Table of
Contents

JIXTA: Java™ P2P Programming

By Daniel Brookshier, Darren Govoni, Navaneeth Krishnan, Juan Carlos Soto

Publisher: Sams Publishing

Pub Date: March 22, 2002
ISBN: 0-672-32366-4
Pages: 432

JXTA: Java P2P Programming provides an invauable introduction to this new
technology, filled with useful information and practical examples. It was created by
members of the JXTA community, sharing their real-world experience to introduce
developersto JXTA. It starts with the fundamentals of P2P and demonstrates how JXTA
fulfills the P2P promise, then covers the essentials of JXTA including the protocols, the
JXTA Shell, and groups. Later chapters include case studies demonstrating JXTA to
synchronize data and to create distributed applications. Includes a foreward by Juan
Carlos Soto, Group Marketing Manager for Project JXTA at Sun Microsystems and the
jxta.org Open Source Community Manager.

Brought to you by ownSky!!

Table of Content

BIE= 0] (S0 I @)] (=] o | OSSR [
(0])Y/ 110] 1 | S TP U PR OTRROURRRRPI v
L2 (0 (=] = T PSSP v
Warning and DISCIAIMET..........coiuiiiiiieiiie e v
(O (=T 113 SPR Vv
D =T0 (o= 110] o [PPSR Vi
0T 0] o [P PPPP ST Vi
ADOUL the AUTNOIS ... sreee e viil
ACKNOWIEAGMENTSeeiiiiiiie ettt e et e e e e e e e e enseeeeeanns viii
Tell Us What YOU ThINKD ...t e e iX
0o 11 ox 1T o SRS UEPSUPRRR iX
JXTA SCAIE ...ttt e e e et e e e st e e e e anaa e e e e ennteeeeeanreeeeans Xil
IS IXTA 8 NEW CONCEPL?....eeeiiiiieeeiiiee ettt Xil
IXTA RISKS ...ttt ne e ennes Xiii
What ThiS BOOK COVEIS......coiuiiiiiiiiiiiee ettt Xiii
Who Should Use ThiS BOOK?.......cooiiiiiiiiiiiiee et Xiii
How This BOOK iS Organizedccueeieiiiiieeeiiiie e Xiv
Web Resources and EXample COAec.uvvviiiiiie i Xiv
Chapter 1. What iS P2P? ...ttt e 1
DefiNiNg PEEI-TO-PEETcouiiiiiiieeiie et 1
DEfiNING P2P ...ttt 1
P2P CONCEPLS ...ttt e e e s s s e e e e e e s as 4
APPLICAIONS FOF P2P......eeeee et e e 8
KEY P2P ISSUEBS......uuuiuiiiiiiiiii e as s sasnsnsannnnnnnns 11
Technologies Related t0 P2P ... 16
SUMIMIATY ..ttt ettt e e e e e e ettt e e e e e e s s aa bt et e e eeeeesaanntabeeeeeaaeesaanssnneeeeaaeesaans 22
Chapter 2. OVErvIEW Of IXTA ... et e et ee e e e nnnneeas 24
JXTA DEIINEA....cc ettt e e e e e e e e e e e snnraeeeans 24
JXTA CONCEPLS ...ttt et e e e e e e e e b e e e e e nbr e e e s enreeeeaas 26
JXTA PIOLOCOISoveeieiiiiee ettt e e e e e e e nnaee e e s enraeaeans 37
PEEIS AN GIOUPSveieeiiiiie ettt e ettt e et e e e e e e e e e e e enae e e e e e nareeeeaannneeas 39
AQVEITISEIMENTS ...ttt e e e e b e e s sbae e e e s nnbneeas 45
Pipe BiNdiNg ProtOCOL............coccuiiiiiiee et LY
S0 V.= RSP 55
ReNAEZVOUS PrOtOCOL.........eiiiiiiiiee et e e e as 56
JXTA TUENTITIEISeeeeee et e e e e e e e e e e e nnaeee e s enreeeeans 58
SUIMIMABIY ..ttt et e e ekt e e e s b e e e e e e e e e e asne e e e e e nne e e e e annrneeeaa 59
Chapter 3. IXTA PrOtOCOIScooiiiiiiiieiieie e 60
(o) (o ToTo] IF= T o To [AY = RSP 60
) 1N €0 RSP RR 61
JXTA PEEI NG JAVA......uuiiiiiiiiiei ettt ettt et e e et e e e s anbreeeeaas 62
Overview of the JXTA Protocols JAVA APL......oo e 63
Summary of Java API for JXTA ProtOCOIS.........ccooiiiiieeiiiiee e 65
Where JXTA ApPlICAtioNS BEGIN.........ceveiiiiiiee et reee e 66
B I TSN == PSR SPPSRSPRRRI 67
SEAMING IXT A ettt sab e rab e e e bt e e e bt eesbe e e snbeeesnneeens 63
Peer Discovery ProtoCOl APcooiiiiiiiiie e 69
Peer ResoIVer ProtoCOI APLL.........cooiiiiiiiiiie e 79
Peer Information ProtOCOIcooiiiiiiiiiiiie e 85
Peer Membership ProtOCOLeoeeiiiiiiiiiiiiee e 87
Pipe Binding ProtoCol APLL..........uree e 92
Peer ENdpPoint ProtOCOLcooiiiiie e 100

SUMIMIATY it 106

Chapter 4. IXTA ShElloveeiieieeee e e e 107
WHY SNEII? ... e 107
Installation and TroubleShOOtING..........ceiiiiiiiie e 107
Shell COMMEANAS......coiiiiie e e e e e nnrae e e e enaeeeeanns 113
USING the Shell... ... 116
Adding Shell CoOMMANGScooiiiiiii e 119
SUMIMIATY ...ttt e e e e e e e e e e s s bbb e e et e e e e e s sannbbre e e e e e e e e aaannnrnnneeaeenss 121

Chapter 5. IXTA pi NG COMMAN.........coiiiiiiiiiiiieiiee e 122
I Vo OSSPSR 122
COMMANA OVEIVIEWeeeieiiiiieeeeiieee e e e sttt e e e e e e s nsteeeeasnseeeeeennsaeeesesaeeeeanns 123
PrOJECT OVEIVIEW ...ttt ettt e e ebe e ae e e sneeeen 123
REQUITEMENTS ...ttt ba e br e sbeeeea 123
DeSIgN APPIOACKH ... e 124
IMPIEMENTALION......coiiiie e ae e sbeeeen 125
INSTAIL ... 147
LIS SO PRSPPI 147
Further Improvements t0 PiNGooooi i 149
SUMIMIATY ..ttt e e e ettt e e e e e s e e e b be e e e e e e e e e s aannbtbeeeeeaeeeeaannnsnneeeaaenas 149

Chapter 6. Working With GIrOUPScooiuiiiieiiiiiee et 150
IMPOrtanCe Of PEEI GIOUPSc.cueieiiiieiiie ettt 150
Importance of Peer Group Management...........cccovueeerueeeiieeenieesniiee e 151
Types of Peer Group Managementcceeiueeeiieeenieeenieesniee e 151
Peer Membership Managementcooiieiiiiiiie e 152
SUMIMIAIY i 170

Chapter 7. IXTA Content Manager Service (CMS)coccoiieriieeiiicciiieeeee e 172
F N IO YT = PSR 172
HOW CIMS WOTKS......eeiieeeciiiee ettt ettt a e et e e e s e e e e nnnaeeeeennnees 174
A SIMple CMS EXAMPIEooeeiiiieee et e e 175
OVETAII DESIGN. ...ttt e s nn e e nneas 176
Initializing the Content ManAgETcuieiiiiiiiie e 177
Searching for CONENLooiiii e 180
SUMIMIATY it 186

Chapter 8. IXTA @nd SECUILYcccvviiiiiiee e e e e e e rer e e e e e e e 187
IMPOMANCE Of SECUNLY ...cceeeiiiieeee e e e e 187
Security IS MUKRIFACETEeiei e 187
Security Aacks iN P2P NEtWOTKScccuviieiiiiiee e seaee e 188
JIXTA PIAtfOrmM SECUIMLYevieiiiieiiee ettt 189
JIXTA Security REQUIFEMENES........cccuuiiiiiieiiie et 189
The CryptographiC TOOIKIL...........ooiiiiiiiiie i e 189
Security 1SSUES and SOIULIONS..........occiiiiieeiiieie e e 192
TrUStIN P2P SYSIEMIS... ... a e e e ea e 207
P2P SeCUINtY MOUEIS.....ccee i e e e 208
SUMMAIY .. 212

Chapter 9. Synchronizing Data Between Peers.........ccccccvveiiieeeiiiiieee e 213
Designing a PDA Organizer fOr IXTA ...t 213
DeSIgN CONSIAEIALIONS......ceiteieiieieiite et ettt e e e e see e ssb e e s eneeeaneeean 215
Group Security and ASSOCIALIONSceiiiiriiiie e 216
(O PSSl B =T [| o TP 218
SUMIMIATY it 235

Chapter 10. JXTA Chess: Game Programming............ccocccuurierieeeeeiiiiiinneeeeeeseennns 237
RUNNING JXTA CRESS..cciiiiiii ittt e e e rar e e e e e e e e e ennarees 238
OVErVIEW Of TNe ClIASSESveiiiiiiiiie et e e aes 248
ST 101 0= SRR 265

Chapter 11. IXTA EXPIOTEIcoce ittt 267

Designing an Advertisement EXPIOrercovveeeiiiiiiiieeeee e 267
DESION OVEIVIEWvviiiiiee ettt e e e e s e e e e e e e s e et b bae e e e e e e e e e annnrreees 268
The EXPl OF €5 ClaSScoi it 268
Peer Di scover yThread Class.......cccooveiiiiiiiiiiiiiieeniee e 273
Advertisement TreeCel | Renderer Class.........cccoooiiiiiiiiiiniiciniec e 278
U] 1o T = o] (o =T PR 279
SUMIMATY .. 281
Appendix A. The Project IXTA COMMUNITY......c.uevieiiiiieeeiiiieeeesiieeeesieee e eieeee e 282
Contributing t0 @ PrOJECTveie e eeeenne 282
SUbMIttiNG & NEW PIOJECT ...t 282
JXTA.ORG Development ENVIFONMENTcocviiiiiieiiieeiee e 283
= We (o I o (o] [=Tod £ RPN 283
Details 0N SEIECt PrOJECES.. ..ot e 285
ComMMEICIAl PrOJECES e e e e e e e e eaeeas 286
AppendixX B. XML PHIMEY ...t e e e e e 289
XML BASICS ...vteeeeiieiieeeeiieee ettt e e ettt e e s sttt e e e et e e e sttt e e e e s e e e enbee e e e annneeeeannnneeens 289
SeIf-DESCIIDING ... eeiee i e e e s e e e e nrae e e e enaeeeeann 290
Strong Typing and Syntax Validationccccceeeieeiiiieee e 290
Problems WIth XIMILcoouiiir e e e e e e e e 291

Copyright
Copyright © 2002 by Sams

All rights reserved. No part of this book shall be reproduced, stored in aretrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of the
information contained herein. Although every precaution has been taken in the preparation of this
book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liahility assumed for damages resulting from the use of the information contained herein.

Library of Congress Catalog Card Number: 2001097507
Printed in the United States of America
First Printing: March 2002

050403024321

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams cannot attest to the accuracy of this information. Use of atermin
this book should not be regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided ison an "asis' basis. The authors and the

publisher shall have neither ligbility nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book.

Credits

Associate Publisher
Michael Stephens
Acquisitions Editor
Todd Green
Development Editor
Tiffany Taylor
Managing Editor
Charlotte Clapp

Project Editor

Natalie Harris
Copy Editor

Pat Kinyon

I ndexer

Erika Millen
Proofreader

Jody Larsen
Technical Editors
Sebastien Baehni
Dave Savage
Interior Designer
Dan Armstrong
Cover Designer
Alan Clements
Page L ayout

Cheryl Lynch

Dedication

To my love, Mariann.

—Daniel Brookshier

Foreword

Project JXTA was set up to operate as an open-source effort from its inception. This innovative
and controversial approach was based on afew beliefs by the project originators at Sun
Microsystems. First was the belief that the best innovation often happens outside of your team.
Thus, we wanted a way to engage other Sun and non-Sun devel opers. Next was that JXTA had to
be an open standard to become successful in arelatively short time. Thisis aview consistent with
Sun's history; the company actively collaborates on open standards and devel ops implementations
that are interoperable with solutions from other vendors. Finally was the belief that an ambitious
effort like JXTA could not be done by any single company, especidly if it relied on becoming an

Vi

open standard. This meant that we needed an environment where no one entity, including Sun, had
all the power.

The Project JXTA open-source community has seen tremendous growth in a short time. In its first
6 months, almost eight thousand devel opers signed up, and the technology and documentation had
been downloaded over three hundred thousand times. The jxta.org Web site has become a meeting
place for many bright people from different backgrounds and different motivations but with a
common goal to develop solutions that enable cooperation by peers of al types. | think the early
success of the jxta.org community validates the decision to be open source. This book, a
collaboration of authors from the JXTA community, is a reflection of approach.

The comparison between Project JXTA and this book extends to many of the characteristics of an
open-source project. For example, this book was written by a number of authors working remotely
and who, in most instances, have never met in person. Like any project on jxta.org, not dl
participants contributed the same amount. In general, each author contributed as much as they
were able, while alead author or project owner oversaw maintaining a coherent vision. The
writing of this book implemented the open-source concept of "meritocracy” where the more
you've done, the more you are able to do. Thisis very much how JXTA software is developed
today.

Open source development is not without risk. For example, in the case of Project JXTA, there
remains uncertainty about the direction for the technology with many points of view. Should

JXTA use its own protocols or adopt protocols currently used by Web Services, such as SOAP?
Are the current protocols the correct ones? Of course, there are non-technical risks. If the IXTA
technology is open-source, will there be enough opportunities to make money? Should | start now?
Or, should | wait until the future is a little clearer? Perhaps less obvious is that by doing a project

in the open, others have better "intelligence” on what you are working on and your status. Is it
worth the risk that others beat you to the market? These risks trandate to writing a book about
JXTA. Mitigating them requires anticipating new opportunities, making intelligent bets, and
adapting as new information is gathered to deliver atimely resource.

New technology opportunities are seldom easy to find and exploit and usually come to those who
seek them out at the frontiers of innovation. With the explosion of connected devices, each
capable of not just consuming, but also providing valuable resources to the network. Peer-to-peer
technology is one such frontier in the evolution of distributed computing whose time has arrived.
JXTA provides the infrastructure and foundation to rapidly develop innovative new solutions that
are interoperable with others. [xta.org provides the forum to tap into the efforts of other forward-
thinking developers, researchers, scientists, entrepreneurs, and business people who are members
of the IXTA community.

| think you will find this book to be very helpful to gain an understanding of Project JXTA's goals,
technology, and implementation status. The thought-provoking descriptions will provide you
insights on how you can use the technology to build exciting new peer-to-peer applications. This
book is the result of alot of hard work by a group of dedicated authors who, just like Project
JXTA, persevere despite many challenges and uncertainty. The authors worked collaboratively to
learn a new technology area while enduring countless changes in the early versions of JXTA.
They relied on each other and the interaction of many members of the community at jxta.org to get
things right and describe JXTA in away that developers understand. The result is a book that
provides a current and practical window into Project JXTA.

| invite you to join the IXTA community—both the community created by the authors and
reviewers who bring you the best book possible and the extended community centered at jxta.org.
Welcome to Project IXTA!

Juan Carlos Soto

Vil

ixta.org Community Manager and Group Marketing Manager, Project JXTA, Sun Microsystems

January 2002, San Francisco, California

About the Authors

Daniel Brookshier is aworld-class Java consultant, author, and speaker with 20 years of
experience. Mr. Brookshier's knowledge of software development covers many industries,
including transportation, telecom, wireless, healthcare, B2B, petroleum engineering, law,
insurance, software tools, and aerospace. He is an international consultant with contract
assignments in the United States, Norway, the United Kingdom, and China. Mr. Brookshier is the
founder of two Java user groups in Dallas, Texas, the writer of several Java programming books,
and he has published numerous articles about Javain industry magazines. Daniel is a recognized
expert on Java software development, Java standards, Java Management, enterprise software, and
JavaBeans component development. Daniel can be reached at turbogeek @cluck.com.

Darren Govoni is a Distinguished Engineer at Cacheon, Inc. in San Francisco where heis
responsible for product architecture and technology roadmapping. Darren is an active writer and
speaker on Java technologies, P2P systems, Web Services, and adaptive computing. In 1999,
Darren founded Metadapt Design Systems with an emphasis on design metaphors for complex
adaptive systems. His research forms the basis for Cacheon technology and products.

Navaneeth Krishnan is currently Senior Product Engineer at Aztec Software and Technology
Solutions where he has designed and devel oped several e-commerce solutions and reusable
frameworks primarily based on the J2EE architecture. His current focus is on Web Services and
peer-to-peer technologies. He has been involved in IJXTA since mid 2001 and strongly believes
that it has the potential to make a significant impact in the area of peer-to-peer computing. He
spends his spare time writing articles, contributing to books, and exploring the endless
possibilities created by emerging technologies.

Juan Carlos Sotois the Group Marketing Manager for Project JXTA at Sun Microsystems and
the [xta.org Open Source Community Manager. On previous projects at Sun, Mr. Soto managed
engineering groups implementing Java for small devices and managed business development for
Java Software.

Prior to Sun, Mr. Soto was Director of Product Development at Diba, Inc., an early pioneer
developing consumer information appliance. Diba was acquired by Sun in 1997. Prior to his work
at Diba, Mr. Soto worked at Hewlett-Packard, where he held various positions in Engineering and
Marketing management.

Mr. Soto has an MS in Engineering Management from Stanford, an MS in Computer Science from
the University of Colorado, and a BS in Computer Engineering from the University of Florida.

Acknowledgments

First, | would like to thank Sams Publishing for recognizing the gold in IJXTA and funding one of
the first books on the subject. In addition, 1'd like to thank the production staff and technical
editors who helped produce a very professional book.

viii

This book would not be possible without the input and encouragement of Sun Microsystems and
the JXTA open-source community. The community is the key to JXTA, and this book is a result
of the selfless contributions of the individuals and corporations involved.

The production of this book also owes thanks to the NetBeans open-source community and their
NetBeans | DE, which was used to create and debug most of the examples (www.NetBeans.org).
In addition, | would like to thank No Magic Inc. for their gracious granting of a free copy of
MagicDraw (www.MagicDraw.com) used for the object analysis of IXTA and the creation of
most of the UML diagrams.

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we're doing right, what we could do better, what areas you'd like
to see us publish in, and any other words of wisdom you're willing to pass our way.

As an Associate Publisher for Sams, | welcome your comments. Y ou can fax, email, or write me
directly to let me know what you did or didn't like about this book—as well as what we can do to
make our books stronger.

Please note that | cannot help you with technical problems related to the topic of this book, and
that due to the high volume of mail | receive, | might not be able to reply to every message.

When you write, please be sure to include this book's title and author as well as your name and
phone or fax number. | will carefully review your comments and share them with the author and
editors who worked on the book.

Fax: 317-581-4770
Email: feedback@samspublishing.com
Mail: Michael Stephens
Sams
201 West 103rd Street
Indianapolis, IN 46290 USA

Introduction
By Danid Brookshier

When thinking about how to introduce this book, | thought | might start by welcoming you to a
new concept in software. | have worked with many types of software, and | have programmed
exclusively in Java since it was introduced in 1995. I've seen my share of new concepts and ideas
that would change the world. Java has had the biggest impact in my life, and | believe the
evidence shows that it has changed the computer world. What about IJXTA? Why should you or |
use a technology that is so new and a departure from Web Services and client server technology?

When | started looking around, | found that JXTA is not so much a new concept asitisa
revolution. Not a revolution in the sense of new or groundbreaking—a revolution like the French
Revolution.

As with most situations where things go wrong, you blame those in power. The French had some
rather large grievances with their government. Under Louis X1V and Louis XV, there was
extravagant spending, unpopular wars on foreign soil, state bankruptcy, and high taxes imposed
mostly on the common man. The French revolutionaries decided that the monarchy and the elite
class dl had to go. And, as they say, heads would roll.

Peer-to-peer is aresponse to a sort of server-based tyranny. Client-server, multi-tier, and Web
server technologies are like kings. Servers concentrate power and resources, limit access, and
restrict an individual's ability to access and control his or her own data. Thisis not exactly an
affront to our civil rights, but it can mean that a corporation has my data on their servers.

There is dso a barrier to the entry. The rich and noble born and dlite of France controlled
resources, and only large organizations have the resources to buy and maintain large servers. With
the rise of Linux, you can create a shoestring operation, but you still need to pay for bandwidth
and other resources. Servers hold the applications and data we use, but we have no stake or control
in them. Asindividuals and even large groups, we cannot muster the resources to create our own
servers unless we were born rich like a noble or have the resources like a corporation.

Oust the king and suddenly you are looking for someone else to govern. The French, while
architecting their revolution, had some of the same thoughts as today's JXTA developers. On
August 26, 1789, the National Assembly of France approved a document, entitled Declaration of
the Rights of Man and of the Citizen. They based it somewhat on the declaration of independence
written in America. The French document seems to be more about individuals operating in a
society and, thus, more like a peer-to-peer system. Let's look at afew of the articles of the
declaration to see where the French revolutionaries and JXTA agree.

Men are born and remain free and equal in rights Social distinctions may be founded only upon
the general good (Article 1).

Peers also achieve social status via the information or unique processing they contribute. In a
server world, the server has almost all resources, while clients have little or none.

The principle of all sovereignty resides essentially in the nation. No body nor individual may
exercise any authority which does not proceed directly from the nation (Article 3).

JXTA creates a community where no individual computer has the ability to afect the entire
network unless other member peers alow it. In a sense, thisis like a democracy but on a more
personal level, because you vote by participation in a group or application. Rights of individual
computers are also granted by the protocols that every computer on the peer-to-peer network must
follow.

In aserver environment, the client must follow the rules of the server software and the owners of
the server. When there are many servers, there are also many masters, causing the clients to follow
too many different and conflicting rules.

Liberty consists in the freedom to do everything which injures no one else; hence the exercise of
the natural rights of each man has no limits except those which assure to the other members of the
society the enjoyment of the same rights. These limits can only be determined by law (Article 4).

Liberty in IXTA, like real liberty, is difficult to define. But the key difference from client/server
technology is the ability to be an acting part of the application. The benefits are a bit ethereal, but
imagine the ahility to truly control your data. Y ou can also process the data at any time. Is this
freedom? Hard to say, but it is a start.

JXTA promotes freedom as well as the right to punish those that abuse it. Even a free society has
laws. For a network to succeed, there needs to be some way to know when others are harmed and

provide a consequence to those responsible. In a P2P network, the ability of one member to do
harm is limited. The redundancy of the network reduces the impact on the society of peers but,
like any society, there are criminals (or at least perceived to be). IXTA has the notion of a
credential. If a peer fails to be a good citizen, its rights may be forfeited and the credential
invalidated.

Server environments are a bit different. Beyond denial of service attacks, being a good or a bad
client isagray area, mainly because the applications are very constrained for normal users. The
server is often cast as the villain, as a hoarder of data and even breaking the trust of clients by
allowing the sale of a client's data.

All the citizens have a right to decide, either personally or by their representatives, as to the
necessity of the public contribution; to grant this freely; to know to what uses it is put; and to fix
the proportion, the mode of assessment and of collection and the duration of the taxes (Article 14).

Taxation should be compared to a service fee or cost to create a service. A IXTA peer determines
the level of participation in the network and, thus, the cost of its hardware and other resources.
Like a consumption tax, there is a tendency to pay more, the more you use the network. Due to
redundancy and shared processing, al users benefit, rather than suffering because of poor
hardware.

Users make their own decisions on how they configure and use their P2P software. Inappropriate
and draconian controls instituted by a server's owners or chosen software are eliminated.

In another way, article 14 also shows the difference between server and P2P tec hnology. With
servers, an infrastructure must be maintained. Server software, because of its costs, looks like a
government that requires a tax to operate that is usually flat rather than based on participation.
With a peer network, peers share resources and each peer pays its share by its existence and level
of participation.

A society in which the observance of the law is not assured, nor the separation of powers defined,
has no congtitution at all (Article 16).

Thisis sort of an obvious statement for JXTA. If you don't use JXTA protocols (our Constitution
and basic laws), you cannot be a member of the community. If you are using JXTA and do abuse
its community, you are usualy just hurting yourself.

Snce property is an inviolable and sacred right, no one shall be deprived thereof except where
public necessity, legally determined, shall clearly demand it, and then only on condition that the
owner shall have been previously and equitably indemnified (Article 17).

P2P started to become popular with the introduction of Napster. Sadly, the implication was that
P2P was associated with piracy. Although Napster was originally formed with the idea that only
valid owners of music would access digital versions, there was probably more piracy than
legitimate use. Consequently, Napster has suffered in court with a severe reduction in the number
of users.

P2P networks, such as Gnutella, are also devoid of rights management. These systems cannot be
taken to court as Napster was because they are truly distributed. However, because of their
uncontrolled nature, corporations and 1SPs are restricting their traffic, and individual users are
being charged with crimes or losing rights to services. It is highly probable that these systems will
be disabled or at least inconvenienced.

The ultimate goal for JXTA isto be a good citizen and respect copyright and property laws. The
reason is simple, without respectability, JXTA is seen as another Napster or Gnutella and will be

Xi

filtered by 1SPs and corporations. Respect others' rights to their property and you will be treated as
afellow citizen and allowed to use the Internet and corporate infrastructures.

Most of uslivein acommercial society, and we deal with commercia entities. Where thereis
unfair trade or criminal activity, the system of government or those affected will tend to remove
those who abuse the system. Although you may argue that entities like record companies are not
acting fairly, the fact is that the laws are currently written to protect them—not those who didike
the law and protest it by circumvention. Napster and the newer incarnations have not changed any
laws through their public protests and active breaking of laws. We still need to follow the rule of
law to succeed.

JXTA Scale

Another revolutionary idea of JXTA iswhat it empowers you to build. Without a central server,
with its costs and limits, much more is possible. This does not necessarily mean new types of
applications, just a greater scale than was possible in a server environment.

A good example of the scalability of IXTA applications is smple catalog for ee.commerce.
Normally, you would need a large number of clustered servers to handle a large number of
transactions. With JXTA, the catalog and its software are distributed automatically among peer
computers. Instead of a server that must show the same catalog to millions of users, you just need
one PC to distribute the first copy and any updates. All that needs to be centralized is the final
order acceptance and credit card transaction, and even that is distributable to some extent.

There are many benefits of a P2P catalog from cost savings to the ability of a user to access the
catalog offline. The application also runs faster because the user is not as limited to his or her
connection speed or waiting in a queue of other users. Add to this 100 percent availability to most
users, and you ensure that the verities of the Internet or of a server farm are no longer a part of the
risk equation.

Another scale feature is raw computing power. In a server environment, each client has access
only to limited resources that must be shared by all users. With IXTA, each peer has al the power

of the machine it is running on, plus the shared power of al the other peers with which it is
collaborating.

Is JXTA a New Concept?

Just by reading this far, you may have seen very familiar concepts. In the prior examples on scale,
it is very easy to associate the same goals with distributed computing. The examples of P2P
throughout the book are al possible using other methods. However, the point of JXTA is not
necessarily to replace these methods. JXTA is a platform with specific protocols to talk to other
JXTA platforms in a peer-to-peer network. It is not an application or alibrary created to build
specific applications. The reason JXTA exists is to enable the refactoring of many different
applications in a P2P environment. Like the catalog example, the ideais to move away from
centralized infrastructures to gain the benefits of a distributed system.

RMI, CORBA, and Web Services are distant cousins of JXTA. They are either oriented toward a
client/server or limited point-to-point communications. JXTA may seem to provide similar
services, but the framework beneath is very different. For example, you can implement remote
method invocation. The key difference between JXTA and othersis that the delivery of the

Xii

command to execute can span barriers like firewalls. The remote command can be sent to groups
of computers or just a single computer, depending on the type of task.

JXTA Risks

| think we can safely agree that JXTA is not like anything else. Is IXTA something to bet your
time as well as your fortune on? There are risks. Some are new and others are well known. Some
are being fixed as you read this book, and others simply need to be implemented on the current
JXTA platform.

The largest risk now is that JXTA will be in flux over the next couple of years. The good news is
that the community of developers will try to keep the network stable for the purpose of keeping
their products working. When you reach a certain point, developers learn to hate change, even
when the project is open source.

Itisnot al abed of rosesin other areas. There are aspects to a P2P system that can be problematic.
In our catalog example, it does take time to propagate the catalog to all users. The same time delay
is true of updates and transactions.

We are at the start of the JXTA revolution. It is time to think revolutionarily thoughts. The reign
of client server is about to fall. Read on and join the revolution. Viva la revolution!

Daniel Brookshier

turbogeek @cluck.com

JXTA Community Member, Java Consultant
January 2002, Ddlas, Texas

What This Book Covers

This book will only cover the Java J2SE reference platform implementation of JXTA. We will not
cover the C++, J2ME, Pearl, or other languages that are being used to create JXTA platforms. The

J2SE version is the reference platform and best for experimentation or explanation of JXTA
protocols. Java is also the most popular language for IXTA development at this time.

This book is intended to introduce new developers to the JXTA APl and selected applications and
services. Our god is for the reader to understand P2P concepts and be able to build useful
applications using JXTA.

We do not cover detailed aspects of how the IJXTA platform isimplemented unless it adds value
to the explanation on how to use it.

Who Should Use This Book?

This book is written for readers who need an introduction to P2P and for those who want to learn
JXTA. You should already be comfortable with Java. Y ou do not need to know anything about
JXTA or peer-to-peer programming.

Xiii

By the end of the book, you should be able to create simple P2P applications using JXTA and the
J2SE IXTA reference platform.

How This Book is Organized

This book is organized with two goals. The first goa is to explain P2P and JXTA in genera terms.
The second goal is to create applications that use JXTA. Finaly, we cover specific applications
with the aim of furthering an understanding of JXTA while showing how more complete
applications are written. This arrangement was chosen so that the reader can get an overview of
JXTA and then build an understanding of how to use its various parts.

Web Resources and Example Code

Y ou can download the source code for examples presented in this book from

www.samspublishing.com. When you reach that page, enter this book's ISBN number
(0672323664) in the search box to access information about the book and a Source Code link.

The NetBeans IDE was used for much of the code that is found in the book. NetBeans is available
at www.netbeans.org. Because Forte from Sun Microsystems is derived from NetBeans, it should
work as well. You can also use your favorite editor or IDE, but the ANT scripts were created
within NetBeans and Forte.

Also on the site are files that can be used with MagicDraw from NoMagic at
www.MagicDraw.com. The tool is written in Java and runs on most Java-compatible platforms.
The demo version will allow you to browse and print the JXTA diagrams used in the book, but it
will not alow you to save changes. The MagicDraw files follow the XMI standard for UML
representation in XML, so other UML tools that support the standard should work (drawings may
look different).

Xiv

Chapter 1. What is P2P?

By Daniel Brookshier and Juan Carlos Soto
IN THISCHAPTER

Defining Peer -to-Peer
Defining P2P

P2P Concepts
Applications for P2P

Key P2P Issues
Technologies Related to P2P

Summary

JXTA is a peer-to-peer networking platform, but what is peer-to-peer? How is it defined? What
are the problems? What are the applications for the technology? Moreover, how does JXTA
compare to other solutions? In this chapter, we cover these questions and more. Peer-to-peer
networking is very different from server-based technologies, and understanding the differencesis
essential knowledge to have before creating your application.

Defining Peer-To-Peer

Peer-to-peer (P2P) computing is not a new concept. Y ou can argue that when two computers were
first connected, they formed a P2P network. Mail servers, network news servers (NNTP), and
domain name servers (DNS) operate in peer-to-peer networks. For example, email servers
interact directly with each other to send, route, and receive e mail messages and can be considered
a P2P network.

A similar case can be made for DNS servers, although DNS relies on name registrars and
authoritative name servers. The net effect is that the name resolution is done in a distributed
manner by any of a number of cooperating machines, resulting in increased reliability and
performance.

The term "P2P" is relatively new, despite the examples that have been in place since the birth of
the Internet. Some people credit P2P to Gene Kan and the other early Gnutella pioneers. With all
the hype and media attention around peer-to-peer computing in the late 90s, it became very handy
to have a more compact way to describe the phenomenon when trying to explain it to the press and
analysts.

Coming up with a concise definition of P2P, however, is not so simple. There are not only
problems with what makes up a P2P application, many competitive P2P protocols and
implementations that operate in very different ways. Let's now define P2P so that we can grasp the
key concepts.

Defining P2P

P2P may be best described by what it's not rather than trying to pin down what it is. P2P is not
about eliminating servers. It is not a single technology, application, or business model. Perhaps

most controversial is that it should be not characterized strictly by degree of centralization versus
decentralization.

Centralization in a P2P network can consist of a central catalog, such as Napster. Napster acted as
atraditiona client server when users were looking for music, and it acted as a P2P network when
users transferred files. This means the system took advantage of the fact that it was easy to create
a centralized database of music files and their locations, but very difficult and costly to host the
music.

Gnutellais a completely decentralized P2P network. No one peer is different than another except
in the content that it shares. The directory service of Napster is shared among the peersin Gnutella.

JXTA mixes centralization with decentralization, looking for a happy medium. JXTA takes the
stand that some services in the P2P network are best done by a limited set of peers. Although not a
complete analogy, email servers and email clients are a comparable idea. E-mail servers handle
the temporary storage of email messages and route messages between other e mail serversto
reach their destinations. JXTA could perform the same function, except that the email could be
routed all the way from peer to peer using a combination of dedicated and distributed peers.

In General, P2P is more a style of computing that makes the network interactions more
symmetrical. Even though there may be centralized services, the end user peer is a significant
focus of the application. If the centralized services are distributed, such as email, the system is
less susceptible to problems with the network. Napster is the ultimate example of a monolithic
centralization that causes all the peer-to-peer functionality to fail if the main server fails or is
disconnected. Gnutella is the opposite because no single peer, if removed, will significantly affect
the quality of the network.

While P2P is not a new concept, many factors today make P2P practical for a wide number of
applications. These factors include the explosion of connected devices, the rapid increase of
affordable bandwidth, acceleration of computing power, larger storage capacities, and the
proliferation of information at the edges of the network.

The Personal Computer

It's hard to find a PC with less than an 800MHz CPU, 128MB DRAM, and 20GB hard disk.
Computers continually get faster, have more disk space, and become cheaper. Computers are not
constrained by resources—only by technology. Even if reaching the minimum size of a transistor
eventually repeals Moore's Law (the doubling of CPU speed every two years), companies will just
make bigger chips and increase parallelism.

Today's PCs are sometimes more powerful than server machines of just a couple of years ago.
About the only difference between a PC and a server is the greater 1/O bandwidth that a server can
effectively process. Other qualities separate the PC from the server, but they have more to do with
management, reliability, and the ability to scale. When it comes to the CPU, and in general storage
and memory, they are nearly identical.

Applications and their demands for greater speeds and storage drive the demand for these faster
PCs. Most applications do not use 100 percent of the PC's resources, so thereis alot of excess
capacity. P2P applications and protocols use the excess computing power and storage to create
systems where al of the computing is done with peers and not servers.

The Server

The real problems are at the server side of the equation. Despite economic downturns, the number
of people on the Internet is still increasing. The promises of every computer connected to a

broadband connection is not yet a reality, so many of the planned services are too big for the
miniscule dialup speeds.

Despite the reduction in costs of computers, Internet servers are still very expensive. The reason is
that as the Internet grows, the capacity of the server needs to increase. Because CPU capacity can
only double every couple years, servers must use multiple CPUs or clusters of servers to have the
capacity to serve hundreds of thousands of users. Because of al this hardware servers are costly
to run and require very expensive software. Because of the large number of users, great |eaps of
technology have been made in the past few years to cluster Web servers and application servers.
Databases have entered the terabyte range aswll.

P2P gives users (peers) control to use and access their data as they see fit. In many instances, it is
more efficient than replicating data on servers while providing the same type of access. P2P
applications are flexible and tolerant of errors. They can replicate data as needed and broadcast
data to multiple computers. With a server system, there are many points of failure, and many
installations have several failure points as a tradeoff between cost and reliability.

Thetime is ripe for compelling P2P applications that take advantage of the readily available
computing resources and data on the user's desktop. The desktop is currently at the edge of the
network, but this is where the network should begin. The desktop is an untapped workhorse and is
where users need to interact with applications—not half-way across the world with a browser
technology originaly just meant to share scientific papers. It istime for arevolution in how we
think and how we use our resources. To give you an idea of the dfference between server
technologies, look to AOL and Morpheus. (Morpheus is a music-sharing application using the
FastTrac P2P protocol.) Although AOL has more than 30 million customers, only 2 million can be
online ssimultaneously because of hardware constraints. By comparison, Morpheus can sustain 1.8
million users and more without any new hardware. Perhaps this is an unfair comparison of apples
to oranges, but consider the applications specific to AOL. AOL must support the connectivity of
clients plus serve applications. To do so takes millions of dollars of equipment. On the other hand,
Morpheus uses the user's computer and the user's bandwidth. The only cost of Morpheus's Web
pages is included in the cost of operations.

Characteristics of P2P Systems

For the purposes of discussion, we'll describe the common characteristics of systems and
applications typically considered to be P2P today. Example applications include the following:

Consumer file sharing— Gnutella, FastTrack, and Napster.

Distributed resources sharing— SETI@Home, Avaki, Entropia, and Grid projects.
Content distribution networks— OpenCola, Blue Falcon Networks, Konitiki.

P2P communications— AOL Instant Messenger, Y ahoo! Messenger, |CQ, Jabber, and
others.

Collaboration applications— Such as Hive, Groove, and myJXTA. File sharing and P2P
communications together are often the foundation capabilities used to build a workgroup.

The number of users of P2P communications and file sharing today is in the hundreds of millions
and can be expected to grow as more users and new devices come online.

The common characteristics of today's typical P2P systems include most of the following:

Peer nodes have awareness of other peer nodes.

Peers create a virtual network that abstracts the complexity of interconnecting peers
despite firewalls, subnets, and lack of specific network services.

Each node can act as both a client and a server.

Peers form working communities of data and application that can be described as peer
groups.

The overall performance of the P2P application tends to increase as more nodes are brought online
as opposed to typical client-server environments where more clients degrade performance.

The performance is also dependent on the application, the P2P protocol, and the network topology.
The network topology is the arrangement of peers, their bandwidth, and the peer's computing
capacity. The protocols pass messages and data on the network, which, will pass its messages. The
applications combined with the overhead of the protocol and the speeds capable by sections of the
network make up a system with a specific performance profile. Compared to server-based systems,
even asmall P2P network can be very complex. There is till a great advantage because despite
the complexity, the P2P network is realy a network of islands of PCsin different corporate, ISP,
and home networks.

There are cases where the protocol or application can saturate a network with messages. Not all of
the total P2P network may be affected, but large parts can be. A simple example of how this
would happen is an application for searching. If a search message propagates (copied from peer to
peer), the search message may be sent to peers multiple times. If most of the peers are forwarding
search messages and propagating, and contributing search messages of their own, the available
bandwidth could be quickly exhausted.

To prevent bandwidth saturation, the protocols should include message throttling, and the
topology should be augmented by an ability to reduce duplicate messages and even store
information that is commonly requested.

The following are some of the techniques used by JXTA:

Some types of messages are only forwarded a set number of times. This prevents
messages from reaching all peers. Most P2P applications work without needing all peers
to participate.

Data that the peer discoversis cached locally to eliminate the need to re-query
information every time it is required.

Data in the network, depending on its type, has a time-to-live property that prevents the
network from accumulating stale data. When the time-to-live of a message expires, the
message is deleted.

High capacity peers are used to reduce the load on peers that have low bandwidth or
inadequate processing power. This prevents low power peers with insignificant
bandwidth from being saturated with messages.

Message routing is intelligently planned by each node to ensure that the best routes are
taken to reach a destination.

The base protocol is selected based on the efficiency in the part of the network that is
used. |P broadcasting is used in alocal network to send messages to all peers with the
bandwidth of a single peer, while TCP or HTTP is used between LAN networks and for
direct peer communication.

Project IJXTA provides similar services on an open platform. Additional techniques, plus those
listed, can be added to the base parts of the platform's architecture. We'll look into some of these
examples and characteristics in more detail later.

P2P Concepts

One of the common misconceptions is that P2P networking is asingle protocol. The assumption is
easy to make because some P2P networks only use one protocol. You can use many models alone
or in combination for various applications.

Point-to-Point Communication

Point-to-point is the most obvious way to communicate between peers. This is nothing more than
opening a communication port between peers. There are still afew ways to communicate
including HTTP and with encryption.

Point-to-point communication is useful for messages that need to be directly addressed to a peer.
Point-to-point is also used as a part of other models discussed in the following paragraphs.

Cross-Linked Peer Networks

Cross-linking is where each of the other peersis, in turn, connected to other peers. The effect is an
explosion of interconnected peers. This alows you to access peers via a few hops to other peers.
Because of cross-linking, no single peer is very far from any other peer in the network. Thisis
often referred to as the Sx Degrees of Separation from Kevin Bacon Effect. The theory, developed
by Mike Gin€lli, Craig Fass, and Brian Turtle, was invented originally as a game. The concept of
the Kevin Bacon effect is that you can connect Kevin Bacon and any other actor through the films
or television shows the two have worked on in no more than six steps. The concept is also used to
show that you can pick any one person in the world and you should be able to connect yourself to
that person via a chain of acquaintances.

The Kevin Bacon effect is directly applicable to peer-to-peer networking with a collection of
interconnected peers, where no peer is connected to more than a few other peers but is able to see
all other peers viaachain of peer connections. In effect, one peer is never more than afew peers
away from another. The beneficial result is that queries are quickly distributed to most or all peers
on the Gnutella network.

The concepts can also be found in the small-world effect. The small-world effect results from
interconnections that seem to make the world smaller. The world is smaller because most parts of
the world are easily reached through associations or through technology or replications, such as
how franchises and other businesses replicate around the world. The effective distance is reduced
and, thus, creates a smaller world because the true distance between you and a person, a restaurant,
or product is no longer part of the equation. The same effect can be seen in P2P when data and
services become replicated and localized.

Broadcast Communication

Broadcasting is normally done within a subnet; there is a broadcaster and one or more listeners.
The message is sent out on the network and other peers listen to a specific port. Broadcast
messaging is very economica because there is only one message sent per subnet. Unfortunately,
broadcast messages are sometimes filtered or blocked.

Broadcasting is very useful for discovery. For example, a new peer comes online and broadcasts
its presence including an address that can be used to directly communicate with the peer. You
could also use broadcasts to deliver identical messages to a group of peers at avery low cost. For
this reason, broadcast is often used to deliver video, because only one copy is sent but al peers
can watch the video.

Another useful application is to broadcast queries. Thisis useful when there are many peers that
could answer a query, but you don't know which one has the answer. Similarly, this works just as
well when you expect an answer from each of the other peers.

Multipoint Communication

Multipoint is also often associated with broadcasting. However, the difference is that multiple
connections are made of multiple transmissions of identical data. In most situations where
broadcasting is desirable, using the protocol for 1P broadcasting is often impossible or at least
cannot reach all of the peers you would like. The aternative is to open multiple point-to-point
connections. In addition, bridge peers that will need to relay messages to other networks can only
reach some areas.

The application for multipoint communications are identical to those that would use broadcasting,
except that it used where the peers are unable to support 1P broadcasting.

Multipoint can also be used in various ways to create transport messages. Some peers can
specialize as routers, gateways, or even caches of messages.

There are problems with multipoint. First, messages have no guarantee they will be received
simultaneoudly. It is possible that the delay between transmission and reception could be quite
long because of relay peers. There may be additional problems because peers are generaly just
other PCs with dialup or other undependable networking, so messages may be lost. Finaly, there
are simply more bandwidth and computing resources required.

Despite the problems, multipoint networking is very useful and reasonably dependable as well as
efficient. When the network is made up of crosslinked peers and redundant services for routing,
gateways, and caching, the system is self-healing. In addition, the resources required, though more
than broadcast, are till more efficient than brute force methods.

Network Graph Functions

Network graphs are the descriptions of interconnection of nodes, so network graph functions are
tasks related to the arrangement or topology of the network. Included in this is the information or
functionality at each node and the type, quality, and capabilities of the connections between the
nodes. Network graphing functions include routing, loading, searching, and other functions.

Distributed Data Storage and File Sharing

Distributed data storage is another of the obvious parts of a P2P network. In essence, each peer
represents either generic storage space or is a container for a specific list of items. Important
issues with distributed storage are primarily concerned with searching for content.

Bandwidth Reduction

Bandwidth reduction as a P2P concept needs to be looked at two ways. First, think about
traditional server applications like Web sites or file repositories on a server. You can significantly
reduce the bandwidth of the server to that of a single peer. The peer can then transfer files to other
peers that in turn share the files with more peers until ultimately all the peers on the network have
the new file. Instead of one server, all of the peers share their bandwidth to distribute the files.
Thisis an important model because it reduces the cost of creating applications that require client
to transfer alarge amount of data.

Distributed Computing

Distributed computing is a type of application that uses the processing resources of a group of
peers to perform atask in less time by using more machines. Problems that can be solved with
distributed computing are actually small. The problem is that many problems are easy, hard, or

impossible to solve regardless of computing power. The other problem with distributed computing
is breaking apart the task into units small enough for each computer to complete in a reasonable
time.

Problems that have had the best success are those that process large amounts of information
looking for small features. For example, SETI@HOME looks for signals in small sections.
Because each computer in the network can effectively look for and find a signal, the application
can be successful.

Another application that can take advantage of distributed computing is simulation of problems
with large numbers of outcomes. FOLDING@HOME uses a distributed network, just like
SETI@HOME, but instead of a processing sequence of radio data, each peer simulates and then
tests adifferent sequence for folding a protean. Because there is currently no way to predict the
folding sequence, smulation is the only solution.

Distributed searching is alittle different than either of the previous methods. In distributed
searching, different data is stored on different computers. The client to the search propagates a
message to peers on the network. Each peer receives the search message checks to seeiif it has the
answer and, if it does, returnsit directly to the client of the search. If the peer does not have the
answer, the peer forwards the request to other peers. The economy of the distributed search arises
from not needing to store all the data in one location. The searches also can occur faster because
there is less to search through on each peer.

Internet Barriers: NAT, Firewall, and Proxy Servers

One of the most significant problems prevalent on the Internet is that barriers prevent ssimple and
direct communication between peers. The most obvious barrier is the firewall. Firewalls filter
specific communication ports, limit access to specific computers, and can filter specific patterns of

messages.

These barriers have been circumnavigated by using the HTTP protocol. HTTP is the most
unregulated protocol in use today on the Internet. The HTTP protocol only allows a Web browser
to initiate requests. This means that HTTP does not represent a threat, because an outside
application cannot initiate activity from the outside. Because of this, most corporations allow
HTTP to be unregulated.

By using HTTP for an application, known as HTTP tunneling, you can increase your chance of
getting around firewalls that block almost all other protocols. The additional benefit is that proxy
servers and NAT devices are also not barriers. We will cover these devices in more detail in
Chapter 2, "Overview of IXTA."

The problem with HTTP tunneling is that the communication is stateless. A response can be
linked with its request, but the context between each cycle of request/response does not have
context with those that came before or after. Because of the statel ess nature, some type of
identifier must be passed from the client to the server side to maintain context. We often refer to
these as cookies or its other form, URL encoding.

The other problem with tunneling is attempting to initiate a response or pass data to a client. As
stated, the outside world cannot initiate a response. The only alternative is to wait for the client to
contact the server and collect awaiting message. Not too difficult a problem, but it does introduce
extra messages and increases the latency of the response. Another problem is that messages are
not always waiting, so there could be a lot more traffic that is like the empty calories in a sugar
coated doughnut.

In a peer-to-peer network, the analogy of the sugar on the doughnut increases until the network is
overweight and has diabetes. If thousands or millions of peers are polling each other viaHTTP
tunneling, the number of poll messages will begin to flood the network. Another problem here is
that some peers can only act as clients, because some networks may allow outbound requests, but
not inbound as if there were a server.

The solution is to have relay peers that are allowed to be HTTP servers. If these servers have a
reasonably high capacity, the polling of groups of peersisisolated to a single machine. With
groups of relays scattered around the Internet and even strategically placed in corporate networks
and | SPs, the tunneling technique becomes more efficient. JXTA employs this technique, but not
all P2P solutions do.

A relay may not seem to be a very P2P concept. However, any peer, if capable, can be arelay. The
relay is not really a server as much as a middleman in a random transaction. The relay is more of
an appliance, such as arouter, than a true server or true peer.

Applications for P2P

Many popular applications considered P2P today involve some degree of centralization. They
range from fully centralized to completely decentralized, as demonstrated by Gnutella at one end
and AOL Instant Messenger at the other. They all have distributed network computing in common.

Many of these solutions, if not all, can be implemented with client/server architecture. However,
the characteristics of P2P can bring important improvements to traditional applications.

Chat

Chat applications are broadly considered P2P because of the characteristic that peer nodes directly
interact with each other. Chat implementations vary widely, as do their associated business models.
The most popular examples include AOL Instant Messenger, Y ahoo! Messenger, MSN Messenger,
and ICQ. Today, chats are also widely used by consumers and professionals alike, both at home
and in the office. It provides a real-time communications medium that is often more appropriate
than memos, e-mail, phone calls, and meetings.

The most popular commercial chat solutions use a centralized implementation. In short, all
interactions go through one or more central servers that provide an accurate directory of connected
members and route all messages. These implementations do not scale well and require very large
data centers with large systems to support alarge number of users. On the other hand, a
centralized solution tends to be deterministic in its operation for a given number of users and in its
ability to track use. Chat operators use their service as atool to capture new members for their
services, and most use this as a means to sell advertisements displayed on their chat applications.

The Project JXTA technology is ideally suited for chat implementations. It has been demonstrated
on arange of chat implementations, including fully centralized, brokered, and fully decentralized.
An interesting discovery is that using JXTA, the centralized implementation is most difficult
(requires maintaining state and message queues on the server for all sessions), and the fully-
decentralized solution was the simplest because the IXTA platform takes care of all the underlying
issues to discover and communicate with other peer nodes.

Numerous other chat examples exist on JXTA. They include the myJXTA application (formerly
known as InstantP2P), the Talk command in the IXTA Shell, the HotWire application, and severa
programming tutorials. These are described in more detail later.

Collaboration and White boarding

Collaboration comprises a broad category of applications that are P2P in nature. In the workgroup,
collaboration involves sharing of ideas and resources through interactive communications. For
example, to collaborate on a project, the team members are likely to need to exchange messages
and documents with each other. The exchange of messages can be done by e-mail, phone, and chat
applications.

During meetings, it may be helpful to have a shared virtual whiteboard to facilitate
communications among distant collaborators. Documents are both developed individually and
shared, or they are developed jointly. In both cases, P2P enables the documents to be shared in
real-time without reliance on a central server.

The Project JXTA technology has been demonstrated in collaboration applications. It has been
used to implement collaborative IDEs where more than one developer at atime can work on the
same software files. One collaborative JXTA application was devel oped that allowed severa
people to edit the same spreadsheet simultaneously. Other JXTA projects have built collaboration
toolkits that use JXTA for conferencing, shared browsing, and file sharing.

As with chat implementations, one of the advantages to using the JXTA technology for
collaborations is that an application can be fully deployed with no reliance on servers or other
centrally administered systems. JXTA handles the discovery of other nodes and the secure routing
and exchange of user and inter-application messages among them.

Games

Gaming promises to be an attractive area for P2P. The advantages include the following:

The mindset of the gamer is such that they are more likely to be open to new technologies,
such as P2P.

Message traffic generated by games is usually manageable and capable of operating on a
P2P network.

P2P alows for better community control as apposed to a central server that must support
al gamers.

Game designers are unlikely to have the resources to purchase and maintain reliable
servers with the capacity for large numbers of gamers.

The Project JXTA technology has been demonstrated in several game applications. An interactive
Chess tournament uses JXTA to exchange game moves among the two opponents and any number
of observers. The chess game (see Chapter 10) and a similar tic-tac-toe game have also been
demonstrated using JXTA for small devices.

A gamer can create anew JXTA peer group and invite other players from all over the world to
joinin his or her game, or he or she can restrict access to his or her game group.

File Share

File sharing applications remain the most controversial application of P2P technology.
Applications, such as Napster and now Morpheus and KaZaA, are widely used to share media
files, which in some instances violates existing copyrights. Whatever one's view of the current
copyright laws, the power of P2P for file sharing cannot be overlooked. This power has direct
benefits in the enterprise as well, where it has yet to be fully exploited.

One characteristic of P2P is that information tends to be distributed in an organic manner, making
control very difficult. In the case of copyrighted material, this exacerbates the problem because

content can be replicaed very quickly. On the other hand, this phenomenon has the advantage that
content becomes more readily available and less likely to become extinct. Several projects, such as
OceanStore (UCB) and LOCK SS (Lots of Copies Keeps Stuff Safe—Stanford), take advantage of

precisely those characteristics to create a network of highly-available, persistent data store.

The controversy around certain consumer file sharing implementations, such as Napster, runs the
risk of overshadowing the real contribution. Consider the alternatives to P2P for content
publishing (file sharing) in away that the content is readily accessible to you and your peers; there
aretwo. First is saving information to a group server and the other is creating a Web site. Saving
your documents to a server has the advantage of being at a known location that is probably backed
up and maintained by professionals. However, in practice, these servers tend to not be used as
religiously as necessary to make the shared files reliably available to others in your group. In
addition, the server is often completely inaccessible or not easily accessed outside the corporate
firewall. Consequently, users often resort to mailing documents as attachments to deal with both
issues that then introduce versioning problems.

Another solution is to create your own Web server. Thisis amajor hurdle for most users.
Typically, it requires getting a static 1P address, reserving a domain name, establishing aDNS
entry (assuming you have access to a DNS server), installing and maintaining a Web server, and
administering access control to the system. Compare this to Napster, where al you had to do was
copy afile to publish into a shared directory and that's it. Some Napster users resorted to renaming
non-music files they wanted to publish and share (<ol d file nane.old file

ext ensi on>. np3).

The popular file sharing applications today vary in their implementations. At one end of the
spectrum are Gnutella and Freenet. Both of these are completely decentralized.

Solutions such as those based on FastTrack and Project JXTA technology are also decentralized.
However, FastTrack has the concept of super nodes or rendezvous peers that facilitate the routing
of messages and discovery of content.

Napster is considered the most centralized because it relies on a centralized server to index the
content of the peer nodes. In Napster, all searches are done against the centralized indexes on the
servers, athough the actual file sharing is done with direct P2P.

Content Distribution

Content digtribution is different from file sharing in that the files are replicated among peers. The
content is distributed from an entity, such as a newspaper or other content company, to the peer.
The key benefit to a P2P solution is that only the first copy of an article needs to be fetched by a
peer. After that, the peers replicate the article among the peers. A newspaper that distributes data
this way does not need a high volume, high-cost Web server, just a reasonably capable personal
compuiter.

There is an additional level of savings within corporations. After an article is sent to a peer within
a corporate network, |P broadcasting can be used to send the article to al of the peers at once.
This means both that the link between the corporation and the Internet does not need the capacity
for al the peers to fetch the article via a Web browser. In addition, interna traffic is greatly
reduced.

Synchronization

Synchronization between peers is similar to content distribution except at a more granular level.
All sorts of files can be synchronized from configuration files to calendars and address books. The

10

synchronization would aso be in amuch smaller scope, perhaps just between your work and home
computers.

Key P2P Issues

The following sections briefly explain possible problems of P2P. These problems are general and
can occur in many situations. The JXTA community has tried to overcome many of the problems
with the core JXTA protocols, but these problems are still possible, depending on your application
and network topology.

Symmetric Bandwidth

Many P2P applications, because they represent both client and server parts of an application,
probably utilize as much bandwidth going in as going out. On the other hand, traditional web
applications use very little bandwidth outbound from the client and more inbound. For example,
Web page requests are small, but the data for the page is large. P2P applications are more
symmetrical because if they served Web pages, they would both read pages from other peers as
well as serve pages to other peers. Thisis not how most | SPs are configured to work. For example,
some cable modem and DSL 1SPs have 1.5Mbps inbound and 128K bps outbound. It would be
better for the performance if inbound speed equaled the outbound speed. Even if there weremore
wideband 1SPs providing symmetric access, the infrastructure of the ISP may still only support
asymmetric loads tilted toward inbound and not outbound traffic.

There are no easy solutions to this problem. However, | SPs and corporations can benefit greatly
from P2P if they support it directly. For example, by providing specialized P2P relays and
rendezvous that are akin to network routers, the system is able to handle much more traffic and is
able to even promote peers to cooperate within the ISP or caporate network.

The implication of thisis that there is also an opportunity for hardware and software
manufacturers to create specially designed P2P relays and rendezvous. Such P2P appliances
would do for P2P what routers and firewalls have done for the corporate environment.

SOP Verses P2P

Networking infrastructures, techniques, and protocols for Web-based servers and applications are
well understood. There are standard operating procedures (SOP) in place both at | SPs and
corporations. Both entities are expecting users with Web browsers accessing services. However,
P2P networking is not exactly like Web services. For example, P2P subverts port 80 to
communicate to other peers. Thisis very much like what would be done in a normal Web service,
but the amount of traffic on port 80 might be greater than expected. In general, the type of traffic
within the networks will be different.

A P2P appliance may alleviate some of these problems. If the corporation supports P2P and is able
to properly control traffic, there is no need to circumvent port 80 via tunneling or other technique.
With standardized relays that have the capability of being controlled by corporations, such as
corporate firewalls and routers, they can optimize their traffic and filter content.

Filtering content is probably the most significant use of P2P relays in corporations that are either
trying to control users or prevent non-corporate applications from being used. An ISP may want to
do this to provide filtered content to families with young children.

11

Many in the P2P world may find control and filtering to be at odds with the principals of P2P. The
redlity is that the Web was originally open and free. Corporations cannot live in aworld that they
do not control and will find ways to eliminate what they do not want. Add in security concerns
and you can see that there is no way to create a P2P network that does not include control within
corporate intranets and the boundary between the intranet and the wider Internet. By
understanding corpo rate behavior, a P2P infrastructure that is friendly to corporate needs will
succeed over those that do not.

Another aspect of modeling the current world is in value-added services. An ISP with specialized
P2P equipment can provide its customers with enhanced connectivity to P2P applications. This
would be similar to providing Web, email, and Web hosting services.

Naming Space

Addressing Web serversis currently done with DNS. In the P2P world, there is no equivaent.
Computers with DNS names are also static, while P2P peers are more dynamic as well as less
persistent. No universal naming space has yet to be created that fits the need of a P2P network.
Research is ongoing, but nothing is ready for primetime. Without a proper and unique way of
creating names that can be related to hard objects, parts of the JXTA network can be problematic,
with each developer choosing a different method for naming the bits that travel between the peers.

What about 1pv6, the extended 1P addressing to any device? True, this does allow for unique
addressing, but it is hardly likely to cause the disappearance of firewalls, NAT devices, and proxy
servers. These till help manage local area networks and provide adequate security. [pv6 will also
not be generally available for several years. Because | SPs charge for unique I P addressing, it will
till cost a user to have an |P address assigned and maintained with Ipv6. Virtual addressing is till
the name of the game.

Intellectual Property Concerns

Intellectual property is more of an issue in a P2P network because there is less built-in control. In
a server environment, the authentication and authorization of users to access datais simple. The
data, authentication services, and rights management are centralized at the server. P2P
decentralizes content distribution and is thus seen as uncontrolled.

The ideathat control islost is not a certainty. In fact, the only reason that control is lost is because
most devel opers do not implement rights management. Very often, it is easy enough to trust the
user. There are several different ways to track documents and who uses them. Not all of these
techniques are fool proof, but many have a reasonable cost to benefit ratio.

For the most part, people are honest. Y ou need to weigh ease of use and cost against the
probability of loss by abuse.

Access rights and copyrights are important in the corporate environment too. In a P2P network,
the corporation actually has the ability to enforce more control. P2P systems can use the same
authentication, digital signature, and LDAP mechanisms as I ntranet applications.

Users Verses Abusers

Not everything is perfect in P2P. One of the harder things to do is to control what users do. The
problem is that the peer network does not have a centralized point to store information about user
behavior. A simple example is afile sharing system. Without a central authority, it is difficult to
ensure that all users are behaving appropriately. The following are a few inappropriate things a
user may do:

12

Not share any files

Shares invalid files

Shares files infected with a virus

Does not stay online to provide a fair share of file searches for other peers
Does not alow others peers to complete file uploads

Shares content of no interest to other users

In the server mode, it is simple to control users. Resources and information about usersisin one
place. So, for example, access to data is easily matched and metered to the user's rights or his or
her participation.

In a P2P network, it is difficult to tell if a peer has rights to data or services. The problem is that
there is no central authority. The solution to part of this problem usually consists of digita
signatures. The signature can be used to validate the peer or user, but there is still a problem with
recording the behavior. Behavior can obviously be recorded at each peer interacted with, but only
by collaboration can the group see if a member is breaking the rules.

Of course, applications can regulate users at the peer. Many applications do this now. The key is
to ensure that the application really covers all types of bad behavior and is resistant to hacking.

In some cases, there is no need to protect from a bad peer. Most P2P networks are large enough
that a rouge peer is barely noticed. A paper entitled "Free Riding on Gnutella," by Eytan Adar and
Bernardo A. Huberman, exposed the fact that 70 percent of Gnutella users provided no files or
resources to the system, and that 1 percent provided half of the total content available on the
network. In other words, sometimes you need to expect the worst and plan to prevent it or decide
if you can live with the worst-case scenario.

LEARN FROM NAPSTER

Napster seemsto be in the news dl the time. In the beginning, it was because of its popularity, and
then because of its involvement with the courts. At the time of writing this book, there are still
news reports from time to time. The most amazing thing about Napster was its popularity.

Napster'sinitial success had several features. First, Napster was like a pirate attack of the music
industry. This attack appealed to many people who did not see any legal retribution in their futures.
Like many hardened criminals, being caught and tried for their crime was far from their minds.
Because there were hundreds of thousands using Napster at the time, there were literally not
enough people to serve the warrants. In fact, the only one that actually went to court was Napster
itself.

Secondly, like pirate booty, music was shared freely among the users and created a sense of
community with a share-and-share-alike attitude. In the 1980s, when software piracy was rampant,
the same attitude was common. It seemed normal to anticipate the cracking of the latest games and
to then share them with friends. Here, it was hundreds of users with decades of music that they
were more than happy to share with the world, and there were just as many looking for gapsin
their collections.

Nevertheless, what caused Napster to take off was that the bigger the community got, the better
the supply of quality music. This growthwas alittle selfish too. The system became explosive
with just word of mouth that got friends to try it, which meant their friends music and their friend's
computers would be added to the available music collection. As a subliminal afterthought, this
added another user as fodder if the law started to affect users.

Another feature of Napster's success were the low bandwidth users. Very often, alow bandwidth
user would set up the files he or she wanted to download and then go to bed to sleep through the
download. This meant that the client was online and sharing his or her current collection plus what

13

he or she have just downloaded. This meant there were many peers running through the night. Add
to this the large number of users at work and at home with cable-modems, and you have a lot of
content.

Because most bandwidth is fixed cost, the users did not worry too much about their time online.
As we discuss in the "Bandwidth Sharing" section in this chapter, Napster is doing this for a very
low cost, and most users don't see a large impact of running a Napster client. Because the client
also played the MP3 files, the user is yet again given incentives to be a participant in the Napster
network.

To summarize the reason Napster was a success: Free, Free, Free, and no extra cost to user.

Napster's death, however, is more than a story of the courts. The first thing that happened is that
the law was seen on the horizon by many of the loyal Napster users. After afew days of above
normal use (taking what they could before the door gets broken down) the users stopped using the
system. The clear killer in this case was one band that got a hold of a bunch of usernames and got
them kicked off Napster for violating copyrights.

But without the pirate users, Napster was devoid of content. All that was |eft was afew rare
copyrighted albums and fringe music. Fringe music, by its very nature, is only listened to by a
minority. Napster was essentially gutted of all of its users except for people that had been trading
their non-mainstream music before Napster was ever invented.

But the real lesson here is in the following statements:

More content causes more users that causes more content.
More content causes more time online that causes more nodes.
More nodes causes better performance.

We also have the equation for the death of a P2P application:

L ess content causes less time online that causes less content.
Less content causes lower performance that causes fewer participating peer nodes.

Users=Success

For many applications of P2P, the number is a minimum number of usersthat is critical to success.
Look at the Napster sidebar as a true story that proves this affect. In Napster's case, the number of
users was related to the number of computers that had data to share.

JXTA isalittle different from other P2P networks. The reason is that the JXTA isfirst a platform.
The peer in effect becomes a general-purpose part of the network. The effect is that there could be
a dozen different popular JXTA applications, but the IJXTA network is populated with the total
number of peers. The network should have a population of enough routers, gateways, and
rendezvous to ensure that most general operations will be efficient.

The IXTA applications themselves may still suffer if they are small. For example, the JPDA
application discussed in Chapter 9 would suffer if your friends and coworkers were not a part of
the system because you could not share your address book and book calendar events with them.
However, if your softball league al participated, it would still be very viable, at least for
scheduling your games. The number of users will always have some impact. With IXTA, at |east
this does not impact the ability of P2P applications to operate with a very small community as
long as JXTA itself is popular.

14

Seeding the Network

Building a P2P network is aso important. How you add usersiis just as important as what the
application does. With Napster, usage grew quickly because of the curiosity caused by news
reports plus word of mouth of friends and coworkers. Napster was a revolution and it grew
quickly because of its notoriety and even its daring in the face to the music industry and
copyrights. Nevertheless, many P2P applications are far more pedestrian and do not have an
aspect of novelty that would attract users. The odds of your application becoming overwhelmingly
popular are very slim.

There is hope. There are other ways to create a P2P application with alarge number of users. The
first is to package JXTA as a part of another application. For example, in Chapter 9, we create an
application with acalendar, a To Do list, and an address book. The ideais not to sell the idea of a
collaborative system as much asiit isto sell the idea of keeping your work and home computers
synchronized with the same information.

Another application currently under development is called ResumeX ™). ResumeX is an
application that shares resumes on the JXTA network. There are two types of users—workers and
employment agents. The resume creator must have his or her client up to help ensure that his or
her resume is available. Next up is the agent. When you give your resume to an agent, it isin the
form of aviewer that runsin the JXTA network. The application ensures that the resume is up to
date and ensures that the agent knows the current job status of the resume holder. In addition, the
application also makes it possible for the agent to see other resumes. So, people actively looking
for jobs are keeping their client up to ensure that they get a job, and agents use the application in
their daily searches, so they are online for long periods. Agents are also likely to add new resumes
to the system that, in turn, alows the new users to pass their resumes to other agents. The
application has the benefit of working with a small group of users that recruit usersto form a
larger network.

Creating a Community

Creating a community is another way to cause a P2P application to be a success. The best
communities are those that need to communicate or share data on a regular basis. Examples of
communities are tournament games, regularly updated news or stories, commonly-used resources,
such as devel opment references, chat areas, or even video monitoring, such as for a daycare or
playground. All of these examples promote a community of similarly interested users to stay
online.

Keeping Users Online

As discussed, the user needs to be kept online as long as possible to cause the network to have
resources that are more available to al peers. There are some very sneaky ways to do this. The
easiest isto just cause the application to be started as a service. This means that the application
will be able to connect to the network from the moment the computer boots. If the computer is
directly connected to the network, thisis a great advantage.

Another way to keep the application up is by the nature to the application. If you are monitoring a
camera at a daycare from work, first the images are available to other coworkers that use the same
day care. Second, your peer is available for genera use by other P2P applications.

A third way to create a P2P application that stays online isto add it to another application that
users usualy have on their desktops. This can include their email client, persona organizer, word
processor, instant messenger, news browser, music player, or streaming radio player. All of these
may use P2P but may not rely on it. However, the P2P network is up and able to share networking
resources and data.

15

Finally, you can use the same technique used by SETI@home. SETI@home simply asks the user
to keep the application running as a curiosity or for a higher purpose of finding life in the universe,
or even that one chance in millions for the fame of being the one person to have decoded the
important signal from outer space. The SETI software allows two modes—a background and

mode those only runs when the computer is inactive. With this method, by creating a creative
screen saver, you can cause people to use your P2P application and use their resources. Y ou could
also create an atmosphere like SETI by offering a reward for the most participation or by a

random drawing from al users. The key is that people will do certain things for altruistic reasons
or simple fame and to play the odds. Take advantage of human nature.

Pay/Barter for Membership Privileges

Cheating is one of the bigger problems with P2P applications—take Gnutella, for example.
Gnutella is a file-sharing program. Ideally, a user would share al his or her data. The redlity is that
many users avoid sharing too much data for many reasons. The system tries to promote sharing by
forcing users to share a certain amount of data. To cheat the system, some users share very small
and uninteresting files.

Users on Gnutella aso only stay online long enough to search for files. After the user shuts down

their Gnutella client, its resources are unavailable to other users. Worse, any client that was
transferring files from this peer can lose the connection and the file loads are aborted.

There are ways of stopping such behavior. To stop the sharing of bad content, other users can rate
the content they receive. If the peer gets a bad rating, it loses privileges to access services. Thisis
a barter system that uses proper participation as the value of exchange (Mojo Nation and Free
Haven are two P2P projects that are attempting to create such systems).

To stop the user from terminating his or her session after a short time, the system could throttle
itself to require the user to be online a specific interval of time. To make a ten-minute transfer, the
peer must have been available to other peers for at least ten minutes. If shutting down the client
terminates other connections, the peer could also be penalized by an appropriate amount.

Any system that promotes that a peer pullsits weight, as long as it is not too intrusive, is probably
worth participating in.

Network Trusted by Users

Not only should there be trusted data and users, the application and its network should be trusted
by the users. The key to success also requires protection against the abuse of user's data, network
bandwidth, and CPU resources. If your application allows your users to receive viruses or takes
over their machine, users will go elsewhere.

Technologies Related to P2P

There are many other technologies that are P2P, related to P2P, or can be used as if they were P2P.
We will cover the following:

JINI

Software Agents

JXTA competitors (Gnutella, Freenet, and others)
Web Services

Others

16

Thisis not an exhaustive list. We just need to look at a few to understand different ways that P2P
can be approached.

JINI

JINI network technology provides a simple infrastructure for delivering services in a network and

for creating spontaneous interaction between programs that use these services, regardless of their
hardware and software implementation.

One of the common questions asked when JXTA was introduced was how were JINI and JXTA
related? At first, JXTA and JINI may appear to be so similar that they may seem redundant.
However, thisfirst impression is far from the truth. JINI and JXTA are meant for very different
purposes.

First, NI is a standard for services and devices to talk to each other. A common exampleis a
laptop with bluetooth entering a building. As the laptop enters, it begins discovering the local
network. One device the laptop finds is a printer. The printer, because it is JINI enabled, does one
of two things, it either points to a configuration tool somewhere on the network that can be used to
let the laptop print, or the printer sends an application to the laptop to talk to the printer. The key
benefit is that the laptop did not need to have any specific printer drivers. The connection to the
printer is also self-configuring, so there is no manual install process.

Another example of a JINI application is corporate chat. In this scenario, alaptop entering a
building will have available, via a download from alocal server or even another laptop, a chat
application that can talk within the local area of the building.

In the prior examples, the key points are that the discovery of devices and services occurred in a
local area, and the code for both applications was automatically loaded and configured (it would
also be uningtalled if you entered a new netw ork with new services). Most of the communications
and software were Java-based, but there are implementations that can work with other languages.

The first key difference between JXTA and JINI is that JNI operates locally while IXTA works
locally and across the Web. JINI is primarily for aloca area network (LAN), and JXTA isfor the
Internet. There are bridgesin JINI to allow communication to alocal network from another, but
the path is usually to a specific service in the network. With IXTA, applications are less concerned
with network boundaries and are less likely to target a specific device or computer.

JINI also has a centralized service location broker. The broker, usually one peer on a subnet, is
used to allow JINI peers to locate and discover each other and the available services. IXTA hasa
similar mechanism, except that the functionality is distributed among many peers. The IXTA
service may bein the local network or provided by a peer that is not in the local subnet. The
mechanism is aso not location based. With JINI, the services usually known by the broker are
within the local network. With JXTA, the discovery scope is as large as the Internet.

Both JINI and JXTA can be used for distributed and peer-to-peer computing. JXTA is probably a
better choice for heterogeneous networks of computers, because it is easier to create a network of
diverse platforms and languages because JXTA's primary means of communication is XML. Most
JINI peers are Java based, and the communications are via RMI. JINI does have bridges to other
languages, but these are exceptions rather than the rule. JXTA uses Java for the reference platform
because of its popularity, rather than being a core part of the platform. JXTA isfirst a
specification that uses XML as a data format that can be decoded and used by other languages,
such as C, C++, Perl, and others. Therefore, the language of JXTA is the protocol, not a language
or an operating system on which it is dependent. JXTA is aso transport agnostic and can use
HTTP, TCIP, or others available, such as IP broadcasting.

17

There are JINI projects underway at www.jini.org for peer-to-peer networking. The Space Bus
project at http://devel oper.jini.org/exchange/projects/spacebus/ is one such project that was written
as amessage bus used to send and receive messages. The concept is very similar to JXTA's
resolver service that is used to transmit and recdve messages based on a broadcast or message
propagation model.

Software Agents

An agent is an entity that does work for you. In our particular definition, an agent is a piece of
code that is on another machine that does work. The key to agentsis that data or data and code
move through a network of peers.

There are two types of agent. The first is a package of code and data that travels from computer to
computer. An analogy for this type of agent is a person that goes from store to store to buy things
for you. The agent knows all about your preferences that can include your likes, didikes, and other
information you would have considered if you were there yourself. The agent knows how to buy
things in each store it visits to fulfill your shopping list and preferences for brands and prices. This
type of agent is often called a mobile agent.

The second type of agent is resident on many computers, but the data that represents how the
agent should behave is sent to the agent. An analogy for this type of agent is a clerk in each store.
The clerk is given alist of your preferences and is able to buy products in the store based on these
preferences. The store provides the clerk and you provide the data. Thisis not a pure agent but is
often included in the literature. Another way to classify this behavior is as a type of distributed
computing.

Both types of agent are identical in their results when used in a P2P network. The only difference
between the two is the overhead of moving code and efficiency.

JXTA, as it behaves for most applications, is of the second variety, where multiple copies of
software are spread around the network. Data is sent to each peer or propagated to many peers to
be used by identical processes. Each peer may have different data, such as different goods and
pricing. A smple exampleis JXTA Search, where each peer acts as an agent to search for a
specified string from within its local index.

Only afew applications behave like the first example where code and data move among peers.
The reason is that there is usually too much processing that would be unique to a single user.
Usually, software is constrained to a set of functions. Data is used to change the behavior,
sequence, and number of functions executed. Another barrier to mobile agents is that security and
control are difficult. It is very hard to determine if code is malicious or could cause problems
when interacting with the host system.

Another problem with mobile agents is the belief that users customize code to change the behavior
of their agents. Thisis agreat leap of logic, because the number of people is probably quite small
compared to programmers who could take full advantage. If we assume that only corporations
could write such agents, it is probably better to work directly with corporations to expand the
types of agent-like software installed rather than use mobile agents that can be abused by
unscrupulous corporations or just bad programming caused by budget cuts.

With JXTA, you could build either resident or mobile agents. JXTA has al the utilities necessary
for contacting multiple agents resident on machines. The moving of a mobile agent, though not
implemented in the earlier versions of JXTA, could aso be used to move code and data to other
machines to process information on a specific machine.

18

Another aspect of agent computing is reduction of bandwidth. The key savings of an agent is that
instructions move from machine to machine and only the results are returned to the initiating user.
In other words, the agents do not have a permanent connection from where they are to their source.
The drawback is that the agent must have enough information and decision making ability to
survive and complete the job without constantly talking to the originating host.

A third way to look at agents, especialy in the P2P world is to assume that each peer is an agent.
Instead of a buyer going from peer to peer looking for goods, a seller goes from peer to peer
looking for a buyer. Although this sounds like the same thing as the second example of an agent,
this version probably has less connectivity to any single buyer peer and more work done by the
selling peer. The key difference is that the buyer peer is not waiting its turn at the seller; rather, the
sdller isvisiting its buyers one at a time. In other words, thisis like a door-to-door salesman rather
than a supermarket. The sales peer is also likely to arrive at random times at the peer. In the first
two examples, the buyer peer islikely to arrive near the time that the buyer needs a product.

There are many frameworks for agent programming and many can be used with JXTA. In time,
many will be integrated to work with JXTA, so refer to JXTA.org for any projects using them.

Gnutella, Freenet, and Others

There are alarge number of ways to create a peer-to-peer network. Many companies and groups
are creating platforms for P2P networking. This section discusses a few of these, including Freenet
and Gnutdlla

Gnutella

Gnutella was developed by AOL's Nullsoft division and was released as an open-source
aternative to Napster. The project was quickly canceled and AOL removed all support of the
project. AOL, as acommercial concern, could not support a system that allowed un-metered
moving of copyrighted material. However, a community of developers outside of AOL already
had the source code and the project continued to grow, even spawning several commercial
companies.

Napster, at the time, was beginning to feel the pressure of lawsuits from record companies. Many
predicted Napster's demise and were looking for an aternative that would be immune to lega
action. Napster relied on a central server to arbitrate searches, and that was thought to be its
downfall because the central server could be shut down via court actions. The creators of Gnutella
created a system that performed similarly to Napster, except that there was no central search
mechanism. By not having a central server, the network was immune to an attack because there
was no easy target. Shut down Napster's server and Napster would be dead.

Gnutellais made up of a network of peers. Each peer is connected to a group of other peers. No
single peer holds a resource that would cause the P2P network to stop functioning. The only
threats to Gnutella come by falsifying information, filtering its protocol at the firewall, or
prosecuting individuals. As can be seen by the history so far, sending out false data, such as songs
that are random data, is annoying to users, but there are too many other copies of the song, so the
attack is rather random. Filtering has been rumored to happen at several corporations, and afew
individuals have had their | SP connection shut down because copyrighted files were logged as
being copied via Gnutella. Gnutella continues to exist, while Napster has had months of
continuous attacks in the courts that have shut down their servers and forced them to work with
record companies.

Gnutellaand JXTA are similar, but Gnutella was originally created as a tool to search for and
transfer information. Gnutellais more of a collaboration application than it is a platform for P2P
applications. Gnutellais being used to create P2P applications, but these are secondary to its
origina and more popular purpose of sharing files.

19

JXTA, unlike Gnutella, was created from the start to be a multi-purpose P2P platform. Like
Gnutella, JXTA is able to gain the same advantage of interconnected peers. IJXTA isfar more
complex than Gnutella, because it describes many different types of connections and XM L-based
protocols. Gnutella has limited messaging and, as has been pointed out, mostly slewed toward
optimizing file sharing.

One other difference between JXTA and Gnutellais the compartmentalization of P2P services. In
Gnutella, each node is essentially identical. In JXTA, a peer can be arelay, a rendezvous, and/or
provide a variety of network available services. This means that super nodes can be created that
can optimize the bandwidth of the network. Gnutella suffers from the fact that the interconnected
network causes all the peers to participate equally, even though peers vary in capacity and
bandwidth. Gnutella's community is debating whether the network can scale because of these
issues. On the other hand, JXTA, though still maturing, will probably be able to scale because
peers are so configurable and specialized peers can be created. In addition, JXTA supports
protocols other than HTTP, such as TCP and |P broadcasting (Gnutellauses only HTTP), so it is
able to choose the most efficient protocols for each situation.

Freenet

Freenet is a variation on file sharing using a peer-to-peer model. Freenet was created to implement
the protocol described in lan Clarke's paper "A Distributed Decentralised Information Storage and
Retrieval System." Freenet's main claim is that content can be published and read without fear of
censorship because individua documents cannot be traced to their source. In addition, because of
the distribution, it is also difficult to determine who is reading information.

Freenet is P2P, but it is definitely not a generalized platform for P2P applications. The design is
dedicated to content and the idea that publishers and readers are anonymous.

Many P2P applications require knowledge of participating peers. JXTA is oriented toward this
type of network. In fact, it may be difficult for a JXTA peer to be an anonymous participant. Some
JXTA applications may treat peers as anonymous, but you cannot remove the context from the
underlying protocols used to move information in the JXTA network. Such functionality may be
added, but it is not the central purpose of the JXTA protocols.

Agrocast

Anacther way to do peer-to-peer communications is via a distributed server system. Agrocast,
developed by David Wallace Croft (http://croftsoft.com/library/code/), uses Internet news group
NNTP servers to relay data. NNTP servers have long been used as discussion areas to alow users
to collaborate. The system uses distributed NNTP servers to relay messages between each other to
maintain an up-to-date list of messages. Users connect to their local NNTP, usually provided by
their ISP, to read and submit messages. Agrocast takes advantage of the distributed nature of the
NNTP servers to replicate its data to other NNTP servers to be read by other Agrocast clients.

Strictly speaking, Agrocast is a parasitic P2P application because the NNTP servers are unaware
of its co-opting of the network. Agrocast is aso never atrue P2P application because there is
always a third entity. However, the ideais similar to JXTA in that JXTA uses gateways to relay
messages. The difference is that gateways are just other peers and are not necessarily dedicated to
that single task.

SETI@Home

SETIT@Home is a distributed computing system. It is not strictly a peer-to-peer application
unless you consider that the main SETIT@Home server is the equivalent of avery large peer.
SETIT@Home is the world's largest distributed environment with a capacity of 26 TeraFL OPs/sec.
That is nearly 100 hundred years of computer time per day.

20

The protocol is simplistic. The client peers contact the main server peer to report results and to
request new data for processing. Because the average time for processing a segment of datais
about 14 hours, there is no need to keep connected.

SETIT@Home, because of its popularity, is atarget for both malicious and well-intentioned
hacking. Malicious hacking is aimed at corrupting data or co-opting the network. The well-
intentioned hacking is often done in the name of improving efficiency or porting the software to
another platform. Any change to the processing can cause errorsif not properly tested, so the
managers needed to avoid tampering of the software to avoid corruption of the data. The
SETIT@Home developers have mechanisms to verify that a valid client processed the data, and
the SETIT@Home server performs additional post processing to ensure that data is consistent.

Asamode for P2P distributed computing, SETIT@Home is the most successful so far. There are
other features of SETIT@Home, including its behavior and its compelling nature. A P2P
application, if not useful, should at least be entertaining or even appeal to our vanity and curiosity.

Web Services

Web Services is the name of a concept that includes technologies such as XML, SOAP, and UDDI
to create services that are available viaHTTP to any computer on the Internet. Web Services come
in two types—those used by servers and those used by clients (usualy Web browsers). Both
another server and a client can use some Web services.

A good example of a Web Service is a credit card billing service. Let's imagine a company that
sells novelty items on its Web site, www.cluck.com. The company has a catalog of very "fowl"
novelties, but they need to be able to process credit card orders. Because some customers need a
monthly supply of consumable products, such as itching powder, they also need to process
monthly orders without customer intervention.

To use the Web Service in a Web page, the devel opers at www.cluck.com would place code on
their Web server and Web pages that link the credit card Web service provider's Web service
server. The service is operated by various methods, but consists mostly of exchanging XML as
data or messages. The Web page in the online catalog uses an applet or JavaScript in the browser
to convert user input to XML. Alternatively, it could do the processing in the servlet engine or a
CGl. Though dightly complicated, there are usually scripts and layouts that just need to be
configured by the developer. There is very little coding required.

The same process can be repeated for the monthly orders of itching powder. All the developer
needs to do is create the XML requests and process the responses that are also XML. By using
standards, such as SOAP, the Web Services are compatible, and it is easy for developers to choose
from whom they get their Web services. They could even write their own Web Services. For
example, www.cluck.com could provide a novelty catalog service.

At first, Web Services may seem similar to P2P. There does seem to be computer -to-computer
interaction. Nevertheless, it is not P2P because there is no dynamic network of peers. The truth is
that Web Services are, at least for the moment, almost exclusively server based.

Web services are also not cheap. A Web Serviceis still a server-hosted service. The provider of
the service must maintain large servers, an infrastructure including routers and firewalls, and
bandwidth. All of this costs money that is passed onto consumers. The cost savings comes from
the offloading of support to the service provider that is shared by its customers. Thisis aso known
as an application service provider or ASP. A true P2P application uses the P2P network to share
the load so costs are reduced.

21

The good thing about Web Services is that they can be used by JXTA. Because Web Services are
usually HTTP based, they can breach firewalls and other barriers. Y ou will probably find some
service, such as a credit card processing service, to be quite useful—at least until IXTA has
standardized such a system.

Others

There are many different incarnations of P2P networking. We have touched on some of the more
successful examples. In addition, other P2P protocols are appearing as well as self-contained P2P
applications, such as Morpheus. It is possible that there will be others. Some use instant messaging
platforms as a backbone for P2P communications. In fact, Microsoft's Hailstorm can use instant
messenger. In the future, you may see more applications that use an instant messenger
infrastructure because instant messaging platforms provide a platform that gets around firewalls.

As can be seen from just a short selection, there are many different types of P2P platforms. Each
of those that we have discussed was created with a specific goal in mind. JXTA may become the
primary choice only because it was not intended to solve a specific problem but to make possible a
host of possible applications. IXTA is definitely a larger code base that is, at times, less efficient
than a purpose-built network like Gnutella, but it is easier to use for a variety of applicaions.
JXTA is definitely not for the minimalist but for those who can use a general solution.

There are some things missing from JXTA, like Freenet's anonymity, but JXTA was designed
with commerce in mind—not free speech, as was Freenet.

Summary

We have discussed many of the features as well as challenges of P2P networks. The challenges
have been part of the design of JXTA from the start. Not all are solved, but some are, and work is
in progress to solve the rest.

P2P is not a new concept. Many of the core protocols of the Internet itself were P2P applications.
While not easily defined, P2P may be characterized by the following properties:

Peer nodes know about other peer nodes.
Peers operate in a virtual network.

Nodes have qualities of clients and servers.
Peers are grouped into peer groups.

Thetimeisripe for new applications of P2P that either complement or replace existing more
centralized solutions. The tremendous success of file sharing and chat applications has done more
to attract new users more quickly than any Web site or Web Service.

P2P faces certain challenges with security, control, and network use, each of which is being
addressed by the evolution of technology and the deployment of more sophisticated systems. Still,
P2P's advantages outweigh today's challenges for many applications. P2P systems can provide the
following capabilities:

Individual control by peers— Users become very powerful. They create their own
group—in effect, their own virtua firewall, and have lower barriers for publishing their
resources.

Reliability— It can be thought of as a poor man's high-availability system.

22

Scalability— P2P has been demonstrated to support as many simultaneous users as the
largest centralized systems.

Performance— Resources are able to work together to tackle bigger problems more
efficiently.

JXTA provides a P2P platform technology and a community of resources necessary to develop
new P2P applications. JXTA's design supports the following:

P2P applications that span from fully-centralized to fully decentralized.
Any connected device running any OS on any network protocol.
Highly secure applications.

Interoperable components from different devel opers.

JXTA dso provides the hooks, via peer monitoring, to alow the IT department to monitor and
control peers. Without such control, IT departments would probably ignore JXTA. JXTA isbeing
purposely designed to work within the constraints of corporate I T departments and 1SPs.

Aswe discuss in more detail in the next chapter, JXTA is an open-source project with a vibrant
community of developers. Complete access to the technology enables devel opers to extend and
shape it as needed to support their applications. The community of developers provides an
excellent resource ready to provide help or collaborate on new solutions.

23

Chapter 2. Overview of JXTA

By Daniel Brookshier
IN THISCHAPTER

JXTA Defines

JXTA Concepts

JXTA Protocols

Peer and Groups
Advertisements

Pipe Bending Protocols
Resolver

Rendezvous Protocal
JXTA Identifiers

Summary

Now we look at key JXTA concepts and the protocols used. In this chapter, we will reiterate aspects of that
protocol from the author's point of view and in less forma language to ease you slowly into JXTA
concepts. The JXTA protocol specification is a formal document that describes a standard for JXTA peers
and their behavior. The goa of this chapter isto acquaint you with the concepts in preparation for Chapter
3, "JXTA Protocals," where we will begin covering Java API.

JXTA Defined

The following a quote is from the introduction of the JXTA protocol specification:

The JXTA protocols are a set of six protocols that have been specifically designed for ad hoc, pervasive,
and multi-hop peer-to-peer (P2P) network computing. Using the JXTA protocols, peers can cooperate to
form self-organized and self-configured peer groups independently of their positions in the network (edges,
firewalls), and without the need of a centralized management infrastructure.

What this al meansisthat JXTA isaframework with a set of standards that support peer-to-peer
applications. JXTA is not an application, and it does not define the type of applications you write. The
protocols defined in the standard are also not rigidly defined, so their functionality can be extended to meet
specific needs.

JXTA ismade up of three distinct layers. The first is the platform. The platform contains core functionality
used by services, which are the second layer. Services provide access to the IXTA protocols. Finally, there
are applications that use services to access the JXTA network and utilities.

This arrangement should be familiar because it isidentical to a standard operating system, where there are
three layers consisting of the core operating system, services, and applications.

JXTA adds several new concepts, such as the peer, peer group, pipe, and endpoints. JXTA uses a new
concept in peer-to-peer communication and discovery with advertisements, which are XML documents
that describe services and information available on the JIXTA network. Finally, we have various types of
identifiers used to distinguish one item or service from another.

Goals of JXTA

24

To begin, let's start with the goals of JXTA. The goals of JXTA are very simple:

Operating system independence
Language independence
Providing services and infrastructure for P2P applications

In essence, the goals of JXTA are to support peer-to-peer programming on any device from a desktop
computer to a PDA to acar or washing machine.

NOTE

JXTA is not a competitor to JNI. Although JXTA can run on devices, such as refrigerators, but that is
not the ultimate goa—just something possible given the goals. Many new to JXTA confuse JXTA
with JINI because of the many references to devices. JXTA and JNI have similar, but different, goals.
JINI is aimed more at discovering and using devices. JINI is also more Java-centric where IXTA
specifically uses XML instead of RMI, as does JINI. JINI was aso designed to work within the
bounds of alocal area network, not to interoperate on the Web and across firewalls, as does JXTA.
JINI is aso more concerned with services located on a particular network, such as a printer, for
example. IXTA would more likely be used to communicate with a software service that is not location
specific.

There are also conceptua goals. These goals include the following:

Use groups to organize peers and to give context to services and applications.

Groups use authentication and credentials to control access and/or enable security at the group
level.

Distribute information about peers and network resources throughout the network.

Queries are distributed throughout the system.

Provide an infrastructure for routing and communications between peers. Communication with
peers behind firewalls and other barriersis a key part of this goal.

Provide mechanisms to allow peers to monitor each other and resources.

In addition to these goals, there are several other goals, such as encryption, support for various
communications protocols, ease of use, stability, and performance. All of these goals were considered
when creating the JXTA protocols and the initia Java API.

Additionally, there were ather goals considered by the devel opers and the Sun Microsystem's managers:

Cresate a system that would enable any device to be added to the IXTA network (similar to JINI).
Create a system that would enable centralized management of peers within 1SPs and corporate
Internets.

Create a system that can support digital rights management. This would foster IXTA'susein
purchasing digital products, such as software, music, movies, and other digital media. File sharing
P2P applications that do not account for digital rights will be seen as alega liability and will be
blocked by businesses and | SPs. By respecting intellectual property and copyrights, JXTA
managers hope that JXTA will be allowed access.

Encapsulate and abstract specific core functionality so that commercia applications can be created.
In other words, enable manufactures to create appliances or hardware to perform functions similar
to traditional networking products, such as routers, firewalls, and hubs. This enables hardware and
appliance manufacturers to profit, as well as adds industry and corporate respectability.

The prior list has two key concepts. First, companies need to be able to feel like they have control. Most
P2P systems do not have centralized management and are not welcome in most corporate situations.
Secondly, the IXTA system needs to produce income for more than just application developers. This

25

means that there needs to be hardware or hardware/software combinations that are sold by vendors.
Because Sun Microsystems is in the hardware business as well as software, thisis a very important goal.

Given all of the goals, JXTA is designed for industry acceptance, maintainability, robustness, and can be
used to fulfill amost any P2P application concept. Because of the many goals, there is resulting
complexity. Because the system is complex and there are many methods to implement a P2P platform, the
specification is bound to change in the beginning. This chapter was rewritten several times as the
specification changed in the early months of development of the JXTA platform.

In general, most of the following will be reasonably stable, but be aware that some name changes or
structures may occur. Based on current experience, the differences will be minor and the following should
remain mostly current for quite some time.

XML and JXTA

XML isthe basis for most of the protocol in JXTA. The key reasons are its ability to be read by many
languages and its ability to be validated. XML is also an easy choice just because of its popularity.

Overdl, XML isagood choice because it is easy to sell as a protocol. To create a protocol that used a
binary format would be more difficult to understand, and parsers would need to be built from scratch. With
XML, there are many parsers that can be used, both commercial and free. XML is aso becoming a
standard for many different industries for representing data, so mixing data with the protocol is as smple
as merging two XML documents.

Thereisadownside to using XML. XML is ssimply not a compact way to express data. Messages written
in XML will be much larger than a binary equivaent. There are techniques that can be used, such as
replacing tags with binary tokens or compacting data, but none of these are currently employed in IXTA
because there are no widely accepted standards at this time. Consequently, the core JXTA devel opers have
created a simple binary message transport and have used terse language and acronyms for tag names.
Unfortunately, this means that the XML used in IXTA is devilishly hard to learn and read.

Because some developers are not familiar with XML, Appendix B "XML Primer," has a short primer on
XML concepts.

JXTA Concepts

Peer-to-peer networking, such as server-based networking, requires a lexicon of concepts that need to be
understood. The concepts are similar to others you are familiar with, except that there are a few twists
caused by the needs of a P2P network. Let's ook at the important definitions and concepts that will be
critical to understanding JXTA. Well return to each of these concepts and discuss them in more detail later
in the chapter.

Peer

A peer isavirtua communications point. You can have multiple peers on a computer or device. A peer is
not the same as a user because a user may have peers on their phone, office/lhome computer, or other
devices. It is aso possible to have multiple peers on a single device, not necessarily an ideal situation but
good for debugging.

Because a peer is not the same as a user, applications need to abstract the idea of user separately from
peers. Any abstraction of users should be viable when a user has access to multiple peers.

26

Peers are also associated with specia network services that they provide. In the reference implementation,
peers can share basic services with the rest of the network, such as rendezvous, router, gateway, or a
combination. These basic services provide search and communication services. In general, not all peers
need to enable these services, but a percentage of them are required to ensure that other peers have access
to these services. We will cover the concepts of these services a little later in this chapter.

ONE PEER ON ONE COMPUTER

Usually only one peer resides on a single platform. We assume a communications model where thereis
only one peer per device. When P2P is accomplished by a distributed network of computers acting as peers,
we get the most value from collaboration, distributed searching, content sharing, bandwidth sharing,
distributed processing, and other P2P applications. Nevertheless, there is nothing to preclude multiple
peers from residing on a single platform or multi-CPU device. As long as the peers can be viewed as
separate entities, there should be no problem, except for consuming extra resources. As a minimum,
multiple peers can be launched on a single computer to simulate a network for debugging.

One reason for multiple peers on a single computer is to provide a proxy service for peers that are too
small to be a JXTA client. Thisistrue for cell phones or other portable devices. However, with
advancements in portable devices, there isless of a need for this type of arrangement. There are cases
where you need to do this, but they should be specia cases. Y ou should also realize that the same
functionality could be created by a group of individua peers, each peer acting as a proxy for the telephone
peer.

Context switching— The number of peers you need to run are greater than the capacity of
the server. As each peer is communicated to, you need to switch its state into active memory.
Sze— How much of a peer do you alow in the server? How big of an application? How do
you constrain and manage it?

Application— What is the application? Will al customers use it? Is there a value worth
charging for?

Another possible solution that could have multiple peersis to interface to an existing server. The peers
would act as a proxy view of the server so that the resources would be available over the P2P network.
Nevertheless, this again can be solved with a distributed system of external peers that proxy the server.
Resources can be added at will by adding more peers. A peer could also optionally use the server directly
Or USe a proxy peer.

The whole idea of P2P computing is to distribute resources. By creating servers with multiple peers, you
are going against JXTA and P2P philosophy. Y ou are aso burdening yourself with all the server problems
that true P2P avoids.

Imagine true P2P solutions when faced with legacy servers or attitudes. Refactor your old server
applications using JXTA when faced with costly or inadequate server technology.

Peer Group

A peer group isaway to group peers and to advertise specific services that are available to group members.
Y ou can create groups, join them, and of course resign from a group. There is also the ability to renew a
membership in a group.

A group may need to limit membership for various reasons, such as secure communications between
members, privacy, or there may need to be certain information that a user must supply before joining a
group. There is an authentication protocol specifically designed to collect information and allow the group
to determine if the information meets the requirements for membership.

27

The peer group provides context to use applications and to use the applications with other peersin the
same group. For example, a peer group of jugglers would use a chat service in the juggling group. The
effect would be to limit the chat to just those that joined the juggling group.

To further the juggling example, the group could authenticate users by validating a membership ID from a
national juggling organization. Those without an ID would not be allowed to chat with the rest of the group,
because they could not join the group.

Another way to look at groups is as a virtual private network (VPN). A VPN allows several computers to
talk to each other without allowing the rest of the Internet to participate. VPNs include encryption so that
the group conversation is not understandable to anyone who might eavesdrop. Peer groups aso limit
access to peers, and they can also use encrypted messages.

Membership to a peer group can take several forms. The two key models are local and remote membership
services. A local membership service runs entirely on the peer that is applying for membership. All
resources and ability to validate a user reside also on the same peer. So local membership services allow
you to join without connecting to any other peer.

Remote membership reguires accessing one or more peers in the group that you are joining. The idea is that
peers that already belong to the group either have access to resources for validating a new member.
Similarly, the set of peersin the group could query their users with the new member's application to see if
the members are willing to accept the new member.

Endpoint

The endpoint is the basic addressing method used by JXTA applications to communicate with each other.
An endpoint is an address of a peer that implements a specific protocol of communication. A peer can have
multiple endpoints and thus can be communicated with via different protocols.

NOTE

Address as defined here is not necessarily a physical address. Endpoints allow the physical address to

change. For example, in a DHCP-enabled ISP, the IP address of a computer that dialsin, is going to be
a random address each time.

A simple example of an endpoint is an IP address and port. By using these values, a stream could be
opened to communicate to the target peer. However, IJXTA places a layer on top of streams called pipes
(discussed in the next section). Instead of connecting a stream to an address (represented by the endpoint),
you connect a pipe to the endpoint. The beauty of endpoints and pipesis that you don't care what the real
address is or what the best protocol to use for a particular peer. In addition, there are other services used to
route and even forward messages. Using the pipe and endpoint abstraction provides a lot of power and
reduces the complexity of building a P2P application.

Because pipes connect via a communications protocol, the endpoint describes the protocol and the specific
information used to connect to it. Therefore, the endpoint can describe an HTTP, TCP, BEEP, or other
supported base communications protocol.

A peer can support one or more endpoints. By supporting more than one protocol, the peer can use the
most effective method. In other words, if two peers are behind afirewall, they can communicate through
their TCP endpoints. When these peers communicate to peers across the firewal, which traditionaly filters
everything but HTTP, they would use the HTTP protocaol.

Pipe

28

A pipeisavirtua connection between peers. Normally, we think of peer-to-peer communications as a
single connection, but thisis not always possible. The problem is that many peers cannot connect directly
because of firewalls or other barriers. Pipes are intended as a layer over multiple communication protocols
and to support relayed communications via gateway peers.

Pipes are a basic and important feature of JXTA. They create a very useful paradigm that alows peersto
communicate in most network situation, despite firewalls or other barriers. Even if you do not know
anything about a peer or where it is, you will to have a mechanism to communicate with the peer via a pipe.

Pipes are used as an abstraction to hide the fact that there may be other peers involved along with multiple
connections. Pipes can also be implemented to be self-healing and reroute around an original peer. Self
healing in important because a peer, unlike a server, is not meant to be available 24 hours a day and can be
removed from the network at any time. The Java JXTA implementation has several flavors of pipe.

As discussed, the IXTA protocols support and encourage different types of pipe. The following isalist of
afew possible (currently not implemented) pipes that are either part of the Java implementation or possible
additions:

Uni-directional asynchronous— Thisis a pipe that is only used for communications that are in
one direction. The pipe is asynchronous and messages may arrive out of order. Thisis the most
basic type of pipe and should be implemented on most JXTA platforms.

Synchronous request/response— All messages sent will receive a return message of
acknowledgment. Messages arrive in the order that they were sent.

Bulk transfer— Used to move large amounts of data.

Streaming— Used to efficiently move data in a stream similar to that of audio, video, and other
data streams, such as a stock market data feed.

Bidirectional— A combination of two asynchronous pipes.

Uni-directional synchronous— All messages sent will receive a return message of
acknowledgment. Messages arrive in the order that they were sent.

Unicast reliable secure pipe— All messages sent will receive a return message of
acknowledgment and the data will be encrypted.

There are two different types of addressing for pipes:

Point-to-point— Point-to-point pipes connect two different peers. Multiple other gateway peers
can be used to create the connection.

Propagate— Connects one peer to multiple destination peers. Propagate pipes are aso called wire
pipes because of the project that originally developed them. Propagate pipes can also have

multiple peers involved in the connection, including those that are endpoints in the communication.

In the current platform, the uni-directional asynchronous, unicast reliable secure pipe, and bidirectional
pipes are implemented. In addition, there is a secure version of a unicast and reliable secure pipe.

Endpoints and Pipes

JXTA isvery different from atraditional network. Most network protocols have either no address (HTTP
clients) or they have afixed address where a URL or |P address is used to pinpoint the clients. IXTA
abstracts the idea of a client address and calls it an endpoint.

A peer can have more than one endpoint. Peers can communicate over one or more protocols, such as TCP
and HTTP, so there are usually multiple endpoints. This sounds strange at first because we usually deal

with only one protocol in most applications. The reason JXTA uses multiple transport protocolsis to alow
a service to communicate with peers over the best method possible.

29

If you were behind a corporate firewall, you would use HTTP to communicate outside the firewall and
TCP to tak to peers on the loca LAN behind the firewall.

With multiple transport flexibility, you can use a specific protocol for a specific peer and thus the best
speed and response. Behind the firewall, the speed and response is very good. Crossing the firewall, the
response is poor. Overall, you are better off than if you only used HTTP that would have sacrificed
efficiency behind the firewall.

Advertisement

An advertisement is an XML document that describes a JXTA message, peer, peer group, or service.
Advertisements follow standards for encoding, tags, and content. The advertisement is used to exchange
information about what is available in the JXTA network.

For an example of how this would work, imagine a peer that creates a peer group with the name Trekker
Chat. The peer would publish the advertisement to the local IXTA network. Thisis done with an IP

multicast. In other words, any peer in the sub-net will receive a copy of the advertisement. In addition the
advertisement is sent to the rendezvous.

Peers use a special class of peers called rendezvous peers to discover advertisements from the rest of the
network. Rendezvous peers (discussed in the next section), store advertisements and support searches. A
peer can now request the peer group advertisement by searching for its name or other property. With the
peer group advertisement, these client peers can then instantiate and join the Trekker Chat peer group by
using the information contained in the XML. When they're members, they can use the group context of
services or locate peers that belong to the group.

NOTE

Most of IXTA's advertisements are encoded with UTF-8, which is an ASCII-preserving encoding
method for Unicode (1SO 10646). Unicode could be used, but the advertisements do not use specid
language characters and foreign punctuation. Because UTF-8 is 8 bits and Unicode is 16 bits, the
halving of the size of advertisements makes a lot of sense.

The only place you should find it necessary to use full Unicode is in the body of messages. Within
messages, the encoding of the contents can be specified as Unicode or any other character set,
including UTF-8.

Messages

Messaging in JXTA is done in two different ways. First is the standard way that would be expected with
XML. The messages are packets that contain a payload of data formatted to follow XML standards.

The second type of message is a very economical binary message. Despite the desire to use XML for al
JXTA messages, the redlity is that there are many messages sent and received. The bulk of XML messages
send in large volumes is very inefficient. Also, because messages are usually sent from application to
application, it is simple to standardize on the contents of the message. The remainders of the protocols are
till XML.

The use of binary messages in an XML protocol may seem counterintuitive. The truth is that there are
more advantages than just compactness. The first is that data can be compressed using standard techniques.
Compression of data, such as text, can create a huge savings in time to transmit.

Another reason for binary data is that many messages are already binary. For example, a document-sharing
program will most likely share binary documents. If you were transferring messages via XML, the data
would need to be converted to XML.

30

Another reason for binary messages is encryption. Because the data needs to be converted to binary for
encryption, moving straight to and from binary instead of XML makes sense.

Identifiers

JXTA has awide selection of different identifiers. Identifiers range from large, unique identifiers to names

and URLSs. Identifiers are used like pointers of references. In the reference platform, identifiers are used for
indexing, filenames, and searching.

Rendezvous Peer

A rendezvous is a peer that processes queries from other peers. The rendezvous can also delegate queries
to other peers, which must also be a rendezvous. A key purpose of rendezvous is to facilitate searching of
advertisements beyond a peer's local network. Rendezvous usually have more resources than other peers
and can store large amounts of information about the peers around it. In a peer network, information is
scattered among peers and not stored entirely on any single machine, such as a server. Instead, there are
rendezvous that distribute the storage of the advertisements.

Rendezvous peers can also act as relays of searches. The rendezvous peer can forward discovery requests
to other rendezvous peers that receive their information from peers with whom they have exchanged
advertisements. Each rendezvous will forward on a request if it does not have the information requested.

A typicd search isillustrated in Figure 2.1. The remote search starts from Peer 1 which firsts querieslocal
Peers 2 and 3 via IP Multicast. These Peers (2 and 3) are most likely on the local LAN and are quickly
accessed. Next, if these Peers do not have the specified resource, a rendezvous peer is searched. If the

rendezvous peer does not have the advertisement, successive rendezvous peers are searched. Note that
besides the peers locd to the query peer, only rendezvous peers are searched.

Figure 2.1. Rendezvous query routing.

31

Firewall

Peer 3
3.1.2.TCP Result(4, 5,8, 7. 8)
1.1:-TCP JAHTTR
Peer 2 | Result(2) /
% 3.2:HTTP Peer 4 Rendazvous
1.1P Multicast Peer 1 REE'J"I:#, 5,6, 7, 8) Rendezvous Known b.!r. Peer 1
;’ Knows about 5 & 8
r
i
Peer 1 initiated 31.1.TCP Queary 3.1.1.1:TCP Resull(s, 8, 7)
advertisement discovery
[
Peer 5 Hendezvous
Hmamus - KI'II:PI'JI"I h"ll" p’E ar 4
/ \ Knows about 6 & 7
Peer B Peer 7

IP MULTICAST

IP Multicast is a one-to-many messaging protocol. IP Multicast is used to send one copy of datato a group
address, reaching all recipients who are configured to receive it.

IP Multicast has two benefits over P2P applications. First, because multicast uses a group address instead
of IP addresses, a peer sending a message can do so without knowledge of the listening peer's address. The
result isthat al peers within the multicast network can now respond to the caller with information to the
guery and even their IP address for direct communication.

IP Multicast's second benefit is the reduction of bandwidth. Because al peers can see a single message,
there is no need to send a copy of the message to each peer. Thisis very important when sending large
amounts of data to a group of peers.

A drawback to using multicasting is that some firewalls and routers block multicast messages. Thereis
some support for sending multicast messages via Internet backbones between Internet providers, but it is

often a service for which you must pay extra. There are other barriers to IP-Multicast. These can include
personal firewdls and subnet routers. Thisis why JXTA supports more than just IP-Multicast.

In general, the multicast support available behind afirewall is sufficient for most P2P needs. Y ou can take
advantage of localized multicast support by sending duplicate messages for each network to a specific peer
within the network for rebroadcast via multicasting to the local peers.

Only arendezvous allows searching beyond a local network. A peer has the option of being a rendezvous,
but it is not required. There is a side benefit of being a rendezvous—the peer will retain a cached copy of
the results from other rendezvous of the result of cached answers to requests.

On the negative side of being a rendezvous, the peer will use more memory and higher bandwidth.
Because of the possibly high number of requests and the resources consumed by a large database of

32

advertisements, the case can be made for a dedicated rendezvous peer. In corporate installations, the
rendezvous could aso perform the duties of gateway and router for the corporate intranet. The effect
would be similar to the use of atraditional router. Additional scaling could use a rendezvous in each of the
corporation’s subnets.

The need for dedicated rendezvous peers depends on security and the scale of P2P applications used. The
P2P network topology should be examined on a case-by-case basis and monitored regularly.

It is important to mention here that a P2P network becomes more efficient as services are duplicated
among a large number of peers. However, there may be a point where additional rendezvous do not add to
efficiency.

Rendezvous are used when a peer is searching for an advertisement or when other services use the
rendezvous mechanism to route messages, so the need by a peer is not constant. A rendezvous connected
to the Internet will be exposed to possibly thousands of peers. Within the bounds of a firewall-isolated
network, having all peers configured as a rendezvous will probably not have alarge affect caused by
rendezvous tasks. Note that this observation may prove incorrect if there are many requests that have large
search scopes.

Rendezvous are a so used for application specific queries. In Chapter 9 "Synchronizing Data Between
Peers," peers use peers acting as rendezvous to propagate information about new appointmentsin a
calendar as well as synchronizing an address book.

NOTE

When considering any network topology or deciding if your peers should be a gateway, router, or
rendezvous, be sure to check the current implementation for its efficiency and capabilities. Remember
also that some applications may specifically use these services in unique ways. The JXTA platform
will continue to evolve and should eventually cover most topologies or be configurable for many
situations. But each environment is unique, so experimentation and monitoring of actual use may be
the best way to configure your peers—especialy in alarge corporate environment.

Router Peer

A router in JXTA is any peer that supports the peer endpoint protocol. Not all peers need to implement the
protocol because, like traditional network routers, you only need a few to support a large network. JXTA
routers are very similar to a traditional router. The primary difference is that a P2P network is less stable
and includes many addresses that are not static.

Figure 2.2 is an example of how aroute is created. The request for aroute starts at Peer 1 with the request
for aroute passed to available routers until the complete path to Peer 8 is built. Note that because a peer
can be a gateway as well as arouter, Peer 2 includes itself as a node in the route. Please understand that
thisis just conceptually how routers work, not how they are actually implemented. Routers can support
caching or complex algorithms. For example, instead of the first router forwarding a request for the rest of
the route, this router may already have a cached version of the route available.

Figure 2.2. Conceptual example of peer endpoint routers creating aroute between Peer 1
and Peer 8.

33

poatl | Requestroule 18 Poer 8
?Sg::; :Request route 1- Gat
Mote: Routars
1.2:Requesl Peer 7 imp'?'"e"t Peer
\ route 1-8. 2-B Gateway Endpaint Pratocol
1.3:Request route Pear 2 or6-8 P
1-8, 2-8, or 6-8 Router Feer &
Gateway % 7 fETE)
,(é:// v S~ Peer 5
Peer 4 . 1Z21Route?2, | Router
Router | 1.1:Request route 1-8, | 6.7.8
1 2.8, or6-8 \ ' *
1 \ ~
i k s
| "‘ LY
N [N [

Router cannot find

a routs to peers.

Router finds route between
1 and gateway at 6 viails
own gateway (2). Propagates

Router finds gateway at 7
that can route to both 6 and
8. Returns route between

message to other routers 6.7, and B,
looking far routa from 1,2 or
6 to peer 8.
Final Route
Peer 1 :gﬁ: ;, Peer 6 Peer 7 Peer 8
Start Gateway Gateway Gateway (End)

Gateway Peer

A gateway is a peer that acts as a communications relay. Don't confuse gateways with rendezvous. A
gateway is used to relay messages between peers, not requests.

Gateways are like radio repeaters or a middleman between peers used to relay messages. Gateways are
critical to connectivity because of firewalls, NAT devices, and network proxies. Gateways can store
messages and wait for their intended recipient to collect the messages.

Gateways exist because the Internet is very messy. The messis caused by the fact that we have al sorts of
security and barriers that prevent a common way to communicate between peers. Another bit of this mess
is the difference between protocols supported by peers. Some peers may use TCP, others may use HTTP.
With wireless, we would need Wireless Application Protocol (WAP) as well. The gateway supports as
many of these protocols as is possible so that it can act as a middleman between different types of
protocols. JXTA started with support for TCP and HTTP, but other gateways are in devel opment.

Gateways are key to getting around most of the security on the Internet. Firewalls, proxy servers, and NAT
devices are the common security barriers. Figure 2.3 shows how the gateway Peer 2 is used to interface
between Peer 1 and Peer 3. The gateway translates HT TP messages from peer 1 to TCP for ddlivery to
Peer 3. When messages are sent from Peer 3, they are sent via TCP to Peer 2, which holds the message
until Peer 1 makes an HTTP request to retrieve the data.

Figure 2.3. Example of gateway participation in a single pipe.

34

TCP Pipe

Internet Peer 2

Gatewgg

Firewall or NAT boundary

Local Area Network HTTP Pipe

Peer 3

NOTE

JXTA has started using the term relay to merge the terms rendezvous, router and gateway. Relay will
also be used to include concepts like proxy, transcoding, and related "JXTA network helpers,” rather
than proliferating a bunch of overlapping terms. It is also expected that there will be specialized peers
or even commercia appliances that have just these functions, so a single name is more marketable. We
will use the terms interchangeably for now, depending on the focus of discussion.

Why We Need Relays (Routers and Gateways)?

Although we have touched on the subjects, we need to specificaly cover why relays are required for a P2P
network. The following sections discuss each of the barriers to a P2P network. Each of these creates a need
for us to abstract the network and create a virtual network where the P2P system provides routing and
messaging via HTTP tunneling or to switch transport protocols.

Firewalls

Firewalls, which filter almost everything except HTTP, are most often found at larger companies, but they
are also now found in homes that use specia firewall routers. There are also personal firewalls, so called
because they run on the user's personal computer. Firewalls are often configured to filter amost everything
except HTTP. HTTP only allows communications that are initiated by the client.

For example, when you are requesting a Web page, connecting to a Web server, sending the request,
receiving the requested page, and then disconnecting. At no time does the Web server initiate a connection
to the Web browser.

Because there is only one direction of communication that can be initiated, the gateway acts as a virtual
agent that accepts messages for later delivery. Therefore, if a peer attempts to talk to a peer that can only
initiate HTTP communications, the gateway holds the message until the HTTP peer contacts the gateway
and asks for messages addressed to it.

NAT (Network Address Translator)

A Network Address Trandator (NAT) deviceisjust as disruptive as afirewall. Most wideband routers for
cable and DSL use NAT.

NAT lets you use asingle | P address for a whole network of computers. Because Internet providers charge
by the unique IP address, many use a NAT to save money. The NAT sits between the public Internet and

35

the aloca area network (LAN) where it rewrites | P addresses and port numbers in IP headers on-the-fly so
that the packets all appear to be with the public |P address of the NAT device instead of the actual source
or destination. This causes multiple problems with applications that pass addresses and ports back and
forth across the NAT. The NAT simply cannot detect and correct the message to reflect the mapped
address. Essentially, this means that if you are behind a NAT, you will have trouble telling anyone what
your addressredly is.

Many NATS, for security reasons, only alow incoming traffic from an outside address only if an outgoing
packet has aready been sent to that outside address. This is like a poor man's firewall, because it prevents
anyone from directly connecting to your computer without you first initiating communications. Thisis like
a phone that cannot receive calls but will still let you call anyone.

A socket connection may be assigned to the same external address/port on subsequent connections. This
means that you cannot be sure of areturn path for messages. This makes it very difficult to create a two-
way conversation.

The gateway gets around the NAT the same way it gets around a firewall. By using the HTTP protocol, the
gateway on the other side of the NAT ensures that peers can communicate with the peer behind the NAT.

Proxy Server

A proxy server is adevice that sits between the Internet and a LAN. The proxy servers provide services
like filtering, caching, and monitoring of traffic.

The result of having a network proxy is similar to a NAT. The proxy device can limit addresses as well as
map them to others, such as NAT. Proxy devices can be as sophisticated as a firewall and limit certain
types of communication. For example, a proxy service can prevent you from accessing aforbidden Web
site. Some proxy servers can even detect viruses embedded in incoming email before they ever reach your
e-mail's in-box.

The gateway can usually get around a proxy server by bridging the gap with HTTP. Some very
sophisticated systems can be programmed to detect and prevent such traffic. Some companies only allow
pure HTML to pass and discard all other types of data. In some cases, you may not be able to use IXTA
applications without specific configuration and permission of the network administrator.

DHCP

Many companies, and especialy Internet service providers utilize Dynamic Host Configuration Protocol
(DHCP). DHCP dlocates | P addresses dynamically. The effect is that each time the DHCP server re-boots
or a user's computer re-boots, the IP address is changed. The address can aso change if the IP address
lease expires. The effect is that even a known address is a temporary address. Because of DHCP, even
when you are behind a firewall, peers may still not have addresses on which you can depend. This makes it
difficult when communicating across the firewall to peers on the other side.

The possibility of changing addresses is greatly improved by router peers. Router peers are able to create
new routes between peers when addresses change.

Volatile Network

Peers may also seem to disappear and reappear. Thisis avery common occurrence. Many computers are
not connected to the Internet 24 hours a day. Many computers are still connected via dialup and are only
on-line part of the day. We also have to consider wireless devices that are usualy only on-line for very
short periods. A laptop or a PDA can both appear and disappear as they are docked in and out of the
network. In these cases, the peer may even seem to pop up in a different city in a completely different

36

network topology! Because of the possibility of such changes, it is very important to be able to invalidate a
route and reroute connections.

Gateway Issues

One of the problems with gateways is that they could significantly increase the time it takes for a message

to be sent between two peers. If there are too many gateways, the total time for transmitting a message
could be several minutes.

With the possibility of messages taking a very long time to transmit, there is a huge problem with
managing a user's expectation. An important number to think about here is 200 milliseconds, which is the
amount of time between clicking a button and something happening that seems to be associated with the
button. In other words, if an action occurs 200 milliseconds or less after you click a button, the action and
its response appears to be simultaneous. If the application's reaction to the button click takes longer than
200 milliseconds, your user is waiting. The longer a user waits, the more likely that the user is going to
think that something has gone wrong. When the user believes that the application is not working, he or she
could hit the button again, terminate the program to try again, or perform another action that you would
like to avoid.

Any JXTA processing that is a result of a user'sinput to the user interface should immediately display
some kind of wait symbol or pop-up dialog as feedback. Any area of your software that has some type of
JXTA network communications will most likely need to be in a thread separating it from the user interface.
In addition, while waiting on the JXTA network, some type of user feedback, such as await dialog or a
status display, is a necessity. Applications will be more complex, and you will need much more code to
make them thread safe, but the effort is required to make your application acceptable.

JXTA Protocols

JXTA protocols are used to help peers discover each other, interact, and manage P2P applications. The
protocols are not applications in themselves and require much more code to create something useful. The
protocols hide a lot of detail, which makes writing JXTA applications much easier than developing a P2P
applications from scratch.

JXTA defines its protocols in the IXTA Protocols Specification. The specificaion describes how peers
communicate and interact; it does not attempt to describe the specifics of implementation or how to write a
peer-to-peer application. In this section, we are going just give you an overview of the protocols and
discuss related issues.

The following is alist of the IXTA protocols. We have included their acronyms, but we use acronyms
rarely in the rest of this chapter:

Peer Discovery Protocol (PDP)— Allows a peer to discover other peer advertisements (peer,
group, service, or pipe). The discovery protocol is the searching mechanism used to locate
information. The protocol can find peers, peer groups, and all other published advertisements. The
advertisements are mapped to peers, groups, and other objects, such as pipes.

Queries are made by specifying an advertisement type (peer, group, or advertisement), an XML
tag name within the advertisement, and the string to match against the data represented by the
XML tag.

Peer Resolver Protocol (PRP)— Allows a peer to send a search query to another peer. The
resolver protocol is a basic communications protocol that follows a request/response format. To

37

use the protocol, you supply a peer to query and a request message containing XML that would be
understood by the targeted peer. The result is a response message.

The resolver is used to support communications in the JXTA protocols like the router and the
discovery protocols. For example, the protocol is used by the discovery protocol to send queries
that represent searches for advertisements.

The resolver also allows for the propagation of queries. For example, if a peer receives a query
and does not know the answer, the resolver sends the query to other peers. Thisis an interesting
feature, especially because the originating peer does not need to have any knowledge of a peer that
may actually have the result to the query.

Peer Information Protocol (PIP)— Allows a peer to learn about the status of another peer. The
information protocol is used partidly like ping and partially to obtain basic information about a
peer's status. The body of a PIP message is free-formed, alowing for querying of peer-specific
information. In addition, this capability can be extended to provide a control capability.

Peer Membership Protocol (PMP)— Allows a peer to join or leave a peer group. The protocol

also supports the authentication and authorization of peers into peer groups. The protocol has three
key advertisements for authorization, and the credential. The credential created in this protocol

will used as proof that the peer is avalid member of the group.

Pipe Binding Protocol (PBP)— Is used to create the physical pipe endpoint to a physical peer. It is
used to create a communications path between one or more peers. The protocol is primarily
concerned with connecting peers via the route(s) supplied by the peer endpoint protocal.
Rendezvous Protocol (RVP)—The Rendezvous Protocol is responsible for propagating messages
within IXTA groups. The Rendezvous Protocol defines a base protocol for peers to send and
receive messages within the group of peers and to control how messages are propagated.

Peer Endpoint Protocol (PEP)— Is used to create routes to route messages to another peer. The
protocol uses gateways between peers to create a path that consists of one or more of the pipe
protocols suitable for creating a pipe. The pipe binding protocol uses the list of peersto create the
routes between peers.

One of the more significant problems is that traditional routers and DNS servers fail because of
firewalls, proxy servers, and NAT devices. This protocol searches for gateways that allow the
barriers, such asfirewalls and others, to be traversed.

This protocol aso helps when the communicating peers don't support each other's protocols. For
example, if you are connecting peer-A that supports TCP and peer-B that only supports HTTP, the
endpoint protocol would choose either one gateway that could make the trandation or multiple
gateways with multiple but compatible protocols.

We can also describe these protocols in terms of what they provide to a JXTA application. The next list is
very basic, but probably is the best way to look at what the protocols really do.

Peer Discovery— Resource search
Peer Resolver— Generic query service
Peer Information— Monitoring

Peer Membership— Security

Pipe Binding— Addressable messaging
Rendezvous— Propagation messaging
Peer Endpoint— Routing

In the remainder of this chapter, we will describe these concepts further. In the following, we relate the
concepts of peers, groups, and how the protocols are associated. In Chapter 3, we will cover the concepts
again, but in terms of the Java implementation and the API.

38

Peers and Groups

The two primary concepts to understand about JXTA are peers and groups. Because peers and groupsare a
little complicated, we will discuss each one in detail.

Peers

As discussed earlier in the chapter, peers are individua nodes on the JXTA network. The peer is similar to
a computer on a network, except that you can run multiple peers on a single machine. Peers can be a
standard PC, a PDA, an appliance, or even a super computer.

A Peer Is Not a User

The concept of the peer should not be confused with the concept of auser. A peer is a node on the network.
Think of anormal computer on the Internet; you should not assume that a single person uses the computer.
The computer could be shared by afamily or be a publicly used device, such as an Internet kiosk. You aso
should not assume that a peer node is the only place a user will access the P2P network. The user can
access the network from home, work, or through various devices.

In your design of services and applications, be very careful to avoid linking the user to a peer, either
permanently or for long periods. Sometimes, you can link a user to a peer, but always be able to log the
user off and log in another.

One of the many things you need to manage in a P2P application is identity. The peer is associated with the
user in many respects, so for now we will discuss thisin terms of a peer. Y ou should create an
authentication system where multiple peers could be aggregated as a single user.

The types of things you should manage are authenticating the peer's rights to use services. The identity of
the peer in JXTA isa credential. The credential is used throughout the system to ensure that certain
operations have the correct permissions. The credential is officially created when a peer joins agroup. The
credential can aso simply be some type of token created ahead of time and presented as part of the joining
process. The group recognizes the credential during the authentication process when joining the group.

Why Use Groups?

P2P networks have several key differences from traditional networks, the most important being the ability
to control what peers can do. The following are some of the problems:

Too many peers connecting to one peer for aresource.

Peers that use resources but do not contribute to resources.

Certain resources should only be accessible to a set group of individuals.

Hackers of the general network who are seeking to damage or take over the network.

In P2P networks, it's very difficult to control behavior of rogue peers. There are many different types of
mischief, including abuse of other peer's resources. There is also the obvious need to limit access to
applications or resources for security or privacy reasons.

To begin to understand how these problems can be overcome, let's look at a use case diagram of a
simplistic P2P system. In Figure 2.4, users interact with different instances of a service-A, which
collaborates with other services to access specific resources attached to specific instances. In this sort of
P2P network, the services are left with the responsibility of security. Each service on each peer must act as
a gatekeeper to the data controlled by the peer.

39

Figure 2.4. Functional view of the peer service use case.

AN

Simplistic Peer Service Model

User 2

Service A(2)

P2P Network

CED NG

User 1 User 3

The drawing in Figure 2.5is representative of how JXTA works. In JXTA, the peer group is a virtual
gatekeeper. The service, and thus the service data, resides in the context of the group. The group code is

replicated on each platform, but we are showing it as a single entity accessed by al of the group members.
The services are accessed through the group, and the services have a context of the group.

Figure 2.5. Conceptual view of group-based service.

40

Conceptual View of Peer Group Based Service

Group A

Service A Data(2)

User 1 User 2 User 3

The key difference hereis that the group contains the security features while the services are only
concerned with verifying that other peers are valid members. Credentials created by the group and given to
the peers (not shown) will be validated by the group context. Figure 2.5 shows how groups are seen
programmatically in JXTA. As can be seen, users interact with a service controlled by the group. The
group is ensuring a single point of control, despite the fact that the service and data is distributed.

By using groups, you have at least a chance of controlling peers with a common authentication scheme.
You aso have a platform to disseminate information to a limited set of group members. For example, you
could send a message to other peers that a rogue peer should be ignored.

JXTA Applications

Given the discussion so far, you may be confused as to what a JXTA application is. We have talked a great
deal about how an application would do its work, but not where the code for the application resides.

To begin with, the general notion of an application has not changed. The key difference is that your JXTA
application begins with starting the JXTA platform by accessing the world group. The world group isa
group that is accessible to al peers. The world group is used to locate any peer or information that is
available to al peers.

After the platform is started, your peer is a member of the default world group. From this point, you could
begin your application with the world group and use al of the default services in the world group.

41

Group Membership

Group membership is probably one of the more important service protocols. Membership has two key
features—authentication and credentialing. Authentication is the gatekeeper for the group, while
credentialing is a token that ensures that authentication occurred. Both authentication and credentialing
could be complex or ssimple, depending on how rigorous you need to be in your group.

Authentication is a multi-step process where the group requests that the peer supply information to join the
group. The information supplied is then validated against the group's requirements for membership. The
most obvious validation would be a user 1D and password. Less restrictive systems may not ask for
information or may be just a ssimple questionnaire. In the most restrictive systems, the authenticator may
ask for an encrypted digital signature.

Credentials can also have various contents. Because credentials are passed around, they are usualy fairly
small to reduce overhead. In the least restrictive groups, the credentia will just be a simple token. In
groups that are paranoid about user identity, the credential would be a wrapper for encrypted digital
signatures.

Peer Group Services

Peer groups are a context for services that interoperate in the group's domain of users. The peer group
provides a set of services called peer group services that implement the JXTA protocols to supply the
group with the necessary functionality. These services are not required, but most groups will probably have
these services available for use by other services and applications. Groups can contain any set of services,
and different groups can contain the same services of other groups.

Services are always associated with a group. Y ou cannot have access to a service unless you are a member
of the group. The services that a group supports are listed in the group advertisement.

The importance of the associating services to a group isto limit their scope. As arule, services should not
interact with peers not in their group. One reason is a matter of respect for peers that are not a part of the
same group. Thereis also the practicality that there may be no reason to interact with peers outside of the
group because they will not have the resources the service requires.

It is possible to write a service that will operate across groups. Such a service is unlikely because of the
access service. The access will forbid any messages that are not properly marked as belonging to the group.
Any servicethat goes across groups would need to have the cooperating access services.

If you need to interact with multiple groups, it is simpler to have an application that joins each group.
There is no limit on how many groups a peer may join.

Core Services

Not dl groups have the same advertisements, but it is expected that all groups support a set of standardized
services that represent the core protocols. It is possible that none of these services are included or a
completely different set of services would be provided. Without these core services, it would be difficult to
interact with other peers. However, you could imagine a peer that uses a custom gateway that provides the
functionality without requiring it on the peer itself. In addition to these core services, the creator of the
group can add additional services. There are no specific requirements for these services. However, the
services are expected to only work within the bounds of the group. If you use the core services for
discovery and communication, limiting the scope to the group is automatic. The core services are described
in the following sections.

Discovery Service

42

The discovery service provides access to Peer Discovery Protocol in the context of the group. It searches
for peer group resources (peers, peer groups, pipes, and services). The search usualy only searches within
the group that contains this discovery service reference, so if agroup is created and you use its discovery
service, only advertisements published in that group will be found. Note, however, that this also depends
on the implementation of the group that may expand the search scope to parent, sibling, or sister groups.

Some groups may inherit the search scope of the parent group. By default, the world group has access to
all Peer advertisements and others created in its context. The default behavior of other groupsis to search
only in their scope.

Membership Service

The membership service provides access to a group-specific version of the Peer Membership Protocal. It is
used as a gatekeeper to membership in the group. Peers wanting to join the group must fulfill the
requirements of this service. The model is that of a membership application form where a document is
submitted to the peer to be filled in and submitted for approval. If the peer is approved, the peer is
considered a member of the group and is issued a credential that is used as proof of membership during
communications. The membership service can extend the model from an application to external validation
(such as a server that validates the user'sinitial credential) or by querying other peers or a manager peer for
final approval (voting). We will cover group membership in more detail in Chapter 6, "Working with
Groups.”

Access Service

The access service is part of the membership service and is used to ensure that the peers are actually valid
members of the group. This service uses the credentia created when the peer joined the group. A peer
receiving a request provides the requesting peer's credentials and information about the request being made
to the access service, and the service determines if the context and credentials are correct; if so, accessis
permitted.

Peer Authentication Service

The authentication service uses credentials created by the membership protocol to verify that that messages
are from avalid member of the group. The concept is that the application examines a credential for certain
operations as needed to ensure that communications are with valid peers.

Authentication uses the credential as a standalone packet of information that is either self-authenticating or
can be verified with other information the current peer obtained from another source.

NOTE
The peer authentication service is not currently implemented in the Java JXTA platform.

Pipe Service

The pipe service implements Pipe Binding Protocol. The pipe service is used to manage and create pipe
connections between the different peer group members.

Resolver Service

The resolver service implements the resolver protocol. The resolver service distributes queries to other
resolver services running on peers within the group. The resolver also listens for the answers to these
requests. We discuss this subject in more detail later in the chapter, in the "Resolver™ section. We also use
the resolver directly in Chapter 9, "Synchronizing Data Between Peers."

43

Monitoring Service

The monitoring service is used to allow a peer to monitor other group members of the peer group. The
specification of what is monitored is left to the implementer. Monitoring can be used to collect data on
peers to ensure they are following the group's rules for behavior or just to gather simple statistics.

Monitoring of peersis mentioned in the specification, but few people have implemented the concept. There
also appears to be no API harness to use as a base. The implementation would need to be a service that you
create and make a part of your group.

The reasons for having a monitoring service are many. The following are a few:

Keep alog of peer activities (downloads, contributions, and so on) that are sent to other peers.
This relates to the next item.

Y ou could manage a peer's ahility to use the group. Thisis similar to Gnutella that prevents a peer
from downloading unless they aso share a minimum of their content. This can be expanded to
include other information, such as up-time and other statistics that trigger certain rights. The
opposite is that other peers receive these statistics before they interact with the peer, so that they
can decide if they want to interact with the peer. This can be automated or just presented to the
wizard behind the curtain.

Management of the user access is also important. In the specification, there is no mention of a
revocation of a group membership. There is the idea of expiration and renewal. The problem is
that you may not want to wait for expiration and want to remove a user early. This relates back to
using a credential, which is a part of the specification and can be used to notice when a user is no
longer valid.

Managing issues like those that cause problems in JXTA, including abuse of resources,
falsification of identity, hacking/hijacking of the group for other purposes, and denial of service
attacks against the group or some of its peers.

Note that some of these core services, such as discovery and membership, implement JXTA protocols.
Others, such as the monitoring service, are not associated with a protocol, but are useful in a group context.

Customized Services

Core services are not necessarily specific implementations. Core services for the group can provide
specific behavior for the group. For example, the membership service is likely a specific implementation.

Core Services Are Optional

Core savices, besides being customizable, may not even be supplied. For example, the monitoring service
may not be provided if there is no reason for monitoring. Also, the discovery service may not be required if
the peer is aready populated with all the advertisements it needs.

The only service that is most likely to be supplied is the membership service. The reason is that when a
peer joins the group, the membership service is used. If a group does not need membership, you should use
the Null membership implementation that alows the join functionality to operate but does not impose
membership regquirements.

Groups as Applications

One aspect of groups that may seem odd at first is thinking of groups as applications. A group application
is not ared stretch of imagination and actually provides alot of utility. The simple fact is that an object
needs to exist to represent the group. Because there is an object, it would need methods to create, destroy,
and manage resources. As mentioned, a group aso has other services that need to be started and stopped.
For al of these reasons, associating groups with applications is reasonable.

44

However, groups do not need to be associated with applications in a programmatic way. Groups can
simply be used as a context to manage the groups of peers or groups of information. Y ou do not need to
add services to your groups and simply use the default services. For example, you could have an
application such as SETI@Home implemented as a JXTA group with services for membership,
communication, and reporting results. These would begin operation as soon as the group was joined and
the default application in the group started. We will cover more of thisin Chapter 3, when we discuss the
Java implementation of groups.

Finding Information about the JXTA Network

When using the peer discovery protocol, there are three scoping parameters. These include the
advertisement type (peer, peer group, or advertisement), a tag name to search with the contents to match,
and alimit on how many advertisements for which to search. Only the first two are important to us here.
The first scoping parameter specifying the type is useful to limit what you are looking for to just one of
three different types of advertisements. The second, which allows you to specify a name and value, is then
used to search each advertisement for matching XML tag and value.

The important qualifier is the name of the XML tag. This lets you choose a specific element of an
advertisement, such as the name tag or an ID tag. This allows you to look up, for example, a named peer, a
named group, or any other advertisement based on some tag name and its contents. Because the * wildcard
is supported in the Java implementation, you can do more creative searches.

Passing Extra Data in Advertisements

It should be noted that many of the advertisementsin JXTA can be expanded with additional XML tags. In
some cases, these areas are clearly marked, such asthe par amsection of the peer group advertisement. Be
careful where you do put data and what type of tags you are using, because the messages may fail a syntax
check. This version on JXTA does not support XML syntax checking but does have various places where
unexpected XML could cause problems. Y ou should only add data where allowed or use queries or pipes
to pass information.

Adding data to advertisements that are outside of the protocol specification should only be done when you
are implementing a variation on a protocol. For example, you could create a new transport type and add it
to the group membership advertisement's Tr anspor t Adverti senent tag.

Caching and Aging of Advertisements

Advertisements are usually cached. Caching is not required by JXTA, but it is very useful and efficient to
do so. Aging isaway to set an expiration time when an advertisement should be considered too old to be
useful. Some advertisements can last a very long time, like peers, and others that are more volatile, like
pipes.

There are two different ages—one local set by default to 365 days and one remote age set to 2 hours. The
assumption would be that if the peer created the advertisement, it has value and should have along lifetime.
Advertisements coming from remote systems are suspect and should expire much sooner. Because
advertisements are renewed, the shorter lifetime is moot unless the advertisement was really temporary or
its peer unstable.

Advertisements

45

Advertisements are the language of JXTA. All of the information about peers, groups, services, and other
JXTA constructs are defined by an advertisement. The following is a quick list of the main advertisement

types:

Module Class Advertisement (MCA)— Defines the specific version of a module.

Module Specification Advertisement (MSA)— Defines the module with a cross platform definition
that includes behavior.

Module Implementation Advertisement (MIA)— Specific instance of a module on a platform.

Pi peAdverti sement — Defines. See PipeAdvertisement; a pipe available in agroup or a a
peer.

Peer Gr oupAdverti senent (PGA)— Definesthe peer group. The group also defines the
services, endpoints and other information.

Peer Adverti senment (PA)— The peer advertisement defines the peer.

Endpoi nt Adver ti sement — The endpoint advertisement defines a communications protocol
and the termination.

WEelll discuss these in more detail in the next section, "Details of the Advertisement Types."

There are really only three classifications of advertisements. These are peers, peer groups, and everything
else. It isdifficult to say why these are the highest level, but the cache management system in the Java
implementation uses these types to separate the advertisements into three separate directories.

Details of the Advertisement Types

Now we will look at each of the advertisements that JXTA uses in detail and talk about what they mean.
We will aso show some XML so that you will know how to recognize advertisements when debugging.

Peer Group Advertisement

The peer group advertisement is used to define both an identification of a group and the services of that
group. Peer group advertisements have the following information:

Name— Name of the group.

Description (Desc)— Description of the group.

PeerGroup ID (GID)— An ID that is associated with this instance of this group.

PeerGroup Specification ID (MSID)— A Module Spec ID that this group uses. The ID is used to
locate a module that references the services this group uses.

Service (Svc)— Optional list of elements that associate a group service, denoted by its Class ID
(the value of an MCID element), and parameters via Par melements.

The following is an example of an XML Peer Gr oupAdverti senent for apeer group created in
Chapter

<?xm version="1.0"?>
<! DOCTYPE | xt a: PGA>
<jxta:PGA xmlns:jxta="http://jxta.org">
<G D>
urn:jxta: uui d- AAA122616461AAAAAAAL24615032503302
</ & D>
<MSI D>
urn:jxta: uui d- DEADBEEFDEAFBABAFEEDBABEO00000010306
</ \vsl D>
<Nanme>
JPDA_ROOT_GROUP
</ Name>
<Desc>

46

Root application group
</ Desc>
</] xt a: PGA>

Peer Advertisement

A peer advertisement is amost identical to a peer group advertisement. The key difference, of course, isits

type.

Name— Name of the peer.

Description (Desc)— Description of the peer.

PeerGroup ID (PID)— An ID that is associated with this peer instance.

Debug Flag (Dbg)— Optiona tag used for debugging.

Service (Src)— Optional list of elements that associate a group service, denoted by its Class ID
(the value of an MCID element), and parameters via Par melements. In most implementations,
thiswill hold data that details information used to converse with the peer.

The following is an example of XML Peer Adverti senent . The service defined in this example defines
the parameters for the MCID that references the default implementation for a peer. The data includes the
endpoints for TCP, the group, and an HTTP ID used by an HTTP gateway. The second MCID refers to the
implementation of secure pipes and defines a certificate:

<?xm version="1.0"?>
<I DOCTYPE j xt a: PA>
<jxta:PA xmns:jxta="http://jxta.org">
<Pl D>
urn:jxta:uui d-59616261646162614A7874615032503356
CFE39F036E4038ABE1801D40772DC803
</ PI D>
<G D>
urn:jxta:jxta-Net G oup
</ G D>
<Nane>
Super Chi cken
</ Name>
<Svc>
<MCl D>
urn:jxta: uui d- DEADBEEFDEAFBABAFEEDBABEO000000805
</ MCl D>
<Par n»
<Addr >
tcp://198.1.0.70:9701/
</ Addr >
<Addr >
jxtatls://uuid-
59616261646162614A7874615032503356CFE39F036E4038A
BE1801D40772DC803/ Tl sTransport/j xt a-
Wor | dGroup
</ Addr >
<Addr >
j xta://uuid-59616261646162614A787461503250
3356CFE39F036E4038ABE1801D40772DC803/
</ Addr >
<Addr >
http://JxtaHtt pClientuui d-5961626164616261
4A7874615032503356 CFE39F036E4038ABE1801D40772DC803/
</ Addr >
</ Par n>
</ Svc>

47

<Svc>
<MCl D>
urn: j xt a: uui d- DEADBEEFDEAFBABAFEEDBABEOO00000105
</ MCl D>
<Par ne
<Root Cert >

M | CODCCAaGgAW BAgl BATANBgk ghki GOw0BAQUFADBK MRUWEWYDVQQKEWx3d3cu
anh0YS5vcntxCz AJBgNVBAC TAI NGVIQs wCQYDVQQGEW] VUz ESMBAGAL UEAX MJ U2t h
b mRh L UNBMROWGNY DVQQL Ex RDVK EWNDI GVDBBR] ¢ 4Nk Ey OUI ORTAe FWOWMTEy M Ew
NDI zNTI aFwOXMTEy M EWNDI zNTI aMGQx FTATBgNVBAo TDHd3dy 5geHRhLmDy Zz EL
MAKk GA1UEBx MCUOYx Cz AJBgNaBAYTAI VTMRI wEAYDVQQDEW Ta2FuZGEt QOEXHTAD
BgNVBAs TFEMy QTAOOUYWVEFGNz g2 QT 5@ RFM GbMAs GCSqGSI b3DQEBAQOBI WAW
gYcCgYEAr RbPEHoi j / JOPYal / b7xPnj 1Ms VX5BnT JqNUj saEr 0JewTJ3f f DAy NO
WAC/ | TGD8maUhl K7vycVozhoaael QISDj kz/ gDBYgl wDr ci FsMsKTcwdYdp6x3/ s
PmUwAHDU8AV Pvpy q/ 2UNNCMK PLOG+Of VnBAX G5 TdNv np SVZXX8 MCAREWDQYJKoZI
hvc NAQEFBQADg YEAGRmbI RoqOEQQEf g3j | dc/ W Chl pYCl Zq06VLKESNnt gBCCnf N
z/ YWFMeJ RWXGZNMZqG321wiWpQyt RMUr 2ewnVXJj vsVZi Hler d1bgUzKol pcJy6Bd
X+/ cui FUWMKQU+GTNcj t 1yt j GopNy/ kUxg7bPTOXUS5¢c1XDz N +ASM_qx08=
</ Root Cert >
</ Par n>
</ Svc>
</jxta: PA>

Modules

Modules are definitions of services and applications available on a peer or in a peer group. Modules are
used to define the code to be executed. To ensure that different peers written with different languages,
versions, and operating systems, modules are defined with three different XML advertisements:

Module Class— Defines the specific version of a module.
Module Specification— Defines the module with a cross platform definition that includes behavior.
Module Implementation— Specific instance of a module on a platform.

Each advertisement is used to narrow the final implementation used by the peer. However, only the
respective |Ds may be available and no true advertisement available on the general network. The reason is
that some modules are not public or they do not have different versions or implementations. Instead, the
advertisements are internal to the peer and only referenced by their identifiers as needed. The following
three sections define the detail of the different module advertisement types.

Module Class Advertisement

A Module Class advertisement defines behavior. Peer groups, peer, and other advertisements reference a
module class ID that is defined by the module class advertisement. The advertisement has the following
parameters:

Module class ID (MCID)— Unique identifier used to reference the module class.
Name— Name of the module. Used for searching and identification. Not guaranteed to be unique.
Description (Desc)— Description used for searching and identification.

The following is a sample advertisement. This is the module class advertisement for the EX1 advertisement:

<?xm version="1.0""?7>
<! DOCTYPE | xt a: MCA>

<j xta: MCA xml ns:jxta="http://jxta.org">

48

<MCI D>
urn:jxta: uui d- 2584FEB44D3B40E9A16A8419C9ABEO9FO5
</ MCl D>
<Name>
JXTAMOD: JXTA- EX1
</ Nanme>
<Desc>
Tutorial exanple to use JXTA nodul e advertisenent Framework
</ Desc>
</ j xt a: MCA>

Module Specification Advertisement (Module)

A Module Specification Advertisement is the specification of a module. The advertisement contains
information about the implementation referred to by a module specification ID. Because the code for a
module is usually part of the peer application, there is no need to publish the advertisement for each ID,

but it is a good practice to document the module via the advertisement. Each module has the following tags:

Module spec ID (MSID)— An ID that specifically defines this module.

Compatibility statement— An XML specification used to define the compatibility of the code to a
language and version.

Name— Name of the specification.

Description(Desc)— Description of the specification used for searching and identification.
Creator (Crtr)— Creator of the specification.

Foecificaton URI document (SURI)— URI of a specification document.

Version (Vers)— Version of this specification.

Parameters (Parm)— List of parameters to be used by the implementation.

Proxy— ModuleSpecID of a proxy module if one exists.

Authenticator (Auth)— ModuleSpecID of an authenticator module if required.

The following is an example of the XML for the module specification for the EX1 example. Note that in
addition to its standard tags, there is a pipe advertisement used to communicate to the module. This is done
as a convenience, so that the user of the code does not need to ook for an extra pipe advertisement:

<?xm version="1.0"?>
<! DOCTYPE | xt a: MSA>
<j xta: MSA xnmlns:jxta="http://jxta.org">
<MsSI D>
urn:jxta:uui d- 88A7B34E2B354A75A181B34E6058D3DA0F
230D7557A24F159F80ABA479BC0OC3B06
</ MSI D>
<Nanme>
JXTASPEC: JXTA- EX1
</ Nanme>
<Crtr>
sun. com
</Crtr>
<SURI >
http://ww. jxta.org/ Exl
</ SURI >
<Ver s>
Version 1.0
</ Ver s>
<j xt a: Pi peAdverti senment >
<| d>
urn:jxta: uui d- 9CCCDF5AD8154D3D87A391210404E59
BE4B888209A2241A4A162A10916074A9504
</1d>

49

<Type>
Jxt aUni cast
</ Type>
<Name>
JXTA- EX1
</ Nanme>
</j xta: Pi peAdverti senent >
</j xt a: NSA>

Module Implementation Advertisement

The Module Implementation advertisement is the final link in the chain to define a module. The
advertisement defines specific references to a specific language representation on a peer. This
advertisement is used to launch the code.

Name— Optional name associated with the module.

Description (Desc)— Optional string used to describe and allow for searching of key words to
locate a module.

ModuleSpecID (MSD)— ID that uniquely identifies the specification being implemented.
Compatibility (Comp)— An element that describes the execution environment.

For Javathis would be the VM version.

Package URI (PURI)— Optional URI used to download the code of this implementation (not
implemented in version 1.0).

Code— Contains a reference used to load and execute the code of thisimplementation. For a Java
module, thisis afully-qualified classname.

Parameter (Parm)— Arbitrary parameters to be interpreted by the implementation's code.
Provider (Prov)— Provider of the implementation.

The following is the module implementation for the standard peer group. Note that this implementation
contains further implementation advertisements in the par amtag. Also note that the last entry is the shell
application. The shell is defined this way as the default application of the peer group. If the peer group is
started after it is initialized, the code in the application tag is executed:

<?xm version="1.0"?>
<! DOCTYPE j xta: M A>

<jxta:MA xmns:jxta="http://jxta.org">
<MSI D> urn:j xt a: uui d- DEADBEEFDEAFBABAFEEDBABEO00000010306 </ MSI D>
<Conmp> <Efmt > JDK1.4 </Efnmt > <Bind> V1.0 Ref Inpl </Bind> </ Conp>
<Code> net . xta.inpl.peergroup. StdPeer Group </ Code>
<PURI > http://ww.]jxta.org/downl oad/jxta.jar </PURI>
<Prov> sun.com </ Prov>
<Desc> General Purpose Peer G oup |nplenentation </ Desc>
<Par n»
<Svc>
<j xta: M A>
<MSI D> urn:jxta:uuid-
DEADBEEFDEAFBABAFEEDBABEO00000060106</ MSI D>
<Conmp> <Efnt> JDK1.4 </Efnt> <Bind> V1.0 Ref I|npl </Bind>
</ Conmp>
<Code> net.jxta.inpl.rendezvous. RendezVousServi cel npl </ Code>
<PURI > http://ww. jxta.org/downl oad/jxta.jar </PURI >
<Prov> sun.com </ Prov>
<Desc> Reference | nplenentation of the Rendezvous service
</ Desc>

50

</jxta:M A>

</ Svc>
<Svc>
<jxta: M A>
<MSI D> urn: j xt a: uui d- DEADBEEFDEAFBABAFEEDBABEO00000030106
</ \vsl D>
<Conmp> <Efnt> JDK1.4 </Efnt> <Bind> V1.0 Ref Inpl </Bind>
</ Conmp>
<Code> net.jxta.inpl.discovery.Di scoveryServicel npl </ Code>
<PURI > http://ww. jxta.org/downl oad/jxta.jar </PURI >
<Prov> sun.com </ Prov>
<Desc>
Ref erence | nplenentation of the Di scoveryService service
</ Desc>
</jxta: M A>
</ Svc>
<Svc>
<jxta: M A>
<MsS| D>
urn:j xt a: uui d- DEADBEEFDEAFBABAFEEDBABEO00000050106
</ MSI D>
<Conp> <Efnmt> JDK1.4 </Efnt> <Bind> V1.0 Ref Inpl </Bind>
</ Conp>
<Code> net.jxta.inpl.nmenbership. Nul |l Menber shi pServi ce </ Code>
<PURI > http://ww.jxta.org/downl oad/jxta.jar </PURI>
<Prov> sun.com </ Prov>
<Desc>
Ref erence | npl enentation of the Menbershi pService service
</ Desc>
</[jxta:M A>
</ Svc>
<Svc>
<jxta: M A>
<MS| D>
urn:jxta: uui d- DEADBEEFDEAFBABAFEEDBABEO0O0000070106
</ Vsl D>
<Comp> <Efnt> JDK1.4 </ Efnt> <Bind> V1.0 Ref Inpl </Bind>
</ Comp>
<Code> net.jxta.inpl.peer.PeerlnfoServicel npl </Code>
<PURI > http://ww.jxta.org/downl oad/jxta.jar </PURI>
<Prov> sun.com </ Prov>
<Desc> Reference | nplenentation of the Peerinfo service
</ Desc>
</jxta: M A>
</ Svc>
<Svc>
<j xta: M A>
<MSI D> urn:j xt a: uui d- DEADBEEFDEAFBABAFEEDBABEO00000020106
</ MSI D>
<Conp> <Efmt > JDK1.4 </Efnt> <Bind> V1.0 Ref Inpl </Bind>
</ Conp>
<Code> net.jxta.inpl.resol ver. Resol ver Servi cel npl </ Code>
<PURI > http://ww.]jxta.org/downl oad/jxta.jar </PURI>
<Prov> sun.com </ Prov>
<Desc>
Ref erence | npl enentation of the Resol ver Service service
</ Desc>
</jxta: M A>
</ Svc>
<Svc>
<jxta: M A>

51

<MSI D> urn:j xt a: uui d- DEADBEEFDEAFBABAFEEDBABE0O00000040106
</ Vsl D>

<Conp> <Efmt > JDK1.4 </Efnmt> <Bind> V1.0 Ref |npl </Bind>
</ Conp>

<Code> net . xta.inpl.pipe. Pi peServicel npl </Code>

<PURI > http://wwv.jxta.org/downl oad/jxta.jar </PURI>

<Prov> sun.com </ Prov>

<Desc> Reference |nplenentation of the PipeService service

</ Desc>
</jxta:M A>
</ Svc>
<App>
<j xta: M A>
<MSI D> urn:j xta: uui d- DEADBEEFDEAFBABAFEEDBABEO000000C0206
</ \vsl D>
<Conmp> <Efnt> JDK1.4 </Efnt> <Bind> V1.0 Ref Inpl </Bind>
</ Conmp>

<Code> net.jxta.inpl.shell.bin.Shell.Shell </Code>
<PURI > http://ww. jxta.org/downl oad/jxta.jar </PURI >
<Prov> sun.com </ Prov>

<Desc> JXTA Shell reference inplenmentation </ Desc>

</jxta:M A>
</ App>
</ Par n»
</jxta:M A>

Pipe Advertisements

Pipe advertisements describe the type of pipe. Pipe advertisements are rather simplistic. They only have a
name, ID, and type. As we have discussed, there are several different types of pipe. The specific pipe type
islisted in the Type tag.

Pipes contain the following tags:

Nane— Name of the pipe.

| d— The ID of the pipe.

Type— The type of the pipe. Type is related to a protocol and therefore to endpoints on a peer.
Typesare Uni cast Type, Uni cast Secur eType, and Pr opagat eType.

The following is an example of an XML pipe advertisement. This pipe is a unicast pipe:

<?xm version="1.0"?>
<! DOCTYPE j xt a: Pi peAdverti senent >
<j xt a: Pi peAdverti sement xmlns:jxta="http://jxta.org">
<| d>
urn:jxta: uui d-59616261646162614E50472050325033A10C
F46E7B7041B48C3EBF32A5DA2A4404
</ld>
<Type>
Jxt aUni cast
</ Type>
<Name>
frodo.replyTo
</ Nanme>
</jxta:Pi peAdverti senent >

Endpoint Router Messages

52

The router protocol uses query and response messages to discover routes. The query message supplies the
peer ID of the destination. The ID of the origin is assumed that of the source. This message is sent from a
peer to a peer, which implements the peer endpoint protocol. The XML endpoint router query message
schemais asfollows:

<xs: el enent nane="Endpoi nt Rout er Query"

type="j xt a: Endpoi nt Rout er Query"/ >

<xs: conpl exType name="Endpoi nt Rout er Query" >
<xs: el enent nanme="Credential" type="xs:anyType" m nCccurs="0"/>
<xs: el enment nanme="Dest" type="xs:anyURI"/>
<xs: el enent nanme="cached" type="xs:string"/>

</ xs: conpl exType>

The router answer message contains the information about the route that was located by the router or a
router it collaborated with to create the answer.

The actua routeisalist of peersthat are al gateways, except the final destination that is not required to be
a gateway:

<xs: el enment nanme="Endpoi nt Rout er Answer "

type="j xt a: Endpoi nt Rout er Answer "/ >

<xs: conpl exType nane="Endpoi nt Rout er Answer " >
<xs: el enent name="Credential" type="xs:anyType" m nCccurs="0"/>
<xs: el enent nanme="Dest" type="xs:anyURl"/>
<xs: el enent name="RoutingPeer" type="xs:anyURl"/>
<xs: el enent nanme="Routi ngPeer Adv" type="xs:string"/>
<xs: el enent nanme="Gat eway" type="xs:conpl exType"/>

</ xs: conpl exType>

Messages

Message advertisements are used for the various messaging protocols, as well as for user defined messages.
There are two different types of messages—XML and binary.

XML Messages

XML messages are used for transport mechanisms that only support text or as a general way to send a
message. Because messages are seen as the most used type of data that is transported between peers, the
binary message is offered in most cases because it is much more efficient.

The XML message format consists of a message tag that encapsulate the data of the message. Each
element has a name, a mime type, and an optional encoding parameter. By changing the mime type and the
encoding, you can place any supported data type between the enclosing element tags that is valid XML.
For data that is not XML, the < character is replaced with the string &l t ; , and & symbols are replaced
with &np; as equivaent. The following is an example of an XML message:

<! DOCTYPE Message>

<Message version="0">

<El enment nane="j xt a: Sour ceAddress" m nme_type="text/plain">
tcp://123.456. 205. 212

</ El enent >

<El ement nane="stuff" encodi ng="base64"

m nme_t ype="applicati on/octet-streani>

AAECAWQFBgc| CQoL DA0OODXx ARENMUFRYXGBkaGxwdHh8gl Sl j JCUmMlygpKi ssLS4vNDEyM
ZQINj c4

53

OTo7PD0+P0BBQk NERUZHSE! KSOXNTk9QUVITVFVW1hZW t c XV5f YGFi Y2Rl ZnmdoaWpr b
Glub3Bx

cnNOdXZ3eH 6e3x9f n+AgYKDhI WGh4i Ji ouM Y6PkJGSk5SVI peYnZgbnJ2en6ChoqCkp
aanqgKnyg

g6yt r g+twsbKzt LW2t 7i 5ur u8vh6/ WHCOWBTFXxsc=

</ El ement >
</ Message>

Binary Messages

Binary messages are compact packets used to send information with as compact a data stream as possible.
Two-byte lengths are sent with the high-order byte first. All strings start with a two-byte length, followed
by the UTF8 string value. The message format is specified by using ABNF (see IETF RFC 2234 at
http://ietf.org/rfc/rfc2234.txt). The format of the binary message is defined by Tables 2.1 and 2.2

Table 2.1. Binary Message Format

Section Description

" xmg” Start of the message.

Ver si on One byte. Must be 0 for the 1.0 binary format.
Namespaces See Namespaces.

el ement _count Two bytes designating the number of elements to follow.

Table 2.2. Message Element

Section Description

"j xel " Element signature.

nanespacei d/One byte that designates the name space.

Fl ags Indicates which parts follow 0x00 if type is not present and 0x01 if type is present.

si mpl e_name Name of this element. If the namespace ID is 0, the simple name is the name.
Otherwise concatenate the namespace name designated by the ID with a colon ()
and the simple name. The next byte is the flags byte.

[type] Present if the flags byte has the least significant bit set (0x01).

| end Four byte length of content.

Pipe Binding Protocol

The Pipe Binding Protocol is used to create virtual channels between peers. The protocol uses the Endpoint
Protocol that it abstracts to allow pipes to be created that use supported transport protocols, such as the
JXTA HTTP Transport, the IXTA TCP/IP Transport, or the secure JXTA TLS Transport.

To use a pipe, an advertisement must be published and then used by other peers. When a peer has a pipe
advertisement, the peer makes a pipe bind request, which is responded to by a peer accepting the pipe.

To bind the pipe, there is a pipe bind request and a pipe bind response. The request for a pipe has the
following data:

Ms g Ty pe— Defines this message as a query an answer. For the query, it will be Query.

Pi pel d— Pipe ID being resolved.
Type— The type of pipe resolution requested.

54

Cached— False if the answer can not come from the cache.
Peer — A peer ID of the only peer that isto answer that request. Thistag is not required because,
in many instances, you do not explicitly connect to a specific peer.

The reply to a pipe bind uses the same schema, but there are additional tags and a slightly different
interpretation applied to their contents. With the data from both messages, the Pipe Binding Protocol can
use the Endpoint Protocol to create a route between peers and select the appropriate protocol based on the
peers involved. The following is the reply message that contains the other peer that can then be used to
locate the other peer's endpoint:

Vs g Ty pe— Defines this message as a query an answer. For the answer, it will be Answer .

Pi pel d— The Pipe ID being resolved.

Type— The type of pipe resolution regquested.

Found— Response value showing success or failure that an Input Pipe was found on the specified
peer.

Peer Adv— Peer Advertisement of the peer that connects to the Input Pipe.

The following is the XML schema for the pipe-binding message:
<xs: el enent nanme="Pi peResol ver" type="jxta: Pi peResol ver"/>

<xs:conpl exType nane="Pi peResol ver">

<l'-- should be an enuneration choice -->
<xs: el enent nanme="MsgType" type="xs:string"/>
<xs: el enent nanme="Pi pel d" type="xs:anyURl "/ >
<xs: el enent nanme="Type" type="xs:string"/>

<l-- used in the query -->

<xs: el enment nane="Cached" type="xs:bool ean" default="true"
m nOccurs="0"/ >

<xs: el enent nanme="Peer" type="xs:anyURI" m nOccurs="0"/>

<l-- used in the answer -->
<xs: el enent nanme="Found" type="xs:bool ean" m nOccurs="0"/>
<l-- This should refer to a peer adv, but is instead a whole doc -->

<xs: el enent nanme="Peer Adv" type="xs:string" m nOccurs="0"/>
</ xs: conpl exType>

Resolver

The resolver is used to send queries throughout the P2P network. The resolver is used by base services,
such as the discovery mechanism to search for advertisements. Y ou can aso use the resolver when you
have a query response model of communication where answers come from a group of peers rather than a
specific peer.

Thefollowing isthe XML schemafor the Resol ver Quer y message:

<xs: el enent nane="Resol ver Query" type="j xta: Resol ver Query"/ >

<xs: conpl exType nane="Resol ver Query">
<xs: el enent nanme="Credential" type="xs:anyType" m nCccurs="0"/>
<xs: el enent name="SrcPeer| D' type="xs:anyURl"/>
<l-- This could be extended with a pattern restriction -->
<xs: el enent nanme="Handl er Nane" type="xs:string"/>
<xs: el enent name="Queryl D' type="xs:string"/>

55

<xs: el enent nanme="Query" type="xs:anyType"/>
</ xs: conpl exType>

The following is an explanation of the tags:

Credent i al — Thisisthe credential of the peer sending the query.

Handl er Name— The name associated with aresolver handler that listens for messages of this
type.

Queryl DANID that is used to link to the response. This ID is important because the order of
responses to queries is not guaranteed. It is also used in case there are duplicate responses to the
query, which is also possible.

Quer y— Thisis where you put application data for the other peers to examine. If you plan on an
XML message, the message must be escaped.

Thefollowing isthe XML schemafor a Resol ver Response message:

<xs: el enent nanme="Resol ver Response" type="Resol ver Response"/ >

<xs: conpl exType name="Resol ver Response" >
<xs: el enment nane="Credential" type="xs:anyType" m nOccurs="0"/>
<xs: el enent nanme="Handl| er Nane" type="xs:string"/>
<xs: el enent nanme="Queryl D' type="xs:string"/>
<xs: el enent nanme="Response" type="xs:anyType"/>
</ xs: conpl exType>

What follows is an explanation of the tagsfor the resolver response message:

Credent i al — Thisisthe credentia of the peer sending the response.
Handl er Name— The name associated with aresolver handler that listens for messages of this

type.
Quer yl D— An ID that is used to link to the query. This ID is important because the order of

responses to queries is not guaranteed. It is also used in case there are duplicate responses to the
guery, which is also possible.

Response— Thisis where you put application data for the other peers to examine. If you plan on
an XML message, the message must be escaped.

Rendezvous Protocol

The Rendezvous Protocol describes how messages are propagated peers in the member group. The
Rendezvous Protocol uses the Peer Endpoint Protocol to locate the peers in the group and determine routes
and transports. The Peer Resolver Protocol uses the Rendezvous Protocol to send messages, so you should
not access the Rendezvous Protocol or its implementation directly.

Even though the Resolver Protocol should be used instead of the rendezvous, it is important to understand
the messaging that occurs to get an idea of how messages flow in the system.

Rendezvous Advertisement (RdvAdverti sement)

The Rendezvous Advertisement (RdvAdverti sement) isvery simple and only has the following three
tags:

Nanme— Name of the rendezvous peer

56

RdvGr oupl d— PeerGroup UUID
RdvPeer | d— Peer ID of the rendezvous peer

Peer Connection

The connection between a peer and a rendezvous peer is achieved by a connection, associated with a lease.
A lease is a concept that basically means that the connection is promised for a certain period of time. The
lease must be requested before the connection is alowed. When the lease is granted by the rendezvous, the
peer can begin using the connection until the lease expires or the lease is canceled by the peer or the
rendezvous. The length of the lease is determined by the rendezvous and is not guaranteed to expire
normally. When a peer is done with the connection, it can send a cancel request, which, if granted, the
rendezvouswill reply with alease canceled message.A set of queries and responses are defined by the
Rendezvous Protocol to establish connections:

LeaseRequest — Message a peer uses to request a connection to a rendezvous. A rendezvous
that grants a connection lease returnsthe LeaseGr ant ed message.

LeaseG ant ed— Message sent by a rendezvous to indicate the lease has been granted.
LeaseCancel Request — Message is sent by a client to its rendezvous to cancel an existing
lease. The rendezvous should reply with LeaseCancel | ed, but thisis not guaranteed.

Propagation Control

Determining three qualities about each message received controls propagation. First isitstimeto live (TTL)
parameter. If the message has expired, the message is ignored. Second is the loop; if the message has been
seen before, it is discarded. Third is the duplicate that tests to see if the message has been processed.

The reason for loop and duplicate tests is that a looped message is a message that has already been ignored
or processed while the duplicate test checks to see if it was processed. A message may be handled
differently if it islooped but not yet processed. This is because the rendezvous may discard a message,
process it, or be interested but not at this instant. A message must be alive, not processed and not looped,
before it can be processed completely. It may be optionally processed if it is still alive, has looped, but not
processed.

Remember that a propagated message may be seen several times by the rendezvous. By using the path, the
TTL, and the ID of the message, the rendezvous can avoid forwarding messages to peers that have already
seen the message or that the rendezvous has already processed itself.

This control is accomplished by adding a RendezVousPr opagat eMessage message element within
each propagated message. The XML schema for the element is as follows:

<xs: el enent nanme="RendezVousPropagat eMessage"
type="j xt a: RendezVousPr opagat eMessage"/ >

<xs: conpl exType name="RendezVousPropagat eMessage" >

<xs: el enment nane="Messagel d" type="xs:string"/>

<l-- This should be a constrained subtype -->

<xs: el enent nanme="Dest SNane" type="xs:string"/>

<xs: el enent nanme="Dest SParani type="xs:string"/>

<xs: el enent name="TTL" type="xs:unsignedlnt"/>

<xs: el enent nanme="Path" type="xs:anyURl " maxOccurs="unbounded"/ >
</ xs: conpl exType>

The RendezVousPr opagat eMessage holds the information used by the rendezvous to determine
specific information about the message and its routing.

57

JXTA ldentifiers

JXTA has many identifiers. We have shown most of them earlier in the chapter as parts of the
advertisements. They are used for identification, indexing, and searching. There are usually two specific
identifiers in most advertisements. The first is the advertisement ID. This ID is generated when the
advertisement is created. One way to look at the advertisement identifier is that it is like an object
reference. The identifier has no real vaue other than to give each advertisement a unique number. The
second identifier is one associated with the advertisement type.

The format of identifiers vary according to their intent and use. Identifiers vary from simple names to
unique identifiers that can consist of rather long sequences of numbers and letters (please refer to the
earlier section titled "Modules” for examples of the different identifiers).

Codat ID

Codat is an invented word that is short for "code and data." In the documentation of the Codat class, we
find the following definition:

The JXTA platform defines Codat as the unit of information shared and exchanged within a JXTA group.

All instances of Codats reside within a peer group. The PeerGroup content caching service provides
storage and retrieval methods for codats using codatld as index.

A codat, therefore, represents data and can contain code or a reference to code. In a group advertisement,
the code is defined by the service definitions in the par ns tag. These service advertisements have unique
names that reference code implementations.

A Codat ID is defined in the IXTA spec as follows:

Codat IDs refer to codats. A Codat 1D should canonically, uniquely and unambiguoudly refer to a codat.
ID Formats may OPTIONALLY support this ID Type. If a IXTA binding recognizes the ID Format, it
should be able to extract a Peer Group ID from a Codat I1D. This Peer Group ID identifies the peer group
to which the codat belongs.

In the definition, canonical simply means unique. To say it more precisdly, there is no more than one ID or
official name for the same resource. On the Web, an HTTP URL is a canonical name for a Web page.

Peer ID

The peer ID is areference to a specific peer. The peer ID isvalid for the time that the peer exists. Because
peers are persistent, the peer ID is reused each time the JXTA peer is started. The only time the peer ID is
destroyed is when you delete the configuration manually or uninstall the peer platform. The next time the
peer is started, a new peer ID will be created.

Group ID

Peer group 1Ds are used to locate and index groups. The lifetime of agroup ID isvariable. Public groups
do not change. Groups that are temporary should have an expiration associated with them. It is up to the
group creator to define the lifetime of the group.

Service/Module ID

58

The service ID is used to define a codat. The ID is associated with a unique piece of code.
Pipe ID

The pipe ID is used to advertise a communications channel within a group or service. The pipe is often
only valid for the running time of an application. In at least the initial versions of JXTA, the pipe ID has a
very good chance of being invalid. It is possible to reuse a pipe ID, but thisis not of much use. The pipe ID
also contains the ID of its parent group to help with indexing and verification of the group context.

Summary

This chapter has covered the top layer of the JXTA protocols. Y ou should at least have a grasp of how
JXTA works and its key systems. Y ou should now also understand P2P networking and P2P applications a
little better.

We have not gone too deeply into the protocol because this should be all you need to begin understanding
how JXTA works. Remember, the IJXTA protocol isrealy just a set of messages. So far, we are just
brushing the surface of JXTA. The protocal is relatively useless without a platform that implementsit. You
also need to know how we can take advantage of the protocol.

59

Chapter 3. JXTA Protocols

By Daniel Brookshier

IN THISCHAPTER

Protocol and API

JXTA Goas

JXTA Peer and Java

Overview of the IXTA Protocols API
Summary of Java APl for JXTA Protocols
Where JXTA Applications Begin
The Peer

Starting JXTA

Peer Discovery Protocol API

Peer Resolver Protocol API

Peer Information Protocol

Peer Membership Protocol

Pipe Binding Protocol API

Peer Endpoint Protocol

Summary

In this chapter, you are going to read about the Java implementation of the JXTA protocols. We will
highlight the important classes, interfaces, and functionality. The JXTA AP isfairly large, not simple, and
not always obvious. Consider this chapter an introduction to the API rather than a comprehensive
treatment. We will cover important aspects of the JXTA APl in more detail in later chapters. The Java
version of JXTA is quite large, with amost three hundred Javafiles in the core platform. In the description
here, we will use class diagrams that show relationships, the parent package, and sometimes the methods.
Remember that JXTA is evolving, so there may be minor differences over time. With Sun Microsystems
acting stewardship, the changes at this level should be minor. Just in case, please check this book's Web
page at www.samspublishing.com where we will track all the changes to JXTA from the time this book is
published.

Protocol and API

The Java JXTA platform is a series of classes and methods for managing and transmitting application and
control data between JXTA compatible peer platforms. These core services are used to create peer-to-peer
gpplications.

One of the first concepts to cover isthat IJXTA was not initialy defined as a Java API. IXTA was
originaly defined as a set of behaviors and messages. The messages were defined as XML documents with

language and operating system independence. The Java version of JXTA is just one of many possible
implementations of the JXTA protocols.

A protocol is a repeatable procedure for regulating data transmission between computers. There are
implementations of the protocols written in Java, C, Perl, and others.

Each of these languages has a different API. The Java API covered in this book is the J2SE (Java 2
Standard Edition) version. Thereis also a 2ME (Java 2 Micro Edition) version for small devices like
phones, PDAS, and other devices. Each API iswritten to be useful to its developers and does not need to

60

match the Java reference platform in any way other than the JXTA protocol. Some versions, such as the
JXTA for the 2ME platform, only implement certain part of the JXTA protocols.

The API can hide many of the details of a protocol. The differences between the Java JXTA API and the
JXTA protocol are blurred in some areas and obvious in others. For example, the XML advertisements
specified by the protocol are fairly well represented by Java classes and interfaces. Some actions, such as
routing, are fairly well hidden from application programmers.

The key parts of the XJTA API are peer membership, pipes, discovery, and the resolver. Less used, but
interesting, are the peer endpoint and peer information APIs. In addition, other APIs make up
functionalities for rendezvous, gateways, and routers. Rendezvous, gateways, and routers are only of
interest to the application developer because of the enhanced services they provide. This chapter covers
some of their functionality because it does help to know where some of the mechanics reside.

JXTA Goals

The goa of JXTA is not to have Java everywhere, but peer-to-peer networking everywhere. The Java
implementation of JXTA should be completely compatible with any other version, whether written in C,
Pearl, or other popular language.

JXTA goals also include corporate and ISP acceptance. To that end, the platform can be configured to
provide basic services that can be placed on a dedicated computer. The services can be controlled by the
ISP or corporate network administrators, similar to how routers, firewalls, and proxy servers are used
today.

Another goal of JXTA isto create a platform rather than an application. The JXTA platform aimsto be
application agnostic with services provided that can support a hopefully unlimited number of application
types.

Finally, JXTA needs to be fast. Speed is a bit harder goal to master, especially for IXTA. Because IXTA is
aplatform, it is attempting to be al things to all applications. Because of this, the protocols are written
with a general use in mind. Speed and efficiency can be measured via tests, but only use by applications
will show how good the design is. P2P networking may seem simple, but the redlity is that even the
smplest system can have very complex behavior. IJXTA has attempted to create a fast and efficient system
by caching results, modularizing services, and alowing for specific helper services, such as routers.

Another goal that is related to the IXTA platform is to test the IXTA protocol. The platform is atest bed to
refine the protocols and ensure that peers can interoperated both between peers based on the Java platform
and other languages.

Finally, an important goal isto allow other developers to create applicaions on the platform. IJXTA
requires applications to succeed. Like Java, the platform is free to use as long as the open-source license is
followed.

Now that we have a few goals, let's look at how the platform is designed. Note that you will not see
everything we talked about in Chapter 2, "Overview of IXTA." We are at a higher level where applications
can interact with IJXTA services.

NOTE

Unlike the JXTA protocol specification, this chapter will focus on the Java implementation of the
protocols. Y ou should refer to the JXTA protocol specification and Chapter 2, "Overview of IXTA,"
for amore generic discussion.

61

JXTA Peer and Java

A peer isanode in the JXTA network. Each peer belongs to one or more groups and implements a set of
services that allows other peers to interact with this peer, or to others of which the peer is aware. For most
of theinitia applications written, the peer is synonymous with the user, even though thisis not ideal.
Identity is left up to the implementer of the application. The peer is best thought of as a computer that does
not care about identity. Keep thisin mind when you write a JXTA application, and be sure to add some
form of user identity.

A JIXTA peer in the Javaimplementation is associated with one JVM. Having only one peer per device,
such as a PC, is the normal scenario. You can start multiple JVMs to create multiple peers on a PC, but this
isonly really worth doing for debugging and experimentation. If you want to start multiple copies of IXTA
applications, you need to do so in separate directories and use different communication ports to avoid the
applications from conflicting. The key reason to use a separate directory is because of the cache
management system.

The cmDirectory

The cache management system is used to store information about the peer-to-peer (P2P) network. This
information is primarily advertisements created by the peer or found on the network during discovery. The
advertisements are stored as files with filenames that use the ID of the advertisement. Note that thisis just
the first version of the cache manager, and future versions may use a database instead of files.

The reason for such persistence is obvious when you consider there are hundreds of peers to interact with.
Without local caching, you would need to contact a good portion of these peers to rebuild information
required for your application.

The cache is required because it is very costly to accumulate advertisements. For example, to get a peer
advertisement of a peer you would like to chat with, you may need to pass through several rendezvous
peers just to locate the peer. If you had to perform this operation every time, you would significantly
reduce the performance of your application over time. The network would also be clogged with discovery
messages from peers constantly rediscovering the information each time they started.

Each VM instance has one associated peer because information is stored in the directory from which
JXTA islaunched. There are files in this rooted directory, along with various other directories and files.

One root directory created when the peer is started for the first time is the ¢ m(cache management)
directory. The content that is being managed are the advertisements that are both created locally and
fetched from the P2P network. The role of the cmdirectory is to act as alocd cache of these
advertisements. The cache acts as aform of persistence between sessions. Without the cache, the
advertisements would have to be reloaded from other peers.

Below the cmdirectory are group directories. For each group you join, there is a corresponding directory.
There are two directories, which are always created because al peers belong to the World and Net groups.
These directories are named j xt a- Net Gr oup and j xt a- Wor | dGr oup for the Net and World groups,
respectively.

As the peer joins new groups, new directories are added. Using the group ID, JXTA creates the directories.
Each group directory contains information about advertisements discovered in the group and any other
information about the group, such as membership and credentials.

NOTE

62

Y ou can use the cmdirectory for monitoring the health of your peer and for debugging. If you are
having problems with your messaging, the cmdirectory is very useful for debugging.

Looking at files in the group directories can help show that your application is connecting to the JXTA
network. As you do remote discovery, peer and other advertisements will get written to these
directories. Without writing code, you can examine the XML and learn about what is happening.

Another directory that can exist in the cmdirectory isthe Ht t pTr anspor t directory. This directory
exists only if your peer isan HTTP gateway. The directory is used to manage messages from other peers

that are using this peer as a middieman. Remember, from Chapter 2, that peers behind afirewall need a
gateway that stores incoming messages.

Additional directories can aso show under cmor other subdirectories (t np, publ i ¢, and pri vat e show

up under group directories, but are not used). In future versions of JXTA, a database could be used instead
of the file system. For now, using the file system is adequate for many applications.

PSE Directory

Another directory that appears where you run your peer is pse. The directory contains certificates,
password files, and other information related to peer security.

Be careful not to modify any of these files. Y ou can delete the pse directory if you want to start your peer

security from scratch, but be careful about doing this. In the future, this directory may contain other data
for the application that should not be deleted.

When the peer configuration tool cannot find the pse directory, it creates it. The system then asks for your
login and password to create the appropriate files and initialize the security system.

The current implementation uses the pse information for secure pipes. In addition to pipes, there are
additional uses for thisinformation, such as logging into groups and signing messages.

Overview of the JXTA Protocols JAVA API

The JXTA protocols are based on XML messages. Each message is an XML document. The XML
document defines its part in the communication and the data of the communication. These XML messages
are passed between the peers to convey information or are exchanged as part of alonger communication
with queries and responses. The sequencing of the XML messages, and the rules under which they are sent,
completes the protocol.

JXTA for Javatakes the obvious route to implement JXTA by mapping XML to classes and adding
management, control, and the ability to extend a base advertisement to a more complex one by inheritance.
This sounds like the system is well thought out, but there were and are a lot of growing pains.

Summary of the API

There are several base services that need to be performed in a peer-to-peer system. These services include
discovery, membership, and communications. The JXTA protocols further break communications into pipe
binding, endpoint, and resolver protocols. There is also a peer information protocol, which is similar to a
network ping except that it can have more information about the peer.

Peer Group Modules, Services, and Applications

63

Each peer group has a set of services. Thereis a core set that is usually implemented that covers the IXTA
protocols. Each service is amodule, which is like amini executable. Applications can also be a type of
module. The UML diagram in Figure 3.1 shows these interfaces, their relationships, and the methods to
implement them.

Figure 3.1. Modul e, Servi ce, and Appl i cati on interfaces.

Module O

(net.jxta.platform)

+init(group : PeerGroup, asignedID : ID, ImplAdv : Advertisement) : void
+startApp(args : String[]) : int

+stopApp() : void

Service O Application
(net.jxta.service) (net.jxta.platform)

+getimplAdvertisement() : Advertiesment
+getinterface() : Service

The core services implemented by the reference platform are all derived from services. Each of theseis
displayed in Figure 3.2. Note that Menber shi pSer vi ce isan abstract class and not an interface.

Figure 3.2. Core Peer Gr oup services and relationships to Ser vi ce and Modul e
interfaces.

64

O

Module
(net.jxta.platform)

(net_jxta_service)

ResolverService

RendezvousService inet.xta.resolver)

(net.jxta.rendezvous)

PeerinfoService

EndpeointService {net.jxta.peer)

{netjxta.endpoint) PipeService
(net.jxta.pipe)

DiscoveryService
{net.jxta.discovery)

MembershipService
(net.jxta. membership)

Summary of Java API for JXTA Protocols

JXTA protocols are used to help peers discover, interact, and manage P2P applications. The protocols are
not applications in themselves and require much more code to create something useful. The API hides alot
of detail about the P2P network, and its management that makes writing a JXTA application much easier
than developing a P2P capable application from scratch. This section introduces the various APIs that we
will discussin detail later in the chapter.

Peer Discovery API

The peer discovery is an implementation of a searching mechanism with aloca cache and the ability to
forward requests.

The root of the discovery APl isthe Di scover ySer vi ce class. The Di scover ySer vi ce is obtained
fromthe Peer Gr oup class, because discovery is aways limited to its group.

Peer Resolver API

The resolver API is used by other APIs that need a request/response format. The resolver is accessed
through the Resol ver Ser vi ce interface.

The resolver should be thought of as a network-wide query. Instead of specifying a single peer, a group of
peersis queried. An example of ause for thisis the discovery service that passes a query to multiple
rendezvous in search of answers.

65

Peer Information API

Peer information API is away to request status information about a peer. The peer information APl is
accessed viathe Peer | nf oSer vi ce.

Peer Membership Protocol

The peer membership API, like the discovery AP, is only from the viewpoint and context of the peer
group. The membership API isredlly in two parts—the membership authentication and credentialing.
Credentialing is used in much of the messaging to prove that the peer is avaid member of the group, so
the communications containing the credentia are valid.

The membership protocol is accessed viathe Menber shi pSer vi ce abstract class. Note that this may be
converted to an interface in a future version of the JXTA Java API.

Pipe Binding API

Pipe binding APl is one of the more dynamic APIs. The reason is that the API is used for many different
styles of pipe. The protocol is accessed viathe Pi peSer vi ce.

It should be noted that the pipe service uses the resolver and the endpoint services. A module called
Endpoi nt Rout er does the routing of pipes.

The Pi peSer vi ce interface does not define pipes, just the creation and management of pipes. Pipes are
defined by implementing the | nput Pi pe and Qut put Pi pe interfaces.

Peer Endpoint API

The peer endpoint API isan API that is mostly invisible to JXTA application developers. The reason is
that the endpoint API is really an implementation of a router. There are uncountable numbers of routersin
use in corporations and the Internet that are just as invisible to the writers of browsers and other network
software. However, this API can be used directly by applications that could be used to create applications
that are more powerful. This API holds the key to accessing the transports available to other peer services,
such as pipes and the resolver.

The key difference between a router and the endpoint router is that the routing is performed in the peer
instead of a specialized piece of hardware and software. In the future, it is possible that there will be
dedicated JXTA routers, but there is a great advantage to controlling your own destiny and routes. The API
is probably less efficient than a dedicated router, but the endpoint router is built to route in some of the
worst conditions caused by the mess of corporate LANS, firewalls, proxy servers, and NAT devices.

The router uses the resolver to query other peers for parts of the route. The endpoint protocols, such as
TCP and HTTP, are defined and managed here too. The endpoint API is accessed with the
Endpoi nt Ser vi ce interface.

Where JXTA Applications Begin

JXTA applications need to be able to deal with the IXTA P2P network as the first thing they do. We call
this booting the peer platform. Thisis very much like booting a computer on a network. The key difference
here is that instead of a simple network, we are starting a peer in the JXTA network.

66

The JXTA platform is a group that implements the initial set of default behavior and protocols. The
platform is aso in the World peer group. The World group is the root