
IN ACTION

Rule-Based Systems in Java

M A N N I N G

Friedman-Hill

JESS
IN ACTION

M A N N I N GM A N N I N G $49.95 US/$74.95 Canada

www.manning.com/friedman-hill

Author responds to reader questions

Ebook edition available

AUTHOR
✔

ONLINE

✔

,!7IB9D0-bbaijc!:p;O;T;t;p
ISBN 1-930110-89-8

Ernest Friedman-Hill

I
magine a different way to program in which you specify rules
and facts instead of the usual linear set of instructions. That’s the
idea behind rule-based programming. A rule engine automati-

cally decides how to apply the rules to your facts and hands you
the result. This approach is ideal for expressing business rules and
is increasingly used in enterprise computing.

Jess is a popular rule engine written in Java. It’s supported by
Sandia Labs and has an active online community. If you have a
problem that can be solved with rules, Jess in Action will show you
how. (If you are not sure, read chapter 2.) Written by the creator
of Jess, this book is an accessible and practical guide to rule-based
system development in Java.

Jess in Action first introduces rule programming concepts and
teaches you the Jess language. Armed with this knowledge, you
then progress through a series of fully-developed applications
chosen to expose you to practical rule-based development. The
book shows you how you can add power and intelligence to your
Java software.

What’s Inside
■ Introduction to rule-based thinking
■ Jess language tutorial
■ Complete examples of ...

◆ Tax forms advisor
◆ Diagnostic assistant
◆ Fuzzy logic controller
◆ Web agent
◆ J2EE apps

Dr. Friedman-Hill is the developer of Jess. A Principal Member of
the Technical Staff at Sandia National Laboratories, he lives in
Gaithersburg, MD.

“... clear, crisp, well-focused
... the organization is
smooth, well-thought-out,
... this book rocks.”

—Ted Neward, Author
Server-Based Java Programming

“... the Jess book. A nice balance
between an introduction and a
reference”

—John D. Mitchell, Coauthor
Making Sense of Java

“Friedman-Hill writes clearly.
The topic is complicated, and he
does an excellent job explaining it
... I recommend this book.”

—Roedy Green, Author
The Java Glossary

“... intuitive and clever examples
that show the reader how to
build intelligent Java applications
with Jess.”

—Robert B. Trelease, Ph.D.
UCLA Brain Research Institute

FREEBIES

• Binary version of Jess*
• Complete examples on the web

EXPERT SYSTEMS/JAVA

JESS IN ACTION Rule-Based
Systems in Java

Ernest Friedman-Hill

*For non-commercial use

Jess in Action

Jess in Action
Rule-Based Systems in Java

ERNEST FRIEDMAN-HILL

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, go to
www.manning.com. The publisher offers discounts on this book when ordered in
quantity. For more information, please contact:

Special Sales Department
Manning Publications Co.
209 Bruce Park Avenue Fax: (203) 661-9018
Greenwich, CT 06830 email: orders@manning.com

©2003 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy
to have the books they publish printed on acid-free paper, and we exert our best efforts
to that end.

Manning Publications Co. Copyeditor: Tiffany Taylor
209 Bruce Park Avenue Typesetter: Syd Brown
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-930110-89-8

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03

 To my family

brief contents

PART 1 INTRODUCING RULE-BASED SYSTEMS 1

1 ■ Rules to the rescue 3

2 ■ What are rule-based systems? 13

PART 2 JESS: A RULE-BASED
PROGRAMMING ENVIRONMENT 29

3 ■ Introducing Jess 31

4 ■ Getting started with the Jess language 41

5 ■ Scripting Java with Jess 61

6 ■ Representing facts in Jess 74

7 ■ Writing rules in Jess 95

8 ■ Under the hood: how Jess works 133
vii

viii BRIEF CONTENTS
PART 3 CREATING YOUR FIRST RULE-BASED
APPLICATION: THE TAX FORMS ADVISOR ...147

9 ■ Collecting the knowledge 149
10 ■ Designing the application 161
11 ■ Writing the application 172

PART 4 WRITING A DIAGNOSTIC APPLICATION:
THE PC REPAIR ASSISTANT185

12 ■ Writing the PC Repair Assistant 187
13 ■ Adding a graphical interface 203

PART 5 REASONING ABOUT REALITY:
THE HVAC CONTROLLER219

14 ■ The reality connection 221
15 ■ Extending the Jess language 237
16 ■ Writing the rules 255

PART 6 TEKMART.COM: RULE-BASED APPLICATIONS
FOR THE WEB ...285

17 ■ Jess on the Web 287
18 ■ Embedding Jess in Java applications 306
19 ■ Deploying web-based applications 323

PART 7 ENTERPRISE SYSTEMS355
20 ■ Jess, XML, and the enterprise 357
21 ■ Jess in the J2EE environment 375

A ■ Jess functions 389
B ■ Abridged Java API for Jess 415
C. ■ An automated testing framework 427

contents

preface xxi
acknowledgments xxiii
about this book xxvi
author online xxix
about the title xxx
about the cover illustration xxxi

PART 1 INTRODUCING RULE-BASED SYSTEMS 1

1 Rules to the rescue 3
1.1 Math class melee 4

Beyond logic puzzles 8

1.2 Some real-world examples 9
Mail filtering 9 ■ Product configuration 10
Implementing business rules 11

1.3 Summary 12

2 What are rule-based systems? 13
2.1 The cooking/driving robot 14

Declarative programming: a different approach 15

2.2 Rules and rule engines 17
Expert systems 18
ix

x CONTENTS
2.3 Architecture of a rule-based system 19
The inference engine 20 ■ The rule base 21
The working memory 21 ■ The pattern matcher 22
The agenda 22 ■ The execution engine 23

2.4 Developing rule-based systems 23
Knowledge engineering 23 ■ Structuring data 24
Testing 24 ■ Interface building 25
Writing the rules 25 ■ Iterative development 26

2.5 Rule engine standards 26

2.6 Summary 27

PART 2 JESS: A RULE-BASED
PROGRAMMING ENVIRONMENT29

3 Introducing Jess 31
3.1 The Jess rule engine 32

Obtaining Jess 33 ■ Installing Jess 33
Running Jess 34 ■ “Hello, World” 34

3.2 Jess applications 36
Command line, GUI, or embedded? 37
Jess performance 38

3.3 Summary 39

 4 Getting started with the Jess language 41
4.1 The basics 42

Whitespace 42 ■ Symbols 42
The jess.Value class 43 ■ Numbers 43
Strings 44 ■ Comments 44

4.2 Adding some structure 45
Lists 45 ■ Calling functions 46
Variables 47 ■ More about lists 49

4.3 Control flow 50
foreach 51 ■ while 52 ■ if/then/else 52
progn 53 ■ apply 54 ■ eval and build 54

4.4 Defining functions with deffunction 55
Late binding 57

CONTENTS xi
4.5 Fine-tuning a function’s behavior 58
Take my advice, please 60

4.6 Summary 60

 5 Scripting Java with Jess 61
5.1 Creating Java objects 62

5.2 Calling Java methods 64
Nesting function calls, and a shortcut 65
Calling static methods 66
Calling set and get methods 66
Working with arrays 67
How Jess chooses among overloaded methods 68

5.3 Accessing Java member data 69

5.4 Working with exceptions 70

5.5 Summary 73

 6 Representing facts in Jess 74
6.1 Jess’s working memory 75

Manipulating the working memory 76

6.2 Just the facts, ma’am 81

6.3 Unordered facts 82
The deftemplate construct 82 ■ Default slot values 83
Multislots 84 ■ Changing slot values with modify 85
Copying facts with duplicate 85

6.4 Ordered facts 86

6.5 Shadow facts 87
Jess and JavaBeans 88 ■ JavaBeans have “slots” 88
An example JavaBean 89 ■ Creating a deftemplate for
DimmerSwitch 90 ■ Putting a DimmerSwitch into working
memory 90 ■ Static vs. dynamic shadow facts 91
Adding PropertyChangeListener support to DimmerSwitch 92
Shadow facts and working memory functions 94

6.6 Summary 94

xii CONTENTS
 7 Writing rules in Jess 95
7.1 Forward-chaining rules 96

Patterns and shadow facts 100

7.2 Constraining slot data 100
Literal constraints 101 ■ Variables as constraints 102
Connective constraints 104 ■ Constraining matches with
predicate functions 105 ■ Return value constraints 106
Pattern bindings 107

7.3 Qualifying patterns with conditional elements 108
The and conditional element 108 ■ The or conditional
element 109 ■ The not conditional element 111
The test conditional element 113
The logical conditional element 114

7.4 Backward-chaining rules 116

7.5 Managing the agenda 120
Conflict resolution 121
Changing rule priority with salience 121

7.6 Partitioning the rule base with defmodule 123
Defining constructs in modules 123
Modules, scope, and name resolution 124
Module focus and execution control 126

7.7 Searching working memory with defquery 128
The variable declaration 130 ■ Query trigger facts 130
The count-query-results function 131
Backward chaining and queries 131

7.8 Summary 131

 8 Under the hood: how Jess works 133
8.1 Review of the problem 134

8.2 An inefficient solution 135

8.3 The Rete algorithm 136
How Rete works 136 ■ Handling retract 139

8.4 Easy optimizations for Rete 139

8.5 Performance of the Rete algorithm 141
Node index hash value 141

CONTENTS xiii
8.6 More complexity and initial-fact 142
Implementing the not conditional element 142
Implementing the test conditional element 143
Implementing backward chaining 143

8.7 Exploring the Rete network in Jess 143
The (watch compilations) command 143
The view function 144 ■ The matches function 146

8.8 Summary 146

PART 3 CREATING YOUR FIRST RULE-BASED
APPLICATION: THE TAX FORMS ADVISOR ... 147

9 Collecting the knowledge 149
9.1 The Tax Forms Advisor 150

9.2 Introduction to knowledge engineering 150
Where do you start? 151 ■ Interviews 153
Desk research 156

9.3 Collecting knowledge about tax forms 157
An interview 157 ■ Reviewing the forms 159
Next steps 160

9.4 Summary 160

 10 Designing the application 161
10.1 Organizing the data 162

10.2 Filling in details 163
Default slot values 163

10.3 More templates 164

10.4 Templates you don’t need 165

10.5 Organizing the rules 166

10.6 Building the infrastructure 166
Simple text-based I/O 167
Fetching the question text 168

10.7 Summary 170

xiv CONTENTS
 11 Writing the application 172
11.1 Welcoming the user 173

Testing the startup module 173

11.2 Asking the user questions 174
Income and dependents 175
Dealing with special circumstances 176
Testing the interview module 177

11.3 Recommending forms 177

11.4 Explaining the results 181
Testing the report module 182

11.5 Finishing touches 182

11.6 Testing the full application 183

11.7 Summary 184

PART 4 WRITING A DIAGNOSTIC APPLICATION:
THE PC REPAIR ASSISTANT185

12 Writing the PC Repair Assistant 187
12.1 Using flowcharts in knowledge engineering 188

From flowcharts to rules 189

12.2 The problem domain 190
Writing the first rules 191

12.3 Asking questions with backward chaining 193

12.4 Checking the answers 194
Modifying the ask module 195

12.5 The rest of the rules 197
Rules about sound 197 ■ Degrading gracefully 198
To boot, or not to boot 199 ■ RAM problems 199
Questioning authority 200

12.6 Testing 201

12.7 Summary 202

CONTENTS xv
 13 Adding a graphical interface 203
13.1 Getting started 204

13.2 Displaying a window 205

13.3 Displaying questions 206

13.4 Getting answers 207
The main thread vs. the event thread 209

13.5 Better input components 213

13.6 Finishing touches 214

13.7 Testing the interface 215

13.8 Summary 216

PART 5 REASONING ABOUT REALITY:
THE HVAC CONTROLLER 219

14 The reality connection 221
14.1 The system 223

14.2 Defining the hardware interface 224
Native methods 224 ■ Writing a simulator 225
Simulating getTemperature 227
Adding a graphical interface 229

14.3 Writing the JavaBeans 229
Rules about Thermometers 232
Writing the other Beans 233

14.4 JavaBeans and serialization 235

14.5 Summary 235

 15 Extending the Jess language 237
15.1 The Userfunction interface 238

The getName method 239 ■ The call method 239
Loading a Userfunction into Jess 239

15.2 Handling arguments 240
How many arguments? 240 ■ Using arguments 241
Resolving variable arguments 242
Resolving function call arguments 243

xvi CONTENTS
15.3 Returning a value 245
Constructing Value objects 245

15.4 Beyond simple examples 246
Holding state 246 ■ Multiple personalities 246
Userfunctions and serialization 247
Grouping functions with Userpackage 247

15.5 The HVAC functions 248
Creating a simulator 248 ■ Counting devices 249
Matching heat pumps and floors 250
Operating the hardware 251
Implementing a Userpackage 253

15.6 Testing 253

15.7 Summary 254

 16 Writing the rules 255

16.1 The control algorithm 256
Knowledge engineering with truth tables 256
How heat pumps work 257 ■ Using guard lines 257
Saving energy 258

16.2 Setting up 258

16.3 Controlling the heat pumps 259
Enough is enough 260 ■ The moment of truth 261

16.4 Controlling the vents 262
The vent rules 262

16.5 Testing the whole system 263

16.6 Controlling with fuzzy rules 264
Fuzzy logic, briefly 265 ■ The Fuzzy HVAC Controller 269
Exploring the fuzzy controller 282

16.7 What’s next? 282

16.8 Summary 283

CONTENTS xvii
PART 6 TEKMART.COM: RULE-BASED APPLICATIONS
FOR THE WEB .. 285

17 Jess on the Web 287
17.1 Java architectures for the Web 288

Fat-client applications 288 ■ Thin-client applications 290

17.2 A Jess application for the Web 292

17.3 Knowledge engineering 292

17.4 Designing data structures 293

17.5 Writing the rules 295
About testing 295 ■ The recommend-requirements rule 296
Recommending videos and DVDs 297 ■ Conspicuous
consumption 298 ■ More media rules 299

17.6 Refining the recommendations 300

17.7 Some useful queries 301
Maintaining the order number 302

17.8 Cleaning up 303

17.9 Summary 304

 18 Embedding Jess in Java applications 306
18.1 Getting started with the Jess library 307

The executeCommand method 308
Exchanging Java objects 308
Beyond executeCommand 310

18.2 Working with Fact objects in Java 311
Multislots 313 ■ Ordered facts 313
Removing facts 314

18.3 Working with JavaBeans 314

18.4 Calling Jess functions from Java 315

18.5 Working with JessException 316
Nested exceptions 317 ■ Rolling your own 318

18.6 Input and output 319
Using custom routers 320

18.7 Summary 321

xviii CONTENTS
 19 Deploying web-based applications 323
19.1 The Java Servlet API 325

19.2 J2EE and the Tomcat engine 326
Deploying the Hello servlet 326

19.3 Your first Jess servlet 329
Deploying the Jess servlet 330 ■ Cleaning up the URL 331

19.4 Application architecture: take one 331

19.5 Starting the Catalog servlet 332
JavaServer Pages 332 ■ Forwarding to a JSP 333

19.6 Application architecture, take two 335

19.7 The login screen 335

19.8 The Catalog servlet 337
Initializing Jess 337 ■ Getting the login name 338
Starting a user session 339 ■ Querying the product list 340
Invoking the JSP 340 ■ The catalog JSP 341

19.9 Testing 343

19.10 The Recommend servlet 343
Getting started 344 ■ Creating the order 344
Getting the recommendations 345
Forwarding to JSPs 346

19.11 The recommend JSP 346

19.12 The Purchase servlet 348

19.13 Persistence 350

19.14 Deploying the application 351

19.15 What’s next? 352

19.16 Summary 353

PART 7 ENTERPRISE SYSTEMS355

 20 Jess, XML, and the enterprise 357
20.1 Enterprise applications 358

What is the J2EE? 359 ■ What does that stand for? 359

CONTENTS xix
20.2 Rules and XML 360

Interoperability 361 ■ Editing and other processing 362
Storage and retrieval 362

20.3 XML-based rule representations 363

RuleML 363 ■ DAML 364
Homegrown representations 365
Strategies for representing rules in XML 365

20.4 Representing Jess rules in XML 367

An example rule 368 ■ Transforming the XML rules
into Jess rules 369

20.5 Rule editors 372

20.6 Summary 374

 21 Jess in the J2EE environment 375
21.1 A quick tour of EJB concepts 376

Kinds of EJBs 376 n EJB restrictions 377
Do you need to use EJBs? 377
Accessing external resources from EJBs 378

21.2 An RMI-based rule server 379

The remote interfaces 379 ■ Implementing the
interfaces 380 ■ Implementing a main method 382
Generating the stubs 382 ■ A sample client 382
Final polishing 383

21.3 JSR 94: the javax.rules API 383

Working with javax.rules 384
The reference implementation 386

21.4 Summary 388

 A Jess functions 389

 B Abridged Java API for Jess 415

C An automated testing framework 427

index 433

preface
In 1994, I was working in the Scientific Computing department at Sandia National
Laboratories in Livermore, California. We had an impressive (for the time) array
of heterogeneous computing equipment: workstations from Silicon Graphics and
Sun Microsystems, Intel PCs running Linux, Macintoshes galore. I was writing
software agents that managed dynamically distributed computations across this
network. Agents were running on each machine, and they used a sort of “post and
bid” method to decide which machines would run which piece of a computation,
based on machine capabilities and load balancing. The agents were fairly intelli-
gent in their decision-making capabilities, and the plans they developed were
sometimes surprising. Their “brains” were rule engines—software systems that used
rules to derive conclusions from premises.

 That project led to others, and soon I developed an interest in mobile agents—
software entities that can travel from node to node in a computer network, main-
taining their state as they go. Thus was born the idea for a rule engine whose state
could be packaged up, sent across a wire, and reconstituted. The newly released
Java language seemed to be a perfect vehicle for this rule engine—and such was
the origin of Jess™, the rule engine for the Java Platform.1

 Jess is a general-purpose rule engine, developed at Sandia National Laborato-
ries. Written in the Java programming language, Jess offers easy integration with

1 Jess is a registered trademark of the Sandia Corporation.
xxi

xxii PREFACE
other Java-based software. Jess is free for academic and government use, and it
can be licensed for commercial use. You can download a fully functional Home
Edition of Jess free of charge if you own a copy of this book (see chapter 3 for
download instructions). You can use the Jess Home Edition for noncommercial
purposes.

 Jess has evolved quite a bit since its original introduction in 1997, largely in
response to feedback from a global user community. I’ve enjoyed working on Jess
the whole time, and look forward to its continuing evolution in the future.

acknowledgments
Writing a book is a huge project. This is my second book, and somehow I thought
it would be easier this time around. It wasn’t. The original four-month estimate to
write the manuscript has stretched out into much more than a year. I’m very
happy with the results, though. Writing a book about a subject so near and dear as
Jess is to me is a dodgy business: I think I’ve steered clear of the minefields of self-
indulgence and created something that will be useful to everyone interested in
rule-based software.

 Writing a book is such a huge project, in any event, that no one does it alone—
least of all me. I’ve had help from many kind, generous, and talented people dur-
ing the whole time this book was being developed.

 One standout has been Bob Orchard of Canada’s National Research Council.
Bob is the author of the FuzzyJ toolkit and the FuzzyJess extension that adds fuzzy
logic to Jess. He’s been an active member of the Jess community for years. He gen-
erously contributed the essay in chapter 16 showing how to apply the principles of
fuzzy logic to the HVAC Controller example. He also served as both a technical
reviewer and a technical proofreader for this book and provided an exhaustive list
of my (embarrassingly many) typos in the first draft of the manuscript. Thanks,
Bob, for everything!

 Next I must mention the denizens of the Jess mailing list, a friendly community
of smart and generous people who have come together over the years that Jess has
existed. The following people have helped find bugs, helped develop new features,
xxiii

xxiv ACKNOWLEDGMENTS
or contributed their own projects to the Jess community: Abel Martinez, Al Davis,
Alan Moore, Alex Jacobson, Alex Karasulu, Andreas Rasmusson, Andrew Marshall,
Ashraf Afifi, Benjamin Good, Blaine Bell, Bob Orchard, Bob Trelease, Bruce Dou-
glas, Chad Loder, Charles May, Cheruku Srini, Dan Larner, Dave Barnett, Dave
Carlson, Dave Kirby, David Bruce, David Li, David Young, Drew van Duren, Duane
Steward, Ed Katz, Emmanuel Pierre, Eric Eslinger, Fang Liu, George Rudolph,
Glen Tarbox, Glenn Williams, Henrik Eriksson, Ian de Beer, J.P. van Werkhoven,
Jacek Gwizdka, Jack Fitch, Jack Kerkhof, James Gallogly, James Owen, Jason Smith,
Javier Torres, John Callahan, John Collins, Joszef Toth, Juraj Frivolt, Karl Mueller,
Ken Bertapelle, Kenny Macleod, Lakshmi Vempati, Lars Rasmusson, Laurence
Leff, Mariusz Nowostawski, Matt Bishop, Matthew Johnson, Michael Coen, Michael
Friedrich, Michael Futtersack, Michal Fadljevic, Michelle Dunn, Mikael Rundqvist,
Mike Finnegan, Mike Isenberg, Mike Lucero, Miroslav Madecki, Nancy Flaherty,
Ning Zhong, Norman Ghyra, Oliver Hoffman, Osvaldo Pinali Doederlein, Pau
Ortega, Peter Hanson, Peter Klotz, Ralph Grove, Richard Long, Rob Jefson, Robert
Gaimari, Russ Milliken, S. S. Ozsariyildiz, Sander Faas, Scott Kaplan, Scott Track-
man, Sebastian Varges, Seung Lee, Sidney Bailin, Simon Blackwell, Simon Hamil-
ton, Steve Bucuvalas, Thomas Barnekow, Thomas Gentsch, Travis Nelson, William
E. Wheeler, Win Carus, and Yang Xiao. I’m sure I’ve forgotten someone important;
please forgive the oversight.

 The staff at Manning Publications, both past and present, are talented people
and real professionals. I thank Marjan Bace for his guidance and eye for the big
picture; Lianna Wlasiuk for her useful and practical advice in the first stages of
writing; Ann Navarro for her expertise in editing; Tiffany Taylor for the tremen-
dous skill and effort she applied to meticulously copy-editing and formatting my
ill-formed manuscript; Syd Brown, who produced the beautiful example of the
typographer’s art you see before you; Maggie Mitchell, for proofreading; Mary
Piergies, for overseeing the production of this book; Ted Kennedy for gathering a
team of excellent reviewers and organizing the results; Dan Barthel, who got me
started on this book in the first place; and, undoubtedly, many others who worked
behind the scenes.

 Quite a few technical reviewers and friends read the manuscript and provided
detailed and useful comments. This book is vastly improved by their input; any
remaining problems are, of course, my fault. I thank Andrew Grothe, Bob Tre-
lease, David Young, Jeff Wang, John Crabtree, John Mitchell, Mark Watson,
Michael J. Smith, Roedy Green, Said Tabet, Ted Neward, and Daniel Selman (and
of course Bob Orchard) for reading and commenting on the manuscript.

ACKNOWLEDGMENTS xxv
 I deeply appreciate the support I’ve received from my management at Sandia,
both for encouraging Jess’s development over the years and for permission to
write this book in my copious free time. Thanks to Paul Nielan, Ken Washington,
Jim Costa, Len Napolitano, and Mim John. I’m also deeply indebted to my innova-
tive “business partner” Craig Smith, who handles Jess licensing with aplomb.

 Finally, I want to thank my family for their encouragement and support. Every
year with a preschooler is an adventure, and this last one has been no exception.
My wife Stacia deserves special thanks for picking up the slack when I was busy
writing. And to my daughter Danielle: by the time this sentence is printed, I bet
you will be able to read it. I love you both; this book is for you.

about this book
This book was originally conceived in August 2001. As I write these words now in
May 2003, I feel like I’ve stayed quite close to the original concept for the book.
Then, as now, despite the still-growing prominence of rule-based systems in nearly
every field of software development, the few available books on the topic were
heavily theoretical and lacking in real-world examples. With this book, I set out to
change that pattern. The book you’re holding is structured around a series of
large, fully developed, and eminently practical examples of rule-based program-
ming in Java.

 This book can be used in several ways. First, it is a general introduction to rule-
based systems. If you’ve never encountered rule-based systems before, you’ll want
to read part 1 closely. This first section of the book introduces the concepts
behind rule-based systems, discusses their applications, and shows some first
examples of rule-based programs written with Jess. Part 1 also discusses what’s
involved in adopting a rule-based solution at your company. Although the pro-
gramming examples in later chapters use Jess as a vehicle, the concepts presented
will transfer to other rule engines easily.

 Second, this book is a programmer’s manual for the Jess rule language. Part 2
is part Jess language reference and part tutorial. It first introduces you to the lan-
guage, and how the language is integrated with Java. Later chapters in this part
discuss rules and working memory elements—the data that rules operate on.
There’s also a chapter describing some of the theory behind Jess and what makes
it run fast.
xxvi

ABOUT THIS BOOK xxvii
 Finally, this is a cookbook for real rule-based systems. Parts 3 through 6
describe substantial, realistic software systems in enough detail to teach you how
to develop similar systems on your own. Each part presents a rule-based system of
increasing complexity, and also introduces new programming techniques:

■ Part 3 presents an information kiosk, the Tax Forms Advisor, that helps cus-
tomers choose which income tax forms to bring home. You’ll learn how to
collect expert knowledge and condense it into rules. The kiosk as presented
has a simple text-based interface.

■ Part 4 is concerned with the development of the PC Repair Assistant, a help-
desk application with a Swing-based graphical interface. This example
builds on and extends some of the software infrastructure developed for the
Tax Forms Advisor.

■ In Part 5, I’ll guide you through the development of the HVAC Controller, an
intelligent climate-control system for a hypothetical office building. This
part shows how rule-based systems can be interfaced to hardware. A special
section written by Bob Orchard, developer of the FuzzyJ toolkit and the
FuzzyJess extension for Jess, shows how the HVAC Controller can be
enhanced by the use of fuzzy logic.

■ Part 6 is about web-based e-commerce solutions. This part presents a Recom-
mendations Agent that analyzes a customer’s past and present purchases to
recommend additional items of interest. The Recommendations Agent is
embedded in a set of servlets and JavaServer Pages in the Tomcat servlet
engine.

■ Part 7 is a little different. The two chapters in this last part cover various top-
ics relevant to using rule-based systems in enterprise applications, including
using XML as a rule language, and working with application servers, Enter-
prise Java Beans, and the J2EE environment.

The main text does not try to be an exhaustive guide to all of Jess; instead it con-
centrates on those features relevant to the example applications. The first two
appendices provide some additional detail. Appendix A includes a description of
each of the functions built into the Jess language, and appendix B presents the
highlights of Jess’s Java APIs.

 The development methodology used in this book emphasizes testing. Appen-
dix C presents a simple automated testing framework that can be used to test Jess
applications. The code for this framework is available from this book’s web site.

xxviii ABOUT THIS BOOK
Who should read this book?

Because this book can be used in several different ways, it has several distinct pos-
sible audiences. Part 1 is an introduction to rule-based systems for any student of
information technology, practitioners and management alike. The later parts of
the book are aimed squarely at programmers. I’ve assumed an intermediate
knowledge of the Java programming language throughout. Occasionally I explain
a Java concept, but most of the time, I just imagine that you understand.

 The audience I thought of most as I wrote are intermediate Java programmers
with little or no exposure to rule-based systems, who are interested in getting that
exposure.

 This book is also suitable as a text for a university course on practical rule-
based systems development. The course prerequisites should include a course on
Java programming. The course content would include parts 1, 2, and 3 of the
book, followed by either part 5 or part 6. Additional material could be used as
time permits, of course.

Source code downloads

The code for all the major examples and applications in this book is available
from the book’s web site, www.manning.com/friedman-hill. You can also down-
load a special version of Jess from this web site.

Typographical conventions

This book includes listings of code in both the Jess and Java languages. It also con-
tains transcripts of interactive sessions at the Jess prompt. All of these are set in
monospace type. Keywords, function names, variable names, and symbols in any
language are also set in monospace when they occur in the main text. It is gener-
ally clear from context whether I’m talking about Jess code or Java code, because
the two don’t look much alike.

 In the interactive session transcripts, the Jess prompt and things that you enter
are all shown in normal monospace type, while responses printed by Jess are
shown in italic.

 In step-by-step examples, text that you are to type appears in bold.

author online
Purchase of Jess in Action includes free access to a private web forum run by Man-
ning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/friedman-
hill. This page provides information on how to get on the forum once you are reg-
istered, what kind of help is available, and the rules of conduct on the forum.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the AO remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s web site as long as the book is in print.
xxix

about the title
By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them in action. The books in this series are
designed for such readers.
xxx

about the cover illustration
The figure on the cover of Jess in Action is a “Muger del Xeque,” a sheik’s wife. The
illustration is taken from a Spanish compendium of regional dress customs first
published in Madrid in 1799. A sheik was the head of an Arab clan or tribe and
the richness of his wife’s robes and jewelry would be considered a testament to his
authority and wealth.

 The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas del
Mundo desubierto, dibujados y grabados con la mayor exactitud por R.M.V.A.R.
Obra muy util y en special para los que tienen la del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known world,
designed and printed with great exactitude by R.M.V.A.R. This work is very useful
especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this
drawing. The “Muger del Xeque” is just one of many figures in this colorful col-
lection. Their diversity speaks vividly of the uniqueness and individuality of the
world’s towns and regions just 200 years ago. This was a time when the dress codes
of two regions separated by a few dozen miles identified people uniquely as
belonging to one or the other. The collection brings to life a sense of isolation
xxxi

xxxii ABOUT THE COVER ILLUSTRATION
and distance of that period—and of every other historic period except our own
hyperkinetic present.

 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 In spite of the current downturn, we at Manning celebrate the inventiveness,
the initiative, and, yes, the fun of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by
the pictures from this collection.

Part 1

Introducing
rule-based systems

What are rule-based systems? What are they good for? Where did they come
from? Are they right for you? What should you do if you want to build one? These
are the questions we’ll begin to address in part 1. You’ll learn what rule-based sys-
tems are, about their history, and about their many uses. We’ll also look at how to
decide when a rule-based solution is appropriate for your application. Finally,
you’ll learn about how rule-based systems are implemented, and some strategies
for developing them.

Rules to the rescue
In this chapter you’ll…
■ Be introduced to the Jess programming language
■ Analyze a rule-based program
■ See familiar examples of rule-based systems
3

4 CHAPTER 1
Rules to the rescue
Rule-based software is in regular use in practically every business, school, and
home. In this chapter, we’ll look at some examples of how rules are used to solve
common problems. Because most programmers learn best by doing, you’ll start by
writing a rule-based program of your own.

1.1 Math class melee

“The answer, please?”
 The stern voice startles you. You were dozing in Mrs. Rosencrantz’s high school

math class again. You realize at once that she’s been talking to you.
 “Well?”
 You look at the blackboard. It’s one of those word puzzles, the logic kind. Mrs.

Rosencrantz is waiting for you to solve it. You quickly scan what she’s scrawled on
the board with her crone’s hand:

■ A foursome of golfers is standing at a tee, in a line from left to right. Each
golfer wears different colored pants; one is wearing red pants. The golfer to
Fred’s immediate right is wearing blue pants.

■ Joe is second in line.
■ Bob is wearing plaid pants.
■ Tom isn’t in position one or four, and he isn’t wearing the hideous orange

pants.
■ In what order will the four golfers tee off, and what color are each golfer’s

pants?”

You get the gist of it right away, but how on earth are you supposed to figure it
out? There’s no formula to use, no analytic procedure for deriving a solution.
Algebra was one thing, but this? Why weren’t you paying attention in class?

 Rules to the rescue! A rule-based program can satisfy Mrs. Rosencrantz by effi-
ciently finding the one combination of names, positions, and colors that fits all
the constraints. You can directly translate the problem statement into rules, and
the rules will find the solution.

 Let’s write that program to see how a rule-based system would solve this prob-
lem. You’ll write the program in the Jess language. Don’t be concerned that you
don’t know the Jess language yet—right now, I’d just like you to understand the
approach. You’re going to:

1 Choose a way to represent the possible combinations of men’s names, posi-
tions, and pants colors.

2 Write one rule that describes the problem.

Math class melee 5
The Jess rule engine will find the solution automatically. Let’s get started.
 The first step is to define data structures to represent the smallest useful pieces

of a possible solution to the problem: a link between a name and either a position
or a color:

(deftemplate pants-color (slot of) (slot is))
(deftemplate position (slot of) (slot is))

A deftemplate is a bit like a class declaration in Java. While class objects have
member variables, deftemplates have slots. Each slot is a placeholder for a spe-
cific piece of information. For example, the pants-color template has a slot
named of for a person’s name and a slot named is to hold a color. Whereas a Java
class is a definition of a type of object, a template is a definition for a type of fact (a
fact is basically what it sounds like: a piece of possibly useful information.) A
pants-color fact represents the idea that one specific golfer (named in the of
slot) has a certain color pants (named in the is slot.)

 You’ll use these templates to create facts representing each of the possible
combinations. There are 32 of them altogether—for example:

(pants-color (of Bob) (is red))
(position (of Joe) (is 3))

You can write a rule to create all 32 of these facts and put them into working mem-
ory, a kind of scratch space Jess uses to store the facts it knows:

(defrule generate-possibilities
 =>
 (foreach ?name (create$ Fred Joe Bob Tom)
 (foreach ?color (create$ red blue plaid orange)
 (assert (pants-color (of ?name)
 (is ?color))))

 (foreach ?position (create$ 1 2 3 4)
 (assert (position (of ?name)
 (is ?position))))))

This code loops (using foreach) over the four names given in the problem and
creates (using assert) a pants-color fact for each of the possible name/color
pairs and a position fact for each name/position pair, for a total of 32 facts. The
function create$ returns a list of its arguments.

 Now that you’ve written a rule to create all the possible combinations, you’ll
write a second rule to search through them to find the subset of facts that repre-
sent the solution. This is the fun part. You’ll translate each sentence in the prob-
lem statement directly into code. First, note that you use a symbol starting with a
question mark, like ?c, to write a variable in Jess. You’ll use the variable ?c to

6 CHAPTER 1
Rules to the rescue
represent “some color”; ?p to represent “some position”; ?n to mean “some
name”; and ?c1…?c4 and ?p1…?p4 to represent Fred, Joe, Bob, and Tom’s
pants color and position, respectively.

 Here’s the first useful sentence, The golfer to Fred’s immediate right is wearing
blue pants:

(defrule find-solution
 ;; There is a golfer named Fred, whose position is ?p1
 ;; and pants color is ?c1
 (position (of Fred) (is ?p1))
 (pants-color (of Fred) (is ?c1))

 ;; The golfer to Fred's immediate right
 ;; is wearing blue pants.
 (position (of ?n&~Fred)
 (is ?p&:(eq ?p (+ ?p1 1))))
 (pants-color (of ?n&~Fred)
 (is blue&~?c1))

In this code snippet, the variable ?n represents the unknown name of the person
to Fred’s right, ?p1 is Fred’s unknown position, ?c1 is the unknown color of
Fred’s pants, and ?p is the unknown golfer’s position. In these patterns, & means
and and ~ means not, so (name ?n&~Fred) means that this person’s name, call it
?n, is not Fred. Here’s the next line (Joe is second in line):

 ;; Joe is in position #2
 (position (of Joe) (is ?p2&2&~?p1))
 (pants-color (of Joe) (is ?c2&~?c1))

Note that you must be careful to read between the lines of the problem as you
write this rule. You know every golfer is in a different position, so you can say with
confidence that ?p2&2&~?p1—Joe’s position, call it ?p2, the value of which is 2, is
not the same as Bob’s position ?p1. It’s possible that ?p2 and ?p are the same,
though: Joe might be to Fred’s immediate right, so you don’t mention ?p here.

 Now the next line of the problem, Bob is wearing plaid pants:

 ;; Bob is wearing the plaid pants
 (position (of Bob)
 (is ?p3&~?p1&~?p&~?p2))
 (pants-color (of Bob&~?n)
 (is plaid&?c3&~?c1&~?c2))

By now you know a lot about Bob’s position ?p3 and pants color ?c3. You know
?p3 is not the same as ?p1 or ?p2, and you also know it’s not the same as ?p. Why?
Because the golfer in position ?p wears blue pants, and Bob’s pants are plaid, and
the golfers in ?p1 and ?p2 are named Fred and Joe, not Bob.

Math class melee 7
 Finally, you know a lot about Tom (Tom isn’t in positions one or four, and he isn’t
wearing the hideous orange pants):

 ;; Tom isn't in position 1 or 4
 ;; and isn't wearing orange
 (position (of Tom&~?n)
 (is ?p4&~1&~4&~?p1&~?p2&~?p3))
 (pants-color (of Tom)
 (is ?c4&~orange&~blue&~?c1&~?c2&~?c3))

There are only four positions, but you know Tom’s position is not 1, not 4, and
not ?p1, ?p2, or ?p3—more constraints than there are possibilities. This is actu-
ally a good sign; it suggests that you have more than enough information to solve
the puzzle. You can place a similar number of constraints on Tom’s fashion
choices.

 All that is left is to print out the set of variables ?p1…?p4 and ?c1…?c4 that
solves the problem:

 =>
 (printout t Fred " " ?p1 " " ?c1 crlf)
 (printout t Joe " " ?p2 " " ?c2 crlf)
 (printout t Bob " " ?p3 " " ?c3 crlf)
 (printout t Tom " " ?p4 " " ?c4 crlf crlf))

The symbol => separates the if part of the rule from the then part—it specifies
what the rule should do if all the requirements are satisfied. Here it prints a table
of results. If you enter the code for the problem into Jess and then run it, you get
the answer directly. The source for this problem is in the file rosencrantz.clp,
and you can run it like this:

C:\Jess61> java –classpath jess.jar jess.Main rosencrantz.clp
Fred 1 orange
Joe 2 blue
Bob 4 plaid
Tom 3 red

You see that exactly one set of variables satisfies the problem. Joe turns out to be
the mysterious man in the blue pants, and Fred (the tasteless golfer in the orange
ones) will tee off first.

 What would happen if some of the information was missing? For example, sup-
pose you didn’t know that Joe was second at the tee—how would this affect the
results? Let’s give it a try. If you change Joe’s section of the program like so:

 ;; We don't know anything about Joe, really
 (position (of Joe) (is ?p2&~?p1))
 (pants-color (of Joe) (is ?c2&~?c1))

8 CHAPTER 1
Rules to the rescue
and then run it, you get the following result:

Fred 3 orange
Joe 4 blue
Bob 1 plaid
Tom 2 red

Fred 2 orange
Joe 4 blue
Bob 1 plaid
Tom 3 red

Fred 2 orange
Joe 1 blue
Bob 4 plaid
Tom 3 red

Fred 1 orange
Joe 2 blue
Bob 4 plaid
Tom 3 red

Fred 1 orange
Joe 3 blue
Bob 4 plaid
Tom 2 red

Fred 1 orange
Joe 4 blue
Bob 3 plaid
Tom 2 red

Now there are six different solutions, and Jess finds and reports them all. This is
another strength of rule-based programming: Rule-based systems can degrade
gracefully in the presence of incomplete information. You didn’t have to build
this quality into the program—it’s just there.

1.1.1 Beyond logic puzzles

When you wake up from the recurring math-class nightmare, you may be relieved
to think that solving logic puzzles is a far cry from your normal duties as a pro-
grammer. But that’s really not so. Ill-defined problems like this logic puzzle
abound in business environments. A human-resources application may need to
flag personnel with a suspicious pattern of insurance claims. A requirement for a
financial application might be to recommend buying securities that look promis-
ing. Manufacturing software could raise an alarm and shut down an assembly line
if quality-assurance results indicate there may be a production problem.

Some real-world examples 9
 What do suspicious, promising, and may be a problem mean, exactly? They proba-
bly can’t be expressed as equations—it’s possible they can’t be given a precise def-
inition at all. If they each can be described as a set of constraints and guidelines,
however, then a rule-based program can implement them easily. In the rest of this
chapter, we’ll look at some common applications of rule-based programming.

1.2 Some real-world examples

You are probably affected by rule-based software every day, whether you realize it
or not. Many commonplace activities in a modern office are controlled by rules.
Let’s look at a few examples.

1.2.1 Mail filtering

“I can’t keep up with all the email I get!” is a common complaint in this Net-con-
nected world. Huge numbers of email messages are sent, delivered, and read
every day. Rules to the rescue! There are many technological solutions to the prob-
lem of sorting email, and almost without exception, these solutions are simple
rule-based systems.

 The venerable program sendmail (http://www.sendmail.org/) delivers most
of the email on the Internet. It sports a famously cryptic rule-based configuration
language. The following example is lifted verbatim from the sendmail web site. It
shows a sendmail rule that translates BITNET addresses like decvax!user and
research!user into user@decvax.dec.com and user@research.att.com, respectively:

translate UUCP addresses to SMTP ones
LOCAL_RULE_3
UUCPSMTP(`decvax', `decvax.dec.com')
UUCPSMTP(`research', `research.att.com')

Microsoft Outlook, Eudora, Netscape Messenger, OS X Mail, and other popular
mail clients include the ability to automatically sort messages into mailboxes
according to the sender’s address, the recipient’s address, the subject, and other
characteristics. In all cases, the user programs the filter in a rule-based language.
For these graphical mail clients, the rule language is generally a pattern of check-
boxes and pop-up menus in a mail-filtering dialog box.

 Programs like procmail (http://www.procmail.org/) and filter (http://
www.math.fu-berlin.de/~guckes/elm/elm.index.html) do this same kind of filter-
ing in batch mode on Unix systems. I’d personally perish under the weight of the
hundreds of messages I receive each day without procmail to sort through and

10 CHAPTER 1
Rules to the rescue
organize my mail. Instead of dialog boxes, these programs offer a simple textual
language. For example, here are two of the rules in my procmail configuration:

Put all messages mentioning Jess in their subject line
into the IN.jess-users folder.
:0:
* ^Subject:.*jess
Mail/IN.jess-users

Send all messages from "Out-of-Office Autoreply" to
/dev/null – the UNIX "Trash can."
:0:
* ^From:.*Autoreply
/dev/null

Other programs exist that can automatically filter mail at a mail server to remove
spam or to strip viruses from attachments. Again, these programs offer a wide
range of features and interfaces, generally programmed via rules.

 Email handling is one common example of how rules can make life easier for
individuals. Now let’s look at some applications of rules in the enterprise.

1.2.2 Product configuration

When a complex, customizable product like a computer is sold to a customer, the
seller must make sure the order corresponds to a functional system. If a given
peripheral requires a specific cable, then the order must include that cable. Like-
wise, if the chassis can hold only two full-height disk drives, then the order better
not include four of them. For many kinds of custom-manufactured goods, hun-
dreds or thousands of these kinds of restrictions exist, making order validation a
difficult and painstaking process.

 The XCON system and its predecessors,1 developed at Digital Equipment Cor-
poration (DEC), are well-known examples of using rule-based systems in this
application area. The original XCON included 210 rules for validating orders for
DEC hardware. By 1989, XCON included 17,500 rules and knew about 31,000
hardware components. The estimated savings to DEC at the time was $40 million
annually due to increased accuracy, reduced testing costs, and higher customer
satisfaction, compared to configuration by human workers. Such systems have
become common not only in manufacturing but in the mail-order and Internet
sales industry, where rule-based systems help to recommend related products,

1 D. O’Connor and V. Barker, “Expert Systems for Configuration at Digital: XCON and Beyond,” Com-
munications of the ACM 32, no. 3 (1989).

Some real-world examples 11
optimize packaging, and perform other routine order-configuration tasks. Part VI
of this book describes a series of web-enabled systems for order configuration
built around the Jess rule engine using Java servlets and JavaServer pages.

1.2.3 Implementing business rules

Corporations invariably define policies and strategies that specify how the busi-
ness should respond to events ranging from individual sales to hostile takeover
attempts. A business rule is a policy or strategy written in executable form, such that
a computer can follow it. Here are two simple examples of business rules govern-
ing common situations:

IF
 employee's length of service > 1 year
AND employee category is regular employee
AND employee contributes to 401k plan
THEN
 employee is vested in 401k plan
END

IF
 customer order is more than ten units
AND customer type is wholesaler
THEN
 deduct 10 percent from order
END

If a company’s business rules are implicit—not written as rules per se, but embed-
ded in procedural logic—and scattered throughout corporate computer applica-
tions, then a change in a single policy might require significant programmer
effort to implement. Furthermore, if business rules are to be embedded directly
into application software, it becomes difficult to use commercial, off-the-shelf
(COTS) products, increasing the company’s development costs. The corporation
will be forced to make a choice between containing development costs and mak-
ing policy adjustments in response to changing circumstances.

 The solution to this dilemma is to remove the business rules from the individ-
ual applications, make them explicit, and embed them in a centralized rule engine
for execution. Any business policy can then theoretically be changed at a single
point. The rule engine is often embedded in a network-based server so that it can
be accessible across an enterprise.

 This enterprise-level use of a rule engine is probably the fastest growing and
most visible market for rule-based systems programming today. Some application
servers, like BEA’s WebLogic, include integrated rule engines. Other vendors like
ILOG sell rule engines meant to be used with third-party servers. There are literally

12 CHAPTER 1
Rules to the rescue
dozens of rule engines to choose from, targeted toward this product niche. Part
VII of this book discusses the use of rule engines in general and the Jess rule
engine in particular in enterprise applications based on the Java 2 Enterprise Edi-
tion (J2EE) architecture.

1.3 Summary

Rule-based programs are everywhere. Their applications include everything from
mail filtering to order configuration, and from monitoring chemical plants to
diagnosing medical problems. Rule-based programs excel at solving problems
that are difficult to solve using traditional algorithmic methods, and they work
even when the input data is incomplete.

 In the next chapter, we’ll refine our definition of a rule-based system. You’ll
learn about the history of rule-based systems and about their architecture. We’ll
also look at the development cycle for rule-based programs. By the end of the
next chapter you’ll be ready to begin learning how to write your own rule-based
software.

What are rule-based systems?
In this chapter you’ll…
■ Be introduced to declarative programming
■ Learn the architecture of a typical rule-based

system
■ See a method for developing rule-based systems
■ Read about industry standards for rules and rule

engine APIs
13

14 CHAPTER 2
What are rule-based systems?
There’s an old saying that “when all you’ve got is a hammer, everything looks
like a nail.” In computer programming, too, it’s important to choose the right
tool for the right job. Some problems can be solved easily using traditional pro-
gramming techniques, whereas writing a rule-based system is the easiest way to
solve others. Other problems are in the middle, and either technique will work
equally well. This chapter will help you understand which problems are well
suited to being solved with a rule-based system, and what this type of software is
all about.

2.1 The cooking/driving robot

Imagine your first day on the job at Acme Advanced Robotics Corporation.
Acme has built some great humanoid robot prototypes, but the company is hav-
ing trouble teaching its robots to survive in the real world. You’ve been brought
in to write some high-level robot control software so that Acme can begin selling
robot butlers to the masses. You decide to start with something simple: breakfast.

 How do you teach a robot to prepare a bowl of breakfast cereal? Assume for
the moment that the robot knows how to recognize, pick up, and interact with
objects, and that the robot will operate in a closed, controlled, optimal environ-
ment. It is be a straightforward program: Tell the robot to get a bowl, a spoon,
and a napkin, and set them on the table. Then, the robot should open a box of
cereal, fill the bowl, and add milk. If you were writing a computer program for a
sophisticated cereal-serving robot, it might look something like this:

START
putOnTable(Bowl)
putOnTable(Spoon)
putOnTable(Napkin)
open(Cereal)
pour(Cereal)
open(Milk)
pour(Milk)
eat(Cereal, Spoon)
END

The cereal program, with its predictable linear control flow, is typical of many
small computer programs. Calculating the value of an equation, computing a
customer’s bill at a shopping mall, even rendering a single frame of a complex
video game, are all variations on the same sort of linear, deterministic process, in
which each step follows inevitably from the last. Such programs are often called
procedural programs—they solve a problem in a straightforward, predictable way.
Traditional software development techniques can be used to write programs such

The cooking/driving robot 15
as the cereal program to good effect. You wouldn’t write a rule-based program to
solve the cereal problem. In general, problems that have a well-known algorith-
mic solution should be solved using a traditional procedural approach.

 Emboldened by your success, you now think about teaching the same robot
how to drive a car in the real world. You have to tell the robot to search for its
keys and driver’s license—but only if it isn’t already carrying them. You tell the
robot how to start the car, put the car in reverse, and back out of the garage—but
only if the garage door is already open! The instructions probably need to cover
the different behaviors of cold motors and warm motors, how to use both man-
ual and automatic transmissions, and different types of emergency brakes. And
the instructions will become far more complex once the car begins to move.

 This time, the instructions are filled with many context-sensitive decisions—
in fact, there are more decisions than actions. The control flow includes many
loops and branches. It would be next to impossible to write a single list of
instructions covering every situation that might possibly arise, considering that
circumstances interact to constantly change the correct outcomes of each deci-
sion. For example, seeing a child’s ball roll into the road is not a serious situation
when the car isn’t moving, but it requires prompt and decisive action when the
car is driving toward the bouncing ball.

 If it’s impossible to write a procedural program to control your robot, how can
you do it? You can use declarative programming instead.

2.1.1 Declarative programming: a different approach

Much of the programming we do is procedural. Rule-based programming, how-
ever, is declarative.

 In procedural programming, the programmer tells the computer what to do,
how to do it, and in what order. Procedural programming is well suited for prob-
lems in which the inputs are well specified and for which a known set of steps can
be carried out to solve the problem. Mathematical computations, for example,
are best written procedurally.

 Note that I’m using procedural in a slightly different way than is conventional.
Although object-oriented programming is traditionally contrasted with the older
procedural programming, for the purposes of this discussion, the two are equiv-
alent. In both procedural and object-oriented programming, the programmer
writes all the logic that controls the computer, although it is partitioned differ-
ently in an object-oriented program.

 A purely declarative program, in contrast, describes what the computer should
do, but omits much of the instructions on how to do it. Declarative programs

16 CHAPTER 2
What are rule-based systems?
must be executed by some kind of runtime system that understands how to fill in
the blanks and use the declarative information to solve problems. Because declar-
ative programs include only the important details of a solution, they can be easier
to understand than procedural programs. Furthermore, because the control flow
is chosen by the runtime system, a declarative program can be more flexible in
the face of fragmentary or poorly conditioned inputs (when you removed some of
the information from Mrs. Rosencrantz’s problem in chapter 1, the same pro-
gram, unchanged, was still able to find the possible solutions). Declarative pro-
gramming is often the natural way to tackle problems involving control,
diagnosis, prediction, classification, pattern recognition, or situational aware-
ness—in short, many problems without clear algorithmic solutions. Programming
a cooking, driving robot declaratively will be a breeze!

 Although the driving program would be hard to write in a procedural style, it
is an ideal candidate to be written as a declarative program. A rule-based pro-
gram doesn’t consist of one long sequence of instructions; instead, it is made up
of discrete rules, each of which applies to some subset of the problem. A few
rules plucked from the robot’s driving program might look like these:

IF
 the engine has stalled
THEN
 start car
END

IF
 you hear sirens
AND you are driving
THEN
 pull over to curb
END

IF
 you see brake lights
AND you are getting closer to them
THEN
 depress the brake pedal
END

In a rule-based program, you write only the individual rules. Another program,
the rule engine, determines which rules apply at any given time and executes
them as appropriate. As a result, a rule-based version of a complex program can
be shorter and easier to understand than a procedural version. Writing the pro-
gram is simpler, because you can concentrate on the rules for one situation at a
time. Modifying the program is also simpler—if you’ve ever had to work on a

Rules and rule engines 17
program containing a dozen levels of nested if statements, you’ll understand
why. In the rest of this chapter, we’ll formalize some of the ideas behind rule-
based systems and see how they are constructed.

2.2 Rules and rule engines

A rule is a kind of instruction or command that applies in certain situations. “No
chewing gum in school,” “no running with scissors,” and other rules of that ilk,
are some of the first explicit rules we learn. “Where there is smoke, there’s fire”
and Murphy’s Law (“Whatever can go wrong, will go wrong”) are others that we
learn throughout our lives.1 Using this very general definition, you might con-
clude that all the knowledge you have about the world can be encoded as rules.
Experience shows that this is often (but not always) the case. In general, any
information you can think about in logical terms can be expressed as rules.

 Rules are a lot like the if-then statements of traditional programming lan-
guages. You might write a gum-chewing rule like this, in an English-like
pseudocode:

IF
 I am in school
AND I am chewing gum
THEN
 spit out the gum
END

The if part of a rule written in this form is often called its left-hand side (often
abbreviated LHS), predicate, or premises; and the then part is the right hand side
(RHS), actions, or conclusions.

 The domain of a rule is the set of all information the rule could possibly work
with. In this hypothetical case, the domain of the chewing rule is a set of facts
about the location and oral fixations of one particular person.

 A rule-based system is a system that uses rules to derive conclusions from premises:
Given the gum-chewing rule and the premise that you are in school, you (as an
advanced kind of rule-based system yourself) might conclude that it’s time to spit
out your gum. In this book, the systems we’re talking about are a specific category

1 One reviewer pointed out that this popular proverb is properly called Finagle’s Law, and that the orig-
inal formulation of Murpny’s Law was, “If there are two or more ways to do something, and one of
those ways can result in a catastrophe, then someone will do it.” I chose not to go against popular us-
age here, but the pedant in me appreciated this fact enough to add a footnote. For more information,
see The Jargon File—for instance, http://info.astrian.net/jargon/terms/f/Finagle_s_Law.html.

18 CHAPTER 2
What are rule-based systems?
of computer programs. These programs are sometimes called rule engines. A rule
engine doesn’t contain any rules until they are programmed in. A rule engine
knows how to follow rules, without containing any specific knowledge itself.

 A rule engine is generally part of a rule development and deployment environment.
The features offered by these environments vary widely, depending on the
intended applications for the rule engine and on the type of programmer
intended to develop the systems. This book will show you how to develop and
deploy rule-based systems in general. To do so, it will use the Jess rule engine in
all its examples.

2.2.1 Expert systems

Expert systems, rule-based computer programs that capture the knowledge of
human experts in their own fields of expertise, were a success story for artificial
intelligence research in the 1970s and 1980s. Early, successful expert systems
were built around rules (sometimes called heuristics) for medical diagnosis, engi-
neering, chemistry, and computer sales. One of the early expert system successes
was MYCIN,2 a program for diagnosing bacterial infections of the blood. Expert
systems had a number of perceived advantages over human experts. For
instance, unlike people, they could perform at peak efficiency, 24 hours a day,
forever. There are numerous dramatic examples in the computer science litera-
ture of these early systems matching or exceeding the performance of their
human counterparts in specific, limited situations. Predictions were made that
someday, sophisticated expert systems would be able to reproduce general
human intelligence and problem-solving abilities.

 Over time, of course, the drama receded, and it became clear that researchers
had vastly underestimated the complexity of the common-sense knowledge that
underpins general human reasoning. Nevertheless, excellent applications for
expert systems remain to this day. Modern expert systems advise salespeople, sci-
entists, medical technicians, engineers, and financiers, among others.

 Today, general rule-based systems, both those intended to replace human
expertise and those intended to automate or codify business practices or other
activities, are a part of virtually every enterprise. These systems are routinely
used to order supplies, monitor industrial processes, prescreen résumés, route
telephone calls, and process web forms. Many commercial application servers

2 R. Davis, B. G. Buchanan, and E. H. Shortliffe, “Production Systems as a Representation for a Knowl-
edge-Based Consultation Program,” Artifical Intelligence 8 (1977): 15–45.

Architecture of a rule-based system 19
incorporate a rule engine, and most others explicitly or implicitly offer integra-
tion with one. Expert systems really have become ubiquitous—we just don’t call
them by that name anymore.

2.3 Architecture of a rule-based system

The rules in the first expert systems were intertwined with the rest of the soft-
ware, so that developing a new expert system meant starting from the ground
up. The folks who wrote MYCIN, recognizing this fact, created a development
tool named EMYCIN.3 EMYCIN (Empty MYCIN) was developed by removing all
the medical knowledge from MYCIN, leaving behind only a generic framework
for rule-based systems. EMYCIN was the first expert system shell. An expert system
shell is just the inference engine and other functional parts of an expert system
with all the domain-specific knowledge removed. Most modern rule engines can
be seen as more or less specialized expert system shells, with features to support
operation in specific environments or programming in specific domains. This
book is about this kind of rule engine.

 A typical rule engine contains:

■ An inference engine
■ A rule base
■ A working memory

The inference engine, in turn, consists of:

■ A pattern matcher
■ An agenda
■ An execution engine

These components are shown schematically in figure 2.1.

3 W. Van Melle, “A Domain-Independent Production Rule System for Consultation Programs,” Interna-
tional Joint Conference on Artificial Intelligence (1979): 923–925.

20 CHAPTER 2
What are rule-based systems?

2.3.1 The inference engine

If you wanted to write your own rule engine, where would you start? You might
begin with the most important component. The primary business of a rule
engine is to apply rules to data. That makes the inference engine the central part
of a rule engine.

 The inference engine controls the whole process of applying the rules to the
working memory to obtain the outputs of the system. Usually an inference
engine works in discrete cycles that go something like this:

1 All the rules are compared to working memory (using the pattern matcher)
to decide which ones should be activated during this cycle. This unordered
list of activated rules, together with any other rules activated in previous
cycles, is called the conflict set.

2 The conflict set is ordered to form the agenda—the list of rules whose
right-hand sides will be executed, or fired. The process of ordering the
agenda is called conflict resolution. The conflict resolution strategy for a
given rule engine will depend on many factors, only some of which will
be under the programmer’s control.

3 To complete the cycle, the first rule on the agenda is fired (possibly
changing the working memory) and the entire process is repeated. This

Figure 2.1
The architecture of a typical
rule-based system. The pattern-
matcher applies the rules in the
rule-base to the facts in working
memory to construct the
agenda. The execution engine
fires the rules from the agenda,
which changes the contents of
working memory and restarts
the cycle.

Architecture of a rule-based system 21
repetition implies a large amount of redundant work, but many rule
engines use sophisticated techniques to avoid most or all of the redun-
dancy. In particular, results from the pattern matcher and from the
agenda’s conflict resolver can be preserved across cycles, so that only the
essential, new work needs to be done.

Many beginning rule programmers have difficulty with the idea that the rule
engine will decide the order in which the rules will be fired, but this is actually
one of the great strengths of rule-based programming. The rule engine can
more or less create a custom program for each situation that arises, smoothly
handling combinations of inputs the programmer might not have imagined.

2.3.2 The rule base

Your rule engine will obviously need somewhere to store rules. The rule base con-
tains all the rules the system knows. They may simply be stored as strings of text,
but most often a rule compiler processes them into some form that the inference
engine can work with more efficiently. For an email filter, the rule compiler might
produce tables of patterns to search for and folders to file messages in. Jess’s rule
compiler builds a complex, indexed data structure called a Rete network. A Rete
network is a data structure that makes rule processing fast. Chapter 8 describes
how Jess’s rule compiler works.

 In addition, the rule compiler may add to or rearrange the premises or con-
clusions of a rule, either to make it more efficient or to clarify its meaning for
automatic execution. Depending on the particular rule engine, these changes
may be invisible to the programmer.

 Some rule engines allow (or require) you to store the rule base in an external
relational database, and others have an integrated rule base. Storing rules in a
relational database allows you to select rules to be included in a system based on
criteria like date, time, and user access rights.

2.3.3 The working memory

You also need to store the data your rule engine will operate on. In a typical rule
engine, the working memory, sometimes called the fact base, contains all the pieces
of information the rule-based system is working with. The working memory can
hold both the premises and the conclusions of the rules. Typically, the rule
engine maintains one or more indexes, similar to those used in relational data-
bases, to make searching the working memory a very fast operation.

22 CHAPTER 2
What are rule-based systems?
 It’s up to the designer of the rule engine to decide what kinds of things can
be stored in working memory. Some working memories can hold only objects of
a specific type, and others can include, for example, Java objects.

2.3.4 The pattern matcher

Your inference engine has to decide what rules to fire, and when. The purpose of
the pattern matcher is to decide which rules apply, given the current contents of
the working memory. In general, this is a hard problem. If the working memory
contains thousands of facts, and each rule has two or three premises, the pattern
matcher might need to search through millions of combinations of facts to find
those combinations that satisfy rules. Fortunately, a lot of research has been done
in this area, and very efficient ways of approaching the problem have been
found. Still, for most rule-based programs, pattern matching is the most expen-
sive part of the process. Beginning rule programmers often overlook this fact,
expecting the procedural right-hand sides of their rules to represent all the com-
putational effort in their program. The solution to Mrs. Rosencrantz’s problem
involved lots of pattern matching and no procedural code at all (except to print a
report at the end). Often the pattern-matching technique used by a particular
rule engine will affect the kinds of rules you write for that engine, either by limit-
ing the possibilities or by encouraging you to write rules that would be particu-
larly efficient.

2.3.5 The agenda
Once your inference engine figures out which rules should be fired, it still must
decide which rule to fire first. The list of rules that could potentially fire is stored
on the agenda. The agenda is responsible for using the conflict strategy to decide
which of the rules, out of all those that apply, have the highest priority and
should be fired first. Again, this is potentially a hard problem, and each rule
engine has its own approach. Commonly, the conflict strategy might take into
account the specificity or complexity of each rule and the relative age of the pre-
mises in the working memory. Rules may also have specific priorities attached to
them, so that certain rules are more important and always fire first.

 As an example, the driving robot’s control program might have two rules like
these:

IF
 the light is green
THEN
 go
END

Developing rule-based systems 23
IF
 a person is in front of you
THEN
 stop
END

If the robot is stopped for a red light, and the light turns green when someone is
still in the crosswalk, then both rules will apply. It is important that the second
rule fire before the first, or the future of driving robots will be in serious peril.
This second rule should therefore be given a very high priority.

2.3.6 The execution engine

Finally, once your rule engine decides what rule to fire, it has to execute that
rule’s action part. The execution engine is the component of a rule engine that
fires the rules. In a classical production system such as MYCIN, rules could do
nothing but add, remove, and modify facts in the working memory. In modern
rule engines, firing a rule can have a wide range of effects. Some modern rule
engines (like Jess) offer a complete programming language you can use to define
what happens when a given rule fires. The execution engine then represents the
environment in which this programming language executes. For some systems,
the execution engine is a language interpreter; for others, it is a dispatcher that
invokes compiled code.

2.4 Developing rule-based systems

This book is a hands-on guide to building useful rule-based systems. Each indi-
vidual project in this book covers some aspect of this task, presenting realistic
examples of every step along the way. In this section, we look at an overview of
the development process we will follow in later chapters.

2.4.1 Knowledge engineering

The first step in the development of any rule-based system is to begin collecting
the knowledge from which the rules will be derived. People who do this for a liv-
ing are called knowledge engineers. Knowledge engineering can be tricky, particu-
larly if the knowledge has to come from human experts. Experts aren’t always
cooperative, and even if they are, they don’t always know how to explain the pro-
cedures they follow. On the other hand, many experts respond well to interviews,
and you can ask questions to fill in gaps in the expert’s explanations.

 If you are developing a rule-based system that is strictly based on a proce-
dures manual or other document, or if a human expert is not available, then the

24 CHAPTER 2
What are rule-based systems?
knowledge may be collected directly from written sources. Collecting knowledge
from books and other reference material has its own advantages and disadvan-
tages. Although books are generally more organized than human experts, they
can be lacking in the kind of practical rules of thumb (or heuristics) that a practi-
tioner can supply. On the other hand, you rarely have scheduling and other
logistical problems when attempting to read a book, but these can be annoying
obstacles when working with a human expert.

 Another important aspect of knowledge engineering is organizing and struc-
turing knowledge. A typical rule-based system contains hundreds or thousands
of rules. Organizing the collected knowledge so that translation to rules will be
straightforward is a challenging task for the knowledge engineer.

 We’ll discuss the knowledge engineering process in greater detail in chapter 9.

2.4.2 Structuring data

When all the knowledge has been collected, the task of programming the system
begins. The best first step is to examine the knowledge and design data structures
that will make it easy to implement the rules clearly and directly. This process
resembles object-oriented analysis. First, the major concepts are identified. For an
employee benefits consultant, these might include employee, health plan, claim, time,
and money. The important thing at this stage is to identify all the concepts
referred to in the collected knowledge—the irrelevant ones can be removed later.

 Then, you list all the variable characteristics of each concept: Employees have
a name, a health plan, years of service, and a salary, among other things. Again, at
this stage you try to identify all the characteristics mentioned in the collected
knowledge. The pants-color and position templates in chapter 1 were simple
examples of data structures for working memory elements. Designing data struc-
tures for rule-based systems is discussed in chapter 10.

2.4.3 Testing

You may wonder why I’m mentioning testing now, when you haven’t written any
code yet. Actually, this is the perfect time to begin testing a rule-based system: at
the beginning. If rigorous tests are applied to the system at every stage of its
development, it will naturally be more robust, more modular, and better under-
stood than a system that wasn’t tested until the end. Therefore, before writing a
group of rules, you should develop an automated test to exercise them. You can
write tests in Java, in your rule language, or in a convenient scripting language.
You should run all the tests you have written quite often, ideally each time a
change is made to the system. When the final system is delivered, the tests can be

Developing rule-based systems 25
part of the deliverable—they will be a great help to anyone who needs to modify
the system in the future.

 How do you develop tests? Some tests will be very small and check intermedi-
ate results, whereas others will be fully worked problems. In the former case, you
might develop the test by yourself. The larger tests, though, should be based
when possible on actual case studies of how problems were solved in the past.

 It is important that the tests be automated, so no human checking of results is
required; otherwise the tests will require too much effort to run and will not be
used. It helps to have an automated test framework—you can often quickly
develop one yourself using Perl, shell scripts, or similar scripting facilities. This
testing technique, known as test-driven development, is one facet of eXtreme Pro-
gramming,4 a methodology that is rapidly gaining acceptance in many computer
programming fields. An automated test framework that I use for testing Jess pro-
grams is described in appendix C.

2.4.4 Interface building

For most rule-based systems to do any useful work, they need to be connected in
some way to their environment. Sometimes this means database access; other
times it means directly reading values from sensors and sending commands to
embedded hardware. Before you begin to code your rules, you try to develop a
picture of what your system will need to realize these connections. Depending on
your development environment, your rules may already have a built-in ability to
connect to all the data sources and sinks they’ll need to reach, directly from the
rule language. In other situations, you may need to write interface code in
another language. If you do, I hope you’ll use test-first programming to develop
it. We’ll look at interface building many times throughout this book.

2.4.5 Writing the rules

Once the data structures are defined, the interfaces are specified, and the tests
are in place, it’s time to begin writing the rules. As in all programming, this pro-
cess involves a significant amount of art; there are always multiple ways to
accomplish a task. The good news is that because each rule can be independent
of the others, rule-based programs can be developed iteratively: code a little, test
a little, and then code some more. The bad news is that it’s relatively easy to
write unstructured rule-based programs, which can become hard to understand.

4 K. Beck, Extreme Programming Explained: Embrace Change (Reading, Mass.: Addison-Wesley), 2000.

26 CHAPTER 2
What are rule-based systems?
 You can give structure to your rule-based programs by thinking in terms of
phases or modules, groups of rules that are the only ones relevant at specific
phases of the execution of your system. Most rule development languages offer
explicit support for this kind of modularity, and it’s a good idea to use it when-
ever possible. The driving robot’s rules might be divided into separate modules
devoted to starting the car, parking the car, city driving, highway driving, pass-
ing other cars, and so on. By breaking rules into small groups, you can make a
rule-based program easier to write and to understand. We’ll first study writing
rules for a real application (an information kiosk) in chapter 11.

2.4.6 Iterative development

Once you’ve developed some rules, you’ll often find that you don’t have all the
information you need to write more. When this happens, you’ll need to go back
to the source and do some more knowledge engineering. The development of a
rule-based system lends itself well to this sort of iterative procedure. You can
show the early incarnations of the system to the human experts, if they exist, and
ask them for corroboration of the results. You might have to change your tests, if
the experts disagree with what they are testing.

 It’s also worthwhile to have another knowledge engineer look over your work
at this point. Code reviews are amazingly effective at finding problems with soft-
ware before a release, and they work for rule-based software as well. Whether you
hold formal code reviews or just ask a friend for advice, a second pair of eyes can
really help to increase the quality of your work.

2.5 Rule engine standards

Various commercial off-the-shelf products (other than application servers) can be
designed to work together with rule engines. Historically, there has been a cer-
tain amount of vendor lock-in, because each rule engine has its own program-
mer’s interface. The Java Rule Engine API (http://www.jcp.org/jsr/detail/94.jsp),
defined by the javax.rules package, is a standard enterprise API for accessing
rule engines, currently being developed by a consortium of rule engine vendors
under the Java Community Process. The javax.rules package will allow the
host program to interact generically with multiple rule engines, the same way
the Java Database Connectivity (JDBC) API makes it possible to write vendor-
neutral database programs. The API will include mechanisms for creating and
managing sets of rules; for adding, removing, and modifying objects in working
memory; and for initializing, resetting, and running the engine. Soon (perhaps

Summary 27
even by the time you read this), most popular rule engines, including Jess, will
be accessible using the javax.rules API. In fact, the official reference implemen-
tation of the javax.rules API is currently slated to be a driver for Jess.

 The javax.rules API will not specify a standard rule language, however.
Other groups are working on developing standardized rule languages,5 although
less consensus exists in this area. For the same reason there is no one standard
general programming language, it is likely that vendor-specific rule languages
will be with us for a long time. Each rule language has its own strengths and
weaknesses, and the expressiveness, elegance, and power of a rule language can
be a major factor in choosing an engine.

2.6 Summary

A rule-based system is a computer program that uses rules to reach conclusions
from a set of premises. Its historical roots include production systems and expert
systems, but nowadays their broad range of applications includes everything
from real-time control of embedded systems to enterprise resource planning for
multinational corporations.

 Rule based systems are not procedural, but declarative programs. They
require a different approach to programming in which a runtime system is used
to make scheduling and control-flow decisions. Modern rule-based systems often
include hybrid procedural/declarative languages, broadening their applicability.

 A wide range of commercial rule development and deployment environments
is available, but all have an essential architecture in common. Efforts are under-
way to standardize rule engine APIs and rule programming languages.

 These first two chapters provided an introduction to the fundamental con-
cepts of rule-based programs. This is really a practitioner’s book, however, so we
want to begin writing new rule-based programs as soon as possible. You will learn
the Jess programming language in the next part of this book. You’ll start by
learning about the Jess software itself in chapter 3 and proceed from there.

5 See, for example, http://www.dfki.uni-kl.dc/ruleml/.

Part 2

Jess: A rule-based
programming environment

If you’re going to develop rule-based systems, first you’ll need to pick a rule
engine. For the rest of this book, you’ll be working with the Jess rule engine that
you first met in chapter 1. In chapter 3, you’ll learn about Jess’s origins, how to get
a copy, and how to write the Jess version of the famous “Hello, World” program. In
the next few chapters, you’ll learn a lot about writing programs in Jess’s rule lan-
guage. Chapter 4 is a general introduction to the Jess language. Chapter 5 teaches
you how to work with Java objects from Jess programs. The next two chapters talk
about Jess’s working memory and how to write rules, respectively. Finally, chapter 8
explains some of the nuts and bolts that make Jess work. All together, part 2 of this
book is a comprehensive tutorial on both the Jess language and the Jess rule
engine; it will get you ready to start developing rule-based applications in part 3.

Introducing Jess
In this chapter you’ll…
■ Learn how to obtain and install your copy of Jess
■ Learn how to run Jess programs
■ See how Jess applications are structured
31

32 CHAPTER 3
Introducing Jess
This is a hands-on book. It walks you through the development of several large
software systems that use rule-based technology. You’ll see how each system is
architected, and you’ll see the detailed implementation of each one. All the
example systems use the Jess rule engine. In this chapter, we’ll take a closer look
at Jess itself. Jess is an interpreter for the Jess rule language. The syntax of the Jess
rule language is similar to that of Lisp, so it might look strange to you at first;
but Jess’s language is simple, easy to learn, and well-suited to both defining rules
and procedural programming. Although Jess is in some sense fairly small, it’s a
very rich environment. Even after you’ve spent the next few chapters learning
about Jess and its rule language, there will be plenty more to learn on the fly as
you develop the major applications.

 Although previous experience with Lisp might help you begin to understand
the Jess rule language, it is not necessary; this book explains all you need to
know. On the other hand, I assume you have some familiarity with Java, and I
assume you have a Java environment installed and know how to use it to compile
and run Java applications.

3.1 The Jess rule engine

Jess (http://herzberg.ca.sandia.gov/jess) is a rule engine and scripting lan-
guage developed at Sandia National Laboratories in Livermore, California in
the late 1990s. It is written in Java, so it is an ideal tool for adding rules technol-
ogy to Java-based software systems.

 The CLIPS expert system shell (http://www.ghgcorp.com/clips/CLIPS.html),
an open-source rule engine written in C, was the original inspiration for Jess.
Jess and CLIPS were written by entirely different groups of people, however, and
their implementations have always been very different. Jess is dynamic and Java-
centric, so it automatically gives you access to all of Java’s powerful APIs for net-
working, graphics, database access, and so on; CLIPS has none of these facilities
built in. Still, there is a strong similarity between the rule languages supported
by these two systems. Many of the core concepts of Jess were originally derived
from CLIPS, which was itself influenced by early rule engines like OPS5 and ART.

Jess’s syntax is quite similar to CLIPS’, but Jess and CLIPS are different
and unrelated systems. Some Jess constructs (defclass, definstance,
defmodule) have very different semantics in CLIPS, whereas others (de-
frule) are virtually identical. Jess has many features (defquery, the abil-
ity to directly call functions in the host language) that CLIPS doesn’t,

NOTE FOR
CLIPS
USERS

The Jess rule engine 33
and Jess does not implement everything that CLIPS does (COOL, the
CLIPS Object Oriented Language, is one notable example). If you have
previous experience using CLIPS, don’t assume you can skip over this
part of the book.

3.1.1 Obtaining Jess
You can download a specially licensed version of Jess from the Manning Publica-
tions web site, at http://www.manning.com/friedman-hill. The license lets you use
Jess for educational purposes, so you can try out and experiment with the exam-
ples in this book. In this chapter I’ll assume you’re using that version of Jess.

 Jess is also available from the Jess web site, http://herzberg.ca.sandia.gov/jess.
There you can immediately download a trial version, or you can obtain a Jess
license and then download a full version with source code. Jess licenses are avail-
able free of charge for academic use. You can also purchase a commercial license.
See the web site for details.

3.1.2 Installing Jess
To run Jess, you need to have the Java 2 Platform installed. If you don’t already
have it, you can download a free implementation directly from Sun Microsystems
at http://java.sun.com. Versions are available for Windows, Linux, and Solaris.
Apple has its own version, which is included in Macintosh OS X. If Java is prop-
erly installed, you should be able to execute the command java -version in a
command window and see version information about your installed Java soft-
ware. If the version number is 1.2.0 or greater, you’re ready to go.

 The Jess distribution is a Zip file, and you can open it with many popular
archiving tools. (WinZip [http://www.winzip.com] is one useful program for work-
ing with Zip files on Microsoft operating systems.) The Zip file contains a single
item: a directory named JessXX, where XX is a number (currently 61, for Jess 6.1).
Use your archiving tool to unpack that directory to a convenient location—
C:\JessXX, for example. The unpacked directory will contain:

■ A Java archive file jess.jar, which contains the Jess software.
■ The directory examples/, which contains some simple examples of Jess

programs.
■ A copy of the Jess manual in the directory docs/. Open docs/index.html in

your web browser to view the manual.

To complete your installation, add jess.jar to your CLASSPATH environment vari-
able. CLASSPATH tells the Java program where to find installed Java software.

34 CHAPTER 3
Introducing Jess
NOTE The details of setting environment variables vary between platforms.
For older versions of Windows, it involves editing the C:\AUTOEXEC.BAT
file. For newer Microsoft operating systems, you can set environment
variables in the System control panel. For Unix-like systems, editing
your .cshrc or .profile will do the trick. Refer to your operating sys-
tem’s documentation for details.

CLASSPATH consists of a series of filenames joined by the character your operating
system uses to separate filenames in other kinds of lists. On Windows, this is the
semicolon (;) character, and on Unix-like systems it is the colon (:). Make sure
that CLASSPATH, at a minimum, includes the full path to the jess.jar file and a
period (.), which represents the current directory. So, on Windows, if there is no
pre-existing CLASSPATH setting, you set this variable to .;C:\Jess61\jess.jar. If
you find that your system already has a CLASSPATH variable defined, you can sim-
ply add these two entries to the existing list.

3.1.3 Running Jess

Jess is primarily intended as a library that can be embedded in other Java soft-
ware. However, when you’re developing Jess code, it’s nice to have an interactive
environment to work with, so Jess comes complete with a simple command
prompt. To run Jess as a standalone command-line application, execute the class
jess.Main from the JAR file like this:

C:\> java jess.Main
Jess, the Java Expert System Shell
Copyright (C) 2003 E.J. Friedman Hill and the Sandia Corporation
Jess Version 6.1 4/9/2003
Jess>

Jess displays a welcome banner and then the Jess> prompt. When Jess displays
this prompt, it is waiting for you to enter a Jess program. You can probably guess
what’s coming next: You’re going to write the Jess version of “Hello, World”.

3.1.4 “Hello, World”

You can enter a Jess program directly at the command prompt, and Jess will exe-
cute it immediately:

Jess> (printout t "Hello, World!" crlf)
Hello, World!
Jess>

The Jess rule engine 35
You can also pass the name of a file that contains Jess code as an argument when
you start jess.Main. Jess executes the code in the file and then exits:

C:\Jess61> java jess.Main hello.clp
Hello, World!
C:\Jess61>

We will begin our study of the Jess language in the next chapter, but if you’re
curious: printout is a function that prints formatted output; t tells printout to
print to standard output; and the argument crlf starts a new line, like printing a
\n in Java. This parenthesized list of symbols is the Jess way of calling a function.
Jess immediately evaluates the call to printout, producing the side effect of
printing “Hello, World!” to the console.

 In addition to jess.Main, the class jess.Console presents the same com-
mand-line interface in a graphical console window (see figure 3.1). If you would
like a more elaborate graphical interface, you can try JessWin, a free graphical
development environment for Jess written by William Wheeler. JessWin (which
is also written in Java) is menu-driven and contains an integrated graphical edi-
tor (see figure 3.2). You can download JessWin from the Jess web site (http://
herzberg.ca.sandia.gov/jess/user.html).

Figure 3.1 The jess.Console interface for Jess. This as an alternative to
the command-line jess.Main interface. You can enter Jess code in the small
text field at the bottom left, and Jess output appears in the scrolling text area
at the top.

36 CHAPTER 3
Introducing Jess
3.2 Jess applications

Jess has been used to develop a broad range of commercial software, including:
■ Expert systems that evaluate insurance claims and mortgage applications
■ Agents that predict stock prices and buy and sell securities
■ Network intrusion detectors and security auditors
■ Design assistants that help mechanical engineers
■ Smart network switches for telecommunications
■ Servers to execute business rules
■ Intelligent e-commerce sites
■ Games

You’ll develop some fairly large applications in this book: the Tax Forms Advisor
(an intelligent information kiosk), the PC Repair Assistant (a graphical help desk
application), an HVAC Controller (a soft real-time control system), and the Rec-
ommendations Agent (a smart e-commerce web site).

Figure 3.2 The JessWin developer’s environment for Jess. JessWin is a third-party add-on
that provides a graphical interface to many functions that are useful to Jess programmers.

Jess applications 37
 You can program with Jess in two different but overlapping ways. First, you
can use Jess as a rule engine. A rule-based program can have hundreds or even
thousands of rules, and Jess will continually apply them to your data. Often the
rules represent the heuristic knowledge of a human expert in some domain, and
the knowledge base represents the state of an evolving situation (perhaps an
interview or an emergency). In this case, the rules are said to constitute an expert
system. Expert systems are widely used in many domains. The newest applications
of expert systems include being used as the reasoning part of intelligent agents,
in enterprise resource planning (ERP) systems, and in order validation for elec-
tronic commerce.

 The Jess language is also a general-purpose programming language, and it
can directly access all Java classes and libraries. For this reason, Jess is also fre-
quently used as a dynamic scripting or rapid application development environ-
ment. Whereas Java code generally must be compiled before it can be run, Jess
interprets code and executes it immediately upon being typed. This allows you to
experiment with Java APIs interactively and build up large programs incremen-
tally. It is also easy to extend the Jess language with new commands written in Java
or in Jess itself, so the Jess language can be customized for specific applications.

 Jess is therefore useful in a wide range of situations. In this book, you will see
Jess used primarily for its rule engine capabilities—but there will be plenty of
scripting along the way. How can you choose an architecture for a specific appli-
cation? As with many things in Jess, lots of choices are available.

3.2.1 Command line, GUI, or embedded?

Given its flexibility, Jess can be used in command-line applications, GUI applica-
tions, servlets, and applets. Furthermore, Jess can provide the Java main() func-
tion for your program, or you can write it yourself. You can develop Jess
applications (with or without GUIs) without compiling a single line of Java code.
You can also write Jess applications that are controlled entirely by Java code you
write, with a minimum of Jess language code. Jess has been deployed in every-
thing from enterprise applications using J2EE on mainframes to personal pro-
ductivity applications on handheld devices. If you can think of it, you can
probably implement it with Jess.

 The most important step in developing a Jess application is to choose an
architecture from among the almost limitless range of possibilities. You must
make this choice early in the development of your application. One way to orga-
nize the possibilities is to list them in increasing order of the amount of Java pro-
gramming involved:

38 CHAPTER 3
Introducing Jess
1 Pure Jess language, with no Java code.

2 Pure Jess language, but the program accesses Java APIs.

3 Mostly Jess language code, but with some custom Java code in the form
of new Jess commands written in Java.

4 Half Jess language code, with a substantial amount of Java code provid-
ing custom commands and APIs. Jess provides the main() function (the
entry point for the program).

5 Half Jess language code, with a substantial amount of Java code provid-
ing custom commands and APIs. You write the main() function.

6 Mostly Java code, which loads Jess language code at runtime.

7 All Java code, which manipulates Jess entirely through its Java API.

The sample applications presented in the later parts of this book start at the
beginning of this continuum (the Tax Forms Advisor developed in part 3 consists
entirely of Jess code) and work their way toward the end (the business-rules sys-
tems are mostly written in Java). Experiencing the development of each type of
application will help you decide what route to take in future development, based
both on the requirements of the application and on the abilities of the program-
ming team that will write it.

3.2.2 Jess performance

Some people will tell you that Java is slow. They’re wrong. Modern Java virtual
machines are extremely powerful and sophisticated. In many applications, Java is as
fast as comparable C or C++ code. For Jess, being written in Java is not a liability.

 Jess is fast. The algorithm used for pattern matching, which we’ll study in
chapter 8, is very efficient, and Jess can plow through large piles of rules and
facts in little time. Using Sun’s HotSpot JVM on an 800 MHz Pentium III, Jess
can fire more than 80,000 rules per second; it can perform almost 600,000 pat-
tern-matching operations per second; it can add more than 100,000 facts to
working memory per second; and a simple counting loop can do 400,000 itera-
tions per second. Independent benchmarks have shown that Jess is significantly
faster than many rule engines written in the “faster” C language. For example,
on many problems, Jess outperforms CLIPS by a factor of 20 or more on the
same hardware.1

1 See http://aaaprod.gsfc.nasa.gov/teas/Jess/JessUMBC/sld025.htm and http:// www.mail-archive.com/
jess-users@sandia.gov/msg03278.html for some benchmarks.

Summary 39
 Jess’s rule engine uses an improved form of a well-known method called the
Rete algorithm (Rete is Latin for net) to match rules against the working memory.
We’ll look at the Rete algorithm in detail in chapter 8. The Rete algorithm
explicitly trades space for speed, so Jess can use a lot of memory. Jess does con-
tain commands that let you sacrifice some performance to decrease memory
usage. Nevertheless, Jess’ memory usage is not ridiculous, and fairly large pro-
grams will fit easily into Java’s default heap size of 64 megabytes.

 Because Jess is a memory-intensive application, its performance is sensitive to
the behavior of the Java garbage collector. Recent JVMs from Sun feature an
advanced Java runtime called HotSpot, which includes a flexible, configurable
garbage collection (GC) subsystem. The garbage collector is the part of the JVM
that is responsible for finding and deleting unused objects. Excellent articles on
GC performance tuning are available at Sun’s web site.2 Although every Jess rule
base is different, in general, Jess benefits if you adjust two parameters: the heap
size and the object nursery size. For example, on my machine, Jess’ performance on
the Miranker manners benchmark (http://www-2.cs.cmu.edu/afs/cs/project/ai-
repository/ai/areas/expert/bench/bench/0.html) with 90 guests is improved by 25%
by adjusting the initial heap size and nursery size to 32MB and 16MB, respec-
tively, from their defaults of 64MB and 640KB. In this case, you make the default
heap size smaller, which makes the garbage collector run faster because there is
less memory to search. You can tune the HotSpot virtual machine in this way
using the following command:

java -XX:NewSize=16m -Xms32m -Xmx32m jess.Main <scriptfile>

The object nursery is a subset of the Java heap set aside for recently allocated
objects. The total heap size in this example is 32MB, not 48MB.

3.3 Summary

Jess is a powerful environment for processing rules and scripting the Java plat-
form. You can use it in a wide range of applications, built purely using the Jess
rule language, purely in Java, or with some mixture of the two.

 You can run Jess as an interactive command-line application during develop-
ment using the jess.Main class. Jess programs can also be stored as plain text
files and executed by jess.Main.

2 See in particular http://developer.java.sun.com/developer/TechTips/2000/tt1222.html#tip2.

40 CHAPTER 3
Introducing Jess
 Jess works with any Java 2 virtual machine. Jess is very fast, but its perfor-
mance is sensitive to the detailed operation of the Java garbage collector. You
can often tune the performance of a Jess application by tuning the behavior of
the garbage collector.

 The next five chapters will teach you the Jess language in detail. First you’ll
learn to use Jess as a pure programming language, and then you’ll see how to
write rules. Along the way, especially in chapter 8, we’ll peer under the hood and
see how Jess works. Let’s get started!

Getting started with
the Jess language
In this chapter you’ll…
■ Learn the basic syntax of Jess
■ Work with basic Jess control structures
■ Find out how to define functions in Jess
41

42 CHAPTER 4
Getting started with the Jess language
This chapter is an introduction to the Jess rule language. It will not teach you how
to write rules—that will have to wait for chapter 7—but it will explain how to write
code in the Jess rule language, and you’ll need this ability to write the right-hand
sides of rules. The Jess rule language is also a general-purpose programming lan-
guage, and you can use it even without writing any rules.

 The next few chapters contain syntax diagrams to concisely describe the syntax
of some of the more complicated expressions. In these diagrams:

■ Text in <angle-brackets> is a description of some kind of data that you must
supply.

■ Things ending with + can appear one or more times.

■ Things ending with * can appear zero or more times.

■ Things in [square brackets] are optional. Square brackets are also used to
group expressions together, so that one of the repeating operators can be
applied to a group.

4.1 The basics

Just as books are made up of words, code is made up of tokens. A token is a
sequence of characters that a computer language recognizes as a fundamental
unit. Jess understands only a few different kinds of tokens: symbols, numbers,
strings, and comments. Once you know about these, you can begin to do some
programming.

4.1.1 Whitespace

Input to Jess is free-form. Newlines and whitespace are not significant except
inside quoted strings. You can use newlines and indentation to highlight the struc-
ture of the code you write, just as in Java; for example, the following code

(if (< ?x 3) then (printout t "?x is less than three" crlf))

would usually be written

if (< ?x 3) then
 (printout t "?x is less than three" crlf))

4.1.2 Symbols

The symbol is a core concept of the Jess language. Symbols are tokens that are very
much like identifiers in Java. A Jess symbol can contain letters, numbers, and the
following punctuation marks: $, *, ., =, +, /, <, >, _, ?, and #. A symbol may

The basics 43
not begin with a number. Some of the punctuation marks ($, ?, and =) cannot be
used as the first character of a symbol, but can appear in other positions. The
other punctuation marks listed can appear as the first character or any character
of a symbol. Jess symbols are case sensitive: foo, FOO, and Foo are all different sym-
bols. The best symbols consist of letters, numbers, underscores, and hyphens;
hyphens are traditional word separators. The following are all valid symbols:

foo first-value contestant#1 _abc

Jess gives special meaning to a few symbols; they are like Java keywords. The sym-
bol nil is like null in Java, and TRUE and FALSE are Jess’s Boolean values. Note that
case is significant: TRUE and FALSE must be uppercase, and nil must be lowercase.
Other symbols have special meanings only in certain contexts; for example, the
symbol crlf is translated into a newline when printed.

4.1.3 The jess.Value class

Internally, all Jess values—symbols, numbers, strings, and others—are represented
by instances of the jess.Value Java class. You will work extensively with this class
when you interface Jess and Java code. jess.Value objects are immutable—once
one is created, the value it represents cannot be changed. Every jess.Value object
knows the type of the datum it holds, and you can fetch this type using the type()
member function. The possible values are enumerated by a set of constants in the
jess.RU class (RU stands for Rete Utilities). Symbols are of type RU.ATOM.

4.1.4 Numbers

Jess’s parser uses the Java parsing functions java.lang.Integer.parseInt and
java.lang.Double.parseDouble to parse integer and floating-point numbers,
respectively. (See the Java API documentation for those methods for a precise syn-
tax description.) The following are all valid numbers:

3 4. 5.643 6.0E4 1D

The Jess language has three numeric types: RU.INTEGER (corresponding to Java
int), RU.FLOAT (corresponding to Java double), and RU.LONG (like the Java type
long). The type of a numeric value is inferred when it is parsed. The type RU.LONG
isn’t used much; in fact, you can’t type a long literal in Jess. We’ll talk about a
function that turns a string into an RU.LONG value after we’ve discussed functions
and strings.

44 CHAPTER 4
Getting started with the Jess language
4.1.5 Strings

Character strings in Jess are denoted using double quotes ("). Typical strings look
like this:

"foo"
"Hello, World"

You can use backslashes (\) to escape embedded quote symbols, just like in Java:

"\"Nonsense,\" he said firmly."

Jess strings do not recognize any other Java-style escape sequences. In particular,
you cannot embed a newline in a string using \n. On the other hand, real new-
lines are allowed inside double-quoted strings; they become part of the string.
This Jess string is equivalent to the Java string "Hello,\nThere".

"Hello,
There"

Strings are represented as jess.Value objects of type RU.STRING.

4.1.6 Comments

You can add descriptive comments to your Jess code. Programmer’s comments in
Jess begin with a semicolon (;) and extend to the end of the line of text. Here is
an example of a comment:

; This is a number
1.2345

Comments can appear anywhere in a Jess program; they are simply ignored.
 Note that Jess comments can nest—a semicolon can appear in a comment

without trouble. Many Jess programmers use multiple semicolons on a line for
visual emphasis:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Rules added 2/3/2003
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

Although you’ll see this usage often in Jess code, it has no special meaning.
 Whitespace, symbols, numbers, strings, and comments are the fundamental

elements of Jess syntax. Now you’re ready to learn how to put these elements
together into code.

Adding some structure 45
4.2 Adding some structure

Tokens by themselves aren’t terribly interesting, any more than isolated words
have much to say. Tokens become meaningful when they are put together into
code. In the following sections, you’ll see how to put together “sentences” in the
Jess language.

4.2.1 Lists

The basic unit of structure in Jess code is the list. A list is a group of tokens that
includes an enclosing set of parentheses and zero or more tokens or other lists.
The following are all valid lists:

(+ 3 2)
(a b c)
("Hello, World")
()
(1 2 3)
(deftemplate foo (slot bar))

Lists are a little like arrays in Java and other languages. In Jess, they’re the central
way of structuring both code and data. The first element of a list is called the list’s
head, and in many contexts it is special. For example, Jess function calls are lists
where the head is the name of a function, and rules are written as lists where the
head is the special symbol defrule.

 Lists remind many new Jess programmers of scopes in Java—the parentheses
group the items in a Jess list just as pairs of brackets delimit Java methods and
classes. As a result, some people tend to write Jess code by lining up opening and
closing parentheses vertically as they might do in Java. In the worst cases, that
might look like this:

(bind ?x (+
 (* 20 3
)
 (- 37 23
)
)
)

In addition to being aesthetically awkward, it can be confusing. It’s better style to
simply put the closing parentheses on the last line of the list they close, like this:

(bind ?x (+
 (* 20 3)
 (- 37 23)))

46 CHAPTER 4
Getting started with the Jess language
This is generally more readable, not less. Whether you use a text editor that helps
you balance parentheses may influence your choice of code format. The open-
source Emacs editor is available on the Windows, Linux, and Macintosh plat-
forms, and makes editing Jess code easy. A special Jess mode for Emacs is available
(http://jess-mode.sourceforge.net).

 Jess interprets lists in many different ways depending on where in your pro-
gram they appear. A list might be a rule, a fact, a pattern on a rule’s left-hand side,
a function definition, or a function call, among other things. You’ll see ways to use
lists as this chapter continues, but let’s pick just one to get started. The simplest
Jess program consists of a single function call—and you’re probably anxious to
write a program, so let’s learn about function calls. Later in this chapter we’ll
return to the study of lists in general.

4.2.2 Calling functions

If you type an arbitrary list at the Jess> prompt, Jess will assume you’re trying to
call a function:

Jess> (+ 2 2)
4

Here the function + is being called. Jess prints the result (4) on the next line. The
result is like the return value of a Java function. The process of executing a func-
tion call to determine the result is called evaluating the function call. Every Jess
function has a result—there are no void functions, as there are in Java, that don’t
have a return value.

 Jess function calls use a prefix notation: the head of the list is the name of the
function being called, and the other items in the list are the arguments of the
function. The arguments of a function call can be numbers, symbols, strings, or
other function calls—that is, function calls can be nested:

Jess> (+ (+ 2 3) (* 3 3))
14

The two arguments to + are (+ 2 3) and (* 3 3). Jess evaluates the arguments in
left-to-right order before the outer sum is computed.

 Jess comes with a large number of built-in functions that compute mathemati-
cal quantities, control program flow, manipulate strings, give you access to Java
APIs, and perform other useful tasks. Appendix A describes all the functions that
are built in to Jess. In section 4.4, you’ll also learn how to define new functions by
writing Jess language code. In chapter 15, you’ll even learn how to extend the Jess
language by adding functions written in Java. All code in Jess (control structures,

Adding some structure 47
assignments, declarations) takes the form of a function call. You have already seen
most of the Jess language’s built-in syntax; virtually everything else is accom-
plished by functions that use these basic elements. Let’s look at some simple func-
tions that are used in most Jess programs. In section 4.3, you’ll learn about more
complex functions that implement control structures.

 One of the most commonly used functions is printout. The printout function
is used to send text to Jess’s standard output or to a file. The first argument tells
printout where to send its output. The subsequent arguments are printed one
after another, with no spaces between. A complete explanation of the first argu-
ment will have to wait, but for now, all you need to know is that if you use the sym-
bol t, printout sends its output to the console. The special symbol crlf is printed
as a newline. Here’s an example of printing several arguments:

Jess> (printout t "The answer is " 42 "!" crlf)
The answer is 42!

Another useful function is batch, which evaluates a file of Jess code. To run the
Jess source file examples/hello.clp (which comes with the standard Jess distribu-
tion), you can enter the following command:

Jess> (batch examples/hello.clp)
Hello, World!

Another simple function is long. You can’t enter a literal long value in Jess as you
can in Java. Instead, you must use the Jess long function to create one from a
string. In Java, you can write

long aLongValue = 123456789L;

The equivalent in Jess is

(bind ?aLongValue (long "123456789"))

As you can see, even assigning a value to a variable is done using a function call.
The bind function assigns a value to a Jess variable. Let’s learn more about vari-
ables in Jess.

4.2.3 Variables

A Jess variable is a named container that can hold a single value, much like a vari-
able in Java. Jess variables, however, are untyped. This means a Jess variable can
hold a value of any data type, and it can hold values of any number of different
types during its lifetime. A variable can refer to a single symbol, number, string,
list, or other value.

48 CHAPTER 4
Getting started with the Jess language
 Most variables in Jess are written as symbols that begin with a question mark
(?). The question mark is part of the variable’s name. Although it is legal to do so,
it is considered bad style to use any other punctuation marks except dashes (-) or
underscores (_) in a variable name. In particular, don’t use asterisks (*), because
asterisks are used to name global variables (which we’ll discuss soon).

 You don’t need to declare variables in the Jess language; they come into
being when they are first given a value. To assign a value to a variable, use the
bind function:

Jess> (bind ?x "The value")
"The value"

To see the value of a variable at the Jess> prompt, you can simply type the vari-
able’s name:

Jess> (bind ?a (+ 2 2))
4
Jess> ?a
4

You can use a variable anywhere a value is expected. For example, variables can be
passed as arguments in function calls:

Jess> (+ ?a 2)
6

Global variables
Any variables you create at the Jess> prompt or at the top level of any Jess lan-
guage program are cleared whenever the reset command is issued. Because
reset is an important function—it is used to reinitialize the working memory of
Jess’s rule engine—this makes these top-level variables somewhat transient. They
are fine for scratch variables while you are working interactively at the Jess>
prompt, but they are not persistent global variables in the normal sense of the
word. To create global variables that are not destroyed by reset, you can use the
defglobal construct:

(defglobal [?*<global variable name>* = <value>]+)

This syntax diagram says that you can declare one or more defglobals in a single
defglobal construct. Each declaration consists of a global variable name, an equals
sign, and a value. Global variable names must begin and end with *. Valid global
variable names look like this:

?*a* ?*all-values* ?*counter*

Adding some structure 49
Aside from the special naming convention, defglobals are similar to ordinary
variables and can be used in the same ways.

 When a global variable is created, it is initialized to the given value. When the
reset command is subsequently issued, the variable may be reset to this same
value, depending on the current setting of Jess’s reset-globals property. You can
use the set-reset-globals function to set this property. An example will help:

Jess> (defglobal ?*x* = 3)
TRUE
Jess> ?*x*
3
Jess> (bind ?*x* 4)
4
Jess> ?*x*
4
Jess> (reset) ;; Jess will reset ?*x* to its initial value of 3
TRUE
Jess> ?*x*
3
Jess> (bind ?*x* 4)
4
Jess> (set-reset-globals nil)
FALSE
Jess> (reset) ;; This time, ?*x* will not be changed.
TRUE
Jess> ?*x*
4

You can read about set-reset-globals and the accompanying get-reset-glo-
bals function in appendix A.

Multifields
Multifields are another special kind of variable. A multifield is a variable whose first
characters are $? (for example, $?x). Multifields have special meaning in only two
contexts: in the argument lists of deffunctions (see section 4.4) and on the left-
hand-sides of rules (see chapter 7). They are otherwise equivalent to regular vari-
ables. In fact, the variable ?x and a multifield $?x refer to the same storage loca-
tion—they’re two names for the same thing.

 Now that you understand Jess variables, you’re ready to learn more about the
structure of Jess code in general. We return now to our study of lists.

4.2.4 More about lists

As you’ve seen, if you type a list directly at the Jess prompt, Jess assumes it’s a func-
tion call; if you nest a list inside a function call, Jess assumes that nested list is a

50 CHAPTER 4
Getting started with the Jess language
function call, too. So how can you create a list that’s not a function call? You use spe-
cial functions like create$ to make a list, and then you bind the list to a variable:

Jess> (bind ?grocery-list (create$ eggs bread milk))
(eggs bread milk)

The variable ?grocery-list now holds a list of three items.
 This kind of list, which just contains data, is called a plain list. Plain lists are use-

ful data structures in Jess. They’re a lot like Java arrays. You can access the ele-
ments of a Java array using square brackets with a numeric subscript: For example,
arr[0] is the first element of an array named arr. To access an element of a plain
list in Jess, you call the nth$ function, which returns a single list element:

Jess> (printout t (nth$ 2 ?grocery-list) crlf)
bread

You may have noticed that many of the Jess functions that deal explicitly with lists
have names ending in $—this is just a convention, but a useful one. Two other list-
related functions are first$ and rest$:

Jess> (first$?grocery-list)
(eggs)
Jess> (rest$?grocery-list)
(bread milk)

The function first$ returns a list containing just the first element of its single
argument, and rest$ returns a list holding the second and subsequent elements.

 You might be tempted to use lists to build trees or other nested data structures.
Plain lists can’t be nested, however. Jess will flatten out any nested plain list you
attempt to create:

Jess> (bind ?more-groceries (create$?grocery-list salt soap))
(eggs bread milk salt soap)

Usually, when you have a grocery list, you walk through a grocery store, find each
item on the list, and put it into your shopping cart. This involves iterating over the
list—performing an action for each item of the list. To do this, you need to learn
about control structures in Jess.

4.3 Control flow

Up until this point, the code you’ve written executes sequentially, one statement
at a time. It’s hard to write interesting programs this way. Luckily, the Jess lan-
guage has a number of functions that affect the flow of control and let you group
statements, make decisions, and execute loops.

Control flow 51
 In describing these control-flow functions, I’ll use the term expression. An
expression is any Jess value: a symbol, number, string, variable, or function call. To
evaluate an expression means to use the value of the constant expression, take the
value that the variable represents, or evaluate the function and use its result.

 We’ll discuss the following control-flow functions in this section:

■ apply—Calls a function on a given set of arguments

■ build—Parses and executes a function call from a string

■ eval—Parses and executes a function call from a string

■ foreach—Executes a block of code once for each item in a list

■ if/then/else—Chooses among alternative courses of action

■ progn—Executes a group of function calls

■ while—Executes a block of code while an expression is true

You’ll use some of these control-flow functions (like foreach, while, and if/then/
else) all the time, and some of them only rarely. We’ll look at the most common
ones first.

4.3.1 foreach

The foreach function provides the perfect way to shop for each item on your gro-
cery list. It evaluates a block of expressions once for each element in a plain list.
Each time through the block, a variable you supply is set equal to the correspond-
ing entry from the list you also supply. The syntax diagram looks like this:

(foreach <variable> <list> <expression>+)

Here’s an example of using foreach to print each item on your grocery list on a
separate line:

Jess> (bind ?grocery-list (create$ eggs milk bread))
(eggs milk bread)
Jess> (foreach ?e ?grocery-list
 (printout t ?e crlf))
eggs
milk
bread

The foreach function is useful when you already have a list of values for the loop
variable. Often, though, you need a more general kind of looping construct,
such as while.

52 CHAPTER 4
Getting started with the Jess language
4.3.2 while

The while function lets you repeatedly evaluate a group of one or more expres-
sions as long as some condition remains true:

(while <Boolean expression> do <expression>+)

The first argument in the while function must be a Boolean expression—an expres-
sion that evaluates to TRUE or FALSE. The while function evaluates the Boolean
expression, and if the expression is not FALSE, all other expressions in the body of
the while (except the optional symbol do) are evaluated. The Boolean expression
is then reevaluated, and the cycle repeats until the expression becomes FALSE.
The value of the last expression evaluated is the return value—invariably, it is
FALSE. Here is an example of using while to add the numbers from 1 to 10:

Jess> (bind ?i 1)
1
Jess> (bind ?sum 0)
0
Jess> (while (<= ?i 10) do
 (bind ?sum (+ ?sum ?i))
 (bind ?i (+ ?i 1)))
FALSE
Jess> ?sum
55

Note that if the Boolean expression is FALSE the first time it is evaluated, the body
of the while is never executed.

 The while loop implicitly makes a decision about what code to execute each
time it evaluates the Boolean expression. The if/then/else function lets you
make this kind of choice explicitly.

4.3.3 if/then/else

You can use the if function to choose what code to execute next. The syntax of
Jess’s if function is similar to the if statement in Java:

(if <Boolean expression> then <expression>+ [else <expression>+])

The first argument to if is a Boolean expression. If the value of the expression is
not FALSE, the if function evaluates the group of expressions that follows the sym-
bol then, in order. If the expression is FALSE, then the statements after else are
evaluated (if the optional else clause is present.)

 This example uses the function member$, which accepts a value and a plain list
as arguments and returns TRUE if the value appears in any position of the list:

Control flow 53
Jess> (bind ?grocery-list (create$ eggs milk bread))
(eggs milk bread)
Jess> (if (member$ eggs ?grocery-list) then
 (printout t "I need to buy eggs" crlf)
 else
 (printout t "No eggs, thanks" crlf))
I need to buy eggs

Either the if block or the else block can be terminated early using the return
function. The return value of the whole if function call is the value of the last
expression evaluated.

 You can chain if functions together, much as you can in Java. All you need to
do is to use a second if function call as the body of an else block. In this exam-
ple, three if function calls are nested together:

Jess> (bind ?x 1)
1
Jess> (if (= ?x 3) then
 (printout t "?x is three." crlf)
 else
 (if (= ?x 2) then
 (printout t "?x is two." crlf)
 else
 (if (= ?x 1) then
 (printout t "?x is one." crlf))))
?x is one.

The if function, like the while function, takes a single Boolean expression as its
first argument. What if you need to write several expressions to compute a Bool-
ean value? The progn function is there to help.

4.3.4 progn
The progn function evaluates a list of expressions and returns the value of the
last one:

(progn <expression>+)

The progn function is useful when you need to group multiple expressions
together into one expression, usually due to syntax restrictions of other functions,
as in the following example:

Jess> (bind ?n 2)
2
Jess> (while (progn (bind ?n (* ?n ?n)) (< ?n 1000)) do
 (printout t ?n crlf))
4
16
256
FALSE

54 CHAPTER 4
Getting started with the Jess language
Of course, this particular example could also be written more succinctly as follows:

Jess> (bind ?n 2)
2
Jess> (while (< (bind ?n (* ?n ?n)) 1000) do
 (printout t ?n crlf))

However, in many important cases progn is the only real alternative. Many of these
cases come up during pattern matching on the left-hand sides of rules, which you
will see in chapter 7.

 The next few functions are used less frequently than the ones we’ve covered so
far in this section—but when you need them, you need them badly. These func-
tions have no equivalents in Java; they are powerful features available only in the
Jess environment. They are used to convert directly between data and code, some-
thing that can’t be done in a compiled language like Java.

4.3.5 apply

In Java, you write a different line of code to add two numbers than you would to
multiply them, print them, or save them in a file. In Jess, you can write one line of
code that, depending on the values of some arguments, can do any of these
things, and more.

 The first argument of apply is the name of a function. Invoking apply calls that
function with all the other expressions as arguments:

(apply <function-name> <expression>+)

The function name can be held in a variable or can itself be the return value of a
function. In this example, the user is prompted for the name of a function, which
is then called with a list of numbers as arguments; the result is then printed. The
user enters + when prompted:

Jess> (apply (read) 1 2 3)
+
6

Because the user typed +, apply added the numbers and displayed the result. If
the input had been – instead, the result would have been –4. The apply function
therefore turns a bit of data—the name of a function—into code for Jess to exe-
cute. The eval and build functions take this idea one step further.

4.3.6 eval and build

Because Jess is an interpreted language, it doesn’t much care where the code it’s
executing comes from. The code can come from a file, from the keyboard, or

Defining functions with deffunction 55
even from a variable. The eval and build functions convert arbitrary Jess data
into Jess code, making it simple to write a Jess program that writes other Jess pro-
grams. This means a rule-based program can create and incorporate new rules as
it runs—it can learn. This is a powerful feature!

 The eval function accepts a single argument: a string containing a complete
Jess expression, including parentheses if the expression is a function call. When
you call eval, the string is parsed, the expression is evaluated, and the result is
returned. In this example, a string is bound to a variable, and then the eval func-
tion is used to evaluate the string and produce a result, just as if the contents of
the string had been typed at the command line:

Jess> (bind ?x "(+ 1 2 3)")
"(+ 1 2 3)"
Jess> (eval ?x)
6

The build function is a synonym for eval. For historical reasons, build is generally
used to assemble rules, and eval is used for function calls—but they’re identical.

 Altogether, Jess has almost 200 built-in functions, including these control
structures. If that’s not enough (and of course, it never is) you can define your
own functions, too, as described in the next section.

4.4 Defining functions with deffunction

Suppose that some time in the near future, you find yourself in Dallas, working on
the AI module for a new martial arts video game (you’re using Jess, of course).
You’re writing many different rules that have to reason geometrically; in particu-
lar, many rules care about the distance between two combatants. If the variables
?X1, ?Y1, and ?Z1 hold the coordinates of one ninja, and ?X2, ?Y2 and ?Z2 the
coordinates of another, the Jess code to compute distance in three dimensions
looks like this:

(bind ?x (- ?X1 ?X2))
(bind ?y (- ?Y1 ?Y2))
(bind ?z (- ?Z1 ?Z2))
(bind ?distance (sqrt (+ (* ?x ?x) (* ?y ?y) (* ?z ?z))))

The formula takes the difference of each of the X, Y, and Z coordinate pairs, adds
them, and takes the square root. It is long and messy, and you surely don’t want to
type it more than once. Many different rules need to do the same computation, so
you can define a function named distance and call it from each rule as needed.

56 CHAPTER 4
Getting started with the Jess language
 You can write your own functions in the Jess language using the deffunction
construct. Once you define a deffunction, you can use it like any other Jess func-
tion. deffunction looks like this:

(deffunction <name> (<parameter>*) [<comment>] <expression>*)

The name of the deffunction must be a symbol. Each parameter must be a vari-
able name, complete with the question mark. A function can have as many param-
eters as you need to use.

 The optional comment is a double-quoted string that can describe the purpose
of the function. This special comment is included when a deffunction is dis-
played. It’s a good idea to provide a comment that succinctly describes the pur-
pose of the function. The comment, like any Jess string, can span multiple lines.

 The body of a deffunction is composed of any number of expressions. The
return value of the deffunction is the value of the last expression evaluated,
unless you use the return function to provide an explicit return value. Here’s
what the distance calculation looks like as a deffunction:

Jess> (deffunction distance (?X1 ?Y1 ?Z1 ?X2 ?Y2 ?Z2)
 "Compute the distance between two points in 3D space"
 (bind ?x (- ?X1 ?X2))
 (bind ?y (- ?Y1 ?Y2))
 (bind ?z (- ?Z1 ?Z2))
 (bind ?distance (sqrt (+ (* ?x ?x) (* ?y ?y) (* ?z ?z))))
 (return ?distance))
TRUE

You can now call distance just as if it were built in to Jess:

Jess> (distance 10 0 0 2 0 0)
8

Besides being shorter and easier to type, the function call is much easier to under-
stand—the reader immediately knows what’s being computed, instead of needing to
puzzle out those subtractions, multiplications, additions, and square root functions.

 The distance function computes a single value. More complex deffunctions
can use the control-flow functions like foreach, if, and while that you learned
about in section 4.3. Your video-game rules will need to make decisions based on
which of several rival ninjas is closest to the player. The following example is a
deffunction that returns the smaller of its two numeric arguments:

Jess> (deffunction min (?a ?b)
 (if (< ?a ?b) then
 (return ?a)
 else
 (return ?b)))
TRUE

Defining functions with deffunction 57
Note that this could also be written as

Jess> (deffunction min (?a ?b)
 (if (< ?a ?b) then
 ?a
 else
 ?b))
TRUE

because the expressions in the body of a deffunction do not have to be function
calls, and a deffunction returns the value of the last expression evaluated.

 One limitation of min is that it takes only two arguments, but your video game
will contain scenes with dozens of rival ninjas. A version of min that takes an
unlimited number of arguments would be very useful, and you can write such a
function in Jess. In the definition of a deffunction, the last parameter can be a
multifield (a variable starting with $, as in $?x.) If it is, then the deffunction will
accept a variable number of arguments; any arguments in excess of the number of
named parameters are compiled into a list, and that list is assigned to the multi-
field. Here’s a version of min that uses this feature:

Jess> (deffunction min ($?args)
 "Compute the smallest of a list of positive numbers"
 (bind ?minval (nth$ 1 ?args))
 (foreach ?n ?args
(if (< ?n ?minval) then
 (bind ?minval ?n)))
 (return ?minval))
TRUE
Jess> (min 10 100 77 6 43)
6

4.4.1 Late binding

Jess uses late binding for function names, meaning the link between the name of a
function and the code it represents can be changed right up until the instant the
function is called. In Java, of course, code won’t compile if it calls a function that
hasn’t been defined yet. In Jess, you can write code that calls a function, even if
you haven’t written that second function yet. Jess won’t try to find the undefined
function until the code that calls it is executed. If the undefined function hasn’t
been defined at that time, an error will result.

 Late binding is a useful property because it also means you can redefine a
function at any time, and any code that called the old function will automatically
call the new one. To redefine a function, you simply define a new function by the
same name, and the old one is replaced. You can even redefine any of the built-in

58 CHAPTER 4
Getting started with the Jess language
functions this way (although doing so is not recommended). If you want to
change the behavior of a built-in function, you can do so using defadvice,
described in the next section.

4.5 Fine-tuning a function’s behavior

If you’re a Java programmer, it probably bothers you that functions like nth$ num-
ber list items starting at one rather than zero. In some languages, you’d be stuck.
But Jess makes it easy to fine-tune the behavior of any function, so if you’d like
nth$ to use zero-based indices, you can have it your way by using advice. Advice is
code that you add to a function to change its behavior.

 The function defadvice lets you easily wrap advice around any Jess function,
such that it executes before (and thus can alter the argument list seen by the real
function, or short-circuit it completely by returning a value of its own) or after the
real function (and thus can see the return value of the real function and possibly
alter it). This is a great way for Jess add-on authors to extend Jess without needing
to change any internal code. It was named after a similar feature in Emacs Lisp.

 To make nth$ accept a zero-based index, all you need to do is intercept any call
to nth$ and add one to the first argument before nth$ sees it. That way, when you
call nth$, you can pass zero-based indices, but nth$ will see one-based indices.

 Imagine that the variable ?argv holds a copy of a function call to nth$ using a
zero-based index; that is, it’s a list like this:

(nth$ 0 ?grocery-list)

You need to write some Jess code to change this list to use a one-based index:

(nth$ 1 ?grocery-list)

The code to make this change looks like this:

;; Strip off the function name
(bind ?tail (rest$?argv))
;; Convert zero-based to one-based index
(bind ?index (+ 1 (nth$ 1 ?tail)))
;; Put the argument list back together.
(bind ?argv (create$ nth$?index (rest$?tail)))

You saw the rest$ function in section 4.2.4: It strips the first element from a list
and returns the remainder. You needed to use nth$ to write this code, and you
used a one-based index, because that’s what nth$ wants by default.

 Now you can use this block of code to modify the behavior of nth$. In the body
of a defadvice call, the variable ?argv is special: It points to the actual function

Fine-tuning a function’s behavior 59
call being executed. By modifying the contents of ?argv, you can modify the argu-
ments the built-in nth$ function sees.

 First, let’s watch the default behavior of nth$ in action:

Jess> (bind ?grocery-list (create$ peas beans butter milk))
(peas beans butter milk)
Jess> (nth$ 1 ?grocery-list)
peas

Now, you add some advice to nth$, and then call it again:

Jess> (defadvice before nth$
 ;; Strip off the function name
 (bind ?tail (rest$?argv))
 ;; Convert zero-based to one-based index
 (bind ?index (+ 1 (nth$ 1 ?tail)))
 ;; Put the argument list back together.
 (bind ?argv (create$ nth$?index (rest$?tail))))
TRUE
Jess> (nth$ 1 ?grocery-list)
beans

The result is different this time—the index is interpreted as one-based, and the
answer is beans instead of peas. The nth$ function will continue to behave this way
until Jess is restarted, the clear function (discussed in chapter 6) is called, or the
advice is removed with undefadvice:

Jess> (undefadvice nth$)
TRUE
Jess> (nth$ 1 ?grocery-list)
peas

You may be surprised that you were able to call nth$ in the previous advice code. It
looks as though you’re redefining nth$ in terms of itself—a recipe for an infinite
loop. To prevent this kind of problem, Jess doesn’t apply advice to any function
calls invoked in an advice block. That’s why your call to nth$ inside the advice
block uses a one-based index.

 In the nth$ example, the advice code executes before the built-in nth$ func-
tion is invoked. If the first argument to defadvice were after instead of before,
the advice would execute after nth$. In this case, the special variable ?retval is
also defined; it holds the result returned by the adviced function. The advice code
can modify this variable if it wants to return a different value.

60 CHAPTER 4
Getting started with the Jess language
4.5.1 Take my advice, please

You can only apply advice to actual functions (built-in or user-defined), not to
function-like constructs like deffunction, defglobal, deftemplate, defrule, or
defquery. Here’s a short deffunction to confirm whether something is a function:

Jess> (deffunction is-a-function (?name)
 (neq FALSE (member$?name (list-function$))))
TRUE
Jess> (is-a-function printout)
TRUE
Jess> (is-a-function deftemplate)
FALSE

Let’s figure out how this function works—it’ll be good practice in reading Jess
code, and it includes calls to a couple of built-in functions you haven’t seen before.
To read complex nested Jess language expressions, it’s usually best to start from the
inside and work your way out. The innermost function call in this deffunction is to
list-function$, which returns (not surprisingly) a list of all the functions cur-
rently defined in Jess, including all deffunctions and user-defined functions writ-
ten in Java. The member$ function returns FALSE if the first argument is not found
in the second argument (which must be a list), and returns the index at which the
first argument was found otherwise. Finally, is-a-function uses neq (Not EQual)
to convert member$’s somewhat odd return value into a simple TRUE or FALSE. The
whole deffunction then returns TRUE if the argument appears in the list of defined
functions or FALSE otherwise. The two examples confirm that it works.

4.6 Summary

The Jess language has a simple and regular syntax. It’s rather different from Java’s
syntax, but it’s easy to learn. It is a full-featured programming language in which
you can write real programs. Given that it is an interpreted language, it is surpris-
ingly fast.

 The Jess language has only a few built-in data types, including INTEGER, FLOAT,
SYMBOL, STRING, and LONG. There are several simple control structures, some of
which let you transform data into executable code. All of the control structures
are actually functions. Jess comes with almost 200 built-in functions, and you can
define your own functions using the deffunction construct. You can modify the
behavior of the built-in functions using defadvice.

 On top of all that, you can also call any Java function you want from Jess. How
to do so is the topic of the next chapter.

Scripting Java with Jess
In this chapter you’ll…
■ Create Java objects
■ Call Java methods
■ Access Java member data
■ … all from the Jess language
61

62 CHAPTER 5
Scripting Java with Jess
Arguably, the most powerful features of Jess are those that allow it to be easily inte-
grated with Java. From Java code, you can access all parts of the Jess library, so that
it’s very easy to embed Jess in any Java application, servlet, applet, or other system.
Likewise, from the Jess language, the full power of Java is directly available. This
capability is shown schematically in figure 5.1.

We’ll discuss embedding Jess in larger Java sys-
tems in great depth later in this book. This
chapter describes how you can create Java
objects, call their methods, and otherwise inter-
act with Java without writing any Java code.

 Jess is therefore a kind of scripting language
for Java. Aside from using Jess to build rule-
based systems, you can also use Jess for exper-

imenting with Java APIs, as a prototyping tool, or even to build entire applica-
tions. Want to find out what a particular API method does with a specific
argument? It’s usually faster to start the Jess command prompt and type in a single
line of Jess code than it would be to write, compile, and run a short Java program
to do the same experiment. Want to try different arrangements of a graphical
interface? You can create the windows, buttons, and other graphical components
with a few lines of Jess code, and then interactively assemble and rearrange them
to your liking. This is a great way to experiment with the sometimes surprising
behavior of Java’s layout managers—the classes that arrange components inside
an on-screen container.

5.1 Creating Java objects

In chapter 4, you learned about plain lists. Although lists are useful, they are not
as powerful as the Map and Set containers in Java’s Collections API. A plain list is
a good choice for holding a grocery list, but you really need something like a
HashMap to hold a grocery price lookup table. The HashMap would let you easily
look up the price of any item in the table.

 Jess’s new function lets you create instances of Java classes. For instance, you can
create a Java HashMap and store it in a variable with the following function call:

Jess> (bind ?prices (new java.util.HashMap))
<External-Address:java.util.HashMap>

Jess uses the type RU.EXTERNAL_ADDRESS for the jess.Value objects that hold
arbitrary Java objects. When you display an RU.EXTERNAL_ADDRESS type, you see a
string that contains the name of the class. You might expect instead that Jess

Figure 5.1 You can use Jess from Java,
and call Java methods from Jess.

Creating Java objects 63
would call the Java toString method on the contained object—if Jess did this,
however, the results could be confusing. A java.lang.Integer object and a Jess
value of type RU.INTEGER act very differently, but if Jess used toString to display
EXTERNAL_ADDRESS objects, they’d both print as a number.

 The fully qualified name java.util.HashMap requires a lot of typing, and typ-
ing package names like java.util can be error-prone. In Java, you can avoid
using package prefixes with the import keyword. Jess has an import function you
can use to do the same thing:

Jess> (import java.util.*)
TRUE
Jess> (bind ?prices (new HashMap))
<External-Address:java.util.HashMap>

This example uses the wildcard character “*” to mean “import all the classes in
this package,” but you can also import one class at a time by using the fully quali-
fied name. Just as in Java, the entire java.lang package is implicitly imported, so
you can create Integer and String objects without importing that package
explicitly.

 So far, you’ve used HashMap’s default constructor. Of course, you can create
objects using a class’s other constructors as well. HashMap has a constructor that
takes a Java int and a Java float as arguments. If you invoke this constructor and
pass normal Jess numbers, Jess will make it work:

Jess> (bind ?prices (new HashMap 20 0.5))
<External-Address:java.util.HashMap>

Jess, like any Java code, can only invoke the public constructors of public classes in
other packages. If you want Jess to be able to construct instances of the classes you
define, be sure to make both the class and its constructors public.

 When you call a Java method, Jess converts the arguments from Jess data types
to Java types, as indicated in table 5.1. Generally, when converting in this direc-
tion, Jess has some idea of a target type. The target type is the Java type that is
needed in a given situation. In the HashMap example, the target types are int and
float, because those are the types of the formal parameters of the only HashMap
constructor that takes two arguments. When passing an argument to a Java con-
structor or method, Jess has the java.lang.Class object that represents the for-
mal parameter’s type and a jess.Value object that contains the value you passed,
and wants to turn the Value’s contents into something assignable to the type
named by the Class. Hence the symbol TRUE could be passed to a function
expecting a boolean argument, or to one expecting a String argument, and the
call would succeed in both cases.

64 CHAPTER 5
Scripting Java with Jess

You’ve created a HashMap, but you haven’t done anything with it. Let’s turn it into
a lookup table by filling it with grocery price data.

5.2 Calling Java methods

If you have a reference to a Java object in a Jess variable, you can invoke any of
that object’s methods using the call function. Let’s work with the HashMap you
created in the previous section. HashMap.put associates a key with a value, and
HashMap.get lets you look up a value by key. In this example, the keys are the
names of grocery items, and the values are the prices:

Jess> (call ?prices put bread 0.99)
Jess> (call ?prices put peas 1.99)
Jess> (call ?prices put beans 1.79)
Jess> (call ?prices get peas)
1.99

The first argument to call is a Java object, and the second argument is the name
of a method to invoke. The remaining arguments to call are the arguments to be
passed to the Java method. The arguments are converted to Java types according
to table 5.1.

 In this example, you ignore the return value of HashMap.get and allow Jess to
simply display it. Often, though, you’ll want to do something with the return type:
binding it to a variable or calling another method on it in turn are two common
alternatives. Jess converts the return values of Java methods to Jess types according
to table 5.2. These conversions are generally the reverse of those in table 5.1.

Table 5.1 Standard conversions from Jess types to Java types

Jess type Possible Java types

RU.EXTERNAL_ADDRESS The wrapped object

The symbol nil A null reference

The symbol TRUE or FALSE String, java.lang.Boolean, or boolean

RU.ATOM (a symbol), RU.STRING String, char, or java.lang.Character

RU.FLOAT float, double, and their wrappers

RU.INTEGER long, short, int, byte, char, and their wrappers

RU.LONG long, short, int, byte, char, and their wrappers

RU.LIST A Java array

Calling Java methods 65

You can call virtually any Java method this way. There are a few special cases: Static
methods, methods returning or accepting arrays, and overloaded methods all
require special care. We’ll discuss these cases in the next few sections. First, let’s
look at a shortcut that will improve the readability of the last example.

5.2.1 Nesting function calls, and a shortcut

The symbol call in the following example is a little distracting:

(call ?prices put bread 0.99)

It is actually no more verbose than the equivalent Java code:

map.put("bread", new Double(0.99));

(In fact, the Jess code is a little shorter.) But still, call seems like extra baggage.
The good news is that Jess lets you omit it:

(?prices put bread 0.99)

When the first element of a function call is a Java object, Jess assumes you meant
to include the symbol call and invokes a function on the object. This works even
if the first element of the function call is another function call:

((bind ?prices (new HashMap)) put bread 0.99)

This single line of code creates a HashMap, binds it to a variable, and adds a name/
value pair. Be careful with nesting function calls this way, however; combining logi-
cally separate operations into one line of code can make your programs hard to
understand. Used wisely, though, such compact code can be readable and efficient.

Table 5.2 Standard conversions from Java types to Jess types

Java type Jess type

A null reference The symbol nil

A void return value The symbol nil

String RU.STRING

boolean or java.lang.Boolean The symbol TRUE or FALSE

byte, short, int, or their wrappers RU.INTEGER

long or java.lang.Long RU.LONG

double, float, or their wrappers RU.FLOAT

char or java.lang.Character RU.ATOM (a symbol)

An array A list

Anything else RU.EXTERNAL_ADDRESS

66 CHAPTER 5
Scripting Java with Jess
 For most method calls, the call is optional. However, you can’t leave it out
when you’re calling a static method.

5.2.2 Calling static methods

Static or class methods in Java are those methods that can be called without refer-
ence to a specific object. In both Java and Jess code, you can use just the name of
a Java class to invoke any of its static methods. One well-known example is the
java.lang.Thread.sleep method:

Jess> (call Thread sleep 1000)
(pause for one second)
Jess>

You don’t need to use the fully qualified name java.lang.Thread, because the
classes in Java’s java.lang package are implicitly imported in Jess.

 When you call a static method, you must include the call function name, as
shown in the example; therefore, the most common use of call is to invoke static
methods. Jess includes other functions, analogous to call, to help you invoke
other categories of methods, as you’ll see in the next section.

5.2.3 Calling set and get methods

Special Java objects called JavaBeans play an important role in Jess, as you’ll see in
chapter 6. Therefore, Jess includes many tools for working with them. One of
these tools is a pair of methods to simplify accessing their data. Methods that look
like the following are fairly common in most object-oriented languages:

public String getName() {
 return name;
}
public void setName(String n) {
 name = n;
}

They are often called accessors and mutators, or getters and setters. They are very
common in Java and form an important part of the JavaBeans specification.1 We’ll
talk more about JavaBeans in chapter 6, but for now, we’ll only be concerned with
setters and getters. Many of the Java library classes (especially in the graphical
libraries) use this method naming convention.

1 The JavaBeans project page is at http://java.sun.com/products/javabeans/; it offers the JavaBeans spec-
ification for download.

Calling Java methods 67
 Jess includes the functions set and get, which can be used as an alternative to
call for setters and getters. The following pairs of function calls are equivalent:

Jess> (bind ?b (new javax.swing.JButton))
<External-Address:javax.swing.JButton>

Jess> (?b setText "Press Me") ;; or...
Jess> (set ?b text "Press Me")

Jess> (?b getText) ;; or...
"Press Me"
Jess> (get ?b text)
"Press Me"

The name of a setter or getter method includes a property name, which is text in
these examples. The property name is passed as the second argument to the set
or get functions. To derive the property name to use, remove the prefix from the
Java method name and make the initial capital letter of the rest of the name low-
ercase. The one exception is for names like getURL, where the property name is
URL in all uppercase. This convention is the same as that used by the JavaBeans
specification.

 So far we’ve dealt only with single Java objects and values. Jess also lets you
work with Java arrays.

5.2.4 Working with arrays

The grocery price table can also serve as a simple grocery list. You can ask a Java
Map for its collection of keys, and you can ask that collection to convert itself to an
array. If you could convert that array to a plain list in Jess, you’d be able to recre-
ate the simple grocery list you worked with in earlier chapters of this book.

 As noted in tables 5.1 and 5.2, Jess automatically converts Java arrays to plain
lis ts (Values of type RU.LIST). You can use the method toArray in
java.util.Collection to extract all the keys from your HashMap into a Jess list:

Jess> (bind ?grocery-list ((?prices keySet) toArray))
(bread peas beans)

If you want to put your list of groceries into a pop-up menu component, you can
pass this list of items as a constructor argument to the javax.swing.JComboBox
class. JComboBox wants an array as a constructor argument, but Jess converts your
plain list back into an array automatically:

Jess> (import javax.swing.JComboBox)
Jess> (bind ?jcb (new JComboBox ?grocery-list))
<External-Address:javax.swing.JComboBox>

68 CHAPTER 5
Scripting Java with Jess
This system works well for small arrays (less than a few dozen items), but convert-
ing between arrays and lists is inefficient for large arrays, because the Jess data
structures to represent the plain list must be created or destroyed on each conver-
sion. A better way of working with large Java arrays is planned for a future version
of Jess. Meanwhile, if you need to work with large arrays in your Jess programs,
you can write the code to do the work in Java and then call it from Jess.

 Jess also has no special interface for working with multidimensional arrays, so
again, Java code may be necessary. You can either write ordinary Java functions
and call them using the techniques from this chapter, or you can use functions
written in Java to extend the Jess language itself. You’ll learn how to do this in
chapter 15.

 The JComboBox class has several constructors, but in the previous example Jess
knew which one you wanted to call based on the list you passed as an argument. Let’s
see how Jess decides which method to invoke based on the function calls you write.

5.2.5 How Jess chooses among overloaded methods

Jess is much less picky about data types than Java is. In Java, you can’t store a float
into a HashMap, but you can store a Jess float—because Jess obligingly converts
the number you provide into a java.lang.Double automatically, and that can be
stored just fine. Most of the time, these automatic conversions are helpful; but
occasionally they cause problems. One problem area is when you need to call one
of a set of overloaded Java methods.

 A Java method name is said to be overloaded if multiple methods with the same
name but different argument lists are available on the same object. The many
overloads of java.io.PrintWriter.println are an extreme example. All these
methods appear in the PrintWriter class:

void println()
void println(boolean x)
void println(char x)
void println(char[] x)
void println(double x)
void println(float x)
void println(int x)
void println(long x)
void println(Object x)
void println(String x)

When you call an overloaded method in Java code, the Java compiler chooses an
overload based on the exact compile-time types of the parameters. Java chooses the

Accessing Java member data 69
most specific applicable method.2 Sometimes, if there’s no clear choice, you get a
Java compiler error, but the important point is that there’s always a right answer.

 Jess is much more relaxed about choosing between overloads, because it has to
be: It doesn’t have the same kind of strict type information that Java has. One sim-
ple example: Looking at the list of overloaded println methods, you can see that
there are versions for both double and float. Jess has only one floating-point
type, so it can’t be sure which one you’d rather call.

 When you call an overloaded method such as println, Jess looks at each of the
overloads in turn, trying to match the parameter types of the method to the types
of the arguments you passed. The first overload Jess finds that can be invoked with
the given argument list will be called. Jess does not search for a best match—it uses
the first matching method it finds. Because Jess knows so many different ways to
convert between Jess and Java values, the whole idea of a best match is too vague
to be useful.

 Often, it doesn’t matter which of a set of overloaded methods is called; a set of
overloaded methods usually all do the same thing, and the overloading is just for
the sake of convenience. This is the case with java.io.PrintWriter.println.
Sometimes, however, you may want to call a specific overloading of a method, and
circumstances may conspire to make this impossible. For example, if you pass the
string "TRUE" to a Java method that is overloaded to take either a boolean or a
String, it is generally impossible to predict which overload Jess will choose. In
these cases, you can usually resort to using an explicit wrapper class. For example,
suppose that in this case you want to invoke the boolean overload but Jess calls the
String one instead; creating and passing a java.lang.Boolean object should fix
the problem, because Jess will automatically convert java.lang.Boolean to bool-
ean, but not to String.

 Sometimes calling Java methods isn’t enough—you may need to work directly
with an object’s member variables or the static member variables of a class. Jess
lets you do that, too.

5.3 Accessing Java member data

Some Java classes have public variables you may need to work with. Sometimes these
are objects like the familiar System.out. More commonly, they are static constants
like MAX_PRIORITY in java.lang.Thread or NORTH in java.awt.BorderLayout. Of

2 See the Java Language Specification, section 15.11.2.2.

70 CHAPTER 5
Scripting Java with Jess
course, some classes have public member variables, like the x and y members of
java.awt.Point, which you’ll want to both read and modify.

 Instance variables are members of a class that belong to individual objects; each
object has its own copy of an instance variable. Jess can access public instance vari-
ables of Java objects using the get-member and set-member functions. In this exam-
ple, a Point object is allocated, and its x and y members are set and then read:

Jess> (bind ?pt (new java.awt.Point))
<External-Address:java.awt.Point>
Jess> (set-member ?pt x 37)
37
Jess> (set-member ?pt y 42)
42
Jess> (get-member ?pt x)
37

The set-member and get-member functions also work on class variables. There is
only a single copy of each class variable, and all objects of a class share it. Class
variables are also called static variables in Java. You can access class variables by
using the name of the class instead of an object as the first argument to set-
member or get-member:

Jess> (get-member System out)
<External-Address:java.io.PrintStream>
Jess> (get-member java.awt.BorderLayout NORTH)
"North"

Jess converts values for all kinds of member variables between Java and Jess types
according to tables 5.1 and 5.2—that is, using the same rules as are used for
method arguments and return values.

 When you’re working with Java objects, methods usually return a value to their
caller, and everything works fine. Sometimes, though, methods don’t return—they
throw exceptions instead. In the next section, you’ll see how Jess handles exceptions.

5.4 Working with exceptions

Java methods can signal an error by throwing an exception. An exception is just a
Java object, and it’s intended to be treated as a message from the failed code to
the caller. When a Java constructor or method throws an exception, Jess receives
or catches the message and makes it available to you. Jess signals errors in your Jess
code and failures in its own functions using exceptions, too, so this section is rele-
vant even when you aren’t explicitly working with Java objects.

Working with exceptions 71
 When Jess catches an exception in a Jess function or a Java method, its default
action is to print a detailed message, including either one or two stack traces, to
the console. If there is only one stack trace, it shows where in Jess’s own Java code
the problem occurred. If the exception occurred in a Java method you called
from Jess, a second stack trace pinpoints the error in the Java method. Together,
these stack traces tell you exactly what happened in your Jess program.

 Although these messages are useful to you, the programmer, they’re generally
not what you want to happen in a deployed system, when a user would see them.
Therefore, whenever you call a method that might throw an exception, you
should supply a handler to execute in response to the exception in place of Jess’s
default handler. You can do this using the try function. As a first example, let’s
call the function parseInt in the java.lang.Integer class, which throws
NumberFormatException if its argument can’t be parsed as the string representa-
tion of an integer:

Jess> (deffunction parseInt (?string)
 (try
 (bind ?i (call Integer parseInt ?string))
 (printout t "The answer is " ?i crlf)
 catch
 (printout t "Invalid argument" crlf)))
TRUE
Jess> (parseInt "10")
The answer is 10
Jess> (parseInt "l0")
Invalid argument

The try function evaluates the expressions in the first block, one at a time. If one
of those expressions throws an exception, that block is abandoned, and try
begins evaluating expressions that follow the symbol catch, if it appears. You can
also have a finally block following the catch block, just like in Java. The finally
expressions are evaluated regardless of whether the try statements throw any
exceptions. A good use for a finally block is to close a file, as in this Jess render-
ing of some typical Java file I/O code:

Jess> (import java.io.*)
TRUE
Jess> (bind ?file nil)
Jess> (try
 (bind ?file
 (new BufferedReader
 (new java.io.FileReader "data.txt")))
 (while (neq nil (bind ?line (?file readLine)))
 (printout t ?line crlf))
 catch

Lowercase “ell”,
uppercase “oh”

72 CHAPTER 5
Scripting Java with Jess
 (printout t "Error processing file" crlf)
 finally
 (if (neq nil ?file) then
 (?file close)))
Error processing file

You must have either a catch or a finally block, or both, in every try function call.
 You can access the actual exception object that was thrown using the special vari-

able ?ERROR, which is always defined for you in a catch block and is initialized by
Jess to point to the caught exception. Whereas in Java you can define multiple
catch blocks in a single try, differentiated by exception type, you can have only one
catch block in a try in Jess. If you want to distinguish between exception types, you
can use the ?ERROR variable and the instanceof function, which can tell you
whether a given object belongs to a given Java class. For example, you may want to
call the static method lookup in the java.rmi.Naming class. This method is used to
contact remote objects via the RMI protocol. The lookup method can throw
NotBoundException, RemoteException, and AccessException (all from the
java.rmi package), as well as java.net.MalformedURLException. You can issue
specific error messages for each of these cases; the code might look like listing 5.1.

Jess> (import java.rmi.*)
TRUE
Jess> (import java.net.MalformedURLException)
TRUE
Jess> (try
 (bind ?server
 (call Naming lookup "rmi://snarf.blat.com/Survice"))
 (printout t "Connection established." crlf)
 catch
 (if (instanceof ?ERROR NotBoundException) then
 (printout t "No such service at host" crlf)
 else (if (instanceof ?ERROR MalformedURLException) then
 (printout t "Address has a syntax error" crlf)
 else (if (instanceof ?ERROR AccessException) then
 (printout t "You don't have permission" crlf)
 else (if (instanceof ?ERROR RemoteException) then
 (printout t "Network error" crlf)
 else
 (printout t "Unknown Error" crlf))))))

No such service at host.

Listing 5.1 Using instanceof in catch blocks

Lets you use
short class
names Service

misspelled;
throws
NotBound-
Exception

Check exception
type; print

custom
message

Default error
message

Summary 73
Jess’s throw function lets you throw Java exceptions from Jess code. It works just
like the throw keyword in Java: The single argument must be an instance of a Java
class that extends java.lang.Throwable. Here’s an example:

Jess> (throw (new Exception "Testing"))
Jess reported an error in routine throw
 while executing (throw (new Exception "Testing")).
Message: Exception thrown from Jess language code.
Program text: (throw (new Exception "Testing")) at line 1.
Nested exception is:
java.lang.Exception: Testing
 at jess.TryCatchThrow.call(Funcall.java:827)
 at jess.FunctionHolder.call(FunctionHolder.java:37)

5.5 Summary

Jess can create Java objects, call their methods, and access their data. Jess can also
work with Java primitives by converting between Java and Java types. With a few
exceptions (particularly working with large or multidimensional arrays), most
Java code can be directly translated to Jess. Even these exceptions can easily be
overcome by extending Jess with functions written in Java; you’ll learn how to do
this in part 5 of this book.

 In chapters 6 and 7, you’ll see how Jess’s ability to work with Java objects comes
into play in rule-based programming as we study Jess’s working memory and learn
how to write Jess rules. And as you’ll see later in this book, these capabilities make
integrating Jess into a Java application extraordinarily easy.

Representing facts in Jess
In this chapter you’ll…
■ Explore Jess’s working memory
■ Learn about the different kinds of facts, and

when to use them
■ Find out how to store Java objects in working

memory
74

Jess’s working memory 75
Now that we’ve looked at the basic syntax of the Jess language, it’s time to begin
our study of Jess’s rule-based programming features. In this chapter, we’ll look at
how to create and manage the data that rules can act on—the working memory we
first discussed in chapter 1. The working memory, sometimes called the fact base,
contains all the pieces of information Jess is working with. The working memory
can hold both the premises and the conclusions of your rules.

 Jess stores the contents of working memory using a set of customized indices
that make looking up a particular piece of information very fast—much as a rela-
tional database does. Even though Jess uses a data-centric index internally, your
view of working memory will look like a simple list. Each item in working memory
appears on this list in the order in which it was added. We’ll begin our study of
working memory by looking at the individual items it contains—the working
memory elements, or facts.

6.1 Jess’s working memory

Jess maintains a collection of information nuggets called facts. This collection of
facts is known as the working memory. All the pieces of information your rules work
with are represented as facts in the working memory. For example, if your pro-
gram is a smart environmental control system for an office building, the facts in
the working memory may be temperature and humidity readings from around
the building, and sensor readings and switch settings from the building’s air-con-
ditioning systems (see figure 6.1). The contents of Jess’s working memory are held
in your computer’s RAM.

 Facts come in different types. However, like most other constructs in Jess, facts
are stored as lists. Each of the following is a valid fact:

Figure 6.1
Facts in the working memory
are Jess’s representation of
information about the
outside world.

76 CHAPTER 6
Representing facts in Jess
(initial-fact)
(little red Corvette)
(groceries milk eggs bread)

As it happens, these are all examples of ordered facts, which will be discussed in
section 6.4.

 It is important to recognize that we’re using the word fact in a specific, techni-
cal sense, and the meaning differs slightly from the colloquial English usage. In
rule-based systems terminology, fact is another word for working memory element. A
fact is therefore the smallest unit of information that can be separately added to
or removed from the working memory of a rule-based system. Jess facts aren’t gen-
erally atomic; rather, they have some structure to them, as you’ll see in the follow-
ing sections.

6.1.1 Manipulating the working memory

Intuitively, a collection is a group of items you can add to or remove from.
Depending on your tastes as a collector, you can acquire new baseball cards, or
discard a chipped ceramic unicorn. Working memory is a collection of facts, and
if you were to write a rule-based program about trading cards, each card in your
collection might be represented by a single fact.

 Jess offers a set of functions to let a program perform the basic collection oper-
ations (add, remove, modify, duplicate) on the working memory. You can also use
these functions interactively while you’re programming, along with others that let
you examine, initialize, and clear the working memory. This section describes the
following functions and constructs; as a Jess programmer, you’ll use all of these
frequently:

■ assert—Adds facts to working memory

■ clear—Clears all of Jess

■ deffacts—Defines the initial contents of working memory

■ facts—Displays the contents of working memory

■ reset—Initializes the working memory

■ retract—Removes facts from working memory

■ watch—Tells Jess to print diagnostics when interesting things happen

Jess includes several functions that let you peer into working memory and see
what’s happening. We’ll cover these first so you’ll be able to follow the action in
later sections.

Jess’s working memory 77
The watch function
Many Jess programs are developed interactively by typing at the Jess> prompt
and watching the results. It would therefore be useful to be able to see when Jess’s
working memory has changed. You can use the watch function to tell Jess to print
messages when various interesting things happen. Depending on the arguments
you pass to watch, you can get Jess to report on several different kinds of events,
including changes to the working memory. If you type the expression (watch
facts), then you’ll see a message whenever any facts are added or removed from
then on. The reset function initializes the working memory and creates the fact
(MAIN::initial-fact), and you can see the fact being added to working memory if
(watch facts) is in effect:

Jess> (watch facts)
TRUE
Jess> (reset)
==> f-0 (MAIN::initial-fact)
TRUE
Jess> (unwatch facts)
TRUE

The ==> symbol given by Jess in a response means the fact is being added to work-
ing memory, whereas a <== symbol is printed to show a fact being removed.

 In the rest of this chapter, we’ll show Jess’s output as if the watch function has
not been issued, but you can use it whenever you want to keep an eye on what’s
happening with working memory. As you may have inferred from the example,
the unwatch function reverses the effect of watch.

The facts function
Although watch can tell you when new facts appear and old ones are removed, it
can’t give you the big picture. You can get that using facts. You can see a list of all
the facts in the working memory using the facts function. If you continue the
previous example by typing (facts) at the prompt, you’ll see that the fact
(MAIN::initial-fact) is the only one in working memory:

Jess> (facts)
f-0 (MAIN::initial-fact)
For a total of 1 facts.

The (initial-fact) turns out to be useful, but it’s not especially interesting.
Let’s add some more facts to working memory so you have something worth
looking at.

78 CHAPTER 6
Representing facts in Jess
Creating facts with assert
Rules can only act on information that is represented by facts in Jess’s working
memory. In any nontrivial program, then, you need to create new facts of your
own. New facts are added to the working memory using the assert function:

Jess> (reset)
TRUE
Jess> (assert (groceries milk eggs bread))
<Fact-1>
Jess> (facts)
f-0 (MAIN::initial-fact)
f-1 (MAIN::groceries milk eggs bread)
For a total of 2 facts.

The grocery list has been added to the working memory and assigned an index 1,
called the fact-id. Every fact in the working memory has a fact-id, assigned in order
starting with 0, so that a fact with a larger fact-id was always added to working
memory at a later time than a fact with a smaller fact-id. Here the fact-id 0 was
assigned to (MAIN::initial-fact). The fact-id serves as a convenient way to refer
to a fact when you want to modify it or remove it from working memory. Jess also
uses fact-ids when it decides the order in which rules will be fired.

 The qualifier MAIN:: that was prepended to the first field in the list (called the
fact’s head; see chapter 4) is the name of the current module. A module is a named
subset of the rules, facts, and other constructs you’ve entered into Jess. Modules
are often used to divide rules and facts into functional groups, and we’ll study
them in detail in chapter 7. For now, it’s enough to know that MAIN is the default
module name and all the facts you define belong to it.

 The assert function takes any number of facts as arguments and returns the
fact-id of the last fact asserted, or FALSE if the last fact couldn’t be asserted. Typi-
cally, this means the argument was a duplicate of a fact that was already in working
memory. (Jess’s working memory contains only unique facts.)

 Real collections both grow and shrink: You can sell baseball cards as well as buy
them. Facts, likewise, come and go. When you’re through with your grocery shop-
ping, you’ll want to erase the list from working memory.

Removing facts with retract
If a fact represents a true statement about the world, then when the world changes,
that fact needs to be removed from the working memory. You can remove individ-
ual facts from the working memory using the retract function. Arguments for
retract can be actual facts—that is, a jess.Value object of type RU.FACT, which
holds a reference to a jess.Fact Java object—or they can be numeric fact-ids.
Let’s retract the two facts you currently have in working memory, one at a time:

Jess’s working memory 79
Jess> (facts)
f-0 (MAIN::initial-fact)
f-1 (MAIN::groceries milk eggs bread)
For a total of 2 facts.
Jess> (retract 1)
TRUE
Jess> (facts)
f-0 (MAIN::initial-fact)
For a total of 1 facts.
Jess> (bind ?f (fact-id 0))
<Fact-0>
Jess> (retract ?f)
TRUE
Jess> (facts)
For a total of 0 facts.

This example retracts the grocery-list fact using its fact-id and the initial-
fact fact by using the Fact object directly (you first have to look up the Fact
object using the fact-id function). Both approaches work, but if you already
have a reference to a Fact object, then using that reference is faster. Using fact-ids
is more convenient when you’re working interactively at the Jess> prompt.

 You retracted two facts, one at a time. It would have been possible to get the same
effect using a single call to the clear function, as you’ll see in the next section.

Clearing and initializing working memory
As you work interactively in Jess, the working memory tends to become full of bits
and pieces of information that are no longer relevant. When this happens, you
might want to clean things up to make it easier to see what you’re doing. Similarly,
a running program might want to periodically start from a known state—for
instance, when a particular customer signs on to your e-commerce site, the pro-
gram should have on hand only the information relevant to that customer.

 You can remove all the facts from working memory using the clear function.
However, clear goes beyond just erasing working memory; it also erases all vari-
ables, rules, and deffunctions from Jess. Because clear essentially deletes the
entire active program, it’s not used very often—generally only if you’re in an
interactive session and want to start from a clean slate.

 To restore the initial state of an application without erasing it completely, you
can use reset. The reset function puts working memory into a known state. By
default, working memory is empty except for the special fact (MAIN::initial-
fact), as you’ve seen in the earlier examples. This initial fact is special because
Jess uses it internally. Many rules implicitly expect it to be there and won’t work
correctly without it. Before you use the working memory, it’s important to use the

Fetch Fact object
with fact-id 0

80 CHAPTER 6
Representing facts in Jess
reset function at least once, while your program is starting up or at the begin-
ning of an interactive session. You (or your program) can issue reset again when-
ever you want to reinitialize the working memory.

 You can specify the initial contents of working memory, in addition to
(MAIN::initial-fact), using the deffacts construct.

The deffacts construct
Typing separate assert functions for each of many facts is rather tedious. It’s also
common to initialize the Jess engine using the reset function, which clears the
working memory, and then immediately want to put the working memory into a
known state containing a number of initial facts. For example, in an e-commerce
program, the initial facts might include the product catalog.

 To make this process easier, Jess includes the deffacts construct. A deffacts
construct is a simply a named list of facts. You can define any number of deffacts
constructs. The facts in all existing deffacts are asserted into the working mem-
ory whenever the reset function is issued. Listing 6.1 demonstrates the operation
of deffacts.

Jess> (clear)
TRUE
Jess> (deffacts catalog "Product catalog"
 (product 354 sticky-notes "$1.99")
 (product 355 paper-clips "$0.99")
 (product 356 blue-pens "$2.99")
 (product 357 index-cards "$0.99")
 (product 358 stapler "$5.99"))
TRUE
Jess (facts)
For a total of 0 facts.
Jess> (reset)
TRUE
Jess> (facts)
f-0 (MAIN::initial-fact)
f-1 (MAIN::product 354 sticky-notes "$1.99")
f-2 (MAIN::product 355 paper-clips "$0.99")
f-3 (MAIN::product 356 blue-pens "$2.99")
f-4 (MAIN::product 357 index-cards "$0.99")
f-5 (MAIN::product 358 stapler "$5.99")

For a total of 6 facts.

Listing 6.1 A deffacts construct in action

Just the facts, ma’am 81
Whenever reset is called, the facts in the deffacts are asserted. This is a conve-
nient way to set up the product catalog in working memory for the first time and
to restore it after working memory has been cleared.

 Using the functions we’ve discussed in this section, you add and remove facts
from Jess’s working memory and see the effects of your changes. Now let’s exam-
ine the individual facts themselves in more detail.

6.2 Just the facts, ma’am

Jess’s working memory is stored in a complex data structure with multiple indexes,
so that searching the working memory is a very fast operation. The working memory
is therefore something like a relational database, and the individual facts are like
rows in a database table (see figure 6.2). This implies that facts, like table rows, must
have a specific structure so that they can be indexed. Jess offers three different kinds
of facts; each kind has its own structure and is indexed and used in a different way.

 Unordered facts are the workhorses of the working memory. An unordered fact
is quite literally like a row in a relational database table, with individual named
data fields corresponding to the table’s columns. When you assert an unordered
fact, you can specify the slots in any order—hence the name unordered. Unordered
facts are the most common kind of fact and a good choice for most situations. An
unordered fact looks like this:

(person (name "John Q. Public") (age 34) (height 5 10) (weight 170))

An ordered fact lacks the structure of named fields—it is just a short, flat list—but
ordered facts are convenient for simple bits of information that don’t need struc-
ture. All the facts we’ve used as examples so far have been ordered facts. If you
used an ordered fact to represent the same “person” data, it would look like this:

(person "John Q. Public" 34 5 10 170)

Finally, shadow facts are unordered facts that are linked to Java objects in the real
world—they provide a way to reason about events as they occur outside of Jess. In
the following sections, we’ll cover each of these categories of fact in detail.

Figure 6.2
Working memory is something
like a relational database.

82 CHAPTER 6
Representing facts in Jess
6.3 Unordered facts

A table in a relational database has a name and a set of named columns. Each row
of data in a table provides a value for each of the columns. Unordered facts are work-
ing memory elements that behave like rows in a database table (although the col-
umns are traditionally called slots). Here are some examples of unordered facts:

(person (name "Bob Smith") (age 34) (gender Male))
(automobile (make Ford) (model Explorer) (year 1999))
(box (location kitchen) (contents spatula))

The person fact has slots name, age, and gender; the automobile fact has slots
make, model, and year. The head of an unordered fact (person, automobile, box)
is like the table name, and the slot names are like the column names.

 Before you can work with unordered facts, you have to specify their structure
using the deftemplate construct. Once you have created some unordered facts
and put them in working memory, functions such as modify and duplicate let
you change or copy them.

6.3.1 The deftemplate construct

Typically, a relational database contains many tables, one for each type of informa-
tion the database holds. In a real relational database, to create a new table, you
have to specify the names of the columns that will be found in the table. Thereaf-
ter, every row in the table has those same columns—no more and no less.

 Similarly, in Jess, you define many different kinds of unordered facts. Before
you can assert an unordered fact with a given head, you have to use the
deftemplate construct to define the slots that kind of fact. This example defines
an unordered fact type with three slots:

Jess> (deftemplate person "People in actuarial database"
 (slot name)
 (slot age)
 (slot gender))
TRUE
Jess> (assert (person (age 34) (name "Bob Smith")
 (gender Male)))
<Fact-1>
Jess> (facts)
f-0 (MAIN::initial-fact)
f-1 (MAIN::person (name "Bob Smith") (age 34)
 (gender Male))
For a total of 2 facts.

Unordered facts 83
The name of the deftemplate (person) is used as the head of the facts. You can
define as many slots as you want in your deftemplate. You can also include a short
description, as shown in the example.

 When you assert an unordered fact, you can specify the slots in any order, and
you don’t have to include every slot. When Jess displays an unordered fact (for
instance, when you type the (facts) function), the slots are always displayed in a
standard order—the order in which you defined them in the deftemplate.

 If you omit any slots when you assert an unordered fact, they’re filled in using
default values.

6.3.2 Default slot values

Most relational databases support the idea of a “don’t care” value in a particular
column. If you add a row to a table and don’t specify a value for one or more col-
umns, then this default value—usually called NULL—is used. Jess lets you do the
same thing with unordered facts. When you assert unordered facts, you can omit
values for any number of slots, and Jess will fill in the default value nil:

Jess> (assert (person (age 30) (gender Female)))
<Fact-2>
Jess> (facts)
f-0 (MAIN::initial-fact)
f-1 (MAIN::person (name "Bob Smith") (age 34)
 (gender Male))
f-2 (MAIN::person (name nil) (age 30)
 (gender Female))
For a total of 3 facts.

Sometimes nil is an acceptable default value, but often it’s not. You can specify
your own default value by using a slot qualifier:

Jess> (clear)
TRUE
Jess> (deftemplate person "People in actuarial database"
 (slot name (default "OCCUPANT"))
 (slot age)
 (slot gender))
TRUE

NOTE If you’re following along, you may have entered a previous definition for
the person template. You can’t redefine a deftemplate until you use
the clear function to completely erase Jess’s internal state, as this exam-
ple does.

84 CHAPTER 6
Representing facts in Jess
Notice that when you assert a person fact and don’t specify a value for the name
slot, the default value OCCUPANT is used:

Jess> (assert (person (age 30) (gender Female)))
<Fact-0>
Jess> (facts)
f-0 (MAIN::person (name "OCCUPANT") (age 30)
 (gender Female))
For a total of 1 facts.

What if the appropriate default value isn’t constant, but changes over time? As an
example, a slot might be initialized to hold a timestamp indicating when the fact
was asserted. The default-dynamic qualifier lets you accomplish this. Jess evalu-
ates the given value each time a new fact is created using this template. Usually
you’ll use a function call with default-dynamic. For example, to create the times-
tamp, you could use (default-dynamic (time)).

 The slots we’ve looked at so far have all contained single values. Slots that hold
multiple values are useful, too. You’ll learn how to create them next.

6.3.3 Multislots

The normal slots we’ve looked at so far can each hold only a single value. Some-
times, though, it’s handy to keep a list of things in a slot. For example, if you
wanted to keep track of a person’s hobbies in a hobbies slot, you’d need to be
able to handle people who have more than one way to spend their free time. You
can create slots that can hold multiple values by using the multislot keyword:

Jess> (clear)
TRUE
Jess> (deftemplate person "People in actuarial database"
 (slot name (default OCCUPANT))
 (slot age)
 (slot gender)
 (multislot hobbies))
TRUE
Jess> (assert (person (name "Jane Doe") (age 22)
 (hobbies snowboarding "restoring antiques")
 (gender Female)))
<Fact-0>

Now Jane has two hobbies, both listed in the single hobbies multislot.
 If you don’t specify a default value for a multislot, Jess uses an empty list. Usu-

ally this is what you want, but you can specify a different default if you need to.
 The values contained in the slots of an unordered fact are not fixed; you can

change them whenever you want using the modify function.

Unordered facts 85
6.3.4 Changing slot values with modify

Very often, a rule acts on a fact by updating it. For example, a rule about the pas-
sage of time might occasionally need to update the age slot of all the persons in
the working memory. You can change the values in the slots of an unordered fact
using the modify function. Continuing the previous example:

Jess> (modify 0 (age 23))
<Fact-0>
Jess> (facts)
f-0 (MAIN::person (name "Jane Doe") (age 23)
 (gender Female)
 (hobbies snowboarding "restoring antiques"))
For a total of 1 facts.

The first argument to modify is either a Fact object or a numeric fact-id, and all
the other arguments are slot name, value pairs that specify a new value for the
named slot. You can modify any number of slots in a fact with a single modify
function. You can use modify on multislots, too.

 Note that the fact-id of a fact does not change when you use the modify func-
tion. It’s the same fact—it just has new slot values. If you’ve used CLIPS, you might
notice that this is an important difference between CLIPS and Jess; in CLIPS, the
fact-id changes when you use modify. This simple property is extremely useful. A
slot of one fact can hold the fact-id of another fact as slot data, and in this way, you
can build structures of related facts. Because the fact-id of a fact is constant, the
relationships won’t be broken if the facts are modified.

6.3.5 Copying facts with duplicate

If you know that John Doe is the same age as Jane and likes the same things, but is
male instead of female, you can create a fact representing him using the duplicate
function. The duplicate function is similar to modify, except that instead of
modifying an existing fact, it makes a copy, and then modifies the copy. Continu-
ing the previous example, let’s make a copy of the Jane Doe fact (fact-id 0):

Jess> (duplicate 0 (name "John Doe") (gender Male))
<Fact-1>
Jess> (facts)
f-0 (MAIN::person (name "Jane Doe") (age 23)
 (gender Female) (hobbies snowboarding "restoring antiques"))
f-1 (MAIN::person (name "John Doe") (age 23)
 (gender Male) (hobbies snowboarding "restoring antiques"))
For a total of 2 facts.

Just like modify, duplicate does nothing if the new fact would be an exact copy of
an existing fact. The duplicate function returns the fact-id of the newly created

86 CHAPTER 6
Representing facts in Jess
fact, or FALSE if no fact was created. The modify and duplicate functions only
work with unordered facts, because they require a slot name as an argument,
which ordered facts don’t have. Let’s look at some things that ordered facts can do.

6.4 Ordered facts

Although unordered slots are a great way to organize data when you need many
slots per fact, if you only need one slot, they can seem redundant. For example,
here’s a deftemplate to hold a fact representing a single number:

Jess> (deftemplate number (slot value))
TRUE
Jess> (assert (number (value 123)))
<Fact-0>

The name value doesn’t add any information—it just clutters things up. For sim-
ple cases like this, it would be nice to be able to omit the notion of a slot name
altogether—and Jess allows this:

Jess> (clear)
TRUE
Jess> (assert (number 123))
<Fact-0>

You can assert facts that look like simple, flat lists, without explicitly defining a
deftemplate for them, as long as no deftemplate using that same head has
already been defined. All the facts you used in the first section of this chapter
were ordered facts. We’ll use the following functions to take a closer look at
ordered facts and their templates:

■ ppdeftemplate—Displays a pretty-printed deftemplate

■ show-deftemplates—Lists all the deftemplates currently defined

When you assert the first ordered fact with a given head, Jess automatically gener-
ates an implied deftemplate for it. The ppdeftemplate function lets you see the
definition of any deftemplate. Let’s use it to examine the implied deftemplate
for number:

Jess> (ppdeftemplate number)
"(deftemplate MAIN::number extends MAIN::__fact \"(Implied)\"
 (multislot __data))"

ppdeftemplate (the pp stands for pretty print) returns its result as a string, so the
definition is enclosed in double quotes and the quotes around the documentation
string are escaped with backslashes. The implied deftemplate number contains a

Shadow facts 87
single slot named __data. Jess treats facts created from these deftemplates spe-
cially. The name of the __data slot is normally hidden when the facts are dis-
played. This is really just syntactic shorthand, though; ordered facts are unordered
facts with a single multislot. Jess understands that the name __data doesn’t add
any information and so should normally be hidden.

 In practice, the most common kind of ordered facts is the head-only kind like
(initial-fact). They are often used for transient information that will soon be
retracted and for one-of-a-kind statements like (shutdown-now) and (found-
solution). If your fact will hold more than one piece of slot data, unordered facts
offer a lot more flexibility and lend structure to the information they hold, so they
are generally preferable in most situations. In addition, unordered facts lead to
fewer coding errors. The explicit slot labels serve as a sanity check during pro-
gramming and help prevent mistakes. Finally, unordered facts give better pattern-
matching performance, as you’ll learn in chapter 7.

 The show-deftemplates function lists any implied deftemplates along with
any explicitly created ones. You can also use show-deftemplates to see Jess’s
built-in deftemplates:

Jess> (show-deftemplates)
(deftemplate MAIN::__clear extends MAIN::__fact "(Implied)")
(deftemplate MAIN::__fact "Parent template")
(deftemplate MAIN::__not_or_test_CE
 extends MAIN::__fact "(Implied)")
(deftemplate MAIN::initial-fact extends MAIN::__fact "(Implied)")
(deftemplate MAIN::number extends MAIN::__fact "(Implied)"
 (multislot __data))
FALSE

In this example you can see the three special templates Jess uses internally:
__clear, __fact, and __not_or_test_CE, as well as the initial-fact template
and your number template.

 The third and final category of facts is perhaps the most interesting, because
these facts connect Jess’s working memory to the real world outside.

6.5 Shadow facts

A shadow fact is an unordered fact whose slots correspond to the properties of a Java-
Bean. JavaBeans are a kind of normal Java object; therefore, shadow facts serve as a
connection between the working memory and the Java application inside which
Jess is running. They’re called shadow facts because they are like images, or shad-
ows, of JavaBeans outside of Jess. The function defclass lets you create a special

88 CHAPTER 6
Representing facts in Jess
deftemplate to be used with shadow facts, and definstance lets you create an
individual shadow fact. Let’s briefly look at what JavaBeans are, and then see how
they can be connected to Jess’s working memory. We’ll discuss these Jess functions:

■ defclass—Creates a deftemplate from a JavaBean class

■ definstance—Adds a JavaBean to Jess’s working memory

6.5.1 Jess and JavaBeans
You can view Jess’s working memory as sort of an electronic organizer for your
rule-based system. A piece of data must be part of the working memory for it to be
used in the premises of a Jess rule. Ordered and unordered facts are useful in
many situations, but in many real-world applications, it’s useful to have rules
respond to things that happen outside of the rule engine. Jess lets you put regular
Java objects in working memory—instances of your own classes that can serve as
hooks into a larger software system—as long as those objects fulfill the minimal
requirements necessary to be JavaBeans.

 As previously mentioned, unordered facts look a bit like Java objects. Specifi-
cally, they look a lot like JavaBeans. The JavaBean component architecture specifi-
cation (http://java.sun.com/products/javabeans/) defines a JavaBean simply as a
self-contained, reusable component that can be used from a graphical builder
tool. JavaBeans, like other kinds of software components (for instance, Visual
Basic controls), often serve as interfaces to more complex systems such as data-
bases or special hardware.

6.5.2 JavaBeans have “slots”
The similarity between JavaBeans and unordered facts is that both have a list of
slots (for JavaBeans, they’re called properties) containing values that might change
over time. There’s plenty more to JavaBeans than just properties; however, those
features go beyond the scope of this book.1

 A JavaBean property is most often a pair of methods named in a standard way.
If the property is a String named label, the Java methods look like this:

String getLabel();
void setLabel(String);

The get method is used to read the value of the property, and the set method to
change it. The java.beans API includes a class named Introspector that can

1 Plenty of great books on JavaBeans are available if you’re interested. For example: Lawrence Rodrigues,
The Awesome Power of Java Beans (Greenwich, CT: Manning Publications, 1998).

Shadow facts 89
examine JavaBeans and find properties defined according to this get/set nam-
ing system. There are a few wrinkles having to do with capitalization and other
details, but this simple convention works most of the time.

 Jess can use Introspector to automatically generate a deftemplate that repre-
sents any specific JavaBean class (see figure 6.3). A fact created from this
deftemplate can then serve as a sort of adapter to store the JavaBean in working
memory, the shadow facts. A shadow fact has one slot for each JavaBean property.
If a JavaBean has array properties, those properties become multislots, and all
other properties become normal slots. The slots are automatically populated with
the values of the JavaBean’s properties. In the next section, you’ll watch Jess use
Introspector to create a custom template for a JavaBean.

6.5.3 An example JavaBean
Now let’s work through an example of how a JavaBean can be connected to Jess’s
working memory. Listing 6.2 shows a simple JavaBean class. This JavaBean has one
property called brightness. Note that when you set the brightness property, the
Bean calls the method adjustTriac that brightens or dims an attached lighting
fixture (the code for adjustTriac presumably uses the Java Native Interface to
access code written in another language, like C). The value you read using the
getBrightness method is thus always tied to the brightness of the light. If you
had a DimmerSwitch object in Jess’s working memory, then your rules would be
able to reason in real time about the lighting in a building.

public class DimmerSwitch {
 private int brightness = 0;
 public int getBrightness() { return brightness; }
 public void setBrightness(int b) {
 brightness = b;
 adjustTriac(b);
 }

Figure 6.3 Jess uses the java.beans.Introspector class to turn
JavaBeans into deftemplates.

Listing 6.2 A simple JavaBean with one property: brightness

90 CHAPTER 6
Representing facts in Jess
 private void adjustTriac(int brightness) {
 // Code not shown
 }

}

You need a special deftemplate to plug a DimmerSwitch into Jess—let’s learn how
to create one.

6.5.4 Creating a deftemplate for DimmerSwitch
The Jess functions that let you put JavaBeans into working memory are defclass
and definstance. The defclass function tells Jess to generate a special template
to represent a specific JavaBean class, whereas definstance puts a shadow fact
connected to one particular JavaBean instance into working memory.

 Before you can insert an instance of DimmerSwitch into Jess’s working memory,
you need a deftemplate to represent the class. You use defclass to tell Jess to
generate it:

Jess> (defclass dimmer DimmerSwitch)
DimmerSwitch
Jess> (ppdeftemplate dimmer)
"(deftemplate MAIN::dimmer extends MAIN::__fact
 \"$JAVA-OBJECT$ DimmerSwitch\"
 (slot brightness
 (default <External-Address:jess.SerializablePD>))
 (slot class (default <External-Address:jess.SerializablePD>))
 (slot OBJECT (type 2048)))"

To run this code, you first need to compile the DimmerSwitch class and make the
.class file available on your CLASSPATH. The resulting template is a bit strange
looking (especially the default values). It does have a slot called brightness, as
you’d expect, which arises from the brightness property of the JavaBean. All
shadow facts have the other slots in common. The slot class comes from the
method getClass that every Java object inherits from java.lang.Object, and the
slot OBJECT is added by Jess. This special OBJECT slot always contains a reference to
the JavaBean to which a given shadow fact. The first argument to defclass—
dimmer, here—is used as the deftemplate name. (Some people like to use the
name of the Java class itself; my personal preference is to use a shorter name with
a lowercase initial.)

6.5.5 Putting a DimmerSwitch into working memory
Now you can put a DimmerSwitch into working memory. Here you’ll create one
from Jess code, but it could come from anywhere (later in this book, you’ll learn

Shadow facts 91
many strategies for passing objects back and forth between Jess and Java code).
After you create a DimmerSwitch, you use the definstance function to add it to
the working memory:

Jess> (bind ?ds (new DimmerSwitch))
<External-Address:DimmerSwitch>
Jess> (definstance dimmer ?ds static)
<Fact-0>
Jess> (facts)
f-0 (MAIN::dimmer
 (brightness 0)
 (class <External-Address:java.lang.Class>)
 (OBJECT <External-Address:DimmerSwitch>))
For a total of 1 facts.

The first argument to definstance is the name of a template created by
defclass, and the second argument is a corresponding JavaBean. We’ll discuss
the meaning of static in the next section.

 As soon as you call the definstance function, a shadow fact representing the
Bean appears in the working memory. Rules can react to this dimmer fact just as
they can to any other fact in working memory. If you imagine thousands of dimmer
facts, representing the brightness of every light fixture in a large office building,
you can see how letting Jess reason about DimmerSwitch objects could be useful.

6.5.6 Static vs. dynamic shadow facts
The working memory representation of a JavaBean can be either static (changing
infrequently, like a snapshot of the properties at one point in time) or dynamic
(changing automatically whenever the JavaBean’s properties change). The
definstance you have defined already is static. What happens if you change the
brightness property of your Bean, turning on the light? You can invoke the
setBrightness method using the call function you learned about in chapter 5:

Jess> (call ?ds setBrightness 10)
Jess> (facts)
f-0 (MAIN::dimmer
 (brightness 0)
 (class <External-Address:java.lang.Class>)
 (OBJECT <External-Address:DimmerSwitch>))
For a total of 1 facts.

Nothing changed. The working memory still thinks the Bean’s brightness is set
at 0, even though you changed it to 10. This is expected behavior for a static
definstance. Obviously, though, you’d like the shadow fact to track changes in
the Bean’s properties. What happens if you call reset?

92 CHAPTER 6
Representing facts in Jess
Jess> (reset)
TRUE
Jess> (facts)
f-0 (MAIN::initial-fact)
f-1 (MAIN::simple
 (brightness 10)
 (class <External-Address:java.lang.Class>)
 (OBJECT <External-Address:DimmerSwitch>))
For a total of 2 facts.

The reset function updates the shadow fact to match the JavaBean. This behavior
is what you get when you specify static in the definstance function as you did
earlier. Static shadow facts are refreshed only when a reset is issued. In between
reset calls, their properties do not change in response to property changes in
their JavaBean.

 If you want to have a shadow fact continuously track property changes in a Java-
Bean, Jess needs to be notified whenever a property changes in that JavaBean. The
JavaBean can notify Jess by sending it a special kind of Java event, a
java.beans.PropertyChangeEvent. Many commercially available JavaBeans
already support this kind of notification, and you can easily add it to Beans you
write yourself. If DimmerSwitch offered support for PropertyChangeListeners,
then it could notify Jess when its brightness changed, and the shadow facts could
stay in sync with the Beans. Let’s add that support now.

6.5.7 Adding PropertyChangeListener support to DimmerSwitch

Let’s modify the DimmerSwitch class to send PropertyChangeEvents. The modi-
fied class DimmerSwitchDynamic is shown in listing 6.3. The interesting method in
DimmerSwitchDynamic is setBrightness. This method saves the original value of
the brightness member variable, then gives it its new value, and then sends a
property change notification using the PropertyChangeSupport utility class. The
addPropertyChangeListener and removePropertyChangeListener methods are
boilerplate code that is always used with PropertyChangeSupport. These methods
allow interested external code like Jess to register to be notified when a property
changes.

import java.beans.*;
public class DimmerSwitchDynamic {
 private int brightness = 0;
 public int getBrightness() {
 return brightness;
 }

Listing 6.3 A JavaBean that sends property change notifications

Shadow facts 93
 public void setBrightness(int b) {
 int old = brightness;
 brightness = b;
 adjustTriac(b);
 pcs.firePropertyChange("brightness",
 new Integer(old), (new Integer(b)));
 }

 private void adjustTriac(int brightness) {
 // Code not shown
 }

 private PropertyChangeSupport pcs =
 new PropertyChangeSupport(this);
 public void
 addPropertyChangeListener(PropertyChangeListener p) {
 pcs.addPropertyChangeListener(p);
 }
 public void
 removePropertyChangeListener(PropertyChangeListener p) {
 pcs.removePropertyChangeListener(p);
 }

}

Now if you use definstance without the static qualifier to register a Dimmer-
SwitchDynamic instance with Jess, the shadow fact tracks the brightness property
whenever it changes, as listing 6.4 demonstrates. This time, calling setBrightness
to change the JavaBean changes the shadow fact, too; Jess receives a Property-
ChangeEvent and modifies the shadow fact accordingly.

Jess> (clear)
TRUE
Jess> (defclass dimmer DimmerSwitchDynamic)
dimmer
Jess> (bind ?ds (new DimmerSwitchDynamic))
<External-Address:DimmerSwitchDynamic>
Jess> (definstance dimmer ?ds)
<Fact-0>
Jess> (facts)
f-0 (MAIN::dimmer
 (brightness 0)
 (class <External-Address:java.lang.Class>)
 (OBJECT <External-Address:DimmerSwitchDynamic>))
For a total of 1 facts.
Jess> (call ?ds setBrightness 10)
Jess> (facts)

Listing 6.4 A demonstration of dynamic definstances

Calls fireProperty-Change to
indicate brightness property

is changing

Boilerplate code
you can reuse in
JavaBeans

Remove old definitions
Create new
dimmer template

Create instance of
new JavaBean class

If static isn’t specified,
dynamic is default

Change brightness
property

94 CHAPTER 6
Representing facts in Jess
f-0 (MAIN::dimmer
 (brightness 10)
 (class <External-Address:java.lang.Class>)
 (OBJECT <External-Address:DimmerSwitchDynamic>))

For a total of 1 facts.

6.5.8 Shadow facts and working memory functions

Many of the functions and constructs you’ve seen so far work on shadow facts just
as they work on other kinds of facts, but there are some differences. Most of these
differences are obvious. For example, you can’t use the assert function to assert a
shadow fact; you use definstance instead. You can, however, use retract to
remove a shadow fact. You also can’t put a shadow fact in a deffacts construct.
Note, though, that each individual definstance behaves like its own deffacts—
when you call reset, the shadow fact for every instance is reinitialized.

 The modify function operates on shadow facts just as it works on regular facts.
Furthermore, if you modify the contents of a slot of a shadow fact, Jess automati-
cally updates the corresponding JavaBean property. This happens for both static
and dynamic definstances.

 Finally, the duplicate function cannot be used with shadow facts. Jess throws
an exception if you try to duplicate one.

6.6 Summary

Jess’s working memory can contain ordered facts, unordered facts, and shadow facts;
each type of fact is useful in certain situations. Unordered facts are general-purpose
facts, whereas ordered facts are useful for small bits of information. Shadow facts
are used to connect a JavaBean in your Java application to Jess’s working memory,
so that rules can react to things that happen outside of your Jess program. You can
write rules that operate on any or all of these working memory elements; in the
next chapter, you’ll see how.

 All facts are created from a deftemplate, which defines the slots a fact can
have. Sometimes you define this deftemplate yourself, and sometimes Jess cre-
ates it for you. The deftemplates in a rule-based system are like the schema of a
database; they define a way of looking at the data relevant to the system.

 Now that you know the Jess language and understand something about Jess’s
working memory, you’re ready to learn how to write rules. In the next chapter,
you’ll learn about writing rules and about pattern matching—how to make rules
react to the contents of working memory.

Brightness slot updated
to match Bean

Writing rules in Jess
In this chapter you’ll…
■ Learn to write rules
■ Learn the difference between forward and

backward chaining
■ Learn how to partition your rules with modules
■ Learn to probe working memory with queries
95

96 CHAPTER 7
Writing rules in Jess
Now that you’ve learned how to populate the working memory, you can develop a
knowledge base to go with it. This is the whole reason you’re here: The knowledge
base is the collection of rules that make up a rule-based system. Rules can take
actions based on the contents of working memory.

 There are two main classes of rules in Jess: forward-chaining and backward-chain-
ing rules. Forward-chaining rules are somewhat like if … then statements in a pro-
cedural language, and they’re the most common and important kind of rule in
Jess. Backward-chaining rules, on the other hand, don’t have a clear analogy in
procedural programming. They are also similar to if … then statements, but a
backward-chaining rule actively tries to satisfy the conditions of its if part.

 You can access working memory directly with queries. You can design queries to
search working memory, to find specific facts, and to explore their relationships.
Queries have a lot in common with rules—if you can write one, you know how to
write the other. You’ll learn how to write and invoke queries in section 7.7.

7.1 Forward-chaining rules

A forward-chaining rule is something like an if ... then statement in a procedural
language, but it is not used in a procedural way. Whereas if ... then statements are
executed at a specific time and in a specific order, according to how the programmer
writes them, a Jess rule’s then part can be executed whenever the if part is satisfied.
This makes rules less obviously deterministic than a typical procedural program,
because Jess decides the order in which to fire the rules. (See section 8.3’s discussion
of the Rete algorithm for an explanation of why this architecture can be many orders
of magnitude faster than an equivalent set of traditional if … then statements.)

 This section discusses the following functions and constructs:
■ defrule—Defines a new rule
■ ppdefrule—Pretty-prints a rule
■ run—Begins firing activated rules from the agenda
■ undefrule—Deletes a rule
■ watch rules—Prints a diagnostic when a rule fires
■ watch activations—Prints a diagnostic when a rule is activated

All Jess rules are defined using the defrule construct. The simplest possible rule
looks like this:

Jess> (defrule null-rule
 "A rule that does nothing"
 =>
)
TRUE

Forward-chaining rules 97
The symbol null-rule is the name of the rule. A hyphen (-) is often used to sepa-
rate words in a symbol. Rules are uniquely identified by their name. If a rule named
my-rule exists, and you define another rule named my-rule, the first version is
deleted. There is also an undefrule function that can delete a rule by name.

 The name is followed by an optional documentation string that describes the
purpose of the rule. The symbol => (an equals sign followed by a greater-than
sign) separates the rule’s left-hand side (LHS, or if part) from its right-hand side
(RHS, or then part). The symbol => can thus be read as then. The previous rule
has no conditions on its LHS and no actions on its RHS. It will therefore always
execute, and it will accomplish nothing.

 The following example uses two new arguments to the watch function,
activations and rules (you used (watch facts) in chapter 6):

Jess> (watch facts)
TRUE
Jess> (watch activations)
TRUE
Jess> (watch rules)
TRUE
Jess> (reset)
==> f-0 (MAIN::initial-fact)
==> Activation: MAIN::null-rule : f-0
Jess> (run)
FIRE 1 MAIN::null-rule f-0
1

The function call (watch activations) tells Jess to print a message whenever an
activation record is placed on, or removed from, the agenda. An activation record
associates a set of facts with a rule. It means the given set of facts matches the LHS
of the given rule, and so the rule should be executed. In this case, because null-
rule doesn’t specify a LHS, Jess has automatically made it conditional on the pres-
ence of the initial fact. You’ll recall from chapter 6 that the reset function places
a fact (initial-fact) in working memory. This is one important role for
(initial-fact): to serve as a trigger for rules with an empty LHS. You can see
the change using the ppdefrule function, which pretty-prints a rule by re-creating
its text from Jess’s internal representation:

Jess> (ppdefrule null-rule)

"(defrule MAIN::null-rule
\"A rule that does nothing\"
 (MAIN::initial-fact)
 =>)"

98 CHAPTER 7
Writing rules in Jess
The return value of ppdefrule is a string, so when it is displayed to the console,
the embedded quotation marks are escaped with a backslash character. It is
important to note that all the work of pattern matching—comparing the LHSs of
rules to a given fact—is done while that fact is being asserted. Because (initial-
fact) is asserted by the reset function, null-rule is activated whenever the
reset function is called, and that’s what happens here.

 The function call (watch rules) tells Jess to print a message whenever a rule is
fired. A rule is said to be fired when the actions on its RHS are executed. The run
function tells Jess to start firing rules; no rules will fire except during a call to run.
Jess’s rule engine then fires the rules on the agenda, one at a time, until the
agenda is empty. run returns the number of rules fired—so 1 is printed in the pre-
vious example.

 Now let’s look at a more complex rule:

Jess> (defrule change-baby-if-wet
 "If baby is wet, change its diaper."
 ?wet <- (baby-is-wet)
 =>
 (change-baby)
 (retract ?wet))
TRUE

This rule again has two parts, separated by =>. The LHS consists of the pattern
(baby-is-wet). The RHS consists of two function calls, to change-baby and
retract. Note that the definition of change-baby isn’t shown here. Although you
might at first find it hard to tell due to the Lisp-like syntax, the LHS of a rule con-
sists of patterns that are used to match facts in the working memory, while the
RHS contains function calls.

 Let me say that again: The left-hand side of a rule (the if part) consists of pat-
terns that match facts; they are not function calls. The right-hand side of a rule
(the then clause) is made up of function calls. The following rule does not work:

Jess> (defrule wrong-rule
(eq 1 1)
=>
(printout t "Just as I thought, 1 == 1!" crlf))

Many novice Jess users write rules like this, intending (eq 1 1) to be interpreted as
a function call. This rule will not fire just because the function call (eq 1 1) would
evaluate to TRUE. Instead, Jess tries to find a fact in the working memory that looks
like (eq 1 1). Unless you have previously asserted such a fact, this rule will not be
activated and will not fire. If you want to fire a rule based on the evaluation of a
function, you can use the test conditional element, described in section 7.3.4.

Forward-chaining rules 99
 The example rule, then, will be activated when the fact (baby-is-wet)
appears in the working memory. When the rule fires, the function (change-baby)
is called, and the (baby-is-wet) fact is retracted. This rule forms part of a com-
plete program in listing 7.1.

Jess> (clear)
TRUE
Jess> (watch all)
TRUE
Jess> (reset)
==> f-0 (MAIN::initial-fact)
TRUE
Jess> (deffunction change-baby ()
 (printout t "Baby is now dry" crlf))
TRUE
Jess> (defrule change-baby-if-wet
 "If baby is wet, change its diaper."
 ?wet <- (baby-is-wet)
 =>
 (change-baby)
 (retract ?wet))
change-baby-if-wet: +1+1+1+t
TRUE
Jess> (assert (baby-is-wet))
==> f-1 (MAIN::baby-is-wet)
==> Activation: MAIN::change-baby-if-wet : f-1
<Fact-1>
Jess> (run)
FIRE 1 MAIN::change-baby-if-wet f-1
Baby is now dry
<== f-1 (MAIN::baby-is-wet)
1

The watch all command in listing 7.1 tells Jess to print diagnostics for everything
important that happens while this program runs. Many of the diagnostics in the
listing are interesting. You first see how issuing the reset command again asserts
the fact (initial-fact). Although this rule won’t need the initial fact, in most
programs the initial fact will be needed by many rules, so you should always issue a
reset command at some point before running a program.

 When the rule is entered at the Jess prompt, you see the line +1+1+1+t. This
result tells you something about Jess interprets the rule internally (see chapter 8
for more information). When the fact (baby-is-wet) is asserted, you see the
diagnostic Activation: MAIN::change-baby-if-wet : f-1. This means Jess has

Listing 7.1 A simple but complete Jess program

100 CHAPTER 7
Writing rules in Jess
noticed that all the LHS conditions of the rule change-baby-if-wet are met by
the given list of facts—here the single fact f-1—and an activation record has been
created. Note how the activation record associates the specific fact with the rule;
this action will be important later.

 Again, the rule doesn’t fire until you issue the run command. As soon as you
enter (run), the activated rule fires. Because you entered the watch all com-
mand, Jess prints the diagnostic FIRE 1 MAIN::change-baby-if-wet f-1 to notify
you of this action. The f-1 is a list of the facts that matched this rule’s LHS.

 You then see the output of the rule’s RHS actions. First the function change-
baby is called. Second, the fact f-1 is retracted. The variable ?wet is called a pat-
tern binding; the <- operator stores a reference to the fact (baby-is-wet) in this
variable, and the retract function can then access this variable on the rule’s
RHS. Note, then, that rules cannot only react to the contents of working mem-
ory—they can change it. Thus one rule can put information into working mem-
ory, which in turn can cause another rule to fire.

 The final number 1 is the number of rules that fired (the return value of the run
command). The run function returns when there are no more activated rules to fire.

 What would happen if you entered (run) again? Nothing. Jess activates a rule
only once for a given working memory state. Once the rule has fired, it will not
fire again for the same list of facts. You won’t change the baby again until a new
baby-is-wet fact is asserted.

7.1.1 Patterns and shadow facts

Jess’s working memory can hold JavaBeans as well as facts. Actually, you’ll recall
that this isn’t quite correct: The working memory contains only facts; but some of
those facts, called shadow facts, are stand-ins for JavaBeans. A shadow fact has a slot
for every property of a JavaBean, and for dynamic shadow facts—defined using
the definstance dynamic function—those slots track the contents of the Java-
Bean’s properties in real time.

 Therefore, everything about patterns in this chapter applies equally to pat-
terns that match facts and to patterns that match JavaBeans. There’s no way to tell
by looking at a pattern whether it’s intended to match deftemplate facts or
shadow facts.

7.2 Constraining slot data

The baby-is-wet fact in the previous section didn’t have any slot data. Most facts
do, however, and most patterns need to specify some particular set of slot values

Constraining slot data 101
for the facts they match. These specifications are called constraints, because they
constrain the values a slot can have in a fact that matches the pattern. A number
of different kinds of constraints can be used to match slot data:

■ Literal constraints—Specify exact slot values

■ Variable constraints—Bind a matched value to a variable

■ Connective constraints—Let you combine conditions to match A and B, or A or B

■ Predicate constraints—Let you call a function to test for a match

■ Return value constraints—Test for an exact match between a slot’s contents
and the result of a function call

7.2.1 Literal constraints

Literal slot values can be included in patterns as constraints. A pattern including a
literal value matches only facts that include that value. In the following example,
although both facts have the head letters, only the one with slot data that
exactly matches the pattern activates the rule:

Jess> (clear)
TRUE
Jess> (defrule literal-values
 (letters b c)
 =>)
TRUE
Jess> (watch activations)
TRUE
Jess> (assert (letters b d))
<Fact-0>
Jess> (assert (letters b c))
==> Activation: MAIN::literal-values: f-1
<Fact-1>

Remember that an ordered fact is implemented as an unordered fact with a single
multislot named __data (a multislot, you’ll recall, can hold any number of
items). You could therefore write the previous rule as

Jess> (assert (letters b c))
<Fact-0>
Jess> (defrule literal-values
 (letters (__data b c))
 =>)
TRUE

and it would behave the same way (I asserted a letters fact first to emphasize
that Jess only defines the implicit deftemplate for letters when it sees an
ordered letters fact; the rule won’t be parsed correctly until this deftemplate

This doesn't activate the rule…

… but this does

102 CHAPTER 7
Writing rules in Jess
exists). It’s important to keep this relationship in mind as you read this chapter;
remember that everything that applies to ordered facts applies equally well to the
multislots of unordered facts. The same goes for the regular slots of unordered
facts, with the restriction that they can hold only one value at a time.

 Finally, note that literal constraints have to match exactly; no conversions are
done. Thus the floating-point literal 1.0 doesn’t match the integer 1, and the sym-
bol xyz doesn’t match the string "xyz". This is a common source of problems
when using shadow facts (see section 6.5).

7.2.2 Variables as constraints

If all the patterns of a rule had to be given literally, Jess would not be very power-
ful. However, patterns can also include variables and various kinds of predicates
(comparisons and boolean functions), and can be modified by conditional elements.
We’ll consider variables and predicates here and conditional elements in the fol-
lowing sections.

 You can specify a variable instead of a literal value for any part of the slot data
in a pattern. A variable matches any value in that position within the facts that
match that pattern. For example, the rule

Jess> (defrule simple-variables
 (a ?x ?y)
 =>
 (printout t "Saw 'a " ?x " " ?y "'" crlf))

is activated each time an ordered fact with head a having two fields is asserted: (a b
c), (a 1 2), (a a a), and so forth. The variables thus matched on the LHS of a rule
are available on the RHS of the same rule; you can think of them as the arguments
to the rule’s RHS when it fires. For example, if the previous rule matched the fact
(a b c), then when the rule fired, ?x would have the value b and ?y would have the
value c. You can mix literal values and variables in the same pattern, of course.

 The same variable can appear in more than one pattern in the same rule, or in
several places within one pattern, or both. Every time the variable is used, it must
match the same value. In listing 7.2, although two facts could match each pattern
individually, only one pair can activate the rule: the fact (a 2) and (b 2).

Jess> (defrule repeated-variables
 (a ?x)
 (b ?x)
 =>
 (printout t "?x is " ?x crlf))

Listing 7.2 Example of repeating a variable constraint

Constraining slot data 103
TRUE
Jess> (watch activations)
TRUE
Jess> (deffacts repeated-variable-facts
 (a 1)
 (a 2)
 (b 2)
 (b 3))
TRUE
Jess> (reset)
==> Activation: MAIN::repeated-variables : f-2, f-3
TRUE
Jess> (run)
?x is 2
1

Note that in Jess 6.1, you can’t use a variable to match the head of a fact or the
name of a slot; these things must always be specified as literal values. This capabil-
ity is planned for a future release, however.

Multifields
Regular variables match exactly one value. Multifields can match any number of
values—zero, one, or more. You write a multifield by preceding a variable name
with the characters $?—for example, $?mf is a multifield. You can only use multi-
fields in multislots. They can be used alone, in which case the multifield matches
any number of values in that multislot, or in combination with regular variables or
literal values. If you use multifields together with single values, the multifields
expand to match everything not matched by the other values. For example, the
pattern in this rule matches a shopping-cart fact with any number of values in
the contents multislot:

(defrule any-shopping-cart
 (shopping-cart (contents $?items))
 =>
 (printout t "The cart contains " ?items crlf))

The pattern in this rule matches any shopping-cart fact with a contents slot that
contains milk preceded by any number (zero or more) of items and followed by
any number of additional items:

(defrule cart-containing-milk
 (shopping-cart (contents $?before milk $?after))
 =>
 (printout t "The cart contains milk." crlf))

104 CHAPTER 7
Writing rules in Jess
As shown here, multifields are accessible on the RHS of the rules that use them in
patterns (just as normal variables are). A multifield always contains the matched
values as a list, even if it matches zero or one value. You can (and generally
should, as a matter of style) leave the $ sign off a multifield when you refer to it on
the RHS of a rule, because there it is acting as a normal variable.

Blank variables
You can match a field without binding it to a variable by omitting the variable
name and using a question mark (?) as a placeholder. This is generally only useful
as a way to specify that a multislot contains a certain arrangement of values with-
out caring what those values are. For example, a pattern like (poker-hand ten ? ?
? ace) matches any poker-hand starting with a ten, ending with an ace, and con-
taining a total of five cards. You can have blank multifields, too—just use bare $?
characters.

Matching global variables
If you match to a defglobal with a pattern like (score ?*x*), the match only con-
siders the value of the defglobal when the fact is first asserted. Subsequent
changes to the defglobal’s value will not invalidate the match—if the rule was
activated based on the value of the defglobal, it stays activated even if the
defglobal’s value changes. The match does not reflect the current value of the
defglobal, but only the value at the time the matching fact was asserted.

7.2.3 Connective constraints

Quite often, matching with a literal value or a variable isn’t enough. You might
want a pattern to match if a client is located in either Boston or Hartford, for
example, or you might want a pattern to match as long as the client is not from
Bangor. You can write these patterns, and many others, using the connective con-
straints & (and), | (or), and ~ (not).

 Any single constraint preceded by a tilde (~) matches the opposite of what the
constraint would originally have matched. For example, the following pattern
matches any client facts with a city slot that doesn’t contain Bangor:

(client (city ~Bangor))

This pattern matches clients that have purchased exactly two items, which must
not be the same:

(client (items-purchased ?x ~?x))

Constraining slot data 105
The other connective constraints let you form groups of single constraints.
Ampersands (&) represent logical and, and pipes (|) represent logical or. For
example, this pattern matches any client that hails from Boston or Hartford:

(client (city Boston|Hartford))

And this one again matches any client not from Bangor, and in addition remem-
bers the contents of city in the variable ?c:

(client (city ?c&~Bangor))

When you use several connective constraints together in a single expression, you
should pay attention to operator precedence, or the way Jess groups the constraints
together as it evaluates the expression. The ~ connective constraint has the high-
est precedence, followed by & and |, in that order. ~ always applies to the single
constraint immediately following it, so the following (redundant) pattern matches
all clients that are not from Bangor and are from Portland:

(client (city ~Bangor&Portland))

This pattern does not mean “all clients that are from neither Bangor nor Port-
land,” which would be written

(client (city ~Bangor&~Portland))

There are no grouping symbols that you can use with constraints—you can’t use
parentheses to change their precedence. If you can’t express what you want using
connective constraints, you can do it instead using predicate constraints, as
described in the next section.

7.2.4 Constraining matches with predicate functions

Literal constraints, variables, and connectives suffice for many situations, but there
are some things they can’t express. Perhaps you want to match any shopping-cart
that contains an odd number of items, or a client that lives in a city whose name
contains more than 10 letters. Jess lets you specify these constraints, and virtually
any other constraint you can imagine, using predicate functions. For our purposes, a
predicate function is just a Boolean function—a function that returns TRUE or
FALSE. You can use any predicate function as a constraint by preceding it with a
colon (:). If you want to use the value of a slot as an argument to the function (and
you almost always do), you should bind that value to a variable first, and then con-
nect that binding to the function using the & connective:

Jess> (defrule small-order
 (shopping-cart (customer-id ?id)

106 CHAPTER 7
Writing rules in Jess
 (contents $?c&:(< (length$ $?c) 5)))
 (checking-out-now ?id)
 =>
 (printout t "Wouldn't you like to buy more?" crlf))
TRUE

The length$ function returns the length of a list. This rule delivers a special mes-
sage to any customers who go to the checkout with fewer than five items in their cart.

 You can use the and, or, and not predicate functions to express complex logi-
cal conditions. Although they are more verbose than the simple connective con-
straints, they are more powerful because you can group them into arbitrary
structures. For example, this rule fires if a customer is checking out with more
than 50 items, but his cart contains neither milk nor butter:

Jess> (defrule large-order-and-no-dairy
 (shopping-cart (customer-id ?id)
 (contents $?c&
 :(and (> (length$ $?c) 50)
 (not (or (member$ milk $?c)
 (member$ butter $?c))))))
 (checking-out-now ?id)
 =>
 (printout t "Don't you need dairy products?" crlf))
TRUE

Note that internally, Jess implements the | connective by transforming the whole
pattern for that slot into predicate functions, and then using or to represent the |.

 When evaluating a predicate constraint, Jess interprets any return value except
FALSE as if it were TRUE. The member$ function returns FALSE if the given value is
not a member of the list argument; otherwise it returns the position of the value
in the list. Even though member$ never returns TRUE, it works perfectly well as a
predicate function, because the non-FALSE values are interpreted as TRUE.

7.2.5 Return value constraints

Often you’ll want to constrain the contents of slot to match the return value of a
function. For example, if you wanted to find a pair of grocery items such that the
price of one was exactly twice the price of another, you might use a predicate con-
straint like this:

(item (price ?x))
(item (price ?y&:(eq ?y (* ?x 2))))

(The eq function returns TRUE if the arguments are all equal, or FALSE otherwise.)
Although this approach works, it’s not especially pretty. It would be more conve-
nient to write this using a return value constraint. A return value constraint includes

Constraining slot data 107
an arbitrary function, and the slot data must match whatever the function returns.
When you’re writing a return value constraint, the function is preceded by an
equals sign (=). You can rewrite the previous example using a return value con-
straint like so:

(item (price ?x))
(item (price =(* ?x 2)))

The return value constraint version is simpler because you don’t need the variable
?y or the call to eq.

 In fact, pretty-printing a rule containing a return value constraint always shows
that Jess has transformed it into an equivalent predicate constraint using eq, so
the two forms are equivalent. Which one to use is a matter of taste.

7.2.6 Pattern bindings

To use retract, modify, or duplicate on a fact matched by the LHS of a rule, you
need to pass a handle to the fact to the RHS of the rule. To do this, you use a pat-
tern-binding variable:

Jess> (defrule pattern-binding
 ?fact <- (a "retract me")
 =>
 (retract ?fact))

A reference to the jess.Fact object that activates this rule is bound to the vari-
able ?fact when the rule is fired.

 You can retrieve the name of a fact, its integer ID, and other useful data by call-
ing the Java member functions of the jess.Fact class directly, like this:

Jess> (defrule call-fact-methods
 ?fact <- (initial-fact)
 =>
 (printout t "Name is " (call ?fact getName) crlf)
 (printout t "Id is " (call ?fact getFactId) crlf))
TRUE
Jess> (reset)
TRUE
Jess> (run)
Name is MAIN::initial-fact
Id is 0
1

Note that because pattern bindings have to refer to specific facts, you must be
careful when using them with some of the grouping conditional elements
described in the following sections. You can’t use them with not or test condi-
tional elements, for example; and when using them with or and and conditional

108 CHAPTER 7
Writing rules in Jess
elements, you must be careful that the binding will apply to only one fact. Jess lets
you write ambiguous bindings, but they may lead to errors at runtime, depending
on how the patterns are matched. The next section presents some additional
details on this issue.

7.3 Qualifying patterns with conditional elements

We’ve just been looking at increasingly sophisticated ways to match the data
within individual facts. Now we’ll look at ways to express more complex relation-
ships between facts, and to qualify the matches for entire facts. Conditional elements
(CEs) are pattern modifiers. They can group patterns into logical structures, and
they can say something about the meaning of a match. There’s even one condi-
tional element, test, that doesn’t involve matching a fact at all.

 Before we begin, let me caution you that many of these conditional elements
have the same names as predicate functions we looked at in the last section.
There’s an and conditional element, and there’s an and predicate function.
Although they may look similar, they’re entirely unrelated. The and predicate
function operates on Boolean expressions, but the and conditional element oper-
ates on patterns. You can always tell which you’re dealing with by the context—
predicate functions can appear only as constraints on slot data. The following are
all of Jess’s conditional elements:

■ and—Matches multiple facts

■ or—Matches alternative facts

■ not—Matches if no facts match

■ exists—Matches if at least one fact matches

■ test—Matches if a function call doesn’t evaluate to FALSE

■ logical—Matching facts offer logical support to new facts

7.3.1 The and conditional element
The LHS of every rule consists of a list of zero or more patterns. Each of those pat-
terns must match for the whole LHS to match. You might recognize this as the
intersection operation from formal logic. You can express the intersection of a
group of patterns in Jess using the and conditional element. The entire LHS of
every rule is enclosed in an implicit and.

 Any number of patterns can be enclosed in a list with and as the head. The
resulting pattern is matched if and only if all of the enclosed patterns are matched.
The following rule matches only if (flaps-up) and (engine-on) both match:

Qualifying patterns with conditional elements 109
Jess> (defrule ready-to-fly
 (and (flaps-up)
 (engine-on))
 =>)

Of course, this rule would behave precisely the same way if the and CE was omitted,
so by itself, and isn’t very interesting. Combined with or and not conditional ele-
ments, though, you can use the and CE to construct complex logical conditions.

7.3.2 The or conditional element

Any number of patterns can be enclosed in a list with or as the head. The or CE
matches if one or more of the patterns inside it matches. If more than one of the
patterns inside the or matches, the entire or is matched more than once:

Jess> (clear)
TRUE
Jess> (deftemplate used-car (slot price) (slot mileage))
TRUE
Jess> (deftemplate new-car (slot price) (slot warrantyPeriod))
TRUE
Jess> (defrule might-buy-car
 ?candidate <- (or (used-car (mileage ?m&:(< ?m 50000)))
 (new-car (price ?p&:(< ?p 20000))))
 =>
 (assert (candidate ?candidate)))
Jess> (assert (new-car (price 18000)))
<Fact-0>
Jess> (assert (used-car (mileage 30000)))
<Fact-1>
Jess> (run)
2

The rule fires twice: once for the new car and once for the used car. In this rule,
only one of the two branches of the or conditional element will match at a time,
but the rule can be activated separately as many times as there are facts to match.
Each of the vehicles listed matches only one or the other of the branches. For
some activations, the first branch of the or will match, and for others, it will be the
second branch. Note that the variable ?candidate is bound to whatever fact
matches the or in each particular activation. If might-buy-car’s RHS tried to
modify the mileage slot of the used-car template, runtime errors would occur
whenever ?candidate was bound to a new-car fact, because the new-car template
doesn’t have such a slot.

 If the RHS of a rule uses a variable defined by matching on the LHS of that
rule, and the variable is defined by one or more branches of an or pattern but
not all branches, then a runtime error may occur. For example, if the RHS of

110 CHAPTER 7
Writing rules in Jess
might-buy-car used the variable ?m (which is defined only when the rule
matches a used-car fact), then when it fired in response to a new-car fact, you’d
see an error message and Jess would stop firing rules.

 The and group can be used inside an or group and vice versa. In the latter
case, Jess rearranges the patterns so that there is a single or at the top level. For
example, the rule

Jess> (defrule prepare-sandwich
 (and (or (mustard)
 (mayo))
 (bread))
 =>)

is automatically rearranged as follows:

Jess> (defrule prepare-sandwich
 (or (and (mustard) (bread))
 (and (mayo) (bread)))
 =>)

Jess rearranges the patterns of any rule that has or conditional elements in it so
that in the end, there is at most one or per rule, and it appears at the top level.
Jess may use DeMorgan’s rules to accomplish this result. DeMorgan’s rules are a
set of two formulas that describe legal ways of substituting logical expressions.
Written in Jess syntax, they can be stated as follows:

(not (or (x) (y))) is the same as (and (not (x)) (not (y)))
(not (and (x) (y))) is the same as (or (not (x)) (not (y)))

Jess does this rearrangement so that it can form subrules, which are the topic of the
next section.

Subrule generation and the or conditional element
A rule containing an or conditional element with n branches is precisely equiva-
lent to n rules, each of which has one of the branches on its LHS. In fact, this is
how Jess implements the or conditional element: Jess internally divides the rule,
generating one rule for each branch. Each of these generated rules is a subrule.
For a rule named rule-name, the first subrule is also named rule-name, the sec-
ond is rule-name&1, the third is rule-name&2, and so on. Each of these subrules is
added to the Rete network individually. If you execute the (rules) command,
which lists all the defined rules, you will see each of the subrules listed separately.
If you use the ppdefrule function to see a pretty-print representation of a sub-
rule, you will see only the representation of that particular subrule. Note that
because & is a token delimiter in the Jess grammar, you can only refer to a subrule

Qualifying patterns with conditional elements 111
with an ampersand in the name by placing the whole name in quotes—for exam-
ple, (ppdefrule "rule-name&6").

 Jess knows that the subrules created from a given rule are related. If the origi-
nal rule is removed (either using undefrule or implicitly by defining a new rule
with the same name as an existing one), every subrule associated with that rule is
also removed.

 A note regarding subrules and efficiency: You’ll learn in chapter 8 that similar
patterns are shared between rules in the Rete network, avoiding duplicated com-
putation. Therefore, splitting a rule into subrules does not mean the amount of
pattern-matching work is increased; much of the splitting may indeed be undone
when the rules are compiled into the network.

 On the other hand, keep the implementation in mind when you define your
rules. If an or conditional element is the first pattern on a rule, all the subsequent
pattern-matching on that rule’s LHS won’t be shared between the subrules,
because sharing occurs only as far as two rules are similar reading from the top
down. Placing or conditional elements near the end of a rule leads to more shar-
ing between the subrules, and thus more efficient pattern matching.

 Finally, I should mention that although subrules will probably always be part of
the implementation of the or conditional element in Jess, it is likely that they will
no longer be user-visible at some time in the future.

7.3.3 The not conditional element
You may have heard the saying “two wrongs don’t make a right” when you were
growing up. How can the opposite of the opposite of something not be the same
as the original thing? Well, as it turns out, it’s quite often not. Such is the case in
real-world logic: The concept of negation is a tricky thing. It’s tricky in Jess, too.

 Imagine that you want a rule to fire when no red cars are available. Your first
try might look something like this:

Jess> (defrule no-red-cars
 (auto (color ~red))
 =>)

But this rule fires for each car that is not red. If there are no cars at all, it won’t
fire. This result isn’t the same as firing when there are no red cars.

 Luckily, Jess has the not conditional element. Most patterns can be enclosed in
a list with not as the head. In this case, the pattern is considered to match if a fact
(or set of facts) that matches the pattern is not found. For example, this rule will
fire if there are no cars at all, or if there are only blue cars, but not if there are any
red ones:

112 CHAPTER 7
Writing rules in Jess
Jess> (defrule no-red-cars-2
 (not (auto (color red)))
 =>)

Because a not pattern matches the absence of a fact, it cannot define any variables
that are used in subsequent patterns on the LHS. You can introduce variables in a
not pattern as long as they are used only within that pattern:

Jess> (defrule no-odd-numbers
 (not (number ?n&:(oddp ?n)))
 =>
 (printout t "There are no odd numbers." crlf))

Similarly, a not pattern can’t have a pattern binding; again, because it doesn’t
match an actual fact, there would be no fact to bind to the variable.

 Now, here comes the tricky part I alluded to earlier. You already know that pat-
tern matching is driven by facts being asserted—the matching computation hap-
pens during the assert, definstance, modify, duplicate, or reset function that
creates the fact. Because a not CE matches the absence of a fact, when can it be
evaluated? The answer is that a not CE is evaluated only in these cases:

■ When a fact matching it is asserted (in which case the pattern match fails)

■ When a fact matching it is removed (in which case the pattern match succeeds)

■ When the pattern immediately before the not on the rule’s LHS is evaluated

If a not CE is the first pattern on a rule’s LHS, the first pattern in an and group, or
the first pattern on a given branch of an or group, the pattern (initial-fact) is
inserted before the not to become this important preceding pattern. Therefore,
the initial fact created by the reset command is necessary for the proper func-
tioning of many not patterns. For this reason, it is especially important to issue a
reset command before attempting to run the rule engine when working with not
patterns.

 The not CE can be used in arbitrary combination with the and and or CEs. You
can define complex logical structures this way. For example, suppose you want a
rule to fire once, and only once, if for every car of a given color, there exists a bus
of the same color. You could express that as follows:

Jess> (defrule forall-example
 (not (and (car (color ?c)) (not (bus (color ?c)))))
 =>)

Decoding complex logical expressions is easier if you start from the inside and
work your way out. The innermost pattern here is (bus (color ?c)), which
matches any bus fact. The not around that matches only when there are no bus

Qualifying patterns with conditional elements 113
facts. The (car (color ?c)) pattern matches any car facts, and the and groups
these two patterns together. The entire and thus matches when there is a car, but
no bus of the same color. Putting the and group into the outermost not means the
whole pattern matches only when the and doesn’t; thus the whole thing can be
translated as “It is not true that for some color ?c, there is a car of that color but
no bus of that same color.”

 In the next section we’ll look at another interesting way to combine not CEs
into more complex groups.

The exists conditional element
You can nest multiple not CEs to produce some interesting effects. Two nots
nested one inside the other are so useful that there’s a shorthand notation: the
exists CE. A pattern can be enclosed in a list with exists as the head. An exists
CE is true if there exist any facts that match the pattern, and false otherwise—
which is precisely the meaning of two nested nots. The exists CE is useful when
you want a rule to fire only once, although there may be many facts that could
potentially activate it:

Jess> (defrule exists-an-honest-man
 (exists (honest ?))
 =>
 (printout t "There is at least one honest man!" crlf))

If there are any honest men in the world, the rule will fire once and only once. The
exists CE is implemented as two nested not CEs; that is, (exists (A)) is exactly
the same as (not (not (A))). Therefore, you can’t bind any variables in an exists
CE for use later in the rule, and you also can’t use pattern bindings with exists.

7.3.4 The test conditional element

A pattern with test as the head is special; the body consists not of a pattern to
match against the working memory but of a Boolean function. The result deter-
mines whether the pattern matches. A test pattern fails if and only if the function
evaluates to the symbol FALSE; if it evaluates to TRUE, the pattern succeeds. For
example, suppose you wanted to find people whose age is less than 30 years old:

Jess> (deftemplate person (slot age))
TRUE
Jess> (defrule find-trustworthy-people-1
 (person (age ?x))
 (test (< ?x 30))
 =>
 (printout t ?x " is under 30!" crlf))
TRUE

114 CHAPTER 7
Writing rules in Jess
A test pattern, like a not, cannot contain any variables that are not bound before
that pattern, and it can’t have a pattern binding.

 Because a test CE, like a not CE, doesn’t match an actual fact, its implementa-
tion is similar to the way not is implemented. A test CE is evaluated every time
the preceding pattern on the rule’s LHS is evaluated, just like a not. Therefore
the following rule is equivalent to the previous one:

Jess> (defrule find-trustworthy-people-2
 (person (age ?x&:(< ?x 30)))
 =>
 (printout t ?x " is under 30!" crlf))

Which form you use here is mostly a matter of taste. I tend to use the test CE only
for long or complex functions that would be hard to read if they were written as
predicate constraints. Of course, the test CE can also be used to write tests that
are unrelated to any facts:

(import java.util.Date)
(defrule fire-next-century
 (test ((new Date) after (new Date "Dec 31 2099")))
 =>
 (printout t "Welcome to the 22nd century!" crlf))

For rules like this, in which a test CE is the first pattern on the LHS, or the first
pattern in an and CE, or the first pattern in any branch of an or CE, Jess inserts
the pattern (initial-fact) to serve as the preceding pattern for the test. The
fact (initial-fact) is therefore also important for the proper functioning of the
test conditional element; the caution about reset in the preceding section
applies equally to test. The rule fire-next-century won’t fire until reset is
called after the twenty-second century begins.

 The test and not conditional elements may be combined, so that

(not (test (eq ?x 3)))

is equivalent to

(test (neq ?x 3))

The conditional elements we’ve looked at so far affect how a rule matches work-
ing memory. There is one conditional element we haven’t covered yet, and it’s
unusual in that instead of affecting how a rule matches, it affects what happens
when a rule fires.

7.3.5 The logical conditional element
When you turn on your kitchen faucet, you expect water to come out (if it
doesn’t, you’ve got a plumbing problem). When you turn off the faucet, the flow

Qualifying patterns with conditional elements 115
of water stops as a result. This kind of relationship is called a logical dependency—
the water flowing is logically dependent on the faucet being open. To express this
idea in Jess, you could write the following two rules:

Jess> (defrule turn-water-on
 (faucet open)
 =>
 (assert (water flowing)))
TRUE
Jess> (defrule turn-water-off
 (not (faucet open))
 ?water <- (water flowing)
 =>
 (retract ?water))
TRUE

Given these two rules, asserting (faucet open) will automatically cause (water
flowing) to be asserted as well, and retracting (faucet open) will retract (water
flowing)—if you call run so the rules can fire, of course. The fact (water flow-
ing) can therefore be said to be logically dependent on (faucet open).

 Writing two rules to express the one idea of logical dependency gets the job
done, but there is an easier way. The logical conditional element lets you specify
these logical dependencies among facts more concisely. All the facts asserted on
the RHS of a rule are logically dependent on any facts that matched a pattern
inside a logical CE on that rule’s LHS. If any of the matches later become
invalid—for instance, because one of the facts is deleted—the dependent facts are
retracted automatically. In the simple example in listing 7.3, the (water-
flowing) fact is again logically dependent on the (faucet-open) fact, so when
the latter is retracted, the former is removed, too.

Jess> (clear)
TRUE
Jess> (defrule water-flows-while-faucet-is-open
 (logical (faucet open))
 =>
 (assert (water flowing)))
TRUE
Jess> (assert (faucet open))
<Fact-0>
Jess> (run)
1
Jess> (facts)
f-0 (MAIN::faucet open)
f-1 (MAIN::water flowing)

Listing 7.3 An example of using the logical CE

Rule water-flows-while-
faucet-is-open fires

116 CHAPTER 7
Writing rules in Jess
For a total of 2 facts.
Jess> (watch facts)
TRUE
Jess> (retract 0)
<== f-0 (MAIN::faucet open)
<== f-1 (MAIN::water flowing)
TRUE
Jess> (facts)
For a total of 0 facts.

If fact 1 is logically dependent on fact 2, you can also say that fact 1 “receives logi-
cal support from” fact 2. A fact may receive logical support from multiple
sources—it may be asserted multiple times with a different set of logical supports
each time. Such a fact isn’t automatically retracted unless each of its logical sup-
ports is removed. If a fact is asserted without explicit logical support, it is said to
be unconditionally supported. If an unconditionally supported fact also receives
explicit logical support, removing that support will not cause the fact to be
retracted. You can find out what logical support a fact is receiving with the
dependencies function. The dependents function tells you what facts are depen-
dent on another given fact. Both functions take either a single fact object or an
integer fact ID as an argument.

 If one or more logical CEs appear in a rule, they must be the first patterns in
that rule; a logical CE cannot be preceded in a rule by any other kind of CE. You
can use the logical CE together with all the other CEs, including not and
exists. A fact can thus be logically dependent on the nonexistence of another
fact or on the existence of some category of facts in general.

 Shadow facts from definstances are no different than other facts with regard
to the logical CE. Shadow facts can provide logical support and can receive logi-
cal support.

7.4 Backward-chaining rules

The rules you’ve seen so far have been forward-chaining rules; as I’ve said, that
means the rules are treated as if … then statements, with the engine simply exe-
cuting the RHSs of activated rules. Some rule-based systems, notably Prolog and
its derivatives, support backward chaining. In a backward-chaining system, rules are
still if … then statements, but the engine actively tries to make rules fire. If the if
clause of one rule is only partially matched and the engine can determine that fir-
ing some other rule would cause it to be fully matched, the engine tries to fire
that second rule. This behavior is often called goal seeking.

Jess retracts fact (water
flowing) automatically

Backward-chaining rules 117
 As an example, think about the ways Sherlock Holmes might solve a mystery.
He has a collection of evidence (a handkerchief, a fingerprint, a dead body) and
can proceed in two different ways. First, he can draw conclusions from the avail-
able evidence, adding his conclusions to the available information, and continue
until he’s found a link between the evidence and the crime. This is a forward-
chaining method. Alternatively, he can start from the circumstances of the crime,
form a hypothesis about how it happened, and then search for clues that support
this hypothesis. This latter technique is an example of backward chaining.
Holmes generally used both techniques in combination to solve a mystery; as a
Jess programmer, you’ll do the same.

 Jess supports both forward and backward chaining, but Jess’s version of back-
ward chaining is not transparent to the programmer. You have to declare which
kinds of facts can serve as backward-chaining triggers, and only specific rules you
define can be used in backward chaining. In truth, Jess’s reasoning engine is
strictly a forward-chaining engine, and so backward chaining is effectively simu-
lated in terms of forward-chaining rules. Still, the simulation is quite effective, and
Jess’s backward-chaining mechanism has many useful applications. You will apply
it in several of the systems you develop later in this book.

 Backward chaining is often used as a way to pull required data into Jess’s work-
ing memory from a database on demand. In the example given here, backward
chaining is used to avoid computing the factorial of a number more than once (the
factorial of an integer is the product of every integer between 1 and the number
itself, inclusive; for large numbers this value can be expensive to compute). You
use the deftemplate factorial to store computed factorials. The fact (factorial
5 125) signifies that the factorial of 5 is 125. Figure 7.1 shows how this example
works: The rule print-factorial-10 won’t fire unless a fact giving the factorial of
10 is present. Because factorial has been registered for backward chaining with
the do-backward-chaining function, Jess automatically asserts the fact (need-
factorial 10 nil). This fact matches the need-factorial pattern in the do-
factorial rule, which fires and asserts the fact (factorial 10 3628800). Finally,
this fact activates the print-factorial-10 rule, which fires and prints its output.

118 CHAPTER 7
Writing rules in Jess

To use backward chaining in Jess, you must first declare that specific deftemplates
are backward-chaining reactive using the do-backward-chaining function:

Jess> (do-backward-chaining factorial)
TRUE

If the template is unordered—if it is explicitly defined with a deftemplate or
defclass construct—then you must define it before calling do-backward-
chaining. You can use do-backward-chaining on ordered deftemplates before
they are created, however.

 Once you have declared your reactive deftemplates, you can define rules with
patterns that match facts of the corresponding types. Note that you must call do-
backward-chaining before defining any rules that use the template.

 This rule prints the factorial of 10, assuming a fact recording this information
exists:

Jess> (defrule print-factorial-10
 (factorial 10 ?r1)
 =>
 (printout t "The factorial of 10 is " ?r1 crlf))
TRUE

Patterns that match backward-chaining reactive deftemplates are called goals.
When the rule compiler sees a goal pattern, it rewrites the rule and inserts some
special code into the internal representation of the rule’s LHS. If, when the rule
engine is reset, there are no matches for this pattern, the code asserts a fact into
working memory that looks like this:

(need-factorial 10 nil)

The head of the fact is constructed by taking the head of the reactive pattern and
adding the prefix need-. These need-x facts are called goal-seeking or trigger facts.
This particular trigger fact means that another fact (factorial 10 ?) is needed to

Figure 7.1
A pictorial representation of the
factorial example from the text

Backward-chaining rules 119
satisfy some rule. Jess got the number 10 directly from the pattern in print-
factorial-10; nil is a placeholder that means “any value.”

 Now, let’s write a rule that calculates the factorial of a number when it is
needed. The rule should directly match the need-factorial trigger facts:

Jess> (defrule do-factorial
 (need-factorial ?x ?)
 =>
 ;; compute the factorial of ?x in ?r
 (bind ?r 1)
 (bind ?n ?x)
 (while (> ?n 1)
 (bind ?r (* ?r ?n))
 (bind ?n (- ?n 1)))
 (assert (factorial ?x ?r)))
TRUE

The rule compiler rewrites rules like this too: It adds a negated match for the
(factorial ?x ?) pattern to the rule’s LHS, so the rule won’t fire if both the goal
fact and the corresponding goal-seeking fact are both present.

 The end result is that you can write rules that match on factorial facts, and if
they are close to firing except they need a factorial fact to do so, any need-
factorial rules may be activated. If these rules fire, then the needed facts appear,
and the factorial-matching rules fire. This, then, is backward chaining! Note
that any needed factorial facts are created only once, so the expensive computa-
tion need not be repeated. Often, avoiding redundant computation is one of the
main benefits of backward chaining.

 Jess chains backward through any number of reactive patterns. In the example
in listing 7.4, imagine you have a database that allows you to look up the price of an
item given its item number, or the item number given its name. To find the price
given the name, you need to do two separate queries. When the price-check fact
is first asserted, none of the rules can be activated. Jess sees that price-check
could be activated if there were an appropriate price fact, so it generates the trig-
ger (need-price waffles nil). This matches part of the LHS of rule find-price,
but this rule cannot be activated because there is no item-number fact. Jess there-
fore creates a (need-item-number waffles nil) request. This matches the LHS of
the rule find-item-number, which fires and asserts something like (item-number
waffles 123). This fact activates find-price, which fires and asserts (price
waffles "$1.99"), thereby activating rule price-check, which then fires. The
price is reported. Each of the rules has fired once. The definitions of the functions
fetch-price-from-database and fetch-number-from-database are not shown;
they are presumably written in Java using JDBC.

120 CHAPTER 7
Writing rules in Jess

Jess> (clear)
TRUE
Jess> (do-backward-chaining item-number)
TRUE
Jess> (do-backward-chaining price)
TRUE
Jess> (defrule price-check
 (do-price-check ?name)
 (price ?name ?price)
 =>
 (printout t "Price of " ?name " is " ?price crlf))
TRUE
Jess> (defrule find-price
 (need-price ?name ?)
 (item-number ?name ?number)
 =>
 (bind ?price (fetch-price-from-database ?number))
 (assert (price ?name ?price)))
TRUE
Jess> (defrule find-item-number
 (need-item-number ?name ?)
 =>
 (bind ?number (fetch-number-from-database ?name))
 (assert (item-number ?name ?number)))
TRUE
Jess> (reset)
TRUE
Jess> (assert (do-price-check waffles))
<Fact-1>
Jess> (run)
Price of waffles is $1.99
3

You can wrap a special conditional element, (explicit), around a pattern to
inhibit backward chaining on an otherwise reactive pattern. explicit can be used
in any combination with all other conditional elements.

 Most rule-based systems consist of dozens if not hundreds of rules. While such a
program is running, at any one time a large number of rules may be simultaneously
activated. How does Jess decide which rule to fire next? Read on to find out.

7.5 Managing the agenda

In section 7.1, you used (watch activations) and (watch rules) to observe the
operation of a simple rule. In particular, you learned that a rule is activated when its

Listing 7.4 Multilevel backward chaining

Managing the agenda 121
LHS matches working memory, but it won’t immediately fire. The agenda is the list
of rules that have been activated but haven’t fired yet. For some applications, the
agenda never contains more than one activated rule, and so managing the agenda
isn’t a very interesting topic. But in most applications, the agenda contains multi-
ple rules at once. When this is the case, managing the agenda becomes important.
In this section, we’ll study how Jess chooses which rule to fire next from among all
the activated rules on the agenda, and how you can influence this choice.

7.5.1 Conflict resolution

A typical rule-based system may contain hundreds or thousands of rules. It’s very
likely that at any given moment, more than one rule is activated. The set of acti-
vated rules that are eligible to be fired is called the conflict set, and the process of
putting the rules in firing order is called conflict resolution. The output of the con-
flict-resolution process is the ordered list of activations called the agenda. You can
see this ordered list of activated, but not yet fired, rules with the agenda function.

 Conflict resolution in Jess is controlled by pluggable conflict-resolution strategies.
Jess comes with two strategies: depth (the default) and breadth. You can set the cur-
rent strategy with the set-strategy command. Using (set-strategy depth)
causes the most recently activated rules to fire first, and (set-strategy breadth)
makes rules fire in activation order—the most recently activated rules fire last. In
many situations, the difference does not matter, but for some problems the con-
flict-resolution strategy is important. Although the default strategy is intuitive and
correct in most situations, it runs into trouble if every rule that fires activates
another rule. The oldest activations then get pushed far down the agenda and
never get a chance to fire. The breadth strategy avoids this problem, but the “first-
in, first-out” firing order can be confusing.

 You can write your own strategies in Java by implementing the jess.Strategy
interface and then calling set-strategy with the name of your class as the argu-
ment. The Strategy interface has a single nontrivial method compare that com-
pares two activations and returns -1, 1, or 0 to signify that the first activation, the
second activation, or either one should fire first.

 The conflict-resolution strategy determines how activations are ordered based
on when they are added to the agenda. Sometimes, though, you may find that you
want to fine-tune the ordering a bit. You can use salience to accomplish this.

7.5.2 Changing rule priority with salience

Sometimes you may find that a particular rule should be treated as a special case
by the conflict-resolution strategy. A rule that reports a security breach might

122 CHAPTER 7
Writing rules in Jess
need to fire immediately, regardless of what else is on the agenda. On the other
hand, a rule that cleans up unused facts might only need to run during the idle
time when no other rules are activated. You can tell the conflict resolver to treat
these rules specially using rule salience.

 Each rule has a property called salience that acts as a priority setting for that
rule. Activated rules of the highest salience always fire first, followed by rules of
lower salience. Within a set of rules with identical salience, the order is deter-
mined as described in the previous section. You can use a salience declaration to set
the salience of a rule:

Jess> (defrule defer-exit-until-agenda-empty
 (declare (salience -100))
 (command exit-when-idle)
 =>
 (printout t "exiting..." crlf))
TRUE

This rule won’t fire until no other rules of higher salience are on the agenda.
Declaring a low salience value for a rule makes it fire after all other rules of higher
salience. A high value makes a rule fire before all rules of lower salience. The
default salience value is 0, so if this is the only rule with an explicit salience value,
it will not fire until the agenda is empty.

 You can specify salience values using literal integers, global variables, or func-
tion calls. How the salience values are evaluated depends on the current value of
the salience evaluation method. These values are as follows:

■ when-defined—(Default.) A fixed salience value is computed when the
rule is defined.

■ when-activated—The salience of a rule is reevaluated each time the rule is
activated.

■ every-cycle—The salience value of every rule on the agenda is recom-
puted after every rule firing. Evaluating every-cycle is very computation-
ally expensive and isn’t used much.

You can query or set the salience evaluation method with the set-salience-
evaluation and get-salience-evaluation functions.

 Note that extensive use of salience is generally discouraged, for two reasons.
First, use of salience has a negative impact on performance, at least with the built-
in conflict-resolution strategies. Second, it is considered bad style in rule-based
programming to try to force rules to fire in a particular order. If you find yourself
using salience on most of your rules, or if you are using more than two or three

Partitioning the rule base with defmodule 123
different salience values, you probably need to reconsider whether you should be
using a rule-based approach to your problem. If you want strict control over exe-
cution order, then you’re trying to implement a procedural program. Either
change your rules to be less sensitive to execution order, or consider implement-
ing your algorithm as one or more deffunctions or as Java code. Alternatively,
you might consider structuring your program using modules.

7.6 Partitioning the rule base with defmodule

A typical rule-based system can easily include hundreds of rules, and a large one
can contain many thousands. Developing such a complex system can be a difficult
task, and preventing such a multitude of rules from interfering with one another
can be hard too.

 You might hope to mitigate the problem by partitioning a rule base into man-
ageable chunks. The defmodule construct lets you divide rules and facts into dis-
tinct groups called modules. Modules help you in two ways: First, they help you
physically organize large numbers of rules into logical groups. The commands for
listing constructs (rules, facts, and so on) let you specify the name of a module
and can then operate on one module at a time. Second, modules provide a con-
trol mechanism: The rules in a module fire only when that module has the focus,
and only one module can be in focus at a time (you’ll learn about module focus in
section 7.6.3).

 We’ll discuss the following functions and constructs in this section:

■ clear-focus-stack—Empties the focus stack

■ defmodule—Defines a new module

■ focus—Sets the focus module

■ get-current-module—Returns the current module

■ get-focus-stack—Returns the focus stack’s contents as a list

■ list-focus-stack—Displays the focus stack’s contents

■ pop-focus—Pops a module from the focus stack

7.6.1 Defining constructs in modules

So far in this book, you haven’t explicitly used modules. If you don’t specify a
module by name when defining a rule or template, it belongs by default to the cur-
rent module. If you never explicitly define any modules, the current module is
always the main module, which is named MAIN. All the constructs you’ve seen so far

124 CHAPTER 7
Writing rules in Jess
have been defined in MAIN, and therefore are often preceded by MAIN:: when dis-
played by Jess.

 You can define a new module using the defmodule construct:

Jess> (defmodule WORK)
TRUE

You can then place a deftemplate, defrule, or deffacts into a specific module
by qualifying the name of the construct with the module name:

Jess> (deftemplate WORK::job (slot salary))
TRUE
Jess> (list-deftemplates WORK)
WORK::job
For a total of 1 deftemplates.

Once you have defined a module, it becomes the current module:

Jess> (get-current-module)
WORK
Jess> (defmodule COMMUTE)
TRUE
Jess> (get-current-module)
COMMUTE

If you don’t specify a module, all deffacts, templates, and rules you define auto-
matically become part of the current module:

Jess> (deftemplate bus (slot route-number))
TRUE
Jess> (defrule take-the-bus
 ?bus <- (bus (route-number 76))
 (have-correct-change)
 =>
 (get-on ?bus))
TRUE
Jess> (ppdefrule take-the-bus)
"(defrule COMMUTE::take-the-bus
 ?bus <- (COMMUTE::bus (route-number 76))
 (COMMUTE::have-correct-change)
 =>
 (get-on ?bus))"

Note that the implied deftemplate have-correct-change was created in the
COMMUTE module, because that’s where the rule was defined. You can set the cur-
rent module explicitly using the set-current-module function.

7.6.2 Modules, scope, and name resolution
A module defines a namespace for templates and rules. This means two different mod-
ules can each contain a rule with a given name without conflicting—for example,

Partitioning the rule base with defmodule 125
rules named MAIN::initialize and COMMUTE::initialize could be defined
simultaneously and coexist in the same program. Similarly, the templates COM-
PUTER::bus and COMMUTE::bus could both be defined. Obviously, then, Jess needs a
way to decide which template the definition of a rule or query is referring to.

 When Jess is compiling a rule, query, or deffacts definition, it looks for tem-
plates in three places, in order:

1 If a pattern explicitly names a module, only that module is searched.

2 If the pattern does not specify a module, then the module in which the
rule is defined is searched first.

3 If the template is not found in the rule’s module, the module MAIN is
searched last. Note that this makes the MAIN module a sort of global
namespace for templates.

The example in listing 7.5 illustrates each of these possibilities. In this example,
three deftemplates are defined in three different modules: MAIN::mortgage-
payment, WORK::job, and HOME::hobby. Jess finds the WORK::job template because
the rule is defined in the WORK module. It finds the HOME::hobby template because
it is explicitly qualified with the module name. And the MAIN::mortgage-payment
template is found because the MAIN module is always searched as a last resort if no
module name is specified.

Jess> (clear)
TRUE
Jess> (assert (MAIN::mortgage-payment 2000))
<Fact-0>
Jess> (defmodule WORK)
TRUE
Jess> (deftemplate job (slot salary))
TRUE
Jess> (defmodule HOME)
TRUE
Jess> (deftemplate hobby (slot name) (slot income))
TRUE
Jess> (defrule WORK::quit-job
 (job (salary ?s))
 (HOME::hobby (income ?i&:(> ?i (/ ?s 2))))
 (mortgage-payment ?m&:(< ?m ?i))
 =>
 (call-boss)
 (quit-job))
TRUE

Listing 7.5 Examples of Jess’s template lookup rules

126 CHAPTER 7
Writing rules in Jess
Jess> (ppdefrule WORK::quit-job)
"(defrule WORK::quit-job
 (WORK::job (salary ?s))
 (HOME::hobby (income ?i&:(> ?i (/ ?s 2))))
 (MAIN::mortgage-payment ?m&:(< ?m ?i))
 =>
 (call-boss)
 (quit-job))"

Commands that accept the name of a construct as an argument (like ppdefrule,
ppdeffacts, and so on) search for the named construct as described earlier. Note
that many of the commands that list constructs (such as facts, list-
deftemplates, and rules) accept a module name or * as an optional argument.
If no argument is specified, these commands operate on the current module. If a
module name is given, they operate on the named module. If * is given, they
operate on all modules (see appendix A for full descriptions of all Jess functions
and the arguments they accept).

7.6.3 Module focus and execution control
You’ve learned how modules provide a kind of namespace facility, allowing you to
partition a rule base into manageable chunks. You can also use modules to con-
trol execution. In general, although any Jess rule can be activated at any time,
only rules in the focus module will fire. Note that the focus module is independent
from the current module discussed earlier.

 Initially, the module MAIN has the focus, so only rules in the MAIN module can fire:

Jess> (defmodule DRIVING)
TRUE
Jess> (defrule get-in-car
 =>
 (printout t "Ready to go!" crlf))
TRUE
Jess> (reset)
TRUE
Jess> (run)
0

In this example, the rule doesn’t fire because the DRIVING module doesn’t have
the focus. You can move the focus to another module using the focus function
(which returns the name of the previous focus module):

Jess> (focus DRIVING)
MAIN
Jess> (run)
Ready to go!
1

Partitioning the rule base with defmodule 127
Note that you can call focus from the RHS of a rule to change the focus while the
engine is running. The focus can move many times during a single run of a program.

 Jess maintains a focus stack containing an arbitrary number of modules. The
focus command pushes the new focus module onto the top of this stack; the focus
module is, by definition, the module on top of the stack. When there are no more
activated rules in the focus module, it is popped from the stack, and the next mod-
ule underneath becomes the focus module. The module MAIN is always at least on
the bottom of the stack; it can also be explicitly pushed onto the focus stack.

 You can manipulate the focus stack directly with the functions pop-focus,
clear-focus-stack, list-focus-stack, and get-focus-stack. pop-focus
removes the focus module from the focus stack, so that the next module on the
stack becomes active. clear-focus-stack removes all the modules from the focus
stack. The other functions let you examine the contents of the focus stack.

 Rule bases are commonly divided into modules along functional lines. For
example, you might put all your input-gathering rules into one module, your
data-processing rules into another, and your reporting rules into a third. Then,
changing the focus from input, to processing, to output represents a natural pro-
gression through well-defined phases of your application’s execution.

The auto-focus declaration
When a rule that declares the auto-focus property is activated, its module auto-
matically gets the focus, as illustrated in listing 7.6. In this example, the rule crash
fires even though its module PROBLEMS didn’t have the focus and the agenda of
the previous focus module DRIVING was not empty. Modules with auto-focus
rules make great background tasks in conjunction with using return from a rule,
as described next.

Jess> (defmodule PROBLEMS)
TRUE
Jess> (defrule crash
 (declare (auto-focus TRUE))
 (DRIVING::me ?location)
 (DRIVING::other-car ?location)
 =>
 (printout t "Crash!" crlf)
 (halt))
TRUE
Jess> (defrule DRIVING::travel
 ?me <- (me ?location)
 =>

Listing 7.6 An example of using auto-focus

128 CHAPTER 7
Writing rules in Jess
 (printout t ".")
 (retract ?me)
 (assert (me (+ ?location 1))))
TRUE
Jess> (assert (me 1))
<Fact-1>
Jess> (assert (other-car 4))
<Fact-2>
Jess> (focus DRIVING)
MAIN
Jess> (run)
...Crash!
4

Returning from a rule’s RHS
If the function return is called from a rule’s RHS, the execution of that rule’s
RHS is immediately terminated. Furthermore, the current focus module is
popped from the focus stack. This suggests that you can call a module like a sub-
routine. You can call a module from a rule’s RHS using focus, and the module
can return from the call using return. Alternatively, a module can act as a kind of
background process or periodic task by using auto-focus rules to wake itself and
return to put itself back to sleep.

 Both forward- and backward-chaining rules can only react to the contents of
working memory. They are passive in the sense that they wait for facts to appear
before they can take action, and then nothing happens until they get to the top of
the agenda. Sometimes you may want to take a more active stance and deliber-
ately search through working memory to find particular information. Jess lets you
do this easily, as you’ll see in the next section.

7.7 Searching working memory with defquery

Jess’s working memory is a lot like a relational database. Each deftemplate is like
a relation—a table in the database. The individual slots are the columns of the
tables. If you’re familiar with industrial-strength relational databases, you’re prob-
ably aware of database triggers, which are a lot like forward-chaining rules attached
to a database that fire when the data matches some criterion. You can apply rules
to relational databases, so it’s a reasonable question to ask whether you can make
queries against the working memory of a rule-based system. Jess offers the
defquery construct, which lets you do just that.

 A defquery is a special kind of rule with no RHS. Jess controls when regular
rules fire, but queries are used to search the working memory under direct program

Searching working memory with defquery 129
control. A rule is activated once for each matching set of facts, whereas a query gives
you a java.util.Iterator of all the matches. An example should make this clear.
Suppose you have defined the query find-affordable-gifts:

Jess> (deftemplate gift (slot name) (slot price))
TRUE
Jess> (defquery find-affordable-gifts
 "Finds all gifts in a given price range"
 (declare (variables ?lower ?upper))
 (gift (price ?p&:(and (> ?p ?lower) (< ?p ?upper)))))
TRUE

The pattern here matches all the gifts whose price slot holds a number between
?lower and ?upper.

 Now you define some facts, including some that match the criterion and some
that don’t:

Jess> (deffacts catalog
 (gift (name red-scarf) (price 20))
 (gift (name leather-gloves) (price 35))
 (gift (name angora-sweater) (price 250))
 (gift (name mohair-sweater) (price 99))
 (gift (name keychain) (price 5))
 (gift (name socks) (price 6))
 (gift (name leather-briefcase) (price 300)))
TRUE

You can invoke the query to find the perfect gift using concrete upper and lower
price limits:

Jess> (reset)
TRUE
Jess> (bind ?it (run-query find-affordable-gifts 20 100))
<External-Address:java.util.AbstractList$Itr>
Jess> (while (?it hasNext)
 (bind ?token (call ?it next))
 (bind ?fact (call ?token fact 1))
 (bind ?name (fact-slot-value ?fact name))
 (printout t ?name crlf))
leather-gloves
mohair-sweater
FALSE

Here you’re looking for gifts between $20 and $100, and the query finds mohair-
sweater and leather-gloves.

 Let’s break down this code to see what it’s doing. As previously stated, (run-
query) returns the query results as a Java java.util.Iterator object. The
Iterator interface has a method next() that you call to retrieve each individual
result; it also has a hasNext() method that returns true as long as there are more

130 CHAPTER 7
Writing rules in Jess
results to return. That explains the (while (?it hasNext) ...(call ?it next))
control structure; it steps through each of the results returned by the query.

 Each individual result is a jess.Token object. A Token is just a collection of
jess.Fact objects; each Token holds one match for the query. You call the fact()
method of jess.Token to retrieve the individual jess.Fact objects within the
Token. Each match begins with an extra fact, a query trigger fact that initiates the
matching process; it is asserted by the run-query command (this fact is retracted
automatically after the query is run). Hence the argument to the call to fact() is
1, not 0. Once you have the right fact, you use the fact-slot-value function to
extract the contents of the name slot. Printing the name slot of each fact leads to
the output shown earlier.

 The defquery construct can use virtually all the same features that defrule
LHSs can, including all the special conditional elements described in this chapter.
The function ppdefrule can also pretty-print queries. Jess treats a defquery as a
special kind of defrule in many contexts; for instance, the rules command lists
defquerys as well as defrules.

 As you can see, the run-query function lets you pass parameters to a query; you
passed numbers representing the upper and lower limits of a price range to the
find-affordable-gifts query. Let’s examine this process a little more closely.

7.7.1 The variable declaration
You might have already realized that two different kinds of variables can appear in
a query: those that are internal to the query, like ?p in find-affordable-gifts,
and those that are external, or to be specified in the run-query command when
the query is executed. Jess assumes all variables in a query are internal by default;
you must declare any external variables explicitly using this syntax:

(declare (variables ?x ?y ...))

When you invoke a query using the run-query function, you must supply exactly as
many variables as are listed in the variables declaration. Some queries may not
have any external variables; in this case, the variables declaration is optional.

7.7.2 Query trigger facts
When Jess compiles a defquery, it inserts an extra pattern as the first one in the
query. This first pattern is of the form

(__query-trigger-name ?x ?y ...)

where name is the name of the query and ?x, ?y, and so on are the variables
named in the variables declaration for the query. run-query works by asserting

Summary 131
a fact to match this pattern, using the arguments you supply to instantiate the vari-
ables. This fact completes any pending matches of the defquery’s LHS, and run-
query collects these matches and returns them.

7.7.3 The count-query-results function

To obtain just the number of matches for a query, rather than a full Iterator over
all the matches, you can use the count-query-results function. This function
accepts the same arguments as run-query but returns an integer specifying the
number of matches.

7.7.4 Backward chaining and queries

It can be convenient to use queries as triggers for backward chaining. For exam-
ple, look back at the backward-chaining example in section 7.4. If you were writ-
ing a deffunction that needed to use factorials, that deffunction might want to
use a defquery to fetch the ones that are already available from working memory,
rather than recomputing them. The backward-chaining rules would then com-
pute missing values.

 For this technique to be useful, (run) must somehow be called while the query
is being evaluated, to allow the backward chaining to occur. Facts generated by
rules fired during this run may appear as part of the query results.

 By default, no rules fire while a query is being executed. If you want to allow
backward chaining to occur in response to a query, you can include the max-
background-rules declaration in that query’s definition. For example, this query
allows a maximum of five rules to fire while it is being executed:

Jess> (defquery find-factorial
 (declare (max-background-rules 5)
 (variables ?arg))
 (factorial ?arg ?))

7.8 Summary

You can define rules to take action based on the contents of Jess’s working mem-
ory, and you can write queries to investigate it procedurally. Both rules and que-
ries can use constraints (conditions on the slot data of facts) and conditional elements
(relationships between facts) to express specify detailed requirements on working
memory elements.

 You can write both forward- and backward-chaining rules. Roughly, you can say
that forward-chaining rules discover the conclusions that can be drawn from an
existing set of facts, and backward-chaining rules search for the premises from

132 CHAPTER 7
Writing rules in Jess
which existing facts can be derived. You can also write queries to probe working
memory directly.

 In real systems, many rules are activated simultaneously. Conflict resolution, or
choosing which rule to fire next, is an important part of any rule-based system. Jess
lets you influence conflict resolution in a number of ways: by setting the conflict-
resolution strategy, by using salience, or by partitioning your rule base into modules.

Under the hood:
how Jess works
In this chapter you’ll…

■ Learn how Jess compiles rules

■ Be introduced to the Rete algorithm

■ Use the view and matches functions

■ Learn how to make your rules more efficient
133

134 CHAPTER 8
Under the hood: how Jess works
You can drive a car without understanding anything about what’s under the hood.
But if you’re driving through a desert, miles from a phone, and your engine starts
to sputter and cough, a little knowledge and a full toolbox could go a long way.

 So it is with much of the software you use as a developer. As long as everything
is working well, you can get by without much knowledge of its internal workings.
When something starts to go wrong, however, you may need extra knowledge and
a few tools to fix it. This chapter gives you both, as far as Jess is concerned. We’ll
look at the Rete algorithm, the technique that Jess uses to do fast pattern matching.
You’ll also learn about some tools built into Jess that let you kick the tires and look
under the hood.

 Some of the information in this chapter is generally true of any system based
on the Rete algorithm, and a little is specific to one version of Jess. I’ll try to make
the distinction as we go along. In general, the version-specific parts of Jess are in
nonpublic Java classes, so you’d have to go out of your way to use them. If you do,
though, consider yourself warned that they are internal implementation details,
and any Java code you write that uses them may well break each time a new ver-
sion of Jess is released.

8.1 Review of the problem

Before looking at Jess’s implementation, let’s review the problem Jess is meant to
solve. Jess is a shell for rule-based systems. In the simplest terms, this means Jess’s
purpose is to continuously apply a set of if...then statements (rules) to a set of
data (the working memory). Each system built from the shell defines its own rules.
Jess rules look like this:

(defrule library-rule-1
 (book (name ?x) (status late) (borrower ?y))
 (borrower (name ?y) (address ?z))
 =>
 (send-late-notice ?x ?y ?z))

This rule might be translated into pseudo-English as follows:

Library rule #1:
IF
 A late book X exists, borrowed by a person Y
AND That borrower's address is known to be Z
THEN
 Send a late notice to Y at Z about the book X.
END

The information about books and borrowers would be found in the working
memory, which is therefore a kind of database of bits of factual knowledge about

An inefficient solution 135
the world. Entities like books and borrowers are called facts. Facts have attributes
called slots, like a name, a status, and so on. Each kind of fact can have only a fixed
set of slots. The allowed slots for a given type are defined in Jess statements called
deftemplates. Actions like send-late-notice can be defined in user-written
functions in the Jess language (deffunctions) or in Java (see chapter 15). For
more information about rule syntax, you can refer to chapter 7.

 Therefore, the main problem Jess must solve is that of matching the rules in
the rule base to the facts in working memory. Jess has to perform the following
steps in an infinite loop:

1 Find all the rules that are satisfied by a set of facts in working memory.

2 Form activation records out of these rule/fact associations.

3 Choose one activation record to execute.

8.2 An inefficient solution

The obvious implementation of pattern matching would be to keep a list of the
rules and simply check each one’s left-hand side (LHS) in turn against the work-
ing memory, forming a set of activation records for any that match. After choosing
one rule and executing it, you could discard the set of activation records and start
again. You might call this the rules finding facts approach. It is obviously not very
efficient and doesn’t scale well. After every rule firing, the system must recheck
every fact against every rule. Doubling the number of facts or the number of rules
roughly halves the performance of the system.

 It is difficult to analyze pattern-matching algorithms like this one in the gen-
eral case, because the actual performance is dependent on the makeup of work-
ing memory and on the exact nature of the rules. For the example rule in the
previous section, though, we can say that this naive algorithm will take time pro-
portional to the product B1B2 on each cycle, where B1 is the number of books and
B2 is the number of borrowers. This is easy to see; on each cycle, every book must
be checked to see if it is overdue, and the overdue ones must be checked against
every borrower to find the right address. On the average, for many rules, the
worst-case performance of this simple algorithm will be something like the B1B2

expression, extended to deal with any number of patterns and multiplied by the
number of rules. We could write the result RF P, where R is the number of rules, F
is the total number of facts, and P is the average number of patterns per rule. If P
is 2, then the runtime will scale as the square of the number of facts; doubling the
number of facts will multiply the runtime by a factor of 4.

136 CHAPTER 8
Under the hood: how Jess works
8.3 The Rete algorithm

We can improve on the performance of this simple but inefficient pattern-match-
ing algorithm by thinking about the source of its inefficiency. The typical rule-
based system has a more or less fixed set of rules, whereas the working memory
changes continuously. However, it is an empirical fact that in most rule-based sys-
tems, much of the working memory is also fairly fixed over time. Although new
facts arrive and old ones are removed as the system runs, the percentage of facts
that change per unit time is generally fairly small.

 The rules finding facts algorithm is therefore needlessly inefficient, because most
of the tests made on each cycle will have the same results as on the previous itera-
tion. An algorithm that could somehow remember previous pattern-matching
results between cycles, only updating matches for facts that actually changed, could
do far less work and get the same results.

 Jess uses a very efficient version of this idea, known as the Rete algorithm.
Charles Forgy’s classic paper describing the Rete algorithm1 became the basis for
several generations of fast rule-based system shells: OPS5, its descendant ART,
CLIPS, Jess, and others. Each system has enhanced and refined the algorithm to
improve performance or flexibility. This chapter describes the algorithm as imple-
mented in Jess.

 Briefly, the Rete algorithm eliminates the inefficiency in the simple pattern
matcher by remembering past test results across iterations of the rule loop. Only
new or deleted working memory elements are tested against the rules at each
step. Furthermore, Rete organizes the pattern matcher so that these few facts are
only tested against the subset of the rules that may actually match.

8.3.1 How Rete works

Rete is Latin for net (it’s pronounced “ree-tee”). The Rete algorithm is imple-
mented by building a network of interconnected nodes. Every node represents one
or more tests found on the LHS of a rule. Each node has one or two inputs and any
number of outputs. Facts that are being added to or removed from the working
memory are processed by this network of nodes. The input nodes are at the top of
the network, and the output nodes are at the bottom. Together, these nodes form
the Rete network, and this network is how Jess’s working memory is implemented.

1 Charles L. Forgy, “Rete: A Fast Algorithm for the Many Pattern / Many Object Pattern Match Problem,”
Artificial Intelligence 19 (1982): 17–37.

The Rete algorithm 137
 At the top of the network, the input nodes separate the facts into categories
according to their head—for example, books go through one path, and borrowers
go through another. Inside the network, finer discriminations and associations
between facts are made, until the facts get to the bottom. At the bottom of the net-
work are nodes representing individual rules. When a set of facts filters all the way
down to the bottom of the network, it has passed all the tests on the LHS of a par-
ticular rule; this set, together with the rule itself, becomes either a new activation
record or a command to cancel a previously existing activation record (recall that
an activation record is an association of a list of facts with a rule that they activate).

 Between the inputs and the outputs, the network is composed of two broad
categories of nodes: one-input nodes and two-input nodes. One-input nodes perform
tests on individual facts, and two-input nodes perform tests across multiple facts.
An example would probably be useful at this point. The following rules might be
compiled into the network shown in figure 8.1:

Jess> (deftemplate x (slot a))
TRUE
Jess> (deftemplate y (slot b))
TRUE
Jess> (deftemplate z (slot c))
TRUE
Jess> (defrule example-1
 (x (a ?v1))
 (y (b ?v1))
 =>)
TRUE
Jess> (defrule example-2
 (x (a ?v2))
 (y (b ?v2))
 (z)
 =>)
TRUE

Figure 8.1
An unoptimized Rete network for the
two rules example-1 and example-2

138 CHAPTER 8
Under the hood: how Jess works
 In this diagram, each box represents a node. A node’s inputs are shown on
the top, and its outputs are on the bottom. The diamond-shaped nodes marked
=q? are one-input or pattern nodes. The pattern nodes in this example test if the
head of a fact is q. Facts that pass this test are sent to the node’s output; others
are ignored.

 The trapezoidal nodes are two-input or join nodes. Each join node joins the
results of matching the first n-1 patterns (coming from upper left in the diagram)
with the nth pattern (attached at upper right in the diagram). Join nodes remem-
ber all facts or groups of facts that arrive on either of their two inputs. The network
is built so that the left input can receive groups of one or more facts; the right
input receives only single facts. Every join node produces groups of two or more
facts as at its output. The arrivals from the two inputs are kept in separate memory
areas, traditionally called the alpha and beta memories. We’ll refer to them as the
left and right memories instead, because it’s easier to keep these names straight!
The notation LEFT.p.q==RIGHT.r? indicates a test comparing the contents of slot
q in the pth fact in a group from the left memory to the slot r in a fact from the
right memory. Join nodes produce one output for each ordered pairing of a left-
memory element and a right-memory element that passes the tests in that node.

 The oval nodes at the bottom of the network are the terminal nodes that repre-
sent individual rules. They have a single input and no outputs. When they receive
an input, they build an activation record from the input item and the rule they
represent and place it on the agenda. Note that any facts that reach the top of a
join node could potentially contribute to an activation; they have already passed
all the tests that can be applied to single facts.

 To run the network, you present every new fact to each node at the top of the
network. The example pattern network eliminates all facts except the x, y, and z
ones. The join network then sends all {x, y} pairs with x.a == y.b to the termi-
nal node for example-1, and all {x, y, z} triples (given the same restriction) to
the terminal node for example-2. The terminal nodes thus know what activation
records to create.

 What happens if, after processing the initial facts, we assert an additional fact
(z (c 17))? The fact is presented to the =z? pattern node and sent down to the
join node below. The left memory of that join node already contains all the
acceptable x, y pairs, so the correct x, y, z triples can be formed without repeat-
ing the pattern matching computation done on the first cycle. One new activation
will be created for each precomputed x, y pair. You can now see how the Rete
architecture lets you avoid repeating computation over time.

Easy optimizations for Rete 139
8.3.2 Handling retract

So far, you’ve seen how the Rete algorithm can be used to efficiently handle the
pattern matching that happens during assert commands; but what about
retract? Rete can handle removing activation records as easily as it can handle
creating them. The trick to doing so is that you don’t send facts through the net-
work: You send tokens. A token is an association between one or more facts and a
tag, or command. The tag tells the individual nodes how to interpret the token.
Jess uses four different tags, defined as constants in the jess.RU class: ADD,
REMOVE, CLEAR, and UPDATE. ADD is used for asserting facts, as you’ve already seen.
The behavior described so far only applies for token with a tag value of ADD.

 The REMOVE tag is used for retractions. If a REMOVE token arrives at a join node,
the node looks in the appropriate memory to find a matching token. If it finds
one, the token is deleted. All allowed pairings between that token and all the
tokens in the opposite memory are then composed, also with the REMOVE tag.
These tokens are sent to the join node’s output. Finally, if a terminal node receives
a REMOVE token, the corresponding activation record is found and deleted.

 The remaining two tags are more subtle. UPDATE is used when a new rule has
been added to a preexisting Rete network, and the join nodes belonging to that
new rule have to be populated with facts. The UPDATE tag lets the nodes that
already existed know they can safely ignore a token, because it’s a duplicate of
one sent some time in the past; this prevents the preexisting nodes from storing
duplicate tokens in their memories. Finally, the CLEAR tag tells the join and ter-
minal nodes to flush their memories; it is used to implement the (reset) com-
mand efficiently.

8.4 Easy optimizations for Rete

That’s it for the basic Rete algorithm. There are many optimizations, however,
which can make it even better. Two easy ones work by introducing node sharing
into the network. The first optimization is to share nodes in the pattern network.
In figure 8.1, there are five nodes across the top, although only three are distinct.
You can modify the network to share these nodes across the two rules. The result
is shown in figure 8.2.

140 CHAPTER 8
Under the hood: how Jess works
But that’s not all the redundancy in the original network. Looking at figure 8.2,
you can see that one join node is performing exactly the same function (integrat-
ing x, y pairs) in both rules; you can share that also, as shown in figure 8.3. Sharing
join nodes is an especially fruitful optimization. Because joining involves compar-
ing facts to one another, the tests in join nodes tend to be executed many more
times than those in pattern nodes—so much so that the time spent in the join net-
work generally dominates the running time of the system. By sharing this one join
node, then, you’ve effectively doubled the performance of your program.

 The pattern and join networks in figure 8.3 are collectively only half the size
they were in the first version. This kind of sharing comes up frequently in real sys-
tems and is a significant performance booster.

Figure 8.2
A Rete network that
shares pattern nodes

Figure 8.3
A Rete network that shares both
pattern and join nodes

Performance of the Rete algorithm 141
8.5 Performance of the Rete algorithm

The Rete algorithm’s performance is even harder to analyze precisely than the
simple rules finding facts algorithm. In general, the performance on the first
cycle is basically the same for the two algorithms; Rete has to do pattern matching
for every fact in working memory, because there are no previous results to con-
sult. In the worst case, where every fact changes on every cycle and there is no net-
work sharing between rules, then the performance for later cycles is the same as
well. This means Jess won’t be very efficient if you populate the working memory,
run the pattern matcher for just one cycle, and then reset working memory and
repopulate it again from scratch. But in the typical case of a slowly changing work-
ing memory, moderate sharing in the network, and effective indexing, Rete will
vastly outperform the naive algorithm for all cycles after the first. The runtime will
be proportional to something like R'F'P', where R' is a number less than R, the
number of rules; F' is the number of facts that change on each iteration; and P' is
a number greater than one but less than the average number of patterns per rule.

8.5.1 Node index hash value

Jess uses a fairly sophisticated data structure to represent the two memories in
each join node. It is basically a hash table with a fixed number of buckets. The
interesting feature here is that the hash function uses the part of each token that
is most relevant to the specific tests in each join node. This lets Jess presort the
tokens before running the join node tests. In many cases, running some or all of
the tests can be avoided altogether, because once the tokens are sorted into the
hash buckets, questions involving comparisons of slot data can often be answered
categorically for a whole bin.

 The node index hash value is a tunable performance-related parameter that can
be set globally or on a per-rule basis. It is simply the number of buckets to use in
each individual hash table. A small value saves memory, possibly at the expense of
performance; a larger value uses more memory but leads (up to a point) to faster
pattern matching. The default, used if you don’t declare an explicit value, is cho-
sen for optimal performance.

 In general, you might want to declare a large value for a rule that is likely to gen-
erate many partial matches. Conventional wisdom has it that prime numbers are
the best choices. Experimentation is the only way to determine the best value for a
particular rule. If n is the number of item facts, then the following rule will need n3

tokens in the left memory of its third join node; it’s an excellent candidate for a
large node index hash value if you expected there to be more than a few item facts:

142 CHAPTER 8
Under the hood: how Jess works
Jess> (defrule many-matches
 (declare (node-index-hash 167))
 (item ?a)
 (item ?b)
 (item ?c)
 (item ?d)
 =>
 (printout t ?a " " ?b " " ?c " " ?d crlf))
TRUE

The set-node-index-hash function sets the default value for this parameter, used
for rules without a specific declaration. If you don’t set a value, the default is 101.

8.6 More complexity and initial-fact

A number of pattern-matching situations can’t be handled by what we’ve discussed
so far. Studying them is enlightening because it explains some otherwise seemingly
arbitrary properties of software like Jess that is based on the Rete algorithm.

8.6.1 Implementing the not conditional element

The not conditional element matches the absence of a fact. Its implementation
involves a special kind of join node and a special field in every token. The special
field is called the negation count. The special NOT join node uses the negation
count to keep track of the number of times the node’s conditions are met for
each token in the left memory. The count is incremented whenever the node’s
tests pass for a given token and decremented whenever they do not. When the
count reaches zero for a given left-memory token, a new token is formed from it
and a special null fact (which represents the nonexistent right-memory input) and
sent to the node’s output.

 The important thing to notice about this description is that although the facts
matching the pattern in the not conditional element arrive at the NOT node’s right
input, only the tokens arriving at the left input form part of the output tokens. A
moment’s reflection shows that it has to be this way; the not conditional element
is matched when there is no matching fact. If there are no tokens in the right
memory, that means the not conditional element will always succeed, so the NOT
node will pass every token received on the left input directly to its output.

 Now, what should a NOT node do if it doesn’t have a left input? Such a case
would arise if a not conditional element was the first pattern on the LHS of a rule
or the first pattern in a given branch of an or conditional element. The NOT node
clearly can’t function without a left input; it can’t create output tokens without left
input tokens as seeds. For this reason, Jess inserts the (initial-fact) pattern

Exploring the Rete network in Jess 143
into rules that have this problem. Without this pattern, the not conditional ele-
ment wouldn’t work.

8.6.2 Implementing the test conditional element
The test conditional element doesn’t match a fact; it simply evaluates a function.
To implement test, Jess uses another special join node that ignores its right
input. For each token arriving on the left input, the TEST join node evaluates its
function. If the function doesn’t evaluate to FALSE, the left input token and a null
fact are composed to make a new token, which is then sent to the node’s output.
The TEST node, just like the NOT node, clearly can’t work properly without a left
input. Therefore, test conditional elements can also cause Jess to insert
(initial-fact) patterns into rules.

8.6.3 Implementing backward chaining
Jess implements backward chaining on top of the forward-chaining Rete algo-
rithm. The basic problem is detecting when the LHS of a rule has been matched
up to, but not including, a pattern that matches a backward-chaining reactive tem-
plate (see section 7.4). At this point, a signal must be sent describing the fact that
would complete the match; as you might guess, having read section 7.4, that sig-
nal is a need-X fact. Once this fact is asserted, rules that match it can once again
be processed in a forward-chaining fashion.

 To implement this functionality, the join nodes that receive facts from a back-
ward-chaining reactive template must act specially. Each time a new left input
token is received, the number of successful pairings with right input tokens is
counted. If the count is zero, a need-X fact is generated. The left input token rep-
resents the facts that match a rule up to, but not including, the pattern for the
reactive template. Once again, you see that the left input token is crucial to the
correct operation of this special type of join node, and so Jess inserts (initial-
fact) patterns as necessary to provide them.

8.7 Exploring the Rete network in Jess

The compiled Rete network is a complex and (often) large data structure. Some-
times, understanding it can mean the difference between an efficient program and
a dreaded OutOfMemoryError. In this section, we’ll look at some functions that
will help you explore the Rete network: watch compilations, view, and match.

8.7.1 The (watch compilations) command
You can see the amount of node sharing in a Rete network by using Jess’s (watch
compilations) function. Executing this function tells the rule compiler to print

144 CHAPTER 8
Under the hood: how Jess works
some diagnostics to the screen when each rule is compiled. For each rule, Jess
prints a string of characters something like this, the actual output from compiling
rule example-1 from section 8.3.1:

MAIN::example-1: +1+1+1+2+t

Each time +1 appears in this string, it means a new one-input node was created.
+2 indicates a new two-input node. +t indicates a terminal node.

 Now, watch what happens when we compile example-2 from the same section:

MAIN::example-2: =1=1+1=1=2+2+t

The string =1 is printed whenever a preexisting one-input node was shared; simi-
larly, =2 means a two-input node was shared. You can see from these diagnostics
that, as expected, one of the two join nodes in example-2 was shared, along with
most of the pattern nodes. If you want to study what happens more precisely, you
can use the view command, described in the next section.

8.7.2 The view function

The view command (see figure 8.4) is a graphical viewer for the Rete network. By
giving you feedback about the data structures Jess builds from your rule defini-
tions, it may help you to design more efficient rule-based systems. Issuing the
view command after entering the rules example-1 and example-2 from section
8.3.1 produces a very good facsimile of the diagram in figure 8.3 (with some sub-
tle differences). The various nodes are color-coded according to their roles in the
network. Nodes in the pattern network are red, normal join nodes are green, not
nodes are yellow, and terminal nodes are blue. The bottom node in the left col-
umn of the figure is a right to left adapter; one of these is always used to connect the
first pattern on a rule’s LHS to the network. Passing the mouse over a node dis-
plays information about the node and the tests it contains. Double-clicking on a
node brings up a dialog box containing additional information; for join nodes,
the memory contents are also displayed (the same information displayed by the
matches function), and for terminal nodes, a pretty-print representation of the
rule is shown. You can move the individual nodes around by dragging them with
your mouse. In figure 8.4, the nodes have been dragged into position by hand to
resemble the diagrams in the other figures.

Exploring the Rete network in Jess 145

To fully appreciate what’s happening in the view command’s display, you need to
know something about how Jess implements the Rete algorithm. Jess’s network is
literally a network of interconnected Node objects. Network nodes are repre-
sented by subclasses of the abstract type jess.Node. Pattern network nodes,
which perform tests on single facts, have Node1 as part of their name. There are
also three classes of join nodes—jess.Node2, jess.NodeNot2, and NodeTest—
that implement normal joins, the not conditional element, and the test condi-
tional element, respectively. Terminal nodes are instances of jess.NodeTerm.

 There are quite a few different Node1 classes. jess.Node1TECT nodes, for
example, test the head of a fact, and therefore provide the entrance route into
the network. Node1TEQ nodes compare the value of a single slot to a constant
value, and Node1TEV1 nodes test whether two slots within a single fact contain the
same value. There are separate multislot variations of these types; their names
begin with Node1M. Node1MTEQ nodes, for example, compare a single datum at a
particular location in a multislot to a constant value. Finally, there are negated
versions, too: Node1TNEV1 nodes test that two slots in a single fact do not contain
the same value.

 Besides the menagerie of nodes types listed here, other types serve a structural
role in the network: Node1RTL nodes, for example, adapt an output that would
normally lead to the right input of a join node so that it connects to the left input
instead, and Node1NONE nodes serve as stand-ins for nodes that aren’t really
there—specifically, for the part of the pattern network that leads to the right
input of a NodeTest. The information that the matches or view functions display
about individual nodes is generally fairly descriptive of each node’s function.

Figure 8.4
Jess’s view command displays
the Rete network in a window.

146 CHAPTER 8
Under the hood: how Jess works
8.7.3 The matches function

The matches function lets you see the contents of the left and right memories of
the join nodes used by any rule. It can be an invaluable aid in determining why a
particular rule isn’t behaving the way you expect. It also is a good way to check for
computational hot spots that might be slowing down your programs.

 The matches function is easy to use. Give it the name of a rule as an argument,
and it will show you information about each of the rule’s join nodes in left-to-right
order. In the following example, the rule matches-demo’s single join node has
one token in its left memory and one in its right; each memory gets its input from
one pattern of the original rule:

Jess> (defrule matches-demo
 (a)
 (b)
 =>)
TRUE
Jess> (deffacts matches-demo-facts (a) (b))
TRUE
Jess> (reset)
TRUE
Jess> (matches matches-demo)
>>> [Node2 ntests=0 ;usecount = 1;unique = false]
*** Left Memory:
[Token: size=1;sortcode=1;tag=ADD;negcnt=0;facts=(MAIN::a);]
*** RightMemory:
[Token: size=1;sortcode=2;tag=ADD;negcnt=0;facts=(MAIN::b);]

TRUE

8.8 Summary

Jess uses the fast, efficient Rete algorithm for pattern matching. The strength of
Rete is that it uses a set of memories to retain information about the success or fail-
ure of pattern matches during previous cycles.

 The Rete algorithm involves building a network of pattern-matching nodes. Jess
uses many different kinds of nodes to represent the many different kinds of pat-
tern-matching activities. There are also special nodes to handle some conditional
elements like not and test, as well as special behavior in some nodes to handle
backward chaining.

 This chapter concludes the introduction to Jess. In the next part of this book,
and in each subsequent part, you will develop a nontrivial application. Each appli-
cation is standalone, but each part of the book builds on the knowledge and skills
developed during the previous parts.

Creating your first
rule-based application:
the Tax Forms Advisor

Using a classic expert system is something like being interviewed: The pro-
gram asks you a series of questions and then provides some advice or information.
In part 3, you’ll develop your first nontrivial program to follow this model. We’ll
concentrate on the mechanics of rule-based system development. There are spe-
cial sections on knowledge engineering and on testing.

The system you’ll be developing is called the Tax Forms Advisor. Given some
information about your personal finances, the program will recommend which
income tax forms you may need to file. It is suitable for installation in a kiosk in
the lobby of a post office.

Part 3

Collecting the knowledge
In this chapter you’ll…
■ Learn about knowledge engineering
■ Learn to interview experts
■ Collect requirements
■ Assemble domain knowledge
149

150 CHAPTER 9
Collecting the knowledge
 A journey of a thousand miles begins with the first step.
 —Lao Tzu

The first step in developing any rule-based system is collecting the knowledge the
system will embody. In this chapter, your major concern will be to learn how this
can be accomplished. As a practical example, you’ll gather the knowledge you’ll
build into your first nontrivial rule-based program.

9.1 The Tax Forms Advisor

For the next three chapters, you’ll be developing a simple rule-based application
that recommends United States income tax forms. The application asks the user a
series of questions and, based on the answers, tells the user which paper Internal
Revenue Service forms she will likely need. You will populate the application with
enough data to make it realistic, although you won’t try to make it exhaustive.
Your application might be used in an information kiosk at the post office.

 You’ll follow a realistic development process as you create this application, start-
ing in this chapter by collecting the actual knowledge. In chapters 10 and 11 you’ll
write the application using an iterative methodology, including lots of testing.

 The Tax Forms Advisor has a command-line interface. You’ll concentrate on
developing the rules themselves, so the entire program will be written in the Jess
rule language without using any Java reflection capabilities. In the next part of
this book, we’ll examine one way to add a graphical interface to applications like
this one.

DISCLAIMER The system you’re developing is intended only to provide guidelines
about what tax forms a taxpayer might need to file. It is not intended to
give authoritative legal advice about tax filing.

9.2 Introduction to knowledge engineering

Every rule-based system is concerned with some subset of all the world’s collected
knowledge. This subset is called the domain of the system. The process of collecting
information about a domain for use in a rule-based system is called knowledge engi-
neering, and people who do this for a living are called knowledge engineers. On small
projects, the programmers themselves might do all the knowledge engineering,
whereas very large projects might include a team of dedicated knowledge engineers.

Introduction to knowledge engineering 151
 Professional knowledge engineers may have degrees in a range of disciplines:
obvious ones like computer science or psychology, and domain-related ones like
physics, chemistry, or mathematics. Obviously it helps if the knowledge engineer
knows a lot about rule-based systems, although she doesn’t have to be a programmer.

 A good knowledge engineer has to be a jack of all trades, because knowledge
engineering is really just learning—the knowledge engineer must learn a lot
about the domain in which the proposed system will operate. A knowledge engi-
neer doesn’t need to become an expert, although that sometimes happens. But
the knowledge engineer does have to learn something about the topic. In gen-
eral, this information will include:

■ The requirements—Looking at the problem the system needs to solve is the
first step. However, you might not fully understand the problem until later
in the process.

■ The principles—You need to learn the organizing principles of the field.

■ The resources—Once you understand the principles, you need to know where
to go to learn more.

■ The frontiers—Every domain has its dark corners and dead ends. You need to
find out where the tough bits, ambiguities, and limits of human understand-
ing lie.

The knowledge engineer can use many potential sources of information to
research these points. Broadly, though, there are two: interviews and desk research.
In the rest of this section, we’ll look at techniques for mining each of these infor-
mation sources to gather the four categories of information we just listed.

9.2.1 Where do you start?

When you’re starting on a new knowledge engineering endeavor, it can be diffi-
cult to decide what to do first. Knowledge engineering is an iterative process. You
usually can’t make a road map in advance; instead you feel your way along, adjust-
ing your course as you go. As the saying goes, though, a journey of a thousand
miles begins with a single step, and taking that first step can be hard.

 With most projects, you should first talk to the customers—the people who are
paying you to write the system. Find out what their needs are and what resources
they can make available. This isn’t knowledge engineering per se, but requirements
engineering—part of planning any software project. But the customer might point
you to particular sources of technical information and help you plan your
approach to knowledge engineering. After talking to the customers, you should

152 CHAPTER 9
Collecting the knowledge
have a rough idea of what the system should do and how long development is
expected to take.

 Next, it’s best to seek out general resources you can use to learn about the fun-
damentals of the domain and do a bit of self-study. Being at least vaguely familiar
with the jargon and fundamental concepts in the domain will let you avoid wast-
ing the time of people you interview later. You should learn enough about the
fundamentals to have a rough idea of what kinds of knowledge the system needs
to have.

 Once you’ve developed an understanding of the basics, you’re ready to begin
the iterative process. Based on your initial research, write down a list of questions
about the domain which, if answered, would provide knowledge in the areas you
previously identified. Seek out a cooperative subject-matter expert, briefly explain
the project to him, and ask him the questions (often the customer will provide the
expert; otherwise they should pay the expert a consulting fee to work with you).
Usually the answers will lead to more questions.

 After the initial interview, you can try to organize the information you’ve gath-
ered into some kind of structure—perhaps a written outline or a flowchart. As you
do this, you can begin to look for what might turn out to be individual rules. For
the Tax Forms Advisor, an individual rule you might encounter early in the pro-
cess would be (in the Jess language):

(defrule use-ez-form
 ; If filing status is "single", and...
 (filing-status single)
 ; user made less than $50000
 (income ?i&:(< ?i 50000))
 =>
 ; recommend the user file Form 1040EZ
 (recommend 1040EZ))

Detailed comments like those shown here will help non-technical people read
and understand the rules, if necessary. Buy a stack of white index cards and write
each potential rule on one side of an individual card. Use pencil so you can make
changes easily. The cards are useful because they let you group the rules accord-
ing to function, required inputs, or other criteria. When you have a stack of 100
cards or more, the utility becomes obvious. You can use the reverse sides of the
cards to record issues regarding each rule. This stack of cards might be the final
product of knowledge engineering, or the cards’ contents might be turned into a
report. The cards themselves are often the most useful format, though.

 After organizing the new knowledge on index cards, you may see obvious gaps
that require additional information. Develop a new set of interview questions and

Introduction to knowledge engineering 153
meet with the expert again. The appropriate number of iterations depends on the
complexity of the system.

 Knowledge engineering doesn’t necessarily end when development begins.
After an initial version of a system is available, the expert should try it out as a user
and offer advice to correct its performance. If possible, a prototype of the system
should be presented to the expert at every interview—except perhaps the first one.

 Likewise, development needn’t be deferred until knowledge engineering is
complete. For many small projects, the knowledge engineer is one of the develop-
ers, and in this case you may be able to dispense with the cards and simply encode
the knowledge you collect directly into a prototype system. This is what you’ll do
for the Tax Forms Advisor.

More on writing cards
To write down the rule use-ez-form on a card, I had to make up the deftemplate
names filing-status and income and also define an imaginary function
recommend. In general, you will write rules on these cards in pseudocode; they’re
meant to suggest how the real rules might be coded, but they’re just guides. When
actual development begins on the system, these early guesses will help the devel-
opers figure out what deftemplates and other infrastructure they need to define.

 Finally, note that although I wrote use-ez-form in Jess syntax, it would be per-
fectly OK for a knowledge engineer to use natural language, or pseudocode that
looks like some other programming language. If you are a knowledge engineer
but not a programmer, writing rules in your native language may be the only
option, and that’s fine.

9.2.2 Interviews

People are the best source of information about the requirements for a system.
Many projects have requirements documents: written descriptions of how a proposed
system should behave. Despite the best intentions, such documents rarely capture
the expectations for a system in enough detail to allow the system to be imple-
mented. Often, you can get the missing details only by talking to stakeholders: the
customers and potential users of the system.

 People can also direct you to books, web sites, and other people who will help you
learn about the problem domain. These days it’s common to suffer from information
overload when you try to research a topic—there are so many conflicting resources
available that it’s hard to know what information to believe. The stakeholders in the
system can tell you which resources they trust and which ones they don’t.

154 CHAPTER 9
Collecting the knowledge
 If you find conflicting information among otherwise trustworthy references
during your research, or hear conflicting statements during interviews, don’t be
afraid to ask for clarification. You’ll need a strategy for resolving conflicts that
hinge on matters of opinion. Sometimes you can do this by picking a specific per-
son as the ultimate arbiter. Other times, especially on larger projects, it’s appropri-
ate to hold meetings to get the stakeholders to make decisions in a group setting.

Interviewing strategies
Cultivating a good relationship with the people you interview is important. This
sounds so simple, you might not think it needs to be said—but it does. Computer
people have a culture all their own, and it’s different enough from mainstream
culture that programmers can be perceived as rude. If you’re a computer pro-
grammer working as a knowledge engineer, you may have to alter your accus-
tomed behavior when you’re interviewing nonprogrammers. Here are a few
things to watch out for:

■ Speak their language—It can be difficult for a programmer to remember that
stacks, loops, shifts, and pointers are not part of the everyday vocabulary of
most nonprogrammers. Don’t use programming terms if you can avoid it.
You’ll also want to avoid geek words like grok, kludge, and lossage, which will
only distance you from the interviewee. Instead, work hard to learn the
technical jargon of the problem domain, and use it properly.

■ Show respect—No matter how trivial the domain may seem, the interviewee
knows more about it than you, so don’t look down on people just because
they don’t have the same education you do. Your knowledge of program-
ming is not more important than their knowledge of inventory procedures.
Your time is not more valuable than theirs. They’re doing you a favor by
talking to you, so be grateful.

■ Be interested—Make eye contact when you talk to the interviewee. Ask follow-
up questions to show that you’re listening. Take notes so you don’t ask the
same question twice (unless, of course, you didn’t understand the answer
the first time). Generally look as though you’re happy to be talking to the
person—or they won’t talk to you again.

■ Dress for the occasion—Gone are the days when all white-collar workers wore
white collars (and ties). But if you’re interviewing someone older than you,
she might remember those days quite clearly. If you’re going to interview a
client at a bank, don’t show up in sandals and a t-shirt. Dressing appropri-
ately will help your interviewee relate to you.

Introduction to knowledge engineering 155
■ Be reassuring—Often the interviewee is not the customer. A manager may be
asking you to capture knowledge from an employee, and that employee
may be afraid of being replaced by the proposed new system. Reassure the
employee that he’s smarter than any computer, and explain that although
the system may take over routine tasks, it will free the employee’s time to
work on more important things. You don’t want anyone to perceive you, or
the system you’re building, as an enemy.

Customers
The customers are the people who are paying you to build the system. Sometimes
they know a lot about the problem, and other times they just want the problem
solved. If the customer is also a domain expert, then your job is easy, because the
customer can direct you to all the information you need. If the customer doesn’t
know much about the problem domain, then the hardest part of your job may be
identifying someone who is.

 For the forms advisor application, the customer may be the postal service. No
one at the post office will be able to supply much domain knowledge, but they will
be able to describe the problem well enough. Luckily, it’s obvious in this case who
the domain expert should be: a tax accountant. An accountant knows better than
anyone else which tax forms people need under various circumstances. The cus-
tomer should be willing to pay for some of an accountant’s time, or perhaps pro-
vide access to their own accountants.

Users
The users are the people who will interact with the system on a day-to-day basis.
Like the customers, the users may or may not know much about the domain in
which the system works. A particular category of user, the expert user, knows the
domain very well. Expert users are people who will use your system to automate
tasks they already know how to do. They are often the best kind of interviewee to
work with, because they understand the problem and simultaneously know how
they want the system to react.

 The users for the forms advisor are not expert users—they are just people who
wander in to the post office to pick up tax forms. This kind of user isn’t particu-
larly useful to interview for knowledge-engineering purposes; however, it can be
useful to talk to naïve users about things like user-interface issues.

Experts
A domain expert is someone who has technical knowledge in the relevant problem
area for your system. A good domain expert is worth her weight in gold, so it is

156 CHAPTER 9
Collecting the knowledge
important to seek one out and develop a good working relationship. Most of
knowledge engineering consists of extracting information from domain experts.

 For the forms advisor application, potential experts include accountants and
Internal Revenue Service (IRS) workers. An accountant can tell you what forms
are required most often by her clients, whereas an IRS employee may have statis-
tics on form usage by the whole U.S. population. Both can help you understand
the tax rules.1

9.2.3 Desk research

Not all of your information should come from people. When possible, you should
instead collect basic or rote knowledge from written materials, so as not to waste
other people’s time. Of course, you can’t believe everything you read—make sure
the experts you talk to would trust the resources you use.

Books and journals
You might use two broad categories of written material: paper publications and
electronic ones. With the explosion of the World Wide Web during the last
decade, the amount of electronic research material available has mushroomed.
Still, scholarly books and periodicals have a significant advantage over most elec-
tronic publications: They are usually peer reviewed. In the peer-review process,
material destined for publication is read and critiqued by impartial experts. This
process improves the accuracy and trustworthiness of the information.

 In many scientific and engineering fields, college textbooks are an excellent
way to get an overview of a domain. Introductory textbooks are often aimed at a
general audience, so you can read them without a specialized background. The
best textbooks have gone through several editions, honing their language and
presentation. Monographs on specific topics can also be useful; these are used as
texts for advanced college and graduate-level courses. They are sometimes less
well written and aimed at an audience with specific technical background. Univer-
sity and technical libraries are a good source for textbooks and monographs.

 Professional and scholarly journals are published several times each year, and
they are an excellent way to keep up with advances in a particular field. They can
be very expensive, so you’ll want to find them in a library as well.

 Newsletters, circulars, and other publications aren’t usually peer-reviewed, but
they can provide useful information. In particular, many government publications

1 Or maybe not. The U.S. General Accounting Office released a much-publicized report in 2001 relating
its findings that IRS telephone personnel give out incorrect tax information 47% of the time.

Collecting knowledge about tax forms 157
are an invaluable way to learn about laws, regulations, and practices; they com-
bine and distill information from various laws, orders, legal decisions, and policies
to produce practical guides.

Web sites and electronic media
You can often find hundreds or even thousands of references by typing a few key
words describing your domain into an Internet search engine. There are online
encyclopedias of every description, guides to technical fields, troves of engineer-
ing data, and countless other valuable resources.

 Although the Internet is full of information, it is important to realize that not
all of it is correct or unbiased. In particular, many search engines either accept
payment for highly placed listings or use a ranking system that is easily fooled into
placing a particular page at the top of your search results. Before using a general
search engine, learn a little about how it is implemented and operated. Select one
that, to the extent possible, ranks results only on their relevance to your search
topic. You should also scrutinize individual web pages; check for the source of the
information, and try to verify it against another reference.

 Sometimes, published electronic reference works on CD-ROM are useful,
although they are often simply expensive alternatives to (or worse, a repackaging
of) material already available on the Web. Again, you can often find and use these
references in libraries.

9.3 Collecting knowledge about tax forms

The domain for the example program is “distributing income tax forms.” The
project sponsors might describe it like this:

 The system should ask the user a series of questions and then recom-
mend a list of income tax forms the user might need. The list doesn’t
need to be exhaustive, but it should be generous—that is, if in doubt,
recommend the form. The series of questions should be as short as
possible and should never include irrelevant or redundant questions.

This simple statement is certainly enough to get you started on the knowledge
engineering phase of the project.

9.3.1 An interview

If you’ve ever filed your own income taxes, you have a reasonable understanding of
the concepts behind this application. So, you probably don’t need to do any
advance desk work—in fact, you can probably gather all the necessary information

158 CHAPTER 9
Collecting the knowledge
from one or two interviews and from reading the forms themselves. The first step is
to talk to an accountant and ask her to list the 10 most-used income tax forms. She
gives you this list, in no particular order:

■ Form 1040—Income tax

■ Form 1040A—Income tax

■ Form 1040EZ—Income tax

■ Form 2441—Child and dependent care expenses

■ Form 2016EZ—Employee business expenses

■ Form 3903—Moving expenses

■ Form 4684—Casualties and thefts

■ Form 4868—Application for filing extension

■ Form 8283—Noncash charitable distributions

■ Form 8829—Home office expenses

With the list in hand, you can begin asking questions about individual forms. The
most relevant question for each form is, “Who needs it?” The accountant’s
answers are reproduced here:

■ Form 1040 is the standard long form. Everyone needs it.
■ Form 1040A is the short form. You can use it instead of Form 1040 if your

taxable income is less than $50,000. You can’t itemize deductions if you use
this form, but you can get a credit for child-care expenses.

■ Form 1040EZ is the really short form. You can use it instead of Form 1040A if
you made less than $50,000, you have no dependents, and you don’t itemize
deductions. If you’re married, you and your spouse must file a joint return
or you can’t use this form.

■ Form 2441 lets you claim a credit for daycare expenses.
■ With Form 2016EZ, you can deduct the unreimbursed part of any expenses

you incurred for your employer, primarily travel (except commuting). You
can use this short form only if you weren’t reimbursed for any expenses;
otherwise you have to use the long form.

■ Form 3903 gets you a deduction for unreimbursed moving expenses if you
moved this year because of your job.

■ Form 4684 lets you recover some of your losses during the year—the part
that was not covered by insurance. Many people use this form to deduct
costs due to car accidents.

Collecting knowledge about tax forms 159
■ You fill out Form 4868 to get an extension for filing your taxes. Note that you
still have to pay your taxes on time; you can pay an estimated amount with
this form.

■ You need to file Form 8283 to get credit for donating more than $500 worth
of property to charity.

■ You can file Form 8829 if you have a home office and you want to deduct
expenses associated with that office. The rules are fairly restrictive,
though—you have to be careful, or you will trigger an audit. You usually
shouldn’t file this form unless you are self-employed or your home is your
primary workplace.

The accountant’s expert knowledge is evident in a few of these answers, particu-
larly the descriptions of Forms 2016EZ, 4684, and 8829. Also evident, however, are
some of the common problems with interview data. The information is not very
precise; for example, it is not true that “everyone needs” Form 1040, because
there are two alternative forms.

 After hearing these interview replies, a few follow-up questions suggest them-
selves immediately—for instance, you might want to confirm that the long version
of Form 2016EZ is Form 2016 (it is). Otherwise, you should be able to get the rest
of the information from the forms themselves; if you have questions about the
forms, you can arrange another interview.

9.3.2 Reviewing the forms

You can obtain copies of IRS forms from the IRS web site.2 Studying the forms
turns up a few potentially useful facts that the accountant didn’t specify:

■ You can’t file Form 1040EZ if you earned more than $400 in taxable interest.
People with more than a certain bank balance (depending on current inter-
est rates) might not be able to use this form.

■ You can only file Form 3903 if you changed work locations and if your new
workplace is more than 50 miles further from your old home than your old
workplace.

■ With Form 2441, you can get credit for care for an elderly parent or other
dependent, not just care for children.

2 The IRS web site is at http://www.irs.gov. Alternatively, you can get the forms directly at ftp://ftp.fed-
world.gov/pub/irs-pdf/.

160 CHAPTER 9
Collecting the knowledge
9.3.3 Next steps

You’ve now amassed enough knowledge about the problem domain to write the
application, which you will begin to do in the next chapter. You first need to orga-
nize the data by defining deftemplates and organize the rules by defining
defmodules. You also need to write some infrastructure: functions for input and
output, for example. In chapter 11, with the infrastructure in place, you will write
the rules and deploy the application.

9.4 Summary

The application area for a rule-based system is called its problem domain. The pro-
cess of collecting information about a problem domain is called knowledge engineer-
ing. Knowledge engineering can include gathering data from interviews, books
and other publications, the Internet, and other sources.

 You’ve begun work on an application that advises people about the forms they
need to use to file their United States federal income taxes. In this chapter, you
did the preliminary knowledge engineering, and the end result is several lists of
information chunks in prose form.

Designing the application
In this chapter you’ll…
■ Design deftemplates for the Tax Forms Advisor
■ Partition the application with defmodules
■ Write code to ask questions of the user
161

162 CHAPTER 10
Designing the application
In this chapter, you will begin to develop the Tax Forms Advisor system described
in chapter 9. You will decide what the facts should look like and how to divide the
rules into modules (when you write them in the next chapter). You’ll also design
some I/O functions and other infrastructure the rules in the system need. In
chapter 11, you’ll write the actual rules on the foundation you develop here.

 The design process you’ll follow in this chapter is idealized: There are no false
starts or backtracking. In truth, designing a system like this usually involves exper-
imentation, especially when you’re still gaining experience. Don’t be discouraged;
on the contrary, feel free to experiment with different approaches to implement-
ing this application and to the others in this book.

 In previous chapters of this book, you’ve entered code directly at the Jess>
prompt. This approach is great for experimenting, but when you’re developing an
application, you’ll want to save the code in a text file instead. You can then execute
your code either by using Jess’s (batch) function (which executes the contents of a
file full of Jess code) or by specifying the filename on the command line like this:

C:\> java –classpath jess.jar jess.Main taxes.clp

The .clp extension is traditional but not required. Using a specific extension con-
sistently is helpful, because you may be able to train your programmer’s editor to
recognize Jess code by the filename.

10.1 Organizing the data

As you know, Jess rules work by pattern-matching on facts. Therefore, before you
can write any rules, you need to have some idea what the facts will look like. Of
course, in one of those classic chicken-and-egg problems, you don’t know what
the facts should look like until you see the rules. How do you get started?

 Generally, the knowledge-engineering effort suggests some possible fact cate-
gories. If you record the knowledge as proposed rules or rule-like pseudocode
(perhaps using the index-card method described in chapter 9), the possible fact
types will be explicitly laid out. Otherwise, you’ll have to read through the col-
lected knowledge to get a feel for the kinds of facts that are required. The whole
process is subjective, and there is no “right” answer. With practice, you’ll get a feel-
ing for what will work and what will not.

 Looking through chapter 9’s collected knowledge for the Tax Forms Advisor,
you can see some possible candidates for deftemplate types:

■ form—A specific tax form

■ user—The operator of the system

Filling in details 163
■ deduction—A way of reducing your taxable income

■ credit—A way of reducing your tax burden

■ dependent—A person the user cares for

Thinking about the general organization of the application suggests a few more
possibilities:

■ question—A question the system might ask the user

■ answer—An answer given by the user

■ recommendation—A note that the system will recommend a specific form

These eight templates are good candidates for inclusion in the system. Next you
need to decide what form they will take—ordered or unordered facts? And for the
unordered ones, what slots should they have?

10.2 Filling in details

Most facts in this system will represent physical or conceptual objects, rather than
commands or actions. An object generally has observable properties—color, mass,
and so on. To represent an object and its properties as a fact, you can use an unor-
dered fact, declaring an explicit deftemplate with multiple slots, one for each
property.

 The user fact will clearly play a central role. If you look back at the knowledge
collected in section 9.3.1, you can see that the user’s income and number of
dependents are each fairly important and are each referenced in more than one
place. These two items are therefore good candidates to be slots in a user
deftemplate, which might look like this:

(deftemplate user
 (slot income)
 (slot dependents))

This is a good start, but you need to worry about one detail: default slot values.

10.2.1 Default slot values
Jess’s mathematical functions generally throw an exception to report the error if
you pass in a nonnumeric argument:

Jess> (+ 1 2)
3
Jess> (+ one two)
Jess reported an error in routine Value.numericValue
 while executing (+ one two).

164 CHAPTER 10
Designing the application
 Message: Not a number: "one" (type = ATOM).
 Program text: (+ one two) at line 2.

An empty slot in an unordered fact contains the value nil, which is a symbol, not
a number. If you write a rule that matches this empty slot and uses a mathematical
function to do it, an exception will be thrown during pattern-matching, like this:

Jess> (deftemplate number (slot value))
TRUE
Jess> (defrule print-big-numbers
 (number (value ?v&:(> ?v 10000)))
 =>
 (printout t ?v " is a big number." crlf))
TRUE
Jess> (assert (number))
Jess reported an error in routine Value.numericValue
 while executing (> ?v 10000)
 while executing rule LHS (TEQ)
 while executing rule LHS (TECT)
 while executing (assert (MAIN::number (value nil))).
 Message: Not a number: "nil" (type = ATOM).
 Program text: (assert (number)) at line 13.
 ...

If you plan to use mathematical functions on the left-hand side (LHS) of a rule, it
makes sense to add numeric defaults to any slots intended to hold numeric values.
The income and dependents slots of the user template will hold numbers, so you
should modify the template to look like this:

(deftemplate user
 (slot income (default 0))
 (slot dependents (default 0)))

Now the income and dependents slots will be created holding numeric values, and
you won’t encounter this kind of error.

10.3 More templates

A form has a code name like 1040A. It also has a descriptive name, like Federal
income tax short form. Therefore, the form template might look like this:

(deftemplate form (slot name) (slot description))

Because the system will ask the user a number of questions, you need a generic
way to represent a question and its answer. Although you don’t know yet what the
question-asking mechanism will look like, because you haven’t written the code,
you can guess that the following two templates might be a good start:

Templates you don’t need 165
(deftemplate question (slot text) (slot type) (slot ident))
(deftemplate answer (slot ident) (slot text))

The question template ties a symbolic name for a question (in the slot ident) to
the text of the question. You’ll use the working memory as a convenient database
in which to look up the question text by identifier, so that if two rules might need
to ask the same question, you won’t have to duplicate the text. You’ll use the type
slot to hold an indication of the expected category of answer (numeric, yes or no,
and so on). The answer template ties the answer to a question. A question and its
corresponding answer will have the same symbolic value in their ident slots. Once
an answer for a given question exists, you won’t ask it again. (You’ll develop the
code that uses these templates in section 10.6.)

 Finally, a recommendation needs a slot to hold a form, and perhaps an expla-
nation:

(deftemplate recommendation (slot form) (slot explanation))

You’ve defined templates named user, form, question, answer, and recom-
mendation. It turns out that this collection is sufficient for your needs. Let’s con-
sider why these templates are enough.

10.4 Templates you don’t need

The other possible templates (dependent, credit, and deduction) probably
won’t be a part of the application. Looking back at chapter 9, you don’t see any-
thing about the collected knowledge that requires you to store information about
individual dependents—only the total number of dependents, which you’ll store
in the user template. As a result, you won’t need a dependent template after all.

 The argument for not including credit and deduction is more involved, and
it’s related to an important architectural decision. If you stored credits and deduc-
tions as facts, you could write a generic set of rules to operate on these facts. The
advantage to this architecture is that new forms could be added simply by augment-
ing the set of credits and deductions—that is, by asserting new facts. You could do
this by extending a set of deffacts that would be read at application startup. In
general, adding new facts would be an easier way to add new tax forms than modi-
fying the rules. If you hard-coded the credit and deduction information into the
rules, though, then you could only extend the application by modifying the rules.

 On the other hand, the generic rules might be hard to understand, and that
would itself make the code more difficult to modify. For the small set of forms
this application will work with, I think hard-coding the tax information will lead

166 CHAPTER 10
Designing the application
to a cleaner, simpler application. If you needed to work with 100 forms, or 1,000,
the other approach would be worth considering. For this system, though, you
won’t need credit or deduction facts; all the tax laws will be encoded directly in
the rules.

10.5 Organizing the rules

You’ve defined five templates to serve as data structures for the application. Now
let’s turn our attention from data to actual code. The first order of business is to
sketch out a rough structure for how the rules will be organized.

 The Tax Forms Advisor needs to do four things:

1 Initialize the application

2 Conduct an interview with the user to learn about her tax situation

3 Figure out what tax forms to recommend

4 Present the list of forms to the user, removing any duplicate recommenda-
tions in the process

These four steps map nicely onto four separate processing phases, each with an
independent set of rules. You can put the rules for each phase into a separate
defmodule (as described in section 7.6) and take advantage of the support Jess
offers for partitioning a problem into steps. The four modules are named
startup, interview, recommend, and report, respectively.

 Defmodules partition not only the rules of an application, but also the facts.
You need to decide which of the templates ought to go into which of the modules.
You can do this by looking at which module’s rules need access to the data.
Remember that if two or more modules need to share a deftemplate, it should go
into the module MAIN. Examination of the list of templates and of the modules
listed here shows that every template will be needed by at least two modules. For
instance, the question and answer templates need to be shared between the
interview and recommend modules, whereas recommendation is needed by both
recommend (which asserts recommendation facts) and by report (which displays
information derived from them). As a result, all of the deftemplates you define
will be in module MAIN. This is not unusual.

10.6 Building the infrastructure

Very often, many of the rules in a rule-based system follow a repeating pattern. You
know this application needs to ask the user a series of questions and record the

Building the infrastructure 167
answers in the working memory. You can develop code to ask a question and
receive an answer as a kind of subroutine, and all the rules that need this capability
can call it. Not only does this approach simplify the code for your system, but it also
makes it easier to change the interface—if you need to upgrade from a text-based
to a graphical kiosk, then you may only need to change this one part of the system.

10.6.1 Simple text-based I/O

Recall (from section 3.1.4) Jess’s printout function, which you can use to print to
standard output. This function can accept any number of arguments and can per-
form rudimentary formatting (you can control where newlines go by using the
special symbol crlf as an argument). There is also a function read that reads a
single input token from standard input, returning what it reads. This suggests you
can put these two functions together into a deffunction that emits a prompt and
reads the response, like this:

(deffunction ask-user (?question)
 "Ask a question, and return the answer"
 (printout t ?question " ")
 (return (read)))

You should test this function to make sure it works (assuming you’ve entered the
code for ask-user in the file taxes.clp):

Jess> (batch taxes.clp)
TRUE
Jess> (ask-user "What is the answer?")
What is the answer? 42
42

I entered 42 as the answer, and the function returned 42; it appears to work fine.
 So far, ask-user doesn’t do any error checking. You’d like it to only accept

answers appropriate to the given question—for example, only yes or no, or only a
number. You need another function—one that can check the form of an answer.
Here’s one:

(deffunction is-of-type (?answer ?type)
 "Check that the answer has the right form"
 (if (eq ?type yes-no) then
 (return (or (eq ?answer yes) (eq ?answer no)))
 else (if (eq ?type number) then
 (return (numberp ?answer)))
 else (return (> (str-length ?answer) 0))))

The second parameter ?type to this function can be yes-no, number, or anything
else. If it is yes-no, the function returns FALSE unless ?answer is "yes" or "no". If

168 CHAPTER 10
Designing the application
?type is number, then the function returns true only if ?answer is a number
(using the built-in numberp function to test for this condition). If ?type is any-
thing else, is-of-type returns TRUE unless ?answer is the empty string.

 Now it is easy to rewrite ask-user to use is-of-type for error checking. While
you’re at it, you can use the new ?type parameter to enhance the prompt by add-
ing a hint about the possible answers:

(deffunction ask-user (?question ?type)
 "Ask a question, and return the answer"
 (bind ?answer "")
 (while (not (is-of-type ?answer ?type)) do
 (printout t ?question " ")
 (if (eq ?type yes-no) then
 (printout t "(yes or no) "))
 (bind ?answer (read)))
 (return ?answer))

Again, you should test these new functions:

Jess> (is-of-type yes yes-no)
TRUE
Jess> (is-of-type no yes-no)
TRUE
Jess> (is-of-type maybe yes-no)
FALSE
Jess> (is-of-type number abc)
FALSE
Jess> (is-of-type number 123)
TRUE
Jess> (ask-user "What is the answer?" yes-no)
What is the answer? (yes or no) 42
What is the answer? (yes or no) yes
yes

This time when I entered 42 as the answer, the function rejected it. When I typed
yes instead, the function returned yes.

10.6.2 Fetching the question text

The question template has a slot to hold the text of a question and another slot
to hold a unique identifier. Similarly, the answer template associates that same
identifier with an answer. You’d like to call something from the right-hand side
(RHS) of a rule in the interview module using just the identifier, and have that
something look up the question text, ask the question, and assert an answer fact.

 There are two ways to fetch something in working memory: using a defquery
or using a defrule. Of the two, rules are cheaper computationally, because invok-
ing a query always involves clearing part of the Rete network and asserting one or

Building the infrastructure 169
more facts. Therefore, your subroutine could take the form of a single defrule in
its own defmodule. If that defrule has the auto-focus property (so that it fires as
soon as it’s activated, regardless of what other rules may be on the agenda) and
uses return on its RHS to resume the previous module focus as soon as it ran,
then the interview module can call it as a subroutine just by asserting a fact to
activate it. The trigger fact looks like (ask id), where id is a question identifier.
Such a rule can look like this:

(defmodule ask)
(defrule ask::ask-question-by-id
 "Ask a question and assert the answer"
 (declare (auto-focus TRUE))
 ;; If there is a question with ident ?id...
 (MAIN::question (ident ?id) (text ?text) (type ?type))
 ;; ... and there is no answer for it
 (not (MAIN::answer (ident ?id)))
 ;; ... and the trigger fact for this question exists
 ?ask <- (MAIN::ask ?id)
 =>
 ;; Ask the question
 (bind ?answer (ask-user ?text ?type))
 ;; Assert the answer as a fact
 (assert (MAIN::answer (ident ?id) (text ?answer)))
 ;; Remove the trigger
 (retract ?ask)
 ;; And finally, exit this module
 (return))

I’ve explicitly qualified all the fact names with MAIN::. Although doing so may not
be strictly necessary, it helps to avoid confusion. All of your templates are defined
in the module MAIN, and therefore they can be shared by all the other modules
you define.

 You can test this rule after defining a deffacts to hold a few sample questions.
You should definitely put this test deffacts into a file, rather than just entering it
interactively—you’ll use it again and again to test the rules as you develop them.

NOTE You should be thinking about putting together a complete test harness
now. The details here will vary depending on your platform. On UNIX,
you might write a shell script to execute your test code, and on a Win-
dows operating system, you might use a .BAT file (or run the same UNIX
scripts using Cygwin).1 The important thing is to make it convenient to

1 Cygwin is a porting layer that lets UNIX tools run on Windows. The Cygwin home page is at http://
www.cygwin.com.

170 CHAPTER 10
Designing the application
run your test code, and run it often, ideally after each change you make
to the developing system. Watch for changes that lead to test failures; if
you catch them right away, it is easy to back them out while they are still
fresh in your mind. Appendix C describes one technique for automated
testing of Jess language code.

Here are some test facts you can use to test ask-question-by-id:

(deffacts MAIN::test-facts
 (question (ident q1) (type string)
 (text "What is your name?"))
 (question (ident q2) (type number)
 (text "What is your estimated annual income?"))
 (question (ident q3) (type number)
 (text "How many dependents do you have?")))

To test the rule, you just need to reset, assert an appropriate ask fact, and run.
You can use (watch all) to help see what happens:

Jess> (batch taxes.clp)
TRUE
Jess> (reset)
TRUE
Jess> (assert (ask q2))
<Fact-4>
Jess> (watch all)
TRUE
Jess> (run)
FIRE 1 ask::ask-question-by-id f-2,, f-4
What is your estimated annual income? 15000
==> f-5 (MAIN::answer (ident q2) (text 15000))
<== Focus ask
<== f-4 (MAIN::ask q2)
==> Focus MAIN
<== Focus MAIN
1

When you enter (run), the rule ask-question-by-id grabs the module focus and
fires. It asks the question and asserts a new fact holding the answer. Then the
focus returns to the original module (MAIN, in this case). The subroutine, then,
consists of one module, one rule, and two functions, and you can call it just by
asserting a fact.

10.7 Summary

In this chapter, you began to turn the knowledge you developed in chapter 9 into
a concrete rule-based system. You determined the form the data in working mem-

Summary 171
ory will take, you partitioned the system into modules that represent the phases of
processing, and you developed some input/output functionality you will use later.

 In the next chapter, you will develop the rules that form the actual application.
We’ll pay special attention to testing techniques, so that you’ll trust the compo-
nents of the application to work well individually and as a complete system.

Writing the application
In this chapter you’ll…
■ Write the rules for the Tax Forms Advisor
■ Work with multiple modules
■ Test the completed application
172

Welcoming the user 173
You’ve done the research, laid the groundwork, and sketched out a design, so now
it’s time to write the rules that implement the Tax Forms Advisor application. In this
chapter, you’ll write the rules, test them, and then test the completed application.

 As you’ll recall from chapter 10, the completed application will consist of five
modules: ask, startup, interview, recommend, and report. You developed the
ask module in chapter 10. In this chapter, you’ll write the rules for the other four
modules one module at a time. The code for the complete application is available
from this book’s web site (http://www.manning.com/friedman-hill).

11.1 Welcoming the user

The startup module for this application is very simple. It doesn’t really have any
work to do, other than serving as a launching point. You want to print a welcome
banner when the user first sees the application, so you can define a rule in
startup to display one:

(defmodule startup)

(defrule print-banner
 =>
 (printout t "Type your name and press Enter> ")
 (bind ?name (read))
 (printout t crlf "*****************************" crlf)
 (printout t "Hello, " ?name "." crlf)
 (printout t "Welcome to the tax forms advisor" crlf)
 (printout t "Please answer the questions and" crlf)
 (printout t "I will tell you what tax forms" crlf)
 (printout t "you may need to file." crlf)
 (printout t "*****************************" crlf crlf))

11.1.1 Testing the startup module

Whenever you write a rule or cooperating group of rules, you should make sure
they work. To test the simple rule print-banner, you can just reset working mem-
ory, set the focus, and run (text in bold indicates characters you type in response
to a prompt):

Jess> (reset)
TRUE
Jess> (focus startup)
MAIN
Jess> (run)
Type your name and press Enter> Fred

 Hello, Fred.
 Welcome to the tax forms advisor

174 CHAPTER 11
Writing the application
 Please answer the questions and
 I will tell you what tax forms
 you may need to file.

1
Jess>

11.2 Asking the user questions

The first set of rules you’ll write form the interview module. As defined, the pur-
pose of this module is to ask questions of the user to collect the inputs for the
recommend module. The interview module should ask the minimum number of
questions, and if a question becomes moot, it shouldn’t be asked at all. For exam-
ple, looking back at the knowledge collected in chapter 9, you can see that it’s
irrelevant how much interest income the user had if his total income is greater
than $50,000.

 To handle this requirement, you won’t ask questions blindly. The rule that asks
each question will often need to match the existence or absence of some other
fact, so that a question won’t be asked unless certain conditions are met.

 All the questions you’ll ask are represented by facts using the question tem-
plate defined in chapter 10. A deffacts containing all the potential questions is
shown in listing 11.1.

(deffacts question-data
 "The questions the system can ask."
 (question (ident income) (type number)
 (text "What was your annual income?"))
 (question (ident interest) (type yes-no)
 (text "Did you earn more than $400 in interest?"))
 (question (ident dependents) (type number)
 (text "How many dependents live with you?"))
 (question (ident childcare) (type yes-no)
 (text "Did you have dependent care expenses?"))
 (question (ident moving) (type yes-no)
 (text "Did you move for job-related reasons?"))
 (question (ident employee) (type yes-no)
 (text "Did you have unreimbursed employee expenses?"))
 (question (ident reimbursed) (type yes-no)
 (text "Did you have reimbursed employee expenses, too?"))
 (question (ident casualty) (type yes-no)
 (text "Did you have losses from a theft or an accident?"))
 (question (ident on-time) (type yes-no)
 (text "Will you be able to file on time?"))

Listing 11.1 deffacts linking questions to corresponding IDs

Asking the user questions 175
 (question (ident charity) (type yes-no)
 (text "Did you give more than $500 in property to charity?"))
 (question (ident home-office) (type yes-no)
 (text "Did you work in a home office?")))

11.2.1 Income and dependents
The user’s income determines whether she can use either of the short forms, so
the system should ask about income first. If the income is below $50,000, the num-
ber of dependents and the amount of interest income determine which of the
short forms can be used. Although the number of dependents is needed for other
purposes, the interest income is relevant only if the user’s income is less than
$50,000; therefore, you make asking about interest income conditional on the
user’s income being below this limit. To ask a question, you assert an ask fact that
indicates the question to be asked; the ask module you developed in section
10.6.2 asks the question and asserts an answer fact. The rules to ask these ques-
tions are shown in listing 11.2, along with a rule to construct the user fact once
the necessary information is available. The rules request-income and request-
num-dependents have no patterns on their left-hand sides (LHS); they are acti-
vated unconditionally.

(defmodule interview)

(defrule request-income
 =>
 (assert (ask income)))

(defrule request-num-dependents
 =>
 (assert (ask dependents)))

(defrule request-interest-income
 ;; If the total income is less than 50000
 (answer (ident income) (text ?i&:(< ?i 50000)))
 ;; .. and there are no dependents
 (answer (ident dependents) (text ?d&:(eq ?d 0)))
 =>
 (assert (MAIN::ask interest)))

(defrule assert-user-fact
 (answer (ident income) (text ?i))
 (answer (ident dependents) (text ?d))
 =>
 (assert (user (income ?i) (dependents ?d))))

Listing 11.2 Some rules from the interview module

These rules have no
patterns and are activated
by a call to reset

176 CHAPTER 11
Writing the application
11.2.2 Dealing with special circumstances
The rest of the interview rules ask the user about special circumstances in her
life during the past year. In general, if some of these special circumstances apply,
the user may want to fill out the long form and take the corresponding deduc-
tions, even if her income qualifies her to use one of the short forms. These special
circumstances include moving and unreimbursed employee expenses. Some of
the questions about special circumstances are again asked conditionally, based on
other answers; for example, the form for deducting child-care expenses won’t be
needed if the user has no dependents. The rules that ask about special circum-
stances are shown in listing 11.3. Many of these rules are fired unconditionally,
but a few depend on other answers. The rule request-childcare-expenses
won’t be activated if the user doesn’t have dependents, and request-reim-
bursed-expenses will fire only if the user has unreimbursed expenses.

(defrule request-childcare-expenses
 ;; If the user has dependents
 (answer (ident dependents) (text ?t&:(> ?t 0)))
 =>
 (assert (ask childcare)))

(defrule request-employee-expenses
 =>
 (assert (ask employee)))

(defrule request-reimbursed-expenses
 ;; If there were unreimbursed employee expenses...
 (answer (ident employee) (text ?t&:(eq ?t yes)))
 =>
 (assert (ask reimbursed)))

(defrule request-moving
 =>
 (assert (ask moving)))

(defrule request-casualty
 =>
 (assert (ask casualty)))

(defrule request-on-time
 =>
 (assert (ask on-time)))

(defrule request-charity
 =>
 (assert (ask charity)))

(defrule request-home-office
 =>
 (assert (ask home-office)))

Listing 11.3 Rules that ask about special circumstances

Recommending forms 177
When the interview module executes, it asks the user a series of questions and
leaves behind a user fact and a collection of answer facts. These facts serve as
input to the next module, recommend, which decides which forms the user needs.

11.2.3 Testing the interview module

Testing the interview module is easy. You can create a series of test cases, each of
which should contain the following:

■ A hypothetical tax situation

■ The expected set of relevant questions

■ The expected set of result facts

Once you’ve developed this set of test data, run the program once (by resetting,
setting the focus to interview, and invoking run) for each test case, supplying
the appropriate user answers for that hypothetical case. Then check the results.
Make sure the system asks you all the questions on your list for that case, and only
those questions. Use the facts command (you’ll need to use (facts *) to see
the facts in all modules) to make sure all the expected facts are present and cor-
rect. If you can capture your whole terminal session in a file (by using the script
command on UNIX, for example), then you can save the file and use it as part of
an automated test script. The program should produce the same output each
time it is run; you can use your automated script to check that changes you make
later haven’t broken the behavior of this module.

NOTE Many books have been written on the subject of software testing, and al-
though such books are often useful, they can be discouraging to read.
They generally concentrate on teaching you to find spanning sets of tests,
or lists of tests that cover every possible path through your application. For
most real applications, of course, such a spanning set is impossibly large.
The testing books often forget to tell you that some tests, although perhaps
not as good as all possible tests, are infinitely better than no tests. Don’t be
discouraged by the sense that you can’t completely test a rule-based appli-
cation. Remember that some testing is a lot better than none at all.

11.3 Recommending forms

Writing the rules for the recommend module is a bit more challenging, but also
more fun. Each of the rules examines the user and answer facts and recom-
mends one or more forms. These rules directly encode the knowledge gleaned
from the interview with a tax expert in chapter 9.

178 CHAPTER 11
Writing the application
 The first set of rules in this module determines which variants of Form 1040
the user might need. In keeping with the design description in chapter 9, your
strategy will be to recommend all the forms the user might need; if in doubt, you
will recommend the form. This means the system may recommend that the user
bring home several versions of the same form, and that’s OK.1

 Recall that the user can file Form 1040EZ if and only if:

■ Her income is less than $50,000, and
■ She has no dependents, and

■ Her interest income is less than $400

You can directly translate these requirements into a rule as follows:

(defmodule recommend)

(defrule form-1040EZ
 (user (income ?i&:(< ?i 50000))
 (dependents ?d&:(eq ?d 0)))
 (answer (ident interest) (text no))
 =>
 (assert (recommendation
 (form 1040EZ)
 (explanation "Income below threshold, no dependents"))))

Similarly, Form 1040A can be filed if the user’s income is below the same thresh-
old, but she has either dependents, or excess interest income, or both. You can
write this as two rules:

(defrule form-1040A-excess-interest
 (user (income ?i&:(< ?i 50000)))
 (answer (ident interest) (text yes))
 =>
 (assert (recommendation
 (form 1040A)
 (explanation "Excess interest income"))))

(defrule form-1040A
 (user (income ?i&:(< ?i 50000))
 (dependents ?d&:(> ?d 0)))
 =>
 (assert (recommendation
 (form 1040A)
 (explanation "Income below threshold, with dependents"))))

1 The U.S. Federal Tax Code is famously complicated. It’s common practice for U.S. residents to try filling
out several different combinations of tax forms, because each combination can result in a slightly dif-
ferent calculated tax liability. The taxpayer then files the combination of forms that leads to the smallest
tax bill.

Recommending forms 179
You recommend the long Form 1040 if the user needs to itemize deductions, or if the
user’s income is above the threshold. The rule to handle this latter condition is simply

(defrule form-1040-income-above-threshold
 (user (income ?i&:(>= ?i 50000)))
 =>
 (assert (recommendation
 (form 1040)
 (explanation "Income above threshold"))))

The rest of the rules in this module handle the various special circumstances. The
user can take the credit for dependent-care expenses if she files either Form
1040A or Form 1040 (dependent care is special in this regard; all the other special
circumstances can only be claimed on Form 1040). The rule to recommend the
dependent care expenses form is therefore as follows:

(defrule form-2441
 (answer (ident childcare) (text yes))
 =>
 (assert (recommendation
 (form 2441)
 (explanation "Child care expenses"))))

You know that if the childcare question has been asked and answered, the user
must have dependents and therefore isn’t filing Form 1040EZ. See the rule
request-childcare-expenses in listing 11.3.

 For most of the other special circumstances, you recommend Form 1040 along
with the special form. Here’s a representative rule:

(defrule form-4684
 (answer (ident casualty) (text yes))
 =>
 (bind ?ex "Losses due to casualty or theft")
 (assert
 (recommendation (form 4684) (explanation ?ex))
 (recommendation (form 1040) (explanation ?ex))))

You may notice a problem here: Form 1040 may be recommended multiple times.
You need a rule to combine multiple recommendations into one. The following
rule does the trick. The separate explanations are concatenated with a newline (rep-
resented in Jess as a double-quoted string containing a line break) between them:

(defrule combine-recommendations
 ?r1 <- (recommendation (form ?f) (explanation ?e1))
 ?r2 <- (recommendation (form ?f) (explanation ?e2&~?e1))
 =>
 (retract ?r2)
 (modify ?r1 (explanation (str-cat ?e1 "
" ?e2))))

180 CHAPTER 11
Writing the application
Listing 11.4 shows the remainder of the rules that handle special circumstances.
These rules are all in the recommend module.

(defrule form-2016EZ
 (answer (ident employee) (text yes))
 (answer (ident reimbursed) (text no))
 =>
 (bind ?ex "Unreimbursed employee expenses")
 (assert
 (recommendation (form 2016EZ) (explanation ?ex))
 (recommendation (form 1040) (explanation ?ex))))

(defrule form-2016
 (answer (ident employee) (text yes))
 (answer (ident reimbursed) (text yes))
 =>
 (bind ?ex "Reimbursed employee expenses")
 (assert
 (recommendation (form 2016) (explanation ?ex))
 (recommendation (form 1040) (explanation ?ex))))

(defrule form-3903
 (answer (ident moving) (text yes))
 =>
 (bind ?ex "Moving expenses")
 (assert
 (recommendation (form 3903) (explanation ?ex))
 (recommendation (form 1040) (explanation ?ex))))

(defrule form-4868
 (answer (ident on-time) (text no))
 =>
 (assert (recommendation (form 4868)
 (explanation "Filing extension"))))

(defrule form-8283
 (answer (ident charity) (text yes))
 =>
 (bind ?ex "Excess charitable contributions")
 (assert
 (recommendation (form 8283) (explanation ?ex))
 (recommendation (form 1040) (explanation ?ex))))

(defrule form-8829
 (answer (ident home-office) (text yes))
 =>
 (bind ?ex "Home office expenses")
 (assert
 (recommendation (form 8829) (explanation ?ex))
 (recommendation (form 1040) (explanation ?ex))))

Listing 11.4 Additional rules for special circumstances

Explaining the results 181
11.4 Explaining the results

When the recommend module is finished, the working memory includes a series
of recommendation facts representing the application’s suggestions for the user.
All the report module needs to do is display the data from these facts in a sensi-
ble way. In particular, the forms should be listed in alphabetical order; note that
then the main forms (1040, 1040A, 1040EZ) are displayed first.

 Each recommendation fact includes a bit of text rationalizing the recommen-
dation in the explanation slot. You’ll display these explanations, too. Because
the explanations can span multiple lines, you can’t easily display the program’s
output in tabular form—at least, not if you have to stick to plain text. If you could
use HTML, the display would be easy. You’ll be developing web-based systems
later in the book, so for simplicity’s sake you’ll display each recommended form
and its explanation together, one on top of the other.

 Sorting data is an old and well-studied topic, and there are many ways to accom-
plish a sorting task. A simple, if not particularly efficient, technique is the selection
sort. To perform a selection sort, you search through a collection for the smallest
(or largest) item, and then remove it and make it the first item in a new, sorted col-
lection. Repeat this process to find the second and later items. For small collec-
tions, a selection sort is a perfectly reasonable choice, and you’ll use it here. This
rule-based implementation of a selection sort compares the names of forms in
recommendation facts. The single rule prints information about a fact and then
retracts it if and only if there are no other recommendation facts with a form that
comes alphabetically earlier. Each time you retract a fact, a different
recommendation becomes the new alphabetically first one, until all the
recommendation facts are exhausted. You can use the str-compare function,
which takes two strings as arguments and returns -1 if the first one is alphabetically
first, +1 if the second string should come first, and 0 if the arguments are equal:

(defmodule report)

(defrule sort-and-print
 ?r1 <- (recommendation (form ?f1) (explanation ?e))
 (not (recommendation (form ?f2&
 :(< (str-compare ?f2 ?f1) 0))))
 =>
 (printout t "*** Please take a copy of form " ?f1 crlf)
 (printout t "Explanation: " ?e crlf crlf)
 (retract ?r1))

182 CHAPTER 11
Writing the application
11.4.1 Testing the report module

The report module, like the startup module, contains only one rule. You can
test it by asserting some recommendation facts yourself:

Jess> (assert (recommendation (form f3) (explanation ef3))
 (recommendation (form f1) (explanation ef1))
 (recommendation (form f2) (explanation ef2))
 (recommendation (form f4) (explanation ef4)))
<Fact-3>
Jess> (focus report)
MAIN
Jess> (run)
*** Please take a copy of form f1
Explanation: ef1

*** Please take a copy of form f2
Explanation: ef2

*** Please take a copy of form f3
Explanation: ef3

*** Please take a copy of form f4
Explanation: ef4

4
Jess>

Note that the forms are listed in alphabetical order, and each one is displayed
with its explanation. The application is now basically done; you just need to han-
dle a few remaining details.

11.5 Finishing touches

Now that all the rules are written, you need a way to start your program. Because
the module focus must be shifted several times during each run of the applica-
tion, it is helpful to define a deffunction to perform the proper sequence of
operations:

(deffunction run-system ()
 (reset)
 (focus startup interview recommend report)
 (run))

The single call to focus sets up the focus stack so the four modules become active
in the right order. The program can then be executed with a single call to run-
system. This application is intended to run continuously in a kiosk at the post
office, so you call this function in a loop:

Testing the full application 183
(while TRUE
 (run-system))

This loop restarts the application each time it terminates.

11.6 Testing the full application

Now that the whole application is written, dust off the sample scenarios you devel-
oped for testing the interview and recommend modules and run them again.
This time you only need to look at the output of the system. A complete run of the
application is shown in listing 11.5.

% java jess.Main taxes.clp

Jess, the Java Expert System Shell
Copyright (C) 2001 E.J. Friedman Hill and the Sandia Corporation
Jess Version 6.1 4/9/2003

Type your name and press Enter> Bertram

 Hello, Bertram.
 Welcome to the tax forms advisor
 Please answer the questions and
 I will tell you what tax forms
 you may need to file.

What was your annual income? 14000
Did you work in a home office? (yes or no) yes
Did you give more than $500 in property to charity? (yes or no) no
Will you be able to file on time? (yes or no) yes
Did you have losses from a theft or an accident? (yes or no) no
Did you move for job-related reasons? (yes or no) no
Did you have unreimbursed employee expenses? (yes or no) yes
Did you have reimbursed employee expenses, too? (yes or no) no
How many dependents live with you? 7
Did you have dependent care expenses? (yes or no) yes
*** Please take a copy of form 1040
Explanation: Home office expenses
Unreimbursed employee expenses

*** Please take a copy of form 1040A
Explanation: Income below threshold, with dependents

*** Please take a copy of form 2016EZ
Explanation: Unreimbursed employee expenses

Listing 11.5 A typical session with the Tax Forms Advisor

184 CHAPTER 11
Writing the application
*** Please take a copy of form 2441
Explanation: Child care expenses

*** Please take a copy of form 8829
Explanation: Home office expenses

Now would be a good time to take the system to the tax expert to let her play with
it. She very well may have some important changes or additions you need to inte-
grate—it is the nature of software development that no set of requirements is ever
complete. You should also show this system to the customer to get some feedback.

11.7 Summary

Over the last three chapters, you’ve gone from concept to research to design and
finally to execution of a system for recommending tax forms. Although the pro-
gram you’ve developed is somewhat simplistic, the process you followed was repre-
sentative of rule-based system development. And although the user interface of
the application you developed here is unsuitable for real use, the underlying logic
is perfectly respectable and includes features like input validation and a simple
explanation facility. The routines you developed for asking questions and validat-
ing input will serve as a foundation on which you’ll build more sophisticated tools
later in this book.

 In this chapter, you saw how a good design and sturdy infrastructure help sim-
plify programming a system. You learned to write a modular application using
processing phases implemented using defmodules, and you got some practice
writing simple pattern-matching expressions. You even learned how to implement
a simple sorting algorithm in a rule-based language. Note, however, that good
design decisions don’t happen spontaneously; the Jess programmer will become
more proficient over time, just as in any discipline. Experience and experimenta-
tion will help you develop good design skills.

 In the next part of this book, you’ll research, design, and build another com-
plete system. This one will be considerably more polished and will include a Java-
based graphical user interface. You’ll also see how backward chaining lets you eas-
ily write programs for problem diagnosis and troubleshooting.

Part 4

Writing a
diagnostic application:

the PC Repair Assistant

Having developed one realistic application, you’re ready to move on to
something bigger. The application you’ll develop next includes both more knowl-
edge and more features: It’s a PC Repair Assistant with a graphical interface. It’s
meant to guide a technician through the process of diagnosing computer hard-
ware problems.

In this part of the book, we’ll refine your understanding of engineering knowl-
edge by introducing a new tool—flowcharting. The program you’ll write is much
more sophisticated than the last one; it is multithreaded and uses Jess’s reflection
capabilities to build a Swing-based graphical interface directly from a Jess script.

Writing the
PC Repair Assistant
In this chapter you’ll…
■ Collect knowledge using flowcharts
■ Translate flowcharts into rules
■ Enhance the ask module from part 3
187

188 CHAPTER 12
Writing the PC Repair Assistant
In this chapter, you’ll write a rule-based system with a command-line interface, just
like the Tax Forms Advisor. You’ll obtain the necessary knowledge by interviewing
computer repair technicians, develop the rules, and test the system. This applica-
tion reuses some techniques you developed for the Tax Forms Advisor. For
instance, you’ll modify and then reuse the ask module to ask the user for input.
You’ll again use modules to represent processing phases: The main knowledge base
is in the MAIN module, and we’ll introduce a new control module named trigger.

 Of course, this application showcases some new techniques as well. To model
the technician’s reasoning when diagnosing computer problems, you’ll use back-
ward chaining, which we first discussed in section 7.4. Based on an initial descrip-
tion of the behavior of a computer, the system will form a hypothesis about what
might be wrong with it. Backward chaining rules will then be triggered to either
prove or disprove that hypothesis. Along the way, the program will make recom-
mendations for things the user might try to potentially fix the broken computer.

 Many of the earliest rule-based systems were backward-chaining diagnostic pro-
grams like this one. For example, the MYCIN program1 discussed in section 2.2.1
diagnosed blood infections based on information about bacterial cultures.

 In chapter 13, you’ll package the application with a graphical user interface
suitable for use by office personnel. You’ll use Jess’s powerful Java scripting capa-
bilities to build a Swing-based graphical interface without writing any Java code.
The interface hooks into an enhanced version of the ask module, so in adding
the interface you won’t need to modify the knowledge base you develop here.

12.1 Using flowcharts in knowledge engineering

Diagnostic knowledge can be represented fairly well using flowcharts. A lot of infor-
mation can be compactly represented by a few symbols, as shown in table 12.1. A
simple flowchart for dealing with automotive problems is shown in figure 12.1.

1 R. Davis, B. G. Buchanan, and E. H. Shortliffe, “Production Systems as a Representation for a Knowl-
edge-Based Consultation Program,” Artificial Intelligence 8 (1977): 15–45.

Table 12.1 Symbols used in flowcharts

Symbol Meaning Example

Square box A simple action Repairing or replacing a component

Diamond box A choice or decision Is the screen dark?

Using flowcharts in knowledge engineering 189
If you’re going to be drawing a lot of flowcharts, a software program like Visio can
help. When you’re drawing flowcharts during an interview with a domain expert,
software might be too unwieldy, in which case a dime-store plastic drawing tem-
plate and a sharp pencil might be a better choice.

12.1.1 From flowcharts to rules

Translating flowcharts into rules is fairly straightforward. In general, there is
one rule for every action box, and there are additional rules for some of the
oval boxes. A possible set of rules for the flowchart in figure 12.1 is shown in
listing 12.1. The listing includes three rules: one each for the action boxes in
the flowchart and one for the END oval. Note that each rule corresponds to a
specific hypothesis about what might be wrong with the car. In a more complex
flowchart, this last correspondence might no longer hold, but the matchup
between rules and boxes still would.

(defrule no-fuel
 "This rule corresponds to the 'buy fuel' box"
 (car-starts no)

Oval box Beginning or end of process START

Arrows Flow between boxes What to do for each branch of a decision

Table 12.1 Symbols used in flowcharts (continued)

Symbol Meaning Example

Listing 12.1 Three rules that capture the logic from figure 12.1

Figure 12.1
A simple flowchart representing a
trivial diagnostic process. The
hypothesis “The car won’t run
because it has no fuel” is implicit in
the diagram.

190 CHAPTER 12
Writing the PC Repair Assistant
 (car-has-fuel no)
 =>
 (assert (buy fuel)))

(defrule faulty-engine
 "This rule is for the 'take car to mechanic' box"
 (car-starts no)
 (car-has-fuel yes)
 =>
 (assert (take car to mechanic)))

(defrule car-is-ok
 "This rule corresponds to the 'END' oval"
 (car-starts yes)
 =>
 (assert (car is ok)))

The program you are building will diagnose problems with computers, so you
should be able to represent the knowledge you gather in a series of flowcharts. If
you were gathering the knowledge by interviewing a computer repair technician,
you could start by asking her to list some of the most common computer prob-
lems she deals with. For each of these problems, you’d develop a flowchart
around the hypothesis that this particular problem was affecting the broken com-
puter. Each of these flowcharts would show the series of tests the technician would
perform to attempt to verify or disprove the hypothesis.

 It should be easy to imagine how the interview would be conducted. For each
flowchart, you’d ask, “What would you do first to diagnose this problem, and what
are the possible outcomes?” The most likely follow-up questions would then be of
the form, “What would you do if you saw outcome X when you did Y?” In between,
of course, you’d need to ask for clarification about what various technical terms
meant, and these answers would be collected in prose form. Because each step in
the flowchart might be fairly complex, you’d probably want to give each box an
identifier like F10-3 (meaning the third numbered box on flowchart number 10)
and then record the contents of each box in prose form on another piece of paper.

 A real diagnostic system might contain dozens or even hundreds of these
annotated flowcharts. Due to obvious space limitations, you’ll see only a few sim-
ple ones here.

12.2 The problem domain

Of course, “problems with desktop computers” is a very broad domain, and you
need to narrow it down a lot before you can get started. First, let’s specialize desk-

The problem domain 191
top computers to x86-based desktop computers. We won’t consider Macintosh
machines or any other architectures—just those systems that are commonly
referred to as PCs. You can formalize this specialization in a rule:

(defrule MAIN::right-architecture
 (declare (auto-focus TRUE))
 (answer (ident hardware) (text ~x86))
 =>
 (recommend-action "consult a human expert")
 (halt))

You’ll write the function recommend-action later. Note that this rule, like many
others in this system, calls (halt) to terminate execution. Although this isn’t
really necessary right now, you’ll see why you need to do this in chapter 13 when
you add a graphical interface to this application. The auto-focus declaration
ensures that as soon as the system has a recommendation to make, it will be
made—even if some other module has the focus at the time. You’ll use this decla-
ration in all the rules that make recommendations.

 To further restrict the domain, the system you’re writing diagnoses only hard-
ware problems, not software issues. Broken power supplies, loose video cards, and
faulty memory chips are typical of the class of problems that your program will
diagnose. It won’t be able to help with questions like, “Why can’t I connect to the
network?” and “What is a General Protection Fault?”

 Finally, let’s restrict the domain to include only computers that won’t boot.
This leaves out many hardware problems: You won’t try to diagnose nonfunctional
network cards, jammed CD-ROM drives, and other broken components not
directly involved in booting the machine.

12.2.1 Writing the first rules

A simple top-level flowchart for the program is shown in figure 12.2. If the com-
puter makes no sound at all, the presumed hypotheses are The computer isn’t getting
any electricity and The power supply is faulty. You can write these two hypotheses as
rules in the MAIN module, as shown in listing 12.2. The rule not-plugged-in
handles the case where the computer makes no sound and is not plugged in; the
rule power-supply-broken handles the case where the silent computer is
plugged in. The two versions of the first pattern in the two rules represent the two
outcomes from the decision Is there any sound? in the center of figure 12.2.

192 CHAPTER 12
Writing the PC Repair Assistant

(deffunction recommend-action (?action)
 "Give final instructions to the user"
 (printout t "I recommend that you " ?action crlf))

(defrule MAIN::not-plugged-in
 (declare (auto-focus TRUE))
 (answer (ident sound) (text no))
 (answer (ident plugged-in) (text no))
 =>
 (recommend-action "plug in the computer")
 (halt))

(defrule MAIN::power-supply-broken
 (declare (auto-focus TRUE))
 (answer (ident sound) (text no))
 (answer (ident plugged-in) (text yes))
 =>
 (recommend-action "repair or replace power supply")
 (halt))

Figure12.2, and all the flowcharts you’ll use to develop this application, are vastly
simplified. The action Check power supply should ideally expand to a whole flow-
chart of its own, explaining the steps involved in diagnosing power-supply prob-
lems. Unfortunately, to present that flowchart and all the rules to support it and
the dozens of others you’d need to collect, I’d fill another whole book. Because
this is a programming book, not a PC repair manual, I’ll keep things simple.

 These rules assume something else is taking care of asking the user ques-
tions—the rules just depend on the answers. Whereas in the Tax Forms Advisor
application from part 3 you had to explicitly write rules to ask the questions, in
this application, the questions are asked automatically using backward chaining.

Listing 12.2 Rules to diagnose a computer that makes no sound

Figure 12.2
A simple top-level flowchart for diagnosing
PC hardware problems. This flowchart can
diagnose the problem “The computer isn’t
getting any electricity.”

Asking questions with backward chaining 193
Let’s see how this works. After that, we’ll reexamine and extend the ask module
from part 3 to meet the needs of the current project.

12.3 Asking questions with backward chaining

In the Tax Forms Advisor application, an entire module named interview was
dedicated to picking out questions to ask the user. In general, there was one rule
in interview specific to each question the application might ask, and another
rule in the recommend module to use the answer. Because that application
included only a dozen or so possible questions, this approach wasn’t much of a
problem; but it obviously wouldn’t scale well to a system with hundreds of ques-
tions. You need something easier for the application you’re writing now. Ideally,
you’d like to have just a few generic rules that somehow know how to ask the
appropriate questions at the right time. In this application, when a diagnostic rule
is partially matched and needs a MAIN::answer fact to match it further, you’d like
the appropriate question to be asked and the resulting answer fact to be asserted.

 You’ll use backward chaining, so your new program will automatically know
when to ask each question. Recall from section 7.4 that in Jess, backward chaining
works by creating special trigger facts based on partially matched rules. To make
backward chaining work, you first have to turn it on with the do-backward-
chaining function; then you write rules to match the trigger facts. The ask mod-
ule asks questions based on the MAIN::ask facts it sees, so your backward-chain-
ing rule (called supply-answers) can match MAIN::need-answer trigger facts
and assert MAIN::ask facts in response; this process is shown in figure 12.3. The
rule supply-answers is shown in listing 12.3. supply-answers has the auto-
focus property and is in its own module; this is the same trick the ask module
uses so that it can fire immediately whenever it is activated.

194 CHAPTER 12
Writing the PC Repair Assistant

(do-backward-chaining answer)

(defmodule trigger)

(defrule trigger::supply-answers
 (declare (auto-focus TRUE))
 (MAIN::need-answer (ident ?id))
 (not (MAIN::answer (ident ?id)))
 (not (MAIN::ask ?))
 =>
 (assert (MAIN::ask ?id))
 (return))

12.4 Checking the answers

The ask module developed in section 10.6 was a simple, general-purpose mecha-
nism for asking questions. For this application, you need to extend it a little. In
particular, whereas the previous application only asked questions with yes/no and
numeric answers, this application needs to be able to validate three different
kinds of answers:

■ Multiple choice (multi)—One of a set of allowed answers. Yes or no questions
are a special case of this type.

■ Numeric—Any integer value.
■ Text—Any arbitrary text.

Listing 12.3 A rule to ask questions via backward chaining

Figure 12.3 The cycle of rules that fire to get answers from the user in this application. The rule
power-supply-broken needs an answer fact before it matches. Jess’s backward-chaining
engine detects this requirement and asserts a need-answer fact. The rule supply-answers
detects this fact and asserts an ask fact in response. Finally, the ask-question-by-id rule fires
in response to the ask fact and supplies the answer fact needed by power-supply-broken.

Checking the answers 195
Furthermore, looking ahead to chapter 13, this application will have a graphical
interface. The original version of the ask module depended on the fact that all
answers were read from the console using the Jess (read) function. (read) inter-
prets what it reads, which guarantees that something that looks like an integer is
held internally as a jess.Value object of type RU.INTEGER. In the last applica-
tion, then, the Jess parser figured out if something was a number before the ask
module ever saw it. You can’t make that assumption any longer, because you’re
going to use a GUI, not (read), to collect answers. Some numbers may arrive as
text and need to be parsed.

12.4.1 Modifying the ask module

In general, then, you need to extend and enhance the ask module for this appli-
cation. The first extension adds a multislot to the question template to hold the
possible values for multiple-choice questions. The ask-question-by-id rule
needs to match this multifield and pass it along to an extended version of the
ask-user function. ask-user, in turn, needs to pass the multifield to an
enhanced is-of-type function, which can validate questions of type multi,
numeric, and text. The new template and rule are shown in listing 12.4, and the
modified functions appear in listing 12.5.

(deftemplate question
 "A question the application may ask"
 (slot text) ;; The question itself
 (slot type) ;; Can be multi, text, or numeric
 (multislot valid) ;; The allowed answers for type multi
 (slot ident)) ;; The "name" of the question

(defrule ask::ask-question-by-id
 "Ask a question and assert the answer"
 (declare (auto-focus TRUE))
 (MAIN::question (ident ?id) (text ?text)
 (valid $?valid) (type ?type))
 (not (MAIN::answer (ident ?id)))
 ?ask <- (MAIN::ask ?id)
 =>
 (retract ?ask)
 (bind ?answer (ask-user ?text ?type ?valid))
 (assert (answer (ident ?id) (text ?answer)))
 (return))

Listing 12.4 Modifications to the question-asking rules

196 CHAPTER 12
Writing the PC Repair Assistant
(deffunction ask-user (?question ?type ?valid)
 "Ask a question, and return the answer"
 (bind ?answer "")
 (while (not (is-of-type ?answer ?type ?valid)) do
 (printout t ?question " ")
 (if (eq ?type multi) then
 (printout t crlf "Valid answers are ")
 (foreach ?item ?valid
 (printout t ?item " "))
 (printout t ":"))
 (bind ?answer (read)))
 (return ?answer))

(deffunction is-of-type (?answer ?type ?valid)
 "Check that the answer has the right form"
 (if (eq ?type multi) then
 (foreach ?item ?valid
 (if (eq (sym-cat ?answer) (sym-cat ?item)) then
 (return TRUE)))
 (return FALSE))

 (if (eq ?type number) then
 (return (is-a-number ?answer)))

 ;; plain text
 (return (> (str-length ?answer) 0)))

(deffunction is-a-number (?value)
 "Return TRUE if ?value is a number"
 (try
 (integer ?value)
 (return TRUE)
 catch
 (return FALSE)))

This version of the is-of-type function has to do more work than the version in
section 10.6, because it needs to check three different kinds of questions and it
can’t assume the answers will arrive as Jess numbers and symbols; every answer
might be in the form of a string and need to be parsed further. When checking
multi answers, is-of-type therefore uses the sym-cat function to convert the
answer to a symbol before comparing it to each possible result. When checking
numeric answers, is-of-type calls another new function, is-a-number, to do
the work.

 The new is-a-number utility function uses Jess’s built-in integer function,
which either returns an integer version of its argument or throws an exception if
the argument can’t be interpreted as a number. The is-a-number function uses

Listing 12.5 Modifications to the question-asking functions

The rest of the rules 197
the Jess try function to catch that exception and return FALSE. (We looked at
try in section 5.4.)

12.5 The rest of the rules

Now that the infrastructure is squared away, let’s go back to looking at some rules.
If the computer whirrs, beeps, or makes any other sounds when turned on, the
top-level flowchart directs you to continue on to the next flowchart, shown in fig-
ure 12.4. Let’s translate this into rules one piece at a time.

12.5.1 Rules about sound

The trigger to enter this flowchart in the first place occurs when the user answers
“no” to the sound question; therefore all the rules begin with the pattern (answer
(ident sound) (text no)). Any decisions made before this point are irrelevant
to these rules. The first decision in the sound flowchart is whether the disk makes
“seeking” sounds; so, similarly, all the rules in this flowchart include a pattern to
match one of the possible answers to the seek question. From this point, the rules
diverge; you can look at the path through the flowchart to each action box to see
how to define each rule. For example, the Check keyboard and motherboard action is

Figure 12.4
A simple flowchart for diagnosing
some hardware problems in
computers that make sound but don’t
boot. The ERROR state is supposed to
be impossible to reach.

198 CHAPTER 12
Writing the PC Repair Assistant
reached by passing through the seek, does-beep, and how-many-beeps deci-
sions, so it looks like this:

(defrule MAIN::motherboard-or-keyboard
 (declare (auto-focus TRUE))
 (answer (ident sound) (text yes))
 (answer (ident seek) (text no))
 (answer (ident does-beep) (text yes))
 (answer (ident how-many-beeps) (text ?t))
 (test (>= (integer ?t) 3))
 =>
 (recommend-action "check keyboard and motherboard")
 (halt))

Note that you have to use the integer function to convert the answer to a number
before checking if it’s greater than or equal to three. You use a test conditional
element instead of putting the test on ?t directly into the last answer pattern due
to a limitation imposed by the backward-chaining machinery: Patterns that match
backward-chaining reactive patterns can only contain simple tests—function calls
aren’t allowed.

 The check-ram rule is similar, but with a twist. Besides recommending an
action, this rule asserts a check fact, and does not call (halt):

(defrule MAIN::check-ram
 (declare (auto-focus TRUE))
 (answer (ident sound) (text yes))
 (answer (ident seek) (text no))
 (answer (ident does-beep) (text yes))
 (answer (ident how-many-beeps) (text ?t))
 (test (< (integer ?t) 3))
 =>
 (assert (check loose-ram))
 (recommend-action "check for loose RAM, then continue"))

You’ll use the check fact as the trigger to enter the RAM flowchart, shown later in
figure 12.5. This trick lets the system ask further questions based on the results of
a recommended action. If you were writing a full diagnostic system with dozens of
flowcharts, you’d use this trick many times.

12.5.2 Degrading gracefully
If the computer is making a sound, but the disk doesn’t seek and there is no beep-
ing, then the system has reached the limits of its knowledge, represented by the
oval labeled ERROR. The unknown-sound rule expresses this end point:

(defrule MAIN::unknown-sound
 (declare (auto-focus TRUE))
 (answer (ident sound) (text yes))

The rest of the rules 199
 (answer (ident seek) (text no))
 (answer (ident does-beep) (text no))
 =>
 (recommend-action "consult a human expert")
 (halt))

12.5.3 To boot, or not to boot

If the disk does make a seeking sound, then there is one more decision to make:
Does the computer begin to boot into the operating system before failing? Two
more rules cover the two possible answers:

(defrule MAIN::no-boot-start
 (declare (auto-focus TRUE))
 (answer (ident sound) (text yes))
 (answer (ident seek) (text yes))
 (answer (ident boot-begins) (text no))
 =>
 (recommend-action
 "check keyboard, RAM, motherboard, and power supply")
 (halt))

(defrule MAIN::boot-start
 (declare (auto-focus TRUE))
 (answer (ident sound) (text yes))
 (answer (ident seek) (text yes))
 (answer (ident boot-begins) (text yes))
 =>
 (recommend-action "consult a software expert")
 (halt))

12.5.4 RAM problems

The RAM flowchart shown in figure 12.5 is simple—it includes only two more
rules. One handles the case where the RAM memory modules are loose in their
sockets, and the other handles the case where they are not. These two rules are
slightly different than all the others in that they will be asked after a recommended
action has already been taken—the Check RAM recommendation from rule
check-ram:

(defrule MAIN::loose-ram
 (declare (auto-focus TRUE))
 (check loose-ram)
 (answer (ident loose-ram) (text yes))
 =>
 (recommend-action "remove and reseat memory modules")
 (halt))

(defrule MAIN::faulty-ram
 (declare (auto-focus TRUE))

200 CHAPTER 12
Writing the PC Repair Assistant
 (check loose-ram)
 (answer (ident loose-ram) (text no))
 =>
 (recommend-action
 "replace memory modules one by one and retest")
 (halt))

12.5.5 Questioning authority

Now that you’ve written all the rules, you need the questions! Listing 12.6 shows
them collected in a deffacts.

(deffacts MAIN::question-data
 (question (ident hardware)
 (type multi) (valid x86 Macintosh other)
 (text "What kind of hardware is it?"))
 (question
 (ident sound) (type multi) (valid yes no)
 (text "Does the computer make any sound?"))
 (question
 (ident plugged-in) (type multi) (valid yes no)
 (text "Is the computer plugged in?"))
 (question
 (ident seek) (type multi) (valid yes no)

Figure 12.5
The diagnostic flowchart for
computers that beep fewer than
three times and then don’t boot

Listing 12.6 Questions the hardware diagnostic system can ask

Testing 201
 (text "Does the disk make \"seeking\" sounds?"))
 (question
 (ident does-beep) (type multi) (valid yes no)
 (text "Does the computer beep?"))
 (question
 (ident how-many-beeps) (type number) (valid)
 (text "How many times does it beep?"))
 (question
 (ident loose-ram) (type multi) (valid yes no)
 (text "Are any of the memory modules loose?"))
 (question
 (ident boot-begins) (type multi) (valid yes no)
 (text "Does the computer begin to boot?")))

You can now run the complete application by calling reset and run-until-halt.

12.6 Testing

I haven’t mentioned testing so far in this chapter, but don’t take this to mean I’ve
forgotten about the test-first strategy I talked about in previous parts of this book.
The larger and more complex the system, the more important it is to test each
part in isolation. When I modified the ask module, for example, I reran all the
tests for it that I developed in part 3, and I wrote several more. I confirmed that
ask would only accept the allowed answers for multiple-choice questions.

 Next I developed and tested the trigger module. trigger can and should be
tested first in isolation—that is, without ask loaded in to complicate matters. To
test trigger, I wrote one dummy rule with an initial-fact pattern and one
answer pattern. Then I used (watch all) to confirm that executing the (reset)
command made the trigger module come into focus, the supply-answers rule
fire, and the appropriate MAIN::ask fact appear in working memory.

 Then, as I translated each new flowchart into rules, I ran the application and
answered questions based on a set of planned diagnostic scenarios, confirming
that the diagnosis was correct in every case. As discussed in section 11.2.3, don’t
be discouraged by the thought that you should have 100% test coverage. Remem-
ber that some testing is infinitely better than none at all.

 One issue that came up during this kind of testing was that the hardware
question (which you want to be asked first) isn’t asked until the end of the pro-
gram. Paradoxically, this happens because you define the right-architecture
question fact first. The need-answer trigger fact for this rule is generated as
soon as the rule is defined, and under Jess’s default depth conflict-resolution
strategy, later activations fire before earlier ones. Thus, although the decision to
ask the hardware question is made first, it is overridden by the need to ask other

202 CHAPTER 12
Writing the PC Repair Assistant
questions. You can fix this problem by telling the backward-chaining mechanism
not to try to trigger the right-architecture rule, and then asserting the appro-
priate MAIN::ask fact at the right time. You can modify the right-
architecture rule using the explicit conditional element, which cancels
backward-chaining requests for a single pattern:

(defrule MAIN::right-architecture
 (declare (auto-focus TRUE))
 (explicit (answer (ident hardware) (text ~x86)))
 =>
 (recommend-action "consult a human expert")
 (halt))

Adding a (MAIN::ask hardware) fact at the end of deffacts question-data
makes the hardware question come out first. Give the application a try and make
sure the conclusions it reaches are the same that you’d arrive at by following the
flowcharts.

12.7 Summary

In this chapter, you saw how backward chaining can be used to do something
automatically, on demand; in this case, you used it to schedule questions to be
asked using a single, generic rule. The combination of forward-chaining infer-
ence rules and backward-chaining infrastructure rules is a powerful and common
pattern in Jess systems. Another common application of this idea is fetching
needed facts automatically from a database.

 Flowcharts are a reasonable way to represent some kinds of knowledge, and
you used them to good effect in this chapter. The collection of inference rules in
this chapter was more complex than you’ve seen before; most rules that fire can
trigger the firing of multiple other rules. The modular and descriptive nature of
individual rules makes a program like this easier to modify over time and easier to
develop incrementally compared to a monolithic program without rules.

 In the next chapter, you’ll again tinker with the ask module. This time, you’ll
give it a graphical interface and free the user from the need to type answers like
yes and no at the command line.

Adding a graphical interface
In this chapter you’ll…
■ Create a window
■ Fill it with graphical components
■ Write event handlers
■ … all from the Jess language
203

204 CHAPTER 13
Adding a graphical interface
These days, virtually all computer applications come with a graphical user inter-
face (GUI). Graphical interfaces make many users feel more comfortable than
command lines. Furthermore, by providing a bounded set of commands (explicit
in menus or implicit in radio buttons, checkboxes, and other controls), GUIs pro-
vide guidance that helps users use the application efficiently and correctly. One
advantage of a GUI is perhaps less obvious: Because it limits user actions, it can
make invalid user inputs impossible, thereby simplifying the application’s internal
error-checking code.

 Your first real application, the Tax Forms Advisor, had only a command-line
interface. The PC Repair Assistant you’re developing now should have a friendlier
GUI. You’ll develop such an interface in this chapter using only Jess’s Java reflec-
tion capabilities—that is, you’ll write only Jess scripts, not Java code. In the pro-
cess, we’ll look at how Jess lets you develop software using the Java libraries in an
iterative and interactive way.

 The GUI you’ll develop in this chapter will use Java’s Swing library. I’ll assume
some basic knowledge of Swing (and Java GUIs in general) on your part. You
might want to keep some documentation for the javax.swing package handy for
reference.

 Note that you’ll be using an iterative approach to develop this GUI; you’ll see
the same Jess functions presented several times with various refinements applied
each time. The final code for the completed application is available from this
book’s web site.

13.1 Getting started

You’ll be using many of the classes in Java’s javax.swing, java.awt, and
java.awt.event packages. Although you could spell out these package names
when you need them, it will be easier if you use Jess’s import function to make this
unnecessary. Jess’s import function, like the Java keyword, makes it possible for
you to refer to all the classes in a given Java package by using their class names,
without spelling out the package name each time. Note how after importing
javax.swing.*, you can create a javax.swing.JButton using just its class name:

Jess> (import javax.swing.*)
TRUE
Jess> (import java.awt.*)
TRUE
Jess> (import java.awt.event.*)
TRUE
Jess> (new JButton "Example Button")
<External-address:javax.swing.JButton>

Displaying a window 205
The graphical components of the application will be accessed from different sec-
tions of Jess code. In particular, several functions need access to the application’s
top-level window component (a JFrame). You’ll therefore store a reference to it in
a defglobal. Unfortunately, the reset function by default resets the values of
defglobals, and it would complicate the application if you had to worry about
the possibility of your only reference to the JFrame disappearing. To deal with
this situation, you use the set-reset-globals function to tell Jess to leave
defglobals alone when reset is called:

Jess> (set-reset-globals FALSE)
FALSE

With these details taken care of, you can start coding the GUI.

13.2 Displaying a window

The first and most fundamental graphical element you need to create is a
javax.swing.JFrame—a top-level window. Let’s create one with an appropriate
title, size it, make it visible, and keep a reference to it in a defglobal named
?*frame*:

Jess> (defglobal ?*frame* = (new JFrame "Diagnostic Assistant"))
TRUE
Jess> (?*frame* setSize 520 140)
Jess> (?*frame* setVisible TRUE)

I’m cheating a little here: I determined the appropriate size after the whole GUI
was designed, and then came back here and typed it in. In your own programs,
you will learn the dimensions necessary through experience or experimentation.
When you enter the last line of code, an empty window appears on the screen, as
shown in figure 13.1.

Figure 13.1 An empty JFrame created via a short Jess script as shown in the text

206 CHAPTER 13
Adding a graphical interface
13.3 Displaying questions

Right now, the application you’re developing displays questions and accepts
answers from the command line. As a first step toward producing a real GUI, let’s
change the application to display the text of the questions in the window you’ve
created (for the moment, you’ll still accept input from the command line). You
can use a JTextArea inside a JScrollPane to accomplish this. You need to access
the JTextArea from the ask module, so you’ll store a reference to it in a
defglobal named qfield. Here’s the code to create a JTextArea and add it to
your JFrame:

Jess> (defglobal ?*qfield* = (new JTextArea 5 40))
TRUE
Jess> (bind ?scroll (new JScrollPane ?*qfield*))
<External-Address:javax.swing.JScrollPane>
Jess> ((?*frame* getContentPane) add ?scroll)
Jess> (?*qfield* setText "Please wait...")
Jess> (?*frame* repaint)

You set the text of the new text area to the string "Please wait...". Figure 13.2
shows what the window looks like now

 As you’ll recall from chapter 12, you used the ask module (as originally
defined in chapter 10) to provide the temporary command-line interface to your
application. In this chapter, you’ll modify the ask module yet again to connect it
to your GUI. In particular, you need to modify the function ask-user. Listing
13.1 is a new version of ask-user that displays the questions in the JTextArea
instead of at the command line. If you run the whole application with this modi-
fied ask-user, you’ll need to look at the JFrame to see the questions and at the
command line to type your answers. You’ll return to this function soon—the final
version will no longer read from the command line:.

Figure 13.2 Application window with an added JTextArea for displaying questions

Getting answers 207

(deffunction ask-user (?question ?type ?valid)
 "Ask a question, and return the answer"
 (bind ?answer "")
 (while (not (is-of-type ?answer ?type ?valid)) do
 (bind ?s ?question " ")
 (if (eq ?type multi) then
 (bind ?s (str-cat ?s ?*crlf*
 "Valid answers are "))
 (foreach ?item ?valid
 (bind ?s (str-cat ?s ?item " "))))
 (bind ?s (str-cat ?s ":"))
 (?*qfield* setText ?s)
 (bind ?answer (read)))
 (return ?answer))

13.4 Getting answers

Now that your application displays questions to the user via its new GUI, it ought to
collect answers the same way. Currently, the input routine ask-user reads answers
as strings the user types at the command line. As a first step, you’ll modify the ask
module to use a simple text field to collect its answers for all question types. This
will give you a framework to build on (later you’ll replace this input field with a
combo box and other more user-friendly components). First you’ll build a panel
containing a JTextField and a JButton labeled OK; then you’ll add it to the bot-
tom of the application window. Listing 13.2 shows the code to do this; the result
looks like figure 13.3. I used get-member to obtain the value of the constant SOUTH
in the BorderLayout class. The calls to validate and repaint are necessary
whenever you modify the contents of a window that’s already visible on the screen.

;; Add a JTextField and an OK button to our application window
(defglobal ?*apanel* = (new JPanel))
(defglobal ?*afield* = (new JTextField 40))
(defglobal ?*afield-ok* = (new JButton OK))
(?*apanel* add ?*afield*)
(?*apanel* add ?*afield-ok*)
((?*frame* getContentPane) add ?*apanel*
 (get-member BorderLayout SOUTH))
(?*frame* validate)
(?*frame* repaint)

;; Now attach an event handler
(deffunction read-input (?EVENT)

Listing 13.1 ask-user function to display questions (changed lines in bold)

Listing 13.2 Adding an input area to the application window

208 CHAPTER 13
Adding a graphical interface
 "An event handler for the user input field"
 (bind ?text (sym-cat (?*afield* getText)))
 (assert (ask::user-input ?text)))

(bind ?handler
 (new jess.awt.ActionListener read-input (engine)))
(?*afield* addActionListener ?handler)
(?*afield-ok* addActionListener ?handler)

In Java programming, you add behaviors to components like buttons and text
fields by writing event handlers. An event handler is an implementation of a special
interface, with a member function that performs the desired behavior. The inter-
face used for button clicks is java.awt.event.ActionListener. You register the
event handlers you write by calling an appropriate method on the component; for
ActionListener the method is called addActionListener. When some user
input occurs, the component creates an event object and passes it as an argument to
the appropriate method of all the event handlers that are registered with it. In the
case o f but ton c l i cks , the event ob jec t i s an ins tance of the c la s s
java.awt.event.ActionEvent, and the method in the ActionListener inter-
face is called actionPerformed.

 The function read-input in listing 13.2 is an event handler written in Jess.
The class jess.awt.ActionListener is an event adapter that lets you specify that
a deffunction should be invoked when a Java ActionEvent occurs. Jess supplies
a whole family of these event adapters, one for each event type defined by the Java
APIs, and they all are used the same way. You can create one using the name of a
deffunction and a jess.Rete object (see the next section) as constructor argu-
ments. Then you use the matching Java method on an AWT or Swing component
to register the listener, just as you would in Java. When the component sends an

Figure 13.3 Application window with both an area for displaying questions and a lower panel
for collecting answers

Getting answers 209
event, the event adapter invokes the deffunction, passing it the event object as
the lone argument (the parameter ?EVENT in the listing). This arrangement is
shown in figure 13.4.

 Now you have an input field that asserts a Jess fact in response to a button click
or the user pressing Enter. Before you can modify the program to use this asserted
fact, however, we need to look in a bit more depth at the architecture of a GUI-
based application.

13.4.1 The main thread vs. the event thread

A thread is a single flow of control in a Java program. Individual streams of code
can be, and often are, running in multiple separate threads simultaneously. You
can create threads explicitly using the java.lang.Thread class, and Java creates
some threads on its own—for example, the main thread from which the main()
function is called.

 Every Java program is a multithreaded program. Even in a “Hello, World” pro-
gram, where the user’s code clearly runs only in the main thread, the JVM creates
a number of other threads to perform background duties like garbage collection.

 In graphical programs, user code typically runs in several threads. Some of the
code you write runs on the main thread (like the setup code you’ve written so
far), while other code runs on the event thread. When a menu item is chosen or a
button is clicked, the event handlers that are invoked run on the event thread.
Sometimes this is unimportant, but when code on the event thread and code on
the main thread need to coordinate their activities, you have to think clearly
about what code is running where.

 In the program you’re developing, the (run) function will be called on the
main thread, and so the code for all the rules that fire will execute on the main
thread. On the other hand, you want the user to click the OK button on the GUI.
This action will trigger some code to run on the event thread, and you want to
have that affect the behavior of the rules. The situation is depicted in figure 13.5.

Figure 13.4
An instance of the class
jess.awt.ActionListener that
serves as an event adapter and
forwards GUI events to the
deffunction read-input

210 CHAPTER 13
Adding a graphical interface
You’ll adopt the following strategy to get the main thread and the event thread to
cooperate:

1 The main thread sets up the GUI to display the question.

2 The main thread sleeps until a reply is available.
3 When the user presses Enter or clicks the OK button, the event thread

asserts a fact containing a reply.
4 The main thread wakes up and processes the reply. If the reply is invalid, go

back to step 1. If it is valid, assert the answer fact and return from the module.

Jess contains a mechanism that makes this process simple to implement. There is
a function you can call to make the current thread sleep when no activated rules
are on the agenda of the current module, and then wake up and continue once a
new activation arrives. No Jess language function lets you access this mechanism
directly, however—you have to call it as a Java method.

The class jess.Rete
Jess’s rule engine is embodied in a class named jess.Rete. Many of the most
important functions you’ve seen so far in the Jess language—run, reset, clear,

Figure 13.5 Some of the code in a GUI application runs on the main thread, and other code
runs on the event thread. The separate threads can communicate by calling Jess functions.
In the diagram, time flows down. Note how calling a Jess function like (run) results in a Java
function like Rete.run() being called a short time later.

Getting answers 211
assert—correspond to single Java method calls on instances of this class (run(),
reset(), clear(), assertFact()). When you start jess.Main from the com-
mand line, a single instance of jess.Rete is created, and all of your program’s
rules and facts belong to it. You can get a reference to this jess.Rete object
using the engine function in Jess. The code

((engine) run)

is therefore more or less equivalent to

(run)

Now let’s return to our discussion of coordinating multiple threads in your appli-
cation. The function you’re interested in is called waitForActivations. If this
method is called when the current module’s agenda is empty, it doesn’t return
right away. Rather, it uses the wait() method from the java.lang.Object class
to wait for new activations to arrive. Note that the only way waitForActivations
can return is for code on some other thread to call a function that modifies work-
ing memory. You can call waitForActivations from Jess like this:

((engine) waitForActivations)

Listing 13.3 shows the changed parts of a new version of the ask module that imple-
ments this idea. Whereas the old version of ask contained just one rule that asked
the question and returned the answer, this new version contains two rules: one that
sets up the question (ask-question-by-id) and one that validates the answer and
either returns the answer or asks the question again (collect-user-input).

(deffunction ask-user (?question ?type ?valid)
 "Set up the GUI to ask a question"
 (bind ?s ?question " ")
 (if (eq ?type multi) then
 (bind ?s (str-cat ?s ?*crlf* "Valid answers are "))
 (foreach ?item ?valid
 (bind ?s (str-cat ?s ?item " "))))
 (bind ?s (str-cat ?s ":"))
 (?*qfield* setText ?s)
 (?*afield* setText ""))

(defrule ask::ask-question-by-id
 "Given the identifier of a question, ask it"
 (declare (auto-focus TRUE))
 (MAIN::question (ident ?id) (text ?text)
 (type ?type) (valid $?valid))

Listing 13.3 ask module that expects GUI input as user-input facts

212 CHAPTER 13
Adding a graphical interface
 (not (MAIN::answer (ident ?id)))
 (MAIN::ask ?id)
 =>
 (ask-user ?text ?type ?valid)
 ((engine) waitForActivations))

(defrule ask::collect-user-input
 "Check and optionally return an answer from the GUI"
 (declare (auto-focus TRUE))
 (MAIN::question (ident ?id) (text ?text) (type ?type))
 (not (MAIN::answer (ident ?id)))
 ?user <- (user-input ?input)
 ?ask <- (MAIN::ask ?id)
 =>
 (if (is-of-type ?input ?type ?valid) then
 (assert (MAIN::answer (ident ?id) (text ?input)))
 (retract ?ask ?user)
 (return)
 else
 (retract ?ask ?user)
 (assert (MAIN::ask ?id))))

Here’s what happens when the new ask module is used:

1 You assert a MAIN::ask fact giving the identifier for a question.

2 On the main thread, the rule ask-question-by-id is activated by the
MAIN::ask fact and the MAIN::question fact with the given identifier.
This rule has the auto-focus property, so the ask module immediately
gets the focus.

3 ask-question-by-id calls the function ask-user and then uses waitFor-
Activations to pause until another rule in this module is activated.

4 ask-user sets up the GUI to display the proper question, and clears the
answer area.

5 Nothing happens until the user enters some text and presses Enter or
clicks the OK button.

6 The event handler read-input, running on the event thread, asserts an
ask::user-input fact containing the text entered by the user, as a symbol.

7 The ask::user-input fact, together with the MAIN::question fact and
the MAIN::ask fact, activate the rule collect-user-input. The method
waitForActivations finally returns due to this activation, and the
right-hand side of ask-question-by-id completes.

Better input components 213
8 Back on the main thread, collect-user-input asserts a MAIN::answer
fact, retracts the MAIN::ask and ask::user-input facts, and returns
from the ask module.

13.5 Better input components

As it stands, the user of your program has to answer questions by typing a reply
into a JTextField. Of course, most GUIs don’t work that way. For example, users
aren’t accustomed to typing x86 or Macintosh into a GUI; they’re used to select-
ing choices from a combo box. This application should work the same way.

 Recall that the question fact template has a slot named type, indicating the
kind of answer expected for each question. Your interface should display different
user-input panels depending on the value of this type field. What panels will you
need? Looking back at the questions defined in the previous chapter, you’ll need
only two:

■ Multiple choice—A panel with a pop-up menu (a combo box) containing a
list of choices.

■ Numeric—A text field that accepts numeric input. You’ve essentially already
done this one.

Once again, the ask module can be modified to accommodate this latest require-
ment. You can change the ask-user function so that it sets up the appropriate
input component for each question based on the type of question being asked.
For questions with numeric answers, you use the existing JTextField, and for
multiple-choice questions, you use a new JComboBox.

 Setting up the JComboBox and its associated OK button is similar to setting up
the JTextField. After the components are created, the JButton needs an event
handler to assert the selected item as an answer fact:

(defglobal ?*acombo* = (new JComboBox (create$ "yes" "no")))
(defglobal ?*acombo-ok* = (new JButton OK))

(deffunction combo-input (?EVENT)
 "An event handler for the combo box"
 (assert
 (ask::user-input (sym-cat (?*acombo* getSelectedItem)))))

(bind ?handler (new jess.awt.ActionListener combo-input (engine)))
(?*acombo-ok* addActionListener ?handler)

214 CHAPTER 13
Adding a graphical interface
One interesting bit about this code snippet is the call to the JComboBox construc-
tor. The constructor expects an array of Object as an argument. In this code, you
pass a Jess list made by create$; Jess automatically converts it to the needed array.

 With the JComboBox defined, you can modify ask-user one final time:

(deffunction ask-user (?question ?type ?valid)
 "Set up the GUI to ask a question"
 (?*qfield* setText ?question)
 (?*apanel* removeAll)
 (if (eq ?type multi) then
 (?*apanel* add ?*acombo*)
 (?*apanel* add ?*acombo-ok*)
 (?*acombo* removeAllItems)
 (foreach ?item ?valid
 (?*acombo* addItem ?item))
 else
 (?*apanel* add ?*afield*)
 (?*apanel* add ?*afield-ok*)
 (?*afield* setText ""))
 (?*frame* validate)
 (?*frame* repaint))

This version is somewhat simpler because it doesn’t have to compose a complex
prompt string. Instead, based on the question type, it installs one of two possible
sets of components in the JPanel at the bottom of the window. Figure 13.6 shows
what the application looks like with the combo box panel installed.

13.6 Finishing touches

The current version of the recommend-action function still prints its recommen-
dations to the command line. Java offers the convenient JOptionPane class as a
quick way to post a modal dialog box. You can easily modify recommend-action
to use it:

Figure 13.6 The multiple choice input panel displays a combo box and a button. The choices
in the combo box are changed based on the question being displayed.

Testing the interface 215
(deffunction recommend-action (?action)
 "Give final instructions to the user"
 (call JOptionPane showMessageDialog ?*frame*
 (str-cat "I recommend that you " ?action)
 "Recommendation"
 (get-member JOptionPane INFORMATION_MESSAGE)))

The arguments to the static showMessageDialog method are, in order, the par-
ent window, the message, the window title, and a constant that indicates what kind
of icon to display.

 Another limitation of the application is that there’s no way to exit. You can tell
the JFrame to call System.exit method when it is closed using JFrame’s
setDefaultCloseOperation method:

(?*frame* setDefaultCloseOperation
 (get-member JFrame EXIT_ON_CLOSE))

Finally, during testing I noticed that it’s a bit disorienting to have question text
remain in the window after the application has finished. It would be nice to have
the old question removed when the program is through. You can’t put code to do
this into recommend-action, because sometimes this function is called to make
an intermediate recommendation, and more questions will follow. You certainly
don’t want to go back and change all the rules to add GUI-specific code. What can
you do?

 If you look at your rules, you’ll recall that they call halt as appropriate to ter-
minate execution of the system. You can therefore use the defadvice function to
modify the behavior of halt (see section 4.5 to learn more about defadvice):

(defadvice before halt
 (?*qfield* setText "Close window to exit"))

Now, when a rule calls halt to halt execution, the contents of the question field
will automatically change.

13.7 Testing the interface

Testing graphical applications automatically is difficult. There are commercial
tools to help you do it, but most of them are fragile, hard to use, and expensive.
The classic problem with automated GUI-testing tools is that they make your life
harder rather than easier when you need to make changes to your interface,
because changes to the GUI may force changes to the test. It’s easy to write tests for
a GUI that are so fragile that they must be rewritten any time the GUI layout
changes even a little. Tests that expect particular GUI components to lie at specific

216 CHAPTER 13
Adding a graphical interface
screen coordinates are the most delicate in this respect. If you do use a GUI-testing
tool, try not to write tests based on absolute screen coordinates. Tests that refer to
components by name are much more robust.

 You can use the Java class java.awt.Robot to write your own automated tests.
This class lets you move the mouse pointer, press mouse buttons, and type text as
if from the keyboard, all under programmatic control. I’ve personally found the
combination of java.awt.Robot and Jess’s scripting capabilities to be particu-
larly powerful.

 Besides automated testing, you can of course do manual testing. If (as was the
case here) you wrote and tested the underlying logic of the application first, test-
ing the GUI by hand isn’t quite so bad. Rather than trying to test every path
through the knowledge base, your GUI testing effort should be concentrated on
trying every situation the GUI is meant to handle. For this application, you’d want
to try both multiple-choice and numeric input, and some recommendations that
call (halt) and some that don’t. You can also run through some of the same test
scenarios you used with the command-line version of the application, entering the
data into the GUI instead.

13.8 Summary

In part 4 of this book, you’ve built a fairly sophisticated application in about 230
lines of Jess code. You collected knowledge in the form of flowcharts and then
translated the flowcharts into rules. The flowcharts are a compact and useful form
of documentation for the resulting knowledge base.

 The PC Repair Assistant uses backward chaining to automatically form hypoth-
eses about possible problems and ask the appropriate questions, based just on the
antecedents of the rules in the knowledge base. This approach scales well to large
systems, unlike the more unwieldy approach used by the Tax Forms Advisor in
part 3. Because you used backward chaining to let Jess choose the questions auto-
matically, you needed only half as many rules compared to the tax advisor.

 Once the application logic was written, tested, and debugged, you wrapped it
in a graphical user interface using only Jess code. Adding a GUI required you to
make some changes to the ask module used for asking questions, but you didn’t
need to touch any of the rules. The final incarnation of the ask module uses Jess’s
waitForActivations Java API function to communicate between Java’s event
thread and the main thread where rules fire.

 In this and the previous part, you developed complete, isolated applications
from the ground up using Jess. In the real world, however, Jess usually needs to

Summary 217
cooperate with Java code outside of itself. In the next part of this book, you will
learn how to put Java objects into Jess’s working memory so that Jess can reason
about the outside world. You’ll also learn how to extend the Jess language by writ-
ing functions in Java.

Part 5

Reasoning about reality:
the HVAC Controller

The applications you’ve written so far have been written entirely as Jess
scripts. In much real software, however, the rule engine has to be integrated with
existing Java code. In part 5, you’ll write some Java as well as Jess code, and in so
doing, you’ll begin to learn about Jess’s Java APIs.

The HVAC Controller you’ll write is a soft real-time control system for the heat-
ing and cooling systems in an office building. We’ll look at how such a system can
be interfaced to real hardware. You’ll write rules that react not just to ordinary
facts in Jess’s working memory, but to shadow facts that are tied to JavaBeans; the
JavaBeans will be wrappers around the HVAC interface software.

At the end of chapter 16 is a special essay by Bob Orchard, the author of the
FuzzyJess extension that adds fuzzy logic capabilities to Jess. Bob looks at how the
HVAC Controller can be extended and improved further by the application of
fuzzy logic.

The reality connection
In this chapter you’ll…
■ Write a simulator in Java
■ Interface it to Jess using JavaBeans
■ Begin to write rules about JavaBeans
221

222 CHAPTER 14
The reality connection
 No man is an island, entire of itself; every man is a piece of the
continent, a part of the main.

 —John Donne

These days, very little software is written to stand alone. Component architectures,
application servers, and networking have made it easier than ever to assemble
software out of disparate parts. It’s becoming increasingly rare to code a com-
pletely self-contained application. After all, with so many high-quality libraries,
components, tools, services, and containers available, why reinvent the wheel?

 So far in this book, you’ve written two applications using Jess. In each case, you
used Jess as a standalone system. You didn’t write or use a single line of Java code
except Jess itself. You’ll occasionally write software this way, but for the remainder
of the book, we’ll look at more realistic systems that use Jess as a part of a larger
whole. Jess was designed to be embedded in other Java software. You’ve already
seen how Jess can call Java functions—now you’ll see that outside Java code can
just as easily call on Jess. Each of the remaining applications you build will include
a component written in Java.

 In the next few chapters, you’ll develop the control software for the HVAC
(heating, ventilation, and air conditioning) systems in a large building. Jess will
receive real-time temperature data and, based on these readings, will send com-
mands to the multiple heating and cooling units in the building. Although this is
a specialized example, the same principles would apply to controlling chemical
plants, intelligent traffic-light sequencing, monitoring automated assembly lines,
and even implementing manufacturing resource planning (MRP) systems. In
every case, Jess has to receive data from the outside world and try to take action to
affect the readings.

 The Tax Forms Advisor from part 3 of this book and the PC Repair Assistant
from part 4 only reasoned about facts in working memory. Facts are jess.Fact
objects, and they live entirely inside Jess. When Jess is being used to directly react
to events in the real world, it only makes sense that Jess needs to be able to reason
about objects outside of itself. Section 6.5 talked about using the definstance
function to add JavaBeans to working memory. The application you’re about to
build uses this technique to interact with a collection of thermostats, geothermal
heat pumps, and automated air vents.

 Your first task, and the topic of this chapter, is to learn about the system you’re
going to control. You will build a set of JavaBeans to represent and interact with
the hardware, and then begin to use them from Jess. You’ll also build a software
simulator so that you can test your application.

The system 223
 To complete the control rules cleanly, you need to extend the Jess language by
adding some custom functions written in Java; this is the subject of chapter 15.
We’ll look at Jess’s external function interface and learn something about how
Jess’s function call mechanism works under the hood. Finally, in chapter 16, you’ll
write the rules, and the application will come together.

14.1 The system

Imagine a tall building (figure 14.1). The building is heated and cooled by a num-
ber of heat pumps. A heat pump is both a heating and cooling device. At any time,
it can be in one of three modes: heating, cooling, or off. In this building, each
heat pump services three adjacent floors

 Warm or cold air from the heat pumps enters the building through adjustable
vents. Each vent can be either open or closed, and although there may be several
vents on each floor, they are wired in such a way that they must open and close in
concert—that is, they act like a single vent.

 You probably know that warm air rises and cold air sinks—it’s basic physics.
This adds a bit of nonlinearity to the system, because each heat pump can affect
not only the floors to which it directly sends heated or cooled air, but the floors
above and below it as well..

Figure 14.1
A six-story building heated and cooled
by two heat pumps. Each floor has
temperature sensors and an automated
air vent. This small building contains 14
devices to connect to the control
software: six sensors, six vents, and two
heat pumps.

224 CHAPTER 14
The reality connection
14.2 Defining the hardware interface

This system includes hardware and software components. This is a book about
software, so perhaps we should get the hardware considerations out of the way
first. Assume that the building’s control systems, purchased from Acme HVAC Sys-
tems, Inc., include all the sensors and actuators you need. In fact, they’re already
connected to one master computer on which the control software will run. Acme
HVAC Systems has provided a library of functions you can call from C language
code to turn the heat pumps on and off, read the temperatures, and operate the
vents. To make this concrete, imagine that this is a complete list of the available
library functions:

int getHeatPumpState(int heatPump);
void setHeatPumpState(int heatPump, int state);

double getTemperature(int sensor);

int getVentState(int vent);
void setVentState(int vent, int state);

Note that these are C functions, so on and off values like the state of each vent
must be represented as type int, because classic C doesn’t have a boolean type
like Java. The first argument to every function is an index; for example, you would
pass the value 3 to getTemperature to get the temperature reading from sensor
number 3. By convention, all these index numbers start at 1, not 0.

14.2.1 Native methods

Of course, you’re writing the software in Java, so you need to make the connec-
tion between your Java code and the C library. This is easy enough to do using the
Java Native Interface (JNI). A native method is a method of a Java class that happens
to be written in some system-level language like C. Native methods use a special
JNI library to bridge the gap between the Java virtual machine and the real
machine outside. The knowledge that your program will be dealing with external
hardware can be encapsulated inside a single Java class; that class will have one
native method for each of the C library functions.

 Writing native methods is outside the scope of this book. The best reference
for writing them is probably Sun’s web-based Java tutorial (http://java.sun.com/
docs/books/tutorial/native1.1/index.html). For our purposes, all you need to
know is that from the Java side, you declare a native method like this:

public native void myMethod(String myArgument);

Defining the hardware interface 225
A native method has no body (just like an abstract method) and includes the key-
word native in its declaration; otherwise, there’s nothing special about it. Java
expects to find the definition of this method in an external library you must provide.

 The important thing to realize here is that any Java code can call myMethod
without knowing that it’s a native method. From the caller’s perspective, a native
method looks like any other Java method. A subclass can override a normal parent
method using a native method, and an implementation of an interface can pro-
vide a native method to satisfy the interface.

 You can use this last fact to your advantage. You’ll define a Java interface to
represent the functions in the C library. Then you can write multiple implementa-
tions of the interface: one that uses native methods to access the real hardware,
and one that implements a simulation of the hardware. You can then use the sim-
ulator to develop and test the software. When the software is ready, you could
swap in the hardware implementation and try it out on the real system. For the
purposes of this book, you’ll only write the simulator.

 The interface has one method for each of the C library functions, so it looks
like this:

package control;
public interface Hardware {
 public final int OFF=0, HEATING=1, COOLING=2;

 int getHeatPumpState(int heatPump);
 void setHeatPumpState(int heatPump, int state);
 int getNumberOfHeatPumps();

 double getTemperature(int sensor);

 boolean getVentState(int vent);
 void setVentState(int vent, boolean state);
}

Note that you’ll put all the Java code you write for this application into a package
named control.

 The methods in this interface look a lot like the C functions, with a few excep-
tions. Some of the int types are now boolean, because in Java, boolean is the
best type to represent an on or off value. The heat pump state is still represented
as an integer, though, and three constants represent the legal values (which pre-
sumably came from the C library manual).

14.2.2 Writing a simulator
The hardware simulator is fairly simple. The implementations of methods like
getVentState and setVentState are trivial. The simulator object contains an array
of boolean to record the state of each vent, and these two methods simply set and get

226 CHAPTER 14
The reality connection
the appropriate elements of that array. The only complicated method is
getTemperature, because it must return a realistic temperature based on the com-
plete state of the system. The simple part of the simulator is shown in listing 14.1; you’ll
work on getTemperature next. Note that the implementation shown here, like most
published code, skimps on error handling. All the getter and setter methods should
check that their first arguments are greater than zero and less than or equal to the num-
ber of devices, but we’ve omitted this code here to keep things short. This version of
Simulator is an abstract class because we haven’t implemented getTemperature yet.

package control;
public abstract class Simulator implements Hardware {
 private int[] m_heatpumps;
 private boolean[] m_vents, m_sensors;

 public Simulator(int numberOfFloors) {
 if (numberOfFloors % 3 != 0)
 throw new RuntimeException("Illegal value");

 m_heatpumps = new int[numberOfFloors/3];
 m_vents = new boolean[numberOfFloors];
 m_sensors = new boolean[numberOfFloors];
 }

 public int getHeatPumpState(int heatPump) {
 return m_heatpumps[heatPump-1];
 }

 public void setHeatPumpState(int heatPump, int state) {
 switch (state) {
 case OFF: case HEATING: case COOLING:
 m_heatpumps[heatPump-1] = state; break;
 default:
 throw new RuntimeException("Illegal value");
 }
 }

 public int getNumberOfHeatPumps() {
 return m_heatpumps.length;
 }

 public boolean getVentState(int vent) {
 return m_vents[vent-1];
 }

 public void setVentState(int vent, boolean state) {
 m_vents[vent-1] = state;
 }

}

Listing 14.1 The basic parts of the hardware simulator

Defining the hardware interface 227
14.2.3 Simulating getTemperature

The meat of the HVAC simulator is the getTemperature method, which returns a
value based on the complete state of the system. Each t ime you cal l
getTemperature with a given argument, you can get a different answer back,
because the temperatures will constantly change based on many factors. At least
four things go into the calculation of the temperature on each floor of the building:

■ The current temperature on that floor

■ Whether the floor is actively being heated or cooled

■ Heat leakage from outside, through the walls

■ Heat leakage from other floors

The simulator should take each of these factors into account. The current tem-
perature on each floor can be held in an array of double, so that’s easy. Whether
a given floor is being heated or cooled depends on what the corresponding heat
pump is doing and whether that floor’s vent is open or closed. To account for heat
leakage from outside, you need a variable to hold the outside temperature.
Finally, the same array of current temperatures is all you need to compute the
heat leakage from other floors.

 The simplest way to write the simulator is so that it works in real time—it
includes a loop that continuously recomputes the temperature. This loop runs in
a separate thread, so the temperatures continue to update even if no calls to
getTemperature are made. Therefore, all you need to do is to figure out an
equation to calculate the current temperature from the temperature at the last
time step and the changes due to the factors just listed.

 A law of physics called Newton’s Law of Cooling, simply put, states that the larger
the temperature difference between two bodies, the faster heat flows between
them. Therefore, a reasonable way to calculate the temperature change per sec-
ond on a given floor is to calculate the difference between that floor’s current
temperature and some other body (such as the outside air or the hot air coming
from the heat pump) and multiply this difference by some constant value giving
the actual heat transfer rate. The constant varies depending on the materials
involved; we’ll arbitrarily choose the value 0.01. If you do this for each source of
heat, for each floor, for each time step, you’ll have a reasonable simulation of the
temperatures in an office building. The code to do this is shown in listing 14.2.
HOT and COLD represent the temperatures of the hot and cold air coming from the
heat pump, and m_outdoor is the (variable) temperature of the outside air. The

228 CHAPTER 14
The reality connection
big while loop looks at each floor in turn, calculating the contribution of each of
the factors listed earlier to the new temperature for that floor. Simulator’s con-
structor starts a background thread that periodically updates the temperature for
each floor.

package control;
import java.util.Arrays;

public class Simulator implements Hardware {
 private final double RATE = 0.01;
 private final double HOT = 100, COLD=50;
 private double[] m_temperature;
 double m_outdoor = 90;

 public Simulator(int numberOfFloors) {
 //...
 m_temperature = new double[numberOfFloors];
 Arrays.fill(m_temperature, 70);
 new Thread(this).start();
 }
 //...
 public double getTemperature(int sensor) {
 return m_temperature[sensor-1];
 }

 public void run() {
 while (true) {
 for (int i=0; i<m_temperature.length; ++i) {
 double temp = m_temperature[i];

 // Heating and cooling, and heat rising
 switch (state(i)) {
 case HEATING:
 temp += (HOT-temp)*RATE; break;
 case COOLING:
 temp += (COLD-temp)*RATE; break;
 case OFF:
 temp += (i+1)*0.005; break;
 }

 // Outdoor leakage
 temp += (m_outdoor-temp)*RATE/2;

 m_temperature[i] = temp;
 }
 try {Thread.sleep(1000);}
 catch (InterruptedException ie) { return;}
 }
 }

Listing 14.2 An implementation of getTemperature

Writing the JavaBeans 229
 private int state(int floor) {
 if (getVentState(floor + 1))
 return getHeatPumpState(floor/3 + 1);
 else
 return OFF;
 }
}

14.2.4 Adding a graphical interface
Now the simulator runs, but currently there’s no way to see what it’s doing. A graph-
ical display that shows the full state of the building at a glance would be very help-
ful. A simple GUI could display a row of labels for each floor: one label each for
heat pump state, vent state, and temperature. If you add a text field that lets you set
the outdoor temperature, the simulator will be ready to test the HVAC Controller
system. Figure 14.2 is a screen shot of this simple interface. I won’t show the code
here, but it’s included in the sample code for this chapter. The SimulatorGUI class
has a constructor that accepts a Simulator as a constructor argument and then
uses a thread to poll the Simulator to determine its state over time.

The simulator is now a reasonable stand-in for a real HVAC system. Next you need
a way to connect the simulator—or, in its place, the HVAC system itself—to Jess.
You’ll do this by wrapping the simulator’s interface in a set of JavaBeans.

14.3 Writing the JavaBeans

Jess’s working memory can hold not only plain facts, but also shadow facts, which
are placeholders for Java objects outside of Jess (see section 6.5 for the details).
More specifically, they are placeholders for JavaBeans. From Jess’s perspective, a
JavaBean is just an instance of a Java class with one or more properties—specially
named methods that let you read and/or write to a named characteristic of the
object. A very simple JavaBean to represent a temperature sensor for the HVAC
system could look like this:

Figure 14.2
A GUI for the HVAC simulator. The three
columns of labels represent the heat
pump state, vent state, and temperature
for each floor. The text field on the
bottom shows the current outdoor
temperature.

230 CHAPTER 14
The reality connection
package control;

public class Thermometer {
 private Hardware m_hardware;
 private int m_floor;
 public Thermometer(Hardware hw, int floor) {
 m_hardware = hw;
 m_floor = floor;
 }

 public double getReading() {
 return m_hardware.getTemperature(m_floor);
 }
}

This Bean has one read-only property named reading. If you used this as is, Jess
could create shadow facts for Thermometer instances, and each Thermometer fact
would have a reading slot—but if the value in that slot changed, Jess wouldn’t
know it. The shadow fact’s reading slot would never change.

 A more useful Bean includes a mechanism for notifying interested parties that
the value of a property has changed. The standard JavaBeans mechanism for doing
this is via PropertyChangeEvents. Jess works best with Beans that send one of
these events whenever the value of any property changes. It’s fairly easy to imple-
ment this behavior in your own Beans using the helper class PropertyChangeSup-
port in the java.beans package. Most of the code you need to write is boilerplate.
A class that supports PropertyChangeListeners must include the methods
addPropertyChangeListener and removePropertyChangeListener; they always
look the same, but they still have to be included in every JavaBean you write. Many
people create a base class for their Beans that contains a protected Property-
ChangeSupport member and implementations of these two methods; you’ll do this
here. The helper class looks like this:

package control;

import java.beans.*;

public abstract class BeanSupport {
 protected PropertyChangeSupport m_pcs =
 new PropertyChangeSupport(this);

 public void
 addPropertyChangeListener(PropertyChangeListener p) {
 m_pcs.addPropertyChangeListener(p);
 }
 public void
 removePropertyChangeListener(PropertyChangeListener p) {
 m_pcs.removePropertyChangeListener(p);
 }
}

Writing the JavaBeans 231
Note that PropertyChangeSupport itself includes the addPropertyChangeLis-
tener and removePropertyChangeListener methods. It would be nice if you
could use PropertyChangeSupport as a base class for your JavaBean—but you
can’t: PropertyChangeSupport’s only constructor accepts the source object (the
JavaBean) as an argument, and super(this) is invalid Java. A default constructor
that assumed the current object was the source would have been useful!

 You can now add a run method to Thermometer that polls the temperature on
a given floor, sending out PropertyChangeEvents to notify Jess when the temper-
ature changes. You’ll also add a read-only floor property to identify the individ-
ual Thermometer. The result is shown in listing 14.3.

package control;

public class Thermometer extends BeanSupport
 implements Runnable {
 private Hardware m_hardware;
 private int m_floor;
 private double m_oldReading;

 public Thermometer(Hardware hw, int floor) {
 m_hardware = hw;
 m_floor = floor;
 new Thread(this).start();
 }

 public int getFloor() {
 return m_floor;
 }

 public double getReading() {
 return m_hardware.getTemperature(m_floor);
 }

 public void run() {
 while (true) {
 double reading = getReading();
 m_pcs.firePropertyChange("reading",
 new Double(m_oldReading),
 new Double(reading));
 m_oldReading = reading;
 try { Thread.sleep(1000); }
 catch (InterruptedException ie) { return; }
 }
 }
}

Listing 14.3 The Thermometer class, including automated notification

232 CHAPTER 14
The reality connection
The PropertyChangeSupport class needs the name of the property along with the
o ld and new va lues to c rea te the appropr ia te event . Note tha t
PropertyChangeSupport is smart enough to send an event only if the old and
new values are different, so you don’t need to bother with that test yourself. There
are a few overloaded versions of the firePropertyChange method to handle dif-
ferent properties of different types. For some types, though, like the double value
here, you need to use wrapper objects to pass the old and new values.

14.3.1 Rules about Thermometers

Given this improved version of Thermometer, it’s possible to write rules that react
to temperatures. If this class and the Simulator class have been compiled and are
available on the CLASSPATH, the following code will print a warning message after
a short interval. Remember that all the code for the HVAC Controller is available
from this book’s web site:

;; Create a simulator
(bind ?hardware (new control.Simulator 3))

;; Monitor the temperature on the first floor
(defclass Thermometer control.Thermometer)
(definstance Thermometer
 (new control.Thermometer ?hardware 1))

;; Report when the temperature gets to be over 72
(defrule report-high-temperature
 (Thermometer (reading ?r&:(> ?r 72)))
 =>
 (printout t "It's getting warm on the first floor" crlf)
 (halt))

(run-until-halt)
(exit)

The defclass function (first discussed in section 6.5) tells Jess that you’re going
to define shadow facts for objects of a certain class (here control.Thermometer).
The definstance function installs an object of that class into Jess. Finally, the
rule here matches only Thermometers that are reading over 72 degrees. The tem-
peratures in the simulator start at 70 and drift up quickly, so this rule fires after a
short interval. Notice how once a JavaBean is installed into Jess, it looks just like
an ordinary fact, and the Thermometer pattern that matches the Bean here is just
an ordinary pattern. You use (run-until-halt) instead of(run) because you
want Jess to wait for the rule to be activated—the agenda will be empty when you
call (run-until-halt), but when the temperature becomes high enough, the
rule will activate and fire.

Writing the JavaBeans 233
14.3.2 Writing the other Beans

The Hardware interface, like the C library it wraps, represents the state of a vent
as a Boolean value and the state of a heat pump as an integer. Because symbols
like open and closed would be easier to work with than the corresponding Bool-
ean values true or false, it would be a good idea to write the Vent and HeatPump
JavaBeans to use meaningful strings as property values. You need to convert both
ways between these symbols and the underlying integer and Boolean values, and
you’ll need to do so in the code you write in the next chapter, too, so let’s isolate
the code to do these conversions in a single class named State. Part of the
straightforward State class is shown in listing 14.4.

package control;

public class State {
 public static final String
 OPEN="open",
 CLOSED="closed",
 OFF="off",
 HEATING="heating",
 COOLING="cooling";

 public static String vent(boolean val) {
 return val ? OPEN : CLOSED;
 }

 public static boolean vent(String val) {
 if (val.equals(OPEN))
 return true;
 else if (val.equals(CLOSED))
 return false;
 else
 throw new IllegalArgumentException(val);
 }

 // Analagous heatpump() methods not shown
}

By collecting these conversions together in a single class and defining the symbols
as constants in one place, you may avoid a lot of debugging.

The Vent bean
The other JavaBeans you need to write are a little different from the Thermometer
class. Whereas the Hardware interface only has a method for reading the temper-

Listing 14.4 Converting between the Hardware states and convenient
symbolic names

234 CHAPTER 14
The reality connection
ature, there are methods for both getting and setting the heat-pump and vent
states. The corresponding HeatPump and Vent Beans therefore need both setting
and getting methods. Calling Vent.setState (for example) should fire a Proper-
tyChangeEvent. Of course, there should also be a background thread watching
for changes from the outside. You can reuse the BeanSupport base class to help
implement the event support. The Vent class is shown in listing 14.5. Note how it
uses State to convert between Boolean values and the symbolic constants open
and closed. The HeatPump class (not shown) is very similar.

package control;

public class Vent extends BeanSupport
 implements Runnable {
 private Hardware m_hardware;
 private int m_floor;
 private boolean m_oldState;

 public Vent(Hardware hw, int floor) {
 m_hardware = hw;
 m_floor = floor;
 new Thread(this).start();
 }

 public int getFloor() {
 return m_floor;
 }

 public String getState() {
 return State.vent(m_hardware.getVentState(m_floor));
 }

 public void setState(String szState) {
 boolean state = State.vent(szState);
 m_hardware.setVentState(m_floor, state);
 m_pcs.firePropertyChange("state",
 new Boolean(m_oldState),
 new Boolean(state));
 m_oldState = state;
 }

 public void run() {
 while (true) {
 boolean state = m_hardware.getVentState(m_floor);
 m_pcs.firePropertyChange("state",
 new Boolean(m_oldState),
 new Boolean(state));
 m_oldState = state;

Listing 14.5 A JavaBean to represent an automated vent

Summary 235
 try { Thread.sleep(1000); }
 catch (InterruptedException ie) { return; }
 }
 }
}

14.4 JavaBeans and serialization

The notion of pickling is part of the JavaBeans concept. The state of an application
made out of JavaBeans is fully specified by the values of all the properties of those
Beans together with information about the connections between the Beans. A Java-
Beans framework can create an instant application by storing the property values
and connection information in a file and then later reconstituting the original
Beans. Generally, Java’s serialization API is used to do the pickling, so most Java-
Beans implement the java.io.Serializable interface. It’s easy to add this capa-
bility to your own JavaBeans: just declare that the class implements Serializable.
There are no methods in the Serializable interface; it is a tagging interface used
to signify to the Java virtual machine that it is OK to serialize the data from
instances of the class.

 Jess includes two built-in functions, bload and bsave, that can save and
restore Jess’s state on any Java input and output streams using Java’s serialization
API. If you intend to use these functions, be sure any Java objects you add to work-
ing memory implement java.io.Serializable, or these functions will fail. You
won’t be using bload or bsave in the HVAC Controller application, so it won’t be
necessary to make the Beans from this chapter implement this interface.

14.5 Summary

In this chapter, you began the work of using Jess to control the HVAC systems of an
office building. You defined a Java interface to represent Acme HVAC Systems’ C
language library. You wrote a simulator in Java to test your control algorithms
against that interface. You then wrote some JavaBeans, which you can inject into
Jess’s working memory so that Jess can monitor the state of the HVAC system in real
time. The sample rule in section 14.3.1 suggests how these JavaBeans will be used.

 In the next chapter, you will write additional Java functions to help control the
HVAC systems. You will then use these Java functions to extend the Jess language
by adding new commands. While we’re at it, we’ll look at Jess’s extension facilities
in general, and the jess.Userfunction interface in particular, and you’ll learn
how to write a range of different Jess extensions.

236 CHAPTER 14
The reality connection
 Armed with all the Java code developed in this and the next chapter, writing
the rules to control the HVAC system will be straightforward. That will be the task
of chapter 16.

Extending the Jess language
In this chapter you’ll…
■ Be introduced to the Userfunction interface
■ Learn to extend the Jess language
■ Write Jess functions to interface with HVAC

hardware
237

238 CHAPTER 15
Extending the Jess language
The HVAC Controller system you’re writing needs to be able to switch the various
heat pumps and vents on and off in response to changing temperatures. Although
it would be possible to do this just by using the (modify) function on the shadow
facts representing the devices, that approach won’t always be convenient. Further-
more, the rules need access to other functions in the Hardware interface that
aren’t used by the JavaBeans. It would be best to have a simple and consistent
interface to all these capabilities.

 To accomplish this, you’ll add some new functions to the Jess language itself.
You’ll define these functions in Java, package them together, and provide a simple
mechanism for getting them loaded into Jess. Once you’ve done this, the func-
tions will be indistinguishable from any of Jess’s built-in functions. In this chapter,
I’ll describe the general mechanism for adding new functions to the Jess lan-
guage, and you’ll apply it to the specific application.

15.1 The Userfunction interface

In previous chapters, you’ve seen many examples of calling Java functions from
the Jess language. In chapter 13, you wrote an entire graphical interface this way.
The Jess language is wonderfully expressive when you’re writing logical condi-
tions. For many routine tasks, though, Jess language code is more verbose than
the equivalent Java code would be. There are even some things (in particular,
manipulating multidimensional arrays) that you can’t do from the Jess language.
These tasks should be done in Java (the old proverb about using the right tool for
the right job comes to mind).

 For these cases where writing Jess code alone isn’t enough, Jess includes the
Userfunction interface. If you implement Userfunction in a Java class, Jess can
invoke your class like any other Jess function. In fact, all of Jess’s built-in functions
are themselves implementations of Userfunction.

 The Userfunction interface is quite simple—it contains only two Java method
declarations:

package jess;

public interface Userfunction {
 String getName();
 Value call(ValueVector vv, Context context)
 throws JessException;
}

I’ll discuss each of these methods quickly here, and then explore each of them at
greater length in the following sections.

The Userfunction interface 239
15.1.1 The getName method

The getName method should return the name Jess will use for the function. Any
legal Jess symbol (see section 4.1.2) can be a function name, including weird ones
like <= and * (of course, those are already taken). The only important thing to
remember about implementing getName is that it should always return the same
name for a given object: A Userfunction can’t change its name over time. Jess
keeps Userfunction objects in a hash table using the name as the key, so chang-
ing the name would corrupt this data structure.

 A typical getName implementation looks like this:

public String getName() {
 return "kill";
}

Some implementations are more complex (see section 15.4.2). This Userfunc-
tion will be callable from Jess using the name kill—that is, (kill).

15.1.2 The call method

The most important part of a Userfunction is its call method. Jess invokes the
call method when your Userfunction is called from Jess language code. The
first argument to the function is a list of the arguments your function was called
with, and the second argument is an execution context—basically, your Userfunc-
tion’s handle to Jess itself. You’ll learn about Jess’s ValueVector, Value, and Con-
text classes in the following sections.

 A very simple implementation of call for kill might look like this:

public Value call(ValueVector vv, Context context) {
 System.exit(-1);
 return null;
}

The kill function kills the program and returns an error status to the operating
system; it’s similar to Jess’s built-in exit function (which calls System.exit(0)).
This call method doesn’t really return a value to Jess, because the method never
returns—although the Java compiler insists you return something, so I used null.

15.1.3 Loading a Userfunction into Jess
You’ve written a Userfunction of your own containing the two methods described
so far, and you’d like to try it out. Let’s say you’ve written a class named
org.me.Kill that implements the Userfunction interface using the two methods.
You can load it into Jess from the command prompt using the load-function
function:

240 CHAPTER 15
Extending the Jess language
Jess> (load-function org.me.Kill)
TRUE

Then you can call it like any other Jess function:

Jess> (kill)
%

(The % symbol is a system prompt: kill exits to the operating system.) From Java,
you can create an instance of your Userfunction class and install it using the
addUserfunction() method in the jess.Rete class.

 kill is OK for a first attempt, but it doesn’t let you specify the status code to be
passed to System.exit. You’ll fix that in the next section.

15.2 Handling arguments

The first parameter to call is a jess.ValueVector. The jess.ValueVector class
is Jess’s internal representation of a list, and therefore it has a central role in pro-
gramming with Jess in Java. The ValueVector class is used to represent plain lists,
whereas specialized subclasses are used as function calls (jess.Funcall) and facts
(jess.Fact). Other classes, like jess.Deftemplate, use ValueVectors internally.

 Working with ValueVector is simple. Its API is reminiscent of standard con-
tainer classes like java.util.Vector. Like that class, it is a self-extending array:
When new elements are added, the ValueVector grows in size to accommodate
them. Here is a bit of example Java code in which you create the Jess list (a b c):

ValueVector vv = new ValueVector();
vv.add(new Value("a", RU.ATOM));
vv.add(new Value("b", RU.ATOM));
vv.add(new Value("c", RU.ATOM));

The get method retrieves an element from the ValueVector using a zero-based
index. Continuing the previous example:

// Prints "b"
System.out.println(vv.get(1));

When your Userfunction’s call method is invoked, the first element of the Val-
ueVector argument is the name of your function, and the subsequent elements
are the arguments that were passed to your function.

15.2.1 How many arguments?

You can get the total length of the ValueVector using the size() method. It fol-
lows that any Userfunction can take a variable number of arguments, unless you
take specific action to enforce a certain length for your argument list. If your

Handling arguments 241
Userfunction accepts precisely one argument, you might begin your implemen-
tation of call like this:

public Value call(ValueVector vv, Context context)
 throws JessException {
 if (vv.size() != 2)
 throw new JessException("kill",
 "Wrong number of arguments", vv.size()-1);
 ...
}

On the other hand, a function that takes an arbitrary list of arguments could use
size() as the upper limit of a processing loop.

15.2.2 Using arguments
Suppose that the one argument to kill is the value that should be passed to Sys-
tem.exit(). You might write the following:

public Value call(ValueVector vv, Context context) {
 if (vv.size() != 2)
 throw new JessException("kill",
 "Wrong number of arguments", vv.size()-1);
 System.exit(vv.get(1).intValue(context));
 return null;
}

The values returned by ValueVector.get() are always jess.Value objects. A
jess.Value is a kind of generic wrapper for any Jess data object—something like
a VARIANT in Microsoft COM programming, or an Any in CORBA programming.
Once it is constructed, a Value’s type and contents cannot be changed; it is immu-
table. (You might know that Java defines many such immutable classes; Integer
and String are two well-known examples.) Value has a type() member function
you can call to find out what kind of data a Value object contains; it returns one of
the constants from the jess.RU class (see table 15.1). Many of these types are dis-
cussed in chapter 5.

 For each type, table 15.1 also lists a method that tries to return a value appro-
priate for that type. You’ve already seen the intValue method, which tries to
return a Java int based on the data held in the Value object. In general, a Value
tries to automatically convert the data it holds to the type you request; for
instance, if you call intValue() on a Value holding "1.0" as an RU.STRING, the
string will be parsed and the method will return 1. There are limits to this capabil-
ity, of course. If some data cannot be converted to the requested type, intValue
(and all the other methods in table 14.1) will throw jess.JessException.

242 CHAPTER 15
Extending the Jess language

15.2.3 Resolving variable arguments

If kill is called like this:

Jess> (kill ?errorCode)
%

then the type of the argument Value object is RU.VARIABLE. If you call intValue
on such a Value, the variable is automatically resolved, and the return value is the
value of the variable. This is why intValue and friends require a jess.Context as
an argument. Context objects contain information about the situation in which
your function was called, including a pointer to the Rete object and, more rele-
vant here, the current values of all the variables that have been defined.

 In many cases, the fact that each argument might be a variable is irrelevant—
variables are resolved automatically. But because looking up the value of a variable
is a more expensive operation than just fetching the data from a Value, if you’re
going to reference a Value more than once in your Userfunction, it may be more
efficient to separate the value resolution from the data access using the
resolveValue method. You can call resolveValue on any Value. For Value
objects of most types, resolveValue is a very inexpensive operation that returns
the Value object itself. But for some types, it returns a new “real” Value. For
RU.VARIABLE and RU.MULTIVARIABLE types, this is the value of the variable. The

Table 15.1 Value types defined in the jess.RU class, and the methods used to retrieve each type

Name Method Meaning

ATOM atomValue() Jess symbol

STRING stringValue() Jess string

INTEGER intValue() Jess integer

VARIABLE variableValue() Jess variable

MULTIVARIABLE variableValue() Jess multifield

FACT factValue() Jess fact

FLOAT floatValue() Jess float

FUNCALL funcallValue() Jess function call

LIST listValue() Jess list

EXTERNAL_ADDRESS externalAddressValue() Java object

LONG longValue() Java long

Handling arguments 243
following (admittedly contrived) example computes the fractional part of a real
number; it uses resolveValue to avoid looking up the value of its argument twice:

public Value call(ValueVector vv, Context context) {
 Value num = vv.get(1).resolveValue(context);
 double frac =
 num.floatValue(context) - num.intValue(context);
 ...
}

Note that the variableValue method returns the name of the variable actually
passed, and Context has a public method setVariable that you can use to set a
variable’s value by name. This suggests that Jess’s built-in bind function could sim-
ply be written as follows:

package jess;

class Bind implements Userfunction {
 public String getName() { return "bind"; }

 public Value call(ValueVector vv, Context c)
 throws JessException {
 Value rv = vv.get(2).resolveValue(c);
 c.setVariable(vv.get(1).variableValue(c), rv);
 return rv;
 }
}

And in fact, it is. Note that because ValueVector.get will throw an exception if
there aren’t enough arguments, and variableValue will throw an exception if
vv.get(1) isn’t a variable, this function (like many Userfunctions) doesn’t have
to do any explicit error checking.

15.2.4 Resolving function call arguments

What happens if kill is called like this?

Jess> (kill (+ 1 1))
%

What is the type of the first argument in this case? It is an RU.FUNCALL value—a
representation of the function call. In many languages (Java is just one example),
all the arguments to a function are fully resolved before the function is invoked.
Jess, however, works differently—none of the arguments is resolved before you see
them. Just as for variables, function call arguments are resolved automatically by
methods like intValue. But now you should see why using resolveValue is impor-
tant—not using it could result in function call arguments being invoked multiple
times!

244 CHAPTER 15
Extending the Jess language
 A similar but subtler problem arises if you try to store an argument in a Java
data structure, or otherwise arrange to have a Value object live longer than the
body of your call method. If you do this with a value of a simple type, there are
no problems. But if you store a value of type RU.VARIABLE or RU.FUNCALL, it often
won’t be possible to resolve the value later, because you can’t resolve a variable
without the relevant jess.Context object. If you look back at the implementation
of bind in the previous section, you’ll see that before using the second argument
as an argument to setVariable, I was careful to call resolveValue to get the real
value of the argument. That way, calling (bind ?x (+ ?y 1)) sets ?x equal to one
greater than the current value of ?y. If bind didn’t use resolveValue, ?x would
hold the function call (+ ?y 1). Accessing ?x might give a value that changed over
time as ?y changed, or it might give an error if ?y isn’t defined when ?x is read.

 Just as bind’s implementation takes advantage of Jess’s lazy resolution to allow
it to set the value of a variable, control structures use it to allow them to call a
function multiple times. You can take advantage of this functionality to write your
own control structures. Here’s an implementation of a Userfunction named n-
times that evaluates its second argument a number of times specified by its first
argument:

import jess.*;

public class NTimes implements Userfunction {
 public String getName() { return "n-times";}
 public Value call(ValueVector vv, Context c)
 throws JessException {
 int count = vv.get(1).intValue(c);
 Value expr = vv.get(2);
 for (int i=0; i<count; ++i)
 expr.resolveValue(c);
 return Funcall.TRUE;
 }
}

You can compile this class, load the function into Jess, and call it:

Jess> (load-function NTimes)
TRUE
Jess> (n-times 10 (printout t "*"))
**********TRUE
Jess>

Each time the Java method resolveValue is called, the Jess function in expr is
evaluated, and so this line of code prints 10 asterisks. This is how Jess’s built-in
control structures like while and foreach are implemented.

Returning a value 245
15.3 Returning a value

The call method returns a Value object. You can return one of call’s argu-
ments, return one of a handful of constants in the jess.Funcall class, or create a
new Value of your own. You should never return one of call’s arguments directly;
rather, evaluate the argument by calling resolveValue on it, and return the result
instead. Failing to do this will result in undefined behavior.

 The Funcall class contains a few constants you can use as function return values:

■ TRUE—Boolean true

■ FALSE—Boolean false

■ NIL—No value

■ NILLLIST—An empty list

■ EOF—End of file

Many functions return TRUE when there is no other sensible return value. Java’s
null is not a legal return value for call. Jess’s equivalent of null is the symbol
nil; you can always therefore return Funcall.NIL. The function printout is one
of the few built-ins that return nil. This value makes sense for printout because
nil return values aren’t displayed by the Jess command prompt.

15.3.1 Constructing Value objects

Value objects are constructed by specifying the data and (usually) the type. The
type is one of the constants listed in table 15.1. Each overloaded constructor
assures that the given data and the given type are compatible. Note that for each
constructor, more than one value of the type parameter may be acceptable. It’s
usually obvious which types can be created using each constructor; for example,
you can only construct RU.FLOAT objects using the constructor that takes a double
argument. The available constructors in jess.Value are as follows:

■ public Value(Object o) throws JessException

■ public Value(String s, int type) throws JessException

■ public Value(Value v)

■ public Value(ValueVector f, int type) throws JessException

■ public Value(double d, int type) throws JessException

■ public Value(int value, int type) throws JessException

Value has a number of subclasses that are used to hold some specialized kinds of
data. Variable, FuncallValue, FactIDValue, and LongValue are the four of most

246 CHAPTER 15
Extending the Jess language
interest to us. When you want to create a value to represent a variable, a function
call, a fact, or a Java long, you must use the appropriate subclass. Refer to the API
documentation for more information about these classes.

15.4 Beyond simple examples

We’ve covered all that you need to know to write many useful Jess extension func-
tions. In this section, we’ll look at some subtle techniques that can make your
Userfunctions even more powerful.

15.4.1 Holding state

A Userfunction is really just an ordinary Java class, and so it can do things that
ordinary Java classes do. In particular, it can contain member variables. Many of
Jess’s built-in functions contain member variables that hold data for the functions
to operate on. For instance, the class that implements the bag function (which lets
you create, modify, and maintain collections of objects) includes a Hashtable
member variable that is used to store all the collections you create. When you load
a Userfunction into Jess, only a single object of your class is created; that single
object is used every time the Userfunction is called, so the values of those mem-
ber variables are preserved.

 Note that the Rete class has a method findUserfunction that returns the
object that implements a given function. If you know the class name of that func-
tion, you can retrieve the object, cast it to the known type, and retrieve any state it
holds. This is a convenient way to write a collection of cooperating functions that
must share state. Recall that a single Java program might contain multiple
instances of the jess.Rete class. If you install a separate instance of your
Userfunction into each one, then each one will maintain its own state, separately.

 When you write the Userfunctions for the HVAC Controller system, the
classes will include a member variable to point to the Hardware object on which
they operate. The multiple classes will use findUserfunction to share this state.

15.4.2 Multiple personalities

Consider this trivial Userfunction class:

include jess.*;

public class AnyString implements Userfunction {
 private String m_name;
 public AnyString(String name) { m_name = name;}
 public String getName() return m_name;

Beyond simple examples 247
 public Value call(ValueVector vv, Context c) {
 return new Value(m_name, RU.STRING);
 }
}

It can be constructed using any string; when it is registered with Jess, that string
will be its name. It will return the same string as its result. You won’t be able to use
load-function to load this class into Jess, because load-function won’t let you
specify the constructor argument; instead you can call the addUserfunction
method in the Rete class from Java.

 Although this function isn’t useful as is, it illustrates an important principle:
One Java class can implement multiple Userfunctions. A call method can
choose from among several possible actions depending on the name the function
is invoked with. If several Userfunction implementations need to share code (as
the HVAC functions surely will), packaging them into a single class this way makes
sense. Some of Jess’s built-in functions use this technique.

15.4.3 Userfunctions and serialization

As we discussed in section 14.4, Jess’s bload and bsave functions use Java’s serial-
ization API to preserve and restore Jess’s state from any storage medium: a file, a
network pipe, and so forth. More formally, these functions save or restore all the
member data of the active jess.Rete object. Therefore, all the Java objects that
are part of the Rete object’s state should implement the java.io.Serializable
interface. This is a tagging interface, which means it contains no methods, and just
serves as a signal to the Java virtual machine that serializing objects of the given
class is OK. Because the Userfunctions registered with Jess become part of a Rete
object’s state, it is generally important that all your Userfunction classes imple-
ment this interface—unless you’re sure you’ll never use bload and bsave when
they are registered.

 Because the current program will be controlling hardware (which obviously
can’t be stored in a file!), it won’t be necessary for the Userfunction classes to
implement Serializable, either. It would not be reasonable to expect bload to
be able to restore the control program to a consistent state from offline storage.

15.4.4 Grouping functions with Userpackage

If you’ve written a group of related Userfunctions—either in a single class or in
a group of classes—it would be convenient to provide a way for them to be
loaded together into Jess with a single function call. This is especially true if
your Userfunction objects need constructor arguments, like the AnyString

248 CHAPTER 15
Extending the Jess language
class earlier. The jess.Userpackage interface takes care of this for you. User-
package has one method, add; you implement add to initialize and install any
number of Userfunction objects. Here’s a simple Userpackage to install a few
AnyString functions:

import jess.*;

public class AnyStringPackage implements Userpackage {
 public void add(Rete engine) {
 engine.addUserfunction(new AnyString("fred"));
 engine.addUserfunction(new AnyString("george"));
 engine.addUserfunction(new AnyString("ron"));
 engine.addUserfunction(new AnyString("percy"));
 }
}

You can install a Userpackage into Jess using the load-package function or the
addUserpackage method in the Rete class. In the next section, you will finally
write the HVAC functions and collect them in a Userpackage.

15.5 The HVAC functions

You’ve learned everything you need to know to develop the Userfunctions for
the HVAC system. You need to be able to:

■ Create a simulator, including a GUI

■ Get the number of floors and heat pumps

■ Determine which heat pump goes with which floor

■ Operate the heat pumps and vents

Let’s tackle these tasks one at a time, in this order.

15.5.1 Creating a simulator

The first command you will write creates a hardware simulator, attaches a GUI to it,
and stores it somewhere where the other functions can access it. If you assume that
each individual instance of Jess (each individual jess.Rete object) controls only
one building’s systems at a time, then storing a reference to the simulator in the
Userfunction object itself will work well. Name the Jess function init-simulator;
here is the implementation:

package control;
import jess.*;

class InitSimulator implements Userfunction {

The HVAC functions 249
 static final String NAME = "init-simulator";
 private Simulator m_simulator;
 public static Simulator getSimulator(Context c) {
 Rete engine = c.getEngine();
 InitSimulator is =
 (InitSimulator) engine.findUserfunction(NAME);
 return is.m_simulator;
 }
 public String getName() { return NAME; }
 public Value call(ValueVector vv, Context c)
 throws JessException {
 int nFloors = vv.get(1).intValue(c);
 m_simulator = new Simulator(nFloors);
 new SimulatorGUI(m_simulator);
 return new Value(m_simulator);
 }
}

This function is fairly straightforward. It accepts one argument: the number of
floors in the simulated building. The Userfunction creates a simulator and
returns it as an RU.EXTERNAL_ADDRESS, via the Value constructor that accepts a
java.lang.Object argument.Note that this class, like all the Userfunction
classes you will write, is not public; it is meant to be loaded only via the Userpack-
age you will define at the end of this section.

 The static getSimulator method is an implementation of a technique men-
tioned in the previous section: It finds an InitSimulator object registered in a
given Rete object and extracts and returns its state (here the m_simulator mem-
ber variable). Several of the other Userfunctions will use getSimulator to find
their associated InitSimulator object and retrieve the Simulator.

15.5.2 Counting devices

As you have seen, a single Userfunction class can have multiple personalities: It
can behave differently depending on the name it was registered with. You’ll use
this trick to write one class to implement both a function to return the number of
heat pumps and a second function to return the number of floors in the building:

package control;
import jess.*;

class CountDevices implements Userfunction {
 static final String N_HEATPUMPS = "n-heatpumps";
 static final String N_FLOORS = "n-floors";
 private String m_name;
 public CountDevices(String name) {
 m_name = name;
 }

250 CHAPTER 15
Extending the Jess language
 public String getName() { return m_name; }
 public Value call(ValueVector vv, Context c)
 throws JessException {
 Rete engine = c.getEngine();

 Simulator sim = InitSimulator.getSimulator(c);
 int nHeatPumps = sim.getNumberOfHeatPumps();
 if (m_name.equals(N_HEATPUMPS))
 return new Value(nHeatPumps, RU.INTEGER);
 else
 return new Value(nHeatPumps/3, RU.INTEGER);
 }
}

The CountDevices class retrieves its associated InitSimulator object from Jess to
get access to the simulator; once it has that, the rest of the work is trivial. One
thing worth noticing about this class and the previous one is that the function
names are all defined as static final string variables like InitSimulator.NAME and
CountDevices.N_FLOORS. Each of the function names is used several times: in
getName; possibly as a constructor argument; and, as here, sometimes in the pro-
gram logic, for those functions that decide what to do based on their name. It’s
important that every use of the name match exactly, so it’s good programming
practice to define each name as a constant in one place.

15.5.3 Matching heat pumps and floors

Given the number of a floor, which heat pump corresponds to it? Heat pump 1
services floors 1, 2, and 3, whereas heat pump 2 services floors 4, 5, and 6. One
way to compute this relationship is to subtract 1 from the floor number, perform
integer division by 3, and add 1 to the result. This is not a slow calculation, but it’s
a bit messy, so you implement it in Java:

package control;
import jess.*;

class WhichPump implements Userfunction {
 public String getName() { return "which-pump"; }
 public Value call(ValueVector vv, Context c)
 throws JessException {
 int floor = vv.get(1).intValue(c);
 int heatPump = (floor-1)/3 + 1;
 return new Value(heatPump, RU.INTEGER);
 }
}

This basic Userfunction should be familiar to you by now.

The HVAC functions 251
15.5.4 Operating the hardware

You need several Userfunctions to read and change the operating mode of each
heat pump and to check, open, and close the vents. It would be nice if you could
use symbolic names for the heat pump and vent states, something like this:

Jess> (get-hp-state 2)
cooling
Jess> (set-vent-state 4 open)

This is easy enough to implement: Because there are so few alternatives, the call
methods can contain multiway branches or switch statements to handle each of
the possible options. The function to read the heat pump state looks like this:

package control;
import jess.*;

class ReadHeatPump implements Userfunction {
 public String getName() { return "get-hp-state"; }
 public Value call(ValueVector vv, Context c)
 throws JessException {
 int heatPump = vv.get(1).intValue(c);
 Simulator sim = InitSimulator.getSimulator(c);
 int state = sim.getHeatPumpState(heatPump);
 try {
 return new Value(State.heatpump(state), RU.ATOM);
 } catch (IllegalArgumentException iae) {
 throw new JessException("get-hp-state",
 "Unexpected state",
 state);
 }
 }
}

This Userfunction returns symbols (values of type RU.ATOM) to represent the heat
pump states. It uses the getSimulator method from InitSimulator; the next few
classes will use this method, too.

 The Userfunction for setting the heat pump state is similar, but it must do the
mapping between state names and numeric states in the reverse order:

package control;
import jess.*;

class WriteHeatPump implements Userfunction {
 public String getName() { return "set-hp-state"; }
 public Value call(ValueVector vv, Context c)
 throws JessException {
 int heatPump = vv.get(1).intValue(c);
 Simulator sim = InitSimulator.getSimulator(c);
 String szState = vv.get(2).stringValue(c);

252 CHAPTER 15
Extending the Jess language
 try {
 int state = State.heatpump(szState);
 sim.setHeatPumpState(heatPump, state);
 } catch (IllegalArgumentException iae) {
 throw new JessException("set-hp-state",
 "Invalid state",
 szState);
 }
 return Funcall.TRUE;
 }
}

Finally, you need two more Userfunctions to read and write the state of the vents.
These are similar to the last two, but because the vent state is a Boolean value,
they are a bit simpler; the function to read a vent’s state can dispense with error
handling altogether:

package control;
import jess.*;

class ReadVent implements Userfunction {
 public String getName() { return "get-vent-state"; }
 public Value call(ValueVector vv, Context c)
 throws JessException {
 int vent = vv.get(1).intValue(c);
 Simulator sim = InitSimulator.getSimulator(c);
 boolean state = sim.getVentState(vent);
 return new Value(State.vent(state), RU.ATOM);
 }
}

class WriteVent implements Userfunction {
 public String getName() { return "set-vent-state"; }
 public Value call(ValueVector vv, Context c)
 throws JessException {
 int vent = vv.get(1).intValue(c);
 Simulator sim = InitSimulator.getSimulator(c);
 String szState = vv.get(2).stringValue(c);
 try {
 boolean state = State.vent(szState);
 sim.setVentState(vent, state);
 } catch (IllegalArgumentException iae) {
 throw new JessException("set-vent-state",
 "Invalid state",
 szState);
 }
 return Funcall.TRUE;
 }
}

Testing 253
The functions init-simulator, n-heatpumps, n-floors, which-pump, get-hp-
state, set-hp-state, get-vent-state, and set-vent-state considerably sim-
plify the rules you’ll write in the next chapter.

15.5.5 Implementing a Userpackage

Several of the functions you wrote in this section are implemented by classes that
require constructor arguments, and most of them depend on the existence of an
InitSimulator object. Therefore, it wouldn’t make sense to allow them to be
installed into Jess one at a time. Instead, they can all be installed together as a sin-
gle package using the Userpackage interface. The Userpackage for the hardware
functions is straightforward:

package control;
import jess.*;

public class HardwareFunctions implements Userpackage {
 public void add(Rete engine) {
 engine.addUserfunction(new InitSimulator());
 engine.addUserfunction(
 new CountDevices(CountDevices.N_HEATPUMPS));
 engine.addUserfunction(
 new CountDevices(CountDevices.N_FLOORS));
 engine.addUserfunction(new WhichPump());
 engine.addUserfunction(new ReadHeatPump());
 engine.addUserfunction(new WriteHeatPump());
 engine.addUserfunction(new ReadVent());
 engine.addUserfunction(new WriteVent());
 }
}

The Jess function call (load-package control.HardwareFunctions) now makes
all the Userfunctions you’ve written available from Jess.

15.6 Testing

Testing these functions by hand using the simulator GUI is easy and actually kind
of fun. Load the functions using load-package, and then call (init-simulator
9); the GUI from figure 14.2 appears. When you first see this window, all the heat
pumps are in the OFF state, and all the vents are CLOSED. The temperatures in
the right-hand column of the GUI are rising, because when the simulator is
turned on, the outdoor temperature is a scorching 110 degrees F.

 First, check that you can count devices properly using the n-heatpumps
(should return 3) and n-floors (should return 9) functions. Make sure that
which-pump returns the correct values for each floor of the building (should

254 CHAPTER 15
Extending the Jess language
return 1 for arguments 1–3, 2 for 4–6, and 3 for 7–9). You can (and should) write
automated tests for these functions, too (perhaps using the testing framework in
Appendix C).

 Now, turn on the heat pumps using set-hp-state and open the vents with
set-vent-state. You should be able to reduce the temperature of every floor by
putting each heat pump in the cooling state. Try closing individual vents to see
what happens. Try to keep each floor at 72 degrees by operating the controls your-
self; it’s quite difficult.

 Change the outdoor temperature to 50 degrees by typing into the GUI’s text
field. The temperatures should begin to drop. Switch all the heat pumps into the
heating state and try to stabilize the temperatures at 68 degrees. Not only is this
exercise a useful way to test the code you’ve written, but it may give you some
insights into the system’s behavior that will be helpful when, in the next chapter,
you write the rules to control it.

15.7 Summary

It is easy to extend the Jess language with functions written in Java. Any class that
implements the jess.Userfunction interface can act as a Jess extension func-
tion. Extensions can be loaded from Jess using load-function or from Java code
using Rete.addUserfunction. Extensions can be grouped into packages and
loaded with a single call to load-package.

 Every function built into Jess is itself a Userfunction. By implication, anything
a Jess built-in function can do, you can do in your own extension functions. By way
of example, you saw how you can manipulate variables and write your own Jess
control structures in Java. For more useful tools for doing this kind of coding,
look at the API for jess.Context class.

 In the next chapter, you will write the Jess rules for controlling the Acme
HVAC Systems devices. The rules will pattern-match the JavaBeans you developed
in chapter 14 and call the functions you wrote in this chapter. Then you’ll assem-
ble and test the complete application.

Writing the rules
In this chapter you’ll…
■ Write real-time control rules
■ Learn about fuzzy logic
■ Write a fuzzy version of the HVAC Controller
255

256 CHAPTER 16
Writing the rules
You’ve spent the last two chapters programming in Java, developing the infrastructure
for an HVAC Controller application. In this chapter, you’ll assemble all the pieces and
write the Jess rules to regulate the system. In fact, you’ll write the rules twice.

 First, you’ll write a set of rules that use simple logic and the Boolean vent states
you programmed in chapter 15 (they’re “Boolean” because they’re either open or
closed). If a given floor of the building gets too cold, its heat pump will be turned
on; when it gets too warm, its heat will be turned off. This system will work much
like a network of traditional mechanical thermostats, and it will keep the tempera-
ture stable to within plus or minus one or two degrees.

 Next, you’ll improve the control program using fuzzy logic and continuously
variable vent controls. The fuzzy rules will be able to adjust the vents to provide
optimal air flow for each floor; as a result, this second system will control the tem-
perature to within a small fraction of a degree.

 Let’s get started by developing a simple control algorithm for the HVAC system.

16.1 The control algorithm

You can get an advanced degree in the engineering of control systems. It’s a vast
and complex discipline, and we can’t hope to cover it all here. Instead, I’ll state
some commonsense principles to which your system should adhere, and then we’ll
come up with a simple, ad hoc control algorithm to satisfy these requirements.

16.1.1 Knowledge engineering with truth tables

The best expert to interview for this project would be a control systems engineer.
Ideally, he’d already be familiar with heat pumps and have experience building
control systems for them. A certified Acme HVAC Systems engineer would of
course be perfect! The world is rarely perfect, however, and most likely you’d talk
to an engineer whose specialty wasn’t HVAC control. In that case, you’d combine
knowledge from the expert with information gleaned from the Acme HVAC Systems
Installation Guide, the Acme User’s Manual, and any other documentation you could
get your hands on.

 Flowcharts are ideal for describing diagnostic systems, but they would not be
the best way to capture the collected knowledge here. A better alternative is to use
truth tables. A truth table is a chart with rows and columns that correspond to some
combination of inputs to the system. The individual entries in the table describe
the desired output of the system given those inputs. A vastly simplified truth table
for the HVAC Controller system might look like table 16.1. In the following sec-
tions, you’ll fill in the details.

The control algorithm 257

16.1.2 How heat pumps work

You may know how an air conditioner works. A working fluid (historically, often the
gas Freon) is compressed by a pump outside your house. Compressing a fluid cre-
ates heat, so a fan dissipates this heat outside. The compressed, somewhat cooled
fluid is then circulated inside the house, where it is allowed to expand quickly. Just as
compressing a fluid creates heat, an expanding gas absorbs heat. This process cools
a radiator inside the house, and a fan blows through the radiator to create a nice
cool breeze. The expanded fluid is pumped back outside to be compressed again.

 A heat pump is basically an air conditioner that can run in either direction. It
can either cool the inside of a building and expel hot air outside, or cool the out-
side air and expel the waste heat inside, heating the building.

16.1.3 Using guard lines

The number one rule of operating a heat pump is that you can’t quickly or repeat-
edly switch it between heating and cooling. If you do, the heat pump may be dam-
aged, if condensation forms and then freezes inside the pump. Industrial-grade
heat pumps can cost thousands of dollars, so this can be an expensive mistake.

 Your control system must respect this rule. One easy way to do this is to use
guard lines. There will always be some target temperature—for example, 70
degrees. If you defined your rules to heat or cool the building whenever the tem-
perature was different from precisely 70 degrees, then your system would be con-
stantly switching between heating and cooling mode, trying to get the
temperature exactly right. Instead, you’ll define a range of acceptable tempera-
tures delimited by upper and lower guard lines (which may move up or down
depending on conditions). As long as the temperature is within the valid range,
the system will be turned off. The guard lines therefore serve as a kind of buffer,
so the system can’t be rapidly cycled between operating modes. Table 16.2 is an
update truth table that includes guard lines.

Table 16.1 Oversimplified truth table for the HVAC Controller system. Each row represents one pos-
sible current heat-pump setting; each column represents one possible temperature reading.

Too Cold Just Right Too Hot

Off Start Heating Do Nothing Start Cooling

Heating Do Nothing Turn Off Turn Off

Cooling Turn Off Turn Off Do Nothing

258 CHAPTER 16
Writing the rules

16.1.4 Saving energy

There are two ways to shut off the air to a given floor: You can close the vent for
that floor or shut off the heat pump that services it. If any floor serviced by a heat
pump needs to be heated or cooled, then of course that heat pump needs to be
turned on. If a heat pump is on, and none of its floors needs service, then you
must be sure to shut off the heat pump, rather than simply closing all the vents.

16.2 Setting up

It’s time to begin writing the Jess code for the HVAC Controller. Before you do
anything else, load the Userfunctions you wrote in chapter 15:

(load-package control.HardwareFunctions)

Next you need to create a Simulator object and make it available to Jess. You can
store a reference to it in a defglobal using code like this:

(defglobal ?*hw* = (init-simulator 9))
(set-reset-globals FALSE)

The graphical monitor for the simulator will appear as soon as the first line is exe-
cuted. The call to set-reset-globals tells Jess not to reinitialize ?*hw* when
reset is called. If you didn’t call set-reset-globals, you could end up with mul-
tiple simulator GUIs on the screen, and the connections between the JavaBeans
and the simulator would be broken.

 Next you need to use defclass to tell Jess about your JavaBean classes, and
then create all the necessary JavaBeans and use definstance to connect the hard-
ware to Jess. You need control.Vent and control.Thermometer objects for each
floor and a control.HeatPump for every three floors. Because Jess doesn’t have a
built-in function that works like Java’s for loop, you use Jess’s while instead:

;; Tell Jess about the JavaBean classes
(defclass Thermometer control.Thermometer)

Table 16.2 Truth table for the HVAC Controller system, including guard lines. The two added col-
umns represent the regions between the set point and each guard line.

Too Cold Lower Guard Just Right Upper Guard Too Hot

Off Start Heating Do Nothing Do Nothing Do Nothing Start Cooling

Heating Do Nothing Do Nothing Do Nothing Turn Off Turn Off

Cooling Turn Off Turn Off Do Nothing Do Nothing Do Nothing

Controlling the heat pumps 259
(defclass Vent control.Vent)
(defclass HeatPump control.HeatPump)

;; Create the Vent and Thermometer Beans
(bind ?n (n-floors))
(while (> ?n 0) do
 (definstance Thermometer
 (new control.Thermometer ?*hw* ?n))
 (definstance Vent (new control.Vent ?*hw* ?n))
 (bind ?n (- ?n 1)))

;; Create the HeatPump Beans
(bind ?n (n-heatpumps))
(while (> ?n 0) do
 (definstance HeatPump (new control.HeatPump ?*hw* ?n))
 (bind ?n (- ?n 1)))

If you use the batch command to execute what you’ve written so far, you can
then use the facts command to check that all the shadow facts exist. If you
check them repeatedly, you’ll see that the temperature data changes over time
and stays in sync with the readings in the simulator GUI. If you’re using the Jess-
Win IDE (http://herzberg.ca.sandia.gov/jess/user.shtml), you can watch the facts
change in real time.

16.3 Controlling the heat pumps

The heat pumps are controlled by a small cluster of rules. You control the vents
from a separate set of rules, for clarity’s sake. First, if a floor is outside the accept-
able temperature range and its heat pump is off, its corresponding heat pump
needs to be turned on and put in the correct mode. This corresponds to the
behavior in truth table 16.2. The rule floor-too-cold-pump-off handles the case
where a floor is too cold; a separate floor-too-hot-pump-off rule (not shown) is
also needed:

;; Temperature set point
(defglobal ?*set-point* = 70)

;; Deffunctions
(deffunction too-cold (?t)
 (return (< ?t (- ?*set-point* 2))))

;; Rules
(defrule floor-too-cold-pump-off
 (Thermometer (floor ?f) (reading ?t&:(too-cold ?t)))
 (HeatPump (state "off") (number ?p&=(which-pump ?f)))
 =>
 (set-hp-state ?p heating))

260 CHAPTER 16
Writing the rules
There are a few things to notice about this rule. We used several of the Userfunc-
tions defined in the last chapter to keep this rule simple. The test (number
?p&=(which-pump ?f)) means “if this heat pump is the one that services floor ?f.”
You define a deffunction named too-cold that deals with the guard line con-
cept; here, the lower guard line is defined as 2 degrees below the temperature set
point (in the defglobal ?*set-point*). Finally, you’re able to use symbolic
names for the state of the heat pump. Words like off and heating make the rule eas-
ier to understand. Note that in the test (state "off") you have to enclose the
name of the state in quotes, so that it’s a string rather than a symbol. Doing so is
necessary because you’re matching a JavaBean property, and JavaBeans can’t have
symbols as property values—only strings.

16.3.1 Enough is enough
If all the floors serviced by a heat pump are within the acceptable temperature
range, the heat pump should be shut off. Exactly what should be the criteria for
shutting off the pumps? If the heat pump is in cooling mode, there are three pos-
sible criteria:

■ You run the heat pump until too-hot is not true for any floor.

■ You run the heat pump until the temperature on each floor is below the set
point.

■ You run the heat pump until too-cold is true for each floor.

The first case would lead to rapid cycling of the heat pump, because when the
temperatures went below the upper guard line, the pump would be turned off,
and when they went above the upper guard line, the pump would be turned on.
As I’ve said, rapid mode switching is bad for heat pumps, so you don’t want to do
this. In addition, the average temperature would be the temperature at the guard
line, not near the actual set point.

 The third case would lead to nice, slow switching between the cooling and off
states and an average temperature (the midpoint between the lowest and highest
operating temperatures) equal to the set point. The temperature would cycle
between the upper and lower guard lines. Unfortunately, this means that at the
moment the heat pump was switched off, all the floors connected to it might be
too cold. As soon as the pump was switched off, the state of the system would be
indistinguishable from the case where the building needed to be heated, so the
heating rules would switch the heat pump into heating mode. Switching back and
forth between heating and cooling mode is bad for a heat pump, so this alterna-
tive is also unacceptable.

Controlling the heat pumps 261
 The second case, running until the temperature dips below the set point, leads
to gradual switching, because a range of temperatures is allowed. The average
temperature is then above the set point—most of the time, the room is warmer
than the set temperature, but not by much. Most importantly, though, the heat
pump cycles between cooling mode and off mode without any danger of being
switched into heating mode, which is exactly what you want. Therefore, your rule
will use the actual set point as the shut-off criterion. If the heat pump is in cooling
mode and the temperature of all connected floors is below the set point, then the
heat pump will be shut off. This behavior corresponds to what is shown in the
Cooling row in table 16.2. A similar argument would let you substitute heating and
above for cooling and below.

 Again, you’ll write this as two rules, and I’ll just show the cooling version here:

(defrule floors-cool-enough
 (HeatPump (state "cooling") (number ?p))
 (not (Thermometer (floor ?f&:(= ?p (which-pump ?f)))
 (reading ?t&:(> ?t ?*set-point*))))
 =>
 (set-hp-state ?p off))

This rule could be rendered in English as “if there is a heat pump in the cooling
state, and there are no floors serviced by this pump with temperature above the
set point, then turn the heat pump off.”

16.3.2 The moment of truth

These four rules are enough to regulate the temperatures of the HVAC simulator.
Adding the vent control rules will refine the behavior, but the basic heating and
cooling control is already in place. To make the program work, you need to add
calls to set-vent-state to open all the vents manually, of course.

 Testing the system at this stage shows that the rules defined so far suffice to
turn the heat pumps on and off. Without the vent-control rules, however, the tem-
perature differential between floors has a tendency to force the system to over-
shoot. When the system is in cooling mode, some floors are cooled below the
lower guard line, while others are still in the comfort zone. Unfortunately, this set
of rules turns the heat pump off and then immediately puts it into heating mode
under these conditions. You need to add rules to equalize the temperature
between floors so this won’t happen.

262 CHAPTER 16
Writing the rules
16.4 Controlling the vents

Although this may seem obvious, it’s worth stating for the record; the vents have
two purposes:

■ To let the hot or cold air in, when needed

■ To keep it out when it’s not

Therefore, you need two different sets of rules to control the vents: rules that
open the vent when a floor needs service, and rules that close it when the floor’s
temperature is acceptable. The only thing you need to decide is where the impor-
tant temperatures are. Because you want the vents to help moderate the system,
you’ll switch them based on the set point temperature. Note that because a vent
doesn’t accomplish anything unless the heat pump is on, you need to include the
state of the heat pump in each rule. Table 16.3 is a truth table for what to do when
the heat pump for a floor is in cooling mode.

This truth table could lead to oscillations of the vents. If the temperature were
hovering right at the set point, the vents might open and close rapidly. If this oscil-
lation became a problem (and in a real system, it would, because the vents would
be noisy), then you could establish a second set of guard lines, closer together
than the ones you’re using for the heat pump. The vents could then be opened or
closed only when the temperature passed these guard lines. We won’t complicate
the HVAC Controller system with this detail, but you should keep an eye out for
the problem during testing.

16.4.1 The vent rules

Now you’re ready to write the vent rules. The following rule says that if the heat
pump for a floor is in cooling mode, the vent is closed, and the temperature is
above the set point, then the vent should be opened:

(defrule floor-too-hot-vent-closed
 (HeatPump (state "cooling") (number ?p))

Table 16.3 The truth table for vent operation when the heat pump for a floor is in cooling mode. The
rows correspond to the current vent state.

Too Cold Lower Guard Just Right Upper Guard Too Hot

Open Close Vent Close Vent Do Nothing Do Nothing Do Nothing

Closed Do Nothing Do Nothing Do Nothing Open Vent Open Vent

Testing the whole system 263
 (Vent (state "closed") (floor ?f&:(eq ?p (which-pump ?f))))
 (Thermometer (floor ?f)
 (reading ?t&:(> ?t ?*set-point*)))
 =>
 (set-vent-state ?f open))

Similarly, if the heat pump for a floor is cooling, the floor is too cold, and the vent
is open, then the vent should be closed:

(defrule floor-too-cold-vent-open
 (HeatPump (state "cooling") (number ?p))
 (Vent (state "open") (floor ?f&:(eq ?p (which-pump ?f))))
 (Thermometer (floor ?f)
 (reading ?t&:(< ?t ?*set-point*)))
 =>
 (set-vent-state ?f closed))

You need analogous rules floor-too-cold-vent-closed and floor-too-hot-
vent-open, dictating what to do when the heat pump is in heating mode; these
aren’t shown here, but they’re very similar to the other pair. The four rules corre-
spond to the four cells in table 16.3 that have an entry other than Do Nothing.

16.5 Testing the whole system

The first version of the HVAC Controller system is now essentially complete. All
that remains is to clean things up a bit and test it in operation. You can delete any
top-level function calls to set-vent-state that were used for testing the last time
around.

 You should find that this set of rules controls the temperature of every floor to
within 2 degrees of the set point. While testing, keep an eye out for heat pumps
that are turned on and off quickly, or that rapidly move between the heating and
cooling state. This set of rules should avoid both of these problems.

 If you’re using the version of the code downloaded from this book’s web site,
then when the simulator starts, the outdoor temperature is 90 degrees F and the
set point is 70, so the heat pumps are in cooling mode. Notice how the heat pump
for the highest floors turns on first and runs the most; this is a consequence of the
“heat rises” property you built into the simulator. The vents open and close fre-
quently to keep the temperatures of the three floors connected to each heat
pump as close together as possible. Once the system reaches equilibrium, each
heat pump spends some of its time turned off. Watch the temperatures and make
sure they all stay in the range between the set point and the upper guard line
(between 70 and 72 degrees).

264 CHAPTER 16
Writing the rules
 Now set the outdoor temperature to 50 degrees. As the temperature of each
floor drifts down, most of the heat pumps will shut off. Eventually the lower floors
will need to be heated, and those heat pumps should move into heating mode.
The upper floors will still be hotter than the rest and will need cooling instead.
Make sure the floors that need heating stay between 68 and 70 degrees, while the
upper floors stay between 70 and 72.

 Next try an outdoor temperature of 20 degrees. The upper floors will lose
enough heat to the outside that they too will require heating.

 Finally, try outdoor temperatures very close to the set point. Try several tempera-
tures from 67 to 73, watching carefully for illegal transitions from heating to cooling.

 You can experiment with different numbers of floors by specifying larger or
smaller numbers in the call to init-simulator (the number of floors should be
divisible by 3). You should find that the HVAC Controller system has no problem
handling a building with 99 floors or more. Remember that 99 floors corresponds
to 99 Thermometers, 99 Vents, and 33 HeatPumps, for a total of 231 constantly
changing inputs—a reasonably complex system! Each Bean runs in its own Java
thread, demonstrating Jess’s ability to run well in a multithreaded environment;
with 99 floors, Jess is receiving asynchronous property change events from 231 dif-
ferent threads.

 The system you’ve built works fairly well, although because the vents can only
be completely open or completely closed, the temperature at each floor fluctuates
by as much as +/– one or two degrees. If the vents were continuously variable, the
temperature could be controlled more closely. In the next section, we’ll look at
one way to incorporate this new feature using fuzzy logic.

16.6 Controlling with fuzzy rules

 This section was written with Bob Orchard

The first HVAC Controller system was based on traditional Boolean logic. In Bool-
ean logic, the state of a system is crisp, meaning it has distinct, well-defined values.
For example, in the system you’ve developed, the temperature of a floor is always
in one of three distinct states: too hot, too cold, or just right. The decisions a Bool-
ean system can make are equally sharp: a heat pump should be turned on or off,
and a vent should be open or closed.

 Many modern control systems are based on fuzzy logic. In fuzzy logic, the same
set of states can be used, but the transitions between them are not sharp. For
example, although temperatures above 72 degrees will still be considered too
hot, a fuzzy control system will consider 72.5 degrees to be “slightly too hot” and

Controlling with fuzzy rules 265
80 degrees to be “very too hot.” A fuzzy control system can then make somewhat
more subjective decisions. Whereas the system you’ve developed here only knows
how to open or close the vent at each floor, a fuzzy control system can continu-
ously vary the vent openings. A fuzzy system will be able to control the tempera-
ture much more closely. As an added benefit, there will be less abrupt cycling of
the heat pumps, so they will have a longer useful life.

 More generally, fuzzy systems are subtler than Boolean systems. This makes
fuzzy rules a good choice whenever you need to make distinctions that aren’t
clearly drawn—for example, in systems that have to classify items into indistinct
categories.

 FuzzyJess, written by Bob Orchard at the National Research Council of Can-
ada‘s Institute for Information Technology, is a set of Jess extensions that gives
you the ability to write fuzzy rules in Jess.1 FuzzyJess is part of the FuzzyJ Toolkit, a
powerful set of fuzzy logic tools written in Java. In the remainder of this chapter,
we’ll show how to use FuzzyJ and FuzzyJess to write a fuzzy-logic version of the
HVAC Controller system.2

16.6.1 Fuzzy logic, briefly

In the real world, there exists much fuzzy knowledge—knowledge that is vague,
imprecise, uncertain, ambiguous, inexact, or probabilistic in nature. Human
thinking and reasoning frequently involve fuzzy information, possibly originating
from inherently inexact human concepts and matching of similar rather then
identical experiences. In systems based on a classical set theory and two-valued
logic, it is very difficult to answer some questions because they do not have com-
pletely true or false answers. Humans, however, can often give satisfactory answers
to these questions.

Fuzziness
Fuzziness occurs when the boundary of a piece of information is not clear-cut. For
example, words such as young, tall, good, and high are fuzzy. No single quantitative

1 You can get FuzzyJess and the FuzzyJ Toolkit from http://www.iit.nrc.ca/IR_public/fuzzy/fuzzyJTool-
kit.html.

2 There isn’t space here to provide a full tutorial on the topic of fuzzy logic or FuzzyJess and the FuzzyJ
Toolkit. For that, you need to refer to other sources of information, such as Bart Kosko, Fuzzy Engineering
(Upper Saddle River, NJ: Prentice Hall, 1997); Leferi Tsoukalas and Robert Uhrig, Fuzzy and Neural Ap-
proaches in Engineering (New York: John Wiley & Sons, 1997); or the documentation provided with the
FuzzyJ Toolkit.

266 CHAPTER 16
Writing the rules
value defines the term young when describing a fuzzy concept (or fuzzy variable)
such as age. For some people, age 25 is young; for others, age 35 is young. The
concept young has no clean boundary. In most situations, you could say that age 1
is definitely young and age 100 is definitely not young. However, age 35 has some
possibility of being young; its status usually depends on the context in which it is
being considered. In fact, an age can have some possibility of being young and
also some possibility of being old. It belongs to more than one set at the same
time with different degrees of membership in the sets. The representation of this kind
of information is handled by fuzzy set theory.

 Unlike classical set theory, which deals with objects whose membership to a set
can be clearly described, in fuzzy set theory, membership of an element in a set
can be partial—that is, an element belongs to a set with a certain grade (or
degree, or possibility) of membership. This grade of membership in the fuzzy set
is usually represented by values from 0 to 1 (with 0 meaning definitely not a mem-
ber of the set and 1 meaning definitely is a member of the set). For example, the
fuzzy term young might be defined and shown graphically as in figure 16.1. There
you can see that between 0 and 25 years of age, the membership value is 1 (defi-
nitely young), above 50 it is 0 (definitely not young), and between 25 and 50 the
membership value decreases (partial membership in the set).

Figure 16.1 Possibility distribution of young

Controlling with fuzzy rules 267
Representing fuzziness in FuzzyJ: FuzzyVariable, FuzzySet, and FuzzyValue
Fuzzy concepts are represented using fuzzy variables, fuzzy sets, and fuzzy values
in the FuzzyJ Toolkit. A FuzzyVariable defines the basic components used to
describe a fuzzy concept. It consists of a name for the variable (for example, air
temperature), the units of the variable if required (for example, degrees C), a
range of valid values (from 0 to 100), and a set of fuzzy terms that can be used to
describe the particular fuzzy concepts for this variable. The fuzzy terms are
described using a term name, such as cold, along with a FuzzySet representing
that term.

 A FuzzyValue is normally created by specifying a FuzzyVariable and a fuzzy
expression. The following example shows how this is done in Java code using
classes from the FuzzyJ Toolkit:

//definition of fuzzy variable 'Temperature'
//with terms 'cold', 'OK' and 'hot'
FuzzyVariable temperature =
 new FuzzyVariable("Temperature", 0, 100, "degrees C");
temperature.addTerm("cold", new ZFuzzySet(8, 15));
temperature.addTerm("OK", new triangleFuzzySet(8, 15,

25));temperature.addTerm("hot", new SFuzzySet(15, 25));

// definition of FuzzyValue for concept 'temperature is hot'
FuzzyValue tempHotFVal = new FuzzyValue(temperature, "hot");

// 'fuzzifying' the current 'crisp' temperature
// (various ways to do this; here we represent an imprecison
// in the temperature sensor of +/- 0.1 degree)
FuzzyValue currentTempFVal =
 FuzzyValue(temperature, new PIFuzzySet(35.0, 0.1));

Without getting into too much detail, this code creates a FuzzyVariable, temper-
ature, that provides the basis for building fuzzy concepts about temperature. The
domain for the variable is from 0 to 100 degrees C, and the code defines three
terms—cold, OK, and hot—that you can now use to represent specific temperature
concepts. The terms are defined using FuzzySets. In this case, cold is represented
by a subclass of FuzzySet, ZFuzzySet, which defines a Z-shaped fuzzy set like the
one shown in figure 16.1.

 Once the FuzzyVariable and the terms that are to be used to describe con-
cepts about that variable are ready, you can create FuzzyValues. The example cre-
ates an object, tempHot. Ultimately the FuzzyValue is just a FuzzySet (or at least it
contains a FuzzySet), but it also has a context: the FuzzyVariable it is associated
with. You can perform operations on FuzzyValues. For example, the union and
intersection of two FuzzyValues are defined, but only between FuzzyValues that
share the same FuzzyVariable. This is reasonable because doing the intersection

268 CHAPTER 16
Writing the rules
of “hot temperature” and “low pressure” makes no sense—it’s like adding 5 apples
to 6 oranges.

FuzzyRules
Let’s continue the example and add two simple FuzzyRules, which can be
expressed in pseudo-English as follows:

IF the temperature is warm
THEN set the vent position to mostly open

IF the temperature is hot
THEN set the vent position to fully open

The rules in FuzzyJess might appear like this:

(defrule temp-warm-set-vent-mostly-open
 (temperature ?t&:(fuzzy-match ?t "warm"))
 =>
 (assert (vent (new FuzzyValue ?*ventFVar* "mostlyOpen"))))

(defrule temp-hot-set-vent-fully-open
 (temperature ?t&:(fuzzy-match ?t "hot"))
 =>
 (assert (vent (new FuzzyValue ?*ventFVar* "fullyOpen")))

The FuzzyJess function fuzzy-match compares two FuzzyValues to see how well
they match. In this case, the temperature fact has a FuzzyValue that is a fuzzified
version of the current crisp temperature; it is compared to the warm FuzzyValue.
If there is some degree of matching (this level can be set by the user), then the
temp-warm-set-vent-mostly-open rule will fire, and a vent fact will be asserted
with a mostlyOpen FuzzyValue (scaled by the degree of matching of the tempera-
ture FuzzyValue).

 In a complete system, you normally have a number of rules that cover the
range of decisions to be made. Here, for example, the temperature might also
match the FuzzyValue hot to some degree, which would produce a vent fact with
the FuzzyValue fullyOpen as an output (again, suitably scaled to represent the
degree of matching). These output facts would be combined into a single fuzzy
output fact to represent the global decision of the system.

 You can leave this combined output as a FuzzyValue; but, in general, you’ll go
through a process of defuzzification of the output, transforming the FuzzyValue to
get a crisp value. Doing so allows the system to take some real-world action, such as
moving a vent by some real-valued amount. There are a number of ways to defuzz-
ify a FuzzySet. One of the more common is to look at the area under the graph of
the FuzzySet and find the center of gravity (or center of mass). Details of this and
other types of defuzzification are found in the FuzzyJ documentation.

Controlling with fuzzy rules 269
 To wrap up and review, here are the steps normally taken in a fuzzy control
application:

1 Collect the system inputs.

2 Fuzzify the inputs (make them appropriate fuzzy values, usually repre-
senting the imprecision in the input value).

3 Apply the fuzzy inputs to all the rules in the system, executing the rules
one at a time and performing a global accumulation of the outputs.
(FuzzyJess does this for you.)

4 Defuzzify the outputs (create crisp numbers from the output fuzzy values).

5 Apply the crisp outputs to the system.

6 Repeat all the steps until the system is in a controlled state.

16.6.2 The Fuzzy HVAC Controller

With this brief introduction to fuzzy logic and FuzzyJ/FuzzyJess we can now return
to the HVAC Controller example. Recall that the decisions and actions (in the
rules) used to control the heat pumps and vents are all binary (set the vent to the
open state) or crisp (if the thermometer reading is less than the desired set point
…). In the two versions of the fuzzy controller described next, you will define
fuzzy terms for the temperature and for setting the vent positions. This indicates
that you are going to extend the functionality of the system a little and not restrict
the vents to a fully open or fully closed position; you will allow them to be partially
open as well. The code for both versions of the fuzzy HVAC Controller (along
with all the other code from this book) is available from the book’s web site.

Version 1: absolute vent positions
In your first attempt at controlling the temperature in the building, you will define
fuzzy terms for describing the temperature and some terms for controlling the vent
opening. You’ll first modify the Thermometer bean class to make it work with fuzzy
temperatures. You must import the nrc.fuzzy package; store the fuzzy reading of
the temperature; define a fuzzy variable for the thermometer so you can add the
terms cold, cool, OK, warm, and hot; and notify Jess whenever the FuzzyValue for
the temperature reading changes. The code for this functionality is shown in listing
16.1 with the major changes highlighted in bold. Because not every Thermometer
object needs to define the FuzzyVariable, you make it static. Figure 16.2 shows the
fuzzy sets that represent the terms for describing temperature.

270 CHAPTER 16
Writing the rules

package fuzzy;
import nrc.fuzzy.*;
public class Thermometer extends BeanSupport
 implements Runnable {

 private Hardware m_hardware;
 private int m_floor;
 private double m_oldReading;
 private FuzzyValue m_fuzzyReading;

 private static FuzzyVariable m_thermometerFV = null;

 static {
 try {
 m_thermometerFV = new FuzzyVariable("thermometer", 0, 120);
 } catch (InvalidFuzzyVariableNameException nameEx) {
 /* NOTHING */
 } catch (InvalidUODRangeException rangeEx) {
 /* NOTHING */
 }

 try {
 m_thermometerFV.addTerm("cold", new RFuzzySet(68.5,69,
 new RightLinearFunction()));
 m_thermometerFV.addTerm("cool",
 new TriangleFuzzySet(68.5,69,70));
 m_thermometerFV.addTerm("OK",
 new TriangleFuzzySet(69,70,71));
 m_thermometerFV.addTerm("warm",
 new TriangleFuzzySet(70,71,71.5));

Listing 16.1 Thermometer class with a new fuzzy reading property

Figure 16.2
The fuzzy terms cold,
cool, OK, warm, and
hot and the possibility
graphs of
temperatures they
represent

Create FuzzyVariable to
represent temperature b

Controlling with fuzzy rules 271
 m_thermometerFV.addTerm("hot", new LFuzzySet(71,71.5,
 new LeftLinearFunction()));
 } catch (XValuesOutOfOrderException outOfOrderEx) {
 /* NOTHING */
 } catch (XValueOutsideUODException outsideOUD) {
 /* NOTHING */
 }
 }

 public Thermometer(Hardware hw, int floor) {
 m_hardware = hw;
 m_floor = floor;
 new Thread(this).start();
 }

 public int getFloor() {
 return m_floor;

 }
 public double getReading() {
 return m_hardware.getTemperature(m_floor);
 }

 public FuzzyValue getFuzzyReading() {
 return m_fuzzyReading;
 }

 public void run() {
 while (true) {
 double reading = getReading();
 boolean readingChanged = (reading != m_oldReading);
 m_pcs.firePropertyChange("reading",
 new Double(m_oldReading),
 new Double(reading));
 m_oldReading = reading;
 if (readingChanged) {
 try {
 m_fuzzyReading = new FuzzyValue(m_thermometerFV,
 new SingletonFuzzySet(reading));
 } catch (XValuesOutOfOrderException xvorder) {
 System.out.println("Error: " + xvorder); return;
 } catch (XValueOutsideUODException xvuod) {
 System.out.println("Error: " + xvuod); return;
 }
 // do NOT use an old value when notifying of changes
 // to FuzzyValues. firePropertyChange will not pass it
 // on since FuzzyValues with the same FuzzyVariable
 // are considered to be EQUAL ... even if they have
 // different FuzzySets!
 m_pcs.firePropertyChange("fuzzyReading",
 null,(Object)m_fuzzyReading);
 }

c Fuzzy reading value

Send
property

change
notification d

272 CHAPTER 16
Writing the rules
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ie) {
 return;
 }
 }
 }
}

b This part of the code creates a FuzzyVariable to represent the temperature and
loads it with appropriate fuzzy terms like cool, warm, and so on.

c The fuzzy reading is the value you match in your new set of rules, so it needs to be
available as a JavaBeans property.

d This block of code sends out a property change notification for the fuzzy temper-
ature reading whenever a change is detected in the crisp temperature reading.

Next you augment the Vent bean in a similar fashion to define the terms for con-
trolling the vent openings (fullyClosed, slightlyOpen, halfOpen, mostlyOpen,
and fullyOpen) and also to notify Jess when the FuzzyValues change. Again, the
modified code (see listing 16.2) is highlighted in bold; figure 16.3 shows the fuzzy
sets for the new terms.]

package fuzzy;
import nrc.fuzzy.*;

public class Vent extends BeanSupport {

 private Hardware m_hardware;
 private int m_floor;
 private double m_oldState;
 private static FuzzyVariable m_ventFV = null;

 static {
 try {
 m_ventFV = new FuzzyVariable("vent", 0, 1);
 } catch (InvalidFuzzyVariableNameException nameEx) {
 /* NOTHING */
 } catch (InvalidUODRangeException rangeEx) {
 /* NOTHING */
 }

 try {
 m_ventFV.addTerm("fullyClosed", new SingletonFuzzySet(0.0));
 m_ventFV.addTerm("slightlyOpen",
 new SingletonFuzzySet(0.25));

Listing 16.2 Vent class modifed to support a fuzzy vent position description

Create FuzzyVariable to
represent vent position b

Controlling with fuzzy rules 273
 m_ventFV.addTerm("halfOpen", new SingletonFuzzySet(0.5));
 m_ventFV.addTerm("mostlyOpen", new SingletonFuzzySet(0.75));
 m_ventFV.addTerm("fullyOpen", new SingletonFuzzySet(1.0));
 } catch (XValuesOutOfOrderException outOfOrderEx) {
 /* NOTHING */
 } catch (XValueOutsideUODException outsideOUD) {
 /* NOTHING */
 }
 }

 public Vent(Hardware hw, int floor) {
 m_hardware = hw;
 m_floor = floor;
 }

 public static FuzzyVariable getVentFuzzyVariable() {
 return m_ventFV;
 }

 public int getFloor() {
 return m_floor;
 }

 public double getState() {
 return m_hardware.getVentState(m_floor);
 }

 public void setState(double state) {
 m_hardware.setVentState(m_floor, state);
 }
}

b This part of the code creates a new FuzzyVariable to represent the vent position
and loads the linguistic terms into the variable. Note that you no longer define
the Vent Bean to implement Runnable, because you do not need to provide Jess
with updated values of the vent state (manual vent adjustments will no longer be
allowed).3

c Some other minor changes were required in the Java code to deal with the fact
that you are no longer representing the vent state as open or closed.

c Modify method to
return numeric value

3 If you already have some knowledge of FuzzyJ and fuzzy rules in general, you might notice that the
FuzzyValues for the vent terms are created with singleton FuzzySets. These specialized FuzzySets have a
value of 1.0 at the single point specified and a value of 0.0 everywhere else. Using this type of set in your fuzzy
conclusions together with a defuzzification method that takes the weighted average of these singleton outputs,
you are implementing zero-order Takagi-Sugeno-Kang (TSK) rules. Zero-order TSK rules have fuzzy inputs, but
they have crisp, constant outputs. See the FuzzyJ Toolkit User’s Guide for more information about TSK rules.

274 CHAPTER 16
Writing the rules
With these changes made, you can now consider the new set of rules needed to
control the vents. Because you are not changing the way you determine when the
heat pump should be cooling, heating, or off, you will essentially leave the rules
that determine the heat pump state as they are. However, to allow the tempera-
ture to fluctuate close to the set point without turning off the heat pump, you
need to make a minor change to the rules floor-hot-enough and floor-cool-
enough. In these two rules, rather than turn off the heat pump as soon as all the
floors have passed the set point, you allow a 0.25-degree overshoot or undershoot
of the set point before making the decision to turn off the heat pump. Why do
this, and why 0.25 degrees? Consider the following situation. If the heat pump is
cooling, then the situation is normally that the outside temperature is above the
set point temperature. If the temperature cools to the set point and you shut the
heat pump down as soon as this happens, then the heat pump cannot be turned
on again until it reaches the guard limit (in this situation, the set point tempera-
ture + 2.0 degrees). In the non-fuzzy case where you can only have the cooling
either fully on or fully off, this makes some sense. But now that you can change
the amount of cooling by controlling the vents, you want to give the system an
opportunity to adjust the amount of cooling. Allowing an overshoot (or under-
shoot) of the set point gives the system an opportunity to find a vent opening that
provides just enough cooling to match the heat that is warming the system. The
0.25 value was an initial guess, and it turned out to provide quite good behavior. A
bit of experimentation might allow you to reduce it, thus keeping the guard tem-
perature far enough away to avoid too rapid cycling from cooling to heating (you

Figure 16.3
Probability chart for the
fuzzy terms corresponding
to the five discrete settings
used for the vents

Controlling with fuzzy rules 275
could also consider adjusting the guard temperatures or implementing a timer to
make sure the heat pump does not cycle in less than some certain time).

 The vent control rules used in this first fuzzy version are simple. You have two
basic situations to consider: when the heat pump is cooling and when it is heating.
If it is off, then it won’t matter where the vents are set. So, when the heat pump is
heating, you define five rules that are related to the temperature and the terms
defined for the temperature. These rules should make some sense to you. This is
one of the useful features of fuzzy systems; with a suitable set of concepts defined,
you can often express decisions in a simple and understandable way. In pseudo-
English, they look like this:

IF we are heating and the floor temperature is hot
THEN set the vent to fullyClosed

IF we are heating and the floor temperature is warm
Then set the vent to slightlyOpen

IF we are heating and the floor temperature is OK
THEN set the vent to halfOpen

IF we are heating and the floor temperature is cool
THEN set the vent to mostlyOpen

IF we are heating and the floor temperature is cold
THEN set the vent to fullyOpen

A similar set of five additional rules, not shown here, is defined for the situation
where the heat pump is in a cooling state. In FuzzyJess, the code for one of the
previous rules is written as follows:

(defrule heating-and-temp-cool
 (HeatPump (state "heating") (number ?p))
 (Thermometer (floor ?f&:(eq ?p (which-pump ?f)))
 (fuzzyReading ?t&:(fuzzy-match ?t "cool")))
 =>
 (assert
 (fuzzy-vent (floor ?f)
 (fuzzy-state (new FuzzyValue ?*ventFVar* "mostlyOpen"))))
)

There is just one thing left to do. In order to set the vent position, you need to define
a rule that takes the combined output of all the rules and defuzzifies the result, giving
the required new setting for the vent. Because the rule must wait until all the other
fuzzy rules have fired, to allow Jess to combine the outputs, it is set at a lower priority
(salience) than these rules. The FuzzyValue method weightedAverageDefuzzify
transforms the FuzzyValue into a crisp value; this value is sent to the simulator to
make the adjustment. This final rule is coded as follows:

276 CHAPTER 16
Writing the rules
(defrule set-vent-state
 (declare (salience -100))
 ?fv <- (fuzzy-vent (floor ?f) (fuzzy-state ?fs))
 =>
 (bind ?vent-state (?fs weightedAverageDefuzzify))
 (set-vent-state ?f ?vent-state)
 (retract ?fv))

When you run this example (a sample batch file is provided to help, and you will
need the FuzzyJ Toolkit version 1.3 or later with FuzzyJess and Jess version 6.1 or
later), it will do a very good job of controlling the system. With an outside tempera-
ture of 90 and a set point temperature of 70, the system quickly settles close to 70
degrees with each vent close to 0.5 open. If the outside temperature is set to 100,
then the system again settles at a temperature close to 70.8 with the vents opened at
about 0.7. With an outside temperature of 110, the system settles at a temperature
near 71.3. This is quite good, in that the temperature does not fluctuate much and
stays within the guard temperatures. However, the application only works extremely
well (getting to 70 degrees and staying there) for a small set of conditions.

 The rules do not handle a widely varying set of initial conditions, and the shape
of the fuzzy sets should probably be changed to suit these situations. In particular,
the definitions of hot, cold, and so on for temperature need to be adjusted for the
current set point. One option would be to modify the sets according to the new set
point; another would be to define the sets as a temperature difference from the set
point. This option is addressed in the next example. It results in far less movement
of the valves and less fluctuation of the temperature than the non-fuzzy approach.

Version 2: relative vent positions
Often, control systems use not only the difference in the value from its set point
but also the rate at which the change is taking place to determine how to adjust
the control parameters. In this case, this behavior means monitoring not only the
temperature but also the rate of change of the temperature over time. In the first
version of the fuzzy controller, you defined the terms to describe the temperature
based on a fixed temperature (70 degrees). This definition causes some difficulty
if you change the set point from 70 degrees. So, in this new version you’ll provide
a method in the Thermometer class to allow the definitions of cold, cool, OK,
warm, and hot to be redefined when the set point value changes. You’ll also pre-
pare the Thermometer class to determine the rate of change of the temperature
and define three fuzzy terms to describe the rate of change: decreasing, zero, and
increasing. The new Thermometer class is defined in listing 16.3.

Controlling with fuzzy rules 277

package fuzzy;
import nrc.fuzzy;

public class Thermometer extends BeanSupport
 implements Runnable {

 private Hardware m_hardware;
 private int m_floor;
 private double m_oldReading;
 private FuzzyValue m_fuzzyReading;
 private FuzzyValue m_fuzzyReadingRateOfChange;

 private static FuzzyVariable m_thermometerFV = null;
 private static FuzzyVariable m_thermometerRateOfChangeFV = null;

 static {
 try {
 m_thermometerFV = new FuzzyVariable("thermometer", 0, 120);
 } catch (InvalidFuzzyVariableNameException nameEx) {
 /* NOTHING */
 } catch (InvalidUODRangeException rangeEx) {
 /* NOTHING */
 }

 SetThermometerFVTerms(70.0);

 try {
 m_thermometerRateOfChangeFV =
 new FuzzyVariable("thermometerRateofChange", -10, 10);
 } catch (InvalidFuzzyVariableNameException nameEx) {
 /* NOTHING */
 } catch (InvalidUODRangeException rangeEx) {
 /* NOTHING */
 }

 try {
 m_thermometerRateOfChangeFV.addTerm("decreasing",
 new RFuzzySet(-0.10, 0.0, new RightLinearFunction()));
 m_thermometerRateOfChangeFV.addTerm("zero",
 new TriangleFuzzySet(-0.10, 0, 0.10));
 m_thermometerRateOfChangeFV.addTerm("increasing",
 new LFuzzySet(0.0, 0.10, new LeftLinearFunction()));
 } catch (XValuesOutOfOrderException outOfOrderEx) {
 /* NOTHING */
 } catch (XValueOutsideUODException outsideOUD) {
 /* NOTHING */
 }
 }

 public FuzzyValue getFuzzyReadingRateOfChange() {
 return m_fuzzyReadingRateOfChange;
 }

Listing 16.3 Final version of the Thermometer class

 Set up
FuzzyVariable b

JavaBeans
property for
temperature
change rate

c

278 CHAPTER 16
Writing the rules
 public static void SetThermometerFVTerms(double setPoint) {
 try {
 m_thermometerFV.addTerm("cold",
 new RFuzzySet(setPoint-1.5,setPoint-1,
 new RightLinearFunction()));
 m_thermometerFV.addTerm("cool",
 new TriangleFuzzySet(setPoint-1.5,setPoint-1,setPoint));
 m_thermometerFV.addTerm("OK",
 new TriangleFuzzySet(setPoint-1,setPoint,setPoint+1));
 m_thermometerFV.addTerm("warm",
 new TriangleFuzzySet(setPoint,setPoint+1,setPoint+1.5));
 m_thermometerFV.addTerm("hot",
 new LFuzzySet(setPoint+1,setPoint+1.5,
 new LeftLinearFunction()));
 } catch (XValuesOutOfOrderException outOfOrderEx) {
 /* NOTHING */
 } catch (XValueOutsideUODException outsideOUD) {
 /* NOTHING */
 }
 }

 public void run() {
 boolean firstLoopDone = false;
 while (true) {
 double reading = getReading();
 double rateOfChange =
 firstLoopDone ? reading-m_oldReading : 0.0;
 boolean readingChanged = (reading != m_oldReading);
 m_pcs.firePropertyChange("reading",
 new Double(m_oldReading),
 new Double(reading));
 m_oldReading = reading;
 if (readingChanged) {
 try {
 m_fuzzyReading = new FuzzyValue(m_thermometerFV,
 new SingletonFuzzySet(reading));
 } catch (XValuesOutOfOrderException xvorder) {
 System.out.println("Error: " + xvorder); return;
 } catch (XValueOutsideUODException xvuod) {
 System.out.println("Error: " + xvuod); return;
 }
 m_pcs.firePropertyChange("fuzzyReading",
 null, m_fuzzyReading);
 }
 try {
 m_fuzzyReadingRateOfChange =
 new FuzzyValue(m_thermometerRateOfChangeFV,
 new SingletonFuzzySet(rateOfChange));
 } catch (XValuesOutOfOrderException xvorder) {
 System.out.println("Error: " + xvorder); return;
 } catch (XValueOutsideUODException xvuod) {

Method to move
temperature set point

d

Update
variable

representing
rate of

temperature
change e

Controlling with fuzzy rules 279
 System.out.println("Error: " + xvuod); return;
 }
 m_pcs.firePropertyChange("fuzzyReadingRateOfChange",null,
 m_fuzzyReadingRateOfChange);

 firstLoopDone = true;

 try {
 Thread.sleep(1000);
 } catch (InterruptedException ie) {
 return;
 }
 }
 }
}

b The code sets up a FuzzyVariable to represent the rate of change of temperature
readings, with the three values decreasing, increasing, and zero.

c You make the temperature change-rate variable available as a JavaBeans property.

d This new method lets you move the temperature set point and redefine the tem-
perature FuzzySet.

e Each time through the loop, you update the variable that represents the rate of
temperature change.

You also need to change the way in which you set the vent position. Instead of try-
ing to set an absolute value for the valve position, you’ll determine how much to
change the valve position from its current position. To do so, you define the seven
terms NB, NM, NS, Z, PS, PM, and PB, representing a Negative Big change, a Negative
Medium change, a Negative Small change, a Zero change, a Positive Small change,
and so on. The final changes to the Vent class are shown in listing 16.4; the new
fuzzy variable represents the magnitude of the desired change to the vent position.

package fuzzy;
import nrc.fuzzy.*;

public class Vent extends BeanSupport {
 private Hardware m_hardware;
 private int m_floor;
 private static FuzzyVariable m_ventChangeFV = null;

 static {
 try {
 m_ventChangeFV = new FuzzyVariable("ventChange", -1, 1);
 } catch (InvalidFuzzyVariableNameException nameEx) {

Listing 16.4 Final modifications to the Vent class

280 CHAPTER 16
Writing the rules
 /* NOTHING */
 } catch (InvalidUODRangeException rangeEx) {
 /* NOTHING */
 }

 try {
 m_ventChangeFV.addTerm("NB", new SingletonFuzzySet(-0.3));
 m_ventChangeFV.addTerm("NM", new SingletonFuzzySet(-0.15));
 m_ventChangeFV.addTerm("NS", new SingletonFuzzySet(-0.06));
 m_ventChangeFV.addTerm("Z", new SingletonFuzzySet(0.0));
 m_ventChangeFV.addTerm("PS", new SingletonFuzzySet(0.06));
 m_ventChangeFV.addTerm("PM", new SingletonFuzzySet(0.15));
 m_ventChangeFV.addTerm("PB", new SingletonFuzzySet(0.3));
 } catch (XValuesOutOfOrderException outOfOrderEx) {
 /* NOTHING */
 } catch (XValueOutsideUODException outsideOUD) {
 /* NOTHING */
 }
 }

 public Vent(Hardware hw, int floor) {
 m_hardware = hw;
 m_floor = floor;
 }

 ...
}

The rules for controlling the heat pump are the same as in the first fuzzy control
example. The rules to change the state of the vents now depend on the state of
the heat pump, the temperature on the floor, and the rate of change of the tem-
perature. You can build a pair of truth tables to show the correct vent changes for
a temperature and rate of change. Table 16.4 shows for the situation when the
heat pump is cooling; the table for the heating situation is similar.

The highlighted value NS in the middle row of the second column of table 16.4
represents this pseudo-English rule:

Table 16.4 The recommended change to a vent for a given temperature and rate of temperature
change

Cold Cool OK Warm Hot

Decreasing NB NM NS Z PS

Zero NM NS Z PS PM

Increasing NS Z PS PM PB

Controlling with fuzzy rules 281
If the heat pump is cooling
and the temperature is cool
and the rate of change of temperature is zero
Then adjust the vent position by a negative small amount

In Jess, you can write this rule like so:

(defrule cooling-and-temp-cool-rate-zero
 (HeatPump (state "cooling") (number ?p))
 (Thermometer
 (floor ?f&:(eq ?p (which-pump ?f)))
 (fuzzyReading ?t&:(fuzzy-match ?t "cool"))
 (fuzzyReadingRateOfChange ?tr&:(fuzzy-match ?tr "zero")))
 =>
 (assert (fuzzy-vent (floor ?f)
 (fuzzy-change-state (new FuzzyValue ?*ventFVar* "NS")))))

There will be one rule like this for each cell in table 16.4. Now you have 30 rules
that determine how the vent should be changed. You might need to think about
these rules to see if they make sense to you; but with a bit of analysis of the various
situations, the rules should be similar to what your intuition would lead you to. As
in the last example, a single rule is defined with a lower priority so that it may take
the combined output of all the rules and defuzzify the result, giving the required
change for the vent. This rule in this second fuzzy controller is as follows:

(defrule perform-vent-change
 (declare (salience -100))
 ?fv <- (fuzzy-vent (floor ?f) (fuzzy-change-state ?fs))
 =>
 (bind ?vent-change-amount (?fs weightedAverageDefuzzify))
 (change-vent-state ?f ?vent-change-amount)
 (retract ?fv))

The only other major change is to the WriteVent class and the Simulator class to
support the ability to change the vent state by the specified amount. The function
change-vent-state is a Userfunction defined in WriteVent.java; it in turn calls
the simulator to calculate the new position for the vent and set it to that value. You
also modify the init-simulator function to allow you to specify the initial tem-
perature set-point value.

 This fuzzy controller behaves very well at all realistic outside temperatures and
keeps the temperature extremely close to the set point. As you can guess, getting
the right fuzzy values and the right rules can be complicated. Should you have
defined more fuzzy values for the rate of change? Should the shape and position
of the fuzzy set be adjusted to get the best performance (moves quickly to the set
point, reduces overshoot of the set point, and so forth)? A large body of work is
devoted to determining these fuzzy control parameters and how they should

282 CHAPTER 16
Writing the rules
change as the system changes dynamically. Yet, with a little common sense and the
tools to describe your thoughts in an English-like manner, you have been able to
construct a system that is robust to changes in outside temperature and set point
and does an adequate job of keeping the temperature in a comfortable zone.

16.6.3 Exploring the fuzzy controller
You might want to modify the second fuzzy controller to allow the set point as well
as the outside temperature to be changed in the user interface. Doing so should
be relatively simple, because the required hooks are already included in the code
(the method SetThermometerFVTerms in the Thermometer class).

 You could make a number of other explorations:

■ Would defining more terms for the temperature’s rate of change improve
the control? What would the new set of rules look like?

■ How do the shape and position of the fuzzy sets you have used affect the
control? Change them and explore. Perhaps you can devise some tech-
niques to determine the “best” definitions for these fuzzy sets. You did not
use the outside temperature in any of your reasoning—perhaps it would be
useful in dynamically modifying the sets to get better control.

■ When the system reaches a controlled state, the valve positions are still
being modified at each cycle (perhaps by small amounts). Can you think of
some techniques to stop moving the valves when you are “close enough” to
the set point?

■ Could you make the simulation itself more realistic? For example, when the
heat pump is heating and all valves are fully open, x units of heat are deliv-
ered to each floor. When one of the valves is closed, the others still get x
units of heat. A real system would not work this way; closing off one floor
would increase the heat flow to the others. How could the system be modi-
fied to better implement what might actually happen? Would the control
logic have to be altered to accommodate this change?

This has been a brief introduction to fuzzy systems, and the simulation is much simpli-
fied from the real world. However, I hope it has piqued your interest in the topic and
that you will want to learn more and apply the techniques to your own applications.

16.7 What’s next?

Now that you have built the HVAC Control system, you may have decided that it’s
overkill. After all, mechanical thermostats do a perfectly good job of controlling

Summary 283
the temperature of most houses, and many larger buildings, too. The beauty of
the rule-based controller is that it is easily extensible to cover many complicated
situations. Do you want the set point to be lower on winter weekends and higher
on summer weekends? Should the temperature be lower (or higher) at night to
save energy, or should the system simply be turned off in the temperate spring
and autumn? It would be easy to add a fancy rule-based timer to the program; a
Date JavaBean that broadcasts regular time and date updates would be all the
infrastructure you would need. Rules to change the set point based on the date
and time would then be trivial.

 Would you like the occupants of the building to be able to set the temperature
of their own floor? Again, the modifications would be simple. You might use
(set-point) facts instead of a single defglobal to track the separate set points,
and modify the rules to match these facts instead of referencing ?*set-point*.

 Although a rule-based solution to this control problem may seem more com-
plex than traditional alternatives, the complexity is accompanied by greatly
increased features and flexibility.

16.8 Summary

In part 5 of this book, you’ve written a powerful system capable of controlling the
heating, ventilation, and air-conditioning systems in a large office building. For
the first time, you wrote an application that integrates code written in Java with
code written in the Jess language.

 You wrote a simulator to model the hardware your application is intended to
control. The simulator runs in its own thread. You wrote JavaBeans and used them
as working memory elements, and each Bean also includes its own thread for poll-
ing the state of the hardware device it stands in for. You saw how Jess works well in
this multithreaded environment.

 You learned how to extend the Jess language by writing Userfunctions and
Userpackages. Many people have written Jess extensions and then made them
publicly available. Examples include extensions for working with databases, with
XML, and with fuzzy logic. See the Jess web site for details on obtaining these and
other Jess extensions.

 You developed several different sets of control rules: one conventional set, and
one using fuzzy rules. The fuzzy rules, although more complex, controlled the
temperature more tightly.

 Although much of the HVAC Controller system application was written in Java,
the main application code is written as a Jess script and runs with jess.Main. In

284 CHAPTER 16
Writing the rules
the next part of this book, you’ll integrate rules into a web-based application where
Jess will run as part of a Java servlet. You won’t use the jess.Main class, and so
you’ll need to learn how to embed the Jess rule engine into another application.

Part 6

TekMart.com:
rule-based applications

for the Web

Given the ability of rule engines to cope with incomplete information and
unpredictable events, rules and the World Wide Web are a perfect match. Rule-
based systems are a part of most major web sites, where they are used for order
processing, user preferences, data mining, and recommendations. In part 6,
you’ll develop a Recommendations Agent as part of an e-commerce web site based on
servlets and JavaServer Pages.

Whereas in each of the previous applications you ran Jess as a free-standing
application, in this case, you’ll use Jess as a library embedded in the Tomcat serv-
let engine. Therefore, you need to learn more about Jess’s Java APIs. In addition,
the rules you’ll write for this application will be the longest you’ve written so far—
in fact, they approach the size of the rule that solved Mrs. Rosencrantz’s word
problem in chapter 1.

Jess on the Web
In this chapter you’ll…
■ Look at alternative Java web architectures
■ Collect knowledge for a smart e-commerce

application
■ Write rules and queries for a web application
287

288 CHAPTER 17
Jess on the Web
A sizeable and still-growing fraction of all software written today is deployed on
intranets or the Internet. The rise of electronic commerce, enterprise applica-
tions, and web-based entertainment is a visible indicator of this trend.

 Rule-based systems are commonly used in web-based applications. A Java rule
engine can run on a client machine (as an applet) or, more commonly, on the
server (in a J2EE application server). Rules can be used for order configuration,
inventory management, human resources, manufacturing resource planning,
games, and more.

 In part 6 of this book, you’ll develop a Recommendations Agent for an online
store. The Recommendations Agent will look at the items a customer is buying
and has bought in the past, and make recommendations for additional pur-
chases. In this chapter, we’ll look at an overview of web architectures and then
develop the data structures and rules for the agent. In chapter 18, you’ll learn
how to embed Jess as a library in a larger application, and we’ll study techniques
for interacting with Jess through its Java API. In chapter 19, you’ll package the
Recommendations Agent as a web application deployed in a standard J2EE con-
tainer. The application will be built from servlets and JavaServer Pages (see sec-
tion 17.1.2 for definitions). You’ll build a complete e-commerce web site in
miniature to serve as an example platform for the Recommendations Agent,
although you’ll leave out the bits that are entirely unrelated to the agent (such as
credit-card validation).

17.1 Java architectures for the Web

There are many different ways to deploy applications on the Web. (In this part of
this book, I’ll use the phrase the Web to refer to applications that use the HTTP
and HTTPS protocols, either over corporate intranets or over the Internet as a
whole.) In fact, new methods are being developed all the time, and many of these
methods blur the traditional categories, making it hard to use any absolute terms
to describe what is possible on the Web. For our purposes, though, web-based soft-
ware can be divided into two broad categories: fat-client and thin-client applications.

17.1.1 Fat-client applications

A fat-client web application is most similar to a traditional client-server application:
The code is divided more or less equally between a client (desktop) machine and a
server (remote) machine. Fat-client solutions can automatically download and
install the client software to the desktop machine, or they may use fixed clients
(desktop applications) installed using physical media or manual network down-

Java architectures for the Web 289
loads. The client software might include an elaborate graphical interface, as well
as some fraction of the business logic for the application.

 There are two ways to build Java-based fat-client solutions that can be automat-
ically downloaded to the client: using an applet or using Java Web Start.

Applets
The Java Applet API was included in the first release of the Java Developer’s Kit
(JDK). A Java applet is just a class that extends java.applet.Applet and provides
implementations for one or more of the Applet methods init, start, stop, and
destroy. These methods are called at well-defined times by the Java environment
that hosts the applet—invariably a web browser.

 Writing applets that can work effectively inside a browser can be challenging,
because the user can browse away from the page containing an applet at any time,
only to return later. An applet may or may not be destroyed during this time, and
on returning to the original page the user may find a new instance of the applet.
This lifecycle issue makes maintaining a consistent user session difficult.

 To compound the problem, web browsers vary widely in their level of Java sup-
port. The major browsers include very old JVMs as standard equipment; in fact,
some Internet Explorer users have no JVM installed. JavaSoft offers a Java Plug-in
that provides a standard Java environment for browsers that use Netscape-style
plug-ins, and targeting this platform can be a good solution, especially on an
intranet. But the Java Plug-in is a large download, and many Internet users won’t
have it and won’t want to download it. Dealing with the JVM support issue is the
biggest obstacle to deploying substantial applets.

 Jess supplies a simple example applet in the jess.ConsoleApplet class. Con-
soleApplet presents the same GUI as jess.Console, so it’s useful only in limited
situations—applications that involve interview-style interaction with a user.

Java Web Start
The Java Web Start system lets a client click a link on a web page to download and
automatically install what amounts to a normal desktop application written in
Java. Java Web Start applications don’t have the same kind of lifecycle problems
that applets do; they can be launched, used, and exited like a normal application.
Java Web Start is relatively new but is rapidly gaining acceptance. Like applets,
Java Web Start applications rely on users having a properly configured JVM on
their desktop. Again, it’s easier to make this assumption on an intranet than on
the Internet.

290 CHAPTER 17
Jess on the Web
Pros and cons of fat clients
Fat-client architectures have both advantages and (mostly) disadvantages. The
advantages are as follows:

■ Little processing power is required on the server, because much of the code
executes on the client.

■ The programmer has maximum control over user interface, because it can
be written using all of Java’s APIs.

These are the disadvantages:

■ It’s hard to write complex client software that will work in a wide range of
desktop environments.

■ Downloading the client software may be intolerably slow for many users,
especially on the Internet.

■ If the client software is installed persistently on the desktop, backward compat-
ibility becomes an issue; forcing all users to update software can be difficult.

The first disadvantage is enough of a problem that fat-client architectures are not
used very often. This problem is most acute for applets, because web browser
behavior varies widely between brands, or even between releases of a single
browser. The Java Plug-in was designed to mitigate this problem, but getting poten-
tial users to install this hefty download is still an issue, especially on the Internet.

17.1.2 Thin-client applications

In a thin-client architecture, most of the application-specific code runs on the
server. A web-based thin client is usually just HTML in a browser. There are many
ways to write thin-client web applications in Java. Although I will describe them
here one by one, they are often used in combination.

Servlets
Servlets, the server-side analogue of applets, are small modules that a web server or
other container invokes in response to browser requests. Just as an applet is a sub-
class of java.applet.Applet, a servlet is an implementation of the javax.serv-
let.Servlet interface, or most commonly a subclass of the class javax.serv-
let.http.HttpServlet. Whereas applets run inside a browser on the user’s
desktop, servlets run in a container on a server machine. The Java 2 Enterprise Edi-
tion (J2EE) is a standard for deploying applications on a server; it includes,
among other things, a servlet container.

Java architectures for the Web 291
 The HttpServlet class includes methods you can override to process client
requests that come in over the Web. It also provides methods the container invokes
to initialize and destroy the servlet. You’ll develop several servlets in chapter 19.

JavaServer Pages
Another way to deploy server-side Java applications is via JavaServer Pages (JSPs). A
JSP is an HTML page with embedded Java code. In a way, a JSP is an inside-out
version of a servlet: A servlet is Java code that often includes statements that print
HTML. JSPs are compiled by a special program on the web server, generally into
servlets, and then executed in response to browser requests. Whereas servlets are
ideal when a server-side component needs to do a nontrivial amount of work and
produce only a small amount of HTML, JSPs are perfect when a large HTML page
needs to embed a small amount of computed information. Servlets and JSPs are
often used together, with the JSPs providing the interface and the servlets provid-
ing the logic.1 You’ll use JSPs to provide the user interface for the Recommenda-
tions Agent in chapter 19.

 Perhaps the best thing about JSPs is that they can be written in a regular HTML
editor. Servlets must be written by experienced Java programmers, but JSPs can be
written by web designers, perhaps with the use of some boilerplate provided by a
Java guru. It’s difficult to maintain a web page created by a servlet using a series of
println calls, especially for a nonprogrammer, but maintaining a JSP-based site is
not very different than maintaining a site built from static HTML pages.

Web services
Servlets and JSPs are designed to deliver HTML interfaces to human users. Web
services, on the other hand, are designed to provide an interface that other soft-
ware can use. The term web service generally refers to an application that can be
sent commands using XML-based Simple Object Access Protocol (SOAP) mes-
sages. Web services can be used to build web applications with regular user inter-
faces, but they are also used as components of larger software systems.

 Deploying an application as a web service lets people and companies around the
world interact with it. For example, if company A deploys its order-configuration
application as a web service, then company B’s purchasing department can develop
software to automatically purchase A’s product. JavaSoft offers the Java Web Ser-
vices Development Pack (JWSDP), an add-on for the J2EE application server, as a
platform for web-service development.

1 Bruce A. Tate, Bitter Java (Greenwich, CT: Manning, 2002).

292 CHAPTER 17
Jess on the Web
Pros and cons of thin clients
Thin-client architectures have both good and bad points. The advantages are as
follows:

■ Little processing power is required on the client, because much of the code
executes on the server.

■ There are few or no client configuration problems. Few requirements are
placed on the client, so compatibility isn’t usually an issue.

■ Upgrades are easy, because they happen at the server.

Here are the disadvantages:
■ HTML user interfaces are not as interactive as Java GUIs. JavaScript can

help, but at the cost of reintroducing potential compatibility problems.
■ Powerful servers may be needed to meet demand.

Because the configuration and maintenance issues are much simpler, thin-client
architectures are usually the preferred way to deploy an application on the Web.
In chapter 19, you will develop the Recommendations Agent using a thin-client
architecture.

17.2 A Jess application for the Web

One of the first and most famous rule-based applications was Digital Equipment
Corporation’s XCON order configuration system (see section 1.2.2). XCON
helped sales consultants configure orders for DEC mainframe computers, making
sure the order included all the accessories the customer needed.

 The grandchildren of XCON are now on display all over the Web. Every web
site that helps you select compatible options when you buy a computer online
owes an obvious tip of the hat to XCON. Not quite so obvious, perhaps, are sites
that recommend additional purchases the way a good sales clerk might (“This top
would look cute with those pants!”).

 Rule-based order configuration and recommendation systems are common
today. In this chapter and the next two, you’ll build a system that combines both
of these tasks: It will recommend items the customer probably needs, as well as
items it thinks the customer might just enjoy.

17.3 Knowledge engineering

You’re going to write a fairly general system to look at what a customer is ordering
and suggest other things they might want to buy. Two kinds of “experts” might

Designing data structures 293
have knowledge you could add to such a system: technical folks and marketing
folks. The technical knowledge will let the system tell the customer how to assem-
ble a working system from individual components. The marketing knowledge can
be used to try to convince the customer to buy more stuff.

 For the current system, you’ll base technical recommendations on the concept
of categories. Every product will belong to one category; to use it, products from
other categories may be required or desirable. For instance, the product Univac
2000 belongs to the category computer; to use it, you might need a video monitor
(category monitor), because the monitor is not included. A monitor is therefore a
requirement for computer customers. If the user of your system buys a Univac 2000,
the system should recommend that she buy a monitor, too. Other accessories
might also be nice: speakers and software, for example. These should also be rec-
ommended, and for the purposes of this system, you’ll also call them requirements.

 The marketing-derived rules that you’ll include will be designed to help sell
videotapes and video discs (DVDs). Assume that the marketing folks have identi-
fied four opportunities in this area:

■ If a customer is buying a VCR or DVD player, recommend the appropriate
media.

■ If a customer has bought a VCR or DVD player on a previous visit, recom-
mend more media for it.

■ If a customer is buying a videotape or DVD, recommend another one.

■ If a customer has bought a videotape or DVD in the past, recommend
another one.

In every case, you should keep track of previous purchases, so you don’t recom-
mend a videotape or DVD the customer has already bought from you.

17.4 Designing data structures

After talking with the experts, you find that the important entities in the system
include the following:

■ Products —Things that are for sale

■ Customers —Current and past users of the system

■ Orders —Current and past customer purchases

■ Line items —A collection of items that form an order

■ Recommendations —What the system produces as output

294 CHAPTER 17
Jess on the Web
You can define a deftemplate for each item in this list. The product template
should include slots for the name, catalog number, and price of the product, of
course. It also should include a slot to specify the category the product belongs to
and the categories of other products required by this product:

(deftemplate product
 (slot name)
 (slot category)
 (slot part-number)
 (slot price)
 (multislot requires))

For example, a product named TekMart 19 TV might have the category tv, and
the requires slot could contain batteries (for the remote control).

 A customer is just a person with a name, address, and customer ID:

(deftemplate customer
 (multislot name)
 (multislot address)
 (slot customer-id))

An order is a collection of line items. Each line item knows which order it belongs
to, what product is being ordered, and in what quantity. Although it’s not strictly
necessary, you’ll find later that including the customer ID in each line item simpli-
fies your rules considerably:

(deftemplate order
 (slot customer-id)
 (slot order-number))

(deftemplate line-item
 (slot order-number)
 (slot part-number)
 (slot customer-id)
 (slot quantity (default 1)))

Finally, recommendations link an order to a recommended product. The because
multislot lists other products that triggered this recommendation, and the type
slot distinguishes between product requirements (XCON’s kind of recommenda-
tions) and marketing recommendations:

(deftemplate recommend
 (slot order-number)
 (multislot because)
 (slot type)
 (slot part-number))

With these basic data structures put together, you’re ready to begin writing the
rules for the order-configuration system.

Writing the rules 295
17.5 Writing the rules

The rules you will write in this chapter examine facts and assert recommenda-
tions, but they won’t display anything or otherwise interact with a user. You’ll write
the user interfaces for the web-based applications in HTML as JSPs, and you won’t
do that until chapter 19. For now, to see the effects of the rules you write, you’ll
have to use debugging commands like (watch) and (facts) (you learned about
these in section 6.1.1).

 As you write these rules, remember that Jess will be simultaneously processing
many line items, belonging to many orders, placed by many different customers.
There’s nothing wrong with this scenario, and Jess will handle it very well. How-
ever, it will be important to make sure that all the rules identify the specific cus-
tomer and order they are processing—that is, you can’t accidentally recommend
products one customer might like to some second unrelated customer. It will be
easy to do this, but it is important to keep in mind.

17.5.1 About testing

The rules you’re about to write will eventually be embedded in a web application.
When they are, they won’t have any command-line or GUI access, so it will be
hard to debug them at that point. Therefore, it’s important to test these rules as
you write them. You can put some product, order, and line-item facts in a sepa-
rate file, and load them using load-facts when you need to use them as test
cases. Try to design test facts to probe each individual rule, and think about what
the correct results should be before you run a test. For example, imagine you’ve
written a rule like this one:

(defrule recommend-rubber-duck
 (customer (customer-id ?id))
 (not (and (order (order-number ?order) (customer-id ?id))
 (line-item (order-number ?order) (part-number ?part))
 (product (part-number ?part) (name "Rubber duck"))))
 =>
 (assert (recommend (order-number ?order) (part-number ?part))))

This rule says, “If there’s a customer, and they’ve never bought a rubber duck
from us, then recommend that they do so.” To test this rule, you need several sets
of facts: one set with a customer who has bought a rubber duck and another set
with a customer who has not. You may also want to test a customer who has
bought multiple rubber ducks. You should also test using customers who have
placed multiple orders in the past, and customers who are new to the web site—
both duck-buying customers and duckless ones.

296 CHAPTER 17
Jess on the Web
17.5.2 The recommend-requirements rule
Perhaps the most important rule in the Recommendations Agent is the one that
creates recommendations for products that are explicitly required by other prod-
ucts (like the batteries for the television set, mentioned earlier). Because you’re
interested in using the Recommendations Agent to maximize revenue, you won’t
recommend just any batteries for the television set: You’ll recommend the most
expensive package in the catalog. This rule is the longest one you’ve written, so let’s
break it down a little at a time:

 The first two patterns match an order such that no other order with the same
customer-id has a higher order-number—that is, it matches only the current
order for any given customer.

(defrule recommend-requirements
 (order (customer-id ?id) (order-number ?currentOrder))
 (not (order (customer-id ?id)
 (order-number ?order2&:(> ?order2 ?currentOrder))))

The next pattern matches a line item in this customer’s current order. The pat-
tern after that matches the product represented by this line item, but only if that
product requires some other category of product. This second pattern therefore
identifies a case where you can make a recommendation:

 (line-item (order-number ?currentOrder) (part-number ?part))
 (product (part-number ?part) (name ?product)
 (requires $? ?category $?))

The fifth, positive pattern matches some other product, belonging to the category
required by the first product. The sixth, negated pattern matches another prod-
uct in this category that costs more than the first. Because it’s negated, it means
there’s no such product—these two patterns together identify the most expensive
product you could recommend:

 (product (category ?category) (price ?price)
 (part-number ?second-part))

 (not (product (category ?category) (price ?p&:(> ?p ?price))))

Now that you’ve identified the product to recommend, you can assert a recom-
mend fact for it:

 =>

 (assert (recommend (order-number ?currentOrder)
 (type requirement)
 (part-number ?second-part)
 (because ?product))))

This one long rule will be a workhorse in your system.

Writing the rules 297
17.5.3 Recommending videos and DVDs

You’ll recall that the folks in marketing are interested in selling customers some
extra videotapes and DVDs. There are four situations in which you should recom-
mend some kind of media: when the customer is buying, or has bought in the
past, a VCR or DVD player; and when the customer is buying, or has bought in the
past, a videotape or DVD. You can handle the first case—recommending a tape or
disk to go with a new player—by adding the appropriate category to the requires
multislot of each player in the catalog. The other three cases require adding spe-
cific rules. First, let’s look at the rule that recommends new media to anyone who
has ever bought a player in the past:

(defrule recommend-media-for-player
 "If customer has bought a VCR or DVD player in the
 past, recommend some media for it."
 (product (part-number ?media) (category ?c&dvd-disk|videotape))

 (product (name ?name) (part-number ?player)
 (category =(if (eq ?c dvd-disk) then dvd else vcr)))

The first pattern matches any DVD or videotape, and the second pattern matches
all the players that can play it. These two patterns include some fancy matching:
The first pattern uses the | (or) connective constraint to match either dvd-disk
or videotape in the category slot. The second pattern uses the = return value
constraint and a conditional expression to select a value for the category slot that
goes with the media category: vcr for videotape and dvd for dvd-disk.

 We’ve deliberately put these two patterns at the beginning of this rule, because
they match only things from the catalog and therefore will never change while the
program is running. It’s generally good to put the patterns that match fixed,
unchanging facts at the top of a rule, so they won’t need to be evaluated more
than once. In general, ordering patterns is a balancing act, with at least three
important, interacting factors:

■ Clarity—You wrote the patterns in a rule in a specific order because that’s
the way they made sense.

■ Performance —You certainly want to avoid doing repetitive work; ordering
patterns to put the static ones at the top of the rule, as you’ve done here,
helps you achieve this goal.

■ Memory use —If you put patterns that match fewer facts toward the begin-
ning of a rule, you’ll reduce the number of partial matches and limit mem-
ory consumption.

298 CHAPTER 17
Jess on the Web
Often, these three considerations conflict, and you have to make a judgment call.
In this chapter, I’ve ordered the patterns placing the most emphasis on readabil-
ity. In general, this is a good idea at first; you can always go back and reorder the
patterns to increase performance and reduce memory usage later, if it turns out
to be necessary.

 The following three patterns identify a customer who has bought a player in the
past and is placing a new order. The line-item pattern identifies a purchase of a
player matched in the first part of the rule. The next two patterns identify the cus-
tomer whose past order contained that line item, and who is placing a new order:

 (line-item (customer-id ?id) (order-number ?order1)
 (part-number ?player))
 (order (customer-id ?id)
 (order-number ?currentOrder&:(> ?currentOrder ?order1)))
 (not (order (customer-id ?id)
 (order-number ?order3&:(> ?order3 ?currentOrder))))

The last two patterns narrow the matches a bit. The first pattern eliminates video-
tapes or DVDs the customer has purchased or is currently purchasing, and the final
pattern ensures that you only recommend one videotape or one DVD per order:

 (not (line-item (customer-id ?id) (part-number ?media)))
 (not (recommend (order-number ?currentOrder)
 (type =(sym-cat discretionary- ?c))))

In the previous section, all the recommendations were of type requirement. The
recommendations you’re creating here are discretionary-videotape and dis-
cretionary-dvd-disk. Other parts of the system will therefore be able to tell the
difference between true requirements and mere sales pitches. You compose the
correct category name using the sym-cat function.

 Finally, if all the patterns match, you’ve identified a videotape you can recom-
mend to the customer:

 =>

 (assert (recommend (order-number ?currentOrder)
 (because ?name)
 (part-number ?media)
 (type =(sym-cat discretionary- ?c)))))

This rule simply asserts a recommend fact, as recommend-requirements did, and
leaves it up to other software to communicate with the user.

17.5.4 Conspicuous consumption
If one DVD or videotape is good, more must be even better. The rule recommend-
more-media asks the customer if they’d like to buy a second videotape or DVD

Writing the rules 299
whenever they pick one out themselves. Although this version of the Recommen-
dations Agent doesn’t do it, a more fleshed-out version could offer a discount on
purchases of multiples (“Buy one, get a second for half price!”).

 These first three patterns identify all pairs of videotapes and DVDs; the third
pattern ensures that you consider only pairs of two different items:

(defrule recommend-more-media
 "If customer buys a disk or tape, recommend a random
 other item of the same category."
 ?p1 <- (product (part-number ?part1)
 (category ?c&dvd-disk|videotape) (name ?name))
 ?p2 <- (product (part-number ?part2) (category ?c))
 (test (neq ?p1 ?p2))

The test pattern compares the fact-ids of the matched facts for inequality; this
is a common idiom in Jess.

 The line-item pattern identifies orders that include one member of a pair of
media, and then the negated pattern eliminates orders that already include a dis-
cretionary media recommendation for this media type:

 (line-item (order-number ?order) (part-number ?part1))
 (not (recommend (order-number ?order)
 (type =(sym-cat discretionary- ?c))))

Because the customer is buying the first member of a pair of items, this rule rec-
ommends the second member:

 =>

 (assert (recommend (order-number ?order)
 (because ?name)
 (part-number ?part2)
 (type =(sym-cat discretionary- ?c)))))

17.5.5 More media rules
There’s one more marketing rule you haven’t written yet: the rule recommend-
same-type-of-media, which tries to get a past media customer to buy more media
on every return visit. It’s really just a combination of recommend-more-media and
recommend-media-for-player, so I’ll present it here without any narration:

(defrule recommend-same-type-of-media
 "If customer has bought a disk or tape in the past,
 recommend a random other item of the same category."
 ;; There are two recordings of the same type
 ?p1 <- (product (part-number ?part1)
 (category ?c&dvd-disk|videotape) (name ?name))
 ?p2 <- (product (part-number ?part2) (category ?c))
 (test (neq ?p1 ?p2))

300 CHAPTER 17
Jess on the Web
 ;; This customer has bought one of them in a past order
 (line-item (customer-id ?id)
 (order-number ?order1) (part-number ?part1))
 (order (customer-id ?id)
 (order-number ?currentOrder&:(> ?currentOrder ?order1)))
 (not (order (customer-id ?id)
 (order-number ?order3&:(> ?order3 ?currentOrder))))

 ;; But not the other
 (not (line-item (customer-id ?id) (part-number ?part2)))

 ;; and we haven't recommended any media of this type yet
 (not (recommend (order-number ?currentOrder)
 (type =(sym-cat discretionary- ?c))))
 =>

 ;; Recommend the other one.
 (assert (recommend (order-number ?currentOrder)
 (because ?name)
 (part-number ?part2)
 (type =(sym-cat discretionary- ?c)))))

17.6 Refining the recommendations

The rules you’ve written so far can sometimes generate multiple recommenda-
tions for the same product. You could complicate all the previous rules such that
they won’t generate the duplicate recommendations, or you could simply allow
them to be created and then clean them up at the end. I’ve chosen to take the lat-
ter route. A single rule coalesce-recommendations combines multiple recom-
mendations for the same product:

(defrule coalesce-recommendations
 "If there are multiple recommendations for the same product,
 coalesce them."
 ?r1 <- (recommend (order-number ?order) (type ?type)
 (because ?product) (part-number ?part))
 ?r2 <- (recommend (order-number ?order) (part-number ?part)
 (because $?products&
 :(not (member$
 ?product
 $?products))))
 =>
 (retract ?r1 ?r2)
 (assert (recommend (order-number ?order) (type ?type)
 (because (create$?product $?products))
 (part-number ?part))))

The rule recommend-requirements can generate another kind of invalid recom-
mendation: It may recommend a product as a requirement even though the cus-
tomer is already buying another product in that same category. If the customer is

Some useful queries 301
buying cheap batteries, it would be pointless to recommend the expensive ones.
Again, you could complicate the original rule to account for this situation, or you
could write a cleanup rule. The rule remove-satisfied-recommendations
retracts recommendations that are satisfied by other purchases in the same order:

(defrule remove-satisfied-recommendations
 "If there are two products in the same category, and
 one is part of an order, and there is a recommendation
 of type 'requirement' for the other part, then remove
 the recommendation, as the customer is
 already buying something in that category."
 (product (part-number ?part1) (category ?category))
 (product (part-number ?part2) (category ?category))
 (line-item (order-number ?order) (part-number ?part2))
 ?r <- (recommend (order-number ?order)
 (part-number ?part1) (type requirement))
 =>
 (retract ?r))

You’re finished writing the rules for the Recommendations Agent. Recall that
you’re going to integrate these rules into a web application, and that the web
application will need access to the list of items in the current order, the list of rec-
ommendations, and the list of products in the catalog. The web application can
use queries to get access to this information. In the next section, you’ll write some
queries for the web application to call.

17.7 Some useful queries

Queries let you efficiently access specified elements in Jess’s working memory. In
this way, they turn Jess into a relational database—albeit a slightly strange one that
doesn’t use SQL. When you build your web application, you won’t use a tradi-
tional database: You’ll use Jess to store all the application data, instead.

 Recall from section 7.7 that a defquery is like a rule without a right-hand side.
It includes a set of patterns that match facts the same way a rule’s patterns do. The
difference is that a rule is matched automatically, whereas a query is triggered by
calling the function run-query. This function returns a java.util.Iterator that
represents the list of matches for the query’s patterns. The query all-products is
the simplest possible example; it matches every product in the catalog:

(defquery all-products
 (product))

The web application will be able to get a list of all the products in the catalog by calling
the Jess function (run-query all-products). You’ll need this to build an order form.

302 CHAPTER 17
Jess on the Web
 Queries can also contain a variables declaration. The variables declaration lists
the arguments to the query. The arguments you supply to the run-query function
are bound to the variables of the same names in the patterns, so you can specify at
runtime the specific values the query’s patterns should match. A query to list all
the items in an order is a good example: It should take one argument, ?order,
which specifies the order number of interest:

(defquery items-for-order
 (declare (variables ?order))
 (line-item (order-number ?order) (part-number ?part))
 (product (part-number ?part)))

Each match returned by this query will contain an item-number fact and the asso-
ciated product fact. You’d need this information to compute an order total, print
a shipping list, and so on. The recommendations-for-order query is similar:

(defquery recommendations-for-order
 (declare (variables ?order))
 (recommend (order-number ?order) (part-number ?part))
 (product (part-number ?part)))

This query lists all the recommendations associated with a given order. In this
query and the last one, ?part is an internal variable: an undeclared variable used
only to perform matching within the patterns of the query.

17.7.1 Maintaining the order number

The web application you’re going to build needs to give each order a unique
number. Traditionally, this task is handled using a stored procedure in a database:
A tiny database table holds a single number, and a stored procedure increments
the value in the table and returns it. Using a database makes this process safe for
multiple concurrent instances of the web application; the database allows only
one instance at a time to be updating the order number. In this application, you’ll
use the same technique, implemented in Jess using a deftemplate with a single
slot to represent the tiny table, and a deffunction instead of a stored procedure.
Jess will automatically supply the concurrency control (as you’ll see in the next
chapter). Here’s the deftemplate:

(deftemplate next-order-number
 (slot value))

Here’s a query to retrieve the single fact you expect to be using this template:

(defquery order-number
 (next-order-number))

Cleaning up 303
And finally, here’s a deffunction to return the next order number. If there’s no
next-order-number fact, this function creates one and returns the lowest possible
order number (which you’ve arbitrarily specified as 1001). If there is such a fact,
this function increments the value, modifies the fact, and returns the unincre-
mented order number. get-new-order-number uses the order-number query to
get hold of the fact it needs:

(deffunction get-new-order-number ()
 (bind ?it (run-query order-number))
 (if (not (?it hasNext)) then
 (assert (next-order-number (value 1002)))
 (return 1001)
 else
 (bind ?token (?it next))
 (bind ?fact (?token fact 1))
 (bind ?number (?fact getSlotValue value))
 (modify ?fact (value (+ ?number 1)))
 (return ?number)))

Before we move on to writing the Java code for the Recommendations Agent, you
need to assemble one more chunk of Jess code: a module dedicated to initializing
new orders.

17.8 Cleaning up

Web users are notoriously unpredictable. They’ll click Stop to cancel transactions;
they’ll click Back right in the middle of a series of screens. As a result, your web
application needs a way to reinitialize an order that’s been partially filled out.
Removing all the line-items, all the recommends, and the order fact from work-
ing memory should do it, because the web application will be able to reassert
these facts based on other state information. You can use a defmodule containing
a few auto-focus rules to do the cleanup (see section 7.6 for information about
modules). Asserting the fact (clean-up-order ?order) will then clean up the
order number ?order:

(defmodule CLEANUP)

(defrule CLEANUP::initialize-order-1
 (declare (auto-focus TRUE))
 (MAIN::initialize-order ?number)
 ?item <- (line-item (order-number ?number))
 =>
 (retract ?item))

(defrule CLEANUP::initialize-order-2
 (declare (auto-focus TRUE))

304 CHAPTER 17
Jess on the Web
 (MAIN::initialize-order ?number)
 ?rec <- (recommend (order-number ?number))
 =>
 (retract ?rec))

(defrule CLEANUP::initialize-order-3
 (declare (auto-focus TRUE))
 ?init <- (MAIN::initialize-order ?number)
 (not (line-item (order-number ?number)))
 (not (recommend (order-number ?number)))
 =>
 (retract ?init))

(defrule CLEANUP::clean-up-order
 (declare (auto-focus TRUE))
 ?clean <- (MAIN::clean-up-order ?number)
 ?order <- (order (order-number ?number))
 =>
 (assert (initialize-order ?number))
 (retract ?clean ?order))

The rule initialize-order-1 deletes all the line-item facts when it sees an
initialize-order fact, and initialize-order-2 deletes all the recommend facts.
initialize-order-3 deletes the initialize-order fact when no more line
items or recommendations are left. Finally, clean-up-order serves as the entry
point; it retracts the order fact, and then runs the other rules by asserting the
initialize-order fact.

TIP It’s important that these rules be auto-focus rules in their own module.
Because they delete individual recommendations, these rules could oth-
erwise thrash back and forth with the recommendation rules: Each time a
recommend fact was deleted, one of the recommendation rules could acti-
vate and fire, putting the same fact back into working memory, only to
have it be deleted again, in an endless chain reaction. This kind of prob-
lem is sometimes called an assertion storm. You can stop an assertion storm
either by removing all the requisite facts or by calling the Rete.halt()
method, which forces that Rete object to halt immediately.

17.9 Summary

In this chapter, you’ve developed a basic set of rules for a Recommendations
Agent. It’s important to realize that you could add many other rules to this system
without changing any of the data structures. With minor changes, you could add
rules to support sale prices and two-for-one deals. However, this small core of rules
is enough to support the goal here, which is to see how Jess can be embedded in
web applications.

Summary 305
 You’ve also seen your first practical examples of using the defquery construct.
You wrote several queries, which the web application implementation code will
need to use.

 In chapter 19, you’ll build a web application around the Recommendations
Agent rule base. Before you can do that, however, you need to learn about using
Jess from Java code. This is the subject we’ll tackle in chapter 18.

Embedding Jess
in Java applications
In this chapter you’ll…
■ Learn about the jess.Rete class
■ Create and manipulate facts from Java
■ Work with Jess exceptions
■ Learn to reroute Jess’s I/O channels
306

Getting started with the Jess library 307
Every application you’ve written so far has been based on the command-line inter-
face tool jess.Main. The Tax Forms Advisor and PC Repair Assistant each con-
sisted entirely of a single Jess script, whereas the HVAC Controller also included
some Java classes. Each of these three programs could be launched by starting
jess.Main and telling it the filename of a script from the command line.

 It might look as though jess.Main is Jess’s central class. In fact, jess.Main is
just a command-line wrapper around the Jess library. With the library, you can cre-
ate any number of individual Jess inference engines. You can define rules for
them, add data to their working memories, run them in separate threads, and col-
lect generated results—all from Java code, without using jess.Main.

 The Jess library is obviously what you need to use to deploy rule-based web
applications. Jess must be embedded inside some larger application: a web server,
an application server, or even a browser. In this chapter, you’ll learn general tech-
niques for embedding Jess in Java software. In the next chapter, you’ll put these
techniques into practice and create a servlet-based web application around the
Recommendations Agent rules you developed in chapter 17.

18.1 Getting started with the Jess library

Let’s begin at the beginning. The core of the Jess library is the jess.Rete class
(see section 13.4.1). An instance of jess.Rete is, in a sense, an instance of Jess.
Every jess.Rete object has its own independent working memory, its own list of
rules, and its own set of functions. The Rete class exports methods for adding,
finding, and removing facts, rules, functions, and other constructs. The Rete class
is a facade1 for the Jess library: Although there are many other classes in the
library, jess.Rete provides a convenient central access point.

 It’s easy to create a jess.Rete object. There is a default constructor (one that
accepts no arguments):

import jess.*;
 ...
 Rete engine = new Rete();

The most commonly used constructor, however, accepts a java.lang.Object
argument. The Rete object stores this Object, and whenever it needs to load a
Java class (for instance, because of a call to Jess’s new function), that Object’s class
loader is used to find it. In some Java applications—especially in application

1 E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Soft-
ware (Reading, MA: Addison-Wesley, 1995).

308 CHAPTER 18
Embedding Jess in Java applications
server environments—there can be multiple class loaders, and using the correct
one is important. By supplying an object from your application as an argument to
the Rete constructor, you tell Jess how to find the other classes in your applica-
tion. This will be important when you build a web application in the next chapter.

18.1.1 The executeCommand method

Once your Java program creates a Rete object, what’s next? One of the simplest
and most powerful ways to manipulate Jess from Java is to use the executeCommand
method. executeCommand accepts a String argument and returns a jess.Value
(see section 4.1.3 and chapter 15 to learn about this class). The String is inter-
preted as an expression in the Jess language, and the return value is the result of
evaluating the expression. So, for example, to add a fact to Jess’s working memory
and get access to the jess.Fact object, you might do the following:

import jess.*;
...
 Rete engine = new Rete();
 Value v = engine.executeCommand("(assert (color red))");
 Fact f = v.factValue(engine.getGlobalContext());

Section 15.2.2 describes value resolution—how to get information out of a
jess.Value object. To resolve a jess.Value, you need a jess.Context object.
The method getGlobalContext in jess.Rete is a convenient way to obtain one.
Commands executed via executeCommand may refer to Jess variables; they are
interpreted in this same global context.

 Using executeCommand to interact with Jess has one other advantage: It is
thread-safe. Only a single call to executeCommand can be simultaneously execut-
ing on a given instance of jess.Rete. The lock object is internal to the Rete
instance, so executeCommand is synchronized independently of any other concur-
rency controls. This means that if your web application uses executeCommand to
call the get-new-order-number function (see section 17.7.1), it needn’t worry
about interference between multiple threads.

18.1.2 Exchanging Java objects

Probably the most frequently asked question on the Jess email discussion list is
some variation on, “How can I send my Java variable to my Jess program?” This
section provides one easy answer to this important question. We’ll discuss the fol-
lowing functions:

■ Rete.store(String, Object)—Stores any object in a special hash table,
from Java

Getting started with the Jess library 309
■ Rete.store(String, Value)—Stores a jess.Value in the table, from Java

■ Rete.fetch(String)—Retrieves a jess.Value, from Java

■ (store symbol value)—Stores a value in a hash table, from Jess

■ (fetch symbol)—Retrieves a value from the hash table, from Jess

In the previous section, you asserted a fact (color red) into Jess’s working memory
from Java. What if instead of the symbol red, you wanted the fact to hold a
java.awt.Color object representing a particular shade of red? It’s not possible to
construct a String argument for executeCommand that directly contains the Color
object. This general problem—how to move objects in both directions between Jess
and Java—is solved by the store and fetch functions. To send a Java object to Jess:

1 Choose a unique identifier.

2 In Java, call Rete.store, passing the identifier and the object as arguments.

3 In Jess, call (fetch), using the same identifier to retrieve the object.

The color example would look like this:

import jess.*;
import java.awt.Color;
...
 Rete engine = new Rete();
 Color pink = new Color(255, 200, 200);
 engine.store("PINK", pink);
 Value v =
 engine.executeCommand("(assert (color (fetch PINK)))");
 Fact f = v.factValue(engine.getGlobalContext());

The store method saves the Color object in a hash table, using the string "PINK" as
the key. The fetch function retrieves the object from the same hash table. Note that
the store method is overloaded to accept either a jess.Value or a generic
java.lang.Object as its second argument. The second version (the one used here)
automatically wraps the Object in a jess.Value of type RU.EXTERNAL_ADDRESS
before storing it.

Getting results
If sending Java variables to Jess is the topic of the most frequently asked Jess ques-
tion, the second most popular question surely concerns retrieving values from Jess
back into Java. Store/fetch works in the other direction, too. It’s a handy way of
returning results from Jess to Java. Here, a value computed on the right-hand side
of a rule is retrieved from Java:

310 CHAPTER 18
Embedding Jess in Java applications
import jess.*;
...
 Rete engine = new Rete();
 engine.executeCommand("(assert (numbers 2 2))");
 String rule = "(defrule add-numbers" +
 "(numbers ?n1 ?n2)" +
 "=>" +
 "(store SUM (+ ?n1 ?n2)))";
 // Use executeCommand to define a rule
 engine.executeCommand(rule);
 // The rule fires and stores the result
 engine.executeCommand("(run)");
 Value sumValue = engine.fetch("SUM");
 int sum = sumValue.intValue(engine.getGlobalContext());

The Java variable sum is initialized to 4. This is a long-winded way of adding two
numbers, of course, but the same technique works with more complex rules.

18.1.3 Beyond executeCommand

As you’ve seen, you can use the executeCommand method to do just about any-
thing in Jess from Java. This approach has some problems, though:

■ It’s verbose. Beside typing the whole Jess command, you have to type exe-
cuteCommand, and possibly some store and fetch calls.

■ It’s potentially inefficient, because Jess has to parse the argument. If the script
passed to executeCommand is something that will take a while to run, this
issue doesn’t matter; but for a single short command, it could be a lot of
overhead.

■ It’s error-prone. If the Jess script contains a syntax error, the Java compiler
won’t catch it—you won’t find the error until you run your program.

The executeCommand method is very convenient, then, but it has some important
disadvantages. Whenever possible, you should consider using Jess’s direct Java APIs
instead. Table 18.1 lists some Jess functions and the equivalent Rete methods.

Table 18.1 Some simple methods in the jess.Rete class

Rete method Jess equivalent

reset() (reset)

run() (run)

run(int) (run number)

clear() (clear)

Working with Fact objects in Java 311
For example, in a code listing in the previous section, you had

 engine.executeCommand("(run)");

Instead, you can write this code as follows:

 engine.run();

The Rete class also includes direct Java equivalents of (clear), (reset), and
many other important Jess functions. In the following sections, we’ll look at what
you can do with some more of these Rete methods.

18.2 Working with Fact objects in Java

Rather than using executeCommand, store, and fetch to assemble and assert facts
from Java, you can construct jess.Fact objects directly. If a single fact is going to
hold objects in several slots, this method will be more convenient, and it will
always be more efficient. Table 18.2 lists some of the Java methods that will help
you work with Fact objects.

The jess.Fact class is a subclass of ValueVector (you met ValueVector in sec-
tion 15.2). All the entries in the ValueVector correspond to slots of the Fact; the
data for the first slot is the item at index 0. The head or name of the fact is stored
in a separate variable and is accessible via the getName method.

 Every jess.Fact has an associated jess.Deftemplate object that describes the
slots the fact can have. All Facts with a given head should share the same Deftem-
plate. When you’re programming in Java, it’s up to you to enforce this require-
ment. If the Deftemplate you need has already been defined, you can use the
findDeftemplate method in Rete to get a reference to it; otherwise, you’ll have

Table 18.2 Some jess.Rete methods for working with facts

Rete method Jess equivalent

addDeftemplate(Deftemplate) (deftemplate)

assertFact(Fact) (assert fact)

findDeftemplate(String) None

findFactByFact(Fact) None

findFactById(int) (fact-id number)

retract(Fact) (retract fact-id)

312 CHAPTER 18
Embedding Jess in Java applications
to construct it yourself. Once you’ve built a Deftemplate, you can reuse it for all
the other Facts of the same type that you create.

 Listing 18.1 shows how to create a Deftemplate with two slots and then assert
several facts that use it. Deftemplate’s first two constructor arguments are the
name of the template and the documentation string for the template. The argu-
ments to addSlot are a name for the slot, a default value for the slot, and the
name of the data type of the slot, respectively. Jess doesn’t do anything with the
data type argument—it’s reserved for future use.

import jess.*;
public class CreateFacts {
 public static void main(String[] unused)
 throws JessException {
 Rete engine = new Rete();
 Deftemplate d =
 new Deftemplate("person", "A person", engine);
 d.addSlot("name", Funcall.NIL, "STRING");
 d.addSlot("address", Funcall.NIL, "STRING");
 engine.addDeftemplate(d);

 String[][] data = {
 {"Joe Smith", "123 Main Street"},
 {"Fred Jones", "333 Elm Circle"},
 {"Bob Weasley", "211 Planet Way"},
 };

 for (int i=0; i<data.length; ++i) {
 Fact f = new Fact("person", engine);
 f.setSlotValue("name",
 new Value(data[i][0], RU.STRING));
 f.setSlotValue("address",
 new Value(data[i][1], RU.STRING));
 engine.assertFact(f);
 }
 engine.executeCommand("(facts)");
 }
}

In listing 18.1, you specify a value for every slot in each Fact, but doing so is not
required. If you don’t specify a value for a slot, the default value is used when the
Fact is asserted.

 Once you assert a Fact object, you no longer “own” it—it becomes part of the
Rete object’s internal data structures. As such, you must not change the values of
any of the Fact’s slots. If you retract the fact, the Fact object is released and you

Listing 18.1 Creating a Deftemplate and asserting Fact objects from Java

Working with Fact objects in Java 313
are free to alter it as you wish. You can retract your fact from the engine using the
retract method.

18.2.1 Multislots

Jess facts can contain multislots—single slots that hold multiple data items. You can
add a multislot to a Deftemplate using the addMultiSlot method. You can then
set the value of that slot in a fact as usual, but the slot value must be a jess.Value
of type RU.LIST. A LIST value contains a ValueVector; the elements of the Val-
ueVector are then the contents of the multislot:

Rete engine = new Rete();
Deftemplate d =
 new Deftemplate("student", "A student", engine);
d.addSlot("name", Funcall.NIL, "STRING");
d.addMultiSlot("courses", Funcall.NILLIST);
engine.addDeftemplate(d);

Fact f = new Fact("student", engine);
f.setSlotValue("name", new Value("Fred Smith", RU.STRING));
ValueVector courses = new ValueVector();
courses.add(new Value("COMP 101", RU.STRING));
courses.add(new Value("HISTORY 202", RU.STRING));
f.setSlotValue("courses", new Value(courses, RU.LIST));

Note that even if a multislot contains only one value, you have to put it in a Val-
ueVector. When you’re programming in Java, it’s up to you to follow this rule.
The results of breaking it are undefined.

18.2.2 Ordered facts

As you saw in section 6.4, ordered facts like

(shopping-list bread milk jam)
(point 20 10)
(power off)

are represented as if they were unordered facts with a single multislot named
__data, like this:

(shopping-list (__data bread milk jam))
(point (__data 20 10))
(power (__data off))

If you assert an ordered fact from the Jess language, the deftemplate is created
automatically if it doesn’t already exist. The same thing happens if you create the
fact from Java. The deftemplate is created during the call to the Fact object’s
constructor:

314 CHAPTER 18
Embedding Jess in Java applications
Fact f = new Fact("shopping-list", engine);
f.setSlotValue("__data", new Value(new ValueVector().
 add(new Value("bread", RU.ATOM)).
 add(new Value("milk", RU.ATOM)).
 add(new Value("jam", RU.ATOM)), RU.LIST));
engine.assertFact(f);

This code uses an interesting shortcut: The add method in ValueVector returns
the ValueVector you call it on. This means you can chain calls to this method, as
we’ve done here. Some people like this technique, and some people hate it; I
think it’s a fine thing to do when you’re building up a list of items.

18.2.3 Removing facts

The retract method in the Rete class lets you remove facts from working memory:

Fact f = …
engine.retract(f);

retract takes a Fact object as an argument. If you asserted the fact from Java,
then it’s easy to use it as an argument to retract. If you didn’t, then you need to
get hold of a Fact object somehow. There are two approaches: Either you can use
the fact number of the Fact as an argument to the findFactById method in Rete,
or you can construct a Fact just like the one you want to retract and use that as
the argument to retract (it turns out that retract doesn’t need you to pass in a
Fact object that’s really in working memory—it can instead be a Fact that’s identi-
cal to one in working memory).

 The working memory is stored as a hash table, with the Fact objects as the
keys. That means finding out whether a Fact is in working memory already is a
fast operation, but finding the Fact with a particular numeric identifier is slow
(because Jess has to examine each Fact in working memory until it finds the right
one). Therefore, there’s no cheap way to remove a fact from working memory if
you don’t already have a reference to the Fact object: Either Jess has to do a slow
lookup, or you have to do the work of constructing a duplicate Fact object. If you
assert Facts from Java and intend to retract them later in your application, be sure
to keep references to the Fact objects you create.

18.3 Working with JavaBeans

Adding JavaBeans to Jess’s working memory from Java is simple, and it works
pretty much the same way as it does from the Jess language. Table 18.3 shows the
correspondence between methods in the Rete class and the Jess functions you’ve
already learned about.

Calling Jess functions from Java 315

You use the Rete.defclass method to register a class with Jess, and then you use
Rete.definstance to add individual instances to working memory. You can
remove the objects using Rete.undefinstance. As an example, you can add a
java.awt.Button to Jess’s working memory like this:

Rete engine = ...
engine.defclass("button", "java.awt.Button", null);
Button b = new Button("OK");
engine.definstance("button", b, true);

You don’t want this defclass to extend another one, so you pass null as the last
argument to the defclass function. Because java.awt.Button sends Property-
ChangeEvents, you can pass true as the last argument to definstance, making
this a dynamic instance.

18.4 Calling Jess functions from Java

As you’ve seen, the Rete class exposes many Jess functions as public Java meth-
ods—many, but not all. Some Jess functions show up as Java methods in other
classes: For example, the Jess gensym* function is available as the static gensym
function in the jess.RU class. The Userfunction class that implements gensym* is
just a thin wrapper around this static Java method.

 Other Jess functions, however, are implemented directly in the Userfunction
class. To call them from Java, you have to use an instance of the appropriate
Userfunction class. The helper class jess.Funcall can make this process a little
simpler. As an example, there’s no specific Java API for the watch function. To
turn on all the watch diagnostics from Java code (the equivalent of (watch all) in
Jess), you can do this:

Rete engine = …
Context context = engine.getGlobalContext();
Funcall f = new Funcall("watch", engine);
f.arg("all");
f.execute(context);

Table 18.3 jess.Rete methods for working with JavaBeans

Rete method Jess equivalent

defclass(tag, class-name, parent) (defclass tag class-name [parent])

definstance(tag, object, boolean) (definstance tag object
[static|dynamic])

undefinstance(object) (undefinstance object)

316 CHAPTER 18
Embedding Jess in Java applications
Once you’ve created a Funcall object, you can save it and call execute on it any
number of times. Alternatively, you can use the compressed form:

new Funcall("watch", engine).arg("all").execute(context);

Some Jess functions can fail, due to either programmer error or a runtime condi-
tion. In the next section, you’ll learn how to deal with errors during execution.

18.5 Working with JessException

Jess’s Java API reports errors by throwing instances of jess.JessException.
Therefore, whenever you work with Jess in Java, you need to catch this exception.
Working with JessExceptions can be a little tricky, as exception classes go, but
using them correctly can save you a lot of head scratching when you’re debugging
your programs.

 Here are some useful methods in jess.JessException:

■ getContext()—Returns a Jess stack trace

■ getLineNumber()—Returns the offending line number in Jess language code

■ getNextException()—Returns a nested exception

■ getProgramText()—Returns the offending Jess code itself

■ getRoutine()—Returns the name of the Jess function or Java method

An instance of JessException can of course provide an error message and a Java
stack trace, like all Java Throwables. If the error comes from executing code in the
Jess language, the JessException can provide additional information about what
went wrong. The getContext method, for example, returns a kind of Jess lan-
guage stack trace, showing what functions and constructs were executing when an
error occurred. The getRoutine method tells you what Jess function was execut-
ing, and the getLineNumber method points to a specific line in your script. get-
ProgramText returns the actual snippet of Jess code that caused the error. The
code in this example provokes a JessException by trying to multiply two symbols,
and then demonstrates how to use some of these methods:

import jess.*;

public class CatchJessException {
 public static void main(String[] argv) {
 try {
 Rete r = new Rete();
 r.executeCommand("(* 1 2)\n(* 3 4)\n(* a b)");
 } catch (JessException je) {
 System.out.print("An error occurred at line " +

Working with JessException 317
 je.getLineNumber());
 System.out.println(" which looks like " +
 je.getProgramText ());
 System.out.println("Message: " + je.getMessage());
 }
 }
}

Running this program produces the following:

An error occurred at line 3 which looks like (* a b)
Message: Not a number: "a"

The most important thing to remember about working with JessExceptions is
never to ignore them. A truly remarkable number of people write code like this:

 try {
 Rete r = new Rete();
 r.executeCommand("(* 1 2)\n(* 3 4)\n(* a b)");
 } catch (JessException je) {
 /* NOTHING */
 }

and then wonder why their program doesn’t work. Don’t be one of them! Always
at least print the exception object itself to System.out or to a log file. JessExcep-
tion’s toString method produces the by-now-familiar exception display you see
from the Jess command prompt. Printing the object je would give the following:

Jess reported an error in routine Value.numericValue
 while executing (+ a b).
 Message: Not a number: "a" (type = ATOM).
 Program text: (+ a b) at line 3.

This is more information than the end user of your application probably needs to
see, but it’s better than no information at all.

18.5.1 Nested exceptions
The Jess function call can invoke any Java method. If the invoked Java method
throws an exception, call creates a JessException object as a wrapper for the real
exception and throws the wrapper instead. Therefore, when you catch a Jess-
Exception, you may need to check it for a nested exception object using the get-
Cause method. If getCause returns non-null, the returned exception is almost
always more interesting than the JessException itself:

import jess.*;

public class CheckNextException {
 public static void main(String[] argv) {
 try {
 Rete r = new Rete();

318 CHAPTER 18
Embedding Jess in Java applications
 r.executeCommand("(new java.net.URL foo://bar)");
 } catch (JessException je) {
 System.out.println(je.getMessage());
 System.out.println(je.getCause().getMessage());
 }
 }
}

This code prints the following:
Constructor threw an exception
unknown protocol: foo

Note that the toString method of JessException does not display nested excep-
tions, so you need to check for and report them explicitly.

18.5.2 Rolling your own
The call method of the Userfunction interface can throw JessException, so if
you’re writing your own Jess commands, you may want to create your own Jess-
Exception objects to report errors. The good news is that Jess automatically takes
care of setting the line number, program text, and Jess stack trace information
after your JessException is thrown; all you need to worry about are the routine
name, error message, and possibly a nested exception.

 JessException has three constructors, which differ only in their last argu-
ment. The first two arguments are always a routine name and a message. The rou-
tine name indicates where the exception was created. It can be either the name of
a Java class and method, or the name of a Jess language function; use your best
judgment. The routine name you use is displayed on the first line of the message
returned by JessException.toString().

 The second argument to each JessException constructor is the error mes-
sage—a short description of what went wrong, perhaps five words at most. For two
of the three constructors, the third argument is simply more data to be appended
to the message, with a space in between. One of the constructors accepts an int,
which is handy for reporting number-related errors, and the other accepts a sec-
ond String. For the third constructor, the last argument is a nested exception.

 This code snippet is from an imaginary Userfunction that implements a goo-
gle function in Jess. It tries to connect to the Google web site and reports any fail-
ure via a JessException:

try {
 Socket s = new Socket("www.google.com", 80);
 // use the socket ...
} catch (Exception ex) {
 throw new JessException("google", "Network error", ex);

}

Input and output 319
Any exceptions thrown by the Socket constructor result in a JessException
being thrown; the original exception is available via getNextException.

18.6 Input and output

The function printout was the first Jess function you learned. Until now, the first
argument to printout has always been t, but I’ve never explained why. The time
has come to break this silence and explain the topic of I/O routers. The following
methods in the Rete class deal with these beasts:

■ addInputRouter(String name, Reader r, boolean mode)—Defines or rede-
fines an input router

■ getInputRouter(String name)—Returns the named input router
■ removeInputRouter(String name)—Undefines an input router
■ getInputMode(String name)—Determines whether the named input

router is console-like
■ addOutputRouter(String name, Writer w)—Defines or redefines an out-

put router
■ getOutputRouter(String name)—Returns the named output router
■ removeOutputRouter(String name)—Undefines an output router
■ getOutStream()—Returns the standard output router
■ getErrStream()—Returns the standard error router

You can use the readline and printout functions to collect input and display
output from Jess:

(printout t "Enter 'y' or 'n': ")
(bind ?response (readline t))

The first argument to printout or readline is a router, a symbol that tells Jess
where to send the output. Several routers are built into Jess, and they’re all ini-
tially connected to standard input and output: text sent to t, WSTDOUT or WSTDERR
all goes to System.out by default, and data read from t or WSTDIN comes from
System.in. The W* routers are used internally by Jess. WSTDOUT is where Jess sends
the Jess> prompt and the result of evaluating an expression you type at the
prompt. WSTDERR is used for internal error messages. WSTDIN exists only for sym-
metry; Jess doesn’t use it for anything.

 A router is really just a symbolic name for a java.io.Reader (for input) or a
java.io.Writer (for output). The defaults for the built-in routers are wrappers
around System.in and System.out. Each jess.Rete object keeps its own table of

320 CHAPTER 18
Embedding Jess in Java applications
routers (there are separate tables for input and output routers, so an input/out-
put pair with the same name, like t, are separate, unconnected objects).

 You can retrieve routers from this table by name with the getInputRouter and
getOutputRouter methods. If you’re writing a Userfunction or other Java code
that wants to intersperse its output with Jess’s other output, you can use getOut-
putRouter("WSTDOUT") to get an appropriate Writer object. The method
getOutStream() is a special shortcut for this common operation.

 Note that Jess’s routers are not general I/O channels. Jess always interprets
data from an input router as a sequence of Jess language tokens (symbols, num-
bers, and strings). As a result, you can’t do binary I/O through a router. If you
need to do binary I/O, you can use Jess’s reflection capabilities to call read and
write directly on appropriate Java streams.

18.6.1 Using custom routers
In the command-line client jess.Main, the default values for the built-in routers
are fine; but if Jess is embedded in software with a GUI, it’s likely that printing to
standard output is inappropriate. If you want to be able to use readline, print-
out, and friends from an application that won’t be used from the command line,
you may need to set the standard routers to refer to Reader and Writer objects
that are more appropriate for the situation. For example, if Jess was to be embed-
ded in a web application, printout wouldn’t be useful unless a new router were
defined that sent its output to someplace other than System.out. You might
define a new router using a java.io.StringWriter; printout could then send
information to a string, which could then be retrieved when appropriate by the
application. To define such a router named out, you could do the following:

StringWriter sw = new StringWriter();
Engine.addOutputRouter("out", sw);

If you then executed the Jess statement (printout out 12345 crlf), a subsequent
call to sw.toString() would return the string "12345\n".

 Sometimes, coming up with appropriate Readers and Writers is tricky. In the
jess.Console graphical console application, for example, the output from
(printout t) goes to one graphical text component in the GUI, and (readline t)
takes input from a second text component. To make this work, Jess includes two
adapter classes named jess.awt.TextAreaWriter and jess.awt.TextReader.
TextAreaWriter is a subclass of Writer that takes a TextArea as a constructor
argument. The abstract write method is implemented to call append on the
java.awt.TextArea, accumulating text as it arrives. The jess.Console applica-

Summary 321
tion installs a single instance of this class as the routers t, WSTDOUT, and WSTDERR. As
a result, all of Jess’s regular output goes to the TextArea (see figure 18.1).

 The TextReader class is similarly used to collect user input from the GUI. Text-
Reader is a subclass of Reader with read methods that return data from an inter-
nal buffer. TextReader also has a method appendText that lets you add text to this
internal buffer. jess.Console connects a java.awt.TextField in its GUI to an
instance of TextReader using an event handler: Whenever the user presses Enter
in the TextField, the event handler calls appendText on the TextReader, making
the text entered in the TextField available to be read from the Text-Reader’s
internal buffer. The connected TextReader object is installed as the t and WSTDIN
input routers.

18.7 Summary

Jess is designed as a library that can be embedded into many different kinds of
software. It has an extensive Java API to help you accomplish this functionality,
and we have covered only some of it in this chapter.

 The jess.Rete class plays a central role. Its methods let you define and
retrieve constructs like rules and templates. You can use store and fetch to pass
values between Jess and Java code. jess.Rete also manages a set of I/O routers
that control how Jess prints output and reads input.

 You can work with jess.Fact objects from Java whenever you need more con-
trol over the creation or manipulation of facts than you can get from the Jess lan-
guage. Working with facts often involves manipulating the jess.Deftemplate
objects that define the structure of the facts. You can also add JavaBeans to Jess’s
working memory from Java code using the defclass and definstance methods
of the Rete class.

Figure 18.1 Usage diagram for TextAreaWriter and TextReader

322 CHAPTER 18
Embedding Jess in Java applications
 Jess uses the jess.JessException class to report errors, and you can use it to
report errors when you write Userfunctions. A JessException often carries a
wealth of useful information about the error it represents.

 Jess’s I/O functions read input from, and write input to, objects called routers.
You can install your own routers, redirect the predefined routers, and even create
your own router types.

 In the next chapter, you’ll use what you’ve just learned to deploy the Recom-
mendations Agent you developed in chapter 17 as a web application.

Deploying
web-based applications
In this chapter you’ll…
■ Learn about the Tomcat servlet engine
■ Develop servlets that embed Jess
■ Write JavaServer Pages that use Jess
■ Assemble the Recommendations Agent from

these components
323

324 CHAPTER 19
Deploying web-based applications
In chapter 17, you developed the rule base for a Recommendations Agent. The
agent can recommend further items to a customer based on their past and
present purchases, much as a good sales clerk working on commission might do.
In this chapter, you’ll build a web application around the Recommendations
Agent. In the first few sections, I’ll briefly describe some of the APIs and tools
you’ll be using, and then you’ll begin to incrementally develop the application.

 You’re going to deploy this application using the Java 2 Enterprise Edition envi-
ronment. J2EE is a standardized deployment platform for networked Java applica-
tions. Although you’ll use specific software to make the examples concrete (in
particular, the Tomcat servlet engine), the application you’ll develop is completely
general and can be installed in any J2EE-compliant application server. Using Jess
for this application gives you the ability to use a rule engine while writing only por-
table code that won’t tie you to a particular J2EE implementation. Tomcat is open
source; you can download it from http://jakarta.apache.org/tomcat/.

 Although I’ll explain important things as I go along, I’ve written this chapter
with a fairly experienced Java programmer in mind. Building a full web applica-
tion from scratch requires a range of knowledge and technical skills, and there
simply isn’t enough room in this book to teach all of what you need to know.
Beside basic Java programming, there’s web browsing in general, the Java Servlet
API, HTML, and the HTTP protocol. I have to assume you know at least a little
about all these things.

 If you’ve been working with Java for a while, this material should be easy for
you to use. If you’re new to Java or the Web, you may have a steeper learning
curve. In that case, try not to get bogged down in the details; read through it, go
off and hone your Java and web programming skills, and then come back and
read it again.

 One more thing: This is the largest application you’ve built so far in this book,
and building and deploying it, while not rocket science, is more complicated than
just typing java jess.Main something.clp. Therefore, I refer to some tools and
software outside of Jess and Java. The choices I’ve made reflect my actual working
environment: the Linux operating system, GNU make as a build tool, and the
Tomcat servlet container as an application server. Your choices may be different:
You may use a Microsoft operating system or the Jakarta project’s Ant build man-
ager, or you may have a commercial J2EE implementation. That’s fine—but you
may need to adjust file paths and command lines to suit your environment. I
assume you understand your tools well enough to do this.

The Java Servlet API 325
19.1 The Java Servlet API

You’re going to build this application using the Java Servlet API (http://
java.sun.com/products/servlet/index.html). We talked briefly about servlets in
chapter 17. A servlet is a bit like a device driver: It’s a chunk of code that imple-
ments a service and provides a small number of entry points through which the
host system can access that service. A servlet is, of course, written in Java, and the
most common variety of servlet is hosted by a web server and accessed via the web
using the HTTP or HTTPS protocol. Here’s a simple but complete servlet:

import java.io.*;
import javax.servlet.http.*;

public class Hello extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println("<html>");
 out.println(" <head>");
 out.println(" <title>Hello World!</title>");
 out.println(" </head>");
 out.println(" <body>");
 out.println(" <h1>Hello World!</h1>");
 out.println(" </body>");
 out.println("</html>");
 }
}

This servlet does nothing but display “Hello World!” on an HTML page, but obvi-
ously the page could be far more complex; it could also contain data computed
on the fly, so that the page was different each time. Servlets can contain other
methods and other classes, so the sky’s the limit as far as the content of the gener-
ated page goes.

 Beside merely displaying a page, servlets can receive query data from the user
and react to it. They can also load configuration data and base their behavior on
that. They can be invoked by other servlets, and invoke still other servlets in turn.
I’ll describe how all this works as it comes up in this chapter.

 The HttpServletRequest object provides input to the servlet, like the afore-
mentioned query data (usually from HTML forms). The HttpServletResponse
object represents the page that’s being generated. This example only uses the
setContentType and getWriter methods. The method setContentType speci-
fies the MIME type of the data you’re sending back from the servlet (often text/

326 CHAPTER 19
Deploying web-based applications
html to indicate an HTML document). The method getWriter returns a Print-
Writer to which you can send the text that makes up the HTML page.

19.2 J2EE and the Tomcat engine

Now that you have a simple servlet, how can you set things up so it can be accessed
on the Web? You need to compile it and then deploy it into a servlet container. A
servlet container is to a servlet what an operating system is to a device driver: the
framework to which servlets are attached. The container provides essential ser-
vices to the servlet, such as pipes to and from the network, methods to retrieve
query data and configuration information, and a mechanism for communication
with other servlets in the same container. Modern servlet containers are powerful
things. The J2EE environment (of which they are a large part) and its standard-
ized procedures for configuring, installing, and managing applications are a far
cry from the early days of ad hoc web applications. Developing and deploying web
applications is easier than it has ever been.

 Tomcat is a servlet engine from the Apache project (http://jakarta.apache.org/
tomcat/index.html). Tomcat is the reference implementation for the Java Servlet
and JavaServer Pages specifications, and it’s one component of JavaSoft’s imple-
mentation of the Java 2 Enterprise Edition (J2EE). You can download and use
Tomcat free of charge under the terms of the Apache Software License. All the
APIs and techniques you will use are general, but I’ll describe them in terms of
Tomcat. I’ll assume, for the sake of clarity, that you’re using a Linux computer
with a standalone Tomcat installation. The path to the root of the Tomcat installa-
tion is in an environment variable named TOMCAT. If your computer is running
Windows instead of Linux, you’ll need to adjust the paths a bit, but everything
else should be the same.

19.2.1 Deploying the Hello servlet

Deploying the Hello servlet is a five-step process:

1 Compile the servlet.

2 Create a deployment descriptor.

3 Create the directory structure for your web application.

4 Copy the files into the right locations.

5 Restart (or start) Tomcat.

J2EE and the Tomcat engine 327
Compile the servlet
To compile the servlet, you need to include the file $(TOMCAT)/common/lib/
servlet.jar in your class path. The following command line should do the trick:

javac -classpath $(TOMCAT)/common/lib/servlet.jar Hello.java

Create a deployment descriptor
A deployment descriptor is a short XML file named web.xml that describes how the
container should configure your servlet. If you’ve never worked with XML
before, the most important things to know are that first, XML files are plain text,
just like Java source; and second, XML files have a picky syntax, which is less for-
giving than HTML (to which XML has a strong family resemblance). Here’s a
basic web.xml file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>
 <servlet>
 <servlet-name>Hello</servlet-name>
 <servlet-class>Hello</servlet-class>
 </servlet>
</web-app>

Many other possible options can be included, but you’ll worry about them when
you need them.

Create the directory structure
Each web application should have its own subdirectory in $(TOMCAT)/webapps.
This application directory should, in turn, have a subdirectory WEB-INF, and WEB-
INF should have a classes subdirectory. You might create more subdirectories,
but this small set is enough for now.

Copy the files
The web.xml file goes into the WEB-INF directory. The Hello.class file goes into
classes. The resulting structure looks like this:

$(TOMCAT)/
 webapps/
 Hello/
 WEB-INF/
 web.xml
 classes/
 Hello.class

328 CHAPTER 19
Deploying web-based applications
It’s not complicated, but you do have to get it right. During development, you
must do this many, many times, so you should write a small script (or batch file, or
Ant task, or Makefile target) to do this automatically. My Makefile for this servlet
looks like this:

.SUFFIXES: .java .class

JAVA_HOME=/usr/java/j2sdk1.4.0
TOMCAT=/usr/local/jakarta-tomcat
APPNAME=Hello

SRC=$(shell find . -name '*.java' -print)
OBJ=$(SRC:.java=.class)

build: $(OBJ)

.java.class:
 javac \
 -classpath .:$(TOMCAT)/common/lib/servlet.jar $<

install: build
 rm -rf $(TOMCAT)/webapps/$(APPNAME)/*
 mkdir -p $(TOMCAT)/webapps/$(APPNAME)/WEB-INF
 cp web.xml $(TOMCAT)/webapps/$(APPNAME)/WEB-INF
 mkdir -p $(TOMCAT)/webapps/$(APPNAME)/WEB-INF/classes
 cp *.class $(TOMCAT)/webapps/$(APPNAME)/WEB-INF/classes

clean:
 rm -f *~ *.class

If you’re new to make, note that the indented lines must start with real tab charac-
ters, not spaces! The install target in the Makefile compiles the application, re-
creates the directory structure, and installs all the necessary files. This Makefile
makes a good template for general servlet development—you’ll expand it and use
it for the Recommendations Agent application later in this chapter.

Restart Tomcat
The easiest and most reliable way to get Tomcat to load your new application—or
reload it after a change—is to shut down Tomcat and start it up again. You can use
the startup and shutdown scripts in $(TOMCAT)/bin, or you can do what I do, and
write a third script named restart that combines the two functions. (Look at the
startup and shutdown scripts and create restart by analogy.)

 A properly laid-out web application will be detected automatically by Tomcat.
The first time a browser request comes in for the Hello application, Tomcat will
load the web.xml file to learn about the application, and find out that a servlet
named Hello is implemented in a class named Hello. The first time the servlet is
requested, Tomcat loads it in and calls the doGet method you implemented to sat-
isfy the request. The generated page is returned to the browser.

Your first Jess servlet 329
Seeing the results
The default standalone Tomcat installation starts its own mini–web server on
port 8080. Fire up your favorite web browser and visit the URL http://
127.0.0.1:8080/Hello/servlet/Hello to see your first servlet in action. The result
is shown in figure 19.1.

19.3 Your first Jess servlet

Now that you’ve built a simple servlet, it’s time to begin developing the Recom-
mendations Agent web application. The first small step is to write a servlet that
embeds Jess, however simply. Why not modify Hello to create HelloJess, which
uses printout to create the same simple web page?

import jess.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloJess extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 Rete engine = new Rete();
 engine.addOutputRouter("page", out);

Figure 19.1 The result of viewing the Hello servlet in Netscape

330 CHAPTER 19
Deploying web-based applications
 try {
 print("<html>", engine);
 print("<head>", engine);
 print("<title>Hello World!</title>", engine);
 print("</head>", engine);
 print("<body>", engine);
 print("<h1>Hello World from Jess!</h1>", engine);
 print("</body>", engine);
 print("</html>", engine);
 } catch (JessException je) {
 throw new ServletException(je);
 }
 }

 private void print(String message, Rete engine)
 throws JessException {
 engine.executeCommand("(printout page \"" + message +
 "\" crlf)");
 }
}

This servlet is very similar to the first one. The main difference is that HelloJess
creates an instance of the Rete class, installs the servlet’s output Writer as a Jess
router named page, and then uses Jess’s printout function (via the helper
method print) to generate the HTML page. There’s nothing complex here, but
this example illustrates how simple it is to embed Jess in a Java application.

19.3.1 Deploying the Jess servlet

The HelloJess servlet needs to have access to the Jess library to run, so you must
install Jess under Tomcat. This is easy enough to do: JAR files in the $(TOMCAT)/
lib directory are automatically accessible to all installed web applications, so
you’ll package Jess as a JAR file and put it there. The binary Jess distribution
already includes the JAR file jess.jar. If you have compiled your own copy of Jess
from source, you can build a JAR file like this on Linux:

jar cf jess.jar `find jess -name '*.class' -print` jess/*.clp

Then copy jess.jar to the $(TOMCAT)/lib directory. In your Makefile (or Ant
build.xml file, and so on), you may want to include a line that copies the
jess.jar file.

 Modify the web.xml file you used for the last servlet to account for the new
servlet and application names, install the application as HelloJess, and restart
Tomcat. If you then visit the URL http://127.0.0.1:8080/HelloJess/servlet/
HelloJess you should see much the same web page as before—except this time, it
is generated by Jess.

Application architecture: take one 331
19.3.2 Cleaning up the URL

The URL you’ve been typing to see the servlets is quite verbose. By modifying
the web.xml file slightly, you can tell Tomcat to shorten the URL considerably.
Specifically, you can tell Tomcat that a request for any URL starting with http://
127.0.0.1:8080/HelloJess should be routed to the HelloJess servlet—includ-
ing, for instance, http://127.0.0.1:8080/HelloJess/index.html. Before the closing
</webapp> tag, add the following block:

 <servlet-mapping>
 <servlet-name>
 HelloJess
 </servlet-name>
 <url-pattern>
 /*
 </url-pattern>
 </servlet-mapping>

After reinstalling the application and restarting Tomcat, you can see the Jess servlet
by visiting http://127.0.0.1:8080/HelloJess. Note that now it’s pretty much impossi-
ble to tell that the page is being generated by a servlet—both the page itself and
the URL look perfectly normal, as if the page were a static HTML document.

19.4 Application architecture: take one

Now that the preliminaries are taken care of and you know how to write simple
servlets that embed Jess, it’s time to design and implement the Recommendations
Agent. As a first stab at a design for the application, let’s assume it will include
four screens:

■ A login screen, where the customer supplies her username

■ A catalog screen, where the customer chooses products to purchase

■ A recommend screen, where the customer selects additional recommended
items to purchase

■ A purchase screen, where the customer checks out

We’re most interested in the catalog and recommend screens. The Recommenda-
tions Agent won’t be able to recommend anything until the customer has selected
some items, so you’ll work on the catalog screen first.

 Behind each of the screens is a servlet. You’ll develop the servlets one at a time,
and as we go along, I’ll explain the pieces of the Servlet API and J2EE as necessary.

332 CHAPTER 19
Deploying web-based applications
19.5 Starting the Catalog servlet

The Catalog servlet should perform the following steps:

1 Get the login name (previously stored by the Login servlet)

2 Call get-new-order-number to get a unique order number

3 Create a new user session with this login name and order number

4 Use the all-products query to get a list of product facts

5 Display an HTML form to let the customer purchase products

The last item should make you a little uncomfortable, especially if you’ve done
web development in the past. The code for HelloJess was, to put it delicately,
ugly. Java code to generate HTML is clumsy and verbose. Worse, if HTML is gener-
ated by Java, then a Java programmer is required if it becomes necessary to make
any changes to the HTML. And changes will be necessary—you can bet on that.
Web sites are redesigned frequently, and if a Java programmer needs to sit down,
edit the code, and recompile the servlets every time management wants to change
the layout of the tables, you’ve got a big maintenance problem on your hands.

 You may have heard of the model-view-controller (MVC) paradigm for pro-
gramming user interfaces. In an MVC design, the data (or model) is separated
from the logic (or controller) and the GUI (or view), all in well-separated modules.
If you broke the Catalog servlet into pieces this way, you could make the web site
much easier to maintain. The controller logic would go in the Catalog servlet,
and the view would be built directly in HTML (the data will be held in a Rete
object, so the model is already nicely encapsulated). The HTML pages could be
modified by web designers, the servlets could be modified (when necessary) by
Java programmers, and maintaining the web site suddenly becomes much easier.

 The only problem is that the HTML won’t be static. The page produced by the
Catalog servlet will change based on many pieces of data. For example, the cus-
tomer’s name will surely appear on the page. The list of products and prices will
change from day to day, as well. How can you write HTML pages that can change
in response to data in your servlets? The answer is to use JavaServer Pages, as
you’ll see in the next section.

19.5.1 JavaServer Pages

JavaServer Pages (JSPs) are HTML documents that contain bits of Java code. A
J2EE container knows how to extract that Java code, translate the HTML into
more Java code, and compile the JSP into a servlet that emits the original HTML

Starting the Catalog servlet 333
plus the results of evaluating the Java code. Thus, a JSP is like the Hello servlet
turned inside out: Instead of being Java code with embedded HTML, it’s an
HTML document with embedded Java code.

 Unlike servlets, JSPs are easy for web designers to edit. Using JavaServer Pages
as the interface to a web application while using servlets for the logic is an exam-
ple of using the right tool for the right job.1

 Here’s a contrived example, hello.jsp, that uses a Rete object to print the
now-familiar message "Hello World from Jess!":

<html>
 <%@ page import="jess.*" %>
 <head>
 <title>Hello World!</title>
 </head>
 <body>
 <H1><%
 Rete engine = new Rete();
 engine.addOutputRouter("page", out);
 engine.executeCommand("(printout page " +
 "\"Hello World from Jess!\" crlf)");
 %></H1>
 </body>
</html>

The variable out is the same as the return value of response.getWriter() from
the Hello servlet, and it’s automatically available to all JSPs. The important thing
about hello.jsp is that most of the file is plain, vanilla HTML. All the tags could
be changed using just an HTML editor; no Java programmer need be involved.

 To install a JSP in Tomcat, all you have to do is copy the source code into the
top level of a web application’s directory. Tomcat recognizes the JSP extension,
and the first time the file is requested, it is compiled into a servlet and executed.

19.5.2 Forwarding to a JSP

A servlet and a JSP can collaborate easily. Generally, the servlet performs a compu-
tation, stores the result in the HttpServletRequest object, and then forwards the
augmented request object to the JSP. The JSP finds the data it needs in the Http-
ServletRequest and generates the HTML page. For example, suppose you
wanted to let a servlet create the Rete object used in the previous section and
then pass it to the JSP. The relevant part of the servlet would look like this:

1 For more information about designing applications with servlets and JSPs, see Bruce A. Tate, Bitter Java
(Greenwich, CT: Manning, 2002).

334 CHAPTER 19
Deploying web-based applications
Rete engine = new Rete();
request.setAttribute("engine", engine);
ServletContext servletContext = getServletContext();
RequestDispatcher dispatcher =
 servletContext.getRequestDispatcher("/hello.jsp");
dispatcher.forward(request, response);
return;

The JSP would be rewritten like this:

<html>
 <%@ page import="jess.*" %>
 <jsp:useBean id="engine" class="jess.Rete" scope="request"/>
 <head>
 <title>Hello World!</title>
 </head>
 <body>
 <H1><%
 engine.addOutputRouter("page", out);
 engine.executeCommand("(printout page " +
 "\"Hello World from Jess!\" crlf)");
 %></H1>
 </body>
</html>

The jsp:useBean tag automatically extracts the Rete object from the HttpServ-
letRequest and assigns it to a variable of the correct type.

 You can put the JSP-forwarding machinery into a method so it can be called
with one line of code. You’ll need such a method when you begin writing servlets;
it looks like this:

 protected void dispatch(HttpServletRequest request,
 HttpServletResponse response,
 String page)
 throws IOException, ServletException {

 ServletContext servletContext = getServletContext();
 RequestDispatcher dispatcher =
 servletContext.getRequestDispatcher(page);
 dispatcher.forward(request, response);
 }

With dispatch, the previous servlet body becomes the following:

Rete engine = new Rete();
request.setAttribute("engine", engine);
dispatch(request, response, "/hello.jsp");
return;

You’ll see dispatch in all the servlets you’ll write from now on.

The login screen 335
19.6 Application architecture, take two

Let’s reexamine the application architecture before you begin the implementa-
tion. There are so many pieces now that it makes sense to summarize them in a
table; see table 19.1. Note that the order in which the files are listed is the order in
which they’ll execute during normal operation of the final application.

We’ll concentrate on the Java code, in both the servlets and the Java parts of the
JSPs. The HTML in the JSPs is simple, minimalist, and maybe even ugly. This is
typical: The programmers produce stub JSPs with minimal HTML content, and
the web designers then flesh them out, modifying the HTML parts and leaving
the Java parts alone.

 The index.html login screen and the purchase servlet and JSP are fairly trivial in
this implementation (you won’t collect credit card and shipping information).
The Catalog and Recommend servlets and JSPs are the interesting parts—and now,
finally, you can get started.

19.7 The login screen

The first page the customer sees is a login screen. A real login screen might col-
lect a password as well as a username, but you’ll leave that aside for now. All you
need for the login screen is a simple HTML form that lets the customer enter a
single string:

<HTML>
 <HEAD>
 <TITLE>Welcome to TekMart.com!</TITLE>
 </HEAD>

Table 19.1 The HTML files, JSPs, and servlets that make up the Recommendations Agent
application

Source file Description

index.html Simple login screen

Catalog.java Servlet to create the order object and list products

catalog.jsp JSP to display the product table and a form for ordering

Recommend.java Servlet that accepts the submitted order form and runs the Recommendations
Agent

recommend.jsp JSP to display recommendations and a form for adding them to the order

Purchase.java Servlet to accept the completed order

purchase.jsp Final screen

336 CHAPTER 19
Deploying web-based applications
 <BODY>
 <H1>Welcome to TekMart.com</H1>
 Welcome to the TekMart.com online store!
 <P>
 To get started, please enter your customer id:
 <FORM action="/Order/catalog" method="POST">
 <INPUT name="customerId">
 <INPUT type="submit" value="Log in">
 </FORM>
 </P>
 </BODY>
</HTML>

There’s not much to see here, assuming you’re familiar with HTML forms. The
customer sees an input field and a button labeled Log In, and can enter his login
name and click the button. Figure 19.2 shows what the form looks like. The
action="/Order/catalog" line gives the URL to which the result of submitting this
form will be sent; you’ll name this application Order, and catalog is the first serv-
let. The host name, port number, and other details are assumed (by the web
browser that submits the form) to be the same as for the JSP.

Figure 19.2 The TekMart login screen, as implemented in the file index.html. The customer ID
will be used by the servlets in the Recommendations Agent.

The Catalog servlet 337
19.8 The Catalog servlet

The tasks the Catalog servlet has to do were listed in section 19.5. I’ll repeat them
here, slightly refined:

1 Get the login name as entered on the login screen; if none, return to the
login screen

2 Call get-new-order-number to get a unique order number

3 Create a new user session with this login name and number

4 Use the all-products query to get a list of product facts

5 Forward the results to the JSP for display

Let’s look at the Catalog servlet to see how these steps are implemented. I’ll show
the source code for Catalog a little at a time; if you find this confusing, the full
source code is available on this book’s web site.

19.8.1 Initializing Jess
The Catalog servlet gets right down to business with its doGet method:

public class Catalog extends BaseServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 checkInitialized();

The web application uses a Rete object as its product database. Where does the
Rete object come from? For efficiency, all customers will share a single Rete
object (you can keep their data separate by using distinct order numbers). You
want the Rete object to be initialized when the web application is first started, and
you want it to persist as long as the web server is running. You can write a single
method that checks whether the Rete object has been initialized and creates and
initializes a new one if not. The Rete object should be stored in a location that is
shared among all the servlets in the application. You can then call this method—
call it checkInitialized—from the doGet method of each servlet you write. To
make it easy to call, you can put it in a base class BaseServlet and let all your serv-
lets extend BaseServlet. You’ll be able to put other common behavior in
BaseServlet as well. checkInitialized looks like this:

 protected void checkInitialized()
 throws ServletException {
 ServletContext servletContext = getServletContext();
 String rulesFile =
 servletContext.getInitParameter("rulesfile");

338 CHAPTER 19
Deploying web-based applications
 String factsFile =
 servletContext.getInitParameter("factsfile");
 if (servletContext.getAttribute("engine") == null) {
 try {
 Rete engine = new Rete(this);
 new Batch().batch(rulesFile, engine);
 engine.reset();
 if (new File(factsFile).exists())
 engine.executeCommand("(load-facts " +
 factsFile + ")");
 servletContext.setAttribute("engine", engine);
 } catch (Exception je) {
 throw new ServletException(je);
 }
 }
 }

This listing introduces the ServletContext class. Every web application has a sin-
gle ServletContext, shared by all the servlets in the application. getInitParame-
ter returns named configuration values from the web.xml file; here they’re used
to provide filenames for the rules and the catalog data. The methods getAt-
tribute and setAttribute let servlets store arbitrary Java objects in the Servlet-
Context ; these objects last as long as the web server is running. The
checkInitialized method creates a Rete object, loads it with the necessary rules
and facts, and then stores it in the ServletContext.

 The BaseServlet class has a few other methods, as you’ll see. One simple
method I should mention right now is its implementation of doPost:

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 doGet(request, response);
 }

The doGet method handles HTTP GET requests, and doPost handles POST
requests. This base class method lets you implement one of these and get the
other for free.

19.8.2 Getting the login name
Now you’ll continue with the implementation of the Catalog servlet’s doGet
method. The name the customer provides on the login screen will be available as
a named parameter in the HttpServletRequest argument to the servlet’s doGet
method; in general, this is how HTML form data is received by a servlet:

 String customerId =
 (String) request.getParameter("customerId");
 if (customerId == null || customerId.length() == 0) {

The Catalog servlet 339
 dispatch(request, response, "/index.html");
 return;
 }

If there’s no login name (because the customer didn’t enter one, or because the
customer came directly to the Catalog servlet by typing its URL without logging
in), the servlet invokes the login screen using the utility routine dispatch that
you wrote in section 19.5.2. dispatch belongs in BaseServlet, because all of your
servlets will use it.

19.8.3 Starting a user session
The set of browser requests generated by a single customer visiting TekMart.com
is called a session. A session lasts longer than a single browser request, but not as
long as the whole lifetime of the web application. The requests in a session are
usually identified using session cookies: small bits of data that are transmitted along
with the HTTP header data and stored in the browser. If a server sends a session
cookie to a browser, the browser is supposed to send it back with each request it
makes in the same session. The server can then use the cookies to provide some
kind of context for the collection of requests in a session. A servlet container
should manage all of this transparently: All a servlet needs to do is to request a
Session object. The servlet can then store information in the Session, and the
servlet can then use the Session information to identify the individual user.

 The next two lines of Catalog.doGet() erase any previous session data and
create a new HttpSession. Then the login name and a new order number are
installed in the session, so the other servlets will be able to find them:

 request.getSession().invalidate();
 HttpSession session = request.getSession();

 session.setAttribute("customerId", customerId);
 session.setAttribute("orderNumber",
 String.valueOf(getNewOrderNumber()));

The getNewOrderNumber method invokes a defquery on the shared Rete object:

 private int getNewOrderNumber() throws JessException {
 ServletContext servletContext = getServletContext();
 Rete engine = (Rete) servletContext.getAttribute("engine");
 String command = "(get-new-order-number)";
 int nextOrderNumber =
 engine.executeCommand(command).intValue(null);
 return nextOrderNumber;
 }

You wrote the deffunction named get-new-order-number in section 17.7.1.

340 CHAPTER 19
Deploying web-based applications
19.8.4 Querying the product list
After the customer logs in, you want her to see a catalog of all the available products
(this is obviously oversimplified; a real site would have a search capability, because
there would be more products than could be listed easily on one page). The name of
each product should be listed along with its catalog number, price, and a checkbox
for ordering. The Catalog servlet prepares the list of products, and a JSP renders
them as HTML. Because you’re using Jess as your product database, the code to pre-
pare the list of products should simply run the all-products query; it looks like this:

 ServletContext servletContext = getServletContext();
 Rete engine = (Rete) servletContext.getAttribute("engine");
 Iterator result =
 engine.runQuery("all-products", new ValueVector());
 request.setAttribute("queryResult", result);

All this code does is to invoke the defquery and then store the java.util.Itera-
tor that comes back as an attribute queryResult in the request object, where the
JSP can find it.

 Note that there are three different ways to share information between the
pieces of a web application, and you’re using them all:

■ The Rete object is stored in the ServletContext; it is shared among all invo-
cations of all servlets and JSPs for the whole lifetime of the web application.

■ You put the login name and order number in the HttpSession object, so
these are available only within a single browser session.

■ You use the HttpServletRequest to pass data from a servlet to a JSP; this
data exists only during the chain of servlets and JSPs fired off in response to
a single browser request.

Each way of communicating between servlets and JSPs has its purpose, and by
using them properly, you can make your application easier to understand.

19.8.5 Invoking the JSP
All that’s left for Catalog.doGet() to do is catch any thrown exceptions and then,
if all is well, forward the query results on to the JSP for rendering:

 } catch (JessException je) {
 throw new ServletException(je);
 }

 dispatch(request, response, "/catalog.jsp");
 }

The ServletException class has a constructor that accepts another exception
object as an argument, which makes it easy to report errors from Jess. If a servlet

The Catalog servlet 341
throws a ServletException, Tomcat returns an error page that shows the stack
trace and error message from both the ServletException and any nested excep-
tion object. You can then see all this information in your browser. In a real applica-
tion, you’d want to replace the server’s default error pages with custom ones that
hide the true nature of the error, but the defaults are handy during debugging.

19.8.6 The catalog JSP
The Catalog servlet packages a product list and forwards it to the catalog JSP for
display. (I’m following the convention that Java class names start with an upper-
case letter, whereas JSP filenames start with a lowercase letter; hence Cata-
log.java and catalog.jsp.) Because we’re not web designers, the JSPs are
simple and to the point.

 This jsp:useBean tag fetches the Iterator that the servlet put into the Http-
ServletRequest:

<HTML>
 <%@ page import="jess.*" %>
 <jsp:useBean id="queryResult"
 class="java.util.Iterator" scope="request"/>

The next part is pure HTML. You have a page title, a headline, a little text, and
the header row for the table:

 <HEAD>
 <TITLE>Ordering from Tekmart.com</TITLE>
 </HEAD>

 <BODY>
 <H1>Tekmart.com Catalog</H1>
 Select the items you wish to purchase and press
 "Check Order" to continue.
 <FORM action="/Order/recommend" method="POST">
 <TABLE border="1">
 <TR>
 <TH>Name</TH>
 <TH>Catalog #</TH>
 <TH>Price</TH>
 <TH>Purchase?</TH>
 </TR>

Nothing fancy, but it still would be a pain to modify if it were embedded in
println statements in a servlet!

 Now comes the real meat of this JSP. It uses a Java while loop to render the
rows of the table. Each row contains some text cells plus an HTML INPUT widget
of type checkbox. Each checkbox is labeled with the part number of the corre-
sponding product:

342 CHAPTER 19
Deploying web-based applications
 <% while (queryResult.hasNext()) {
 Token token = (Token) queryResult.next();
 Fact fact = token.fact(1);
 String partNum =
 fact.getSlotValue("part-number")
 .stringValue(null); %>
 <TR>
 <TD><%= fact.getSlotValue("name")
 .stringValue(null) %></TD>
 <TD><%= partNum %></TD>
 <TD><%= fact.getSlotValue("price")
 .floatValue(null) %></TD>
 <TD><INPUT type="checkbox" name="items"
 value=<%= '"’ + partNum + '"'%>></TD>
 </TR>
 <% } %>

All that is left is to provide a button to submit the form, and a bunch of closing
tags. This part is, again, plain HTML:

 </TABLE>
 <INPUT type="submit" value="Check Order">
 </FORM>
 </BODY>
</HTML>

Figure 19.3 shows what the rendered page looks like in a browser.

Figure 19.3
The output of the
catalog JSP

The Recommend servlet 343
19.9 Testing

You can of course test a web application using a web browser, but doing so can be
both tedious and error-prone. Thankfully, many automated testing tools are avail-
able for web sites. These come in two (often overlapping) categories:

■ Load-testing tools—Simulate large numbers of simultaneous users visiting
your site

■ Page-testing tools—Invoke specific URLs and check that the resulting pages
are correct

The latter kind of testing is more interesting to developers, at least in the early
stages. I like to use the open-source HttpUnit/ServletUnit framework for testing
web applications (http://httpunit.sourceforge.net/). The HttpUnit part of the frame-
work lets you easily impersonate a browser and make requests to your web applica-
tion, and then test the generated pages for correctness. The ServletUnit part is a
simple servlet container; it lets you put a servlet through its paces directly, and
then test things like the values of the servlet’s member variables afterward. Both
can be valuable, although I personally find that I use the HttpUnit approach
more often.

TIP One word of advice: before you begin writing and testing a large applica-
tion like this, you’ll want to first carefully test and debug your rules as
much as possible using Jess’s command-line interface!

19.10 The Recommend servlet

Recall that when the login form is submitted, the Catalog servlet gets a single
request parameter named customerId. When the catalog form is submitted,
there is an items request parameter for each product the customer purchases,
and that will serve as the input to the Recommend servlet. The customerId and
orderNumber will still be in the HttpSession, and the Rete object will be already
initialized and stored in the ServletContext.

 The Recommend servlet has several tasks to do:

1 Gather the items, customerId, and orderNumber

2 Make sure the customer is logged in and is ordering something

3 Reset the order, in case the form is resubmitted

4 Create an order fact

344 CHAPTER 19
Deploying web-based applications
5 Create a series of line-item facts

6 Get recommendations from Jess

7 Pass the recommendations on to a JSP for display

This servlet has to use more of Jess’s Java APIs than the Catalog servlet does. Let’s
go through these steps in order as we walk though the Recommend source.

19.10.1 Getting started

The Recommend servlet extends the BaseServlet class. It calls checkInitialized
to make sure the Rete object is ready, and then launches into its own initialization:

public class Recommend extends BaseServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 checkInitialized();

 ServletContext servletContext = getServletContext();
 String[] items = (String[])
 request.getParameterValues("items");
 String orderNumberString = (String)
 request.getSession().getAttribute("orderNumber");
 String customerIdString = (String)
 request.getSession().getAttribute("customerId");
 if (items == null ||
 orderNumberString == null || customerIdString == null) {
 dispatch(request, response, "/index.html");
 return;
 }

The call to getParameterValues returns the list of purchased items. If the shop-
ping cart is empty, the customer hasn’t logged in, or there’s no order number,
then Recommend plays it safe and sends the customer to the login screen to start
over. Note that you always have to use return after you call dispatch—otherwise
this servlet will try to append its output to the login screen!

19.10.2 Creating the order

Next you need to set up the order in Jess’s working memory:

 try {
 Rete engine = (Rete) servletContext.getAttribute("engine");
 engine.executeCommand("(assert (clean-up-order " +
 orderNumberString + "))");
 engine.run();

The Recommend servlet 345
By asserting the fact (clean-up-order NNNN), where NNNN is the order number,
you trigger the CLEANUP module to delete any previous partial order with this
number. Calling run lets the engine fire the CLEANUP rules.

 Next, the Recommend servlet needs to compose the order fact. Several
jess.Value objects are needed for slot values, so they’re constructed first. Next a
Fact object is created, and its slots are filled with setSlotValue. Finally, the com-
pleted fact is asserted with assertFact:

 int orderNumber = Integer.parseInt(orderNumberString);
 Value orderNumberValue =
 new Value(orderNumber, RU.INTEGER);
 Value customerIdValue =
 new Value(customerIdString, RU.ATOM);
 Fact order = new Fact("order", engine);
 order.setSlotValue("order-number", orderNumberValue);
 order.setSlotValue("customer-id", customerIdValue);
 engine.assertFact(order);

Now that the order is in place, the Recommend servlet builds the individual line-
item facts to represent the products being purchased:

 for (int i=0; i<items.length; ++i) {
 Fact item = new Fact("line-item", engine);
 item.setSlotValue("order-number", orderNumberValue);
 item.setSlotValue("part-number",
 new Value(items[i], RU.ATOM));
 item.setSlotValue("customer-id", customerIdValue);
 engine.assertFact(item);

 }

Note that it’s OK to use the Value objects you created earlier, because Value
objects are immutable—the data in a Value object can’t be changed.

19.10.3 Getting the recommendations

Once all the line items are asserted, the Recommendations Agent can be invoked.
Calling run is enough to do it. Behind that call to run, all the rules you developed
in chapter 17 get a chance to fire. When they do, they create recommend facts, and
the query recommendations-for-order retrieves them:

 engine.run();
 Iterator result =
 engine.runQuery("recommendations-for-order",
 new ValueVector().add(orderNumberValue));

346 CHAPTER 19
Deploying web-based applications
NOTE A note about calling run here. Your web application might have multiple
users at the same time, each running doGet in a separate thread. Howev-
er, each user has a unique customer ID/order number pair, so the Rec-
ommendations Agent can keep track of them separately. Sometimes, one
thread might call run, resulting in rules being fired in response to facts
asserted from another thread, but this is OK. Other times, one thread
might call run right after another thread already has done so, and this
second call to run will have no effect; this is also OK. As long as the rules
aren’t specifically written to expect run to be called only from certain
states, everything will work fine. Jess is meant to be used in multithreaded
environments, and it uses synchronization to protect potentially fragile
code from being corrupted by concurrent access.

19.10.4 Forwarding to JSPs
If there are recommendations, you want to give the customer the chance to pur-
chase the recommended products. If not, you can go straight to the purchase page
to get shipping information. In this last bit of code from the Recommend servlet, the
choice is between rendering the recommendations in the recommend JSP or check-
ing out via the Purchase servlet, based on whether the recommendations-for-
order query returned results. In either case, you dispatch to the new URL. If there
were recommendations, you store them in the HttpServletRequest first:

 if (result.hasNext()) {
 request.setAttribute("queryResult", result);
 dispatch(request, response, "/recommend.jsp");
 } else
 dispatch(request, response, "/purchase");

 } catch (JessException je) {
 throw new ServletException(je);
 }

 }
}

19.11 The recommend JSP

The JSP you need to render the recommendations looks a lot like the catalog JSP.
The only substantial difference in the output is the presence of a “Because you
bought…” column that links each recommendation back to some other product.
The code to produce the display is marginally different because each individual
query result contains two facts instead of one (a recommendation fact and a prod-
uct fact), but the technique for accessing their slots is identical. When the customer

The recommend JSP 347
submits the form generated by the recommend JSP, the list of selected items is sent to
the Purchase servlet. The text of recommend.jsp is shown in listing 19.1.

<HTML>
 <%@ page import="jess.*" %>
 <jsp:useBean id="queryResult" class="java.util.Iterator"

 scope="request"/>
 <HEAD>
 <TITLE>Some recommendations for you from Tekmart.com</TITLE>
 </HEAD>

 <BODY>
 <H1>Your Recommendations</H1>
 You may also wish to purchase the following items:
 <FORM action="/Order/purchase" method="POST">
 <TABLE border="1">
 <TR>
 <TH>Name</TH>
 <TH>Catalog #</TH>
 <TH>Because you bought...</TH>
 <TH>Price</TH>
 <TH>Purchase?</TH>
 </TR>
 <% while (queryResult.hasNext()) {
 Token token = (Token) queryResult.next();
 Fact fact1 = token.fact(1);
 Fact fact2 = token.fact(2);
 String partNum =
 fact2.getSlotValue("part-number")
 .stringValue(null); %>
 <TR>
 <TD><%= fact2.getSlotValue("name")
 .stringValue(null) %></TD>
 <TD><%= partNum %>
 <TD><% ValueVector vv =
 fact1.getSlotValue("because")
 .listValue(null);
 for (int i=0; i<vv.size(); ++i) { %>
 <%= vv.get(i).stringValue(null) %>
 <% if (i != vv.size()-1) %>,
 <% } %>
 </TD>
 <TD><%=
 fact2.getSlotValue("price")
 .floatValue(null) %></TD>
 <TD><INPUT type="checkbox" name="items"
 value=<%= '"' + partNum + '"'%>></TD>
 </TR>

Listing 19.1 recommend.jsp renders the output of the Recommendations Agent

348 CHAPTER 19
Deploying web-based applications
 <% } %>
 </TABLE>
 <INPUT type="submit" value="Purchase">
 </FORM>

 </BODY>
</HTML>

19.12 The Purchase servlet

The Purchase servlet is a combination of the other two servlets; it makes sure the
customer is logged in, asserts any items request parameters as line-item facts,
runs the items-for-order query, and then passes the Iterator along to the pur-
chase JSP. In a full-fledged e-commerce system, the purchase JSP would collect
shipping and credit-card information; here it just displays the items and sums their
prices. The Purchase servlet is shown in listing 19.2, and the JSP is in listing 19.3.

public class Purchase extends BaseServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 checkInitialized();

 ServletContext servletContext = getServletContext();

 String orderNumberString = (String)
 request.getSession().getAttribute("orderNumber");
 String customerIdString = (String)
 request.getSession().getAttribute("customerId");
 if (orderNumberString == null || customerIdString == null) {
 dispatch(request, response, "/index.html");
 return;
 }

 try {
 Rete engine =
 (Rete) servletContext.getAttribute("engine");

 int orderNumber = Integer.parseInt(orderNumberString);
 Value orderNumberValue =
 new Value(orderNumber, RU.INTEGER);
 Value customerIdValue =
 new Value(customerIdString, RU.ATOM);

 String[] items = (String[])
 request.getParameterValues("items");
 if (items != null) {

Listing 19.2 Purchase servlet

The Purchase servlet 349
 for (int i=0; i<items.length; ++i) {
 Fact item = new Fact("line-item", engine);
 item.setSlotValue("order-number",
 orderNumberValue);
 item.setSlotValue("customer-id",
 customerIdValue);
 item.setSlotValue("part-number",
 new Value(items[i], RU.ATOM));
 engine.assertFact(item);
 }
 }

 Iterator result =
 engine.runQuery("items-for-order",
 new ValueVector().add(orderNumberValue));
 request.setAttribute("queryResult", result);

 } catch (JessException je) {
 throw new ServletException(je);
 }

 dispatch(request, response, "/purchase.jsp");
 }
}

<HTML>
 <%@ page import="jess.*" %>
 <jsp:useBean id="queryResult" class="java.util.Iterator"
 scope="request"/>

 <HEAD>
 <TITLE>Thank you for your order</TITLE>
 </HEAD>

 <BODY>
 <H1>Thanks for shopping at TekMart.com!</H1>
 These are the items you are purchasing. If this
 were a real web site, I'd be asking for your credit
 card number now!
 <P>
 <TABLE border="1">
 <TR>
 <TH>Name</TH>
 <TH>Catalog #</TH>
 <TH>Price</TH>
 </TR>
 <% double total = 0;
 while (queryResult.hasNext()) {
 Token token = (Token) queryResult.next();
 Fact fact = token.fact(2);
 double price =

Listing 19.3 purchase JSP

350 CHAPTER 19
Deploying web-based applications
 fact.getSlotValue("price").floatValue(null);
 total += price; %>

 <TR>
 <TD><%= fact.getSlotValue("name").
 stringValue(null) %></TD>
 <TD><%= fact.getSlotValue("part-number").
 stringValue(null) %></TD>
 <TD><%= price %></TD>
 </TR>
 <% } %>
 <TR><TD></TD><TD>
 Total:</TD><TD><%= total %>
 </TD></TR>
 </TABLE>
 </BODY>
</HTML>

19.13 Persistence

One detail that may have occurred to you is that the web application won’t run
forever. Sometimes, it will be taken offline. When it is, the Rete object containing
all the past purchases and recommendations will be lost. This is bad, because this
kind of customer information is valuable. How can you preserve it?

 The Servlet class has a destroy method. The servlet container calls destroy
when it’s being shut down or the web application is being taken offline. You can
implement destroy to save all this data so it can be restored later. In this imple-
mentation the catalog is being read from a flat file (it’s actually stored in the same
file as the rules, as a deffacts), so you’ll save the order information in a flat file,
too. If you look back at the definition of checkInitialized in section 19.8.1,
you’ll see that that method attempts to load facts from the file named in the ini-
tialization parameter factsfile. Here’s an implementation of destroy that
writes the facts out to that same file:

 public void destroy() {
 try {
 ServletContext servletContext = getServletContext();
 Rete engine = (Rete)
 servletContext.getAttribute("engine");
 String factsFileName =
 servletContext.getInitParameter("factsfile");
 File factsFile = new File(factsFileName);
 File tmpFile =
 File.createTempFile("facts",
 "tmp",
 factsFile.getParentFile());

Deploying the application 351
 engine.executeCommand("(save-facts " +
 tmpFile.getAbsolutePath() +
 " order recommend line-item next-order-number)");
 factsFile.delete();
 tmpFile.renameTo(factsFile);

 } catch (Exception je) {
 // Log error
 }
 }

This implementation tries to be careful about losing data; it writes the facts to a tem-
porary file and then renames the temporary file to factsfile only if it succeeds.

 The method checkInitialized is called by all the servlets, but you want this
version of destroy to be called only once. I put it into the Catalog servlet,
although it could go into any of them.

 After extensive use, writing and reading the accumulated facts from flat files
could become prohibitively slow. Also, loading all the data at startup and saving it
all at shutdown may incur too great a risk of data loss in the event of a crash.
Instead of using a flat file, the application could be changed to use a relational
database. Orders relevant to a particular user could be loaded from a database on
demand by the Recommend servlet. The Purchase servlet could save those facts rel-
evant to a particular order just as the order was being placed, and then remove all
the user’s facts from the Rete object.

19.14 Deploying the application

Deploying this web application is no more complex than deploying the single
servlets you worked with before. The files need to be installed like this:

$(TOMCAT)/
 lib/
 jess.jar
 webapps/
 Order/
 catalog.jsp
 index.html
 purchase.jsp
 recommend.jsp
 WEB-INF/
 web.xml
 classes/
 tekmart.clp
 Catalog.class
 Purchase.class
 Recommend.class

352 CHAPTER 19
Deploying web-based applications
NOTE The JSPs are all at the top level of the application. The rule file tek-
mart.clp is in the WEB-INF/classes directory so the class loader can find
it. One of the most confusing things about beginning servlet develop-
ment is remembering that the current directory of the servlet is likely to
be the directory from which the servlet container was launched; the serv-
let may not have read or write access to that directory. As a result, you
can’t expect to use the current directory to find files via relative paths.

The web.xml file for the application is no more complex than the one for the first
Hello servlet. There is one servlet element and one servlet-mapping tag for
each servlet; the servlet Catalog is mapped to the URL /catalog, and the map-
pings for the other two are similar. The only new element is the context-param
element, which is used to pass initialization parameters to the application:

 <context-param>
 <param-name>rulesfile</param-name>
 <param-value>tekmart.clp</param-value>
 </context-param>

 <context-param>
 <param-name>factsfile</param-name>
 <param-value>/var/tekmart/data</param-value>
 </context-param>

These are the two parameters read by the checkInitialized method. /var/tek-
mart/data is the absolute path to a file data where the order information should
be persisted.

19.15 What’s next?

This is a book about rule-based application development, not a book about build-
ing e-commerce systems, so the web application you’ve developed here is lacking
in many important respects. Security, for example, is nonexistent; and, of course,
the system doesn’t do anything with the order the customer eventually places.
These kinds of enhancements are straightforward, though, and many other books
discuss them. There’s no point in going into them here.

 On the other hand, there are some ways in which the use of Jess in this applica-
tion could be improved. You could encapsulate all the knowledge about Jess in
the servlets themselves, so the JSPs don’t depend on the specific rule engine being
used. The JSPs work with Iterator objects passed in as HttpServletRequest
attributes. Instead of passing the iterators returned from Jess, the servlets could
construct neutral data structures, using only generic containers of strings and

Summary 353
numbers, and pass iterators over these neutral structures instead. This would
make it possible to radically modify the templates and rules, or even to use a dif-
ferent rule engine, without touching the JSPs. This encapsulation would have
made the sample implementation longer, so I didn’t use this technique here; but
it’s a good idea from a software-engineering standpoint.

 Another related possibility would be to use the javax.rules API first men-
tioned in section 2.5. The javax.rules API doesn’t offer access to many of the
features you used in this application, however (notably, queries are not sup-
ported). We’ll look at using javax.rules in the last part of this book.

 Finally, I have already mentioned the possibility of using a relational database
together with Jess to provide long-term persistence. A database would provide
faster, more robust access to historical data than the flat file used here.

19.16 Summary

In chapter 17, you developed a rule-based Recommendations Agent for e-com-
merce. The Recommendations Agent rules are the most complex individual rules
presented in this book. You wrote the rules along with a number of queries that
the web application needs to probe Jess’s working memory.

 Many of Jess’s Java APIs were presented in chapter 18. You saw how Jess is really
a programmer’s library rather than an application, and you learned how to
embed Jess in other software.

 In this chapter, you embedded the Recommendations Agent in a web applica-
tion built from three servlets, three JavaServer Pages, and one HTML file. The
resulting application is the largest one you’ve developed so far, and the first one
you’ve written that doesn’t use jess.Main. Many details of a proper e-commerce
application are omitted, but the embedded Recommendations Agent could form
the core of an industrial-strength online ordering web site.

 In the next (and final) part of this book, you’ll see how rule engines in gen-
eral, and Jess in particular, can be used in enterprise applications.

Part 7

Enterprise systems

Business rules are policies and procedures by which corporations conduct
their affairs. Capturing business rules in a rule engine makes great sense. This is
but one of the many applications for rule engines in enterprise systems—large-scale,
mission-critical software that supports business operations. At the heart of many
enterprise applications these days is the Java 2 Enterprise Edition (J2EE) environ-
ment. J2EE is an enabling technology that combines access to data and comput-
ing resources into a standard service called an application server. Part 7 of this book
concerns the interaction between rule engines and application servers. We’ll
touch on a wide range of relevant topics, including using Jess with Enterprise Java-
Beans and with XML.

Jess, XML,
and the enterprise
In this chapter you’ll…
■ Learn about rule engines in enterprise

applications
■ Look at XML representations for rules
■ Transform Jess rules into XML and back
357

358 CHAPTER 20
Jess, XML, and the enterprise
With this chapter, we begin part 7 of this book. This last part is different from the oth-
ers in that it’s not structured around the development of a single application. Instead,
we’ll look at many of the pieces that might be used to build applications based on the
Java 2 Enterprise Edition (J2EE) platform. The J2EE is simply too big and too com-
plex, and offers too many possibilities, to be covered by one big example.

 Therefore, this part will be a kind of grab-bag of individual topics. It includes
small programs and program fragments you can use to develop your own applica-
tions. In this chapter, we’ll look at an overview of enterprise applications and
cover representing rules in XML and software for editing rules. In the next chap-
ter, we’ll look at using rules in Enterprise JavaBeans applications, the
javax.rules rule engine API, and more.

 You can use the techniques we’ll discuss to create new kinds of applications or
develop enterprise-ready versions of the applications we’ve looked at so far. These
techniques are all aimed at providing practical solutions for the problem of
deploying a rule-based application in a business environment.

20.1 Enterprise applications

The word enterprise has been the most durable information technology buzzword
of the last decade. Simply put, an enterprise application is any large software
application that your business depends on. Enterprise applications aren’t applica-
tions that individual employees use, like Microsoft Word or Adobe Photoshop. An
enterprise application is run on behalf of the business itself. Payroll applications,
customer databases, resource-planning applications, inventory applications, and
online-ordering applications all fit this definition.

 Enterprise applications have to perform well and be reliable. This is tradition-
ally described in terms of a long list of additional buzzwords. Generally, enterprise
applications are expected to be

■ Scalable —As the business grows, the application should grow with it. You’ll
typically add more computers for it to run on, or upgrade the software
infrastructure around it.

■ Available—Users should be able to get at the application 24 hours a day, 7
days a week. Downtime should be minimal or nonexistent.

■ Transactional —It should be possible to undo complete user interactions up
until the last moment. For example, if an ATM machine goes offline while a
customer is using it, any incomplete transactions should be cancelled cleanly.

Furthermore, many enterprise applications are

Enterprise applications 359
■ Distributed—An enterprise application may consist of individual compo-
nents running on many different computers, sometimes physically sepa-
rated by great distances.

■ Seamless —This buzzword usually means that many unrelated components
work well together to create one application.

20.1.1 What is the J2EE?
The Java 2 Enterprise Edition (J2EE; http://java.sun.com/j2ee/index.html) is a
specification for a software infrastructure for enterprise applications written in
Java. It includes more than a dozen APIs, each of which has its own acronym and
its own detailed specification. An implementation of the J2EE specification is
called an application server, and many commercial J2EE application servers are
available. JBoss (http://www.jboss.org/) is a very popular open-source implemen-
tation. An application server provides services and infrastructure common to
many enterprise applications. The J2EE provides a standard, vendor-neutral mech-
anism for deploying enterprise applications on an application server, making it
easy (at least in theory!) to migrate an application to a new application server.

 The term J2EE is also sometimes used to refer to Sun’s own reference imple-
mentation of the J2EE specification. This freely available reference implementa-
tion makes an excellent standards-compliant, vendor-neutral development
platform, but it is not intended to be suitable for deploying enterprise applica-
tions (Sun doesn’t support it as a deployment platform, and it doesn’t have impor-
tant features like the ability to distribute an application over multiple processors).
Much of the J2EE reference implementation is based on components from the
Apache Jakarta project, an exemplary open-source project that develops high-
quality server-side solutions for the Java platform. In this book, we’ll always refer
to this software as the J2EE reference implementation. Note that the J2EE is the sub-
ject of many books. I don’t have room here to teach much about J2EE—we’re
only interested in how rule engines fit into the J2EE environment. I will not pro-
vide listings of the classes or methods in any of the J2EE APIs, although here and
there I’ll discuss a small part of one of these APIs to provide context for the dis-
cussion. I assume that you have some experience with the J2EE, but I’ll refresh
your memory as appropriate.

20.1.2 What does that stand for?
You’re going to meet a bewildering collection of acronyms in this chapter and the
next. I’ve collected them into table 20.1 for easy reference. Note that this table
doesn’t include all the acronyms related to J2EE development—only the ones I’ve
used in this book!

360 CHAPTER 20
Jess, XML, and the enterprise

Just as J2EE is a universal software architecture for building enterprise applica-
tions, XML can be seen as a universal data-structuring architecture for the enter-
prise. To use Jess in the enterprise, you’ll want to embed it in a J2EE application;
likewise, you’ll want to represent the rules themselves in XML.

20.2 Rules and XML

A number of projects exist with the aim of defining a standard rule language based
on XML, the Extensible Markup Language. XML is a self-describing, text-based
structured data file format. The power of XML lies not so much with XML itself,
but with the wealth of available tools for working with it. Web browsers can visualize

Table 20.1 Acronyms used in our discussions of J2EE

Acronym Definition Meaning

DAML DARPA Agent Markup Language An XML-based language for representing general
knowledge

DOM Document Object Model A standard representation of an XML document as
a tree of objects

DTD Document Type Definition A way of specifying the allowed contents of an
XML document

EJB Enterprise JavaBeans A component model for server-side Java
programming

J2EE Java 2 Enterprise Edition A specification for a Java enterprise application
architecture

J2SE Java 2 Standard Edition The main Java software developer’s kit

JCA J2EE Connector Architecture A generic API for accessing resources from EJBs

JDBC Java Database Connectivity The standard Java API for working with relational
databases

JNDI Java Naming and Directory Interface The standard Java naming service in the J2EE
environment

JSR 94 The javax.rules API A developing standard API for rule engines

LDAP Lightweight Directory Access Protocol A standard enterprise naming service

RMI Remote Method Invocation A Java API for connecting Java applications over a
network

XML Extensible Markup Language A self-describing, structured text document format

XSLT Extensible Style Language Transformations A declarative pattern language for transforming
XML documents

Rules and XML 361
it. Commercial XML editors are available. The XSLT pattern language can be used
to write simple scripts that transform an XML document into a new XML docu-
ment in a different format, or into a non-XML document. And, many high-quality
parsers and APIs are available for working with XML from your Java programs.

 Representing rules as XML makes sense for several reasons, among them
interoperability, editability, and searchability. We’ll visit these ideas in the following sec-
tions. The availability of XML parsers and of the XSLT scripting language means
that transforming rules from XML into the language used by any given rule engine
is straightforward. Transforming in the other direction, however, requires you to
have a parser for the rule language, and sometimes this is not a trivial thing to
write or to obtain. Therefore, it makes the most sense to create and store rules as
XML, transforming them into the native format of a rule engine for execution.

 Note that although XML has its advantages, it’s not very readable. Complex
logic represented in XML will always be harder to read than the same logic
expressed in a dedicated rule language like the Jess language.

20.2.1 Interoperability

Quite a few rule engines are available that are suitable for use in enterprise appli-
cations; Jess is only one of them (it’s difficult for me not to inject my opinion that
Jess is the best one, but I hope you’ll agree). Each rule engine has its own strengths
and weaknesses, of course. In general, especially in the early stages of a large
project, it’s good to avoid being locked into using one vendor’s product. If possi-
ble, it makes sense to develop your rules in a vendor-neutral language. Unfortu-
nately, no standard rule language is supported by all (or even some) of the major
rule-engine vendors.

 In the Jess language, rules are represented as defrule constructs. Other rule
engines have their own ways of representing rules, including constructs in other
programming languages, text that’s like natural language, or graphical diagrams
and flowcharts. Each of these representations has advantages and disadvantages,
but it’s important to remember that they’re just that: representations. In general, a
core of common concepts can be expressed in all rule languages. Although each
language represents these concepts differently, they all represent the same under-
lying information.

 If rules that only use this common core of concepts are developed in a neutral,
flexible representation like XML, then they can easily be translated into the native
format supported by a specific rule engine as needed. (Of course, this works only
if the rule engine supports a textual representation for their rules. If the only way
to enter rules is through a GUI, then the rule engine can’t be used this way.)

362 CHAPTER 20
Jess, XML, and the enterprise
 Unfortunately, restricting your development to that common core can be frus-
trating, because rule engines vary quite a bit in their capabilities. Furthermore,
standard rule representations may not be capable of expressing everything that
any one specific engine can. Still, the benefits of interoperability often outweigh
these disadvantages.

20.2.2 Editing and other processing

In each of the applications you’ve developed in this book, the programmer has
written all the rules after consultation with experts. Some applications, though,
are simple enough that nontechnical people can add rules—at least, they could if
they understood how to program in a rule language.

 In general, you won’t be able to teach programming to the folks in marketing,
and you shouldn’t have to. As a programmer, there’s no reason why you can’t put
together a rule editor—a graphical interface that allows nontechnical people to
add and modify the rules by pointing and clicking instead of programming.

 Some rule engines come with an integrated rule editor or a toolkit for develop-
ing rule editors. Sometimes these editors only let you create rules in the native
language of the rule engine, not in vendor-independent XML. If you want to keep
interoperability, you may need to develop an editor yourself.

 The good news is that XML makes this development fairly painless. An editor
that works with XML doesn’t need to worry about parsing existing rules or writing
out completed rules, because it can use existing XML-parsing and -writing librar-
ies to do the hard work. We’ll discuss XML-based rule editors in section 20.5.

20.2.3 Storage and retrieval

One important use for rule engines in an enterprise environment is to implement
business rules. Business rules are stated procedures that a business follows to
accomplish its work. A business rule is like a policy, but more concrete: It specifies
a situation and the action that must be taken in that situation—obviously a great
match for the capabilities of a forward-chaining rule engine. Many businesses
have a collection of numbered or otherwise indexed business rules. The collec-
tion is constantly modified as rules are added, removed, or changed. If a rule
engine is being used to carry out business rules, then there must be some way to
identify the rule or rules that implement a given business rule. If a whole category
of rules is to be removed or temporarily suspended, then the ability to search
rules in a flexible way becomes important.

 Rules represented as XML are ideal for this kind of environment. If the rules
are stored as one large XML document, then XML-based tools can be used to

XML-based rule representations 363
search for specific rules. If individual rules are stored in their own XML files, then
these textual snippets can be stored in a relational database and searched using
the database’s own mechanisms. In either case, XML reporting tools can be used
to display the rules found by a query.

 Obviously, the whole package we’ve just described is greater than the sum of
the parts. If rules are developed in XML and stored in a searchable fashion, then
they can be edited, transformed into executable form, and deployed on demand.
In the rest of this chapter, we’ll flesh out these ideas by looking at XML-based rule
formats and developing an XML-based rule editor.

20.3 XML-based rule representations

In the previous section, we looked at reasons for wanting to store rules in an XML
format. In this section, we’ll address the question of exactly what format to use.
You have several emerging standards to choose from, or you may define your own
format. Let’s look at each of the alternatives in turn.

20.3.1 RuleML

The RuleML project (http://www.dfki.uni-kl.de/ruleml/) is defining a standard
representation for rules of all kinds. The proposed RuleML standard is very broad
in its reach: It not only covers forward- and backward-chaining rules of the sort
appropriate for rule engines like Jess, but also transformation and mapping rules
and rules that define web services.

 The following example is by Said Tabet, who has written an XSLT stylesheet that
converts a subset of RuleML into Jess rules (http://www.dfki.uni-kl.de/ruleml/
jess). Here’s a simple Jess rule that says, “If an animal has hair, then it is a mammal”:

(defrule AnimalsRule1
 (declare (salience 10))
 (has ?x hair)
 =>
 (assert (isa ?x mammal)))

Here’s the same rule in RuleML:

<imp label="AnimalsRule1" priority="10">
 <_head>
 <conclusions>
 <assert>
 <fact>
 <atom>
 <_opr>
 <rel>isa</rel>

364 CHAPTER 20
Jess, XML, and the enterprise
 </_opr>
 <var>x</var>
 <ind>mammal</ind>
 </atom>
 </fact>
 </assert>
 </conclusions>
 </_head>
 <_body>
 <and>
 <fact>
 <atom>
 <_opr>
 <rel>has</rel>
 </_opr>
 <var>x</var>
 <ind>hair</ind>
 </atom>
 </fact>
 </and>
 </_body>
</imp>

You’ll notice right away that the RuleML version is much longer. This is typical of
most uses of XML; the reason is simply that the XML contains more information.
The individual tags explicitly state the purpose of each component of the rule,
whereas in the Jess format, that purpose is implicit in the syntax. The explicit tags
make translating the XML representation into other rule languages much easier;
the verbosity is just the price you have to pay.

20.3.2 DAML

DAML (http://www.daml.org/) is the DARPA Agent Markup Language. DAML is
an ambitious project to create a language for describing general knowledge on
the World Wide Web. DAML contains specific primitives for expressing relation-
ships like implies and is a kind of. The most important aspect of DAML is that it is a
self-contained logical system: Because the relationships are built into the lan-
guage, any software that understands DAML can make inferences based on the
data, without any additional information. Although DAML currently doesn’t
include a specification for representing rules, one is in the works.

 As with RuleML, people have written tools that translate between DAML and
Jess. In particular, Mike Dean has several examples on the DAML web site that
demonstrate conversion of DAML into Jess facts.

XML-based rule representations 365
20.3.3 Homegrown representations

The RuleML and DAML projects are promising, but they’re also still being actively
developed. Tools for working with either of these complex standards are still evolv-
ing, and it will probably be some time before they come into widespread use.

 One of the more serious limitations of existing standard rule languages is their
minimal support for describing actions on the right-hand side (RHS) of a rule. As
you’ve seen, in many practical Jess applications, the RHSs of rules can be com-
plex, and working within the confines of a standard representation can be limit-
ing. The situation will doubtless improve in the future, but for now this is a
significant problem.

 Currently, most people using XML and rules together use a homegrown repre-
sentation of their own devising. If you come up with your own way of describing
rules in XML, it’s likely to be simpler than either of the standards we’ve just
described, because it will be tailored for your specific application. With a bit of
care, it will be expandable to handle new requirements as your application evolves.

 The best part about using a custom representation is that transforming XML
from one representation to another can be easily accomplished using an XSLT
script. You can rest assured that it will be straightforward to translate your format
into a future standard format—or even into an improved version of your own for-
mat—when the time comes.

 Several of the commercial rule engines have their own XML-based rule format,
but Jess does not. You’ll remedy this situation by developing one in the next section.

20.3.4 Strategies for representing rules in XML
There are two broadly different strategies for representing rules in XML. The
most general strategy is the one taken by the DAML and RuleML projects. In this
strategy, an XML element represents the concept of a pattern, and the contents of
the pattern are data inside the element. As you’ve seen, the Jess pattern

(isa ?x mammal)

is represented in RuleML as

<fact>
 <atom>
 <_opr>
 <rel>isa</rel>
 </_opr>
 <var>x</var>
 <ind>mammal</ind>
 </atom>
</fact>

366 CHAPTER 20
Jess, XML, and the enterprise
The interesting thing about this representation is that the data could change, and
the elements themselves could stay the same. For example, the pattern

(hasa ?x snout)

would look like this in RuleML:

<fact>
 <atom>
 <_opr>
 <rel>hasa</rel>
 </_opr>
 <var>x</var>
 <ind>snout</ind>
 </atom>
</fact>

This means that rule editors and, in general, all rule-processing software can work
with this kind of pattern without knowing anything about the meaning of the
data. The metadata about the pattern (the pattern names, slot names, and so on) is
explicit; indeed, it’s the important part. This approach is powerful in its general-
ity. The downside to this kind of rule language, however, is that it is verbose, and
that some of the software needed to work with it is fairly complex.

 An alternate approach is to represent the specifics of the pattern not as data
but in the elements. Many people use this approach in specialized domains to
good effect; for example, Laurence Leff of Western Illinois University has pub-
lished extensively on using such an approach with XML representations of legal
documents (and he uses Jess in his work).1

 Using this approach, the original pattern might look like this:

<isa>
 <variable>x</variable>
 <symbol>mammal</symbol>
</isa>

This XML is much simpler, but less general. Each new deftemplate implies a new
XML tag, and in the case of an unordered deftemplate, new tags for the slots,
too, like this:

<animal>
 <number-of-feet>4</number-of-feet>

1 See Go Eguchi and Laurence Leff, “XML Rule Editor for Java Expert Systems” (Proceedings of the In-
ternational Conference on Artificial Intelligence and Law (ICAIL) 2002, 66–71; Laurence Leff, “Auto-
mated Reasoning with Legal XML Documents,” in ICAIL 2001, 215–216; and Laurence Leff, “Rule-
Processing in the Legal XML Context”, in ICAIL 2001, 27–30.

Representing Jess rules in XML 367
 <hair>yes</hair>
 <color>black and white</color>
</animal>

Code to work with this kind of XML is shorter and more efficient than code to
work with the more general representation we looked at earlier. In a specialized
domain, this kind of representation allows you to develop dedicated tools more
quickly and easily. The downside, of course, is the loss of generality.

 In the next section, you’ll develop an XML format for Jess rules that uses the
first of these two approaches. You shouldn’t interpret this to mean that I think the
first approach is superior. Each approach has advantages and disadvantages, and
you should select an approach after considering the alternatives carefully.

20.4 Representing Jess rules in XML

In this section, you’re going to develop an XML representation for rules. Rather
than being motivated by theoretical goals, this representation has the modest goal
of being useful as a file format for editing and storing Jess rules. You’ll develop an
XML DTD (Data Type Definition) to describe this new XML type, and we’ll look
at some examples. I’ll also show you an XSLT script that turns the XML version
into Jess rules.

 If you haven’t seen DTDs before, they are a way to indicate the allowed struc-
ture for a specific kind of XML document. DTDs are defined in a kind of pidgin
XML—a language that is similar to, but isn’t quite, proper XML. ELEMENT lines
describe individual XML elements and their contents. ATTLIST lines list the XML
attributes an element is allowed to have.

 A list of rule elements is called a rulebase; a rule element has a name
attribute and optionally a priority (salience) attribute. A rule’s content consists
of an lhs element and an rhs element:

<!ELEMENT rulebase (rule)*>
<!ELEMENT rule (lhs,rhs)>
<!ATTLIST rule name CDATA #REQUIRED priority CDATA "">

The * means “zero or more.”
 An lhs element is a list of zero or more pattern and group elements. A group

is a list of one or more other groups or patterns (the + means “one or more”). A
pattern element is a list of zero or more slot elements; patterns, and groups
have name attributes. A pattern can have a binding. An rhs is a list of zero or
more function-call elements:

<!ELEMENT rhs (function-call)*>
<!ELEMENT lhs (group | pattern)*>

368 CHAPTER 20
Jess, XML, and the enterprise
<!ELEMENT group (group | pattern)+>
<!ATTLIST group name CDATA #REQUIRED>

<!ELEMENT pattern (slot*)>
<!ATTLIST pattern name CDATA #REQUIRED binding CDATA "">

Next, slot elements have name attributes and contain zero or more variable,
constant, and function-call elements:

<!ELEMENT slot (variable | constant | function-call)*>
<!ATTLIST slot name CDATA #REQUIRED>

Note that this restricts the kind of Jess constructs you can use. You have to use
named slots, so you can only use unordered facts. Furthermore, you can’t use the
| (or) connective. Although this restricts the syntax you can use, it doesn’t restrict
the patterns that can be expressed. For instance, instead of writing a pattern like

(ball (color red | blue))

you can write instead the following equivalent:

(ball (color ?color&:(or (eq ?color red) (eq ?color blue))))

Remember that the Jess code is generated automatically from the XML, so this
restriction really doesn’t matter.

 Finally, a variable only has a name, whereas a function-call contains a head
followed by zero or more constants, variables, or other function-calls. The
head and constant elements both contain plain text:

<!ELEMENT variable EMPTY>
<!ATTLIST variable name CDATA #REQUIRED>

<!ELEMENT function-call (head,(constant|variable|function-call)*)>
<!ELEMENT head (#PCDATA)>
<!ELEMENT constant (#PCDATA)>

20.4.1 An example rule

Using this DTD, you can easily write many Jess rules in XML. A rule like this:

(defrule AnimalRule2
 (declare (salience 10))
 ?animal <- (animal (has-hair TRUE))
 =>
 (modify ?animal (type mammal)))

can be represented as shown by the XML document in listing 20.1.

Representing Jess rules in XML 369

<?xml version="1.0"?>
<!DOCTYPE rulebase SYSTEM "jess.dtd">
<rulebase>
 <rule name="AnimalRule2" priority="10">
 <lhs>
 <pattern name="animal" binding="animal">
 <slot name="has-hair">
 <constant>TRUE</constant>
 </slot>
 </pattern>
 </lhs>
 <rhs>
 <function-call>
 <head>modify</head>
 <variable>animal</variable>
 <constant>(type mammal)</constant>
 </function-call>
 </rhs>
 </rule>
</rulebase>

20.4.2 Transforming the XML rules into Jess rules

The XML rule format can be transformed into Jess rules using an XSLT script of
about 100 lines. XSLT programs are declarative rather than procedural—just like
rules in Jess. In fact, an XSLT program is precisely a list of rules for transforming
specific parts of an XML document into some desired result format. This isn’t a
book about XSLT programming, so I won’t go over the code and try to explain it;
but because XSLT is rule-based, it seems appropriate to include this script here
(see listing 20.2) along with a brief explanation of a single rule.

NOTE If you’re interested in learning more about XSLT, there are many excel-
lent books on the topic; my favorite is by Michael Kay: XSLT Programmer’s
Reference, 2d ed. (Birmingham, UK: Wrox, 2001). XSLT is a powerful
technology, and learning to use it helps you think declaratively, a useful
skill relevant to all rule-based programming.

Here is an XSLT transformation rule from the script; it’s responsible for process-
ing variable nodes:

 <xsl:template match="variable">
 <xsl:text> ?</xsl:text>

Listing 20.1 The rule AnimalRule2 represented as XML

370 CHAPTER 20
Jess, XML, and the enterprise
 <xsl:value-of select="@name"/>
 </xsl:template>

An xsl:template element specifies a rule. The match attribute is a pattern that
specifies where this rule applies; this one applies to all variable elements in the
XML. xsl:text is an XSLT command that emits its contents verbatim. When this
script sees a variable element in the XML, it prints a space and then a question
mark, which is how variable names in Jess begin. By not including the question
mark in the XML, you make it easier to generate rules in other rule languages
that don’t use the question-mark convention.

 The xsl:value-of element emits a value derived from an element in the
XML. The select attribute dictates what the xsl:value-of will do; here it says to
use the value of the name attribute of the current node (the @ character indicates
that the following string is an attribute name).

 Taken together, this rule transforms the XML fragment

<variable name="color"/>

into the Jess snippet

“ ?color"

(including that leading space).

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">
 <xsl:output method="text" indent="no"/>
 <xsl:strip-space elements="*"/>

 <!- Top-level rule template ->
 <xsl:template match="rule">
 <xsl:text>(defrule </xsl:text>
 <xsl:value-of select="@name"/>
 <xsl:text>
</xsl:text>
 <xsl:if test="@priority != ''">
 <xsl:text> (declare (salience </xsl:text>
 <xsl:value-of select="./@priority"/>
 <xsl:text>))
</xsl:text>
 </xsl:if>
 <xsl:apply-templates select="./lhs"/>
 <xsl:text> =></xsl:text>
 <xsl:apply-templates select="./rhs"/>
 <xsl:text>)
</xsl:text>
 </xsl:template>

Listing 20.2 XSLT script to transform the XML rule format into Jess rules

Representing Jess rules in XML 371
 <!- Rule left hand sides ->
 <xsl:template match="lhs">
 <xsl:for-each select="./group | ./pattern">
 <xsl:text> </xsl:text>
 <xsl:apply-templates select="."/>
 <xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:template>

 <xsl:template match="group">
 <xsl:text>(</xsl:text>
 <xsl:value-of select="./@name"/>
 <xsl:text> </xsl:text>
 <xsl:apply-templates/>
 <xsl:text>)</xsl:text>
 </xsl:template>

 <xsl:template match="pattern">
 <xsl:if test="@binding != ‘‘">
 <xsl:text>?</xsl:text>
 <xsl:value-of select="@binding"/>
 <xsl:text> <- </xsl:text>
 </xsl:if>
 <xsl:text>(</xsl:text>
 <xsl:value-of select="./@name"/>
 <xsl:apply-templates select="./slot"/>
 <xsl:text>)</xsl:text>
 </xsl:template>

 <xsl:template match="slot">
 <xsl:text> (</xsl:text>
 <xsl:value-of select="./@name"/>
 <xsl:for-each select="./*">
 <xsl:if test="position() != 1">
 <xsl:text>&</xsl:text>
 </xsl:if>
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 <xsl:text>)</xsl:text>
 </xsl:template>

 <xsl:template match="slot/function-call">
 <xsl:text>:</xsl:text>
 <xsl:call-template name="funcall"/>
 </xsl:template>

 <!- Rule right hand sides ->
 <xsl:template match="rhs/function-call">
 <xsl:text>
 </xsl:text>
 <xsl:call-template name="funcall"/>
 <xsl:text></xsl:text>
 </xsl:template>

372 CHAPTER 20
Jess, XML, and the enterprise
 <!- Function calls ->
 <xsl:template match="function-call">
 <xsl:call-template name="funcall"/>
 </xsl:template>

 <xsl:template name="funcall">
 <xsl:text>(</xsl:text>
 <xsl:apply-templates select="./*"/>
 <xsl:text>)</xsl:text>
 </xsl:template>

 <xsl:template match="function-call/function-call">
 <xsl:text> </xsl:text>
 <xsl:call-template name="funcall"/>
 </xsl:template>

 <!- Miscellaneous ->
 <xsl:template match="variable">
 <xsl:text> ?</xsl:text>
 <xsl:value-of select="@name"/>
 </xsl:template>

 <xsl:template match="constant">
 <xsl:text> </xsl:text>
 <xsl:value-of select="."/>
 </xsl:template>
</xsl:stylesheet>

Now that you’ve decided on an XML representation and come up with a way to
translate XML rules into Jess rules, you need a way to create and modify rules in
the XML format. XML is a text-based format, so you could simply fire up your
favorite text editor—but there are definitely better alternatives.

20.5 Rule editors

If rules are represented in XML documents, then it follows that you can use XML
editors to create rules. Some XML editors are graphical in nature, and you can
edit a document by dragging appropriate elements into a tree. If your XML for-
mat is described rigorously by a DTD, then many editors can use it to restrict the
documents you create to only well-formed rule documents. Although using an
XML editor is certainly a possibility, in general doing so is too complicated for
nontechnical users. An editor that allows you to customize the display for rule
editing would be easier to use.

 Some rule engines come with rule editors, and others come with toolkits that
let you create your own custom rule editor. Current versions of Jess don’t come
with a rule editor, but you can write your own custom editor in Java. Using an

Rule editors 373
XML rule format simplifies this approach quite a bit, because you don’t need to
worry about parsing input files or writing output files; standard XML libraries
handle this for you easily. For example, to load an XML file as a tree of Java
objects (a DOM tree), you can use the following:

import java.io.*;
import org.w3c.dom.*;
import org.xml.sax.InputSource;
import javax.xml.parsers.*;
//...
 public Document readInRules(String filename)
 throws Exception {
 DocumentBuilderFactory dfactory =
 DocumentBuilderFactory.newInstance();

 DocumentBuilder docBuilder =
 dfactory.newDocumentBuilder();

 FileReader reader = new FileReader(filename);
 try {
 return docBuilder.parse(new InputSource(reader));
 } finally {
 reader.close();
 }
 }

You can then use the interfaces in the org.w3c.dom package to examine and mod-
ify the DOM tree. To write the modified DOM tree back out to disk, you can use
the following:

import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;
//...
 public void writeOutRules(Document rules, String filename)
 throws Exception {
 TransformerFactory tFactory =
 TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();

 DOMSource source = new DOMSource(rules);

 FileWriter writer = new FileWriter(filename);
 StreamResult result = new StreamResult(writer);
 try {
 transformer.transform(source, result);
 } finally {
 writer.close();
 }
 }

374 CHAPTER 20
Jess, XML, and the enterprise
In between reading and writing, of course, would be code to allow editing of the
rules. This could be a Swing GUI, or it could be a web interface using servlets and
JSPs. The important thing to remember is that although creating a fully general
rule editor might be a difficult undertaking, it’s much simpler to create a limited
editor that allows your users to add rules within a set of constraints appropriate to
your application.

20.6 Summary

XML is an excellent way to store rules. It can easily be translated into the native
rule language of almost any rule engine. It is easy to parse using one of the many
available high-quality XML parsers, and you can write XML documents easily
using the javax.xml.transform APIs. XML can easily be searched using XSLT
scripts or from Java code. Together, these qualities make XML an excellent native
format for a rule editor. A rule editor that can be used by nonprogrammers is
sometimes an important component of an enterprise system.

 In the next chapter, we’ll examine ways in which rule engines in general, and
Jess in particular, can be used with applications based on Enterprise JavaBeans.

Jess in the J2EE environment
In this chapter you’ll…
■ Use Jess in EJBs
■ Write an RMI-based rule service
■ Learn about the javax.rules API
375

376 CHAPTER 21
Jess in the J2EE environment
Most of the time, when people talk about working in the J2EE environment, they
actually mean they are working with Enterprise JavaBeans (EJBs). Programming
EJBs can be a real challenge, but they offer powerful capabilities. In this chapter,
we’ll briefly review what EJBs are and how they are programmed, and then we’ll
look at several strategies for incorporating rule engines in general, and Jess in par-
ticular, into EJB applications.

21.1 A quick tour of EJB concepts

Enterprise JavaBeans is a component architecture for server-side Java program-
ming. The Beans referred to are the individual components. They are the rela-
tively small, relatively self-contained pieces of code that implement your
application. EJBs are embedded in a container—an application that provides
essential services to the Beans. These services include things like lifecycle manage-
ment (creating and deleting beans), network connectivity (so client software can
make requests on the beans), database access, persistence, replication, transac-
tions, and more.

21.1.1 Kinds of EJBs

There are three different kinds of EJBs: entity beans, session beans, and message-driven
beans. Entity beans represent concrete objects or concepts like people or prod-
ucts. Generally, each entity bean corresponds to a single row in an underlying
database, so that changes to the bean are reflected automatically in persistent
storage. The EJB container can take care of this persistence automatically, without
your writing any database code.

 If entity beans represent things, session beans represent actions. They contain
business logic that coordinates the components of an application. Stateful ses-
sion beans have short-term persistence; they are used for things like shopping
carts. If you restart the application server, stateful session beans disappear,
whereas entity beans survive. Stateless session beans merely encapsulate code,
and contain no client-specific data.

 Message-driven beans are new with the EJB 2.0 specification. They are stateless
components that help integrate Java Message Service (JMS) services into the EJB
container. JMS is an asynchronous, event-based communication mechanism.

A quick tour of EJB concepts 377
21.1.2 EJB restrictions

To provide the services that it does, an EJB container needs to maintain strict con-
trol over its internal state. As a result, there are certain prohibitions on what EJBs
are allowed to do. In general, EJBs aren’t supposed to do the following:

■ Use threads or synchronization

■ Use the java.io package to access files

■ Display a GUI

■ Receive incoming socket connections

■ Set global objects like socket factories and System.out

■ Load native libraries

■ Use static variables

Some of these limitations are trivial (who would expect to be able to display a GUI
from a server-side component?), but others can cause headaches. Not being able to
use synchronized methods is one of these; most nontrivial code uses at least some
synchronization, Jess included. The restrictions on accessing files, loading native
libraries, and especially using static data can severely complicate many applications.

 To be fair, some of the restrictions can be safely ignored, if you understand
them. For example, if you know that an application won’t use replication ser-
vices—that is, the J2EE container will always consist of just one process—then you
can ignore the admonition about static data.

21.1.3 Do you need to use EJBs?

If servlets and JSPs are the bread and butter of Java programming on the server,
EJBs must be the caviar. By writing your program to the EJB specification, you get
a wealth of industrial-strength qualities and services for free: scalability, availabil-
ity, object persistence, transaction management, and more.

 But there’s no such thing as a free lunch, and with EJBs, as in life, you have to
pay for what you get. First, there are those restrictions. If your application meets
the definition of a traditional EJB application (a database-driven application that
doesn’t need to do any substantial computation), then the restrictions aren’t bad.
But if you need to work with code in a native library, or interface to a legacy sys-
tem without an EJB interface, or link in substantial amounts of existing Java code,
you may have a hard row to hoe to work around them.

 Second, programming with EJBs is complex. The J2EE reference implementa-
tion comes with almost a dozen command-line tools for managing parts of EJB

378 CHAPTER 21
Jess in the J2EE environment
development (commercial J2EE environments often provide the same functional-
ity via graphical interfaces). There is a substantial market for expensive Enterprise
Editions of Java development environments that include graphical tools for auto-
mating the EJB development process.

 All the infrastructure costs something in performance, as well. Scalability—the
ability to perform as well for 1,000 clients as for a single one—doesn’t imply high
performance.

 Given all this, a question suggests itself: “Should I be using EJBs?” That can be a
hard question to answer, but it boils down to this: If you need many of the
advanced services EJBs make available, then yes, you should use them. If you’re
only considering EJBs because “it’s the thing to do,” then you’re asking for trouble.

21.1.4 Accessing external resources from EJBs

If you decide to use EJBs, you’ll almost certainly find that you need to connect
them to some external resources—software that can’t be directly integrated into
the EJB environment. Often, doing so is necessary because of the EJB program-
ming restrictions. Jess uses multiple threads and synchronized methods, and
therefore technically can’t be used inside an EJB container.

 There are a number of possibilities for integrating external resources into EJB
applications. One is to ignore the restrictions and directly use the resource from
your EJBs; this approach, while not recommended, is widely used, apparently with
great success. Although it might work when the application is run on the refer-
ence implementation or on a single processor using another application server, it
is likely to fail spectacularly if the application is later deployed on a server farm.
The application server’s persistence and replication services almost certainly
won’t work if you break these rules.

 A more robust way is to run the resource in a separate application, and let the
EJB communicate with it through some form of interprocess communication. In
the rest of this chapter, we’ll look at several approaches to doing this with Jess.

 Finally, there’s the J2EE Connector Architecture (JCA), a standard Java API for
connecting external resources to J2EE servers. The JCA is rather complex, and
implementing a JCA connector is far beyond the scope of this book. However,
using a connected resource can be simple: Often, it’s just a matter of obtaining a
reference to the resource from the Java Naming and Directory Interface (JNDI).
Commercial application servers that include an integrated rule engine generally
make it available in the same way: as an object you can retrieve from JNDI.

An RMI-based rule server 379
21.2 An RMI-based rule server

One way to use an external resource (like a rule engine) from an EJB environ-
ment is to wrap that resource in a Remote Method Invocation (RMI) server. RMI
is a J2EE API for communicating between separate Java applications, either on
one machine or over a network.1 Most EJB environments use RMI for client/
server communications. By letting the external resource run in its own separate
process, you can avoid problems due to EJB programming restrictions that the
resource might violate.

 RMI creates the illusion that an object in one Java application exists inside a
second application, so that that second application can call the methods of the
remote object in the normal fashion. The magic is accomplished by special classes
called stubs and skeletons. An instance of a stub class masquerades as a local object,
but its methods package up their arguments in a network request and forward the
request to a remote object. A skeleton class receives such a request, unpacks the
arguments, and calls the method on the real object. The return value, if any, is
then packaged and returned to the stub’s method, which returns it as its own
return value. The end result is that, for example, an EJB could invoke methods on
a rule engine as if it were running inside the J2EE server, when in fact the rule
engine was in a separate process—maybe even on a dedicated machine.

 The good news is that, unlike writing EJBs, writing RMI servers is simple. In
this section you’ll develop a flexible and powerful RMI-based rule server in less
than 100 lines of code. There are basically four steps to writing an RMI server:

1 Define a remote interface.

2 Implement the remote interface.

3 Write a server mainline.

4 Run the rmic tool to create the stub and skeleton classes.

In the remainder of this section, you’ll develop an RMI-based rule server that can
be used with EJBs or in other situations.

21.2.1 The remote interfaces

A remote interface, not surprisingly, defines the methods of an object that are
available remotely. For your Jess server, you need two kinds of remote objects: a

1 A good place to learn about RMI is from the RMI chapter of Sun’s Java Tutorial; see http://
java.sun.com/docs/books/tutorial/rmi/index.html.

380 CHAPTER 21
Jess in the J2EE environment
remote version of jess.Rete, the main class you want to interact with; and a fac-
tory class that can create instances of your remote Rete. A typical client contacts
the factory to get a single instance of the rule engine for its own private use, loads
it with rules, and then makes repeated method calls to it.

 A remote interface has to extend java.rmi.Remote, and all of its methods
must be declared as throwing java.rmi.RemoteException. In addition, any argu-
ment or return value types must either be serializable or be themselves remote
interfaces.

 The remote interface for the factory therefore looks like this:

import java.rmi.*;

interface JessFactory extends Remote {
 Jess create() throws RemoteException;
}

Jess is the name you’ll give the remote Rete interface. You can make this inter-
face as simple or complex as desired. A version that had only a single execute-
Command method would be quite useful. To make it more general, however, it at
least needs a way to transfer Java objects back and forth, because executeCommand
only accepts strings as an argument. To do this, you can add support for calling
store and fetch. Here’s the resulting interface:

import java.rmi.*;
import jess.*;

interface Jess extends Remote {
 Value executeCommand(String command)
 throws RemoteException, JessException;

 void store(String name, Object object) throws RemoteException;

 Value fetch(String name) throws RemoteException;
}

You might want to add more methods, but this simple interface gives you access to
almost all of Jess’s capabilities.

21.2.2 Implementing the interfaces

Implementing these two interfaces is easy, because all they do is call a constructor
(JessFactory) or forward methods to a Rete object (Jess). Here’s an implemen-
tation of the JessFactory interface:

import jess.*;
import java.rmi.*;
import java.rmi.server.*;

An RMI-based rule server 381
public class JessFactoryImpl extends UnicastRemoteObject
 implements JessFactory {

 private JessFactoryImpl() throws RemoteException {
 }

 public Jess create() throws RemoteException {
 return new JessImpl();
 }
}

Remote object implementations often extend the UnicastRemoteObject class,
but this is not required. By extending UnicastRemoteObject, a remote object
implementation class gains the ability to automatically export itself, or connect to a
network. Because UnicastRemoteObject’s constructor throws RemoteException,
JessFactoryImpl’s constructor must throw it as well. The implementation of the
single remote method is about as simple as you can get. Improvements might
include a pooling mechanism—create could check a collection of previously cre-
ated Rete objects before making a new one.

 Here’s an implementation of the Jess remote interface; it’s only slightly more
complex than JessFactory:

import java.rmi.*;
import java.rmi.server.*;
import jess.*;

public class JessImpl extends UnicastRemoteObject
 implements Jess {
 private Rete m_rete = new Rete();

 JessImpl() throws RemoteException {}

 public Value executeCommand(String command)
 throws JessException {
 return m_rete.executeCommand(command);
 }

 public void store(String name, Object object) {
 m_rete.store(name, object);
 }

public Value fetch(String name) {
 return m_rete.fetch(name);
 }
}

Each instance of JessImpl contains a single instance of jess.Rete, so JessImpl
objects are independent.

382 CHAPTER 21
Jess in the J2EE environment
21.2.3 Implementing a main method

When you write an RMI server, you need to supply a main method that creates any
objects that should exist when the server starts up. The main method then regis-
ters those objects with a naming service so clients can find them. The naming ser-
vice can either be the standalone program rmiregistry that comes with the J2SE,
or an enterprise directory service like LDAP. Here you’ll use rmiregistry,
accessed via the java.rmi.Naming class. Your main will create a single JessFacto-
ryImpl object and register it under the name Jess. You can put this method in
the JessFactoryImpl class:

 public static void main(String[] argv) throws Exception {
 JessFactoryImpl impl = new JessFactoryImpl();
 Naming.rebind("Jess", impl);
 System.out.println("Jess server running");
 }

Here you ignored the fact that most RMI servers install a special RMI security
manager; a full implementation would certainly do so. You won’t use one here
because doing so would complicate the deployment step by requiring you to write
a security policy file.

21.2.4 Generating the stubs

The rmic stub compiler operates on the compiled implementation classes—not,
as you might expect, on the remote interfaces. Once you have compiled JessImpl
and JessFactoryImpl, you can run rmic like this:

rmic JessImpl JessFactoryImpl

This command creates JessImpl_Stub.class, JessImpl_Skel.class, and the
stub and skeleton classes for JessFactoryImpl.

 The RMI rule server is now ready to launch. First, run the rmiregistry pro-
gram, and then execute the JessFactoryImpl class with your JVM. You should see
the Jess server running message if everything worked OK.

21.2.5 A sample client
You’re done writing the rules server, and it’s ready to be used from an EJB acting as
a client. Although you won’t be writing any EJBs here, of course you want to see
what the client code would look like. Here’s a simple client application that builds
a Jess command from its arguments and executes the result in a remote Jess object:

import java.rmi.*;

public class JessClient {

JSR 94: the javax.rules API 383
 public static void main(String[] argv)
 throws Exception {
 JessFactory factory = (JessFactory) Naming.lookup("Jess");
 Jess jess = factory.create();
 StringBuffer sb = new StringBuffer();
 for (int i=0; i<argv.length; ++i) {
 sb.append(argv[i]);
 sb.append(" ");
 }
 System.out.println(jess.executeCommand(sb.toString()));
 }
}

You need the two remote interface classes to compile this client, and to run it you
need the two stub class files as well. Here’s a sample run:

% java JessClient "(+ 2 3)"
5

21.2.6 Final polishing

We’ve ignored many of RMI’s subtle points in this section. For example, RMI
includes a mechanism for loading stub class files (and other classes) remotely
using a web server as a class server. This makes it easier to modify the server over
time, because otherwise every client installation would need to be updated with a
new set of stub files every time the server changed. To enable this mechanism, you
need to install a special RMI security manager, define a security policy, and set sev-
eral system properties defining the location of the class server. You can read all
about this and other details in Sun’s RMI tutorial (http://java.sun.com/docs/
books/tutorial/rmi/index.html).

21.3 JSR 94: the javax.rules API

The javax.rules package is a standard, lightweight API for attaching to and
using a rule engine. It can be used in both J2SE and J2EE applications. It includes
mechanisms for storing and managing rule bases as well as classes that represent
individual sessions with a rule engine. Using the javax.rules package, you can
write Java code to work with rule engines in a generic manner, so that changing
from one rule engine to another won’t necessitate changes to the code. The name
JSR 94 refers to the standards committee that developed this new API; its mem-
bers represent many of the major rule engine vendors. I was a member of the
committee.

 javax.rules is not a standard rule language; it says nothing about rule lan-
guages. Therefore, if you change rule engine vendors, you will probably have to

384 CHAPTER 21
Jess in the J2EE environment
rewrite your rules, even if you don’t need to change your Java code. The
javax.rules API also doesn’t provide an escape mechanism by which vendors
can expose nonstandard interfaces, although many of its methods accept prop-
erty lists as a customization mechanism. Jess is more than just a rule engine, so the
javax.rules interface limits what you can do with Jess.

 Implementations of JSR 94 intended for use with J2EE containers deal with the
programming restrictions imposed by that environment. For example, some JSR
94 implementations are built on top of an RMI service like the one you built in
the last section. Other JSR 94 implementations are targeted toward high perfor-
mance in J2SE applications, and some can switch between the two.

 At the time of this writing, the JSR 94 specification is being readied for public
release, and the only implementation is the reference implementation—which,
incidentally, is a driver for Jess! Some of what I’ll present here will probably
change, but much of this material will still be valid when the javax.rules API
becomes official.

21.3.1 Working with javax.rules

The javax.rules API divides interaction with rule engines into administrative and
runtime interactions. Administrative tasks include instantiating the rule engine
and loading rules, and runtime tasks include manipulating working memory and
executing rules. If you use javax.rules from a J2SE program, you’ll probably
need to perform all of these tasks from your code. On the other hand, in the J2EE
environment, the administrative tasks are part of application deployment. Eventu-
ally, javax.rules-compliant application servers should offer dedicated mecha-
nisms—GUIs—for installing a rule engine and preparing rule sessions, just as they
currently include tools for plugging in databases and other resources. The JSR 94
reference implementation includes a JCA connector that makes a RuleService-
Provider accessible through JNDI.

Setting things up
The administrative phase begins with finding an appropriate javax.rules.Rule-
ServiceProvider object, which gives the programmer access to the rest of the
javax.rules implementation. In a J2EE environment, you may be able to retrieve
the RuleServiceProvider using JNDI. Otherwise, you can get one from the
javax.rules.RuleServiceProviderManager class:

String implName = "org.jcp.jsr94.ri.RuleServiceProvider";
Class.forName(implName);

RuleServiceProvider serviceProvider =
 RuleServiceProviderManager.getRuleServiceProvider(implName);

JSR 94: the javax.rules API 385
This is a little like loading a JDBC driver—it’s a similar concept, in that both pro-
vide access to an external resource, and you need to do some general initializa-
tion before you instantiate any of the classes.

 Once you have the RuleServiceProvider, you can retrieve a javax.rules.admin.
RuleAdministrator. From the RuleAdministrator, you can get a RuleExecu-
tionSetProvider, which, as the name suggests, creates javax.rules.RuleExecu-
tionSets. A RuleExecutionSet is basically a loaded set of rules, ready to be
executed.

 The javax.rules.admin package includes two different RuleExecutionSet-
Provider classes. RuleExecutionSetProvider itself includes methods for creat-
ing RuleExecutionSets from serializable objects, and therefore can be used when
the rule engine is located in a remote server; the constructor arguments can be
sent via RMI. Another class called LocalRuleExecutionSetProvider includes
additional methods to create RuleExecutionSets from nonserializable resources
like java.io.Reader objects (local files). Given a RuleServiceProvider, you can
create a RuleExecutionSet from a local file rules.xml like this:

RuleAdministrator admin = serviceProvider.getRuleAdministrator();
HashMap properties = new HashMap();
properties.put("name", "My Rules");
properties.put("description", "A trivial rulebase");

FileReader reader = new FileReader("rules.xml");
RuleExecutionSet ruleSet = null;
try {
 LocalRuleExecutionSetProvider lresp =
 admin.getLocalRuleExecutionSetProvider(properties);

 ruleSet = lresp.createRuleExecutionSet(reader, properties);
} finally {
 reader.close();
}

You then register the RuleExecutionSet with the RuleAdministrator under a
well-known name. At runtime, you use the same name to create a RuleSession;
the RuleSession uses the named RuleExecutionSet. This example uses the well-
known name rules:

admin.registerRuleExecutionSet("rules", ruleSet, properties);

Executing the rule engine
In the runtime phase, you create a RuleSession. A RuleSession is basically an
instance of a rule engine with a specific set of rules loaded into it. You get
RuleSessions from the javax.rules.RuleRuntime object, and you get the Rule-
Runtime, in turn, from the RuleServiceProvider.

386 CHAPTER 21
Jess in the J2EE environment
 There are two kinds of RuleSessions: stateful and stateless. They differ in
the capabilities they offer. The working memory of a StatefulRuleSession per-
sists between method calls. You can add objects to working memory in a series of
invocations, then run the engine, and then add more objects and run again. In
contrast, a StatelessRuleSession is a one-shot affair: To call its executeRules
methods, you must supply the entire initial contents of working memory, and you
will receive a list of the final contents as a return value.

 Here you create a StatefulRuleSession, add two objects (an Integer and a
String) to working memory, execute the rules, and then retrieve the entire con-
tents of working memory as a java.util.List. Finally, you dispose of the
RuleSession by calling release:

RuleRuntime runtime = rsp.getRuleRuntime();
StatefulRuleSession session = (StatefulRuleSession)
 runtime.createRuleSession("rules", properties,
 RuleRuntime.STATEFUL_SESSION_TYPE);
session.addObject(new Integer(1));
session.addObject("A string");
session.executeRules();
List results = session.getObjects();
session.release();

The javax.rules API is clearly designed to be used in a managed environment
like the J2EE. For a simple application like the one we’re imagining here, it could
be overkill. Consider that by using Jess’s native API, all the code in this section
and the preceding one can be expressed as follows (assuming the appropriate
defclasses are defined in rules.clp):

Rete session = new Rete();
session.executeCommand("(batch rules.clp)");
session.definstance("java.lang.Integer", new Integer(1), false);
session.definstance("java.lang.String", "A string", false);
session.run();
Iterator results = engine.listDefinstances();

On the other hand, both in the J2EE environment and in standalone applica-
tions, javax.rules gives you some measure of vendor independence.

21.3.2 The reference implementation
The first implementation of javax.rules is the reference implementation (RI)
included as part of the specification. This RI is, as I mentioned earlier, a wrapper
for Jess. It’s an interesting case study, because the mapping of the javax.rules
API forces a specific interpretation onto Jess’s more general facilities. Here I’m
not concerned with describing how it is implemented, but simply with filling in
the missing information that allows you to use it.

JSR 94: the javax.rules API 387
 Working memory elements in a RuleSession are arbitrary Java objects.
Because Jess doesn’t let you add arbitrary objects to working memory without pro-
viding extra information in the form of a definstance call, the RI has to make
some assumptions and provide the extra information. Every time an object is
added to working memory, Jess automatically defines a defclass for it; the def-
class name is the full class name of the object: java.lang.Integer, for example.
Therefore, a program to add two Integers would look like this:

(defclass java.lang.Integer java.lang.Integer nil)
(defrule add-two-integers
 (java.lang.Integer (OBJECT ?i1))
 (java.lang.Integer (OBJECT ?i2&~?i1))
 =>
 (undefinstance ?i1)
 (undefinstance ?i2)
 (bind ?i3 (new Integer (+ (?i1 intValue) (?i2 intValue))))
 (definstance java.lang.Integer ?i3 static))

Working memory elements that are not JavaBeans call for a different program-
ming style, compared to normal Jess. You can use individual patterns to bind
objects, as is the case here, but most tests will be fairly verbose and so should be
expressed as test conditional elements, as in the following example:

(defrule find-number-3
 (java.lang.Integer (OBJECT ?i1))
 (test (eq 3 (?i1 intValue)))
 =>
 ;; Found 3, do something...

One other thing about the RI is special: The input files must be XML, rather than
normal Jess input files. The format is exceedingly simple. Each XML file must
contain a rule-execution-set element, which contains three children: a name
(the name of the set of rules); a description (a brief summary of the rule’s pur-
pose); and a code element, which contains Jess code. Note that the Jess code has
to use normal XML encoding, so that special characters like & and > must be rep-
resented as & and <, respectively. Here’s a rule base containing the single
add-two-integers rule:

<?xml version="1.0" encoding="UTF-8"?>

<rule-execution-set>
 <name>Mathemetical rules</name>
 <description>One rule that adds two Integers/description>
 <code>
 (defclass java.lang.Integer java.lang.Integer nil)
 (defrule add-two-integers

388 CHAPTER 21
Jess in the J2EE environment
 (java.lang.Integer (OBJECT ?i1))
 (java.lang.Integer (OBJECT ?i2&~?i1))
 =>
 (undefinstance ?i1)
 (undefinstance ?i2)
 (bind ?i3 (new Integer (+ (?i1 intValue) (?i2 intValue))))
 (definstance java.lang.Integer ?i3 static))
 </code>
</rule-execution-set>

The RI is bound by the limitations of the javax.rules API. As such, there are no
hooks to give you access to queries, store/fetch, or other Jess features. When
the javax.rules API is finalized, Jess will offer native support for it, including
extensions to allow access to these features and more.

21.4 Summary

This chapter has had a bit of a shotgun quality to it—it hits a bit here and a bit
there, and misses little bits in between—and there was no way to avoid writing it
this way. The J2EE specification is vast, and there are many different ways you can
build applications with it. I hope that what I’ve described in this chapter can serve
as a sourcebook when you design your own rule-based J2EE applications, and that
I’ve brought out some of the important issues.

 After an overview of Enterprise JavaBeans, we looked at building a custom rule
server using Jess and Java RMI. Servers like this one are in widespread use. You
can customize this simple rule server for your own needs by adding more methods
or by adding an object pool or other lifecycle services.

 The javax.rules API, which as of this writing is still being developed, prom-
ises to provide portable, generic access to rule engines from multiple vendors.
The API includes sophisticated features for managing rule bases in the J2EE envi-
ronment but is still fairly simple to use in runtime components.

 Jess in Action has taught you to program in the Jess language and build a wide
variety of rule-based software. From the simple command-line Tax Forms Advisor
to the sophisticated web-based Recommendations Agent, from the interactive PC
Repair Assistant to the autonomous HVAC Controller, you’ve seen how rule tech-
nology can be applied to many different kinds of applications. Each of the systems
you’ve developed in this book can serve as a launching point for a whole family of
software, and still you’ve barely scratched the surface of the practically unlimited
potential of Jess.

Jess functions
389

390 APPENDIX A
Jess functions
This appendix lists every function included with Jess 6.1. In the argument lists,
number means any number, and lexeme means any symbol or string. boolean argu-
ments can be anything; all values but the symbol FALSE are interpreted as “true.”
An argument type of expression means that anything is acceptable. A fact argument
means the actual text of a fact, whereas a fact-id is either a reference to a
jess.Fact object or the integer ID of a fact. Square brackets denote optional
arguments. + means one or more of the preceding argument, * means zero or
more, and | means “or.” Most of these functions are very flexible about the argu-
ments they’ll accept. Extra arguments are generally ignored, and missing argu-
ments are defaulted in some cases.

 Arguments that are filenames deserve special care. A filename argument must
follow Jess’s rules for a valid symbol or string. On UNIX systems, this presents no
particular problems, but Win32 filenames may need special treatment. In particu-
lar: Pathnames should use either \\ (double backslash) or / (forward slash)
instead of \ (single backslash) as directory separators; and pathnames that include
a colon (:) or a space character () must be enclosed in double quotes.

 Some “functions” are actually constructs—special forms built into the Jess lan-
guage—and so don’t appear in this list. Constructs can’t be called like regular func-
tions; for example, they can’t appear on the right-hand side (RHS) of a rule. The
complete list of constructs includes defrule, deftemplate, defglobal, deffacts,
deffunction, and defquery; they are all discussed in part 2 of this book.

 Jess functions throw an exception of type jess.JessException if the argu-
ments are of the wrong type.

(- <number> <number>+)
Returns the first argument minus all subsequent arguments. The return value is
an INTEGER unless any of the arguments are FLOAT, in which case it is a FLOAT.

(/ <number> <number>+)
Returns the first argument divided by all subsequent arguments. The return value
is a FLOAT.

(* <number> <number>+)
Returns the products of its arguments. The return value is an INTEGER unless any
of the arguments are FLOAT, in which case it is a FLOAT.

Jess functions 391
(** <number> <number>)
Raises its first argument to the power of its second argument (using Java’s
Math.pow() function). The return value is NaN (not a number) if both arguments
are negative.

(+ <number> <number>+)
Returns the sum of its arguments. The return value is an INTEGER unless any of
the arguments are FLOAT, in which case it is a FLOAT.

(< <number> <number>+)
Returns TRUE if each argument is less than the argument following it; otherwise,
returns FALSE.

(<= <number> <number>+)
Returns TRUE if the value of each argument is less than or equal to the value of the
argument following it; otherwise, returns FALSE.

(<> <number> <number>+)
Returns TRUE if the value of the first argument is not equal in value to all subse-
quent arguments; otherwise, returns FALSE.

(= <number> <number>+)
Returns TRUE if the value of the first argument is equal in value to all subsequent argu-
ments; otherwise, returns FALSE. The integer 2 and the float 2.0 are =, but not eq.

(> <number> <number>+)
Returns TRUE if the value of each argument is greater than that of the argument
following it; otherwise, returns FALSE.

(>= <number> <number>+)
Returns TRUE if the value of each argument is greater than or equal to that of the
argument following it; otherwise, returns FALSE.

(abs <number>)
Returns the absolute value of its only argument.

(agenda [<module name>])
Displays a list of rule activations to the WSTDOUT router. If no argument is speci-
fied, the activations in the current module (not the focus module) are displayed.
If a module name is specified, only the activations in that module are displayed. If
* is specified, then all activations are displayed.

392 APPENDIX A
Jess functions
(and <expression>+)
Returns TRUE if none of the arguments evaluate to FALSE; otherwise, returns
FALSE.

(apply <expression>+)
Returns the result of calling the first argument, as a Jess function, on all the
remaining arguments. The strength of this function lies in the fact that you can
call a function whose name, for instance, is in a Jess variable. In this example, a
mathematical function is applied to a list of numbers; Jess gets the name of the
function from the console by calling read:

Jess> (bind ?function (read))
+ ;; You enter "+"
"+"
Jess (apply ?function 1 2 3 4 5)
15

(asc <lexeme>)
Returns the Unicode value of the first character of the argument, as an
RU.INTEGER.

(assert <fact>+)
Asserts all facts into working memory; returns the fact-ID of the last fact asserted
or FALSE if no facts were successfully asserted (for example, if all facts given are
duplicates of existing facts).

(assert-string <string>)
Converts a string into a fact and asserts it. Attempts to parse the string as a fact
and, if successful, returns the value returned by assert with the same fact. Note
that the string must contain the fact’s enclosing parentheses:

Jess> (assert-string "(grocery-list milk bread soup)")
<Fact-0>

(bag <command> <expression>+)
Lets you manipulate Java hash tables from Jess. The net result is that you can cre-
ate any number of associative arrays or property lists. Each such array or list has a
name by which it can be looked up. The lists can contain other lists as properties,
or any other Jess data type.

 The bag command does different things based on its first argument. It’s really
seven commands in one:

Jess functions 393
■ create accepts a string, the name of a new bag to be created. The bag
object itself is returned. For example:

Jess> (bag create my-bag)
<External-Address:java.util.Hashtable>

■ delete accepts the name of an existing bag and deletes it from the list of
bags.

■ find accepts the name of a bag and returns the corresponding bag object,
if one exists, or nil.

■ list returns a list of the names of all the existing bags.

■ set accepts as arguments a bag, a String property name, and any Jess
value. The named property of the given bag is set to the value, and the value
is returned.

■ get accepts as arguments a bag and a String property name. The named
property is retrieved and returned, or nil if there is no such property. For
example:

Jess> (defglobal ?*bag* = 0)
TRUE
Jess> (bind ?*bag* (bag create my-bag))
<External-Address:java.util.Hashtable>
Jess> (bag set ?*bag* my-prop 3.0)
3.0
Jess> (bag get ?*bag* my-prop)
3.0

■ props accepts a bag as the single argument and returns a list of the names
of all the properties of that bag.

Bag objects are local to each Rete object.

(batch <filename>)
Attempts to parse and evaluate the given file as Jess code. If successful, returns the
return value of the last expression in the file. In an applet, batch will try to find
the file relative to the applet’s document base. In any program, if the file is not
found, the name is then passed to ClassLoader.getSystemResourceAsStream().
This allows files along the class path, including files in JARs, to be batched. Jess
uses the class loader that loaded the application object. You can supply this special
object as a constructor argument when you create a jess.Rete object.

394 APPENDIX A
Jess functions
(bind <variable> <expression>)
Assigns the given value to the given variable, creating the variable if necessary.
Returns the given value.

(bit-and <integer>+)
Performs the bitwise AND of the arguments. (bit-and 7 4) is 4, and is equivalent
to the Java 7 & 4.

(bit-not <integer>)
Performs the bitwise NOT of the argument. (bit-not 0) is –1, and is equivalent
to the Java ~0.

(bit-or <integer>+)
Performs the bitwise OR of the arguments. (bit-or 2 4) is 6, and is equivalent to
the Java 2 | 4.

(bload <filename>)
Decompresses and deserializes a file to restore the state of the current Rete
object. The argument is the name of a file previously produced by the bsave com-
mand. I/O routers are not restored from the file; they retain their previous state.
Furthermore, JessListener objects are not restored from the file; again, they are
retained from their state prior to the bload. If the filename contains special char-
acters, it must be passed as a double-quoted string.

(bsave <filename>)
Dumps the engine in which it is called to the given filename argument in a format
that can be read using bload. Any input/output streams and event listeners are
not saved during the serialization process. If the filename contains special charac-
ters, it must be passed as a double-quoted string.

(build <string>)
Evaluates a string as though it were entered at the command prompt. Attempts to
parse and evaluate a single expression from the given string as Jess code. If suc-
cessful, returns the return value of the expression. This function is typically used
to define rules or other constructs from Jess code at runtime. For instance:

(build "(defrule my-rule (foo) => (bar))")

Note that the string must consist of a single expression.

Jess functions 395
(call (<external-address> | <lexeme>) <lexeme> <expression>+)
Calls a Java method on the given object, or a static method of the class named by
the first argument. The second argument is the name of the method, and subse-
quent arguments are passed to the method. Arguments are promoted, and over-
loaded methods are selected precisely as for new. The return value is converted to
a suitable Jess value before being returned. Array return values are converted to
Jess lists.

 The functor call may be omitted if the method being called is nonstatic. The
following two method calls are equivalent:

;; These are both legal and equivalent
(call ?vector addElement (new java.lang.String "Foo"))
(?vector addElement (new java.lang.String "Foo"))

(call-on-engine <external-address> <jess-code>)
Executes some Jess code in the context of the given Rete object (the external-
address). This is a nice way to send messages between multiple Rete engines in one
process. Note that the current variable context is used to evaluate the code, so
(for instance) all defglobal values will be from the calling engine, not the target:

Jess> (bind ?engine (new jess.Rete))
<External-Address:jess.Rete>
Jess> (call-on-engine ?engine (+ 2 2))
4

(clear)
Clears the rule engine. Deletes all rules, deffacts, defglobals, templates, facts,
activations, and so forth. User functions written in Java are not deleted.

(clear-focus-stack)
Removes all modules from the focus stack.

(clear-storage)
Clears the hash table used by store and fetch.

(close [<lexeme>+])
Interprets each argument as an I/O router name. Closes any I/O routers associ-
ated with the given names by calling close() on the underlying stream, and then
removes the routers. Any subsequent attempt to use a closed router will report
bad router. See open.

396 APPENDIX A
Jess functions
(complement$ <list> <list>)
Returns a new list consisting of all elements of the second list not appearing in the
first list.

(context)
Returns the execution context (a jess.Context object) in which it is called. This
provides a way for deffunctions to get a handle to this useful class.

(count-query-results <lexeme> <expression>+)
Runs the query whose name is given by the first argument and returns a count of
the matches. See the documentation for defquery for more details. Also see run-
query for caveats concerning calling count-query-results from a rule.

(create$ <expression>*)
Returns a new list containing all the given arguments, in order. For each argu-
ment that itself is a list, the individual elements of the list are added to the new
list; this function will not create nested lists (which are not meaningful in the Jess
language). Note that lists must be created explicitly using this function or others
that return them; ordinary lists cannot be directly parsed from Jess input.

(defadvice (before | after) (<lexeme> | <list>) <expression>+)
Lets you supply extra code to run before or after the function(s) named by the
second argument. The list of expressions is taken as a block of code to execute. If
before is specified, the code executes before the named function(s); the variable
?argv holds the entire function call vector (function name and parameters) on
entry to and exit from the code block. If after is specified, the function is called
before the code block is entered. When the block is entered, the variable ?retval
refers to the original function’s return value.

 Whether before or after is specified, if the code block explicitly calls return
with a value, the returned value appears to the caller to be the return value of the
original function. For before advice, this means the original function is not called.

(defclass <lexeme> <lexeme> [extends <lexeme>])
Defines a template based on a Java class. The first argument is the template tag,
and the second argument is the name of a Java class. The names of the template’s
slots are based on the JavaBeans properties found in the named class. If the
optional extends clause is included, the last argument is the name of another
template; it becomes the parent template of the new template. The common slots
in the two templates are in the same order, at the beginning of the new template.

Jess functions 397
Rules defined to match instances of the parent template also match instances of
the new child template.

(definstance <lexeme> <object> [static | dynamic])
Creates a shadow fact representing the given Java object, according to the tem-
plate named by the first argument (which should have come from defclass). If
the symbol static is not supplied as the optional third argument, a
PropertyChangeListener is installed in the given object, so that Jess can keep the
shadow fact updated if the object’s properties change (dynamic is the default).
The shadow fact is returned.

 Note that it is an error for a given Java object to be installed in more than one
definstance at a time. The second and subsequent definstance calls for a given
object will return a fact with an ID of –1.

(delete$ <list> <integer> <integer>)
Deletes the specified range from a list. The first integer expression is the one-
based index of the first element to remove; the second is the one-based index of
the last element to remove.

(div <number> <number>+)
Returns the first argument divided by all subsequent arguments using integer division.

(do-backward-chaining <lexeme>)
Marks a template as being eligible for backward chaining. If the template is unor-
dered—that is, if it is explicitly defined with deftemplate or defclass—then it
must be defined before calling do-backward-chaining. In addition, this function
must be called before defining any rules that use the template.

(duplicate <fact-id> (<symbol> <expression>)+)
Makes a copy of the given fact, with the values of slots modified as indicated by the
(symbol, expression) pairs. The fact-id must refer to an unordered fact. Each
list is taken as the name of a slot in this fact and a new value to assign to the slot. A
new fact is asserted, which is similar to the given fact but which has the specified
slots replaced with new values. The fact-id of the new fact is returned. It is an error
to call duplicate on a shadow fact.

(e)
Returns the transcendental number e.

398 APPENDIX A
Jess functions
(engine)
Returns the jess.Rete object in which the function is called.

(eq <expression> <expression>+)
Returns TRUE if the first argument is equal in type and value to all subsequent
arguments. For strings, this means identical contents. Uses the Java
Object.equals() function, so it can be redefined for external types. Note that
the integer 2 and the floating-point number 2.0 are not eq, but they are eq* and =.

(eq* <expression> <expression>+)
Returns TRUE if the first argument is equivalent to all the others. Uses numeric
equality for numeric types, unlike eq. Note that the integer 2 and the floating-
point number 2.0 are not eq, but they are eq* and =.

(eval <string>)
Synonym for build.

(evenp <number>)
Returns TRUE for even numbers; otherwise, returns FALSE. Results with noninte-
gers are unpredictable.

(exit)
Exits Jess and halts Java by calling System.exit(0).

(exp <number>)
Raises the value e to the power of the argument.

(explode$ <string>)
Creates a list value from a string. Parses the string as if by a succession of read
calls, and then returns these individual values as the elements of a list.

(external-addressp <expression>)
Returns TRUE or FALSE depending on whether the given expression is an external
address.

(fact-id <integer>)
If the argument is the fact-id of an existing fact, returns the actual jess.Fact
object; otherwise, throws an exception.

Jess functions 399
(facts [symbol | *])
Prints a list of all facts in working memory. If an argument is given, it should be
the name of a module; only the facts from that module are printed. The symbol *
indicates all modules. With no argument, only the facts from the current module
are listed.

(fact-slot-value <fact-id> <symbol>)
Returns the value in the named slot of the fact with the given fact-id.

(fetch <lexeme>)
Retrieves and returns any value previously stored by the store function under the
given name, or nil if there is none. Analogous to the fetch() member function
of the Rete class. Note that the storage used by store and fetch is local to each
individual Rete object.

(first$ <list>)
Returns the first field of a list as a new single-element list; like car in traditional LISP.

(float <number>)
Converts its only argument to a Jess floating-point number.

(floatp <expression>)
Returns TRUE for arguments of type RU.FLOAT; otherwise, returns FALSE.

(focus <symbol>+)
Changes the focus module. The next time the engine runs, the first rule to fire will
be from the first module named as an argument (if any rules are activated in this
module). The previously active module is pushed down on the focus stack. If more
than one module is listed, they are pushed onto the focus stack in order from right
to left. If the engine is running at the time of the call, the focus changes immedi-
ately and the next rule to fire will be from the first named module.

(foreach <variable> <list> <expression>*)
Sets the named variable to each of the values in the list in turn; for each value, all
the other expressions are evaluated in order. The return function can be used to
break the iteration. This example uses foreach to print each item in the list:

(foreach ?x (create$ a b c d) (printout t ?x crlf))

400 APPENDIX A
Jess functions
(format <symbol> <string> <expression>*)
Creates a formatted string. Formats the third and subsequent arguments accord-
ing to the format string (the second argument), which is identical to that used by
printf in the C language (refer to a C book for more information). Returns the
string, and optionally prints the string to the I/O router named by the first argu-
ment. If you pass nil for the router name, no printing is done.

(gensym*)
Returns a special unique sequenced value consisting of the letters gen plus an inte-
ger. Use setgen to set the value of the integer to be used by the next gensym call.

(get <object> <symbol>)
Retrieves the value of a JavaBean’s property. The first argument is the object, and
the second argument is the name of the property. The return value is converted
to a suitable Jess value exactly as for call. You can refer to the JavaBeans specifica-
tion for the complete definition of a property, but often a property X implies a
method getX().

(get-current-module)
Gets the current module (see set-current-module).

(get-focus)
Returns the name of the current focus module (see focus).

(get-focus-stack)
Returns the module names on the focus stack as a list. The top module on the
stack is the first entry in the list.

(get-member (<object> | <lexeme>) <symbol>)
Retrieves the value of a Java member variable. The first argument is a Java object
(or the name of a class, for a static member), and the second argument is the
name of the variable. The return value is converted to a suitable Jess value exactly
as for call.

(get-multithreaded-io)
Returns TRUE if Jess is currently using a separate thread to flush I/O streams.
Turning this on can lead to a modest performance enhancement, but may result
in loss of output on program termination.

Jess functions 401
(get-reset-globals)
Indicates the current setting of global variable reset behavior. See set-reset-
globals for an explanation of this property.

(get-salience-evaluation)
Indicates the current setting of salience evaluation behavior. See set-salience-
evaluation for an explanation of this property.

(halt)
Halts the rule execution cycle. Has no effect unless the rule engine is running.

(if <boolean> then <expression>+ [else <expression>+])
Allows conditional execution of a group of actions. The Boolean expression is eval-
uated. If it does not evaluate to FALSE, the first list of expressions is evaluated, and
the return value is whatever is returned by the last expression of that list. If the
Boolean expression evaluates to FALSE and the optional second list of expressions is
supplied, then those expressions are evaluated, and the value of the last is returned.

(implode$ <list>)
Creates a string from a list. Converts each element of the list to a string and
returns these strings concatenated with single intervening spaces.

(import <lexeme>)
Works like the Java import statement. You can import either a whole package
using (import java.io.*) or a single class using (import java.awt.Button).
After a call to import, all functions that can accept a Java class name (new,
defclass, call, and so on) refer to the import list to try to find the class that goes
with a specific name. Note that as in Java, java.lang.* is implicitly imported.

(insert$ <list> <integer> <expression>+)
Inserts one or more values in a list. Inserts the elements of the second and later
arguments so that they appear starting at the given one-based index of the first
list. If any of the expressions are themselves lists, the individual elements of these
lists are inserted, not the lists themselves.

(instanceof <object> <lexeme>)
Returns TRUE if the object could legally be assigned to a Java variable whose class
type is given by the second argument, a Java class name. Implemented using
java.lang.Class.isInstance(). The class name can be fully qualified or it can
be an imported name; see import.

402 APPENDIX A
Jess functions
(integer <number>)
Converts its only argument to an integer. Truncates any fractional component of
the value of the given numeric expression and returns the integral part.

(integerp <expression>)
Returns TRUE for INTEGER values; otherwise, returns FALSE.

(intersection$ <list> <list>)
Returns the intersection of two lists: a list consisting of the elements the two argu-
ment lists have in common.

(jess-version-number)
Returns a version number for Jess; currently 6.1.

(jess-version-string)
Returns a human-readable string descriptive of this version of Jess.

(length$ <list>)
Returns the number of fields in a list value.

(lexemep <expression>)
Returns TRUE for symbols and strings; otherwise, returns FALSE.

(list-deftemplates [* | module-name])
With no arguments, prints a list of all deftemplates in the current module (not
the focus module) to the t router. With a module name for an argument, prints
the names of the templates in that module. With * as an argument, prints the
names of all templates.

(list-focus-stack)
Displays the module focus stack, one module per line; the top of the stack (the
focus module) is displayed first.

(list-function$)
Returns a list of all the functions currently callable, including intrinsics,
deffunctions, and Java user functions. Each function name is a symbol. The list is
sorted in alphabetical order.

(load-facts <lexeme>)
Asserts facts loaded from a file. The argument should name a file containing a list
of facts (not deffacts constructs, and no other commands or constructs). Jess

Jess functions 403
parses the file and asserts each fact. The return value is the return value of assert
when asserting the last fact. load-facts looks for the named file the same way the
batch command looks for scripts. If the filename contains special characters, it
must be passed as a double-quoted string.

(load-function <lexeme>)
Loads a class into Jess and adds it to the engine, thus making the corresponding
command available. The argument must be the fully qualified name of a Java class
that implements the jess.Userfunction interface.

(load-package <lexeme>)
Loads a class into Jess and adds it to the engine, thus making the corresponding
package of commands available. The argument must be the fully qualified name
of a Java class that implements the jess.Userpackage interface.

(log <number>)
Returns the logarithm base e of its only argument.

(log10 <number>)
Returns the logarithm base 10 of its only argument.

(long <expression>)
Interprets the expression as a Java long (if possible) and returns a LONG value. Use
strings or symbols for precise values that can’t be expressed as an integer. Longs in
Jess are second-class citizens in the sense that you can’t directly do math on them.
You can assign them to variables, pass them to function calls, and convert them to
strings or floating-point numbers.

(longp <expression>)
Returns TRUE if the expression is of type RU.LONG; otherwise, returns FALSE.

(lowcase <lexeme>)
Converts uppercase characters in a string or symbol to lowercase. Returns the
argument as an all-lowercase string.

(matches <lexeme>)
Produces an ugly printout, useful for debugging, of the contents of the left and
right memories of each two-input node on the named rule or query’s left-hand side.

(max <number>+)
Returns the value of its largest numeric argument.

404 APPENDIX A
Jess functions
(member$ <expression> <list>)
Returns the position (one-based index) of a value within a list; otherwise, returns
FALSE.

(min <number>+)
Returns the value of its smallest numeric argument.

(mod <number> <number>)
Returns the remainder of the result of dividing the first argument by the second.

(modify <fact-id> (<lexeme> <expression>)+)
Modifies the given unordered fact in working memory. Each of the (lexeme,
expression) lists is taken as the name of a slot in this fact and a new value to
assign to the slot. The numeric ID of the fact is preserved. The jess.Fact object
is returned. Modifying a shadow fact causes the appropriate object properties to
be set as well. (See duplicate.)

(listp <expression>)
Returns TRUE for list values; otherwise, returns FALSE.

(neq <expression> <expression>+)
Returns TRUE if the first argument is not equal in type and value to any of the sub-
sequent arguments (see eq); otherwise, returns FALSE.

(new <lexeme> <expression>*)
Creates a new Java object and returns an EXTERNAL_ADDRESS value containing it.
The first argument is the class name: java.util.Vector, for example. The new
function looks in the table maintained by the import function to resolve class names
that don’t include a package name. Any additional arguments are taken to be con-
structor arguments. The constructor is chosen from among all constructors for the
named class based on a first-best fit algorithm, as discussed in section 5.1 of the text.
Built-in Jess types are converted as necessary to match available constructors.

(not <expression>)
Returns TRUE if its only argument evaluates to FALSE; otherwise, returns FALSE.

(nth$ <integer> <list>)
Returns the value of the specified field of a list value. The first argument is the
one-based index of the field to return.

Jess functions 405
(numberp <expression>)
Returns TRUE for numbers; otherwise, returns FALSE.

(oddp <integer>)
Returns TRUE for odd numbers; otherwise, returns FALSE. (See evenp.)

(open <lexeme> <lexeme> [r | w | a])
Opens a file; the first argument names the file. Subsequently, the router identifier
(the second argument) can be passed to printout, read, readline, or any other
functions that accept I/O routers as arguments. By default, the file is opened for
reading; if a mode string is given, it may be opened for reading only (r), writing
only (w), or appending (a). If the filename contains special characters, it must be
passed as a double-quoted string.

(or <expression>+)
Returns TRUE if any of the arguments evaluate to a non-FALSE value; otherwise,
returns FALSE.

(pi)
Returns the irrational number pi.

(pop-focus)
Removes the top module from the focus stack and returns its name.

(ppdeffacts <lexeme>)
Returns a pretty-print rendering of a deffacts, as a string.

(ppdeffunction <lexeme>)
Returns a pretty-print representation of a deffunction, as a string.

(ppdefglobal <symbol>)
Returns a pretty-print representation of a defglobal, as a string.

(ppdefquery <symbol>)
Returns a pretty-print rendering of a defquery, as a string.

(ppdefrule <symbol>)
Returns a pretty-print rendering of a defrule, as a string.

(ppdeftemplate <symbol>)
Returns a pretty-print representation of a deftemplate, as a string.

406 APPENDIX A
Jess functions
(printout <lexeme> <expression>+)
Prints its second and subsequent arguments to the router named by the first argu-
ment, which must be open for output. No spaces are added between arguments.
The special symbol crlf prints as a newline. The special router name t can be
used to signify standard output.

(progn <expression>+)
Evaluates each of its arguments in turn, and returns the value of the last expression.

(random)
Returns a pseudo-random integer between 0 and 65536.

(read [<lemexe>])
Reads a single symbol, string, or number from the named router and returns this
value. The router t is the default if no argument is given. By default, newlines are
treated as ordinary whitespace. If you need to parse text line by line, use readline
and explode$.

(readline [<lexeme>])
Reads an entire line as a string from the specified I/O router. If no argument is
given, the default is t.

(replace$ <list> <integer> <integer> <list>+)
Replaces the specified range of a list value with a set of values. The variable number
of final arguments is inserted into the first list, replacing elements between the one-
based indices given by the two numeric arguments, inclusive. Here’s an example:

Jess> (replace$ (create$ a b c) 2 2 (create$ x y z))
(a x y z c)

(reset)
Removes all facts from working memory and all activations from the agenda,
asserts the fact (initial-fact), asserts all facts found in deffacts constructs,
asserts a fact representing each registered definstance, and (if the set-reset-
globals property is TRUE) initializes all defglobals.

(rest$ <list>)
Returns all but the first field of a list as a new list; like cdr in traditional LISP.

(retract <fact-id>+)
Removes the given facts from working memory. Retracting a shadow fact results in
an implicit call to undefinstance for the corresponding object.

Jess functions 407
(retract-string <string>)
Parses the string as a fact; if such a fact exists in working memory, calls retract on it.

(return [<expression>])
From a deffunction, returns the given value and exits the deffunction immedi-
ately. From the right-hand side of a rule, terminates the rule’s execution immedi-
ately and pops the current focus module from the focus stack. The argument is
meaningless when return is called from a rule.

(round <number>)
Rounds its argument toward the closest integer, or toward negative infinity if
exactly between two integers.

(rules [<lexeme> | *])
With no arguments, prints a list of all rules and queries in the current module
(not the focus module) to the t router. With a module name for an argument,
prints the names of the rules and queries in that module. With * as an argument,
prints the names of all rules and queries.

(run [<integer>])
Starts the inference engine. If no argument is supplied, Jess keeps running until
no more activations remain or halt is called. If an argument is supplied, it gives
the maximum number of rules to fire before stopping.

(run-query <lexeme> <expression>+)
Runs a defquery and returns a java.util.Iterator of the matches. The first
argument is the name of the query, and the later ones are the arguments to the
query. Note that run-query can lead to backward chaining, which can cause rules
to fire; thus if run-query is called on a rule’s right-hand side, other rules’ right-
hand sides may run to completion before the instigating rule completes. Putting
run-query on a rule’s right-hand side can also cause the count of executed rules
returned by run to be low. Calling run-query on the left-hand side of a rule can
cause strange effects; be sure you know what you’re doing.

 Note that the Iterator returned by this function should be used immediately.
It will become invalid if any of the following functions are called before you’ve
used it: reset, count-query-results, or run-query. It may become invalid if any
of the following are called: assert, retract, modify, or duplicate; and any of the
affected facts are involved in the active query’s result.

 Each match is a jess.Token object, as described in section 7.7 of the text.

408 APPENDIX A
Jess functions
(run-until-halt)
Runs the engine until halt is called. Returns the number of rules fired. When
there are no active rules, the calling thread is blocked, waiting on the engine’s
activation semaphore until new activations become available. This function is typi-
cally called either as the last expression in a script or from its own thread.

(save-facts <filename> [<lexeme>])
Saves facts to a file. Attempts to open the named file for writing, and then writes a
list of all facts in working memory to the file. This file is suitable for reading with
load-facts. If the optional second argument is given, only facts whose head
matches this symbol will be saved. save-facts does not work in applets; the argu-
ment must be a valid path to a writeable, local file. If the filename contains special
characters, it must be passed as a double-quoted string.

(set <object> <lexeme> <expression>)
Sets a JavaBean’s property to the given value. The first argument is the Bean
object; the second argument is the name of the property. The third value is the
new value for the property; the same conversions are applied as for new and call.
See get.

(set-current-module <lexeme>)
Sets the current module. Any constructs defined without explicitly naming a mod-
ule are defined in the current module. Note that defining a defmodule also sets
the current module.

(set-factory <object>)
Sets the thing factory for the active Rete object, an instance of jess.fac-
tory.Factory. Providing an alternate thing factory is a very advanced, and cur-
rently undocumented, way to extend Jess’s functionality.

(setgen <number>)
Sets the starting number used by gensym*. Note that if this number has already
been used, gensym* uses the next larger number that has not been used.

(set-member (<object> | <lexeme>) <lexeme> <expression>)
Sets a Java member variable to the given value. The first argument is the object
(or the name of the class, in the case of a static member variable). The second
argument is the name of the variable. The third value is the new value for the vari-
able; the same conversions are applied as for new and call. See get-member.

Jess functions 409
(set-multithreaded-io (TRUE | FALSE))
Specifies whether Jess should use a separate thread to flush I/O streams. Turning
this on can lead to a modest performance enhancement, but may result in loss of
output on program termination. Returns the previous value of this property.

(set-node-index-hash <integer>)
Sets the default hashing key used in all Rete network join node memories defined
after the function is called; this function will not affect parts of the network
already in existence at the time of the call. A small value gives rise to memory-
efficient nodes; a larger value uses more memory and increases performance (up
to a point). If the created nodes will generally have to remember many partial
matches, large numbers will lead to faster performance; the opposite may be true
for nodes that will rarely hold more than one or two partial matches. This func-
tion sets the default; explicit declare statements can override this for individual
rules. The default value is 101.

(set-reset-globals (TRUE | FALSE | nil))
Changes the current setting of the global variable reset behavior. If this property
is set to TRUE (the default), then the reset command reinitializes the values of
global variables to their initial values (if the initial value was a function call, the
function call is reexecuted). If the property is set to FALSE or nil, then reset does
not affect global variables.

(set-salience-evaluation (when-defined | when-activated | every-cycle))
Changes the current setting of the salience evaluation behavior. By default, a
rule’s salience is determined once, when the rule is defined (when-defined). If
this property is set to when-activated, then the salience of each rule is redeter-
mined immediately before each time it is placed on the agenda. If the property is
set to every-cycle, then the salience of every rule is redetermined immediately
after any rule fires; this can be very computationally expensive.

(set-strategy (depth | breadth | <lexeme>))
Lets you specify the conflict-resolution strategy Jess uses to order the firing of rules of
equal salience. Two strategies are built into Jess: depth (LIFO) and breadth (FIFO).
When the depth strategy is in effect (the default), more recently activated rules
are fired before less recently activated rules of the same salience. When the
breadth strategy is active, rules of the same salience fire in the order in which they
are activated. Note that in either case, if several rules are activated simultaneously
(by the same fact-assertion event), the order in which they fire is unspecified,
implementation-dependent, and subject to change.

410 APPENDIX A
Jess functions
 You can implement your own strategies in Java by creating a class that imple-
ments the jess.Strategy interface and then specifying its fully-qualified class
name as the argument to set-strategy.

(show-deffacts)
Displays all defined deffacts to the t router.

(show-deftemplates)
Displays all defined deftemplates to the t router.

(show-jess-listeners)
Displays all JessListeners registered with the engine to the t router.

(socket <lexeme> <integer> <lexeme>)
Somewhat equivalent to open, except that instead of opening a file, opens an
unbuffered TCP network connection to the host named by the first argument at
the numbered port given by the second argument, and installs it as a pair of read
and write routers under the name given by the last argument. Because Jess routers
can’t work with binary data, this method is mostly useful to let instances of Jess
communicate over a network. For general networking, it would make sense to use
the java.net package directly.

(sqrt <number>)
Returns the square root of its argument.

(store <lexeme> <expression>)
Associates the expression with the name given by the first argument, such that
later calls to fetch using that same name will retrieve it. Storing the symbol nil
clears any value associated with the name. Analogous to the store() member
function of the jess.Rete class. The storage area is local to the Rete engine
where store is called.

(str-cat <expression>*)
Concatenates its arguments as strings to form a single string, without intervening
spaces. For Java objects, the toString method is called.

(str-compare <lexeme> <lexeme>)
Lexicographically compares two strings. Returns 0 if the strings are identical, a
negative integer if the first is lexicographically less than the second, or a positive
integer if the first is lexicographically greater.

Jess functions 411
(str-index <lexeme> <lexeme>)
Returns the position of the first argument within the second argument. This is the
one-based index at which the first string first appears in the second; otherwise,
returns FALSE.

(stringp <expression>)
Returns TRUE for strings; otherwise, returns FALSE.

(str-length <lexeme>)
Returns the length of the argument in characters.

(subseq$ <list> <integer> <integer>)
Extracts the specified range from a list consisting of the elements between the two
one-based indices of the given list, inclusive, and returns this range as a new list.

(subsetp <list> <list>)
Returns TRUE if the first argument is a subset of the second (that is, all the ele-
ments of the first list appear in the second list); otherwise, returns FALSE.

(sub-string <integer> <integer> <string>)
Retrieves a subportion from a string. Returns the string consisting of the charac-
ters between the two one-based indices of the given string, inclusive.

(symbolp <expression>)
Returns TRUE for symbols; otherwise, returns FALSE.

(sym-cat <expression>+)
Concatenates its arguments as strings to form a single symbol. For Java objects, the
toString method is called.

 It’s easy to create unparseable symbols using this function. For example,
although a Jess symbol normally can’t contain a space, the symbol returned by
(sym-cat "a space") does contain a space. If you use this symbol as the name of a
rule (for example) and then save the rule’s text into a file, Jess will report a syntax
error if you later try to read that file back in. Therefore, you should use sym-cat
carefully. This advice also applies to the jess.Value constructor that takes a string
as an argument; it can also be used to create invalid symbols.

(system <lexeme>+ [&])
Sends a command to the operating system. Each argument becomes one element
of the argument array in a call to the Java java.lang.Runtime.exec(String[])

412 APPENDIX A
Jess functions
method; therefore, to execute the command edit myfile.txt, you should call
(system edit myfile.txt), not (system "edit myfile.txt"). Normally blocks
(Jess stops until the launched application returns), but if the last argument is an
ampersand (&), the program runs in the background. The standard output and
standard error streams of the process are connected to the t router, but the input
of the process is not connected to the terminal. Returns the Java Process object.
You can call waitFor and then exitValue to get the exit status of the process.

(throw <object>)
Throws the given object, which must be an instance of java.lang.Throwable or
one of its subclasses. If the object is a JessException, throws it directly. If the
object is some other type of exception, it is wrapped in a JessException before
throwing. The object’s stack trace is filled in such that the exception appears to
have been created by the throw function.

(time)
Returns the number of seconds (not milliseconds) since 12:00 A.M., January 1, 1970.

(try <expression>* [catch <expression>*] [finally <expression>*])
Works something like Java try, with a few simplifications. The biggest difference is
that the catch clause can specify neither a type of exception nor a variable to
receive the exception object. All exceptions occurring in a try block are routed to
the single catch block. The variable ?ERROR is made to point to the exception
object as an EXTERNAL_ADDRESS. For example:

(try
 (open NoSuchFile.txt r)
catch
 (printout t (call ?ERROR toString) crlf))
Jess reported an error in routine open
 while executing (open NoSuchFile.txt r).
 Message: I/O Exception.

An empty catch block is fine; it signifies ignoring possible errors. The expressions
in the finally block, if present, are executed after all try and/or catch code has
executed, immediately before the try function returns.

(undefadvice (<lexeme> | ALL | <list>))
Removes advice from the named function(s); see defadvice. ALL indicates that
advice should be removed from all functions.

Jess functions 413
(undefinstance (<object> | *))
If the object currently has a shadow fact, removes the shadow fact from working
memory. Furthermore, if the object has a PropertyChangeListener installed, this
is removed as well. If the argument is *, this is done for all definstances.

(undefrule <lexeme>)
Deletes a rule. Removes the named rule from the Rete network and returns TRUE
if the rule existed. This rule will never fire again. If the rule has subrules gener-
ated by compiling the or conditional element, they are removed as well.

(union$ [<list>]+)
Returns a new list consisting of the union of all its list arguments (that is, of all the
elements that appear in any of the arguments, with duplicates removed).

(unwatch [all | rules | compilations | activations | facts | focus])
Causes trace output to not be printed for the given indicator. See watch.

(upcase <lexeme>)
Converts lowercase characters in a string or symbol to uppercase. Returns the
argument as an all-uppercase string.

(view)
Displays a live snapshot of the Rete network in a graphical window. You can double-
click on individual nodes in the network to get information about them.

(watch [all | rules | compilations | activations | facts | focus])
Produces debug output when specific events happen in Jess, depending on the
argument. Any number of different watches can be active simultaneously:

■ rules—Prints a message when any rule fires

■ compilations—Prints a message when any rule is compiled

■ activations—Prints a message when any rule is activated or deactivated,
showing which facts have caused the event

■ facts—Prints a message whenever a fact is asserted or retracted

■ focus—Prints a message for each change to the module focus stack

■ all—All of the above

414 APPENDIX A
Jess functions
(while <boolean> [do] <expression>*)
Allows conditional looping. Evaluates the Boolean expression repeatedly. As long
as it does not equal FALSE, the list of other expressions is evaluated. The value of
the last expression evaluated is the return value. The symbol do after the Boolean
expression is optional. If present, it is ignored.

Abridged Java API for Jess
415

416 APPENDIX B
Abridged Java API for Jess
The Jess library contains about 75 public classes. Many of them are used only
rarely by Jess programmers. Even among the most-used classes, plenty of methods
are used very infrequently. This appendix lists only the most important methods
of the most important classes—a 20,000-foot view that should be a big help to any-
one just getting started with the Jess library.

B.1 jess.Context

This class represents the execution context of a function. If you write your own
Jess functions in Java, you get a Context object as an argument to the call
method. The Context gives you access to the Rete object the function is executing
in, as well as the values of relevant variables.

public Rete getEngine()
Returns the Rete object relevant to the calling code.

public Value getVariable(String name)
Returns the value of a variable. The parameter is the name of the variable with no
leading ? or $ characters. You can use this method to get the current value of a
defglobal.

public void setVariable(String name, Value value)
Sets the value of a variable. The first parameter is the name of the variable with no
leading ? or $ characters.

B.2 jess.Fact

The Fact class represents one entry in Jess’s working memory. Fact is a subclass of
ValueVector.

public Fact(String name, Rete engine)
Asks the Rete object for a template by the given name; if one doesn’t exist, an
ordered one is created. This is the most commonly used constructor.

public Deftemplate getDeftemplate()
Returns the Deftemplate for a Fact, which can tell you the name of the Fact,
the number of slots, and the names of its slots.

public int getFactId()
Returns a Fact’s numeric identifier; every Fact has one.

jess.Jesp 417
public int getShadowMode()
If this Fact is not a shadow fact, returns the constant Fact.NO. Otherwise, returns
Fact.DYNAMIC or Fact.STATIC, depending on the type of shadow fact it is.

public Value getSlotValue(String name)
Returns the value held by the named slot. Ordered facts have a single slot named
__data containing a list of items.

public void setSlotValue(String name, Value value)
Sets the value in a slot by name. Don’t call this method on a Fact that is currently
in Jess’s working memory!

B.3 jess.Funcall

A Funcall is a specialized list representing a function call. If you need to call a
Jess function from Java repeatedly with no or only minor changes, it’s generally
more efficient to build a Funcall object yourself and call execute on it.

 Funcall also includes a number of useful constants as static Value objects:
Funcall.TRUE, Funcall.FALSE, and Funcall.NIL are all symbols, and
Funcall.NILLIST is an empty list.

public Funcall(String name, Rete engine)
Accepts the name of the function to call. Note that the function doesn’t have to be
defined at the time; as long as it is defined when execute is called, everything will work.

public Funcall arg(Value v)
Appends an argument to the Funcall. Note that because this method returns the
modified Funcall object, you can chain calls to arg together.

public Value execute(Context context)
Executes the Funcall using the given Context. If you don’t have a Context handy,
you can get one by calling Rete.getGlobalContext().

B.4 jess.Jesp

Jesp is the Jess parser. You might use this class if you wanted Jess to read input
from a network stream or some other unusual source.

public Jesp(java.io.Reader reader, Rete engine)
Takes a Reader object, the source for all the input this object will parse. The
stream of Jess code is executed and applied to the given Rete object.

418 APPENDIX B
Abridged Java API for Jess
public Value parse(boolean prompt)
Does the parsing. Returns the value of the last expression evaluated. If prompt is true,
the Jess> prompt is printed to the WSTDOUT router before each expression is read.

B.5 jess.JessEvent

If you request it using the setEventMask method in the Rete class, Jess sends
JessEvent objects as notifications when certain things happen. Every JessEvent
has a type that indicates what happened, and an object that provides more informa-
tion (usually, it’s the object most affected by the event). The possible types, their
meanings, and their associated objects are given in table B.1.

Table B.1 Types of JessEvent. Each type is a public, static, int variable in the JessEvent class.

Type Object type Description

ACTIVATION jess.Activation A defrule has been activated or deactivated.

CLEAR jess.Rete A (clear) has been executed.

DEFCLASS The name of the defclass A defclass has been added or removed.

DEFFACT jess.Deffacts A deffacts has been added or removed.

DEFGLOBAL jess.Defglobal A defglobal has been added or removed.

DEFINSTANCE The JavaBean A definstance has been added or removed.

DEFRULE jess.Defrule A defrule has been added or removed.

DEFRULE_FIRED jess.Activation A defrule has been fired.

DEFTEMPLATE jess.Deftemplate A deftemplate has been added or removed.

FACT jess.Fact A fact has been asserted or retracted.

FOCUS The name of the module The module focus has changed.

HALT jess.Rete A (run) has been executed.

RESET jess.Rete A (reset) has been executed.

RUN jess.Rete A (run) has been executed.

USERFUNCTION jess.Userfunction A Userfunction has been added or
removed.

USERFUNCTION_CALLED jess.Userfunction A Userfunction has been called.

USERPACKAGE jess.Userpackage A Userpackage has been added or removed.

jess.PrettyPrinter 419
These flags are all powers of two, so you can combine them with the Java | opera-
tor and test for individual types within a combined type with the & operator. Jess
combines two more constants—MODIFIED and REMOVED—with the others to mean,
for instance, that a fact was retracted (FACT | REMOVED).

public int getType()
Returns the type of event, one of the constants in table B.1.

public Object getObject()
Returns data associated with the event.

public Object getSource()
Returns the source of the event—the Rete object that generated it.

B.6 jess.JessListener

This is the interface you implement if you want to receive JessEvents. It works
just like the event listeners in the java.awt.event package.

public void eventHappened(JessEvent je) throws JessException
Handles events of event type. This is the only handler method in this interface.
Your handler should test the getType() method in the JessEvent to decide what
action to take.

B.7 jess.PrettyPrinter

This class knows how to format many Jess constructs so that they look nice to a
human reader. It uses the Visitor pattern,1 so it includes many methods named
visitXXX, but you won’t need to use them. To use PrettyPrinter, you just need
to pass the construct to print as the constructor argument and then call
toString() to get the formatted version. You have to construct a new
PrettyPrinter for each construct you need to format.

public PrettyPrinter(Visitable v)
Argument can be an instance of any of the Jess classes that implement the
Visitable interface, which include Deffacts, Deffunction, Defglobal,
Defquery, Defrule, and Deftemplate.

1 E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-Oriented Soft-
ware (Reading, MA: Addison-Wesley, 1995).

420 APPENDIX B
Abridged Java API for Jess
public String toString()
Returns a nicely formatted rendition of the construct that was passed in as a con-
structor argument.

B.8 jess.Rete

This class acts as a facade for all the most important parts of Jess. There are meth-
ods in Rete for managing working memory, the agenda, the rule base, and more.
In this appendix, I’ll only mention the most important methods that have no
direct equivalent in the Jess language. More methods are covered in chapter 18.

public Rete(Object appObject)
Constructs a new Rete object. The argument’s ClassLoader is used to load any
classes used by commands like new, call, and defclass.

public Rete()
Uses this as the application object.

B.8.1 Working with events

These methods let you work with the Jess event system. You can set the event mask
to some combination of the constants in the JessEvent class, and then register an
instance of the JessListener class. That instance will then receive all events that
are generated.

public void addJessListener(JessListener jel)
Registers a JessListener to receive events.

public void removeJessListener(JessListener jel)
Unregisters a JessListener, so it receives no more events.

public int getEventMask()
Gets the current value of the event mask.

public void setEventMask(int mask)
Sets the event mask. In general, you should compose this value with the value
returned by getEventMask using the | operator.

jess.Rete 421
B.8.2 Exchanging Java values with Jess language code

These methods work with the same storage area accessed by the store and fetch
commands in Jess. By calling store in one language and fetch in the other, you
can easily move data back and forth between the two.

public void clearStorage()
Clears the storage area, so that store returns null for any name.

public Value fetch(java.lang.String name)
Retrieves an object previously stored with store.

public Value store(java.lang.String name, java.lang.Object val)
Stores an object under the given name. The object is wrapped in a Value object
before being stored.

public Value store(java.lang.String name, Value val)
Stores a Value under the given name.

B.8.3 The import table

When you name a Java class in Jess, the import table is consulted, as necessary, to
figure out the fully qualified name. These methods add to the import table and
use it to resolve classes.

public java.lang.Class findClass(String clazz)
Given the name of a class, uses the import table to come up with the fully quali-
f i ed name. I f you pas s "String" a s the argument , the Class for
java.lang.String is returned.

public void importClass(String clazz)
Adds a fully qualified class name to the import table.

public void importPackage(String pack)
Imports every class in a package by adding the package name to the import table.

B.8.4 Finding things

A whole set of methods is available for retrieving constructs like instances of
Defrule and Deffacts from the engine. They all accept the name of the con-
struct as an argument. If the name doesn’t include a module name, the name of
the current module is used. This set of methods includes findDeffacts,

422 APPENDIX B
Abridged Java API for Jess
findDefrule, findDeftemplate, and findUserfunction. findDefrule can find
Defquery objects as well as Defrules.

 There are several methods for finding specific facts in the working memory.

public Fact findFactByFact(Fact f)
Finds fast. Can be used to find out quickly if a given fact is on the fact-list and, if
so, to obtain a reference to it. The argument is a Fact that is identical to the one
you’re looking for.

public Fact findFactByID(int id)
Finds a fact given its numeric identifier. This method is very slow; don’t use it
unless you have to.

public Iterator listXXX()
Many methods return java.util.Iterators over collections of Jess constructs.
These include listActivations, listDeffacts, listDefglobals, listDefinstances,
listDefrules, listDeftemplates, listFacts, listFocusStack, listFunctions,
listJessListeners, and listModules.

B.8.5 Waiting for rules to fire

Many multithreaded programs need to be able to pause indefinitely until Jess is
ready to fire some rules. These methods let you do that.

public Object getActivationSemaphore()
Returns the activation semaphore for this engine. The monitor of the activation
semaphore is signaled whenever an activation appears. You can therefore call
wait() on this object, and the wait() call will return only when Jess is ready to
fire a rule.

public void waitForActivations()
Doesn’t return until there are rules on the agenda ready to fire.

B.9 jess.RU

RU stands for Rete Utilities. This is a catch-all class that contains some useful con-
stants. Most of these constants enumerate the allowed return values for
Value.getType—the different kinds of Value objects. The most important ones
are (all static, final, int variables) ATOM (a symbol), EXTERNAL_ADDRESS, FACT,
FLOAT, FUNCALL, INTEGER, LIST, LONG, MULTIVARIABLE, STRING, and VARIABLE.

jess.Value 423
B.9.1 public static String gensym(String prefix)

Returns a unique symbol starting with the given prefix. This method is useful if
your Java code is automatically generating Jess rules, variables, or other entities,
and needs to come up with a unique name.

B.10 jess.Token

The Token class represents a group of facts as they travel together through Jess’s
Rete network. The iterator returned by Rete.runQuery(), or the run-query func-
tion in Jess, returns a series of Token objects; otherwise, you shouldn’t need to
deal with this class.

public Fact getFact(int index)
Returns a single Fact from the token. The fact that matches the first pattern in a
rule has index 0.

public int size()
Returns the number of facts in a Token.

public Fact topFact()
Equivalent to token.getFact(token.size() - 1).

B.11 jess.Value

This is an important class, because every piece of information that travels through
Jess (a number, a string, a Java object) does so wrapped in an instance of
jess.Value or one of its subclasses. Nevertheless, I won’t say much about it here,
because it is covered well in chapter 15. Note that the type constants are defined
in the class RU.

public Value(boolean b)
Constructs a Boolean value object (one of the symbols TRUE or FALSE).

public Value(double d, int type)
Constructs a numeric value. The type can be any INTEGER or FLOAT.

public Value(int value, int type)
Constructs a numeric value. The type can be INTEGER or FLOAT. Uses the class
LongValue to construct a Value of type LONG.

424 APPENDIX B
Abridged Java API for Jess
public Value(java.lang.Object o)
Constructs a value containing a Java object (type EXTERNAL_ADDRESS).

public Value(java.lang.String s, int type)
Constructs a lexeme value—either STRING or ATOM.

public Value(Value v)
Copies a value.

public Value(ValueVector f, int type)
Constructs a value of type LIST.

public int type()
Returns the type of this variable—one of the constants in RU.

public Value resolveValue(Context c)
Given an evaluation context, returns the true value of this Value. For variables,
this means the value of the variable. For Value objects containing function call
objects, the function is called and the return value provided.

public String atomValue(Context c)
Returns the contents of this value, as a symbol.

public Object externalAddressValue(Context c)
Returns the contents of this value, as a Java object.

public Fact factValue(Context c)
Returns the contents of this value, as a fact.

public double floatValue(Context c)
Returns the contents of this value, as a number.

public Funcall funcallValue(Context c)
Returns the contents of this value, as a function call.

public int intValue(Context c)
Returns the contents of this value, as an int.

public ValueVector listValue(Context c)
Returns the contents of this value, as a list.

jess.ValueVector 425
public long longValue(Context c)
Returns the contents of this value, as a long.

public double numericValue(Context c)
Returns the contents of this value, as a number.

public String stringValue(Context c)
Returns the contents of this value, as a string.

public String variableValue(Context c)
Returns the contents of this value, as a string (a variable name).

B.12 jess.ValueVector

A ValueVector is a list of Value objects. This class is used both as is and also as base
class for Fact and other important Jess classes. ValueVector is very similar to the
java.util.Vector and java.util.ArrayList classes. It has separate notions of a
capacity and a size. A ValueVector contains an array of Value objects. The capacity
is the length of the array; the size is the number of Value objects actually in the
array. The capacity is automatically expanded if you use add to add Value objects.

public ValueVector()
Constructs a ValueVector with the default capacity (10).

public ValueVector(int size)
Constructs a ValueVector with the given capacity.

public ValueVector add(Value val)
Adds a new element to the end of this ValueVector.

public Value get(int i)
Fetches the entry at position i in the list.

public ValueVector remove(int i)
Removes the item at the given index from the list; moves all the higher-numbered
elements down.

public ValueVector set(Value val, int i)
Sets the entry at position i to val.

426 APPENDIX B
Abridged Java API for Jess
public ValueVector setLength(int i)
Sets the size of the list. Value objects at this index and above are no longer part of
the list.

public int size()
Returns the number of Value objects in this ValueVector.

An automated
testing framework
427

428 APPENDIX C
An automated testing framework
When you’re doing iterative development, automated testing gives you confidence
that each addition or modification does not introduce errors into a previously work-
ing program. You make a change, you run your tests, and you find out immediately
whether your changes broke the existing code. Having a good suite of automated
tests that you can run quickly and easily helps you write better code more quickly.

 This is as true for rule-based programming as it is for any other kind. Whether
I’m working on extensions to Jess or writing rule-based programs, I find that auto-
mated testing helps keep the quality of the software I write as high as it can be. In
this appendix, I’ll describe a framework I use to write tests for Jess language code.
The actual code for the framework is included with the sample code for this book.

 Note that for Java application programming, server-side Java programming,
and programming in many other languages, a number of excellent free testing
frameworks are available.1 JUnit (http://www.junit.org/index.htm) was the first of
a large family of these frameworks; it helps you automate unit tests for Java soft-
ware. There is no “JessUnit,” per se, as of this writing. The framework I’ll present
here is the closest thing there is for now.

C.1 Architecture

My Jess testing framework is based on Bourne shell scripts. Therefore, it’s easy to
use on UNIX-like systems. It can also be used on Windows systems by installing a
UNIX emulation toolkit like the excellent, free Cygwin environment.2 Given the
simplicity of the framework, however, you also could simply write your own using
batch files.

 The overall architecture of the test harness uses a top-level tests directory con-
taining several template subdirectories and one additional subdirectory for each
test. To add a test, you copy one of the template directories and edit the files in
the copy. Each directory (including the top-level directory) contains a Makefile
and a shell script named runtest.sh. The test directories contain additional files;
I’ll describe these later. Here’s the directory structure for the framework before
any tests have been added:

1 A listing of some of these frameworks, with links to more information, is located at http://
xprogramming.com/software.htm.

2 Cygwin is a porting layer that lets UNIX tools run on Windows. The Cygwin home page is at http://
www.cygwin.com.

The Jess template 429
tests/
 runtest.sh
 run1test.sh
 clean.sh
 shelldefs.mk
 JessTemplate/
 Makefile
 README
 runtest.sh
 runtest.ref
 test.clp
 test.ref
 JavaTemplate/
 Makefile
 README
 runtest.sh
 runtest.ref
 test.java
 test.ref

The framework works as follows. The top-level runtest.sh finds all the runtest.sh
files in subdirectories and executes them, one at a time. Each runtest.sh in a subdi-
rectory runs its own test. You can edit the script in a particular subdirectory to do
whatever you want, but the default scripts run a program, capture the output in a
file, and compare that to a reference file. If the files match, Test succeeded is dis-
played; if they don’t, a failure message shows up instead.

 The top-level runtest.sh skips any subdirectory in which it finds a file named
runtest.sh.disable; this lets you turn off tests if necessary.

 There is a README file in each template directory. It’s a good idea to use it to
write down a short description of what’s being tested whenever you create a new test.

 In the text, as we developed the tutorial applications throughout this book, I
described various tests you could do and showed example dialogs confirming that
functions or rules behaved as expected. If I were developing these systems by
myself, I’d make each of those examples into an individual test. Then, each time I
added a new test, I’d run all the existing tests to be sure everything still worked.
You can never have too many tests. Now, let’s look at the two test templates.

C.2 The Jess template

The two test templates are similar. The Jess template’s runtest.sh script runs Jess
using test.clp as the input and captures the output in a file, and then compares the
result against test.ref. The file runtest.ref contains the output of a successful run of
runtest.sh; it’s used by the top-level scripts to determine whether the test passed.
The runtest.sh script looks like this:

430 APPENDIX C
An automated testing framework
. ../shelldefs.mk

echo "Running the test program..."
${JAVA} jess.Main -nologo test.clp > test.out 2>&1

if diff -ignore-space-change test.out test.ref > /dev/null ; then
 # files are the same
 echo "Test succeeded"
else
 # files are different
 echo "Test failed. Try:"
 echo " diff -ignore-space-change test.out test.ref"
fi

The variable JAVA is defined in the top-level file shelldefs.mk, which is read in at
the beginning of this script. All sorts of variable definitions can be collected in this
file, which helps you to write portable tests.

 One important point about this script is that it uses the -ignore-space-
change option of GNU diff. The diff program compares files, and this option
tells it to be lenient if the only changes involve extra spaces or blank lines. This
option makes it easier to write reference files—you don’t have to worry about get-
ting the spacing precisely right.

 The file test.clp looks like this:

(deffunction test-something ()
)

(printout t "Testing *** :" crlf)
(test-something)
(printout t "Test done." crlf)
(exit)

When you make a copy of the template, you should replace *** with a description
of your test, and put the test code into test-something. The test code should dis-
play relevant results using printout, so they can be compared to the reference
file. You need to create test.ref as well. One way to do this is to run the test without
it; of course, the test will fail. Carefully check over the test.out file to make sure the
output is correct. If it is, simply copy it to test.ref. If it is not, but you understand
what the correct output should be, you might want to make a copy anyway and
edit it to create a correct version in test.ref.

C.3 The Java template

The Jess template is for tests that consist entirely of scripts, and the Java template
is for tests written as Java code. Otherwise, the functionality is very similar. The
runtest.sh for JavaTemplate looks like this:

The Java template 431
. ../shelldefs.mk
echo "Building..."
make clean > /dev/null 2>&1
make > test.errs 2>&1
echo "Build done"

if test ! -f test.class ; then
 echo "Build failed:"
 cat test.errs
 exit
else
 echo "Build Succeeded."
 rm test.errs
fi
echo "Running the test program..."
${JAVA} test >test.out 2>&1

if diff -ignore-space-change test.out test.ref > /dev/null ; then
 # files are the same
 echo "Test succeeded"
else
 # files are different
 echo "Test failed. Try:"
 echo " diff -ignore-space-change test.out test.ref"
fi

The only substantial difference is that before running the test, this script builds
the Java class test. If the build fails, the test fails too.

 The file test.java looks like this:

public class test {
 public static void main(String[] argv) {
 System.out.println("Testing XXXXX:");
 TestMyFeature();
 System.out.println("Test done.");
 }

 static void TestMyFeature() {
 System.out.println("This is the test!!");
 }
}

When you create a new Java-based test from this template, you need to replace
XXXXX with a description of your test and implement the method TestMyFeature
so that the output it prints demonstrates whether some feature of your code works
correctly. See the earlier discussion of the Jess template for ideas about creating
the test.ref file.

index
Symbols

- 390
$? 103
& 104
* 390
** 391
+ 391
/ 390
; as comment delimiter 44
< 391
<- 100
<= 391
<> 391
= 107, 391
=> 97
> 391
>= 391
?argv 58
?ERROR 72
\ 135, 314
__data 87, 101, 313
| 104, 297

implementation 106
~ 104

A

abs 391
abstract methods 225
accessors 66

Acme HVAC Systems 224, 256
ActionEvent 208
ActionListener 208
actionPerformed 208
actions 17
activation 97
activation records 97, 135,

137–138
activation semaphore 422
addActionListener 208
addMultiSlot 313
addOutputRouter 329
addPropertyChangeListener 92,

230
addSlot 312
addUserfunction 240
ad-hoc algorithms 256
Adobe Photoshop 358
advice 58, 60
agenda 19–20, 22, 97, 121,

210–211, 391
air conditioner 257
algorithm 256
all-products 301
alpha memory 138
alphabetical order 181
ambiguous method calls 69
analysis 24
and 392

conditional element 108
predicate function 106

Ant 324, 328, 330

Any
CORBA type 241

Apache project 326
Apache Software License 326
appendText 321
applets 288–289

lifecycle issues 289
application object 393
application servers 222, 288,

324, 355, 359
apply 54, 392
architecture 37, 165
arguments

type conversions 63
arrays 50, 214
ART 32, 136
asc 392
ask module 167, 169, 175, 188,

194, 206, 211
ask-user 206
assert 78, 211, 392
assertFact 211, 345
assertion storms 304
assert-string 392
asynchronous events 264
ATOM 422
auto-focus 127–128, 169, 191,

303–304
automated testing. See tests, auto-

mated
automobiles 189
availability 358
433

434 INDEX
B

backward chaining 116, 188,
193, 198, 216

and queries 131
implementation 143
inhibiting 120
multilevel 119
preventing 202

backward-chaining reactive 118
bag 392
BaseServlet 337, 339, 344
batch 47, 162, 259, 393
batch files 428
BeanSupport 230, 234
best match 69
beta memory 138
bias 157
binary decisions 269
bind 47–48, 243, 394
bit-and 394
bit-not 394
bit-or 394
bload 235, 247, 394
boilerplate 291
books and journals 156
Boolean expressions 52
Boolean logic 264
Boolean values 43
BorderLayout 207
Bourne shell 428
breadth 409
bsave 235, 247, 394
buffer 257
build 55, 394
build.xml 330
business rules 11, 355, 362
buzzwords 358, 360

C

C 224–225
call 64, 317, 395

Jess function 215
omitting 65
Userfunction method 239

call-on-engine 395

categories 293
CD-ROMs 157
checkInitialized 337, 344
child-care expenses 176
clarity 297
class variables 70
classical set theory 266
classification 265
CLASSPATH 33, 232
clear 79, 210, 311, 395
clear-focus-stack 127, 395
clear-storage 395
client-server 288
CLIPS 32, 85, 136

performance 38
close 395
CLP files 162
code as data 54
Collections API 62, 67
COM 241
combo box 213
command-line interface 150, 206
comments 44, 152

nested 44
complement$ 396
complete testing 177
component architecture 376
components 88, 222
conclusions 17, 75
concurrency 302
condensation 257
conditional elements 108

and 108
combining 112
exists 113
explicit 120, 202
logical 115
not 111, 142, 296
or 109
ordering for efficiency 111
reading 112
subrules 110
test 113, 143, 198, 299

conflict resolution 20, 121
breadth 121
depth 121
strategy 121, 201

conflict set 20, 121
conflict strategy 22
conflicting information 154
constants 233
constraints 101

blank variables 104
connective 104, 297
functions 105
global variables 104
grouping 105
literal 101
multifields 103
pattern bindings 107
precedence 105
return value 106
variables 102

constructs 60, 390
container 376
context 396
Context object 416
control 225
control algorithm 256
control engineering 256
control flow 50
control structures

writing 244
control systems 222
conversions 241
cookies 339
COOL 33
CORBA 241
count-query-results 131, 396
Craig Smith xxv
create$ 5, 50, 214, 396
crisp

logical states 264
crlf 43, 167
current module 123
customers 151, 155
Cygwin 169, 428

D

DAML 364
Danielle xxv
DARPA 364

INDEX 435
data structures 166
designing 24

database triggers 128
databases 302

relational 75, 128, 351, 353
Dean, Mike 364
debugging 295

web applications 341
declarative programming 15,

369
declare

auto-focus 127, 191, 303
node-index-hash 142
salience 122
variables 130, 302

defadvice 58, 215, 396
default 83
default constructor 63
default slot values 83, 163
default-dynamic 84
defclass 87, 90, 118, 232, 258,

315, 396
differences from CLIPS 32

deffacts 80, 94, 169, 174, 200
deffunction 56, 135, 208, 302

reading 60
defglobal 48, 205, 258, 260, 283
definstance 88, 90–91, 93–94,

222, 232, 258, 315, 397
differences from CLIPS 32

defmodule 123, 166, 303
differences from CLIPS 32

defquery 128, 168, 301, 305,
339

internal variables 302
defrule 96, 361
deftemplate 5, 82, 135, 153,

162, 294, 302
__clear 87
__fact 87
__not_or_test_CE 87
designing 162
generated 89
implied 86
redefining 83
sharing between modules

166, 169

defuzzification 268
delete$ 397
DeMorgan’s rules 110
dependents 178

care expenses 176, 179
number of 175

deployment descriptor 326
depth 409

conflict-resolution strategy
201

desk research 151, 156
determinism 96
device drivers 325
diagnostic programs 188
dialog box 214
diff 430
Digital Equipment Corporation

292
DimmerSwitch 89
dispatch 334
distance 55
distributed 359
div 397
do-backward-chaining 117–118,

397
Document Object Model. See

DOM
documentation comment 56, 97
doGet 328, 337–338
DOM 373
domain 17, 150, 152
domain expert 155, 256
Donne, John 222
doPost 338
double negative 111
DTD 367–368
ducklessness 295
duplicate 85, 94, 107, 397
duplicating facts 85
DVDs 293

E

e 397
editability 361
efficiency 141, 144, 297

EJBs 376, 378
restrictions 377

electronic commerce 37
Emacs 46

jess-mode 46
Emacs Lisp 58
email filtering 9
EMYCIN 19
encapsulation 352
engine 211, 398
enterprise 358
enterprise application 358
Enterprise JavaBeans. See EJBs
enterprise systems 355
entity beans 376
environment variables

setting 34
eq 398
eq* 398
error checking 204
error handling 226
eval 55, 398
evaluating

expressions 51
function call 46

event adapter 208
event handlers 208–209
event object 208
event thread 209
exception handler 71
exceptions 164

catching 71
ignoring 317
throwing 73

executeCommand 308, 338
efficiency 310

execution context 239, 416
execution engine 19, 23
exists 113
exit 232, 398
exp 398
experimentation 205
expert knowledge 159
expert system shell 19
expert systems 18, 37
expert users 155
explanation facility 184

436 INDEX
explanations 181
explicit 120
explode$ 398
expressions 51

Boolean 52
evaluating 51

Extensible Markup Language
360

EXTERNAL_ADDRESS 309,
422

external-addressp 398
eXtreme programming 25
eye contact 154

F

facade 307, 420
FACT 422
fact base 21, 75
fact-id 78, 398

Jess function 79
factorial 117
factory class 380
facts 75, 295, 399

as lists 75
creating 78
goal-seeking 118
Jess function 77, 177
ordered 76, 81, 86
query trigger 130
shadow 81, 87, 100
trigger 118
unordered 81–82, 87, 163

fact-slot-value 130, 399
FALSE 43, 390
fat client 288, 290
fear of being replaced 155
feedback 184
fetch 309, 399
findDeftemplate 311
findFactById 314
findUserfunction 246
firePropertyChange 232
first$ 50, 399
first-best fit 404
FLOAT 422

float 399
floatp 399
flowcharts 152, 188, 191, 197,

216, 256
drawing 189

focus 123, 126, 173, 182, 399
focus module 126
focus stack 127–128, 182
for

Java keyword 258
foreach 5, 51, 196, 244, 399
Forgy, Charles 136
format 400
Freon 257
frontiers 151
FUNCALL 422
Funcall 316
Funcall.NIL 245
Funcall.TRUE 69
function calls

evaluating 46
nested 46
results 46

functions
deffunction 56
nesting 65
redefining 57

fuzzified 268
Fuzziness 265
fuzzy control system 264
fuzzy logic 256, 264
fuzzy rules 268
fuzzy set 267
fuzzy set theory 266
fuzzy value 267
fuzzy variable 267
FuzzyJ 265
FuzzyJ Toolkit

version 276
FuzzyJess 219, 265
fuzzy-match 268
FuzzySet 267
FuzzyValue 267
FuzzyVariable 267

G

games 288
garbage collection 39, 209
geek speak 154
General Protection Fault. See GPF
gensym 315
gensym* 315, 400
GET 338
get 67, 400
getAttribute 338
getCause 317
getClass 90
getContext 316
get-current-module 124, 400
get-focus 400
get-focus-stack 127, 400
getGlobalContext 308
getInitParameter 338
getInputRouter 320
getLineNumber 316
get-member 70, 215, 400
get-multithreaded-io 400
getName

Userfunction method 239
getOutputRouter 320
getOutStream 320
getProgramText 316
get-reset-globals 49, 401
getRoutine 316
get-salience-evaluation 122, 401
getWriter 325
global decision 268
global variable name 48
global variables 48
GNU make 324
goal seeking 116
goals 118
Google 318
government publications 156
GPF 191
graceful degradation 198
Graphical User Interface. See

GUI
guard lines 257, 260
GUI 37, 188, 195, 204, 229, 295

in EJBs 377

INDEX 437
H

halt 191, 198, 215, 304, 401
hardware

Java interface 225
hash table 141
HashMap 62, 68
head 137, 311

of a fact 78
of a list 45

heap size 39
heat leakage 227
heat pumps 223, 257–258

operation 257
rapid cycling 260

Hello, World 34
heuristics 18, 24
Holmes, Sherlock 117
HotSpot 38–39
HTML 181, 290–291, 295,

324–325, 327
changing 332
generated 332

HTML editor 291
HTML forms 325, 335–336
HTTP 288, 324–325, 338
HTTPS 288, 325
HttpServlet 290
HttpServletRequest 325, 333,

340
HttpServletResponse 325
HttpSession 340
HttpUnit 343
human resources 288
HVAC 222
HVAC Controller xxvii
HVAC controller xxiii, 219
HVAC simulator 225
hyphen, as word separator 97
hypothesis 188, 191, 216

I

I/O routers 319
and binary I/O 320
custom 320, 330

IDE
JessWin 259

if 401
Jess function 297

if/then/else 52
chaining 53

immutable 241, 345
implode$ 401
import 63, 204, 401

* 63
index cards 152, 162
inference engine 19–20
information overload 153
initial conditions 276
initial-fact 77, 79, 97–98, 112,

114, 142–143
init-simulator 248, 264
input validation 194
insert$ 401
instance variables 70
instanceof 401

Jess function 72
INTEGER 422
Integer 63
integer 196, 402

Jess function 198
integerp 402
Intel x86 architecture 191
intelligent agents 37
interactive 76
interest income 174–175, 178
interfaces

building 25
Internet 288
Internet Explorer 289
interoperability 361
intersection 108
intersection$ 402
interviews 151–153, 157, 188,

190
strategy 154

intranet 288
intValue 241
inventory 358
inventory management 288
IRS 150, 156, 159
is-a-function 60

is-of-type 167
iterative development 26, 162
Iterator 352

J

J2EE xxvii, 12, 288, 290–291,
324, 355, 359, 376

reference implementation
359

tools 377
J2EE Connector Architecture.

See JCA
J2SE 384
Jakarta 324, 359
JAR files 330
jargon 152, 154
Java xxi

arrays 67, 214
calling methods from Jess 64
calling overloaded methods

68
calling static methods 66
compiler 68
constructing objects from Jess

62
downloading 33
performance 38
public member variables 70
required knowledge 32
version 33

Java Naming and Directory Inter-
face. See JNDI

Java Native Interface. See JNI
Java objects, sending to Jess 309
Java Plug-in 289
Java Servlet API 325
Java Web Start 289
java.applet.Applet 289
java.awt.Color 309
java.awt.Point 70
java.awt.Robot 216
java.beans 230
java.beans.Introspector 88
java.beans.PropertyChange-

Event 92

438 INDEX
java.beans.PropertyChange-
Listener 92

java.io.Reader 319
java.io.Serializable 247
java.lang 63
java.lang.Object

wait() 211
java.lang.System

exit() 215
java.lang.Thread 209
java.rmi.Remote 380
java.rmi.RemoteException 380
java.util.ArrayList 425
java.util.Iterator 129
java.util.Vector 425
JavaBeans 66, 87–88, 229, 258,

260, 314
example 89
properties 88, 229
property names 67
string properties 260

JavaScript 292
JavaServer Pages. See JSPs
javax.rules 26, 353, 383

reference implementation
386

javax.rules.admin.RuleAdminis-
trator 385

javax.rules.RuleExecutionSet 385
javax.rules.RuleExecutionSet-

Provider 385
javax.rules.RuleServiceProvider

384
javax.rules.RuleServiceProvider-

Manager 384
javax.servlet.Servlet 290
javax.swing 204
JBoss 359
JButton 204, 207
JCA 378, 384
JComboBox 67–68, 213
JDBC 385
JDK 289
Jess xxi, 18

applications 36
as a dynamic scripting envi-

ronment 37

as a prototyping tool 62
as a rapid application devel-

opment environment 37
built-in functions 46
command-line interface 35
downloading 33
embedding 222
formatting code 45
formatting constructs 419
functions 47
home page 32
installing 33
Java integration 62
library 307
license xxii
parser 417
performance 38–39
rule language 32, 42
running 34
user’s manual 33
web site 33

Jess functions
calling from Java 315

Jess in Action
web site 173

Jess prompt
and I/O routers 319

Jess values
sending to Java 309

jess.awt.ActionListener 208
jess.awt.TextAreaWriter 320
jess.awt.TextReader 320
jess.Console 35, 289, 320

implementation 321
jess.ConsoleApplet 289
jess.Context 242, 244, 308, 416
jess.Deftemplate 240, 311
jess.Fact 130, 222, 240, 311, 416

constructing ordered facts in
Java 313

constructing unordered from
Java 345

constructing unordered in
Java 312

ownership 312
jess.FactIDValue 245
jess.Funcall 240, 245, 315, 417

jess.jar 33
jess.Jesp 417
jess.JessEvent 418
jess.JessException 241, 316
jess.JessListener 419
jess.LongValue 245
jess.Main 34, 283, 307, 320
jess.Node 145
jess.PrettyPrinter 419
jess.Rete 208, 210, 240, 307,

380, 420
constructors 307

jess.RU 43, 139, 241, 422
jess.Strategy 121
jess.Token 130, 423
jess.Userfunction 235
jess.Userpackage 248, 253
jess.Value 43, 62–63, 195, 241,

308, 345, 423
constructors 245
immutability 43, 345
resolving 242, 244, 308
type 245

jess.ValueVector 240, 425
superclass of Fact 311

jess.Variable 245
Jess> prompt 77
JessEvent 418
JessException 316

catching 316
constructors 318
incorrect usage 317
root cause 317
throwing 318
toString method 317

jess-version-number 402
jess-version-string 402
JessWin 35, 259
JFrame 205

setDefaultCloseOption 215
JNDI 378, 384
JNI 224
join nodes 138, 143–144
JOptionPane 214
JPanel 214
JScrollPane 206
jsp:useBean 334

INDEX 439
JSPs 291, 295, 332, 341, 377
forwarding servlet requests to

333
JSR 94 26, 383

reference implementation
384

JTextArea 206
JTextField 207
JUnit 428
JVM

support 289
JWSDP 291

K

Kay, Michael 369
keyboard 197
kill

Userfunction 239
kiosk 150
kitchen sink 114
knowledge

limits of 198
knowledge engineering 23, 26,

150, 162, 188, 190, 256, 292
dressing the part 154
iterative process 151
overlapping development 153

knowledge engineers
background 151

L

Lao Tzu 150
late binding 57
layout managers 62
Leff, Laurence 366
left memory 138
left-hand side 17, 97
length$ 106, 402
lexeme 390
lexemep 402
LHS. See left-hand side
libraries 156, 224
library example 134
linguistic terms 273

Linux 324, 326
Lisp 32
LIST 313, 422
list-deftemplates 124, 402
list-focus-stack 127, 402
list-function$ 60, 402
listp 404
lists 45

creating 49
nesting 50
plain 50

load-facts 295, 338, 402
load-function 239, 247, 403
load-package 248, 253, 258, 403
load-testing 343
log 403
log10 403
logical 115
logical dependency 115
logical support 116
LONG 422
long 47, 403

entering literal value 47
longp 403
loops 50, 182
lowcase 403

M

Macintosh 191
MAIN 123, 166

module 78
main module 123
main thread 209
Makefile 328, 330, 428
manual testing

of GUIs 216
manufacturing resource plan-

ning 288
marketing 293
matches 146, 403
mathematical functions 164
max 403
member$ 52, 60, 106, 404
membership

in a fuzzy set 266

memory usage
during pattern matching 297

message-driven beans 376
metadata 366
Microsoft 324
Microsoft Word 358
min 404
missing information 7
mobile agents xxi
mod 404
modal dialog 214
model-view-controller paradigm

See MVC
modify 85, 94, 107, 238, 404
modifying facts 85
modular applications 184
modularity 202
modules 26, 78, 123, 166, 173

defining 124
focus 126
name lookup 125
name resolution 124

monographs 156
motherboard 197
moving expenses 176
MRP 222
multifields 57, 103
multiple catch blocks 72
multislots 84, 89, 195, 294, 313

creating from Java 313
multithreading 264
MULTIVARIABLE 422
Murphy’s Law 17
mutators 66
MVC 332
MYCIN 18, 188

N

namespaces 124
native

Java keyword 225
native methods 224
negation count 142
neq 60, 404
Netscape 289

440 INDEX
new 62, 307, 404
newline 44
newsletters 156
Newton’s Law of Cooling 227
nil 43, 83, 119, 164, 245
node index hash value 141
node sharing 139, 143
Node1MTEQ 145
Node1NONE 145
Node1RTL 145
Node1TECT 145
NodeNot2 145
NodeTerm 145
NodeTest 145
nonlinearity 223
non-public classes 134
not 404

nested 113
predicate function 106

NRC 265
nrc.fuzzy 269
nth$ 50, 58, 404
null 43, 245
null fact 142
NumberFormatException 71
numberp 168, 405

O

OBJECT
slot name 90

object nursery size 39
oddp 405
one-input nodes 137
open 405
OPS5 32, 136
or 405

conditional element 109
implementation 110
predicate function 106

Orchard, Bob xxiii, 219, 265
order configuration 288
ordering patterns 297
oscillations 262
OutOfMemoryError 143
overshoot 281

P

package names 204
packages 225, 247, 253
page-testing 343
partial matches 297
pattern bindings 100, 107

negated patterns 112
with exists 113

pattern matching 19, 22, 134
efficient 136
inefficient 135
performance of 297

pattern nodes 138
patterns 98
payroll 358
PC Repair Assistant xxvii, 185
peer review 156
pencil 152, 189
phases 26
physics 223
pi 405
pickling 235
plain lists 67
policy file 382
pop-focus 127, 405
possibility distribution 266
POST 338
ppdeffacts 126, 405
ppdeffunction 405
ppdefglobal 405
ppdefquery 405
ppdefrule 97, 126, 130, 405

return value 98
ppdeftemplate 86, 405
predicate constraints 105
predicate functions 105, 113
predicates 17, 102
premises 17, 75
price list 64
principles 151
printout 35, 47, 167, 319–320,

329, 406
PrintWriter 68, 326
priority 275
procedural language 96
procedural programming 14–15

progn 53, 406
property change events 264
PropertyChangeEvent 230, 234,

315
PropertyChangeListener 230
PropertyChangeSupport 230,

232
design problem in 231

pseudocode 153, 162
public classes 63
public constructors 63

Q

queries 96, 301
query trigger fact 130

R

radiator 257
random 406
rate of change 276
RDBMS 351
read 167, 195, 406
readline 319–320, 406
Recommendations Agent xxvii,

288, 291–292, 296, 324, 329,
331

relation 128
relational database 75, 128, 351,

353
remote interface 379–380
remote method invocation 379
removePropertyChangeListener

92, 230
repaint 207
replace$ 406
reporting tools 363
RequestDispatcher 334
requirements 151, 184
requirements documents 153
requirements engineering 151
reset 48–49, 77, 79–80, 97–99,

114, 170, 205, 210, 258, 311,
406

implementation 139

INDEX 441
resolveValue 242
respect 154
rest$ 50, 58, 406
Rete

pronunciation 136
Rete algorithm 39, 96, 134, 136

brief description 136
memory usage 141
optimization 139
performance 141

Rete network 21, 136, 143
viewing 144

Rete utilities 43, 422
retract 78, 94, 100, 107, 139,

313–314, 406
efficient, from Java 314

retract-string 407
return 56, 127–128, 407

from a rule 128
from RHS of rule 169

return value constraint 260, 297
implementation 107

return values
type conversions 64

RHS. See right-hand side
RI 386
right memory 138
right to left adapter 144
right-hand side 17, 42, 97
RMI 379

class server 383
security manager 382

rmic 379, 382
rmiregistry 382
robots 14
round 407
router 319
RU.ADD 139
RU.ATOM 64, 251
RU.CLEAR 139
RU.EXTERNAL_ADDRESS 62,

249, 309
RU.FACT 78
RU.FLOAT 43
RU.FUNCALL 243
RU.INTEGER 43, 63, 195
RU.LIST 313

RU.LONG 43
RU.MULTIVARIABLE 242
RU.REMOVE 139
RU.STRING 44
RU.UPDATE 139
RU.VARIABLE 242
rubber ducks 295
rule actions

in XML 365
rule base 19, 21
rule compiler 21
rule development and deploy-

ment environment 18
rule engines 16, 18, 21, 37

standards 26
rule languages

common concepts 361
Jess 32
standard 27
vendor-specific 27

rule representations 361
rule-based systems 17

architecture 19
developing 23

RuleML 363–364
rules 17, 407

backward chaining 96, 116
compiling 99

example 137
editors 362, 366, 372
firing 98
forward chaining 96
interoperability 361
Jess function 130
rewriting 110
server 379
simplest possible 96
storage 362
writing 25
XML representation 365

run 98, 100, 170, 210, 311, 407
in multithreaded applications

346
Runnable 273
runQuery 340
run-query 129–130, 301, 407
runtest.ref 429

runtest.sh 429
run-until-halt 201, 232, 408

S

salience 121, 275, 281
performance impact 122

sample code 263
Sandia National Laboratories

xxi, 32
save-facts 408
scalability 193, 358
script

UNIX command 177
scripting 62
seamless 359
search engines 157
searchability 361
security 352
selection sort 181
Serializable 235
serialization 235, 247

and RMI 380
servlet container 290, 326
servlet.jar 327
ServletContext 338, 340
servlets 290–291, 325, 377

cookies 339
deploying 326
deployment descriptor 327
destroy 350
example 325
HelloJess 329
installing 327
user sessions 339

ServletUnit 343
session 339
session beans 376
set 67, 408
set point 259
set theory 265
setAttribute 338
setContentType 325
set-current-module 408
setDefaultCloseOperation 215
set-factory 408

442 INDEX
setgen 408
set-member 70, 408
set-multithreaded-io 409
set-node-index-hash 142, 409
set-reset-globals 49, 205, 258,

409
set-salience-evaluation 122, 409
setSlotValue 345
set-strategy 121, 409
setVariable 243
shadow facts 229

dynamic 92
static 91

sharp
logical states 264

shell scripts 169
show-deffacts 410
show-deftemplates 87, 410
show-jess-listeners 410
showMessageDialog 215
Simulator 258
SimulatorGUI 229
singleton 273
skeleton 379
slot qualifier 83
slots 82, 89, 135

default values 163
SOAP 291
sockets 410
sorting 181
sound 197
spanning set 177
sqrt 55, 410
square root 55
stack traces 71, 316
stakeholders 153
startup banner 173
stateful rule session 386
stateful session beans 376
stateless rule session 386
stateless session beans 376
static member variables. See vari-

ables, static member
static variables. See variables, static
store 309
stored procedures 302
str-cat 179, 410

str-compare 181, 410
str-index 411
STRING 422
string constants 250
stringp 411
strings

newlines in 179
str-length 411
stub 379
stub class files 383
subroutines 167, 169–170
subrules 110
subseq$ 411
subsetp 411
sub-string 411
subtlety 265
Swing 188, 204, 208
symbolp 411
symbols 42

case sensitivity 43
sym-cat 196, 298, 411
syntax diagrams 42
system 411
System.in 319
System.out 319

T

t 319
I/O router 319

Tabet, Said 363
tagging interface 235
tags 139
Takagi-Sugeno-Kang 273
Tax Forms Advisor xxvii, 147,

150, 157, 162, 173, 192
taxable income 175
TekMart 335
temperature

calculation 227
templates

plastic 189
terminal nodes 138, 144
test harness 169
test.clp 429
test.ref 429

test-driven development 25
testing 24, 167–169, 173, 177,

182–183, 201, 215, 253,
261–263, 295, 343, 428

coverage 177, 201
framework 254
GUIs 215
in isolation 201

tests 113
automated 25
automated framework 25
conditional element 98
developing 25

textbooks 156
thermostats 282
thin client 290, 292
thing factory 408
thread safety 308
threads 209, 227, 264
throw 412

Jess function 73
Throwable 316
time 412
toArray 67
tokens 42, 139

deleting 139
number 43
string 44

Tomcat 285, 324, 326
and JSPs 333
default port 329

top-level window 205
toString 63
transactions 358
TRUE 43
truth tables 256, 259, 262, 280
try 197, 412

Jess function 71
two-input nodes 137

U

unconditional support 116
undefadvice 59, 412
undefinstance 315, 413
undefrule 97, 111, 413

INDEX 443
union$ 413
UNIX 169, 177, 428
unordered facts

examples. See facts, unor-
dered

unreimbursed expenses 176
untyped 47
unwatch 77, 413
upcase 413
use-ez-form 152
user sessions 289
Userfunction 238, 258, 260,

281, 315, 318
arguments 240
call 239
getName 239
loading 239
state 246

users 155

V

validate 207
validating input 194
value resolution 308
ValueVector 240

add 240
get 240
size 240

VARIABLE 422
variable constraints

multiple 102
variables 47

declaring 48
external 130
global 48
internal 130
multifield 49, 57

static 70
static member 69
top level 48

variableValue 243
VARIANT 241
vendor independence 386
vents 258, 261–262

absolute positioning 269
relative positioning 276

verbosity 238
videotapes 293
view 144, 413
Visio 189
Visitor pattern 419

W

wait 211
waitForActivations 211–212
watch 77, 97, 295, 315, 413

all 170, 201
calling from Java 315
compilations 143

watch activations 120
watch rules 120
web applications 295, 308, 324,

326
persistence 350
testing 343

web architectures 288
web browser 289
web designers 335, 341

and JSPs 333
web services 291
web users 303
web.xml 327, 330, 338, 352

servlet-mapping 331
WEB-INF 327

weightedAverageDefuzzify 275
Western Illinois University 366
while 52, 183, 244, 258, 414
whitespace 42
wildcards 63
Windows 169, 326, 428
WinZip 33
working fluid 257
working memory 19, 21–22, 75,

134, 307
changes with time 136
implementation 314
similarity to RDBMS 81

World Wide Web 288
wrapper objects 232
Writer 320
WSTDERR 319
WSTDIN 319
WSTDOUT 319
WWW 156

X

XCON 10, 292, 294
XML xxvii, 327, 358, 360

ATTLIST 367
ELEMENT 367

XML editors 361
xsl:template 370
XSLT 361, 363, 369

transforming rule representa-
tions 365

Z

ZFuzzySet 267

For easy ordering, call 1-800-247-6553 or fax 1-419-281-6883
For online browsing, secure ordering, special promotions, and fast delivery visit

www.manning.com

More Java Titles from Manning!

AspectJ in Action
Ramnivas Laddad
1-930110-93-6
Softbound, 512 pages, $44.95
July 2003

A practical guide to Aspect Oriented Pro-
gramming (AOP) and AspectJ. The reusable
code examples that are provided will enable
quick implementation of functionality in
your system.

For easy ordering, call 1-800-247-6553 or fax 1-419-281-6883
For online browsing, secure ordering, special promotions, and fast delivery visit

www.manning.com

More Java Titles from Manning!

JUnit in Action
Vincent Massol with Ted Husted
ISBN 1-930110-99-5
Softbound, 360 pages, $44.95
September 2003

A guide to unit testing Java applications (includ-
ing J2EE applications) using the JUnit frame-
work and its extensions, this book is about
solving real-world problems such as unit test-
ing legacy applications, writing real tests for real
objects, automating tests, testing in isolation,
and unit testing J2EE and database applications.
Using a sample-driven approach, various unit
testing strategies are covered.

For easy ordering, call 1-800-247-6553 or fax 1-419-281-6883
For online browsing, secure ordering, special promotions, and fast delivery visit

www.manning.com

More Java Titles from Manning!

Eclipse in Action
David Gallardo, Ed Burnette,
and Robert McGovern
ISBN 1-930110-96-0
Softbound, 416 pages, $44.95
May 2003

This book provides a thorough guide to using
Eclipse features and plugins effectively in the
context of real-world Java development. Inside,
you’ll learn how to use plugin tools for using
Eclipse in a team environment, including us-
ing Ant and CVS for source control.

For easy ordering, call 1-800-247-6553 or fax 1-419-281-6883
For online browsing, secure ordering, special promotions, and fast delivery visit

www.manning.com

More Java Titles from Manning!

Bitter EJB
Bruce Tate, Mike Clark, Bob Lee,
and Patrick Linskey
ISBN 1-930110-95-2
Softbound, 440 pages, $44.95
June 2003

In Bitter EJB, Bruce Tate and his co-authors con-
tinue the entertaining and engaging writing
style established in Bruce’s best-selling first
book, Bitter Java, as they seek to explore and
explain antipattern themes. This more ad-
vanced book dives deeper into antipatterns,
or common traps, within the context of EJB
technology.

For easy ordering, call 1-800-247-6553 or fax 1-419-281-6883
For online browsing, secure ordering, special promotions, and fast delivery visit

www.manning.com

More Java Titles from Manning!

EJB Cookbook
Benjamin G. Sullins and Mark B. Whipple
1-930110-94-4
Softbound, 352 pages, $42.95
May 2003

The comprehensive resource for the practicing
EJB developer who wants quick, clean, solutions
to frequent problems. It is a systematic collec-
tion of EJB “recipes.” Each recipe describes a
practical problem and its background, then
shows the code that solves it. No EJB developer
should be without this book!

IN ACTION

Rule-Based Systems in Java

M A N N I N G

Friedman-Hill

JESS
IN ACTION

M A N N I N GM A N N I N G $49.95 US/$74.95 Canada

www.manning.com/friedman-hill

Author responds to reader questions

Ebook edition available

AUTHOR
✔

ONLINE

✔

,!7IB9D0-bbaijc!:p;O;T;t;p
ISBN 1-930110-89-8

Ernest Friedman-Hill

I
magine a different way to program in which you specify rules
and facts instead of the usual linear set of instructions. That’s the
idea behind rule-based programming. A rule engine automati-

cally decides how to apply the rules to your facts and hands you
the result. This approach is ideal for expressing business rules and
is increasingly used in enterprise computing.

Jess is a popular rule engine written in Java. It’s supported by
Sandia Labs and has an active online community. If you have a
problem that can be solved with rules, Jess in Action will show you
how. (If you are not sure, read chapter 2.) Written by the creator
of Jess, this book is an accessible and practical guide to rule-based
system development in Java.

Jess in Action first introduces rule programming concepts and
teaches you the Jess language. Armed with this knowledge, you
then progress through a series of fully-developed applications
chosen to expose you to practical rule-based development. The
book shows you how you can add power and intelligence to your
Java software.

What’s Inside
■ Introduction to rule-based thinking
■ Jess language tutorial
■ Complete examples of ...

◆ Tax forms advisor
◆ Diagnostic assistant
◆ Fuzzy logic controller
◆ Web agent
◆ J2EE apps

Dr. Friedman-Hill is the developer of Jess. A Principal Member of
the Technical Staff at Sandia National Laboratories, he lives in
Gaithersburg, MD.

“... clear, crisp, well-focused
... the organization is
smooth, well-thought-out,
... this book rocks.”

—Ted Neward, Author
Server-Based Java Programming

“... the Jess book. A nice balance
between an introduction and a
reference”

—John D. Mitchell, Coauthor
Making Sense of Java

“Friedman-Hill writes clearly.
The topic is complicated, and he
does an excellent job explaining it
... I recommend this book.”

—Roedy Green, Author
The Java Glossary

“... intuitive and clever examples
that show the reader how to
build intelligent Java applications
with Jess.”

—Robert B. Trelease, Ph.D.
UCLA Brain Research Institute

FREEBIES

• Binary version of Jess*
• Complete examples on the web

EXPERT SYSTEMS/JAVA

JESS IN ACTION Rule-Based
Systems in Java

Ernest Friedman-Hill

*For non-commercial use

	brief contents
	contents
	preface
	Introducing rule-based systems
	Rules to the rescue
	1.1 Math class melee
	1.1.1 Beyond logic puzzles

	1.2 Some real-world examples
	1.2.1 Mail filtering
	1.2.2 Product configuration
	1.2.3 Implementing business rules

	1.3 Summary

	What are rule-based systems?
	2.1 The cooking/driving robot
	2.1.1 Declarative programming: a different approach

	2.2 Rules and rule engines
	2.2.1 Expert systems

	2.3 Architecture of a rule-based system
	2.3.1 The inference engine
	2.3.2 The rule base
	2.3.3 The working memory
	2.3.4 The pattern matcher
	2.3.5 The agenda
	2.3.6 The execution engine

	2.4 Developing rule-based systems
	2.4.1 Knowledge engineering
	2.4.2 Structuring data
	2.4.3 Testing
	2.4.4 Interface building
	2.4.5 Writing the rules
	2.4.6 Iterative development

	2.5 Rule engine standards
	2.6 Summary

	Jess: A rule-based programming environment
	Introducing Jess
	3.1 The Jess rule engine
	3.1.1 Obtaining Jess
	3.1.2 Installing Jess
	3.1.3 Running Jess
	3.1.4 “Hello, World”

	3.2 Jess applications
	3.2.1 Command line, GUI, or embedded?
	3.2.2 Jess performance

	3.3 Summary

	Getting started with the Jess language
	4.1 The basics
	4.1.1 Whitespace
	4.1.2 Symbols
	4.1.3 The jess.Value class
	4.1.4 Numbers
	4.1.5 Strings
	4.1.6 Comments

	4.2 Adding some structure
	4.2.1 Lists
	4.2.2 Calling functions
	4.2.3 Variables
	4.2.4 More about lists

	4.3 Control flow
	4.3.1 foreach
	4.3.2 while
	4.3.3 if/then/else
	4.3.4 progn
	4.3.5 apply
	4.3.6 eval and build

	4.4 Defining functions with deffunction
	4.4.1 Late binding

	4.5 Fine-tuning a function’s behavior
	4.5.1 Take my advice, please

	4.6 Summary

	Scripting Java with Jess
	5.1 Creating Java objects
	5.2 Calling Java methods
	5.2.1 Nesting function calls, and a shortcut
	5.2.2 Calling static methods
	5.2.3 Calling set and get methods
	5.2.4 Working with arrays
	5.2.5 How Jess chooses among overloaded methods

	5.3 Accessing Java member data
	5.4 Working with exceptions
	5.5 Summary

	Representing facts in Jess
	6.1 Jess’s working memory
	6.1.1 Manipulating the working memory

	6.2 Just the facts, ma’am
	6.3 Unordered facts
	6.3.1 The deftemplate construct
	6.3.2 Default slot values
	6.3.3 Multislots
	6.3.4 Changing slot values with modify
	6.3.5 Copying facts with duplicate

	6.4 Ordered facts
	6.5 Shadow facts
	6.5.1 Jess and JavaBeans
	6.5.2 JavaBeans have “slots”
	6.5.3 An example JavaBean
	6.5.4 Creating a deftemplate for DimmerSwitch
	6.5.5 Putting a DimmerSwitch into working memory
	6.5.6 Static vs. dynamic shadow facts
	6.5.7 Adding PropertyChangeListener support to DimmerSwitch
	6.5.8 Shadow facts and working memory functions

	6.6 Summary

	Writing rules in Jess
	7.1 Forward-chaining rules
	7.1.1 Patterns and shadow facts

	7.2 Constraining slot data
	7.2.1 Literal constraints
	7.2.2 Variables as constraints
	7.2.3 Connective constraints
	7.2.4 Constraining matches with predicate functions
	7.2.5 Return value constraints
	7.2.6 Pattern bindings

	7.3 Qualifying patterns with conditional elements
	7.3.1 The and conditional element
	7.3.2 The or conditional element
	7.3.3 The not conditional element
	7.3.4 The test conditional element
	7.3.5 The logical conditional element

	7.4 Backward-chaining rules
	7.5 Managing the agenda
	7.5.1 Conflict resolution
	7.5.2 Changing rule priority with salience

	7.6 Partitioning the rule base with defmodule
	7.6.1 Defining constructs in modules
	7.6.2 Modules, scope, and name resolution
	7.6.3 Module focus and execution control

	7.7 Searching working memory with defquery
	7.7.1 The variable declaration
	7.7.2 Query trigger facts
	7.7.3 The count-query-results function
	7.7.4 Backward chaining and queries

	7.8 Summary

	Under the hood: how Jess works
	8.1 Review of the problem
	8.2 An inefficient solution
	8.3 The Rete algorithm
	8.3.1 How Rete works
	8.3.2 Handling retract

	8.4 Easy optimizations for Rete
	8.5 Performance of the Rete algorithm
	8.5.1 Node index hash value

	8.6 More complexity and initial-fact
	8.6.1 Implementing the not conditional element
	8.6.2 Implementing the test conditional element
	8.6.3 Implementing backward chaining

	8.7 Exploring the Rete network in Jess
	8.7.1 The (watch compilations) command
	8.7.2 The view function
	8.7.3 The matches function

	8.8 Summary

	Creating your first rule-based application: the Tax Forms Advisor
	Collecting the knowledge
	9.1 The Tax Forms Advisor
	9.2 Introduction to knowledge engineering
	9.2.1 Where do you start?
	9.2.2 Interviews
	9.2.3 Desk research

	9.3 Collecting knowledge about tax forms
	9.3.1 An interview
	9.3.2 Reviewing the forms
	9.3.3 Next steps

	9.4 Summary

	Designing the application
	10.1 Organizing the data
	10.2 Filling in details
	10.2.1 Default slot values

	10.3 More templates
	10.4 Templates you don’t need
	10.5 Organizing the rules
	10.6 Building the infrastructure
	10.6.1 Simple text-based I/O
	10.6.2 Fetching the question text

	10.7 Summary

	Writing the application
	11.1 Welcoming the user
	11.1.1 Testing the startup module

	11.2 Asking the user questions
	11.2.1 Income and dependents
	11.2.2 Dealing with special circumstances
	11.2.3 Testing the interview module

	11.3 Recommending forms
	11.4 Explaining the results
	11.4.1 Testing the report module

	11.5 Finishing touches
	11.6 Testing the full application
	11.7 Summary

	Writing a diagnostic application: the PC Repair Assistant
	Writing the PC Repair Assistant
	12.1 Using flowcharts in knowledge engineering
	12.1.1 From flowcharts to rules

	12.2 The problem domain
	12.2.1 Writing the first rules

	12.3 Asking questions with backward chaining
	12.4 Checking the answers
	12.4.1 Modifying the ask module

	12.5 The rest of the rules
	12.5.1 Rules about sound
	12.5.2 Degrading gracefully
	12.5.3 To boot, or not to boot
	12.5.4 RAM problems
	12.5.5 Questioning authority

	12.6 Testing
	12.7 Summary

	Adding a graphical interface
	13.1 Getting started
	13.2 Displaying a window
	13.3 Displaying questions
	13.4 Getting answers
	13.4.1 The main thread vs. the event thread

	13.5 Better input components
	13.6 Finishing touches
	13.7 Testing the interface
	13.8 Summary

	Reasoning about reality: the HVAC Controller
	The reality connection
	14.1 The system
	14.2 Defining the hardware interface
	14.2.1 Native methods
	14.2.2 Writing a simulator
	14.2.3 Simulating getTemperature
	14.2.4 Adding a graphical interface

	14.3 Writing the JavaBeans
	14.3.1 Rules about Thermometers
	14.3.2 Writing the other Beans

	14.4 JavaBeans and serialization
	14.5 Summary

	Extending the Jess language
	15.1 The Userfunction interface
	15.1.1 The getName method
	15.1.2 The call method
	15.1.3 Loading a Userfunction into Jess

	15.2 Handling arguments
	15.2.1 How many arguments?
	15.2.2 Using arguments
	15.2.3 Resolving variable arguments
	15.2.4 Resolving function call arguments

	15.3 Returning a value
	15.3.1 Constructing Value objects

	15.4 Beyond simple examples
	15.4.1 Holding state
	15.4.2 Multiple personalities
	15.4.3 Userfunctions and serialization
	15.4.4 Grouping functions with Userpackage

	15.5 The HVAC functions
	15.5.1 Creating a simulator
	15.5.2 Counting devices
	15.5.3 Matching heat pumps and floors
	15.5.4 Operating the hardware
	15.5.5 Implementing a Userpackage

	15.6 Testing
	15.7 Summary

	Writing the rules
	16.1 The control algorithm
	16.1.1 Knowledge engineering with truth tables
	16.1.2 How heat pumps work
	16.1.3 Using guard lines
	16.1.4 Saving energy

	16.2 Setting up
	16.3 Controlling the heat pumps
	16.3.1 Enough is enough
	16.3.2 The moment of truth

	16.4 Controlling the vents
	16.4.1 The vent rules

	16.5 Testing the whole system
	16.6 Controlling with fuzzy rules
	16.6.1 Fuzzy logic, briefly
	16.6.2 The Fuzzy HVAC Controller
	16.6.3 Exploring the fuzzy controller

	16.7 What’s next?
	16.8 Summary

	TekMart.com: rule-based applications for the Web
	Jess on the Web
	17.1 Java architectures for the Web
	17.1.1 Fat-client applications
	17.1.2 Thin-client applications

	17.2 A Jess application for the Web
	17.3 Knowledge engineering
	17.4 Designing data structures
	17.5 Writing the rules
	17.5.1 About testing
	17.5.2 The recommend-requirements rule
	17.5.3 Recommending videos and DVDs
	17.5.4 Conspicuous consumption
	17.5.5 More media rules

	17.6 Refining the recommendations
	17.7 Some useful queries
	17.7.1 Maintaining the order number

	17.8 Cleaning up
	17.9 Summary

	Embedding Jess in Java applications
	18.1 Getting started with the Jess library
	18.1.1 The executeCommand method
	18.1.2 Exchanging Java objects
	18.1.3 Beyond executeCommand

	18.2 Working with Fact objects in Java
	18.2.1 Multislots
	18.2.2 Ordered facts
	18.2.3 Removing facts

	18.3 Working with JavaBeans
	18.4 Calling Jess functions from Java
	18.5 Working with JessException
	18.5.1 Nested exceptions
	18.5.2 Rolling your own

	18.6 Input and output
	18.6.1 Using custom routers

	18.7 Summary

	Deploying web-based applications
	19.1 The Java Servlet API
	19.2 J2EE and the Tomcat engine
	19.2.1 Deploying the Hello servlet

	19.3 Your first Jess servlet
	19.3.1 Deploying the Jess servlet
	19.3.2 Cleaning up the URL

	19.4 Application architecture: take one
	19.5 Starting the Catalog servlet
	19.5.1 JavaServer Pages
	19.5.2 Forwarding to a JSP

	19.6 Application architecture, take two
	19.7 The login screen
	19.8 The Catalog servlet
	19.8.1 Initializing Jess
	19.8.2 Getting the login name
	19.8.3 Starting a user session
	19.8.4 Querying the product list
	19.8.5 Invoking the JSP
	19.8.6 The catalog JSP

	19.9 Testing
	19.10 The Recommend servlet
	19.10.1 Getting started
	19.10.2 Creating the order
	19.10.3 Getting the recommendations
	19.10.4 Forwarding to JSPs

	19.11 The recommend JSP
	19.12 The Purchase servlet
	19.13 Persistence
	19.14 Deploying the application
	19.15 What’s next?
	19.16 Summary

	Enterprise systems
	Jess, XML, and the enterprise
	20.1 Enterprise applications
	20.1.1 What is the J2EE?
	20.1.2 What does that stand for?

	20.2 Rules and XML
	20.2.1 Interoperability
	20.2.2 Editing and other processing
	20.2.3 Storage and retrieval

	20.3 XML-based rule representations
	20.3.1 RuleML
	20.3.2 DAML
	20.3.3 Homegrown representations
	20.3.4 Strategies for representing rules in XML

	20.4 Representing Jess rules in XML
	20.4.1 An example rule
	20.4.2 Transforming the XML rules into Jess rules

	20.5 Rule editors
	20.6 Summary

	Jess in the J2EE environment
	21.1 A quick tour of EJB concepts
	21.1.1 Kinds of EJBs
	21.1.2 EJB restrictions
	21.1.3 Do you need to use EJBs?
	21.1.4 Accessing external resources from EJBs

	21.2 An RMI-based rule server
	21.2.1 The remote interfaces
	21.2.2 Implementing the interfaces
	21.2.3 Implementing a main method
	21.2.4 Generating the stubs
	21.2.5 A sample client
	21.2.6 Final polishing

	21.3 JSR 94: the javax.rules API
	21.3.1 Working with javax.rules
	21.3.2 The reference implementation

	21.4 Summary

	Appendix A - Jess functions
	Appendix B - Abridged Java API for Jess
	B.1 jess.Context
	B.2 jess.Fact
	B.3 jess.Funcall
	B.4 jess.Jesp
	B.5 jess.JessEvent
	B.6 jess.JessListener
	B.7 jess.PrettyPrinter
	B.8 jess.Rete
	B.8.1 Working with events
	B.8.2 Exchanging Java values with Jess language code
	B.8.3 The import table
	B.8.4 Finding things
	B.8.5 Waiting for rules to fire

	B.9 jess.RU
	B.9.1 public static String gensym(String prefix)

	B.10 jess.Token
	B.11 jess.Value
	B.12 jess.ValueVector

	Appendix C - An automated testing framework
	C.1 Architecture
	C.2 The Jess template
	C.3 The Java template

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

