
1 

 
 
 
 

 
 
 
 
 
JSP Examples and Best Practices 
 
by Andrew Patzer  
 
ISBN: 1590590201 
 
 
 

This useful resource covers JSP, Servlets, JUnit, JMeter, Ant, CVS, Customer Tags, and 
JavaBeans, and provides plenty of source code. 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



2 

 

Table of Contents 
JSP Examples and Best Practices  
Introduction  
Chapter 1 
JSP Foundations 

Chapter 2 
Using JSP 

Chapter 3 
Role Separation with Javabeans 

Chapter 4 
Role Separation with Custom Tags 

Chapter 5 
Development Using Patterns 

Chapter 6 
The Decorating Filter Pattern 

Chapter 7 
The Front Controller Pattern 

Chapter 8 
The View Helper Pattern 

Chapter 9- 
Testing Techniques 

Chapter 10- 
Deployment Techniques 

Chapter 11- 
Application Frameworks 

Chapter 12 
Putting it all Together 
Index  
List of Figures  
List of Tables  
List of Listings  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



3 

JSP Examples and Best Practices 
 
ANDREW PATZER 
 

 

Copyright ?2002 by Andrew Patzer 

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior written 
permission of the copyright owner and the publisher.  

 

ISBN (pbk): 1-59059-020-1 

Printed and bound in the United States of America 12345678910 

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence of a trademarked 
name, we use the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of 
infringement of the trademark.  
Technical Reviewer: David Czarnecki  
Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Karen Watterson, John Zukowski  
Managing Editor: Grace Wong 
Project Manager: Alexa Stuart 
Copy Editor: Kim Wimpsett 
Production Editor: Kari Brooks 
Compositor: Impressions Book and Journal Services, Inc. 
Indexer: Carol Burbo 
Cover Designer: Tom Debolski  
Marketing Manager: Stephanie Rodriguez 
 
Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY, 10010 
and outside the United States by Springer-Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany. 
In the United States, phone 1-800-SPRINGER, email <orders@springer-ny.com>, or visit http://www.springer-
ny.com. 
Outside the United States, fax +49 6221 345229, email <orders@springer.de>, or visit http://www.springer.de. 

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219, Berkeley, CA 94710. 
Phone 510-549-5930, fax: 510-549-5939, email <info@apress.com>, or visit http://www.apress.com. 

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution has been taken in 
the preparation of this work, neither the author nor Apress shall have any liability to any person or entity with respect to any 
loss or damage caused or alleged to be caused directly or indirectly by the information contained in this work.  
The source code for this book is available to readers at http://www.apress.com in the Downloads section.  
About the Author  
 

 
 
Andrew Patzer  is a web architect for the Centare Group, a consulting firm located in the Midwest. His first book, Professional 
Java Server Programming (Wrox Press, 1999), is a best seller and one of the first books to cover J2EE technologies. Andrew 
recently served as a lead systems architect for a leading application service provider in the insurance industry, and he was 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



4 

directly involved in designing and building a J2EE development framework upon which the company's key product was built. 
Andrew has delivered several presentations over the years to local user groups as well as national conferences. 
 
I'd like to dedicate this book to my wife, Beth, and our daughters, Ashley and Emily. Once again, they've been very supportive 

of me as I took on another book. I know it's been difficult at times to put up with me not being around because I had more 
writing to do. Thank you for your love and continued support.  

I'd like to give special thanks to both my mother and my mother-in-law. They've both had to deal with cancer this past year and 
continue to fight. I've learned a great deal personally from both of them about courage and strength. I pray they continue to 

enjoy life to its fullest each and every day.  
Acknowledgments   

I BELIEVE STRONGLY that a person can only go so far unless they surround themselves with good people. Over the years, 
I've had the pleasure of working with some outstanding people. I'd like to specifically mention a few that I worked with at 
Workscape (now Riverwood Solutions). Mike Schenk, Mike Connor, and Craig Wohlfeil are each extremely talented architects 
who not only taught me a great deal, but also pushed me to achieve more than I could have on my own. 

Dave Glyzewski, owner of the Centare Group, has always been a friend and has done his best to support me over the years as 
my career has taken me many different places. I'd like to thank Dave for being in my corner and always believing in me. 
Thanks, Smithers! 

 
John Carnell, my perpetual coworker, has been there to keep my competitive juices flowing. We always seem to push each 
other to new heights (although I can't seem to push you past that five-foot mark— sorry, I couldn't help myself). Seriously, thank 
you for being a friend, as well as competitor, throughout my career.  

I'd also like to thank my friend Scott Borth. Scott is the only person I've found who will laugh at my jokes and find humor in the 
same things I do. When your job has you sitting in front of a computer screen all day, it helps to talk to someone who not only 
allows you to be yourself, but actually encourages it.  

 
About the Technical Reviewer  

 
 
David Czarnecki  is a computer scientist in the Advanced Computing Technologies lab at the GE Global Research Center in 
Niskayuna, New York. He's involved with various projects ranging from the development of application frameworks to the use 
of natural language processing techniques. He's the coauthor of Java Internationalization  (O'Reilly, 2001), and he regularly 
provides expertise on how to properly internationalize software. David is also a speaker at national conferences such as 
JavaOne.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



5 

 

Introduction 
When I wrote my first book covering JavaServer Pages and Java Servlet technology, there was 
a great deal of uncharted territory to cover. Today, much of what I wrote is not only outdated, 
but completely obsolete. The technology has grown tremendously fast and, with it, a legion of 
Java developers eager to stay on the cutting edge of Java development. Although this is 
certainly a good thing, it does however create a problem. Quite often, in a rush to implement 
the latest technology, little thought is given to good design and architecture. 

 
This book attempts to provide a framework for developing quality software using JavaServer 
Pages technology. Chapters 1 and 2 lay the groundwork for using JSP. Chapters 3 and 4 
explore the separation of roles between page designer and Java developer using both 
JavaBeans and custom tag extensions. Chapters 5, 6, 7, and 8 present several design patterns 
for the presentation tier. These patterns are applied using JavaServer Pages and Java Servlets. 
Chapters 9 and 10 walk through the basics of testing and deploying web applications using 
open-source tools. The book concludes with the development of an application framework 
along with a complete reference implementation in Chapters 11 and 12. 

I hope you enjoy this book as much as I've enjoyed writing it! 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



6 

 

Chapter 1: JSP Foundations 

Overview 

Developers have seen great improvements in server-side web development in the past few 
years. We've gone from complex, non-scalable Common Gateway Interface (CGI) scripts to 
some elegant enterprise-class solutions using technologies such as Active Server Pages 
(ASP), Java Servlets, and JavaServer Pages (JSP). Unfortunately, with this explosion of new 
technology come a lot of misguided efforts by well-intentioned developers. 

It's easy to simply learn the skills you need to accomplish a specific task and then move on to 
something else. When you revisit that same task, you may learn a little bit more to make 
necessary modifications, but it's still not quite right. What eventually happens is that you end up 
with a system of "patchwork" that needs to be supported and maintained. Wouldn't it be nice to 
do things right up front and avoid creating this mess in the first place? 

This book's purpose is to educate those of you who may have developed several JSP 
applications but have never really thought about concepts such as role separation, frameworks, 
and enterprise development patterns. Having developed several server-side Java applications 
over the past few years, I'd like to share with you some of my ideas as well as some best 
practices that I've arrived at while working alongside some of the best and brightest developers 
around. 

This chapter will lay down the basics of developing a web application using JSP. It'll explain the 
fundamental concepts behind web development, J2EE (Java 2 Enterprise Edition) applications, 
and simple JSP development. If you're already a JSP expert, then you may still want to skim 
over the chapter. It'll include information helpful for setting up a particular JSP environment and 
laying the groundwork for the book's examples. 
 
Developing Web Applications 

It may seem a bit trivial to discuss the elements of a basic web application in an advanced JSP 
book, but I think it warrants attention when I see numerous people claiming to be web 
developers who know nothing about HyperText Transfer Protocol (HTTP) or even web servers. 
It reminds me of my client/server days, when I was surrounded by Visual Basic developers who 
had no understanding of the Windows operating system. They were certainly capable of 
producing a working application, but they could have done so much more had they understood 
the basic foundation upon which they were developing. 

Web developers, for the most part, tend to get caught up in their specific technology and then 
do exactly what they need to do to get their programs to work. Quite often, there just isn't any 
time to learn anything more about it. With aproper foundation, developers can make better 
decisions before diving into development. So, let's start this book by reviewing HTTP and how 
each component of a web application plays a part in the overall interaction with the user. 

Understanding HTTP 

HTTP defines the way in which web browsers interact with web servers. HTTP uses TCP/IP, 
the network protocol of the Internet, to communicate standard messages between machines 
across the Internet. By using standard protocols such as these, you're able to communicate 
with any web server from a variety of different web browsers and expect similar behavior. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



7 

At the heart of HTTP lies a request message and a response message. This is the 
fundamental way in which a web browser communicates with a web server (see Figure 1-1). 
The user types in the location of a document in the URL box, the browser issues a standard 
HTTP request for the document, and the document is located and returned to the browser as a 
standard HTTP response. 
 

 
Figure 1-1: Basic HTTP exchange  
 
The HTTP request consists of a series of standard headers along with any parameters, or form 
data, necessary to fulfill the request. The web server, for which the request is intended, is able 
to read these headers and respond accordingly. There are two common types of HTTP 
requests, GET and POST. A GET request will append form data to the requested URL and send it 
as one packet. A POST request will first send a packet containing header information and then 
send a separate packet containing the form data. A common question I'm asked is, "Which 
type of request should I use in certain situations?" A good rule of thumb is that you should use 
POST requests to modify a resource on the server and GET requests to simply retrieve information 
from the server. You may find that this doesn't always apply in every situation, though. 
 
The HTTP response consists of standard response headers such as content -type and content -
length, along with an HTTP version number and an HTTP status code. In addition to the 
header, chunks of data are sent immediately following the response message. The browser 
uses the response headers to determine the best way to render the data and then displays it 
accordingly. Most of the time, the response consists of HTML content, along with a few images. 
Sometimes, however, the content-type may be something like application/pdf, which is known 
as a MIME type. The browser will match this against its own list of MIME types and determine 
which helper application to load. In this case, the Adobe Acrobat Reader would render the 
response data. 
 
Table 1-1 shows the log file of an HTTP tracer program that tracks every HTTP message sent 
between your browser and the Internet. You can see how the POST request issues two separate 
messages. What you can't see in this particular log is that the second message contains all of 
the form data (notice the size of the message). The response that is generated contains a 
header of HTTP/1.1 200. The first part (HTTP/1.1) is the version number. The last part is the 
status code (200, which means OK). This also contains any response headers such as 
content-type and content-length (not shown in this log). The remaining lines show how the 
browser receives the response data. The browser will take this data, along with its content-type 
and content-length, and render it appropriately for the user to view. 
 

Table 1-1: Example of a Single POST Request and Subsequent Response   
TYPE  ID1  ID2  BYTES  RESPONSE TIME  DATA  

SEND 735 1 741 0.000 POST 
/marketplace/default.html 

SEND 735 2 1489 2.799 POST 
/marketplace/default.html 

RECEIVE 735 3 172 2.720 HTTP/1.1 200 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



8 

Table 1-1: Example of a Single POST Request and Subsequent Response   
TYPE  ID1  ID2  BYTES  RESPONSE TIME  DATA  

RECEIVE 735 4 2048 0.005 2048 bytes 

RECEIVE 735 5 7680 0.035 7680 bytes 

RECEIVE 735 6 512 0.002 512 bytes 

RECEIVE 735 7 2560 0.019 2560 bytes 

RECEIVE 735 8 63 0.018 63 bytes 

Components of a Web Application 
 
A typical web application involves a web server, an application server, and a database server. 
Each of these servers listens to a specific TCP/IP port for incoming messages containing 
requests to carry out. These listeners are sometimes called daemons. They're threads of 
execution that wait for TCP/IP messages to appear for a specific port. For instance, the web 
server will, by default, listen to requests addressed to port 80. Because web servers default to 
this port, there's no need to specify it in the URL, it's just implied. If you were to request 
http://www.apress.com, the request would be sent to port 80 of the machine on which the web 
server is running. To specify a different port, let's say port 7100, you would add it to the URL 
like this: http://www.apress.com:7100. 
 
Ports provide an easy way in which a company can limit access to its network resources. A 
network administrator can simply shut off outside access to all ports other than port 80. This 
ensures that the only way someone will get in is through the web server. Application servers 
listen on a port that is typically private to the outside world. The web server is configured to 
forward specific requests to that particular port. Database servers operate in a similar fashion. 
The database server may be listening on port 3306 for requests. The application server would 
then establish a database connection with that port. Figure 1-2 shows this chaining of servers 
through port mappings. It's important to note that each of these servers can be running on the 
same machine or multiple ones. If they're running on separate machines, then you would need 
to specify the machine name in front of the port name (machine_name:port). 
 

 
Figure 1-2: Web application architecture  

The typical flow of handling a request starts with the browser issuing arequest for a specific 
resource. The web server picks up this request off of port 80 and determines that the 
application server should handle the request. The application server receives the request and 
executes some code to handle the request. Within the code, the database may be called by 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



9 

making a connection to whatever port to which the database server is listening. Once a 
response has been assembled, it's sent back to the browser from where it originated. 
 
 
Developing J2EE Web Applications 
 
You've seen how HTTP has made it possible for various web servers and web browsers to 
communicate with each other regardless of the underlying technologies. In a similar fashion, 
the J2EE specification has made it possible for applications to be deployed in a wide variety of 
environments with little or no modifications necessary. An application server that is said to be 
J2EE compliant can fulfill a "contract" between the application itself and the services the 
application server provides. Popular J2EE-compliant application servers are BEA WebLogic 
and IBM WebSphere. Some open-source options are Enhydra and JBoss. 
 
The J2EE specification defines the use of several services with which a typical enterprise 
application is concerned. These services include transaction management (JTA), naming 
services (JNDI), messaging (JMS, JavaMail), distributed object handling (RMI-IIOP), and 
database management (JDBC). In addition to these services, a J2EE-compliant application 
server provides both a web container and an Enterprise JavaBean (EJB) container (see Figure 
1-3). 
 

 
Figure 1-3: J2EE architecture  

Understanding Web Containers 
 
A J2EE application server provides a standard container that can handle the execution of both 
Java Servlets and JSP, along with any services that may be needed by these components. 
This container is the web container because the components within it are responsible for page 
navigation and presentation. 

Java Servlets  

A few years ago, there were not many options for delivering dynamic content through the Web. 
Most people had to write Perl scripts to be used through CGI. Although this approach worked 
reasonably well, it was not very scalable (a new process is required to service each request). 
Sun introduced Java Servlets to provide a scalable solution that brought with it the many 
advantages of the Java platform. 

Servlets are nothing more than Java classes that implement the HttpServlet interface of the 
Java Servlet API. This interface defines a set of lifecycle methods that can be overridden to 
provide dynamic responses to HTTP requests. A J2EE-compliant application server provides 
an environment for servlets to reside and handle incoming requests. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



10 

The web container can load and manage multiple servlets within the same Java Virtual 
Machine (JVM). Once a servlet is loaded, it handles each incoming request by spawning a new 
lightweight thread to perform its task. This enables the application server to service a great 
number of requests without significant degradation of performance. 

JavaServer Pages 
 
The biggest problem with servlets was that they required the Java developer to assemble the 
HTML-formatted output from within the Java code using a series of out.println() statements. 
This not only created some ugly code, but it also made it difficult to create a decent user 
interface. If you wanted to use a tool to visually design a page, you needed to copy the HTML 
into your Java code and wrap the out.println() method calls around each line. In short, there 
was no clear separation between the application code and the user interface. To change one, 
you invariably changed the other. 

JSP was introduced as a way to separate the content from the presentation of the content. A 
JSP page is typically an HTML page with special tags for including Java code. The page 
dynamically compiles into a servlet behind the scenes and executes as such. This makes it 
possible to write pure HTML (and use HTML tools) without regard to the Java code in the page. 
There are many ways to further separate content from presentation using both servlets and 
JSP pages. Chapters 3 and 4 discuss these techniques in depth. 

Understanding EJB Containers 

In addition to a web container, J2EE-compliant application servers provide an EJB container. 
The web container will typically communicate with the EJB container to access business logic 
contained within one or more EJBs. It's often through EJBs that the web container accesses 
enterprise resources such as databases, message queues, and distributed objects. 

EJB containers provide an environment to host EJBs as well as a set of system-level services 
such as transaction management and security. An EJB makes itself known to its container by 
publishing a home and remote interface. It's through these interfaces that client objects 
communicate with the EJB and invoke the business logic contained within them. 

Structure of a J2EE Application 

All J2EE-compliant applications must follow a specific deployment structure. This structure 
helps to minimize the differences in deploying an application to different application servers (in 
other words, WebLogic vs. WebSphere). The directory structure is as follows: 

 

app-name (.html & .jsp files, along with any subdirectories required by html) 

    web-inf (web application deployment descriptor, web.xml) 

        classes (application classes, servlets) 

        lib (3rd-party jar files) 

        tlds (Tag library descriptors) 
 
The web.xml file contains configuration information for the web container to use. For a complete 
description of this file, see the Java Servlet specification at 
http://java.sun.com/products/servlet/download.html. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



11 

Patterns for Web Application Development 
 
Web applications written in Java typically follow some kind of development pattern, whether or 
not the developer realizes it. The idea of patterns has its origin in Object-Oriented (OO) 
programming. A development pattern defines a best practice for a common situation. For 
instance, a common OO pattern, called the factory pattern, defines a standard structure for 
dynamic instantiation of objects that are unknown at compile-time. By using this repeatable 
pattern, the developer is able to solve their problem with a proven technique. 
 
Although OO patterns define best practices at the language level, web development patterns 
provide best practices at the system level. When developing Java applications for the Web, 
there are three basic patterns to follow. Beyond these basic patterns, a series of J2EE patterns 
have been defined to address many of today's web application issues. These patterns go into 
greater detail, utilizing much more of the J2EE component set. The J2EE Blueprints are 
available online at http://java.sun.com/blueprints/ for you to peruse and become familiar with 
enterprise application development patterns. Later in this book, I'll introduce several 
presentation patterns as you develop a complete request-handling framework. 

Introducing the Servlet Model 
 
The first of these models was the simple servlet model. Not too long ago, this was the only 
option for developing a server-side Java application. This model is simple in the sense that 
everything is contained within the servlets. For this same reason, this model is also complex. 
The servlet, or servlets, contains navigation code, business logic, and presentation code (see 
Figure 1-4). Although this was a fine solution a few years ago, there are better ways available 
to us now. 
 

 
Figure 1-4: Servlet model  

Moving to JSP Model 1 
 
The introduction of JSP created a massive shift from the servlet-centric model to a JSP-centric 
model. Although this may have eased some of the pains relative to servlets, it's still a 
combination of presentation code, navigation code, and business logic. The developer writes 
the entire application as a set of JSP pages (see Figure 1-5). The majority of today's JSP-
based applications follow this model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



12 

 
Figure 1-5: JSP model 1  

Moving to JSP Model 2 

This pattern implements the typical Model-View-Controller (MVC) pattern. In an MVC 
architecture, a controller handles system navigation, a model stores a set of data, and a view 
(or multiple views) presents the data stored in the model. This enables you to present a single 
set of data in multiple formats. For example, the Swing library in Java makes extensive use of 
the MVC pattern. Visual components separate their data from their presentation. This enables 
an application to completely change its look-and-feel with a single line of code. 

 
Web applications implement an MVC pattern using a Java servlet for the controller, a 
JavaBean (or EJB) as its model, and JSP pages as the view (see Figure 1-6). There are many 
benefits to this pattern. These include better role separation, single point-of-entry, high 
scalability, and the ability to present content in multiple formats such as HTML or Wireless 
Markup Language (WML). 
 

 
Figure 1-6: JSP model 2  

Introducing Enterprise Patterns 
 
The J2EE patterns catalog defines a series of patterns that make full use of the J2EE 
technology suite to help ease the burden of enterprise application development. These 
patterns are separated into different sections based on the type of application with which you're 
concerned. For these purposes, I'll discuss the View patterns in Chapters 5–8. Each of these 
patterns elaborate on the JSP model 2 pattern previously discussed. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



13 

Learning JSP Basics 
 
This section will review the basic foundations of JSP. It should be enough to get you started 
and enable you to follow along throughout the rest of the book as you dive into more advanced 
techniques. Those of you who are already skilled JSP developers, feel free to skip ahead to the 
next section of this book, where I talk about setting up your development and runtime 
environments. 

JSP Processing 

Although it's possible to write a working JSP application without any knowledge of the way in 
which it's processed on the back end, there's so much more you can do once you understand 
the inner workings of how a JSP page generates a response to a simple request. Without this 
knowledge, it's nearly impossible to deal with issues such as application management, 
scalability, and persistence. 

 
Note  Throughout the text, the phrase JSP page or JSP file refers to a page that will 

be processed by a J2EE web container conforming to the JavaServer Pages 
specification. This may seem redundant at first to say JSP page if you think of 
it as JavaServer Page page. However, when I use JSP, I'm referring to the 
technology as a whole, not a literal expansion of the abbreviation. 

 
Let's start with the basics. A JSP page is simply an HTML page that contains special 
instructions to execute Java code throughout the page. A J2EE web container capable of 
processing servlets and JSP pages handles the page. The web container has a servlet engine 
that will go through a series of steps to deliver the results of the JSP page (see Figure 1-7). 
 

 
Figure 1-7: JSP processing steps  

The first time a JSP page is requested, the servlet engine will read the file and generate source 
code to create a servlet. The code compiles and the servlet loads. Once loaded, it handles 
requests in the same manner as any other servlet. The only difference is that each time a 
request is made of a JSP file, the timestamp of the file is checked against an embedded 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



14 

timestamp in the servlet. If the JSP file is newer, then it has to be compiled into a servlet and 
reloaded. 

This can have performance implications in many situations. For instance, let's say you have a 
web application that consists of a series of 40 different pages. The first person to use the 
application would have a horrible experience if they had to sit through the compilation of every 
page as they navigate their way through the system. Most J2EE web containers allow you to 
precompile your JSP files to avoid this performance problem. This also helps to alleviate the 
problem encountered when a page has compiler errors. You certainly would not want the user 
to see that! 
 
As you can imagine, a JSP page goes through a lifecycle similar to that of a servlet. When it's 
first loaded, the jspInit() method is called. Once loaded, the _jspService() method is called to 
generate a response to the request. This method contains the servlet code that will output the 
HTML along with the results of the Java code contained in the JSP file. Before the servlet (JSP) 
is unloaded from the web container, the jspDestroy() method is called. 
 
The jspInit() and jspDestroy() methods can be overridden in the declarations section of the 
JSP page. The _jspService() method cannot explicitly be overridden because it's a system-
generated method that corresponds to the body of the JSP page. I discuss this further in the 
next chapter, but here's a look at how to override the jspInit() and jspDestroy() methods in a 
JSP page: 
 

<%! public void jspInit() { 

        // Initialization code (DB initialization, login to resources) 

    } 

    public void jspDestroy() { 

       // Cleanup code (close system resources, cleanup filesystem) 

    } 

%> 

Structure of a JSP Page 
 
A JSP page follows a simple structure that makes it easy for the servlet engine to translate the 
instructions into a corresponding servlet. In addition to HTML (referred to as template text), a 
JSP page consists of directives, declarations, expressions, and scriptlets. Each of these 
elements can use either standard JSP syntax, or they can be expressed as XML tags. The one 
caveat, however, is that you cannot intermix the two. The exception to this is that you can use 
the include mechanism to insert a file that may use a different syntax. 
 
Note  I discuss each of these elements, along with a brief code example and the 

corresponding XML syntax, in the following sections. Keep in mind, however, 
this is not intended as a thorough examination of basic JSP. I'm only reviewing 
the basics so you can all have a similar understanding as you move ahead 
toward more advanced ideas. There are many good books that cover JSP in 
exhaustive detail. If you're new to JSP, I recommend going through one of 
these as a supplement to this text. J2EE Frontend Technologies by Lennart 
Jorelid (Apress, 2001) is an excellent guide to JSP technology and Java 
Servlets. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



15 

 

Directives 
 
JSP directives appear at the top of the page. They contain special processing instructions for 
the web container. The most common directive, the page directive, contains many different 
attributes you can set. Here's an example of the page directive: 
 

<%@ page import="java.util.Date, java.io.*" 

          extends="myJSPpage" 

          buffer="32k" autoflush="false" %> 
 
This page directive tells the web container to import the java.util.Date class and the java.io 
package. It also instructs the web container to create the corresponding servlet by extending 
the myJSPpage class. Other attributes shown here set the buffer to 32k and turn off autoflushing. 
Here's what this would look like using XM L syntax: 

<jsp:directive.page import="java.util.Date, java.io.* " 

                      extends="myJSPpage" 

                      buffer="32k" autoflush="false" /> 

Another important directive is the include directive. This enables you to import the contents of 
another file into your current JSP page. Because this effectively replaces itself with the text of 
another file, this directive can appear anywhere throughout the page. Here's an example of an 
include directive (both standard syntax and then XML syntax): 

<%@ include file="/legal/disclaimer.html"> 

<jsp:directive.include file="/templates/footer.html" /> 
The other JSP directive worth mentioning here is the taglib directive. This enables you to load 
and identify a tag library for use throughout the rest of the page. I discuss tag libraries in depth 
in Chapter 4. 

Declarations 
 
Variables and methods can be declared using the <%! and %> tags. Anything declared within 
these tags will be visible to the rest of the page. Think of this as declaring variables at the class 
level outside of any particular method. This is also where you can override the jspInit() and 
jspDestroy() methods. Here's an example of a few declarations, followed by the corresponding 
XML syntax: 
 

<%! int balance = 0; %> 

<%! public int getAccountBalance() { 

        return balance; 

    } %> 

 

<jsp:declaration> int balance = 0; </jsp:declaration> 

<jsp:declaration> 

    public int getAccountBalance() { 

       return balance; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



16 

    } 

</jsp:declaration> 

Expressions 
 
An expression is an instruction to the web container to execute the code within the expression 
and replace it with the results in the outputted content. Anything placed inside of the <%= and %> 
tags is first evaluated and then inserted in the final output. What this really does is insert the 
expression within the output string in the generated servlet. For example, consider the 
following expression: 
 

Hello, my name is <%= getName() %>. How are you? 

The servlet code will look something like this: 

out.println("Hello, my name is "+ getName() + ". How are you?"); 

 
This is effective for maintaining continuity within your HTML template text, rather than writing a 
scriptlet (see the next section) every time you want to retrieve a single value. There are some 
performance implications with expressions to consider, however. You can see how the 
generated servlet performs several string concatenations to achieve the desired result. If you 
were writing the servlet yourself, you'd probably prefer to perform this concatenation using a 
StringBuffer instead. This would be more efficient than creating several String objects. Keep 
this in mind as you liberally sprinkle expressions throughout the page and try to think of some 
alternatives. One such alternative would be to build the entire line inside a scriptlet like this: 
 

<%  StringBuffer sb = new StringBuffer(); 

    sb.append("Hello, my name is ""); 

    sb.append(getName()); 

    sb.append(". How are you?); 

    out.println(sb.toString()); 

%> 

 
The XML syntax for an expression uses the <jsp:expression></jsp:expression> tags in place of 
the <%= and %> tags. 

Scriptlets 
 
You can use scriptlets anywhere in the page. They're fragments of Java code that get inserted 
into the _jspService() method of the generated servlet. Anything that can be done inside of a 
servlet can go inside of a scriptlet. To create a scriptlet within your page, surround your Java 
code with <% and %>. Here's an example of a simple scriptlet followed by its XML equivalent: 
 

<% for (int n=0; n<10; n++) { 

      out.println(n); 

      out.println("<br>"); // Line break 

   } 

%> 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



17 

<jsp:scriptlet> 

     for (int n=0; n<10; n++) { 

        out.println(n); 

        out.println("<br>"); // Line break 

     } 

</jsp:scriptlet> 
 
Setting Up a JSP Environment 

You have many different options to choose from when setting up an environment to develop 
and deploy a JSP application. The important thing to keep in mind is that everything should be 
J2EE compliant. This will ensure that the web server, application server, and database server 
will be able to work together to deliver JSP pages, Java Servlets, and Enterprise JavaBeans 
using Java DataBase Connectivity (JDBC) as a standard protocol to interact with the database. 

The environment I chose to use for the development of this book is JBoss for an EJB container, 
Tomcat for a web container, and MySQL for a database server. Each is a free, production-
quality server. You may choose to use something different. As long as it's J2EE compliant, feel 
free to do so. 

Choosing a Development Environment 

You can develop JSP applications with nothing more than a simple text editor. However, many 
tools can ease development tasks significantly. Selecting a tool is really a matter of personal 
preference, so I'll walk through my development process, and you can decide if it makes sense 
for you. 

When developing a JSP page, I prefer to design the page first using a web authoring tool such 
as Macromedia Dreamweaver. Whenever the page requires some dynamic data that will be 
generated from some Java code, I insert some kind of stub. This helps generate a visually 
appealing page that at least looks like it wasn't built by a programmer. Once the page has been 
designed, I take the source code and open it up in a code editor such as Macromedia 
HomeSite. This enables me to insert the appropriate JSP tags and Java code. 
For JavaBeans, Servlets, and EJBs, I like to use a Java Integrated Development Environment 
(IDE). It really doesn't matter which one you use. I prefer to use an open-source development 
tool called jEdit for all of my Java development. jEdit is highly extensible, allowing you to 
customize it well beyond what commercial vendors can offer. For more information about jEdit, 
or to download the tool, visit http://www.jedit.org. 

Picking an Application Server 

You have several options to consider when choosing an application server to host your JSP 
and servlet applications. The popular commercial vendors are IBM, BEA, and iPlanet. The 
price tag for these products is quite high because they're intended for large-scale corporate 
use. It's possible in most cases, though, to obtain a 30-day evaluation copy of each product. 
I've always been a big fan of BEA WebLogic and recommend it highly to anyone considering 
an application server for their company. 

 
The alternative to an expensive commercial product is to simply download a free one. I like to 
use JBoss for hosting EJBs and Tomcat as a web container. It's extremely simple to set up 
(see the next section), and it performs quite well. Again, the important thing to look for here is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



18 

J2EE compliance. There are several free, open-source application servers from which to 
choose. 

Setting Up Tomcat 
 
Because this book focuses on JSP and servlet development rather than EJBs, it would be best 
to simply install the Tomcat server at this point. The Tomcat server is an open-source servlet 
container available from the Apache-Jakarta project (http://jakarta.apache.org). It's the 
reference implementation for both the Servlet and JSP specifications and, best of all, it's free! 
The examples in this book require that the servlet container implement version 2.3 of the 
servlet specification. Therefore, you will need version 4.0 of Tomcat at a minimum to follow 
along in later chapters. Once Tomcat has been downloaded and installed, you must configure 
for use. You do all the configuration in either the startup scripts located in the \bin directory or 
in the server.xml file located in the \conf directory. At this point, there's no need to modify the 
startup scripts. To add an application to the server, however, you must first create an 
appropriate J2EE directory structure underneath the \webapps directory and then add a context 
entry to the server.xml file. 
 
In preparation for the examples in this book, you'll need to create the following directory 
structure underneath the \webapps directory: 
 

\tomcat 

   \webapps 

      \jspBook 

         \WEB-INF 

            \lib 
In the \tomcat\conf\server.xml file, add the following context entry: 

<context path="jspBook" 

  docBase="webapps/jspBook" 

  crossContext="true" 

  debog="0" 

  reloadable="true" 

  trusted="false" 

</context> 

 
Now you'll be able to access your JSP files by entering http://localhost:8080/jspBook/ in the 
browser window preceding the filename (Tomcat listens to port 8080 by default). You'll be 
adding files to the \jspBook directory inside of subdirectories for each chapter. For instance, the 
next example will be customers.jsp and will be stored in the \ch1 subdirectory. To access this 
file, you would type http://localhost:8080/jspBook/ch1/customers.jsp. For further information on 
setting up and configuring Tomcat, refer to the documentation included with the installation or 
located at http://jakarta.apache.org. 

Selecting a Database 
 
Database Management Systems (DBMS) provide efficient and manageable access to large 
amounts of application data. The most popular form of a DBMS is a Relational DBMS 
(RDBMS). A relational database stores and retrieves data using tables tied together with 
common fields. Another widely used form of a DBMS is an object database. An object 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



19 

database stores data as objects, much like you use in your Java programs. This is sometimes 
more efficient than a relational database because you may need to do some complex joins of 
relational tables to get the data required for use in your Java code. 
 
For this book, I'll use the relational DBMS called MySQL. It's an open-source database that you 
can freely download from http://www.mysql.com. When downloading, be sure to get the MySQL 
server and the MySQL client administration tools. You'll need both to successfully host and 
manage your database. 
 
Once installed, you'll need to create your database and add some tables. To create a database, 
go to the command prompt and move to the \mysql\bin directory. Enter the command mysql 
and press Enter. This will take you into an interactive scripting environment where you can 
issue commands to the database. Now type in CREATE DATABASE quoting; to create the 
database I'll use for these examples. To exit, just type exit. Here's a summary of the 
commands: 

c:\dev\mysql\bin> mysql 

  mysql> CREATE DATABASE quoting; 

  mysql> exit 

 
To create the necessary tables, along with some test data, type in the following commands 
using the mysql utility or save it to a file for batch execution. To execute the commands in 
batch mode, save it to dbcreate.sql (use any name you like) and issue the following command: 
 

c:\dev\mysql\bin> mysql quoting < dbcreate.sql 

Here are the commands used to populate the database: 

DROP TABLE IF EXISTS customer; 

CREATE TABLE customer (id int not null, lname varchar(30) not null, 

                fname varchar(20), age int, sex char(1), 

                married char(1), children int, smoker char(1)); 

INSERT INTO customer VALUES 

       (1, 'Smith', 'Jane', 26, 'F', 'Y', 2, 'N'); 

INSERT INTO customer VALUES 

       (2, 'Doe', 'John', 47, 'M', 'N', 0, 'Y'); 

INSERT INTO customer VALUES 

       (3, 'Johnson', 'Michael', 36, 'M', 'Y', 0, 'N'); 

INSERT INTO customer VALUES 

       (4, 'Brooks', 'Susan', 24, 'F', 'N', 1, 'Y'); 

INSERT INTO customer VALUES 

       (5, 'Inman', 'Bernard', 34, 'M', 'N', 0, 'N'); 

DROP TABLE IF EXISTS product; 

CREATE TABLE product (id int not null, description varchar(75), 

                base float, lt30 float, lt50 float, gt50 float, 

                m float, f float, married float, children float, 

                smoker float); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



20 

INSERT INTO product VALUES 

       (1, 'Preferred Healthcare', 75.00, 1.0, 1.1, 1.3, 

        1.1, 1.2, 1.8, 1.4, 1.2); 

INSERT INTO product VALUES 

       (2, 'Premium Healthcare', 65.00, 1.0, 1.1, 1.3, 

        1.1, 1.2, 1.8, 1.4, 1.2); 

INSERT INTO product VALUES 

       (3, 'Value Healthcare', 50.00, 1.0, 1.1, 1.3, 

        1.1, 1.2, 1.8, 1.4, 1.2); 

DROP TABLE IF EXISTS quote; 

CREATE TABLE quote (id int not null, custID int not null, 

                prodID int not null, premium decimal(9,2)); 

 
Now that the database has been created and populated, the only thing left is to obtain a JDBC 
driver. You will use the JDBC driver to access the database through your Java code in a 
database-independent manner. You can download the JDBC driver from the MySQL website. 
Unzip the file and move the mysql_uncomp.jar file to the \tomcat\webapps\jspbook\WEB-INF\lib 
directory. This will enable your JSP pages to automatically find the driver. All .jar files in aweb 
application's \WEB-INF\lib directory are automatically added to the web application's classpath. 
To run the database, simply execute the mysqld command from the \mysql\bin directory. You 
may also want to run this as a service. Refer to the included documentation for instructions on 
setting it up as a service. The mysqld program listens for database requests on a specific port. 
The default port is 3306. This is where I'll establish the JDBC connection. 
 
Note  Any relational database will serve your purposes here. The only requirement is 

that you obtain the appropriate JDBC driver for whichever database you 
choose. Some people prefer to use Microsoft Access while learning JSP. To 
do this, you'll need to use the JDBC:ODBC bridge from Sun Microsystems. 
The script given here should work with just about any database, but a few 
vendor-specific modifications may be necessary. 

 
Building a Simple JSP Application 

Throughout the book, you'll be developing pieces of a health insurance quoting system. The 
intended user of the system is a sales agent looking to issue quotes for personal health 
insurance. The agent will enter customer information, select an insurance product, and 
generate a quote based on the customer's age, gender, marital status, number of children, and 
smoking status. 

For the first example, you're going to simply display the customers that have been entered into 
the system. This will eventually be the main screen for an agent. The idea is that the agent will 
be able to click on a customer and view existing quotes or generate a new one. For now, you'll 
simply build the list of customers and the appropriate links required by the application. This 
example will demonstrate the basic elements of JSP discussed in this chapter. You'll revisit it 
later to improve upon it significantly. 

Designing the Page 

The first step when developing a JSP page is to lay out the desired end result. As I said before, 
I like to use Macromedia Dreamweaver for this. Use whatever tool you like (even a simple text 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



21 

editor) and assemble the HTML that will display your page. Wherever dynamic data is required, 
put in a stub to be replaced later. 

 
The page should list each customer and include the customer ID, last name, and first name. In 
addition to that, you need to include actions on each row that enable us to edit the customer, 
delete the customer, or add a new quote for the customer. You can do this using hyperlinks to 
another JSP with the appropriate action tagged onto it. In later chapters, you'll see a better way 
to do this, but this will suffice for now. For a preview of what you should expect of the page, 
see Figure 1-8. 
 

 
Figure 1-8: Results of customer.jsp  

Establishing a Database Connection 
 
Now that you have all of the HTML layout complete (referred to as template text), you'll move 
on to editing the source code to include the appropriate JSP tags and code. The first thing you 
need to add is a page directive to import the java.sql package for the database code: 

<%@ page import="java.sql.*" %> 

You'll use a single ResultSet object to hold your database results. Because you'd like this to be 
available to the entire page, the next thing you do is declare it in a JSP declaration tag: 

<%! ResultSet rs = null; %> 

 
Finally, you establish a connection to the database and retrieve the required data. For now, 
you handle exceptions by simply outputting them to the system log. I'll discuss better methods 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



22 

for dealing with errors in the next chapter. Notice the connection string for the database. This 
tells the DriverManager to use JDBC to locate a MySQL database named quoting on the 
current machine listening to port 3306. Once you have a connection, you execute a query to 
retrieve all records from the customer table and store them in the ResultSet you declared 
earlier: 
 

<% 

  try { 

    Class.forName("org.gjt.mm.mysql.Driver"); 

    Connection db = DriverManager.getConnection( 

        "jdbc:mysql://localhost:3306/quoting"); 

    Statement s = db.createStatement(); 

    rs = s.executeQuery("select * from customer"); 

  } 

  catch (Exception e) { 

    // For now, just report the error to the system log 

    System.out.println(e.toString()); 

  } 

%> 

Generating Rows of Customers 
 
Now you need to replace those stubs you created during the page design with JSP 
expressions to retrieve the appropriate field from the query results. Each customer requires a 
row inside of an HTML table. You can loop through each customer and generate a new row by 
enclosing the row definition with a while() loop as follows: 
 

<% 

  try { 

    while (rs.next()) { 

%> 

By separating the Java scriptlet from the HTML code, it's easy to generate the HTML layout 
with an editor or visual tool. You build the row using standard HTML code with JSP 
expressions providing necessary dynamic content. You then close the loop and handle the 
SQLException as you did previously: 

       <tr> 

         <td width="20"><%= rs.getInt(1) %></td> 

         <td width="70"><%= rs.getString(2) %></td> 

         <td width="70"><%= rs.getString(3) %></td> 

         <td width="40"> 

           <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=edit"> 

             edit 

           </a> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



23 

         </td> 

         <td width="40"> 

           <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=delete"> 

             delete 

           </a> 

         </td> 

         <td width="40"> 

           <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=newQuote"> 

             new quote 

           </a> 

         </td> 

       </tr> 

 

<% 

     } 

   } 

   catch (SQLException e) {  

   // For now, just report the error to the system log 

   System.out.println(e.toString()); 

  } 

%> 

Putting It All Together 
 
Listing 1-1 shows the complete code for your simple application. Underneath the 
\tomcat\webapps\jspBook directory, create a \ch1 subdirectory and store the file there as 
customers.jsp. Start the database server and the application server. Open a browser window 
and type in http://localhost:8080/jspBook/ch1/customers.jsp to view the results (see Figure 1-8).  
 
Listing 1-1: customers.jsp  
 
<!-- JSP Directives --> 
<%@ page import="java.sql.*" %> 
 
<html> 
<head> 
  <title>Insurance Quoting System</title> 
</head> 
 
<body> 
 
<basefont face="Arial"> 
 
<!-- JSP Declarations --> 
<%! ResultSet rs = null; %> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



24 

<!-- JSP Scriptlet --> 
<% 
  try { 
    Class.forName("org.gjt.mm.mysql.Driver"); 
    Connection db = DriverManager.getConnection( 
        "jdbc:mysql://localhost:3306/quoting"); 
    Statement s = db.createStatement(); 
    rs = s.executeQuery("select * from customer"); 
  } 
  catch (Exception e) { 
    // For now, just report the error to the system log 
    System.out.println(e.toString()); 
  } 
%> 
 
<!-- Template text --> 
<table width="550" border="0" align="center"> 
  <tr> 
    <td bgcolor="#006633"> 
      <div align="center"> 
               <font size="6" color="#FFFFFF"> 
                 <b>Insurance Quoting System</b> 
               </font> 
      </div> 
    </td> 
  </tr> 
  <tr> 
    <td> 
      <p>&nbsp;</p> 
      <p>&nbsp;</p> 
      <p align="center"><b>Customers</b></p> 
 
      <table width="290" border="0" align="center"> 
 
<% 
  try { 
    while (rs.next()) { 
%> 
 
<!-- JSP Expressions used within template text --> 
       <tr> 
         <td width="20"><%= rs.getInt(1) %></td> 
         <td width="70"><%= rs.getString(2) %></td> 
         <td width="70"><%= rs.getString(3) %></td> 
         <td width="40"> 
           <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=edit"> 
             edit 
           </a> 
         </td> 
         <td width="40"> 
           <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=delete"> 
             delete 
           </a> 
         </td> 
         <td width="40"> 
           <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=newQuote"> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



25 

             new quote 
           </a> 
         </td> 
       </tr> 
 
<% 
    } 
  } 
  catch (SQLException e) { 
    // For now, just report the error to the system log 
    System.out.println(e.toString()); 
  } 
%> 
      </table> 
    </td> 
  </tr> 
  <tr> 
    <td> 
      <p>&nbsp;</p> 
      <p align="center"><a href="custMaint.jsp?action=add">New Customer</a></p> 
    </td> 
  </tr> 
</table> 
 
</body> 
</html> 

 
 
Summary 
 
This chapter provided the necessary foundation for developing JavaServer Pages. Again, this 
chapter was not intended as a thorough examination of the JSP specification or as a beginner's 
tutorial. Although it's enough to help you as you progress through the book, I recommend 
supplementing this book with a beginner's guide to JSP or at least a book covering the JSP 
syntax. You might also want to print out or bookmark the JSP Quick Reference card available 
from Sun (http://java.sun.com/products/jsp/technical.html). 
In the next chapter, you'll take a look at some more JSP features and discuss a few techniques 
for session handling, page navigation, and improved error handling. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



26 

Chapter 2: Using JSP 
Now that you know the basic structure of JSP pages and have a general idea of how they 
operate within a web application, it's time to start building a foundation for handling some 
common development tasks. This foundation includes error handling, managing persistent data, 
modularization, page navigation, and form processing. You'll then build upon this foundation 
throughout the book as you learn to apply J2EE design patterns to handle common situations. 

Handling Errors 

As you saw in the last chapter, it's easy to wrap up your code into try-catch blocks and never 
do anything very meaningful when an exception is thrown. Ideally, if the exception can't be 
recovered from, the error should be reported to a system administrator and the user should be 
notified of the problem in a more elegant manner than simply displaying the exception 
message. 

If you were to perform these actions every place in your code where an exception could occur, 
just think of all the code you'd have to write. Let's say that sometime in the future, a change is 
made to the error notification process. Now, you'll need to search through your entire code 
base and modify every try-catch block to accommodate the new process. Although you may 
have created a more robust system by adding sophisticated error handling, you also have 
created a maintenance nightmare. 

Fortunately, JSP has an elegant solution for error handling built in. Many developers never 
take advantage of this feature and continue to code each exception handler individually. With 
JSP, you can create a single page that will handle every uncaught exception in your system. If 
your JSP code throws an exception not handled within a try-catch block, it'll forward the 
exception, and control, to a page you specify using a JSP page directive. 

Creating an Error Page 

 
As previously mentioned, an error page should take an exception, report it to a system 
administrator, and display a meaningful message to the user. The first thing you need to do, 
however, is declare that the page to be used is an error page. You do this using the isErrorPage 
page directive as follows: 
 

<%@ page isErrorPage="true" %> 

 
When reporting the error, it's sometimes helpful to pass in the name of the page in which the 
error occurred. As the error is being reported in a shared error page, without this information, 
the administrator would have a difficult time figuring out where the problem occurred. To 
retrieve the name of the page, you use the getParameter() method of the request object (more 
on this in the next section). 
 

<% String from = (String) request.getParameter("from"); %> 

 
The exception object is another implicit JSP object that does not need to be declared or 
instantiated. It's only available to those pages that have been designated as error pages. It'll 
report whatever the uncaught exception was that caused the error page to be called. For your 
purposes, you'll make use of the toString() method of the exception object. Remember, when 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



27 

using a JSP expression, the toString() method is called implicitly to convert the value of the 
object to a String. Listing 2-1 shows a simple error page named myError.jsp. 
 
Listing 2-1: myError.jsp  
 
<%@ page isErrorPage="true" %> 
 
<html> 
<head> 
  <title>Error!</title> 
</head> 
 
<body> 
<br> 
 
<% String from = (String)request.getParameter("from"); %> 
 
An error occurred on page <b><%= from %></b>. 
 
<br><br> 
The exception was: 
<br> 
<b><%= exception %></b> 
 
<!-- Send exception report to administrator --> 
<% System.out.println(exception.toString()); %> 
 
</body> 
</html> 
 

Forwarding Errors 

 
Now that you've created an error page, you need to code your pages to forward all uncaught 
exceptions to it. You do this by adding the JSP page directive errorPage. Each page you want 
to forward errors from needs this directive included. As you'll recall from the previous section, 
the error page is expecting a parameter named from to determine which page called the error 
page. Here's a look at the page directive: 
 

<%@ page errorPage="myError.jsp?from=customers.jsp" %> 

 
Add this directive to your customers.jsp file from Chapter 1 and remove all of the try-catch 
blocks surrounding the database code. To test it, change the port number from 3306 to 3307. 
This will trigger a SQLException and forward it to your error page (see Figure 2-1). Listing 2-2 
shows what the new customers.jsp file looks like. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



28 

 
Figure 2-1: Results of customers.jsp when an exception is thrown  
 
Listing 2-2: customers.jsp  
 
<!-- JSP Directives --> 
<%@ page import="java.sql.*" 
          errorPage="myError.jsp?from=customers.jsp" 
%> 
 
<html> 
<head> 
   <title>Insurance Quoting System</title> 
</head> 
 
<body> 
 
<basefont face="Arial"> 
 
<!-- JSP Declarations --> 
<%! ResultSet rs = null;%> 
 
<!-- JSP Scriptlet --> 
<% 
   Class.forName("org.gjt.mm.mysql.Driver"); 
   Connection db = DriverManager.getConnection( 
      "jdbc:mysql://localhost:3307/quoting"); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



29 

   Statement s = db.createStatement(); 
   rs = s.executeQuery("select * from customer"); 
%> 
 
<!-- Template text --> 
<table width="550" border="0" align="center"> 
   <tr> 
      <td bgcolor="#006633"> 
      <div align="center"> 
         <font size="6" color="#FFFFFF"><b>Insurance Quoting System</b></font> 
      </div> 
      </td> 
   </tr> 
   <tr> 
      <td> 
         <p>&nbsp;</p> 
         <p>&nbsp;</p> 
         <p align="center"><b>Customers</b></p> 
 
         <table width="290" border="0" align="center"> 
 
<% 
   while (rs.next()) { 
%> 
 
<!-- JSP Expressions used within template text --> 
          <tr> 
             <td width="20"><%= rs.getInt(1) %></td> 
             <td width="70"><%= rs.getString(2) %></td> 
             <td width="70"><%= rs.getString(3) %></td> 
             <td width="40"> 
              <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=edit"> 
                 edit 
              </a> 
             </td> 
             <td width="40"> 
              <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=delete"> 
                delete 
              </a> 
             </td> 
             <td width="40"> 
              <a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=newQuote"> 
                new quote 
              </a> 
             </td> 
          </tr> 
 
<% 
   } 
%> 
      </table> 
   </td> 
  </tr> 
  <tr> 
     <td> 
       <p>&nbsp;</p> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



30 

       <p align="center"><a href="custMaint.jsp?action=add">New Customer</a></p> 
     </td> 
  </tr> 
</table> 
 
</body> 
</html> 

 
Including Other Files 

In many applications, there are usually at least a few common page elements duplicated in 
many places. These elements are typically page headers and footers, but they could also 
include elements such as menus or even a piece of static or dynamic content presented in 
multiple pages. A problem arises when these common elements are coded separately in 
multiple places. Not only is this a maintenance nightmare, it also presents the possibility of 
errors or stale content (if one page gets updated while another does not). 

With JSP, you can organize your code so that common elements are stored in single files 
pulled in to multiple JSP pages. It's a good design practice to put headers, menu bars, and 
footers in separate files. It helps to standardize the look-and-feel of an application. It also 
makes it easy to build new pages. The page designer can concentrate on the body of the page 
without regard to these common elements. 

 
There are two choices for including files inside of a JSP page. You can include a page at 
compile-time or at runtime. When including a file at compile-time, the file's contents are 
inserted into the JSP code before it's compiled into a servlet. When including a file at runtime, 
the JSP page will not include the file until it has been compiled and receives a request. When 
the servlet engine reaches the point of the page where the included file is supposed to be, it'll 
execute the included page (or servlet) and insert the results in the original page (see Figure 2-
2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



31 

 
Figure 2-2: Including a file at compile-time vs. runtime  

Including Files at Compile-Time 

 
If you want to include a file at compile-time, then you need to use the JSP include directive. 
This method of including files is generally more efficient and should be used whenever the 
included file is relatively static and does not change much. Here's what the include directive 
looks like: 
 

<%@ include file="myFile.html" %> 

 
As an example, let's build a standard header and footer for the insurance quoting system you 
started in Chapter 1. The header will consist of a single graphic and some simple HTML 
content. The footer will simply be a copyright tagline. Listing 2-3 and Listing 2-4 show the code 
for each of the included files. 
 
 
Listing 2-3: myHeader.html  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



32 

 
<table border="0" bgcolor="#006600" align=center> 
  <tr> 
    <td><img src="images/logo.gif"></td> 
    <td> 
      <font color="#FFFFFF" face="Arial "size="5"> 
        <b>Insurance Quoting System</b> 
      </font> 
    </td> 
  </tr> 
</table> 
 
Listing 2-4: myFooter.html  
 
<center> 
    <font face="Arial" size="2">Copyright 2001, AP Enterprises</font> 
</center> 
 
To use these HTML fragments, you'll modify your previous customers.jsp file to now include the 
standard header and footer (and rename it to customerList.jsp). Listing 2-5 shows the code 
(only the sections that have changed). See Figure 2-3 for a look at the new page. 
 

 
Figure 2-3: Results of customerList.jsp using included header and footer  
 
 
Listing 2-5: customerList.jsp  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



33 

<%@ include file="myHeader.html" %> 
 
<!-- Template text --> 
<br><br> 
<table width="550" border="0" align="center"> 
  <tr> 
    <td> 
      <p align="center"><b>Customers</b></p> 
. 
. 
. 
</table>  
<br><br> 
<%@ include file="myFooter.html" %> 
. 
. 
. 
 

Including Files at Runtime 

 
Sometimes, you may want to include some content that may change more frequently than a 
static page header. One problem with using the include directive to include frequently changing 
files is that some servlet engines will fail to recognize when an included file has been modified 
and will not recompile the JSP. The solution to this problem is to include the file at runtime 
instead. Here's an example of including a file at runtime: 
 

<jsp:include page="myContent.jsp" flush="true"/> 

 
The flush attribute tells the servlet engine to flush the output buffer before including the file. 
Another benefit of including files in this manner is that you can pass parameters to the included 
page. Here's an example of including a file with parameters: 
 

<jsp:include page="conversion.jsp" flush="true"> 

  <jsp:param name="temperature" value="76"/> 

  <jsp:param name="scale" value="celsius"/> 

</jsp:include> 

 
This will call the conversion.jsp file with the temperature and scale parameters. The output from 
this page will be inserted in the output from the original JSP page. The only real restriction on 
including files in this manner is that the included file can't change any of the HTTP headers. 
This makes sense because the included file is really treated as a separate HTTP request and 
response, with only the output being inserted into the original JSP. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



34 

 
 
 
Processing Form Data 
 
Perhaps the most common trait among web applications is the ability to collect data from the 
user. You typically do this using an HTML form to collect the data and a server-side program to 
process the data. In a J2EE web application, the HTML form can be submitted to either a JSP 
page or a Java servlet. In many cases, it makes sense to combine the HTML form with the JSP 
page for a single page that both displays the input form and processes the inputted data (see 
Figure 2-4). One benefit of this approach is that any data validation errors can be displayed 
and highlighted along with the original form data. 
 

 
Figure 2-4: Patterns for form handling  
 
Once the user has submitted the form, the JSP that will process the form data needs to first 
retrieve the data that was entered by the user. You do this through methods on the request 
object. The request object is an implicit object. It does not need to be declared, obtained, or 
instantiated. It's the equivalent of the HttpServletRequest object found in servlets. To use 
methods on the request object, simply call the desired method. As you might have guessed, the 
methods of the request object are the same as those for the HttpServletRequest object. 
 
The most basic, and most used, method of the request object is the getParameter method. This 
method takes a single String value as an argument and returns a String containing the value of 
the requested parameter. For example, if a form contained an input field named last_name, then 
the code to retrieve the contents of that field would be as follows: 
 

<% String lname = request.getParameter("last_name"); %> 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



35 

Some forms contain fields that may have multiple values associated with them. The request 
object provides the getParameterValues method to return an array of values associated with a 
single parameter. For instance, a list box containing states in which an insurance agent is 
licensed could have multiple values returned. This is what that code might look like: 
 

<% String states[] = request.getParameterValues("states_licensed_in"); 

   for (int n = 0; n < states.length; n++) { 

      out.println("State: "+ states[n]); 

   } 

%> 

 
In some cases, it might not be possible to know all of the field names until runtime. The request 
object gives us the getParameterNames method. This method will return an enumeration of all of 
the parameter names that have been passed in to the page through the request object. Here's 
an example of how to use this method: 
 

<% java.util.enumeration pNames = request.getParameterNames(); 

   while (pNames.hasMoreElements()) { 

      String pName = (String) pNames.nextElement(); 

      out.println(pName + ": "+ request.getParameter(pName)); 

   } 

%> 

 
It might be helpful at this point to see a complete example using these methods on the request 
object. Chapter 3 will go through form processing in much greater detail and cover areas such 
as field validation and the separation of form logic from the presentation of the data. For now, a 
simple form will illustrate the basic concepts (see Listing 2-6). Figure 2-5 shows what the input 
form looks like. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



36 

 
Figure 2-5: Input form  
Listing 2-6: simpleForm.html  
 
<html> 
<head> 
   <title>Simple Form Example</title> 
</head> 
 
<body> 
 
<center> 
<form action="simpleForm.jsp"> 
<table> 
   <tr> 
      <td>Name: </td> 
      <td><input type="Text" name="name"/></td> 
   </tr> 
   <tr> 
      <td>Occupation: </td> 
      <td><input type="Text" name="job"/></td> 
   </tr> 
   <tr> 
      <td>Hobbies: </td> 
      <td> 
         <select name="hobbies" multiple size="5"> 
            <option value="Sports">Sports</option> 
            <option value="Cooking">Cooking</option> 
            <option value="Camping">Camping</option> 
            <option value="Reading">Reading</option> 
            <option value="Music">Music</option> 
         </select> 
      </td> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



37 

   </tr> 
</table> 
 
<input type="submit" value="submit"/> 
 
</form> 
</center> 
 
</body> 
</html> 
 
Listing 2-7 retrieves the value of the job field as well as all of the values that have been 
selected in the hobbies list field. Figure 2-6 shows the results of the form processing. 

 
Figure 2-6: Results of form processing  
 
Listing 2-7: simpleForm.jsp  
 
<html> 
<head> 
   <title>Simple Form Example</title> 
</head> 
 
<body> 
 
Hello <%= request.getParameter("name") %>.<br><br> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



38 

It must be very interesting being employed as a 
  <%= request.getParameter("job") %>.<br><br> 
 
I see you enjoy the following hobbies: <br><br> 
<% 
   String hobbies[] = request.getParameterValues("hobbies");  
   for (int n = 0; n < hobbies.length; n++) { 
%> 
   <%= hobbies[n] %> <br> 
<% 
   } 
%> 
 
</body> 
</html> 

 
Controlling Page Navigation with JSP 
 
Later in the book, you'll learn about using a controller to examine page requests, 
assemble the required data, and forward it on to the appropriate JSP page to display the 
desired content. Chapter 1 first introduced this idea when discussing the JSP Model 2 
architecture. This is commonly referred to as a Model-View-Controller architecture (MVC). 
For now you'll see how you can forward requests from one page to another. 
 
You've seen with the <jsp:include> tag that it's possible to interrogate the request 
object, pass it on to another page for processing, and insert the results inside of your 
original JSP. A similar tag is the <jsp:forward> tag (see Figure 2-7). The big difference 
between the two is that the forward tag never returns to the original page. It simply 
enables you to perform some processing with the request object and pass it on to 
another page. These tags are the JSP equivalent of the RequestDispatcher interface 
used in servlets to pass control from one servlet to another. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



39 

 
Figure 2-7: Forward vs. include tags  
 

One thing to consider when using the forward tag is that when a request is forwarded to 
another JSP or servlet, the current output buffer is cleared. Whatever may have been 
written to the output stream prior to the forward tag will be ignored. Here's an example of 
how the forward tag might look: 

 

<jsp:forward page="finalPage.jsp"> 

   <jsp:param name="param1" value="10"/> 

</jsp:forward> 
 
Maintaining State 
 
Chapter 1 discussed how HTTP is a static protocol. It has no built-in functionality to persist 
data from one request to another. Once one request has been processed, the server picks up 
the next request with no prior knowledge of the first request. Although this may provide 
performance benefits, it also presents a problem with most web applications. Specifically, how 
can one part of the application make use of previously entered data? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



40 

Well, the obvious answer to this question is to store the data in a database at the time it's 
collected and simply retrieve it as necessary. This solution is not practical, however. It makes 
sense to store application data in a database but not presentation data. Presentation data is 
the kind of information required throughout a user session to properly configure the user 
interface. This data includes information such as user preferences, security information, and 
temporary data used to build a set of continuous screens. If this kind of information were stored 
in a database, each page would be required to retrieve the data through a database connection. 
This could be costly to the overall performance of the application. 

 
JSP technology provides access to a session object for you to store and retrieve keyed values 
at any given time a user is interacting with the application. This session object is unique to each 
specific user and is managed by the servlet container within the application server. The first 
time a user requests a JSP page, the session is created on the server. This session has a 
session ID associated with it. This ID is passed back and forth between the server and the user 
through an HTTP cookie. Each time the user requests a JSP page, the session ID is passed 
along and therefore the appropriate session is associated with the user (see Figure 2-8). 

 
Figure 2-8: Using HTTP sessions to manage user data  
 
The session object is analogous to the HttpSession object used by servlets. The only real 
difference is that the session object in a JSP is typically implicitly obtained and prepared for use.  
However, some JSP environments might not automatically create the session for you. In that 
case, you need to obtain the session by calling the getSession method of the request object. 
This will return an instance of HttpSession. The only argument to this method is a boolean 
value indicating whether to create a new session if one doesn't already exist. This is an 
example of getting the session manually: 
 

<% HttpSession session = request.getSession(true); %> 

 
Once you have a session (in most cases it'll be an implicit object), it's possible to write, retrieve, 
and remove attributes from the session object. These attributes are stored in much the same 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



41 

fashion as a hashtable. Each value is associated with a named key. To write an attribute to the 
session, you would use the setAttribute method as follows: 
 

<% session.setAttribute("firstName", "Christina"); %> 

 
The first argument is the attribute name. The second argument is the value of the attribute. 
This can be any valid Java object. In this case it's a String object. To retrieve this value, you 
would use the getAttribute method. 

<% String fName = (String) session.getAttribute("firstName"); %> 

 
Notice how you cast the result of this method to String. This is necessary because the session 
only stores an object and returns an object without regard to the type of object it's storing. To 
remove this attribute, you would use the removeAttribute method. 
 

<% session.removeAttribute("firstName"); %> 

Each of these methods can throw an IllegalStateException. This will occur if any of these 
methods are called on an invalid session. A session will become invalid if the servlet has timed 
it out. The session timeout property is configurable inside the servlet engine. 

 
As an example, let's build a simple form that accepts a single field containing a person's name. 
You'll submit this form to a JSP page that will store the name in the session and then present 
the user with two simple hyperlinks to other JSP pages. Once the user goes to one of these 
pages, the name will be retrieved from the session and a personalized message will appear. 
Listing 2-8 shows the HTML form. 
 
Listing 2-8: sessionExample.html  
 
<html> 
<head> 
   <title>Session Example</title> 
</head> 
 
<body> 
 
<center> 
<h1>Session Example</h1> 
<form action="sessionExample.jsp"> 
   What is your name? <input type="Text" name="name"/><br><br> 
   <input type="Submit" value="submit"/> 
</form> 
</center> 
 
</body> 
</html> 

 
Next, code the page that will write the session attribute and display the hyperlinks (see Listing 
2-9). 
 
Listing 2-9: sessionExample.jsp  
 
<html> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



42 

<head> 
   <title>Session Example</title> 
</head> 
 
<body> 
 
<% 
   String val = request.getParameter("name"); 
   if (val != null) 
      session.setAttribute("name", val); 
%> 
 
<center> 
<h1>Session Example</h1> 
 
Where would you like to go?<br><br> 
 
<a href="sessionExamplePage1.jsp">Page 1</a> 
<a href="sessionExamplePage2.jsp">Page 2</a>  
 
</body> 
</html> 

 
Listing 2-10 and Listing 2-11 show the two pages referenced in the sessionExample.jsp file. 
 
Listing 2-10: sessionExamplePage1.jsp  
 
<html> 
<head> 
   <title>Session Example</title> 
</head> 
 
<body> 
 
<center> 
<h1>Session Example</h1> 
 
Hello, <%= session.getAttribute("name") %>. Welcome to Page 1! 
 
</body> 
</html> 

 
Listing 2-11: sessionExamplePage2.jsp  
 
 

<html> 
<head> 
   <title>Session Example</title> 
</head> 
 
<body> 
 
<center> 
<h1>Session Example</h1> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



43 

Hello, <%= session.getAttribute("name") %>. Welcome to Page 2! 
 
</body> 
</html> 
 
Figure 2-9 shows the session in action as it's used to retrieve the username entered in a 
previous screen. 

 
Figure 2-9: Session example  
 
 
Summary 

A major problem with most JSP applications is that they tend to start out as small projects, or 
research and development efforts, and eventually grow out of control until they're extremely 
difficult to maintain. This may improve, with time, as developers mature and JSP becomes a 
more mainstream technology. The most important step anyone can take right now to improve 
their JSP development projects is to focus on building a solid framework with an emphasis on 
good design. 

 
This chapter presented a few concepts required to build a good foundation for most JSP 
applications. Error handling, session management, form processing, modularization, and 
navigation are fundamental components of any web application. These will help to form the 
building blocks of a good framework. The next chapter begins the discussion of role separation. 
You'll learn how to use JavaBeans and custom tag extensions to organize your code as well as 
hide the complexities of Java from the web page designer. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



44 

Chapter 3: Role Separation with Javabeans 

Overview 

As programmers, designing web pages is not our forte. Although some of us may have modest 
design skills, web pages are much better left to those who make a living out of designing eye-
popping, user-friendly, browser-independent websites. On the other hand, most good web 
designers have little, if any, programming skills. Therefore, how can you expect to build good 
web applications that not only function well but have an appealing interface, too? 

 
The answer is to separate the layers between content generation (programmer) and content 
presentation (page designer). The idea is to be able to provide a page designer with a clean 
interface to the application, enabling them to design the pages separately from the application 
code. They would then plug in the necessary hooks to provide dynamic content to their 
beautifully designed pages. I know that this sounds too ideal to be practical, but it's possible to 
take steps toward this role separation. The more the programmer can hide the application code 
from the page itself, the better chance there is of producing a clean presentation layer. 
 
This chapter will present the use of JavaBeans within JSP. This approach does a good job of 
hiding a lot of application code inside of a JavaBean and then exposing it through a predefined 
set of JSP tags. You'll not only learn how to use JavaBeans inside your JSP pages, but you'll 
also see how to use JavaBeans to solve some common application problems. Using 
JavaBeans to organize your code is a very good idea, and it takes us one step closer to 
achieving role separation. The next chapter will present the use of custom tag extensions to 
achieve role separation. You'll see in later chapters how you apply each of these techniques to 
various design patterns. 
 
Introducing JavaBeans 
 
JavaBeans are simple Java classes that provide a set of properties and accessor methods for 
those properties. They implement the Serializable interface so they can be serialized by their 
container. This makes it possible for the servlet container to capture the current state of the 
bean and then reconstruct it at some point in the future. JavaBeans may also include a set of 
custom methods to perform operations on the data they contain. Initially, JavaBeans were 
introduced to provide IDEs with a standard set of visual components that could simply be 
dropped onto a page. Now, developers use them mostly as non-visual components that hide 
application data and the operations performed on that data. 
 
JSP provides a set of useful tags for dealing with JavaBeans. Although you can use 
JavaBeans from within an ordinary scriptlet, these tags enable the page designer to access 
bean properties without messing around with Java code. JavaBeans play an important role in a 
Model-View-Controller (MVC) architecture. They typically store the model, or data, of an 
application. While the controller is responsible for updating the model, the page only needs to 
read the data out of the model to present the view (see Figure 3-1). You can accomplish this 
through JavaBeans and the JSP tags used to access JavaBeans. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



45 

 
Figure 3-1: JavaBeans and JSP  

Building a JavaBean 
 
Later in the chapter, you'll build some useful beans that employ the technology to handle some 
common development tasks. For the purposes of illustrating the mec hanics of building a bean 
and using it in a JSP page, for now you'll build a simple bean with two properties and a single 
method. Our bean will contain properties for first and last name, accessor methods for those 
properties, and a method to display a personalized welcome message. Listing 3-1 shows the 
code for our simple bean. 
 

Listing 3-1: SimpleBean.java  

 

package jspbook.ch3; 

 

public class SimpleBean implements java.io.Serializable { 

 

  /* Member Variables */ 

  private String lname; 

  private String fname; 

 

  public SimpleBean() { 

     /* Initialize bean properties */ 

     setLname(""); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



46 

     setFname(""); 

  } 

 

  /* Accessor Methods */ 

  public String getLname() { 

    return lname; 

  } 

  public void setLname(String _lname) { 

    lname = _lname; 

  } 

  public String getFname() { 

    return fname; 

  } 

  public void setFname(String _fname) { 

    fname = _fname; 

  } 

 

  /* Display personalized message */ 

  public String welcomeMsg() {  

    return "Hello "+ fname + ""+ lname + 

      ", welcome to the wonderful world of JavaBeans!"; 

  } 

} 

 

Using a JavaBean in a JSP Page 
 
You can access a JavaBean within a JSP page either through a scriptlet or by using a special 
set of JSP tags. Either way, before using a JavaBean you must first declare it and initialize it 
for use. You do this through the <jsp:usebean> tag. Here's how this tag might look for our simple 
bean: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



47 

<jsp:useBean id="simpleBean" scope="page" class="jspbook.ch3.SimpleBean"/> 
The id attribute gives the bean a name that you can use to reference the bean throughout the 
JSP page. The class attribute specifies the actual name of the bean class. In this case, it's 
jspbook.ch3.SimpleBean. The web container will look for this package structure and class in 
either the respective application's \WEB-INF\classes directory or in a JAR file located in the \WEB-
INF\lib directory. 
 
The scope attribute defines the life of this bean. Valid options for this attribute are page, session, 
request, and application. The page scope attribute tells the web container that this bean will 
remain for the life of this particular page. As soon as the page is done executing, the bean 
disappears. If the bean has a scope of request, and then it gets stored in the request object and 
passed along through the life of the request. In other words, if the page is forwarded to another 
page, then the bean can be obtained through the request object. The session scope attribute 
tells the web container to store the bean in the user's session object. It'll remain available 
throughout the life of that specific session. To make a bean available to other JSP pages or 
Servlets, use the application scope attribute. This will store the bean in the ServletContext 
object. 

Accessing Bean Properties 
 
You can set and retrieve the properties of a JavaBean using the <jsp:setProperty> and 
<jsp:getProperty> tags, respectively. This will only work if your JavaBean has a set of accessor 
methods (getXxx and setXxx) for each property. For more information about JavaBeans and 
naming conventions, see the documentation at Sun's Java website 
(http://java.sun.com/docs/index.html). To set a property you could do it either of two ways. 
You'll use the simpleBean as an example: 
 

<jsp:setProperty name="simpleBean" property="fname" value="Andrew"/> 

<jsp:setProperty name="simpleBean" property="fname" param="fname"/> 
 
The first tag sets the value of the fname property of the simpleBean JavaBean class. It does this 
by explicitly setting the value within the tag. Another option, as seen in the second tag, is to 
have the property set automatically from the request parameters. The param attribute tells the 
bean which request parameter populates the respective property. You can only use either the 
param attribute or the value attribute. They cannot coexist within a single tag. 
 
To get a bean property, you would use the <jsp:getProperty> tag like this: 

<jsp:getProperty name="simpleBean" property="fname"/> 

 
When setting and getting properties from a JavaBean, type conversions are automatically 
performed for all of the Java primitive datatypes and their corresponding wrapper classes (see 
Table 3-1). This makes it possible to set numeric properties directly from String variables. It 
also enables the <jsp:getProperty> to return a valid String to be inserted into the HTML content. 
 

Table 3-1: Conversion of Datatypes within JavaBeans  PROPERTY  
CONVERTED USING THIS METHOD  

boolean, Boolean 

java.lang.Boolean.valueOf(String) byte, Byte 

java.lang.Byte.valueOf(String) char, Character 

java.lang.String.charAt(0) double, Double 

java.lang.Double.valueOf(String) integer, Integer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



48 

java.lang.Integer.valueOf(String) float, Float 

java.lang.Float.valueOf(String) long, Long 

java.lang.Long.valueOf(String) short, Short 

java.lang.Short.valueOf(String)  
 
Listing 3-2 contains a simple example illustrating the use of our SimpleBean class. 
 
Listing 3-2: hello.jsp  

 
<!-- JSP Directives --> 
<%@ page 
    errorPage="myError.jsp?from=hello.jsp" 
%> 
 
<html> 
<head> 
  <title>Hello</title> 
</head> 
 
<body> 
<basefont face="Arial"> 
 
<jsp:useBean id="simpleBean" scope="session" class="jspbook.ch3.SimpleBean"/> 
 
<!-- Set bean properties --> 
<jsp:setProperty name="simpleBean" property="fname" value="Andrew"/> 
<jsp:setProperty name="simpleBean" property="lname" value="Patzer"/> 
 
<!-- Display welcome message --> 
<center> 
  <b><%= simpleBean.welcomeMsg() %></b> 
</center> 
</body> 
</html> 

 
Figure 3-2 shows the results of using the SimpleBean class to retrieve a welcome message and 
display it in a JSP page. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



49 

 
Figure 3-2: Using SimpleBean in a JSP page  
 
 
Dealing with Large Sets of Data 

Now that you know the basics of using JavaBeans in JSP, it's time to tackle some common 
web application issues with JavaBeans. Remember, the goal of using JavaBeans in our JSP 
page is to hide cumbersome application code and provide a clean interface for the page 
designer to use. The first issue you're going to deal with is that of handling large sets of data 
within a single page. This problem arises when a user displays a list of items that contains a 
large set of database records. It's not a good design practice to display 200 records on a single 
page and expect the user to scroll down the page to view all the records. 

 
A few obvious solutions to this problem include setting limits on search parameters or even 
truncating the result list. A more ideal solution would be to initially retrieve all of the records into 
some sort of cache (see Figure 3-3). Each page would then consist of a small set of records 
along with navigational controls to move the user backward and forward through the results. 
Each subsequent page request would grab the appropriate set of records from the cache and 
display them along with links to view the previous set of records or the next set of records. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



50 

 
Figure 3-3: Handling large sets of data  

Creating the Solution 
 
Our solution to this problem is to create a JavaBean that will maintain a cache of records and 
provide the methods necessary to move through the records and update the model (individual 
record represented by the bean) as needed (see Figure 3-4). To illustrate this solution, you'll 
build a JavaBean that represents arow of data from a product table in a database we'll call 
catalog. 
 

 
Figure 3-4: Caching data with a JavaBean  

Setting Up the Database 
 
To set up the database, first create the catalog database and then run the script in Listing 3-3 
to add the records using this: 

c:\mysql catalog < createProducts.sql 

 
Listing 3-3: createProducts.sql  
 

DROP TABLE IF EXISTS product; 

CREATE TABLE product (id varchar(10) not null, description varchar(30), 

                          manuf varchar(30), price float); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



51 

INSERT INTO product VALUES 

   ('p001', 'Product 1', 'ABC Manufacturing Co.', 75.00); 

INSERT INTO product VALUES 

   ('p002', 'Product 2', 'ABC Manufacturing Co.', 33.00); 

INSERT INTO product VALUES 

   ('p003', 'Product 3', 'ABC Manufacturing Co.', 26.00); 

. 

. {repeat this to create around 30 unique records} 

. 

INSERT INTO product VALUES 

   ('p033', 'Product 33', 'ABC Manufacturing Co.', 25.00); 

 

Creating the Bean and Its Properties 
 
You'll create a JavaBean called ProductBean that'll hold a cache of product records and 
provide navigational controls to scroll back and forth through the record cache. The first thing 
you need to do is declare the class and be sure it implements the Serializable interface: 

public class ProductBean implements java.io.Serializable 

The bean properties will consist of each of the fields in the product table. The product table 
contains a product ID, product description, manufacturer, and price. These fields need to be 
declared like this: 

  private String prodID; 

  private String prodDesc; 

  private String prodManuf; 

  private float prodPrice; 
 
The next step is to provide accessor methods for each of these. These are the getter and 
setter methods that make it possible to access bean properties through the <jsp:getProperty> 
and <jsp:setProperty> tags. Here's what one set of accessor methods looks like: 
 

  public String getProdID() { 

    return prodID; 

  } 

 

  public void setProdID(String _prodID) { 

    prodID = _prodID; 

  } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



52 

The final step is to initialize these properties. You do this in the constructor by calling the setter 
method for each individual property. In this case, you just initialize each property to either blank 
or zero. Here's what this looks like inside of our constructor: 

    setProdID(""); 

    setProdDesc(""); 

    setProdManuf(""); 

    setProdPrice(0.00f); 

Connecting to the Database 

You'd like to hide the details of interacting with the database inside of the bean itself. A more 
sophisticated solution would obtain a connection from a pool of database connections, rather 
than create a new connection for every instance of the bean. For the purposes of our example, 
however, you'll just create a connection for the life of bean. As you'll see later on, the bean will 
remain in memory for the entire session, so our database operations will be minimal. Here's the 
code for connecting to the database, which is called once in the constructor for the bean: 

 

  private void dbConnect() { 

    if (db == null) { 

      try { 

        Class.forName("org.gjt.mm.mysql.Driver"); 

        db = DriverManager.getConnection("jdbc:mysql://localhost:3306/catalog"); 

      } 

      catch (Exception e) { 

        System.out.println("Error Connecting to catalog DB: "+ e.toString()); 

      } 

    } 

  } 

Populating the Cache 
 
You can implement a data cache within your bean in a few different ways. You'll use an 
ArrayList object for each of the bean properties that you'll be populating. Once you execute the 
query, the results are looped through and each column value is added to the appropriate 
ArrayList. You also want to be sure this is only done once, so before doing anything you check 
if one of the ArrayLists has already been populated: 
 

  public boolean populate() { 

    /* If prodIDList is empty, then execute the query to populate it */ 

    if (prodIDList.isEmpty()) { 

      try { 

        /* Execute Query */ 

        Statement s = db.createStatement(); 

        ResultSet rs = s.executeQuery("select * from product"); 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



53 

        prodIDList.clear(); 

        prodDescList.clear(); 

        prodManufList.clear(); 

        prodPriceList.clear(); 

 

        rowCount = 0; 

        while (rs.next()) { 

          prodIDList.add(rs.getString("id")); 

          prodDescList.add(rs.getString("description")); 

          prodManufList.add(rs.getString("manuf")); 

          prodPriceList.add((new Float(rs.getFloat("price")))); 

          rowCount++; 

        } 

      } 

      catch (Exception e) { 

        System.out.println("Error populating ProductBean: " 

          + e.toString()); 

        return false; 

      } 

    } 

 

    /* Return status of operation (assume success if it made it this far) */ 

    return true; 

  } 

Refreshing the Model 

In our JSP page, to advance to the next record you simply need to call the following method 
and retrieve the current set of bean properties. This method checks if the current row pointer is 
valid (not past the end of the record set), calls the setter methods for each of the properties 
using the ArrayLists to populate them, and finally increments the row pointer and returns it to 
the calling JSP: 

  public int nextRow() { 

 

    if (currentRow == rowCount) { 

      currentRow = 0; // Reset for next page request 

      return 0; // return 0 to indicate end of recordset 

    } 

 

    /* Populate bean properties with current row */ 

    setProdID((String)prodIDList.get(currentRow)); 

    setProdDesc((String)prodDescList.get(currentRow)); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



54 

    setProdManuf((String)prodManufList.get(currentRow)); 

    Float price = (Float)prodPriceList.get(currentRow); 

    setProdPrice(price.floatValue()); 

 

    currentRow++; 

    /* return currentRow*/ 

    return currentRow; 

  } 

 
Listing 3-4 shows the complete code for ProductBean.java. 
 
Listing 3-4: ProductBean.java  

package jspbook.ch3; 

 

import java.util.*; 

import java.sql.*; 

 

public class ProductBean implements java.io.Serializable { 

 

  /* Member Variables */ 

  private String prodID; 

  private String prodDesc; 

  private String prodManuf; 

  private float prodPrice; 

 

  /* ArrayLists to hold recordsets */ 

  private List prodIDList, prodDescList, prodManufList, prodPriceList; 

 

  /* Helper Variables */ 

  private int currentRow; 

  private int rowCount; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



55 

 

  private Connection db = null; 

 

  /* Constructor */ 

  public ProductBean() { 

 

     /* Initialize bean properties */ 

     setProdID(""); 

     setProdDesc(""); 

     setProdManuf(""); 

     setProdPrice(0.00f); 

 

     /* Initialize arrayLists to hold recordsets */ 

     prodIDList = new ArrayList(); 

     prodDescList = new ArrayList(); 

     prodManufList = new ArrayList(); 

     prodPriceList = new ArrayList(); 

     /* Initialize helper variables */ 

     currentRow = 0; 

     rowCount = 0; 

 

     /* Get database connection */ 

     dbConnect(); 

 

  } 

 

  /* Get Database Connection */ 

  private void dbConnect() { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



56 

 

    if (db == null) { 

      try { 

        Class.forName("org.gjt.mm.mysql.Driver"); 

        db = DriverManager.getConnection("jdbc:mysql://localhost:3306/catalog"); 

      } 

      catch (Exception e) { 

        System.out.println("Error Connecting to catalog DB: "+ e.toString()); 

      } 

    } 

 

  } 

 

  /* Accessor Methods */ 

  public String getProdID() { 

    return prodID; 

  } 

 

  public void setProdID(String _prodID) { 

    prodID = _prodID; 

  } 

 

  public String getProdDesc() { 

    return prodDesc; 

  } 

 

  public void setProdDesc(String _prodDesc) { 

    prodDesc = _prodDesc; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



57 

  } 

 

  public String getProdManuf() { 

    return prodManuf; 

  } 

 

  public void setProdManuf(String _prodManuf) { 

    prodManuf = _prodManuf; 

  } 

 

  public float getProdPrice() { 

    return prodPrice; 

  } 

 

  public void setProdPrice(float _prodPrice) { 

    prodPrice = _prodPrice; 

  } 

 

  /* Read-only attribute */ 

  public int getCurrentRow() { 

    return currentRow; 

  } 

 

  /* Populate Record List */ 

  public boolean populate() { 

 

    /* If prodIDList is empty, then execute the query to populate it */ 

    if (prodIDList.isEmpty()) { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



58 

      try { 

        /* Execute Query */ 

        Statement s = db.createStatement(); 

        ResultSet rs = s.executeQuery("select * from product"); 

 

        prodIDList.clear(); 

        prodDescList.clear(); 

        prodManufList.clear(); 

        prodPriceList.clear(); 

 

        rowCount = 0; 

        while (rs.next()) { 

          prodIDList.add(rs.getString("id")); 

          prodDescList.add(rs.getString("description")); 

          prodManufList.add(rs.getString("manuf")); 

          prodPriceList.add((new Float(rs.getFloat("price")))); 

          rowCount++; 

        } 

      } 

      catch (Exception e) { 

        System.out.println("Error populating productBean: "+ e.toString()); 

        return false; 

      } 

    } 

 

    /* Return status of operation (assume success if it made it this far) */ 

    return true; 

  } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



59 

 

  /* Reset current row */ 

  public void setStartRow(int _start) { 
    if (_start < rowCount) { 
      currentRow = _start; 
    } 
  } 
 
  /* Move to next row */ 
  public int nextRow() { 
 
    if (currentRow == rowCount) { 
      currentRow = 0; // Reset for next page request 
      return 0; // return 0 to indicate end of recordset 
    } 
 
    /* Populate bean properties with current row */ 
    setProdID((String)prodIDList.get(currentRow)); 
 
    setProdDesc((String)prodDescList.get(currentRow)); 
 
    setProdManuf((String)prodManufList.get(currentRow)); 
 
    Float price = (Float)prodPriceList.get(currentRow); 
    setProdPrice(price.floatValue()); 
 
    currentRow++; 
 
    /* return currentRow*/ 
    return currentRow; 
  } 
 
} 
 

Showing an Example 
 
To use the ProductBean, the page designer will need to have an interface definition with some 
instructions of how to use it. In this case, the page designer will need to do some programming 
to cycle through the records, but it's still far less programming than would be required without 
the bean. In the next chapter, you'll revi sit this example and attempt to further separate roles 
through custom tag extensions. For now, though, let's put together a JSP page that uses the 
bean. 

Declaring the Bean 

Our first step is to declare and initialize the bean for use within the page as follows: 

<jsp:useBean id="pBean" scope="session" class="jspbook.ch3.ProductBean"/> 
The important thing to point out here is the scope of the bean. You'll be reloading this page 
numerous times to cycle through the record cache, so you'd like the bean to remain throughout 
our session. Therefore, you set the scope to be session. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



60 

Populating the Cache 
 
Before cycling through the records, the record cache needs to be populated. You do this 
through a call to the populate method of the bean. Next, the starting position is set. This is 
grabbed from the request parameters and set using the setStartRow method of the bean. If the 
start parameter does not exist, then the bean will assume zero and start at the beginning of the 
record cache: 
 

   if (pBean.populate()) { 

 

      String start = (String) request.getParameter("start"); 

      if (start != null) { 

         startRow = new Integer(start).intValue(); 

         pBean.setStartRow(startRow); 

      } 

Building the Table 
 
To build the table, you create a loop that will advance the record pointer and refresh the bean 
properties for a given number of times (in this case, ten times). You obtain the bean properties 
using the <jsp:getProperty> tag and present them inside of a table column: 

        while (rowCount < 10 && pBean.nextRow() > 0) { 

           rowCount++; 

%> 

 

    <tr> 

       <td width="20%"><jsp:getProperty name="pBean" property="prodID"/></td> 

       <td width="30%"><jsp:getProperty name="pBean" property="prodDesc"/></td> 

       <td width="30%"><jsp:getProperty name="pBean" property="prodManuf"/></td> 

       <td width="20%"><jsp:getProperty name="pBean" property="prodPrice"/></td> 

    </tr> 

 

<% 

       } 

 

Creating Navigational Links 

Finally, you create and display the Back and Next links below the set of records. You create a 
link to the same page and set the start parameter to either the current row (for the Next link), or 
ten rows back to display the previous ten records: 

 

   <tr> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



61 

      <td colspan="2" align="center"> 

         <br><a href="?start=<%= (startRow > 9) ? startRow - 10 : 0%>">Back</a> 

      </td> 

      <td colspan="2" align="center"> 

         <br><a href="?start=<%= pBean.getCurrentRow() %>">Next</a> 

      </td> 

   </tr> 

 
Listing 3-5 shows a complete code listing for productList.jsp. 
 
Listing 3-5: productList.jsp  
 
<!-- JSP Directives --> 
<%@ page 
       errorPage="myError.jsp?from=productList.jsp" 
%> 
 
<html> 
<head> 
   <title>Product List</title> 
</head> 
 
<body> 
 
<basefont face="Arial"> 
 
<jsp:useBean id="pBean" scope="session" class="jspbook.ch3.ProductBean"/> 
 
<!-- Build table of products --> 
 
<table align="center" width="600"> 
 
   <tr> 
      <td width="20%"><b>Product ID</b></td> 
      <td width="30%"><b>Description</b></td> 
      <td width="30%"><b>Manufacturer</b></td> 
      <td width="20%"><b>Price</b></td> 
   </tr> 
 
<% 
   int rowCount = 0; 
   int startRow = 0; 
 
   if (pBean.populate()) { 
 
      String start = (String) request.getParameter("start"); 
      if (start != null) { 
         startRow = new Integer(start).intValue(); 
         pBean.setStartRow(startRow); 
      } 
      while (rowCount < 10 && pBean.nextRow() > 0) { 
         rowCount++; 
%> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



62 

 
   <tr> 
      <td width="20%"><jsp:getProperty name="pBean" property="prodID"/></td> 
      <td width="30%"><jsp:getProperty name="pBean" property="prodDesc"/></td> 
      <td width="30%"><jsp:getProperty name="pBean" property="prodManuf"/></td> 
      <td width="20%"><jsp:getProperty name="pBean" property="prodPrice"/></td> 
   </tr> 
 
<% 
      } 
   } 
%> 
 
   <!-- Display the back and next links --> 
   <tr> 
      <td colspan="2" align="center"> 
         <br><a href="?start=<%= (startRow > 9) ? startRow - 10 : 0%>">Back</a> 
      </td> 
      <td colspan="2" align="center"> 
         <br><a href="?start=<%= pBean.getCurrentRow() %>">Next</a> 
      </td> 
   </tr> 
 
</table> 
 
</body> 
</html> 

 
To run this example, place the ProductBean class inside the \WEB-INF\classes directory and the 
productList.jsp file in the application root folder under a \ch3 subdirectory. Figure 3-5 shows 
the results of paging through a set of records from the product table using the ProductBean class. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



63 

 
Figure 3-5: Paging large sets of data  
 
Standardizing Form Handling 

Perhaps the biggest pitfall of most web applications is their inability to provide a consistent and 
clean process for accepting form data and reporting errors in the contents of the form back to 
the user. Most developers begin their efforts with good intentions, but without a standard piece 
of framework code, it becomes difficult to accept and validate the data in a manner consistent 
with the rest of the application. 

As you may have guessed, you're going to assemble a JavaBean that provides data validation 
and error reporting. This solution is more of a way to standardize a common task rather than 
an attempt at role separation, although it does provide somewhat of a clean break between 
page designer and programmer. As with the previous example, the page designer will need to 
insert some basic JSP code to make proper use of the JavaBean. 

Creating the Solution 

You can accomplish a good form-handling solution by separating the data (model) from the 
page (view). The page is responsible for interacting with the model to validate and submit the 
page data and then present the results to the user. The page, in our case, is a JSP page. You 
implement the model as a JavaBean. Overall, the interactions between the page and the bean 
are responsible for the following: 

 
§ Persisting the form data in a temporary model 
§ Validating the model 
§ Returning errors to the user 
§ Highlighting individual fields that are in error 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



64 

§ Upon successful validation, committing the data to the database 
§ Returning the status of the operation to the user 

 
Figure 3-6 shows a flow chart of these activities. 
 

 
Figure 3-6: Steps required to process form data  

Implementing a Form-Handling Solution 
 
The example you'll build involves editing customer records from our quoting database (built in 
Chapter 1). From the customer list, the Edit link will take us directly to an edit form containing 
the customer data. You'll need to make a slight modification to your customerList.jsp file from 
the last chapter. Change the edit link from this: 

<a href="custMaint.jsp?id=<%= rs.getString(1) %>&action=edit"> 

to this: 

<a href="customerDetail.jsp?id=<%= rs.getString(1) %>"> 

The JavaBean will contain most of the functionality. The only real logic included within the page 
determines if the page has been submitted or if it's loading for the first time. It then directs the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



65 

bean to perform its validations and commits the data if successful. The validations you're 
performing in this example are somewhat trivial; they merely illustrate the overall process. 
Obviously, you can do these kinds of validation better within the browser using a scripting 
language. Validation on the client-side will help to eliminate common errors on a form and 
reduce traffic between the client and the server. However, you should also use server-side 
validation to identify any uncaught errors and to prepare the submission for further processing. 

Building the Bean 
 
The JavaBean you'll create provides three main functions. It persists the inputted data (model), 
validates the data, and eventually commits the data to the database. Refer to Listing 3-6 for the 
entire source code used to build the bean. Remember to compile this bean and place it in your 
application server's \jspBook\WEB-INF\classes\jspbook\ch3 directory. 
 
Listing 3-6: CustomerBean.java  
 

package jspbook.ch3; 

 

import java.util.*; 

import java.sql.*; 

 

public class CustomerBean implements java.io.Serializable { 

 

   /* Member Variables */ 

   private String id, lname, fname, sex; 

   private int age, children; 

   private boolean spouse, smoker; 

 

   /* Helper Variables */ 

   private Connection db = null; 

   private String status; 

 

   /* Error collection */ 

   Hashtable errors = new Hashtable(); 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



66 

   /* Constants */ 

   public static final int FIELD_NAME = 0; 

   public static final int FIELD_VALUE = 1; 

 

   /* Constructor */ 

   public CustomerBean() { 

     /* Initialize properties */ 

     setLname(""); 

     setFname(""); 

     setSex(""); 

     setAge(0); 

     setChildren(0); 

     setSpouse(false); 

     setSmoker(false); 

     setStatus(""); 

     id = ""; // Not really a property, so no accessor method 

 

     /* Get database connection */ 

     dbConnect(); 

   } 

 

   /* Get Database Connection */ 

   private void dbConnect() { 

     if (db == null) { 

       try { 

         Class.forName("org.gjt.mm.mysql.Driver"); 

         db = DriverManager.getConnection("jdbc:mysql://localhost:3306/quoting"); 

       } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



67 

       catch (Exception e) { 

         System.out.println("Error Connecting to quoting DB: "+ e.toString()); 

       } 

     } 

   } 

 

   /* Accessor Methods */ 

 

   /* Last Name */ 

   public void setLname(String _lname) { 

     lname = _lname; 

   } 

   public String getLname() { 

     return lname; 

   } 

 

   /* First Name */ 

   public void setFname(String _fname) { 

     fname = _fname; 

   } 

   public String getFname() { 

     return fname; 

   } 

 

   /* Sex */ 

   public void setSex(String _sex) { 

     sex = _sex; 

   } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



68 

   public String getSex() { 

     return sex; 

   } 

 

   /* Age */ 

   public void setAge(int _age) { 

     age = _age; 

   } 

   public int getAge() { 

     return age; 

   } 

 

   /* Number of Children */ 

   public void setChildren(int _children) { 

     children = _children; 

   } 

   public int getChildren() { 

     return children; 

   } 

 

   /* Spouse ? */ 

   public void setSpouse(boolean _spouse) { 

     spouse = _spouse; 

   } 

   public boolean getSpouse() { 

     return spouse; 

   } 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



69 

   /* Smoker ? */ 

   public void setSmoker(boolean _smoker) { 

     smoker = _smoker; 

   } 

   public boolean getSmoker() { 

     return smoker; 

   } 

 

   /* Status ("Customer saved . . . ") */ 

   public void setStatus(String _msg) { 

     status = _msg; 

   } 

   public String getStatus() { 
     return "<br><center>< font color=red>" + status + "</font></center>"; 
   } 
 
   public void loadCustomer(String _id) { 
     try { 
       String sql = "select * from customer where id='" + _id + "'"; 
       Statement s = db.createStatement(); 
       ResultSet rs = s.executeQuery(sql); 
 
       if (rs.next()) { 
         setLname(rs.getString("lname")); 
         setFname(rs.getString("fname")); 
         setSex(rs.getString("sex")); 
         setAge(rs.getInt("age")); 
         setChildren(rs.getInt("children")); 
         setSpouse((rs.getString("married") == "Y") ? true : false); 
         setSmoker((rs.getString("smoker") == "Y") ? true : false); 
         id = _id; 
       } 
       else { 
         setStatus("Customer Does Not Exist."); 
       } 
     } 
     catch (SQLException e) { 
        System.out.println("Error loading customer: "+ 
           _id + ": "+ e.toString()); 
     } 
   } 
 
   public boolean validateString(String _input) { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



70 

     char[] chars = _input.toCharArray(); 
     for(int i = 0; i < chars.length; i++) { 
       if(Character.isDigit(chars[i])) 
         return false; 
     } 
     return true; 
   } 
 
   public boolean validateAge(int _age) { 
     if (age < 1 || age > 100) { 
       return false; 
     } 
     else { 
       return true; 
     } 
   } 
   public boolean validate() { 
     errors.clear(); // Reset the errors hashtable 
     if (!validateString(lname)) 
       errors.put("lname", "Last name must be all letters."); 
     if (!validateString(fname)) 
       errors.put("fname", "First name must be all letters."); 
     if (!validateAge(age)) 
       errors.put("age", "Age must be a numeric value between 1 and 100."); 
 
     return (errors.isEmpty()) ? true : false; 
   } 
 
   public String getErrors() { 
 
     StringBuffer errTable = new StringBuffer(); 
     if (!errors.isEmpty()) 
       errTable.append("<br><center><table border='1'>"); 
 
       Enumeration errs = errors.elements(); 
       while (errs.hasMoreElements()) { 
         errTable.append("<tr><td><font color=red>"); 
         errTable.append(errs.nextElement()); 
         errTable.append("</font></td></tr>"); 
       } 
 
       if (!errors.isEmpty()) 
         errTable.append("</table></center>"); 
 
       return errTable.toString(); 
   } 
 
   public String getField(String _field, int _part) { 
 
     String err = null; 
     String pre = "<font color=red>*"; 
     String post = "</font>"; 
 
     if (_part == FIELD_NAME) { 
       if (_field.equals("lname")) { 
         err = (String) errors.get("lname"); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



71 

         if (err != null) { 
           return pre + "Last Name: "+ post; 
         } 
         else { 
           return "Last Name: "; 
         } 
       } 
       if (_field.equals("fname")) { 
         err = (String) errors.get("fname"); 
         if (err != null) { 
           return pre + "First Name: "+ post; 
         } 
         else { 
           return "First Name: "; 
         } 
       } 
       if (_field.equals("sex")) { 
         err = (String) errors.get("sex"); 
         if (err != null) { 
           return pre + "Sex: "+ post; 
         } 
         else { 
           return "Sex: "; 
         } 
       } 
 
       if (_field.equals("age")) return "Age: "; 
       if (_field.equals("children")) return "Children: "; 
       if (_field.equals("spouse")) return "Spouse ? "; 
       if (_field.equals("smoker")) return "Smoker ? "; 
      } 
 
      if (_part == FIELD_VALUE) { 
        if (_field.equals("lname")) return getLname(); 
        if (_field.equals("fname")) return getFname(); 
        if (_field.equals("sex")) return getSex(); 
        if (_field.equals("age")) return (Integer.toString(getAge())); 
        if (_field.equals("children")) return (Integer.toString(getChildren())); 
        if (_field.equals("spouse")) return ((getSpouse()) ? "true" : "false"); 
        if (_field.equals("smoker")) return ((getSmoker()) ? "true" : "false"); 
      } 
 
      return ""; 
     } 
 
     public void submit() { 
       try { 
         StringBuffer sql = new StringBuffer(256); 
         sql.append("UPDATE customer SET "); 
         sql.append("lname='").append(lname).append("', "); 
         sql.append("fname='").append(fname).append("', "); 
         sql.append("age=").append(age).append(", "); 
         sql.append("sex='").append(sex).append("', "); 
         sql.append("married='").append(spouse).append("', ");  
         sql.append("children=").append(children).append(", "); 
         sql.append("smoker='").append(smoker).append("'"); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



72 

         sql.append("where id='").append(id).append("'"); 
 
         Statement s = db.createStatement(); 
         s.executeUpdate(sql.toString()); 
       } 
       catch (SQLException e) { 
         System.out.println("Error saving customer: "+ id + ": "+ e.toString()); 
       } 
     } 
 } 
 
The data is persisted as properties of the bean. As with all JavaBean properties, you provide a 
set of accessor methods for each of them (getter and setter). These properties are initialized in 
the constructor of the bean. You'll notice that some of these properties are non-String data. 
The <jsp:getProperty> and <jsp:setProperty> tags will automatically convert these values 
accordingly. 
 
Data validation occurs in the validate method and makes use of a hashtable called errors to 
store each individual error. You do this so that our page can display a list of all the errors on 
the page rather than simply one at a time. For instance, if the user had invalid data in three 
different fields, rather than going through them one at a time, they have the chance to correct 
all three errors in one screen. Once again, the validations you perform here are trivial and for 
the purpose of illustrating the validation process. You would typically do more complex 
validations to validate data against databases and even remote objects. 
 
Another component of data validation has to do with displaying the field names and field values 
in the JSP page. By using the getField method of the bean, you have the opportunity to check 
if the field was in error and, if so, to highlight the field for the user. You simply look up the field 
in the errors Hashtable and wrap a special <font> tag around the field name. 
Committing the data to the database is a simple task. You've presumably already validated the 
data and can be fairly confident the database will accept the data with no problems. You 
accomplish this inside of the submit method by assembling an update SQL statement and 
executing it against the database. 

Building the JSP Page 
 
The JSP page is responsible for directing the JavaBean to load the customer record (if it's the 
first time through), populate the model, validate the fields, and display the form. Refer to Listing 
3-7 for the entire JSP code. As you can see, you're implementing our form handler within the 
form itself. You do this intentionally. When a user is entering data into a form, it's helpful to 
keep them within the context of the form as they correct errors. It would also be difficult for us 
to highlight individual fields in error. 
 
Listing 3-7: customerDetail.jsp  
 
 

<!-- JSP Directives --> 
<%@ page 
         errorPage="myError.jsp?from=customerDetail.jsp" 
%> 
 
<html> 
<head> 
  <title>Customer Detail</title> 
</head> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



73 

 
<body> 
 
<basefont face="Arial"> 
 
<jsp:useBean id="custBean" scope="session" class="jspbook.ch3.CustomerBean"/> 
 
<%@ include file="myHeader.html" %> 
 
<!-- Static constants --> 
<%! public static final int FIELD_NAME = 0; %> 
<%! public static final int FIELD_VALUE = 1; %> 
 
<!-- Reset status message --> 
<jsp:setProperty name="custBean" property="status" value=""/> 
 
<!-- Check if the form has been submitted --> 
<% 
  String submitted = (String) request.getParameter("submit"); 
  if (submitted != null) { 
%> 
 
<!-- Set bean properties from request parameters --> 
  <jsp:setProperty name="custBean" property="lname" param="lname"/> 
  <jsp:setProperty name="custBean" property="fname" param="fname"/> 
  <jsp:setProperty name="custBean" property="age" param="age"/> 
  <jsp:setProperty name="custBean" property="sex" param="sex"/> 
  <jsp:setProperty name="custBean" property="spouse" param="spouse"/> 
  <jsp:setProperty name="custBean" property="children" param="children"/> 
  <jsp:setProperty name="custBean" property="smoker" param="smoker"/> 
 
<!-- Validate the fields and submit --> 
<% 
  if (custBean.validate()) { 
    custBean.submit(); 
    custBean.setStatus("Customer record has been saved."); 
  } 
} 
 
/* If first time through (not submitted), load existing customer record --> */ 
 
  else { 
    String id = (String) request.getParameter("id"); 
    if (id != null) { 
      custBean.loadCustomer(id); 
    } 
  } 
%> 
 
<!-- Retrieve a list of any errors and a status message --> 
<%= custBean.getErrors() %> 
<jsp:getProperty name="custBean" property="status"/> 
 
<form action="customerDetail.jsp"> 
 
<input type="Hidden" name="submit" value="true"/> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



74 

 
<center> 
 
<table> 
  <tr> 
    <td><%= custBean.getField("fname", FIELD_NAME) %></td> 
    <td><input type="Text" name="fname" value=" 
      <%= custBean.getField("fname", FIELD_VALUE) %>"/></td> 
  </tr> 
  <tr> 
    <td><%= custBean.getField("lname", FIELD_NAME) %></td> 
    <td><input type="Text" name="lname" value=" 
      <%= custBean.getField("lname", FIELD_VALUE) %>"/></td> 
  </tr> 
  <tr> 
    <td><%= custBean.getField("age", FIELD_NAME) %></td> 
    <td><input type="Text" name="age" value=" 
      <%= custBean.getField("age", FIELD_VALUE) %>"/></td> 
  </tr> 
  <tr> 
  <td><%= custBean.getField("sex", FIELD_NAME) %></td> 
  <td> 
    <select name="sex"> 
      <option value="M" <%= (custBean.getField("sex", 
        FIELD_VALUE).equals("M")) ? "selected" : "" %>M</option> 
      <option value="F" <%= (custBean.getField("sex", 
        FIELD_VALUE).equals("F")) ? "selected" : "" %>F</option> 
    </select> 
  </td> 
</tr> 
<tr> 
  <td><%= custBean.getField("spouse", FIELD_NAME) %></td> 
  <td> 
    <select name="spouse"> 
      <option value="true" <%= (custBean.getField("spouse", 
        FIELD_VALUE).equals("true")) ? "selected" : "" %>Y</option> 
      <option value="false" <%= (custBean.getField("spouse", 
        FIELD_VALUE).equals("false")) ? "selected" : "" %>N</option> 
    </select> 
  </td> 
</tr> 
<tr> 
  <td><%= custBean.getField("children", FIELD_NAME) %></td> 
  <td><input type="Text" name="children" value=" 
    <%= custBean.getField("children", FIELD_VALUE) %>"/></td> 
</tr> 
<tr> 
  <td><%= custBean.getField("smoker", FIELD_NAME) %></td> 
  <td> 
    <select name="smoker"> 
      <option value="true" <%= (custBean.getField("smoker", 
        FIELD_VALUE).equals("true")) ? "selected" : "" %>Y</option> 
      <option value="false" <%= (custBean.getField("smoker", 
        FIELD_VALUE).equals("false")) ? "selected" : "" %>N</option> 
    </select> 
  </td> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



75 

</tr> 
<tr> 
  <td colspan="2" align="center"><input type="Submit" value="Submit"/></td> 
</tr> 
<tr> 
  <td colspan="2" align="center"> 
    <br><br><a href="customerList.jsp">Return to Customer List</a> 
    </td> 
  </tr> 
</table> 
 
</center> 
 
</form> 
 
<%@ include file="myFooter.html" %> 
 
</body> 
</html> 

 
Because you're sharing the form with the handler, you need to do a few things first to 
determine what processing should take place. (For a high-level view of these tasks, refer to 
Figure 3-6.) First, the JSP page looks for a request parameter to determine if it has been 
submitted. If this is the first time through, then that parameter will not exist. If it has been 
submitted, it continues to set the properties directly from the request parameters and then 
attempts to validate and commit the data. If this is the first time through, then it loads the 
customer data into the model. 
 
Prior to displaying the form, the getErrors method is called to return an HTML table of errors. 
This will display directly above the form and will correspond to individually highlighted fields. To 
display the form fields, the JSP page relies on the getField method of the bean to display both 
the field name and the field value. It does this to enable the bean to highlight field names that 
have invalid data associated with them. 

Using the Form-Handling Solution 
 
The first validation you'll test is the First Name and Last Name fields. Each field must contain a 
string of valid non-numeric characters. The bean's validate method triggers this validation. This 
method calls separate methods for each of the validations to be performed on the form data. In 
the case of both the First Name and Last Name fields, the validate method calls the 
validateString method, which tests whether each character is numeric. If any character in the 
first or last name fields is numeric, an error will be added to the errors hashtable. When the 
page is displayed, the getErrors method of the bean will insert a table of errors at the top of the 
form. In addition to the list of errors, when the fields are displayed, the First Name and Last 
Name fields will be displayed in red to highlight the error. See Figure 3-7 for an example of 
entering a numeric value in the First Name field. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



76 

 
Figure 3-7: Inputting an invalid name  
 
The other validation included in the CustomerBean is for the Age field. The bean's validate 
method calls the validateAge method to verify that the age is between the values of 1 and 100. 
You assume the inputted value is numeric because the bean will make the conversion when it 
sets the value. If it's not numeric, the application server will throw an exception when it 
attempts to convert the value from a String to an integer. This is a good place for some client-
side validation using a scripting language such as JavaScript. See Figure 3-8 for an example of 
typing an age that falls outside of the defined limits. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



77 

 
Figure 3-8: Inputting an invalid age 
 
Summary 

This chapter has presented one method in which you can hide complex Java code from the 
page designer. Obviously, the page designer needs a rudimentary knowledge of JSP and Java 
to incorporate these beans within the presentation code, but using JavaBeans does make for 
much cleaner, more readable JSP pages. 

You can adapt this chapter's examples to just about any specific domain. By modifying the 
bean properties and some of the validation and database code, you implement these beans 
rather quickly into whichever application you choose. However, with a little bit of work, it's 
possible to abstract the domain-specific code out of the bean and make it more generic. You 
could then configure the bean through some additional properties in your JSP code. 
Chapter 4 will take role separation a step further by introducing the concept of custom tag 
extensions. These custom tags hide Java code inside of standard JSP-like tags. You can 
group tags by functionality and then package and deploy them as tag libraries. You'll see some 
useful techniques to accomplish common tasks through the use of custom tags. After that, 
you'll take a look at some enterprise development patterns that make use of JSP, Servlets, 
JavaBeans, and custom tags to build elegant and efficient web applications. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



78 

Chapter 4: Role Separation with Custom Tags 
The last chapter introduced the use of JavaBeans within your JSP pages to help separate Java 
code from the presentation template (the HTML page). Now, you're going to take this idea a 
step further and see how you can encapsulate your Java code inside custom tags. These tags 
are similar to the set of JSP tags you've been using. The only difference is that you get to 
define their behavior by attaching special tag handlers to them. 

I'll begin with a discussion of custom tags and how they work. Then, I'll walk you through a 
simple tag and show how to develop the tag handler and deploy it in your JSP application. 
You'll also see how custom tags can process content contained within the start and end tags 
and how to nest tags within each other. Once armed with these tools, along with those 
discussed in earlier chapters, you can begin applying these techniques to real-world enterprise 
problems as I discuss some patterns for development that use custom tags, JavaBeans, and 
Java servlets. 

Using Custom Tags 

A nice feature of JSP is that it gives you the ability to define your own set of HTML-like tags, 
allowing the page designer to simply select from a set of custom tags to include dynamic 
content wherever it's needed within the page. When you expose your Java code through these 
custom tags, you make it easier on the page designer by giving them a familiar coding 
paradigm. 

 
To learn how to create custom tags, it helps to first understand how the servlet container 
handles custom tags. First, when a custom tag is encountered as the page is processed, the 
page will pass control to a tag handler that will perform the necessary processing and then 
return control to the page. This tag handler is a Java class that extends, or implements, the 
appropriate class within the javax.servlet.jsp.tagext package. The servlet container 
instantiates these tag handlers, and then a pool of other tag handlers maintains them. Many 
application servers will optimize the use of custom tags by placing multiple instances of a tag 
handler into a pool and distributing them as needed by the application. 
 
You can locate the tag handler using the taglib directive in your JSP. This taglib directive points 
to a URI in the web.xml file. The web.xml file matches the given URI with a specific descriptor file 
known as a Tag Library Descriptor (tld) file. This tld file contains information about the tag 
handler such as the location of the class file that will perform the processing as well as any 
attributes that can be passed into it. See Figure 4-1 for a summary of this interaction. You can 
use multiple tag libraries within a single web application to further differentiate the processing 
or capabilities of a given tag library. 
 

 
Figure 4-1: Locating a tag handler  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



79 

The tag handler itself is a Java class that will implement either the Tag interface or the BodyTag 
interface located in the javax.servlet.jsp.tagext package. The Tag interface is used when 
creating an empty tag that will not process any content contained within its start and end tags. 
It can, however, determine whether to display the content contained within its start and end 
tags. The Tag interface can be rather cumbersome to implement, so it's often better to simply 
extend the TagSupport class, which provides a default implementation of the Tag interface. 
 
The BodyTag interface is similar to the Tag interface, except that it's capable of processing the 
content contained within its start and end tags. This would be useful if you were to write a tag 
that formats a block of content or maybe needs to sort a list in a specialized manner. Just like 
the Tag interface, the BodyTag interface comes with a default implementation, called 
BodyTagSupport. These support classes implement all the methods necessary to respond to 
lifecycle events generated by the servlet container. 
 
Depending on which type of tag you're implementing, you'll need to override one of the lifecycle 
methods of the supporting class to include specialized code to perform the necessary 
processing. Once the processing is complete, this method will return an integer value that lets 
the servlet container know how to proceed with processing the rest of the page. Table 4-1 lists 
the various lifecycle methods and the return values for the Tag interface and the BodyTag 
interface. 
 

Table 4-1: Lifecycle Methods of Tag and BodyTag Interfaces  
INTERFACE  METHOD  RETURN VALUE  EFFECT  

Tag doStartTag EVAL_BODY_INCLUDE Content contained within the tag is 
included in the page's output. 

  SKIP_BODY Content contained within the tag is 
ignored. 

 doEndTag EVAL_PAGE Content after the tag is processed 
normally. 

  SKIP_PAGE Content after the tag is skipped. 

BodyTag doAfterBody EVAL_BODY_TAG Content contained within the tag is 
evaluated by the doAfterBody 
method again, presumably until a 
specific condition is met. 

  SKIP_BODY Processing of the tag is complete. 
 
 
Figure 4-2 shows how a tag implementing the Tag interface is evaluated at runtime. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



80 

 
Figure 4-2: Processing a custom tag  

These interfaces will be described in greater detail as you examine their use in the following 
examples. Let's start with a simple tag to illustrate how to create a tag and describe it to the 
JSP container. 

 
Looking at a Simple Tag Example 
 
For your first attempt at creating a custom tag, you'll build a tag handler that does not process 
its body content and therefore extends the TagSupport class. The next section will deal with the 
BodyTag interface and its corresponding support class. This example will simply take a message 
and output it in a specific color. The message and the color will be passed into the tag as 
attributes. First, you'll build the tag handler, then the tag descriptor (the tld file), after which 
you'll add an entry to the web.xml file, and finally, you'll declare it in your JSP page and 
demonstrate its use. Let's get started! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



81 

Implementing the Tag Handler Class 
 
The tag handler extends the TagSupport class, which, in turn, implements the Tag interface. To 
perform the processing required by this tag, you'll override the doStartTag and doEndTag methods. 
In addition to these methods, you'll need to provide a set of accessor methods for each 
attribute that your tag will be using. These methods are similar to those used in the JavaBeans 
from Chapter 3. 
 
Let's start with defining the two attributes that the tag will be using: color and message. You can 
provide default values for each of these attributes, therefore optimizing them for the page 
designer. Again, the accessor methods you need to provide for each of these attributes are 
identical to those you would use for the properties of a JavaBean. 
 
In the doStartTag method, you obtain a JspWriter and output the given message with the 
appropriate HTML formatting instructions. The return value that you'll be using is SKIP_BODY. 
This value is returned because this tag will be an empty tag with no content within its start and 
end tags. If, however, this tag was to include content and you wanted to display it conditionally, 
you would return the EVAL_BODY_INCLUDE value. 
 
Finally, the doEndTag method is overridden. Again, you can choose to conditionally display 
content by returning the appropriate value. In this case, however, the return value determines 
whether the remainder of the page will be processed. To display the current output buffer and 
halt processing of the page, you could return SKIP_PAGE from this method. In this case, 
though, you want to continue processing so you return EVAL_PAGE instead. See Listing 4-1 
for a complete class definition. 
 
Listing 4-1: SimpleTag.java  
 

package jspbook.ch4; 

 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

import java.io.IOException; 

 

public class SimpleTag extends TagSupport { 

 

  /* Tag Attributes */ 

  protected String color = "#000000"; 

  protected String message = "Hello World!"; 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



82 

  /* Process Start Tag */ 

  public int doStartTag() throws JspTagException { 

    try { 

      JspWriter out = pageContext.getOut(); 
      out.println("< font color=\"" + color + "\">"); 
      out.println(message); 
      out.println("</font>"); 
    } 
    catch (IOException e) { 
      throw new JspTagException(e.toString()); 
    } 
    return SKIP_BODY; 
  } 
 
  /* Process End Tag */ 
  public int doEndTag() throws JspTagException { 
    return EVAL_PAGE; 
  } 
 
  /* Attribute Accessor Methods */ 
  public String getColor() { 
    return color; 
  } 
 
  public void setColor(String _color) { 
    color = _color; 
  } 
 
  public String getMessage() { 
    return message; 
  } 
 
  public void setMessage(String _message) { 
    message = _message; 
  } 
} 
 

Creating the Tag Library Descriptor 
 
To describe your tag to the JSP container, you need to provide a descriptor file. This descriptor 
file, or tld, is an XML file that contains a single <taglib> element, which itself contains several 
elements that describe the tag library in question. The two elements you'll use for this tag 
library are <tlib-version> and <jsp-version>. You can version your tag library using a <tlib-
version> element. The <jsp-version> element specifies the minimum version of JSP required by 
your tag. Other elements you could define are <short-name>, <uri>, and <info>— all used to 
provide information to a JSP authoring tool. 
 
A tag library can describe several tags using <tag> elements. Each <tag> element contains 
several subelements used to describe each individual tag. The elements we'll be using are 
<name>, <tag-class>, <body-content>, and <attribute>. The <name> element specifies the name 
that will be used within the JSP to invoke this specific tag handler. The <tag-class> element 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



83 

points to the fully qualified Java class implementing the given tag. You can use the <body-
content> element to declare the tag as a body tag or an empty tag. Finally, because your tag 
supports two attributes, you'll need to add an <attribute> element for each of them. See Listing 
4-2 for a complete tld file, located in the \WEB-INF\tlds folder of the web application. 
 
Listing 4-2: simple.tld  
 
<?xml version="1.0" encoding="ISO-8859-1" ?> 
<!DOCTYPE taglib 
         PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN" 
           "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd"> 
 
<taglib> 
  <tlib-version>1.0</tlib-version> 
  <jsp-version>1.2</jsp-version> 
  <short-name>simpleTag</short-name> 
  <description> 
    Tag library to support the examples in Chapter 4 
  </description> 
  <tag> 
    <name>simpleTag</name> 
    <tag-class>jspbook.ch4.SimpleTag</tag-class> 
    <body-content>empty</body-content> 
    <attribute> 
      <name>color</name> 
      <required>no</required> 
    </attribute> 
    <attribute> 
      <name>message</name> 
      <required>no</required> 
    </attribute> 
  </tag> 
</taglib> 
 

Declaring the Tag Library 
 
Now that you have a descriptor file for your tag library, you need to make your web application 
aware of its existence. You do this by adding a <taglib> element to the web.xml file. This 
element defines the location of the descriptor file using the <taglib-location> tag. It also 
declares a URI for the tag library that will be used within the JSP to locate this entry in the 
web.xml file. Listing 4-3 shows what your web.xml might look like after adding the appropriate 
taglib element. 
 
Listing 4-3: web.xml  
 
<?xml version="1.0" encoding="ISO-8859-1"?> 
 
<!DOCTYPE web-app 
    PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" 
    "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd"> 
 
<web-app> 
    <taglib> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



84 

        <taglib-uri>/simple</taglib-uri> 
        <taglib-location>/WEB-INF/tlds/simple.tld</taglib-location> 
    </taglib> 
</web-app> 
 

Using Your Tag Library in a JSP Page 
 
Now let's look at using your custom tag, starting with the JSP page. At the top of your page, 
you use a taglib directive to identify the tag library and match it to the entry you made in the 
web.xml file using the URI attribute. The tag library descriptor file is then located through this 
entry in the web.xml file. The tag handler is then instantiated using the information contained in 
the tag library descriptor file. 
 
The taglib directive also defines a prefix you can use to invoke custom tags contained within 
the tag library. In this example, you choose to select the prefix ex. When you invoke the custom 
tag, you refer to it as <ex:simpleTag>. The ex points back to the taglib directive, which in turn 
points you to the web.xml file and eventually the tag library descriptor file where it locates the 
simpleTag entry and loads the appropriate handler. See Listing 4-4 for a complete JSP example 
using the simpleTag custom tag. 
 
Listing 4-4: simpleTagExample.jsp  
 
 

<!-- JSP Directives --> 
<%@ page errorPage="myError.jsp?from=simpleTagExample.jsp" %> 
<%@ taglib uri="/simple" prefix="ex" %> 
 
<html> 
<head> 
    <title>Simple Tag Example</title> 
</head> 
 
<body> 
 
<basefont face="Arial"> 
 
<!-- Display message --> 
<center> 
    <ex:simpleTag 
        color="#008000" 
        message="This is a very, very, very simple tag!" 
    /> 
</center> 
 
</body> 
</html> 
 

Figure 4-3 shows the simple tag example in action. The message is passed to the tag handler 
as an attribute and then displayed in green. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



85 

 
Figure 4-3: Simple tag example 
                      
Processing Body Content 
 
Extending the TagSupport class, as you did in the previous example, enables you to perform 
some processing, generate some output, and even dictate whether the content included within 
the start and end tags should be included in the JSP output. If you'd like to actually manipulate 
any included content, however, you need to extend a different class. The BodyTagSupport class 
implements the BodyTag interface and provides a standard tag implementation in much the 
same way as the TagSupport class does. Here's an example of a custom JSP tag using a 
BodyTag: 
 

<util:formatTable> 

    123,Widget A,300.00,48 

    234,Widget B,250.00,64 

    345 Widget C,325.00,13 

</util:formatTable> 

 
This example uses a tag called formatTable to take the included content and output it as an 
HTML formatted table. The BodyTagSupport class makes this content available through the 
setBodyContent method. There's no need to override this method; it just takes the included 
content and creates a BodyContent object for you to use later. 
 
When processing an empty tag, you extended the TagSupport class, overrode the doStartTag 
method, and sent the appropriate return value. When processing a body tag, you extend the 
BodyTagSupport class, override the doAfterBody method, obtain the BodyContent object, process 
the content, and return the appropriate value. Another difference between these methods is the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



86 

use of JspWriter. The doStartTag method has a JspWriter available to it through the PageContext 
object. Because the doAfterBody method does not, you need to obtain a JspWriter through the 
BodyContent object using its getEnclosingWriter method, like this: 
 

BodyContent body = getBodyContent(); 

JspWriter out = body.getEnclosingWriter(); 

 
Getting at the content is fairly easy; you can do it in one of two ways. The easiest way is to call 
the getString method of the BodyContent object and store the results in a String object. In most 
instances, this will work just fine. There may be some circumstances, however, that will require 
you to process the content line by line, or perhaps apply a filter to the content as it is read in. In 
these cases, you can get the content returned as a Reader using the getReader method. This is 
an example of how to read the content using a Reader: 
 

BufferedReader contentReader = new BufferedReader(body.getReader()); 

while ((String record = contentReader.readLine()) != null) { 

  ... 

} 

 
When you're done processing the body content and outputting your results, you need to return 
the appropriate value from the doAfterBody() method (refer to Table 4-1). Valid options are 
SKIP_BODY and EVAL_BODY_TAG. The SKIP_BODY return value tells the JSP container 
that you're done processing the body of this tag and that you'd like to flush the output buffer 
and continue processing the rest of the page (after the current tag). The EVAL_BODY_TAG 
return value will cause the container to re-evaluate the body content. In other words, this 
enables you to loop through the body content repeatedly until a particular condition has been 
met. Be careful to avoid infinite loops when using this approach! 

Seeing a Body Tag in Action 

This example will evaluate the included content and output an HTML-formatted table. The 
included content needs to be in the form of comma-delimited values, with each row on its own 
line. This kind of tag might be useful when used as a decorating filter as part of a standard 
utility library. I'll discuss the idea of filtering content in future chapters that deal with enterprise 
design patterns. 

Modifying web.xml and Tag Library Descriptor Files 
 
First, you modify the application deployment descriptor, web.xml, to include a <taglib> entry for 
the tag library, which describes the HtmlUtils tag that you'll be using for this example. The 
web.xml file is located in the \WEB-INF directory of your web application. Listing 4-5 shows what 
the web.xml file should look like. 
 
Listing 4-5: web.xml  
 
<?xml version="1.0" encoding="ISO-8859-1"?> 
 
<!DOCTYPE web-app 
    PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN" 
    "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd"> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



87 

<web-app> 
  <taglib> 
    <taglib-uri>/tableUtils</taglib-uri> 
    <taglib-location>/WEB-INF/tlds/utils.tld</taglib-location> 
  </taglib> 
</web-app> 

 
Next, you create the tag library descriptor file. This particular file describes a single tag, 
tableFormat, that is associated with the HtmlUtils tag handler. This file should be stored in the 
\WEB-INF\tlds directory of your web application. Listing 4-6 shows what the utils.tld file should 
look like. 
 
Listing 4-6: utils.tld  
 
<?xml version="1.0" encoding="ISO-8859-1" ?> 
<!DOCTYPE taglib 
         PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN" 
           "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd"> 
<taglib> 
  <tlib-version>1.0</tlib-version> 
  <jsp-version>1.2</jsp-version> 
  <short-name>utilTag</short-name> 
  <description> 
    Tag library to support the examples in Chapter 4 
  </description> 
  <tag> 
    <name>tableFormat</name> 
    <tag-class>jspbook.ch4.HtmlUtils</tag-class> 
    <body-content>tagdependent</body-content> 
  </tag> 
</taglib> 
 

Writing the Tag Handler 
 
The HtmlUtils tag handler simply takes each line of comma-delimited text, contained within its 
start and end tags, and parses it into individual table elements. The end result is a formatted 
HTML table in place of the original tag. Each row is processed inside of a while loop until 
there's no more content to process. The actual parsing uses a StringTokenizer object to break 
the row of data into individual fields. Once the data has been written out as an HTML table, the 
SKIP_BODY value is returned and the remainder of the JSP page is processed. Listing 4-7 
contains the complete code for the HtmlUtils tag. 
 
Listing 4-7: HtmlUtils.java  
 

package jspbook.ch4; 

 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



88 

import java.util.*; 

import java.io.*; 

 

public class HtmlUtils extends BodyTagSupport{ 

 

  public int doAfterBody() 

    throws JspException 

  { 

    try { 

      boolean altRow = false; 

      String record = ""; 

      /* Get Body Content and Enclosing JSP Writer */ 

      BodyContent body = getBodyContent(); 

      JspWriter out = body.getEnclosingWriter(); 

 
      out.println("<center>"); 
      out.println("<table>"); 
 
      /* Get body content as a reader and process each line individually */ 
      BufferedReader contentReader = new BufferedReader(body.getReader()); 
      while ((record = contentReader.readLine()) != null) { 
        /* Alternate row colors */ 
        out.println("<tr bgcolor='" + 
          ((altRow = !altRow) ? "#FFFFFF" : "#c0c0c0") + "'>"); 
        /* Break the record into an array */ 
        StringTokenizer st = new StringTokenizer(record, ","); 
        while (st.hasMoreTokens()) { 
          out.println("<td>"); 
          out.println(st.nextToken()); 
          out.println("</td>"); 
        } 
        out.println("</tr>"); 
      } 
 
      out.println("</table>"); 
      out.println("</center>"); 
    } 
    catch (IOException e) { 
      throw new JspTagException(e.toString()); 
    } 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



89 

    return SKIP_BODY; 
  } 
 
} 

 

Writing the JSP 
 
The JSP page that uses the HtmlUtils tag handler begins with a taglib directive associating the 
util prefix with the taglib described by the /tableUtils URI. The tag wraps several rows of input 
data and displays them as an HTML table. Remember that the HtmlUtils tag handler is 
associated with the tableFormat tag in the tag library descriptor file. Therefore, the 
<util:tableFormat> tag really invokes the HtmlUtils tag handler class. See Listing 4-8 and 
Figure 4-4. 
 

 
Figure 4-4: Body tag example  
 
Listing 4-8: bodyTagExample.jsp  
 
<!-- JSP Directives --> 
<%@ page errorPage="myError.jsp?from=bodyTagExample.jsp" %> 
<%@ taglib uri="/tableUtils" prefix="util" %> 
 
<html> 
<head> 
  <title>Body Tag Example</title> 
</head> 
 
<body> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



90 

 
<basefont face="Arial"> 
 
<br><br> 
 
<util:tableFormat> 
  100,Lorrain Davies,$500.00 
  200,Christina Inman,$450.34 
  300,Lori Peterson,$475.23 
  400,Sandy Andre,$423.00 
  500,Lani Tobias,$445.34 
</util:tableFormat> 
 
</body> 
</html> 

 
Nesting Tags 
 
A nice benefit of using custom tags is that you can actually nest the tags within some kind 
of hierarchy with the ability to have child tags invoke methods of parent tags. Nesting tags 
is similar to the way you'd nest standard HTML tags. For instance, the <td> tag must 
exist within a <tr> tag, which itself must exist within a <table> tag. All of these tags 
work together to render a group of data in tabular format. 
 
When nesting a tag within another tag, it's important to note that the child tag can obtain 
an instance of the parent tag, but the parent tag has no knowledge of its child tags. The 
child tag can traverse up the tag hierarchy until it finds the specific tag for which it's 
looking. You do this with the findAncestorWithClass method. This method will look at 
the parent tag (s et in one of the BodyTagSupport or TagSupport lifecycle methods) 
and determine if it's an instance of a particular class. For instance, if you're looking for a 
tag of type outlineTag, then this is an example of how you'd access that tag: 
 

outlineTag parent = (outlineTag) findAncestorWithClass(this, outlineTag.class); 

parent.updateCount(); 
 
There's another method for obtaining an instance of the parent tag. This method is called 
getParent and will simply return the parent immediately above the current tag. This may 
be okay in some circumstances, but what if the page designer decides to insert another 
tag between the current tag and the desired parent tag? Instead of getting an instance of 
the appropriate parent tag, you might end up with some kind of formatting tag instead. For 
this reason, I recommend always using the findAncestorWithClass method to look 
up parent tags. 
 
To illustrate the use of nested tags, let's build a set of tags that, when used together inside 
of a JSP, displays a grocery order with line item totals and a grand total at the bottom. A 
GroceryItem tag will represent each line item. A single GroceryOrder tag will contain 
these GroceryItem tags. Each GroceryItem tag will be responsible for calculating a 
line total and updating the grand total in the GroceryOrder tag. The GroceryOrder tag 
will then display the items in a table as well as the grand total for the order. This is what 
the web.xml entry looks like: 
 

  <taglib> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



91 

    <taglib-uri>/groceries</taglib-uri> 

    <taglib-location>/WEB-INF/tlds/groceries.tld</taglib-location> 

  </taglib> 
The tag library descriptor file will contain <tag> entries for each of these tags. These tags 
each manipulate their body content, so the <body-content> element is set to 
tagdependent. This is what the <tag> ent ries look like: 

  <tag> 

    <name>Order</name> 

    <tag-class>jspbook.ch4.GroceryOrder</tag-class> 

    <body-content>tagdependent</body-content> 

  </tag> 

  <tag> 

    <name>LineItem</name> 

    <tag-class>jspbook.ch4.GroceryItem</tag-class> 

    <body-content>tagdependent</body-content> 

  </tag> 

 
The tag handler for the line items is responsible for reading in a line of body content, 
calculating the line item total, updating the grand total (in the GroceryOrder tag), and 
finally outputting a new line of comma-delimited content that includes the line item total. 
To update the grand total, you obtain an instance of the GroceryOrder tag and invoke 
the updateTotal method to add the line item total to the grand total stored inside of the 
GroceryOrder tag. Listing 4-9 shows the code for the GroceryItem tag handler. 
 
Listing 4-9: GroceryItem.java  

 
package jspbook.ch4; 

 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

import java.util.*; 

import java.io.*; 

import java.text.*; 

 

public class GroceryItem extends BodyTagSupport { 

 

  public int doAfterBody() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



92 

    throws JspException 

  { 

    int qty = 0; 

    String desc = ""; 

    float price = 0.00f; 

    float lineTotal = 0.00f; 

 

    /* Get Body Content and Enclosing JSP Writer */ 

    BodyContent body = getBodyContent(); 

    JspWriter out = body.getEnclosingWriter(); 

 

    // Parse line into data fields 

    String line = body.getString(); 

    StringTokenizer st = new StringTokenizer(line, ","); 

 

    qty = Integer.parseInt(st.nextToken()); 

    desc = st.nextToken(); 

    price = Float.parseFloat(st.nextToken()); 

 

    // Calculate line item total 

    lineTotal = qty * price; 

 

    // Get parent tag and invoke method to update order total 

    GroceryOrder order = 

      (GroceryOrder) findAncestorWithClass(this, GroceryOrder.class); 

order.updateTotal(lineTotal); 

 

    // Output line as CSV row including lineTotal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



93 

    try { 

      String priceFmt = NumberFormat.getCurrencyInstance().format( 

           Double.parseDouble(String.valueOf(price))); 

         String totalFmt = NumberFormat.getCurrencyInstance().format( 

           Double.parseDouble(String.valueOf(lineTotal))); 

         out.println(qty + "," + desc + "," + priceFmt + "," + totalFmt); 

        } 

        catch (IOException e) { 

          throw new JspTagException(e.toString()); 

        } 

 

        return SKIP_BODY; 

      } 

 

    } 
 
The tag handler for the grocery order is responsible for maintaining a grand total as well 
as outputting the grocery items as an HTML-formatted table. This is not much different 
than the previous BodyTag examples, with one notable exception. Because you're 
maintaining a total, you'd like to be sure that this number does not carry over to new 
invocations of this tag. So, you make use of the release method of BodyTagSupport to 
reset the value of the grand total. This method is called just before the instance of the tag 
handler is returned to the pool of handlers managed by the server. Listing 4-10 shows the 
code for the GroceryOrder tag handler. 
 
Listing 4-10: GroceryOrder.java  

 
package jspbook.ch4; 

 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

import java.util.*; 

import java.io.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



94 

import java.text.*; 

 

public class GroceryOrder extends BodyTagSupport { 

 

  float orderTotal = 0.00f; 

 

  public int doAfterBody() 

    throws JspException 

  { 

    try { 

      BodyContent body = getBodyContent(); 

      JspWriter out = body.getEnclosingWriter(); 
      out.println("<table>"); 
 
      out.println("<tr>"); 
      out.println("<td><b>Quantity</b></td>"); 
      out.println("<td><b>Description</b></td>"); 
      out.println("<td><b>Item Price</b></td>"); 
      out.println("<td><b>Item Total</b></td>"); 
      out.println("</tr>"); 
 
      // Parse records and output as HTML table 
      BufferedReader contentReader = new BufferedReader(body.getReader()); 
      String record = ""; 
      while ((record = contentReader.readLine()) != null) { 
        out.println("<tr>"); 
        StringTokenizer st = new StringTokenizer(record, ","); 
        while (st.hasMoreTokens()) 
          out.println("<td>"); 
          out.println(st.nextToken()); 
          out.println("</td>"); 
        } 
        out.println("</tr>"); 
      } 
 
      out.println("</table>"); 
 
      // Display order total 
      out.println("<br>"); 
      out.println("<b>Order Total: "); 
      out.println(NumberFormat.getCurrencyInstance().format( 
        Double.parseDouble(String.valueOf(orderTotal)))); 
      out.println("</b>"); 
    } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



95 

    catch (IOException e) { 
      throw new JspTagException(e.toString()); 
    } 
 
    return SKIP_BODY; 
  } 
 
  public void updateTotal(float lineTotal) 
  { 
    orderTotal += lineTotal; 
  } 
 
  public void release() 
  { 
    super.release(); 
    orderTotal = 0.00f; 
  } 
 
} 
 
Now that you've coded your tag handlers and updated your descriptors, it's time to make 
use of them. The JSP is really quite simple. It contains a taglib directive that declares 
the tag library and sets a prefix for it. It then wraps a series of LineItem tags inside of an 
Order tag. Listing 4-11 shows the code for the JSP (see Figure 4-5 for the results). 

 
Figure 4-5: Nesting tags  
Listing 4-11: groceryList.jsp  
 
<!-- JSP Directives --> 
<%@ page errorPage="myError.jsp?from=groceryList.jsp" %> 
<%@ taglib uri="/groceries" prefix="grocery" %> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



96 

<html> 
<head> 
  <title>Grocery List</title> 
</head> 
 
<body> 
 
<basefont face="Arial"> 
 
<h1>Grocery Bill:</h1> 
<br> 
<grocery:Order> 
  <grocery:LineItem>1,Milk,2.56</grocery:LineItem> 
  <grocery:LineItem>5,Canned Carrots,0.33</grocery:LineItem> 
  <grocery:LineItem>1,Paper Towel,1.26</grocery:LineItem> 
  <grocery:LineItem>1,Magazine,4.50</grocery:LineItem> 
  <grocery:LineItem>3,Donut,0.33</grocery:LineItem> 
  <grocery:LineItem>9,Peanut Butter,3.99</grocery:LineItem> 
</grocery:Order> 
 
</body> 
</html> 

 
Summary 

This chapter concludes the introductory section of the book. Before moving on, you should 
have a good understanding of JSP fundamentals as well as how to use JavaBeans and custom 
tags with your JSP pages to separate Java code from page design. The next part of the book 
will look at ways to apply enterprise patterns to real-world development problems. Each pattern 
will employ the use of one or more of the techniques discussed to this point. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



97 

Chapter 5: Development Using Patterns 

Overview 

 
A key advantage to using Java technology is that it's an Object-Oriented (OO) language. This 
enables you to write code that is reusable and highly scalable. As you become more 
accustomed to OO development, you might recognize a few best practices  that you follow 
when developing solutions of a particular class. For instance, you may find that for every data-
entry application you work on, you tend to code the data validation routines in a similar way. If 
you were to formalize this best practice and abstract away some of the implementation details, 
it's conceivable that others could use it as a roadmap to jumpstart their own development 
efforts by implementing an already proven technique for data validation. This eliminates a lot of 
design effort as well as numerous testing iterations. 
 
Published best practices have come to be known as design patterns. These originated in the 
OO world and have been published in various forms specific to their implementations in C++ 
and Java, as well as several general studies. In particular, the book Design Patterns by Erich 
Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley, 1995) has 
become the definitive guide to OO design patterns. Recently, the concept of design patterns 
has influenced the J2EE developer community, prompting Sun to publish a J2EE Patterns 
Catalog (http://developer.java.sun.com/developer/technicalArticles/J2EE/patterns/). These 
patterns address typical design issues and how you can apply the various J2EE technologies 
to solve such issues. 
 
This chapter is the first of several that will deal with enterprise design patterns. I'll discuss the 
merits of using patterns, review the J2EE Patterns Catalog, highlight the patterns relevant to 
the presentation tier (and therefore the subject matter of this book), and finish with a discussion 
of the Model-View-Controller (MVC) pattern upon which most of the J2EE patterns are based. 
 
Why Use Patterns? 

I'll begin the patterns coverage by answering this question: Why should you look to design 
patterns for help with your own development efforts? The answer to this question is simple. 
Design patterns are proven techniques that can be reused and applied to many similar 
problems. They also provide you with a common vocabulary when discussing application 
design. 

They're Proven Techniques 

When designing an application, many problems need to be solved. In most cases, these 
problems are not unique to the specific application you're designing. If you were to design and 
implement a custom solution to the problem, then that piece of code will need to undergo 
perhaps several iterations of testing and subsequent coding until it's exactly what you need for 
your particular application. 

If you were to take the previous scenario and use a design pattern instead of a custom solution, 
then you would greatly reduce development and testing time. The design pattern has already 
undergone many iterations of testing and development to produce an industry-wide best 
practice. Obviously, you'll still need to do some custom development to implement the pattern, 
but now you only need to test the implementation-specific code and not the entire piece of 
functionality. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



98 

They're Reusable 

In the spirit of OO design, enterprise design patterns are intended to be reused across projects. 
Each pattern provides a proven solution for a specific class of problems. These problems tend 
to exist in many different applications. Rather than reinvent the wheel each time, it makes more 
sense to apply a design pattern requiring minimal modifications. 

It's a Common Vocabulary 

When speaking of application design, it helps to have a common vocabulary to communicate 
your options to the rest of the development team. For instance, a common OO design pattern 
is the factory pattern. This pattern is useful when an object needs to be instantiated at runtime, 
but the class of that object is not known at compile-time. So, when discussing design options, 
you might say something such as, "Well, if we implement a factory pattern in the reporting 
module, we can add new reports in the future without modifying the application framework." If 
everyone on the team understands the factory pattern, they can all envision the solution based 
on the given statement. 

 

Introducing the J2EE Patterns Catalog  
 
The architects at Sun have compiled a series of design patterns and published them as the 
J2EE Patterns Catalog available at the Java Developer Connection website 
(http://developer.java.sun.com). These patterns address common application problems through 
the application of J2EE technologies. The patterns catalog groups the various patterns into the 
following tiers: 
 
§ Presentation tier: Whatever is required to present application data and user 

interface elements to the user is inside of the presentation tier of the application. 
Key technologies in use are JavaServer Pages (JSP) and Java Servlets. 

§ Business tier: The business tier is where all the business processing takes place. 
The primary J2EE technologies in use for this tier are Enterprise JavaBeans 
(EJBs). 

§ Integration tier: The integration tier provides connections to the resource tier. 
The resource tier includes things such as message queues, databases, and 
legacy systems. The J2EE technologies in use at the integration tier are the Java 
Message Service (JMS), Java Database Connectivity (JDBC), and the Java 
Connector Architecture (JCA). 

Because this is a JSP book, I'll mostly present those patterns that deal with the presentation 
tier. I won't attempt to describe each pattern in detail; the patterns catalog does a fine job of 
that. The goal of this book is to provide best practices and examples. To that end, I'll provide 
enough definition to enable you to apply these patterns to common development tasks using 
JSP pages and Java servlets. 
 
Looking at Presentation Design Patterns 

The patterns I'll discuss in this book are commonly known as the Decorating Filter, Front 
Controller, Dispatcher View, and View Helper patterns. There are a few more presentation 
patterns in the J2EE catalog that I won't discuss. These four patterns are sufficient to illustrate 
the examples and best practices that I'll cover. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



99 

These patterns each cover a different layer of the presentation logic. As the request comes in, 
it can pass through a filter prior to the actual processing of the request (Decorating Filter 
pattern). It could then go to a centralized servlet to be processed (Front Controller Pattern). 
Once it has been processed, the servlet could then dispatch the results to a specific JSP page 
(Dispatch View Pattern). Finally, the JSP page could make use of custom tags or JavaBeans to 
help include the data in the HTML output (View Helper Pattern). Figure 5-1 illustrates the 
relationship between these patterns. 
 
 

 
Figure 5-1: Presentation patterns  

Here's a preview of each pattern I'll be discussing: 

 
§ Decorating filter: This pattern applies a kind of filter to either the request or 

response object as it passes in and out of the web container. You can use filters 
as a common place to log transactions, authenticate users, and even format data. 

§ Front Controller pattern: The Front Controller pattern is built upon the concept 
of the MVC pattern (see the next section). This pattern suggests the use of a 
single servlet to handle each and every request as opposed to embedding 
controller code inside of each JSP page. 

§ Dispatcher view: Inside of the controller, a piece of code exists that determines 
where the processed request should go to be displayed. In other words, it applies 
some kind of strategy to figure out which view, or JSP page, to use to display the 
current data. 

§ View helper: Once the specific view has been chosen, the JSP makes use of 
several "helpers" to adapt the data to the final outputted content. These helpers 
consist of either custom tags or JavaBeans. 

 
Understanding Model-View-Controller (MVC) 
 
The presentation patterns in the J2EE catalog are all based upon the MVC architecture. MVC 
is applied to software development projects in an effort to separate the application data from 
the presentation of the data. This separation enables the interface, or view, to take many 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



100 

different forms with little modification to the application code. For instance, using an MVC 
pattern, a user interface can be presented as both an HTML page (for web browsers) and a 
WML page (for mobile devices), depending on the device requesting the page. The controller 
would recognize the source of the request and apply the application data to the appropriate 
view (see Figure 5-2). 
 

 
Figure 5-2: MVC architecture  

The idea of separating presentation logic from the data and managing it with a controller has its 
roots in graphical user interface (GUI) development. Take, for instance, a user interface 
consisting of many different user controls. These controls contain the data, the formatting 
instructions, and the code that fires an event when the control is activated. This makes the user 
interface platform-specific and coupled with the application code itself. By applying an MVC 
pattern and separating each of these components, the user interface becomes lightweight, 
pluggable, and transportable across platforms. The Java Swing API illustrates this best. 
You can apply the MVC pattern to other areas of software development besides client/server 
GUIs. Web development has benefited from this idea by clearly separating presentation code 
from the application data and the controller code that ties the two together. Let's take, for 
example, a simple web application that displays catalog pages. Typically, this would consist of 
a search page, a results page, and an item detail page. Each page has the responsibility of 
authenticating the user, retrieving user preferences, retrieving the requested data, and 
managing page navigation (see Figure 5-3). 
 

 
Figure 5-3: Simple catalog application (without MVC)  
 
Looking at this application, it's easy to see that a lot of redundant code is being used to display 
each page. Not only does this introduce the potential for errors, but it also ties the application 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



101 

to the presentation by including many non-presentation functions inside of the presentation 
code. When you apply an MVC pattern to this application, the common functions move to a 
controller on the server. The presentation code is now only responsible for rendering the 
application data in a format that's appropriate for a particular device (typically a web browser). 
See Figure 5-4 for an MVC approach to this application. 
 

 
Figure 5-4: Simple catalog application (with MVC)  

Seeing MVC in Action 

To illustrate the MVC pattern, you're going to build a simple web application that collects data 
and stores it in a database. The data you'll be collecting is health information that will be stored 
in the customer table of our quoting database. In addition to collecting the data, the application 
will require the user to login to the system before accessing any of the pages. 

This example is a simple one, but it illustrates some of the benefits of using an MVC 
architecture. You'll see how to centralize application security by giving the user a single access 
point into the application. You'll also standardize and share the database connection using a 
connection pooling mechanism built into the application server. In the next few chapters, I'll use 
this example (among others) to introduce new patterns. With that in mind, this example is basic 
at this point. You'll add features such as field validation and improved error handling later. 
The application starts with a login page and then moves to a main servlet that will act as the 
controller (see Figure 5-5). The servlet will determine whether to proceed to the next page 
based upon the success of the login procedure. Once the user has logged in, they'll go to a 
survey page where they'll enter their information and submit it. Once again, the servlet will 
interrogate the request and move the user to the next page. If the data is successfully recorded, 
the user is taken to a confirmation page. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



102 

 
Figure 5-5: Simple survey application  
 
Another benefit of using a servlet as a single entry point is that it enables you to hide your JSP 
pages from the outside world. This helps to secure the system by not allowing direct access to 
your application. The only page the user can access directly is the login page. If they were to 
type in the name of another page, the server would return a 404 error ("not found"). You 
accomplish this by "hiding" your JSP pages inside of the \WEB-INF directory. By definition, 
everything underneath this directory is inaccessible by direct access from the user. However, 
the servlet that acts as our controller can access this directory and therefore is allowed to 
forward requests to pages that reside there. Here's what your directory structure will look like 
when you're done with this example: 
 

webapps\jspBook\ch5\login.jsp 

webapps\jspBook\ch5\myError.jsp 

webapps\jspBook\ch5\myHeader.htm 

webapps\jspBook\ch5\myFooter.htm 

webapps\jspBook\ch5\images\logo.gif 

webapps\jspBook\WEB-INF\jsp\ch5\census.jsp 

webapps\jspBook\WEB-INF\jsp\ch5\thankyou.jsp 

Setting Up the Application 

Before you begin coding, you need to add a table to the database and then modify your 
application server configuration to accommodate the use of DataSources. The table you need 
to add is a user table containing the user ID, password, and a customer ID. The customer ID 
creates a customer record that corresponds to the user. Ideally, this field would be dynamically 
generated, but for these purposes you're just going to hard-code this value. Here's the script to 
update the database: 

createUsers.sql (c:\mysql quoting < createUsers.sql) 

 

DROP TABLE IF EXISTS user; 

CREATE TABLE user (id varchar(10) not null, pwd varchar(10), cust_id int); 

INSERT INTO user VALUES ('apatzer', 'apress', 6); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



103 

The next task you need to do is modify your configuration to use DataSources. The J2EE 
specification allows a DataSource to be defined inside of the application server itself. Servlets 
and JSP pages can locate and use these DataSources using Java Naming and Directory 
Interface (JNDI). A key advantage to accessing a database this way is that the connection 
information is stored in one place outside of the application code. Also, most application 
servers have a built-in connection pooling mechanism you can take advantage of by accessing 
your database using a DataSource. To set this up, you'll need to be sure your application 
server supports this capability. Before modifying the appropriate configuration files, be sure to 
add your database drivers to a directory accessible to the application server (for Tomcat 4.0.1, 
put the drivers in the \common\lib directory). To create a DataSource in your application server, 
you'll need to add a description of it to the server.xml file. This description goes inside of your 
context definition like the one seen in Listing 5-1 (see the J2EE specification for more details). 
 
Listing 5-1: server.xml  
 
<Context path="/jspBook" 
  docBase="jspBook" 
  crossContext="false" 
  debug="0" 
  reloadable="true" > 
 
  <Logger className="org.apache.catalina.logger.FileLogger" 
              prefix="localhost_jspBook_log." suffix=".txt" 
           timestamp="true"/> 
 
  <Resource name="jdbc/QuotingDB" auth="SERVLET" 
             type="javax.sql.DataSource"/> 
 
    <ResourceParams name="jdbc/QuotingDB"> 
      <parameter> 
        <name>driverClassName</name> 
        <value>org.gjt.mm.mysql.Driver</value> 
      </parameter> 
      <parameter> 
        <name>driverName</name> 
        <value>jdbc:mysql://localhost:3306/quoting</value> 
      </parameter> 
    </ResourceParams> 
 
</Context> 

 
Now that you've described the DataSource to the application server, you need to tell your 
application about it. You do this by adding a resource entry into your web.xml file. Listing 5-2 
shows what should go into this file (inside of your <web-app> tags). 
 
Listing 5-2: web.xml  
 
<resource-ref> 
  <description> 
    Resource reference to a factory for java.sql.Connection 
    instances that may be used for talking to a particular 
    database that is configured in the server.xml file. 
  </description> 
  <res-ref-name> 
    jdbc/QuotingDB 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



104 

  </res-ref-name> 
  <res-type> 
    javax.sql.DataSource 
  </res-type> 
  <res-auth> 
    SERVLET 
  </res-auth> 
</resource-ref> 

 
Finally, to use the DataSource, you need to replace any code that gets a database connection 
with the following piece of code (in this example's servlet you execute this code once inside of 
your init method): 

    try { 

      Context initCtx = new InitialContext(); 

      Context envCtx = (Context) initCtx.lookup("java:comp/env"); 

      DataSource ds = (DataSource) envCtx.lookup("jdbc/QuotingDB"); 

      dbCon = ds.getConnection(); 

    } 

    catch (javax.naming.NamingException e) { 

      System.out.println("A problem occurred retrieving a DataSource object"); 

      System.out.println(e.toString()); 

    } 

    catch (java.sql.SQLException e) { 

      System.out.println("A problem occurred connecting to the database."); 

      System.out.println(e.toString()); 

    } 

 

Defining the Model 
 
Before walking through the controller or the views, you need to define the model. The model is 
responsible for storing data that will be displayed by one or more views. Typically, a model 
exists as an Enterprise JavaBean (EJB) or simply a regular JavaBean. For this example, you'll 
just use a JavaBean. You might recall from Chapter 3 that you used a JavaBean to model the 
customer data. You'll reuse some of that and add a few additional methods to suit these 
purposes. 
 
Aside from removing some unnecessary code, you'll need to add two new methods to the 
CustomerBean you built back in Chapter 3. The first method you'll add is the 
populateFromParameters method. This method takes an HttpServletRequest object as a parameter. 
The method is responsible for reading the input fields from the request object and populating 
the bean properties with their values. Also, the user ID is pulled out of the user's session and 
stored in the bean for later use. The other new method you'll be adding to this bean is the 
submit method. This method takes a Connection object as a parameter and is responsible for 
updating the database with the stored data residing in the properties (fields) of the bean. 
Listing 5-3 shows the updated code for the CustomerBean. 
 
Listing 5-3: CustomerBean.java  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



105 

 

package jspbook.ch5; 

 

import java.util.*; 

import java.sql.*; 

import javax.servlet.http.*; 

 

public class CustomerBean implements java.io.Serializable { 

 

  /* Member Variables */ 

  private String lname, fname, sex; 

  private int age, children; 

  private boolean spouse, smoker; 

 

  /* Helper Variables */; 

  private String uid ; 

 

  /* Constructor */ 

  public CustomerBean() { 

    /* Initialize properties */ 

    setLname(""); 

    setFname(""); 

    setSex(""); 

    setAge(0); 

    setChildren(0); 

    setSpouse(false); 

    setSmoker(false); 

  } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



106 

  public void populateFromParms(HttpServletRequest _req) { 

    // Populate bean properties from request parameters 

    setLname(_req.getParameter("lname")); 

    setFname(_req.getParameter("fname")); 

    setSex(_req.getParameter("sex")); 

    setAge(Integer.parseInt(_req.getParameter("age"))); 

    setChildren(Integer.parseInt(_req.getParameter("children"))); 

    setSpouse((_req.getParameter("married").equals("Y")) ? true : false); 

    setSmoker((_req.getParameter("smoker").equals("Y")) ? true : false); 

    // Get session and populate uid 

    HttpSession session = _req.getSession(); 

    uid = (String)   session.getAttribute("uid"); 

  } 

 

  /* Accessor Methods */ 

 

  /* Last Name */ 

  public void setLname(String _lname) {lname = _lname;} 

  public String getLname() {return lname;} 

 

  /* First Name */ 

  public void setFname(String _fname) {fname = _fname;} 

  public String getFname() {return fname;} 

 

  /* Sex */ 

  public void setSex(String _sex) {sex = _sex;} 

  public String getSex() {return sex;} 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



107 

  /* Age */ 

  public void setAge(int _age) {age = _age;} 

  public int getAge() {return age;} 

 

  /* Number of Children */ 

  public void setChildren(int _children) {children = _children;} 

  public int getChildren() {return children;} 

 

  /* Spouse ? */ 

  public void setSpouse(boolean _spouse) {spouse = _spouse;} 

  public boolean getSpouse() {return spouse;} 

 

  /* Smoker ? */ 

  public void setSmoker(boolean _smoker) {smoker = _smoker;} 

  public boolean getSmoker() {return smoker;} 

public boolean submit(Connection _dbCon) { 

 

  Statement s = null; 

  ResultSet rs = null; 

  String custId = ""; 

  StringBuffer sql = new StringBuffer(256); 

 

  try { 

    // Check if customer exists (use uid to get custID) 

    s = _dbCon.createStatement(); 

    rs = s.executeQuery("select *  from user where id = '"+ uid + "'"); 

    if (rs.next()) { 

      custId = rs.getString("cust_id"); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



108 

    } 

 

    rs = s.executeQuery("select * from customer where id = "+ custId); 

    if (rs.next()) { 

      // Update record 

      sql.append("UPDATE customer SET "); 

      sql.append("lname='").append(lname).append("', "); 

      sql.append("fname='").append(fname).append("', "); 

      sql.append("age=").append(age).append(", "); 

      sql.append("sex='").append(sex).append("', "); 

      sql.append("married='").append((spouse) ? "Y" : "N").append("', "); 

      sql.append("children=").append(children).append(", "); 

      sql.append("smoker='").append((smoker) ? "Y" : "N").append("'"); 

      sql.append("where id='").append(custId).append("'"); 

    } 

    else { 

      // Insert record 

      sql.append("INSERT INTO customer VALUES("); 

      sql.append(custId).append(",'"); 

      sql.append(lname).append("', '"); 

      sql.append(fname).append("', "); 

      sql.append(age).append(", '"); 

      sql.append(sex).append("', '"); 

      sql.append((spouse) ? "Y" : "N").append("', "); 

      sql.append(children).append(", '"); 

      sql.append((smoker) ? "Y" : "N").append("')"); 

    } 

    s.executeUpdate(sql.toString()); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



109 

  } 

    catch (SQLException e) { 

      System.out.println("Error saving customer: " 

                             + custId + ": "+ e.toString()); 

      return false; 

    } 

    return true; 

  } 

 

} 

 

Setting the View 
 
The presentation logic of the application is stored in three JSP files. The first one, login.jsp, is 
accessible to the public, and the other two are only accessible from the controller servlet. The 
login page is a simple user and password entry screen that submits its data to the Main servlet. 
You'll notice that you add a parameter to the servlet called action. This tells the servlet what it 
needs to do. In this case, the action is login. If there's an error while attempting to log in, the 
servlet will add an attribute to the session indicating a problem and then return the user to the 
login page. Because of this, the login page checks the session for the appropriate attribute and 
displays corresponding error message if it finds it. Listing 5-4 shows the complete listing of the 
login page. 
 
Listing 5-4: login.jsp (\webapps\jspBook\ch5\login.jsp)  
 
<%@ page 
      errorPage="myError.jsp?from=login.jsp" 
%> 
 
<html> 
<head> 
  <title>Quoting System Login</title> 
</head> 
 
<body bgcolor="#FFFF99"> 
 
<%@ include file="myHeader.html" %> 
 
<form method="post" action="Main?action=login"> 
<p align="center"> 
  <font face="Arial, Helvetica, sans-serif" size="6" color="#003300"> 
    <b><i>Login to Quoting System</i></b> 
  </font> 
</p> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



110 

<p>&nbsp;</p> 
 
<% String loginError = (String) session.getAttribute("loginError"); 
   if (loginError != null && loginError.equals("y")) { 
%> 
<center> 
  <font color="#ff0000">Invalid login, please try again.</font> 
</center> 
<% } 
%> 
 
<table width="199" border="0" align="center" cellpadding="5"> 
  <tr> 
    <td> 
      <font face="Arial, Helvetica, sans-serif" size="2">User ID:</font> 
    </td> 
    <td><input type="text" name="UID"></td> 
  </tr> 
  <tr> 
    <td><font face="Arial, Helvetica, sans-serif" size="2">Password:</font></td> 
    <td><input type="password" name="PWD"></td> 
  </tr> 
  <tr align="center"> 
     <td colspan="2"><input type="submit" name="Submit" value="Login"></td> 
  </tr> 
</table> 
 
</form> 
 
<%@ include file="myFooter.html" %> 
 
</body> 
</html> 

 
Figure 5-6 shows the login page. 

 
Figure 5-6: Login page  
 
The survey page (census.jsp) collects data from the user and submits it to the Main servlet. The 
action parameter is set to submit to indicate to the servlet that you want to submit data to the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



111 

database. This page is a good example of one that needs to be enhanced to include field 
validation and error handling. You'll do this in future chapters as you explore other presentation 
patterns. See Listing 5-5 for the complete code of the simple data collection page. 
 
Listing 5-5: census.jsp (\WEB-INF\jsp\ch5\census.jsp)  
 

<!--JSP Directives --> 
<%@ page 
      errorPage="myError.jsp?from=census.jsp" 
%> 
 
<html> 
<head> 
  <title>Insurance Quoting System</title> 
</head> 
 
<body bgcolor="#FFFF99"> 
 
<basefont face="Arial"> 
 
<%@ include file="/ch5/myHeader.html" %> 
 
<form action="Main?action=submit" method="post"> 
 
<br><br> 
 
<% String submitError = (String) session.getAttribute("submitError"); 
   if (submitError != null && submitError.equals("y")) { 
%> 
<center> 
  <font color="#ff0000">Error recording survey data, please try again.</font> 
</center> 
<br><br> 
<%  } 
%> 
 
<center><b>Enter personal information:</b></center> 
<br><br> 
<table cellspacing="2" cellpadding="2" border="0" align="center"> 
<tr> 
    <td align="right">First Name:</td> 
    <td><input type="Text" name="fname" size="10"></td> 
</tr> 
<tr> 
    <td align="right">Last Name:</td> 
    <td><input type="Text" name="lname" size="10"></td> 
</tr> 
<tr> 
    <td align="right">Age:</td> 
    <td><input type="Text" name="age" size="2"></td> 
</tr> 
<tr> 
    <td align="right">Sex:</td> 
    <td> 
      <input type="radio" name="sex" value="M" checked>Male</input> 
      <input type="radio" name="sex" value="F">Female</input> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



112 

    </td> 
</tr> 
<tr> 
    <td align="right">Married:</td> 
    <td><input type="Text" name="married" size="2"></td> 
</tr> 
<tr> 
    <td align="right">Children:</td> 
    <td><input type="Text" name="children" size="2"></td> 
</tr> 
<tr> 
    <td align="right">Smoker:</td> 
    <td><input type="Text" name="smoker" size="2"></td> 
</tr> 
<tr> 
    <td colspan="2" align="center"><input type="Submit" value="Submit"></td> 
</tr> 
</table> 
 
<br><br> 
 
</form> 
<%@ include file="/ch5/myFooter.html" %> 
 
</body> 
</html> 

 
Figure 5-7 shows the survey page. 

 
Figure 5-7: Survey page  
Finally, once the data has been submitted, the request is forwarded to a confirmation page 
(thankyou.jsp). This is a simple page confirming that the data has been accepted. If there were 
an error trying to submit the data, control would return to the survey page (census.jsp) and an 
error message would appear at the top (similar to what you did with the login page). See 
Listing 5-6 for the confirmation page. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



113 

 
Listing 5-6: thankyou.jsp (\WEB-INF\jsp\ch5\thankyou.jsp)  
 
 
<!-- JSP Directives --> 
<%@ page 
       errorPage="myError.jsp?from=thankyou.jsp" 
%> 
 
<html> 
<head> 
   <title>Insurance Quoting System</title> 
</head> 
 
<body bgcolor="#FFFF99"> 
 
<basefont face="Arial"> 
 
<%@ include file="/ch5/myHeader.html" %> 
 
<br><br> 
 
<center> 
Your survey answers have been recorded. 
Thank you for participating in this survey. 
</center> 
 
<br><br> 
 
<%@ include file="/ch5/myFooter.html" %> 
 
</body> 
</html> 

 
 
See Figure 5-8 for the confirmation page that's displayed upon successfully recording the 
survey data. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



114 

 
Figure 5-8: Confirmation page  

Building the Controller 
 
You'll be using a servlet as your controller (Main). To make this accessible, add the following 
entry to your web.xml file (inside of the <web-app> tags): 

    <servlet> 

        <servlet-name> 

            Main 

        </servlet-name> 

        <servlet-class> 

            jspbook.ch5.Main 

        </servlet-class> 

    </servlet> 

    <servlet-mapping> 

        <servlet-name> 

            Main 

        </servlet-name> 

        <url-pattern> 

            /ch5/Main 

        </url-pattern> 

    </servlet-mapping> 

 
The init method obtains your database connection using the DataSource you created earlier. 
This database connection is closed in the destroy method at the end of the servlet's lifecycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



115 

Each request is serviced by the doPost method. Inside of there, the action is determined by 
checking the parameter action. The first time through, the login action directs the servlet to the 
authenticate method. If the login is successful, the user is taken to the census.jsp page. 
 
The important thing to point out is that all security, database connectivity, and navi gational 
control is centralized inside of this one servlet. You reuse code in several places. For instance, 
the navigational code goes into the gotoPage method. If you need to change this functionality, 
you only need to do it in one place. You'll see as you explore other patterns how useful this 
architecture really is. The goal of this example is simply to illustrate the basic idea of an MVC 
pattern. See Listing 5-7 for the controller servlet. 
 
Listing 5-7: Main.java  
 

package jspbook.ch5; 

 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

import java.sql.*; 

import javax.naming.*; 

import javax.sql.*; 

 

import jspbook.ch5.CustomerB ean; 

 

public class Main extends HttpServlet { 

 

 

  DataSource ds; 

  HttpSession session; 

 

  /* Initialize servlet. Use JNDI to look up a DataSource */ 

 

  public void init() { 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



116 

    try { 

      Context initCtx = new InitialContext(); 

      Context envCtx = (Context) initCtx.lookup("java:comp/env"); 

      ds = (DataSource) envCtx.lookup("jdbc/QuotingDB"); 

    } 

    catch (javax.naming.NamingException e) { 

      System.out.println( 

        "A problem occurred while retrieving a DataSource object"); 

      System.out.println(e.toString()); 

    } 

 

} 

 

public void doPost (HttpServletRequest _req, HttpServletResponse _res) 

  throws ServletException, IOException { 

 

  /* Refresh session attributes */ 

  session = _req.getSession(); 

  session.removeAttribute("loginError"); 

  session.removeAttribute("submitError"); 

 

  String action = _req.getParameter("action"); 

 

  /* Authenticate user if request comes from login page */ 

  if (action.equals("login")) { 

    String uid = _req.getParameter("UID"); 

    String pwd = _req.getParameter("PWD"); 

    if (authenticate(uid, pwd)) { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



117 

      session.setAttribute("validUser", "y"); 

      session.setAttribute("loginError", "n"); 

      session.setAttribute("uid", uid); 

      gotoPage("/WEB-INF/jsp/ch5/census.jsp", _req, _res); 

    } 

    /* If the user login fails, then return them to the login page to retry */ 

    else { 

      loginError(_req, _res); 

    } 

  } 

 

  /* Record the survey data if the request comes from the survey form */ 

  else if (action.equals("submit")) { 

    /* Make sure the user has logged in before recording the data */ 

    String validUser = (String) session.getAttribute("validUser"); 

    if (validUser.equals("y")) { 

      if (recordSurvey(_req)) { 

        /* Reset validUser flag and forward to ThankYou page */ 

        session.removeAttribute("validUser"); 

        gotoPage("/WEB-INF/jsp/ch5/thankyou.jsp", _req, _res); 

      } 

      else { 

        session.setAttribute("submitError", "y"); 

        gotoPage("/ch5/login.jsp", _req, _res); 

      } 

    } 

    /* If the user did not login, then send them to the login page */ 

    else { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



118 

      loginError(_req, _res); 

    } 

  } 

 

} 

 

/* Send request to a different page */ 

private void gotoPage(String _page, HttpServletRequest _req, 

  HttpServletResponse _res) 

  throws IOException, ServletException { 

 

  RequestDispatcher dispatcher = _req.getRequestDispatcher(_page); 

  if (dispatcher != null) 

     dispatcher.forward(_req, _res); 

 

} 

 

/* Set error attributes in session and return to Login page */ 

private void loginError(HttpServletRequest _req, HttpServletResponse _res) 

  throws IOException, ServletException { 

 

  session.setAttribute("validUser", "n"); 

  session.setAttribute("loginError", "y"); 

  gotoPage("/ch5/login.jsp", _req, _res); 

 

} 

 

/* Check if the user is valid */ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



119 

private boolean authenticate(String _uid, String _pwd) { 

 

  Connection dbCon = null; 

  ResultSet rs = null; 

  try { 

     dbCon = ds.getConnection(); 

     Statement s = dbCon.createStatement(); 

     rs = s.executeQuery("select * from user where id = '" 

             + _uid + "' and pwd = '"+ _pwd + "'"); 

    return (rs.next()); 

  } 

  catch (java.sql.SQLException e) { 

    System.out.println("A problem occurred while accessing the database."); 

    System.out.println(e.toString()); 

  } 

  finally { 

    try { 

      dbCon.close(); 

    } 

    catch (SQLException e) { 

      System.out.println("A problem occurred while closing the database."); 

      System.out.println(e.toString()); 

    } 

  } 

 

  return false; 

 

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



120 

 

/* Using the CustomerBean, record the data */ 

public boolean recordSurvey(HttpServletRequest _req) { 

 

  Connection dbCon = null; 

  try { 

    dbCon = ds.getConnection(); 

    CustomerBean cBean = new CustomerBean(); 

    cBean.populateFromParms(_req); 

    return cBean.submit(dbCon); 

  } 

  catch (java.sql.SQLException e) { 

    System.out.println("A problem occurred while accessing the database."); 

    System.out.println(e.toString()); 

  } 

  finally { 

    try { 

      dbCon.close(); 

    } 

    catch (SQLException e) { 

      System.out.println("A problem occurred while closing the database."); 

      System.out.println(e.toString()); 

    } 

  } 

    return false; 

 

  } 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



121 

 

  public void destroy() { 

  } 

} 

 
Summary 
 
This chapter introduced you to the idea of using patterns to design your applications. Patterns 
are industry-wide best practices that have been tested and proven by many different 
developers. The J2EE Patterns Catalog contains several design patterns for enterprise Java 
development. This book covers four specific presentation-tier patterns that help to describe 
several best practices for JSP development. 

Each of these patterns assumes an MVC architecture, which organizes your web application 
into three logical pieces. The model stores the application data, the view displays the 
application data, and the controller manages requests and handles navigation through the 
application. The next few chapters will explore J2EE patterns that extend each of these areas 
and applies strategies to maximize the efficiency of developing MVC-based web applications. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



122 

Chapter 6: The Decorating Filter Pattern 

Overview 

 
The first pattern I'll discuss in this book enables you to manipulate the HTTP request and 
response objects both before and after they're processed by either a Java servlet or a JSP 
page. This gives you a great amount of flexibility to customize a base application without 
requiring modifications to the application code itself. For instance, let's say you have two 
different applications, each with their own security model. You'd like to avoid making users log 
in to both systems and maintain multiple login IDs. Although there are many complicated 
solutions to this problem, filters provide a way to intercept each request and perform the 
necessary security negotiation between the different systems (see Figure 6-1). 
 

 
Figure 6-1: Using filters for integrated security  

This chapter will show you how to create filters and some useful ways to apply them to your 
JSP and servlet development projects. I'll start each of the pattern chapters with a general 
definition of the pattern itself. 

 
For more detailed pattern definitions, please refer to the J2EE Patterns Catalog at the Java 
Developer Connection  
(http://developer.java.sun.com/developer/technicalArticles/J2EE/patterns/). 

 

Next, I'll discuss various strategies for applying the pattern. Finally, you'll apply these strategies 
to some common functionality you'd like to build into aweb application. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



123 

Defining the Pattern 
 
The Decorating Filter pattern (also referred to as the Intercepting Filter pattern) involves setting 
up a series of filters that intercept an HTTP request (or an HTTP response), perform a series of 
operations on the object, and then pass it along to its intended target. This allows for pre-
processing and post-processing of the request and response objects without affecting the core 
application. Here are some potential uses for filters: 
 
§ Log important information about each request 
§ Authenticate users 
§ Transform input data prior to processing 
§ Transform response data for a specific device 
§ Validate form data and interrupt processing if necessary 

 
The general idea behind using filters is that the request passes through a filter manager. This 
filter manager would associate the request with a specific filter chain and pass the request to 
the first filter in the chain. Each filter would perform its processing and pass the request on to 
the next filter in the chain. This would continue until the last filter in the chain is finished 
processing the request (see Figure 6-2). The filtered request is then forwarded onto its 
intended target. 
 

 
Figure 6-2: Using filters to pre-process a request 
 
Applying Strategies 

There are two main strategies for applying the Decorating Filter pattern. The first strategy is to 
develop a custom filter manager and individual filters. The second strategy is to make use of 
the filtering capabilities built into the 2.3 version of the Java Servlet API. It's pretty obvious that 
you should use the standard filtering whenever possible, but there may however be a situation 
where a custom filtering mechanism is necessary. For instance, your application may need to 
run in an environment that doesn't support the 2.3 servlet API. 

Developing a Custom Filter Strategy 
 
To implement your own filtering mechanism, you could wrap the core request processing logic 
with any number of custom filters. These filters would each execute in turn before finally 
executing the core processing code. Once this filter chain has been completed, the servlet 
controller would then dispatch the request to the appropriate view. Custom filters are simply 
Java classes that make up a sort of linked list. Each filter executes the processing logic of the 
next filter until each filter in the chain has been executed (see Figure 6-3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



124 

 
Figure 6-3: Custom filter strategy  

The problem with using a custom filter strategy is that it must be hard-coded into the servlet 
controller. This means you must make any changes to the filter chain inside the servlet and 
then recompile it. Another disadvantage to this approach is that you can't modify the request 
and response objects within the filters because they'll be dispatched upon completion. 
Although it may sometimes be necessary to build custom filters, the preferred approach is to 
use a standard filter strategy, as discussed in the following section. 

Using a Standard Filter Strategy 
 
It would be nice to be able to declaratively add and remove filters from a filter chain and then 
associate the filter chain with a specific URL pattern. With the release of version 2.3 of the 
servlet API, it's now possible to create standard filters and then declare and associate them 
inside of the web.xml file. Generically speaking, though, the standard filter strategy involves 
invoking a filter manager with each request, which in turn would invoke each of the filters 
associated with the request URL pattern (see Figure 6-4). Each filter would be a completely 
autonomous "black box" capable of receiving standard request and response objects, 
processing them, and returning control to the filter manager. The filter manager would then 
invoke the next filter in the chain. This would continue until the end of the filter chain is reached 
and the request is passed on to its intended target. 
 

 
Figure 6-4: Standard filter strategy  

A key advantage to using a standard filter mechanism is that you can add and remove 
modifiers to the HTTP Request and Response without affecting the application code. It also 
makes it possible to modify the request object as well as the output stream because it happens 
outside of the servlet controller. Next, you'll see exactly how to implement a standard filter 
chain using the filtering mechanism built in to the Tomcat 4.0 servlet container (and therefore 
any J2EE application server supporting the 2.3 version of the servlet API). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



125 

 
Applying the Decorating Filter Pattern 
 
The servlet API includes a standard mechanism for applying the standard filter strategy. 
Therefore, any application server (or servlet container) that supports the 2.3 version of the 
servlet API has this mechanism already built in. To use filters with your application, simply 
create the filter classes, declare them in your web.xml file, and map them to a specific URL or 
URL pattern (see Figure 6-5). 
 

 
Figure 6-5: Filtering with J2EE  

Creating the Filter Class 
 
All filters are Java classes that implement the javax.servlet.Filter interface. This interface 
defines the following three methods that must be implemented: 
 
§ void init(FilterConfig) throws ServletException: Called when the filter is first 

put into service. The important thing that happens is that the FilterConfig is 
copied locally within the filter. 

§ void doFilter(ServletRequest, ServletResponse, FilterChain) throws 
IOException, ServletException: This method is the equivalent of a doPost or 
doGet in a servlet. Whenever the filter is executed, the doFilter method is called. 
Upon completion of any filter-specific processing, a call to the doFilter method of 
the FilterChain object will continue processing any remaining filters. 

§ void destroy(): Called just before the filter is taken out of service. This is where 
any cleanup tasks would be performed. 

 

It's important to point out that a Java filter operates on Servlet objects and not HTTPServlet 
objects. Remember that, although uncommon, a servlet can exist in a non-HTTP environment. 
With that in mind, to use the request or response objects, they must be cast to their HTTP 
equivalents like so: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



126 

if (request instanceOf HttpServletRequest) { 

   HttpServletRequest httpReq = (HttpServletRequest) request; 

} 

Here's a basic template of a Java filter object: 

import java.io.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

 

public class TestFilter implements Filter { 

 

  private FilterConfig config = null; 

 

  public void init(FilterConfig _config) 

    throws ServletException 

  { 

    this.config = _config; 

    // Perform initialization tasks here 

  } 

 

  public void doFilter(ServletRequest _req, ServletResponse _res, 

    FilterChain _chain) throws IOException, ServletException 

  { 

    HttpServletRequest httpReq; 

 

    // Cast request object to HttpServletRequest 

    if (_req instanceof HttpServletRequest) { 

      httpReq = (HttpServletRequest) _req; 

    } 

 

    // Perform filter-specific processing here 

 

    // Continue with filter chain 

    _chain.doFilter(_req, _res); 

  } 

 

  public void destroy() 

  { 

    config = null; 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



127 

    // Perform any cleanup tasks here 

  } 

 

} 

Declaring the Filter 
 
The first thing you need to do to add a filter to your web application is declare it inside of the 
web.xml file. Inside of the <web-app> tag, add a <filter> tag to describe your filter. This will simply 
associate a common name with the filter class you've written. This name will be used later to 
map the filter to a specific URL pattern. Inside of the <filter> tag, add a <filter-name> and a 
<filter-class> element like this: 
 

<filter> 

  <filter-name>sampleFilter</filter-name> 

  <filter-class>jspbook.filters.SampleFilter</filter-name> 

</filter> 

Mapping the Filter to a URL 
 
Now that you have a filter declared, the next thing you need to do is associate the filter with a 
specific resource. You do this by adding a <filter-mapping> tag inside of the <web-app> tag in 
your web.xml file. You can map a filter to either a URL pattern or a specific servlet. Here's an 
example of each type of mapping: 
 

<filter-mapping> 

  <filter-name>sampleFilter</filter-name> 

  <url-pattern>/*</url-pattern> 

</filter-mapping> 

 

<filter-mapping> 

  <filter-name>testFilter</filter-name> 

  <servlet-name>MainServlet</servlet-name> 

</filter-mapping> 

Using Filters to Log HTTP Requests 
 
There have been many times in the past when I needed to examine the HTTP request and 
response objects as they pass back and forth with each request. For instance, while I was 
debugging a problem the browser was having while trying to render a dynamically generated 
PDF document, I needed to obtain an HTTP sniffer to examine the contents and headers of the 
response object. Although this solution worked, it required locating the software, setting it up, 
and modifying my application to use this sniffer as a proxy server. It would have been much 
easier if I had been able to create a simple filter that dumped out the contents of the HTTP 
response without having to install and use a third-party application to do so. 
You're going to build a simple filter that logs the HTTP parameters before they reach their 
intended target. The example will extend this to display the contents of the HTTP response, as 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



128 

well. Here's what the output of this filter might look like after you log in to an application and 
then submit some form data (from the example in Chapter 5): 
 

HTTP Request: Wed Oct 24 11:00:20 CDT 2001: 

 

Remote Address: 127.0.0.1 

Remote Host: 127.0.0.1 

 

UID = apatzer 

PWD = apress 

Submit = Login 

action = login 

 

HTTP Request: Wed Oct 24 11:00:32 CDT 2001: 

 

Remote Address: 127.0.0.1 

Remote Host: 127.0.0.1 

 

age = 30 

lname = Patzer 

children = 2 

married = Y 

sex = M 

action = submit 

smoker = N 

fname = Andrew 

 
To implement this filter, you need to declare it and then map it to a URL pattern. In this case, 
just map it to every request for your particular web application (jspBook). Listing 6-1 shows the 
updated web.xml file that describes and maps the RequestLoggingFilter. 
 
Listing 6-1: web.xml  
 
<?xml version="1.0" encoding="ISO-8859-1"?> 
 
<!DOCTYPE web-app 
    PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" 
    "http://java.sun.com/dtd/web-app_2_3.dtd"> 
<web-app> 
 
  <!-- Define filters --> 
  <filter> 
    <filter-name>requestLoggingFilter</filter-name> 
    <filter-class>jspbook.ch6.RequestLoggingFilter</filter-class> 
  </filter> 
  <filter-mapping> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



129 

    <filter-name>requestLoggingFilter</filter-name> 
    <url-pattern>/*</url-pattern> 
  </filter-mapping> 
 
  <!-- Servlet mappings --> 
  <servlet> 
    <servlet-name> 
      Main 
    </servlet-name> 
    <servlet-class> 
      jspbook.ch5.Main 
    </servlet-class> 
  </servlet> 
  <servlet-mapping> 
    <servlet-name> 
      Main 
    </servlet-name> 
    <url-pattern> 
      /ch5/Main 
    </url-pattern> 
  </servlet-mapping> 
 
  <!-- Describe a DataSource --> 
  <resource-ref> 
    <description> 
      Resource reference to a factory for java.sql.Connection 
      instances that may be used for talking to a particular 
      database that is configured in the server.xml file. 
    </description> 
    <res-ref-name> 
      jdbc/QuotingDB 
    </res-ref-name> 
    <res-type> 
      javax.sql.DataSource 
    </res-type> 
    <res-auth> 
      SERVLET 
    </res-auth> 
  </resource-ref> 
 
</web-app> 

 
To write a filter class, you need to implement the javax.servlet.Filter interface. You then need 
to implement the init, destroy, and doFilter methods. This filter will first open up a log file with 
a unique timestamp in the filename. You do this in the init method so the file can remain open 
as long as the filter remains in service. You make the file accessible to the rest of the filter by 
declaring the FileOutputStream at the class level, rather than inside the init method. 

  private FileOutputStream fos; 

 

  public void init(FilterConfig _config) 

    throws ServletException 

  { 

    this.config = _config; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



130 

    try { 

      /* Timestamp log file */ 

      File f = new File("c:\\development\\tomcat_" 

        + new Date().getTime() + ".log"); 

      fos = new FileOutputStream(f); 

    } 

    catch (FileNotFoundException e) { 

      System.out.println("Error opening log file."); 

      System.out.println(e.toString()); 

    } 

  } 
This file is eventually closed in the destroy method by closing the FileOutputStream object. 
Inside of the doFilter method, which executes on each request, the ServletRequest object is 
cast to an HttpServletRequest object and passed to a custom method to assemble a log entry 
containing the HTTP parameters included inside of the request. After the log file is written to, 
the doFilter method of the FilterChain is executed to continue processing any remaining filters. 

  public void doFilter(Servl etRequest _req, ServletResponse _res, 

    FilterChain _chain) throws IOException, ServletException 

  { 

    /* Log HTTP form parameters */ 

    if (_req instanceof HttpServletRequest) { 

      String log = getParms((HttpServletRequest)_req); 

      fos.write(log.getBytes()); 

    } 

 

    /* Continue with filter chain */ 

    _chain.doFilter(_req, _res); 

  } 
For a complete listing of the RequestLoggingFilter class, see Listing 6-2. 
 

Listing 6-2: RequestLoggingFilter.java  

 

package jspbook.ch6; 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



131 

 

public class RequestLoggingFilter implements Filter { 

 

  private FilterConfig config = null; 

  private FileOutputStream fos; 

 

  public void init(FilterConfig _config) 

    throws ServletException 

  { 

    this.config = _config; 

    try { 

      /* Timestamp log file */ 

      File f = new File("c:\\development\\tomcat_" 

        + new Date().getTime() + ".log"); 

      fos = new FileOutputStream(f); 

    } 

    catch (FileNotFoundException e) { 

      System.out.println("Error opening log file."); 

      System.out.println(e.toString()); 

    } 

  } 

  public void doFilter(ServletRequest _req, ServletResponse _res, 

    FilterChain _chain) throws IOException, ServletException 

  { 

    /* Log HTTP form parameters */ 

    if (_req instanceof HttpServletRequest) { 

      String log = getParms((HttpServletRequest)_req); 

      fos.write(log.getBytes()); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



132 

    } 

 

    /* Continue with filter chain */ 

    _chain.doFilter(_req, _res); 

  } 

 

  public void destroy() 

  { 

    config = null; 

    try { 

      fos.close(); 

    } 

    catch (IOException e) { 

      System.out.println("Error closing log file."); 

      System.out.println(e.toString()); 

    } 

  } 

 

  private String getParms(HttpServletRequest _req) 

    throws ServletException 

  { 

    StringBuffer log = new StringBuffer(); 

 

    /* Get Http Parms */ 

    log.append("HTTP Request: "); 

    log.append(new Date()); 

    log.append(":\n\n"); 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



133 

    log.append("Remote Address: "+ _req.getRemoteAddr() + "\n"); 

    log.append("Remote Host: "+ _req.getRemoteHost() + "\n\n"); 

 

    Enumeration e = _req.getParameterNames(); 

    while (e.hasMoreElements()) { 

      String key = (String)e.nextElement(); 

      String[] values = _req.getParameterValues(key); 

      log.append(key + "= "); 
      for(int i = 0; i < values.length; i++) { 
          log.append(values[i] + ""); 
      } 
      log.append("\n"); 
    } 
 
    return log.toString(); 
  } 
 
} 
 

Using Filters to Log HTTP Responses 
 
Filters can also be useful for manipulating content after it has been generated, just before it 
has been rendered by the browser. To illustrate this, you're going to modify the previous 
example to write the response content, rather than the request parameters, to your log file. To 
manipulate the HTTP response, the response object is first wrapped inside of a custom 
wrapper object, the doFilter method is called with the wrapped response rather than the 
original response, and finally the response content is obtained and manipulated as necessary 
(see Figure 6-6). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



134 

 
Figure 6-6: Manipulating response content  
 
The reason you wrap the response object is that you need to store the response output and be 
able to reference it locally within your filter. The servlet API gives you a standard wrapper to 
extend called HttpServletResponseWrapper. To make use of it, you extend it and override the 
getWriter and getOutputStream methods to return references to local objects within the filter. The 
writer and stream you return are enclosed within a custom class called ByteArrayPrintWriter 
(see Listing 6-2). Here's how you wrap the response inside of the doFilter method: 
 

    final ByteArrayPrintWriter b = new ByteArrayPrintWriter(); 

    final HttpServletResponse HttpResp = (HttpServletResponse) _res; 

    HttpServletResponse wrappedRes = new HttpServletResponseWrapper(HttpResp) { 

      public PrintWriter getWriter() { 

        return b.getWriter(); 

      } 

      public ServletOutputStream getOutputStream() { 

        return b.getStream(); 

      } 

      public void setContentType(String type) { 

        HttpResp.setContentType(type); 

      } 

    }; 

 

    /* Continue Processing */ 

    _chain.doFilter(_req, wrappedRes); 

 

 
The remainder of the doFilter method retrieves the contents as a String object, writes it to the 
log file, and continues to write the content to the original response object. This is necessary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



135 

because you passed a wrapped object through the filter chain rather than the original response. 
Here's the code that executes after the filter chain returns from its processing: 
 

    /* Log the response content */ 

    StringBuffer log = new StringBuffer(); 

    log.append("*** HTTP Response: ").append(new Date()).append("***\n\n"); 

    String output = b.getStream().toString(); 

    log.append(output).append("\n\n"); 

    fos.write(log.toString().getBytes()); 

 

    /* Write content to browser */ 

    _res.setContentLength(output.length()); 

    _res.getWriter().print(output); 

    _res.getWriter().close(); 

 
To deploy this filter, add the appropriate entries to your web.xml file like you did in the previous 
example (just replace RequestLoggingFilter with ResponseLoggingFilter). For a complete listing of 
the filter code see Listing 6-3. 
 
Listing 6-3: ResponseLoggingFilter.java  

package jspbook.ch6; 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

 

public class ResponseLoggingFilter implements Filter { 

 

  private FilterConfig config = null; 

  private FileOutputStream fos; 

 

  private static class ByteArrayServletStream extends ServletOutputStream 

  { 

    ByteArrayOutputStream baos; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



136 

    ByteArrayServletStream(ByteArrayOutputStream baos) { 

      this.baos = baos; 

    } 

    public void write(int param) throws java.io.IOException { 

      baos.write(param); 

    } 

    public String toString() { 

      return baos.toString(); 

    } 

  } 

 

  private static class ByteArrayPrintWriter 

  { 

    private ByteArrayOutputStream baos = new ByteArrayOutputStream(); 

    private PrintWriter pw = new PrintWriter(baos); 

    private ServletOutputStream sos = new ByteArrayServletStream(baos); 

 

    public PrintWriter getWriter() { 

      return pw; 

    } 

    public ServletOutputStream getStream() { 

      return sos; 

    } 

    byte[] toByteArray() { 

      return baos.toByteArray(); 

    } 

  } 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



137 

  public void init(FilterConfig _config) 

    throws ServletException 

  { 

    this.config = _config; 

    try { 

      /* Timestamp log file */ 

      File f = new File("c:\\development\\tomcat_" 

        + new Date().getTime() + ".log"); 

      fos = new FileOutputStream(f); 

    }\ 

    catch (FileNotFoundException e) { 

      System.out.println("Error opening log file."); 

      System.out.println(e.toString()); 

    } 

  } 

 

  public void doFilter(ServletRequest _req, ServletResponse _res, 

    FilterChain _chain) throws IOException, ServletException 

  { 

 

    /* Wrap the response object */ 

    final ByteArrayPrintWriter b = new ByteArrayPrintWriter(); 

    final HttpServletResponse HttpResp = (HttpServletResponse) _res; 

    HttpServletResponse wrappedRes = new HttpServletResponseWrapper(HttpResp) { 

      public PrintWriter getWriter() { 

        return b.getWriter(); 

      } 

      public ServletOutputStream getOutputStream() { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



138 

        return b.getStream(); 

      } 

      public void setContentType(String type) { 

        HttpResp.setContentType(type); 

      } 

    }; 

    /* Continue Processing */ 

    _chain.doFilter(_req, wrappedRes); 

 

    /* Log the response content */ 

    StringBuffer log = new StringBuffer(); 

    log.append("*** HTTP Response: ").append(new Date()).append("***\n\n"); 

    String output = b.getStream().toString(); 

    log.append(output).append("\n\n"); 

    fos.write(log.toString().getBytes()); 

 

    /* Write content to browser */ 

    _res.setContentLength(output.length()); 

    _res.getWriter().print(output); 

    _res.getWriter().close(); 

  } 

 

  public void destroy() 

  { 

    config = null; 

    try { 

      fos.close(); 

    } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



139 

    catch (IOException e) { 

      System.out.println("Error closing log file."); 

      System.out.println(e.toString()); 

    } 

  } 

 

} 
 
Using the RequestLoggingFilter and the ResponseLoggingFilter, each and every HTTP request 
made to the server is written to a log file. Each response is written to a different log file. To see 
this in action, open up the MVC example from Chapter 5. Access the login.jsp page and enter 
a valid username and password. Enter a set of data into the next page (see Figure 6-7 for an 
example). Click the submit button to complete the survey. 
 

 
Figure 6-7: Entering form data to test filters  
 
The previous set of actions produced three HTTP requests. The first request was to display the 
login.jsp page. The second request was to submit the login data and display the survey form. 
The final request was to submit the survey data and display a confirmation page. Listing 6-4 
shows the log file for the request filter. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



140 

 

Listing 6-4: Log File for Request Filter  

 

HTTP Request: Mon Feb 25 20:37:45 CST 2002: 

 

Remote Address: 127.0.0.1 

Remote Host: localhost 

 

HTTP Request: Mon Feb 25 20:37:53 CST 2002: 

 

Remote Address: 127.0.0.1 

Remote Host: localhost 

 

UID = apatzer 

PWD = apress 

Submit = Login 

action = login 

HTTP Request: Mon Feb 25 20:40:54 CST 2002: 

 

Remote Address: 127.0.0.1 

Remote Host: localhost 

 

age = 39 

lname = Glyzewski 

children = 2 

married = Y 

sex = M 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



141 

action = submit 

smoker = N 

fname = Dave 
 
The ResponseLoggingFilter logged three separate responses to go along with the three requests 
logged by the RequestLoggingFilter. The first response generated was the HTML to display the 
login page. The second response was the HTML to display the survey form. The final response 
was the HTML to display the confirmation page. Listing 6-5 shows an abbreviated log file 
containing these three responses. 
 
Listing 6-5: Abbreviated Log File for Response Filter  
 

*** HTTP Response: Mon Feb 25 20:37:44 CST 2002*** 

 
<html> 
<head> 
    <title>Quoting System Login</title> 
</head> 
 
<body bgcolor="#FFFF99"> 
 
==> HTML code to display login page (omitted) 
 
</body> 
</html> 
 
*** HTTP Response: Mon Feb 25 20:37:55 CST 2002*** 
 
<!-- JSP Directives --> 
 
<html> 
<head> 
    <title>Insurance Quoting System</title> 
</head> 
<body bgcolor="#FFFF99"> 
 
==> HTML code to display survey page (omitted) 
 
</body> 
</html> 
 
 
*** HTTP Response: Mon Feb 25 20:40:55 CST 2002*** 
 
<!-- JSP Directives --> 
 
<html> 
<head> 
    <title>Insurance Quoting System</title> 
</head> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



142 

<body bgcolor="#FFFF99"> 
 
==> HTML code to display confirmation page (omitted) 
 
</body> 
</html> 

 

Summary 
 
This chapter showed a great way to perform pre-processing and post-processing of an HTTP 
request and response using the Decorating Filter pattern from the J2EE Patterns Catalog. 
Fortunately, the servlet API provides a standard filtering mechanism that enables you to create 
filters and declaratively add and remove them from filter chains associated with specific URL 
patterns. As you learn about the remaining presentation patterns, you'll begin to see how filters 
can play a big part in the design of your web applications. In the last section of this book, you'll 
use filters again as you put everything together into a web application framework. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



143 

Chapter 7: The Front Controller Pattern 
 
Back in CHAPTER 5, I introduced the idea of a Model-View-Controller (MVC) architecture. This 
chapter will take that a few steps further as I introduce the various ways to centralize 
processing within your web applications. As with the last chapter, I'll start by defining the 
pattern, then move to the various strategies for implementing the pattern, and finish with some 
concrete examples of the pattern in use. This chapter's goal is to build a solid request-handling 
framework using the Front Controller pattern. 

Defining the Pattern 

Most web applications begin as a simple set of pages performing simple data collection and 
reporting functionality. One page performs some processing and then displays the next page. 
This page performs some more processing and then displays another page with some kind of 
results. Each page contains the necessary security authorization, request handling code, 
business logic, presentation logic, and navigation code. Much of this code is duplicated across 
each page, but for a simple application that will never change, this shouldn't be a problem, right? 
Unfortunately, these simple applications will typically evolve into fairly sophisticated systems 
that the business relies upon heavily. The result of this is either a set of JSP pages, or Java 
servlets, with navigational logic hard-coded inside each page, duplicate code embedded within 
each page, and no easy way to integrate other services into the application. 

 
The Front Controller pattern defines how to implement an MVC pattern within your applications 
using JSP pages and Java servlets. Perhaps even more important, the Front Controller pattern 
encourages a standard framework for handling requests. This will allow for the easier 
integration of new functionality as the application grows beyond its original scope. The Front 
Controller pattern consists of a central controller, either a servlet or JSP, that serves as a 
single point of entry into your application (see Figure 7-1). This controller can manage shared 
resources such as database connections and HTTP sessions. It also can handle code that's 
typically executed across multiple requests such as user authentication. Another benefit of 
defining a single point of entry is that you can plug in common services as filters in a filter chain 
as described in the last chapter. 
 

 
Figure 7-1: The Front Controller pattern 
 
Developing Strategies 

The Front Controller pattern by itself is nothing more than the MVC pattern applied to JSP 
pages and servlets. The real fun exists in the various strategies used to build a solid request-
handling framework within the Front Controller pattern. Once this framework is built, not only 
does it make your current application more efficient and extensible, but it can also be reused 
on other applications. Remember, the point of using design patterns is to give you a jumpstart 
on development. A reusable request-handling framework can be a proven piece of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



144 

application that does not require further testing and modification, enabling you to focus your 
efforts on application-specific code rather than figuring out how to handle incoming requests 
and route them appropriately. 

A good request-handling framework defines a standard path for the request to follow as it 
moves through the application. For these purposes, I'll define the lifecycle of a request to 
consist of the following: 

 
§ The user issues a request to the application controller (servlet or JSP page). 
§ The request is parsed into form parameters. 
§ The request is authenticated. 
§ The request action is mapped to a specific resource. 
§ A command object is built to process the request. 
§ The request is forwarded to the appropriate page. 
§ The output of the request action is displayed to the user. 

 
This lifecycle provides a good basis for defining the framework. There are several strategies for 
implementing the Front Controller pattern that address each step in this lifecycle. This chapter's 
goal is to use these strategies to build a solid request-handling framework that can be reused 
across projects. You'll build upon each strategy until you arrive at the final framework. When 
you're done, you'll have a standard mechanism for accepting a request, parsing it, processing it, 
and forwarding it to an appropriate resource for displaying its results (see Figure 7-2). Within 
this framework, you can insert common tasks at appropriate points within the request lifecycle. 
For instance, user authentication can happen using the request helper object before the 
command object is built. 
 

 
Figure 7-2: Request-handling framework within the Front Controller pattern  

JSP Front vs. Servlet Front Strategy 

You can embed the controller as either a JSP page or a Java servlet. Implementing a controller 
as a JSP page is a viable option; however, it's not preferable to using a servlet as your 
controller. Creating a controller as a JSP page is a bit counterintuitive. Controller code has 
nothing to do with the display of content and is more suited to a servlet rather than a markup 
page. Most programmers would prefer to work with a servlet rather than a JSP page when 
dealing with controller code. JSP pages are more suited for the adaptation and pres entation of 
data. Here's a basic idea of how a controller servlet might look (minus the necessary exception 
handling): 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



145 

public class ControllerServlet extends HttpServlet { 

 

  public void init () 

  { 

    /* Perform first-time initialization of shared 

       resources like database connections. */ 

  } 

 

  public void doGet(HttpServletRequest _req, HttpServletResponse _res) 

    throws ServletException, IOException 

  { 

    /* Forward to doPost method */ 

    doPost(_req, _res); 

  } 

 

  public void doPost(HttpServletRequest _req, HttpServletResponse _res) 

    throws ServletException, IOException 

  { 

    /* Create request helper object */ 

    ReqUtil reqUtil = new ReqUtil(_req); 

 

    /* Create action object (command) */ 

    Action action = reqUtil.getAction(); 

 

    /* Execute action */ 

    String view = action.execute(_req, _res); 

 

    /* Dispatch to appropriate view */ 

    RequestDispatcher dispatcher = _req.getRequestDispatcher(view); 

    dispatcher.forward(_req, _res); 

  } 

 

  public void destroy() 

  { 

    /* Perform cleanup operations here 

       like closing databases. */ 

  } 

 

} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



146 

The servlet controller provides the opportunity to initialize shared resources prior to the first 
request and close them before the servlet is taken out of service. These shared resources are 
usually database connections, but they could also be things like message queues or Enterprise 
JavaBeans (EJBs). There are typically two different ways a request will access your controller. 
A request can come in via the doGet or doPost method. In most cases, you can defer one 
method to the other by overriding one method and telling it to call the other method, passing it 
the request and response objects. You could also create a separate method to process the 
request and have both the doGet and doPost methods defer processing to the new method. 
Inside of the request processing method (or doGet/doPost), you create a helper object that wraps 
the original request object. This helper object parses the request parameters and extracts the 
requested action from the request object. This action tells the controller what it should do with 
the request. A command object is then created by the request helper object, which then 
executes its business logic. Any data generated as a result of the action is typically stored as 
an EJB or simply a JavaBean. The view corresponding to the action receives the request and 
will use the EJB or JavaBean to adapt the data to the appropriate presentation code. The 
following sections discuss the details of this set of operations. 

Request Helper Strategy 
 
To implement a request-handling framework, it's important to build a standard mechanism that 
wraps the request with additional functionality that may be needed to process the request such 
as parsing the request parameters or determining the action the servlet should take. The 
request helper strategy has you create a helper object that accepts the request object in its 
constructor. This helper object, along with its added functionality, is then available to the rest of 
the method. Here's how this object might be used inside of the doPost method you saw earlier: 
 

/* Wrap request object with helper */ 

ReqUtility reqUtil = new ReqUtility(_req); 

 

/* Create an Action object based on request parameters */ 

Action action = reqUtil.getAction(); 

The helper object itself can contain as much additional functionality as your application 
requires. At a minimum, it should wrap the request object inside of its constructor and provide a 
method to generate an action for the servlet to take based on the parameters given to the 
request. Here's what a minimal request helper looks like: 

 

public class ReqUtility 

{ 

  HttpServletRequest request; 

 

  public ReqUtility(HttpServletRequest _req) 

    throws ServletException, IOException 

  { 

    request = _req; 

  } 

  public Action getAction() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



147 

  { 

    /* Use factory to create action based on request parms */ 

    String action = (String) request.getParameter("action"); 

    return ActionFactory.createAction(action); 

  } 

} 

The request helper strategy provides you with a wrapped request object, but to process the 
request you need to provide command objects, or actions, to execute the business logic and 
provide you with the model and view to complete the request. In the next few sections, you'll 
complete the picture and look at the remainder of the request-handling framework. 

Command and Controller Strategy 

A good request-handling framework makes it easy to extend the application without interfering 
with the controller or the request-handling code itself. To achieve this level of separation, you 
need a flexible mechanism for adding new behavior to your request-handling code. You can 
accomplish this using a Factory pattern. This pattern has its roots in the object-oriented design 
world. It instantiates new objects when the type is not known until runtime. Remember, in the 
last section you saw how a factory was used inside the request helper: 

 

  String action = (String) request.getParameter("action"); 

  return ActionFactory.createAction(action); 
 
This enables you to simply add new behaviors by adding them to the factory rather than 
modifying the request processing code in the servlet. To make this work, however, you need to 
define an interface for our command objects. I like to refer to command objects as actions, so 
I'll create an interface named Action. By coding to an interface rather than a specific class 
implementation, your request-handling code will never have to change when new behavior is 
added to the application as long as any new behavior implements the Action interface. Here 
are the base methods the Action interface defines: 
 

/* Execute business logic */ 

public boolean execute(HttpServletRequest _req, HttpServletResponse _res) 

  throws ServletException, IOException; 

 

/* Return the page name (and path) to display the view */ 

public String getView(); 

/* Return a JavaBean containing the model (data) */ 

public Object getModel(); 
 
These methods, when implemented, will execute the business logic, return the JSP page name 
to be used as the view, and return a model to be used by the JSP to build its final output. To 
add new behavior to the application, you simply need to build a class that implements the 
Action interface and provide implementations for each of the methods defined by the interface. 
 
The factory itself is implemented as an abstract class. You do this because the factory should 
never be instantiated. Its only purpose is to return objects that implement the Action interface. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



148 

The only method you define in the factory is a static method that takes a String parameter 
telling it which action to return. The method then instantiates the appropriate object and returns 
it to the calling program (in this case, the request helper). Here's what the factory might look 
like: 
 

public abstract class ActionFactory { 

 

  public static Action createAction(String _action) 

  { 

    /* Return Action object */ 

    if (_action.equals("x")) { 

      return new xAction(); 

    } 

    if (_action.equals("y")) { 

      return new yAction(); 

    } 

 

    return null; 

  } 

 

} 

 
The only problem with this approach to generating action objects is that new actions require 
the code to be recompiled. A more robust way would be to get a list of actions from an XML file 
or to pass in a fully qualified class name to the method and then use Java Reflection to 
instantiate the object. You'll do this in Chapter 11. 

Resource Mapping Strategies 
 
Once the request-handling framework is in place, your application needs a strategy for 
assigning actions to requests. Several strategies address this need. The J2EE Patterns 
Catalog defines the Physical Resource Mapping strategy, Logical Resource Mapping strategy, 
and the Multiplexed Resource Mapping strategy. 
 
The physical resource mapping strategy involves making requests to a specific physical 
resource name such as http://myserver/myapp/servlet/controller. The logical resource 
mapping strategy, on the other hand, maps logical names to physical resources using a 
configuration file. An example of this would be http://myserver/myapp/controller. This would 
point to a specific resource in the configuration file. If you wanted to change the resource 
acting as your controller, you would simply re-map the logical name in the configuration file. 
You configure these mappings in the web.xml file of your web application. 
You still need a way to associate a specific action with the request. You can do this using the 
multiplexed resource mapping strategy. This is an extension to the logical resource mapping 
strategy in that it uses a logical name to specify the controller, but it adds another component 
to associate an action with the request. The logical mapping can be either a specific logical 
name or a particular pattern to be associated with a physical resource. For instance, 
http://myserver/myapp/login.c could be mapped to a controller by stating in the configuration 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



149 

file that all requests with a .c extension go to the controller servlet. In this case, the left side of 
the request, login, could be parsed out of it and used to specify the action. 
Or, your request could simply be http://myserver/myapp/controller?action=login. This would 
associate the logical name controller with the servlet controller and pass in a parameter 
named action telling the servlet to create a login action. This is the most common and 
straightforward way to map requests to actions. 
 
Applying the Front Controller Pattern 
 
To apply this pattern, you're going to fill in the pieces of the request-handling framework that 
you began building in the previous sections. You'll then go back to the survey application you 
built in Chapter 5 and rebuild it using your new controller and request-handling framework. 

Revisiting MVC: An Example 
 
In Chapter 5, you built a survey application to illustrate the MVC framework. Although it was a 
big improvement over a standard JSP solution, there's lots of room for improvement.  
Specifically, it needs to be more extensible. If the application were to grow over time, as most 
do, it would become complex and difficult to add new behavior. This is where the new request-
handling framework can be a big help. As you may recall, the example in Chapter 5 dealt with 
a simple login screen, then a data entry form, and finally a confirmation screen. For this 
example, you'll go through each step of the request-handling framework first, then you'll add 
the specific behaviors required by the application, and you'll finish by modifying the JSP pages 
to use the new controller. 

Building the Request Helper 
 
You'll start by building the request helper object. For these purposes, you'll implement the 
minimum functionality required by a request helper. The getAction method uses the 
ActionFactory that you'll create later to get an instance of the appropriate action object. Listing 
7-1 shows what the request helper looks like. 
 
Listing 7-1: ReqUtil.java  
 

package jspbook.ch7; 

 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

 

public class ReqUtility { 

 

  HttpServletRequest request; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



150 

 

  public ReqUtility(HttpServletRequest _req) 

    throws ServletException, IOException 

  { 

    request = _req; 

  } 

 

  public Action getAction() 

  { 

    /* Use factory to create action based on request parms */ 

    String action = (String) request.getParameter("action"); 

    return ActionFactory.createAction(action); 

  } 

 

} 

 

Defining the Action Interface 
 
Before building the factory, let's take a look at the action objects that the factory will generate. 
Each action object will implement the Action interface. This enables the request-handling 
framework to remain unchanged as you add new behaviors because it deals with the Action 
interface rather than any concrete objects. 
 
The Action interface defines three core methods and one helper method. The core methods are 
the execute, getView, and getModel methods. In addition to these, I added a helper method, 
setDatabase, to enable you to pass an existing database connection into the object. This allows 
you to easily share database resources. The execute method, when implemented, will perform 
any necessary business logic needed to carry out the request. The getView and getModel 
methods are used to return the page and data necessary to present the results of the action. 
Listing 7-2 shows what this interface looks like. 
 
Listing 7-2: Action.java  

package jspbook.ch7; 

import javax.servlet.*; 

import javax.servlet.http.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



151 

import java.io.*; 

import java.sql.*; 

 

public interface Action { 

 

  /* Set Database Connection */ 

  public void setDatabase(Connection _db); 

 

  /* Execute business logic */ 

  public boolean execute(HttpServletRequest _req, HttpServletResponse _res) 

    throws ServletException, IOException; 

 

  /* Return the page name (and path) to display the view */ 

  public String getView(); 

 

  /* Return a JavaBean containing the model (data) */ 

  public Object getModel(); 

 

} 

 

 

Building the Action Factory 
 
The factory you use to instantiate your Action objects is an abstract class with a single static 
method. The class is abstract because you never want it to be instantiated. The single static 
method, createAction, checks the name of the action passed into it and then instantiates the 
appropriate object, returning an object of type Action. Listing 7-3 shows what the factory looks 
like. 
 
 
Listing 7-3: ActionFactory.java  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



152 

package jspbook.ch7; 

 

abstract class ActionFactory { 

 

  public static Action createAction(String _action) 

  { 

    /* Return Action object */ 

    if (_action.equals("login")) { 

       return new LoginAction(); 

    } 

    if (_action.equals("submit")) { 

      return new SubmitAction(); 

    } 

 

    return null; 

  } 

 

} 

 

Implementing the Application-Specific Behaviors 
 
The big difference between this example and the one in Chapter 5 is that you implement the 
application logic as separate actions rather than inside of the controller code. There are two 
actions that need to be created, a login action and a submit action. You've essentially moved 
the same code from the previous example inside of the execute method of each action. The 
execute method performs its processing and updates class variables with necessary data. In 
the case of the login action, you store the user ID and the status of the login action. The 
getModel method assembles a CustomerBean object and updates these fields. This bean will be 
tagged onto the request attributes and used by the view to display the next page. The getView 
method returns the name of the page to display next. This is determined inside of the execute 
method and stored locally. Listing 7-4 shows what the login action looks like. 
 
 
Listing 7-4: LoginAction.java  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



153 

package jspbook.ch7; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

import java.sql.*; 

 

import jspbook.ch7.CustomerBean; 

 

public class LoginAction implements Action { 

 

  private String view; 

  private Connection dbCon; 

  private String status; 

  private String uid, pwd; 

 

  public LoginAction() {} 

 

  /* Set Database Connection */ 

  public void setDatabase(Connection _db) 

  { 

    dbCon = _db; 

  } 

 

  /* Execute business logic */ 

  public boolean execute(HttpServletRequest _req, HttpServletResponse _res) 

    throws ServletException, IOException 

  { 

    uid = (String) _req.getParameter("UID"); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



154 

    pwd = (String) _req.getParameter("PWD"); 

 

    /* Validate User */ 

    if (authenticate(uid, pwd)) { 

      status = "success"; 

      view = "/WEB-INF/jsp/ch7/census.jsp"; 

    } 

 

    else { 

      status = "failed"; 

      view = "/ch7/login.jsp"; 

    } 

 

    return true; 

  } 

  /* Return the page name (and path) to display the view */ 

  public String getView() 

  { 

    return view; 

  } 

 

  /* Return a JavaBean containing the model (data) */ 

  public Object getModel() 

  { 

    /* Use the CustomerBean to return the status of the login */ 

 

    CustomerBean cBean = new CustomerBean(); 

    cBean.setUid(uid); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



155 

    cBean.setLoginStatus(status); 

    return cBean; 

  } 

 

  /* Check if the user is valid */ 

  private boolean authenticate(String _uid, String _pwd) 

  { 

    ResultSet rs = null; 

    try { 

      Statement s = dbCon.createStatement(); 

      rs = s.executeQuery("select * from user where id = '" 

               + _uid + "' and pwd = '"+ _pwd + "'"); 

      return (rs.next()); 

    } 

    catch (java.sql.SQLException e) { 

      System.out.println("A problem occurred while accessing the database."); 

      System.out.println(e.toString()); 

    } 

    return false; 

  } 

 

} 
 
The submit action is similar to the login action. The only difference is in the code inside of the 
execute method. It records the survey data and updates a status field inside of the class. The 
CustomerBean is updated inside of the getModel method and the next page is set in the getView 
method. Listing 7-5 shows what the submit action looks like. 
 
 
Listing 7-5: SubmitAction.java  
 

package jspbook.ch7; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



156 

 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

import java.sql.*; 

 

import jspbook.ch7.CustomerBean; 

 

public class SubmitAction implements Action { 

 

  private String view; 

  private Connection dbCon; 

  private String status; 

 

  public SubmitAction() {} 

 

  /* Set Database Connection */ 

  public void setDatabase(Connection _db) 

  { 

    dbCon = _db; 

  } 

 

  /* Execute business logic */ 

  public boolean execute(HttpServletRequest _req, HttpServletResponse _res) 

    throws ServletException, IOException 

  { 

    /* Submit Survey Data */ 

    if (recordSurvey(_req)) { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



157 

      status = "success"; 

      view = "/WEB-INF/jsp/ch7/thankyou.jsp"; 

    } 

    else { 

      status = "failed"; 

      view = "/WEB-INF/jsp/ch7/census.jsp"; 

    } 

 

    return true; 

  } 

 

  /* Return the page name (and path) to display the view */ 

  public String getView() 

  { 

    return view; 

  } 

 

  /* Return a JavaBean containing the model (data) */ 

  public Object getModel() 

  { 

    /* Return the status of the action */ 

    CustomerBean cBean = new CustomerBean(); 

    cBean.setSubmitStatus(status); 

    return cBean; 

  } 

 

  /* Using the CustomerBean, record the data */ 

  public boolean recordSurvey(HttpServletRequest _req) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



158 

  { 

    CustomerBean cBean = new CustomerBean(); 

    cBean.populateFromParms(_req); 

    return cBean.submit(dbCon); 

  } 

 

} 
 
You now need to make a few changes to the CustomerBean that you used back in Chapter 5 to 
accommodate the new framework. These changes have to do with the way you retrieve the 
user ID and set it inside of the bean. You also need to add some status fields. This bean is 
retrieved inside of the JSP pages, and these status fields are checked before displaying each 
screen. Listing 7-6 shows what the CustomerBean looks like after making these changes. 
 

Listing 7-6: CustomerBean.java  

 

package jspbook.ch7; 

 

import java.util.*; 

import java.sql.*; 

import javax.servlet.http.*; 

 

public class CustomerBean implements java.io.Serializable { 

  /* Member Variables */ 

  private String lname, fname, sex; 

  private int age, children; 

  private boolean spouse, smoker; 

  /* Helper Variables */; 

  private String uid ; 

  private String loginStatus, submitStatus; 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



159 

  /* Constructor */ 

  public CustomerBean() { 

    /* Initialize properties */ 

    setLname(""); 

    setFname(""); 

    setSex(""); 

    setAge(0); 

    setChildren(0); 

    setSpouse(false); 

    setSmoker(false); 

  } 

 

  public void populateFromParms(HttpServletRequest _req) { 

    // Populate bean properties from request parameters 

    setLname(_req.getParameter("lname")); 

    setFname(_req.getParameter(" fname")); 

    setSex(_req.getParameter("sex")); 

    setAge(Integer.parseInt(_req.getParameter("age"))); 

    setChildren(Integer.parseInt(_req.getParameter("children"))); 

    setSpouse((_req.getParameter("married").equals("Y")) ? true : false); 

    setSmoker((_req.getParameter("smoker").equals("Y")) ? true : false); 

    setUid(_req.getParameter("uid")); 

  } 

 

  /* Accessor Methods */ 

 

  /* Last Name */ 

  public void setLname(String _lname) {lname = _lname;} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



160 

  public String getLname() {return lname;} 

 

  /* First Name */ 

  public void setFname(String _fname) {fname = _fname;} 

  public String getFname() {return fname;} 

 

  /* Sex */ 

  public void setSex(String _sex) {sex = _sex;} 

  public String getSex() {return sex;} 

 

  /* Age */ 

  public void setAge(int _age) {age = _age;} 

  public int getAge() {return age;} 

 

  /* Number of Children */ 

  public void setChildren(int _children) {children = _children;} 

  public int getChildren() {return children;} 

 

  /* Spouse ? */ 

  public void setSpouse(boolean _spouse) {spouse = _spouse;} 

  public boolean getSpouse() {return spouse;} 

 

  /* Smoker ? */ 

  public void setSmoker(boolean _smoker) {smoker = _smoker;} 

  public boolean getSmoker() {return smoker;} 

 

  /* Helper Variables */ 

  public void setUid(String _uid) {uid = _uid;} 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



161 

  public String getUid() {return uid;} 

 

  public void setLoginStatus(String _status) {loginStatus = _status;} 

  public String getLoginStatus() {return loginStatus;} 

 

  public void setSubmitStatus(String _status) {submitStatus = _status;} 

  public String getSubmitStatus() {return submitStatus;} 

 

  public boolean submit(Connection _dbCon) { 

 

    Statement s = null; 

    ResultSet rs = null; 

    String custId = ""; 

    StringBuffer sql = new StringBuffer(256); 

 

    try { 

      // Check if customer exists (use uid to get custID) 

      s = _dbCon.createStatement(); 

      rs = s.executeQuery("select * from user where id = '"+ uid + "'"); 

      if (rs.next()) { 

        custId = rs.getString("cust_id"); 

      } 

      rs = s.executeQuery("select * from customer where id = "+ custId); 

      if (rs.next()) { 

        // Update record 

        sql.append("UPDATE customer SET "); 

        sql.append("lname='").append(lname).append("', "); 

        sql.append("fname='").append(fname).append("', "); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



162 

        sql.append("age=").append(age).append(", "); 

        sql.append("sex='").append(sex).append("', "); 

        sql.append("married='").append((spouse) ? "Y" : "N").append("', "); 

        sql.append("children=").append(children).append(", "); 

        sql.append("smoker='").append((smoker) ? "Y" : "N").append("'"); 

        sql.append("where id='").append(custId).append("'"); 

      } 

      else { 

        // Insert record 

        sql.append("INSERT INTO customer VALUES("); 

        sql.append(custId).append(",'"); 

        sql.append(lname).append("', '"); 

        sql.append(fname).append("', "); 

        sql.append(age).append(", '"); 

        sql.append(sex).append("', '"); 

        sql.append((spouse) ? "Y" : "N").append("', "); 

        sql.append(children).append(", '"); 

        sql.append((smoker) ? "Y" : "N").append("')"); 

      } 

      s.executeUpdate(sql.toString()); 

    } 

    catch (SQLException e) { 

      System.out.println("Error saving customer: " 

        + custId + ": "+ e.toString()); 

      return false; 

    } 

    return true; 

  } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



163 

 

} 

 

Building the Controller 
 
Finally, you build the controller, which is implemented as a servlet. Inside of the doPost method, 
the request is wrapped inside of a request helper (ReqUtil). An action object is then created, 
the action is executed, and then the model is attached to the request. The request is then 
forwarded to the appropriate JSP page for display. Listing 7-7 shows what our controller looks 
like. 
 
Listing 7-7: Controller.java  
 

package jspbook.ch7; 

 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

import java.sql.*; 

import javax.naming.*; 

import javax.sql.*; 

 

public class Controller extends HttpServlet { 

 

  private Connection dbCon; 

 

  public void init() 

  { 

    /* Initialize shared resources */ 

 

    try { 

      Context initCtx = new InitialContext(); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



164 

      Context envCtx = (Context) initCtx.lookup("java:comp/env"); 

      DataSource ds = (DataSource) envCtx.lookup("jdbc/QuotingDB"); 

      dbCon = ds.getConnection(); 

    } 

    catch (javax.naming.NamingException e) { 

      System.out.println( 

        "A problem occurred while retrieving a DataSource object"); 

      System.out.println(e.toString()); 

    } 

    catch (java.sql.SQLException e) { 

      System.out.println("A problem occurred while connecting to the database."); 

      System.out.println(e.toString()); 

    } 

 

  } 

 

  public void doGet(HttpServletRequest _req, HttpServletResponse _res) 

    throws ServletException, IOException 

  { 

    /* Forward to doPost method */ 

    doPost(_req, _res); 

  } 

 

  public void doPost(HttpServletRequest _req, HttpServletResponse _res) 

    throws ServletException, IOException 

  { 

 

    /* Wrap request object with helper */ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



165 

    ReqUtility reqUtil = new ReqUtility(_req); 

 

    /* Create an Action object based on request parameters */ 

    Action action = reqUtil.getAction(); 

 

    /* Pass the database connection to the action */ 

    action.setDatabase(dbCon); 

 

    /* Execute business logic */ 

    if (action.execute(_req, _res)) { 

 

      /* Get appropriate view for action */ 

      String view = action.getView(); 

 

      /* Add the model to the request attributes */ 

      _req.setAttribute("model", action.getModel()); 

 

      /* Forward the request to the given view */ 

      RequestDispatcher dispatcher = _req.getRequestDispatcher(view); 

      dispatcher.forward(_req, _res); 

    } 

 

  } 

 

  public void destroy() 

  { 

    /* Clean up shared resources */ 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



166 

    try { 

      dbCon.close(); 

    } 

    catch (java.sql.SQLException e) { 

      System.out.println("A problem occurred while closing the database."); 

      System.out.println(e.toString()); 

    } 

 

  } 

 

} 

 

Modifying the JSP Pages 
 
The JSP pages are essentially the same as they were in Chapter 5. The only difference is in 
how they retrieve the status of either the login action or the submit action. Now, they retrieve 
the CustomerBean from the request attributes and then get the status from the bean. Listing 7-8, 
7-9, and 7-10 show what the JSP pages look like after making these changes. 
 
Listing 7-8: login.jsp  
 
<%@ page 
      import="jspbook.ch7.CustomerBean" 
      errorPage="myError.jsp?from=login.jsp" 
%> 
 
<html> 
<head> 
  <title>Quoting System Login</title> 
</head> 
 
<body bgcolor="#FFFF99"> 
 
<%@ include file="myHeader.html" %> 
 
<form method="post" action="Controller?action=login"> 
 
<p align="center"> 
  <font face="Arial, Helvetica, sans-serif" size="6" color="#003300"> 
    <b><i>Login to Quoting System</i></b> 
  </font> 
</p> 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



167 

<p>&nbsp;</p> 
<%   CustomerBean custBean = (CustomerBean) request.getAttribute("model"); 
     if (custBean != null) { 
       String status = custBean.getLoginStatus(); 
     if (status != null && status.equals("failed")) { 
%> 
<center> 
  <font color="#ff0000">Invalid login, please try again.</font> 
</center> 
<%      } 
      } 
%> 
 
<table width="199" border="0" align="center" cellpadding="5"> 
  <tr> 
    <td> 
      <font face="Arial, Helvetica, sans-serif" size="2">User ID:</font> 
    </td> 
    <td><input type="text" name="UID"></td> 
  </tr> 
  <tr> 
    <td><font face="Arial, Helvetica, sans-serif" size="2">Password:</font></td> 
    <td><input type="password" name="PWD"></td> 
  </tr> 
  <tr align="center"> 
    <td colspan="2"><input type="submit" name="Submit" value="Login"></td> 
  </tr> 
</table> 
 
</form> 
 
<%@ include file="myFooter.html" %> 
 
</body> 
</html> 

 
Listing 7-9: census.jsp  
 

<!-- JSP Directives --> 
<%@ page 
      import="jspbook.ch7.CustomerBean" 
      errorPage="myError.jsp?from=census.jsp" 
%> 
 
<html> 
<head> 
  <title>Insurance Quoting System</title> 
</head> 
 
<body bgcolor="#FFFF99"> 
 
<basefont face="Arial"> 
 
<%@ include file="/ch7/myHeader.html" %> 
 
<form action="Controller?action=submit" method="post"> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



168 

 
<br><br> 
 
<%  CustomerBean custBean = (CustomerBean) request.getAttribute("model"); 
    String uid = ""; 
    if (custBean != null) { 
      String status = custBean.getSubmitStatus(); 
      uid = custBean.getUid(); 
      if (status != null && status.equals("failed")) { 
%> 
<center> 
  <font color="#ff0000">Error recording survey data, please try again.</font> 
</center> 
<br><br> 
<%    } 
    } 
%> 
 
 
<center><b>Enter personal information:</b></center> 
<br><br> 
<input type='hidden' name='uid' value='<%= uid %>'> 
<table cellspacing="2" cellpadding="2" border="0" align="center"> 
<tr> 
    <td align="right">First Name:</td> 
    <td><input type="Text" name="fname" size="10"></td> 
</tr> 
<tr> 
    <td align="right">Last Name:</td> 
    <td><input type="Text" name="lname" size="10"></td> 
</tr> 
<tr> 
    <td align="right">Age:</td> 
    <td><input type="Text" name="age" size="2"></td> 
</tr> 
<tr> 
    <td align="right">Sex:</td> 
    <td> 
      <input type="radio" name="sex" value="M" checked>Male</input> 
      <input type="radio" name="sex" value="F">Female</input> 
  </td> 
</tr> 
<tr> 
    <td align="right">Married:</td> 
    <td><input type="Text" name="married" size="2"></td> 
</tr> 
<tr> 
    <td align="right">Children:</td> 
    <td><input type="Text" name="children" size="2"></td> 
</tr> 
<tr> 
    <td align="right">Smoker:</td> 
    <td><input type="Text" name="smoker" size="2"></td> 
</tr> 
<tr> 
    <td colspan="2" align="center"><input type="Submit" value="Submit"></td> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



169 

</tr> 
</table> 
 
<br><br> 
 
</form> 
<%@ include file="/ch7/myFooter.html" %> 
 
</body> 
</html> 
 
Listing 7-10: thankyou.jsp  
 
<!-- JSP Directives --> 
<%@ page 
      errorPage="myError.jsp?from=thankyou.jsp" 
%> 
 
<html> 
<head> 
  <title>Insurance Quoting System</title> 
</head> 
 
<body bgcolor="#FFFF99"> 
 
<basefont face="Arial"> 
 
<%@ include file="/ch7/myHeader.html" %> 
 
<br><br> 
 
<center> 
Your survey answers have been recorded. Thank you for participating in this 
survey. 
</center> 
 
<br><br> 
 
<%@ include file="/ch7/myFooter.html" %> 
 
</body> 
</html> 
 

 

Using Filters with a Front Controller 
 
A big advantage to implementing the Front Controller pattern is that it centralizes request 
handling. This creates the ability to perform common processing on the request and the 
response. This can be accomplished inside of the controller itself, but in many cases it's better 
done using filters (see Chapter 6 for a complete discussion of filters). Filters enable you to 
declaratively plug in and out new functionality without interfering with the request-handling 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



170 

framework in much the same way your ActionFactory allowed you to add new behavior to the 
application with no modifications to the controller servlet. 

Later in this book, you'll assemble all of the pieces you've built along the way and create a 
complete framework. You'll then develop a complete application using the framework. Inside of 
this framework, you'll use filters to handle user authentication. 

 

Summary 
 
This chapter was perhaps one of the more important pieces of this book. It laid the foundation 
for building a solid application framework. You'll see in the next few chapters how you build 
upon the request-handling mechanism you built in this chapter to create a robust and 
extensible framework for building web applications. In Chapter 11, you'll enhance this request-
handling framework to include features such as logging, error handling, and database 
management. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



171 

Chapter 8: The View Helper Pattern 
The last piece of the request-handling framework to investigate deals with how the view adapts 
the data stored in the model for presentation. The View Helper pattern describes the ways this 
can be done using custom tags and JavaBeans to adapt the model to the presentation inside 
of the view. This chapter will discuss these methods and build a few useful view helpers that 
you can add to your own toolkit. 

Defining the Pattern 

 
The View Helper pattern specifies that you use helpers to adapt model data to the presentation 
layer of an application. Typically, the presentation layer contains several JSP pages. These 
pages consist of HTML code and images used to present content to the user. A problem arises, 
however, when these pages need to display dynamic content stored in the model. You'd 
probably like to avoid embedding Java code within these pages to display model data, so you 
need to employ some helpers to do the work for you. 
 
Recall from the previous chapter that the controller servlet attaches the model to the request as 
an attribute. To get at this model from within the JSP page, you have two choices. You could 
embed Java code as JSP scriptlets, or you could use a helper to extract the data for you. In 
keeping with the idea of separating presentation from business logic, it makes sense to employ 
several helpers to adapt the model to the presentation rather than clutter the presentation code 
with Java code (see Figure 8-1). 
 

 
Figure 8-1: View Helper pattern  

As you can imagine, helpers make it a lot easier for page designers to develop the 
presentation layer by replacing Java code with simple-to-use helpers. Of course, developers 
can only accomplish this if they publish a catalog of the helpers and describe how to use them. 
However, if the page designers develop their pages before the application is ready to give 
them a model for the helpers with which to work, then there's a problem. A useful technique to 
address this problem is to code into the helper a set of dummy data to display when no model 
is present. An alternate approach would be to provide a dummy model with which to work. 
Either way, the page designer should not be held up while waiting for the developers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



172 

Using helpers has several advantages: 

 
§ Presentation components are standardized, creating a consistent look-and-feel for 

the application. 
§ Java code is abstracted away from the page designer, giving them an easy-to-use 

set of helpers to access the model. 
§ You can create helpers to display dummy data if no model exists, thus letting the 

page designer continue development regardless of the readiness of the 
application. 

§ Helpers provide a clean separation between presentation and business data by 
acting as intermediaries between the two. 

 
Implementing View Helper Pattern Strategies 

When developing helpers for JSP pages, you have two choices. You could use either 
JavaBeans or custom tags. Which you choose really depends on the type of data you're trying 
to adapt. Typically, you use JavaBeans to extract individual pieces of data, where custom tags 
are better suited toward working with sets of data. However, it's important to point out that you 
can use either choice for both types of data. 

JavaBean Helper Strategy 
 
You can implement helpers as JavaBeans within a JSP page. These helpers are typically easy 
to use when extracting and formatting single text items. The builtin JSP tags that enable you to 
work with JavaBeans are simple and intuitive to use. Using JavaBeans, as you may recall from 
Chapter 3, involves simply declaring the bean and referencing it later using the special tags as 
follows: 

<!-- Declare bean --> 

<jsp:useBean id="myBean" class="jspBook.util.myBean"/> 

 

<!-- Get first name from bean --> 

Hello <jsp:getProperty name="myBean" property="firstName"/>, 

welcome to Acme Products online store! 

JavaBeans can do more than simply retrieve data items from the model. They can also format 
specific data items, perform calculations, or even generate large blocks of content. Ideally, 
they're suited for simply retrieving data items using the built-in JSP tags. If you do much more 
with them, then your JSP may begin to get cluttered with too much Java code. In that case, you 
might consider encapsulating any additional behavior inside of a custom tag. 

Custom Tag Helper Strategy 
 
For more complex model adaptations, custom tags have the ability to embed Java code and 
perform several iterations over the data, while providing the page designer with a simple tag 
with which to work. I introduced custom tags back in Chapter 4, as I attempted to further 
separate the role of page designer from Java developer. To use custom tags, you write a class 
that extends either TagSupport or BodyTagSupport. You declare this class in a tag library 
descriptor like this: 
 

<?xml version="1.0" encoding="ISO-8859-1" ?> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



173 

<!DOCTYPE taglib 

  PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN" 

  "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd"> 

 

<taglib> 

  <tlib-version>1.0</tlib-version> 

  <jsp-version>1.2</jsp-version> 

  <short-name>myTags</short-name> 

  <description> 

    Tag library to support the examples in Chapter 8 

  </description> 

  <tag> 

    <name>myTag</name> 

    <tag-class>jspbook.ch8.myTag</tag-class> 

    <body-content>JSP</body-content> 

    <attribute> 

      <name>myAttribute</name> 

      <required>yes</required> 

    </attribute> 

</tag> 

This tag is then referenced inside of the JSP page by first declaring it with the taglib directive 
and then by referencing the tag as follows: 

<%@ taglib uri="/helpers" prefix="helpers" %> 

 

<helpers:myTag myAttribute="some value"> 

  Body text . . .  

</helpers:myTag> 

 
I prefer to use custom tags for most view helpers. They give the developer more access to the 
servlet context and offer some performance benefits when they're pooled within the application 
server. Another reason I like to use custom tags is that they're intuitive for a non-Java page 
designer. Their format is much like standard HTML tags, which by now have become second 
nature to most of us. Finally, you can use custom tags— once they're developed and 
debugged— across JSP pages in your application. If the tags are designed to be generic 
enough, you can package them as a tag library, which can be reused across applications. 

Model Separation Strategy 
 
Whether using custom tags or JavaBeans, it's sometimes useful to provide stand-alone helpers 
that can present a set of dummy data in place of the model when no model exists. This would 
enable the page designers to complete their work independent of the development team. To 
implement this strategy, the helper needs to check for the existence of a model and then uses 
either the real model or a static copy of the model to operate on (see Figure 8-2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



174 

 
Figure 8-2: Model separation strategy  
 
To make this work, the static model needs to be an exact replica of the real model. It's not 
always easy to keep these two in sync with each other. An alternate, and sometimes preferable, 
strategy is to have the development team build dummy data into their models so that the 
designer can do their work as if the real model exists, also ensuring that the model they're 
working with is always the correct one (see Figure 8-3). 
 

 
Figure 8-3: Alternate model separation strategy 
 
Applying the View Helper Pattern 
 
The following helpers you're going to build may be useful to you at some point, but at the least 
they should give you some ideas of ways you can apply the View Helper pattern to your own 
applications. The following items are implemented as custom tags and are declared in the 
helpers.tld file. This file is associated to the /helpers taglib URI inside of the web.xml file with an 
entry like this: 
 

<taglib> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



175 

  <taglib-uri>/helpers</taglib-uri> 

  <taglib-location>/WEB-INF/tlds/helpers.tld</taglib-location> 

</taglib> 

Formatting Text 

I'll begin this section with a view helper for adapting numeric values to various date and 
currency formats. Although it may be simple to do this directly in the model, there are several 
reasons to format these values in the view instead. For instance, you may need to display the 
same value in various localized formats, or maybe the content will be accessed via multiple 
devices that require a different way to present the data. 

 
You could encapsulate various formatting functions within a custom tag that reads the value to 
be formatted from its body and formats it based on an attribute you set in the tag. Here's how 
you would describe this tag in your tag library descriptor file, helpers.tld: 
 

<tag> 

  <name>FormatTag</name> 

  <tag-class>jspbook.ch8.FormatTag</tag-class> 

  <body-content>JSP</body -content> 

  <attribute> 

    <name>format</name> 

    <required>yes</required> 

    <rtexprvalue>true</rtexprvalue> 

  </attribute> 

</tag> 

 
The model for this tag could be just about anything, but for this example you'll create a static 
JavaBean containing two Strings to hold a date value and a currency value. You'll set these 
from your JSP using the standard JSP setProperty tag. To accomplish this, of course, your 
JavaBean needs to define accessor methods for both String values. Listing 8-1 shows the code 
used to create this JavaBean. 
 
Listing 8-1: FormattingModel.java  
 

package jspbook.ch8; 

 

import java.io.*; 

 

public class FormattingModel implements Serializable { 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



176 

  private String dateValue; 

  private String currencyValue; 

 

  public FormattingModel () {} 

 

  /* Accessor Methods */ 

  public void setDateValue (String _date) 

  { 

    this.dateValue = _date; 

  } 

 

  public String getDateValue () 

{ 

    return this.dateValue; 

} 

 

  public void setCurrencyValue (String _currency) 

  { 

    this.currencyValue = _currency; 

  } 

 

  public String getCurrencyValue () 

  { 

    return this.currencyValue; 

  } 

} 
 
The tag itself is a simple body tag extending the BodyTagSupport class. All of the actual 
formatting code is inside of the formatValue method. This method is called from within the 
doAfterBody method once the value has been retrieved. The result of the formatValue method is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



177 

written back to the page in place of the tag. Formatting of dates and currencies can be done 
using classes found in the java.text package. Specifically, you can make use of the 
SimpleDateFormat and DecimalFormat classes. The tag handler also provides a Locale object, 
along with an appropriate set method, to accommodate specific localization of the content. 
Because this tag is responsible for formatting date and currency values, it may be necessary to 
pass different locales to the formatting operations. Take a look at the following code in Listing 
8-2, paying special attention to the formatValue method. 
 
Listing 8-2: FormatTag.java  
 

package jspbook.ch8; 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

import java.io.*; 

import java.util.*; 

 

import java.text.*; 

 

public class FormatTag extends BodyTagSupport { 

  /* Locale object for internationalization of content */ 

  private Locale locale; 

  /* Tag Attributes */ 

  protected int format; 

 

  /* Static Constants */ 

  public final static int DATE_LONG = 0; 

  public final static int NUMERIC_DECIMAL = 1; 

  public final static int NUMERIC_ROUNDED = 2; 

  public final static int NUMERIC_CURRENCY = 3; 

 

  public FormatTag() { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



178 

    locale = Locale.getDefault(); 

  } 

 

  public void setLocale(Locale locale) { 

    this.locale = locale; 

  } 

 

  /* Process Tag Body */ 

  public int doAfterBody() throws JspTagException { 

    try { 

      BodyContent body = getBodyContent(); 

      JspWriter out = body.getEnclosingWriter(); 

 

      /* Get Input Value */ 

      String textValue = body.getString().trim(); 

 

      /* Output Formatted Value */ 

      out.println(formatValue(textValue)); 

    } 

    catch (IOException e) { 

      throw new JspTagException(e.toString()); 

    } 

    return SKIP_BODY; 

  } 

 

  /* Process End Tag */ 

  public int doEndTag() throws JspTagException { 

    return EVAL_PAGE; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



179 

  } 

  private String formatValue (String _input) 

  { 

    String formattedValue = ""; 

    try { 

      switch (format) { 

        case DATE_LONG: { 

          Calendar cal = Calendar.getInstance(); 

          cal.setTime(DateFormat.getDateInstance( 

            DateFormat.SHORT).parse(_input)); 

          SimpleDateFormat df = new SimpleDateFormat("EEE, MMM d, yyyy"); 

          formattedValue = df.format(cal.getTime()); 

          break; 

        } 

        case NUMERIC_DECIMAL: { 

          DecimalFormat dcf = (DecimalFormat) NumberFormat.getInstance(locale); 

          dcf.setMinimumFractionDigits(2); 

          dcf.setMaximumFractionDigits(2); 

          formattedValue = dcf.format(dcf.parse(_input)); 

          break; 

        } 

        case NUMERIC_ROUNDED: { 

          DecimalFormat dcf = (DecimalFormat) NumberFormat.getInstance(locale); 

          dcf.setMinimumFractionDigits(0); 

          dcf.setMaximumFractionDigits(0); 

          formattedValue = dcf.format(dcf.parse(_input)); 

          break; 

        } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



180 

        case NUMERIC_CURRENCY: { 

          float f = Float.parseFloat(_input); 

          DecimalFormat dcf = (DecimalFormat) 

            NumberFormat.getCurrencyInstance(); 

          formattedValue = dcf.format(f); 

          break; 

        } 

      } 

    } 

    catch (Exception e) { 

      System.out.println(e.toString()); 

    } 

 

    return formattedValue; 

  } 

  /* Attribute Accessor Methods */ 

  public int getFormat () 

  { 

    return this.format; 

  } 

 

  public void setFormat (int _format) 

  { 

    this.format = _format; 

  } 

 

  } 

_________________________________________________________________________- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



181 

Finally, you have your JSP code. There's really nothing new here. The page declares a 
JavaBean to use as the model, sets values in the model, and displays those values in various 
formats. The formatting is done through the FormatTag, specified in the helpers.tld file, and 
declared in the JSP page using the taglib directive. Notice how you specify the format in an 
attribute of the custom tag. The format attribute should be set to an integer value inside the 
JSP page, corresponding to one of the static constants defined in the tag handler. To do this, 
the attribute is defined as allowing runtime expressions as values by setting the <rtexprvalue> 
element to true inside the tag descriptor. Listing 8-3 shows the code for the JSP page. 
 
Listing 8-3: FormatHelper.jsp  
 

<!-- Declare tag that we'll use as our helper --> 
<%@ taglib uri="/helpers" prefix="helpers" %> 
 
<html> 
<head> 
  <title>Text Formatting Example</title> 
</head> 
 
<body> 
 
<basefont face="Arial"> 
 
<!-- Declare bean that will act as our model --> 
<jsp:useBean id="myBean" class="jspbook.ch8.FormattingModel"/> 
 
<jsp:setProperty name="myBean" property="dateValue" value="12/01/01"/> 
<jsp:setProperty name="myBean" property="currencyValue" value="23500.253"/> 
<!-- Display Formatted Values (using helper) --> 
<center> 
 
<h1>Various Date and Currency Formats</h1> 
 
<br><br> 
<table cellpadding="5"> 
  <tr> 
    <th>Format</th> 
    <th>Original Value</th> 
    <th>Formatted Value</th> 
  </tr> 
  <tr> 
    <td>Long Date</td> 
    <td> 
      <jsp:getProperty name="myBean" property="dateValue"/> 
    </td> 
    <td> 
      <helpers:FormatTag format="<%= jspbook.ch8.FormatTag.DATE_LONG %>"> 
        <jsp:getProperty name="myBean" property="dateValue"/> 
      </helpers:FormatTag> 
    </td> 
  </tr> 
  <tr> 
    <td>Decimal (NN.NN)</td> 
    <td><%= myBean.getCurrencyValue() %></td> 
    <td> 
      <helpers:FormatTag format="<%= jspbook.ch8.FormatTag.NUMERIC_DECIMAL %>"> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



182 

        <%= myBean.getCurrencyValue() %> 
      </helpers:FormatTag> 
    </td> 
  </tr> 
  <tr> 
    <td>Integer (N,NNN)</td> 
    <td><%= myBean.getCurrencyValue() %></td> 
    <td> 
      <helpers:FormatTag format="<%= jspbook.ch8.FormatTag.NUMERIC_ROUNDED %>"> 
        <%= myBean.getCurrencyValue() %> 
      </helpers:FormatTag> 
    </td> 
  </tr> 
  <tr> 
    <td>Currency ($N,NNN.NN)</td> 
    <td><%= myBean.getCurrencyValue() %></td> 
    <td> 
      <helpers:FormatTag format="<%= jspbook.ch8.FormatTag.NUMERIC_CURRENCY %>"> 
        <%= myBean.getCurrencyValue() %> 
      </helpers:FormatTag> 
    </td> 
  </tr> 
</table> 
</center> 
 
</body> 
</html> 
 

 
Figure 8-4 shows the results of formatting a date value and a numeric value using each of the 
different formats provided by the tag handler. 

 
Figure 8-4: Format text helper example  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



183 

Creating Menus 

There can be an advantage in some cases to dynamically generate menus or simply 
collections of hyperlinks. The controller would execute the appropriate action, which in turn 
would generate a list of link items. The view, using a helper, would generate a formatted menu 
containing the links stored in the model. 

As an example, the view will be a JSP page that will display a menu screen listing accessory 
items for a specific product. This is a good example of why you might need to dynamically 
generate menu screens. The user presumably clicks on a specific product in the company 
catalog and expects to see a list of accessories from which they can choose. This application 
pulls the necessary product information from the database and produces a set of product 
accessories to be displayed as hyperlinks within the view. 

 
For this example, you'll skip the link generation part and simply provide a static model with 
which to work. The model will be a JavaBean containing a hashtable of link items with which to 
work. The hashtable will be keyed by the text to display, storing the links as values. You'll 
retrieve the links as a comma-delimited list and insert it inside of a custom tag. Listing 8-4 
shows what the static model looks like. 
 
Listing 8-4: MenuModel.java  
 

package jspbook.ch8; 

 

import java.io.*; 

import java.util.*; 

 

public class MenuModel implements Serializable { 

 

  Hashtable links = new Hashtable(); 

 

  String list = ""; 

 

  public MenuModel() 

  { 

    /* Initialize model with sample values */ 
    links.put("Fold-away Keyboard", "/Controller?action=display&item=101"); 
    links.put("Standard Leather Case", "/Controller?action=display&item=102"); 
    links.put("Deluxe 3-pocket Case", "/Controller?action=display&item=103"); 
    links.put("Travel Cable", "/Controller?action=display&item=104"); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



184 

    links.put("Stylus Pack", "/Controller?action=display&item=105"); 
    links.put("8MB Backup Module", "/Controller?action=display&item=106"); 
  } 
  /* Accessor Methods */ 
  public void setList (String _list) 
  { 
    this.list = _list; 
  } 
 
  public String getList () 
  { 
    StringBuffer csvList = new StringBuffer(); 
 
    /* Transform hash table into comma-separated list */ 
    Enumeration enum = links.keys(); 
    while (enum.hasMoreElements()) { 
      String linkName = (String) enum.nextElement(); 
      String linkURL = (String) links.get(linkName); 
      csvList.append(linkName).append(",").append(linkURL).append("\n"); 
    } 
 
    return csvList.toString(); 
    } 
  } 
 
The helper you'll use is a custom tag that extends the BodyTagSupport class so that it can 
process the body content stored within its start and end tags. This custom tag needs to read in 
the list of link items and output a list of hyperlinks. It does this in the doAfterBody method, 
looping through each line of the body content and parsing out the link name and the link URL. 
Listing 8-5 shows what the code looks like for your helper class. 
 
Listing 8-5: MenuTag.java  
 

package jspbook.ch8; 

 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

 

import java.io.*; 

import java.util.*; 

 

public class MenuTag extends BodyTagSupport { 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



185 

  /* Tag Attributes */ 

  protected String links; 

  /* Process Tag Body */ 

  public int doAfterBody() throws JspTagException { 

    try { 

      BodyContent body = getBodyContent(); 

      JspWriter out = body.getEnclosingWriter(); 

 

      /* Parse records and output as list of hyperlinks */ 

      BufferedReader contentReader = new BufferedReader(body.getReader()); 

      String record = ""; 

      while ((record = contentReader.readLine()) != null) { 

        StringTokenizer st = new StringTokenizer(record, ","); 

        while (st.hasMoreTokens()) { 

          String linkName = st.nextToken(); 

          String linkURL = st.nextToken(); 
          out.println("<a href='" + linkURL + "'>"); 
          out.println(linkName + "</a>"); 
          out.println("<br><br>"); 
        } 
      } 
    } 
    catch (IOException e) { 
      throw new JspTagException(e.toString()); 
    } 
    return SKIP_BODY; 
  } 
 
  /* Process End Tag */ 
  public int doEndTag() throws JspTagException { 
    return EVAL_PAGE; 
  } 
 
  /* Attribute Accessor Methods */ 
  public String getLinks () 
  { 
    return this.links; 
  } 
 
  public void setLinks (String _links) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



186 

  { 
    this.links = _links; 
  } 
 
} 
 
Using this tag in the JSP is fairly simple, as intended. At the point you'd like to display the list of 
hyperlinks, you insert a custom tag to do the job for you. Inside the tag's body, you execute a 
small snippet of Java code to retrieve the comma-separated list of link items. Because you're 
executing Java code inside of the tag, it must be declared in our tag library descriptor file with 
the <bodycontent> tag containing the value JSP. Here's the full tag descriptor from the 
helpers.tld file and the code for the JSP page (see Figure 8-5 to see the results): 
 

<tag> 

  <name>MenuTag</name> 

  <tag-class>jspbook.ch8.MenuTag</tag-class> 

  <body-content>JSP</body -content> 

</tag> 

 

 
Figure 8-5: Menu helper example  
 
Listing 8-6 shows the MenuHelper.jsp page. The menu items are retrieved inside of the MenuTag 
using the getList() method of the MenuModel JavaBean. The tag handler parses these items and 
outputs them as a list of hyperlinks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



187 

Listing 8-6: MenuHelper.jsp  
 
<!-- Declare tag that we'll use as our helper --> 
<%@ taglib uri="/helpers" prefix="helpers" %> 
 
<html> 
<head> 
  <title>Product Accessories</title> 
</head> 
 
<body> 
 
<basefont face="Arial"> 
 
<!-- Declare bean that will act as our model --> 
<jsp:useBean id="myBean" class="jspbook.ch8.MenuModel"/> 
 
<!-- Display Product Accessory Links (using helper) --> 
<center> 
 
<b>Product Accessories for: Deluxe PDA</b> 
 
<br><br> 
 
<helpers:MenuTag> 
  <%= myBean.getList() %> 
</helpers:MenuTag> 
 
</center> 
 
</body> 
</html> 
 

Creating Custom List Formats 
 
A common element of most web applications is a grouping of several related items displayed 
as a bulleted list. The standard HTML list element, using the <ul> tags, displays list items using 
a standard bullet. Using an appropriate helper to display the list enables you to customize the 
way the list is displayed. In this example, you're going to build a helper that adapts a list of 
items to a formatted list with a selection of three different list styles. Here's the descriptor for 
the tag: 
 

<tag> 

  <name>ListTag</name> 

  <tag-class>jspbook.ch8.ListTag</tag-class> 

  <body-content>JSP</body -content> 

  <attribute> 

    <name>format</name> 

    <required>yes</required> 

    <rtexprvalue>true</rtexprvalue> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



188 

  </attribute> 

</tag> 

 
The code for the tag is kind of a combination of the previous two examples. It defines the 
format attribute as in the FormatTag, and it processes its body content in much the same way as 
the MenuTag does. It's important to point out that there are many different ways a list can be 
formatted. You're simply double-spacing the list items and providing a choice of bullets. Listing 
8-7 shows the code for the tag. 
 
Listing 8-7: ListTag.java  
 

package jspbook.ch8; 

 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

 

import java.io.*; 

import java.util.*; 

 

public class ListTag extends BodyTagSupport { 

  /* Tag Attributes */ 

  protected int format; 

 

  /* Static Constants */ 

  public final static int BULLET_ORB = 0; 

  public final static int BULLET_PLUS = 1; 

  public final static int BULLET_ARROW = 2; 

 

  /* Process Tag Body */ 

  public int doAfterBody() throws JspTagException { 

    try { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



189 

      BodyContent body = getBodyContent(); 

      JspWriter out = body.getEnclosingWriter(); 

    /* Parse records and output as formatted list */ 

    BufferedReader contentReader = new BufferedReader(body.getReader()); 

    String record = ""; 

    while ((record = contentReader.readLine()) != null) { 
      if (record.trim().length() > 0) { 
        out.println(formatListItem(record.trim())); 
      } 
    } 
 
  } 
  catch (IOException e) { 
    throw new JspTagException(e.toString()); 
  } 
  return SKIP_BODY; 
} 
 
/* Process End Tag */ 
public int doEndTag() throws JspTagException { 
  return EVAL_PAGE; 
} 
 
private String formatListItem (String _input) 
{ 
  StringBuffer listItem = new StringBuffer(); 
 
  /* Double-space the list */ 
  listItem.append("<br><br>"); 
  switch (format) { 
    case BULLET_ORB: { 
      listItem.append("<img src='images/orb.gif'>"); 
      break; 
    } 
    case BULLET_PLUS: { 
      listItem.append("<img src='images/plus.gif'>"); 
      break; 
    } 
    case BULLET_ARROW: { 
      listItem.append("<img src='images/arrow.gif'>"); 
    } 
  } 
  listItem.append("  ").append(_input); 
    return listItem.toString(); 
  } 
  /* Attribute Accessor Methods */ 
  public int getFormat () 
  { 
    return this.format; 
  } 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



190 

  public void setFormat (int _format) 
  { 
    this.format = _format; 
  } 
} 
 
In this example, you could have built a JavaBean to hold the model as you did in previous 
examples, but I think you get the idea of how you use these helpers to adapt actual model data 
to presentation code. So, in your JSP, you simply hardcode the list items into the tag bodies 
rather than pull the values out of a model. Listing 8-8 shows the code for the JSP page. See 
Figure 8-6 for a look at the formatted lists. 
 

 
Figure 8-6: List helper example  
 
Listing 8-8: ListHelper.jsp  
 
<!-- Declare tag that we'll use as our helper --> 
<%@ taglib uri="/helpers" prefix="helpers" %> 
 
<html> 
<head> 
  <title>List Examples</title> 
</head> 
 
<body> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



191 

 
<basefont face="Arial"> 
 
<center> 
 
<h1>List Examples</h1> 
 
<table width="600"> 
  <tr> 
    <td valign="top" width="150"> 
      <helpers:ListTag format="<%= jspbook.ch8.ListTag.BULLET_ORB %>"> 
        High Card 
        Pair 
        Two Pair 
        Three of a Kind 
        Straight 
        Flush 
        Full House 
        Four of a Kind 
        Straight Flush 
        Royal Flush 
      </helpers:ListTag> 
    </td> 
    <td valign="top" width="150"> 
      <helpers:ListTag format="<%= jspbook.ch8.ListTag.BULLET_PLUS %>"> 
        Milwaukee Bucks 
        Detroit Pistons 
        Toronto Raptors 
        Indiana Pacers 
        Charlotte Hornets 
        Cleveland Cavaliers 
        Atlanta Hawks 
        Chicago Bulls 
      </helpers:ListTag> 
    </td> 
    <td valign="top" width="300"> 
      <helpers:ListTag format="<%= jspbook.ch8.ListTag.BULLET_ARROW %>"> 
        Chapter 1 - The History of Cheese 
        Chapter 2 - The Many Faces of Cheese 
        Chapter 3 - Love and Cheese 
        Chapter 4 - Not Just for Mice 
        Chapter 5 - So You're a Cheesehead . . . 
        Chapter 6 - The Perfect Cheese 
        Chapter 7 - Cheddar is Better 
        Chapter 8 - The Big Cheese 
      </helpers:ListTag> 
    </td> 
  </tr> 
</table> 
 
</center> 
 
</body> 
</html> 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



192 

Summary 

This concludes the discussion of the J2EE presentation patterns as applied to JSP pages and 
Java servlets. When used in combination, they can produce a powerful request-handling 
framework for enterprise web applications. The next few chapters focus on proper software 
development techniques and procedures such as unit testing and automated deployment. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



193 

Chapter 9: Testing Techniques 
A book claiming to include best practices would not be complete if it didn't cover perhaps the 
most important best practice of all: testing. I think you'll agree that most developers begin with 
good intentions, but when push comes to shove, testing efforts are often reduced to a couple of 
simple test cases done on the fly. I've been there many times myself. What I've learned over 
the years, however, is that conducting proper tests is not only essential to building quality 
software, it also saves time! That's right, it actually saves time by catching bugs earlier in 
development before they get buried so deep that it takes days just to replicate the bug, let 
alone the time it takes to fix it. This chapter will discuss proper testing techniques along with a 
primer on using the JUnit testing framework. 

 
A different kind of testing you should do is load testing, which involves simulating several users 
accessing your application simultaneously. The kind of information you get from load testing 
helps to identify performance problems and gives you a chance to fix any bottlenecks before 
you deploy the application to the users. I'll discuss load testing and walk through using a load 
testing tool called JMeter. 

Why Is Testing So Important? 

 
Let's say two developers are working on a project. The first developer, Scott, writes methods A, 
B, and C. Scott tests the software and verifies that his methods work as expected. Now, Beth 
writes methods D and E. Beth tests the software and verifies that both methods work as 
intended. They release the software to the Quality Assurance (QA) department. Suddenly, QA 
discovers that a particular function is causing the application to return unexpected results. How 
could this be? Everyone tested their code and verified it was bug-free. Figure 9-1 illustrates this 
scenario and shows why the application is not functioning as it should. 
 

 
Figure 9-1: Development scenario without proper testing  
 
Had Scott, the first developer, tested his code after the other methods were added, the 
problem would have been identified and corrected immediately. Apparently, method D modified 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



194 

a class variable that method B uses. Because method D is sometimes called prior to method B, 
the state of this variable is unknown when method B attempts to use it. This scenario gives us 
the perfect reason to perform regression testing with every introduction of new functionality into 
the software. 

Understanding Regression Testing 

Regression testing is the execution of a series of tests designed to validate each and every 
area of the software. These tests are executed as new functionality is added to the software. 
The idea is that each test should return the same results regardless of what new functionality 
has been introduced. This verifies that new code doesn't accidentally break existing code. 
Regression testing is always a good idea, but it becomes more important as the size of the 
project grows. 

Breaking Regression Testing into Units 

 
A regression test consists of several unit tests, which are usually simple tests designed to test 
the results of a single method or function. A manual unit test might consist of a developer 
running through the application in the role of an end user and validating that the new function 
produces the intended results with a specific set of input data. Although this works for our 
immediate purposes, it would be difficult to conduct this test for each and every function of the 
application every time something changes in the software. 
 
Automated unit tests are typically scripts that pass a specific set of inputs into a specific 
method and test the results against a value known to be the correct result. If it fails the test, a 
message is written to a log file. These automated unit tests can be executed as a chain of tests 
each time the software changes. It's a good idea to include an automated regression test after 
each build of the software. For instance, let's say you have set up a build script using Ant 
(more on Ant in Chapter 10). This build script could kick off a series of unit tests upon 
successful completion of the build and report its results via a log file or even an email to the 
lead architect. 
 
Building a Unit Testing Framework 

Perhaps the biggest problem with unit testing is getting the developers to write the test scripts. 
Admittedly, this can be a real pain to do. To address this problem, you need to build a 
framework for conducting unit tests to make it as easy as possible for developers to focus 
strictly on testing their own code. Fortunately, a testing framework already exists for you to 
incorporate into your architecture. JUnit is a set of Java classes that combine to give you a 
simple, yet elegant, framework for conducting unit tests. 

Using JUnit 

 
JUnit is an open-source project and is freely available for anyone to use. You can obtain the 
JUnit package, as well as developer documentation, from the JUnit website 
(http://www.junit.org). To use JUnit, extract the downloaded file to the directory of your choice. 
Next, add the junit.jar file to your classpath. You're now ready to begin using JUnit. 
The JUnit architecture is quite simple. Building a unit test involves writing a class that extends 
the TestCase class of the JUnit package. Each TestCase can include multiple tests within the 
class. When the TestCase is run, each method conforming to a testXXX() naming convention 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



195 

will be executed automatically. For instance, a test that checks an addition routine might be 
named testAdd(). These tests are executed in the order in which they appear in the code. To 
modify the order, or to only execute a specific set of tests, you can add each test method 
manually to the TestSuite using the addTest method of the TestSuite object. A TestSuite defines 
the tests to be executed. You typically set it by passing the current class as a parameter to the 
TestSuite constructor. An alternative would be to create a TestSuite using an empty constructor 
and then add each test case using the addTest method. 
 
Before each test is run, the setUp method of the test case is executed. Upon completion of each 
test, the tearDown method is run. These methods perform initialization and cleanup activities for 
common objects in the test fixture of the TestCase. Each test within the TestCase class runs 
within its own test fixture. A test fixture is the context in which a test is run. For instance, you 
might want to instantiate and initialize a specific JavaBean that is required for each test. You 
could do this in the setUp method. It's then destroyed in the tearDown method to ensure that its 
state is cleared for the next test to be run (see Figure 9-2). This way, each test is run 
independent of each other. Each test case can have their own individual setUp and tearDown 
methods if they're written as separate TestCase classes and then added manually to the 
TestSuite using the addTest method of the TestSuite object, as described in the previous 
paragraph. 
 

 
Figure 9-2: JUnit architecture  
 
The only other method you need to do something with is the static method called suite. This 
method returns a TestSuite to be used by the TestRunner. In most cases, the TestSuite is simply 
the current class. If you wanted to nest your TestCases, you could define which TestCases, or 
TestSuites, to include in the current TestSuite. Either way, the TestRunner is called upon inside 
of the Main method of the class. Listing 9-1 shows the basic code behind a TestCase. 
 
Listing 9-1: Skeleton Code for a TestCase   
 

import junit.framework.*; 

public class SkeletonTest extends TestCase { 

 

  public SkeletonTest (String name) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



196 

  { 

    super(name); 

  } 

  /** 

   * Sets up the test fixture. 

   * (Called before every test case method.) 

   */ 

  protected void setUp () {} 

 

  /** 

   * Tears down the test fixture. 

   * (Called after every test case method.) 

   */ 

  protected void tearDown () {} 

 

  /** 

   * Tests the XXX action of the application 

   */ 

  public void testXXX () {} 

 

  /** 

   * Tests the YYY action of the application 

   */ 

  public void testYYY () {} 

 

  /** 

   * Create a TestSuite object, including testXXX and testYYY 

   */ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



197 

  public static Test suite () 

  { 

    TestSuite suite = new TestSuite(SkeletonTest.class); 

    return suite; 

  } 

 

  /** 

   * Run the TestSuite 

   */ 

  public static void main(String args[]) 

  { 

    junit.textui.TestRunner.run(suite()); 

  } 

 

} 
 
This code is intended to give you a starting point for creating your own test cases. For it to do 
anything meaningful, however, you need to add some code to the appropriate testXXX method. 
Inside of this method, you can do whatever you like. The result of this method, though, should 
be some kind of comparison between an expected result and an actual result. To make these 
comparisons, and automatically report their results, you call either the assertEquals or 
assertTrue method. The assertEquals method takes the expected result, compares it to the 
actual result, and returns the result as a boolean value. The assertTrue method takes a single 
boolean argument and reports whether it passed or failed. 

Now is a good time to walk through a simple example of a test case. Let's take the following 
method and write a test for it. This method is a simple add routine. It takes two integers as 
arguments and returns their sum. Here's the method: 

public int addNumbers (int A, int B) 

{ 

  return A + B; 

} 

This is obviously a simple example, but let's assume you need a unit test to validate the results 
of this method. The test code would set the values for A and B, execute the method, and 
compare the result with the expected result. Here's what the test code would look like: 

public void testAdd() 

{ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



198 

  /* Set test values */ 

  int A = 25; 

  int B = 35; 

 

  /* Get result */ 

  SomeClass someClass = new SomeClass(); 

  int result = someClass.addNumbers(A, B); 

 

  /* Compare result with expected result */ 

  assertEquals (60, result); 

} 

 
To try this, add the addNumbers method to a class and insert the testAdd method into the skeleton 
code in Listing 9-1. Although this is a trivial example, just imagine if this method performed 
calculations on a class variable rather than its own arguments. If the class variable is altered by 
a method added to the application in the future, this method may not work as expected. 

Adding Unit Tests to Your Application Framework 

 
Going back to the request-handling framework built in Chapter 7, let's write some code that 
allows you to test individual actions within the application. You'll start with the testing skeleton I 
showed you in the previous section (Listing 9-1). Each test you add will test a specific action. 
Remember, in this framework, each time the user submits a request, it's passed into the 
system as an action. To illustrate this, let's write a test for the login action. 

To test the login action, you'll simply issue a request to the Controller servlet the same as if a 
user opened a browser window and attempted to log in to the application. Because this test is 
automated, however, you need to do this programmatically. You'll pass in a valid user ID and 
password combination and read in the results into a String object. The test will be successful if 
the string does not contain the 'action=login' string. If it does, then this means that the page 
returned from the action was the login page, indicating an incorrect login. There are better 
ways to do this, I'm sure, but it illustrates the concept well enough. A different way to test the 
results would be to embed testing flags inside of the JSP pages and check for those in the 
result string. 

 
Your test script will go inside of the testLoginAction method. First, you need to construct the 
URL to which to connect. This URL will be the same as what you would type into the browser 
address box, with one exception. The UID and PWD form fields need to be passed along with 
the URL as form parameters. Here's how to build the URL: 

    String action = "login"; 

    String UID = "apatzer"; 

    String PWD = "apress"; 

 

    StringBuffer servletName = new StringBuffer(); 

    servletName.append("http://localhost:8080/jspBook/ch7/Controller"); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



199 

    servletName.append("?action=").append(action); 

    servletName.append("&UID=").append(UID); 

    servletName.append("&PWD=").append(PWD); 
 
Next, try to connect to the URL using the java.net.URL object. You read in the results using an 
InputStreamReader. The results are then stored inside of a String variable. Finally, the assertTrue 
method is called to report whether the given string was inside of the result string. Here's what 
the rest of the method looks like: 
 

    try { 

      URL url = new URL(servletName.toString()); 

      BufferedReader out = new BufferedReader( 

        new InputStreamReader(url.openStream())); 

      String line; 

      while ( (line = out.readLine()) != null) { 

        response += line; 

      } 

      out.close(); 

    } 

    catch (Exception e) { 

      System.out.println(e.toString()); 

    } 

    /* If response page is the login page, then an error occurred */ 

    assertTrue((response.indexOf("action=login")) <= 0); 

 
Listing 9-2 shows what the entire code looks like. 
 
Listing 9-2: TestFramework.java  
 

package jspbook.util; 

 

import junit.framework.*; 

 

import java.net.*; 

import java.io.*; 

 

public class TestFramework extends TestCase { 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



200 

  public TestFramework (String name) 

  { 

    super(name); 

  } 

 

  /** 

   * Sets up the test fixture. 

   * (Called before every test case method.) 

   */ 

  protected void setUp () {} 

  /** 

   * Tears down the test fixture. 

   * (Called after every test case method.) 

   */ 

  protected void tearDown () {} 

 

  /** 

   * Tests the login action of the application 

   */ 

  public void testLoginAction () 

  { 

    String action = "login"; 

    String UID = "apatzer"; 

    String PWD = "apress"; 

 

    String response = ""; 

 

    StringBuffer servletName = new StringBuffer(); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



201 

    servletName.append("http://localhost:8080/jspBook/ch7/Controller"); 

    servletName.append("?action=").append(action); 
    servletName.append("&UID=").append(UID); 
    servletName.append("&PWD=").append(PWD); 
 
    try { 
      URL url = new URL(servletName.toString()); 
      BufferedReader out = new BufferedReader( 
        new InputStreamReader(url.openStream())); 
      String line; 
      while ( (line = out.readLine()) != null) { 
        response += line; 
      } 
      out.close(); 
    } 
    catch (Exception e) { 
      System.out.println(e.toString()); 
    } 
 
    /* If response page is the login page, then an error occurred */ 
    assertTrue((response.indexOf("action=login")) <= 0); 
 
  } 
  public static Test suite () 
  { 
    TestSuite suite = new TestSuite(TestFramework.class); 
    return suite; 
  } 
 
  public static void main(String args[]) 
  { 
    junit.textui.TestRunner.run(suite()); 
  } 
 
} 
 
Testing for Performance 
 
Once an application is complete, it should be tested for performance. You do this through 
something called load testing. Load testing an application uncovers performance bottlenecks 
by simulating a large number of simultaneous users and reporting detailed performance 
statistics. 

A recent load test I conducted on an application showed me that after a certain number of 
users, the requests piled up and ran as if it were single-threaded and had to serve only a few 
users at a time. It turns out that the database connection pool I was using had a low threshold 
and was forcing requests to wait for the previous connections to be freed. By adjusting this 
setting, and re-running the load test, I was able to set the threshold to a more reasonable 
number. This is just one example of how load testing can improve your application. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



202 

 

Using JMeter 

 
Another great piece of software from the Apache Group is JMeter. JMeter is a load testing tool 
written as a Java Swing application. As with all Apache projects, JMeter is open-source and 
therefore free to use. Just go to http://jakarta.apache.org and select the JMeter link along the 
left side of the page. You can download the software and access the documentation from this 
site. 
 
Once you've downloaded the software and extracted it to your hard drive, go ahead and 
execute the /bin/jmeter.bat file. This will run the application and display the window shown in 
Figure 9-3. 
 

Figure 9-3: JMeter start screen  
 
Basically, you create a test by adding a thread group to the test plan. A thread group is the top-
level node for your tests. When a test is run, the thread group executes all of the tests 
contained within it and reports the results using a visualizer component. The thread group 
enables you to define the number of threads to run the test (simultaneous users). You can also 
specify a ramp-up time. This will space out the execution times of each test. For instance, if 
you enter 15 seconds for the ramp-up time and you have three tests to execute, each test will 
be executed five seconds apart from the other. Finally, you can specify the number of test 
iterations to execute (see Figure 9-4). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



203 

 
Figure 9-4: Adding a thread group  
 
The next step is to add a test to the thread group. Right-click on the ThreadGroup node to view 
a context menu displaying components to add. Under the Add submenu, select the Generative 
Controller item. From here you can add an FTP, Web, or Database test. In this example, you'll 
add a web test (see Figure 9-5). From this screen, you specify the host name, port, protocol, 
method, and path. You can also add any form parameters you'd like to include in the request. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



204 

 
Figure 9-5: Adding a web test  

Viewing the Results 

 
To view the results of the test, you need to add a visualizer to the thread group. You have a 
choice of many different visualizers, but for this example add a simple graph. Right -click the 
thread group and add a listener. In this case, add a Graph Results listener. Now, you're ready 
to run the test. Go to the Run menu and select Start. See Figure 9-6 for a sample set of results. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



205 

 
Figure 9-6: Viewing the graph results 
 
Summary 
 
This chapter discussed the importance of testing. Performing unit tests for each piece of 
functionality is a good habit to have. You can automate these unit tests and add them to a 
regression test. You usually run the regression test after each build to test that nothing broke 
as a result of new code being added. Once the application is complete, it should undergo some 
kind of load testing to assist in performance tuning. I've shown two great tools to assist in unit 
testing and load testing, JUnit and JMeter. Each tool should become part of your standard 
toolkit if similar tools are not already available to you. Chapter 10 will look at deployment 
techniques. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



206 

Chapter 10: Deployment Techniques 

Overview 

Software projects often run into trouble when there's no process in place to manage an 
application's deployment. Typically, the software is built and deployed through a series of 
manual tasks that, most of the time, is not even written down. Let's take a simple application as 
an example. Two developers are responsible for separate areas of the application, 
occasionally bumping into each other at integration points. Each developer compiles their code, 
runs simple tests (manually), and moves the source code either into a source control system or 
maybe just a common directory on a file server. Occasionally, a customer requires an updated 
version of the software. One of the developers packages the class files, updates their 
deployment descriptors, and copies it to the production application server. 

 
You might be asking yourself what's wrong with this scenario. Certainly this has worked for you 
and several others in the past. However, several things can go wrong when a repeatable 
process is not in place to ensure consistency between application builds. A repeatable process 
is one that follows the same steps to build the software according to a specific configuration. 
For instance, over time the Java Development Kit (JDK) that one developer uses may have 
been updated several versions beyond what the other developer is using. A third-party library 
may have changed at some point and will not be correct when deployed to the customer. Or 
worse, one developer may have modified a deployment descriptor without letting the other 
developer know. I have even seen situations where the order of the classpath affects which 
version of a particular object is used at runtime (usually with XML parsers because they're 
included with many third-party libraries). 

When an automated repeatable process is put into place at the start of development, you can 
be confident that each deployment is consistent with previous ones. In addition to an 
automated build process, it's necessary to have good source code control as well as a process 
for reviewing code changes and performing regression testing. 

Fortunately, there's a great tool available to streamline the development process. Ant is a build 
tool from the Apache-Jakarta Project and is similar to the make utility in Unix. This chapter will 
provide an introduction to Ant and will discuss several techniques for automating deployment 
tasks. To bring everything together, the chapter will finish with an example that utilizes all of the 
techniques discussed to that point. It may seem a bit off topic to discuss deployment 
techniques in a JSP book, but it's a necessary component of any software project and certainly 
applies to the development of quality JSP-based applications. 

 
Managing the Development Process 
 
The development process can almost always be characterized as chaotic regardless of the 
size of the project or the experience of the people involved. With the right development 
framework in place, however, the chaos can be reduced to a more manageable size. A 
development framework  is different from an application framework , which I discuss in the next 
chapter. A development framework is a combination of tools and processes aimed at 
streamlining the software development lifecycle. 
 
A development framework consists of a source control management system, formal change 
procedures, code reviews, automated build scripts, and a testing framework for both regression 
and load tests (see Figure 10-1). I'll discuss each of these shortly, but first let's walk through a 
scenario using each of these components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



207 

 
Figure 10-1: Development framework  

Our developer, we'll call him Scott, needs to add a method to a Java class named 
QuoteEngine. First, he checks the source code out of the source control system to gain 
exclusive access to it. He then adds the new method to the class file, along with some code to 
test it, and compiles it. Once Scott is sure his method works as intended, he requests a code 
review with another developer. His code review goes well, so he proceeds to check the source 
code back into the source control system. At the end of the day, a system architect executes 
an automated build script that checks out all of the latest source code, compiles it, deploys it to 
a development server, and runs a complete regression test to verify changes to the application. 
Once the development team reaches a particular milestone, they would promote the 
application from the development server to a testing server. Once the application has been 
thoroughly tested by a QA group, it's then moved to a stage environment for the end users to 
perform some testing or maybe some training. Finally, the application is moved into production. 

If anything were to go wrong with the application, it would be pretty easy to isolate and fix it 
with minimal impact to the overall project. Without a formal development process and 
framework, bugs would have a way of creeping into an application and causing major 
headaches as they're tracked down and fixed. 

Source Control 

The software development process begins with good source code control. Source code should 
be maintained using a source code management system to track all changes to source code 
as well as protect against accidental overwrites. This becomes more important as the project 
team grows larger, but it's still recommended even for projects with a single developer. Even as 
a one-person development team, it's helpful to have the ability to roll back changes to a given 
point in time to help track down bugs. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



208 

Many different tools exist for source control. Popular commercial choices are Microsoft Visual 
SourceSafe and Starbase StarTeam. A great open-source alternative is the Concurrent 
Versions System (CVS). This has been a popular version control system and has been used 
extensively to manage other open-source projects with developers distributed around the globe. 
It's also easy to set up and to use. For more information, visit the http://www.cvshome.org web 
page. 

Code Reviews 

Before checking source code back into a version control system, the developers should review 
their code with another member of the project team or maybe a systems architect responsible 
for consistency among project teams. In addition to validating changes made to the code, code 
reviews are a good way to funnel information up to the project manager and let them know 
what changes are going into the system at any given time. The code review should answer the 
following questions: 

 
§ Does the code adhere to coding standards? 
§ Does the code take advantage of organizational best practices? 
§ Will the code conflict with other areas of the system? 
§ Has this code already been written somewhere else? 
§ Does the code work? 
§ Is there a better way to write this code (for instance, StringBuffers instead of 

Strings)? 

To help facilitate a code review, you should create a standard form and use it regularly. 
Whenever a developer would like to check some code back into the version control system, 
they would print out this code review form and schedule a code review with another developer. 
Here's an idea of what a code review form might look like: 

Project Name: Foobar Upgrade 

Type of change: ____ New __X__ Change Request # 1034 

 

Change Description: 

In response to a bug uncovered by the QA team, the Foobar application 

needs to print out the phrase 'barfoo' instead of 'foobar'. Changes 

had to be made in several places to accommodate the fix. 

 

Files Affected: 

FooBarMain.java 

FooBarGUI.java 

FooBarStringEngine.java 

 

Review Items: 

 

1. Does the code adhere to organizational coding standards? 

2. Does the code work as intended? 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



209 

Signoff: 

To be included in build # __346a__ 

Developer ________________ Date __________ 

Reviewer _________________ Date __________ 

Automated Build Procedure 

Each and every build of the system should follow a consistent and predictable procedure. This 
helps to minimize deployment problems that arise from inconsistent development environments. 
Typically, one or two team members are responsible for building the system and deploying the 
application. Sometimes, entire teams share the responsibility and set up a round-robin 
schedule including each team member. To ensure that each team member follows the same 
procedure, it's necessary to script the build so that it can be run automatically and monitored 
for errors by the developer doing the build. 

You can script a build procedure in a few different ways. In a Unix-like environment, you could 
use the make utility to run your scripts. This is a heavily used tool for building C and C++ 
programs. In a Windows environment, the tool of choice has long been Windows batch files. 
Although each of these options might work okay, neither one was intended for Java 
development. The Apache-Jakarta Project has developed an open-source scripting tool called 
Ant that was made specifically for Java development. As you'll see in this chapter, Ant is a 
powerful and useful tool for not only automating your build, but for automating other tasks such 
as regression and load testing as well. 

Testing Framework 
 
As discussed in Chapter 9, testing your code is an important component of the development 
process. Using tools such as JUnit and JMeter to perform unit and load testing is vital to 
producing quality software in an efficient manner. As you'll see later in this chapter, you can 
even automate these tasks and attach them to the build process. 

Change Management 
 
A benefit of implementing a development framework such as the one introduced in this chapter 
is that it makes it much easier to handle problems that inevitably arise along the project 
lifecycle. Still, you need to implement a formal procedure for tracking bugs and managing 
change requests. Some source control systems include built-in bug tracking facilities. If your 
particular system does not include such functionality, then you can turn to one of several open-
source alternatives such as Bugzilla (http://www.bugzilla.org). 
 
Automating the Build Process with Ant 

Ant is a Java -based scripting tool that automates tasks such as compiling and deploying an 
application. Ant is the result of a subproject within the Apache-Jakarta Project. Ant has gained 
industry-wide acceptance at a remarkable rate. In fact, you'll find that most Java-based open-
source projects use Ant to script their build processes. Regardless of whether you use Ant on 
your own project, it's likely that you'll run into it sooner or later, so it pays to have a working 
knowledge of it. 

 
To get the latest copy of Ant, go to the Apache-Jakarta Project website 
(http://jakarta.apache.org) and download the latest binary release. Extract the contents of the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



210 

file to your hard drive. You'll need to add the /[path to ant]/ant/bin directory to your PATH 
environment variable. You'll also need to set the ANT_HOME and JAVA_HOME variables as 
well. Now you're ready to use Ant. 

Creating a Simple Build Script 
 
Ant scripts are XML files. These files can be called whatever you like, but the default name that 
Ant looks for is build.xml. To use a different name, you would simply specify the name when 
invoking the Ant script. For example, if your build script is App_build.xml, then you would run the 
script by typing in ant App_build.xml at the command prompt. If your build script were named 
build.xml, then you would simply type ant at the command prompt. Each of these examples 
assumes you're invoking Ant from the same directory that the build scripts reside in. 
The first element defined inside of a build script is the <project> tag. This is where you give the 
project a name, specify a base directory for all of your virtual paths to work from, and tell the 
project which target to execute if none has been specified. Here's what the <project> tag looks 
like for a simple build script you'll put together in this section: 

<project name="jspBook" default="dist" basedir="."> 

 
This tag gives the name "jspBook" to the project, defines a default target of "dist," and sets the 
base directory to the current working directory. Each path specified throughout the build script 
will be attached to the current working directory if it's not explicitly defined. For example, the 
path /dist/classes would be resolved to /usr/local/development/projects/dist/classes if your 
current working directory is /usr/local/development/projects. 
 
Ant works with your build script by executing targets defined within the file. A target is simply a 
tag that defines a set of actions to perform. Within the <target> tag, several child tags can be 
included to perform a variety of tasks. The <target> tag itself requires a name and optionally 
can include other targets that need to run prior to executing the current target. This is an 
example of a target that requires the init target to run prior to execution: 
 

<target name="compile" depends="init"> 

   <!-- Compile the java code from ${src} into ${build} --> 

   <javac srcdir="${src}" destdir="${build}" 

      classpath="/usr/local/development/j2ee/lib/j2ee.jar" 

   /> 

</target> 

 
When this target is executed, Ant sees that it requires the init target to execute before 
proceeding with the current target. Perhaps the init target creates the directories referenced 
within the compile target and populates them with the latest set of source code files. Therefore, 
the compile target would fail if the init target is not executed first. An entire chain of targets can 
be set up in this fashion, directing Ant to execute them in the correct order. 
 
In the previous example, you saw the use of properties with the references to ${src} and 
${build}. These are properties that have been set up earlier in the build script using the 
<property> tag. These are essentially global variables you can use throughout the build script. 
You've seen how to reference these properties using the ${property_name} syntax. You can 
define them using the following <property> tag: 

<property name="src" value="work"/> 

<property name="build" value="build"/> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



211 

 
These property tags associate the strings work and build with the properties labeled src and 
build. Again, you can reference these throughout the build script using ${src} and ${build} to 
substitute the corresponding string values in their place. 
 
Ant has several tasks built in, as well as several more available as part of its optional .jar file 
you can add to your installation. Among the most common of these built-in tasks involve 
operations on the filesystem. The <mkdir> tag creates a directory. The <copy> tag, in conjunction 
with the <fileset> tag, moves files between directories. This is an example of creating a 
directory and then copying a set of files into that directory: 
 

<mkdir dir="${temp}"/> 

<copy todir="${temp}"> 

  <fileset dir="${src}"/> 

</copy> 

 
Other tasks commonly used are the <tstamp>, <javac>, and <jar> tags. The <tstamp> tag creates 
a timestamp that is later referenced as ${DSTAMP}. The <javac> tag runs the Java compiler. The 
<jar> tag runs the Jar utility to create an archive of a specific set of files. Listing 10-1 shows a 
complete build file that utilizes each task discussed so far to compile all of the source code 
created for this book and archive it into a .jar file. 
 
Listing 10-1: build.xml  
 
<project name="jspBook" default="dist" basedir="."> 
 
  <!-- Set global properties for this build --> 
  <property name="src" value="work"/> 
  <property name="build" value="build"/> 
  <property name="dist" value="dist"/> 
 
  <target name="init"> 
    <!-- Create the time stamp --> 
    <tstamp/> 
    <!-- Create the build directory used by compile --> 
    <mkdir dir="${build}"/> 
    <!-- Create the source directory and copy the source files into it --> 
    <mkdir dir="${src}"/> 
    <copy todir="${src}"> 
      <fileset dir="/usr/local/development/projects/jspBook"/> 
    /> 
  </target> 
 
  <target name="compile" depends="init"> 
    <!-- Compile the java code from ${src} into ${build} --> 
    <javac srcdir="${src}" destdir="${build}" 
       classpath="/usr/local/development/j2ee/lib/j2ee.jar 
         :/usr/local/development/junit3.7/junit.jar" 
    /> 
  </target> 
 
  <target name="dist" depends="compile"> 
    <!-- Create distribution directory --> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



212 

    <mkdir dir="${dist}/lib"/> 
    <!-- Create JAR file --> 
    <jar jarfile="jspBook_${DSTAMP}.jar" basedir="${build}"/> 
  </target> 
  <target name="clean"> 
    <delete dir="${build}"/> 
    <delete dir="${dist}"/> 
    <delete dir="${src}"/> 
  </target> 
 
</project> 

 
As you can see, the default target is dist, so Ant will go to that target and see that it depends 
on the compile target, which in turn depends on the init target. Therefore, the init target is 
executed first, then the compile target, and finally the dist target. The clean target is a special 
case. It should be executed once all the intended targets are finished. It's inside of this target 
that you clean up your working directories. 

This build script was written to be used specifically with a Unix-like environment. The path 
names are formatted for use within such an environment rather than a Windows environment. 
I'll discuss how to write platform-neutral scripts shortly, but for now, just replace the path 
names with whatever is appropriate for your system. 

 
To run this build script, be sure to first place the build.xml file in the directory from which you 
want to run the build. From that directory, at a command prompt, type in ant to execute the 
default target of the build.xml file. Again, be sure that you have set your ANT_HOME and 
JAVA_HOME environment variables appropriately. Also, include the /ant/bin directory in your 
PATH variable as well. 

Integrating with Source Control 
 
In the build script presented in the previous section, the source files were simply copied from 
one directory to a different directory. Ideally, the source code would be under the management 
of a source code control system rather than a directory in the filesystem. In that case, the code 
would need to be copied from arepository using the appropriate commands. Fortunately, Ant 
has a few built-in tasks that simplify interactions with source code control systems. In the 
standard built-in tasks, you can use the cvs task to interact with a CVS repository. In the 
optional built-in tasks (in the optional .jar file), tasks exist for PVCS, Microsoft Visual 
SourceSafe, and StarTeam. To illustrate the integration of Ant and source control, you'll use a 
CVS repository and the cvs task in Ant. 
 
Before integrating CVS into the build script, let's step back and set up a CVS repository for the 
code. If you already have a CVS repository, or a different source control system, then simply 
skim over this section and make the appropriate modifications to integrate it with the Ant build 
script. To obtain CVS, go to their website (http://www.cvshome.org) and follow the download link 
to find the appropriate download for your platform. Go ahead and install CVS, following the 
installation instructions included with the download (or see the website for more details). 

Creating a Repository 
 
To create a CVS repository, you need to give it a location to store its files that maintain 
histories for source code managed within the repository. This is done using the cvs command, 
passing it a directory that will be home to the new repository, and adding the init argument to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



213 

instruct CVS to create a new repository. In most cases, this repository will manage several 
projects, not just a single set of files. This is what the cvs command would look like for both a 
Windows and a Unix system: 

Windows: 

 

C:\> cvs -d :local:c:\development\cvs init 

 

Unix (Linux): 

Ø cvs -d /usr/local/development/cvs init 

 
Now that the repository has been creat ed, the next step is to create a project and add files to it. 
Once again, you'll use the cvs command to accomplish this. You'll still need to pass the location 
of the repository, but this time you'll use the import argument. The import argument causes 
CVS to copy all files under the current directory tree into the repository and creates special files 
inside of each folder to maintain historical records. The -m argument enables you to add a 
description of the project. The remaining arguments specify the project name, a username and 
a user-defined tag (which can be anything). Here's an example of this command: 

Windows: 

 

C:\development\project\jspBook> cvs -d :local:c:\development\cvs import 

  -m "JSP Book Source Code" jspBook apatzer R1 

 

Unix (Linux): 

\usr\local\project\jspBook> cvs -d /usr/local/development/cvs import 

  -m "JSP Book Source Code" jspBook apatzer R1 

 
Your repository is now complete. You can check out source files (non-exclusive) using the 
checkout argument of the cvs command. To commit changes, you would use the commit 
argument and pass it the name of the file along with a description of what has been changed. 
There are several other commands that you might find useful but are not in the context of this 
book. Several CVS tutorials exist on the Internet, as well in as your local bookstore. Here are 
some examples of commands you might use: 
 

C:\> cvs -d :local:c:\development\cvs checkout jspBook 

 

C:\> cvs -d :local:c:\development\cvs commit -m 

  "Added new connection pool." DataEngine.java 

 

Note: log command displays a change history for a particular file 

 

C:\> cvs -d :local:c:\development\cvs log jspBook DataEngine.java 

 

Note: diff command displays differences between repository file and local copy 

C:\> cvs -d :local:c:\development\cvs -Q diff -c 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



214 

Integrating CVS with Ant 
 
Ant provides a cvs task built into its standard set of tasks that enables you to check out an 
entire project and copy it to a working directory. Here's an example of the cvs task: 

Windows: 

 

<cvs cvsRoot=":local:c:\development\cvs" 

    package="jspBook" 

    dest="${src}" 

/> 

 

Unix (Linux): 

<cvs cvsRoot="/usr/local/development/cvs" 

    package="jspBook" 

    dest="${src}" 

/> 

 
The cvs task takes the cvsRoot argument to specify the location of the CVS repository. The 
package argument names the project to check out of the repository. The dest argument states 
where the cvs task should place the files it checks out from the given project. Now that you 
have the ability to integrate with CVS, see Listing 10-2 for a complete build file that uses the 
cvs task rather than the copy task to move the source code into a working directory. 
 
Listing 10-2: build_cvs.xml  
 
<project name="jspBook" default="dist" basedir="."> 
 
  <!-- Set global properties for this build --> 
  <property name="src" value="work"/> 
  <property name="build" value="build"/> 
  <property name="dist" value="dist"/> 
 
  <target name="init"> 
    <!-- Create the time stamp --> 
    <tstamp/> 
    <!-- Create the build directory used by compile --> 
    <mkdir dir="${build}"/> 
    <!-- Create the source directory and checkout the source files into it --> 
    <mkdir dir="${src}"/> 
    <cvs cvsRoot="/usr/local/development/cvs" 
        package="jspBook" 
        dest="${src}" 
    /> 
  </target> 
 
  <target name="compile" depends="init"> 
    <!-- Compile the java code from ${src} into ${build} --> 
    <javac srcdir="${src}" destdir="${build}" 
       classpath="/usr/local/development/j2ee/lib/j2ee.jar 
         :/usr/local/development/junit3.7/junit.jar" 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



215 

    /> 
  </target> 
 
  <target name="dist" depends="compile"> 
    <!-- Create distribution directory --> 
    <mkdir dir="${dist}/lib"/> 
    <!-- Create JAR file --> 
    <jar jarfile="jspBook_${DSTAMP}.jar" basedir="${build}"/> 
  </target> 
 
  <target name="clean"> 
    <delete dir="${build}"/> 
    <delete dir="${dist}"/> 
    <delete dir="${src}"/> 
  </target> 
 
</project> 
 

Building WAR Files 

The common way in which to deploy a J2EE web application is as a WAR file. A WAR file is 
simply an archive of a standard directory structure containing all of the necessary files and 
deployment descriptors. Most J2EE application servers provide web-based administration tools 
that will take a WAR file and automatically create the directory structure, copy the files over, 
and modify the server configuration to add the application. 

 
The WAR file contains a root directory to store JSP and HTML files, a \WEB-INF directory to 
store the web.xml deployment descriptor, a \WEB-INF\classes directory for any servlets or other 
Java classes your application needs, and a \WEB-INF\lib directory to store supporting libraries 
on which your application depends. Of course, you can include more directories in this 
structure, but this is usually the minimum required by a web application. This is what a typical 
J2EE web application directory (and WAR file) might look like: 
 

c:\tomcat\webapps\hellow\hello.jsp 

c:\tomcat\webapps\hellow\images\hello.jpg 

c:\tomcat\webapps\hellow\WEB-INF\web.xml 

c:\tomcat\webapps\hellow\WEB-INF\classes\HelloEngine.class 

c:\tomcat\webapps\hellow\WEB-INF\lib\helloUtils.jar 
 
As you may have guessed, Ant provides a built-in task to build a WAR file. The war task can 
contain several different subtasks that are all aimed at copying the right files into their proper 
locations within the J2EE web application directory structure. The war task itself takes 
arguments to give the WAR file a name and a location and to specify a web.xml file to use. This 
is an example of a war task: 

<war warfile="${dist}/hellow_${DSTAMP}.war" webxml="${src}/config/web.xml"> 

    <fileset dir="${build}/docroot"/> 

    <lib dir="${build}/lib"/> 

    <classes dir="${build}/classes"/> 

</war> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



216 

 
The <fileset> task specifies which files should be copied into the document root of the WAR 
file. The <lib> task copies files into the \WEB-INF\lib directory. The <classes> task copies files 
into the \WEB-INF\classes directory. There are several more options for the war task. See the 
online documentation at the Ant website (http://jakarta.apache.org) for a more detailed 
description of building WAR files with Ant. 

Precompiling JSP Pages 

As you might recall from earlier chapters, the application server compiles JSP pages as 
needed into Java servlets. These servlets then service the original JSP requests as intended. 
Although this mechanism provides a great deal of flexibility in the development process, it 
sometimes can contribute to problems in the deployment process. Say, for instance, that your 
application consists of 100 JSP pages that will be accessed by several hundred users 
simultaneously. Unless you individually run through the application and access every page, 
these pages will be compiled as the users try to access them. This is an impractical solution, 
particularly in a production environment. 

Besides performance issues, another reason this runtime compilation can be troublesome is 
that any compile-time errors will be presented to the application's end user. Perhaps the 
application server is missing some libraries necessary to perform the compilation, or maybe it's 
currently busy with several other processes and simply cannot handle compiling several 
hundred Java classes in its current state. 

 
A solution to this problem is to compile the JSP files prior to deployment and avoid the entire 
runtime compilation process entirely. As you can imagine, a JSP file can't simply be compiled 
by the Java compiler. What would it do with all of that HTML code? First, the file needs to be 
converted into a source file for a Java servlet. Then, the new source file can be run through the 
Java compiler. The new class file is placed into the appropriate \WEB-INF\classes directory, and 
the web.xml file is updated with the new servlet definition. 
 
This causes a bit of confusion when it comes to the names of the pages and how other pages 
will reference them. For instance, if you were originally calling the hello.jsp page, then the new 
page might be something like ...\servlet\hello. This can be cleared up by mapping the file 
intelligently in the web.xml file so that other pages can keep their original references to the new 
page intact. 
 
Each application server has their own method and tools to perform the compilation of JSP files. 
The Tomcat server provides a tool called jspc that resides in the \tomcat\bin directory. Running 
it will give you a Java source file, which you will then need to compile. Using the right 
command-line options, it's possible to have the jspc tool generate a snippet of code to insert 
into the web.xml file for mapping the servlets. This is an example of running the jspc tool to 
convert a JSP file named index.jsp: 

C:\tomcat\bin\jspc -uriroot . index.jsp 

 
The uriroot argument specifies the root in which all references are based. In this case, it just 
uses the current directory. The result of this command is a file called index.java. If you try to 
compile it, you'll get a servlet object called index.class. Place this class in your \WEB-INF\classes 
directory and modify the web.xml file to reference it. If you'd like to place the servlet into a 
package structure, add a -p package_name argument to the jspc command. You would then need 
to place the servlet into the appropriate directory structure underneath the \WEB-INF\classes 
directory. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



217 

If precompilation of JSP files is important to you, then it would pay to invest time in scripting a 
process that would convert the file into the appropriate Java source code, compile it, and then 
generate the appropriate entries into the web.xml file. Ant would be a perfect tool to do this. At 
this time, there's a task already included with Ant's optional package that precompiles files for 
BEA WebLogic, and I'm sure there will soon be a task for using Tomcat's jspc command. 

Accounting for Different Platforms 

One advantage to using Ant to script your build procedure is that it's a Java-like environment 
that works together with the Java toolset to provide a familiar and platform-independent build 
scripting language. However, you have to watch out for a few things if your application truly 
requires a platform-independent build script. Specifically, the most common things to be careful 
of are inconsistent path names, tasks that are specific to a particular operating system, and 
anything that requires a specific location of a file or resource. Fortunately, Ant provides several 
tools for you to work around platform differences. 

Path names can be troublesome to anyone trying to write a single script that needs to run on 
different platforms. Unix systems use forward slashes (/) to separate path elements and a 
colon (:) to separate items within a path. Windows systems use the backward slash (\) along 
with semicolons (;). One way you can address this issue is to use relative paths whenever 
possible. This is only a partial solution, however, because this will certainly not address all path 
issues. 

 
Another thing you can do is set up paths using an Ant task like the <path> task and then 
passing the path to the <pathconvert> task to be formatted for the target operating system. The 
following snippet of Ant code sets a classpath using Windows syntax, then checks if the 
runtime environment is a Unix system and converts the classpath to a Unix-style syntax: 
 

<target name="init"> 

  <path id="project.classpath"> 

    <pathelement path="c:\development\jars\j2ee.jar"/> 

    <pathelement path="c:\development\jars\xerces.jar"/> 

  </path> 

  <condition property="unix_env" > 

    <and> 

      <os family="unix"/> 

    </and> 

  </condition> 

</target> 

 

<target name="setenv" depends="init" if="unix_env"> 

  <pathconvert targetos="unix" property="project.classpath" 

    refid="project.classpath"/> 

</target> 

 

<target name="compile" depends="setenv"> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



218 

  <javac srcdir="${src}" destdir="${build}"> 

    <classpath refid="${project.classpath}"/> 

  </javac> 

</target> 

 
The <condition> task determines from which operating system the script is being run. If the 
condition is met, then the given property is set. The <target> element can decide whether to 
execute based on the existence of a given property. This can be useful to overcome the other 
issues with cross-platform build scripts and tasks unique to a specific operating system. By 
checking the host operating system and setting a property, it's possible to write a separate task 
for each individual operating system the script may run on. For instance, a task that 
precompiles a set of JSP files may need to be written as two separate tasks named jspc_bea 
and jspc_tomcat and called conditionally based on the existence of a particular property. 
 
Summary 

This chapter covered several items considered as best practices for not only Java and JSP 
development but software development in general. You should combine these best practices 
into a development process that encourages standardization and accountability. This process, 
along with a set of supporting tools, form a development framework that enables developers to 
be more efficient with the time and effort they contribute to a software development project. 

An important piece of any development framework is the process for building and deploying the 
application. To avoid configuration headaches, you should script the build process and run it 
automatically on a regular basis. Ant, an open-source tool from the Apache-Jakarta Project, is 
a Java-based scripting tool that you can use to develop platform-independent build scripts. You 
can also use Ant to perform routine tasks such as unit testing, load testing, generating 
documentation, deployment, and staging. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



219 

Chapter 11: Application Frameworks 

Overview 

 
Over the course of developing an application, there usually are quite a few tasks involved that 
have been done either in a prior application or even somewhere else in the current application. 
This is true of any software project, regardless of the language or platform. It would be nice to 
be able to look past these core tasks and focus on developing the application and not the basic 
plumbing on which it relies. This is where application frameworks come in. 

An application framework is a set of core services that provide basic functionality, such as 
logging, database connectivity, security, and request handling, to name a few. Each of these 
components has been tested numerous times and in many cases has been used on several 
other projects. When you develop a new application, you build everything on top of the 
application framework. Consequently, developers can focus on tasks specific to the application, 
such as business domain objects and screen flows, without worrying about how to connect to 
the database or figuring out how they should log error messages. 

This chapter will walk through the design, construction, and implementation of a lightweight 
framework for the development of web applications. It's considered to be lightweight because it 
contains only that which is necessary to provide a presentation framework with a few back-end 
services to provide for simple business logic and database access. You can extend it, however, 
to include other components required to develop enterprise applications, such as Enterprise 
JavaBeans (EJBs), JNDI lookups, and JavaMail. 

 

Designing a Framework 

When building a framework, you should put careful thought into its design to ensure it'll be 
usable in at least 80 percent of future projects. The other 20 percent where it's not usable is to 
be expected. There's always going to be something an application needs to do that's different 
from what the framework provides. With that said, how can you be sure your framework will 
work in most situations? Well, a good framework is one that evolves with each project. 
Therefore, the framework should be extensible while providing the core needs on which each 
application relies. 

You should treat a framework as its own software project. Large enough companies even have 
entire teams devoted to the framework. An application framework should follow its own release 
cycle with no dependencies on any of the applications that use it. Project teams will treat the 
framework as any other third-party software package they use. For example, let's say a 
particular project is using the Xerces XML parser from the Apache Group. When a new release 
is available, the project team would typically evaluate the benefits along with any potential 
issues with upgrading to the new release prior to performing the upgrade. You should treat an 
application framework in the same manner, which means it needs to have the following 
characteristics: 

 
§ Easily extensible: The framework should be designed in such a way that it can 

easily be extended as new requirements arise. 

§ Completely documented: Each release of the framework should be 
accompanied by a complete set of documentation. This includes a set of HTML 
pages documenting the API, typically generated from the Javadoc utility. It also 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



220 

should include a set of release notes, allowing the user to evaluate what has 
changed before deciding to upgrade. 

§ Simple to use: If the framework is too complex, it'll be hard to gain acceptance by 
the developers, who may not use it. It might make sense for a developer to write 
their own custom code and sidestep the framework if they feel it's too difficult or 
clumsy to use. 

 
Building a Web Application Framework 
 
You should evaluate several existing application frameworks prior to constructing your own. Of 
these frameworks, the most popular is the Struts framework from the Apache Group. It's similar 
to the one presented in this chapter, except that it's much more complete and has been 
thoroughly tested by numerous developers. For more information on Struts, see their website 
(http://jakarta.apache.org/struts/index.html). The framework presented in this chapter will 
illustrate the concepts behind an application framework as well as provide a good start toward 
building your own complete, full-featured framework. 

Designing the Framework 

The framework will handle the core tasks of user authentication, logging, database connectivity, 
and request handling. In addition to these tasks, it'll begin to provide a set of presentation 
widgets in the form of custom tags. Most of these tasks will be pulled from previous chapters 
and combined to create an end-to-end solution for building web applications. 

 
The first step is creating a separate project for the framework. This involves setting up a new 
packages structure and generating a new build script for deployment. Table 11-1 shows the 
package structure that will be used for the framework. 
 

Table 11-1: Framework Packages  
PACKAGE  DESCRIPTION  
jspbook.framework.security  

Authentication filter to authenticate users with 
each request 

jspbook.framework.logging  
Wrapper class to handle logging functions 

jspbook.framework.db  
Database helper classes 

jspbook.framework.request  
Classes that make up the request-handling 
framework 

jspbook.framework.ui.tags  
Custom tags acting as view helpers 

jspbook.framework.util  
Utility classes to perform tasks such as loading 
a set of application constants 

The framework will have its own build script that will compile each of the classes in order (in 
other words, logging components should go first since they're used in other pieces of the 
framework), JAR them up into a distributable library, JAR up the source code, and generate the 
Javadoc pages and JAR those up as well. This will give the end users everything they need to 
start using the framework. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



221 

Documenting the Framework 

To this point, all the code you've developed in this book has lacked Javadoc comments. Now 
that you'll distribute this code as a framework, it's essential that you also document it using the 
proper Javadoc syntax to enable the build script to generate a complete set of documentation 
automatically with each build. 

Although there are many different things you can do with the proper Javadoc syntax, there are 
three specific areas that need to be covered for the documentation to be worth anything. First, 
just before each class definition, include a descriptive comment such as the following: 

 

/** 

 * One-line description of class 

 * 

 * <p>One or more paragraphs of usage notes</p> 

 * 

 * @version 1.0 

 * @author  Andrew Patzer 

 * @since   JDK 1.3 

 */ 
 
Notice how the comment is formatted. All Javadoc comments begin with a/** and end with a */.  
All text between these lines should begin with a single asterisk. The @version, @author, and 
@since comments are special fields that Javadoc converts into the appropriate sections of the 
finished documentation. The @version field is used to specify the version of the class. The 
@author field specifies the original developer that created the class. The @since field specifies 
the minimum version of the JDK required to use the class. The next area to be sure to 
comment is the class-level variables. Each of these will belong to a special section of the 
documentation and should be commented appropriately with a single comment preceding the 
variable declaration as follows: 

  /** 

   * Counter to track usage statistics for pricing engine. 

   */ 

  private int counter = 0; 

Finally, the other items that should be documented well are the individual methods belonging to 
the class. This documentation should be similar to that for class-level variables, only with 
greater detail. Here's an example: 

  /** 

   * Validates a given user ID and password combination 

   * against the user table in the quoting database. The 

   * user ID and password should be taken from the request 

   * object. 

   * 

   * @param _uid User ID 

   * @param _pwd User Password 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



222 

   * 

   * @return Status of login authentication. 

   */ 

  public boolean isValidLogin(String _uid, String _pwd) { 
 
The @param fields define each parameter passed in to the method. The @return field describes 
the value returned by the method. For more information on using Javadoc to document your 
code, visit http://java.sun.com/j2se/javadoc/writingdoccomments/index.html for a tutorial from 
Sun. 

Logging Error and Debug Messages 

A logging component of a framework is responsible for directing messages to a single log file, 
a system console, an email address, or even a pager. Messages could be error messages 
(exceptions), information messages, or debug statements. You can route each of these 
messages differently. For instance, debug statements are only important to a developer and 
can go to their own console or a local file. Errors might go to a log file located on a server, or 
they might get emailed to a system administrator. 

 
This functionality is contained within a logging package from the Apache Group called log4j. 
Using log4j directly is okay for a simple project with only a few classes, but for anything larger, 
it pays to wrap the log4j functionality into a standard component of the framework. You can 
configure log4j from a property file or from within the code. For the purposes of this framework, 
you'll configure it within the code using a simple predefined layout and output it to a single text 
file. Listing 11-1 wraps the log4j functionality and gives the framework a standard logging 
component. 
 
Listing 11-1: Logger.java  
 

package jspbook.framework.logging; 

 

import org.apache.log4j.*; 

import java.io.IOException; 

 

/** 

 * Wrapper for Log4J logging utility 

 * 
 * <p>Wraps Log4J functionality</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



223 

public class Logger 
{ 
 
  /** 
   * Static constant for DEBUG log level 
   */ 
  public static final int DEBUG = 0; 
  /** 
   * Static constant for INFO log level 
   */ 
  public static final int INFO = 1; 
  /** 
   * Static constant for WARN log level 
   */ 
  public static final int WARN = 2; 
  /** 
   * Static constant for ERROR log level 
   */ 
  public static final int ERROR = 3; 
  /** 
   * Static constant for FATAL log level 
   */ 
  public static final int FATAL = 4; 
 
  /** 
   * Category to log messages to 
   */ 
  public static Category cat = Category.getInstance("framework"); 
 
  static 
  { 
    try { 
      BasicConfigurator.configure(new FileAppender( 
        new SimpleLayout(), "c:\\log.txt")); 
    } 
    catch (IOException e) { 
      System.out.println(e.toString()); 
    } 
  } 
 
  /** 
   * Static method to log messages 
   */ 
  public static void log(int _level, String _msg) 
  { 
    switch (_level) { 
      case DEBUG: 
        cat.debug(_msg); 
        break; 
      case INFO: 
        cat.info(_msg); 
        break; 
      case WARN: 
        cat.warn(_msg); 
        break; 
        case ERROR: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



224 

       cat.error(_msg); 
        break; 
      case FATAL: 
        cat.fatal(_msg); 
        break; 
      default: 
        cat.warn("Problem using Logger class"); 
    } 
  } 
} 

 

Building a Database Helper 
 
Enterprise applications almost always reference a database, so you should take care to 
manage an application's interaction with the database. It should be managed by a single 
component to allow for greater control over user connections and query optimizations. 
Referring back to Chapter 7, Listing 7-7 uses a JNDI DataSource to manage connections to 
the database. This allows the application server to manage a pool of connections. Through this 
framework component, the DataSource object will get a connection and return it to the calling 
class. 
 
The database helper component of the framework should be configurable through an external 
file in order to allow separate applications to specify their own DataSource configuration 
without having to modify the framework code. You can do this by creating a utility class that 
reads in a property file and then makes each property available through a static method. The 
AppConstants class, shown in Listing 11-2, creates a java.util.Properties object and exposes it 
through the static getProperty method. 
 
Listing 11-2: AppConstants.java  
 

package jspbook.framework.util; 

 

import java.util.Properties; 

import java.io.*; 

 

import jspbook.framework.logging.Logger; 

 

/** 

 * Application Constants 

 *  
 * <p>Reads in application constants from a property 
 * file and loads them into a java.util.Properties 
 * object.</p> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



225 

 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 
public class AppConstants 
{ 
  private static Properties appProps; 
 
  public static String getProperty(String _property) 
  { 
    if (appProps == null) { 
      try { 
        appProps = new Properties(); 
        appProps.load(new FileInputStream(new File( 
          System.getProperty("prop.file.dir"), "app.props"))); 
      } 
      catch (IOException e) { 
        Logger.log(Logger.ERROR, e.toString()); 
      } 
    } 
    return appProps.getProperty(_property); 
  } 
} 
 
The app.props file is nothing more than a text file containing key-value pairs that will be read in 
to the Properties object and made available through the getProperty method. To use the 
CatalogDB DataSource, for instance, the app.props file would contain the following line: 

dbName=jdbc/CatalogDB 

 
The app.props file should be located in the \WEB-INF directory of the web application. In order to 
locate the app.props file, the AppConstants class retrieves the location of the file by accessing the 
prop.file.dir system property. This can be set as part of the startup script for your application 
server. The following script excerpt shows how you should modify the startup script for the 
Tomcat server to specify the prop.file.dir system property: 

Relevant line of startup script before change: 

 

%_STARTJAVA% %CATALINA_OPTS% -Dcatalina.base="%CATALINA_BASE%" 

-Dcatalina.home="%CATALINA_HOME%" 

org.apache.catalina.startup.Bootstrap %2 %3 %4 %5 %6 %7 %8 %9 start 

 

After change: 

 

%_STARTJAVA% %CATALINA_OPTS% -Dcatalina.base="%CATALINA_BASE%" 

-Dcatalina.home="%CATALINA_HOME%" 

-Dprop.file.dir=c:\development\tomcat4.0.2\webapps\catalog\WEB-INF 

org.apache.catalina.startup.Bootstrap %2 %3 %4 %5 %6 %7 %8 %9 start 
Listing 11-3 shows the code for the DBHelper component. Notice how the name of the 
DataSource is obtained using the AppConstants class. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



226 

 
Listing 11-3: DBHelper.java  

 

package jspbook.framework.db; 

 

import javax.naming.*; 

import javax.sql.*; 

 

import java.sql.*; 

 

import jspbook.framework.logging.Logger; 

 

/** 

 * Database helper object 

 * 
 * <p>Manages database connections by using a 
 * single DataSource object to provide Connection 
 * objects to calling classes. This allows the 
 * application server to manage the connections 
 * in a connection pool.</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 
public class DBHelper 
{ 
  /** 
   * Reference to a JNDI DataSource 
   */ 
  private static DataSource ds; 
 
  private static Context initCtx; 
  private static Context envCtx; 
 
  private static String dbName = AppConstants.getProperty("dbName"); 
 
  /** 
   * Using the DataSource object, gets a 
   * database connection from the pool. 
   */ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



227 

  public static Connection getConnection() 
  { 
    if (ds == null) { 
      try { 
        initCtx = new InitialContext(); 
        envCtx = (Context) initCtx.lookup("java:comp/env"); 
        ds = (DataSource) envCtx.lookup(dbName); 
      } 
      catch (javax.naming.NamingException e) { 
        Logger.log(Logger.ERROR, 
          "A problem occurred while retrieving a DataSource object"); 
        Logger.log(Logger.ERROR, e.toString()); 
      } 
    } 
 
    Connection dbCon = null; 
    try { 
      dbCon = ds.getConnection(); 
    } 
    catch (java.sql.SQLException e) { 
      Logger.log(Logger.ERROR, 
        "A problem occurred while connecting to the database."); 
      Logger.log(Logger.ERROR, e.toString()); 
    } 
    return dbCon; 
  } 
} 

 

Authenticating Users 
 
Chapter 6 introduced filters. To manage access to the framework, a filter will be put into place 
to intercept each web request and make sure the user has access to the system. This involves 
setting a new variable in any HTML or JSP page using the framework, pageId. This variable 
tells the filter from where the request is coming. If it comes from the login page, then the filter 
should attempt to authenticate the user. If it comes from somewhere else, the filter should 
check the session to see if the user has already been authenticated. Listing 11-4 shows the 
code for this filter. Notice how it uses the logging and database components of the framework. 
 
Listing 11-4: AuthenticationFilter.java  
 

package jspbook.framework.security; 

 

import java.io.*; 

import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



228 

import java.sql.*; 

 

import jspbook.framework.logging.Logger; 

import jspbook.framework.db.DBHelper; 

 

/** 

 * Filter to handle user authentication 

 * 
 * <p>Intercepts requests and validates users. 
 * If the user is coming from the login page, 
 * the filter attempts to authenticate the 
 * user. If the user comes from somewhere else, 
 * then the filter will check the session object 
 * and validate that the user has already logged in.</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 
public class AuthenticationFilter implements Filter { 
  /** 
   * Static variable used to resolve the login page 
   */ 
  private static final String LOGIN_PAGE = "login.jsp"; 
  /** 
   * Stores the Filter Configuration 
   */ 
  private FilterConfig config = null; 
 
  /** 
   * Called when Filter is put into service. 
   */ 
  public void init(FilterConfig _config) 
    throws ServletException 
  { 
    this.config = _config; 
  } 
 
  /** 
   * Execution code for the filter. 
   */ 
  public void doFilter(ServletRequest _req, ServletResponse _res, 
    FilterChain _chain) throws IOException, ServletException 
  { 
    boolean success = true; 
 
    /* Cast _req to HttpServletRequest and get a session */ 
    HttpServletRequest httpReq = (HttpServletRequest) _req; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



229 

    HttpSession session = httpReq.getSession(); 
 
    /* Get the pageId from the request parameters */ 
    String pageId = (String) httpReq.getParameter("pageId"); 
    if (pageId  == null) { 
      success = false; 
    } 
 
    /* Get uid and pwd from request parameters */ 
    String req_uid = (String) httpReq.getParameter("uid"); 
    String req_pwd = (String) httpReq.getParameter("pwd"); 
 
    /* If coming from login page, authenticate */ 
    if (pageId.equals("loginPage")) { 
      if (authenticate(req_uid, req_pwd)) { 
        session.setAttribute("uid", req_uid); 
      } 
      else { 
        success = false; 
      } 
    } 
    else { 
      String session_uid = (String) session.getAttribute("uid"); 
      if (session_uid == null || !session_uid.equals(req_uid)) { 
        success = false; 
      } 
    } 
 
    /* If login failed, set attribute in the request and forward to login page */ 
    if (!success) { 
      _req.setAttribute("loginStatus", "failed"); 
      RequestDispatcher rd = httpReq.getRequestDispatcher(LOGIN_PAGE); 
      rd.forward(_req, _res); 
    } 
 
    /* Continue with filter chain */ 
    _chain.doFilter(_req, _res); 
  } 
 
  /** 
   * Check if the user is valid 
   */ 
  private boolean authenticate(String _uid, String _pwd) 
  { 
    Connection dbCon = null; 
    ResultSet rs = null; 
 
    /*Get db connection,  then validate user */ 
    try { 
      dbCon = DBHelper.getConnection(); 
      Statement s = dbCon.createStatement(); 
      rs = s.executeQuery("select * from user where uid = '" 
               + _uid + "' and pwd = '"+ _pwd + "'"); 
      return (rs.next()); 
    } 
    catch (java.sql.SQLException e) { 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



230 

      Logger.log(Logger.ERROR, 
        "A problem occurred while accessing the database."); 
      Logger.log(Logger.ERROR, e.toString()); 
    } 
    finally { 
      /* Close database connection */ 
      try { 
        dbCon.close(); 
      } 
      catch (java.sql.SQLException e) { 
        Logger.log(Logger.ERROR, 
          "A problem occurred while closing the database."); 
        Logger.log(Logger.ERROR, e.toString()); 
      } 
    } 
    return false; 
 
  } 
 
  /** 
   * Reset the Filter configuration. 
   */ 
  public void destroy() 
  { 
    config = null; 
  } 
} 

 

Simplified Request Handling 
 
Chapter 7 introduced a complete framework for handling web requests. To include it in your 
overall application framework, you have to make a few changes to include support for logging 
and the use of the central database component. Also, you'll see how the ActionFactory has 
been changed to allow for a clean separation between the framework and any application that 
uses the framework. You might recall that the ActionFactory required for Action classes to be 
hard-coded into the class. This is not flexible enough to allow for a separate deployment of the 
framework, so it has been changed to take in a new variable called actionClass. Using 
reflection, the ActionFactory loads the class and returns an instance to the controller servlet. 
Listings 11-5, 11-6, 11-7, and 11-8 show the code used to process requests. 
 
Listing 11-5: Controller.java  

 

package jspbook.framework.request; 

 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



231 

import java.sql.*; 

 

import jspbook.framework.db.DBHelper; 

import jspbook.framework.logging.Logger; 

 

/** 

 * Controller servlet to process all application requests 

 * 
 * <p>This class is used to provide an access point into 
 * the framework. It should be declared as a servlet in 
 * the application's web.xml file and mapped appropriately.</p> 
 * <p>The Controller servlet uses a request-handling framework 
 * to process web requests using a set of Action classes. To define 
 * a new Action class, simply implement the Action interface 
 * and add an entry to the ActionFactory class.</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 
public class Controller extends HttpServlet { 
 
  /** 
   *  Shared database connection 
   */ 
  private Connection dbCon; 
 
  /** 
   * Initialize shared resources 
   */ 
  public void init() 
  { 
    dbCon = DBHelper.getConnection(); 
  } 
  /** 
   * Forward to doPost method 
   */ 
  public void doGet(HttpServletRequest _req, HttpServletResponse _res) 
    throws ServletException, IOException 
  { 
    /* Forward to doPost method */ 
    doPost(_req, _res); 
  } 
 
  /** 
   * Process request using Action class and ReqUtility 
   */ 
  public void doPost(HttpServletRequest _req, HttpServletResponse _res) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



232 

    throws ServletException, IOException 
  { 
 
    /* Wrap request object with helper */ 
    ReqUtility reqUtil = new ReqUtility(_req); 
 
    /* Create an Action object based on request parameters */ 
    Action action = reqUtil.getAction(); 
 
    /* Pass the database connection to the action */ 
    action.setDatabase(dbCon); 
 
    /* Execute business logic */ 
    if (action.execute(_req, _res)) { 
 
      /* Get appropriate view for action */ 
      String view = action.getView(); 
 
      /* Add the model to the request attributes */ 
      _req.setAttribute("model", action.getModel()); 
 
      /* Forward the request to the given view */ 
      RequestDispatcher dispatcher = _req.getRequestDispatcher(view); 
      dispatcher.forward(_req, _res); 
 
    } 
 
  } 
  /** 
   * Clean up shared resources 
   */ 
  public void destroy() 
  { 
    try { 
      dbCon.close(); 
    } 
    catch (java.sql.SQLException e) { 
      Logger.log(Logger.ERROR, "A problem occurred while closing the database."); 
      Logger.log(Logger.ERROR, e.toString()); 
    } 
 
  } 
 
} 
 
Listing 11-6: ReqUtility.java  

package jspbook.framework.request; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



233 

 

/** 

 * Request helper utility 

 * 
 * <p>Used simply to extract the 'Action' 
 * parameter and then return the appropriate 
 * Action class using the ActionFactory. This 
 * class could be used to assist with any 
 * request handling activity that can be 
 * offloaded from the servlet.</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
public class ReqUtility { 
 
  /** 
   * Local copy of request object. 
   */ 
  HttpServletRequest request; 
 
  /** 
   * Constructor. Used to set local request object. 
   */ 
  public ReqUtility(HttpServletRequest _req) 
    throws ServletException, IOException 
  { 
    request = _req; 
  } 
 
  /** 
   * Use factory to create action based on request parms 
   */ 
  public Action getAction() 
  { 
    String action = (String) request.getParameter("actionClass"); 
    return ActionFactory.createAction(action); 
  } 
 
} 
 
Listing 11-7: Action.java  

package jspbook.framework.request; 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



234 

import java.sql.*; 

 

/** 

 * Interface for Action objects * 
 * <p>This interface is used to provide a generic 
 * interface to Action objects, which are used to 
 * implement a request action.</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 
public interface Action { 
 
  /** 
   * Set local database connection 
   */ 
  public void setDatabase(Connection _db); 
 
  /** 
   * Execute business logic 
   */ 
  public boolean execute(HttpServletRequest _req, HttpServletResponse _res) 
    throws ServletException, IOException; 
 
  /** 
   * Return the page name (and path) to display the view 
   */ 
  public String getView(); 
 
  /** 
   * Return a JavaBean containing the model (data) 
   */ 
  public Object getModel(); 
} 
 
 
Listing 11-6 shows the utility class that gets the action class above from the request 
parameters and return an action object. 
 
Listing 11-7 shows the interface that all action objects must implement. This interface makes it 
possible for the controller servlet to act on new actions without modifying its code. 
 
Listing 11-8 shows the factory class responsible for instantiating the appropriate action class. 
You do this using Java reflection to create a new instance of an action class based on the 
value passed in to the createAction method. 
 
 
 
Listing 11-8: ActionFactory.java  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



235 

package jspbook.framework.request; 

 

import jspbook.framework.logging.Logger; 

 

/** 

 * Factory class for Action objects 

 * 
 * <p>Generates an object that implements the 
 * Action interface. The createAction method is 
 * called from the ReqUtility object to instantiate 
 * an Action object to handle a web request.</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 
abstract class ActionFactory { 
 
  /** 
   * Instantiate and return the appropriate 
   * Action object 
   */ 
  public static Action createAction(String _actionClass) 
  { 
    Class actionObj = null; 
    Action action = null; 
    try { 
      actionObj = Class.forName(_actionClass); 
      action = (Action) actionObj.newInstance(); 
    } 
    catch (Exception e) { 
      Logger.log(Logger.ERROR, e.toString()); 
    } 
 
    return action; 
  } 
} 

 

Common UI Components 
 
Taken directly from Chapter 8, the FormatTag class provides a user interface component for 
formatting dates and numbers. With the addition of the logging component, Listing 11-9 shows 
the code for the custom tag. 
Listing 11-9: FormatTag.java  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



236 

package jspbook.framework.ui.tags; 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

 

import java.io.*; 

import java.util.*; 

 

import java.text.*; 

 

import jspbook.framework.logging.Logger; 

 

/** 

 * JSP Tag that supports number formatting 

 * 
 * <p>The FormatTag is used to format a text 
 * string into a valid Date, decimal, rounded, 
 * or currency value. The format attribute is 
 * set to a specific format and the body of the 
 * tag is formatted accordingly.</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 
public class FormatTag extends BodyTagSupport { 
 
  /** 
   * Locale object for internationalization of content 
   */ 
  private Locale locale; 
  /** 
   * Tag attribute to format string 
   */ 
  protected int format; 
 
  /** 
   * Static constant for date formatting 
   */ 
  public final static int DATE_LONG = 0; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



237 

 
  /** 
   * Static constant for number formatting 
   */ 
  public final static int NUMERIC_DECIMAL = 1; 
 
  /** 
   * Static constant for number formatting 
   */ 
  public final static int NUMERIC_ROUNDED = 2; 
 
  /** 
   * Static constant for currency formatting 
   */ 
  public final static int NUMERIC_CURRENCY = 3; 
 
  /** 
   * Constructor. Assigns default locale to locale object. 
   */ 
  public FormatTag() { 
    locale = Locale.getDefault(); 
  } 
 
  /** 
   * Accessor method for the locale variable. 
   */ 
  public void setLocale(Locale locale) { 
    this.locale = locale; 
  } 
 
  /** 
   * Process Tag Body 
   */ 
  public int doAfterBody() throws JspTagException { 
    try { 
      BodyContent body = getBodyContent(); 
      JspWriter out = body.getEnclosingWriter(); 
 
      /* Get Input Value */ 
      String textValue = body.getString().trim(); 
 
      /* Output Formatted Value */ 
      out.println(formatValue(textValue)); 
    } 
    catch (IOException e) { 
      throw new JspTagException(e.toString()); 
    } 
    return SKIP_BODY; 
  } 
 
  /** 
   * Process End Tag 
   */ 
  public int doEndTag() throws JspTagException { 
    return EVAL_PAGE; 
  } 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



238 

 
  /** 
   * Format text string into numeric format 
   */ 
  private String formatValue (String _input) 
  { 
    String formattedValue = ""; 
 
    try { 
      switch (format) { 
        case DATE_LONG: { 
          Calendar cal = Calendar.getInstance(); 
          cal.setTime(DateFormat.getDateInstance( 
            DateFormat.SHORT).parse(_input)); 
          SimpleDateFormat df = new SimpleDateFormat("EEE, MMM d, yyyy"); 
          formattedValue = df.format(cal.getTime()); 
          break; 
        } 
        case NUMERIC_DECIMAL: { 
          DecimalFormat dcf = (DecimalFormat) NumberFormat.getInstance(locale); 
          dcf.setMinimumFractionDigits(2); 
          dcf.setMaximumFractionDigits(2); 
          formattedValue = dcf.format(dcf.parse(_input)); 
          break; 
        } 
        case NUMERIC_ROUNDED: { 
          DecimalFormat dcf = (DecimalFormat) NumberFormat.getInstance(locale); 
          dcf.setMinimumFractionDigits(0); 
          dcf.setMaximumFractionDigits(0); 
          formattedValue = dcf.format(dcf.parse(_input)); 
          break; 
        } 
        case NUMERIC_CURRENCY: { 
          float f =Float.parseFloat(_input); 
          DecimalFormat dcf = (DecimalFormat) NumberFormat.getCurrencyInstance(); 
          formattedValue = dcf.format(f); 
          break; 
        } 
      } 
    } 
    catch (Exception e) { 
      System.out.println(e.toString()); 
    } 
 
    return formattedValue; 
  } 
 
  /** 
   * Attribute accessor method for format attribute 
   */ 
  public int getFormat () 
  { 
    return this.format; 
  } 
 
  /** 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



239 

   * Attribute accessor method for format attribute 
   */ 
  public void setFormat (int _format) 
  { 
    this.format = _format; 
  } 
 
} 
 
Deploying a Framework 
 
As mentioned at the beginning of this chapter, the framework is to be deployed as a separate 
project following its own release cycle. The completed framework should include JAR files 
containing the framework classes, framework source code, and framework documentation. The 
JAR file containing the classes can then be dropped into another application's \WEB-INF\lib 
directory and used immediately. To accomplish this, you should write an appropriate build 
script. 

Creating the Framework's Build Script 
 
Using Ant, as was introduced in Chapter 10, you can create a build script to deploy the 
framework, its source, and its documentation. In Chapter 10, the goal of the build scripts was to 
create a WAR file of a complete application. Because the framework is to be deployed as a 
library, the build script will be slightly different. This section will walk through the important 
changes to the build script. 
 
First, the compile task should break out each package and compile it separately. This is done 
so that classes that depend on other framework components can be compiled after any 
dependent class have been compiled. Second, the dist task builds a JAR file containing the 
classes, not a WAR file for an entire application. It also builds a source JAR file as well as a 
documentation JAR file. The <javadoc> task includes a lot of information specifying exactly how 
the documentation should be organized. See the Ant website for more information on using the 
<javadoc> task (http://jakarta.apache.org/ant/index.html). Listing 11-10 shows the entire build 
script to compile and deploy the framework. 
 
Listing 11-10: build.xml  
 
<project name="framework" default="dist" basedir="."> 
 
  <!-- Set global properties for this build --> 
  <property name="src" value="working_files"/> 
  <property name="build" value="build"/> 
  <property name="dist" value="dist"/> 
 
  <target name="init"> 
    <!-- Create the time stamp --> 
    <tstamp/> 
    <!-- Create the build directory used by compile task--> 
    <mkdir dir="${build}"/> 
  </target> 
  <target name="compile" depends="init"> 
    <!-- Compile the java code from ${src} into ${build} --> 
    <path id="project.classpath"> 
      <pathelement path="C:\Development\j2ee1.3\lib\j2ee.jar"/> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



240 

      <pathelement path="C:\Development\log4j1.1.3\dist\lib\log4j.jar"/> 
      <pathelement path="${build}"/> 
    </path> 
    <!-- Build framework in order --> 
    <javac srcdir="${src}/jspbook/framework/logging" destdir="${build}"> 
       <classpath refid="project.classpath"/> 
     </javac> 
    <javac srcdir="${src}/jspbook/framework/db" destdir="${build}"> 
       <classpath refid="project.classpath"/> 
     </javac> 
    <javac srcdir="${src}/jspbook/framework/security" destdir="${build}"> 
       <classpath refid="project.classpath"/> 
     </javac> 
    <javac srcdir="${src}/jspbook/framework/request" destdir="${build}"> 
       <classpath refid="project.classpath"/> 
     </javac> 
    <javac srcdir="${src}/jspbook/framework/ui/tags" destdir="${build}"> 
       <classpath refid="project.classpath"/> 
     </javac> 
  </target> 
 
  <target name="dist" depends="compile"> 
    <!-- Create distribution directories --> 
    <mkdir dir="${dist}\lib"/> 
    <mkdir dir="${dist}\docs"/> 
    <!-- Create JAR files --> 
    <jar jarfile="${dist}\lib\framework_${DSTAMP}.jar" basedir="${build}"/> 
    <jar jarfile="${dist}\lib\framework_src_${DSTAMP}.jar" basedir="${src}"/> 
    <!-- Create Javadoc --> 
    <javadoc packagenames="jspbook.framework.*" 
            sourcepath="${src}" 
            defaultexcludes="yes" 
            destdir="${dist}\docs" 
            classpathref="project.classpath" 
            author="true" 
            version="true" 
            use="true" 
            windowtitle="Web Application Framework"> 
        <doctitle><![CDATA[<h1>Web Application Framework API</h1>]]></doctitle> 
        <bottom><![CDATA[<i>Copyright &#169; 
          2002 APress. All Rights Reserved.</i>]]></bottom> 
        <group title="Request Handling Packages" 
          packages="jspbook.framework.request.*"/> 
        <group title="Database Helper Packages" 
          packages="jspbook.framework.db.*"/> 
        <group title="Logging Packages" packages="jspbook.framework.logging.*"/> 
    </javadoc> 
    <jar jarfile="${dist}\lib\framework_docs_${DSTAMP}.jar" 
       basedir="${dist}\docs"/> 
  </target> 
</project> 
 

Figure 11-1 shows a page taken from the API documentation generated by the <javadoc> task 
in the Ant build script created in Listing 11-10. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



241 

 
Figure 11-1: Javadoc output  

Using the Framework 
 
To use the framework, the first thing you need to do is add it to an application by dropping the 
JAR file into the \WEB-INF\lib directory. Place the log4j.jar file in that location as well. You will 
then need to modify the web.xml file to add the servlet definition for the controller servlet, the 
authentication filter, and the tag library for the user interface components. Once that's done, 
you need to add two variables, pageId and actionClass, to each page in the application. The 
pageId identifies the page that made the current request. The actionClass is the fully qualified 
class name of the action class that will process the page. In the next chapter, you'll build and 
deploy a sample application using this framework. 
 
Summary 
 
This chapter covered the importance of using an application framework and showed how to 
build one. The entire book has been leading up to the development of a reusable framework 
encapsulating a set of best practices and core components that should be present in any 
enterprise-ready web application. The next chapter will make use of this framework in a 
complete end-to-end web application. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



242 

Chapter 12: Putting it all Together 
 
Throughout the course of this book, I've demonstrated several techniques in an attempt to 
describe a set of best practices for the development of JSP applications. This final chapter will 
use these techniques to build a complete web application to try and bring together what has 
been covered throughout the book in a single concrete example. Most importantly, though, this 
application can serve as a reference implementation of the framework developed in Chapter 11.  

Building an Online Catalog 

The application you'll be building in this chapter is a simple online catalog with a shopping cart. 
The catalog will contain items that corporations distribute as company promotions to clients 
and employees. I think everyone at some point in their career has received a coffee mug, 
fountain pen, or even a yo-yo sporting the company logo. This catalog will be displayed on a 
single page for simplicity. 

The shopping cart will keep track of items the user wants to purchase. The user should be able 
to add and remove items to and from the shopping cart. Although this is not a complete e-
commerce solution, it does cover enough functionality to demonstrate the application and 
development frameworks developed in previous chapters. 

Designing the Application 

This application will have three pages. The login page will authenticate the user. A catalog 
page will display the items in the catalog. The shopping cart page will display items the user 
has chosen to purchase. You'll use the framework developed in the last chapter to provide a 
request handling mechanism as well as facilities for logging, database connectivity, and 
security. 

 
Using the framework, the only things you need to develop for your online catalog is a JSP page 
for each screen, along with an action to display the catalog and an action to manage the 
shopping cart (see Figure 12-1). Each action will populate a JavaBean that the corresponding 
JSP page will use to display the appropriate screen. Each screen will take advantage of the 
AuthenticationFilter of the framework to authenticate each request as it passes to the controller 
servlet. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



243 

 
Figure 12-1: Online catalog system  

Setting Up the Application 

Before constructing the application, it's first necessary to perform a few tasks to set up the 
application and configure the framework. Once you've completed these tasks, you can develop 
and deploy the application pages and action classes. The first task to take care of is to create 
the database. 

Creating the Database 

The database for the online catalog application is simple, containing only two tables. The user 
table is necessary for use with the framework's authentication mechanism. The other table, 
product, holds all of the items in the catalog. Before creating these tables, let's first create the 
database using the following command: 

 

c:\dev\mysql> bin\mysql 

  mysql> CREATE DATABASE catalog; 

  mysql> exit 

 
Now that the database exists, add the user and product tables using the createCatalogDB.sql 
script as follows: 
 

c:\dev\mysql> bin\mysql catalog < createCatalogDB.sql 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



244 

This database script creates both the catalog and user tables. It then populates each table with 
sample data. The user that is added to the user table in this script is apatzer, but you can go 
ahead and change that to something more appropriate. Listing 12-1 shows the script used to 
create and populate the database. 
 

Listing 12-1: createCatalogDB.sql  

DROP TABLE IF EXISTS user; 

CREATE TABLE user ( 

  uid varchar(10) not null, 

  pwd varchar(10) not null, 

  fname varchar(30), 

  lname varchar(20) 

); 

INSERT INTO user VALUES 

  ('apatzer', 'apress', 'Andrew', 'Patzer'); 

DROP TABLE IF EXISTS product; 

CREATE TABLE product ( 

  prodid int not null, 

  prodname varchar(30), 

  proddesc varchar(150), 

  price double(7,2) 

); 

INSERT INTO product VALUES ( 

  1, 

  'Yo-Yo', 

  'High-quality wooden yo-yo with your company 

  name and logo imprinted on both sides.', 

  3.50 

); 

INSERT INTO product VALUES ( 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



245 

  2, 

  'Slinky', 

  'Plastic slinky in the color of your choice with your 

  company logo imprinted on closed slinky.', 

  0.75 

); 

INSERT INTO product VALUES ( 

  3, 

  'Envelope Cutter', 

  'Small cutting tool for opening envelopes. 

  Your company logo is imprinted on handle.', 

  1.25 

); 

INSERT INTO product VALUES ( 

  4, 

  'Padfolio', 

  'Synthetic leather padfolio with company name 

  and logo imprinted on cover.', 

  9.50 

); 

INSERT INTO product VALUES ( 

  5, 

  'Fountain Pen', 

  'Attractive fountain pen sporting your company 

  name on the cap.', 

  1.20 

); 

INSERT INTO product VALUES ( 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



246 

  6, 

  'Keychain', 

  'Rubber keychain with your company name and 

  logo imprinted in a variety of colors.', 

  0.50 

); 

INSERT INTO product VALUES ( 

  7, 

  'Ruler', 

  'Wooden ruler with raised lettering containing 

  your company name and logo.', 

  0.25 

); 

INSERT INTO product VALUES ( 

  8, 

  'Flashlight', 

  'Metal flashlight in a variety of colors. Your 

  company name and logo is imprinted on the handle.', 

  5.0 

); 

________________________________________________________ 

Setting Up the Application Server 

When deploying the application, you can manually create the directory structure and move the 
files into their appropriate locations, or you can assemble a WAR file in your build script and 
use the application server deployment tool to deploy the application (if your application server 
has such a tool). For this example, you'll create the directories and move the files manually to 
avoid differences in application server deployment tools. 
First, create a \Catalog directory underneath the \webapps directory in your Tomcat's home 
directory. Inside of the \Catalog directory, add a \WEB-INF directory. Once you've created these 
directories, edit the server.xml file, and add the lines shown in Listing 12-2. 
 
Listing 12-2: server.xml Modifications  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



247 

 
<Context path="/Catalog" 
  docBase="Catalog" 
  crossContext="false" 
  debug="0" 
  reloadable="true"> 
 
  <Logger className="org.apache.catalina.logger.FileLogger" 
    prefix="localhost_CatalogApp_log." suffix=".txt" 
    timestamp="true"/> 
 
  <Resource name="jdbc/CatalogDB" auth="SERVLET" 
    type="javax.sql.DataSource"/> 
  <ResourceParams name="jdbc/CatalogDB"> 
    <parameter> 
      <name>driverClassName</name> 
      <value>org.gjt.mm.mysql.Driver</value> 
    </parameter> 
    <parameter> 
      <name>driverName</name> 
      <value>jdbc:mysql://localhost:3306/catalog</value> 
    </parameter> 
  </ResourceParams> 
 
</Context> 

 
Next, you should create the web.xml file and add it to the \WEB-INF directory. Inside the web.xml 
file, just add a resource definition for the database you've just created. Listing 12-3 shows what 
the web.xml file looks like at this point. 
 
Listing 12-3: web.xml  
 

<?xml version="1.0" encoding="ISO-8859-1"?> 
 
<!DOCTYPE web-app 
    PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN" 
    "http://java.sun.com/dtd/web-app_2_3.dtd"> 
 
<web-app> 
  <!-- Describe a DataSource --> 
  <resource-ref> 
    <description> 
      Resource reference to a factory for java.sql.Connection 
      instances that may be used for talking to a particular 
      database that is configured in the server.xml file. 
    </description> 
    <res-ref-name> 
      jdbc/CatalogDB 
    </res-ref-name> 
    <res-type> 
      javax.sql.DataSource 
    </res-type> 
    <res-auth> 
      SERVLET 
    </res-auth> 
  </resource-ref> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



248 

</web-app> 
 

Installing and Configuring the Framework 

 
To use the framework with this application, you should add the framework.jar file to the \WEB-
INF\lib directory. You need to make several additions to the web.xml file to install the framework. 
First, add a filter declaration for the AuthenticationFilter. Next, add a servlet declaration and 
mapping for the controller servlet. Finally, add the tag library descriptor to include the 
formatting tags found in the framework. Listing 12-4 shows these additions to the web.xml file. 
 
Listing 12-4: Additions to web.xml  
 
<filter> 
  <filter-name>authFilter</filter-name> 
  <filter-class>jspbook.framework.security.AuthenticatioFilter</filter-class> 
</filter> 
<filter-mapping> 
  <filter-name>authFilter</filter-name> 
  <url-pattern>/Controller</url-pattern> 
</filter-mapping> 
 
<servlet> 
  <servlet-name>Controller</servlet-name> 
  <servlet-class>jspbook.framework.request.Controller</servlet-class> 
</servlet> 
 
<servlet -mapping> 
  <servlet-name>Controller</servlet-name> 
  <url-pattern>/Controller</url-pattern> 
</servlet-mapping> 
 
<taglib> 
   <taglib-uri>/uitags</taglib-uri> 
   <taglib-location>/WEB-INF/tlds/uitags.tld</taglib-location> 
</taglib> 
 

The framework contains a class called AppConstants that reads in a property file and makes it 
available to the rest of the application. You should create and save this property file, app.props, 
in the \WEB-INF directory. The property file needs just one property to begin with, the dbName 
property. Set it to jdbc/CatalogDB to match the data source in the web.xml file. Finally, modify the 
startup script for the application server to pass in a system property telling the framework the 
location of the app.props file. Here's an example of how to change the startup script (using 
Tomcat): 
 

Relevant line of startup script before change: 

 

%_STARTJAVA% %CATALINA_OPTS% -Dcatalina.base="%CATALINA_BASE%" 

-Dcatalina.home="%CATALINA_HOME%" 

org.apache.catalina.startup.Bootstrap %2 %3 %4 %5 %6 %7 %8 %9 start 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



249 

After change: 

 

%_STARTJAVA% %CATALINA_OPTS% -Dcatalina.base="%CATALINA_BASE%" 

-Dcatalina.home="%CATALINA_HOME%" 

-Dprop.file.dir=c:\development\tomcat4.0.2\webapps\catalog\WEB-INF 

org.apache.catalina.startup.Bootstrap %2 %3 %4 %5 %6 %7 %8 %9 start 

Setting Up the Development Environment 

The development environment consists of a directory structure to place the project files in and 
a build script to compile and deploy the application. The directory structure to use for this 
project is as follows: 

\Catalog 

  \lib 

  \working_files 

 
The \lib directory should contain any supporting libraries necessary for compiling the 
application. In this case, the \lib directory should contain a copy of the framework.jar file. The 
\working_files directory is where the source code for the application will reside. The build script 
will create build and dist directories as needed. The build script is similar to those used in 
earlier chapters. Listing 12-5 shows the complete script used to build the application. 
 
Listing 12-5: build.xml  
 
<project name="catalog" default="dist" basedir="."> 
 
  <!-- Set global properties for this build --> 
  <property name="src" value="working_files"/> 
  <property name="build" value="build"/> 
  <property name="dist" value="dist"/> 
 
<target name="init"> 
  <!-- Create the time stamp --> 
  <tstamp/> 
  <!-- Create the build directory used by compile task--> 
  <mkdir dir="${build}"/> 
</target> 
 
<target name="compile" depends="init"> 
  <!-- Compile the java code from ${src} into ${build} --> 
  <path id="project.classpath"> 
    <pathelement path="C:\Development\j2ee1.3\lib\j2ee.jar"/> 
    <pathelement path="C:\Development\log4j1.1.3\dist\lib\log4j.jar"/> 
    <pathelement path="lib\framework.jar"/> 
    <pathelement path="${build}"/> 
</path> 
<javac srcdir="${src}" destdir="${build}"> 
   <classpath refid="project.classpath"/> 
 </javac> 
</target> 
<target name="dist" depends="compile"> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



250 

    <!-- Create distribution directories --> 
    <mkdir dir="${dist}\lib"/> 
    <mkdir dir="${dist}\docs"/> 
    <!-- Create JAR files --> 
    <jar jarfile="${dist}\lib\catalog_${DSTAMP}.jar" basedir="${build}"/> 
    <jar jarfile="${dist}\lib\catalog_src_${DSTAMP}.jar" basedir="${src}"/> 
    <!-- Create Javadoc --> 
    <javadoc packagenames="catalog.*" 
           sourcepath="${src}" 
           defaultexcludes="yes" 
           destdir="${dist}\docs" 
           classpathref="project.classpath" 
           author="true" 
           version="true" 
           use="true" 
           windowtitle="Online Catalog Application"> 
        <doctitle><![CDATA[<h1>Online Catalog Application</h1>]]></doctitle> 
        <bottom> 
          <![CDATA[<i>Copyright &#169; 2002 APress. All Rights Reserved.</i>]]> 
        </bottom> 
    </javadoc> 
    <jar jarfile="${dist}\lib\catalog_docs_${DSTAMP}.jar" 
      basedir="${dist}\docs"/> 
  </target> 
 
</project> 
 

Creating Application Resources 

The final preparation to make, as you move on to constructing the application, is to create 
some of the static resources used by JSP pages. These resources are the HTML header used 
by the JSP pages, the standard error page, and the images used by the application. These are 
the images that you need to create: 

 
§ logo.gif: Logo for display in leftmost column of top banner 

§ hdr_bar.gif: Background image for right column of top banner 
§ viewcart.gif: Button for home.jsp page 
§ addtocart.gif: Button for home.jsp page to accompany each catalog item 
§ removefromcart.gif: Button for cart.jsp to accompany each item in cart 

The header HTML and error page are almost identical to those used in previous chapters. The 
header code is stored as and referenced by the name myHeader.html. Listing 12-6 shows what 
this code looks like. 
 
Listing 12-6: myHeader.html  
 
<table width="100%" border="0" cellspacing="0" cellpadding="0"> 
  <tr> 
    <td width="187"><img src="images/logo.gif"></td> 
    <td background="images/hdr_bar.gif">&nbsp;</td> 
  </tr> 
</table> 
The error page is called myError.jsp and contains the code shown in Listing 12-7. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



251 

Listing 12-7: myError.jsp  
 
<%@page isErrorPage="true" %> 
 
<html> 
<head> 
  <title>Trinkets Online - Error!</title> 
</head> 
 
<body> 
<br> 
 
<%@include file="myHeader.html" %> 
 
<% String from = (String)request.getParameter("from"); %> 
 
An error occurred on page <b><%= from %></b>. 
 
<br><br> 
 
The exception was: 
<br> 
<b><%= exception %></b> 
 
<!-- Send exception report to administrator --> <% System.out.println(exception.toString()); %> 
 
</body> 
</html> 

 

Logging in to the Application 
 
The login page simply collects the user ID and password of the user trying to access the 
application (see Figure 12-2). Each request made to the application passes through the 
AuthenticationFilter on its way to the controller servlet. The login page provides enough 
information to enable the user to be authenticated so that the filter will let all future requests 
flow through to the application. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



252 

 
Figure 12-2: Login page  
 
The code for the login.jsp page contains a simple form and a couple of hidden variables. 
These variables provide the filter and the controller with enough information to authenticate the 
user and forward them to the home page of the catalog. There's also a bit of code that checks 
to see if the user has arrived at this page as the result of a failed authentication attempt. If 
that's the case, a status message alerts the user to the failed attempt. Listing 12-8 shows the 
code for the login page. 
 
Listing 12-8: login.jsp  
 
<%@ page 
  errorPage="myError.jsp?from=login.jsp" 
 
%> 
 
<html> 
<head> 
  <title>Trinkets Online</title> 
</head> 
 
<body bgcolor="#FFFFFF"> 
 
<%@ include file="myHeader.html" %> 
 
<form method="post" action="Controller"> 
 
<input type="hidden" name="pageId" value="loginPage"></input> 
<input type="hidden" name="actionClass" value="catalog.actions.HomeAction"></input> 
 
<p align="center"> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



253 

  <font face="Arial, Helvetica, sans-serif" size="6" color="#0000CC"> 
    <b>Login to Trinkets Catalog</b> 
  </font> 
</p> 
 
<p>&nbsp;</p> 
 
<!-- Check login status and display message if login attempt failed. --> 
 
<% String status = (String) request.getAttribute("loginStatus"); 
   if (status != null && status.equals("failed")) { 
%> 
<center> 
  <font color="#ff0000">Invalid login, please try again.</font> 
</center> 
<% 
  } 
%> 
<table width="199" border="0" align="center" cellpadding="5"> 
  <tr> 
    <td> 
      <font face="Arial, Helvetica, sans-serif" size="2">User ID:</font> 
    </td> 
    <td><input type="text" name="uid"></td> 
  </tr> 
  <tr> 
    <td><font face="Arial, Helvetica, sans-serif" size="2">Password:</font></td> 
    <td><input type="password" name="pwd"></td> 
  </tr> 
  <tr align="center"> 
    <td colspan="2"><input type="submit" name="Submit" value="Login"></td> 
  </tr> 
</table> 
 
</form> 
 
</body> 
</html> 

 
Viewing the Catalog 
 
The first page the user sees upon successful login to the application is the home page 
displaying the entire set of items contained within the catalog (see Figure 12-3). To present this 
page, the controller will instantiate the HomeAction class, execute its business logic, and forward 
the user to the appropriate view. The HomeAction class retrieves the entire set of catalog items 
from the product table and stores them in a CatalogBean object. Listing 12-9 shows the code for 
the HomeAction class. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



254 

 
Figure 12-3: Catalog page  
 
 
 
Listing 12-9: HomeAction.java  

 

package catalog.actions; 

 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; import java.sql.*; 

 

import jspbook.framework.request.*; 

import jspbook.framework.logging.*; 

import catalog.beans.CatalogBean; 

 

/** 

 * Home action class used to display the home page of the catalog 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



255 

 * 
 * <p>Retrieves a list of catalog items, populates 
 * a JavaBean, and returns the name of the page 
 * to display the catalog.</p> 
 * 
 * @version 1.0 
 * @author Andrew Patzer 
 * @since JDK 1.3 
 */ 
 
public class HomeAction implements Action 
{ 
 
  /** 
   * Page to use to display data 
   */ 
  private String view; 
  /** 
   * Database connection 
   */ 
  private Connection dbCon; 
  /** 
   * JavaBean used to represent catalog items 
   */ 
  private CatalogBean cBean; 
 
  /** 
   * No-arg constructor used to initialize the JavaBean. 
   */ 
  public HomeAction() 
  { 
    cBean = new CatalogBean(); 
  } 
 
  /** 
   * Sets the database connection. 
   */ 
  public void setDatabase(Connection _db) 
  { 
     dbCon = _db; 
  } 
 
  /** 
   * Retrieves the catalog items and populates JavaBean. 
   */ 
  public boolean execute(HttpServletRequest _req, HttpServletResponse _res) 
    throws ServletException, IOException 
  { 
    /* Retrieve list of catalog items and store in JavaBean */ 
    ResultSet rs = null; 
    try { 
      Statement s = dbCon.createStatement(); 
      rs = s.executeQuery("select * from product"); 
    } 
    catch (SQLException e) { 
      Logger.log(Logger.ERROR, "Error retrieving catalog items: "+ e.toString()); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



256 

    } 
 
    cBean.populate(rs); 
 
    /* Set the view */ 
    view = "home.jsp"; 
 
    return true; 
  } 
 
  /** 
   * Returns the page name used to display the view. 
   */ 
  public String getView() 
  { 
    return view; 
  } 
 
  /** 
   * Returns a JavaBean containing the data necessary to display the view. 
   */ 
  public Object getModel() 
  { 
    return cBean; 
  } 
 
} 
 
The CatalogBean class represents a set of items from the product table of the catalog database. 
It contains methods that allow an external entity to scroll through the set of items and access 
each one individually. Listing 12-10 shows the code for the CatalogBean. 
 
Listing 12-10: CatalogBean.java  

 

package catalog.beans; 

 

import java.io.*; 

import java.util.*; 

import java.sql.*; 

 

import jspbook.framework.logging.*; 

 

/** 

 * JavaBean representing a catalog item 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



257 

 * 
 * <p>Stores the data representing an item 
 * from the catalog database.</p> 
 * 
 * @version 1.0 
 * @author Andrew Patzer 
 * @since JDK 1.3 
 */ 
 
 public class CatalogBean implements Serializable 
 { 
 
  /** 
   * Product ID 
   */ 
  private int prodid; 
  /** 
   * Product Name 
   */ 
  private String prodname; 
  /** 
   * Product Description 
   */ 
  private String proddesc; 
  /** 
   * Product Price 
   */ 
  private double price; 
 
  /** 
   * Stores all product ID's in the database 
   */ 
  private ArrayList prodidList; 
  /** 
   * Stores all product name's in the database 
   */ 
  private ArrayList prodnameList; 
  /** 
   * Stores all product description's in the database 
   */ 
  private ArrayList proddescList; 
  /** 
   * Stores all product price's in the database 
   */ 
  private ArrayList priceList; 
 
  /** 
   * Current row (used when displaying records) 
   */ 
  private int currentRow; 
  /** 
   * Row count (used to keep track of total rows 
   */ 
  private int rowCount; 
  /** 
   * Total rows (used to report the total number of items in the bean) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



258 

   */ 
  private int totalRows; 
 
  /** 
   * No-arg constructor used to initialize the bean. 
   */ 
  public CatalogBean() 
  { 
    /* Initialize arrayLists to hold recordsets */ 
    prodidList = new ArrayList(); 
    prodnameList = new ArrayList(); 
    proddescList = new ArrayList(); 
    priceList = new ArrayList(); 
 
    /* Initialize helper variables */ 
    currentRow = 0; 
    rowCount = 0; 
  } 
  /** 
   * Setter method for Product ID. 
   */ 
  public void setProdid (int _prodid) {this.prodid = _prodid;} 
  /** 
   * Getter method for Product ID. 
   */ 
  public int getProdid () {return this.prodid;} 
 
  /** 
   * Setter method for Product Name. 
   */ 
  public void setProdname (String _prodname) {this.prodname = _prodname;} 
  /** 
   * Getter method for Product Name. 
   */ 
  public String getProdname () {return this.prodname;} 
 
  /** 
   * Setter method for Product Description. 
   */ 
  public void setProddesc (String _proddesc) {this.proddesc = _proddesc;} 
  /** 
   * Getter method for Product Description. 
   */ 
  public String getProddesc () {return this.proddesc;} 
 
  /** 
   * Setter method for Product Price. 
   */ 
  public void setPrice (double _price) {this.price = _price;} 
  /** 
   * Getter method for Product Price. 
   */ 
  public double getPrice () {return this.price;} 
 
  /** 
   * Populates JavaBean with data from a JDBC result set. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



259 

   */ 
  public boolean populate(ResultSet _rs) 
  { 
    try { 
      prodidList.clear(); 
      prodnameList.clear(); 
      proddescList.clear(); 
      priceList.clear(); 
 
      rowCount = 0; 
      while (_rs.next()) { 
        prodidList.add(new Integer(_rs.getInt("prodid"))); 
        prodnameList.add(_rs.getString("prodname")); 
        proddescList.add(_rs.getString("proddesc")); 
        priceList.add(new Float(_rs.getDouble("price"))); 
        rowCount++; 
      } 
    } 
    catch (Exception e) { 
      Logger.log(Logger.ERROR, "Error populating Catalog Bean: "+ e.toString()); 
      return false; 
    } 
 
    return true; 
  } 
 
  /** 
   * Resets the current row. 
   */ 
  public void setStartRow(int _start) 
  { 
     if (_start < rowCount) { 
       currentRow = _start; 
     } 
  } 
 
  /** 
   * Returns the total number of items in the bean. 
   */ 
    public int getTotalRows() 
    { 
      return this.rowCount; 
    } 
 
    /** 
     * Advances the bean to the next record. 
     */ 
    public int nextRow() 
    { 
      if (currentRow <= rowCount) { 
        /* Populate bean properties with current row */ 
        Integer tmpInt = (Integer)prodidList.get(currentRow); 
        setProdid(tmpInt.intValue()); 
         setProdname((String)prodnameList.get(currentRow)); 
        setProddesc((String)proddescList.get(currentRow)); 
        Float tmpFloat = (Float)priceList.get(currentRow); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



260 

        setPrice(tmpFloat.doubleValue()); 
      } 
 
      currentRow++; 
 
      /* return currentRow*/ 
      return currentRow; 
    } 
 
  } 
 
The home.jsp page takes the CatalogBean and displays each record for the user to select and 
add to a shopping cart. You do this by looping through the CatalogBean and passing its values to 
the CatalogItem custom tag for display. Listing 12-11 shows the code for the home.jsp page. 
 
Listing 12-11: home.jsp  
 
<%@ page 
  import="catalog.beans.CatalogBean" 
  errorPage="myError.jsp?from=home.jsp" 
%> 
 
<%@ taglib uri="/catalogtags" prefix="cat" %> 
 
<html> 
<head> 
  <title>Trinkets Online</title> 
</head> 
 
<body bgcolor="#FFFFFF"> 
 
<%@ include file="myHeader.html" %> 
<p align="right"> 
  <a href="Controller?pageId=home&actionClass= 
        catalog.actions.CartAction&action=view"> 
     <img src="images\viewcart.gif" border="0"> 
  </a> 
</p> 
 
<center> 
 
<font face="Arial, Helvetica, sans-serif" size="6" color="#0000CC"> 
  <b>Weekly Specials</b> 
</font> 
 
<br><br> 
 
<% CatalogBean cBean = (CatalogBean) request.getAttribute("model"); 
   if (cBean != null) { 
     cBean.setStartRow(0); 
     for (int i = 0; i < cBean.getTotalRows(); i++) { 
       cBean.nextRow(); 
%> 
 
<cat:CatalogItem 
  prodid='<%= Integer.toString(cBean.getProdid()) %>' 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



261 

  prodname='<%= cBean.getProdname() %>' 
  price='<%= Double.toString(cBean.getPrice()) %>' 
  proddesc='<%= cBean.getProddesc() %>' 
/> 
 
<hr width="500" align="center"> 
 
<% 
     } 
    } 
%> 
 
</center> 
 
</body> 
</html> 

 
The CatalogItem tag takes the data from the CatalogBean and adapts it to a table row. The tag 
requires a tag library descriptor as well as an entry in the web.xml file. Listing 12-12 shows the 
catalogtags.tld file containing the necessary entries to describe the CatalogItem tag. 
 
Listing 12-12: catalogtags.tld  
 
<?xml version="1.0" encoding="ISO-8859-1" ?> 
<!DOCTYPE taglib 
    PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.2//EN" 
    "http://java.sun.com/j2ee/dtd/web-jsptaglibrary_1_2.dtd"> 
 
<taglib> 
  <tlib-version>1.0</tlib-version> 
  <jsp-version>1.2</jsp-version> 
  <short-name>catalogTags</short-name> 
  <description> 
    Tag library to support the case study in chapter 12 
  </description> 
  <tag> 
    <name>CatalogItem</name> 
    <tag-class>catalog.ui.tags.CatalogItem</tag-class> 
    <body-content>JSP</body-content> 
    <attribute> 
      <name>prodid</name> 
      <required>yes</required> 
      <rtexprvalue>true</rtexprvalue> 
    </attribute> 
    <attribute> 
      <name>prodname</name> 
      <required>yes</required> 
      <rtexprvalue>true</rtexprvalue> 
    </attribute> 
    <attribute> 
      <name>price</name> 
      <required>yes</required> 
      <rtexprvalue>true</rtexprvalue> 
    </attribute> 
    <attribute> 
      <name>proddesc</name> 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



262 

      <required>yes</required> 
      <rtexprvalue>true</rtexprvalue> 
    </attribute> 
  </tag> 
</taglib> 

 
The CatalogItem tag handler builds a table entry containing the product ID, product name, price, 
and product description by making three separate calls to the printRow method. Each call to this 
method builds a table row. The row to build is determined by a switch statement that evaluates 
the value passed into the method. Listing 12-13 shows the code for the CatalogItem tag handler.  
 
Listing 12-13: CatalogItem.java  
 

package catalog.ui.tags; 

 

import javax.servlet.http.*; 

import javax.servlet.jsp.*; 

import javax.servlet.jsp.tagext.*; 

import java.io.IOException; 

import java.text.*; 

 

import jspbook.framework.logging.Logger; 

 

/** 

 * Custom Tag Extension representing a catalog item 

 * 
 * <p>Outputs a table row representing an item 
 * in a catalog.</p> 
 * 
 * @version 1.0 
 * @author Andrew Patzer 
 * @since JDK 1.3 
 */ 
 
public class CatalogItem extends TagSupport 
{ 
 
  /** 
   * Product ID 
   */ 
  protected String prodid; 
  /** 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



263 

   * Product Name 
   */ 
  protected String prodname; 
  /** 
   * Product Price 
   */ 
  protected String price; 
  /** 
   * Product Description 
   */ 
  protected String proddesc; 
 
/** 
 * Processes the tag, outputting a formatted 
 * catalog item. 
 */ 
public int doStartTag() throws JspTagException { 
  try { 
    JspWriter out = pageContext.getOut(); 
    out.println("<table width='500' border='0'>"); 
    out.println(printRow(1)); 
    out.println(printRow(2)); 
    out.println(printRow(3)); 
    out.println("</table>"); 
  } 
  catch (IOException e) { 
    Logger.log(Logger.ERROR, e.toString()); 
    throw new JspTagException(e.toString()); 
  } 
  return SKIP_BODY; 
} 
/** 
 * Processes the end tag. 
 */ 
public int doEndTag() throws JspTagException { 
  return EVAL_PAGE; 
} 
 
/** 
 * Prints a single row of the catalog item. 
 */ 
public String printRow(int _row) 
{ 
  String col1 = ""; 
  String col2 = ""; 
  String col3 = ""; 
 
  StringBuffer htmlRow = new StringBuffer(); 
  switch (_row) { 
     case 1: 
       col1 = "Product:"; 
       col2 = prodname; 
       col3 = ""; 
       break; 
     case 2: 
       col1 = "Price:"; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



264 

 
       /* Format price */ 
       float f = Float.parseFloat(price); 
       DecimalFormat dcf = (DecimalFormat) NumberFormat.getCurrencyInstance(); 
       col2 = dcf.format(f); 
 
       col3 = ""; 
       break; 
     case 3: 
       col1 = "Description:"; 
       col2 = proddesc; 
 
       /* Build link to cart action */ 
       StringBuffer tmpStr = new StringBuffer(); 
       tmpStr.append("<a href='Controller?"); 
       tmpStr.append("action=add&"); 
       tmpStr.append("prodid=").append(prodid).append("&"); 
       tmpStr.append("prodname=").append(prodname).append("&"); 
       tmpStr.append("price=").append(price).append("&"); 
       tmpStr.append("pageId=home&"); 
       tmpStr.append("actionClass=catalog.actions.CartAction'>"); 
       tmpStr.append("<img src='images/addtocart.gif' border='0'></a>"); 
 
       col3 = tmpStr.toString(); 
       break; 
  } 
 
   htmlRow.append("<tr>"); 
 
   /* Column 1*/ 
   htmlRow.append("<td width='150' align='right' valign='top'>"); 
   htmlRow.append("<b><font face='Arial, Helvetica, sans-serif' size='2'>"); 
   htmlRow.append(col1); 
   htmlRow.append("</font></b></td>"); 
  /* Column 2 */ 
   htmlRow.append("<td width='200' valign='top'>"); 
   htmlRow.append("<font face='Arial, Helvetica, sans-serif' size='2'>"); 
   htmlRow.append(col2); 
   htmlRow.append("</font></td>"); 
 
   /* Column 2 */ 
   htmlRow.append("<td width='116' valign='top'>"); 
   htmlRow.append(col3); 
   htmlRow.append("</td>"); 
 
   htmlRow.append("</tr>"); 
 
   return htmlRow.toString(); 
 } 
 /** 
  * Setter method for Product ID 
  */ 
 public String getProdid() {return prodid;} 
 
 /** 
  * Getter method for Product ID 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



265 

  */ 
 public void setProdid(String _prodid) {prodid = _prodid;} 
 
 /** 
  * Setter method for Product Name 
  */ 
 public String getProdname() {return prodname;} 
 /** 
  * Getter method for Product Name 
  */ 
 public void setProdname(String _prodname) {prodname = _prodname;} 
 
 /** 
  * Setter method for Product Price 
  */ 
 public String getPrice() {return price;} 
 /** 
  * Getter method for Product Price 
  */ 
 public void setPrice(String _price) {price = _price;} 
 /** 
  * Setter method for Product Description 
  */ 
 public String getProddesc() {return proddesc;} 
 /** 
  * Getter method for Product Description 
  */ 
 public void setProddesc(String _proddesc) {proddesc = _proddesc;} 
 
} 

 
Accessing the Shopping Cart 
 
The shopping cart is managed using the CartAction class and is displayed using the cart.jsp 
page. Each item in the cart is displayed along with a Remove button, which removes a specific 
item from the cart. For this example, the only functionality the cart has is to add items to it, 
remove items from it, and view the contents of it. The first step in managing the shopping cart 
is to make a request to the CartAction class, along with a new form parameter called 'action'. 
This should be set to add, remove, or view as needed. Listing 12-14 shows the code for the 
CartAction class. 
 
Listing 12-14: CartAction.java  
 

package catalog.actions; 

 

import javax.servlet.*; 

import javax.servlet.http.*; 

import java.io.*; 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



266 

import java.sql.*; 

 

import jspbook.framework.request.*; 

import jspbook.framework.logging.*; 

import catalog.beans.CartBean; 

 

/** 

 * Cart Action class to manage a shopping cart 

 * 
 * <p>Allows a user to view a cart, add items 
 * to a cart, or remove an item from the cart.</p> 
 * 
 * @version 1.0 
 * @author Andrew Patzer 
 * @since JDK 1.3 
 */ 
 
public class CartAction implements Action { 
  /** 
   * Name of the page used to present the cart screen 
   */ 
  private String view; 
 
  /** 
   * Database connection object 
   */ 
  private Connection dbCon; 
 
  /** 
   * JavaBean representing the shopping cart 
   */ 
  private CartBean cBean; 
 
  /** 
   * No-args constructor 
   */ 
  public CartAction() {} 
 
  /** 
   * Sets the database connection 
   */ 
  public void setDatabase(Connection _db) 
  { 
    dbCon = _db; 
  } 
 
  /** 
   * Execute the business logic. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



267 

   */ 
  public boolean execute(HttpServletRequest _req, HttpServletResponse _res) 
    throws ServletException, IOException 
 { 
      /* Retrieve cBean from session, if it exists */ 
      HttpSession session = _req.getSession(); 
      cBean = (CartBean) session.getValue("cart"); 
      if (cBean == null) { 
      cBean = new CartBean(); 
    } 
 
    /* Perform action */ 
    String action = _req.getParameter("action"); 
    String prodid = _req.getParameter("prodid"); 
    String prodname = _req.getParameter("prodname"); 
    String price = _req.getParameter("price"); 
 
    if (action.equals("add")) { 
      cBean.add(prodid, prodname, price); 
    } 
 
    if (action.equals("remove")) { 
      cBean.remove(prodid); 
    } 
 
    /* Write cBean back to session */ 
    session.putValue("cart", cBean); 
 
    /* Set the view */ 
    view = "cart.jsp"; 
 
    return true; 
  } 
 
  /** 
   * Return the name of the page used to display the data. 
   */ 
  public String getView() 
  { 
    return view; 
  } 
 
  /** 
   * Return a JavaBean containing the model (data). 
   */ 
  public Object getModel() 
  { 
    return cBean; 
  } 
 
} 
 
Each item stored in the cart is represented by the CartBean class. This bean stores items much 
like the CatalogBean does. It contains a similar mechanism for navigating through the set of 
items it contains. Listing 12-15 shows the code for the CartBean class. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



268 

Listing 12-15: CartBean.java  
 

package catalog.beans; 

 

import java.io.*; 

import java.util.*; 

import java.sql.*; 

 

import jspbook.framework.logging.*; 

 

/** 

 * JavaBean representing a shopping cart 

 * 
 * <p>Stores the product id, product name, 
 * and product description of each item 
 * stored in the shopping cart.</p> 
 * 
 * @version 1.0 
 * @author  Andrew Patzer 
 * @since   JDK 1.3 
 */ 
 
public class CartBean implements Serializable 
{ 
  /** 
   * Product ID 
   */ 
  private String prodid; 
  /** 
   * Product Name 
   */ 
  private String prodname; 
  /** 
   * Product Price 
   */ 
  private String price; 
 
  /** 
   * List of Product ID's stored in cart 
   */ 
  private ArrayList prodidList; 
  /** 
   * List of Product name's stored in cart 
   */ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



269 

  private ArrayList prodnameList; 
  /** 
   * List of Product price's stored in cart 
   */ 
  private ArrayList priceList; 
 
  /** 
   * Pointer used to display items in order 
   */ 
  private int currentRow; 
 
  /** 
   * No-args constructor used to initialize the bean. 
   */ 
  public CartBean() 
  { 
    /* Initialize arrayLists to hold recordsets */ 
    prodidList = new ArrayList(); 
    prodnameList = new ArrayList(); 
    priceList = new ArrayList(); 
 
    /* Initialize helper variables */ 
    currentRow = 0; 
  } 
 
  /** 
   * Setter method for Product ID. 
   */ 
  public void setProdid (String _prodid) {this.prodid = _prodid;} 
  /** 
   * Getter method for Product ID. 
   */ 
  public String getProdid () {return this.prodid;} 
 
  /** 
   * Setter method for Product Name. 
   */ 
  public void setProdname (String _prodname) {this.prodname = _prodname;} 
  /** 
   * Getter method for Product Name. 
   */ 
  public String getProdname () {return this.prodname;} 
 
  /** 
   * Setter method for Product Price. 
   */ 
  public void setPrice (String _price) {this.price = _price;} 
  /** 
   * Getter method for Product Price. 
   */ 
  public String getPrice () {return this.price;} 
 
  /** 
   * Inserts item into cart. 
   */ 
  public boolean add(String _id, String _name, String _price) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



270 

  { 
    try { 
      prodidList.add(_id); 
      prodnameList.add(_name); 
      priceList.add(_price); 
    } 
    catch (Exception e) { 
      Logger.log(Logger.ERROR, "Error populating CartBean: "+ e.toString()); 
      return false; 
    } 
 
    return true; 
  } 
 
  /** 
   * Removes an item from the cart. 
   */ 
  public void remove (String _id) 
  { 
    int index = prodidList.indexOf(_id); 
    prodidList.remove(index); 
    prodnameList.remove(index); 
    priceList.remove(index); 
  } 
 
  /** 
   * Resets the current row. 
   */ 
  public void setStartRow(int _start) 
  { 
    if (_start < prodidList.size()) { 
      currentRow = _start; 
    } 
  } 
 
  /** 
   * Returns the total number of items in the cart. 
   */ 
  public int getTotalRows() 
  { 
    return prodidList.size(); 
  } 
 
  /** 
   * Advances the bean to the next item in the shopping cart. 
   */ 
  public int nextRow() 
  { 
    /* Populate bean properties with current row */ 
    setProdid((String)prodidList.get(currentRow)); 
    setProdname((String)prodnameList.get(currentRow)); 
    setPrice((String)priceList.get(currentRow)); 
 
    currentRow++; 
 
    /* return currentRow*/ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



271 

    return currentRow; 
  } 
} 
 
The cart is displayed using the cart.jsp page. The cart.jsp page simply displays each item 
stored in the CartBean object. It uses the FormatTag of the framework to format the price field as 
a currency value. Listing 12-16 shows the code for the cart.jsp page. 
 
Listing 12-16: cart.jsp  
 
    import="catalog.beans.CartBean" 
    errorPage="myError.jsp?from=cart.jsp" 
%> 
<%@ taglib uri="/uitags" prefix="uitags" %> 
 
<html> 
<head> 
  <title>Trinkets Online</title> 
</head> 
 
<body bgcolor="#FFFFFF"> 
 
<%@ include file="myHeader.html" %> 
 
<center> 
 
<font face="Arial, Helvetica, sans-serif" size="6" color="#0000CC"> 
  <b>Items in Cart</b> 
</font> 
 
<br><br> 
 
<table width="400" border="0"> 
 
<% CartBean cBean = (CartBean) request.getAttribute("model"); 
   if (cBean != null) { 
     cBean.setStartRow(0); 
     for (int i = 0; i < cBean.getTotalRows(); i++) { 
       cBean.nextRow(); 
%> 
  <tr> 
    <td width="100"> 
      <a href="Controller?pageId=home&actionClass=catalog.actions.CartAction 
        &action=remove&prodid=<%= cBean.getProdid() %>"> 
        <img src="images\removefromcart.gif" border="0"> 
      </a> 
    </td> 
    <td align="left" width="200"><%= cBean.getProdname() %></td> 
    <td width="100"> 
      <uitags:FormatTag format="NUMERIC_CURRENCY"> 
        <%= cBean.getPrice() %> 
      </uitags:FormatTag> 
    </td> 
  </tr> 
<% 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



272 

     } 
  } 
%> 
  <tr> 
    <td colspan="3" align="center"> 
      <a href="Controller?pageId=cart&actionClass=catalog.actions.HomeAction"> 
        Return to Catalog</a> 
    </td> 
  </tr> 
</table> 
 
</body> 
</html> 

 
Figure 12-4 shows what the shopping cart might look like after selecting a few items. Clicking a 
Remove button will remove the item and redisplay the cart. Notice how the item prices are 
formatted as currency using the FormatTag View Helper class developed in Chapter 11. 
 

 
Figure 12-4: Shopping cart  
 
 
Summary 
 
This book has presented a set of examples and best practices that can be applied to almost 
any software development project that utilizes JavaServer Pages and J2EE technologies. In 
Chapters 1 and 2, you learned the basics of using JSP to effectively manage sessions, handle 
errors, navigate between pages, and process form data. You also learned techniques to make 
your JSP pages more modular and reusable. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



273 

 
Chapters 3 and 4 showed you several techniques to achieve role separation between 
programmer and page designer. Using JavaBeans to encapsulate page data, as well as 
business logic, takes away much of the Java code that typically clutters up an HTML page. 
This makes it easier for the page designer to concentrate on the presentation of the page while 
the Java programmer takes care of the application logic behind the page. Custom tag 
extensions are another tool designed to further separate HTML content from Java code. 
Custom tags provide a familiar format that page designers should be comfortable working with 
because they closely resemble that of HTML tags. 

Chapters 5 through 8 introduced several design patterns to apply to JSP development to 
create a robust and extensible presentation tier. Each of these patterns build upon the Model-
View-Controller (MVC) pattern, separating application data and navigation code from the user 
interface layer of the application. Using these patterns, it's possible to build a complete 
request-handling framework capable of supporting many different applications. 

 
Chapters 9 and 10 introduced several concepts and techniques used to build a development 
framework consisting of unit testing, load testing, source control, and automated application 
builds. Each of these components greatly contributes to the success of a software 
development project, regardless of the technology used. It's important to create this 
development framework, wrap a set of processes around it, and enforce its use on every 
software project. 
 
Chapters 11 and 12 built an application framework using many of the techniques discussed 
throughout the book. The framework developed in Chapter 11 should serve as a starting point 
for further development of a framework that will meet the needs of your organization. You've 
seen in Chapter 12 how easy it is to build an application when using a framework. As you 
extend this framework to meet your needs, your future development projects will become 
easier and easier. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



274 

 

Index 

Numbers and Symbols  

 
404 error message, 111  
<%! and %> tags, for declaring variables and methods, 13  

A  
Action interface 
creating, 156–157  
defining, 160  
ActionFactory, code example, 157, 161, 250  
Action.java, code example, 248–249  
Ant tasks, using to account for different platforms when building scripts, 229  
Ant tool 
advantages of using to build procedures, 229  
from the Apache-Jakarta Project, 215–216  
automating the build process with, 220–230  
built-in tasks for operations on the file system, 221  
creating a framework's build script with, 255–257  
integrating CVS with, 225–226  
for Java development, 219  
Apache-Jakarta Project 
Ant build tool by, 215–216  
downloading Tomcat server from, 16  
AppConstants.java, code example, 237–238  
application deployment techniques, 215–230  
application frameworks, 231–258  
adding unit tests to, 207–210  
designing, 231–232  
application server 
choosing to host your JSP and servlet applications, 16–17  
popular commercial vendors for, 16  
setting up for online catalog, 263–264  
as web application component, 3–4  
application-specific behaviors, implementing, 161–163  
applications, testing for performance, 210–214  
assertTrue method, code example, for 207–210  
AuthenticationFilter.java, code example for, 241–244  
automated build procedure, 219  
automated unit tests, 203  

B  
BEA WebLogic 
choosing as your application server, 16  
J2EE-compliant application server, 5  
best practice, defined by a development pattern, 7  
body tag, seeing one in action, 93–97  
BodyContent object, obtaining a JspWriter through, 92  
BodyTag, example of a custom JSP tag using, 91–92  
BodyTag interface 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



275 

default implementation, 84  
lifecycle methods and return values for, 85  
use of, 84  
bodyTagExample.jsp, code example, 96–97  
BodyTagSupport, default implementation for BodyTag interface, 84  
Bugzilla, website address, 219  
build procedure, automated, 219  
build process, automating with Ant, 220–230  
build script 
creating a simple script with Ant, 220–223  
global variable you can use in, 221  
build_cvs.xml file, for moving source code into a working directory, 226  
build.xml file 
code example, 255–257  
for compiling all of the source code for this book, 222–223  
naming your project in, 220  
script for building your online catalog application, 266–267  
business tier, in J2EE Patterns Catalog, 107  
ByteArrayPrintWriter class, enclosure of writer and stream within, 144  

C  
CartAction class, for accessing the online catalog shopping cart, 286–288  
CartAction.java, code example, 286–288  
CartBean class, code example, 289–292  
CartBean.java, code example, 289–292  
cart.jsp, code example for displaying the shopping cart, 292–294  
catalog application, simple with and without MVC, 110  
catalog database, creating and adding records, 53–54  
CatalogBean class, for scrolling through and accessing catalog items, 274–279  
CatalogBean.java, code example, 274–279  
CatalogDB DataSource, code example for using, 238  
CatalogItem.java, code example, 282–286  
catalogtags.tld, code example, 281  
census.jsp, code example, 120–122, 174–175  
change management, using bug tracking facilities for, 219  
checkout argument, using with the cvs command, 224–225  
code example 
ActionFactory, 157  
ActionFactory.java, 161, 250  
Action.java, 160, 248–249  
for add method routine, 206  
for adding a resource entry into your web.xml file, 113–114  
for adding records to a catalog database, 54  
AppConstants.java, 237–238  
for AuthenticationFilter.java, 241–244  
of base methods Action interface defines, 156–157  
for basic concepts of input form, 38  
for bodyTagExample.jsp, 96–97  
for build script to compile and deploy aframework, 255–257  
for building a URL, 207  
for building the controller, 124  
for building the ProductBean table, 63  
build.xml file, 255–257  
CartAction.java, 286–288  
CartBean class, 289–292  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



276 

cart.jsp page, 292–294  
for casting request or response objects to HTTP equivalents, 135  
for catalog item tag handler, 282–286  
CatalogBean.java, 274–279  
CatalogItem.java, 282–286  
catalogtags.tld, 281  
census.jsp, 172–174  
for changing the edit link, 68–69  
for connecting to the ProductBean database, 56  
Controller.java, 169–171, 245–247  
for converting Windows syntax to Unix-style syntax, 229–230  
for creating a catalog database, 54  
for creating a directory and copying files into it, 221  
for creating, adding tables to, and exiting a database, 18  
for creating database tables, 18  
for creating navigational links, 63  
of a custom JSP tag using a BodyTag, 91–92  
for custom tag for formatting dates and numbers, 251–254  
CustomerBean.java, 70–76, 165–168  
for customerDetail.jsp, 77–80  
customers.jsp file after adding page directive, 30–32  
customers.jsp file with try-catch blocks, 23–25  
for cvs command for a Windows and Unix system, 224  
of cvs commands and tasks, 225  
for DBHelper.java, 239–240  
of declarations followed by XML syntax, 13  
for declaring a JavaBean, 62  
for declaring a ResultSet object, 21  
for declaring a tag library descriptor, 179–180  
for declaring and referencing aJavaBean, 179  
for declaring the FileOutputStream at the class level, 140  
for executing the doFilter method of the FilterChain, 141  
for expressions, 14  
FormatHelper.jsp, 187–189  
FormatTag.java, 184–187, 251–254  
FormattingModel.java, 183–184  
for a forward tag, 41  
for generating rows of customers, 22–23  
for getting JavaBean properties, 51  
for the GrocerOrder tag handler, 100–102  
GroceryItem.java, 99–100  
groceryList.jsp, 102–103  
hello.jsp, 51–52  
helpers.tld file, 182–183  
for HomeAction class for online catalog system, 271–274  
home.jsp page, 279–280  
of how a controller servlet might look, 153–154  
HtmlUtils.java, 94–95  
of include directive, 13, 33  
of including a file at runtime, 35  
of including a file with parameters at runtime, 36  
for the interface all action objects must implement, 248–249  
for isErrorPage page directive, 28  
Java filter object basic template, 136  
<jsp:usebean> tag, 50  
ListHelper.jsp, 197–199  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



277 

for ListTag.java, 195–197  
login action, 162–163  
for login page, 118–119  
login.jsp, 171–172, 270–271  
Main.java, 125–129  
MenuHelper.jsp page, 193–194  
MenuModel.java, 190–191  
MenuTag.java, 191–192  
for a minimal request helper strategy, 155–156  
for moving source code into a working directory, 226  
myFooter.html, 34  
myHeader.html, 34, 268  
for obtaining a JspWriter through the BodyContent object, 92  
for overriding jspInit() and jspDestroy() methods, 12  
of page directive, 12–13  
for populating databases, 18–19  
for populating the ProductBean cache, 56–57, 62  
for ProductBean.java, 58–61  
for productList.jsp, 63–65  
for putting your JSP environment all together, 23–25  
for reading the content using aReader, 92  
for referencing a tag inside of a JSP page, 180  
for removing an attribute from a session, 43  
for request handling, 245–250  
of request helper object, 159  
RequestLoggingFilter class, 141–143  
ReqUtility.java, 247–248  
ResponseLoggingFilter.java, 145–147  
to retrieve contents of a last_name input field, 37  
for retrieving and storing customer table records, 21  
for retrieving job field and hobbies list field, 39–40  
for retrieving the name of an error page, 28  
server.xml, 113  
for sessionExample.html, 44  
for sessionExample.jsp, 44–45  
for sessionExamplePage1.jsp, 45  
for sessionExamplePage2.jsp, 45  
for setting a JavaBean property, 50–51  
for a simple error page, 28–29  
of a simple scriplet followed by its XML equivalent, 15  
SimpleBean.Java, 49  
simpleTagExample.jsp, 90–91  
for SimpleTag.java, 87–88  
simple.tld, 88–89  
for skeleton code for a TestCase, 204–206  
SubmitAction.java, 164–165  
for <tag> entries, 98  
for target, 221  
for test code for add method routine, 206  
thankyou.jsp, 123, 174–175  
of a typical J2EE web application directory and WAR file, 227  
for updating the survey application database, 112  
for using a Factory pattern inside arequest helper, 156  
for using a request object inside of the doPost method, 155  
for using getParameterNames method, 37  
for using getParameterValues method, 37  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



278 

using getSession method for obtaining a session, 43  
using Java reflection to create a new action class instance, 249–250  
for using the CatalogDB DataSource, 238  
of using the cvs command with arguments, 224  
utils.tld file, 93–94  
of a war task, 227  
web.xml file, 89, 93  
for writing an attribute to a session, 43  
for writing the session attribute and displaying hyperlinks, 44–45  
code reviews 
example of code review form for, 218  
importance of, 217–218  
command and controller strategy, 156–158  
commit argument, using with cvs command to commit changes, 224–225  
confirmation page 
code example, 123  
displayed after recording of survey data, 124  
controller, code example for building, 124  
controller servlet 
code example for, 125–129  
code example of how it might look, 153–154  
Controller.java 
code example, 245–247  
code example for building the controller, 169–171  
conversion.jsp file, calling, 36  
createCatalogDB.sql script, adding user and product tables to a database with, 261–262  
createProducts.sql script, for adding records to a catalog database, 54  
custom filter strategies, disadvantages of, 133  
custom list formats, creating, 194–199  
custom tag helper strategy, code example for declaring a tag library descriptor, 179–180  
custom tags 
looking at a simple example, 86–91  
processing at runtime, 85  
for reading a list of link items and outputting a list of hyperlinks, 190–191  
role separation with, 83–103  
using, 83–86  
CustomerBean.java 
code example, 70–76, 165–168  
defining a model in, 114–118  
customerDetail.jsp file, code example, 77–80  
customerList.jsp file 
changing the edit link in, 68–69  
example code, 34–35  
customers.jsp file 
after adding page directive and removing try-catch blocks, 30–32  
code example for, 23–25  
modifying to include standard header and footer, 34–35  
CVS 
integrating with Ant, 225–226  
website address for downloading, 223–224  
cvs command 
code example for a Windows and Unix system, 224  
code example of using with arguments, 224  
using checkout argument with, 224–225  
using import argument with, 224  
CVS repository 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



279 

creating, 224–225  
setting up for your code, 223–224  
cvs task 
code example, 225  
using to interact with the CVS repository, 223–224  
cvsRoot argument, specifying the location of the CVS repository with, 225  

D  
daemons, 3–4  
database 
creating for your online catalog, 260–261  
running after creating, 19  
selecting for your JSP environment, 17–19  
database connection, establishing, 21  
database helper, building, 237–240  
database management (JDBC), defined by J2EE specification, 5  
Database Management Systems (DBMS), selecting for your JSP environment, 17–19  
database server, as web application component, 3–4  
datacollection page, code example, 120–122  
DataSources 
code changes needed to use, 113–114  
creating in your application server, 112–113  
DBHelper.java, code example for, 239–240  
debug messages, logging, 235–237  
declarations, 13  
declaring, filters, 137  
Decorating Filter, presentation design pattern, 107–108  
Decorating Filter pattern, 131–150  
applying, 134–150  
defining, 132  
strategies for applying, 133–134  
deployment techniques, 215–230  
Design Patterns (Gamma, Helm, Johnson, Vlissides), definitive guide to OO design patterns, 105  
design patterns 
published best practices known as, 105  
reasons to use for development efforts, 105–106  
development environment, choosing when setting up a JSP environment, 15–16  
development framework, defined, 216–217  
development patterns, for web applications, 7–9  
development process, managing, 216–219  
directives. See JSP directives  
directory structure, creating in Tomcat,17  
Dispatcher View, presentation design pattern, 107–108  
distributed object handling (RMI-IIOP), defined by J2EE specification, 5  
documenting web application framework, 233–234  
doFilter method 
code example for wrapping aresponse inside of, 144  
executing to continue processing remaining filters, 140–141  

E  
edit link, code example for changing, 68–69  
EJB containers. See also Enterprise JavaBean (EJB) containers  
provided by a J2EE-compliant application server, 5  
understanding, 6–7  
Enhydra, open-source J2EE-compliant application server, 5  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



280 

Enterprise JavaBean (EJB) containers. See EJB containers enterprise patterns, introduction to, 9  
error and debug messages, logging, 235–237  
error handling, for JSP pages, 27–32  
error messages, logging, 235–237  
error page 
creating, 27–29  
creating for your online catalog system, 268  
errorPage page directive, code example,29  
evaluation copies, availability of for application servers, 16  
exceptions, coding pages to forward all uncaught, 29–32  
expressions 
defined, 14  
XML syntax for, 14  

F  
Factory pattern 
adding new behavior to your request-handling code with, 156–158  
code example for using inside arequest helper, 156  
function of, 7  
FileOutputStream, declaring at the class level, 140  
filter chain, code that executes after return from processing, 144  
filter class 
creating, 135–136  
implementing the javax.servlet.Filter interface to write, 140  
filter manager, requests passed through, 132  
filter strategies 
developing custom, 133  
filtering with J2EE, 135  
using standard, 134  
filters 
declaring, 137  
entering form data to test, 147–149  
for logging HTTP parameters, 138  
mapping to a URL, 137  
potential uses for, 132  
for pre-processing of HTTP requests, 132  
using for integrated security, 131  
using to log HTTP requests, 137–143  
using to log HTTP responses, 143–150  
using with the Front Controller pattern, 175  
form data, processing, 36–40  
form handling 
building the JavaBean for, 69–76  
creating the solution, 67–68  
implementing a solution, 68–80  
patterns for, 36  
standardizing, 66–82  
steps required to process form data, 68  
using the solution, 80–82  
validating input, 80–82  
FormatHelper.jsp, code example, 187–189  
FormatTag.java, code example, 184–187, 251–254  
formatting text, 182–183  
FormattingModel.java, code example, 183–184  
forward tag, code example for, 41  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



281 

framework packages, for building a web application framework, 233  
frameworks. See also application frameworks  
creating build scripts for, 255–257  
deploying, 255–258  
designing, 231–232  
using, 258  
Front Controller, presentation design pattern, 107–108  
Front Controller pattern 
applying, 158–175  
defining, 151–152  
developing strategies, 152–158  
using filters with, 175  

G  
GET request, function of, 2  
getEnclosingWriter method, obtaining a JspWriter through the BodyContent object with, 92  
getParameter() method, retrieving the name of an error page with, 28  
getParameterNames method, code example for using, 37  
getParameterValues method, returning a array of values with, 37  
getReader method, getting content returned as a Reader with, 92  
getSession method, code example for obtaining a session, 43  
GroceryItem tags, contained in GroceryOrder tag, 98  
GroceryItem.java, code example for, 99–100  
groceryList.jsp, code example for, 102–103  
GroceryOrder tag, GroceryItem tags contained in, 98  
GroceryOrder tag handler, code example for, 100–102  

H  
hello.jsp, code example, 51–52  
helpers, advantages of using, 178  
helpers.tld file 
code example, 182–183  
full tag descriptor for, 193  
HomeAction.java, code example, 272–274  
home.jsp page, code example, 279–280  
HTML form 
for accepting a single field containing a person's name, 43–46  
using to collect data, 36  
HTML header, creating for your online catalog system, 268  
HtmlUtils tag handler 
writing, 94–95  
writing the JSP for, 96–97  
HtmlUtils.java, code example, 94–95  
HTTP (HyperText Transfer Protocol), understanding, 2–3  
HTTP requests, using filters to log, 137–143  
HTTP responses 
manipulating content of, 143  
using filters to log, 143–150  
HTTP sessions, using to manage user data, 42–46  
HTTP sniffer, examining the contents and headers of a response object with, 137–138  
HTTP tracer program, log file example, 3  
HttpServletResponseWrapper, using, 144  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



282 

I  
IBM WebSphere, J2EE-compliant application server, 5  
IllegalStateException, reasons thrown, 43  
include directive, code example, 13, 33  
input form 
code example of basic concepts, 38  
example of, 39  
insurance quoting system, building a simple, 19–25  
integration tier, in J2EE Patterns Catalog, 107  
Intercepting Filter pattern, defining, 132  
isErrorPage page directive, code example, 28  

J  
J2EE architecture, 5  
J2EE compliant, definition of, 5  
J2EE-compliant application, structure of, 7  
J2EE-compliant application servers, popular, 5  
J2EE Patterns Catalog (Sun) 
for detailed pattern definitions, 131  
introduction to, 106–107  
website address for, 105  
J2EE specification services, 5  
J2EE web applications, developing, 5–7  
<jar> tag, running the Jar utility with, 222  
Java code, using Macromedia HomeSite to insert, 15  
Java Developer Connection website,J2EE Patterns Catalog available at, 106–107  
Java filter object, basic template of, 136  
Java Integrated Development Environment (IDE), choosing for JavaBeans, Servlets, and EJBs, 
16  
Java Servlets, function of, 5–6  
JavaBean, code example for declaring and referencing, 179  
JavaBean properties 
code example for getting, 51  
code example for setting, 50–51  
JavaBeans 
accessing properties, 50–52  
building a simple, 48–49  
code example for declaring, 62  
conversion of datatypes within, 51  
creating for caching data, 53–54  
creating one containing a hashtable of link items, 190–191  
handling large sets of data within a single page, 53–66  
introduction to, 47–52  
and JSP, 48  
role separation with, 47–82  
using in a JSP page, 50  
<javac> tag, running the Java compiler with, 222  
Javadoc comments, formatting of, 233–234  
Javadoc syntax, code example for descriptive comments, 233–234  
java.net.URL object, using to connect to the URL, 207  
JavaServer Pages (JSP). See JSP (JavaServer Pages) 
javax.servlet.Filter interface, methods defined by, 135  
JBoss 
for hosting EJBs, 16  
open-source J2EE-compliant application server, 5  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



283 

JDBC. See database management (JDBC) 
JDBC driver, obtaining to access your database, 19  
jEdit, website address, 16  
JMeter load testing tool 
from the Apache Group, 210–214  
viewing the graph results, 213–214  
website address for downloading, 210  
JMeter start screen, 211  
JMS, JavaMail. See messaging (JMS, JavaMail) 
JNDI. See naming services (JNDI) 
JSP (JavaServer Pages) 
foundations, 1–25  
function of, 6  
handling errors, 27–32  
and JavaBeans, 48  
learning the basics of, 10–15  
processing, 10–12  
processing steps, 11  
structure of, 12–15  
using, 27–46  
JSP (JavaServer Pages) applications 
building simple, 19–25  
choosing an application server for, 16–17  
JSP directives, function of, 12–13  
JSP environment 
choosing a development environment, 15–16  
puttting it all together, 23–25  
setting up, 15–19  
<jsp:forward> tag vs. <jsp:include> tag, 41  
JSP front vs. servlet front strategy, 153–155  
JSP Model 1, moving to, 8  
JSP Model 2, moving to, 9  
JSP pages 
building to implement the form handler, 76–80  
code example for FormatHelper.jsp, 187–189  
creating for your online catalog, 259–260  
designing, 20  
establishing a database connection, 21  
including a file at compile-time vs. runtime, 32  
including files at compile-time, 33–35  
including files at runtime, 35–36  
modifying for your controller, 171–175  
precompiling, 228–229  
refreshing the model, 57–61  
session ID created on the server at first request for, 42  
tools for development, 15–16  
using a JavaBean in, 50  
using your tag library in, 90–91  
writing for the HtmlUtils tag handler, 96–97  
JSP Quick Reference card, website address for, 25  
JSP tags 
example using a BodyTag, 91–92  
using Macromedia HomeSite to insert, 15  
jspc tool 
provided by Tomcat server, 228–229  
running to convert a JSP file, 228  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



284 

jspDestroy() method, overriding, 11–12  
<jsp:getProperty> tag, getting aJavaBean property with, 51  
<jsp:include> tag vs. <jsp:forward> tag, 41  
jspInit() method 
loading of, 11  
overriding, 11–12  
_jspService() method, function of, 11  
<jsp:setProperty> tag, setting JavaBean properties with, 50–51  
<jsp:usebean> tag, code example, 50  
JTA. See transaction management (JTA) 
JUnit architecture, 203–204  
JUnit package 
using, 203–206  
website address for, 203  

L  
list helper example, showing formatted lists, 199  
listeners. See daemons  
ListHelper.jsp, code example, 197–199  
ListTag.java, code example for, 195–197  
load testing, applications for performance, 210–214  
log file 
for response filter, 149–150  
for request filter, 148–149  
log4j package, from Apache Group, 235–237  
Logger.java file, wrapping of the log4j functionality in, 235–237  
logging, error and debug messages, 235–237  
Logical Resource Mapping strategy, function of, 158  
login page 
code example, 118–119  
creating for your online catalog system, 269–271  
LoginAction.java, code example,162–163  
login.jsp, code example, 118–119, 171–172, 270–271  

M  
Macromedia Dreamweaver, using to develop a JSP page, 15–16  
Macromedia HomeSite, code editor, 15  
Main.java, code example, 125–129  
manual unit test, use of in regression testing, 202–203  
mapping, filters to a URL, 137  
Menu helper example, 193  
MenuHelper.jsp page, code example, 193–194  
MenuModel.java, code example, 190–191  
menus, creating, 190–194  
MenuTag.java, code example, 191–192  
messaging (JMS, JavaMail), defined byJ2EE specification, 5  
MIME type, 3  
model, defining for your survey application, 114–118  
model separation strategy, implementing, 181–182  
Model-View-Controller (MVC) architecture, 109  
role of JavaBeans in, 48  
understanding, 109–129  
Model-View-Controller (MVC) pattern, implementation of by JSP model 2, 9  
Multiplexed Resource Mapping strategy, function of, 158  
MVC pattern. See also Model-View-Controller (MVC) architecture  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



285 

revisiting, 158–175  
seeing it in action, 111–112  
myError.jsp, code example, 28–29, 268  
myFooter.html, code example, 34  
myHeader.html, code example, 34, 268  
MySQL 
creating a database and adding some tables to, 18  
downloading, 17  
MySQL website, downloading the JDBC driver from, 19  

N  
naming services (JNDI), defined by J2EE specification, 5  
navigational links, code example for creating, 63  
network resources, limiting access to, 4  

O  
online catalog system 
creating a simple catalog system with learned techniques, 259–295  
illustration of, 260  
online catalog with shopping cart 
accessing the shopping cart, 286–288  
adding the user and product tables to, 261–262  
changing the startup script for, 265  
code for describing CatalogItem tag, 281  
creating application resources for, 267–268  
creating login page for, 269–271  
creating the database for, 260–261  
designing the application, 259–260  
directory structure for, 266  
displaying the shopping cart, 292–294  
HomeAction.java code for, 272–274  
home.jsp page, 279–280  
installing and configuring the framework, 264–265  
logging in to the application, 269–271  
modifying the startup script for, 265  
setting up the application, 260–268  
setting up the application server, 263–264  
setting up the development environment, 266–267  
viewing the home page for, 271–274  
OO design patterns, definitive guide to, 105  
outlineTag, code example for accessing, 97  

P  
page directive 
code example using XML syntax, 13  
for importing java.sql package for database code, 21  
page navigation, controlling with JSP, 40–41  
parent tag, obtaining an instance of, 98  
patterns. See development patterns; web application development; web development patterns  
development using, 105–129  
Front Controller, 151–176  
reasons to use for development efforts, 105–106  
Physical Resource Mapping strategy, function of, 158  
platform differences, accounting for when building scripts, 229–230  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



286 

populate method, using to populate the ProductBean cache, 62  
ports, specifying in a URL, 4  
POST request, function of, 2  
presentation design patterns, looking at, 107–108  
presentation layer, using helpers when developing, 178  
presentation patterns, relationships between, 108  
presentation tier, in J2EE Patterns Catalog, 107  
ProductBean 
code example for building the table, 63  
code example for connecting to the database, 56  
creating, 54–55  
declaring the class and implementing the Serializable interface, 55  
declaring the fields in, 55  
initializing properties for, 55  
providing accessor methods for fields, 55  
ProductBean class, using to page through a set of records, 65–66  
ProductBean.java, code example, 58–61  
productList.jsp, code example, 63–65  
prop.file.dir system property, modifying the Tomcat server startup script to specify, 238–239  
<property> tag, for defining properties in a build script, 221  

R  
regression testing 
breaking into units, 202–203  
understanding, 202  
removeAttribute method, for removing an attribute from a session, 43  
repeatable process, for software development, 215  
request filter, log file for, 148–149  
request handling, simplified, 244–250  
request-handling framework 
defining a standard path for the request to follow, 152–153  
using Front Controller pattern to build, 151–176  
request helper object, building a simple, 159  
request helper strategy, 155–156  
request object 
using inside of the doPost method, 155  
using methods on, 37  
RequestLoggingFilter, web.xml file that describes and maps, 138–140  
RequestLoggingFilter class, code example, 141–143  
ReqUtility.java, code example, 247–248  
ReqUtil.java, code example, 159  
resource mapping strategies, functions of, 157–158  
ResponseLoggingFilter.java, code example, 145–147  
ResultSet object, declaring in a JSP declaration tag, 21  
RMI-IIOP. See distributed object handling (RMI-IIOP) 
role separation 
with custom tags, 83–103  
with JavaBeans, 47–82  
rows of customers, generating, 22–23  

S  
scriplets, use of in JSP, 14–15  
scripting, a build procedure, 219  
server-side programs, processing data with, 36  
servers, chaining of through port mapping, 4  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



287 

server.xml, code example, 113  
server.xml file, modifying for your online catalog, 263–264  
servlet applications, choosing an application server for, 16–17  
servlet controller, accessing, 154–155  
servlet front vs. JSP front strategy, 153–155  
servlet model, introduction to, 8  
session ID, created on the server at first request for a JSP page, 42  
sessionExample.html, code example for, 44  
sessionExample.jsp, code example for, 44–45  
sessionExamplePage1.jsp, code example for, 45  
sessionExamplePage2.jsp, code example for, 45  
setAttribute method, code example for writing an attribute to a session, 43  
SimpleBean class 
code example illustrating use of, 51–52  
using in a JSP page, 52  
SimpleBean.Java, code example, 49  
simpleForm.html, code example, 38  
simpleForm.jsp, code example, 39–40  
simpleTagExample.jsp, code example, 90  
SimpleTag.java, code example, 87–88  
simple.tld, code example, 88–89  
sniffer. See HTTP sniffer  
software development process, importance of source code control in, 217  
source code control 
importance of in software development process, 217  
integrating with Ant, 223–226  
standard filter strategies, advantages of, 134  
static model, containing a hashtable of link items, 190–191  
stub, inserting wherever dynamic data is required, 20  
submit action, code example, 164–165  
survey application 
setting up, 112–114  
simple using MVC architecture,111–112  
survey page (census.jsp), data collected by, 120–122  

T  
tag descriptor 
for creating custom list formats, 194–195  
for helpers.tld file, 193  
<tag> entries, code example for, 98  
tag handler, locating in your JSP, 84  
tag handler class 
definition, 87–88  
implementing, 86–88  
Tag interface 
lifecycle methods and return values for, 85  
use of, 84  
tag library 
declaring, 89  
using in a JSP page, 90–91  
tag library descriptor file 
creating, 88–89, 93–94  
modifying, 93  
taglib directive 
declaring a tag with, 180  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



288 

function of, 13  
locating the tag handler in your JSP with, 84  
tags, nesting, 97–103  
target, code example, 221  
target tag, for defining a set of actions to be performed, 220–221  
TCP/IP, used by HTTP, 2  
template text, defined, 12  
TestCase, skeleton code for, 204–206  
testing, importance of, 201–203  
testing techniques, 201–214  
thankyou.jsp, code example, 123, 174–175  
thread group 
adding a test to, 212  
adding to the test plan, 212  
ThreadGroup node, adding a web test to, 212–213  
Tomcat 
setting up, 16–17  
using as a web container, 16–17  
Tomcat server, jspc tool provided by, 228–229  
toString() method, for converting an object value to a string, 29  
transaction management (JTA), defined by J2EE specification, 5  
<tstamp> tag, creating a timestamp with, 222  

U  
unit tests 
adding to your application framework, 207–210  
building a framework for, 203–210  
use of in regression testing, 202–203  
URL, code example for building, 207  
user authentication, code example for, 241–244  
users, authenticating, 241–244  
utils.tld file, code example, 93–94  

V  
variable declarations, commenting, 234  
View Helper 
for formatting text, 182–189  
presentation design pattern, 107–108  
View Helper pattern 
applying to your application, 182–199  
defining, 177–178  
implementing strategies for, 179–182  

W  
WAR files, building, 227  
war task 
code example, 227  
website address for information about building WAR files, 227  
web application development, patterns for, 7–9  
web application framework 
building, 232–254  
building a database helper in, 237–240  
commenting variable declarations, 234  
designing, 232–233  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



289 

documenting, 233–234  
logging error and debug messages in, 235–237  
web applications 
architecture of, 4  
components of, 3–4  
developing, 1–4  
web containers 
provided by a J2EE-compliant application server, 5  
understanding, 5–6  
web development patterns, system level best practice provided by, 7–8  
web server, as web application component, 3–4  
\webapps directory, creating a directory structure underneath, 17  
website address 
for Bugzilla bug tracking program, 219  
for downloading CVS, 223–224  
for downloading MySQL DBMS, 17  
for downloading the JDBC driver, 19  
for downloading the Tomcat servlet container, 16  
for information on using Javadoc to document your code, 234  
for a J2EE Patterns Catalog (Sun), 105  
for Java Servlet specification, 7  
for jEdit development tool, 16  
for Sun JSP Quick Reference card, 25  
web.xml file 
adding a resource definition to, 263–264  
code example, 89, 93  
code example for adding a resource entry into, 113–114  
code example for displaying GroceryOrder tag items in a table, 98  
configuration information contained in, 7  
for declaring the tag library, 89  
modifying, 93  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



290 

 

List of Figures 

Chapter 1: JSP Foundations 
Figure 1-1: Basic HTTP exchange  

Figure 1-2: Web application architecture  

Figure 1-3: J2EE architecture  

Figure 1-4: Servlet model  

Figure 1-5: JSP model 1  

Figure 1-6: JSP model 2  

Figure 1-7: JSP processing steps  

Figure 1-8: Results of customer.jsp  

Chapter 2: Using JSP 
Figure 2-1: Results of customers.jsp when an exception is thrown  

Figure 2-2: Including a file at compile-time vs. runtime  

Figure 2-3: Results of customerList.jsp using included header and footer  

Figure 2-4: Patterns for form handling  

Figure 2-5: Input form  

Figure 2-6: Results of form processing  

Figure 2-7: Forward vs. include tags  

Figure 2-8: Using HTTP sessions to manage user data  

Figure 2-9: Session example  

Chapter 3: Role Separation with Javabeans 
Figure 3-1: JavaBeans and JSP  

Figure 3-2: Using SimpleBean in a JSP page  

Figure 3-3: Handling large sets of data  

Figure 3-4: Caching data with a JavaBean  

Figure 3-5: Paging large sets of data  

Figure 3-6: Steps required to process form data  

Figure 3-7: Inputting an invalid name  

Figure 3-8: Inputting an invalid age  

Chapter 4: Role Separation with Custom Tags 
Figure 4-1: Locating a tag handler  

Figure 4-2: Processing a custom tag  

Figure 4-3: Simple tag example  

Figure 4-4: Body tag example  

Figure 4-5: Nesting tags  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



291 

Chapter 5: Development Using Patterns 
Figure 5-1: Presentation patterns  

Figure 5-2: MVC architecture  

Figure 5-3: Simple catalog application (without MVC)  

Figure 5-4: Simple catalog application (with MVC)  

Figure 5-5: Simple survey application  

Figure 5-6: Login page  

Figure 5-7: Survey page  

Figure 5-8: Confirmation page  

Chapter 6: The Decorating Filter Pattern 
Figure 6-1: Using filters for integrated security  

Figure 6-2: Using filters to pre-process a request  

Figure 6-3: Custom filter strategy  

Figure 6-4: Standard filter strategy  

Figure 6-5: Filtering with J2EE  

Figure 6-6: Manipulating response content  

Figure 6-7: Entering form data to test filters  

Chapter 7: The Front Controller Pattern 
Figure 7-1: The Front Controller pattern  

Figure 7-2: Request-handling framework within the Front Controller pattern  

Chapter 8: The View Helper Pattern 
Figure 8-1: View Helper pattern  

Figure 8-2: Model separation strategy  

Figure 8-3: Alternate model separation strategy  

Figure 8-4: Format text helper example  

Figure 8-5: Menu helper example  

Figure 8-6: List helper example  

Chapter 9: Testing Techniques 
Figure 9-1: Development scenario without proper testing  

Figure 9-2: JUnit architecture  

Figure 9-3: JMeter start screen  

Figure 9-4: Adding a thread group  

Figure 9-5: Adding a web test  

Figure 9-6: Viewing the graph results  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



292 

Chapter 10: Deployment Techniques 
Figure 10-1: Development framework  

Chapter 11: Application Frameworks 
Figure 11-1: Javadoc output  

Chapter 12: Putting it all Together 
Figure 12-1: Online catalog system  

Figure 12-2: Login page  

Figure 12-3: Catalog page  

Figure 12-4: Shopping cart  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



293 

 

List of Tables 

 

Chapter 1: JSP Foundations 
Table 1-1: Example of a Single POST Request and Subsequent Response  

Chapter 3: Role Separation with Javabeans 
Table 3-1: Conversion of Datatypes within JavaBeans  

Chapter 4: Role Separation with Custom Tags 
Table 4-1: Lifecycle Methods of Tag and BodyTag Interfaces  

Chapter 11: Application Frameworks 
Table 11-1: Framework Packages  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



294 

 

List of Listings 

 

Chapter 1: JSP Foundations 
Listing 1-1: customers.jsp  

Chapter 2: Using JSP 
Listing 2-1: myError.jsp  

Listing 2-2: customers.jsp  

Listing 2-3: myHeader.html  

Listing 2-4: myFooter.html  

Listing 2-5: customerList.jsp  

Listing 2-6: simpleForm.html  

Listing 2-7: simpleForm.jsp  

Listing 2-8: sessionExample.html  

Listing 2-9: sessionExample.jsp  

Listing 2-10: sessionExamplePage1.jsp  

Listing 2-11: sessionExamplePage2.jsp  

Chapter 3: Role Separation with Javabeans 
Listing 3-1: SimpleBean.java  

Listing 3-2: hello.jsp  

Listing 3-3: createProducts.sql  

Listing 3-4: ProductBean.java  

Listing 3-5: productList.jsp  

Listing 3-6: CustomerBean.java  

Listing 3-7: customerDetail.jsp  

Chapter 4: Role Separation with Custom Tags 
Listing 4-1: SimpleTag.java  

Listing 4-2: simple.tld  

Listing 4-3: web.xml  

Listing 4-4: simpleTagExample.jsp  

Listing 4-5: web.xml  

Listing 4-6: utils.tld  

Listing 4-7: HtmlUtils.java  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



295 

Listing 4-8: bodyTagExample.jsp  

Listing 4-9: GroceryItem.java  

Listing 4-10: GroceryOrder.java  

Listing 4-11: groceryList.jsp  

Chapter 5: Development Using Patterns 
Listing 5-1: server.xml  

Listing 5-2: web.xml  

Listing 5-3: CustomerBean.java  

Listing 5-4: login.jsp (\webapps\jspBook\ch5\login.jsp)  

Listing 5-5: census.jsp (\WEB-INF\jsp\ch5\census.jsp)  

Listing 5-6: thankyou.jsp (\WEB-INF\jsp\ch5\thankyou.jsp)  

Listing 5-7: Main.java  

Chapter 6: The Decorating Filter Pattern 
Listing 6-1: web.xml  

Listing 6-2: RequestLoggingFilter.java  

Listing 6-3: ResponseLoggingFilter.java  

Listing 6-4: Log File for Request Filter  

Listing 6-5: Abbreviated Log File for Response Filter  

Chapter 7: The Front Controller Pattern 
Listing 7-1: ReqUtil.java  

Listing 7-2: Action.java  

Listing 7-3: ActionFactory.java  

Listing 7-4: LoginAction.java  

Listing 7-5: SubmitAction.java  

Listing 7-6: CustomerBean.java  

Listing 7-7: Controller.java  

Listing 7-8: login.jsp  

Listing 7-9: census.jsp  

Listing 7-10: thankyou.jsp  

Chapter 8: The View Helper Pattern 
Listing 8-1: FormattingModel.java  

Listing 8-2: FormatTag.java  

Listing 8-3: FormatHelper.jsp  

Listing 8-4: MenuModel.java  

Listing 8-5: MenuTag.java  

Listing 8-6: MenuHelper.jsp  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               



296 

Listing 8-7: ListTag.java  

Listing 8-8: ListHelper.jsp  

Chapter 9: Testing Techniques 
Listing 9-1: Skeleton Code for a TestCase  

Listing 9-2: TestFramework.java  

Chapter 10: Deployment Techniques 
Listing 10-1: build.xml  

Listing 10-2: build_cvs.xml  

Chapter 11: Application Frameworks 
Listing 11-1: Logger.java  

Listing 11-2: AppConstants.java  

Listing 11-3: DBHelper.java  

Listing 11-4: AuthenticationFilter.java  

Listing 11-5: Controller.java  

Listing 11-6: ReqUtility.java  

Listing 11-7: Action.java  

Listing 11-8: ActionFactory.java  

Listing 11-9: FormatTag.java  

Listing 11-10: build.xml  

Chapter 12: Putting it all Together 
Listing 12-1: createCatalogDB.sql  

Listing 12-2: server.xml Modifications  

Listing 12-3: web.xml  

Listing 12-4: Additions to web.xml  

Listing 12-5: build.xml  

Listing 12-6: myHeader.html  

Listing 12-7: myError.jsp  

Listing 12-8: login.jsp  

Listing 12-9: HomeAction.java  

Listing 12-10: CatalogBean.java  

Listing 12-11: home.jsp  

Listing 12-12: catalogtags.tld  

Listing 12-13: CatalogItem.java  

Listing 12-14: CartAction.java  

Listing 12-15: CartBean.java  

Listing 12-16: cart.jsp  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
       TEAM FLY PRESENTS               




