to the bean in its EJBContext.

Some EJB containers may expand on this baseline list to include properties they need for extended service:s
they may provide or additional controls they provide to supplement the basic EJB deployment options.

All these deployment properties are represented as publicly accessible properties on the

7.7. Deploying an Enterprise JavaBeans Object 211

Preface (Java Enterprise in a Nutshell)

DeploymentDescriptor, SessionDescriptor, and EntityDescriptor classes in the

javax.ejb.deployment package. If you want to create an EJB-JAR package for your bean, the EJB

server tools typically allow you to bundle your deployment options into an instance of either the
SessionDescriptor or EntityDescriptor class and serialize the object to a file to be included in

the EJB-JAR file as the bean's deployment descriptor. See the later section "Packaging Enterprise Beans" |
more details.

At the time of this writing, the released EJB specification doesn't include a standard format for deployment
descriptor files. The EJB 1.1 public draft includes an XML-based deployment descriptor schema, but until t
1.1 specification is released and this standard deployment descriptor file format is widely supported, you net
to deal with the vendor—specific formats currently provided by each EJB server. Currently, the only way to
provide a portable deployment descriptor for your enterprise bean is to do the work of the server deploymen
tools yourself. To do this, you have to write some Java code that creates an instance of the appropriate
DeploymentDescriptor subclass, fills in the properties on this object, and then serializes the descriptor
object to a file. If you need to do this, refer to Chapter 20, "The javax.ejb.deployment Package" for details or
DeploymentDescriptor and its subclasses. For the examples that follow, however, I'm going to show
shippets of deployment descriptor files for a particular EJB server, BEA's WebLogic application server.

7.7.1. Container—-Managed Data Mapping

If you are deploying an entity bean with container-managed persistence, you need to tell the EJB container
which fields on your bean implementation are persistent and how to map them to persistent storage. For
example, suppose we are deploying our entity ProfileBean, using container-managed persistence. Let's
assume that we've made the modifications to our bean implementation we discussed in the section
"Container-Managed Persistence." In other words, we've created a table called PROFILE_BYTES with a
single LONG BINARY column named DATA to hold our serialized Properties object. Now we simply

have to tell the container that the mEntriesBytes member on our modified ProfileBean is mapped to

the DATA column on the PROFILE_BYTES table, with an entry in a textual deployment options file like this
example shown for BEA WebLogic server:

(persistentStoreProperties
persistentStoreType jdbc

(jdbc
tableName PROFILE_BYTES
(attributeMap
mName NAME

mEntriesBytes DATA

)
)
)

containerManagedFields [mName mEntriesBytes]

Based on these mappings, the EJB container generates all of the necessary JDBC calls in its generated cla

7.7.2. Access—Control Deployment Attributes

There are precious few details in the EJB 1.0 specification about support for security in EJB containers, but
there is a construct provided for you to specify certain access control levels at deployment time.

Essentially, the EJB server should provide some means for mapping a client—provided identity (in the form c

a java.security.ldentity object) to a named user or role on the EJB server itself. Then you, the bean
provider, can specify which users and/or roles can access each method on your bean. The EJB server allow

7.7.1. Container—Managed Data Mapping 212

Preface (Java Enterprise in a Nutshell)

you to specify access control levels in some server—specific way (ideally, using the same deployment tools
the other deployment attributes). There should be a way to specify access for the entire bean, as well as for
individual methods. Any method without an access—control entry assumes the access level of the bean as a
default. So, for the various versions of our ProfileBean, we might want to allow anyone to get profile

entries off of the bean, but only allow profile administrators (users or applications) to set profile entries. We
might do this by specifying access—control entries such as:

(accessControlEntries
DEFAULT [everyone]
"setEntry(String, String)" [profileAdmin]
)

This allows any user who identifies himself as profileAdmin to invoke the setEntry() method on the
ProfileBean, while all other remote methods on the bean are accessible to everyone.

As a step towards standardizing the specification of client identities to the EJB server, there is a proposal
being considered by various EJB providers that involves the use of a reserved JNDI name entry to hold the
client's identity. The client would provide an ldentity object to the EJB server as the value of the
Context.PROVIDER_IDENTITY property, passed in when the client creates its initial JINDI naming

context from the server. This issue should be settled in an upcoming update to the EJB specification.

In addition to specifying client access rules for your bean, you need to specify to the EJB server what identit
your bean should assume when it accesses controlled resources, such as other EJB objects and databases
is done using two deployment properties: run—as—-mode and run—as—identity. The run—as—mode property
indicates whether the bean should assume the identity of the client that invoked it (CLIENT_IDENTITY), the
identity of some system—defined account (SYSTEM_IDENTITY), or the identity of some other specific user
account (SPECIFIED_IDENTITY). The SYSTEM_IDENTITY option causes the EJB server to use a
platform—specific privileged account. A server may use the root account on Unix systems or the
Administrator account on Windows NT systems, for example. Some EJB servers may use the account that
runs the server when the SYSTEM_IDENTITY is specified. The run—as—identity property is used when
run—as—mode is set to SPECIFIED_IDENTITY. The identity given in the run—as—identity property is the
identity the bean assumes when accessing system resources and other beans.

The run—as—-mode and run—as—identity attributes are settable at the bean level or at the individual method
level, in the same way client access levels are applied. If you set these attributes for specific methods on yo
bean, that means you want those methods to be executed using the specified identity for access—control
purposes. There are some restrictions imposed by the EJB specification, however. Within a single transactic
all methods invoked on your bean must be run with the same identity. If a client transaction attempts to
execute methods you've deployed with different access—control identities, the server throws an RMI
RemoteException to the client. If your bean is a stateful session bean, all methods executed during a
session lifetime must be the same. If a client attempts, within the same session, to execute methods on you
bean that have different access—control identities associated with them, the EJB server throws an RMI
RemoteException.

7.7.3. Generating the Container Classes and Deployment Descriptor

Once you've specified all the deployment options for your bean, the container provides a utility for
converting these deployment properties to a serialized deployment descriptor. This deployment descriptor is
serialized instance of either the EntityDescriptor or SessionDescriptor class from the

javax.ejb.deployment package. The container tools store all the deployment options you specified into

an instance of one of these classes, depending on what type of bean you're deploying, and serialize the obj
to a file you specify, one for each type of bean that you are deploying. You can then use these deployment
descriptors to package your enterprise beans into EJB-JAR files, as described a bit later.

7.7.3. Generating the Container Classes and Deployment Descriptor 213

Preface (Java Enterprise in a Nutshell)

In addition to the deployment descriptor, you also need to use the EJB container's tools to generate the
container—specific classes that deploy your bean, as shown in Figure 7-2. In order to generate these classe
the container tools need to take into account your deployment options. If you're deploying an entity bean, fol
example, the tool needs to know whether the bean uses container—-managed persistence or not, so that the
knows whether it needs to include JDBC code for the bean in its generated classes. The container tools
typically allow you to specify where to generate the deployment classes.

Once you have your compiled interfaces and bean implementation class, the deployment descriptor, and the
container—generated classes for your bean, you're ready to package your bean in an EJB-JAR file.

7.7.4. Packaging Enterprise JavaBeans

EJB-JAR files are the standard packaging format for Enterprise JavaBeans. They are normal Java archive
(JAR) files, created using the standard jar utility, but they contain specific files that provide all the
information needed for an EJB container to deploy the beans that are contained in the EJB-JAR file. An
EJB-JAR file can contain one or many beans.

An EJB-JAR file contains three components:

The class files for each bean, including their home and remote interfaces, and the bean
implementations.

A deployment descriptor, in the form of a serialized instance of either the EntityDescriptor or
SessionDescriptor classes from the javax.ejb.deployment package.

A manifest file, located in the file META-INF/MANIFEST.MF within the JAR file, with a section for
each bean that names its deployment descriptor within the JAR file.

The manifest file is a simple text file, with sections delimited by blank lines. Each section has nhame/value
pairs. The name starts the line, followed by a colon, followed by the value. EJB-JAR files define two tags:
"Name" and "Enterprise—Bean". The Name line specifies the serialized deployment descriptor for an
enterprise bean, while Enterprise—Bean marks the section as relevant to the EJB server and always has a v
of "True". Here's a typical manifest file that might be used for an EJB-JAR file that contains a few of our
bean examples:

Name: jen/ejb/stateless/ProfileServerBeanDD.ser
Enterprise—Bean: True

Name: jen/ejb/entity/beanManaged/ProfileBeanDD.ser
Enterprise—Bean: True

This manifest file describes two enterprise beans. The EJB-JAR file that contains this manifest must contair
the two serialized deployment descriptors named in the manifest file, all class files specified in the
deployment descriptors for the beans, and all container—generated classes for deploying the bean.

An EJB-JAR file contains everything an EJB container needs to deploy your bean. The container reads the
manifest file and, for each bean specified, loads the serialized deployment descriptor and checks its
parameters. The container looks in the JAR file for the class files needed for the bean and deploys the bean
using the additional parameters specified in the deployment descriptors.

Some EJB container/server providers include a utility to facilitate the creation of EJB—JAR files from your

7.7.4. Packaging Enterprise JavaBeans 214

Preface (Java Enterprise in a Nutshell)

bean classes. It's a simple matter, however, to create one using the standard jar utility provided with nearly
every Java SDK implementation. Assuming that you have created a manifest file, such as the one shown
earlier, in a file named ProfileManifest.txt, you can create an EJB-JAR file for the previous two

beans with the following command:

% jar cmf ProfileManifest.txt ProfileBeans.jar\
jen/ejb/stateless jen/ejb/entity/beanManaged

This command creates an EJB-JAR file named ProfileBeans.jar in the current directory. The jar utility
automatically places the manifest file in the proper location in the JAR file for you. Note that we're assuming
that the subdirectories we've included in the JAR file contain both the class files we need and the serialized
deployment decriptors mentioned in the manifest file.

4 PREVIOUS HOME NEXT »
7.6. Implementing Entity BOOK INDEX 7.8. Using an Enterprise
Beans JavaBeans Object
Aauad® } N (' / = o Yo \
Enterprise : 3 [N/
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

4@ PREVIOUS Chapter 7: Enterprise NIXT ®
JavaBeans

7.8. Using an Enterprise JavaBeans Object

So far, we've seen how to write an enterprise bean and how to deploy it through an EJB container. Now let's
look at how you use an enterprise bean as a client.

7.8.1. Finding Home Interfaces Through JNDI

Once an enterprise bean is deployed within an EJB container, the home interface for the bean has been
exported under a particular name using JNDI. As a client, you need to know how to connect to the JNDI
context of the remote EJB server, and you need to know the name for the bean home interface you're
interested in. A typical way to connect to the JNDI naming context is to specify the initial context factory for
JNDI and create a new naming context through it (for more details, see Chapter 6, "IJNDI"):

Hashtable props = new Hashtable();

/I Specify the context factory for our EJB server

props.put(Context.INITIAL_CONTEXT_FACTORY,
"my.ejb.server.context.factory");

/I Specify the URL for the context provider, if any

props.put(Context.PROVIDER_URL, "my.server.jndi.url");

/I Trying looking up the context

javax.naming.Context ctx = null;

try {

7.8. Using an Enterprise JavaBeans Object 215

Preface (Java Enterprise in a Nutshell)

ctx = new javax.naming.InitialContext(props);

}

catch (NamingException ne) {
System.out.printin(“Failed to create JNDI context from EJB server");

}

In this example client, we make a Hashtable that contains two standard JNDI properties, the
INITIAL_CONTEXT_FACTORY and PROVIDER_URL properties. These property names are String
constants defined on the javax.naming.Context interface, whose values are

"java.naming.factory.initial* and "java.naming.provider.url", respectively. You can use the explicit string
values if you prefer, but the constant values are provided by the Context interface as a convenience, since
they're a bit easier to remember. The value of INITIAL_CONTEXT_FACTORY is the class name for a
context factory, provided by your JNDI provider (the EJB server, in this case), and PROVIDER_URL is a
URL used to connect remotely to the JNDI server running within the EJB server. The proper values for both
of these items should be provided by your EJB application server provider.

You can also specify the security principal under which you want to interact with the EJB/INDI server, by
including the Context. SECURITY_PRINCIPAL property in the call to create your naming context. This
property value should be a java.security.ldentity object that represents the identity of your client:

Hashtable props = new Hashtable();

/I Initialized other connection properties...

java.security.ldentity id = . . .;

props.put(Context. SECURITY_PRINCIPAL, id);
javax.naming.Context ctx = new javax.naming.InitialContext(props);

Some EJB server providers use this identity in determining access to bean features, as specified in the beat
deployment descriptors. The EJB 1.0 specification doesn't provide a standard for providing this identity,
however, so check the documentation on your EJB server for specific details. For more details on accessing
remote JNDI servers, see Chapter 6, "JNDI".

Now that we have a JNDI naming context from the EJB server, we can look up the home interface for the
bean we're interested in:

ProfileHome pHome = null;

try {
pHome =
(ProfileHome)ctx.lookup(“jen.ejb.entity.beanManaged.ProfileHome");

}

catch (NamingException ne) {
System.out.printin("Failed to lookup home for ProfileBean.");

}

In this case, we've assumed that the bean provider has deployed its home interface on the EJB server unde
name "jen.ejb.entity.beanManaged.ProfileHome". With the home interface stub, our client can now create ol
find beans located on the server.

7.8.2. Creating/Finding Beans

The home interface for the bean contains methods that allow a client to create new beans or find existing
beans (for entity beans). Continuing our example client, assuming we're using our entity ProfileBean

from Example 7-9 and its corresponding home interface, we can create a new ProfileBean and get a stub
reference to it as follows:

Profile profile = null;

try {
profile = pHome.create("Kaitlyn");

7.8.2. Creating/Finding Beans 216

Preface (Java Enterprise in a Nutshell)

}
catch (DuplicatePersonException dpe) {
System.out.printin("Profile already exists for Kaitlyn.");

}
catch (RemoteException re) {
System.out.printin("Remote exception while creating profile.");

}

Here we're trying to create a new profile for someone named "Kaitlyn". We're using the create() method
defined on our ProfileHome interface, which we've declared to throw RemoteException and our own
DuplicatePersonException. In the client, we catch each of these exceptions and print a corresponding
error message if it occurs.

Now, if we thought a profile already existed for Kaitlyn, we could try finding it in persistent storage first,
using one of the finder methods on our home interface:

try {
profile = pHome.findByPrimaryKey(new ProfilePK("Kaitlyn"));

catch (FinderException fe) {
System.out.printin("No profile found for Kaitlyn.");

}

catch (RemoteException re) {
System.out.printin("Remote exception while finding profile.");

}

If we weren't sure whether a profile for Kaitlyn had been created or not, we could try finding it first, using the
code above, then create one if needed:

if (profile == null) {
/I Create profile as before ...

}

7.8.3. Using Client-Side Transactions

I mentioned before that you can specify at deployment time how your bean handles transactions, using one
the transaction attributes we already discussed. On the client-side, you can use the Java Transaction API
(JTA) to create your own transaction boundaries. These transactions are taken into account, along with the
bean's transaction—handling attributes, by the EJB container, to determine which transaction context to put t
bean into for each remote method call your client makes. Again, a complete description of the JTA is beyon(
the scope of this chapter, but it's useful to take a quick look at how to create your own client transactions.

Continuing the example client we've been working with in this section, we've already found the home
interface for the ProfileBean and created/found a Profile for Kaitlyn. Now we want to make some

changes to Kaitlyn's profile, but we want to make sure that all our changes are made before we commit ther
To do this, we create our own "javax.transaction.UserTransaction"[5] and either commit it or roll it back,
depending on whether we get an exception while setting the profile entries:

[5]Note that shortly after the EJB 1.0 specification was released, the name of the (then beta)
JTA was changed, so that javax.jts.UserTransaction became
javax.transaction.UserTransaction. I'm using the new class name here, but

keep in mind that you might see the old package names in the EJB 1.0 documentation from
Sun.

javax.transaction.UserTransaction xact =
(UserTransaction)jndiCtx.lookup(“javax.transaction.UserTransaction");

7.8.3. Using Client-Side Transactions 217

Preface (Java Enterprise in a Nutshell)

xact.begin();

try {
profile.setEntry("username”, "kschmitz");
profile.setEntry("password", "foobar");
profile.setEntry("interestGroups", "dogs:cartoons:napping");
xact.commit();

}
catch (RemoteException re) {
xact.rollback();

}

We acquire the transaction from whatever transaction provider we're using on the client side. Here, we assu
that we've retrieved a "JNDI context" from the EJB server and use it to look up an instance of
"Javax.transaction.UserTransaction" that the EJB server provides. When we use this transaction object, the
EJB server can manage the transaction around calls to enterprise bean methods. We begin the transaction
before starting our profile update. We make our updates to Kaitlyn's profile, and, if successful, we commit th
transaction. If we get an exception from the EJB server along the way, we rollback our changes by calling
rollback() on the transaction.

If the ProfileBean was deployed with a transaction attribute of TX_SUPPORTS, TX_REQUIRED, or
TX_MANDATORY, the EJB container should execute the bean methods within our client transaction contex
The corresponding database updates are committed to the database when we commit() our transaction or
rolled back if we rollback() our transaction. The bean does not need to know anything about the

transaction boundaries, even if it is managing its own persistence. The EJB container manages the associa
between the client-specified transaction boundaries and the JDBC transactions initiated by the bean
implementation.

4 PREVIOUS HOME NEXT »
7.7. Deploying an BOOK INDEX 7.9. Changesin EJB 1.1
Enterprise JavaBeans Specification
Object
Java” } bdq
Enterprise
Bookshelf Java™ Enterprise Jnvu Java™ Juva
Home Enterprise ina Nlmbell Fowndnmn (lnsses JavaBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

4@ PREVIOUS Chapter 7: Enterprise NIXT ®
JavaBeans

7.9. Changes in EJB 1.1 Specification

Shortly before publication of this book, Sun released a public draft of Version 1.1 of the EJB specification. In
this incremental release, Sun tightened up a few areas, changed its scheme for deployment descriptors, anc
made various other updates to the specification. The major updates are described below, followed by a shoi
laundry list of the more significant changes.

7.9. Changes in EJB 1.1 Specification 218

Preface (Java Enterprise in a Nutshell)

7.9.1. XML-Based Deployment Descriptors

In EJB 1.1, the javax.ejb.deployment package is deprecated, and deployment descriptors for

enterprise beans are composed using XML, instead of serialized DeploymentDescriptor objects. In the

XML DTD defined in EJB 1.1, there's a clear separation of information regarding the structure of the
enterprise bean(s) from information regarding the use of the beans in a particular application. The structural
information for an enterprise bean includes components such as its various classes, environment variables |
bean recognizes, and the container-managed fields (for entity bean). Application—specific information
includes, for example, values for environment variables, the various client roles that are used for controlling
access to beans, and permission settings for these various roles.

Similar to the deployment descriptors defined in EJB 1.0, these XML-based deployment descriptors are
intended to include only structural information when a bean provider ships a collection of enterprise beans tc
application developers, and both structural information and application—specific information when an
application provider ships an EJB—based application to an application deployer. The separation of these twc
types of information in the XML deployment descriptor makes this process more straightforward than under
EJB 1.0.

The XML deployment descriptor for a set of enterprise beans can be provided separately or as part of an
EJB-JAR file. In an EJB-JAR file, the deployment descriptor must be in the file META-INF/ejb—jar.xml.

7.9.2. Entity Beans Required

In EJB 1.0, support for entity beans was optional for compliant EJB servers. In EJB 1.1, all compliant server
must provide support for entity beans.

7.9.3. Home Handles

EJB 1.1 adds a new HomeHandle interface and a getHomeHandle() method on the EJBHome interface.
A HomeHandle is a serializable reference to a home interface for an enterprise bean, analogous to the
Handle interface, which represents a serializable reference to an EJB object. This allows a client to get a
handle for a home interface and serialize it to some persistent storage, like a filesystem or database. The
serialized HomeHandle can be deserialized later (in the same or another Java VM) and used to acquire a
reference to the same home interface.

7.9.4. Detailed Programming Restrictions for Bean Implementations

EJB 1.1 lists detailed restrictions on what an enterprise bean implementation should avoid in its business
methods in order to be portable across different EJB servers. These include rules against using sockets,
creating class loaders, and including writable static fields on EJB implementation classes.

7.9.5. Assorted Other Changes

In addition to changes already listed, the following are some of the more significant updates introduced in th
EJB 1.1 specification:

Finder methods on entity beans can now return java.util.Collection types from Version 1.2
of the Java 2 platform.

7.9.1.XML-Based Deployment Descriptors 219

Preface (Java Enterprise in a Nutshell)

Entity bean primary keys can now be java.lang.String objects.

All ejbCreate() methods on entity beans, including those with container—-managed persistence,
must now return the bean's primary key type. Previously, container-managed entity beans had
ejbCreate() methods that returned null, and bean—-managed beans returned their primary key

type. With this change, a container-managed bean can implement ejbCreate() methods that

return null, and this bean can optionally be subclassed to define a bean—managed bean that returns
an actual primary key.

All EJB clients should use the narrow() method on the javax.rmi.

PortableRemoteObject interface in order to cast remote and home object interfaces for

enterprise beans. This guarantees that clients will be compatible with EJB servers that use RMI-IIOF
for exporting enterprise beans.

4 PREVIOUS HOME NEXT »
7.8. Using an Enterprise BOOK INDEX Part 2. Enterprise
JavaBeans Obiject Reference
Java)‘ M %
Enterprise
Bookshelf Enterprise Jnvu Jave™ Juw
Home Enterprise ina Nm;bell, Foondnhon (lusses Jnvnﬂonns Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@ JAVA ENTERPRISE IN A NUTSHELL™

@ PREVIOUS Part 2: Enterprise NEXT
Reference

7.9.1. XML-Based Deployment Descriptors 220

Chapter 8. SQL Reference

Contents:

Relational Databases

Data Types

Schema Manipulation Commands
Data Manipulation Commands
Functions

Return Codes

There are dozens of different database management systems on the market today, from nearly as many
vendors. Developing applications that are more or less database independent requires a standardized interf
to the underlying data. Since the early 1980s, this interface has been SQL, a sophisticated database
manipulation language.[1]

[1] The acronym expands out to either Structured Query Language (based on the original

IBM acronym from the 1970s) or Standard Query Language (which has been more popular in
recent years). Perhaps because of this confusion, most people just say SQL, pronounced either
see—quell or ess—cue-ell.

Unlike Java, SQL is a declarative language. It allows users to specify particular actions on the database anc
retrieve the results of those actions. It specifies a set of standardized data types and standard error messag
but it lacks procedural constructs. There are no conditionals or loops standard in SQL.

There are several versions of the SQL standard. SQL-86 and SQL-89 have been superceded by SQL-92,
which is supported by most database vendors, although there are a number of platform-specific variations.
Many databases also include additional data types, operators, and functions beyond those specified in the
SQL-92 standard. In addition, there are three levels of SQL-92 conformance: entry-level, intermediate, anc
full. Many products support only the entry—level SQL-92 standard, leaving out some advanced features.
JDBC drivers are supposed to provide entry—level functionality and, for the most part, they do.

This chapter presents a brief introduction to the structure of a relational database system and a quick
reference to the most commonly used SQL commands. The complete set of SQL commands is simply too
large to cover here: even a concise SQL reference can run to several hundred pages. | have endeavored to
provide the information that most client-side programmers need. For a complete introduction to most aspec
of SQL, I highly recommend SQL Clearly Explained by Jan Harrington (AP Professional).

8.1. Relational Databases

Data storage and retrieval are two of the biggest tasks facing most enterprise applications. There are lots of
ways to store data on a disk, but for large—scale applications a relational database management system
(RDBMS) is far and away the most popular choice.

Data in an RDBMS is organized into tables, where these tables contain rows and columns. You can think of
an individual table as a spreadsheet with a little more organization: column data types are fixed and there m
be rules governing the formatting of each column. This alone is enough for a database system (plain DBMS
A relational database system has one other key attribute: individual tables can be related based on some
common data. Figure 8-1 shows three tables in a relational structure. The CUSTOMERS table is related to
ORDERS table based on the CUSTOMER_ID field, and the ORDERS table is related to the ITEMS table ba
on the ORDER_ID field. SQL provides a standardized means of accessing the data in tables and working w
the relationships between tables.

Chapter 8. SQL Reference 221

Preface (Java Enterprise in a Nutshell)

CUSTOMERS Tabie ORDERS Table TEMS Toble
CUSTOMER_ID | NAME

ORDER_ID |CUSTOMER_ID | TOTAL ORDER IE" [TEM_NO | COST

| Bob Copier (617 555-1212 | 1 - 4803 7 4012 11208
2 Jane Stapler |617 5551213 16.27 619 | 422

2]

3 7 5.31 §03 | 531
4 ! 72.19 1280 |16.72
5 3

b 1

7 5

— 5317 129 4110

21.07 0171437
37.62 1280 11672
9246 _171.70

(PN (A PN N N Xl X

Figure 8—-1. Three related tables

The highest-level organizational concept in an RDBMS system is a cluster.[2] A cluster contains one or
more catalogs, which are usually the highest-level object a programmer ever has to deal with. A catalog
contains a group of schemas. A schema contains a group of tables and other objects and is generally assig!
to a particular application or user account. Generally, the database administrator is responsible for dealing
with clusters and catalogs. Most users work within a particular schema.

[2] The naming comes from the older SQL standards, where a cluster represented physical
storage space. This is no longer the case, but the name persists.

To reference a table within a particular schema, separate the schema name and the table name with a dot:
schema_name.table_name

To reference a particular column within a particular schema:
schema_name.table_name.column_name

To set a particular schema as the default, use the SET SCHEMA SQL statement:
SET SCHEMA schema_name

When you log into a database, you are generally assigned a default schema. When accessing tables within
default schema, you may omit the schema name.

When creating new objects, the names you assign to them must be unique within the schema. SQL-92 allo
names up to 128 characters, including letters, numbers, and the underscore (_) character.

4 PREVIOUS HOME NEXT »
Part 2. Enterprise BOOK INDEX 8.2. Data Types
Reference
Java -, N
il & €
Bookshelf Enterprise Java™ Java™ Ju\m
Home Enterprise ina Ntnsbell, Foondnhon (lasses JavaBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

8.1. Relational Databases 222

Preface (Java Enterprise in a Nutshell)

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

@ PREVIOUS Chapter 8: SQL Reference NIXT ®

8.2. Data Types

Each column in a table has a particular data type associated with it. SQL-92 defines a fairly broad set of dai
types. Different RDBMS packages provide extensions to these basic types, for multimedia data, Java object
and so on. Oracle's NUMBER data type, for instance, allows database designers to specify the exact precis
of integer and floating point data types. The basic SQL-92 types are listed in Table 8-1. The names in
parentheses are SQL-92 specified alternates for the main type names.

Table 8-1. SQL-92 Data Types

SQL Data Type Description

A signed integer value. The number of bits represented is
implementation—dependent.

A smaller signed integer value, used when storage or memory is at a premiuim.

INTEGER (INT)

SMALLINT Generally 8 bits, but implementation—dependent.
A signed fixed—precision decimal. When creating a NUMERIC, you must specify
NUMERIC the total length of the number (including the decimal point) and the number pf
decimal places. NUMERIC(8, 4) allows three digits, a decimal point, and foyr
more digits.
Defined the same way as a NUMERIC, but may store additional precision (more
DECIMAL .
decimal places).
REAL A single—precision floating—point value. Range and accuracy are

implementation—dependent.

DOUBLEPRECISION [A double—precision floating—point value. Range and accuracy are implementation
(DOUBLE) dependent, but are equal to or better than a REAL.

A fixed number (one or more) of bits. A length specifier (BIT(n)) is optional.

BIT The default size is 1 bit.

BITVARYING _Storage for up ton bit_s (BIT VARYING (n)). Many databases have alternate
implementations of this data type, such as Oracle's VARBINARY.

DATE A date value (day, month, and year).

TIME A time value. Precision is implementation—dependent.

TIMESTAMP A date and time.

A fixed-length character string. Specified as CHAR(n). Unused characters are

CHARACTER (CHAR) | - dded with blanks. The default size is 1.

CHARACTERVARYING
(VARCHAR)
INTERVAL A date or time interval. Not directly supported by JDBC.
Note that the data types given here are not the same as those in Table 2-1 in Chapter 2, "JDBC". When
mapping between SQL types and Java types, a JDBC driver matches the physical data type (either SQL-92
database-specific) and the closest Java type. For example, calling the getType() method of ResultSet

on a BITVARYING field generally returns a Types.LONGVARBINARY value. This translation allows most
JDBC programs to switch between different databases without losing functionality. Also, many databases

A variable length string, up to size n. Specified as VARCHAR(n).

8.2. Data Types 223

Preface (Java Enterprise in a Nutshell)

implement additional types: the FLOAT type is so common that many people think it is required by the
specification.

4 PREVIOUS HOME NEXT »
8.1. Relational Databases BOOK INDEX 8.3. Schema Manipulation
Commands
SO B ™ s e
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in o Nutshell, Foundation Closses Jnvnlonns Serviet Security Distributed
ino Nutsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

§8% JAVA ENTERPRISE IN A NUTSHELL =

4 PREVIOUS Chapter 8: SQL Reference uxr »

8.3. Schema Manipulation Commands

SQL includes two broad classes of commands. The first are schema manipulation commands, which allow
the creation, modification, and deletion of high—level database objects such as tables. This section describe
these commands. I've provided a syntax summary for each command. In case you aren't familiar with the
style, items in square brackets are optional or not always required, while items in curly braces are either
always required or required within the context of some optional item. A vertical bar (]) indicates a choice,
while an ellipsis indicates that an entry may be repeated any number of times. Items in all uppercase are pa
of the SQL statement, while items in lowercase constant width italic represent names and values that you
supply when using the statement.

8.3.1. CREATE TABLE

As its name says, the CREATETABLE command creates a table. Here's the syntax:

CREATE [[GLOBAL | LOCAL] TEMPORARY] TABLE table_name
({ column_name { data_type | domain_name } [column_size]
[column_constraint ...] ... }
[DEFAULT default_value], ...
[table_constraint], ...
[ON COMMIT { DELETE | PRESERVE } ROWS)

Here's a simple example:

CREATE TABLE BOOKS
(
TITLE VARCHAR (25) PRIMARY KEY,
AUTHOR VARCHAR(25) NOT NULL DEFAULT “Unknown’,
EDITION INTEGER,
PRICE NUMBER(6,2)

)

8.3. Schema Manipulation Commands 224

Preface (Java Enterprise in a Nutshell)

The PRIMARYKEY and NOTNULL identifiers are column constraints. The NOTNULL constraint prevents ar
entry in a column being set to null. Here, it's combined it with a default value. PRIMARYKEY identifies the
column that's used as the primary key (or main unique identifier) for the table. If a table has a primary key
column (it doesn't have to), there can be only one such column, no row has a null value in the primary key
column, and no two rows have the same primary key.

A table constraint affects every row in the table. UNIQUE is a common example:

CREATE TABLE BOOKS

(
TITLE VARCHAR (25),

AUTHOR VARCHAR(25),
EDITION INTEGER,
PRICE NUMBER(6,2),
UNIQUE

)

Used as a table constraint, UNIQUE indicates that each row in the table must have a unique combination of
values. You can also specify particular columns that must form a unique combination:

UNIQUE(TITLE, AUTHOR, EDITION)

This mandates only unique title/author/edition combinations. Note that UNIQUE can also be used as a colur
constraint.

We can use PRIMARYKEY as a table constraint to specify more than one column as the primary key:

CREATE TABLE BOOKS

(
TITLE VARCHAR (25) NOT NULL,

AUTHOR VARCHAR(25) NOT NULL,
EDITION INTEGER NOT NULL,

PRICE NUMBER(6,2),

PRIMARY KEY (TITLE, AUTHOR, EDITION)

)

Since entry-level SQL-92 requires that primary keys remain not null, we use NOTNULL column
constraints on the primary key columns in this case.

8.3.2. ALTER TABLE

The ALTERTABLE command allows you to modify the structure of an existing table. Here's the syntax:

ALTER TABLE table_name
{ ADD [COLUMN] column_name definition }
{ ALTER [COLUMN] column_name definition
{ SET DEFAULT default_value } | { DROP DEFAULT }}
{ DROP [COLUMN] COLUMN_NAME [RESTRICT | CASCADE] }
{ ADD table_constraint_definition }
{ DROP constraint_name [RESTRICT | CASCADE] }

Note that the modifications you can make are somewhat limited. While you can add and remove columns
(subject to the requirements of any constraints that may have been placed on the table), you cannot reorder
columns. To perform major changes, you generally need to create a new table and move the existing data fi
the old table to the new table.

Here's a statement that adds two columns to a table:

8.3.2. ALTER TABLE 225

Preface (Java Enterprise in a Nutshell)

ALTER TABLE BOOKS
ADD PUBLISHED_DATE DATE,
ADD PUBLISHER CHAR (30) NOT NULL

Note that the ability to specify multiple operations in an ALTER TABLE command is not part of the SQL
specification, although most databases support this functionality.

Here's how to change the type of a column:[3]

[3] If you look back at the syntax for ALTER TABLE, you'll see that the official syntax for
this kind of operation is ALTER, although most databases use MODIFY instead.

ALTER TABLE BOOKS
MODIFY PUBLISHER VARCHAR (25)

When this statement runs, the database attempts to convert all existing data into the new format. If this is
impossible, the maodification fails. In the previous example, if any record has a publisher entry of more than
30 characters, the statement might fail (exact behavior depends on the implementation). If you are convertir
from a character field to, say, an integer field, the whole ALTER TABLE command might fail entirely. At the
minimum, such a change requires that all entries contain a valid string representation of an integer.

To allow null values in the PUBLISHER column, use MODIFY:

ALTER TABLE BOOKS
MODIFY PUBLISHER NULL

To remove the PUBLISHER column entirely, use DROP:

ALTER TABLE BOOKS
DROP PUBLISHER

The ALTERTABLE command is not required for entry-level SQL-92 conformance. Due to its extreme
usefulness, however, it is supported by most DBMS packages, although it often varies from the standard.
More esoteric features, such as the RENAME command, are not supported by most packages. In general, i
not safe to count on anything beyond the basic ADD, DROP, and MODIFY (ALTER) commands.

8.3.3. DROP

The DROP command allows you to permanently delete an object within the database. For example, to drop
the BOOKS table, execute this statement:

DROP TABLE BOOKS
DROP also can delete other database objects, such as indexes, views, and domains:

DROP INDEX index_name
DROP VIEW view_name
DROP DOMAIN domain_name

Once something has been dropped, it is usually gone for good——certainly once the current transaction has
been committed, but often before.

€ PREVIOUS HOME NEXT »
8.2. Data Types BOOK INDEX 8.4. Data Manipulation
Commands

8.3.3. DROP 226

Preface (Java Enterprise in a Nutshell)

Enterprise
Bookshelf van Enterprise Jnvu Java™ Juvu
Home Enterprise ina Nm;bell, Foundation Closses JnvnBomn , Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

& JAVA ENTERPRISE IN A NUTSHELL ™

4 PREVIOUS Chapter 8: SQL Reference NExT

8.4. Data Manipulation Commands

Empty tables aren't very useful, and, even once they've been populated with data, we need some way of
getting that data back out. The SQL data manipulation commands allow you to read data from a table and tc
create, update, and remove existing data.

8.4.1. SELECT

The SELECT statement is the most important statement in SQL and also the most complex. It allows you to
retrieve data from a table or a set of tables. Here's the syntax:

SELECT [DISTINCT]

{ summary_function, ... }

| { data_manipulation_expression, ... }

| { column_name, ... }
FROM

{{ table_name [AS correlation_name] }

| { subquery [AS correlation_name] }

| joined_tables}
[WHERE predicate]
[GROUP BY column_name, ... [HAVING group_selection_predicate]]
[{ UNION | INTERSECT | EXCEPT } [ALL]

[CORRESPONDING [BY (column_name, ...]]
select_statement | { TABLE table_name }
| table_value_constructor]
[ORDER BY {{output_column [ASC | DESC]}, ...}
| {{positive_integer [ASC | DESC [}, ...}]

The simplest possible SELECT, one that displays all columns of all rows of a single table, looks like this:
SELECT * FROM BOOKS

If this statement is executed in a command-line SQL interpreter, the output might look like this:

TITLE | AUTHOR | EDITION | PRICE
Me | Garrison Keillor | 1]24.99
Bleak House | Charles Dickens | 57| 8.99

A Tale Of Two Cities | Charles Dickens | 312 | 4.99

To sort the output by title, we can add an ORDERBY clause to the statement:

8.4. Data Manipulation Commands 227

Preface (Java Enterprise in a Nutshell)

SELECT * FROM BOOKS ORDER BY TITLE

Now the output is:

TITLE | AUTHOR | EDITION | PRICE
A Tale Of Two Cities | Charles Dickens | 312 | 4.99
Bleak House | Charles Dickens | 57| 8.99
Me | Garrison Keillor | 1]24.99

To select just the TITLE and AUTHOR columns:
SELECT TITLE, AUTHOR FROM BOOKS

To select a subset of records, use the WHERE clause:
SELECT * FROM BOOKS WHERE PRICE < 10.0

This returns the Charles Dickens books, but not the Garrison Keillor book. You can have multiple criteria:
SELECT * FROM BOOKS WHERE PRICE < 10.0 OR EDITION = 1

This returns all three books. If we had specified a price less than 10 and an edition equal to 1, we wouldn't
have received any records back. The various predicates you can use are listed in Table 8-2. Note that not &
of the more esoteric ones (such as LIKE) are supported by all databases.

Table 8-2. SQL Predicates

Operator Meaning
= Equals
Less than
Greater than
<= Less than or equal to
>= Greater than or equal to
I=or <> |Not equal to (some implementations may only support one of these)
LIKE Wildcard match
ISNULL Checks for a null value
IN Checks to see if a value is contained within a set
BETWEEN |Checks to see if a date value is between two other date values

The final four predicates in the table can be used with the NOT modifier (e.g., NOTLIKE, ISNOTNULL, etc.).

8.4.1.1. String comparisons

The = operator can generally be used for exact string comparisons. The LIKE operator allows wildcard
searches using two wildcard characters: % to match any number of characters and _ to match at most one
character. Here's a query that selects all records that have a LAST_NAME that contains the letters "for":

SELECT LAST_NAME FROM CUSTOMERS WHERE LAST_NAME LIKE %for%'

This matches last names like Buford, Crawford, and Trefor, but may not match Fordham, since most
databases implement LIKE in a case—sensitive manner (Microsoft Access is a notable exception to this rule’
Case-insensitive searches generally require a single—case version of the column or the use of a case—adju

8.4.1. SELECT 228

Preface (Java Enterprise in a Nutshell)

function (we'll discuss functions later in this chapter).

8.4.1.2. Subqueries and joins

The IN predicate allows you to check whether a value appears in another set of values. The simplest way to
use this feature is in a SQL statement like this:

SELECT * FROM BOOKS WHERE PRICE IN (5.95, 4.95, 7.95)
This is simply another form for:
SELECT * FROM BOOKS WHERE PRICE = 5.95 OR PRICE = 4.95 OR PRICE = 7.95

But we can do something more interesting with IN. Let's assume that we have a table, called PRICES, that
holds all the prices we want to search on. In this case, we can generate the set of values using another que
as follows:

SELECT * FROM BOOKS WHERE PRICE IN
SELECT PRICE FROM PRICES

Note that we didn't put parentheses around the second SELECT statement: use parentheses only when yot
specifying the entire list manually.

Subqueries like this are useful, but they still restrict the output columns to those of a single table.

Rather than using subqueries, two tables are normally connected via a join. A join allows a query to include
references to multiple tables and to restrict the output based on the relations between those tables. The bas
join is an equi—join (or inner join): data in two tables is linked based on a shared value. An order-tracking
database might include a CUSTOMERS table and an ORDERS table. The CUSTOMERS table has a custol
identifier (CUSTOMER_ID) as its primary key. The orders table also has a CUSTOMER_ID column, althoug
not as a primary key, since there may be more than one order per customer (see Figure 8-1 for a graphical
representation of these tables). Here's the SQL to combine the two tables based on the CUSTOMER_ID
column:

SELECT * FROM CUSTOMERS, ORDERS WHERE ORDERS.CUSTOMER_ID =
CUSTOMERS.CUSTOMER_ID

Since it's an equi-join, it works just as well the other way around:

SELECT * FROM CUSTOMERS, ORDERS WHERE CUSTOMERS.CUSTOMER_ID =
ORDERS.CUSTOMER_ID

In SQL-92, there is a JOIN operator that performs the same operation with a slightly different syntax:[4]

[4] Note that some databases allow you to use JOIN without the ON clause. In this case, the
join operates on columns that have the same name.

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDERS.TOTAL
FROM CUSTOMERS INNER JOIN ORDERS ON CUSTOMERS.CUSTOMER_ID = ORDERS.CUSTOMER_ID

This example indicates the specific columns to return. Using the data shown in Figure 8-1, the output of this
guery might look like this:

CUSTOMER_ID [NAME | ORDER_ID | TOTAL

8.4.1.2. Subqueries and joins 229

Preface (Java Enterprise in a Nutshell)

1| Bob Copier | 4172.19
1| Bob Copier | 621.07

Note that some databases require you to use INNERJOIN instead of JOIN, while others allow just JOIN
because inner joins are the default join.

To join on more than one table, use multiple JOIN statements. Here we add an ITEMS table that includes th
ORDER_ID from the ORDERS table:

SELECT * FROM ITEMS JOIN ORDERS JOIN CUSTOMERS

This query joins the CUSTOMERS and ORDERS tables based on CUSTOMER_ID, and the ORDERS and
ITEMS tables based on ORDER_ID. The join is performed from left to right, so this three—table join goes
from the largest table to the smallest table.

As useful as the JOIN keyword is, it is not required for entry-level SQL-92 implementations, so here's a
three—column join using the syntax we started with:

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDER.TOTAL,
ITEMS.ITEM_NO, ITEMS.COST FROM CUSTOMERS, ORDERS, ITEMS
WHERE ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID
AND ITEMS.ORDER_ID = ORDERS.ORDER_ID

Again, using the data shown in Figure 8—1, the output from this query might look as follows:

CUSTOMER_ID [NAME | ORDER_ID | TOTAL | ITEM_NO | COST

1| Bob Copier | 4172.19| 1280|16.72
1| Bob Copier | 4172.19| 4129|41.10
1| Bob Copier | 4172.19| 3017 |14.37

So far, all we've talked about is equi—joins, or inner joins. There are also outer joins, which do not require a
matching key in both tables. An outer join includes all the records from one table and any records from
another table that match the primary key of the first table. If there are no corresponding records in the secor
table, those columns are simply left blank in the result. Outer joins are divided into left outer and right outer
joins: in a left join, the primary key table is on the left, and in a right join, it is on the right. Here's the syntax
for a LEFTJOIN (or LEFTOUTERJOIN) on CUSTOMERS and ORDERS:

SELECT CUSTOMERS.CUSTOMER_ID, CUSTOMERS.NAME, ORDERS.ORDER_ID, ORDERS.TOTAL
FROM CUSTOMERS LEFT JOIN ORDERS ON CUSTOMERS.CUSTOMER_ID = ORDERS.CUSTOMER_ID

This includes all the customer records and order records for all the customers that have them. Here's some
possible output using the data shown in Figure 8—1:

CUSTOMER_ID | NAME | ORDER_ID | TOTAL
1| Bob Copier | 4172.19
1| Bob Copier | 6| 21.07

2 | John Stapler | |

If we were to do a RIGHTJOIN on CUSTOMERS and ORDERS, the result would be the same as an inner jc
since there are no records in ORDERS that don't have a match in CUSTOMERS.

8.4.1.3. Groups

The GROUP BY clause allows you to collapse multiple records into groups with a common field. For
instance, to select all the records in the BOOKS table grouped by AUTHOR:

8.4.1.3. Groups 230

Preface (Java Enterprise in a Nutshell)

SELECT AUTHOR FROM BOOKS GROUP BY AUTHOR

This returns one row for each distinct author in the table. This query is not really that useful though, since w
can do the same thing with the DISTINCT keyword (SELECTDISTINCT). However, we can use an
aggregate function on each of the groups to do something more useful:

SELECT AUTHOR, COUNT(*) FROM BOOKS GROUP BY AUTHOR

This query returns two columns: the author and the number of books by that author in the table. Here's the
output, based on the BOOKS table we used earlier:

AUTHOR | COUNT(*)
Charles Dickens | 2
Garrison Keillor | 1

We'll talk more about aggregate functions later in this chapter.

8.4.2. INSERT

The INSERT statement loads data into a table. Here's the syntax:

INSERT INTO table_name
[(column_name, ...)]
subquery | { VALUES (vall, val2,...) } | DEFAULT VALUES

To load static data, simply specify the table and the actual data:
INSERT INTO CUSTOMERS VALUES (3, ‘Tom Fax', '617 555-1214")

This statement inserts the values 3, "Tom Fax", and "617 555-1214" into the first three fields of a new row i
the CUSTOMERS table. If there are more than three fields in the CUSTOMERS table, this statement fails. I
don't want to insert into every column, you can specify the columns you want to insert into:

INSERT INTO CUSTOMERS (CUSTOMER_ID, NAME) VALUES (3, 'Tom Fax’)

Note, however, that this kind of statement can fail if we do not provide a value for a field that is specified as
NOTNULL.

To add more than one row at a time and to add data from other tables, we can specify a subquery rather the
set of specific values. To fill the JUNKMAIL table with values from the CUSTOMERS and ADDRESSES
tables, run this query:

INSERT INTO JUNKMAIL (NAME, ADDR, CITY, STATE, ZIP)
SELECT NAME, ADDR, CITY, STATE, ZIP FROM CUSTOMERS JOIN ADDRESSES

The database first performs a join on CUSTOMERS and ADDRESSES. It matches on the CUSTOMER_ID
and outputs the NAME field from CUSTOMERS and the other fields from ADDRESSES. The rows from the
are then inserted into the JUNKMAIL table, which can now be used to fill our mailboxes with catalogs.

8.4.3. UPDATE

The UPDATE statement modifies data in one or more existing rows. It consists of one or more SET
statements and an optional WHERE clause. If the WHERE clause is not present, the operation is performed
every row in the table. Here's the syntax:

8.4.2. INSERT 231

Preface (Java Enterprise in a Nutshell)

UPDATE table_name
SET { column_name = { value | NULL | DEFAULT }, ...}
[{ WHERE predicate }
| { WHERE CURRENT OF cursor_name }]

Here's an example that updates a few fields:

UPDATE ADDRESSES
SET ADDR ='1282 Country Club Drive', STATE="CA' WHERE CUSTOMER_ID
=432

This statement sets the ADDR and STATE fields of the ADDRESSES table to particular values on all record
where CUSTOMER_ID equals 432. Sometimes we do want to run an UPDATE on all records. Here's an
example that makes sure all the STATE fields are in uppercase:

UPDATE ADDRESSES SET STATE = UPPER(STATE)

Note how we can use a field from the table itself in the SET statement.

The WHERECURRENTOF clause allows you to update the row at the current cursor location in a
multiple—table row. This is not something that JDBC programmers need to concern themselves with, althoug
it can be of interest to an underlying JDBC 2.0 driver.

8.4.4. DELETE

DELETE is very simple: it removes rows from a table. Here's the syntax:

DELETE FROM table_name
[{ WHERE predicate }
| { WHERE CURRENT OF cursor_name }]

To delete all the rows in ORDERS:
DELETE FROM ORDERS
To delete a specific record:
DELETE FROM ORDERS WHERE ORDER_ID = 32

Once a row has been deleted, there is no way to recover it.

4 PREVIOUS HOME NEXT »
8.3. Schema Manipulation BOOK INDEX 8.5. Functions
Commands
Java } M
Enterprise)<\ \/
Bookshelf Java™ Java™ Juvo Enterprise Jnvu Javc Java™
Home Enterprise in a Nutshell, Foundation Classes Jnvnlonns Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

8.4.4. DELETE 232

Preface (Java Enterprise in a Nutshell)

%]AVA.,ENT ERPRISE IN A NUTSHELL =2

@ PREVIOUS Chapter 8: SQL Reference NIXT ®

8.5. Functions

SQL is not a procedural language, but it does provide some data transformation capabilities. In addition to tt
string concatenation operator (||), the SQL-92 specification defines two sets of functions: aggregate
functions and value functions.

8.5.1. Aggregate Functions

In the section on the SELECT statement, we saw an aggregate function used to count the number of record
within a group. In the main, this is what aggregate functions do: they act on all the records of query, countint
rows, averaging fields, and so forth. For example, here's how to count the number of rows returned by a
SELECT statement:

SELECT COUNT(*) FROM CUSTOMERS

Instead of returning each row of the CUSTOMERS table, this query returns a single—column, single—row res
that contains the number of records in CUSTOMERS.

The other aggregate functions are AVG, SUM, MAX, and MIN. Unlike COUNT, which works on either a sing
column or all columns, the other functions work only on a single column. AVG and SUM can be applied
against numerical data types only (integers, reals, etc.), while MAX and MIN work with any data type. Here «
some examples:

SELECT MIN(AGE) FROM GUESTS
SELECT MAX(NAME) FROM GUESTS
SELECT AVG(AGE), SUM(AGE) FROM GUESTS

8.5.2. Value Functions

Value functions work on particular column values and return modified data. Some of them also generate
values from system information.

8.5.2.1. Date/time functions

There are three date and time functions that retrieve the current date, current time, and current timestamp,
respectively, from the database:

CURRENT_DATE
CURRENT_TIME](precision)]
CURRENT_TIMESTAMP](precision)]

CURRENT_TIME and CURRENT_TIMESTAMP accept an optional precision level, which specifies the
decimal fractions of a second to be included in the time portion of the value. The current time zone is used
with all these functions.

8.5. Functions 233

Preface (Java Enterprise in a Nutshell)

Here's how you might use these functions in a query:

SELECT * FROM ORDERS WHERE ORDER_DATE = CURRENT_DATE
INSERT INTO VISITORS (VISIT_TS) VALUES (CURRENT_TIMESTAMP)

Some databases have platform—specific commands that duplicate this functionality (these commands often
predate SQL-92). Oracle's SYSDATE is one example. Note that these functions are not required for
entry-level SQL-92.

8.5.2.2. String manipulation functions

The concatenation operator, ||, has been around since before the SQL-92 standard. It allows you to
concatenate multiple column values and string literals. Say we have a table that contains FIRST_NAME anc
LAST_NAME fields, and we want to display them in a "last, first" form. Here's a SQL statement that returns
single column that does just that:

SELECT LAST_NAME || ', ' || FIRST_NAME FROM CUSTOMERS

In addition, the SQL-92 standard defines a number of other functions that can be used in SQL statements.
UPPER and LOWER convert a column into uppercase or lowercase, respectively:

SELECT UPPER(LAST_NAME) FROM CUSTOMERS
SELECT LOWER(FIRST_NAME) FROM CUSTOMERS

These functions can also be used in WHERE predicates, for example, to produce a case-insensitive search
SELECT * FROM CUSTOMERS WHERE UPPER(FIRST_NAME) LIKE 'WILL%'

Most databases support UPPER and LOWER, but they are only required for full SQL-92 conformance, not
entry-level conformance.

The TRIM function removes characters from one or both ends of a string:
TRIM ([[LEADING | TRAILING | BOTH] [character] FROM] string)

Calling TRIM on a string trims leading and trailing whitespace. Here's how to trim just leading blanks:
SELECT TRIM(LEADING ' ' FROM FIRST_NAME) FROM CUSTOMERS

And here's how to trim all "-" characters from both sides of a string:
SELECT TRIM(BOTH '-' FROM FIRST_NAME) FROM CUSTOMERS

Like UPPER and LOWER, TRIM is only required for full SQL-92 conformance, although it is supported by
most database implementations.

The SUBSTRING command extracts a given number of characters from a larger string. It is defined as:
SUBSTRING (source_string FROM start_pos FOR number_of_characters)

For example, to get each customer's initials, we might use the following query:
SELECT SUBSTRING (FIRST_NAME FROM 1 FOR 1), SUBSTRING(LAST_NAME FROM 1 FOR 1)

SUBSTRING is only required for intermediate level SQL-92 conformance.

8.5.2.2. String manipulation functions 234

Preface (Java Enterprise in a Nutshell)

€@ PREVIOUS HOME NEXT
8.4. Data Manipulation BOOK INDEX 8.6. Return Codes
Commands

Java } M
Enterprise @ 7<\/
Bookshelf Java™ Enterprise Jnvu Java™ Java™
Home Enterprise ina NMinell Fowndntwn (Insses JavaBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA. ENTERPRISEINA NUTSHELL =

4@ PREVIOUS Chapter 8: SQL Reference NEXT ®

8.6. Return Codes

The SQL-92 standard defines a set of SQLSTATE return codes. SQLSTATE is defined as a five—character
string, where the leftmost two characters define the error class, and the remaining three characters define tt
error subclass. Some database vendors may extend these return codes; classes beginning with the number
through 9 and letters | through Z are reserved for such implementation—specific extensions. The SQLSTATE
code for a particular JDBC action can be retrieved via the getSQLState() method of SQLException.

Table 8-3 lists the SQLSTATE return codes defined in SQL-92.

Table 8-3. SQL-92 SQLSTATE Return Codes

Clasq Class Definition Subclasp Subclass Definition
00 |Successful completion 000 None
01 |Warning 000 None

001 Cursor operation conflict

002 Disconnect error

003 Null value eliminated in set function
004 String data, right truncation

005 Insufficient item descriptor areas
006 Privilege not revoked

007 Privilege not granted

008 Implicit zero—bit padding

Search expression too long for

009 information schema
Query expression too long for
00A . :
information schema
02 |No data 000 None
07 |Dynamic SQL error 000 None
001 Using clause doesn't match dynamic
parameters

8.6. Return Codes 235

Preface (Java Enterprise in a Nutshell)

Using clause doesn't match target

002 specifications
003 Cursor specification can't be executed
004 Using clause required for dynamic
parameters
005 Prepg_red_statement not a cursor
specification
006 Restricted data type attribute violation
007 Using clause required for result fields
008 Invalid descriptor count
009 Invalid descriptor index
08 |Connection Exception 000 None
001 SQL—client uqable to establish
SQL-connection
002 Connection name in use
003 Connectjon doesn't exist
004 SQL-server rgjected establishment of
SQL-connection
006 Connection failure
007 Transaction resolution unknown
OA |Feature not supported 000 None
001 Multiple server transactions
21 |Cardinality violation 000 None
22 |Data exception 000 None
001 IString data, right truncation |
002 Null value, no indicator
003 Numeric value out of range
005 Error in assignment
007 Invalid date-time format
008 Date-time field overflow
009 Invalid time zone displacement value
011 Substring error
012 Division by zero
015 Internal field overflow
018 Invalid character value for cast
019 Invalid escape character
021 Character not in repertoire
022 Indicator overflow
023 Invalid parameter value
024 Unterminated C string
025 Invalid escape sequence
026 String data, length mismatch
027 Trim error
23 |Integrity constraint violation 000 None
24 |Invalid cursor state 000 None
25 |Invalid transaction state 000 None

8.6. Return Codes

236

Preface (Java Enterprise in a Nutshell)

26 |Invalid SQL statement name 000 None

27 |Triggered data change violation 000 None

28 |Invalid authorization specification 000 None

oA Syntax error or access rule violation in direct S(%)lo0 None

statement

2B |Dependent privilege descriptors still exist 000 None

2C |Invalid character set name 000 None

2D |Invalid transaction termination 000 None

2E |Invalid connection name 000 None

33 |Invalid SQL descriptor name 000 None

34 |Invalid cursor name 000 None

35 |Invalid condition number 000 None

37 génl:tasﬁaetrer;re(r); access rule violation in dynamic000 None

3C |Ambiguous cursor name 000 None

3F |Invalid schema name 000 None

40 |Transaction rollback 000 None
001 Serialization failure
002 Integrity constraint violation
003 Statement completion unknown

42 |Syntax error or access rule violation 000 None

44 |With check option violation 000 None

4 PREVIOUS HOME NEXT B

8.5. Functions BOOK INDEX 9. RMI Tools

Java” } M
Enterprise @)<\ /
Bookshelf Java™ Java™ vau Enterprise Jnvu Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JnvnBenns Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISE IN A NUTSHELL ™

4@ PREVIOUS Part 2: Enterprise NEXT
Reference

8.6. Return Codes 237

Chapter 9. RMI Tools

rmic JDK 1.1 and later

The Java RMI Compiler

rmic [options] fully—qualified—classnames

Description: The rmic compiler generates the stub and skeleton classes for remote objects you've written.
Once you've compiled your remote objects using a standard Java compiler, like javac, you need to run rmic,
specifying the classnames of your remote implementation classes using their full package names.

Description: As an example, suppose you defined an interface named utils.remote.TimeServer that
extends java.rmi.Remote, and wrote an implementation of this interface named
utils.remote.TimeServerimpl. After compiling both with a Java compiler, you would run rmic,
specifying utils.remote.TimeServerlmpl as the class name argument.

Description: Running rmic generates a skeleton class for each remote object type named xxx_Skel, where tl
xXx is the name of the remote interface. The skeleton is responsible for receiving client requests on a servet
object and dispatching these requests to the actual remote object. A stub class, named xxx_Stub, is also
generated. The stub class is used for client references to the remote object. When a client gets a reference
remote object, it receives an instance of the stub class, which forwards any method requests to the server
object over the network. In our example, the stub and skeleton classes would be called
utils.remote.TimeServer_Stub and utils.remote.TimeServer_Skel, respectively.

Description: Both the stub class and the skeleton class implement the same remote interface as your remott
object implementation, so they can be typecast to the remote interface.

—classpath pathlist
Provides the classpath rmic uses to find any required classes, overriding the environment
CLASSPATH or the default classpath. The directories in the list are separated by colons on Unix
environments, by semicolons in Windows environments.

—d path
The destination directory where the compiler should write the generated class files. If a —d option is
given, the package of the generated classes places the stubs and skeletons in their proper
subdirectories in the given destination. If the directories don't exist, rmic creates them for you. If no
—d option is given, the stubs and skeletons are still generated to fall within the same package as the
remote implementation, but the class files are placed in the current directory.

—depend
Forces the compiler to attempt to recompile interdependent classes whose class files are out of date
with each other. Without this option, the compiler attempts to recompile only class files explicitly
referenced in the command-line options.

Includes debugging information in the generated stub and skeleton classes, for use with Java
debuggers.

Passes the option immediately following the —J to the Java interpreter. There should be no spaces
between the —J and the option to be passed to the interpreter.

Chapter 9. RMI Tools 238

Preface (Java Enterprise in a Nutshell)

—keep

—keepgenerated
Keeps the Java source files for the stub and skeleton classes generated by the compiler. The Java fi
are written to the same directory as the class files, with or without a —d option specified. Without the
—keepgenerated option, the Java source files are removed after the stub and skeleton classes are
generated.

—nowarn
Instructs the rmic compiler to eliminate warning messages from its output. Only errors encountered
during compilation are reported.

—-vcompat
Creates a stub and skeleton classes that are compatible with both JDK 1.1 and the Java 2 SDK 1.2
versions of RMI. This option is enabled by default and does not need to be specified.

-verbose
Prints verbose messages as compilation takes place, including which class is being compiled and cl:
files that are loaded during compilation.

-v1l.1
Creates stub and skeleton classes that are compatible with the JDK 1.1 version of RMI. These class
may not run in a Java 2 runtime environment.

-v1.2
Creates stub and skeleton classes that are compatible with the Java 1.2 (Java 2) version of RMI. Th
classes may not run in a Java 1.1 runtime environment.

CLASSPATH
An ordered list of directories, ZIP files, and/or JAR files that the rmic compiler should use to look for
classes. This list is separated by colons on Unix environments, semicolons on Windows
environments. The list is searched in order for a given class when it is encountered during
compilation. The compiler automatically appends the system classpath to the CLASSPATH, if itis
specified. If the CLASSPATH is not set in the environment, the compiler uses the current directory
and the system classpath as its classpath. The CLASSPATH environment variable is overridden by t
—classpath option to rmic.

rmiregistry JDK 1.1 and later

The Java RMI Object Registry

rmiregistry [port]

Description: The rmiregistry command starts a remote object naming registry on the current host. The RMI
registry binds remote objects to names, so that remote clients can request object references by name, using
URL-like syntax, and use the object references to invoke methods.

Description: Internally, the rmiregistry command uses the java.rmi.registry.LocateRegistry

class to instantiate a registry object. If no port is provided, the default port for the registry is 1099. Typically,
the registry is run in the background on a server and remains running for the lifetime of the objects that it
contains. If the registry crashes, and the registry is running in a separate Java VM from the actual remote
objects, the remote objects are still available over RMI, and any remote references to these objects that exis
before the crash are still valid. But all the name bindings the objects had in the registry are lost and need to

Chapter 9. RMI Tools 239

Preface (Java Enterprise in a Nutshell)

recreated after a new registry is started.

CLASSPATH
An ordered list of directories, ZIP files, and/or JAR files that the rmiregistry command should use to
look for classes. This list is separated by colons on Unix environments, semicolons on Windows
environments. The list is searched in order for a given class when it is encountered during execution
The registry automatically appends the system classpath to the CLASSPATH, if it is specified. If the
CLASSPATH is not set in the environment, the daemon uses the current directory and the system
classpath as its classpath.

See Also: java.rmi.registry.LocateRegistry, java.rmi.Naming.

rmid Java?2 SDK 1.2 and later

The RMI Activation Daemon
rmid [options]

Description: The rmid command starts an RMI activation daemon on the local host. The activation daemon
services all requests to register activatable objects and is responsible for activating objects due to client
requests to invoke methods on them.

Description: If no port option is given, the activation daemon runs on a default port of 1098. Internally, the
activation daemon creates a java.rmi.activation.Activator and its own RMI haming registry

(listening to port 1098). The daemon binds a java.rmi.activation.ActivationSystem object to

the name "java.rmi.activation.ActivationSystem" in its internal registry.

—CcmdlineOption
Uses the given option as a command-line option to the Java VM for each activation group started by
the daemon. This can pass default properties to the VM, for example, or set its memory limits to som
default value. The Java interpreter option should immediately follow the —C option, with no spaces.

-log path
Uses the given directory for any logging or temporary files needed by the activation daemon. If this
option is not specified, the daemon writes its log files to a new directory named log in the current
directory.

—port porthum
Uses this port for the internal registry started by the activation daemon. If this option is not given, the
daemon's internal naming registry runs by default on port 1098 of the local host. If you want the
activation daemon's registry to listen to the default registry port, you can start the daemon with this
command (Unix version):

$ rmid —port 1099 &

-stop
Stop any activation daemon currently running on the specified port, or the default port if none is
specified.

CLASSPATH
An ordered list of directories, ZIP files, and/or JAR files that the rmid daemon should use to look for
classes. This list is separated by colons on Unix environments, semicolons on Windows
environments. The list is searched in order for a given class when it is encountered during execution
The daemon automatically appends the system classpath to the CLASSPATH, if it is specified. If the

Chapter 9. RMI Tools 240

Preface (Java Enterprise in a Nutshell)

CLASSPATH is not set in the environment, the daemon uses the current directory and the system
classpath as its classpath.

See Also: rmic, java.rmi.activation.Activator

serialver JDK 1.1 and later

The RMI Serial Version Utilit

serialver [options] fuIIy—quaIified—cIXssnames

Description: The serialver utility generates a serial version ID you can use to mark a given class definition to
track its versions as it evolves. The utility returns a static int member declaration you can paste into your Ja
class definition. In other words, this command:

% serialver Accountimpl
Description: generates output something like:
Accountlmpl: static final long serialVersionUID = 37849129093280989384L;

Description: If versioning of your remote object classes becomes a problem for clients, this utility can tag a
class with a version ID that can be checked to see if the proper version is being exported by your server for
given client, or if its local version is out of date. Serial version IDs are used by Java object serialization to
uniquely identify class definitions.

-show
Uses the graphical version of the tool, which displays a GUI interface that allows you to type in a
fully qualified classname and press a button to see the serial version ID generated.

CLASSPATH
An ordered list of directories, ZIP files, and/or JAR files that the serialver utility should use to look
for classes. This list is separated by colons on Unix environments, semicolons on Windows
environments. The list is searched in order for a given class when it is encountered during execution
The utility automatically appends the system classpath to the CLASSPATH, if it is specified. If the
CLASSPATH is not set in the environment, the utility uses the current directory and the system
classpath as its classpath.

4 PREVIOUS HOME NEXT B
8.6. Return Codes BOOK INDEX 10. IDL Reference

. , ; n -) v a

Java Pat | § bﬁﬂ *9) - A
Enterprise : 3 3 @ @ 7<\ /
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™

Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVAENTERPRISEIN A NUTSHELL =0

Chapter 9. RMI Tools 241

Preface (Java Enterprise in a Nutshell)

@ PREVIOUS Part 2: Enterprise NEXT
Reference

Chapter 9. RMI Tools 242

Chapter 10. IDL Reference

Contents:

IDL Keywords

Identifiers

Comments

Basic Data Types
Constants and Literals
Naming Scopes
User—Defined Data Types
Exceptions

Module Declarations
Interface Declarations

This chapter serves as a quick reference for CORBA's language-independent Interface Definition Language
(IDL). It also provides a summary of the Java mapping of IDL (i.e., how IDL interface definitions are mapped
by an IDL-to—Java compiler into equivalent Java interfaces). For a complete, definitive reference on IDL ant
the Java mapping of IDL, consult the IDL specification issued by the OMG ("IDL Syntax and Semantics,"
Chapter 3 of The Common Object Request Broker: Architecture and Specification, published by the OMG a
available at www.omg.org).

Since this reference combines an IDL reference with an overview of the Java mapping of IDL, I'll be using a
combination of IDL and Java examples throughout. In order to make it clear which language is being used ir
each example, I've stolen a convention from the CORBA standards documents, where a comment precedin
the example code indicates the language that is in use.

IDL, as the name implies, is a language for defining object interfaces. IDL is language—neutral, so interfaces
defined in IDL can be converted to objects implemented in any language with an IDL mapping. One way to
think of the role IDL plays is to imagine that you already have a set of interacting objects defined and then
think of IDL as a way to export a subset of those interfaces so that they can be accessed by remote entities.
Any member variables or operations you define in the IDL interfaces are visible and accessible by remote
entities, providing they can obtain a reference to instances of these interfaces (see Chapter 4, "Java IDL", fc
more details on the use of CORBA obijects). If you proceed this way, the definitions of the variables and
operations on the IDL interfaces have to match those on the actual implementations you are exporting,
according to the rules of the IDL mapping to the language they are written in.

Of course, this is not the typical way that you use IDL in practice.[1] You usually want to do an abstract
design of a distributed application and its set of objects first, define the IDL interfaces for the objects that ne
to be used remotely, then compile these IDL interfaces into language—specific interfaces. The next step is tc
write implementations of the interfaces in whatever programming language you are using. You are free to a
additional operations and member variables to your language—specific implementations, but these features
won't be accessible remotely unless you add them to the corresponding IDL interface.

[1]One notable exception is the task of wrapping legacy code with a CORBA frontend, but
even here you normally use middleware objects to interface directly with the legacy code.

There are five high—level entities you can define in an IDL specification:

Modules, which act as hamespaces

Chapter 10. IDL Reference 243

http://www.omg.org/

Preface (Java Enterprise in a Nutshell)

Interfaces to objects (with their operations and data attributes)

Data types

Constants

Exceptions

These high-level entities are listed here in roughly hierarchical order. Modules contain other modules,
interfaces, data types, constants, and exceptions. Interfaces contain data types, constants, and exceptions f
are specific to that interface, along with the operations and attributes for the interface. We'll look at the IDL
syntax that defines each of these, and, in each case, we'll see how the IDL is mapped into equivalent Java
code. Before we do that, though, we need to cover some of the basics of IDL: keywords, identifiers,
comments, and various types of literals.

10.1. IDL Keywords

Table 10-1 lists the reserved keywords in IDL. These keywords are case—sensitive, and they cannot be use
as identifiers in any IDL constructs.

Table 10-1. IDL Reserved Keywords

any default in oneway struct wchar
attribute double inout out switch wstring
boolean enum interface raises S
case exception |long readonly n::n‘
char FALSE module sequence y:j:jﬂ
const fixed Object short u:ﬁi o
context float octet string :&; '
4 PREVIOUS HOME NEXT »
9.1. RMI Tools BOOK INDEX 10.2. Identifiers
AR . } 3 Q / .‘_'_ ok %
S @ BN Tese
Moo nepise inoNubal, Foondetion Clsses JuvaBesns™, Seariy
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming

Copyright © 2001 O'Reilly & Associates. All rights reserved.

& JAVA ENTERPRISE IN A NUTSHELL ™

4 PREVIOUS

10.1. IDL Keywords

Chapter 10: IDL
Reference

NEXT »

Preface (Java Enterprise in a Nutshell)

10.2. Identifiers

Identifiers name various IDL constructs, like modules, interfaces, and constants. In IDL, an identifier has to
follow these rules:

It contains alphanumeric characters from the ISO Latin—-1[2] character set (e.g., a-z, A-Z, 0-9, plus
various characters with accents, graves, tildes, etc.), and the underscore character (_).

[2] ISO Latin-1 refers to the standard ISO 8859-1. You can find a listing of the
character set in the HTML 3.2 standard, at http://www.w3.0rg/TR/REC-htmI32.html.

It can be of any length, and all characters in an identifier are significant.

The first character must be an alphabetic character.

Identifiers are case—insensitive, in the sense that two identifiers that differ only by case are considere
a name collision and cause an IDL compiler error. This rule stems from the fact that IDL needs to be
mappable into many implementation languages, some of which are case-insensitive.

Identifiers must be spelled and capitalized consistently throughout an IDL file.

All IDL identifiers share the same namespace, so interfaces, modules, user—defined types, etc. withil
the same scope must have unique identifiers. An interface named List and a module named List
within the same scope cause a name collision and an IDL compiler error. See Section 10.6, "Naming
Scopes" for more detalils.

10.2.1. Mapping ldentifiers to Java
An IDL-to—Java compiler attempts to map all IDL identifiers unchanged into equivalent Java identifiers.

An exception is the case where a mapped identifier conflicts with an identifier created automatically by the
IDL compiler. IDL interfaces, for example, when they are mapped to Java, have two additional Java interfac
created for them, named with the original interface name, with Helper and Holder appended (see Chapter
4, "Java IDL" for details on the purpose of these generated interfaces). So, an interface named List is
mapped into a Java interface named List, and also causes the creation of Java interfaces named

ListHelper and ListHolder. If there is another identifier in the IDL file you've named ListHelper

or ListHolder, its mapped Java identifier has an underscore prepended to it (e.g., _ListHelper,

_ListHolder) to avoid a conflict with the generated interface names. In general, identifiers automatically
generated by the IDL compiler have precedence over other identifiers declared explicitly in the IDL file.

The other exception to the general rule of directly mapping IDL identifiers to Java identifiers is with a
mapping that conflicts with a Java keyword. In this case, the mapped Java identifier has an underscore
prepended to it. If, for example, you declared a constant named package (not a reserved keyword in IDL), it
is mapped to a Java variable named _package.

10.2. Identifiers 245

http://www.w3.org/TR/REC-html32.html

Preface (Java Enterprise in a Nutshell)

4 PREVIOUS HOME NEXT »
10.1. IDL Keywords BOOK INDEX 10.3. Comments
} V“\ g ‘:
y’ N\ i
0N ?J
Java™ Java™ Java™ Enterprise
Enterprise in o Nutshell, Foundation Closses JavoBeons™,
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

f JAVA.ENTERPRISE INA NUTSHELL ™™

4@ PREVIOUS Chapter 10: IDL T ®
Reference

10.3. Comments

Comments in IDL follow the format of C, C++, and Java comments. A block comment starts with the
character sequence /* and ends with the character sequence */. A line comment begins with the character
sequence //, and ends at the end of the line on which it begins.

10.3.1. Mapping Comments to Java

There are no rules for mapping IDL comments to Java. Many IDL-to—Java compilers simply drop comments
from IDL files during the conversion to Java, since in many cases the comments refer to the IDL code and
may not be totally relevant in the generated Java code.

4 PREVIOUS HOME NEXT
10.2. Identifiers BOOK INDEX 10.4. Basic Data Types

BT @0

Enterprise Java™ Java™ Java™
Enterprise ina Nutslwll, Fomdnhon (Inssos JovoBeons™, Serviet Security Distributed
ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&8 JAVA_ ENTERPRISE IN A NUTSHELL =2

4@ PREVIOUS Chapter 10: IDL "t e
Reference

10.3. Comments 246

Preface (Java Enterprise in a Nutshell)

10.4. Basic Data Types

IDL supports the basic data types shown in Table 10-2. In the same table, I've shown the Java type that ea
is mapped to according to the standard IDL-to—Java mapping. Note that there isn't a standard mapping
defined for the fixed and long double IDL types. These data types were added to the IDL syntax

relatively recently, and the IDL Java mapping hasn't been updated to include these as of this writing. Anothe
important thing to note is that Java doesn't support unsigned types, such as unsigned short. So the IDL
short and unsigned short types are both mapped to the Java short data type. You should be aware

of this when writing implementations of IDL-generated Java interfaces, since it is up to you to either ensure
that their values remain positive or deal with the fact that their values may be set to negative values.

Table 10-2. IDL Basic Data Types, Sizes, and Java Mappings

IDL Type Specifier Required Size Java Data Type
short 16 bits short
long 32 bits int
long long 64 bits long
unsigned short 16 bits short
unsigned long 32 bits int
unsigned long long 64 bits long
char 8 bits char
wchar Implementation—dependenhar
string Unlimited java.lang.String
string<size> sizechars java.lang.String
wstring Unlimited java.lang.String
wstring<size> sizewchars java.lang.String
boolean Implementation—dependghbolean
octet 8 bits byte
foAt IEEE single—precision |float
double IEEE double—precision [double
long double IEEE double—extended |Not defined
fixed 31 decimal digits Not defined

10.4.1. Strings and Characters

There are two character types included in IDL: char and wchar. A char represents an 8-bit character
from a single—-byte character set, such as ASCII. A wchar represents a wide character from any character st
including multibyte character sets like Kanji. The size of a wchar is implementation—specific.

I've included the IDL string and wstring data types in this table as well, although technically they
should be considered constructed data types (arrays of a basic data type, characters). Since they're so
frequently used, it's useful to have them together with all of the IDL basic data types.

A string is the equivalent of an array of char values, and a wstring is an array of wchar values. In

each case, there are two ways to specify a string type: with or without a size specification, in angle brackets
following the type name. If you provide a size specification in your IDL declaration (e.g., string<10>

name), the language mapping is responsible for enforcing the size limits of the string. If you don't provide a

10.4. Basic Data Types 247

Preface (Java Enterprise in a Nutshell)

size specification, the string is allowed to grow to any size, limited only by the implementation language.

If support for a multibyte character set is important for your application, it's best to declare all your character
and string data as wchar and wstring values. This way you'll be sure to get multibyte support in languages
that support it.

10.4.1.1. Mapping strings and characters to Java

In the IDL-to—Java mapping, both char and wchar are mapped to the Java char type, and both string
and wstring are mapped to the java.lang.String class. In Java, the char type represents a two—byte
Unicode character and can therefore support multibyte character sets by default.

When marshalling and unmarshalling data items during remote method calls, the ORB is responsible for
performing bounds checks on the data members being set. If a value exceeds the limits declared for the stri
member in the IDL specification of the interface, an org.omg.CORBA.MARSHAL exception is thrown.

4 PREVIOUS HOME NEXT »
10.3. Comments BOOK INDEX 10.5. Constants and
Literals
- 4 | § ' = ~\ 2
Enterprise V| et 3 [N/
Bookshelf Java™ Java™ J.cva"' Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&8 JAVA ENTERPRISE IN A NUTSHELL™™

@ PREVIOUS Chapter 10: IDL T
Reference

10.5. Constants and Literals

Literals are explicit values inserted into IDL code. Sometimes a literal is used to specify a default value for a
interface attribute or to declare the value for a constant. Literals can be boolean (TRUE or FALSE), numeric
(integer, floating point, or fixed point), or character—based (a single character or a string).

Literals are most often used in IDL to initialize the values of constants. Constants are named variables that
restricted from being modified after being initialized. In IDL, a constant is declared using the syntax:

/I DL
const type identifier = value;

where type is any valid basic data type or declared interface type, identifier is any valid IDL identifier, and
value is any IDL expression that evaluates to a literal value. The initialization expression can be a simple
literal or a complex expression combining multiple literals using logical or mathematical operators. You can
declare a few useful numeric constants as follows, for example:

10.4.1.1. Mapping strings and characters to Java 248

Preface (Java Enterprise in a Nutshell)

/I IDL
const float half =1/ 2;
const float quarter = 1/ 4;

Most of the operators present in C/C++, such as addition (+), subtraction (-), multiplication (*), division (/),
and the logical and bitwise operators (|, &, *, ||, &&, etc.) are supported by IDL.

10.5.1. Mapping Constants to Java

If an IDL constant is declared within an interface definition, the constant is mapped to a public final
static member on the corresponding Java interface.

If the IDL constant is declared outside an interface definition, a Java interface is created to hold the constan
value as a public static final value. The generated interface has the same name as the IDL identifier

given to the constant, and the static class member has the name value. Consider the following IDL constant
declaration:

//'1DL
const float Pl = 3.14159;
interface GeometricOperators {

This causes the generation of the following Java interface:

/I Java
public final class Pl {
public static final float value = (float) (3.14159D);

}

In your Java code, you can reference the constant value using Pl.value.

10.5.2. Boolean Literals

There are two boolean literals (naturally) in IDL. They are specified using the keywords TRUE and FALSE.
Their IDL type is boolean. In Java, they are mapped to the boolean values true and false.

10.5.3. Numeric Literals

Integer literals, floating—point literals, and fixed—point literals comprise numeric literals in IDL.

10.5.3.1. Integer literals

An integer value in IDL can be declared in decimal, octal, or hexadecimal notation. Any sequence of digits
that does not start with a zero is considered a decimal integer value. If the sequence is all digits but starts w
a zero, it's assumed to be an octal value. If the literal starts with 0X or 0x, it's taken to be a hexadecimal
value.

10.5.3.2. Floating—point literals

A floating—point literal is a decimal integer, optionally followed by a decimal point and a fractional
component, and/or by the letter e or E followed by an exponent expressed as a decimal integer. Either the

10.5.1. Mapping Constants to Java 249

Preface (Java Enterprise in a Nutshell)

fractional component (with the decimal point) or the exponent (with the e or E) must be present for the literal
to be interpreted as a floating—point value and not an integer. Similarly, either the initial integer component c
the decimal point must be present. So, for example, these are valid floating—point literals:

2.34
0.314159¢e1
3E19
.0003413

10.5.3.3. Fixed—point literals

A fixed—point literal consists of a decimal integer, optionally followed by a decimal point and fractional
component (expressed as a decimal value), followed by the letter d or D. Either the integer component or th
fractional component must be present. The decimal point is optional. The trailing d or D must be present in
order for the literal to be interpreted as a fixed—point value. The following are all valid fixed—point literals:

1.50d
.025d
1.333D
12d

10.5.3.4. Mapping numeric literals to Java

Numeric literals are mapped by taking into account the context in which they are used. Typically, a literal
initializes a constant, so the declared type of the constant has to be checked to determine whether the litera
valid for the type and how it should be mapped to a Java literal. For example, these two similar IDL constan
declarations:

//'1DL
const short largeVal = 2e5;
const float largeFloatVal = 2e5;

are mapped by Sun's idltojava compiler to these Java declarations:

/I Java
public static final short largeVal = (short) (2e5D);
public static final float largeFloatVal = (float) (2e5D);

Sun's idltojava compiler doesn't do any type checking on the IDL literal before converting it to its Java form
and inserting it into the cast operation shown previously. So it is possible for the idltojava compiler to
generate invalid Java code. For example:

/I IDL
const float literalTest = TRUE;

is converted without warning by idltojava to:

/I Java
public static final float literalTest = (float)(true);

10.5.4. Character Literals
A character literal is a character specification enclosed in single quotes (e.g., 'a’). Character literals can be
specified using only elements of the ISO 8859-1 character set. Some characters need to be specified with ¢

sequence of more than one character. These include characters that are nonprintable and the single— and

10.5.3.3. Fixed—point literals 250

Preface (Java Enterprise in a Nutshell)

double—quote characters that delimit string and character literals. These characters are specified with escar
sequences, which start with a backslash character (\). Table 10-3 lists the escape sequences supported by
and the nonprintable characters they represent.

Table 10-3. IDL Escape Sequences

Escape Sequence Meaning
\a Alert
\\ Backslash
\b Backspace
\r Carriage return
\" Double quote
\f Form feed
\x##(e.g., \x4e) |Hexadecimal number
\n Newline
\###(e.g., \012) |Octal number
\? Question mark
\' Single quote
\t Tab
\v Vertical tab

Character literals, including the escape sequences listed in Table 10-3, are converted unchanged into Java
literals.

10.5.5. String Literals

A string literal is a sequence of characters delimited by double quote (") characters. If two string literals are
adjacent to each other in an IDL file, they are concatenated. So, in this example:

/I DL
const string acctHolder = "Jim" "Farley";

the generated Java code is:[3]

[3]There appears to be an error in Sun's idltojava compiler (with the version released as of
this writing, at least) that causes it to raise a syntax error when it encounters adjacent string
literals. The IDL specification dictates the behavior as described here, though.

/I Java
public static final String acctHolder = "Jim Farley";

If you want to use the double—quote character in a string literal, you have to use its escape sequence (see
Table 10-3).

€ PREVIOUS HOME NEXT
10.4. Basic Data Types BOOK INDEX 10.6. Naming Scopes

10.5.4. Character Literals 251

Preface (Java Enterprise in a Nutshell)

Java: RES | § b-é,g -y, o N\
N . i N -) ~ -
Enterprise - : P 7 \g @ -7<\/
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in o Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

@ PREVIOUS Chapter 10: IDL Ny e
Reference

10.6. Naming Scopes

Each IDL file you create defines a namespace or naming scope for identifiers you declare within that file.
This namespace is further subdivided into nested scopes whenever you declare a new module, interface,
structure, union, or exception in your IDL file. You can think of the naming scope within an IDL file as a sort
of naming directory. By default, you start at the root of the directory, and each time you open a declaration o
one of these items, you start a new subdirectory of the naming directory, named after the identifier you use f
the item.

You can specify a scope using the :: delimiter, which is analogous to the / or \ delimiter in file directories.
The root scope for the IDL file is represented as :: by itself, and nested scopes are specified by adding their
names, such as ::utils::math::MatrixOps. The names in a scope hame can refer to any identifiers

that might exist in each scope. In this example, utils and math might refer to modules (the math module

is declared within the utils module), and MatrixOps might refer to an interface declared within the math
module. The intermediate elements in a scoped name must refer to one of the IDL elements that define thei
own scopes, but the final element in a scoped name can refer to any item with its own identifier, including
constants, data members on interfaces, etc.

Within any particular scope in the naming scope of an IDL file (including the root scope), all identifiers
within that scope must be unique. Separate nested scopes off of one parent scope can have identical identi
declared within them and can share identifiers with their parent scope as well, but two identifiers at the same
level within a scope can't be the same. As as example, the following is legal in an IDL file:

/I IDL
module utils {
interface math {
const float Pl = 3.14159;

interface baking {
const string Pl = "apple";

k
h

The two definitions of PI (::utils::math::PIl and ::utils::baking::PI) do not conflict, since

they each have distinct absolute scoped names within the IDL file. You cannot, however, declare a constant
named math within the utils module, since its fully scoped name is ::utils::math, which conflicts

with the name of the math interface.

Scoped names that begin with :; are absolute names, and are relative to the root file scope of the IDL file.
Names that don't start with :: are relative to the local scope in which they appear. So we can add two new

10.6. Naming Scopes 252

Preface (Java Enterprise in a Nutshell)

constants to our math interface that use scoped names to reference our versions of PI:

/I'1DL
module utils {
interface math {
const float Pl = 3.14159;
const float Plsquared = PI * PI;
const string PIOfTheDay = ::utils::baking::PI;

interface baking {
const string Pl = "apple";

h
h

The reference to Pl in the definition of the Plsquared constant is relative to the ::utils::math scope,
so it refers to the float constant. The reference to Pl in the PIOfTheDay definition is absolute and
references the string definition of Pl in the baking interface.

4 PREVIOUS HOME NEXT »
10.5. Constants and BOOK INDEX 10.7. User-Defined Data
Literals Types
Jav s | Qmng | baay - A
. .‘ S \. o ~\’ . AS
Enterprise , i @)<\ Vi
Bookshelf Java™ Java™ J.cvn“' Enterprise Java™ Java™ Java™
Home Enterprise ina Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed

in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISE INA NutstErL ™

@ PREVIOUS Chapter 10: IDL TS
Reference

10.7. User-Defined Data Types

In addition to the basic data types already described, IDL supports user—defined data types, which are
aggregations of these basic types. These complex data types include arrays, sequences, enumerations, anc
constructed data types you define yourself using structs and unions. We'll go over each in detail in this
section.

A complex data type is used in IDL by first giving it a type name, then using the type name wherever you
would use a basic data— or interface—type name (e.g., declaring attributes, method arguments). There are a
few ways a hame is assigned to a complex data type:

With structures, unions, and enumerations, the name is included in the declaration of the data type.

A typedef can be used to assign a name to a specific type (basic or complex).

10.7. User—Defined Data Types 253

Preface (Java Enterprise in a Nutshell)

Before we go on to see how complex data types are declared in IDL, let's take a look at how a typedef
assigns a type name to a complex data type.

10.7.1. Typedefs

A typedef associates a name with another data type. Here is the syntax of an IDL typedef:
typedef type identifier

The type can be any basic IDL data type, a user—defined data structure (structure, union, or enumeration),
IDL interface type, or a sequence. The identifier can be a simple IDL identifier, or it can include dimension
specifications for an array. So the following are all valid typedef statements:

/I IDL

typedef short myShort;
typedef long longArray[2][2];
typedef PrintServer pserver;

After declaring these typedefs in your IDL file, you can use myShort, longArray, and pserver as
type names when declaring method arguments, return values, or interface attributes.

10.7.1.1. Mapping typedefs to Java

If an IDL typedef refers to a basic IDL type, the Java equivalent to that type is used wherever the
typedef identifier is used. So our myShorttypedef in the previous section is replaced by the Java type
short wherever it's used.

Any typedefs that refer to user—defined types are replaced by the mapped Java class or interface for the
target IDL type. If the type used in an IDL typedef is itself a typedef, its target type is found, and so on,
until a final user—defined type or basic IDL type is found. Consider this example:

//'1DL

struct LinkedList {
any item;
any next;

typedef LinkedList DefList;
typedef DefList MyList;

Wherever either DefList or MyList appeatrs in the IDL file, it is mapped to the Java class generated for
the LinkedList type, since they both refer (directly or indirectly) to that type.

10.7.2. Arrays

Arrays can only be declared within the context of a typedef. Once you've assigned the array type to a type
name using the typedef, you can use the new type name to declare array members on interfaces. IDL
doesn't provide a way to initialize array values, so you cannot declare array constants in IDL, since constant
have to be initialized in their declaration.

To declare an array, simply add dimensions in brackets to a variable identifier. For example, to define a
two—-dimensional array of short values:

10.7.1. Typedefs 254

Preface (Java Enterprise in a Nutshell)

/I DL
typedef short short2x2Array[2][2];

IDL requires that you explicitly specify each dimension of the array, in order to support mappings to
languages that have a similar requirement.

10.7.2.1. Mapping arrays to Java

Arrays are mapped into Java as arrays (naturally). So, if we use the short2x2Array type defined above in
an IDL interface:

//'1DL
interface MatrixOps {
attribute short2x2Array identity2D;

the corresponding Java code looks like so:

/I Java

public interface MatrixOps {
short[][] identity2D();
void identity2D(short[][] arg);

We'll look more at how interface attributes are mapped to Java later, but you can infer from this that the
short IDL array is mapped to a short array in Java. The attribute is mapped to get() and set()

methods for that attribute. Since Java doesn't allow array type specifiers to include dimensions, our
declaration that the identity2D attribute be a 2—-by-2 array has been lost in the mapping. It's up to you to
provide an implementation of this interface that enforces the intended dimensions of the array within the Jav
interface.

In addition to mapping the array type to equivalent type specifiers, each array typedef in IDL causes the
generation of corresponding helper and holder classes in Java. The type name specified in the IDL typedef
is used as the prefix for the xxxHelper and xxxHolder class hames. So our short2x2Array type has
short2x2ArrayHelper and short2x2ArrayHolder classes generated for it. The helper class

provides the static methods that read and write the array type over CORBA I/O streams, when the array typs
is used as a method argument or return type. These methods enforce the array dimensions that you dictate
your IDL typedef; if the array is not of the correct type when being marshalled, the write() method

throws an org.omg.CORBA.MARSHAL exception. The holder class is used whenever you use your array
type as an inout or out method argument. For more details on the purposes of helper and holder classes,
see Chapter 4, "Java IDL".

10.7.3. Sequences

An IDL sequence is a one—dimensional array. To declare a sequence, you need to declare the type of the
elements in the sequence, and optionally the maximum size of the sequence:

//'1DL

typedef sequence<long, 2> longVector;

typedef sequence<short> unboundedShortVector;
typedef sequence<sequence<float, 2> > coordVector;

Like arrays, sequences have to be declared within a typedef and then the new type name can be used for
typing attributes, method arguments, and return values. Note that the elements in a sequence can themselv
be a sequence. Also notice that if you don't provide a bound for a sequence of sequences, you need to put :

10.7.2.1. Mapping arrays to Java 255

Preface (Java Enterprise in a Nutshell)

space between the two > brackets, so that they aren't parsed as a >> operator.

10.7.3.1. Mapping sequences to Java

Sequences are mapped to Java almost identically to arrays. A sequence of a given IDL type becomes a Jav
array of the equivalent Java type, sequences of sequences become two—dimensional arrays, etc. A holder ¢
helper class are generated for each sequence typedef as well, using the type hame specified in the

typedef. The write() method on the helper class enforces any size bounds you specify on the sequence,
throwing an org.omg.CORBA.MARSHAL exception if they don't match.

10.7.4. Structs

A fixed data structure is declared using the struct construct in IDL. A struct is declared using the
following syntax:

/I IDL

struct type—name {
data—member;
data—member;

h

The type name is any valid identifier in IDL. Each data member is specified using a type specification and ar
identifier that references the member (similar to attributes on an interface, described in Section 10.10.1,
"Attributes” in Section 10.10, "Interface Declarations"). You can use basic data types, arrays, sequences, ar
any other typedefs as types for members of a struct. You can declare a recursive structure (a structure

that includes members of its own type) by using a sequence declaration:

//'1DL

struct LispStringList {
string car;
sequence<LispStringList> cdr;

10.7.4.1. Mapping structs to Java

An IDL struct is mapped to a public final Java class with the same name as the struct. Each member

of the struct is mapped to a public instance member on the Java class. The Java class includes a default
constructor that leaves the member variables uninitialized and a constructor that accepts a value for each
member. Our example struct above is mapped to the following Java class:

Il Java
public final class LispStringList {
Il instance variables
public String car;
public LispStringList[] cdr;
Il constructors
public LispStringList() {}
public LispStringList(String __car, LispStringList[] __cdr) {
car=__car;
cdr=__cdr;

}

Each struct also has a Java holder class generated for it, which marshalls the data type when it's used as al

10.7.3.1. Mapping sequences to Java 256

Preface (Java Enterprise in a Nutshell)

inout or out method argument or as a method return value.

10.7.5. Enumerations

An enumeration in IDL declares an ordered list of identifiers, whose values are assigned in ascending order
according to their order in the enumeration. An enumeration is given a type name so that the elements of th
enumeration can be referenced. The syntax for declaring an IDL enumeration is:

//'1DL
enum type—name { element-name, element-name, ... };

The elements in the enumeration are guaranteed to be assigned actual values so that the comparison oper:
in the implementation language recognize the order of the elements as specified in the enum declaration. In
other words, the first element is less than the second, the second is less than the third, etc. An example enu
declaration follows:

/I IDL
enum ErrorCode { BadValue, DimensionError, Overflow, Underflow };

10.7.5.1. Mapping enumerations to Java

Each enumerated type you declare in IDL is mapped to a publicfinal Java class of the same name as the
enumeration. The class holds a single privateint instance member called value. A single private
constructor is generated for the class, which takes an int argument that initializes the value member.

For each element of the enumeration, two components are added to the Java class: a static final int

data member and a static instance of the generated Java class. The static data member generated for each
element is given a value that enforces the order of the elements in the enumeration, and the static class
instance generated for each element is initialized with this same value. The static class instance is given the
same name as the element in the enumeration, and the static data member is given the element's name
prepended with an underscore. These two representations for each element of the enumeration let you
reference the element value using either a corresponding int value or the generated Java class type. If the
enumerated type is used as a method argument or return value in an IDL interface, your Java implementatic
has to use the object versions of the elements.

Our example enumeration generates a Java class like the following:

/I Java
public final class ErrorCode {
public static final int _BadValue =0,
_DimensionError = 1,
_Overflow = 2,
_Underflow = 3;
public static final ErrorCode BadValue = new ErrorCode(_BadValue);
public static final ErrorCode DimensionError = new
ErrorCode(_DimensionError);
public static final ErrorCode Overflow = new ErrorCode(_Overflow);
public static final ErrorCode Underflow = new ErrorCode(_Underflow);
public int value() {
return _value;

public static final ErrorCode from_int(int i) throws
org.omg.CORBA.BAD_PARAM {
switch (i) {
case _BadValue:
return BadValue;
case _DimensionError:

10.7.5. Enumerations 257

Preface (Java Enterprise in a Nutshell)

return DimensionError;

case _Overflow:
return Overflow;

case _Underflow:
return Underflow;

default:
throw new org.omg.CORBA.BAD_PARAM();

}
}

private ErrorCode(int _value){
this._value = _value;
}

private int _value;

}
So we can refer to the elements in the enumeration in our Java code using any of the following forms:

/I Java

int errorl = ErrorCode._BadValue;
ErrorCode error2 = ErrorCode.Overflow;
int error2Val = error2.value();

Each enumerated type also has a holder class generated for it that is used whenever the enumerated type i
used in IDL as an out or inout method argument. Although not strictly required by the IDL Java mapping
defined by the OMG, an enumerated type might also have a helper class generated for it.

10.7.6. Unions

IDL unions are similar in nature to discriminated unions in C and C++. A single tag field, or discriminator,
determines the data element held by the union. Depending on the value of the discriminator field, a particulz
instance of the union type may hold a different data member. The union is declared using a switch
statement to declare the various possible formats, or branches, of the union structure:

/I IDL
union type—name switch (discriminator—type) {
cdag-value:
data—element;]
cdag-value:
data—element;]

[default:]
data—element;

h

The discriminator for the union is declared using only the type for the discriminator (no identifier is given to
the discriminator, since there is only a single discriminator per union type). The type for the discriminator
must be an integer, character, boolean, or enumerated type (string, struct, union, array, and

sequence are not allowed).

Each branch in the switch defines a data element that represents the value of the union if its discriminator
is a given value. Each data member identifier in a union switch has to be unique. Multiple cases can be
mapped to the same data element by listing them sequentially within the switch. A single optional

default case can be given for any values not given their own cases. Consider the following union:

/I IDL
typedef Coord2d sequence<long, 2>;
typedef Coord3d sequence<long, 3>;
union MultiCoord switch (short) {
case 1:
long pos;

10.7.6. Unions 258

Preface (Java Enterprise in a Nutshell)

case 2:

Coord2d val2d;
case 3:
default:

Coord3d val3d;

h

This declares a type named MultiCoord that represents a one—, two—, or three—dimensional coordinate,
depending on the value of its discriminator value. The default is for the coordinate to be three—dimensional,
the case for a discriminator value of 3 is the same as the default case. Since a union can have only a single
data member per case, we have to use typedef types for the coordinate values. Depending on the
discriminator value, the union contains either a simple integer position, a Coord2D type that is declared as a
sequence of two integer values, or a Coord3D type that is a sequence of three integer values.

If the discriminator value is given a value not listed in a case, the union consists of the data member in the
default case, if present. If there is no default case, the union has only its discriminator value and no data
members.

10.7.6.1. Mapping unions to Java

Each IDL union is mapped to a public final Java class of the same name as the union identifier. The

class contains a single, default constructor. The class has some kind of data member for maintaining the va
of the union discriminator (the details of which are not dictated by the IDL-to—Java mapping) and a
discriminator() method for accessing it as a short value. The standard also doesn't specify how data
members for the union are implemented in the Java class. Each branch you specify in the IDL union is
mapped to an accessor method and modifier method for that branch, and these methods are named after th
identifier given to the data member in the branch. If you use one of the modifier methods to set that branch ¢
the union type, the discriminator is automatically set to the corresponding value. If you attempt to access the
value from a branch, and the union is not set to that branch, an org.omg.CORBA.BAD_OPERATION
exception is thrown. The return value types and method arguments for the discriminator() method and

the case accessor/modifier methods are determined based on the standard type conversion rules for mappi
IDL to Java.

Our MultiCoord union example is mapped to the following Java class by Sun's idltojava compiler:

/I Java
public final class MultiCoord {
/I instance variables
private boolean __initialized;
private short __discriminator;
private java.lang.Object _ value;
private short _default = 4;
/I constructor
public MultiCoord() {
__initialized = false;
__value = null;
}
/I discriminator accessor
public short discriminator() throws org.omg.CORBA.BAD_OPERATION {
if (!__initialized) {
throw new org.omg.CORBA.BAD_OPERATION();
}

return __discriminator;
}
// branch constructors and get and set accessors
public int pos() throws org.omg.CORBA.BAD_OPERATION {
if (!__initialized) {
throw new org.omg.CORBA.BAD_OPERATION();
}

10.7.6.1. Mapping unions to Java 259

Preface (Java Enterprise in a Nutshell)

switch (__discriminator) {
case (short) (1L):
break;
default:
throw new org.omg.CORBA.BAD_OPERATION();
}
return ((org.omg.CORBA.IntHolder) __value).value;
}
public void pos(int value) {
__initialized = true;
__discriminator = (short) (1L);
__value = new org.omg.CORBA.IntHolder(value);
}
public int[] val2d() throws org.omg.CORBA.BAD_OPERATION {
if (I__initialized) {
throw new org.omg.CORBA.BAD_OPERATION();
}
switch (__discriminator) {
case (short) (2L):
break;
default:
throw new org.omg.CORBA.BAD_OPERATION();
}
return (int[]) __value;
}
public void val2d(int[] value) {
__initialized = true;
__discriminator = (short) (2L);
__value =value;
}
public int[] val3d() throws org.omg.CORBA.BAD_OPERATION {
if (I__initialized) {
throw new org.omg.CORBA.BAD_OPERATION();

}
switch (__discriminator) {
default:
break;
case (short) (1L):
case (short) (2L):
throw new org.omg.CORBA.BAD_OPERATION();
}

return (int[]) __value;

}

public void val3d(int[] value) {
__initialized = true;
__discriminator = (short) (3L);
__value =value;

}

Notice that Sun's idltojava compiler implements the data branches in the union using a single
java.lang.Object data member, which references an object of the appropriate type when the union is
put into a particular branch.

In this case, the default case and the third case share the same branch, so no accessor or modifier method
generated for the default case. If we have a default case that is separate from all other explicit cases in the
union (i.e., has its own branch), an accessor and modifier method are generated for its branch as well. If twc
explicit cases are mapped to the same branch in the switch, the Java modifier method generated for that
branch sets the discriminator value to the value of the first case included for that branch. In these cases,
another modifier method, which takes a second argument that is the value for the discriminator, is also
generated. As an example, if we want to use a Coord2D for both 1D and 2D coordinates, we can modify our
IDL union to have both case 1 and 2 use the same branch:

typedef sequence<long, 2> Coord2d;

10.7.6.1. Mapping unions to Java 260

Preface (Java Enterprise in a Nutshell)

typedef sequence<long, 3> Coord3d;
union MultiCoord switch (short) {
case 1:
case 2:

Coord2d val2d;
case 3:

Coord3d val3d;
default:

Coord3d valDef;

b
In this situation, the generated Java has an additional method included for the val2d branch:
public void val2d(int discrim, int[] value) { ... }

This allows you to set the union to that branch and also specify which discriminator is intended. This can be
useful in some cases, such as our modified MultiCoord example, where the value of the discriminator
determines the usage for the object.[4]

[4]The current version of Sun's idltojava compiler, which originally shipped with the beta 2
of JDK 1.2, violates this part of the standard and does not generate the extra modifier method
for multicase branches.

If no explicit default case is given in the union and if the listed cases do not completely cover the possible
values for the discriminator, the generated Java class includes a single method named default() that takes
no arguments and returns a void. This serves as the modifier for the default case, setting the union
discriminator to some unused value.

The union class also has a holder class generated for it. Although not specified in the standard mapping, it
might also have a helper class generated, but you shouldn't depend on the helper class being present in the
generated Java.

4 PREVIOUS HOME NEXT »
10.6. Naming Scopes BOOK INDEX 10.8. Exceptions
Java” } M
Enterprise
Bookshelf Java™ Java™ Juvo Enterprise Jnvu Java™ Juvc
Home Enterprise in a Nutshell, Foundation Classes JnvnBenns Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@ JAVA ENTERPRISE IN A NUTSHELL™

4@ PREVIOUS Chapter 10: IDL T ®
Reference

10.7.6.1. Mapping unions to Java 261

Preface (Java Enterprise in a Nutshell)

10.8. Exceptions

You can define exceptions in IDL that signal errors or other unusual circumstances that may occur during a
remote method call. Exceptions are declared with a unique name and an optional set of data attributes:

/I DL
exception identifier { data—-member; data-member; ...};

Each data member on the exception type is simply a type specification followed by a unique identifier for the
data member. The data provides the caller with additional information about what went wrong during the
remote method call.

Using our geometric examples from earlier, we might define an exception that is thrown when a
MultiCoord with unexpected dimensions is passed into a method:

//'1DL

exception BadDimension {
short expected,;
short passed;

h

A server object that raises one of these exceptions can set these data values, and the client making the req
can read these values and interpret what went wrong.

Exceptions can be declared within any module or interface scope in your IDL file.

10.8.1. Standard Exceptions

In addition to user—defined exceptions, there is a set of standard exceptions defined within the CORBA
module. These standard exceptions can be raised by any method, even though they are not listed explicitly
the method definition. These exceptions can be referenced in IDL using the CORBA:: scope (e.g.,
CORBA::BAD_PARAM). The standard CORBA exceptions are listed in Table 10-4. Every standard CORB/
exception includes two data members: an unsigned long minor error code that can further specify the

type of error that occurred, and a completion_statusenum that can be either COMPLETED_YES,
COMPLETED_NO, or COMPLETED_MAYBE. These status values indicate that before the exception was
raised, the method was either completed, never initiated, or in an unknown state, respectively. A more
complete description of the standard exceptions (in their Java form) can be found in Chapter 28, "The
javax.transaction Package".

Table 10-4. Standard CORBA Exceptions

Exception Name Meaning
BAD_CONTEXT Failure while accessing the context object.
BAD_INV_ORDER Some methods were called out of their expected order.
BAD_OPERATION An invalid method was called.

BAD_PARAM An invalid argument was passed into a method.
BAD_TYPECODE A bad typecode was used.

COMM_FAILURE A communication failure occurred.
DATA_CONVERSION Error while converting data.

FREE_MEM Failed to free some memory.

IMP_LIMIT Some implementation limit was exceeded.

10.8. Exceptions 262

Preface (Java Enterprise in a Nutshell)

INITIALIZE The ORB initialization failed.

INTERNAL An internal ORB error occurred.

INTF_REPOS Error attempting to access interface repository.

INV_FLAG An invalid flag was given.

INV_IDENT Invalid identifier syntax was encountered.

INV_OBJREF An invalid object reference was encountered.
INVALID_TRANSACTION An invalid transaction was used.

MARSHAL An error occurred while marshalling method arguments or results.
NO_IMPLEMENT The implementation for the method is not available.

NO_MEMORY Failed to allocate dynamic memory needed to execute the request.
NO_PERMISSION Not allowed to execute the method.

NO_RESOURCES There were insufficient resources for the request.
NO_RESPONSE No response received for request.

OBJ ADAPTER The object adapter encountered an error.

OBJECT_NOT_EXIST The referenced object does not exist on the server.
PERSIST_STORE An error occurred while accessing persistent storage.
TRANSACTION_REQUIRED |An operation requiring a transaction was called without one.
TRANSACTION_ROLLEDBA(glgéihsaCtional operation didn't complete because its transaction was|rolled
TRANSIENT A transient error occurred, but the method can be tried again.
UNKNOWN An error occurred that the ORB could not interpret.

10.8.2. Mapping Exceptions to Java

Standard exceptions are mapped to exception classes in org.omg.CORBA that extend the
org.omg.CORBA.SystemException class. User—defined exceptions are mapped to public final

Java classes that extend org.omg.CORBA.UserException, which is derived directly from
java.lang.Exception. Otherwise, the exception is mapped to Java the same way as a struct, as

described earlier. Each data member is mapped to a public data member of the corresponding type, and a
set of constructors are defined for the exception class.

4 PREVIOUS HOME NEXT »
10.7. User-Defined Data BOOK INDEX 10.9. Module Declarations
Types
S @ BN a e
Bookshelf Java™ Java™ Java™ Enterprise Jnvu Java™ Java™
Home Enterprise in o Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
ina Nulsbell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL

@ PREVIOUS Chapter 10: IDL nr »
Reference

10.8.2. Mapping Exceptions to Java 263

Preface (Java Enterprise in a Nutshell)

10.9. Module Declarations

A module is a name—scoping construct in IDL. It is similar to a package in Java, or LISP or a hamespace in
C++. A module is declared with the module keyword, followed by an identifier for the module, and then the
body of the module, enclosed in braces:

/I IDL
module identifier { ... };

Modules can contain IDL interface definitions, constants, or user—defined types such as typedefs,
structs, unions, and enumerations.

10.9.1. Mapping Modules to Java

Modules in IDL are mapped to packages in Java, and nested modules are mapped to subpackages, with the
innermost module being mapped to the rightmost subpackage. Consider the following interfaces and module

defined in IDL:

/I IDL
module util{
interface MatrixOps { .. .};

module dbase {
interface Query {...};
h
I3

The generated Java code includes an interface named MatrixOps, starting with this package statement:

/I Java
package util;

and another interface named Query, with this package statement:

/I Java
package util.dbase;

4 PREVIOUS HOME NEXT »

10.8. Exceptions BOOK INDEX 10.10. Interface
Declarations

— v q) - ; /
Java: Ky | ol s | A
Enterprise 1] 2 @)<\ /
Bookshelf Java™ Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Closses JovoBeons™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

&% JAVA ENTERPRISEINA NUTSHELL =

10.9. Module Declarations 264

Preface (Java Enterprise in a Nutshell)

@ PREVIOUS Chapter 10: IDL TS
Reference

10.10. Interface Declarations

An IDL interface is just a collection of data attributes and methods that define the semantics of the interface.
Declaring an interface is another way to create a new data type in IDL, but unlike structs and unions, an
interface can have both data members and methods that can be called on objects of its type. An interface is
also a name-scoping construct, similar to a module. You can declare an IDL interface and simply include a
set of constants you want associated with that interface name. In this case, you have to specify the interface
scope in order to refer to the constants from within other scopes.

An interface consists of the following elements:

/I IDL
interface identifier [: inheritance—-spec] {
interface—body

b

The interface identifier can be any valid IDL identifier. The body of the interface can contain any of the
following constructs:

A user—defined type (struct, union, typedef, enum)

A constant declaration

An interface—-specific exception declaration

Data attributes

Methods or operations

We've already seen the syntax for the first three items in earlier sections of this IDL overview. They become
part of an interface simply by being declared within the braces of the body of the interface. In the next few
sections, we'll see how to define interface attributes and methods, and then we'll look at how inheritance of
IDL interfaces works.

10.10.1. Attributes

Attributes are data members that belong to an interface. To readers familiar with JavaBeans, declaring an
attribute on an interface is roughly analogous to adding a property to a JavaBeans component. An attribute
an IDL interface indicates that the interface provides some way to read and (in most cases) write the attribut
value.

The syntax for declaring an attribute within an interface body is:

/I DL
[readonly] attribute type identifier [, identifier, ...];

10.10. Interface Declarations 265

Preface (Java Enterprise in a Nutshell)

The attribute is signified by the attribute keyword, followed by a type specification for the attribute and
an identifier name. You can declare multiple attributes of the same type by providing their identifiers in a
comma-—delimited list after the type specifier:

/I DL
attribute short coord_x, coord_y, coord_z;

The type specifier can be any valid type, including IDL basic types, other interfaces, and user—defined types
previously defined or declared in a typedef. For example:

/I IDL
enum ErrorCode { BadValue, DimensionError, Overflow, Underflow };

interface AttrTest {
struct coord {
short x;

shorty;

h
attribute ErrorCode lastError;
readonly attribute coord COG;
attribute string name;

h

The optional readonly keyword can precede the attribute declaration. This indicates that the attribute can

be read only externally and not directly written. This typically means that the value of this attribute is set only
as a side effect of some other method(s). In our example, the COG attribute may represent the
center—of—gravity of some geometric object, and we'll only want that to be recomputed as the result of other
methods that change the geometry of the object.

10.10.2. Methods

>Methods (or operations, to use the IDL vernacular) provide a way for remote clients to interact with the
objects defined by an interface. A method declaration in IDL is composed of an identifier for the method, the
type of data returned by the method, and a list of parameters that the method accepts. An IDL method can &
(optionally) be declared to use specific call semantics, to possibly raise certain exceptions during its
execution, and to accept certain context variables from the client environment.

The syntax of a method declaration within an IDL interface is:

/I DL
[call-semantics] return—type identifier ([param, param, ...])
[exception—clause] [context—clause];

The only required elements in a method declaration are the method identifier and the return type, so an
example of the simplest form of method declaration is:

/I DL
boolean doSomething();

This method simply returns a boolean flag when it is complete. It doesn't accept any arguments, uses the

default call semantics, raises no nonstandard exceptions, and accepts no context variables from the client
environment.

The return type for an IDL method can be any valid type, including user—defined types such as structs and
other interfaces. If a method doesn't return any data, the return type should be declared as void.

The identifier for a method is a valid IDL identifier. In IDL, two methods in the same interface cannot have

10.10.2. Methods 266

Preface (Java Enterprise in a Nutshell)

the same identifier (i.e., there is no method overloading, as there is in C++ and Java).

10.10.2.1. Parameters

The parameters for a method on an interface are declared within the parentheses following the method
identifier and are separated by commas. The syntax for an individual method parameter is:

arg—direction arg-type identifier

The identifier is any valid IDL identifier, and the parameter type is any valid IDL type, including
user—defined types.

The direction specification indicates whether the parameter is passed into the server, returned from the serv
or both. The direction specification can have one of three values: in, out, or inout. An parameter tagged as
in is only passed from the client to the server object. An parameter tagged as out is not taken from the
client, but its value is set by the server and returned if the method returns successfully. An inout parameter
is passed in both directions; the data from the client is passed to the server, and the server may modify the |
and have the updates returned back to the client if the method returns successfully.

Here's a modified method declaration for doSomething() that specifies some parameters:
boolean doSomething(in string whatToDo, inout string whatToDoltTo);

The first parameter tells the server object what to do, so it is input—only. The second parameter is the thing t
be acted upon, so it is declared as inout to allow the modified object to be passed back to the client.

If a method raises an exception during its execution, the values of any out or inout parameters to the
method are undefined. They may or may not have been modified by the method before the exception was
raised, and execution was halted.

10.10.2.2. Exceptions

If a method on an interface can raise any exceptions during its execution, you have to declare this in IDL by
adding a clause to the method declaration that lists all the exceptions that can be raised by the method. Thi:
similar to the throws clause on Java methods. The syntax for the raises clause looks like:

//'1DL
raises (exception—-type, exception-type, ...)

Every exception you list in this clause has to be defined earlier in the IDL file.

Every method that you declare on an IDL interface can potentially throw one of the standard ORB exception
we mentioned earlier (see Table 10-4). You cannot list these standard exceptions in the raises clause for
your methods.

As an example, let's specify a BadDirective exception for our doSomething() method, which is raised
if the client passes in a string directive the server object doesn't understand. We can modify the method
declaration to look like the this:

/I DL
boolean doSomething(in string whatToDo, inout string whatToDoltTo)
raises (BadDirective);

Again, we must have declared the BadDirective exception and any data it contains earlier in the IDL file.

10.10.2.1. Parameters 267

Preface (Java Enterprise in a Nutshell)

10.10.2.3. Context values

IDL supports the concept of a client context, which can contain name/value pairs that describe the client's
environment in some way. You might have an authenticated username stored in the client's context, for
example. The name of a context value is a string, and its value is an Any object. The interface to the contex
provided by the IDL Context interface, and a mapping of this interface must be provided in any
language-specific binding of the CORBA standard.

You can add a context clause to your method declarations that indicates which client context variables shou
be propagated to the server when the method is invoked. The server object can then query these context
variables during the execution of the method. The syntax for adding a context clause to your method
declaration is:

/I IDL
context (var-name, var—-name, ...)

Each var—-name is a string literal that names the context variable to be propagated to the server when the
method is called.

Suppose that when we invoke our doSomething() method, we want to be able to log who is making the
request. We can look for a username variable in the client context and assume it is the authenticated identit;
of the client. We can specify that this context variable should be included in the method call by adding a
context clause to our method declaration:

//' DL
boolean doSomething(in string whatToDo, inout string whatToDoltTo)
raises (BadDirective) context ("username");

A Java client might use this method like so:

/I Java
/I Get the context
Context ctx = ORB.get_default_context();

/I Add a username to the context

Any username = new Any();
username.insert_string("JimF");
ctx.set_one_value("username", username);

/I Call the remote method
obj.doSomething("anything", "entity");

Since we declared the doSomething() method to include the username context variable in its
invocations, this variable appears in the server's context and can be queried during execution of the
method.[5]

[5] Sun's implementation of the Java IDL binding (including its idltojava compiler) does not
support context variables. The Context interface is available in the Java IDL API, but
context clauses on IDL methods are not represented in the generated Java code, and no
context data is transferred to the server.

You might wonder when this context feature should be used, as opposed to just adding a method argument
the method declaration. | could have just as easily added another string argument to my declaration for the
doSomething() method:

boolean doSomething(in string whatToDo, inout string whatToDoltTo,
in string username) raises BadDirective;

10.10.2.3. Context values 268

Preface (Java Enterprise in a Nutshell)

One argument for using context variables is to make things easier on the client when certain data for a mett
is optional. Rather than including an explicit argument and forcing the user to add a nil value of some kind tc
the method call (null in Java, for example), you can make the optional data a context variable, and the user
can choose to set it or not. In most cases, though, you'll find that context variables are used rarely, if at all.

10.10.2.4. Call semantics

If you don't specify any call semantics at the start of your method declaration, the default semantics is
"at-most-once." This means that if a method call returns with no exceptions, the method was called a single
time on the server object. If an exception is raised, the method was called at most once (the exception
occurred either before the method was invoked, or during execution of the method).

You can choose to use alternate call semantics for your method by including a call attribute at the start of yc
method declaration. In the current CORBA standard, only a single alternative, called "best—effort" semantics
is available. In this case, whether the method call returns successfully or not, there's no guarantee that the
method was actually invoked on the server object. The difference between the default semantics and
"best-effort" semantics is roughly equivalent to the difference between TCP and UDP IP network connectiol
and their handling of data packets.

You specify best—effort call semantics by adding the keyword oneway to the start of your method
declaration:

//'1DL
oneway void tryToDoSomething(in whatToDo);

If you specify that a method is oneway, the return type of the method has to be void, and it can't have any
out or inout arguments. The method is effectively called asynchronously, so the client can't synchronously
receive return data from the server object.

10.10.3. Interface Inheritance

You can inherit attributes and methods from another IDL interface by deriving your interface from it. The
syntax for declaring the inheritance of an interface in its header is:

interface identifier : parent-interface, parent-interface, ... {

The parent interfaces can be any pre—defined interfaces, in the same module as this interface or in different
modules. If the parent interfaces are from other modules, you need to use the :: scope specifier to identify
them.

10.10.3.1. Method and attribute inheritance

A derived interface inherits all the attributes and methods from its parent interfaces. Although IDL allows for
multiple inheritance, it's illegal to have two inherited attributes or methods with the same identifier. You also
can't declare an attribute or method within your interface with the same name as an inherited attribute or
method (i.e., you cannot overload a method or attribute). Say you have two interfaces declared as follows:

/I DL
interface A {
boolean f(int float x);

h

interface B {

10.10.2.4. Call semantics 269

Preface (Java Enterprise in a Nutshell)

void f();
3

You cannot define a new interface that derives from both these interfaces, since the definition of the method
f() would be ambiguous. Note that, unlike C++ and Java, IDL only uses the name for the method as its
unique identifier, and not the entire method signature. This rule is a result of IDL's multilanguage support,
since some languages may be similarly limited.

10.10.3.2. Constant, type, and exception inheritance

A derived interface also inherits any constants, user—defined types, and exceptions defined in its parent
interfaces. They can be referred to in the derived interface as if they had been defined within the interface. F
example, say we define the following base interface:

//'1DL
interface Server {
exception Servicelnterrupted {};
boolean doSomething(in string what) raises (Servicelnterrupted);

h

We can use the Servicelnterrupted exception defined within the Server interface in another
interface by naming its scope:

/I IDL
interface PrintServer {
boolean printSomething(in string what)
raises (Server::Servicelnterrupted);

h

Alternately, we can derive the PrintServer from the Server interface, and then the exception can be
used as if it existed in the PrintServer scope:

/I DL
interface PrintServer : Server {
boolean printSomething(in string what) raises (Servicelnterrupted);

I§

It is legal to define a constant, type, or exception in a derived interface that uses the same name as one of
these things in its parent interface. If you do this, though, you need to refer to them unambiguously in your
interface declaration, using fully scoped names if necessary. If you declare your own

Servicelnterrupted exception in the PrintServer interface, for example, you need to provide a

scope for the exception in the raises clause, in order for the IDL compiler to know which version you're
referring to:

//'1DL
interface PrintServer : Server {
exception Servicelnterrupted { string printerName; };
boolean printSomething(in string what)
raises (PrintServer::Servicelnterrupted);

If you don't, the IDL compiler throws back an error about Servicelnterrupted being ambiguous.

10.10.3.3. IDL early binding

It's important to realize that IDL does early binding of constants, user—defined types, and exceptions as it
compiles your IDL. This means that the definition of a constant, type, or exception is bound to a particular

10.10.3.2. Constant, type, and exception inheritance 270

Preface (Java Enterprise in a Nutshell)

reference within an interface as it's encountered in your IDL file, not after all definitions have been examinec
Consider the following IDL definitions:

/I IDL

struct Coord {
short x;
short y;

h

interface GeometricObj {
attribute Coord cog;

h

interface GeometricObj3D : GeometricObj {
struct Coord {
short x;
short y;
short z;
3
attribute Coord cog3D;
3

The cog attribute in the GeometricObj interface is off the global Coord type (with x and y members
only), since at the time the cog attribute is encountered in the IDL file, this is the binding definition for
Coord. The GeometricObj3D interface inherits this attribute with this type. However, the cog3D
attribute declared in the GeometricObj3D interface is of the GeometricObj3D::Coord type (with x,

y, and z members), since at that point, the Coord struct within the GeometricObj3D scope has been
defined and is the default reference of the relative Coord type used in the cog3D declaration.

10.10.4. Mapping Interfaces to Java

As you might expect, each interface you define in IDL is mapped to a public interface in Java. Helper and
holder class are also generated for each interface; the names of these interfaces are generated using the
identifier of the IDL interface, with Helper and Holder appended to it.

The Java interface extends the org.omg.CORBA.Object interface. Any inheritance specification you
provide in your IDL interface is mapped directly to interface inheritance in Java, using extends clauses. So
our earlier GeometricObj3D example that inherits from GeometricObj is mapped into a Java interface

that begins:

/I Java
public interface GeometricObj3D
extends org.omg.CORBA.Object, GeometricObj { ...

10.10.4.1. Helper and holder classes

The helper class generated for an interface includes a static harrow() method that allows you to safely cast
a CORBA Obiject reference to a reference of the interface type. If the Object isn't of the expected type, an
org.omg.CORBA.BAD_PARAM exception is thrown. The helper class also includes other static methods
that let you read or write objects of the interface type over 1/O streams and insert/extract an object of this tyy
from an Any value.

The holder class is used whenever the interface is used as the type for an out or inout method parameter.

The holder class is responsible for marshalling the contents of the object to the server object for the method
call (for inout arguments), and then unmarshalling the (possibly updated) return value. The holder class has
a constructor defined that lets you wrap the holder around an existing instance of the original interface, and

10.10.4. Mapping Interfaces to Java 271

Preface (Java Enterprise in a Nutshell)

has a public value member that lets you access the object argument both before and after the method call.

See Chapter 4, "Java IDL" for more details on helper and holder classes.

10.10.4.2. Attributes

Each attribute you declare on the IDL interface is mapped to two accessor methods, with the same nhame as
the attribute. So an attribute declared within an IDL interface as follows:

/I DL
attribute string name;

is mapped to these two methods on the corresponding Java interface:

/I Java
String name();
void name(String n);

If you include the readonly tag in your IDL attribute declaration, the Java interface has only the read
accessor method, not the update accessor.

10.10.4.3. Methods

Methods declared on your IDL interface are mapped one-to—one to methods on the Java interface. The rett
values and any in parameters are mapped directly to their corresponding types in Java. Any out or inout
parameters in the IDL method are mapped to their holder classes in the Java method. This includes basic IL
types, which have their own holder classes defined for them in the standard Java mapping. So this IDL
method:

/I DL

boolean setPrintServer(in PrintServer server,
out PrintServer previousServer,
out long requestsHandled);

is mapped to the following Java method on the corresponding interface:

/I Java

boolean setPrintServer(PrintServer server,
PrintServerHolder previousServer,
IntHolder requestsHandled);

Note that the last argument is declared a long in IDL, which is mapped to int in Java, so the IntHolder
class is used in the mapped Java method.

To use this method, we have to create holder objects for the output parameters, then check their values afte
the method call:

/I Java

PrintServer newServer = . . ;

PrintServerHolder prevHolder = new PrintServerHolder();
IntHolder numReqgHolder = new IntHolder();
xxx.setPrintServer(newServer, prevHolder, numRegHolder);
int numReq = numReqgHolder.value;

PrintServer prevServer = prevHolder.value;

We don't need to initialize the contents of the holders, since they are being used for out parameters. If they

10.10.4.2. Attributes 272

Preface (Java Enterprise in a Nutshell)

were used for inout parameters, we'd either have to initialize their contents at construction time or set their
value members directly.

If there is a raises clause on your IDL method declaration, it is mapped to an equivalent throws clause on
the Java method. The context clause and call semantics (oneway) on an IDL method declaration affect only
the implementation of the generated Java method, not its signature.

4 PREVIOUS HOME NEXT B
10.9. Module Declarations BOOK INDEX 11. CORBA Services
Reference

. v / ; /
Java & | § e O | e | A
A B-D Gk y EY
- oY ;1 ' Ve
Bookshelf Java™ Java™ Enterprise Java™ Java™ Java™
Home Enterprise in a Nutshell, Foundation Classes JavoBeans™, Serviet Security Distributed
in a Nutshell 3rd Edition in a Nutshell 2nd Edition Programming Computing

Copyright © 2001 O'Reilly & Associates. All rights reserved.

@ JAVA ENTERPRISE IN A NUTSHELL™

@ PREVIOUS Part 2: Enterprise NEXT
Reference

10.10.4.2. Attributes 273

Chapter 11. CORBA Services Reference

Contents:

Naming Service

Security Service

Event Service

Persistent Object Service
Life Cycle Service
Concurrency Control Service
Externalization Service
Relationship Service
Transaction Service
Query Service

Licensing Service
Property Service

Time Service

Trading Service
Collection Service

The CORBA standard includes a rich set of object services. These services can be optionally offered by a
CORBA provider as part of its CORBA-compliant environment. Most vendors include a Naming Service,
sinc