
Pro Apache Beehive

KUNAL MITTAL AND SRINIVAS KANCHANAVALLY

Pro Apache Beehive

Copyright © 2005 by Kunal Mittal and Srinivas Kanchanavally

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN (pbk): 1-59059-515-7

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Steve Anglin
Technical Reviewer: Dilip Thomas
Editorial Board: Steve Anglin, Dan Appleman, Ewan Buckingham, Gary Cornell, Tony Davis, Jason Gilmore,

Jonathan Hassell, Chris Mills, Dominic Shakeshaft, Jim Sumser
Associate Publisher: Grace Wong
Project Manager: Kylie Johnston
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Linda Marousek
Compositor: Susan Glinert Stevens
Proofreader: Sue Boshers
Indexer: Carol A. Burbo
Artist: Wordstop Technologies (P) Ltd, Chennai, India
Interior Designer: Van Winkle Design Group
Cover Designer: Kurt Krames
Manufacturing Manager: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an "as is" basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads section.

I would like to dedicate this book to my wife, Neeta, and to my dogs, Dusty and Snowie.
They have been extremely patient during the authoring process and all the missed

weekend activities that I had to put on the back burner as I was writing this book. Neeta
has been extremely patient and has helped me by sharing my other responsibilities so

that I could focus on the book.

I would also like to thank my coauthor, Srini, who has worked several long hours coming up
with all the examples you see in this book. Every single line of code was written by him.

—Kunal Mittal

I dedicate this book to my wife, Harini, for all her love, support, encouragement,
and sacrifice.

To my parents, family, and friends: thank you all, you make life wonderful.
—Srinivas Kanchanavally

v

Contents at a Glance

Foreword . xiii

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 What’s Apache Beehive? . 1

■CHAPTER 2 Introducing Web Services and SOA Fundamentals 15

■CHAPTER 3 Introducing Annotations . 27

■CHAPTER 4 Dissecting Java Page Flows . 45

■CHAPTER 5 Using NetUI and Page Flows . 65

■CHAPTER 6 Using Controls . 101

■CHAPTER 7 Working with Beehive Web Services and JSR 181 135

■CHAPTER 8 Using XMLBeans . 153

■APPENDIX A Setting Up Your Development Environment 173

■APPENDIX B Working with Eclipse and Pollinate . 179

■APPENDIX C Contributing to Beehive and XMLBeans . 191

■INDEX . 197

vii

Contents

Foreword . xiii

About the Authors . xv

About the Technical Reviewer . xvii

Acknowledgments . xix

Introduction . xxi

■CHAPTER 1 What’s Apache Beehive? . 1

Enterprise Application Development: The Challenges 1

Delivering to the Customer . 2

Getting the Best Performance . 3

Securing Your Applications . 3

Integrating Your Applications. 3

Having Freedom of Choice. 4

How Java Fits Into All of This . 4

The Growth of Java. 4

The Role of J2EE . 6

Introducing Service-Oriented Architecture (SOA) . 7

Introducing BEA WebLogic Platform . 7

BEA WebLogic Server . 8

BEA WebLogic Workshop. 8

BEA WebLogic Integration . 8

BEA WebLogic Portal . 9

BEA WebLogic JRockit . 9

What Does BEA WebLogic Platform Provide? . 9

Exploring the History of BEA WebLogic Workshop 10

Introducing Apache Beehive . 10

Introducing XMLBeans . 13

So, What’s Next? . 13

Contents

viii ■C O N T E N T S

■CHAPTER 2 Introducing Web Services and SOA Fundamentals 15

Introducing Web Services . 15

Web Service Overview . 15

Basic Web Service Technologies . 16

Enterprise-Class Web Services . 18

Introducing SOA . 19

What’s a Service? . 20

Defining SOA . 22

Defining Service-Oriented Programming . 22

Exploring the Role of XML in SOA . 23

How Does Apache Beehive Enable SOA? . 23

How Do Controls Relate to SOA?. 24

How Do Apache Beehive Web Services Relate to SOA? 24

How Do XMLBeans Relate to SOA? . 24

So, What’s Next? . 24

■CHAPTER 3 Introducing Annotations . 27

What’s an Annotation? . 27

Basic Java 1.5 Annotations . 28

JSR 175 . 31

JSR 181 . 31

Using Annotations in WebLogic Workshop . 32

Java Page Flows . 32

Controls . 35

Web Services. 39

Introducing Apache Beehive Annotations . 42

Page Flows/NetUI . 42

Controls . 43

Web Services. 43

So, What’s Next? . 44

■CHAPTER 4 Dissecting Java Page Flows . 45

Introducing Java Page Flows . 45

Page Flows in WebLogic Workshop . 46

Page Flows in Apache Beehive . 48

■C O N T E N T S ix

Introducing Page Flow Architecture . 54

Page Flow Components . 54

NetUI Components . 58

Reviewing Page Flow Architecture . 62

So, What’s Next? . 63

■CHAPTER 5 Using NetUI and Page Flows . 65

Creating the Sample Bookstore Application . 65

Setting Up the Bookstore Application . 65

Running the Sample Bookstore Application. 66

Looking at the Code . 66

Dissecting NetUI Tags . 83

Examining the NetUI Tag Library. 83

Examining the NetUI-data Tag Library . 93

Examining the NetUI-template Tag Library . 97

Introducing Shared Flows . 99

Accessing Methods of the Shared Flow from Your Page Flow 99

Accessing Methods of the Shared Flow from Your JSP 100

So, What’s Next? . 100

■CHAPTER 6 Using Controls . 101

Introducing Controls . 101

Understanding the Control Architecture . 102

Looking at the Control Authoring Model. 105

Using a Control . 112

Dissecting Common Controls . 114

Using the Database Control . 114

Using the EJB Control. 120

Using the Web Service Control . 123

So, What’s Next? . 134

■CHAPTER 7 Working with Beehive Web Services and JSR 181 135

Introducing JSR 181 . 135

The JSR 181 Process . 137

The JSR 181 Architecture Overview . 138

x ■C O N T E N T S

Writing Your First Web Service . 139

Writing the Web Service. 139

Deploying the Web Service . 140

Testing the Web Service . 140

Exposing a Web Service from the Bookstore Application 141

Writing the Web Service. 141

Setting Up to Run the Web Service . 144

Deploying the Web Service . 145

Looking at the WSDL . 146

Running the Web Service . 150

So, What’s Next? . 152

■CHAPTER 8 Using XMLBeans . 153

What’s XML-Java Binding? . 153

XMLBeans As an XML-Java Binding Technology 155

XMLBeans Overview . 155

Data Types in XMLBeans . 157

Working with XMLBeans . 159

Working with an XML Schema . 159

Generating Java Code from the XML Schema. 162

Walking Through the Generated XMLBeans Classes 163

How to Put Data into the XMLBeans. 164

How to Use Get Data from the XMLBeans . 165

Using XML Cursors . 165

Working with Cursors . 166

Working with XML Tokens . 167

Using XMLBeans and Web Services Together . 168

Looking at the XML. 168

Creating the XML Schema . 171

So, What’s Next? . 172

■APPENDIX A Setting Up Your Development Environment 173

Downloading and Installing the Required Software 173

Installing J2SE 5 (JDK) . 173

Installing Ant 1.6.2 . 173

Installing Tomcat 5 . 174

Downloading and Installing Apache Beehive and XMLBeans 174

Installing the Beehive 1.0.3 Binary Distribution 174

Installing the XMLBeans Alpha Binary Distribution 175

■C O N T E N T S xi

Working with Tomcat . 175

Starting Tomcat . 175

Running the Petstore Sample on Tomcat 5 176

Deploying the Petstore Sample . 177

So, What’s Next? . 177

■APPENDIX B Working with Eclipse and Pollinate . 179

What’s Eclipse? . 179

Eclipse Project. 179

Eclipse Tools Project . 179

Eclipse Technology Project . 179

Eclipse SDK . 180

Downloading and Installing Eclipse . 180

Using the Eclipse Workbench . 180

Importing Files . 181

Processing in the Background. 181

Setting Up a CVS Repository with Eclipse . 183

Creating a New Repository Location in Eclipse 183

Using the CVS Checkout Wizard . 185

Taking Advantage of the Ant Support . 185

Downloading and Installing Pollinate . 187

Installing Pollinate from the Update Site . 187

Installing Pollinate from a ZIP File. 188

Creating a New Beehive Project in Eclipse . 188

So, What’s Next? . 189

■APPENDIX C Contributing to Beehive and XMLBeans 191

Subscribing to Lists . 191

Beehive Lists . 192

XMLBeans Lists. 193

Contributing Code . 193

Contributing to Beehive . 193

Contributing to XMLBeans . 194

Grab Bag of Links . 195

So, What’s Next? . 195

■INDEX . 197

xiii

Foreword

Tools are the lifeblood of progress. Vision, discovery, and serendipity typically help identify
the goal. However, to get to the goal in an efficient, scalable, and repeatable manner, we need
to have appropriate tools.

When applied to software development, it is easy to see that we as an industry can hope to
achieve our goals of radical improvements in developer productivity, interoperability, main-
tainability, and reuse only if we create the appropriate development and deployment tools. The
Apache Beehive framework and the XMLBeans toolset play a key role in the march toward
better enterprise software. Their importance is magnified because of their credentials—Apache
in the open-source juggernaut and XML in the Web Services and Service-Oriented Architecture
(SOA) avalanche.

This book by Kunal Mittal and Srinivas Kanchanavally provides a simple and practical
guide for using these two tools. It contains easy-to-read, interesting tutorials and use cases that
you can immediately leverage in software development projects.

Dr. Rajiv Gupta
Entrepreneur, technologist, and Web Services pioneer with E-Speak at HP

xv

About the Authors

■KUNAL MITTAL is a consultant specializing in Java technology, the
J2EE platform, Web Services, and SOA technologies. He has coauthored
and contributed to several books on these topics. Kunal works as an
applications architect for the Domestic TV division of Sony Pictures
Entertainment. In his spare time, he does consulting gigs for start-ups
in the SOA space and for large companies looking to implement an
SOA initiative. You can contact Kunal through his Web site at http://
www.soaconsultant.com or via e-mail at kunal@kunalmittal.com.

■SRINIVAS KANCHANAVALLY is a Software Architect with CoreObjects
Software Inc. in Los Angeles, California. He has an in-depth under-
standing of Java and J2EE. He also has vast experience designing large-
scale J2EE application architectures. Srini has worked with Java, J2EE,
Struts, WebLogic, and WebLogic Portal on client projects. And he has
several years of experience working with various open-source frame-
works and tools such as JBoss/Tomcat, MySQL, JUnit, and HTTPUnit.

xvii

About the
Technical Reviewer

■DILIP THOMAS is an open-source enthusiast who keeps a close watch on LAMP technologies,
open standards, and the full range of Apache Jakarta projects. He is a coauthor of PHP MySQL
Website Programming: Problem–Design–Solution (Apress, 2003) and a technical reviewer/editor
on several open-source/open-standard book projects. Dilip is an editorial director at Software
& Support Verlag GmbH.

Dilip resides in Bangalore with his beautiful wife, Indu, and several hundred books and
journals. You can reach him via e-mail at dilip.thomas@gmail.com.

xix

Acknowledgments

I had a vision for this book. My coauthor, Srini, and editor, Steve Anglin, trusted me and gave
me an opportunity to write this book.

Srini and I would like to thank Steve Anglin, Kylie Johnston, Kim Wimpsett, Linda Marousek,
and all the other folks at Apress who we don’t even know but who have dedicated a lot of time
and energy to get this book out.

We’d also like to thank Dilip Thomas for providing technical insights into the book. His
detailed technical review and suggestions have been tremendously valuable.

—Kunal Mittal

xxi

Introduction

Welcome to Pro Apache Beehive. SOA and Web Services are finally coming to the forefront of
the IT industry. Most companies, large and small, are talking about these technologies and
planning a course to adopt them. And J2EE development is still on the front lines for large,
mission-critical applications.

The Apache Beehive project introduces several new technologies that simplify J2EE devel-
opment as well as make your applications more service oriented. Beehive provides a layer of
technologies that build on the annotations that were introduced in Java 1.5. (Think of annotations
as deployment descriptors but in your code instead.)

NetUI, JSR 181, Web Services, and Controls in Apache Beehive allow you to quickly build
robust, scalable, service-oriented J2EE applications. Combined with the power of XMLBeans,
which is a Java-XML binding technology, this project is gaining a lot of momentum.

In this book, we’ll show you how to build applications using these technologies. Be prepared
to get down and dirty with some code.

How This Book Is Structured
This book consists of eight chapters and three appendixes:

In Chapter 1, we explore the challenges of enterprise software development. We talk about
the role of Java, J2EE, and SOA in addressing the challenges that CIOs face when delivering
software. We then introduce BEA WebLogic Platform and talk about the birth of the Apache
Beehive project.

In Chapter 2, we introduce Web Services and SOA. We then talk about how the Apache
Beehive project and XMLBeans support and simplify SOA-based development.

In Chapter 3, we introduce annotations. We talk about the basic annotations introduced
with Java 1.5. We then show you the annotations introduced with BEA WebLogic Workshop
and compare them to the annotations in the Apache Beehive technologies.

In Chapter 4, we introduce the NetUI and Page Flow technologies that are part of Apache
Beehive. We talk about the overall architecture of Page Flows and briefly cover the NetUI
tag libraries.

In Chapter 5, we take a deep dive into the NetUI and Page Flow technologies that are part
of Apache Beehive. We examine the important concepts of Page Flows and show examples
of all the NetUI tags.

In Chapter 6, we cover Apache Beehive Controls. We talk about the overall architecture of
a Control and show several examples of the different types of Controls you can build.

xxii ■I N T R O D U C T I O N

In Chapter 7, we explain the Web Services capabilities of Apache Beehive. We also explain
the JSR 181 standard and show examples of how Apache Beehive supports and leverages
this standard.

In Chapter 8, we cover the XMLBeans Java-XML binding technology. We show several
examples of how you can simplify working with XML using this technology.

In Appendix A, we show you how to download the different pieces of software that you’ll
need to install in order to follow along with the examples in the book.

In Appendix B, we show you how to download and set up the Eclipse IDE and Pollinate
plug-in. We also show you how to use these to develop and deploy Apache Beehive code.

In Appendix C, we show you how to get involved in these open-source projects and how to
contribute to their continuous development.

Prerequisites
Please read Appendix A for details on the several software packages you’ll need to download
and install in order to write, compile, deploy, and test the code you’ll write using Apache
Beehive and XMLBeans in this book.

A basic familiarity with Java and J2EE is expected. Familiarity with Web Services is a plus.

Downloading the Code
The scripts in this book are available in ZIP format in the Downloads section of the Apress Web
site (http://www.apress.com).

Contacting the Authors
You can reach Kunal Mittal via his Web site at http://www.soaconsultant.com or via e-mail at
kunal@kunalmittal.com, and you can reach Srinivas Kanchanavally at k_cnu01@yahoo.com.

1

■ ■ ■

C H A P T E R 1

What’s Apache Beehive?

Welcome! You’ve obviously picked up this book because you’ve heard about Apache
Beehive and want to learn more. More than likely, you’re working on some sort of J2EE Web
application. You might even be an expert on BEA WebLogic Server and the technologies intro-
duced by WebLogic Workshop. If not, never mind—this book is not about BEA WebLogic, and
it’s not about BEA WebLogic Workshop. It’s about a set of technologies that are part of the
Apache Beehive project. Specifically, it’s about Service-Oriented Architecture (SOA)–based
development. It’s about using a technology such as Struts and using XML, Web Services, and
J2EE technologies to simplify SOA development.

This book is targeted at developers and architects who are interested in exploring several
new technologies that simplify SOA and Web application development.

In this chapter, you’ll briefly learn about the WebLogic Workshop IDE and how it’s inte-
grated into WebLogic Platform. With the release of WebLogic Workshop, BEA introduced
several underlying technologies. Recently these technologies were released to the Apache
Open Source Foundation. This book will cover all these technologies in detail and show you
how to use them with or without WebLogic Server. In fact, the primary platform for this book is
Apache Tomcat.

The book takes a hands-on approach to explaining the Apache Beehive technologies. In
other words, be prepared to get down and dirty with the code. We’ll introduce several concepts
and show you some code but then leave you with exercises or challenges. We’ll provide complete
solutions, but we definitely don’t recommend that you jump directly to them. We’ll point out
some tips and tricks, best practices, and so on, but at the end of the day, Apache Beehive is still
a nascent technology—so no one is really a master.

You’ll begin by learning about the challenges of enterprise application development and
about how WebLogic Workshop addresses some of those challenges. We’ll then introduce the
Apache Beehive project and XMLBeans. This will set the stage for learning all about SOA in
Chapter 2.

Enterprise Application Development:
The Challenges
The rise in IT spending that took place in the late 90s has definitely declined. Forrester Research
(http://www.forrester.com/) shows that IT spending increased about 20 percent in 2000. Since
then, it has fallen constantly every year. In 2003, Forrester Research did predict a slight rise, but

2 C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ?

the analysts don’t predict it to rise to the 2000 level until about 2005. So, these figures seem to
complicate the lives of CIOs. CIOs have the toughest challenges today when choosing technology,
products, and services while also ensuring productivity and security and providing new value-
added business features. In the following sections, we’ll describe some of the key challenges
that CIOs need to address, often with smaller budgets and more stringent software needs.

Delivering to the Customer
Time to market and productivity issues are key. End users are expecting software sooner rather
than later. Applications must be built correctly the first time, and they must continue to evolve
as the business requirements change and as management leads the business through new
evolution. The ever-changing needs of the business, the customers, the partners, the vendors,
and everyone else involved in this value chain must be quickly and accurately represented in
the applications that support these entities.

Therefore, enterprises today need business applications that accommodate increasing
functionality with constantly changing scope. A service-oriented approach promises to address
this problem through the implementation of granular services that can be shared and reused
across the enterprise. These services can be easily maintained, delivering greater agility and a
higher quality of service at lower costs.

Most CIOs are focusing on choosing widely adopted standards for software development.
This enables software development teams to concentrate on satisfying the business require-
ments quickly and with more predictable results. IT teams don’t have or can’t afford the luxury
to experiment with technologies. Programming models must evolve to support customers,
each requiring a different user interface. This will range from browser-based HTML, Java applet
clients, CGI-based Web pages, and dynamic ASP- or JSP-based sites to WAP- or WML-based
wireless devices such as PDAs.

If you think satisfying the business requirements is all CIOs need to do, you’ll definitely be
surprised. Users now not only want to see their data in a variety of formats but also want this
data to come from distinct, disparate, distributed data sources. This means you need to inte-
grate with other applications, not only within your own enterprise but many times across
enterprise boundaries. New business models and a more demanding business world demand
that executives have all sorts of information at their fingertips. You need to ensure security,
transactional integrity, auditing, logging, and monitoring across these systems. In addition,
you can’t forget about the integration of business processes. The data and the core business
services provided by one system need to be available to other systems to avoid redundancy in
building and maintaining the same functionality twice.

In addition, given evolving business requirements, it’s important that IT organizations
have the ability to make quick changes in technology decisions. Organizations need to be able
to mix and match products and technologies to provide the optimum configuration to solve
the business needs. This flexibility is required right from the hardware and operating system
level to the application deployment platforms and the tools used for application development.

These challenges clearly help motivate the need for standards in the programming model
and consistency between programming teams.

C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ? 3

Getting the Best Performance
One of the other key requirements for applications today is that they should support high
volumes of users and yet provide low response times. Typically, a user doesn’t want to wait for
more than a few seconds to see data. Systems also need to be available 24×7 and be highly fault
tolerant. Imagine that there’s a power failure at the Amazon.com server farm or, even worse,
the software had a bug and something went wrong, and you were in the process of placing an
order when something went wrong. You have no clue whether your order was processed. The
next day, you place your order again successfully. However, the first order actually had been
processed. So, you end up with two books and two charges on your credit card. Although you’ll
never know the actual cause of the problem, needless to say that you won’t be a happy camper
and probably won’t shop at that business again.

Imagine for a minute that the application is not a simple Amazon.com shopping cart that
you can easily repopulate. Instead, it’s some budgeting application or policy management
application, and you’ve spent the last hour filling in dozens of screens’ worth of form data. And
for some reason, you lose your connection for a few seconds and lose all your data. This could
be something such as a browser crash at your end or something more serious on the server
side. Now you’re really mad.

This brings up the requirements for features such as automatic load balancing, failover,
and user data replication across all layers of the architecture. Applications should be able to
handle the highest anticipated user volumes, always leaving room for the most unexpected
usage patterns, and should be able to switch configurations on the fly.

Securing Your Applications
Security is more of an issue than ever. It used to be sufficient to restrict the outside world from
accessing your data. However, since applications spanning enterprise boundaries now share
data, protecting sensitive data is more critical. You’re exchanging sensitive data with all your
suppliers, customers, and partners. You need to implement the levels of security and data
access policies carefully to ensure integrity of the data being shared.

On the flip side, the users don’t make this task any easier. They insist on a single sign-on
not only across all internal applications but also across these enterprise boundaries. Technologies
such as Microsoft Passport are fast gaining popularity. The security mechanisms need to support
this functionality while maintaining the highest levels of integrity.

Introduce wireless to this equation. Most executives do or soon will have some sort of
wireless connection to the Internet. This could be a cell phone, BlackBerry, or laptop. They will
soon start demanding the same reports and data that they can access on their desks from their
wireless devices. How do you maintain security configurations in these scenarios?

Integrating Your Applications
Large enterprises over the years have collected data in several different software systems. The
challenge today is how to reuse these systems and be able to extract data from them as needed
to serve your evolving business. To do this, IT departments need standards-based access to
these back-end systems and need to be able to ensure security, transactional control, resources,
and so on. You can use several technologies from Web Services to simple JDBC to address these
issues. Standard Enterprise Application Integration (EAI) techniques have evolved to provide
standardization on the integration problem.

4 C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ?

Having Freedom of Choice
IT departments need the flexibility to be able to mix and match solutions to form their optimal
architecture. They need to be able to choose in small chunks—right from the choice of an
application server to the development tools and frameworks they use. They also need the flex-
ibility to move from one configuration to another as business requirements change or better
technology becomes available. In addition, they need to be able to choose tools and solutions
that can help them deliver their business applications cheaper, faster, and better.

How Java Fits Into All of This
Now that I’ve covered some of the various challenges CIOs face, you may be wondering how
Java and J2EE address some of these issues. We’ll begin with a brief introduction to Java and
then talk about J2EE’s role.

The Growth of Java
Java today has become one of the leading languages for enterprise application development. Java
is a 100 percent object-oriented language. The syntax looks very much like C++ but without
some of the nightmares such as pointers and memory management. This makes it easier for
new programmers to come up to speed with the language and also provides relief for experi-
enced object-oriented programmers, who don’t have to spend hours debugging a typical C++
core dump. In addition, Java is a reliable software platform. Compile-time and then runtime
error checking teach programmers to have more reliable programming habits.

Java runs on all modern operating systems. Java code runs on top of a Java Virtual Machine
(JVM). A compiler takes the Java code and compiles it into bytecode. The JVM interprets this
bytecode at runtime. Sun and various other vendors ship platform-specific JVMs on which the
Java bytecode runs. This allows developers to write code on any platform and deploy on another
platform (see Figure 1-1). The JVM provides low-level support for operating system optimiza-
tions, shielding application developers from these issues.

Java is a free language. Anyone can download the latest version of the Java 2 Standard
Edition Development Kit (JDK) from Sun and start developing and deploying Java applications.
When you download the JDK, you get two items:

• Java API: This is a rich collection of classes that provides a programming framework
for programmers.

• JVM: This is what allows the Java code to run on different platforms. The JVM is
platform specific.

Figure 1-2 shows how a Java program sits on top of the APIs that eventually run using
the JVM.

C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ? 5

Figure 1-1. Cross-platform Java code

Figure 1-2. Java runtime

Java is a secure language in various aspects, from the sandbox model for applet security to
security for user authentication, encryption of data, and cryptography. With a built-in security
model for applets and applications, Java works well in network and multiuser environments.
The multithreading capability allows for concurrent activity for enterprise users and is
supported from the ground up throughout the Java platform.

6 C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ?

Numerous vendors provide tools to help developers quickly write Java applications. These
tools range from code libraries and IDEs to debuggers, profilers, and test suites. This allows
teams to quickly ramp up Java development, QA, and production environments for their enter-
prise applications.

■Further Reading Sun provides a good introduction to the Java programming environment at
http://java.sun.com/docs/white/langenv/.

The Role of J2EE
J2EE is about seven years old. In these years, the IT sector has been through intensive turmoil.
We’ve seen the rise and fall of several companies playing in the enterprise application space.
Microsoft made a huge push toward its new .NET platform to compete head-on with Sun’s
J2EE initiative. However, J2EE, like Java, is developed through the community process, allowing
all the leading software companies to contribute to its evolution. This gives J2EE a slight edge
over .NET in terms of evolution and adoption. You can search the Web for numerous compar-
isons between J2EE and .NET. The jury is still out.

The question you’re most likely asking is, what is J2EE and why do I care? At the beginning
of this chapter we described typical problems that can hurt enterprise IT departments. More
and more IT teams are required to deliver high-performance, distributed, and transactional
applications. The fast-evolving and demanding e-commerce world needs technology stacks
that help deliver business value cheaper, faster, and better.

J2EE is a technology platform that delivers this vision. J2EE is an open, standards-based
development and deployment platform for building n-tier, Web-based, and server-centric
enterprise-strength applications. It provides a distribution application model, a reusable
component-based architecture, unified security models, and a highly reliable transaction
model. J2EE is built on top of the Java 2 Standard Edition Development Kit. Thus, to be able to
run a J2EE application, you’ll need a JVM and the Java libraries. Like Java, J2EE does all this in
a platform- and vendor-independent manner.

Before J2EE, developers spent a majority of their time dealing with system programming
details rather than being able to focus on business logic. They had to deal with issues such
as transaction programming, threading, security, persistence, resource management, state
management, and so on. Certain proprietary frameworks were available to help with some of
these, but they made the system not totally portable, extensible, or maintainable. These systems
couldn’t interact with each other without going through a major integration effort that itself
cost millions of dollars.

J2EE has changed this scenario. The J2EE platform includes the technology specifications,
a reference implementation, a compatibility test suite, and a BluePrints program that describes the
best practices and design patterns for J2EE development.

C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ? 7

Introducing Service-Oriented Architecture (SOA)
Now we’ll take a couple pages to introduce you to SOA. Chapter 2 is devoted to SOA, so there
we’ll really drill into what SOA is. However, the introduction in this chapter is also important
because it’ll help you put the Apache Beehive technologies in context.

How does SOA really impact technology choices? How do these concepts help address the
challenges of the corporate CIO?

No single technology, protocol, or product makes up SOA. Instead, SOA is a set of tools,
technologies, frameworks, and best practices that enable the quick and easy implementation
of services. In addition, SOA is a methodology for identifying reusable services in your applica-
tions and in your organization. SOA is not a product or standard.

SOA is focused on being a technology and process framework that allows enterprises to
identify, build, exchange, and maintain their business processes as services rather than large
monolithic applications that today are often termed instant legacy.

SOA existed well before Web Services. Think back to COBRA and IDL. These are just flavors
of SOA. As Gartner (http://www.gartner.com/) puts it, “Through 2008, SOA and Web services
will be implemented together in more than 75 percent of new SOA or Web services projects
(0.7 probability).” This means Gartner is predicting that Web Services will be the primary tech-
nology used for SOA-based development.

The technologies that enable SOA are targeted at reducing the complexities involved in
software development. They address the issues with distributed software, multiple platforms,
and application integration. SOA provides an application architecture where you define processes
as services that have a well-defined interface. These services are dynamically invokable over
a network.

For CIOs, SOA enables faster time to delivery of business processes and cost reduction
because of lower development and maintenance costs. In short, SOA is a potential solution to
all the challenges discussed earlier in this chapter. So, where does Apache Beehive fit it?

Apache Beehive is a project that enables faster, better, cheaper J2EE and SOA development
based on the technologies initially introduced by BEA in WebLogic Workshop. However,
before jumping into Apache Beehive, let’s look at how it was born.

Introducing BEA WebLogic Platform
BEA is among the leading vendors that deliver on the promises that J2EE makes. The company
is very active—along with Sun, IBM, HP, and several other vendors—in defining the next
generation of J2EE standards. Today, according to every major IT analyst, WebLogic Server is
the among the leading J2EE application servers in the market. BEA has more than 2,000 partners
and earns more than a billion dollars in annual revenue. Their customer list is impressive and
at times spans 100 percent of a particular industry vertical in the Fortune 1000 list.

■Further Reading You can read more about BEA customers at http://www.bea.com/framework.
jsp?CNT=index.htm&FP=/content/customers.

8 C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ?

BEA WebLogic Platform provides a collection of tools that enable agile enterprise devel-
opment. We’ll introduce these tools in this chapter but go into depth on each of these tools
throughout this book. Figure 1-3 shows BEA WebLogic Platform at a high level. You’ll be refer-
ring to this figure throughout the book as you dissect each of these components and see how
other BEA components, which are not shown in this figure, fit in.

Figure 1-3. BEA WebLogic Platform

In the following sections, we’ll briefly introduce each component.

BEA WebLogic Server
WebLogic Server implements the J2EE and Web Service standards and is today the leading
J2EE application server in the market. It simplifies the development, deployment, integration,
and management of enterprise applications.

BEA WebLogic Workshop
WebLogic Workshop provides a unified and integrated development environment for IT teams.
It allows integration with legacy applications, Web Service development, .NET, and various
developer tools to quickly and easily develop, debug, and deploy J2EE applications. WebLogic
Workshop has been a major driving force behind the convergence of BEA WebLogic Platform.

BEA WebLogic Integration
BEA released WebLogic Integration in June 2001. WebLogic Integration provides a framework
for business integration, application integration, data interchange, and business process
management. It’s built on top of WebLogic Server and is fully standards compliant. It implements
the Java Connector Architecture (JCA), Java Message Service (JMS), and several Web Service
standards such as SOAP, WSDL, and UDDI. WebLogic Integration can coordinate transactions
across multiple systems (as long as they support the XA protocol), enabling the automation of

C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ? 9

business processes that flow through multiple systems. WebLogic Integration is probably the
most complex product in the BEA suite.

BEA WebLogic Portal
WebLogic Portal now supports the new portal specifications and provides a rich environment
for content management, search, and wireless. It allows Web Services to be exposed as portlets
and provides a rich environment to interact with these portlets.

BEA WebLogic JRockit
WebLogic JRockit is a JVM that’s designed specifically for J2EE. It’s optimized highly for server-
side Java applications to address the performance requirements of J2EE. This is a relatively new
offering from BEA.

What Does BEA WebLogic Platform Provide?
WebLogic Platform 8.1 is the latest release from BEA that encompasses all the components
described at a high level in the previous sections. The following are some of the benefits of
adopting this platform:

• Single, unified, middle tier that provides the infrastructure on which you can build your
business applications. You don’t need several products to make up your middle tier.

• Single installation for all the components. You don’t need to do any after-installation
tweaks or configuration changes. The installation comes complete with a JVM, JDK,
individual components, and fully built samples that span each of the components.

• All components built on top of the reliable, scalable, and available WebLogic Server.
WebLogic Server forms the core runtime container for all J2EE and Web Service
applications.

• All components built using standard J2EE technologies.

• A unified development environment for WebLogic Portal, WebLogic Integration, and
Web Services.

• A single management and monitoring infrastructure for the different components.

• Unified JMS messaging throughout the platform.

• Complete support for all Web Service technologies and standards such as SOAP, WSDL,
UDDI, and so on.

■Further Reading You can read more about Simple Object Access Protocol (SOAP) at http://
www.w3.org/TR/SOAP/.

10 C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ?

■Further Reading You can read more about Web Services Description Language (WSDL) at http://
www.w3.org/TR/wsdl.

■Further Reading You can read more about Universal Description, Discovery and Integration (UDDI) of
Web Services at http://www.uddi.org/.

Exploring the History of BEA WebLogic Workshop
WebLogic Workshop was first introduced into BEA WebLogic Platform as a Web Service IDE. It
enabled quick and visual development, deployment, and management of Web Services. Since
then, BEA has enhanced the tool to be not only a standard Java IDE but also the IDE for the
entire WebLogic Platform. For example, if you’ve used EBCC with WebLogic Portal 7, or the
Business Process Editor with WebLogic Integration 7, you’ll see that with the 8.1 release of
WebLogic Platform, all the functionality from these distinctly different tools has been incorpo-
rated in WebLogic Workshop.

When using WebLogic Platform 8.1, you’re almost forced to use WebLogic Workshop. This
is definitely true if you’re doing development using WebLogic Portal or WebLogic Integration.
As you can imagine, this is very proprietary, and thus IT teams have been skeptical about using
WebLogic Workshop. In today’s fast-changing technology world, no one wants to be locked
into one vendor or one technology. This is the fundamental issue in the Java versus .NET battle.
Also, WebLogic Workshop is just in its infancy and has several usability and performance
issues that have made IT teams shy away from it.

BEA quickly addressed these issues head-on. In the early part of 2004, BEA donated several
proprietary technologies to the open-source community primarily to increase the adoption
of WebLogic Workshop, which is the basic entry point into the WebLogic Platform suite. For
typical J2EE applications deployed on WebLogic Server, WebLogic Workshop serves only as a
basic IDE; for development in WebLogic Portal, WebLogic Integration, or BEA Liquid Data for
WebLogic, WebLogic Workshop forms the only IDE you can really use.

By providing several open-source technologies, such as XMLBeans, Java Page Flows, Controls,
and others, BEA hopes that several plug-ins will be created so that more popular development
tools can be used to develop J2EE and Web Service applications on WebLogic Workshop.

Introducing Apache Beehive
On May 25, 2004, BEA and Apache announced the birth of the Beehive project. The project
focuses on simplifying J2EE and Web Service programming by using the concept of annotations
that’s fast becoming part of Java. Service-oriented development is also a major emphasis of
this project.

The Apache Beehive project was created to support the Java Page Flow (JPF) technology,
Controls, and Web Services based on JSR 181.

C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ? 11

Java Page Flows are built on top of Struts. The most fundamental value-add in Java Page
Flows is the support for annotations and metadata. Instead of writing the Struts configuration
file, metadata is automatically generated that does the same thing. In addition, just like Struts
has some tag libraries to help in the front-end development, Java Page Flows use a technology
called NetUI. NetUI is a set of tag libraries, quite similar to the Struts tag libraries.

Actually, if you look at the Beehive project, you won’t see Java Page Flows. You’ll see NetUI,
which includes Java Page Flows. This might not seem intuitive, so be careful.

The Apache Beehive project is built on Java 1.5 and can run on most application servers. In
this book, we’ll show you how to use Beehive with Apache Tomcat and, in some places, with
BEA WebLogic Server. In addition, developers don’t need to use WebLogic Workshop to develop
Beehive components. In fact, the standard IDE is Eclipse. Eclipse recently launched a project
called Pollinate that provides a plug-in to Eclipse to support Beehive development. You’ll
explore this in more detail in this book. Figure 1-4 gives you a glimpse of the Eclipse IDE with
the Pollinate plug-in. This figure also gives you a first glimpse at some Apache Beehive code.

Figure 1-4. Eclipse IDE with Pollinate

If you look at Figure 1-4 carefully, you’ll notice that the code is somehow related to a book-
store. In this book, you’ll build a bookstore as the sample application to demonstrate the features
of Apache Beehive and XMLBeans. In each chapter you’ll add more functionality to this appli-
cation. Figure 1-5 shows you the main menu for the bookstore application that you’ll build.

12 C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ?

Figure 1-5. Bookstore sample application, main menu

As you can see in Figure 1-5, you’ll connect the bookstore application to Amazon.com
for searching the Amazon.com catalog. To do this, you’ll use a Control in Apache Beehive to
consume the Amazon.com Web Services. The Add Book functionality will leverage several
types of Controls, such as the Database Control and a plain Java Control. The overall applica-
tion will use the Java Page Flow/NetUI technologies for the controller and presentation layers.
You’ll represent the book object using XMLBeans.

■Further Reading You can learn more about Apache Beehive at http://incubator.apache.org/
beehive/.

■Further Reading You can read more about JSR 181, Web Services Metadata for the Java Platform,
at http://jcp.org/en/jsr/detail?id=181.

■Further Reading You can read more about Eclipse Pollinate at http://www.eclipse.org/
pollinate/.

C H A P T E R 1 ■ W H A T ’ S A P A C H E B E E H I V E ? 13

Introducing XMLBeans
XML is pretty much becoming the standard form for data representation. Almost every industry is
now building standards that define their data as XML. This enables organizations to exchange
data. For example, without standards, it’s hard for an airline to exchange passengers’ ticketing
information with different travel agents. The entire travel industry, for example, now follows
XML standards for defining and exchanging data. This can enable airlines, hotels, cruise lines,
and travel agents to seamlessly exchange data. This in turn enables more service orientation.

Developers have always had a hard time with this. In an object-oriented world, what good
is data formatted in XML? It goes back to the same concept as relational data. Using a relational
database is a good way to store data, but in an object-oriented world, you eventually need to
convert that relational data into objects. This gave birth to a generation of Object-Relational
(OR) mapping tools. XMLBeans is the same thing as XML-object mapping. XMLBeans provide
a way to map XML data to objects. XMLBeans fully support XML Schemas and provide an easy
API to access XML data as if you were accessing data in a JavaBean. This technology was born
at BEA, and in September 2003 BEA released the XMLBeans technology as open source.
XMLBeans 1.0 is currently a stable release, and a lot of work is taking place to make it more suit-
able for large Web Service applications.

■Further Reading You can read more about XMLBeans at http://xmlbeans.apache.org/.

So, What’s Next?
This book is going to dig deeply into the different technologies that are part of the Apache
Beehive project. It will also cover Apache XMLBeans in detail. We’ll use several small examples
to demonstrate the various features of these technologies. In the next chapter, we’ll explain the
concepts behind SOA. This will provide you with the background to understand how the different
technologies that are part of Apache Beehive actually help simplify SOA-based development. If
you’re already an expert on SOA, you can just read the “So, What’s Next?” section in Chapter 2
and jump ahead.

15

■ ■ ■

C H A P T E R 2

Introducing Web Services and
SOA Fundamentals

In this chapter, we’ll introduce you to Web Services and Service-Oriented Architecture (SOA).
We won’t go into all the details of what these technologies are and what they can do; our goal
is to provide enough background so you can understand the value of these technologies. You’ll
also see how SOA relates to Apache Beehive.

Introducing Web Services
As a Java programmer, you’ve undoubtedly heard of Web Services. You might have read several
articles on it or even used Web Services in some capacity. The following section is a ten-minute
overview of Web Services. Then we’ll cover Web Service technologies and define enterprise-
class Web Services.

Web Service Overview
Web Services, simply put, are just another way to access remote code over a network. Before
the introduction of Web Services, technologies such as the Common Object Request Broker
Architecture (CORBA) and Java’s Remote Method Invocation (RMI) were a popular way to
provide this functionality.

Specifically, Web Services are a set of specifications built on top of open, cross-platform
standards such as TCP/IP, HTML, and XML to provide loosely coupled, highly interoperable,
standards-based access to remote services over a network. Figure 2-1 shows the basic flow of a
Web Service.

A Web Service consists of a service provider that is defined in the Web Services Description
Language (WSDL) and published using a Universal Description, Discovery and Integration
(UDDI) directory, called a registry. A service requestor (Web Service client) discovers the Web
Service in the UDDI registry. Then the service requestor communicates with the service provider
using SOAP over some transport protocol, generally HTTP.

We’ll cover the core Web Service specifications in the next section.

16 C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T AL S

Figure 2-1. Basic Web Service flow

Basic Web Service Technologies
In the following sections, you’ll learn about three core technologies that you’ll use when working
with Web Services: SOAP, WSDL, and UDDI. We’ll also mention some other, miscellaneous
technologies that are involved with Web Services.

Simple Object Access Protocol (SOAP)

The Simple Object Access Protocol (SOAP) is a W3C standard. According to the SOAP 1.1 specifi-
cation, SOAP is a lightweight protocol for the exchange of information in a decentralized,
distributed environment. SOAP is a definition built on top of XML. It allows service providers
and service consumers to exchange data over a network. Today, the exchange of SOAP messages
takes place primarily over HTTP; however, nothing in the SOAP specification restricts the exchange
to HTTP. SOAP allows objects of any kind, on any platform, and written in any language to
interoperate. SOAP has been implemented on more than twenty platforms and in more than
fifty programming languages.

■Further Reading You can read more about SOAP at http://www.w3.org/TR/SOAP/.

Web Services Description Language (WSDL)

The Web Services Description Language (WSDL) is built on top of XML and contains information
about the interface, semantics, and execution of a Web Service. It defines the services that are
provided and the format and semantics of the data that a Web Service accepts and returns.
A WSDL definition contains four critical pieces of data:

C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T A L S 17

• Interface information describing all publicly available functions

• Data type information for all message requests and message responses

• Binding information about the transport protocol to be used

• Address information for locating the specified service

■Further Reading You can read more about WSDL at http://www.w3.org/TR/wsdl.

Universal Description, Discovery and Integration (UDDI)

You’ve used an Internet search engine, right? Imagine a world where every company has tons
of services (or more specifically, Web Services). The Universal Description, Discovery and Inte-
gration (UDDI) specification defines a search engine for Web Services. You aren’t required to
expose your Web Services in a UDDI registry; however, by doing so, you allow more users to be
able to locate and use your Web Services. UDDI definitions aren’t specific to SOAP services.
Any sort of Web Services can be described in a UDDI registry.

You’ve definitely heard about the Amazon.com and Google.com Web Services. We predict
a whole new set of business models that can potentially arise when companies start leveraging
Web Services from other companies. Let’s say you want to buy this book. On the Apress Web
site, you search for it. Apress makes a call to the Amazon.com Web Service to get you pricing
information and the names and addresses of five bookstores that are closest to your location
that carry this book. Then it uses a Google.com or MapQuest.com Web Service to show you
these stores on a map.

This is just a basic example; business models like this will evolve as more and more Web
Services are published in UDDI registries.

■Further Reading You can read more about UDDI at http://www.uddi.org/.

Other Web Service Standards

In addition to these three core standards that define Web Services, numerous other standards
help deliver the promise of Web Services. Table 2-1 lists some of them; keep in mind that these
URLs were accurate at the time of writing but, like everything on the Web, are subject to change.
If you find one that’s out-of-date, you can search the Web or the BEA dev2dev site (http://
dev2dev.bea.com/) to learn more about these proposed standards.

Table 2-1 is by no means exhaustive, but it gives you a good idea of the types of technology
support that you can expect to see for Web Services in the near future. These all help move Web
Services from hype to reality and lead to the development of truly enterprise-class Web Services.

18 C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T AL S

Enterprise-Class Web Services
Web Services promote simplicity in design and development and offer universal applicability
to almost all business problems. But what impact do Web Services have in an enterprise, and
what will be the rate of adoption of this technology stack? Understanding the difference between
simply deploying a Web Service and deploying a truly enterprise-class Web Service–based
architecture will help you understand the true impact of Web Services.

In the following sections, we’ll explain what exactly enterprise-class Web Services are.
This is important because vendors—including BEA, IBM, Sun, Oracle, Microsoft, Tibco, and
webMethods—all define enterprise-class Web Services and SOA differently. Not surprisingly,
these definitions are tailored to match their product offerings.

For example, webMethods defines an enterprise Web Service as “the coupling of Web
Services functionality with the integration and business process management of webMethods
Integration platform” (defined in the webMethods whitepaper “Enterprise Web Services in the
Financial Services Industry”). Clearly, this definition supports the webMethods suite of products.

Web Services vs. Enterprise-Class Web Services

Today, Web Services exist totally on the surface of their true potential. Deploying a simple
stock-ticker, currency-converter, or weather-brief Web Service doesn’t encompass the full
power and potential of Web Services. Broadly, an enterprise-class Web Services can be defined
as a Web Service that demonstrates loose coupling, interoperability, and asynchronous
interactions.

According to various research publications, application integration is one of the top three
priorities of a Fortune 1000 CIO. Initially, in the early stages of Web Service adoption, it was

Table 2-1. Miscellaneous Web Service Standards

Web Service Standard URL

SOAP 1.2 Attachment Feature http://www.w3.org/TR/2004/NOTE-soap12-
af-20040608/

Web Services Addressing http://www.w3.org/Submission/ws-addressing/

Web Services Reliable Messaging http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsrm

Web Services Policy Framework
and Web Services Policy Attachment

http://schemas.xmlsoap.org/ws/2004/09/policy/

Web Services Coordination http://dev2dev.bea.com/technologies/
webservices/ws-coordination.jsp

Web Services Transaction http://dev2dev.bea.com/pub/a/2004/01/
ws-transaction.html

Web Services Security http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wss

Web Service Choreography Interface http://www.w3.org/TR/wsci/

C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T A L S 19

clear that Web Services would be used in the traditional Enterprise Application Integration
(EAI) world to help legacy applications integrate and coexist. Even though simple Web Services
such as a stock ticker demonstrate loose coupling, interoperability, and asynchronous interactions,
they do not show the potential for Web Services in the EAI world.

An effective enterprise-class Web Service architecture demonstrates the integration of
applications and provides a programming model that reduces the complexity of developing
loosely coupled, coarse-grained, asynchronous, and interoperable services and applications. It
goes beyond a traditional stock-ticker Web Service and addresses the needs of the EAI market.

The future of Web Services will be the definitive platform for integrating enterprise appli-
cations, but realizing this future requires more than simple, RPC-style Web Services. While
meeting the requirements defined previously, Web Services must also be reliable, available,
and scalable to meet the rigorous demands of the changing business. Because of tight IT
budgets and fixed resources, these enterprise-class Web Services need to be easy to develop in
greatly shortened time frames. It’s also important to note that the number of skilled enterprise
J2EE developers is about 25–30 percent that of traditional developers (VB, C++, COBOL and so on).
This ratio is slowly increasing, but this shows the need for Web Services to be easy to develop,
deploy, and orchestrate.

Defining Enterprise-Class Web Services

So, with the background information from the previous section, you can define an enterprise-
class Web Service as the following:

• A Web Service demonstrates loose coupling, interoperability, and asynchronous
interactions.

• A Web Service is easy to develop, deploy, and orchestrate.

• A Web Service is highly scalable, available, and reliable.

• A Web Service has configurable usage policies that govern the SLAs, error handling, and
security requirements.

• A Web Service has policies that are dynamically configurable. Different versions of the
Web Service can operate using different policies.

You now know the fundamentals of a Web Service, so in the next section we’ll introduce
and define SOA.

Introducing SOA
SOA and service-oriented programming are the new buzzwords in IT. Further, SOA and Web
Services are almost thought of as the same thing. We could easily spend this entire chapter
clearing up this myth, but that isn’t our purpose here. SOA isn’t the same as Web Services;
however, the Web Service technology is the most promising technology for enabling a true
SOA. Figure 2-2 shows you how SOA is actually in the middle of the technology star and can be
implemented using any technology.

20 C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T AL S

■Note SOA and Web Services aren’t the same thing. We aren’t emphasizing this distinction in this chapter
primarily because, although not the same, Web Services are the best technology for SOA today. In other words,
the two are very closely linked.

Figure 2-2. SOA using different technologies

Before we get into the definition of SOA, we’ll first define a service.

What’s a Service?
A service is a discrete piece of code that solves a business problem, is technology agnostic, is
network addressable, and has a published interface. But this is a loaded and still incomplete
definition. It’s really hard to describe a service in one sentence. So, we’ll provide a more
complete definition of a service; specifically, a service has all of the following characteristics:

Solves problem: A service is a piece of code that solves a business problem. By this defini-
tion, every piece of code in your application is a potential service—accessing a database,
printing a report, generating data for a report, and so on. However, not all pieces of your
code will satisfy the other pieces of this definition.

■Further Reading For more information about services, read “Service-Oriented Modeling and Architecture:
How to Identify, Specify, and Realize Services for Your SOA” at http://www-128.ibm.com/developerworks/
webservices/library/ws-soa-design1/.

Is technology agnostic: A service is a piece of code that’s technology agnostic. This means
that the service can be written in any programming language and then invoked by code
from another programming language.

C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T A L S 21

Is transport independent: A service is also transport independent. This means the service
can be invoked using any communication protocol (HTTP, TCP/IP, RMI, and so on). The
point of interaction between a consumer and a service is a SOAP message, not a technology
touch point. Today, however, the primary transport protocol for services is HTTP.

Is network addressable: A service is network addressable. This means that a service can be
invoked over a network—intranet or extranet. Think of this for a minute. By this definition,
any EJB in your system is a service, and any COM/CORBA object is a service. However, it’s
important to understand that you need to have all of the pieces described in this definition
to be a service. For example, if you’re network addressable but not technology agnostic,
you’re not a service. This rules out CORBA or EJBs from being services.

Has a published interface: A service has a published interface. This means the service has a
clear set of inputs and outputs. These are typically in the form of SOAP messages but don’t
have to be.

Is transparent to its location: A service is transparent to its location. This means the client
shouldn’t need to know when, where, or how the service is built. All the client needs to do
is invoke the service based on the published interface.

In this definition, we’ve left out the fact that a service is generally discoverable. This is a
valid requirement for a service, but it isn’t mandated.

All Web Services are services, but not all services are Web Services. This relationship goes
back to our statement that the Web Service technology is only one of the technologies that can
be used to build your SOA. In addition, another key point to remember is that just because you
have a Web Service doesn’t mean you have an SOA. Figure 2-3 shows the relationship between
SOA and Web Services.

Figure 2-3. Relationship between SOA and Web Services

■Note To reiterate, all Web Services are services, but not all services are Web Services.

22 C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T AL S

Defining SOA
Several ways to define SOA exist. A great article, “A Defining Moment for SOA,” presents an
aggregation of 50 definitions of SOA. As SOA enthusiasts, we definitely recommend you read
this article: http://searchwebservices.techtarget.com/originalContent/0,289142,sid26_
gci1017004,00.html.

You can think of SOA as a process and a methodology. It’s a set of tools, technologies,
frameworks, and best practices that enable the quick and easy implementation of services. In
addition, the process of developing SOA uses a methodology for identifying reusable services
in your applications and organization. SOA is an enabler for loosely coupled applications that
are service oriented.

SOA isn’t a single product or a standard.

■Further Reading Visit Kunal Mittal’s site at http://www.soaconsultant.com/html/soup.shtml to
learn about a new methodology for SOA-based development, the Service-Oriented Unified Process (SOUP).

SOA is a collection of services. Each service is a step in a business process. A business process,
then, can be defined as a collection of ordered services. In SOA environments, the business
drives the services, and the services drive the architecture, or SOA. The key factor is that the
services are loosely coupled. This is obvious if you revisit the definition of a service. Since a
service is a discrete piece of code with a defined set of inputs and outputs, you can swap out a
service in a business process quite seamlessly. This is the meaning of loosely coupled. This also
automatically leads to business agility, as you can add/remove/change services in a business
process quickly to meet the changing demands of the business. A new business process isn’t a
new software project; rather, it’s the assembly to preexisting services, with some new ones.

Defining Service-Oriented Programming
Service-oriented programming is, simply put, programming with services—just like object-
oriented programming, rules-based programming, procedural programming, and so on.

Let’s talk about object-oriented programming for a minute. When writing object-oriented
code, a developer is interested in identifying the classes and their responsibilities. As a pro-
grammer, you define the objects, the data they contain, and the operations they perform.

Service-oriented programming is no different. A developer building services needs to do
the following:

1. Identify the operations/functions that should be exposed as services.

2. Build the service.

3. Expose the interface to the service.

4. Publish the service so that it’s network addressable.

On the flip side of the coin, a developer that’s consuming a service needs to do the
following:

C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T A L S 23

1. Discover which service they want to consume.

2. Understand the operations and interface.

3. Implement the binding to the service to invoke its operations.

4. Execute the service.

When building services, you might still be using object-oriented programming or other
traditional programming paradigms. The difference is that when you start thinking about services,
you’re no longer building large and complex object models. Instead, you’re designing business-
aligned components at a coarser-grained level rather than objects at a fine-grained level.

Exploring the Role of XML in SOA
XML is a key technology enabler for SOA-based applications. Just like Web Services, XML isn’t
required for SOA, but it’s one of the best technologies today to enable service orientation.

The main reason behind this is that XML allows you to build data dictionaries that are well
defined and that can be validated. When you work with Web Services, you’ll primarily exchange
SOAP messages that are built on top of XML. One of the first steps in working with Web Services
is validating the input and output messages. The Web Service provider validates the input they
receive, and the consumer validates the response they get back from the Web Service. This is a
key feature of XML, thus making it an ideal technology for Web Services and SOA.

We’ve now given you enough of a background on SOA and Web Services to talk about how
Apache Beehive enables SOA and SOA-based programming.

■Further Reading For more information about SOA, refer to “SOA Learning Guide” at http://
searchwebservices.techtarget.com/generic/0,295582,sid26_gci1068517,00.
html?Offer=Wswnsoalg and BEA’s SOA Resource Center at http://www.bea.com/framework.
jsp?CNT=index.htm&FP=/content/solutions/soa/.

■Further Reading For more information about SOA and Web Services, refer to the WebServices.org site
at http://www.webservices.org/.

How Does Apache Beehive Enable SOA?
Two key pieces of the Apache Beehive technologies focus on SOA. These are Controls and
Web Services.

Figure 2-4 shows you how Controls and Web Services fit into the typical Web Service
flow shown in Figure 2-1 earlier in this chapter. The following sections will describe the two
technologies.

24 C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T AL S

Figure 2-4. How does Beehive fit into SOA?

How Do Controls Relate to SOA?
Controls are a new concept in Apache Beehive and play a big role in SOA-based development.
A Control is nothing more than a Java object that encapsulates some business logic or controls
the access to some resource such as a database or external application. A Control has a well-
defined interface. Think of a Control as a service enabler. A Control is not a service but can
easily be exposed as a service, thus enabling service orientation, or SOA.

How Do Apache Beehive Web Services Relate to SOA?
Well, as discussed in the chapter, the Web Service technology is one of the most promising
technologies today for enabling SOA. Apache Beehive simplifies the development of Web
Services and the consumption of Web Services. It uses a standard SOAP implementation and
leverages the three main standards for Web Services: SOAP, WSDL, and UDDI.

How Do XMLBeans Relate to SOA?
XML is a big part of SOA. Just like with Web Services, you aren’t required to use XML in SOA
applications; however, today XML is the most likely technology that you would use for data
exchange in SOA applications.

The XMLBeans project is an open-source project that simplifies how developers work with
XML. It’s an XML-Java binding technology, much like what a Object-Relational (OR) mapping
tool does for databases. XMLBeans are good for communicating between Web Services, which
are the key elements of SOA applications today. We’ll discuss this further in Chapter 8.

So, What’s Next?
Apache Beehive is based heavily on a concept called annotations. Before you can dive into
the different Beehive technologies and start writing code, you need to spend a few minutes

C H A P T E R 2 ■ I N T R O D U C I N G W E B S E R V I C E S A N D S O A F U N D A M E N T A L S 25

learning about annotations. So, Chapter 3 will introduce this concept, show you how annota-
tions work in the latest version of Java, and explain how Apache Beehive leverages the concept
of annotations. You’ll also see some of the Java annotations, the BEA WebLogic Workshop
annotations, and then the Apache Beehive annotations.

27

■ ■ ■

C H A P T E R 3

Introducing Annotations

Java 1.5, or the “Tiger” release, is probably the most significant revision to Java since its orig-
inal inception. It includes several new features, such as generics and annotations. The concept
of annotations isn’t new to Java. The first incarnation of annotations was in Javadocs comments
and keyword modifiers. But this was fairly limited and did not allow developers to define their
own annotations. Tags such as author, param, return, and deprecated are all examples of anno-
tations. Even the transient attribute that prevents an instance variable from being serialized is
somewhat an example of an annotation.

With Java 1.5, Sun has taken annotations to a new level. In this chapter, we’ll briefly talk
about what are annotations and how they’re used in Java 1.5.

Now, with Java embracing annotations even more, why should the J2EE community stay
behind? Even before Java 1.5, BEA released the Java Page Flow technologies, which were based
on their own proprietary annotation language. In addition, the Apache Beehive project completely
embraces this concept. The majority of this chapter will explore the different annotations used
by Apache Beehive and other J2EE development, such as EJBs.

If you’re someone who has extensively used WebLogic Workshop and now needs to migrate
all your Workshop code to Beehive, you’ll find this chapter particularly interesting. You’ll
realize that the small differences in the annotations are probably your starting point in this
code migration.

What’s an Annotation?
So, what’s an annotation? An annotation is metadata that’s translated into something mean-
ingful at compile time or runtime. Metadata is really some data about some other piece of data.
It allows you to provide the ability for the compiler (in this case, the annotations processor) to
make certain decisions for you. These decisions typically result in generating some code behind
the scenes.

■Further Reading You can find a really good article on annotations at http://www-106.ibm.com/
developerworks/java/library/j-annotate1/.

28 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

Annotations can be read by source code, by compiled code, or at runtime using reflection.
Annotations have a few key advantages:

• They save the programmer from having to write boilerplate code to do the same, repeti-
tive tasks.

• They save the programmer from having to manage certain information in external files,
such as deployment descriptors.

• Annotations can also be used for compile-time checking such as producing warnings
and errors for different failure scenarios.

With Java 1.5, finally, annotations are a typed part of the language, and the version even
comes with some prebuilt annotations, one of which can be used to mark a class as depre-
cated. You now get a syntax for declaring annotation types, a class file representation for
annotations, APIs to access the annotations, and an annotation processing tool to process the
annotations.

Let’s take a quick look at some basic annotations in Java 1.5.

Basic Java 1.5 Annotations
Java 1.5 uses annotations extensively. Java 1.5 comes with seven prebuilt annotations.

java.lang.Override

The java.lang.Override syntax is as follows:

@Target(value=METHOD)
@Retention(value=SOURCE)
public @interface Override

This annotation overrides a class or a method that’s declared in a superclass. The value of
this annotation is to enforce compile-time checking. For example, if the superclass or method
is declared as final, the compiler will throw an error. Conversely, assume that you misspell the
method you’re trying to override. The compiler would normally treat this like any new method.
Using the annotation would tell the compiler to throw an error message, as now it can check
a superclass to make sure the method is actually being overridden. Typically, no error would
have been thrown, thus making it difficult to debug this issue. Another example would be if you
forgot to specify that your class extends from another class. You can’t really override a method
that isn’t being inherited from a superclass. The following is a specific example:

 @Override
public String toString() {
 return super.toString() + " my custom implementation " ;
 }

C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S 29

java.lang.Deprecated

The java.lang.Deprecated syntax is as follows:

@Documented
@Retention(value=RUNTIME)
public @interface Deprecated

This isn’t specifically new and behaves similarly to the Javadocs tag @deprecated. For
example:

@Deprecated public String myMethod() {
 return "Hello world!";
}

A deprecated method is one that has been replaced by some other method. Developers
shouldn’t use a deprecated method, as there is no guarantee that a later version of the class will
still contain that method.

java.lang.annotation.Documented

The java.lang.annotation.Documented syntax is as follows:

@Documented
@Retention(value=RUNTIME)
@Target(value=ANNOTATION_TYPE)
public @interface Documented

This annotation shows that you want Javadocs created for this element.

java.lang.SuppressWarning

The java.lang.SuppressWarning syntax is as follows:

@Target(value={TYPE,FIELD,METHOD,PARAMETER,CONSTRUCTOR,LOCAL_VARIABLE})
@Retention(value=SOURCE)
public @interface SuppressWarnings

You can use this to suppress any warnings in the code. Why would you want this? Well,
it really addresses the “type-safe” collections issue. With generics in Java 1.5, you can create
collections that are not type-safe. The compiler will throw an appropriate warning, so you can
use this annotation to suppress these warnings.

However, we recommend using this annotation with extreme caution.

java.lang.annotation.Inherited

The java.lang.annotation.Inherited syntax is as follows:

@Documented
@Retention(value=RUNTIME)
@Target(value=ANNOTATION_TYPE)
public @interface Inherited

30 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

This is similar to the “override” annotation. It basically defines that this class is inherited.
If no superclass has an annotation for this type, then an error will be thrown.

java.lang.annotation.Retention

The java.lang.annotation.Retention syntax is as follows:

@Documented
@Retention(value=RUNTIME)
@Target(value=ANNOTATION_TYPE)
public @interface Retention

Retention takes a single value of the type RetentionPolicy. There are three possible values for
RetentionPolicy:

• SOURCE: Annotations are specific to the source code; they don’t become part of the class
files and hence should be discarded by the compiler.

• CLASS: This is the default behavior. The annotations are part of the class files and are
checked at compile time but are ignored by the Virtual Machine at runtime.

• RUNTIME: Annotations are executed at both compile time and runtime.

java.lang.annotation.Target

The java.lang.annotation.Target syntax is as follows:

@Documented
@Retention(value=RUNTIME)
@Target(value=ANNOTATION_TYPE)
public @interface Target

@Target indicates the type of element for which this annotation is applicable. These are
as follows:

• TYPE (class, interface, or enum declaration)

• FIELD (includes enum constants)

• METHOD

• PARAMETER

• CONSTRUCTOR

• LOCAL_VARIABLE

• ANNOTATION_TYPE

• PACKAGE

C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S 31

JSR 175
JSR 175 (A Metadata Facility for the Java Programming Language) is a JSR aimed at standard-
izing the metadata annotations concept across Java. This JSR was motivated by the innovations
in the JavaBean and EJB specifications. For example, JavaBeans introduced the concept of
having a getFieldName and setFieldName method for each instance variable. This has become
a noted standard, and reflection is used extensively to enable this. The EJB specification intro-
duced the concept of having deployment descriptors and a notation to describe methods as
home and remote. These sorts of concepts led to the realization that an annotation model, as
introduced earlier in this chapter, would add tremendous value to Java programmers.

JSR 175 provides the following:

• It provides the ability for a programmer to provide information as metadata for classes,
interfaces, methods, and variables.

• The metadata will be interpreted by development tools, such as IDEs, compilers, and
the JVM.

• The syntax of the metadata isn’t enforced, and several possibilities are presented.
The most popular and widely adopted seems to be the Javadocs notion, such as
@metadataannotation.

• It provides an API that allows developers to define their own metadata annotations.

• It provides a mechanism to access the metadata at compile time, deploy time, and runtime.

■Further Reading For more information on JSR 175, visit the JCP site at http://www.jcp.org/en/
jsr/detail?id=175.

JSR 181
JSR 181 (Web Services Metadata for the Java Platform) is similar to JSR 171 but specific to
Web Services. This JSR aims to address the following specific common needs of Web Service
programming:

• Enables programmers to write and deploy Web Services that comply with all SOAP and
WSDL standards.

• Provides the ability to deploy the Web Services that are built using JSR 181 to any J2EE-
compliant server.

• Separates public interfaces and the implementation details. This is important, as in
many cases the public interfaces are exposed to the consumers before the implementa-
tion details are worked out.

• Supports asynchronous Web Service communication.

32 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

■Further Reading For more information on JSR 181, visit the JCP site at http://www.jcp.org/en/
jsr/detail?id=181.

You’ll look more closely at JSR 181 when we cover the Apache Beehive implementation in
Chapter 7.

Using Annotations in WebLogic Workshop
BEA has definitely been a pioneer at introducing this annotations programming model and has
played a big role in its adoption and standardization. Let’s first look at the annotations intro-
duced by BEA in WebLogic Workshop. These annotations predated JSR 175 and JSR 181, and
even Java 1.5. They basically extended the Javadocs notations. It’s no doubt these JSRs have
been influenced by these annotations, as well as have learned from some shortcomings in
BEA’s incarnation of annotations.

To demonstrate the annotations in WebLogic Workshop, we’ll pull code from various
samples that ship with the product.

■Note Code from this chapter will not be included on the Web site.The code here is just to explain the
concept of annotations. You should be able to find all the code shown in this chapter in the samples directory
of your WebLogic installation.

Java Page Flows
The Java Page Flow technology introduced in WebLogic Workshop 8.1 has several annotations.
We won’t get into the details of these too much but instead just provide a quick look at them.
In the next section, when you learn about the annotations for the Page Flows in Apache Beehive,
you’ll be able to appreciate the changes and move toward a more simplified and standard
annotations model.

Glance through the code in Listing 3-1.

Listing 3-1. A Java Page Flow Controller in WebLogic Workshop

import com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext;
import com.bea.netuix.servlets.controls.window.WindowCapabilities;
import com.bea.wlw.netui.pageflow.PageFlowController;
import com.bea.wlw.netui.pageflow.Forward;

/**
 * This is the default controller for a blank Web application.
 *
 * @jpf:controller

C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S 33

 * @jpf:view-properties view-properties::
 * <!-- This data is autogenerated.
* Hand-editing this section is not recommended. -->
 * <view-properties>
 * <pageflow-object id="pageflow:/Controller.jpf"/>
 * <pageflow-object id="action:begin.do">
 * <property name="x" value="60"/>
 * <property name="y" value="80"/>
 * </pageflow-object>
 * <pageflow-object id="page:index.jsp">
 * <property name="x" value="220"/>
 * <property name="y" value="80"/>
 * </pageflow-object>
 * <pageflow-object id="page:error.jsp">
 * <property name="x" value="220"/>
 * <property name="y" value="160"/>
 * </pageflow-object>
 * <pageflow-object id="forward:path#index#index.jsp#@action:begin.do@">
 * <property name="elbowsY" value="72,72,72,72"/>
 * <property name="elbowsX" value="96,140,140,184"/>
 * <property name="toPort" value="West_1"/>
 * <property name="fromPort" value="East_1"/>
 * <property name="label" value="index"/>
 * </pageflow-object>
 * </view-properties>
 * ::
 */
public class Controller extends PageFlowController {
 /**
 * @jpf:action
 * @jpf:forward name="index" path="index.jsp"
 */
 protected Forward begin() {
 return new Forward("index");
 }
}

The controller code is basically a Java source code file with the extension .jpf to denote
that it’s a Java Page Flow. It follows the same structure as any Java source code file. The only
difference is that in a typical file the comments don’t mean anything to the compiler. In this
case, the comments are specifying different annotations. For example, this annotation tells the
compiler that this class is a Java Page Flow controller:

@jpf:controller

The next set of annotations is as follows:

@jpg:view-properties

34 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

These are used only by the editor, in this case WebLogic Workshop. This draws a graphical
representation of the Page Flow and how it connects various actions and JSPs (see Figure 3-1).

Figure 3-1. Simple Page Flow view in WebLogic Workshop

The controller code shown in Figure 3-1 is pretty basic in what it represents. Just to give
you a feel for what it can look like, see Figure 3-2, which shows a more elaborate Page Flow view.

Let’s continue dissecting the annotations. The next and last set you see in this basic
example is as follows:

/**
 * @jpf:action
 * @jpf:forward name="index" path="index.jsp"
 */

These annotations define that the method is an action. The forward defines the next step
in the Page Flow. In this case, the begin method (similar to the main method of a Java class)
sends the users to the index.jsp page.

We won’t go any deeper with this. We recommend you open a JPF file from one of the BEA
sample directories and take a look at some more annotations.

The one take-away from this section is that the annotations in WebLogic Workshop are
very different in format from the Java 1.5 annotations you saw in the previous section. You’ll
notice more differences as we talk about annotations in the “Controls” and “Web Services”
sections.

C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S 35

At the end of the chapter, we’ll go full circle and show you how the annotations in Apache
Beehive take the concepts from WebLogic Workshop but follow the annotations format of Java 1.5.

Figure 3-2. Detailed example of a Page Flow view in WebLogic Workshop

Controls
Controls are another new technology introduced by BEA WebLogic Workshop. They’re quite a
revolutionary concept. They form a façade for developers to access business logic and external
resources such as a database or a legacy system. They provide a common interface to all resources
and allow you to work with them as you would with any Plain Old Java Object (POJO). WebLogic
ships with several out-of-box Controls and provides a programming model for custom Control
development.

A Control is basically an annotated Java class. Let’s look at a simple Control. Listing 3-2
shows a simple Java Control created in WebLogic Workshop.

36 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

Listing 3-2. A Simple Java Control

package verifyFunds;

import com.bea.control.*;
import java.sql.SQLException;

/**
 * A Database Control to support the VerifyFunds sample Control. Provides access
 * to a database for purchase order requests.
 *
 * @jc:connection data-source-jndi-name="cgSampleDataSource"
 */
public interface ItemsDatabase
 extends DatabaseControl, com.bea.control.ControlExtension
{
 /**
 * Select item price based on item number.
 *
 * @jc:sql statement="SELECT price FROM items WHERE itemnumber = {itemNumber}"
 */
 double selectItemPrice(int itemNumber);

 /**
 * Insert purchase and customer information into a.
 * table that correlates the two.
 * @jc:sql statement="INSERT INTO po_customers (orderid, customerid)
 * VALUES ({poNumber}, {customerID})"
 */
 void insertItemCustomer(int poNumber, int customerID);

 /**
 * Insert purchase order and item information into
 * a table that correlates the two.
 * @jc:sql statement="INSERT INTO po_items
* (orderid, itemnumber, quantity) VALUES ({poNumber}, {itemNumber}, {quantity})"
 */
 void insertPOItem(int poNumber, int itemNumber, int quantity);

 /**
 * Select the number of items available based on item number.
 *
 * @jc:sql statement="SELECT quantityAvailable FROM items
 * WHERE itemNumber = {itemNumber}"
 */
 int checkInventory(int itemNumber);

C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S 37

 /**
 * Update the item inventory.
 *
 * @jc:sql statement="UPDATE items SET quantityAvailable
 * = {newQuantityAvailable} WHERE itemnumber={itemNumber}"
 */
 int updateInventory(int itemNumber, int newQuantityAvailable);
}

Let’s examine the first annotation in this code:

@jc:connection data-source-jndi-name="cgSampleDataSource"

This annotation’s jc defines this class to be a Java Control. The fact that this code has a
connection annotation and a data source defines that this is a Database Control. The following
is another example of a Control annotation:

@jc:ejb home-jndi-name="ejb20-containerManaged-AccountHome"

This defines an EJB Control and provides the jndi name to the home interface of the EJB.
The following is another example of an annotation in the code shown in Listing 3-2:

@jc:sql statement="SELECT price FROM items WHERE itemnumber = {itemNumber}"

In this case, you’re defining a SQL statement that this Database Control would execute.
The {itemNumber} tag denotes that this will be a parameter to the sql statement.

Fortunately, Controls in WebLogic Workshop don’t need the complex view properties for
their graphical representation. Figure 3-3 shows the Database Control you just looked at in
Listing 3-2.

Figure 3-3. Database Control in WebLogic Workshop

Once again, let’s see a more complex example where a Control uses another Control (see
Figure 3-4).

38 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

Figure 3-4. Multiple Controls in WebLogic Workshop

For a Control to use another Control, the parent one basically defines the ones it wants to
use as instance variables, again using annotations, as shown in the following snippet:

/**
 * An EJB Control for accessing the customer's account.
 * @common:control
 */
private verifyFunds.CustomerAccountEJB customerAccountEJB;

In WebLogic Workshop, even EJB development is based on annotations. Listing 3-3 shows
the first few lines of an EJB in WebLogic Workshop that uses EJBGen and annotations.

Listing 3-3. EJBs in WebLogic Workshop

/**
 * @ejbgen:entity default-transaction="Supports"
 * ejb-name = "BMPItem"
 * persistence-type="bmp"
 * prim-key-class="java.lang.Integer"
 *
 * @ejbgen:jndi-name

C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S 39

 * local = "ejb.BMPItemLocalHome"
 *
 * @ejbgen:file-generation local-class = "True"
* local-class-name = "BMPItem"
* local-home = "True"
* local-home-name = "BMPItemHome"
* remote-class = "False"
* remote-home = "False"
* remote-home-name = "BMPItemRemoteHome"
* remote-class-name = "BMPItemRemote"
* value-class = "False"
* value-class-name = "BMPItemValue"
* pk-class = "True"
 *
 * @ejbgen:resource-ref jndi-name="cgSampleDataSource"
* sharing-scope="Shareable"
* auth="Container"
* type="javax.sql.DataSource"
* name="jdbc/cgSampleDataSource"
 */
public class BMPItemBean
 extends GenericEntityBean
 implements EntityBean
{

In Listing 3-3, the @ejbgen annotation defines an entity bean. You do get a graphical repre-
sentation of the EJB, just like you do with Java Page Flows and Java Controls.

Web Services
Web Services are the last set of WebLogic Workshop annotations we’ll discuss. Web Services
in WebLogic Workshop are written as .jws files. Listing 3-4 shows the code for a simple banking
Web Service.

Listing 3-4. Web Service Code in WebLogic Workshop

package creditReport;

/**
 * Bank.jws is a very simple service for use by the CreditReport.jws sample
 * service. Bank simulates a "long-running" procedure by using a timer
 * to delay its asynchronous response.
 *
 * Note that Bank.jws and IRS.jws are identical except for method names
 * and the default duration of the timer timeout.
 * @common:target-namespace namespace="http://workshop.bea.com/Bank"
 */

40 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

public class Bank implements com.bea.jws.WebService
{
 /**
 * @jc:timer timeout="10 seconds"
 * @common:control
 */
 private com.bea.control.TimerControl timer;

 /*
 * Store the customer ID number that is passed in so we can use it in the
 * asynchronous response.
 */
 private String ssn;

 public Callback callback;

 public interface Callback
 {
 /**
 * <p>onDeliverAnalysis is a callback delivered to the client when
 * processing is complete.</p>
 *
 * @jws:conversation phase="finish"
 */
 public void onDeliverAnalysis(String result);
 }

 /**
 * Starts the asynchronous analysis operation. When analysis is complete
 * the onDeliverAnalysis callback will be called. If cancelAnalysis is
 * invoked before the results are delivered, results will never be delivered
 * @common:operation
 * @jws:conversation phase="start"
 */
 public void startCustomerAnalysis(String ssn)

 {
 /* store the customer ID for later use */
 this.ssn = ssn;

 /*
 * start the timer, which simulates starting the
 * long-running analysis procedure
 */
 timer.start();
 }

C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S 41

 /*
 * Handler for onTimeout events from the "timer" Timer Control.
 * onTimeout simulates the long-running procedure reaching completion,
 * so a result is sent to the client via the onDeliverAnalysis callback.
 */
 private void timer_onTimeout(long timeout)
 {
 /*
 * Use a completely arbitrary scheme to decide who's approved and
 * who's not. Some people think real banks work this way.
 */
 if ((ssn.length() > 2) && (ssn.charAt(2) <= '5'))
 {
 callback.onDeliverAnalysis("Approved");
 }
 else
 {
 callback.onDeliverAnalysis("Denied");
 }
 }

 /**
 * <p>Cancels the analysis. The onDeliverAnalysis callback
 * will not be called and the conversation is finished.</p>
 *
 * @common:operation
 * @jws:conversation phase="finish"
 */
 public void cancelAnalysis()
 {
 timer.stop();
 }
}

As an exercise, you might want to list all the annotations you see in this code sample. Note
that you define the class to be a Web Service, define the operations of the Web Service, and
then use a Java Control for some timer functionality. Refer to Figure 3-5 for a graphical view of
this Web Service. Use that to correlate to the annotations in the code.

So, now that you’ve seen some basic annotations in WebLogic Workshop, let’s quickly
look at the annotations in Apache Beehive. Pay close attention to the differences.

42 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

Figure 3-5. Web Services in WebLogic Workshop

Introducing Apache Beehive Annotations
In the following sections, you’ll look at the different annotations in Apache Beehive. Please
remember that you have still not learned to use these technologies. Thus, it will be futile to try
to understand the details of all these annotations at this point. The purpose here is to get a
sense of the annotations programming model. Don’t worry if you don’t understand what each
annotation means or does. You’ll know all there is to know by the time you get through this book.

Page Flows/NetUI
A Page Flow is nothing but a simple Java class. The following annotations define it to be a
Page Flow:

@Jpf.Controller
public class Controller extends PageFlowController {

In the WebLogic Workshop Page Flow, you achieved this same behavior with the following
annotation:

/**
* @jpf:controller
*/
public class Controller extends PageFlowController {

In an Apache Beehive Page Flow, you can define forwards as follows:

@Jpf.Action(
 forwards = {
 @Jpf.Forward(name="...", path="..."),
 @Jpf.Forward(name="...", path="..."),
 }
)

C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S 43

By contrast, in a WebLogic Workshop Page Flow, the forwards would look like the following:

/**
 * @jpf:action
 * @jpf:forward name="…" path="…"
 * @jpf:forward name="…" path="…"
 */

Controls
Controls in Apache Beehive are the same as Controls in WebLogic Workshop. Let’s look at the
subtle differences in the annotations.

In Apache Beehive, you could define a simple Control using the following code:

package hellocontrol;

import org.apache.beehive.controls.api.bean.ControlInterface;

@ControlInterface
public interface Hello
{
 public String hello();
}

As an exercise, we recommend you generate a simple HelloWorld Control in WebLogic
Workshop and compare the annotations. You can use the previous sections of this chapter as a
reference to map the annotations in your new HelloWorld Control.

Web Services
Before jumping into learning how to write Beehive code, let’s spend a couple quick minutes
looking at the annotations in a Beehive Web Service. The following code snippet shows a
simple HelloWorld Web Service:

@WebService
public class HelloWorld
{
 @WebMethod
 public String sayHelloWorld()
 {
 return "Hello world!";
 }
}

Now take a quick peek at a HelloWorld Web Service in WebLogic Workshop:

44 C H A P T E R 3 ■ I N T R O D U C I N G A N N O T A T I O N S

/**
 * @common:target-namespace namespace="http://workshop.bea.com/HelloWorld"
 */
public class HelloWorld implements com.bea.jws.WebService {
 /**
 * @common:operation
 */
 public String sayHelloWorld() {
 return "Hello, World!";
 }
}

This should again give you a flavor of the subtle differences between the annotations in
WebLogic Workshop and Apache Beehive. The only real difference between the two imple-
mentations is the annotations. If you’re a seasoned Page Flow developer in WebLogic Workshop,
you probably should spend a few more minutes examining the differences.

So, What’s Next?
You now know what annotations are. You examined the concept of annotations from a high
level, and you then skimmed over the annotations that are part of Apache Beehive. As you learn
more about the Apache Beehive technologies, you’ll keep revisiting the concept of annotations
and diving deeper into the specific annotations that you’ll need to use as an Apache Beehive
programmer. You need to do this because Apache Beehive uses a lot of different annotations.

Next, let’s start writing some code using Apache Beehive. You’ll start by using the Page
Flow and NetUI technologies. Chapter 4 will provide a quick introduction to these technologies,
and in Chapter 5 we will dive into the details.

45

■ ■ ■

C H A P T E R 4

Dissecting Java Page Flows

BEA originally launched the Java Page Flow technology with WebLogic Workshop. BEA also
introduced a related technology, NetUI, which is a set of tag libraries that provide a binding
between Java Page Flows (the controller layer) and Java Server Pages (the presentation layer).
NetUI in Apache Beehive is a combination of the NetUI tag libraries and Java Page Flows. (In
fact, we could have called this chapter “Dissecting NetUI.”)

■Note In this book, we’ll refer to these two components as separate pieces. So, whenever we say Page
Flows, we simply mean Java Page Flows. Whenever we say NetUI, we mean the NetUI tag libraries.

In this chapter, you’ll look at the basic architecture of Java Page Flows and NetUI tags. You’ll
see the original Page Flows in WebLogic Workshop and then look at the Beehive version.
You’ll learn about the overall architecture, the classes, and the APIs you’ll need to use to
leverage Java Page Flows and NetUI.

The intent of this chapter is to introduce you to these technologies. You’ll actually dig
deeper into them in Chapter 5. Even if you’ve already worked with Page Flows in WebLogic
Workshop, we recommend at least skimming through this chapter to get a basic overview of
the differences between the two versions (WebLogic Workshop Page Flows and Beehive Page
Flows). Even if you’re an expert on the WebLogic Workshop version, or even if you’re an expert
on Beehive itself, you’ll find this chapter useful as a ready-to-use reference/refresher.

Introducing Java Page Flows
In the typical Model-View-Controller (MVC) design pattern, Java Page Flows form the controller
layer. They’re assisted by the NetUI tag libraries in the presentation layer. Java Page Flows are
built on top of Struts—which, as you know, is one of the most widely adopted MVC frameworks
available today. So, why not just use Struts?

Java Page Flows leverage the core functionality of Struts but remove a lot of the grunt work
you have to do with Struts. By grunt work, we mean managing the deployment configuration
files (such as the struts-config.xml file). The original version of Page Flows from BEA introduced
a declarative programming language that was automatically generated and maintained by

46 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

WebLogic Workshop. The Apache Beehive version of Page Flows uses JSR 175 for its metadata
definition. (You saw the details of this in Chapter 3.)

As mentioned, Page Flows leverage all the features of Struts, such as the validation frame-
work. You’ll see this in more detail in Chapter 5. You can actually have a single Web application
that has a combination of Struts and Page Flows.

So, let’s actually look at a Page Flow.

Page Flows in WebLogic Workshop
This book is not about WebLogic Workshop, so we won’t go into the details of how you start
building Page Flows in WebLogic Workshop. Let’s just assume that you built a simple HelloWorld
Page Flow using WebLogic Workshop (see Listing 4-1).

■Note See the BEA Web site (http://www.bea.com) for information on how to download and install BEA
WebLogic Workshop 8.1. See the documentation on the BEA developer site (http://edocs.bea.com) to
learn how to work with BEA Page Flows.

Listing 4-1. helloworld.jpf in WebLogic Workshop

package helloworld;
import com.bea.wlw.netui.pageflow.Forward;
import com.bea.wlw.netui.pageflow.PageFlowController;

/**
 * @jpf:controller
 * @jpf:view-properties view-properties::
 * <!-- This data is autogenerated.
* Hand-editing this section is not recommended. -->
 * <view-properties>
 * <pageflow-object id="pageflow:/helloworld/HelloWorldController.jpf"/>
 * <pageflow-object id="action:begin.do">
 * <property value="80" name="x"/>
 * <property value="100" name="y"/>
 * </pageflow-object>
 * <pageflow-object id="forward:path#success#helloworld.jsp#@action:begin.do@">
 * <property value="44,20,20,60" name="elbowsX"/>
 * <property value="92,92,-4,-4" name="elbowsY"/>
 * <property value="West_1" name="fromPort"/>
 * <property value="North_1" name="toPort"/>
 * <property value="success" name="label"/>
 * </pageflow-object>
 * <pageflow-object id="page:helloworld.jsp">
 * <property value="60" name="x"/>
 * <property value="40" name="y"/>

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 47

 * </pageflow-object>
 * </view-properties>
 * ::
 */
public class HelloWorldController extends PageFlowController
{

 // Uncomment this declaration to access Global.app.
 //
 // protected global.Global globalApp;
 //

 // For an example of Page Flow exception handling,
 // see the example "catch" and "exception-handler"
 // annotations in {project}/WEB-INF/src/global/Global.app

 /**
 * This method represents the point of entry into the Page Flow
 * @jpf:action
 * @jpf:forward name="success" path="helloworld.jsp"
 */
 protected Forward begin()
 {
 return new Forward("success");
 }
}

Notice that this code snippet is mostly full of Java comments. As described in Chapter 3,
these are the different annotations that support the execution of the actual Page Flow.

All Page Flows have a begin method. This is similar to the main method in a Java class. In
this example, the begin method does only one thing: it directs you to the helloworld.jsp page.
Listing 4-2 shows this JSP.

Listing 4-2. helloworld.jsp in WebLogic Workshop

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="netui-tags-databinding.tld" prefix="netui-data"%>
<%@ taglib uri="netui-tags-html.tld" prefix="netui"%>
<%@ taglib uri="netui-tags-template.tld" prefix="netui-template"%>
<netui:html>
 <head>
 <title>
 WebLogic Workshop - Hello World
 </title>
 </head>

48 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

 <body>
 <p>
 Hello World !!
 </p>
 </body>
</netui:html>

This JSP is simple enough. You can easily compile and deploy this Page Flow from within
WebLogic Workshop and see its execution.

■Note BEA WebLogic 9.x (http://e-docs.bea.com) will be based on the Apache Beehive version of
Page Flows rather than the proprietary version of Page Flows you’ll find in BEA WebLogic 8.1.

Now, let’s see the same Page Flow in Apache Beehive.

Page Flows in Apache Beehive
The HelloWorld example in Beehive looks a little different from the WebLogic Workshop
version. Let’s first look at the controller in Listing 4-3.

Listing 4-3. helloworld.jpf in Apache Beehive

import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;
import org.apache.beehive.netui.pageflow.Forward;

@Jpf.Controller (

 simpleActions= {

 @Jpf.SimpleAction (name="cancel", path="begin.do")
 }
)

public class HelloWorldController extends PageFlowController

{

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 49

@Jpf.Action (
 forwards= {
 @Jpf.Forward (name="success", path="helloworld.jsp")
 }
)
 public Forward begin()

 {
 return new Forward("success"); }

You’ll immediately notice that this version of the Java Page Flow is a lot shorter and crisper.
All the Javadocs annotations at the beginning of the class code are no longer needed in the
Apache Beehive version. Listing 4-4 shows the JSP that goes with this controller.

Listing 4-4. helloworld.jsp in Apache Beehive

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0" prefix="netui"%>
<netui:html>
 <head>
 <title>beehive - hello world</title>
 <netui:base/>
 </head>
 <netui:body>
 <p>
 Hello World !!

 </p>
 </netui:body>
</netui:html>

The “How to Run the Sample Code” sidebar will show you how to set up and run this
example in your own environment.

HOW TO RUN THE SAMPLE CODE

Use the following steps to set up and run the HelloWorld example in your own environment.

Make a Project Folder

First, make sure you’ve read Appendix A. Then, on your C: drive, create a directory named beehive-projects.
In the beehive-projects directory, create a directory named helloworld. Before proceeding, confirm
that the following directory structure exists:

C: \
 beehive-projects
 helloworld

Continued

50 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

Copy Runtime JARs to the Project Folder

Copy the folder BEEHIVE_HOME/samples/netui-blank/resources into your project folder,
C:\beehive_projects\helloworld. BEEHIVE_HOME is the top-level folder of your Beehive installation,
as explained in Appendix A.

Copy the folder BEEHIVE_HOME/samples/netui-blank/WEB-INF into your project folder,
C:\beehive-projects\helloworld.

Now, assemble the runtime resources for your Page Flow application. The runtime JARs include the Page
Flow runtime, the NetUI tag library, and so on. You can load these resources into your project’s WEB-INF/lib
folder using the following Ant command at the command prompt:

ant -f %BEEHIVE_HOME%\ant\buildWebapp.xml
 -Dwebapp.dir=C:\beehive-projects\helloworld deploy.beehive.webapp.runtime

This command will copy all JAR files to the WEB-INF/lib directory. Next, create the controller file,
the central file for any Page Flow. Then, in the directory C:/beehive-projects/helloworld, create
a file named HelloWorldController.jpf. In a text editor (or your IDE of choice), open the file
HelloWorldController.jpf. In the directory C:/beehive-projects/helloworld, create a file
named helloworld.jsp.

Compile and Deploy the Page Flow

You’re now ready to compile the Page Flow and deploy it to Tomcat. Start the Tomcat server. Using the
command shell opened in the previous step, at the command prompt, enter the following:

ant -f %BEEHIVE_HOME%\ant\buildWebapp.xml
 -Dwebapp.dir=C:\beehive-projects\helloworld
 -Dcontext.path=helloworld build.webapp deploy

To undeploy the application, use the following Ant command:

ant -f %BEEHIVE_HOME%\ant\buildWebapp.xml
 -Dwebapp.dir=C:\beehive-projects\helloworld
 -Dcontext.path=helloworld undeploy

Let’s now look at a more detailed example. In this example, you’ll extend the HelloWorld
controller to actually have some basic “login” functionality.

Figure 4-1 shows the basic functionality you’ll implement in the HelloWorld controller.
For this example, you’ll implement three actions—begin, processLogin, and showLogin—

that go to three different JSPs. There’s a login form where the user can fill in their username and
password. When the user submits the form, they will be directed to success.jsp. Listing 4-5
shows the controller code for this simple Page Flow.

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 51

Figure 4-1. Basic login process in the HelloWorld controller

Listing 4-5. helloworld.jpf Extended for Login Functionality

import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.annotations.Jpf;
import org.apache.beehive.netui.pageflow.Forward;

import helloworld.forms.LoginForm;

@Jpf.Controller (

 simpleActions= {

 @Jpf.SimpleAction (name="cancel", path="begin.do")
 }
)

52 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

public class HelloWorldController extends PageFlowController

{

@Jpf.Action (
 forwards= {
 @Jpf.Forward (name="success", path="helloworld.jsp")
 }
)
 public Forward begin()

 {
 return new Forward("success");
 }

@Jpf.Action (
 forwards= {
 @Jpf.Forward (name="success", path="login.jsp")
 }
)
 public Forward showLoginPage()

 {
 return new Forward("success"); }

 @Jpf.Action(
 forwards = {
 @Jpf.Forward(name = "success", path = "success.jsp")
 }
)
 public Forward processLogin(LoginForm form)
 {
 System.out.println("User Name: " + form.getUsername());
 System.out.println("Password: " + form.getPassword());
 return new Forward("success");
 }

}

To make this work, add just one line of code to helloworld.jsp:

<netui:anchor action="showLoginPage">Login</netui:anchor>

This translates to a link that the user can click in helloworld.jsp. This will trigger the
showLoginPage action and take the user to login.jsp. Listing 4-6 shows login.jsp.

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 53

Listing 4-6. login.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0" prefix="netui"%>
<netui:html>
 <head>
 <title>Login</title>
 <netui:base/>
 </head>
 <netui:body>
 <p>
 <p>
 <netui:form action="processLogin">
 <p>User Name:
 <netui:textBox dataSource="actionForm.username"/>
 <p>Password:
 <netui:textBox dataSource="actionForm.password"
 password="true" size="20" />
 <dataSource="actionForm.name"/>
 <p><netui:button type="submit">Submit</netui:button>
 <netui:button action="cancel">Cancel</netui:button>
 </netui:form>
 </p>

 </p>
 </netui:body>
</netui:html>

The login JSP introduces the concept of a form. This is a basic form that looks a lot like a
JavaBean or a Struts form class. It has basic getters and setters for the fields you’ve displayed in
the JSP. NetUI and Page Flows provide automatic binding between the form variables and the
JSP fields. (You’ll learn more about this in Chapter 5.) Listing 4-7 shows the LoginForm class.

Listing 4-7. LoginForm.java

package helloworld.forms;

import org.apache.beehive.netui.pageflow.FormData;

public class LoginForm extends FormData
{

 private String username;
 private String password;

54 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

 public void setUsername(String name)
 {
 this.username = name;
 }

 public String getUsername()
 {
 return this.username;
 }

 public void setPassword(String password)
 {
 this.password= password;
 }

 public String getPassword()
 {
 return this.password;
 }
}

The example you’ve just seen is very basic. However, it will help you identify the different
pieces of the Page Flow architecture.

Introducing Page Flow Architecture
In the following sections, we’ll talk about the basic architecture and components that make up
Java Page Flows and the NetUI tags.

Page Flow Components
The different components of a Page Flow are as follows:

• Controllers

• Form classes

Controllers

The Jpf.Controller annotation is the meat of a Page Flow. It’s just a file that contains Java
code and annotations. The extension of this file is .jpf. As you saw in the previous example,
a controller consists of several actions. This is unlike Struts—where one action is one class. You
can think of a controller as a collection of action classes. The different annotations of a Page
Flow are as follows:

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 55

• Jpf.Catch[]: Exceptions that the controller catches. We always recommend catching at
least the Exception class to handle any unexpected/unhandled exceptions.

• Jpf.Forward[]: The different forwards. Each action has one or many forwards.

• global forwards: Any global forwards. For example, when an exception is caught, you
might need a global forward. We always recommend having at least one of these go to
some error page when an exception is thrown, as described in the Jpf.Catch item.

• boolean loginRequired: Does this controller require the user to be logged in to execute
the actions defined in this Page Flow?

• Jpf.MessageResource[] messageResources: Which message resources to use for error
messages. This is similar to the Struts message resources.

• Jpf.MultipartHandler multipartHandler: Does this controller need to access multipart
forms?

• boolean nested: Is this Page Flow a nested Page Flow?

• boolean readOnly: The actions do not modify any member variables.

• String[] rolesAllowed: The roles that can access actions in this Page Flow.

• Jpf.SimpleAction[] simpleActions: The simple actions in this Page Flow.

• boolean singleton: Is this Page Flow a singleton?

• String strutsMerge: The location of the Struts merge file.

• Jpf.ValidatableBean[] validatableBeans: The validation rules for the beans.

• String validatorMerge: The location of the ValidatorPlugIn merge file.

■Caution Since Apache Beehive is still in early development, we recommend looking at the Javadocs
online for the latest and greatest list of methods and functionality. See http://incubator.apache.org/
beehive/apidocs/classref_pageflows/index.html.

The PageFlowController class provides more than just actions. Figure 4-2 shows the basic
relations between the FlowController parent class and the PageFlowController class. (Note
that the figure shows only some of the methods in the classes; see the Javadocs for a complete
listing of all the methods available in these classes.)

56 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

Figure 4-2. Class diagram of FlowController and PageFlowController

Let’s look at a few of the methods that you might use more regularly than others:

• afterAction: This method is a callback that occurs after any user action method is invoked.

• beforeAction: This method executes before any action executes. It’s sort of a preProcess
method for an action.

• onCreate: This executes when the Page Flow is created; you can use it to initialize any
instance variables for the Page Flow.

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 57

• onDestroy: This executes when the Page Flow is destroyed; you can use it to clean up
any variables.

• onRefresh: This is specifically important in a portal environment when no action needs
to be executed and you’d rather just render a previously displayed JSP.

• isNestable: This determines whether this Page Flow can be nested.

• isSingleton: This determines whether this Page Flow is a singleton.

■Tip As you start working with Page Flows, refer to the PageFlowUtils class. It provides a bunch of
helper methods that you’ll find useful.

Action and Forward Classes

Integral parts of using a Page Flow controller are the action classes and the forward classes.
Let’s quickly take a look at what they offer.

Action

The following are the annotations that are available for an action class:

• Jpf.Catch[]: The different exceptions caught by this action.

• Jpf.Forward[]: The different forwards defined by this action.

• boolean loginRequired: Does this action require that the user be logged in?

• boolean readOnly: A guarantee that this action does not change any Page Flow variables.

• String[] rolesAllowed: The roles that can access this action.

• String useFormBean: The form bean that this action class uses.

• Jpf.ValidatableProperty[] validatableProperties: The properties of the form bean
that need to be validated.

• Jpf.Forward validationErrorForward: The forward to use when there is any validation
error.

Forward

The following are the annotations offered by the forward classes:

• Jpf.ActionOutput[] actionOutputs: List of action outputs.

• boolean externalRedirect: Redirect to some external action

• Jpf.NavigateTo navigateTo: The page or action to navigate to

• String outputFormBean: Output form bean

58 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

• Class outputFormBeanType: Output form bean type

• String path: The path to forward too, usually a JSP

• boolean redirect: Redirect or not

• boolean restoreQueryString: Whether the original query string will be restored on a
rerun of a previous action

• String returnAction: The action to be executed on the original Page Flow

■Tip We recommend you look at the different methods on the Forward object. They will prove to be useful
as you start building complex Page Flow applications.

NetUI Components
NetUI is a set of tag libraries that you will use as part of your JSPs. These tag libraries are JSP 2.0
complaint. Three tag libraries make up NetUI:

• NetUI

• NetUI-data

• NetUI-template

■Caution The NetUI-data and NetUI-template tag libraries depend on the NetUI tag libraries. All the
base classes for the three tag libraries are provided as part of the NetUI (HTML) tag library.

The basic functionality in these tag libraries is to simplify JSP development and provide
automatic data binding between the view and controller layers. These tags come with JavaScript
support, so you can work with them like you would the standard HTML tags (input, select, and
so on).

■Note You will see examples of how to use each of the tags in the next chapter.

NetUI

The NetUI name is a little misleading. Think of this tag library as NetUI-html. That makes it
clearer, doesn’t it? This tag library contains the tags similar to the struts-html tag library.
Table 4-1, which comes straight from the Javadocs, shows the tags in this library. As you’ll see,
this library contains the standard tags that you might use with vanilla HTML development.

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 59

■Note The reason I’ve simply cut and paste the information from the Javadocs is because, at the time of
writing this book, Apache Beehive is still in the beta stage. Therefore, some of these methods might change.
Visit the Beehive documentation page for the latest Javadocs at http://incubator.apache.org/
beehive/reference/taglib/index.html.

Table 4-1. NetUI Tag Library

Tag Description

<netui:anchor> Generates an anchor that can link to another document
or invoke an action method in the controller file

<netui:attribute> Adds an attribute to the parent tag rendered in the
browser

<netui:base> Provides the base for every URL on the page

<netui:bindingUpdateErrors> Renders the set of error messages found during the
process of resolving data binding expressions
({pageFlow.firstname}, {request.firstname}, and
so on)

<netui:body> Renders an HTML <body> tag with the attributes
specified

<netui:button> Renders an HTML button with the specified attributes

<netui:checkBox> Generates a single HTML checkbox

<netui:checkBoxGroup> Handles data binding for a collection of checkboxes

<netui:checkBoxOption> Renders a single HTML checkbox within a group of
checkboxes

<netui:content> Displays text or the result of an expression

<netui:error> Renders an error message with a given error key
value if that key can be found in the ActionErrors
registered in the PageContext at org.apache.struts.
action.Action.ERROR_KEY

<netui:errors> Renders the set of error messages found in the
ActionErrors registered in the PageContext at
org.apache.struts.action.Action.ERROR_KEY

<netui:exceptions> Renders exception messages and stack traces inline on
the JSP

<netui:fileUpload> Renders an HTML input tag with which users can
browse, select, and upload files from their local machines

<netui:form> Renders an HTML form that can be submitted to a Java
method in the controller file for processing

<netui:formatDate> Renders a formatter used to format dates

<netui:formatNumber> Renders a formatter used to format numbers

<netui:formatString> Renders a formatter used to format strings

60 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

<netui:hidden> Generates an HTML hidden tag with a given value

<netui:html> Renders an <html> tag

<netui:image> Renders an HTML <image> tag with the specified attributes

<netui:imageAnchor> Generates a hyperlink with a clickable image

<netui:imageButton> Renders an <input type="image"> tag with the
specified attributes

<netui:label> Associates text with an input element in a form

<netui:parameter> Writes a name-value pair to the URL or the parent tag

<netui:parameterMap> Writes a group of name-value pairs to the URL or the
parent tag

<netui:radioButtonGroup> Renders a collection of radio button options and
handles the data binding of their values

<netui:radioButtonOption> Generates a single radio button option in a group
of options

<netui:rewriteName> Allows a name, typically either an id or name attribute, to
participate in URL rewriting

<netui:rewriteURL> Allows a tag name, typically either an id or name
attribute, to participate in URL rewriting

<netui:scriptContainer> Acts as a container that will bundle JavaScript created
by other <netui...> tags and outputs it within a single
<script> tag

<netui:scriptHeader> Writes the <script> that JavaScript will include in the
HTML <head> tag

<netui:select> Renders an HTML <select> tag containing a set of
selectable options

<netui:selectOption> Renders a single <option> tag

<netui:span> Generates styled text based on a String literal or data
binding expression

<netui:textArea> Renders an HTML <input> tag of type "text"

<netui:textBox> Renders an HTML <input type="text"> tag

<netui:tree>

<netui:treeContent>

<netui:treeHtmlAttribute>

<netui:treeItem>

<netui:treeLabel>

<netui:treePropertyOverride>

Renders a navigable tree of TreeElement tags

Table 4-1. NetUI Tag Library (Continued)

Tag Description

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 61

NetUI-data

The NetUI-data tag library is used to bind data from forms and the controller to the JSP. It allows
you to quickly display lists of data (such as search results). See Table 4-2, which shows the Javadocs
information about this tag library.

Table 4-2. NetUI-data Tag Library

Tag Description

<netui-data:anchorColumn>

<netui-data:callMethod> Calls methods on any Java classes

<netui-data:callPageFlow> Calls methods on the controller file (which is a JPF file) in
the same directory as the JSP

<netui-data:caption>

<netui-data:cellRepeater> Renders individual cells of an HTML table

<netui-data:columns>

<netui-data:configurePager>

<netui-data:dataGrid>

<netui-data:declareBundle> Declares a java.util.ResourceBundle as a source for
displaying internationalized messages

<netui-data:declarePageInput> Declares variables that are passed from the controller file
to the JSP

<netui-data:footer>

<netui-data:getData> Evaluates an expression and places the result in the
javax.servlet.jsp.PageContext object, where the data is
available to JSP scriptlets

<netui-data:imageColumn>

<netui-data:literalColumn>

<netui-data:message> Provides a message schema, which can be parameterized
to construct customizable messages

<netui-data:messageArg> Provides a parameter value to a message schema

<netui-data:methodParameter> Provides an argument to a method-calling tag

<netui-data:pad> Sets the number of items rendered by a tag

<netui-data:renderPager>

<netui-data:repeater> Iterates over a data set to render it as HTML

<netui-data:repeaterFooter> Renders the footer of a Repeater tag

<netui-data:repeaterHeader> Renders the header of a Repeater tag

<netui-data:repeaterItem> Renders an individual item in the data set as it’s iterated
over by the Repeater tag

<netui-data:serializeXML> Serializes an XMLBean into the output of a JSP in order to
move data to the browser for data binding

62 C H A P T E R 4 ■ D I SS E C T I N G JA V A P A G E F LO W S

NetUI-template

The NetUI-template tag library is used to create subsections (or templates) from your JSPs.
See Table 4-3, which displays the Javadocs information about this tag library.

You’ve just seen a brief overview of Page Flows and NetUI. Now let’s see how all this plays
together.

Reviewing Page Flow Architecture
The best way to explain the overall architecture of Page Flows and NetUI is to map these to the
standard MVC model, as shown in Figure 4-3.

Figure 4-3. MVC architecture of Page Flows and NetUI

Table 4-3. NetUI-template Tag Library

Tag Description

<netui-template:attribute> Defines a property placeholder within a template

<netui-template:divPanel> Creates an HTML <div> tag that may contain addi-
tional tags

<netui-template:includeSection> Defines a content placeholder within a template

<netui-template:section> Sets HTML content inside placeholders defined by an
IncludeSection tag

<netui-template:setAttribute> Sets a property value in a template page

<netui-template:template> Points a content page at its template page

C H A P T E R 4 ■ D I S S E C T I N G J A V A P A G E F L O W S 63

Think of the controller bucket as being the Page Flow controllers. If you’re familiar with
Struts, this bucket is filled by Struts actions. The view is a collection of JSPs and some tag
libraries, in this case the NetUI tag libraries. In Struts, it would be the Struts tag libraries. The
model layer is not really predetermined by Page Flows. As part of the Apache Beehive project,
there is a technology called Controls. This is a model layer technology, which we’ll discuss in
Chapter 6.

However, for purposes of Java Page Flows, the model layer could be anything. You could
obviously use Controls. Or, you could have a set of Java classes that serve as business delegates,
which then interact with your EJBs, DAOs, and other classes.

Throughout the chapter, I’ve alluded to the real advantages of Page Flows over Struts:

• Ease of use: The main development savings between Struts and Page Flows is the JSR 175
metadata support. While developing Page Flows, you don’t need to manually maintain
the struts-config files.

• Data binding: With Page Flows and NetUI, you get automatic data binding between the
form variables and the form fields in the JSP.

• Exception handling: This goes back to the annotations. You can define how all your
exceptions get handled using the annotations. As a best practice, we recommend always
catching the Exception class at the Page Flow level. This allows you to handle any other-
wise uncaught exceptions.

• Nested Page Flows: The whole concept of nested Page Flows is new. We’ll explain this in
Chapter 5.

• State management: Page Flows automatically maintain state. This feature is even more
important if you’re working with portals.

• Portal use: Page Flows were originally developed for portal development. Thus, a lot of
the features are targeted toward portal projects.

• Service orientation: The integration of Page Flows with Java Controls leads to a more
service-oriented approach for application development.

So, What’s Next?
In this chapter, you saw the basic components that make up Java Page Flows and NetUI. You
also looked at a quick example and then drilled down into the overall architecture of these
technologies. Now, let’s really see some examples that show you how to work with these tech-
nologies and explore all the features. We recommend jumping to Appendix B to learn how to
set up the Eclipse Pollinate IDE to build Page Flows and then turning to Chapter 5.

65

■ ■ ■

C H A P T E R 5

Using NetUI and Page Flows

In the previous chapter, you learned the basics of NetUI and Page Flows. In this chapter, we’ll
show how to build a Page Flow controller and how to use the various NetUI tags. In the process,
we’ll also show how to build a simple bookstore application using these technologies.

Creating the Sample Bookstore Application
The sample application you’ll create in this book is a bookstore application. In this chapter,
you’ll build some basic functionality for the application, which isn’t database-driven. You’ll
hard-code the list of books that the application will use. In later chapters, as you learn more
about Web Services and Controls, you’ll extend this example to use those technologies to
connect to the Amazon.com Web Service and to a database using a Database Control.

Setting Up the Bookstore Application
So, first refer to Appendix B to set up Eclipse and Pollinate. Once you’ve done that, launch
Eclipse, and create a Pollinate Web application. Call it bookstore.

Next, from the code that you downloaded from the Apress Web site, copy the code from
the demo directory in the project’s folder:

<ECLIPSE HOME>\workspace\BookStore\bookStoreWebApp\demo

Typically, the code should compile correctly, without any errors. If there are errors, they
might be specific to your installation. For example, you’ll need to set the Pollinate plug-ins to
use JDK 1.5.

To do this, make sure you’re pointing to a JDK 1.5 directory, not a JRE 1.5 directory. You
can do this in the Preferences dialog box, as shown in Figure 5-1; open it by selecting the
Window ➤ Preferences menu item.

Another common issue is that to run Pollinate you need the tools.jar file from your JDK to
be in the bootclasspath. To do this, you’ll need to modify your eclipse.bat file to look like this:

set JDK_HOME=c:\java\jdk1.5.0
eclipse -vm "C:\Program Files\Java\jre1.5.0\bin\javaw"
-vmargs -Xmx256M -Xbootclasspath/a:%JDK_HOME%\lib\tools.jar

Once you have these basic things taken care of, you should be able to simply right-click the
project (anywhere in the Eclipse Navigator) and select Run Web App.

66 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

Figure 5-1. Setting up Pollinate to use the correct JDK

Running the Sample Bookstore Application
When you run the application, you’ll see three basic screens:

• Add Book

• View Book Details

• Search Book

Go through the screens to get a feel for what this sample application does. Granted, it’s
pretty basic for now.

We’ll now explain the code for this application so you can understand the different aspects
of the Page Flow and NetUI technologies involved.

Looking at the Code
The code for this application is quite simple. You have one controller (or Page Flow) and a few
JSPs. Let’s start by looking at the controller.

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 67

Controller

This controller is as basic as it gets. However, it will help lay the foundation of what a Page Flow
controller looks like and how you can work with different methods within this controller.
Listing 5-1 shows the complete code. After the listing, we’ll explain it piece by piece.

Listing 5-1. The Bookstore Controller

package demo;

import org.apache.beehive.netui.pageflow.PageFlowController;
import org.apache.beehive.netui.pageflow.Forward;
import org.apache.beehive.netui.pageflow.annotations.Jpf;
import java.util.HashMap;

@Jpf.Controller(
 messageResources = {
 @Jpf.MessageResource(name = "Messages")
 }
)
public class Controller extends PageFlowController {

 public HashMap bookTypes = new HashMap();

 protected void onCreate() {
 bookTypes.put("book","Book");
 bookTypes.put("magazine","Magazine");
 bookTypes.put("journal","Journal");
 bookTypes.put("newspaper","News Paper");
 bookTypes.put("electronic","e-books & Docs");
 }

 /**
 * This method represents the point of entry into the Page Flow
 */
 @Jpf.Action(
 forwards = {
 @Jpf.Forward(name="success",path="bookMenu.jsp")
 }
)
 protected Forward begin() {
 return new Forward("success");
 }

68 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

 @Jpf.Action(
 forwards = {
 @Jpf.Forward(
 name = "success",
 path = "addBook.jsp")
 }
)

 protected Forward showAddBookPage()
 {
 return new Forward("success",new BookForm());
 }

 @Jpf.Action(
 forwards = {
 @Jpf.Forward(
 name = "success",
 path = "searchBook.jsp")
 }
)

 protected Forward showSearchBookPage() {
 return new Forward("success");
 }

 @Jpf.Action(
 forwards = {
 @Jpf.Forward(
 name = "success",
 path = "addBook.jsp")
 },
 validationErrorForward = @Jpf.Forward(name =
 "failure", navigateTo = Jpf.NavigateTo.currentPage)
)

 protected Forward addBook(BookForm form) {
 return new Forward("success", new BookForm());
 }

 @Jpf.Action(
 forwards = {
 @Jpf.Forward(
 name = "success",
 path = "searchResults.jsp")
 }
)

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 69

 protected Forward searchBooks()
 {
 return new Forward("success");
 }
 @Jpf.Action(
 forwards = {
 @Jpf.Forward(
 name = "success",
 path = "viewBook.jsp")
 }
)

 protected Forward viewBook() {
 return new Forward("success",getBook());
 }

 @Jpf.Action(
 forwards = {
 @Jpf.Forward(
 name = "success",
 path = "viewBook.jsp")
 }
)

 protected Forward submitForm(BookForm form)
 {

 return new Forward("success",getBook());
 }

 private BookForm getBook()
 {
 BookForm bookDetails= new BookForm();
 bookDetails.setName("Pro Apache Beehive");
 bookDetails.setType("Book");
 bookDetails.setAuthor("Kunal, Srini");
 bookDetails.setIsbn 1-59059-515-7");
 bookDetails.setCatalogNo("101");
 bookDetails.setPublication("Apress");
 bookDetails.setPublicationDate("07/05/2005");
 bookDetails.setComments("This book teaches you how to work with
 Apache Beehive and XMLBeans.");
 bookDetails.setInStock(true);

 return bookDetails;
 }
 }

70 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

The logical place to start dissecting this controller is at the top. First, you will see a set of
import statements. These should be nothing new to a Java programmer, so let’s move on. The
next block of code is an annotation:

@Jpf.Controller(
 messageResources = {
 @Jpf.MessageResource(name = "Messages")
 }
)

This annotation specifies a resource bundle. In this case, a file called Messages must exist
in the classpath (under the WEB-INF/classes). This displays the error message caused by validation.
Moving on, the next block of code you’ll encounter is as follows:

public HashMap bookTypes = new HashMap();

protected void onCreate() {
 bookTypes.put("book","Book");
 bookTypes.put("magazine","Magazine");
 bookTypes.put("journal","Journal");
 bookTypes.put("newspaper","News Paper");
 bookTypes.put("electronic","e-books & Docs");
}

This defines an instance variable called bookTypes. In other words, there’s nothing special
here. The next method is onCreate. As you’ve probably guessed, this method is called when an
instance of this controller is created. Think of this as the constructor to this class. In this example,
you’re populating the instance variable bookTypes in the onCreate method. It’s important to
remember that onCreate is not an action. It’s a plain old Java method.

Similar to the onCreate method, you’ll see an onDestroy method and an onRefresh method.
The onDestroy method is similar to a destructor. The onRefresh method is specifically useful in
portal applications. You can use it to do some processing when a page is refreshed or when a
portlet is refreshed.

■Note If you’re using any session variables, or placing things into the session, the onDestroy method is
a good place to do some cleanup. You shouldn’t leave stuff in the session any longer than is absolutely
needed. This method is executed when the controller class is destroyed.

The next snippet of code is the begin action:

 @Jpf.Action(
 forwards = {
 @Jpf.Forward(name="success",path="bookMenu.jsp")
 })
protected Forward begin() {
 return new Forward("success");
}

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 71

The begin action is similar to the main method in a Java class. It’s the first method that’s
executed by the controller (obviously after the constructor and the onCreate method). In this
code snippet, you can see several things. For instance, the annotation is a forward that describes
what should happen after this method is executed. In this example, you have only one place
that the user can have this method execute, and that’s to the bookMenu.jsp file. Any action can
have several different forward annotations. These forwards can be to other actions, other
controllers, or JSPs.

In this example, the begin method simply calls a forward called success, which sends you
to bookMenu.jsp. In bookMenu.jsp, as you’ll see in the next section, the user can click a link that
calls a specific action in the controller. So, we’ll now move on and show a little more of this
controller.

The next interesting snippet of code is as follows:

protected Forward showAddBookPage() {
 return new Forward("success",new BookForm());
}

On the surface this looks simple enough. The interesting thing is that you’re creating a new
instance of a form object and passing it to the forward. This makes a form object available to
the JSP. It provides automatic data binding capabilities between the controller and the JSP via
this form. The only other interesting part of this controller is the following annotation set:

@Jpf.Action(
 forwards = {
 @Jpf.Forward(
 name = "success",
 path = "addBook.jsp")
 },
 validationErrorForward = @Jpf.Forward(name = "failure", navigateTo = J
 Jpf.NavigateTo.currentPage)
)

In this snippet, you see a simple forward, and you see a new annotation called
validationErrorForward. What this is saying is that if there are any validation errors in
processing the form, you want to forward to the failure forward. There’s an inline definition of
what the failure forward looks like, which is also interesting. The failure forward is saying
that it should navigate to the current page. This means that on any validation error you’ll return
the user to the same page, which displays the error messages. The NetUI tags and the JSP take
care of displaying the messages, as you’ll see when we dissect the JSP in the next section.

Let’s take a quick look at the BookForm class next; see Listing 5-2.

Listing 5-2. BookForm Class

package demo;

import org.apache.beehive.netui.pageflow.FormData;
import java.util.HashMap;
import java.util.LinkedHashMap;
import javax.servlet.http.HttpServletRequest;

72 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionMapping;

public class BookForm extends FormData {

 private String id=null;
 private String name=null;
 private String type=null;
 private String author=null;
 private String publication=null;
 private String publicationDate=null;
 private String isbn=null;
 private String catalogNo=null;
 private String comments=null;
 private boolean inStock=false;
 private String action=null;

 public BookForm() {
 }

 public String getId() {
 return this.id;
 }

 public void setId(String id) {
 this.id = id;
 }

 public String getName() {
 return name;
 }

 public void setName(String name) {
 this.name = name;
 }

 public String getType() {
 return type;
 }

 public void setType(String type) {
 this.type = type;
 }

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 73

 public String getAuthor() {
 return author;
 }

 public void setAuthor(String author) {
 this.author = author;
 }

 public String getPublication() {
 return publication;
 }

 public void setPublication(String publication) {
 this.publication = publication;
 }

 public String getPublicationDate() {
 return publicationDate;
 }

 public void setPublicationDate(String publicationDate) {
 this.publicationDate = publicationDate;
 }

 public String getIsbn() {
 return isbn;
 }

 public void setIsbn(String isbn) {
 this.isbn = isbn;
 }

 public String getCatalogNo() {
 return catalogNo;
 }

 public void setCatalogNo(String catalogNo) {
 this.catalogNo = catalogNo;
 }

 public String getAction() {
 return action;
 }

74 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

 public void setAction(String action) {
 this.action = action;
 }

 public String getComments() {
 return comments;
 }

 public void setComments(String comments) {
 this.comments = comments;
 }

 public boolean isInStock() {
 return inStock;
 }

 public void setInStock(boolean inStock) {
 this.inStock = inStock;
 }

 public ActionErrors validate(final ActionMapping oMapping,
 final HttpServletRequest request) {
 final ActionErrors errors = new ActionErrors();
 System.out.println("we are here");
 if (this.getName()==null || this.getName().equalsIgnoreCase("")) {
 errors.add("error.bookDetails.requiredName",
 new ActionError("errors.required","Name\\Title"));
 }
 if (this.getType()==null || this.getType().equalsIgnoreCase("")) {
 errors.add("error.bookDetails.requiredType",
 new ActionError("errors.required","Type"));
 }
 if (this.getAuthor()==null || this.getAuthor().equalsIgnoreCase("")) {
 errors.add("error.bookDetails.requiredAuthorName",
 new ActionError("errors.required","Author"));
 }
 if (this.getPublication()==null ||
 this.getPublication().equalsIgnoreCase("")) {
 errors.add("error.bookDetails.requiredPublicationName",
 new ActionError("errors.required","Publication"));
 }
 if (this.getIsbn()==null || this.getIsbn().equalsIgnoreCase("")) {
 errors.add("error.bookDetails.requiredISBN",
 new ActionError("errors.required","ISBN"));
 }

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 75

 if (this.getCatalogNo()==null || this.getCatalogNo().equalsIgnoreCase("")) {
 errors.add("error.bookDetails.requiredCatalog",
 new ActionError("errors.required","Catalog"));
 }

 return errors;
 }
}

The BookForm class looks like a simple JavaBean. The only method of real interest is the
validate method. If you’ve worked with Struts, this should be quite familiar. Basically, you’re
validating each field that you need some validation rule on. If there’s any error, you’re adding
an error key into the ActionErrors object. The error key is basically a key into the resource
bundle that you specified in the controller using annotations.

■Note You can also use Struts-based XML validation by defining the validation rules in an XML file.

You can bind each NetUI tag to any variable in the form (although you do need to worry
about the “type” of data to which you bind). For example, you can’t bind a checkbox to a Float
variable. Table 5-1 shows the data types required for the binding to work.

Now let’s look at a couple of JSPs.

bookMenu.jsp

Listing 5-3 shows the first JSP that’s invoked by the Page Flow; this happens in the begin method.

Listing 5-3. bookMenu.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0" prefix="netui" %>
<%@ taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
 prefix="netui-template"%>

Table 5-1. NetUI: Form Data Binding

NetUI Tag Java Data Type

<netui:checkBox> Boolean or java.lang.Boolean

<netui:checkBoxGroup>, <netui:radioButtonGroup> String[]

<netui:hidden>, <netui:text>, <netui:textArea> String

76 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

<table border="0" cellpadding="6" cellspacing="0">
 <tr><td >
 <netui:anchor action="showAddBookPage"> Add Book </netui:anchor>

 <netui:anchor action="viewBook"> View Book Details</netui:anchor>

 <netui:anchor action="showSearchBookPage"> Search Book</netui:anchor>

 </td></tr>
</table>

Figure 5-2 shows bookMenu.jsp. In this JSP, you first include some tag libraries. For instance,
this JSP is using the NetUI tag library, as introduced in the previous chapter. You’re using the
<netui:anchor> tag to create links. These anchors call an action; by default, they automatically
call an action in the Page Flow in the same directory as the JSP. The NetUI anchor is probably
one of the simplest tags in this tag library. We’ll spare you from seeing all the attributes of the
tag in this chapter. However, we recommend you explore the API documentation for the tags
and other attributes. If you’ve used Struts or Java Standard Tag Library (JSTL), you’ll see a lot of
similarities between those tags and the NetUI tags.

Figure 5-2. bookMenu.jsp

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 77

■Tip Bookmark the tag library documentation at http://incubator.apache.org/beehive/
reference/taglib/index.html. You’ll need it a lot as you read this book and work with Beehive.

addBook.jsp

Listing 5-4 shows addBook.jsp in a browser; it’s invoked by the showAddBookPage action in
the controller.

Listing 5-4. addBook.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
 prefix="netui-data"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
 prefix="netui"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
 prefix="netui-template"%>

 <netui-template:template templatePage="librarytemplate.jsp">
 <netui-template:section name="body"> <center>
 <netui:form action="submitForm"
 tagId="addBookForm" genJavaScriptFormSubmit="true">
 <netui-data:declareBundle bundlePath="apress.beehive.resources.template"
 name="catalog"/>
<table border="0" cellpadding="0" cellspacing="0" width="100%">
<tr valign="top">
 <td >${bundle.catalog.addBookTitle}

 Required fields are in bold.</td>
 <td align="right" valign="top"></td>
</tr>
</table>

<table border="0" cellpadding="6" cellspacing="0" width="100%">

<tr class="odd" valign="top">
 <td class="text" align="right">Name/Title</td>
 <td class="text" ><netui:textBox tagId="name"
 dataSource="actionForm.aBook.title" size="40" styleClass="text"/>
 <netui:error key="addBook.error.requiredTitle"></netui:error></td>
</tr>
<tr class="even" valign="top">
 <td class="text" align="right">Type</td>
 <td class="text" ><netui:select tagId="type"
 dataSource="actionForm.aBook.book_type"
 optionsDataSource="${actionForm.bookTypes}" styleClass="text"/>
 </td>

78 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

</tr>
<tr class="odd" valign="top">
 <td class="text" align="right">Author</td>
 <td class="text" ><netui:textBox tagId="author"
 dataSource="actionForm.aBook.author" size="20" styleClass="text"/>
 </td>
</tr>
<tr class="even" valign="top">
 <td class="text" align="right">Publication </td>
 <td class="text" ><netui:textBox tagId="publication"
 dataSource="actionForm.aBook.publication" size="20" styleClass="text" />
 </td>
</tr>
<tr class="odd" valign="top">
 <td class="text" align="right">Publication Date</td>
 <td class="text">
 <table border="0" cellpadding="0" cellspacing="0"><tr>
 <td class="text"><netui:textBox tagId="date"
 dataSource="actionForm.aBook.publication_Date" styleClass="text"
 size="12" maxlength="10"/> </td>
 <td class="text"></td>
 </tr></table></td>
</tr>
<tr class="even" valign="top">
 <td class="text" align="right">ISBN #</td>
 <td class="text" ><netui:textBox tagId="isbn"
 dataSource="actionForm.aBook.isbn" size="13" styleClass="text"/>
 </td>
</tr>
<tr class="odd" valign="top">
 <td class="text" align="right">Catalog #</td>
 <td class="text" ><netui:textBox tagId="catalog"
 dataSource="actionForm.aBook.catalogNo" size="20" styleClass="text"/>
 </td>
</tr>
<tr class="even" valign="top">
 <td class="text" align="right">Comments</td>
 <td class="text" ><netui:textArea tagId="comments"
 dataSource="actionForm.aBook.comments"
 cols="30" rows="6" styleClass="text"/>
 <netui:error key="addBook.error.invalidLength"></netui:error></td>
</tr>
 <tr class="odd" valign="top">
 <td class="text" align="right"> </td>
 <td class="text" ><netui:checkBox tagId="stock"
 dataSource="actionForm.aBook.available"/>In Stock</td>
</tr>

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 79

</table>

<netui:button action="addBook" type="submit" styleClass="text" >
 Submit
</netui:button>
<netui:button type="reset" styleClass="text" >
 Reset
</netui:button>

 <netui:anchor action="begin" styleClass="text" >${bundle.catalog.back2Menu}
 </netui:anchor>
</netui:form>
 </netui-template:section >
</netui-template:template>

Figure 5-3 shows addBook.jsp in a browser.

Figure 5-3. addBook.jsp

In this JSP, you can see several new NetUI tags. The first one of interest is the <netui:form>
tag. This tag, as you can imagine, defines a form. You also define what action will be called
when the form is submitted. Let’s look at the next tag:

80 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

<netui:textBox tagId="name" dataSource="actionForm.name" size="40"/>

This tag is a little more interesting. Essentially, it’s displaying a simple textbox on the JSP.
However, what’s interesting is the dataSource attribute, which provides automatic data binding
with the form class you saw earlier. In this case, you’re binding this textbox to the name field in
the form. The notation actionForm does this binding. You can bind your NetUI tags to fields in
a form bean or to variables in your Page Flow, as you’ll see next.

In the <netui:select> tag, you’re binding the selection the user makes to the type field in
the form:

<netui:select tagId="type" dataSource="actionForm.type"
 optionsDataSource="pageFlow.bookTypes" multiple="false" />

However, you have another attribute called optionsDataSource, which is bound to the
bookTypes field in the Page Flow. The end result of this tag is an HTML <select> with the options
populated from the content of the bookTypes variable. (Remember, you populated this in an
onCreate method in the Page Flow.) When the user selects a value, this value is stored in the
action form variable.

Look through the JSP. You’ll see other simple tags such as <netui:textArea> and
<netui:checkBox>. The <netui:button> tag creates buttons on the form. When the submit
button is clicked, the action specified in the <netui:form> tag is invoked. All the data entered by
the user is automatically passed to the controller as part of the form bean class.

So, now you’ve done one round-trip from the controller to the JSP and back to the controller.
You’ve also submitted some data from the user to the form.

This JSP will also display any validation error messages. For example, if you submit the
form without entering a name, the validate method in the form bean will fail. It will add an
error message. The controller sends the user to the current page (currentPage), which is
addBook.jsp. The <netui:error> tag has something to display:

<netui:error value="error.bookDetails.requiredName" />

You’ll see the error message defined in your messages file, with the key "error.bookDetails.
requiredName".

That’s it! There’s nothing more to it. You’ve created a simple form with validation and
data binding.

viewBook.jsp

Let’s now look at viewBook.jsp, as shown in Listing 5-5.

Listing 5-5. viewBook.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
 prefix="netui-data"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
 prefix="netui"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
 prefix="netui-template"%>

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 81

<netui-template:template templatePage="librarytemplate.jsp">
 <netui-template:section name="body">
 <netui:form action="addBook" tagId="viewBook" genJavaScriptFormSubmit="true">
<table border="0" cellpadding="6" cellspacing="0" class="prefbox" width="100%">
<tr>
 <td class="text">

 <table border="0" cellpadding="6" cellspacing="0" width="100%">
 <tr class="odd">
 <td class="text" valign="top" align="right"> Name/Title</td>
 <td class="text" valign="top">
 <netui:label value="${actionForm.aBook.title}" />
 </td>
 <td class="text" valign="top" align="right">Author</td>
 <td class="text" valign="top">
 <netui:label value="${actionForm.aBook.author}" />
 </td>
 </tr>
 <tr class="even">
 <td class="text" valign="top" align="right">Type</td>
 <td class="text" valign="top">
 <netui:label value="${actionForm.aBook.book_type}" />
 </td>
 <td class="text" valign="top" align="right">Publication</td>
 <td class="text" valign="top">
 <netui:label value="${actionForm.aBook.publication}" />
 </td>
 </tr>
 <tr class="odd">
 <td class="text" valign="top" align="right">Publication Date</td>
 <td class="text" valign="top">
 <netui:label value="${actionForm.aBook.publication_Date}" />
 </td>
 <td class="text" valign="top" align="right">ISBN</td>
 <td class="text" valign="top">
 <netui:label value="${actionForm.aBook.isbn}" />
 </td>
 </tr>
 <tr class="even">
 <td class="text" valign="top" align="right">Catalog</td>
 <td class="text" valign="top">
 <netui:label value="${actionForm.aBook.catalogNo}" />
 </td>
 </tr>
 <tr class="odd">
 <td class="text" valign="top" align="right">Comments</td>
 <td class="text" valign="top" colspan="3">

82 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

 <netui:label value="${actionForm.aBook.comments}" />
 </td>
 </tr>
 </table>
</td></tr></table>

 <netui:anchor action="begin" styleClass="text" >Back To Menu </netui:anchor>

</netui:form>
</netui-template:section >
</netui-template:template>

Figure 5-4 shows viewBook.jsp in a browser. In this JSP, you will see a couple new tags.
Look at the name attribute. You use simple HTML to display the text Name. Then you use the
<netui:label> tag and expressions to bind to the field in the form. Pay close attention to the
notation of how to use expressions.

Figure 5-4. viewBook.jsp

In the next tag, you use a different way of showing labels. Specifically, you use a <netui:label>
tag to actually display the label. This is useful, especially if you want to internationalize the
application.

When you run this code, click the Reset button. It will clear all the variables in the form.

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 83

That’s it for the basic bookstore example in this chapter. In the next section, we’ll cover
each of the NetUI tags in much greater detail. By the end of the next section, you’ll become an
expert at using NetUI.

Dissecting NetUI Tags
In Chapter 4, we covered all the available NetUI tags. And we started this chapter by showing
how to create a sample bookstore, which is basically a simple NetUI/Page Flow application. We
described some of the basic NetUI tags, and we exposed you to some basic tips for how to use
these tags. Now it’s time to really drill down and dissect each tag. You might remember from
Chapter 4 that there are three tag libraries for NetUI tags:

• NetUI

• NetUI-data

• NetUI-template

As mentioned in Chapter 4, if it were up to us, we’d rename the NetUI tag library to
NetUI-html, because that better describes what it contains. Let’s start with this tag library.

Examining the NetUI Tag Library
The following sections cover every tag in the NetUI library alphabetically.

<netui:anchor>

This is a tag you saw earlier. The anchor tag creates links. These links can be links to other sites
or to actions in a controller. Listing 5-6 shows some examples of how you can use this tag.

Listing 5-6. Examples of the <netui:anchor> Tag

<table border="0" cellpadding="6" cellspacing="0">
 <tr>
 <td> <netui:anchor tagId="link1" action="submitAnchor"> simple anchor
 </netui:anchor>with just an action attribute
 </td>
 </tr>
 <tr>
 <td> <netui:anchor tagId="link2" formSubmit="true">anchor
 </netui:anchor> with action and formSubmit set as true
 </td>
 </tr>
 <tr>
 <td> <netui:anchor href="javascript:test();" accessKey="t">anchor
 </netui:anchor>with action and location
 </td>
 </tr>

84 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

 <tr>
 <td> <netui:anchor href="www.yahoo.com" target="_blank" >anchor
 </netui:anchor>with target attribute
 </td>
 </tr>
 <tr>
 <td> <netui:anchor action="submitAnchor" title="text tip">anchor
 </netui:anchor>with target attribute
 </td>
 </tr>
 <tr>
 <td> <netui:anchor formSubmit="true" onClick="SubmitFromAnchor();
 return false;">Submit</netui:anchor>
 </td>
 </tr>
<netui:anchor formSubmit="true" onClick="SubmitFromAnchor();
</table>

These examples are pretty much self-explanatory; they show you how to create simple
anchors, use anchors to submit forms, use anchors to invoke JavaScript, and even use anchors to
open new windows and create ToolTips. The last example shows you how to invoke JavaScript
functions from an anchor tag.

<netui:area>

This tag creates image maps. It generates an URL-encoded area within an image. Here’s
an example:

<netui:image src="worldMap.jpg" alt="World Map" usemap="#worldmap"/>
<map id="worldmap" name="My World Map">
 <netui:area shape="rect" coords="56,12,80,80"
 href="mapOfIndia.jpg" alt="India on the map"/>
</map>

<netui:attribute>

The <netui:attribute> tag creates attributes in other tags. For example:

<netui:textBox dataSource="actionForm.name" >
 <netui:attribute name="tagId" value="name"/>
 <netui:attribute name="size" value="10"/>
 <netui:attribute name="title" value="Enter Name"/>
 <netui:attribute name="maxLength" value="5"/>
</netui:textBox>

This code snippet shows how to embed the <netui:attribute> tag as part of the
<netui:textBox> tag. We’ll discuss the <netui:textBox> tag in the upcoming “<netui:textBox>”
section. This tag also supports expressions, as follows:

<netui:attribute name="id" value="{pageFlow.myInstanceVariable}" />

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 85

■Note You can bind any NetUI tag to any variable in the Page Flow or in a form class. Typical JavaBean
rules apply. There needs to be a public getter for the variable you want to display in the JSP. If you want the
values to get submitted back, you’ll obviously need a setter also.

■Note You can also bind data to the request and session objects by using request or session, respectively,
as the prefix to the name of the attribute.

<netui:base>

This tag specifies the base URL for each URL on the page. The only attribute for this tag is the
target. It isn’t required.

<netui:behavior>

This adds information to the parent tag from the tag that’s being rendered currently.

<netui:bindingUpdateErrors>

This is an important tag. If you’ve ever worked with the first incarnation of the NetUI tags in
WebLogic Workshop, you’ll understand why immediately. This tag didn’t exist in the original
version. The only way to see any binding errors were with glaring error messages on pages and
in the command window. So, if something unexpected happened at runtime, users would see
these error messages. The tag provides an easy way to show binding errors. You can choose to
display all error messages for any binding errors or just specific ones by binding to specific
variables. The following examples show both formats:

<netui:bindingUpdateErrors />
<netui:bindingUpdateErrors expression="{actionForm.firstName}"/>

<netui:body>

This is a basic tag that renders a body tag in the HTML code. The properties are similar to the
ones available in the HTML <body> element.

<netui:button>

This tag creates buttons in the same way as in traditional HTML forms. You’ve seen a couple
examples of this earlier in the chapter. However, this is a good tag to introduce JavaScript
handling. Often, you might want to simulate the clicking of a button using JavaScript.

The first step to access any NetUI tag using JavaScript is to define a tagId attribute,
as follows:

<netui:form tagId="myTag" >

86 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

Once you’ve defined a tagId attribute, you can access the tag in JavaScript in the
following way:

document[getNetuiTagName("myTag", this)]

<netui:checkBox>

This tag defines a single checkbox in your forms. The syntax is pretty simple:

<netui:checkBox tagId="check1" title=" Type A" defaultValue="true"
dataSource="actionForm.type" disabled="true"/> Checkbox

<netui:checkBoxGroup>

This tag is more interesting than the <netui:checkBox> tag discussed earlier. This tag allows
you to create groups of checkbox tags, either using an optionsDataSource attribute or using
individual <netui:checkBoxOption> tags.

■Note You can’t use optionsDataSource and <netui:checkBoxOption> together in the same
<netui:checkBoxGroup> tag.

The following code is an example of the <netui:checkBoxOption> tag with
optionsDataSource:

<netui:checkBoxGroup dataSource="actionForm.selectedStudents"
optionsDataSource="actionForm.studentsMap"
defaultValue="actionForm.selectedStudents" disabled="false"/>

■Note The <netui:checkBoxGroup> tag doesn’t have a tagId attribute.

<netui:checkBoxOption>

This tag can’t be used without the <netui:checkBoxGroup> tag. The following is a simple example:

<netui:checkBoxGroup dataSource="actionForm.selectedStudents"
defaultValue="actionForm.selectedStudents" disabled="false">
 <netui:checkBoxOption title="Peter"
 value="actionForm.name" disabled="false"/> Peter
 <netui:checkBoxOption title="John"
 value="actionForm.name" disabled="false"/> John
</netui:checkBoxGroup>

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 87

<netui:configurePopup>

This tag configures a pop-up window that you might want to open to provide some function-
ality. For example:

<netui:anchor action="getCityZipFromNestedPageFlow" popup="true">
 Get a city and ZIP code
 <netui:configurePopup resizable="false" width="400" height="200">
 <netui:retrievePopupOutput tagIdRef="zipCodeField"
 dataSource="outputFormBean.zipCode" />
 <netui:retrievePopupOutput tagIdRef="cityField"
 dataSource="outputFormBean.city" />
 </netui:configurePopup>
</netui:anchor>

This example generates a pop-up window to get a city and ZIP code from the user. (We’ll
explain the <netui:retrievePopupOutput> tag in the “netui:retrievePopupOutput” section.)

<netui:content>

This is another important tag. It’s similar to the <netui:label> tag you saw earlier. The main
difference between the <netui:content> tag and the <netui:label> tag is the way they handle
HTML characters.

For example, consider the following <netui:content> tag:

<netui:content value="&"/>

In the browser, this would produce “&”; if you did a similar thing with the <netui:label>
tag, you would see “&” instead.

<netui:divPanel>

You can use this tag with DHTML to generate an HTML <div> tag.

<netui:error>

This tag displays individual field-level validation errors. The syntax is as follows:

<netui:error bundleName="com.project.errorMessages" key="actionForm.name "/>

In this example, the tag will look at the bundle specified to display an error for the name
field. It’s similar to Struts validation error messages. The bundle attribute is optional. If you
don’t specify a bundle, the tag will look at the bundle specified in the annotations for the
controller that calls this JSP. If there’s no bundle defined there also, you’ll see the key as the
error message.

<netui:errors>

This tag displays all the validation messages. It’s similar to the previous tag, except it doesn’t
have a value attribute. For example:

<netui:errors bundleName="com.project.errorMessages"></netui:errors>

88 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

<netui:exceptions>

This is an interesting tag, especially during development. You might also use it on your error
pages. The syntax is as follows:

<netui:exceptions showMessage="true" showStackTrace="false" />

It takes an exception and shows the message and/or the stack trace for the exception.

<netui:fileUpload>

This tag uploads files from the JSP. The syntax is quite simple:

<netui:fileUpload tagId="inputbox" dataSource="{actionForm.theFile}" />

To use this tag, make sure you specify the encoding type in the <netui:form> tag, as follows:

<netui:form action="uploadFile" enctype="multipart/form-data">

<netui:form>

This is a typical HTML form tag, except for its support for data binding. The form bean used to
provide this data binding can be scoped to the controller, the session, or the request using the
scope attribute.

<netui:formatDate>

The next three tags go hand in hand. They format the output of other tags appropriately. This
example should be pretty self-explanatory:

<netui:label value="pageFlow.today" defaultValue="1/1/2005" >
 <netui:formatDate country="US" language="en" pattern="yyyy-MM-dd"/>
</netui:label>

The class uses the SimpleDateFormat class. See the Javadocs for this class to see how you
can create different patterns. The country and language aren’t required.

<netui:formatNumber>

This tag is quite useful. You can use it to format any type of number. The valid values for the
type attribute are number, currency, and percent.

The following example formats a number:

<netui:label value="555444333333" >
 <netui:formatNumber country="US" language="en" pattern="###,####,###.00"
 type="number"/>
</netui:label>

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 89

The following example formats currency. The output of this tag is “$99.99”.

<netui:label value="99.993">
 <netui:formatNumber country="US" language="en" type="currency" />
</netui:label>

The following example formats percentages. The output of this tag is “50%”.

<netui:label value=".50">
 <netui:formatNumber type="percent" />
</netui:label>

<netui:formatString>

This tag formats String objects. You could use it for phone numbers, Social Security numbers,
and so on. The following example formats a phone number:

<netui:label value="555444333333" >
 <netui:formatString country="US" language="en" pattern="(###)###-####"
 truncate="true"/>
</netui:label>

<netui:hidden>

This is a simple tag to add values to a page that’s hidden. You could use it to carry form variables
from one page to another but not to display them on the page. Things such as status codes, IDs,
and so on, are places where this tag is typically used.

<netui:html>

This tag builds the HTML tag in a page.

<netui:image>

This is another simple tag that displays images.

<netui:imageAnchor>

This tag is similar to the <netui:anchor> tag, but it uses an image as the anchor. You probably
will use this tag more often than the anchor tag, depending on how your HTML is designed.

<netui:imageButton>

This tag is similar to the <netui:button> tag, but it uses an image as the anchor. You probably
will use this tag more often than the button tag, depending on how your HTML is designed.
This tag supports rollover images.

90 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

<netui:label>

You’ve seen this tag several times. It’s a simple tag used to display text to users. You can combine
it with the <netui:formatXXXXXX> tags to apply some formatting to the output text.

<netui:parameter>

This tag passes parameters to the URL defined in a parent tag. For example:

<netui:anchor href="http://www.google.com/search"> Search Google
 <netui:parameter name="q" value="Apache Beehive" />
</netui:anchor>

<netui:parameterMap>

This is similar to the previous tag but can provide multiple parameters to the URL. You can
build the map in the controller as a java.util.Map class and pass it to the tag using data
binding expressions.

<netui:radioButtonGroup>

The <netui:radioButtonGroup> tag is similar to the <netui:checkBoxGroup> tag. All the same
rules apply.

<netui:radioButtonOption>

This tag works the same way as the <netui:checkBoxOption> tag but is used with the
<netui:radioButtonGroup> tag.

<netui:retrievePopupOutput>

The example with the <netui:configurePopup> tag asked the user to input some data. This tag
gets the data from the pop-up window so that it’s accessible on the parent page.

<netui:rewriteName>

This tag allows an id or name attribute to participate in URL rewriting, as well as to be available
in the JavaScript. For example:

<span id="<netui:rewriteName name="foo"/>">

<netui:rewriteURL>

This tag supports URL rewriting. It’s similar to the <netui:rewriteName> tag.

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 91

<netui:scriptBlock>

This tag generates a block of JavaScript code.

<netui:scriptContainer>

NetUI tags typically generate a lot of JavaScript themselves. The <netui:scriptContainer> tag
bundles all the JavaScript into one HTML <script> tag. You can simply enclose all your NetUI
elements within this tag to achieve this behavior.

This tag is especially useful in portal applications, where each JSP might not have an
HTML tag. You’d basically start the <netui:scriptContainer> tag after the HTML <body> tag
and end it before the end of the <body> tag.

<netui:scriptHeader>

This tag will cause the JavaScript to be written with the <head> tag of the HTML.

<netui:select>

You’ve seen this tag in the earlier addBook.jsp example. It corresponds to the HTML <select>
tag and supports data binding.

Just like in the <netui:checkBoxGroup> tag, you can either use an optionsDataSource
attribute (see the addBook.jsp example) or use the <netui:selectOption> tag. You can’t use
both simultaneously.

<netui:selectOption>

This tag works the same way as the <netui:checkBoxOption> tag works but is used with the
<netui:select> tag.

<netui:span>

This tag generates an HTML tag.

<netui:textArea>

This is a typical HTML <textArea> tag. It supports data binding.

<netui:textBox>

This is a typical HTML input tag that supports data binding.

<netui:tree>

This tag generates a navigable tree of TreeElement objects. Listing 5-7 shows an example of how
to use the different tree tags.

92 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

Listing 5-7. Tree Tags in Action

<netui:tree tagId="mytree" dataSource="pageFlow.myTree"
 imageRoot="treeImages" expansionAction="treeState"
 selectionAction="treeState">
 <netui:treeItem title="Root Folder"
 expanded="true"
 action="treeState" target="contentFrame">
 <netui:treeLabel>Root Folder</netui:treeLabel>
 <netui:treeItem title="I" action="treeState"
 target="contentFrame">
 <netui:treeLabel>I</netui:treeLabel>
 <netui:treeItem title="A" action="treeState"
 target="contentFrame">
 <netui:treeLabel>A</netui:treeLabel>
 <netui:treeItem title="1" action="treeState"
 target="contentFrame">
 <netui:treeLabel>1</netui:treeLabel>
 </netui:treeItem>
 <netui:treeItem title="2" action="treeState"
 target="contentFrame">
 <netui:treeLabel>2</netui:treeLabel>
 </netui:treeItem>
 </netui:treeItem>
 </netui:treeItem>
 </netui:treeItem>
 </netui:tree>

<netui:treeContent>

This tag displays text within the tree. It’s similar to the <netui:content> tag but specific to a tree.

<netui:treeHtmlAttribute>

This tag sets attributes on a tree, as follows:

<netui:treeHtmlAttribute attribute="name" value="myTree" onSelectionLink="true"/>

<netui:treeItem>

This tag adds a node to a tree. An example was shown with the previous <netui:tree> tag example.

<netui:treeLabel>

This tag adds a label to a given node in a tree, as shown with the previous <netui:tree> tag.

<netui:treePropertyOverride>

This tag overrides properties of <netui:tree>.

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 93

Examining the NetUI-data Tag Library
The NetUI-data library provides data binding between form beans and the Page Flow. You can
use it to display sets of data, to call methods in the Page Flow, to provide pagination, and so on.
The following sections cover every tag in this library alphabetically. In the bookstore example,
bookGrid.jsp has several examples of how to use the tags in this tag library.

<netui-data:anchorCell>

This generates anchor cells. For example, if you want to make the book title a hyperlink to a
detail page, you can use this tag. The following example comes from bookGrid.jsp:

<netui-data:anchorCell action="getBookDetails" value="${container.item.title}" >
</netui-data:anchorCell>

<netui-data:callMethod>

This tag calls any method in a Page Flow. For example:

<netui-data:callMethod object="{pageFlow}"
 method="printHello" resultId="message"
 />

This example calls the printHello method on the current Page Flow. You can actually use
this tag to call a method on any Page Flow by specifying the Page Flow in the object tag. The
return value of this method is stored in an attribute called message. You can access this attribute
from the Page Flow in any other NetUI tag or in a scriptlet.

<netui-data:callPageFlow>

This tag calls any method in the current Page Flow. It’s similar to the previous tag, but it
assumes the current Page Flow. If no controller file is found, an ObjectNotFoundException is
thrown and the tag execution fails. Any return value is stored in the ${pageScope...} data
binding context object under the attribute specified by the resultId attribute. For example:

<netui-data: callPageFlow method="printHello" resultId="message" />

<netui-data:caption>

This tag displays a caption in any data grid.

<netui-data:cellRepeater>

This tag renders a single cell within an HTML table. The tag will automatically generate the open
and close table, row, and cell tags. In the following sample, the <netui-data:cellRepeater> tag
creates a table with three columns and as many rows as necessary to display all the items in the
data set:

<netui-data:cellRepeater dataSource="{pageFlow.itemArray}"
 columns="3" > Item: <netui:label value="{container.item}"/>
</netui-data:cellRepeater>

94 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

<netui-data:configurePager>

This tag provides pagination capabilities to a NetUI data grid. You can specify the action to be
called that manages the pagination, the look and feel for the pagination, the number of rows
per page, and so on.

<netui-data:dataGrid>

This tag displays a set of data. For example:

<netui-data:dataGrid dataSource="pageFlow.personsList" name="personsGrid">
 <netui-data:header title="header"/>
 <netui-data:footer title="footer"/>
</netui-data:dataGrid>

Don’t worry about the header and footer tags for now. We’ll discuss those in a moment.
This <netui-data:dataGrid> tag displays all the content for the personsList attribute.

<netui-data:declareBundle>

This tag specifies a resource bundle for internationalization. For example:

<netui-data:declareBundle bundlePath="com/foobar/resources/messages"
 name="messages"/>
 <netui:label value="{bundle.messages.messageKey"/>

In this example, you simply define a bundle to use and then use a key in the <netui:label> tag.

<netui-data:declarePageInput>

The presence of <netui-data:declarePageInput> tags in a JSP file helps indicate the type of
data expected at runtime. The information about the incoming data will let you know of any
data dependencies a given JSP may have on the controller file. Here’s an example:

<netui-data:declarePageInput name="myData"
 type="myPageFlow.MyPageFlowController.MyData"/>

In bookGrid.jsp you can see an example of how you’re using this in the bookstore application.
You declare a ResultSet object to be an input to that JSP:

<netui-data:declarePageInput name="rs" type="java.sql.ResultSet"/>

<netui-data:footer>

This renders a footer to a data grid.

<netui-data:getData>

This tag evaluates an expression and places the result into the javax.servlet.jsp.PageContext
object so that it’s available to the JSP scriptlets. For example:

<netui-data:getData resultId="myData" value="{form.myData}"/>

You can now access this data from the pageContext using the getAttribute method.

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 95

<netui-data:header>

This renders a header to a data grid.

<netui-data:headerCell>

This renders a table header cell or the equivalent of a <th> HTML tag. This needs to be wrapped
in the <netui-data:header> tag. The following examples are available in bookGrid.jsp:

<netui-data:headerCell headerText="Author" />
<netui-data:headerCell headerText="Title"/>
<netui-data:headerCell headerText="ISBN"/>
<netui-data:headerCell headerText="Publication"/>
<netui-data:headerCell headerText="Type"/>

<netui-data:imageAnchorCell>

This tag renders a cell in a table that has an image that serves as an anchor or link.

<netui-data:imageCell>

This is similar to the previous tag, but it doesn’t generate an anchor. The image source is
specified by the source attribute in the tag.

<netui-data:message>

This tag generates customizable messages for your page. It’s especially useful for error
messages. See the following example:

<%
 pageContext.setAttribute("errorMessage",
 new String("Password must be atleast {0} characters
 and at most {1} characters."));
%>

<netui-data:message value="{pageContext.errorMessage }"
 resultId="message">
 <netui-data:messageArg value="6"/>
 <netui-data:messageArg value="10"/>
</netui-data:message>

<netui:error value="{pageContext.message}" key={actionForm.password} />

In this example, you use the <netui-data:message> tag and the <netui-data:messageArg>
tag to build a dynamic error message for a validation failure.

<netui-data:messageArg>

This tag passes arguments to the <netui-data:message> tag described previously.

96 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

<netui-data:methodParameter>

This tag passes parameters to the <netui-data:callPageFlow> tag, as follows:

<netui-data:callPageFlow method="getStateName" resultId="stateValue"
 object="apress.beehive.databinding.Controller">
 <netui-data:methodParameter value="${container.item.state}"/>
</netui-data:callPageFlow>

<netui-data:pad>

This tag provides some padding in an HTML table. The <netui-data:pad> tag has the ability to
turn an irregular data set in the <netui-data:repeater> tag into a regular data set by using the
maxRepeat, minRepeat, and padText attributes.

<netui-data:renderPager>

This tag actually renders the links that allow you to paginate through the results, as defined by
the <netui-data:configurePager> tag.

<netui-data:repeater>

This tag generates the HTML for a set with a variable number of rows. You need to combine
several tags need to achieve this functionality. This tag defines the set that you want to iterate
over. For example:

<netui-data:repeater dataSource="pageFlow.persons" defaultText="No Persons Found">

This is just the start. We’ll use the next three tags covered to generate the table completely:

<netui-data:repeater dataSource="{pageFlow. persons }">
 <netui-data:repeaterHeader />
 <netui-data:repeaterItem>
 <netui:label value="{container.item. firstName },
 {container.item.lastName}, {container.item.email} "/>

 </netui-data:repeaterItem>
 <netui-data:repeaterFooter />
 </netui-data:repeater>

We’ll discuss the other tags in the following sections.

<netui-data:repeaterFooter>

This tag generates a footer in the <netui-data:repeater> tag.

<netui-data:repeaterHeader>

This tag generates a header in the <netui-data:repeater> tag.

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 97

<netui-data:repeaterItem>

This tag is what actually renders the data in the <netui-data:repeater> tag. As shown in the
previous example, you use this tag to iterate over the list of people and display individual items
in the data set. The individual item is available using the {container.item} data binding
expression.

<netui-data:rows>

This is just a container tag for a set of data rows.

<netui-data:serializeXML>

This tag serializes an XMLBean into the output of a JSP in order to move data to the browser for
data binding. We’ll revisit this tag when we talk about XMLBeans in Chapter 8.

<netui-data:spanCell>

This tag renders a cell in a column. The following examples are available in bookGrid.jsp:

<netui-data:spanCell value="${container.item.isbn}"/>
<netui-data:spanCell value="${container.item.publication}"/>
<netui-data:spanCell value="${container.item.book_type}"/>

<netui-data:templateCell>

This tag is used in data grids to render a templated cell in a table.

Examining the NetUI-template Tag Library
The following sections cover every tag in the NetUI-template library alphabetically. Look at
libraryTemplate.jsp and books.jsp while reading these sections. We use snippets from these
files to describe the NetUI-template tag library.

<netui-template:attribute>

This tag defines any property placeholder that you need as part of your template. For example,
in the template JSP, you could define this:

<head>
 <title>
 <netui-template:attribute name="title"/>
 </title>
</head>

In the JSP that actually becomes the content for this template, you’d set a value for the
attribute. You do this using the <netui-template:setAttribute> tag described later.

98 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

<netui-template:divPanel>

This tag creates an HTML <div> tag that may contain additional tags. Only a single section will
be visible at a time.

<netui-template:includeSection>

This tag defines a section to include as part of the template. Listing 5-8, which you’ll see in a
moment, shows an example of this tag.

<netui-template:section>

This tag actually defines the section. For example, if in the main template file you use the
<netui-template:includeSection> tag to define a section called body, then the JSP that becomes
the body needs to be defined using this tag. For example, books.jsp specifies which template
you’re using and what section of that template this JSP is part of. For example:

<netui-template:template templatePage="librarytemplate.jsp">
<netui-template:section name="body">

<netui-template:setAttribute>

If you have an attribute defined in your template, you can set the value using this tag. For
example, in books.jsp you might want to override the default title using this:

<netui-template:setAttribute name="title" value="Book List"/>

<netui-template:template>

The <netui-template:template> tag is the parent tag for any template. Listing 5-8 shows the
libraryTemplate.jsp example.

Listing 5-8. libraryTemplate.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
 prefix="netui-data"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0"
 prefix="netui"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
 prefix="netui-template"%>

<netui-data:declareBundle
 bundlePath="apress.beehive.resources.template" name="catalog"/>

C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S 99

<netui:html>
 <head>
 <title>
 <netui-template:attribute name="title" defaultValue="Bookstore" />
 </title>
 <link rel="stylesheet" type="text/css"
 href="../../../../resources/beehive/version1/css/main.jsp" />
 </head>
 <netui:body>

 <div>

 <netui-template:includeSection name="body"/>
 </div>
 </netui:body>
</netui:html>

In this example, you’re defining a template file that will form the wrapper for all the JSPs in
the bookstore application. You define a single section called body using the <netui-template:
includeSection> tag.

Introducing Shared Flows
Shared flows are a way for controllers in NetUI to share code. Think of them as a utility class or
a parent class in object-oriented programming. You can build several shared flows, each for
different functions. For example, you could have one shared flow for all database access and
another one for all the exception handling logic. For the bookstore example, we’ve created a
shared flow. The definition of the shared flow is as follows:

@Jpf.Controller
public class BookSharedFlow extends SharedFlowController {

We won’t go into the methods in this shared flow at this time, because they contain several
methods for Web Services and Controls that you’ll see in later chapters. For now, it’s sufficient
for you to assume that you can place any actions, exception handling code, simple Java methods,
and so on, in this class. You’ll then be able to access these methods from other Page Flows.

Accessing Methods of the Shared Flow from Your Page Flow
To access methods declared in the shared flow, you need to declare the shared flow in your
Page Flow class. Here’s how we’ve done it in BookController:

100 C H A P T E R 5 ■ U S I N G N E T U I A N D P A G E F L O W S

@Jpf.Controller (
 sharedFlowRefs = {
 @Jpf.SharedFlowRef(name="booksharedFlow",
 type=com.apress.beehive.bookstore.BookSharedFlow.class)
},
 messageBundles = {
 @Jpf.MessageBundle(bundlePath = "apress.beehive.messages.bookstore")
 }

)
 public class BookController extends PageFlowController {
 @Jpf.SharedFlowField(name = "booksharedFlow")
 private com.apress.beehive.bookstore.BookSharedFlow _sharedFlow = null;

Once you’ve declared the shared flow in your controller, you can call methods on the
shared flow just like you would on any other Java class. The name attribute in the shared flow
annotation is important; you’ll need to use it if you want to access data or methods from the
shared flow in your JSP.

Accessing Methods of the Shared Flow from Your JSP
You can also access any data in a shared flow or execute methods in a shared flow from a JSP.
To access data from a shared flow, you can use the following syntax:

<netui-data:repeater dataSource="sharedFlow.sharedFlowName.myData">

The sharedFlowName name refers to the value in the annotation’s name attribute for the
shared flow in the controller.

In a similar way, you can invoke actions defined in your shared flows. Just use sharedFlow.
sharedFlowName.methodName in the appropriate NetUI tags that you’ve learned about in this
chapter.

So, What’s Next?
This chapter showed you how to set up and run the bookstore application that you’ll be expanding
as you read this book. This chapter also focused on the NetUI tag libraries. We showed you how
to use all the tags and provided some pointers on their usage.

This technology is new and changing fast. Even as we’re writing this book, we’re seeing
some changes. Thus, if you find something new or that something doesn’t quite work as it’s
described, please let us know so that in future publications of this book we can make those
changes.

Now you can move on to Chapter 6, the world of Controls.

101

■ ■ ■

C H A P T E R 6

Using Controls

In this chapter, you’ll explore the concept of Controls. The chapter begins with an explanation
of the Control architecture and demonstrates when and where you should consider using them.
We’ll also talk about the different types of Controls that come with Apache Beehive, show you
the API, and teach you how to build your own Controls. In addition, we’ll dig into the specifics
of the out-of-the-box Controls, such as the Database Control, EJB Control, and Timer Control.

Introducing Controls
A Control is nothing more than a Java object that encapsulates some business logic or controls
access to some resource such as a database or external application. The Control then exposes
a common API, which allows developers to access this business logic or the external resource
as though they were using a Plain Old Java Object (POJO).

■Note Controls, like other Beehive technologies, were introduced by BEA in the WebLogic Workshop
product. The motivation behind Controls is to write code in a service-oriented manner. Controls abstract any
platform considerations and encapsulate any services or other Controls that the Control consumes. BEA
WebLogic Workshop comes bundled with several types of Controls to access databases, EJBs, JMS queues,
and so on. It also provides an extensibility model that allows developers to implement their own Controls for
business logic and resources that aren’t accessible by the built-in Controls that ship with the product. Think
of these Controls as a proof of concept for this new technology.

The Apache Beehive runtime environment manages Controls quite similarly to how the
EJB container manages an EJB. However, this runtime environment is a lightweight layer packaged
as a set of JAR files that you can include with your application server. The runtime layer provides
services such as transaction management, state management, asynchrony, and other services.

■Note You don’t need an EJB container to run Controls unless they are EJB Controls. In this chapter, you
will deploy a Database Control on Tomcat and an EJB Control on JBoss.

102 C H A P T E R 6 ■ U S I N G C O N T R O L S

A Java Control is packaged just like any other Java class, except that the extension is .jcs
(which stands for Java Control Source). Java Controls are extensible, and the extension is typi-
cally packaged as a .jcx (Java Control Extension) file. A Java Control may be invoked from a
Web Service, a Page Flow, a plain old Java class, or another Java Control. However, a Java Control
is not network addressable unless you wrap it using a Web Service.

■Caution A Java Control is not network addressable. To invoke a Java Control from outside the application,
you can expose it using a Web Service.

You should first understand the anatomy of a Control.

Understanding the Control Architecture
Beehive’s Control architecture provides a common framework and configuration model for
how enterprise resources can be exposed to clients. It doesn’t replace existing resource access
models; it provides a unifying layer on top of them to provide consistency and simplification.

Figure 6-1 shows the anatomy of a Control at a high level.

Figure 6-1. Control architecture from the Apache Beehive Web site

The Control architecture employs a unique variant of the Inversion of Control (IoC) design
pattern based on JSR 175 metadata. This enables a Control implementation class to declaratively

C H A P T E R 6 ■ U S I N G C O N T R O L S 103

specify the events or services it requires to provide its semantics. Another advantage is
consistency—the Control compiler provides both verification and code generation services to
ensure that the resulting implementation provides consistent APIs and behaviors for clients,
tools, and application deployers or administrators.

Understanding the Resource

The resource shown on the right side of Figure 6-1 is the external resource that a Control is
trying to access. Think of the resource as a database, external application, or some Java classes
that contain some business processes. If the resource is a set of Java classes, they need not be
in the same VM as the Control. The communication between the resource proxy and the resource
could be RMI, Web Service calls (SOAP over HTTP), local Java invocation, or any other commu-
nication protocols.

Understanding JSR 175 Metadata or External Configuration

Access to this resource can be parameterized using JSR 175 metadata annotations. In addition,
the configuration of this resource is enabled for deploy-time binding. These configuration
properties include things such as JNDI names, usernames and passwords, and so on.

Understanding the Resource Proxy

The resource proxy that is part of the Control is typically EJB home or remote stubs, Web Service
proxies, or some session information. The Control runtime manages the life cycle and state of
this proxy. This runtime management, along with the external configuration, is used to “control”
the resource.

The resource proxy uses the onAcquire and onRelease methods to manage the resource.
The onAcquire event will fire once and only once, prior to the invocation of any operation.
This method is a good place to write code related to acquiring any connections, sessions, and
so on, that are needed for the life cycle of this Control instance. Once the onAcquire method
fires, you’re also guaranteed that an onRelease event will be executed when the resource scope
ends. The onRelease event becomes like the finally block in the try-catch statement. This
method is where you release any resources acquired in the onAcquire method.

For example, let’s say you were implementing a Control to connect to some proprietary
system. You would implement the onAcquire method to obtain a connection to this system,
and you would release the connections in the onRelease method. A closer-to-home example is
if you were actually writing a Database Control to connect to Oracle. In the onAcquire method,
you would write the code to obtain the connection from the connection pool. In the onRelease
method, you would make sure you close the connection.

You’ll actually see some code for this later in this chapter, in Listing 6-3.

Understanding the Resource Client

The resource client is the code that calls this resource. This needs to be in the same VM as
the resource and is typically a Web Service, another Control, a Page Flow, or just some other
Java object.

104 C H A P T E R 6 ■ U S I N G C O N T R O L S

Understanding Operations and Events

Operations and events provide two-way communication between the client and the Control.
The set of operations that the client can call on the Control are exposed using a public interface.
The Control then defines a set of callbacks or events. This is done using the callback interface,
which is defined as an inner class to the public interface that exposes the operations. Listing 6-1
shows an example to make this clearer.

Listing 6-1. HelloWorld Control

@ControlInterface
public interface HelloWorldControl
{
 public void sayHelloWorld() throws IllegalStateException;

 @EventSet
 public interface Callback
 {
 public void printHelloWorld(String name);
 }
}

■Caution This HelloWorld example is not built to actually compile and run. We’re using it purely as a means
to explain the concepts. Later in the chapter we provide examples that you can compile, deploy, and execute.

In this example, the method that the Control exposes is sayHelloWorld. The Control then
fires an event called printHelloWorld that is returned. We’ll get to the name parameter in the
next section.

Accessing the Properties

In Listing 6-1, you can see that the printHelloWorld callback event requires a single parameter
called name. You can configure this property in several ways. For example, when the client is
actually using the Control, then you can declare the property as follows:

@HelloWorldControl(name="John Doe")
public HelloWorldControl myHelloWorldControl;

Another mechanism to set the properties is to use an external XML file, as follows:

 < helloWorldControl:HelloWorld
 xmlns:helloWorldControl=
 "http://openuri.org/com/myco/ helloWorldControl ">
 < helloWorldControl:name>John Doe</ helloWorldControl:name>
 </ helloWorldControl:HelloWorld >

C H A P T E R 6 ■ U S I N G C O N T R O L S 105

Looking at the Control Authoring Model
In the following sections, you’ll learn how you can write your own Controls from scratch. If you
don’t plan to do so and want to learn how to use the out-of-box Controls with Beehive, you can
skip to the “Dissecting Common Controls” section later in this chapter.

Creating a Control

Earlier in this chapter, we showed you the overall architecture of how a Control is used. Before
you can write your own Control, you need to understand the architecture of a Control in a little
more detail. Let’s take the Control box from Figure 6-1 and blow it up, as shown in Figure 6-2.

Figure 6-2. Elements of a Control from the Apache Beehive Web site

Concentrate on the shaded box. That is the heart of the Control itself. Basically, it defines
three sections:

• Control public interface

• Control implementation class

• ControlBean-generated class

A picture speaks a thousand words. Figure 6-3 shows another diagram from the Beehive
Web site and explains the relationship between the three classes mentioned previously.

106 C H A P T E R 6 ■ U S I N G C O N T R O L S

Figure 6-3. Relationships between the Control classes from the Apache Beehive Web site

Control Public Interface

This class defines the operations and events that are exposed by the Control. It also defines the
extensibility model for how the Control can be extended. The methods defined in the Control
public interface are implemented by the Control implementation class and the ControlBean-
generated class. Lastly, it defines any properties that are associated with the Control. For an
example, see Listing 6-2.

Listing 6-2. Sample E-mail Control Public Interface

import org.apache.beehive.controls.api.bean.ControlInterface;

@ControlInterface
public interface EmailControl {
 // operations
 public void sendEmail(String from, String to, String subject, String message);

 @EventSet
 public interface Callback {
 /**
 * The onMessage event is delivered to a registered
 * client listener whenever a
 * message has been sent by the Control.
 * @param msg the message that was sent
 */
 public void onEmailSent(String msg);
 }
 // PROPERTIES
 @PropertySet
 @Target({FIELD, TYPE})

C H A P T E R 6 ■ U S I N G C O N T R O L S 107

 public @interface Connection {
 public String factoryName();
 public boolean transacted() default true;
 public int acknowledgeMode() default Session.CLIENT_ACKNOWLEDGE;
 }
}

■Caution This EmailControl example is not built to actually compile and run. We’re using it purely as
a means to explain the concepts. Later in the chapter we’ll provide examples that you can compile, deploy,
and execute.

Listing 6-2 defines a simple e-mail Control that has one method and one event. The send
e-mail method takes in a few String parameters. The callback has an onEmailSent event that
fires when the e-mail is sent. It also defines one property called Connection. This obtains a
connection to the e-mail system, typically using the Simple Mail Transfer Protocol (SMTP).

Control Implementation Class

This class provides the implementation details of the operations defined in the public interface.
See Listing 6-3 for an example.

Listing 6-3. Sample E-mail Control Implementation Class

import org.apache.beehive.controls.api.bean.ControlImplementation;
import org.apache.beehive.controls.api.bean.Extensible;
import org.apache.beehive.controls.api.context.ControlBeanContext;
import org.apache.beehive.controls.api.context.ResourceContext;
import org.apache.beehive.controls.api.events.Client;
import org.apache.beehive.controls.api.events.EventHandler;

import javax.mail.*;
import javax.mail.event.TransportListener;
import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeMessage;

@ControlImplementation
public class EmailControlImple implements EmailControl
{
 /**
 * The peer BeanContext instance associated with the Control
 */
 @Context ControlBeanContext context;

108 C H A P T E R 6 ■ U S I N G C O N T R O L S

 /**
 * The client callback event router for this Control
 */
 @Client Callback client;

 /**
 * The fields are used to hold transient e-mail resources
 * that are acquired and held for
 * the resource scope associated with the Control
 */
 transient Session _session;

 /**
 * The Resourceontext instance associated with the Control
 */
 @Context ResouceContext resourceContext;

 /*
 * The onAcquire event handler
 * This method will be called prior to any operation with
 * a given resource scope. It is responsible for
 * obtaining the connection, session, destination, and appropriate
 * writer instance, for use within the operation.
 */
 @EventHandler(
 field="resourceContext",
 eventSet=ResourceContext.ResourceEvents.class,
 eventName="onAcquire"
)

 public void onBeanAcquire() {
 java.util.Properties mailProps = new java.util.Properties();
 mailProps.put("mail.smtp.host", "my.smtp.server.com");
 mailProps.put("mail.transport.protocol", "smtp");
 mailProps.put("mail.store.protocol", "imap");
 _session = Session.getDefaultInstance(mailProps, null);

 // exception handling not shown…..

 }

 /*
 * The onRelease event handler for the associated context
 * This method will release all resource acquired by onAcquire.
 */

C H A P T E R 6 ■ U S I N G C O N T R O L S 109

 @EventHandler (
 field="resourceContext",
 eventSet=ResourceContext.ResourceEvents.class,
 eventName="onRelease"
)

 public void onRelease()
 {
 try
 {
 if (_session != null)
 {
 _session.close();
 _session = null;
 }
 }
 catch (Exception ex)
 {
 throw new ControlException("Unable to release Email resource", ex);
 }
 }

 /**
 * Sends a simple Email to the Control's destination
 * @param text the contents of the TextMessage
 */
 public void sendEmail (String from, String to,
 String subject, String message)
 throws EmailException
 {
 try
 {
Message message = new MimeMessage(mSession);
 message.setFrom(new InternetAddress(from));
 message.setRecipients(Message.RecipientType.TO,
 InternetAddress.parse(to));
 message.setSubject(subject);
 message.setContent(message, "text/plain");
 message.setSentDate(new java.util.Date());
 Transport transport = mSession.getTransport();
 transport.connect();
 transport.send(message);
 transport.close();
 message=null;
 }

110 C H A P T E R 6 ■ U S I N G C O N T R O L S

 catch (javax.mail.internet.AddressException aex)
 {
 throw new EmailException(aex);
 }
 catch (javax.mail.NoSuchProviderException nspe)
 {
 throw new EmailException(nspe);
 }
 catch (javax.mail.MessagingException mex)
 {
 throw new EmailException(mex);
 }
 }
}

This example is implementing the EmailControl using the Java Mail API to send an
 e-mail message. Notice that it’s defining the onAcquire and onRelease methods to connect
to the e-mail servers.

ControlBean-Generated Class

This is a JavaBean class that’s automatically generated by the Control’s compiler based on the
Control public interface and the Control implementation class. Since this is a generated class,
we won’t show you the code for it here.

Creating a Control Extension

A Control extension is useful when you need to add functionality to some Control. For example,
let’s say you wanted to set up a synchronous queue using JMS for the e-mails to be sent. You
might want to extend the e-mail Control shown earlier in the chapter to add this functionality.
Here’s how this might look at a high level:

import org.apache.beehive.controls.api.bean.ControlExtension;

@ControlExtension
public interface EmailQueue extends EmailControl
{
 // your custom code
}

In this example, you could override the sendEmail method to actually write the e-mails to
a JMS queue, and the queue could then send the e-mails one by one.

C H A P T E R 6 ■ U S I N G C O N T R O L S 111

Using Control Composition

This is an interesting concept. You can actually combine the functionality in more than one Control
to create another Control on top of them. For example, let’s assume you have two Controls—
a JMS Control and the e-mail Control shown earlier in this chapter. I’ve talked about how you
might extend the e-mail Control to build in a JMS queue. This, however, would mean you’d
have to pretty much write all the JMS-related code in this Control extension. However, since
you also have a JMS Control, you could create a class that would combine the JMS Control with
the e-mail Control to provide the same functionality that the extended EmailQueue Control
does. Listing 6-4 shows some pseudocode for this.

Listing 6-4. Control Composition: E-mail and JMS

public class EmailQueue
{
 @Control @Destination(Name="EmailQueue")
 JMSQueueBean emailQueue;

 @Control @Destination(Name="Email")
 EmailControlBean email;

 public void queueEmail
 (String from, String to, String subject, String message)
 {
 // custom code
 }
}

This example creates a simple Java class that combines the functionality of the two Controls.
You could also create a Control on top of the two Controls if you want to do so. Let’s look at
some more interesting pseudocode. Listing 6-5 shows two JMS Controls being combined with
the e-mail Control.

Listing 6-5. Control Composition: E-mail and JMS with Priority

public class PriorityEmailQueue
{
 @Control @Destination(Name="EmailQueue")
 JMSQueueBean emailQueue;

 @Control @Destination(Name="PriorityQueue")
 JMSQueueBean priorityQueue;

 @Control @Destination(Name="Email")
 EmailControlBean email;

112 C H A P T E R 6 ■ U S I N G C O N T R O L S

 public void queueEmail
 (String from, String to, String subject,
 String message, boolean highPriority)
 {
 if (highPriority)
 {
 // send email on priorityQueue
 }
 else
 {
 // send email on emailQueue
 }
 }
}

Packaging a Control

Controls are packaged as JAR files so that they can be easily distributed. A manifest file inside
the JAR describes all the Controls that are in it. This can be read by tools such as Pollinate and
Workshop to create a graphical palette of Controls that are available to you.

Beehive also ships with a rich Controls Packaging API that primarily helps in creating good
documentation on how to use the Control and the features of the Control. This might not be
suitable for you if you’re just writing a few small Controls to use on your project. However, if
you’re building Controls to expose functionality within a product you’re selling, then leveraging
this API may be useful. You can learn more about the API on the Beehive wiki at http://wiki.
apache.org/beehive/Controls/ControlPackaging.

Using a Control
In the following sections, you’ll learn how you can use the HelloWorld Control you saw in
Listing 6-1.

Understanding the Control Client Model

Two basic models exist for using a Control: programmatic and declarative. The two models
offer the same basic functionality. Let’s take a look at each of them.

Programmatic Model

In the programmatic model, the client must take responsibility for instantiating the Control
and working with the events that get thrown. This is typically good for experienced programmers
who are comfortable working with events and JavaBeans. Here’s how the programmatic model
would work with HelloWorldControl:

C H A P T E R 6 ■ U S I N G C O N T R O L S 113

HelloWorldControl myHelloWorldControl =
 (HelloWorldControl)Controls.instantiate(classloader, "HelloWorldControl");
myHelloWorldControl.addHelloWorldControlEventListener(
 new HelloWorldControlEventListener () // anonymous event handler class
 {
 public void sayHelloWorld(String name)
 {
 // event handling code
 }
 }
);

Declarative Model

In this model, the creation of the Control and event routing are automatically handled for you.
This model is easier and faster to use and is ideal for developers who like to use a rich set of
tools to program.

Here’s how the declarative model would work with HelloWorldControl:

@HelloWorldControl(name="John Doe")
 HelloWorldControl myHelloWorldControl;
public void myHelloWorldControl _sayHelloWorld(String name) {
 // event handling code
}

The question you might ask is, if the declarative model requires less code and is easier to
use, why would anyone use the programmatic model? The key difference is that if you use the
declarative model, then the resources accessed by the Control must be available in that runtime
environment or else the instantiation of the Control will fail. This sort of becomes a prerequisite
to the server start-up.

When using the programmatic model, on the other hand, you have control to test whether
the resource is available and can decide how to proceed.

For example, let’s say the application depends on one Oracle database and occasionally
connects to some e-mail server to send e-mail. The application can still run if the e-mail server
is down, but not if the database is down. In this scenario, you might decide to use the declarative
model for the Database Control and the programmatic model for the e-mail Control.

Instantiating a Control

Controls use lazy instantiation, which means that an instance of the Control is not actually
created until the client actually invokes one of the methods on the Control. Once instantiated,
the Control will exist until the client releases the reference on the Control. When the client
terminates, all the Controls that were used by that client are terminated.

114 C H A P T E R 6 ■ U S I N G C O N T R O L S

Dissecting Common Controls
In the following sections, you’ll learn about several Controls that ship with Apache Beehive. It
was important for the Beehive team to provide some out-of-the-box Control implementations
to jump-start development. BEA WebLogic Workshop shipped with several Controls, including
a Database Control, JMS Control, EJB Control, Web Service Control, and Timer Control. Currently,
these have been released into ControlHaus to foster more community support for authoring
these Controls. To learn more about ControlHaus, visit http://www.controlhaus.com/.

■Tip You’ll see several interesting examples of Controls at ControlHaus, such as an Amazon Control, Google
Control, EBay Control, PayPal Control, and so on. You’ll also find technology-specific Controls such as a Hibernate
Control and an XFire Control that uses XMLBeans.

At the time of writing, the Beehive wiki mentioned that the Beehive team might consider
making these part of Beehive. Just to get you started with using Controls, we’ll now explain
some of the Controls that are available freely or packaged with Apache Beehive. We’ll start with
the Database Control.

Using the Database Control
We’ll use the Database Control from the ControlHaus project as an example. You can find the
JAR file in the Beehive distribution under lib\controls\jdbc-control.jar.

You can use a Database Control to encapsulate access to a relational database. It’s somewhat
like an entity EJB where some of the database logic is encapsulated for you—but you should
not confuse it with an entity EJB. The verdict on the value of an entity EJB might even be 50/50,
and we don’t really want to dig into those issues now. That is a topic for its own book. The primary
similarity between a Database Control and an entity EJB is that you don’t have to understand
JDBC to work with a database.

Since you’ll be using the Database Control implementation from ControlHaus, you need
to implement the JdbcControl interface. The methods are used to execute regular SQL state-
ments against a database. There’s no restriction on the types of SQL statements you can execute
using a Database Control. Each method in a Database Control has a single SQL statement asso-
ciated with it. This is defined using a JSR 175 metadata annotation.

■Note The Beehive samples also provide an implementation of the Database Control called DatabaseControl.
You might find it interesting to go through that example also. We won’t cover it in this book.

In the @SQL metadata annotation, you can specify parameters that are replaced with runtime
values. These parameters match the signature of the methods, thus the replacement happens
automatically using Java reflection. You’ll see examples of this in just a minute, but first refer to
the “Getting Ready to Use the Database Control Example” sidebar to set up a database that you
can use with the Database Control you’ll work with next.

C H A P T E R 6 ■ U S I N G C O N T R O L S 115

GETTING READY TO USE THE DATABASE CONTROL EXAMPLE

To use the Database Control example, you’ll need to download and install a database. In this example, we’re
using MySQL. However, there’s no reason why you couldn’t use any other database such as PointBase, SQL
Server, or Oracle.

1. First, you’ll need to download and install MySQL 4.1 from http://dev.mysql.com/downloads/
mysql/4.1.html.

2. We recommend downloading a version that has the installer. Once you’ve installed MySQL, open a
command prompt. You can do this from the Start menu by clicking Run, typing cmd, and then clicking
Enter. Once the command prompt is open, change to the MySQL directory (for example, c:\mysql).

3. Now, type the following:

mysql -h localhost -u root -p test

4. You’ll be asked for a password. Just click Enter to use a blank password.

5. You’ll see mysql> as the prompt; enter the following SQL commands:

 GRANT ALL PRIVILEGES ON *.* TO beehiveuser@localhost
 -> IDENTIFIED BY 'password' WITH GRANT OPTION;
 create database bookstoredb;
 use bookstoredb ;

create table book_Detail (
book_id varchar(20),
title varchar(50),
book_type varchar(50),
author varchar(100),
publication varchar(100),
isbn varchar(15),
publication_date date,
comments varchar(300),
available char(1));

6. This will create the user beehiveuser, the database bookstoredb, and the table book_Detail
in that database. The next step is a few changes to the Tomcat configuration. You need to modify the
server.xml file, which can be found under the conf directory of your Tomcat installation.

7. Add the following <context> element, before the </host> element in server.xml. You make this change
to configure the datasource to your MySQL database in Tomcat. You can also find this change in the
server.xml.changes.txt file in the code download in the chapter6\dbControlExample directory:

<Context path="/Library" docBase="Library"
 debug="5" reloadable="true" crossContext="true">
 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="localhost_library_log." suffix=".txt"
 timestamp="true"/>

Continued

116 C H A P T E R 6 ■ U S I N G C O N T R O L S

 <Resource name="jdbc/bookstoreDS"

 auth="Container"
 type="javax.sql.DataSource"/>

 <ResourceParams name="jdbc/bookstoreDS">
 <parameter>
 <name>factory</name>
 <value>
 org.apache.commons.dbcp.BasicDataSourceFactory
 </value>
 </parameter>

 <!-- Maximum number of dB connections in pool. Make sure
 you configure your mysqld max_connections large
 enough to handle all of your db connections.
 Set to 0 for no limit.
 -->
 <parameter>
 <name>maxActive</name>
 <value>100</value>
 </parameter>

 <!-- Max # of idle dB connections to retain in pool
 Set to -1 for no limit. See also the DBCP
 documentation on this and the
 minEvictableIdleTimeMillis
 configuration parameter.
 -->
 <parameter>
 <name>maxIdle</name>
 <value>30</value>
 </parameter>

 <!-- Maximum time to wait for a dB connection to become
 available in ms, in this example 10 seconds.
 An Exception is thrown if this timeout
 is exceeded. Set to -1 to wait indefinitely.
 -->
 <parameter>
 <name>maxWait</name>
 <value>10000</value>
 </parameter>

 <!-- MySQL dB username and
 password for dB connections -->
 <parameter>

Continued

C H A P T E R 6 ■ U S I N G C O N T R O L S 117

 <name>username</name>
 <value>beehiveuser</value>
 </parameter>
 <parameter>
 <name>password</name>
 <value>password</value>
 </parameter>

 <!-- Class name for the official MySQL Connector/J driver -->
 <parameter>
 <name>driverClassName</name>
 <value>com.mysql.jdbc.Driver</value>
 </parameter>

 <!-- The JDBC connection url for
 connecting to your MySQL dB.
 The autoReconnect=true argument to the url
 makes sure that the
 mm.mysql JDBC Driver will
 automatically reconnect if mysqld closed the
 connection. mysqld by default closes idle
 connections after 8 hours.
 -->
 <parameter>
 <name>url</name>
 <value>
 jdbc:mysql://localhost:3306/bookstoredb?
 autoReconnect=true
 </value>
 </parameter>
 </ResourceParams>

 </Context>

8. You should also download the MySQL Connector/J to be able to connect from MySQL to Java. You can
download MySQL Connector/J 3.1 from http://dev.mysql.com/downloads/connector/j/
3.1.html and make sure it’s being referred to in the classpath when you run the application. To do this
in Tomcat, you can copy the mysql-connector-java-3.1.7-bin.jar file in the <tomcat-home>/
common/lib directory.

9. Now, create a directory called library under $tomcat_home$/webapps/. This is where you’ll
deploy the application. In the code download, copy all the files and directories under chapter6\
dbControlExample to this directory. Build the application using build.xml found under
$tomcat_home$/webapps/library/web-inf/src.

10. Start the Tomcat server. You can see the application in action by going to http://localhost:8080/
Library/com/apress/beehive/bookstore.

118 C H A P T E R 6 ■ U S I N G C O N T R O L S

Creating the Bookstore Database Control

In this section, you’ll extend the bookstore example that was introduced in Chapter 5 to actu-
ally store books in the database. To do this, you’ll use a Database Control. Let’s first glance at
the code for the Control, and then we’ll dissect the pieces of it individually. You can find the
code shown in Listing 6-6 in the code download in the chapter6\dbControlExample\WEB-INF\
src\apress\beehive\controls\bookstoredb.jcs directory.

Listing 6-6. Bookstore Database Control

package apress.beehive.controls.bookstoredb;

import org.apache.beehive.controls.system.jdbc.JdbcControl;
import org.apache.beehive.controls.api.bean.ControlExtension;
import com.apress.beehive.bookstore.vo.Book;
import java.sql.SQLException;
import java.sql.ResultSet;

@ControlExtension
@JdbcControl.ConnectionDataSource(
 jndiName="java:/bookstoreDS")

public interface BookDBControl extends JdbcControl {

 @JdbcControl.SQL(statement=" ", maxRows = 1)
 public void addBook() ;

 @JdbcControl.SQL(statement=
 "select title from book where author_name={name}",
 maxRows = 10)
 public String [] getAllBooksTitlesForAuthor(String name);

 @JdbcControl.SQL(statement=
 "select isbn from book_detail",
 maxRows = 5)
 public String[] getISBNCodes();

 @JdbcControl.SQL(statement=
 "SELECT * FROM book_detail WHERE book_id={book_Id}",
 maxRows = 1)
 public Book getBookDetails(int book_Id) throws SQLException;

 @JdbcControl.SQL(statement=
 "SELECT * FROM book_detail WHERE book_type= {type} ",
 maxRows = 10)
 public ResultSet findBooksByAuthorAndType(String author,
 String type) throws SQLException;

 static final long serialVersionUID = 1L;
}

C H A P T E R 6 ■ U S I N G C O N T R O L S 119

The first line in Listing 6-6 is a metadata annotation that defines this file to be a Control
extension. The next line defines the information for the JDBC datasource that this Control will
use. The next line is the class definition. Notice that BookDBControl extends from JdbcControl
that’s currently part of ControlHaus. Now, you’ve defined several methods that perform SQL
operations. For this example, you’ll be implementing only the select or read methods from the
database. We’ll show a different implementation of the Add methods using EJB Controls in the
next section. Look at the getAllBooksTitlesForAuthor method. In this method, you’ll define
a SQL statement to get all books for a given author. Notice that the parameter passed to the
method name is used to perform runtime substitution into the SQL statement defined in the
annotation.

Using the Bookstore Database Control

You’ll now modify the Page Flow example from Chapter 5 to leverage the Control you just
defined. You can find the complete code for the Page Flow in the code download at
chapter6\dbControlExample\com\apress\beehive\bookstore\BookController.jpf.

■Note In this controller, you’re using the Database Control and EJB Control that we’ll explain later in this
chapter. For now, you can ignore the usage of the EJB Control.

In the controller, you define the Database Control in the same way as you would any class
variable. You use the @control metadata annotation, as follows:

@Control
 public BookDBControl dbcontrol;

Once you’ve defined the Control as a class variable, you can use it in your action methods.
Let’s look at a quick example:

@Jpf.Action(
 forwards = {
 @Jpf.Forward(name = "success", path = "viewBook.jsp")
 })
protected Forward getBookDetails()throws SQLException
{
 BookForm form =new BookForm();
 String bookId = this.getRequest().getParameter("bookId");
 Book abook= dbcontrol.getBookDetails(Integer.parseInt(bookId));
 form.setaBook(abook);
 return new Forward("success", form);
}

Only one line is really important in this snippet. Notice that the Database Control is being
used just as any other Java class. There’s nothing special from a usage perspective. As a client
of the Control, you did not need to know anything about JDBC. This really is the value of the
Control architecture.

120 C H A P T E R 6 ■ U S I N G C O N T R O L S

Using the EJB Control
You’ll use the EJB Control from the ControlHaus project as an example. You can find the JAR
file in the Beehive distribution under lib\controls\ejb-control.jar.

An EJB Control encapsulates all the baggage of using EJBs. This includes the JNDI lookup,
home interface lookup, and the invocation of methods on the remote interfaces. Using an EJB
Control, you can work with an EJB just like you would a plain old Java class. Just like with a
Database Control, the client will not have to know anything about EJBs.

You’ll now see a quick example of how to use an EJB Control. Since Tomcat is not an EJB
container, we’ll use JBoss. Please read the “Getting Ready to Use the EJB Control Example”
sidebar to learn how to set up JBoss for this example. Once you have JBoss set up and the appli-
cation deployed, you can use the EJB Control. (However, we recommend you just use any
application server you’re comfortable with. As for the two authors of this book, one of us used
JBoss and the other one used WebLogic.)

The code for the EJB that we’ll use is available at chapter6\dbControlExample\src. However,
for this example, you can just use the libraryejb.jar file found under chapter6\dbControlExample\
dist.

GETTING READY TO USE THE EJB CONTROL EXAMPLE

To use the EJB Control example, you’ll need to download and install an application server such as JBoss.
We’ve tested this example on JBoss 3.2.6, which you can download at http://www.jboss.com/
downloads/index#as.

You can read the documentation on how to install and set up JBoss at http://www.jboss.com/
index.html?module=downloads&op=download&authid=ae885bbacae56aeb29c8f068974add90&
downloadId=4.

To build and work with this example, you need to deploy libraryejb.jar from the dist directory. The
next step is to build and deploy the library.war file. You can do this using the Ant build script found under
Web-inf/src. Also, copy the jboss-j2ee.jar file into web-inf/lib. To deploy these to JBoss, copy both
these files (libraryejb.jar and library.war) to the jboss-home/server/default/deploy directory.
Also, copy the attached mysql-ds.xml to the same directory (jboss-home/server/default/deploy).

The mysql-ds.xml file contains information for creating the MySQL datasource. This file contains
the following:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE jbosscmp-jdbc PUBLIC
"-//JBoss//DTD JBOSSCMP-JDBC 3.0//EN"
"http://www.jboss.org/j2ee/dtd/jbosscmp-jdbc_3_0.dtd">
<datasources>
<local-tx-datasource>
<jndi-name>bookstoreDS</jndi-name>
<connection-url>
 jdbc:mysql://localhost:3306/bookstoredb
</connection-url>

Continued

C H A P T E R 6 ■ U S I N G C O N T R O L S 121

<driver-class>com.mysql.jdbc.Driver</driver-class>
<use-java-context>false</use-java-context>
<user-name>beehiveuser</user-name>
<password>password</password>
</local-tx-datasource>
</datasources>

You also need to copy the JConnector (mysql-connector-java-3.1.7-bin.jar) file into the
<jboss-home>/server/default/lib directory.

Creating the Bookstore EJB Control

In this example, you’re creating an EJB Control to access a session EJB. The session EJB in
turn uses a Data Access Object (DAO) to access the database. Let’s look at the EJB Control
(see Listing 6-7).

Listing 6-7. Bookstore EJB Control

package apress.beehive.conrols.ejbcontrol;

import org.apache.beehive.controls.api.bean.ControlExtension;
import org.apache.beehive.controls.system.ejb.SessionEJBControl;
import org.apache.beehive.controls.system.ejb.EJBControl.EJBHome;
import org.apache.beehive.controls.system.ejb.EJBControl.JNDIContextEnv;
import com.apress.beehive.bookstore.ejb.BookDetailHome;
import com.apress.beehive.bookstore.ejb.BookDetailRemote;
@ControlExtension
@EJBHome(jndiName="BookManager")
@JNDIContextEnv(contextFactory=
 "org.jnp.interfaces.NamingContextFactory",
 providerURL="localhost:1099")

public interface BookDetailEJBControl extends
 SessionEJBControl, BookDetailHome, BookDetailRemote
{
}

In Listing 6-7, you can see that you specify the basic properties for the EJB like the JNDO
name and the home and remote interface for the EJB. And that’s it. You don’t really have to do
anything more to use the EJB via this Control.

122 C H A P T E R 6 ■ U S I N G C O N T R O L S

Using the Bookstore EJB Control

You’ll now modify the Page Flow example introduced in Chapter 5 to leverage the Control you
just defined. You can find the complete code for the Page Flow in the code download at
chapter6\dbControlExample\com\apress\beehive\bookstore\BookController.jpf.

In the controller, you can define the EJB Control in the same way as you would any class
variable. The @control metadata annotation is as follows:

@Control
 public BookDetailEJBControl ejbcontrol;

Once you’ve defined the Control as a class variable, you can use it in your action methods.
Let’s look at the following quick example:

 @Jpf.Action(
 forwards = {
 @Jpf.Forward(name = "success",path = "viewBook.jsp")
 },
 validationErrorForward = @Jpf.Forward(name = "failure", navigateTo = J
 Jpf.NavigateTo.currentPage)
)

 protected Forward addBook(BookForm form)
 throws RemoteException,SQLException
 {
 ejbcontrol.insertBookDetail(form.getaBook());
 return new Forward("success", form);
}

Only one line is really important in this snippet. Notice that the EJB Control is being used
just as any other Java class. There’s nothing special from a usage perspective. As a client of the
Control, you didn’t need to know anything about how to use the EJB. Figure 6-4 shows you
the add page that’s used to add the book using this Control.

C H A P T E R 6 ■ U S I N G C O N T R O L S 123

Figure 6-4. Adding a book using the EJB Control

Using the Web Service Control
Let’s now build a Web Service Control for the bookstore application. A Web Service Control is
nothing but a Control that consumes a Web Service.

■Note This section assumes you have some level of familiarity with Web Services. We won’t go into all the
details of Web Service code; rather, we’ll focus on how a Control is used as a wrapper to a Web Service.

124 C H A P T E R 6 ■ U S I N G C O N T R O L S

Creating the Bookstore Web Service Control

In this example, you’ll consume the Amazon.com Web Service as a Control. The major code
example in this book has been a bookstore. Therefore, using the Amazon.com Web Service,
you’ll enable ISBN lookup capabilities in the bookstore application.

In this example, you won’t be using Apache Beehive’s Web Service capabilities. When we
get to talking about JSR 181 Web Services in Apache Beehive in Chapter 7, you’ll rewrite this
example to actually use that technology. For now, we’re using Axis. The main reason to do this
is so that when we show you JSR 181, we can easily point out the differences compared to plain
Axis Web Services.

So, let’s jump right in.

Getting an Amazon.com Subscription ID

The first step you’ll need to do in order to use the Amazon.com Web Service is to register
on Amazon.com. It’s free and quite easy to do. You can register on the Web site at http://
www.amazon.com/gp/aws/registration/registration-form.html.

Getting the WSDL

Once you’ve registered, you need to get the Amazon.com WSDL. You can find this at http://
webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl. A copy has also
been provided with the code examples, under the chapter6 directory.

Consuming the WSDL

We’re using Apache Axis to consume the WSDL. To follow along, you’ll need to install Axis as
part of your Web application and then run the WSDL2Java command in order to convert the
WSDL into a set of Java classes you can use. The first thing is to get the libraries from the examples
in chapter6\webservicescontrols\web-inf\lib\wsm. You’ll need the following files:

• axis.jar

• axis-ant.jar

• commons-discovery.jar

• commons-logging.jar

• jaxrpc.jar

• saaj.jar

• wsdl4j.jar

• log4j-1.2.8.jar

■Note To learn more about Apache Axis, visit the Apache Axis Web site at http://ws.apache.org/
axis/.

C H A P T E R 6 ■ U S I N G C O N T R O L S 125

Copy these into your Web application. Now, run the following commands from a command
prompt:

set AXIS_LIB=C:\YOURWEBAPP\lib\wsm
set CLASSPATH=%AXIS_LIB%\axis.jar;%AXIS_LIB%\axis-ant.jar;
 %AXIS_LIB%\commons-discovery.jar;
 %AXIS_LIB%\commons-logging.jar;
 %AXIS_LIB%\jaxrpc.jar;
 %AXIS_LIB%\saaj.jar;
 C:c:\<<BEEHIVE_HOME\lib\common\log4j-1.2.8.jar;
 %AXIS_LIB%\wsdl4j.jar
java org.apache.axis.wsdl.WSDL2Java --server-side
 --noWrapped -v -W
 -p com.amazon.xml.AWSECommerceServer AWSECommerceService.wsdl

You’ll see that several Java source files get generated. These will be under the WEB-INF/src
directory of your Web application. The package structure will be com/amazon/xml/
AWSECommerceServer.

Don’t be shocked. About 50–60 Java files are generated. That is the complexity of actually
consuming a Web Service. Luckily, you don’t have to write those classes yourself.

Writing the Java Control

The next step is to actually write the Java Control. Let’s first define the Control interface. You’ll
define two methods. The first method, lookupISBN, gets the details of a book, given the ISBN.
The second method, searchBook, gets a URL pointing to the book details on Amazon.com,
given the ISBN.

Listing 6-8 shows the Control interface.

Listing 6-8. Bookstore Web Service Control Interface

package apress.beehive.controls.javacontrol;

import com.amazon.xml.AWSECommerceServer.Items;
import org.apache.beehive.controls.api.bean.ControlInterface;

import java.rmi.RemoteException;

@ControlInterface
public interface AmazonControl
{
 public Items[] lookupISBN(String isbn) throws RemoteException;
 public String searchBook(String isbn)throws RemoteException;
}

The interesting part is the Control implementation. Listing 6-9 shows the code for the
implementation.

126 C H A P T E R 6 ■ U S I N G C O N T R O L S

Listing 6-9. Bookstore Web Service Control Implementation

package apress.beehive.controls.javacontrol;

import com.amazon.xml.AWSECommerceServer.*;
import org.apache.beehive.controls.api.bean.ControlImplementation;

import java.io.Serializable;
import java.rmi.RemoteException;

@ControlImplementation
 public class AmazonControlImpl implements AmazonControl, Serializable {
 AWSECommerceServiceLocator locator =
 new AWSECommerceServiceLocator();

 public Items[] lookupISBN(String isbn) throws RemoteException {
 try {
 System.out.println("Given ISBN is " + isbn);
 AWSECommerceServicePortType type
 = locator.getAWSECommerceServicePort();
 String itemId[] = {isbn.trim()};
 ItemLookup lookup = new ItemLookup();
 lookup.setAssociateTag("***** "); // fill in your AWS id
 lookup.setSubscriptionId("*****");// fill in your AWS id
 ItemLookupRequest lookupReq = new ItemLookupRequest();
 lookupReq.setMerchantId("All");
 lookupReq.setItemId(itemId);
 lookupReq.setResponseGroup(new String[]
 {"Medium", "OfferFull", "Variations", "Images"});
 ItemLookupRequest[] requests = lookup.getRequest();
 requests = new ItemLookupRequest[1];
 requests[0] = lookupReq;
 lookup.setRequest(requests);
 ItemLookupResponse response = type.itemLookup(lookup);
 Items[] items = response.getItems();
 if (items != null && items.length > 0) {
 System.out.println("Number of results "+ items.length);
 return items;
 }
 } catch (javax.xml.rpc.ServiceException se) {
 throw new RemoteException(se.getMessage());

 }
 return new Items[0];
 }

C H A P T E R 6 ■ U S I N G C O N T R O L S 127

 public String searchBook(String isbn) throws RemoteException {
 String amazonUrl = "";
 try {
 System.out.println("book search is " + isbn);
 AWSECommerceServicePortType type = locator.getAWSECommerceServicePort();
 String itemId[] = {isbn.trim()};
 ItemLookup lookup = new ItemLookup();
 lookup.setAssociateTag("***** "); // fill in your AWS id
 lookup.setSubscriptionId("*****");// fill in your AWS id
 ItemLookupRequest lookupReq = new ItemLookupRequest();
 lookupReq.setMerchantId("All");
 lookupReq.setItemId(itemId);
 lookupReq.setResponseGroup(new String[]
 {"Medium", "OfferFull", "Variations", "Images"});
 ItemLookupRequest[] requests = lookup.getRequest();
 requests = new ItemLookupRequest[1];
 requests[0] = lookupReq;
 lookup.setRequest(requests);
 ItemLookupResponse response = type.itemLookup(lookup);
 Items[] items = response.getItems();
 if (items != null && items.length > 0) {
 System.out.println("number of results " + items.length);
 for (int i = 0; i < items.length; i++) {
 Item[] itemvalues = items[i].getItem();
 if (itemvalues != null) {
 for (int j = 0; j < itemvalues.length; j++) {
 System.out.println("URL :" +
 itemvalues[j].getDetailPageURL());
 amazonUrl = itemvalues[0].getDetailPageURL();
 }
 }
 }
 }
 } catch (javax.xml.rpc.ServiceException se) {
 throw new RemoteException(se.getMessage());

 }
 return amazonUrl;
 }
}

If you’ve worked with Web Services, the implementation of the two methods should look
familiar. It isn’t in the scope of this book to dive into the details. We’ll touch on Web Services
again in the context of JSR 181 in Chapter 7, and you’ll see how that code differs from the Web
Service code in Listing 6-4.

128 C H A P T E R 6 ■ U S I N G C O N T R O L S

■Note You’ll need to replace the Associate Tag and Subscription ID with your AWS ID from Amazon.com.

In both methods, you’re calling the Amazon.com Web Service to get data back. Now you
have a Control that consumes a Web Service. You’ve gained all the advantages of a Control and
covered the complexities associated with Web Services.

All the code for Listing 6-3 and Listing 6-4 is available under chapter6\wsControlExample\
WEB-INF\src\apress\beehive\controls\javacontrol.

Using the Bookstore Web Service Control

You’ve consumed the Web Service. You’ve written a Control to wrap the Web Service. Now,
let’s write a client that calls the Control. In this section, you’ll expand on the bookstore controller
that you’ve been working with throughout this book. The complete code is available in chapter6\
wsControlExample\com\apress\beehive\bookstore. You’ll see snippets of it that are related to
the Amazon.com Control you just created.

The first step obviously is to declare the Control, as follows:

@Control
 public AmazonControl amazon;

Listing 6-10 shows an action that calls one of the methods in the Amazon Control.

Listing 6-10. searchAWS Action from BookStoreController

@Jpf.Action(
 forwards = {
 @Jpf.Forward(name = "success", path = "amazonResults.jsp")
 })
 protected Forward searchAWS(AmazonSearchForm form)
 throws RemoteException {
 System.out.println("ISBN is " + form.getIsbn());
 String url = amazon.searchBook(form.getIsbn());
 form.setUrl(url);
 System.out.println("url" + form.getUrl());
 Items [] resultItems = amazon.lookupISBN(form.getIsbn());
 ArrayList resultsList = new ArrayList();
 if(resultItems!=null && resultItems.length>0)
 {
 for (int i = 0; i < resultItems.length; i++) {
 Item[] itemvalues = resultItems[i].getItem();
 if (itemvalues != null) {
 for (int j = 0; j < itemvalues.length; j++) {
 Book aBook = new Book();
 String [] authors=
 itemvalues[j].getItemAttributes().getAuthor();
 StringBuffer authorBuffer=new StringBuffer();

C H A P T E R 6 ■ U S I N G C O N T R O L S 129

 if(authorBuffer!=null) {
 for(int k=0;k<authors.length;k++)
 {
 authorBuffer.append(authors[k]);
 authorBuffer.append(" ");

 }
 }
 aBook.setTitle(
 itemvalues[j].getItemAttributes().getTitle());
 aBook.setPublication(
 itemvalues[j].getItemAttributes().getPublisher());
 aBook.setAuthor(authorBuffer.toString());
 aBook.setIsbn(
 itemvalues[j].getItemAttributes().getISBN());
 aBook.setPrice(
 itemvalues[j].getItemAttributes().getListPrice()
 .getFormattedPrice());
 aBook.setPages(
 itemvalues[j].getItemAttributes()
 .getNumberOfPages().intValue());

 System.out.println("Authors :
 "+ authorBuffer.toString());
 System.out.println("ISBN :
 "+ itemvalues[j].getItemAttributes().getISBN());
 System.out.println("Label :
 "+ itemvalues[j].getItemAttributes().getLabel());
 System.out.println("Price : "
 + itemvalues[j].getItemAttributes().
 getListPrice().getFormattedPrice());
 System.out.println("No of pages : "
 + itemvalues[j].getItemAttributes()
 .getNumberOfPages());
 System.out.println("publisher : "
 + itemvalues[j].getItemAttributes()
 .getPublisher());
 System.out.println("Title : "
 + itemvalues[j].getItemAttributes().getTitle());
 resultsList.add(aBook);
 }
 }
 }
 }
 form.setBooksList(resultsList);
 return new Forward("success", form);
}

130 C H A P T E R 6 ■ U S I N G C O N T R O L S

Listing 6-10 looks long and tedious but is really simple. All you’re doing is getting an ISBN
from the user, submitting it to the Control using a couple lines of code, and then preparing the
results to be displayed in the browser. You use the searchBook method in the Control to get the
URL to the book and the lookupISBN method to get the details of the book.

This action is called from searchAmazon.jsp. Figure 6-5 shows you this JSP, and Listing 6-11
shows the code.

Figure 6-5. searchAmazon.jsp

Listing 6-11. searchAmazon.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri=http://beehive.apache.org/netui/tags-databinding-1.0
 prefix="netui-data"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0" prefix="netui"%>
<%@ taglib uri=http://beehive.apache.org/netui/tags-template-1.0
 prefix="netui-template"%>
<netui:html>
 <head>
 <title>
 My Beehive Library - Search Amazon
 </title>
 </head>

C H A P T E R 6 ■ U S I N G C O N T R O L S 131

 <body>
 <link rel="stylesheet" type="text/css"
 href="../../../../resources/beehive/version1/css/main.jsp" />
 <netui:form action="searchAWS" tagId="amazonSearch"
 genJavaScriptFormSubmit="true">
 <table border="0" cellpadding="3" cellspacing="0" width="100%" >
 <tr><td class="corpsubhead">
 Search Books</td></tr>
 <tr><td colspan="2" class="promo">

 <table border="0" cellpadding="2" cellspacing="0">
 <tr class="odd" valign="top">
 <td class="text" align="right"> ISBN : </td>
 <td class="text" ><netui:textBox tagId="isbn"
 dataSource="actionForm.isbn" size="20" styleClass="text"/>
 example :1590595157</td>
 </tr>
 <tr>
 <td>
 <netui:button action="searchAWS"
 type="submit"
 styleClass="text" >
 Search Amazon
 </netui:button>
 </td>
 </tr>
 </table>
 </td></tr>
 </table>

 <netui:anchor action="begin" styleClass="text" >Back To Menu </netui:anchor>
 </netui:form>
 </body>
</netui:html>

In Listing 6-11, you can see a simple example of a couple NetUI tags that call the searchAWS
action and provide the action with the ISBN. You’ve seen this sort of JSP in Chapter 5, so we
won’t get into the details here.

Once you enter an ISBN and click Search Amazon, the action shown in Listing 6-10 is
called. You’re then taken to the amazonResults.jsp page, as shown in Figure 6-6. Listing 6-12
shows the code for this JSP.

132 C H A P T E R 6 ■ U S I N G C O N T R O L S

Figure 6-6. amazonResults.jsp

Listing 6-12 is another example of a NetUI JSP page. We’re just showing the code here as a
reference. Chapter 5 covered all the details of the NetUI tags. In Chapter 5, when we talked
about all these NetUI tags and the controller, you really had no backend to the bookstore
system; lots of stuff was just hard-coded. Now, you’ve actually seen different types of Controls
that provide the business layer, or backend, to the bookstore system that you’re building as
part of this book.

Listing 6-12. amazonResults.jsp

<%@ page language="java" contentType="text/html;charset=UTF-8"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-databinding-1.0"
 prefix="netui-data"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-html-1.0" prefix="netui"%>
<%@ taglib uri="http://beehive.apache.org/netui/tags-template-1.0"
 prefix="netui-template"%>
<head>
<title>Amazon search results</title>

C H A P T E R 6 ■ U S I N G C O N T R O L S 133

</head>
<netui:form tagId="searchresultsForm" action="searchAWS">

<table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr valign="top">
 <td class="text">
 Search Books Results</td>
 <td class="text">

 <% String toggle="odd"; %>
<netui-data:repeater dataSource="actionForm.booksList" defaultText="No Books Found">
 <netui-data:repeaterHeader>
 <table border="0" cellpadding="6" cellspacing="1" width="100%">
 <tr class="sort" valign="bottom">
 <td class="sort">Author</td>
 <td class="sort">Title</td>
 <td class="sort">ISBN</td>
 <td class="sort">Publication</td>
 <td class="sort">Price</td>
 <td class="sort">Pages</td>
 </tr>
 </netui-data:repeaterHeader>
 <netui-data:repeaterItem>
 <%if(toggle.equals("odd")) {
 toggle="even"; %>
 <tr class="odd">
 <% } else {
 toggle="odd";%>
 <tr class="even">
 <%} %>

 <td class="text"><netui:label value="${container.item.author}" /></td>

 <td class="text"><netui:label value="${container.item.title}" /></td>
 <td class="text"><netui:anchor href="${actionForm.url}" target="_blank" >
 <netui:content value="${container.item.isbn}" /> </netui:anchor></td>
 <td class="text">
 <netui:label value="${container.item.publication}" />
 </td>
 <td class="text"><netui:label value="${container.item.price}" /></td>
 <td class="text"><netui:label value="${container.item.pages}" /></td>
 </tr>
 </netui-data:repeaterItem>
 <netui-data:repeaterFooter>
 </table>

134 C H A P T E R 6 ■ U S I N G C O N T R O L S

 </netui-data:repeaterFooter>
 </netui-data:repeater>

 <netui:anchor action="begin" styleClass="text" >Back To Menu </netui:anchor>
</netui:form>

Clicking the ISBN link shown in Figure 6-6, you’ll be taken directly to the details of the
book on the Amazon.com Web site, as shown in Figure 6-7. This link is what you get using the
searchBook method in the Amazon Control that you wrote.

Figure 6-7. The book listing on Amazon.com

So, What’s Next?
In this chapter, you learned about the power and value of Controls. You saw examples of how
Controls and NetUI/Page Flows work together. In this chapter, you also looked at some Web
Service–related code that was based on Apache Axis. The next piece of technology in the Apache
Beehive project is Web Services. Web Services are based on the JSR 181 standard, and they use
metadata annotations like Controls and NetUI do. In the next chapter, you’ll learn about JSR
181 and Web Services in Beehive.

135

■ ■ ■

C H A P T E R 7

Working with Beehive Web
Services and JSR 181

In this chapter, you’ll explore the Web Service capabilities that are part of Apache Beehive.
You already learned a little bit about Web Services in Chapter 6. In this chapter, you’ll learn
about JSR 181, Web Services Metadata for the Java Platform, which allows you to expose Web
Services using metadata annotations. This concept is similar to all the metadata annotations
you’ve seen thus far.

We’ll start the chapter by explaining JSR 181 and the different annotations it provides.
We’ll then cover the details of the Apache Beehive implementation of JSR 181, including showing
some Web Service code.

Apache Beehive Web Services provide full support for JSR 181 and leverage Apache Axis for
its SOAP implementation.

Introducing JSR 181
The Web Service capabilities in Apache Beehive revolve around the JSR 181 annotations. We
introduced these in Chapter 3 of this book.

■Further Reading You can read more about JSR 181 at http://www.jcp.org/en/jsr/
detail?id=181.

Using the eight annotations in JSR 181, you can easily expose any Java class as a Web
Service. With the Apache Beehive implementation, you get twelve annotations, including the
eight from JSR 181. These annotations will determine how WSDL defines pieces of the Java code.

For example, to expose your Java class as a Web Service, change the signature of the class
to look like this:

@WebService public class MyClass {

136 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

Just add the @WebService annotation to define that this class will be a Web Service.
Now you can expose a method within this class in your Web Service by using the @WebMethod

annotation:

@WebMethod public String myMethod() {

Last, you need to define the parameters for the method using the @WebParam annotation.
You can also name your return value using the @WebResult annotation, like so:

@WebResult(name="myReturnValue")
@WebMethod public String myMethod(@WebParam String myParam) {

The following are the twelve annotations available in Apache Beehive. (The first eight are
part of the JSR 181 specification; Apache Beehive introduced the last four.)

• @WebService: This specifies that the class is to be exposed as a Web Service.

• @WebMethod: This specifies that the method is to be exposed as a Web Service operation.

• @WebParam: This specifies that the parameter will be exposed in the Web Service.

• @WebResult: This maps the return value to a WSDL element.

• @OneWay: This specifies that the method defined by the @WebMethod annotation has only
an input message or parameter but no return value. The JSR 181 processor in Beehive
will report an error if the method has a return value or @WebResult annotation associated
with it.

• @SOAPBinding: This binds the Web Service to SOAP. This specifies whether the Web
Service is a document-style or RPC Web Service.

• @HandlerChain: This defines @SOAPMessageHandlers that are shared across Web Services.

• @SOAPMessageHandlers: This is a collection of SOAPMessageHandler annotations. The
order of execution is the order in which the SOAPMessageHandler annotations appear.

• @SOAPMessageHandler: This defines any protocol handler that’s executed before and after
the methods of the Web Service are executed.

• @SecurityRoles: This specifies the security roles that have access to the Web Service,
either at the Web Service level or at the Web method (operation) level.

• @SecurityIdentity: This defines the identity that the Web Service assumes as it’s running.
By default, the Web Service runs as the authenticated user. However, this annotation
allows the developer to override this if required.

• @InitParam: This specifies any initialization parameters for the Web Service.

Now that you’ve seen all the JSR 181 annotations, it’s time to understand how JSR 181 works.

C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I C E S A N D J S R 1 8 1 137

The JSR 181 Process
Let’s take a look at the JSR 181 process. In other words, how do you go about building Web
Services using JSR 181? What are your responsibilities as a developer, and what happens behind the
scenes for you? Take a look at Figure 7-1.

Figure 7-1. Use case for JSR 181 Web Service

Figure 7-1 shows a simple use case diagram that explains the Beehive JSR 181 implemen-
tation. It has three actors: you, the Web Service developer; the Axis runtime engine; and some
IDE, such as Eclipse Pollinate. We’ll show you one more figure, and then we’ll explain both of
these in detail. Take a look at Figure 7-2, which shows the JSR 181 runtime processor.

Now we’ll explain Figure 7-1 and 7-2 at the same time. The Web Service developer is involved
in several use cases, as shown in Figure 7-1. These are Generate Code, Generate Service
Description, Generate Web Service, and Validate. All of these use cases either are command-
line tools exposed by the JSR 181 runtime processor, are provided as functions in the Pollinate
IDE, or are both.

■Note The processor can also run as a stand-alone tool (from the command line) to manually generate the
artifacts required for a Web Service that can be deployed.

Take the use cases in Figure 7-1, and map them to elements in Figure 7-2. The Generate
Code and Generate Web Service use cases correspond to the Source Code Generator. The
Generate Service Description is the WSDL handler in Figure 7-2. The Validate use case maps to the
Validator. Now map the use cases for the IDE and Axis runtime to the corresponding elements in
Figure 7-2.

138 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

Figure 7-2. JSR 181 runtime processor

The JSR 181 Architecture Overview
Figure 7-3 shows the overall architecture of the JSR 181 processor.

Figure 7-3. JSR 181 architecture

C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I C E S A N D J S R 1 8 1 139

Building the Web Service

While working with JSR 181, you have two potential starting points. You can start with a WSDL
file, or you can start with a Java source file that’s built using the JSR 181 annotations. Both options
result in the generation of the Web Service. WSDL validator and code validation features are
provided as part of JSR 181 to make sure the generated Web Service is in sync with the WSDL
that’s exposed. You can do this using API calls or the command-line interface.

As mentioned, you can start working with the JSR 181 processor using either a Java source
file or a WSDL file. To start with Java, you need an annotation Java Web Service (JWS) file (either
source code or compiled bytecode). You can also have several XML Schemas or Java files that
define messages or data types that are used by the JWS file.

To start with WSDL, all you need to provide is a valid WSDL file. The JSR 181 processor has
a validator that will let you know if your WSDL isn’t valid.

Working with the Output Files

Depending on which input files you start with, you’ll end up with a different set of artifacts at
the end.

In other words, if you start with Java, you’ll get deployable code that’s the Java Web Service.
This will include a WSDL and several Java files or JARs that contain all the code for the Web
Service.

If you start with WSDL, you’ll end up with an annotated JWS file skeleton that you need to
implement. The method signatures will conform to the WSDL, but obviously you’ll need to
implement your business logic.

Deploying the Web Service

You have a couple deployment options for your Web Service:

• You can build and deploy the Web Service in an EAR file.

• You can use JSR 109, Implementing Enterprise Web Services, for deploying Web Services.

• You can copy the annotation Java Web Service source to the appropriate directories for
a runtime such as Axis. When the first request is sent to the Web Service, the Axis runtime
will automatically invoke the JSR 181 processor.

Without further delay, let’s start writing a Web Service using JSR 181.

Writing Your First Web Service
You’ll now look at a simple HelloWorld Web Service and use it to understand the fundamentals.
We’ll show how to write the Web Service, deploy it, and then test it. You’ll use Java code in the
form of a JWS file.

Writing the Web Service
Listing 7-1 shows you a simple Java Web Service: the HelloWorld Web Service.

140 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

Listing 7-1. HelloWorld Web Service

package apress.beehive;
import javax.jws.WebMethod;
import javax.jws.WebService;
import javax.jws.WebParam;

@WebService
public class HelloWorld {

 @WebMethod
 public String sayHelloWorld() {
 return "Hello World";
 }

 @WebMethod
 public String sayHelloWorldInParam(@WebParam String name)
 {
 if (name.equals(""))
 { name = "World"; }

 return "Hello, " + name + "!";
 }

 public String notExposedOverTheWeb()
 {
 return "Not a Web Service method!";
 }
}

In this example, you’re exposing a simple HelloWorld Web Service. You use the @WebService
annotation to denote that this Java class is a Web Service. It has three methods, but only two of
them are exposed as Web Services. Can you figure out which ones? Last, only one of the three
methods has a parameter that’s exposed in the Web Service. All this has to do with simple
annotations.

Deploying the Web Service
You now need to compile and deploy the Web Service. You can use ant and the build.xml file
under the chapter7/web-inf/src directory:

ant -f C:\beehive_projects\chapter7\code\WEB-INF\src\build.xml
 -Dto.dir=%CATALINA_HOME%\webapps clean build deploy

Testing the Web Service
Now you can run the Web Service using the Tomcat container. Visit the index.jsp page:
http://localhost:8080/<<WebAppName>>/index.jsp.

C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I C E S A N D J S R 1 8 1 141

Once there, click the Validate link for an evaluation of the resources available to your Web
Service. Click the WSDL link to see the Web Service’s WSDL. Click the sayHelloWorld() link to
see a SOAP response from the Web Service’s sayHelloWorld() method.

You can also test the sayHelloWorldInParam Web Service method using the following URL:
http://localhost:8080/<<WebAppName>>/HelloWorld.jws?method=sayHelloWorldInParam&name➥

=kunal.
That’s it! You’ve written and tested a simple Web Service. Now let’s expose a Web Service

for your bookstore application.

Exposing a Web Service from the Bookstore
Application
The following sections will show you how to extend the bookstore example to expose a Web
Service. This Web Service will use the Controls you’ve been using in previous chapters. We’ll
show you how to write the Web Service, set up the Web application configuration to deploy
the Web Service, and then test the Web Service. In addition, we’ll show you the WSDL file for the
Web Service.

Writing the Web Service
Listing 7-2 shows the code for the bookstore Web Service.

Listing 7-2. Bookstore Web Service

package apress.beehive.controls.wscontrol;

import org.apache.beehive.controls.api.bean.Control;

import javax.jws.*;
import javax.jws.soap.SOAPBinding;
import java.rmi.RemoteException;
import java.sql.SQLException;

import com.apress.beehive.bookstore.vo.BookDetailDocument;
import com.apress.beehive.bookstore.vo.Book;

@WebService (name="LibraryWebService",
 targetNamespace="http://wscontrol.controls.beehive.apress",
 serviceName="LibraryService")
 @SOAPBinding(style = SOAPBinding.Style.RPC, use = SOAPBinding.Use.ENCODED)
 public class MyBookWebService {

 @Control
 public apress.beehive.controls.javacontrol.AmazonControl amazon;

142 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

 @Control
 public
 apress.beehive.controls.ejbcontrol.BookDetailEJBControl ejbcontrol;

 @WebMethod(operationName = "getGreeting")
 @WebResult(name="greetings")
 public String sayHello() {
 return "Hello world!";
 }

 /** example to show the usage of @Oneway annotation
 * This is used for methods which does not return anything
 * As a side effect, a @OneWay method can not
 * throw checked exceptions and obviously
 * cannot have any OUT/INOUT parameters.
 *
 */
 @WebMethod(operationName = "printHello", action="urn:printHello1")
 @Oneway
 public void printHello(String name) {
 System.out.println("Hello"+ name +"!!");
 }

 @WebMethod
 public String addBook(@WebParam(name = "book")
 Book newBook)
 throws RemoteException,SQLException
 {
 return ejbcontrol.insertBookDetail(this.getBookDetail(newBook));
 }

 @WebMethod
 public String getAmazonURLForBook
 (@WebParam(name = "bookISBN") String isbn)
 throws RemoteException {
 return amazon.searchBook(isbn);
 }

 // I have given this method to show that a JWS file
 // can have non_webservice methods
 private BookDetailDocument.BookDetail getBookDetail(Book book) {
 BookDetailDocument.BookDetail bd =
 BookDetailDocument.Factory.newInstance().addNewBookDetail();
 bd.setAuthor(book.getAuthor());
 bd.setAvailable(book.isAvailable());
 bd.setBookId(book.getBook_Id());
 bd.setBookType(book.getBook_type());

C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I C E S A N D J S R 1 8 1 143

 bd.setCatalogNo(book.getCatalogNo());
 bd.setComments(book.getComments());
 bd.setIsbn(book.getIsbn());
 bd.setPrice(book.getPrice());
 bd.setPages(book.getPages());
 bd.setPublication(book.getPublication());

 return bd;
 }
}

We’ll first point out that Listing 7-2 uses an XMLBean. You can ignore this for now; we’ll
cover XMLBeans in detail in Chapter 8. For now, just concentrate on the pieces of code that
relate to Web Services. For instance, notice the different annotations in the source code. You’ll
see that a single Java file can contain annotations for Web Services as well as Controls. This
example uses two Controls that are declared as instance variables. We’ll talk about the Web
Service annotations now to walk you through how to create the Web Service.

The first annotation is the @WebService annotation:

@WebService (name="LibraryWebService",
 targetNamespace="http://wscontrol.controls.beehive.apress",
 serviceName="LibraryService")

Name this Web Service LibraryWebService. This is simple enough. All you’re doing is telling
the JSR 181 processor that this Java source file needs to be converted to a Web Service.

The next annotation in this example is the @SOAPBinding annotation:

@SOAPBinding(style = SOAPBinding.Style.RPC, use = SOAPBinding.Use.ENCODED)

The @SOAPBinding annotation defines the type of Web Service. Using this annotation, you
define the style of Web Service.

The next annotation is the @WebMethod annotation. You’ll see a couple examples of this
annotation in the source code:

@WebMethod(operationName = "getGreeting")

In this example, you’re defining that the method defined below this annotation should be
exposed as a Web Service method. The Web Service operation name should be getGreeting.

The next annotation is the @WebResult annotation. The example from the source code is
as follows:

@WebResult(name="greetings")

In this example, you’re basically defining that the return value from the method should be
called greetings.

The code example has another method that uses the @WebMethod annotation. However, it
also adds a new annotation called @OneWay:

@WebMethod(operationName = "printHello", action="urn:printHello1")
 @Oneway

144 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

This annotation is used for methods that aren’t supposed to return anything. Thus, this
method can obviously not have any OUT parameters. Lastly, as a side affect, this method can’t
throw any checked exceptions.

In the next method, you’ll see an example of the @WebParam annotation:

@WebMethod
 public String addBook(@WebParam(name = "book")
 Book newBook) throws RemoteException,SQLException

Here, you’re defining a method called addBook that takes in a parameter called newBook.
However, because you define the name=book option, in the WSDL the parameter name will be
book. If you deleted (name="book") from the signature, then the parameter name in the WSDL
would be newBook.

Notice that the last method that uses XMLBeans doesn’t have any JSR 181 annotations.
Like you saw in the HelloWorld example, this is a method that won’t get exposed as a Web
Service.

Setting Up to Run the Web Service
To run the Web Service, you need to make sure the code shown in Listing 7-3 is in your web.xml
file. Copy and paste the code into web.xml or use the sample web.xml from the chapter7/web-inf
directory.

Listing 7-3. web.xml for Web Services

 <listener>
 <listener-class>
 org.apache.axis.transport.http.AxisHTTPSessionListener
 </listener-class>
 </listener>

 <servlet>
 <servlet-name>AxisServlet</servlet-name>
 <display-name>Apache-Axis Servlet</display-name>
 <servlet-class>
 org.apache.axis.transport.http.AxisServlet
 </servlet-class>
 </servlet>

 <servlet>
 <servlet-name>AdminServlet</servlet-name>
 <display-name>Axis Admin Servlet</display-name>
 <servlet-class>
 org.apache.axis.transport.http.AdminServlet
 </servlet-class>
 <load-on-startup>100</load-on-startup>
 </servlet>

C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I C E S A N D J S R 1 8 1 145

 <servlet>
 <servlet-name>SOAPMonitorService</servlet-name>
 <display-name>SOAPMonitorService</display-name>
 <servlet-class>
 org.apache.axis.monitor.SOAPMonitorService
 </servlet-class>
 <init-param>
 <param-name>SOAPMonitorPort</param-name>
 <param-value>5001</param-value>
 </init-param>
 <load-on-startup>100</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/servlet/AxisServlet</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>*.jws</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>AxisServlet</servlet-name>
 <url-pattern>/services/*</url-pattern>
 </servlet-mapping>

 <servlet-mapping>
 <servlet-name>SOAPMonitorService</servlet-name>
 <url-pattern>/SOAPMonitor</url-pattern>
 </servlet-mapping>

The only other setup you have to do in order to run the Web Service is to copy the
server-config.wsdd file from the chapter7\web-inf directory into the web-inf directory of
your Web application.

Deploying the Web Service
You now need to compile and deploy the Web Service. You can use ant and the build.xml file
under the chapter7/web-inf/src directory:

ant -f C:\beehive_projects\chapter7\code\WEB-INF\src\build.xml
 -Dto.dir=%CATALINA_HOME%\webapps clean build deploy

146 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

Looking at the WSDL
When you compile this Web Service and run it through the JSR 181 processor, you’ll generate a
WSDL file. Listing 7-4 shows the WSDL file for this Web Service.

Listing 7-4. WSDL File for the Bookstore Web Service

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace=http://wscontrol.controls.beehive.apress
xmlns:apachesoap=http://xml.apache.org/xml-soap
xmlns:impl=http://wscontrol.controls.beehive.apress
xmlns:intf="http://wscontrol.controls.beehive.apress"
xmlns:soapenc=http://schemas.xmlsoap.org/soap/encoding/
xmlns:tns1=http://lang.java
xmlns:wsdl=http://schemas.xmlsoap.org/wsdl/
xmlns:wsdlsoap=http://schemas.xmlsoap.org/wsdl/soap/
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.2RC3
Built on Feb 28, 2005 (10:15:14 EST)-->
 <wsdl:types>
 <schema targetNamespace=
 http://wscontrol.controls.beehive.apress
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://lang.java"/>
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>
 <complexType name="Book">
 <sequence>
 <element name="author" nillable="true" type="xsd:string"/>
 <element name="available" nillable="true" type="xsd:boolean"/>
 <element name="book_Id" nillable="true" type="xsd:int"/>
 <element name="book_type" nillable="true" type="xsd:string"/>
 <element name="catalogNo" nillable="true" type="xsd:string"/>
 <element name="comments" nillable="true" type="xsd:string"/>
 <element name="isbn" nillable="true" type="xsd:string"/>
 <element name="pages" nillable="true" type="xsd:int"/>
 <element name="price" nillable="true" type="xsd:string"/>
 <element name="publication" nillable="true" type="xsd:string"/>
 <element name="publication_Date" nillable="true" type="xsd:string"/>
 <element name="title" nillable="true" type="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="IOException">
 <sequence/>
 </complexType>
 <complexType name="RemoteException">
 <complexContent>
 <extension base="impl:IOException">
 <sequence>
 <element name="cause" nillable="true" type="xsd:anyType"/>

C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I C E S A N D J S R 1 8 1 147

 <element name="message" nillable="true" type="xsd:string"/>
 </sequence>
 </extension>
 </complexContent>
 </complexType>
 <complexType name="SQLException">
 <sequence>
 <element name="SQLState" nillable="true" type="xsd:string"/>
 <element name="errorCode" nillable="true" type="xsd:int"/>
 <element name="nextException" nillable="true" type="impl:SQLException"/>
 </sequence>
 </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="getAmazonURLForBookRequest">
 <wsdl:part name="bookISBN" type="soapenc:string"/>
 </wsdl:message>
 <wsdl:message name="printHelloRequest">
 <wsdl:part name="name" type="soapenc:string"/>
 </wsdl:message>
 <wsdl:message name="SQLException">
 <wsdl:part name="SQLException" type="impl:SQLException"/>
 </wsdl:message>
 <wsdl:message name="RemoteException">
 <wsdl:part name="RemoteException" type="impl:RemoteException"/>
 </wsdl:message>
 <wsdl:message name="addBookResponse">
 <wsdl:part name="result" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getAmazonURLForBookResponse">
 <wsdl:part name="result" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="getGreetingRequest">
 </wsdl:message>
 <wsdl:message name="getGreetingResponse">
 <wsdl:part name="greetings" type="xsd:string"/>
 </wsdl:message>
 <wsdl:message name="addBookRequest">
 <wsdl:part name="book" type="impl:Book"/>
 </wsdl:message>
 <wsdl:portType name="LibraryWebService">
 <wsdl:operation name="addBook" parameterOrder="book">
 <wsdl:input message="impl:addBookRequest" name="addBookRequest"/>
 <wsdl:output message="impl:addBookResponse" name="addBookResponse"/>
 <wsdl:fault message="impl:SQLException" name="SQLException"/>
 <wsdl:fault message="impl:RemoteException" name="RemoteException"/>
 </wsdl:operation>
 <wsdl:operation name="getGreeting">

148 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

 <wsdl:input message="impl:getGreetingRequest" name="getGreetingRequest"/>
 <wsdl:output message="impl:getGreetingResponse" name="getGreetingResponse"/>
 </wsdl:operation>
 <wsdl:operation name="printHello" parameterOrder="name">
 <wsdl:input message="impl:printHelloRequest" name="printHelloRequest"/>
 </wsdl:operation>
 <wsdl:operation name="getAmazonURLForBook" parameterOrder="bookISBN">
 <wsdl:input message="impl:getAmazonURLForBookRequest"
 name="getAmazonURLForBookRequest"/>
 <wsdl:output message="impl:getAmazonURLForBookResponse"
 name="getAmazonURLForBookResponse"/>
 <wsdl:fault message="impl:RemoteException" name="RemoteException"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="LibraryWebServiceSoapBinding" type="impl:LibraryWebService">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="addBook">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="addBookRequest">
 <wsdlsoap:body
 encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:input>
 <wsdl:output name="addBookResponse">
 <wsdlsoap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:output>
 <wsdl:fault name="SQLException">
 <wsdlsoap:fault encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 name="SQLException"
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:fault>
 <wsdl:fault name="RemoteException">
 <wsdlsoap:fault encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 name="RemoteException"
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:fault>
 </wsdl:operation>
 <wsdl:operation name="getGreeting">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getGreetingRequest">

C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I C E S A N D J S R 1 8 1 149

 <wsdlsoap:body encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:input>
 <wsdl:output name="getGreetingResponse">
 <wsdlsoap:body encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:output>
 </wsdl:operation>
 <wsdl:operation name="printHello">
 <wsdlsoap:operation soapAction="urn:printHello1"/>
 <wsdl:input name="printHelloRequest">
 <wsdlsoap:body encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:input>
 </wsdl:operation>
 <wsdl:operation name="getAmazonURLForBook">
 <wsdlsoap:operation soapAction=""/>
 <wsdl:input name="getAmazonURLForBookRequest">
 <wsdlsoap:body encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:input>
 <wsdl:output name="getAmazonURLForBookResponse">
 <wsdlsoap:body encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:output>
 <wsdl:fault name="RemoteException">
 <wsdlsoap:fault encodingStyle=http://schemas.xmlsoap.org/soap/encoding/
 name="RemoteException"
 namespace=http://wscontrol.controls.beehive.apress
 use="encoded"/>
 </wsdl:fault>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="LibraryService">
 <wsdl:port binding="impl:LibraryWebServiceSoapBinding"
 name="LibraryWebService">
 <wsdlsoap:address location=
 "http://192.168.5.101:8080/Library/apress/beehive/controls/wscontrol/
 MyBookWebService.jws"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

150 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

As an exercise, take this WSDL file and generate a Web Service from it. Compare the JWS
file that’s generated to the one you wrote in Listing 7-2.

You can also see this WSDL at http://localhost:8080/Library/apress/beehive/
controls/wscontrol/MyBookWebService.jws?wsdl.

Figure 7-4 shows the WSDL.

Figure 7-4. JSR bookstore WSDL

Running the Web Service
You can run the Web Service at http://localhost:8080/Library/apress/beehive/controls/
wscontrol/MyBookWebService.jws.

We’ll now show the execution of some of the methods. Figure 7-5 shows the call to the
getGreeting method. The URL to call this method is http://localhost:8080/Library/apress/
beehive/controls/wscontrol/MyBookWebService.jws?method=getGreeting.

Similarly, you can call the other methods you exposed. To see what an error message
from the Web Service looks like, call a method but misspell the name. Enter the URL http://
localhost:8080/Library/apress/beehive/controls/wscontrol/MyBookWebService.
jws?method=getAmazonURLForBoo&bookISBN=1590595157.

Figure 7-6 shows the error message.

C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I C E S A N D J S R 1 8 1 151

Figure 7-5. Calling the getGreeting method on the Web Service

Figure 7-6. SOAP fault from the Web Service

152 C H A P T E R 7 ■ W O R K I N G W I T H B E E H I V E W E B S E R V I CE S A N D J S R 1 8 1

So, What’s Next?
This was the last of the Apache Beehive technologies that we needed to cover to get you up to
speed with Beehive. In the next chapter, you’ll explore another technology that BEA released to
open source, XMLBeans. This is a Java-XML binding technology, much like an OR mapper but
for XML files. XMLBeans are interesting, because they’re useful in Web Service development.
You can use them as inputs and outputs to a Web Service. You’ll learn more about this as you
turn the page to the next chapter.

153

■ ■ ■

C H A P T E R 8

Using XMLBeans

BEA originally introduced the XMLBeans technology as part of the WebLogic Workshop
product, and BEA donated the technology to the Apache Incubator and Apache XML projects
in September 2003.

You can think of XMLBeans as an Object-Relational (OR) mapper except for XML files
rather than relational databases. In fact, the XMLBeans technology allows you to access an
XML file just like you would any Java object or JavaBean. In other words, it’s an XML-Java
binding tool.

In this chapter, we’ll assume you’ve worked with XML in the past and are familiar with
concepts such as XML Schemas, XQuery, XPath, and so on. Don’t worry if you aren’t an expert
at these, though, as the XMLBeans technology hides the complexity of these technologies.

This chapter will show you how to work with XMLBeans and use them in your applications.

■Note If you want to contribute to the XMLBeans open-source project, see Appendix C for details.

What’s XML-Java Binding?
XML-Java binding is the process of manipulating XML files as if they were Java objects. Conversely,
you might want to convert a Java object into its corresponding XML document format. With
XML-Beans, this is easy. Behind the scenes, you always have a copy of the XML file, so you can
switch back and forth from accessing the data in XML and accessing it in Java. Before the
invention of XML-Java binding, it was tedious and time-consuming to first read in an XML file,
manipulate it in Java, and then write out an XML file. This process not only involved a lot of
code but also was processing intensive.

Figure 8-1 shows how the typical XML-Java binding technology works. It really acts like a
middleman, taking care of the marshalling and unmarshalling between the JavaBean and the
XML file.

154 C H A P T E R 8 ■ U S I N G X M L B E A N S

Figure 8-1. XML-Java binding

The Java Document Model (JDOM) technology was among the first to introduce some
concepts of XML-Java binding. JDOM is a new API for reading, writing, and manipulating XML
from within Java code.

While deciding to write this chapter, we searched for other XML-Java binding tools and
found several:

• Betwixt (http://jakarta.apache.org/commons/betwixt/)

• JAXB (http://java.sun.com/xml/jaxb/)

• Castor (http://www.castor.org/)

• JaxME (http://ws.apache.org/jaxme/)

• Jakarta Digester (http://jakarta.apache.org/commons/digester/)

• JDOM (http://www.jdom.org)

• Enhydra Zeus (http://zeus.objectweb.org/)

From this list, Castor and JAXB are the most well-known technologies. Castor is quite an
interesting technology. It provides not only XML-Java data binding but also Java-SQL binding
like a typical OR tool. In addition, Castor supports runtime introspection capabilities; it will
attempt to match elements and attributes of XML to classes and fields of a Java class. Java
Architecture for XML Binding (JAXB) is a technology from Sun that provides some basic
capabilities.

Still, the XMLBeans technology, while the newest, is probably the most advanced of the
XML-Java binding technologies. All the technologies mentioned in the previous list are great,
but in our experience XMLBeans is the easiest to use and offers the best set of features and

C H A P T E R 8 ■ U S I N G X M L B E A N S 155

performance. We won’t provide a detailed comparison of all these technologies in this chapter;
if you’ve used any of these before, you’ll be able to draw your own conclusions as you learn
more about XMLBeans in this chapter.

■Note A great comparison of different XML-Java binding technologies is available at https://
bindmark.dev.java.net/current-results.html. This study uses XMLBeans 1.0.3, but
XMLBeans 2.0 has made improvements in the areas that XMLBeans 1.0.3 fell short.

■Note The most current release of XMLBeans at the time of writing is 2.0.0-beta1, released on
February 24, 2005.

XMLBeans As an XML-Java Binding Technology
We’re assuming you’ve worked with XML parsers in the past. As such, you probably already
know the differences between SAX and DOM. For example, you probably know that one of the
differences is that DOM is much more memory intensive because it provides faster and more
flexible access to the XML file. XMLBeans does well on performance by doing incremental
unmarshalling and providing xget methods to access built-in schema data types. Using
XMLBeans, you’ll always have full access to the XML file, including all the comments and rules
such as the order of the elements. This is definitely a significant advantage of XMLBeans over
other data binding technologies.

However, the biggest advantage of XMLBeans is that it provides complete support for XML
Schemas. JAXB and Castor, the two closest competitors to XMLBeans, don’t have this level of
support for XML Schemas. Using XMLBeans, you can access any XML Schema with the same
level of simplicity and without several different tools.

XMLBeans Overview
The XMLBeans technology provides intuitive ways to handle XML that make it easier for you to
access and manipulate XML data and documents in Java. The technology allows you to treat
XML and Java objects as one. You never lose the native XML structure underneath, and XML
and Java objects are internally kept in sync.

Using XMLBeans, you can use any XML file that conforms to an XML Schema and manip-
ulate it just as if it were a JavaBean, using getters and setters. XML documents are treated as
first-class data objects accessed in a JavaBean-like manner. As a developer, you don’t have to
write any code to read in the XML file, validate it, manipulate it, and write it back. All this heavy
lifting is taken care of for you behind the scenes. What’s even better is that in this translation
you don’t lose the relationships. For example, suppose you have an XML Schema and a corre-
sponding XML file that represents a book. Also, imagine that this file contains an element
called Author that has a one-to-many relationship with book. This is because a book can have
multiple authors, as shown in Listing 8-1.

156 C H A P T E R 8 ■ U S I N G X M L B E A N S

Listing 8-1. Sample XML File for a Book

<book>
 <title>Pro Apache Beehive</title>
 <authors>
 <author>Kunal Mittal</author>
 <author>Srinivas Kanchanvally</author>
 </authors>
 <isbn>1590595157</isbn>
</book>

When you work with this file using XMLBeans, the corresponding Java classes will main-
tain this relationship. Listing 8-2 shows some pseudo-Java code to work with this XML file.
Don’t try to cut and paste the code in Listing 8-2, though; we’ll show you some working code
later in this chapter. The code in Listing 8-2 merely illustrates the simplicity of XMLBeans.

Listing 8-2. Pseudo-Java Code to Work with the Book.xml File

MyBook doc = MyBook.Factory.newInstance();
Book book = doc.addNewBook();
book.setTitle("Pro Apache Beehive");
book.setIsbn("1590595157");
String[] authors = new String[2];
authors[0] = new String("Kunal Mittal");
authors[1] = new String("Srinivas Kanchanavally");
book.setAuthors(authors);

That’s how simple it is to work with XML files using XMLBeans! You’ll see a much more
detailed example in the next section.

DOWNLOAD AND INSTALL XMLBEANS

To work with XMLBeans, you’ll need JDK 1.4 or above and Ant installed. Appendix A covers all the information
you need to get started with XMLBeans. You can also find the latest version of XMLBeans and instructions on
how to use it at http://xmlbeans.apache.org/documentation/conInstallGuide.html.

If you need full support for XQuery and XPath, you’ll need to download the Saxon XQuery processor
(version 8.2 or later) at http://sourceforge.net/projects/saxon.

A practical and important use of XMLBeans is creating Web Services with them. Typically
in a Web Service you’re exchanging SOAP messages in XML format between the Web Service
and the Web Service client. Using XMLBeans to consume these messages makes the overall
interaction between the Web Services easy to write.

C H A P T E R 8 ■ U S I N G X M L B E A N S 157

Data Types in XMLBeans
As you’re working with XML Schemas and XMLBeans, it’s important to understand the available
data types. Each data type in an XML Schema has a corresponding data type in XMLBeans that
maps to a Java data type. This helps provide complete support for XML Schemas using XMLBeans.
The hierarchy of XMLBeans types mirrors the hierarchy of the schema types themselves. XML
Schema types all inherit from xs:anyType. XMLBeans types inherit from XmlObject. Figure 8-2
shows you a graphical view of the hierarchy.

Figure 8-2. Hierarchy of data types in XML Schemas and XMLBeans

158 C H A P T E R 8 ■ U S I N G X M L B E A N S

Each of the 46 built-in schema types is represented by an XMLBeans type provided with
XMLBeans. Table 8-1 provides an easy reference to the data type mappings.

Table 8-1. Data Type Mappings in XMLBeans

Built-in Schema Type XMLBeans Type Natural Java Type*

xs:anyType XmlObject org.apache.xmlbeans.XmlObject

xs:anySimpleType XmlAnySimpleType String

xs:anyURI XmlAnyURI String

xs:base64Binary XmlBase64Binary byte[]

xs:boolean XmlBoolean boolean

xs:byte XmlByte byte

xs:date XmlDate java.util.Calendar

xs:dateTime XmlDateTime java.util.Calendar

xs:decimal XmlDecimal java.math.BigDecimal

xs:double XmlDouble double

xs:duration XmlDuration org.apache.xmlbeans.GDuration

xs:ENTITIES XmlENTITIES String

xs:ENTITY XmlENTITY String

xs:float XmlFloat float

xs:gDay XmlGDay java.util.Calendar

xs:gMonth XmlGMonth java.util.Calendar

xs:gMonthDay XmlGMonthDay java.util.Calendar

xs:gYear XmlGYear java.util.Calendar

xs:gYearMonth XmlGYearMonth java.util.Calendar

xs:hexBinary XmlHexBinary byte[]

xs:ID XmlID String

xs:IDREF XmlIDREF String

xs:IDREFS XmlIDREFS String

xs:int XmlInt int

xs:integer XmlInteger java.math.BigInteger

xs:language XmlLanguage String

xs:long XmlLong long

xs:Name XmlName String

xs:NCName XmlNCNAME String

xs:negativeInteger XmlNegativeInteger java.math.BigInteger

C H A P T E R 8 ■ U S I N G X M L B E A N S 159

* All Java types inherit from java.lang, unless otherwise noted.

Working with XMLBeans
Let’s now dive in and actually work with XMLBeans. In the following sections, you’ll learn how
to use an XML Schema to generate the XMLBeans Java code and use it in your applications.

Working with an XML Schema
The starting point for working with XMLBeans is usually an XML Schema. An XML Schema
(XSD file) is an XML document that defines a set of rules to which other XML documents must
conform. It provides a data model that allows you to define the contents of your XML file,
including complex relationships, data types, the order, and validation rules. Running an XML
file through a schema validator, with the schema as input, you can quickly determine whether
the XML file is valid. In the Java layer, custom code needs to be written to perform this validation,
which is now hidden behind XMLBeans for you.

Throughout this book, you’ve been building a simple bookstore application. You’ll now
expand on this application using XMLBeans. You’ll define an XML Schema to represent a book
object; see Listing 8-3.

xs:NMTOKEN XmlNMTOKEN String

xs:NMTOKENS XmlNMTOKENS String

xs:nonNegativeInteger XmlNonNegativeInteger java.math.BigInteger

xs:nonPositiveInteger XmlNonPositiveInteger java.math.BigInteger

xs:normalizedString XmlNormalizedString String

xs:NOTATION XmlNOTATION Not supported

xs:positiveInteger XmlPositiveInteger java.math.BigInteger

xs:QName XmlQName javax.xml.namespace.QName

xs:short XmlShort short

xs:string XmlString String

xs:time XmlTime java.util.Calendar

xs:token XmlToken String

xs:unsignedByte XmlUnsignedByte short

xs:unsignedInt XmlUnsignedInt long

xs:unsignedLong XmlUnsignedLong java.math.BigInteger

xs:unsignedShort XmlUnsignedShort int

Table 8-1. Data Type Mappings in XMLBeans

Built-in Schema Type XMLBeans Type Natural Java Type*

160 C H A P T E R 8 ■ U S I N G X M L B E A N S

Listing 8-3. XML Schema for the Bookstore Sample Application

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:bk="http://beehive.apress.com/bookstore/vo"
 targetNamespace="http://beehive.apress.com/bookstore/vo"
 elementFormDefault="qualified">

 <xs:element name="bookDetail">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="book_Id" type="xs:int"/>
 <xs:element name="title" type="xs:string"/>
 <xs:element name="book_type" type="xs:string"/>
 <xs:element name="author" type="xs:string"/>
 <xs:element name="publication" type="xs:string"/>
 <xs:element name="publication_Date" type="xs:date"/>
 <xs:element name="catalogNo" type="xs:string"/>
 <xs:element name="isbn" type="xs:string"/>
 <xs:element name="price" type="xs:string"/>
 <xs:element name="comments" type="xs:string"/>
 <xs:element name="pages" type="xs:int"/>
 <xs:element name="available" type="xs:boolean"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="publisher">
 <xs:sequence>
 <xs:element name="name" type="xs:string"/>
 <xs:element name="address" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="author">
 <xs:sequence>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="name" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 </xs:schema>

C H A P T E R 8 ■ U S I N G X M L B E A N S 161

■Note You can either build your XML Schema or take an existing XML file and generate a base schema from
it. You can do this using tools such as XMLSpy from Altova or the <oXygen/> XML editor.

Listing 8-4 shows a sample XML file that conforms to this schema.

Listing 8-4. Sample XML File for the bookDetails.xsd Schema

<?xml version="1.0" encoding="UTF-8"?>
<bookDetail xmlns="http://beehive.apress.com/bookstore/vo"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://beehive.apress.com/bookstore/vo
 file:/C:/ /code/chapter8/bookdetails.xsd">
 <book_Id>1</book_Id>
 <title>Pro Apache Beehive</title>
 <book_type>Book</book_type>
 <author>Kunal Mittal, Srinivas Kanchanvally</author>
 <publication>Apress</publication>
 <publication_Date>2005-08-31T00:00:00.0000000-04:00</publication_Date>
 <catalogNo>123</catalogNo>
 <isbn>1590595157</isbn>
 <price>49.99</price>
 <comments>The first book on Apache Beehive</comments>
 <pages>300</pages>
 <available>false</available>
</bookDetail>

With XMLBeans, you can validate XML Schemas, generate the XMLBeans code, and use
the code directly from the XMLBeans Web site. So, to validate your XML Schema online, go to
http://xmlbeans.webappshosting.com/schemaToolsV2/validate.do.

To generate XMLBeans online, visit http://xmlbeans.webappshosting.com/schemaToolsV2/
compile.do.

The final utility provided online from XMLBeans actually generates an XML Schema from
an XML file. You can do this at http://xmlbeans.webappshosting.com/schemaToolsV2/inst2xsd.do.

We took the XSD shown in Listing 8-3 and ran it through the online schema validator.
Figure 8-3 shows the output.

162 C H A P T E R 8 ■ U S I N G X M L B E A N S

Figure 8-3. Results of schema validator

Generating Java Code from the XML Schema
Using XMLBeans, you actually generate Java code to work with the XML Schema. You have two
options for compiling your XML Schema into a set of XMLBeans classes. You can use the schema
compiler (scomp), or you can use the ant task provided with XMLBeans.

To run the scomp compiler on your schema, use the following command:

scomp -out bookstoreXMLBeans.jar bookstore.xsd

The output of this command will be a JAR file called bookstoreXMLBeans.jar with several
class files.

To use the ant task, you need to define the task in your build script, like so:

<taskdef name="xmlbean"
 classname="org.apache.xmlbeans.impl.tool.XMLBean"
 classpath="<<XMLBeans_Home>>xbean.jar" />

In this example, make sure to replace <<XMLBeans_Home>> with the appropriate directory
structure. Now you can build your XSD file using the following command:

<xmlbean schema="schemas" destfile="Schemas.jar"/>

C H A P T E R 8 ■ U S I N G X M L B E A N S 163

This command will build all the schemas within your schemas directory into a JAR file
called Schemas.jar.

■Further Reading For more details on how to use the ant task, visit http://xmlbeans.apache.
org/docs/2.0.0/guide/antXmlbean.html.

Walking Through the Generated XMLBeans Classes
Figure 8-4 shows the contents of the JAR file that’s generated from the XML Schema in
Listing 8-4.

Figure 8-4. Contents of JAR file after generating XMLBeans classes

You need to copy this JAR file into WEB-INF/lib so your Web application can use it. If you
want to use the XMLBeans classes from an EJB or some other layer outside the Web applica-
tion, you can copy this JAR file into APP-INF/lib.

Figure 8-5 shows a class diagram of the generated classes.

164 C H A P T E R 8 ■ U S I N G X M L B E A N S

Figure 8-5. Class diagram of the generated XMLBeans classes

Notice the simplicity of the classes that were generated with simple getters and setters.
Standard interfaces with implementing classes were generated that are intuitive to use for
someone working with a bookstore application. We’re not too fond of code generators, as they
typically create classes with generic names and methods that are hard to use. However, in this
case, it’s quite simple if you have a BookDetail, Author, and Publisher class.

How to Put Data into the XMLBeans
We’ll now walk you through some really simple code that shows how you can use XMLBeans. In
the bookstore example, you’ll take the BookValue object that you’ve worked with in the past and
use it to populate the XMLBean. In the BookController shown in Listing 8-5, see the
getBookDetail method.

Listing 8-5. Populate XMLBeans

private BookDetailDocument.BookDetail getBookDetail(Book book) {
 BookDetailDocument.BookDetail bd =
 BookDetailDocument.Factory.newInstance().addNewBookDetail();
 bd.setAuthor(book.getAuthor());
 bd.setAvailable(book.isAvailable());
 bd.setBookId(book.getBook_Id());

C H A P T E R 8 ■ U S I N G X M L B E A N S 165

 bd.setBookType(book.getBook_type());
 bd.setCatalogNo(book.getCatalogNo());
 bd.setComments(book.getComments());
 bd.setIsbn(book.getIsbn());
 bd.setPrice(book.getPrice());
 bd.setPages(book.getPages());
 bd.setPublication(book.getPublication());

 return bd;
 }

Notice that the code is really straightforward. You could almost call it boring. It’s inter-
esting to remember that you’re actually building the XML file shown in Listing 8-4 with this
simple code.

How to Use Get Data from the XMLBeans
Getting data from XMLBeans is the reverse of what you saw in the previous section. You’re now
taking data from an XML file that’s loaded into the XMLBean and populating the BookValue
object. This code is in the BookDetailBean.java EJB class shown in Listing 8-6.

Listing 8-6. Read Data from XMLBeans

private Book getBook(BookDetailDocument.BookDetail bookdetail)
 {
 Book bookObj = new Book();
 bookObj.setBook_Id(bookdetail.getBookId());
 bookObj.setTitle(bookdetail.getTitle());
 bookObj.setAuthor(bookdetail.getAuthor());
 bookObj.setPublication(bookdetail.getPublication());
 bookObj.setBook_type(bookdetail.getBookType());
 bookObj.setCatalogNo(bookdetail.getCatalogNo());
 bookObj.setComments(bookdetail.getComments());
 bookObj.setIsbn(bookdetail.getIsbn());
 bookObj.setPages(bookdetail.getPages());
 bookObj.setPrice(bookdetail.getPrice());
 bookObj.setAvailable(bookdetail.getAvailable());
 return bookObj;
 }

Again, the code is simple. Using simple getters, you’re accessing data from the XML file
using XMLBeans.

Using XML Cursors
You can use XML cursors to navigate through an XML document. Once you’ve loaded an XML
document, you can create a cursor to navigate through the XML. Think of this cursor as an Iterator

166 C H A P T E R 8 ■ U S I N G X M L B E A N S

that’s used to navigate through a Java collection. You can use cursors for XML documents
regardless of whether they conform to any XML Schema.

XML cursors allow you to do the following:

• Navigate through an XML document in small steps. Think DOM.

• Manipulate data in the XML document using getters and setters.

• Modify the XML document by inserting, deleting, and moving data.

• Execute XQuery expressions against the XML document.

• Create bookmarks in the XML document for later reference.

Working with Cursors
Cursors are part of XMLBeans. You can create a cursor on any XML document instance that’s
part of an XmlObject or an inheriting class. So, in the bookstore example, you could create a
cursor on BookDetailDocument by calling the newCursor method on it.

■Note You need to call the dispose method when you’re done working with a cursor.

Cursors use XMLToken to represent the XML document. We’ll explain this in the next section.
For now, it’s important to remember that an XMLCursor moves from token to token. You have
methods such as toParent, toFirstAttribute, toPrevSibling, and so on, to move through the
XML document. Try the following sample code on your BookDetail document as an exercise:

XmlCursor bookCursor = xmlDoc.newCursor();
 bookCursor.toFirstChild();
 System.out.println("Token type: " + bookCursor.currentTokenType() +
 " / " + bookCursor.xmlText());
}

■Further Reading For more information on working with cursors, visit http://xmlbeans.apache.
org/docs/2.0.0/guide/conNavigatingXMLwithCursors.html.

■Note For a complete list of methods provided with the XMLCursor classes, see the Javadocs at
http://xmlbeans.apache.org/docs/2.0.0/reference/index.html.

C H A P T E R 8 ■ U S I N G X M L B E A N S 167

Working with XML Tokens
You can break any XML file up into a set of XMLToken objects so that you can manipulate it using
XML cursors.

■Note See the Javadocs for the XMLToken class at http://xmlbeans.apache.org/docs/2.0.0/
reference/org/apache/xmlbeans/XmlCursor.TokenType.html.

Several types of tokens represent different pieces of an XML document. These are presented
by constants in the TokenType class; you can use them to quickly determine the contents of the
XML document and navigate through it more easily. Table 8-2 lists the token types.

As you use a cursor to navigate through XML, you can use the XmlCursor.currentTokenType
to determine the TokenType.

■Further Reading For more information on working with tokens, visit http://xmlbeans.apache.
org/docs/2.0.0/guide/conUnderstandingXMLTokens.html.

Table 8-2. List of TokenType Constants

Token Type Switch Constant Description

STARTDOC INT_STARTDOC Represents the start of the XML. Always the first
token. The document element itself is represented
by a START token, not the STARTDOC token.

ENDDOC INT_ENDDOC Represents the end of the XML. Always the last token.

START INT_START Represents the start of an element.

END INT_END Represents the end of an element. The END token
has no value but marks the element’s end.

TEXT INT_TEXT Represents text.

ATTR INT_ATTR Represents an attribute. ATTR tokens are allowed to
appear after a STARTDOC or START token.

NAMESPACE INT_NAMESPACE Represents a namespace (xmlns) attribute. Also only
allowed after START or STARTDOC tokens.

COMMENT INT_COMMENT Represents a comment.

PROCINST INT_PROCINST Represents a processing instruction.

168 C H A P T E R 8 ■ U S I N G X M L B E A N S

Taking the sample XML file from Listing 8-4, Figure 8-6 shows you the location for token
types in this file.

Figure 8-6. Token types in the bookstore XML file

Using XMLBeans and Web Services Together
Before we conclude this chapter, we’ll explain how you can use Web Services and XMLBeans
together. In this book we’ve talked a lot about the Amazon.com Web Service. We’ll again use
the Google.com Web Service for this example. We won’t provide a complete example, but
you should be able to follow through and fill in some of the gaps on your own. First, visit the
Google.com Web Service site to create a Google.com account. Similar to what you did in a
previous chapter for Amazon.com, you need a key to access the Web Service; you can get this
at http://www.google.com/apis/.

Looking at the XML
This section will show you the XML that’s sent to the Google.com Web Service and the XML
that you get back from it. Listing 8-7 shows the XML file that’s sent to the Google.com Web
Service. This is straight from the API download on the Google.com Web site.

C H A P T E R 8 ■ U S I N G X M L B E A N S 169

Listing 8-7. Google.com Search XML

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:doGoogleSearch xmlns:ns1="urn:GoogleSearch"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <key xsi:type="xsd:string">00000000000000000000000000000000</key>
 <q xsi:type="xsd:string">shrdlu winograd maclisp teletype</q>
 <start xsi:type="xsd:int">0</start>
 <maxResults xsi:type="xsd:int">10</maxResults>
 <filter xsi:type="xsd:boolean">true</filter>
 <restrict xsi:type="xsd:string"></restrict>
 <safeSearch xsi:type="xsd:boolean">false</safeSearch>
 <lr xsi:type="xsd:string"></lr>
 <ie xsi:type="xsd:string">latin1</ie>
 <oe xsi:type="xsd:string">latin1</oe>
 </ns1:doGoogleSearch>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Listing 8-8 shows the XML results for the search described in Listing 8-7. Don’t worry
about understanding this XML file fully. All we’re trying to show you is the complexity of this
XML. This makes it a perfect candidate for XMLBeans.

Listing 8-8. Google.com Search Results XML

<?xml version='1.0' encoding='UTF-8'?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema">
 <SOAP-ENV:Body>
 <ns1:doGoogleSearchResponse xmlns:ns1="urn:GoogleSearch"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <return xsi:type="ns1:GoogleSearchResult">
 <documentFiltering xsi:type="xsd:boolean">false</documentFiltering>
 <estimatedTotalResultsCount xsi:type="xsd:int">3
 </estimatedTotalResultsCount>
 <directoryCategories xmlns:ns2="
 http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns2:Array" ns2:arrayType="ns1:DirectoryCategory[0]">
 </directoryCategories>
 <searchTime xsi:type="xsd:double">0.194871</searchTime>

170 C H A P T E R 8 ■ U S I N G X M L B E A N S

 <resultElements
 xmlns:ns3="http://schemas.xmlsoap.org/soap/encoding/"
 xsi:type="ns3:Array" ns3:arrayType="ns1:ResultElement[3]">
 <item xsi:type="ns1:ResultElement">
 <cachedSize xsi:type="xsd:string">12k</cachedSize>
 <hostName xsi:type="xsd:string"></hostName>
 <snippet xsi:type="xsd:string"> test </snippet>
 <directoryCategory xsi:type="ns1:DirectoryCategory">
 <specialEncoding xsi:type="xsd:string"></specialEncoding>
 <fullViewableName xsi:type="xsd:string">
 </fullViewableName>
 </directoryCategory>
 <relatedInformationPresent xsi:type="xsd:boolean">true
 </relatedInformationPresent>
 <directoryTitle xsi:type="xsd:string"></directoryTitle>
 <summary xsi:type="xsd:string"></summary>
 <URL xsi:type="xsd:string">
 http://hci.stanford.edu/cs147/examples/shrdlu/</URL>
 <title xsi:type="xsd:string">
 SHRDLU
 </title>
 </item>
 <item xsi:type="ns1:ResultElement">
 <cachedSize xsi:type="xsd:string">12k</cachedSize>
 <hostName xsi:type="xsd:string"></hostName>
 <snippet xsi:type="xsd:string"> my test snippet</snippet>
 <directoryCategory xsi:type="ns1:DirectoryCategory">
 <specialEncoding xsi:type="xsd:string"></specialEncoding>
 <fullViewableName xsi:type="xsd:string"
 </fullViewableName>
 </directoryCategory>
 <relatedInformationPresent xsi:type="xsd:boolean">true
 </relatedInformationPresent>
 <directoryTitle xsi:type="xsd:string"></directoryTitle>
 <summary xsi:type="xsd:string"></summary>
 <URL xsi:type="xsd:string">
 http://hci.stanford.edu/winograd/shrdlu</URL>
 <title xsi:type="xsd:string">
 SHRDLU
 </title>
 </item>
 </resultElements>
 <endIndex xsi:type="xsd:int">3</endIndex>
 <searchTips xsi:type="xsd:string"></searchTips>
 <searchComments xsi:type="xsd:string"></searchComments>
 <startIndex xsi:type="xsd:int">1</startIndex>

C H A P T E R 8 ■ U S I N G X M L B E A N S 171

 <estimateIsExact xsi:type="xsd:boolean">true</estimateIsExact>
 <searchQuery xsi:type="xsd:string">
 shrdlu winograd maclisp teletype</searchQuery>
 </return>
 </ns1:doGoogleSearchResponse>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Creating the XML Schema
You need an XML Schema to be able to generate the XMLBeans. Typically, it’s easy to under-
stand the XML Schema from the WSDL file. However, the Google.com WSDL has some subtle
complexities that we really don’t need to go through for the purposes of this chapter. Listing 8-9
shows you an XML Schema that you can use with the Google.com Web Service. We’ve placed a
copy of this under the Chapter 8 directory; it’s called GoogleSearch.xsd.

Listing 8-9. Google.com Search XML Schema

<?xml version="1.0"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:typens="urn:GoogleSearch"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 targetNamespace="urn:GoogleSearch">

<xsd:complexType name="DirectoryCategory">
<xsd:all>
 <xsd:element name="fullViewableName" type="xsd:string"/>
 <xsd:element name="specialEncoding" type="xsd:string"/>
</xsd:all>
</xsd:complexType>

<xsd:complexType name="DirectoryCategoryArray">
<xsd:sequence>
 <xsd:element name="DirectoryCategory" type="typens:DirectoryCategory"
 nillable="true" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="GoogleSearchResult">
<xsd:all>
 <xsd:element name="documentFiltering" type="xsd:boolean"/>
 <xsd:element name="searchComments" type="xsd:string"/>
 <xsd:element name="estimatedTotalResultsCount" type="xsd:int"/>
 <xsd:element name="estimateIsExact" type="xsd:boolean"/>
 <xsd:element name="resultElements"
 type="typens:ResultElementArray"/>
 <xsd:element name="searchQuery" type="xsd:string"/>
 <xsd:element name="startIndex" type="xsd:int"/>

172 C H A P T E R 8 ■ U S I N G X M L B E A N S

 <xsd:element name="endIndex" type="xsd:int"/>
 <xsd:element name="searchTips" type="xsd:string"/>
 <xsd:element name="directoryCategories"
 type="typens:DirectoryCategoryArray"/>
 <xsd:element name="searchTime" type="xsd:double"/>
</xsd:all>
</xsd:complexType>

<xsd:complexType name="item">
<xsd:all>
 <xsd:element name="summary" type="xsd:string"/>
 <xsd:element name="URL" type="xsd:string"/>
 <xsd:element name="snippet" type="xsd:string"/>
 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="cachedSize" type="xsd:string"/>
 <xsd:element name="relatedInformationPresent" type="xsd:boolean"/>
 <xsd:element name="hostName" type="xsd:string"/>
 <xsd:element name="directoryCategory" type="typens:DirectoryCategory"/>
 <xsd:element name="directoryTitle" type="xsd:string"/>
</xsd:all>
</xsd:complexType>

<xsd:complexType name="ResultElementArray">
<xsd:sequence>
 <xsd:element name="item" type="typens:item" nillable="true"
 minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

Now you know how to create Web Services using XMLBeans. As an exercise, we recommend
you generate the XMLBeans from the examples in this chapter and use the various concepts
you’ve learned throughout this book to generate your own Google.com search page. Make sure
you use NetUI, JSR 181 Web Services, Controls, and the XMLBeans that you’ve generated from
following along with the examples in this book.

To get you started, we’ve generated the XMLBeans from this schema and provided them
for you. They live under the Chapter 8 directory in a file called GoogleSearchXMLBeans.jar.

So, What’s Next?
You’ve seen several different technologies so far. Our mission to teach you how to use the tech-
nologies within Apache Beehive and XMLBeans is complete. Now it’s up to you. You should
start using all the technologies you’ve learned in this book in real-life projects. You should
further evaluate these technologies and see which ones can be of value to you on your projects.

We also urge you to actively participate in the developer groups or even contribute to the
projects themselves in order to improve Apache Beehive and XMLBeans for the rest of the
developer community.

173

■ ■ ■

A P P E N D I X A

Setting Up Your Development
Environment

In this appendix, we’ll walk you through the different pieces of software that you’ll need to
download and install in order to be able to start developing using Apache Beehive and XMLBeans.

Downloading and Installing the Required Software
Apache Beehive and XMLBeans development needs some minimal software installed on your
machine. This includes a JDK, Ant, and a servlet container such as Tomcat.

Installing J2SE 5 (JDK)
Download and install the latest version of Java 2 Platform, Standard Edition (J2SE). You can
download this from the Sun Web site at http://java.sun.com/j2se/1.5.0/download.jsp.

Although you can install the JDK in any directory you want, we’re assuming you’ll install it
in C:\jdk1.5. If you choose another directory, you’ll need to edit the batch files for compiling
and running the sample code appropriately. We’ve added comments to the batch files that
describe the changes you’ll need to make. This applies to all the software you’ll be installing in
this appendix.

Next, set the environment variable JAVA_HOME. (For example, set it to JAVA_HOME=C:\jdk1.5.)
Then modify the environment variable PATH. (For example, set it to PATH=c:\jdk1.5\

bin;%PATH%.)

Installing Ant 1.6.2
Ant is the build tool used to compile and run Apache Beehive code. Download Ant 1.6.2 from
http://svn.apache.org/repos/asf/incubator/beehive/trunk/external/ant/apache-ant-
1.6.2-bin.zip. You can also download Ant 1.6.2 from http://ant.apache.org/bindownload.cgi.

Once you’ve downloaded the file, you can unzip it on your machine. Ant will be installed
in C:\apache-ant-1.6.2.

Next, set the environment variable ANT_HOME. (For example, set it to ANT_HOME=C:\
apache-ant-1.6.2.)

Then modify the environment variable PATH. (For example, set it to PATH=C:\
apache-ant-1.6.2\bin;%PATH%.)

174 A P P E N D I X A ■ S E T T I N G U P Y O U R D E V E L O P M E N T E N V I R O N M E N T

Installing Tomcat 5
This book uses Tomcat 5 as the servlet container. Apache Beehive is also supported on other
servlet containers, though. You can check the Beehive wiki for other supported platforms.

Download Tomcat 5 from http://svn.apache.org/repos/asf/incubator/beehive/trunk/
external/tomcat/jakarta-tomcat-5.0.25.zip.

Once you’ve downloaded the file, you can unzip it on your machine. Tomcat will be
installed in c:\jakarta-tomcat-5.0.25.

Next, set the environment variable CATALINA_HOME. (For example, set it to CATALINA_
HOME=C:\jakarta-tomcat-5.0.25.)

Then modify the environment variable PATH. (For example, set it to PATH=C:\jakarta-
tomcat-5.0.25\bin;%PATH%.)

■Note If you’re planning on using Eclipse Pollinate as an IDE to develop Apache Beehive applications, you’ll
need to download Apache Tomcat 5.5, not 5. The instructions are almost the same. You can download the
latest version at http://jakarta.apache.org/site/downloads/downloads_tomcat-5.cgi.

Downloading and Installing Apache Beehive
and XMLBeans
Once you’ve downloaded the required software, you need to download and install Apache
Beehive and XMLBeans.

Installing the Beehive 1.0.3 Binary Distribution
You can download the latest binary distribution of Beehive (apache-beehive-incubating-1.0-
alpha-snapshot.zip) from http://cvs.apache.org/dist/incubator/beehive/v1.0-alpha/bin/.
This distribution is an alpha release and isn’t intended for creating production-level applications.

Unzip the Beehive distribution file on your machine in C:\.
Next, set the environment variable BEEHIVE_HOME=C:\apache-beehive-incubating-1.0-

alpha-snapshot.
Now edit the file beehiveUser.cmd present in C:/apache-beehive-incubating-1.0-alpha-

snapshot, and make changes to the following environment variables:

BEEHIVE_HOME=C:\apache-beehive-incubating-1.0-alpha-snapshot
JAVA_HOME=C:\jdk1.5
ANT_HOME=C:\apache-ant-1.6.2
CATALINA_HOME=C:\jakarta-tomcat-5.0.25

Listing A-1 shows beehiveUser.cmd. After editing beehiveUser.cmd, save and close the file.

A P P E N D I X A ■ S E T T I N G U P Y O U R D E V E L O P M E N T E N V I R O N M E N T 175

Listing A-1. beehiveUser.cmd File

@echo off
REM
REM Customize this file based on where you install various 3rd party components
REM such as the JDK, Ant and Tomcat.
REM

REM the root of Beehive distribution
set BEEHIVE_HOME=c:\apache-beehive-incubating-1.0-alpha-snapshot

REM location of a JDK
set JAVA_HOME=C:\jdk1.5.0

REM location of Ant
set ANT_HOME=c:\apache-ant-1.6.2

REM location of Tomcat
set CATALINA_HOME=c:\jakarta-tomcat-5.0.25

set PATH=%PATH%;%JAVA_HOME%\bin;%ANT_HOME%\bin

Installing the XMLBeans Alpha Binary Distribution
You can install the latest binary distribution of XMLBeans (xmlbeans-1.0.3.zip) from http://
www.apache.org/dyn/closer.cgi/xml/xmlbeans.

Unzip the XMLBeans distribution file on your machine in C:\. XMLBeans will be installed
in C:\xmlbeans-1.0.3.

Working with Tomcat
In the following sections, we’ll walk you through running the Petstore demo that ships with
Beehive, located in the Tomcat container.

Starting Tomcat
Before you can start Tomcat, you need to do a little bit of prep work. You need to add a manager role
to Tomcat, which allows you to run deployment-related targets in the Ant file BEEEHIVE_HOME/
ant/runTomcat.xml. This file is provided as a convenience for managing the Tomcat server.

To do this, edit the file CATALINA_HOME/conf/tomcat-users.xml so it appears as shown in
Listing A-2. Elements to add are shown in bold type.

176 A P P E N D I X A ■ S E T T I N G U P Y O U R D E V E L O P M E N T E N V I R O N M E N T

Listing A-2. tomcat-users.xml File

<?xml version='1.0' encoding='utf-8'?>
 <tomcat-users>
 <role rolename="tomcat"/>
 <role rolename="role1"/>
 <role rolename="manager"/>
 <user username="tomcat" password="tomcat" roles="tomcat"/>
 <user username="role1" password="tomcat" roles="role1"/>
 <user username="both" password="tomcat" roles="tomcat,role1"/>
 <user username="manager" password="manager" roles="manager"/>
 </tomcat-users>

You can start the Tomcat server in two ways. (And you can modify this appropriately if
you’re using Tomcat 5.5.)

Run the following command to start the Tomcat server:

%CATALINA_HOME%\bin\startup.bat

or run the following command:

C:\startup.bat

Alternatively, you can start the Tomcat server by running the ant command provided in
the Beehive distribution:

ant -f %BEEHIVE_HOME%\ant\buildWebapp.xml start

Running the Petstore Sample on Tomcat 5
Copy the petstoreWeb folder from %BEEHIVE_HOME%\samples\petstoreWeb to another location
(say, C:\beehive\projects) before proceeding. (The following instructions assume that you’ve
copied the petstoreWeb folder into the directory C:\beehive\projects.) Also, copy the runtime
JARs into the application source.

To copy the runtime JARs into the application source and to compile, run the following
Ant target. (You can run this command from anywhere as long as ant is in your path.)

ant -f %BEEHIVE_HOME%\ant\buildWebapp.xml
 -Dwebapp.dir= C:\beehive\projects\petstoreWeb
 deploy.beehive.webapp.runtime build.webapp

Start Tomcat by running the following Ant command, provided in the buildWebapp.xml file:

ant -f %BEEHIVE_HOME%\ant\buildWebapp.xml start

■Note If you use the second of these methods for starting Tomcat, you have to press Ctrl+C in the
command shell to enter any further commands.

A P P E N D I X A ■ S E T T I N G U P Y O U R D E V E L O P M E N T E N V I R O N M E N T 177

Deploying the Petstore Sample
To deploy the Petstore application to Tomcat, you need to do the following.

1. Copy BEEHIVE_HOME/samples/petstoreWeb/ to CATALINA_HOME/webapps. This will cause
Tomcat to automatically deploy the Web application. Alternatively, you could deploy
Beehive manually. If you want to do this, go to step 2; otherwise, skip the rest of the
steps in this list.

2. Use Beehive’s deploy Ant target to deploy the Petstore application to Tomcat. This
requires that the manager role be defined in CATALINA_HOME/conf/tomcat-users.xml
with a username/password of manager/manager.

3. Then, run the following Ant command:

ant -f %BEEHIVE_HOME%\ant\buildWebapp.xml
 deploy
 -Dwebapp.dir=C:\beehive\projects\petstoreWeb
 -Dcontext.path=petstoreWeb

If petstoreWeb is already deployed on the server, run the undeploy target first, like so:

ant
 -f %BEEHIVE_HOME%\ant\buildWebapp.xml
 undeploy
 -Dwebapp.dir=C:\beehive\projects\petstoreWeb
 -Dcontext.path=petstoreWeb

To see the running application, visit http://localhost:8080/petstoreWeb/Controller.jpf.

So, What’s Next?
You now have all the basic development tools you need in order to start developing using
Apache Beehive and XMLBeans. We recommend you jump right into Chapter 3. Make sure you
actually complete all the steps outlined in this appendix so that you can try the hands-on
examples as you read the rest of the book.

179

■ ■ ■

A P P E N D I X B

Working with Eclipse
and Pollinate

In this appendix, we’ll walk you through setting up the Eclipse IDE and the Pollinate plug-in
that will allow you to build Apache Beehive applications.

What’s Eclipse?
Eclipse is an open-source software development project that strives to provide a robust, full-
featured, industry-standard platform for creating highly integrated tools. Eclipse is widely known
for its innovative tools integration platform and rich client application framework. The mission
of the Eclipse project is to adapt the Eclipse platform and associated tools to meet the needs of
the tool building community so that the vision of Eclipse as an industry platform is realized.

You need to be aware of three projects: the Eclipse project, the Eclipse Tools project, and
the Eclipse Technology project. We’ll also discuss the Eclipse software development kit (SDK).

Eclipse Project
The Eclipse project is based around providing an industry-strength yet open-source develop-
ment platform.

Eclipse Tools Project
The Eclipse Tools project helps enable diverse tool builders to create best-of-breed tools for
the Eclipse platform. In fact, the mission of the Eclipse Tools project is to foster the creation of
a wide variety of tools for the Eclipse platform. The Eclipse Tools project provides a single point
of coordination for open-source tool developers in order to minimize overlap and duplication,
ensure maximum sharing and creation of common components, and promote seamless
interoperability between diverse types of tools.

Eclipse Technology Project
The mission of the Eclipse Technology project is to provide new channels for open-source
developers, researchers, academics, and educators to participate in the ongoing evolution
of Eclipse.

180 A P P E N D I X B ■ W O R K I N G W I T H E C L I P S E A N D P O L L I N A T E

Eclipse SDK
The Eclipse SDK consolidates the components produced by three Eclipse subprojects—Platform,
Java Development Tools (JDT), and Plug-in Development Environment (PDE)—in a single
download.

Together these pieces provide a feature-rich environment that allows developers to efficiently
create tools that integrate seamlessly into the Eclipse platform.

Downloading and Installing Eclipse
To launch Eclipse, you should download and install a JDK. The developer kit will include a Java
runtime that you can use to launch Eclipse. Eclipse requires version 1.3 or 1.4 of a J2SE JRE.

■Note Eclipse 3.0 is an important milestone in the evolution of Eclipse. The platform has a truly impressive
list of features. The most important new features can be grouped into several key areas: Java tools, Swing
integration, and the rich client platform.

You can download Eclipse from any of the listed mirror sites available at http://
www.eclipse.org/downloads/index.php or from the main Eclipse download site also provided
at this site.

The name of the file is eclipse-SDK-3.1M4-win32.zip. Unzip the file into any directory, for
example, c:\eclipse. The c:\eclipse directory then becomes the home directory for Eclipse.

You use eclipse.exe for launching Eclipse.
On Windows, the Annotation Processing Tool (APT) is located in the tools.jar file. So, for

Windows, you’ll need to launch Eclipse with a command line like this:

 <eclipse-home>\eclipse.exe -vm <Java-Home>\jre\bin\javaw
 -vmargs -Xbootclasspath/a: <Java-Home>\\lib\tools.jar

where <eclipse-home> is where you installed Eclipse and <Java-Home> is where you installed
JDK 1.5.

Using the Eclipse Workbench
When you launch Eclipse, the first thing you’ll see is a dialog box that allows you to select where
your workspace should be located. This is the directory where your work will be stored. Click
OK to pick the default location.

After you choose this location, you’ll see the Eclipse IDE, which is known as the workbench
(see Figure B-1). You can have multiple workbench windows open simultaneously.

A P P E N D I X B ■ W O R K I N G W I T H E C L I P SE A N D P O L L I N A T E 181

Figure B-1. The Eclipse workbench

Importing Files
You can import files into the workbench by doing any of the following:

• Dragging and dropping from the file system

• Copying and pasting from the file system

• Using the Import wizard

Processing in the Background
When you want to build several projects at once, you can select Project ➤ Build All, as shown
in Figure B-2. You can also choose to build just one project or the working set.

Figure B-2. Building all Eclipse projects

182 A P P E N D I X B ■ W O R K I N G W I T H E C L I P S E A N D P O L L I N A T E

By default, all Eclipse operations run in the user interface thread. Some of the operations
automatically run in the background (such as autobuild). In many cases, you’ll see a dialog box
that provides you with the option to run an operation in the background. For example, building
a project manually can sometimes take more than a few minutes, during which time you may
want to continue to use other functions in Eclipse. So, while the project is being built, click Run
in Background in the Building Workspace dialog box, as shown in Figure B-3, and the user
interface will allow you to carry on with other tasks in Eclipse.

Figure B-3. Clicking Run in Background allows you to use other functions in Eclipse.

For information on the status of the action and additional operations that are currently
running, click Details. The Details panel displays the status information of the operation at
hand as well as any additional operations that may be running simultaneously, as shown in
Figure B-4.

Figure B-4. Viewing the details of all running operations

A P P E N D I X B ■ W O R K I N G W I T H E C L I P SE A N D P O L L I N A T E 183

Setting Up a CVS Repository with Eclipse
A source control repository is a persistent store that coordinates multiuser access to the resources
being developed by a team. Eclipse comes with built-in support of CVS and other source
control tools.

Creating a New Repository Location in Eclipse
Open the CVS Repositories view by selecting Window ➤ Show View ➤ Other on the main menu
bar. Then select CVS ➤ CVS Repositories in the Show View dialog box, and click OK, as shown
in Figure B-5. Another way to open a CVS repository is by using the Repository Exploring
perspective.

Figure B-5. CVS views available in Eclipse

Next, on the toolbar, click CVS Repository. Alternatively, from the context menu of the
CVS Repositories view, select New ➤ Repository Location. The Add CVS Repository wizard will
open, as shown in Figure B-6. Enter the information required to identify and connect to the
repository location. In other words, in the Host field, type the address of the host (for example,
enter apress.com). In the Repository Path field, type the path to the repository on the host (for
example, enter /home/rootd or d:/beehive).

184 A P P E N D I X B ■ W O R K I N G W I T H E C L I P S E A N D P O L L I N A T E

Figure B-6. Adding a CVS repository

In the User field, type the username under which you want to connect to the repository. In
the Password field, type the password for your username.

From the Connection Type list, select the authentication protocol of the CVS server. Three
connection methods come with the Eclipse CVS client:

• pserver: A CVS-specific connection method.

• extssh: An SSH 2.0 client included with Eclipse.

• ext: The CVS ext connection method that uses an external tool such as SSH to connect
to the repository. The tool used by ext is configured in the Team ➤ CVS ➤ EXT Connection
Method preferences page.

If the host uses a custom port, enable Use Port and enter the port number. You can option-
ally select Validate Connection on Finish if you want to authenticate the specified user to the
specified host when you close this wizard. (If you don’t select this option, the username will be
authenticated later, when you try to access the contents of the repository.) You can optionally
select Save Password if you want to save the password in the Eclipse keyring file so you don’t
have to enter the password again the next time you start Eclipse. The keyring file is stored on
your local drive and doesn’t use strong encryption, so don’t enable this option for sensitive
passwords. Click Finish to create the repository location.

A P P E N D I X B ■ W O R K I N G W I T H E C L I P SE A N D P O L L I N A T E 185

Using the CVS Checkout Wizard
The CVS Checkout wizard helps you check out one or more projects from a CVS repository. You
can open the CVS Checkout wizard by choosing Checkout Projects from CVS in the Import
wizard, as shown in Figure B-7. It’s also available from the New ➤ Project menu, from the
toolbar of the CVS Repository Exploring perspective, and when performing a Checkout As from
the CVS Repositories view.

Figure B-7. Choosing Checkout Projects from CVS in the Import wizard

The first page of the wizard allows you to choose an existing repository location or create
a new one. If you choose to create a new location, then the New Repository Location wizard
will open.

Taking Advantage of the Ant Support
Eclipse has Ant support that allows you to create and run Ant build files from the workbench.
These Ant build files can operate on resources in the file system as well as on resources in the
workspace.

Output from an Ant build file displays in the console view in the same hierarchical format
you see when running Ant from the command line. Ant tasks (for example, [mkdir]) are hyper-
linked to the associated Ant build file, and javac error reports are hyperlinked to the associated
Java source file and line number.

186 A P P E N D I X B ■ W O R K I N G W I T H E C L I P S E A N D P O L L I N A T E

You can add classes to the Ant classpath and add Ant tasks and types from the Ant runtime
preferences page; select Window ➤ Preferences ➤ Ant ➤ Runtime, as shown in Figure B-8.

Figure B-8. Setting up Ant in Eclipse

You can also run an Ant build file in the workbench. In the Navigator view, select an XML
file. From the file’s pop-up menu, select Run Ant. The launch configuration dialog box opens.

Select some targets from the Targets tab. The order in which you select the items is the
order in which they will run. The order is displayed in the Target Execution Order box at the
bottom of the tab. You can change the order of the targets by clicking the Order button.

Furthermore, you can configure the options on the other tabs if you’d like. For example,
on the Main tab, type any required arguments in the Arguments field. Click Run.

The Ant build file will run on the selected targets. Unless you disable the Capture Output
option on the Main tab, the console will display any applicable execution results as the build
file runs.

A P P E N D I X B ■ W O R K I N G W I T H E C L I P SE A N D P O L L I N A T E 187

Downloading and Installing Pollinate
Pollinate is an Eclipse technology project slated to build an Eclipse-based IDE and toolset that
leverages the open-source Apache Beehive application framework. Basically, Pollinate is a
plug-in to Eclipse that supports the Beehive framework. A combination of the Eclipse IDE and
Pollinate, with some server such as Tomcat, makes a perfect environment for faster Beehive
application development.

Pollinate relies on Sun’s APT, so Eclipse needs access to APT during runtime using a
command-line startup flag.

You can download and install the Pollinate plug-in in the Eclipse project in several ways:

• You can download Pollinate from the Update site.

• You can download the ZIP file from the Eclipse Web site.

• You can install Pollinate from the Eclipse CVS repository.

We’ll cover the first two ways in the following sections. If you want, you can also download
the source code and build Pollinate yourself. To use Pollinate, you’ll need the following:

• JDK 1.5 Update 1 (also known as JDK 5.0 Update 1)

• Eclipse 3.1 M4

• WebTools 1.0 M2

• A local server such as Tomcat (see Appendix A)

Installing Pollinate from the Update Site
To install Pollinate from the Update site, first launch the Eclipse IDE. It’s important that you’re
running this with the JDK and not the JRE. Next, follow these steps:

1. Select Help ➤ Software Updates ➤ Find and Install.

2. In the Install/Update dialog box, select Search for New Features to Install.

3. On the next page, click the New Remote Site button.

4. Enter Pollinate, and go to http://download.eclipse.org/technology/pollinate/
update-site in the New Update Site dialog box.

5. Expand Pollinate in the tree, and check Integration Builds.

6. On the next page, check Eclipse Pollinate Tools and complete the install.

The Pollinate install is more than 6MB, so be patient, as it will take a few minutes.

188 A P P E N D I X B ■ W O R K I N G W I T H E C L I P S E A N D P O L L I N A T E

Installing Pollinate from a ZIP File
Download the latest Pollinate integration build from http://www.eclipse.org/pollinate/, and
unzip it into Eclipse. It gets unzipped into the plug-in folder that exists under the Eclipse home
directory.

Creating a New Beehive Project in Eclipse
After installing the Pollinate plug-in successfully, you can now create a new Beehive project by
following these steps:

1. In Eclipse, select File ➤ New ➤ Other to open the New wizard, and then select Pollinate ➤
Web Application, as shown in Figure B-9.

Figure B-9. Creating a Beehive application in Eclipse Pollinate

2. Click Next to move to the next page of the wizard, and enter the name of the new project, as
shown in Figure B-10.

A P P E N D I X B ■ W O R K I N G W I T H E C L I P SE A N D P O L L I N A T E 189

Figure B-10. Naming your Beehive application in Eclipse Pollinate

3. Enter the name of the project, and click Finish.

4. You can start or stop the runtime by selecting Pollinate ➤ Start Runtime or selecting
Pollinate ➤ Stop Runtime.

5. To run the application, right-click the workspace directory in the Navigator view. Then
select Run Web App.

The application code will be compiled, the Pollinate runtime will start, the application will
deploy in Tomcat, and a new browser will open with the URL pointing to the application.

So, What’s Next?
Now you have all the tools to start working with Apache Beehive. You can jump right into
Chapter 3 and begin writing some code.

191

■ ■ ■

A P P E N D I X C

Contributing to Beehive
and XMLBeans

If you’ve gotten this far in the book, you’re probably a Beehive and XMLBeans expert. So, since
you’re now an expert, why not contribute to these projects and provide your input? This appendix
covers the ways you can contribute.

Specifically, you can contribute to both Beehive and XMLBeans in these ways:

Offer suggestions: The simplest way to contribute is by reporting bugs and issues. Obviously,
just like any other software, these projects are bound to have bugs. At the end of the day,
the folks building these projects are human. We’ll cover this in the “Subscribing to Lists”
section.

Submit code: You can also submit code for bug fixes or enhancements. These are open-
source projects, and they need community involvement to mature. The more people who
contribute to the code base, the more value these projects will provide. We’ll talk about
this later in the “Contributing Code” section.

Become a committer: Once you’ve been recognized as a person who has submitted valu-
able code to these projects, you can be voted in as a committer. This means you’ll actually
be able to submit code to the source control system for this project. Visit http://incubator.
apache.org/beehive/contributors.html to see the current list of committers for the
Beehive project. Visit http://xmlbeans.apache.org/community/index.html#Who+we+are to
see the current list of committers for the XMLBeans project.

Subscribing to Lists
Before you can begin really contributing to the Apache Beehive project or XMLBeans, you
should consider subscribing to some of the following lists and visiting the links mentioned.
This will give you a feel for how things are progressing and potential areas where you think you
can add value. We recommend exploring the archives for each list to understand the type and
volume of communication that happens in each one.

192 A P P E N D I X C ■ C O N T R I B U T I N G T O B E E H I V E A N D X M L B E A N S

Beehive Lists
The following are the Beehive-related lists.

Beehive User List

As the name suggests, this list is targeted to people like you who are using Beehive on a day-to-day
basis. Post your bugs, issues, suggestions, or recommendations for enhancements to this list.

To subscribe to this list, send an e-mail to beehive-user-subscribe@incubator.apache.org.
To unsubscribe from this list, send an e-mail to beehive-user-unsubscribe@incubator.

apache.org.
To see the archives for this list, visit http://nagoya.apache.org/eyebrowse/

SummarizeList?listName=beehive-user@incubator.apache.org.

Beehive Developer List

This is a mailing list for Beehive developers. Should you choose to submit code for this project,
you’ll need to subscribe to this list.

To subscribe to this list, send an e-mail to beehive-dev-subscribe@incubator.apache.org.
To unsubscribe from this list, send an e-mail to beehive-dev-unsubscribe@incubator.

apache.org.
To see the archives for this list, visit http://nagoya.apache.org/eyebrowse/

SummarizeList?listName=beehive-dev@incubator.apache.org.

Beehive SVN/Wiki Change List

This is a mailing list where you can see every change to the Subversion (SVN) source control
system for this project and to the Beehive wiki. This is a pretty high-volume list compared to
the other two Beehive lists.

To subscribe to this list, send an e-mail to beehive-commits-subscribe@incubator.
apache.org.

To unsubscribe from this list, send an e-mail to beehive-commits-unsubscribe@incubator.
apache.org.

To see the archives for this list, visit http://nagoya.apache.org/eyebrowse/
SummarizeList?listName=beehive-commits@incubator.apache.org.

■Note Visit http://incubator.apache.org/beehive/mailinglists.html#Mailing+Lists for
an up-to-date list of the Beehive mailing lists to which you can subscribe.

Beehive Bug and Issue Tracking

The following is a site where you can see all the open issues, submit bugs, and get more infor-
mation on the status on Beehive:

http://issues.apache.org/jira/secure/BrowseProject.jspa?id=10570

A P P E N D I X C ■ C O N T R I B U T I N G T O B E E H I V E A N D X M L B E A N S 193

XMLBeans Lists
The following are the XMLBeans-related lists.

XMLBeans User List

As the name suggests, this list is targeted to people like you who are using XMLBeans on a day-
to-day basis. Post your bugs, issues, suggestions, or recommendations for enhancements to
this list.

To subscribe to this list, send an e-mail to users-subscribe@xmlbeans.apache.org.
To unsubscribe from this list, send an e-mail to users-unsubscribe@xmlbeans.apache.org.
To see the archives for this list, visit http://nagoya.apache.org/eyebrowse/

SummarizeList?listId=277.

XMLBeans Developer List

This is a mailing list for XMLBeans developers. Should you choose to submit code for this
project, you’ll need to subscribe to this list.

To subscribe to this list, send an e-mail to dev-subscribe@xmlbeans.apache.org.
To unsubscribe from this list, send an e-mail to dev-unsubscribe@xmlbeans.apache.org.
To see the archives for this list, visit http://nagoya.apache.org/eyebrowse/

SummarizeList?listId=278.

XMLBeans SVN/Wiki Change List

This is a mailing list where you can see every change to the Subversion (SVN) source control
system for this project and to the Beehive wiki. This is a pretty high-volume list compared to
the other two XMLBeans lists.

To subscribe to this list, send an e-mail to commits-subscribe@xmlbeans.apache.org.
To unsubscribe from this list, send an e-mail to commits-unsubscribe@xmlbeans.

apache.org.
To see the archives for this list, visit http://nagoya.apache.org/eyebrowse/

SummarizeList?listId=276.

■Note Visit http://xmlbeans.apache.org/community/index.html#Mailing+Lists for an
up-to-date list of the XMLBeans mailing lists to which you can subscribe.

Contributing Code
The final goal is for you to contribute code to these projects. In the following sections, we’ll talk
about how you can do this.

Contributing to Beehive
To contribute to the Beehive project, first you need to get the source code.

194 A P P E N D I X C ■ C O N T R I B U T I N G T O B E E H I V E A N D X M L B E A N S

Getting the Source to Beehive

Beehive uses the Subversion source control system. Subversion is a later incarnation of CVS.
You can read about it and download a Subversion client at http://subversion.tigris.org/.

In whatever directory you want to download the source code (say, beehive-src), you need
to run the following command:

svn checkout http://svn.apache.org/repos/asf/incubator/beehive/trunk

Building the Code

Instead of repeating the material here and risking being out-of-date, we’ll simply point you to
the Beehive wiki where you can learn all you need to know about building and working with the
source code that you’ve just downloaded:

http://wiki.apache.org/beehive/For_20Beehive_20Developers

Understanding the Beehive Process

To understand the build and release process for Beehive, visit http://wiki.apache.org/
beehive/Release_20Process.

Understanding the Distribution Structure

To get a feel for the distribution structure for Beehive, visit http://wiki.apache.org/beehive/
Distribution_20Structure.

Contributing to XMLBeans
To contribute to the XMLBeans project, first you need to get the source code.

Getting the Source to XMLBeans

Beehive uses the Subversion source control system. Subversion is a later incarnation of CVS.
You can read about it and download a Subversion client at http://subversion.tigris.org/.

You can browse the XMLBeans source via ViewSVN/CVS at http://svn.apache.org/
viewcvs.cgi/xmlbeans/trunk/.

In whatever directory you want to download the source code (say, xmlbeans-src), you
need to run the following command:

svn co http://svn.apache.org/repos/asf/xmlbeans/trunk/

To get all the code, run this:

svn co http://svn.apache.org/repos/asf/xmlbeans/

Building the Code

You can build the XMLBeans source using Ant. Under the source directory you used previously
(xmlbeans-src), you should see a directory called xml-xmlbeans\v1. Change to this directory.

A P P E N D I X C ■ C O N T R I B U T I N G T O B E E H I V E A N D X M L B E A N S 195

On Windows, run the following commands to build XMLBeans:

Xbeanenv
ant

On Unix, run the following commands to build XMLBeans:

xbeanenv.sh ant

Visiting the Issue Log

Visit http://issues.apache.org/jira/secure/BrowseProject.jspa?id=10436 to see the current
issue log for XMLBeans.

Grab Bag of Links
Here are some general links you might also find useful:

• Learn more about Beehive on the BEA dev2dev site at http://dev2dev.bea.com/
technologies/beehive/index.jsp.

• Learn more about XMLBeans on the BEA dev2dev site at http://dev2dev.bea.com/
technologies/xmlbeans/index.jsp.

• Learn more about Controls at http://controlhaus.org/.

• Learn more about the Eclipse Pollinate IDE at http://www.eclipse.org/pollinate/.

So, What’s Next?
We really hope you found this book productive and can use Beehive and XMLBeans on your
projects. If you choose to contribute to these projects, all the better.

197

Index

■A
“A Defining Moment for SOA” article, Web

site address for, 22
A Metadata Facility for the Java

Programming Language. See JSR 175
(A Metadata Facility for the Java
Programming Language)

action classes, annotations available for, 57
Add CVS Repository dialog box, for adding a

new CVS Repository, 184
addBook.jsp

code for, 77–80
shown in a browser, 79

afterAction method, function of, 56
Amazon.com, example of book listing on, 134
Amazon.com subscription ID, registering

for, 124
Amazon.com WSDL, downloading, 124
amazonResults.jsp, code for, 132–134
Annotation Processing Tool (APT), located in

the tools.jar file in Eclipse, 180
annotations

for action classes, 57
Apache Beehive based heavily on concept

of, 24–25
available in Apache Beehive, 136
boolean externalRedirect annotation, 57
boolean loginRequired annotation, 55, 57
boolean nested annotation, 55
boolean readOnly annotation, 55, 57
boolean redirect annotation, 58
boolean restoreQueryString annotation, 58
boolean singleton annotation, 1–13, 27,

28, 42–44, 55, 136, 143
annotations and metadata, value-added

support in Java Page Flows, 11
Ant, setting up in Eclipse, 186
Ant 1.6.2, downloading and installing, 173
ant task

for compiling XML Schema into a set of
XMLBeans classes, 162

Web site address for details on how to
use, 163

Apache Axis, installing as part of your Web
application, 124

Apache Beehive
contributing code to, 193–194
contributing to, 191–195
creating a new project in Eclipse Pollinate,

188–189
defining a simple Control in, 43
dissecting common Controls shipped

with, 114–134
getting the source code for, 194
how Controls relate to SOA, 24
how it enables SOA, 23–24
how Web Services relate to SOA, 24
introduction to, 1–13
introduction to annotations in, 42–44
Page Flows in, 48–54
subscribing to lists, 192
understanding Control architecture,

102–104
Web Services, 43–44
Web site address for information about, 12
Web site address for tag library

documentation, 77
Web site address for the documentation

page, 59
Web site address for up-to-date list of

mailing lists, 192
vs. WebLogic Workshop Page Flows, 42–43

Apache Beehive annotations
@IntPram, 136
introduction to, 42–44

Apache Beehive bug and issue tracking list,
subscribing to, 192

Apache Beehive developer list, subscribing
to, 192

Apache Beehive Page Flows
BEA WebLogic 9.x based on, 48
defining forwards in, 42–43

198 ■I N D E X

Apache Beehive project
birth of, 10
bookstore sample application, 11–12
support for Java Page Flow (JPF)

technology, Controls, and Web
Services, 10–12

Web site address for current list of
committers for, 191

Apache Beehive runtime environment,
management of Controls by, 101–102

Apache Beehive user list, subscribing to, 192
Apache Beehive Web Services and JSR 181,

135–152
Apache Tomcat 5.5, for using Eclipse

Pollinate as an IDE, 174
APT. See Annotation Processing Tool (APT)
Axis. See Apache Axis

■B
BEA customers, Web site address for

information about, 7
BEA Page Flows, Web site address for

learning to work with, 46
BEA WebLogic 9.x, based on Beehive version

of Page Flows, 48
BEA WebLogic Integration, function of, 8–9
BEA WebLogic Jrockit, function of, 9
BEA WebLogic Platform, introduction to, 7–9
BEA WebLogic Portal, function of, 9
BEA WebLogic Server, function of, 8
BEA WebLogic Workshop

Controls shipped with, 114
exploring the history of, 10
function of, 8

BEA WebLogic Workshop 8.1, Web site
address for downloading, 46

BEA’s SOA Resource Center, Web site
address for, 23

Beehive 1.0.3 binary distribution,
downloading and installing, 174–175

beehiveuser user, creating in Database
Control example, 115

beforeAction method, function of, 56
begin method

in all Page Flows, 47
in bookstore application, 70–71

Betwixt XML-Java binding tool, Web site
address for, 154

book_Detail table, creating in Database
Control example, 115

BookController, code for calling methods on
a shared flow, 100

bookDetails.xsd schema, sample XML file
for, 161

BookForm class, code for, 71–75
bookMenu.jsp, code for, 75–76
bookstore application

basic screens, 66
begin method in, 70–71
creating the sample, 65–83
looking at the code, 66–83
running the sample, 66
setting up, 65–66
XML Schema code for sample, 160

bookstore controller, code for, 67–69
bookstore Database Control

creating, 118–119
using, 119

bookstore EJB Control
creating, 121
using, 122–123

bookstore Web Service
example of SOAP fault from, 151
looking at the WSDL file for, 146–150
running, 150–151
writing, 141–144

bookstore Web Service Control
code for implementing, 126–127
code for interface, 125
code for searchAWS action from, 128–130
creating, 124
libraries needed for, 124–125
using, 128–134

bookstoredb database, creating in Database
Control example, 115

bookTypes variable, in bookstore
application, 70

bug and issue tracking list, subscribing to in
Beehive, 192

Building Workspace dialog box
function of in Eclipse, 182
viewing details of all running operations

in, 182

■C
Castor XML-Java binding tool, Web site

address for, 154

199■I N D E X

Checkout Projects, choosing from CVS in the
Import wizard, 185

Class outputFormBeanType annotation,
available for a forward class, 58

code
contributing to Apache Beehive and

XMLBeans, 193–195
code examples

for accessing a NetUI tag, 86
for accessing data from a shared flow, 100
addBook.jsp, 77–80
for adding tools.jar file to bootclasspath, 65
for amazonResults.jsp, 132–134
for an Apache Beehive HelloWorld Web

Service, 43
for beehiveUser.cmd file, 175
BookForm class, 71–75
bookMenu.jsp, 75–76
for the bookstore controller, 67–69
for bookstore EJB Control, 121
for bookstore Web Service Control

implementation, 126–127
for bookstore Web Service Control

interface, 125
for compiling and deploying Page Flow, 50
Control composition: e-mail and JMS, 111
Control composition: e-mail and JMS with

Priority, 111–112
for copying runtime JARs to project

folder, 50
for creating bookstore Database Control,

118–119
for creating Google.com search XML

Schema, 171–172
for creating MySQL datasource, 120–121
for defining a Beehive Control, 43
for defining a Beehive forward, 42
for defining a Beehive Page Flow, 42
for defining ant task in build script,

162–163
for defining a single checkbox in your

forms, 86
for defining a tagID attribute, 85
for defining a WebLogic forward, 43
for defining a WebLogic Page Flow, 42
of definition of a shared flow, 99
for deploying the HelloWorld Web Service,

140, 145
for displaying all validation errors, 87

EJBs in WebLogic Workshop, 38–39
e-mail Control implementation class,

107–110
e-mail Control public interface, 106–107
to expose your Java class as a Web

Service, 135
for extending an e-mail control, 110
for generating bookstore Web Service

Control Java source files, 125
for getting data from the XMLBeans, 165
for Google.com search results XML,

169–171
for Google.com search XML, 169
for HelloWorld Control example, 104
for HelloWorld Web Service, 140
helloworld.jpf extended for login

functionality, 51–52
helloworld.jpf in Beehive, 48–49
helloworld.jpf in WebLogic Workshop,

46–47
helloworld.jsp in Beehive, 49
helloworld.jsp in WebLogic Workshop,

47–48
how declarative model works with

HelloWorld Control, 113
how programmatic model works with

HelloWorld Control, 113
Java Page Flow Controller in WebLogic

Workshop, 32–33
java.lang.annotation.Documented

annotation, 29
java.lang.annotation.Inherited

annotation, 29–30
java.lang.Deprecated annotation, 29
java.lang.override annotation, 28
java.lang.SuppressWarning annotation, 29
libraryTemplate.jsp, 98–99
for LoginForm class, 53–54
login.jsp, 53
for making a project folder for Helloworld

example, 49
<netui:anchor> tag, 83–84
<netui:checkBoxOption> tag with

OptionsDataSource, 86
<netui:configurePopup> tag, 87
to populate XMLBeans, 164–165
pseudo-Java code to work with Book.xml

file, 156

200 ■I N D E X

for running the scomp compiler on
schema, 162

of sample code use on BookDetail
document, 166

of sample e-mail Control public interface,
106–107

sample XML file for a book, 156
sample XML file for the bookDetails.xsd

schema, 161
searchAmazon.jsp, 130–131
for searchAWS action from bookstore Web

Service Control, 128–130
for setting value of attribute in a

template, 98
showing tree tags in action, 92
for a simple banking Web Service, 39–42
a simple Java Control, 36–37
tomcat-users.xml file, 176
tree tags in action, 92
for uploading NetUI files from JSP, 88
using @Control metadata annotation, 119
using <netui:area> tag, 84
using <netui:attribute> tag, 84
using <netui:bindingUpdateErrors> tag, 85
using <netui:checkBoxOption> tag, 86
using <netui-data:anchorCell> tag, 93
using <netui-data:callMethod> tag, 93
using <netui-data:callPageFlow> tag, 93
using <netui-data:cellRepeater> tag, 93
using <netui-data:dataGrid> tag, 94
using <netui-data:declareBundle> tag, 94
using <netui-data:declarePageInput>

tag, 94
using <netui-data:getData> tag, 94
using <netui-data:headerCell> tag, 95
using <netui-data:message> tag, 95
using <netui-data:repeater> tag, 96
using <netui-data:spanCell> tag, 97
using <netui:error> tag, 87
using <netui:exceptions> tag, 88
using <netui:formatDate> tag, 88
using <netui:formatNumber> tag, 88–89
using <netui:formatString> tag, 89
using <netui:parameter> tag, 90
using <netui:rewriteName> tag, 90
using <netui-templateAttribute> tag, 97
using <netui-template:section> tag, 98
viewBook.jsp, 80–82

for a WebLogic Workshop HelloWorld
Web Service, 44

web.xml for Web Services, 144–145
for writing bookstore Web Service,

141–143
XML Schema for bookstore sample

application, 160
Control architecture

from the Apache Beehive Web site,
102–104, 105

understanding, 102–104
Control authoring model, looking at, 105–112
Control classes, relationships between, 106
Control Client Model, understanding,

112–113
Control composition

e-mail and JMS, 111–112
e-mail and JMS with Priority, 111–112

Control extension, creating, 110
Control implementation class

code sample of, 107–110
@Control metadata annotation

for defining the EJB Control, 122
using, 119

Control public interface
code for sample e-mail Control public

interface, 106–107
function of, 106

ControlBean-generated class, 110
ControlHaus

using Database Control from, 114–119
Web site address, 114

Controllers, Page Flow, 54–58
Controls. See also Database Control; Java

Controls
available at ControlHaus, 114
code for setting up a synchronous queue

for e-mails, 110
creating, 105–110
defining a simple in Beehive, 43
dissecting common shipped with Beehive,

114–134
how they relate to SOA, 24
introduction to, 101–113
packaging, 112
shipped with BEA WebLogic Workshop, 114
using, 101–134

201■I N D E X

Controls Packaging API
shipped with Apache Beehive, 112
Web site address for information about, 112

cursors. See also XML cursors
use of XMLToken class by, 167–168

CVS Checkout wizard, for checking out
projects from a CVS repository, 185

CVS client. See Eclipse CVS client
CVS Import wizard, choosing Checkout

Projects from, 185
CVS Repositories Show View dialog box,

views available in, 183

■D
Data, putting into XMLBeans, 164–165
data type mappings, table of in XMLBeans,

158–159
data types

hierarchy of in XML Schemas and
XMLBeans, 157–159

in XMLBeans, 157–159
Database Control

using from the ControlHaus project,
114–119

in WebLogic Workshop, 37
Database Control example

Creating beehiveuser user in, 115
getting ready to use, 115–117

declarative model, understanding, 113
developer list, subscribing to in Beehive, 192
development environment, setting up to

start developing with Beehive and
XMLBeans, 173–177

dialog boxes
Add CVS Repository, 184
Building Workspace in Eclipse, 182
CVS Repositories Show View, 183
Import wizard, 185

■E
EAI techniques. See Enterprise Application

Integration (EAI) techniques
Eclipse

building all projects at once, 181–182
creating a new repository location in,

183–184
defined, 179–180
downloading and installing, 180
setting up Ant in, 186

setting up a CVS repository with, 183–186
taking advantage of the Ant support,

185–186
Eclipse and Pollinate, working with, 179–189
Eclipse CVS client, connection methods that

come with, 184
Eclipse IDE, Pollinate project launched by,

11–12
Eclipse Pollinate

creating a new Beehive project in, 188–189
downloading and installing, 187–188
installing from a zip file, 188
installing from the Update site, 187
naming your Beehive application in, 189
setting up to run correct JDK, 65–66
tools needed to run, 187
Web site address for information about, 12

Eclipse projects
function of, 179
processing in the background, 181–182

Eclipse SDK, function of, 180
Eclipse Technology project, function of, 179
Eclipse Tools project, for creating

best-of-breed tools for Eclipse
platform, 179

Eclipse workbench
importing files into, 181
using, 180–182

eclipse.bat file, code for adding tools.jar file
to bootclasspath, 65

EJB Control
adding a book using, 123
defining, 37
using from the ControlHaus project,

120–123
in WebLogic Workshop, 38–39

EJB Control example, getting ready to use,
120–121

EJBGen, and annotations used in WebLogic
Workshop, 38–39

e-mail Control, extending to set up a
synchronous queue using JMS, 110

e-mail Control implementation class, code
sample of, 107–110

e-mail Control public interface, code sample
of, 106–107

EmailControl example, 106–107
Enhydra Zeus XML-Java binding tool, Web

site address for, 154

202 ■I N D E X

enterprise application development, the
challenges of, 1–4

Enterprise Application Integration (EAI)
techniques, evolution of, 3

Enterprise Application Integration (EAI)
world, potential for Web Services in,
18–19

“Enterprise Web Services in the Financial
Services Industry” webMethods
whitepaper, enterprise Web Service
defined in, 18

enterprise-class Web Services
defining, 19
vs. Web services, 18–19

error message, what one from the Web
Service looks like, 151

events, understanding in Control
architecture, 104

■F
Files, importing into the Eclipse

workbench, 181
FlowController parent class

class diagram of with PageFlowController
class, 56

relationship between PageFlowController
class and, 55–57

Forrester Research, Web site address for, 1
forward classes, annotations available for,

57–58

■G
Gartner, Web site address for, 7
getGreeting method, URL for calling, 150
global forwards annotation, of a Page

Flow, 55
Google.com search results xml, code listing

for, 169–171
Google.com search XML, code listing for, 169
Google.com search XML Schema, creating,

171–172

■H
HelloWorld Control

accessing the properties, 104
code example for, 104
how declarative model works with, 113
how programmatic model works with,

112–113
using, 112–113

HelloWorld controller, basic login process
in, 51

HelloWorld example
extending to add basic login functionality,

50–54
setting up and running the sample code,

49–50
HelloWorld Web Service

code for, 140
code for an Apache Beehive, 43
deploying, 140, 145
setting up to run, 144–145
testing using the Tomcat container,

140–141
helloworld.jpf

code in Apache Beehive, 48–49
code in WebLogic Workshop, 46–47

helloworld.jsp
code in Apache Beehive, 49
code in WebLogic Workshop, 47–48

■I
Import wizard. See CVS Import wizard
index.jsp page, Web site address, 140
@InitParam annotation, available in

Beehive, 136
instant legacy, defined, 7
instantiation. See also lazy instantiation

used by Controls, 113
Inversion of Control (IoC) design pattern,

Control architecture employment of
unique variant of, 102–104

isNestable method, function of, 57
isSingleton method, function of, 57
IT spending, decreases in since 2000, 1–2

■J
J2EE

vs. .NET, 6
the role of, 6

J2SE 5 (JDK), downloading and installing, 173
Jakarta Digester XML-Java binding tool, Web

site address for, 154
JAR files, Controls packaged as, 112
Java

the growth of, 4–6
multithreading capability of, 5–6

Java 1.5 (Tiger)
basic annotations in, 28–30
new annotation features in, 27

203■I N D E X

Java 2 Standard Edition Development Kit (JDK)
downloading and using, 4–6
items included in, 4

Java API, included in Java 2 Development Kit, 4
Java Architecture for XML Binding (JAXB).

See JAXB XML-Java binding tool
Java code

cross platform, 5
generating from the XML Schema,

162–163
Java Controls

code for a simple, 36–37
code for bookstore Web Service Control

interface, 125
introduced by BEA WebLogic Workshop,

35–39
invoking, 102

Java Page Flow (JPF) technology, Controls,
and Web Services, Beehive project
support for, 10–12

Java Page Flows. See also Page Flows
annotations and metadata value-added

support in, 11
architecture and components, 54–58
built on top of Struts, 45–46
code for a controller in WebLogic

Workshop, 32–33
dissecting, 45–64
function of, 32–35
introduction to, 45–54
Struts built on top of, 11

Java runtime, 5
Java Virtual Machine (JVM), running of Java

code on top of, 4
Java Web Service, writing your first, 139–141
Javadocs

annotation for creating, 29
Web site address for methods and

functionality, 55
java.lang.annotation.Documented

annotation, function of and syntax
for, 29

java.lang.annotation.Inherited annotation,
function of and syntax for, 29–30

java.lang.annotation.Retention annotation,
function of and syntax for, 30

java.lang.annotation.Target annotation,
function of and syntax for, 30

java.lang.Deprecated annotation, function of
and syntax for, 29

java.lang.Override annotation, function of
and syntax for, 28

java.lang.SuppressWarning annotation,
function of and syntax for, 29

Java-SQL binding, provided by Castor, 154
JAXB XML-Java binding tool, Web site

address for, 154
JaxME XML-Java binding tool, Web site

address for, 154
JBoss application server, downloading and

installing to use EJB Control
example, 120–121

jc annotation, for a Java Control, 37
JCP website

for information on JSR 175, 31
for information on JSR 181, 32

.jcs (Java Control Source), 102

.jcx (Java Control Extension), 102
JDOM API, for reading, writing, and

manipulating XML from within Java
code, 154

JDOM XML-Java binding tool, Web site
address for, 154

JPF. See Java Page Flow (JPF) technology,
Controls, and Web Services

.jpf file extension, denoting Java Page Flow, 33
Jpf.ActionOutput[] actionOutputs

annotation, available for a forward
class, 57

Jpf.Catch[] annotation
available for an action class, 57
of a Page Flow, 55

Jpf.controller annotation, of a Page Flow, 54–58
Jpf.Forward validationErrorForward

annotation, available for an action
class, 57

Jpf.Forward[] annotation
available for an action class, 57
of a Page Flow, 55

Jpf.MessageResource[] messageResources
annotation, of a Page Flow, 55

Jpf.MultipartHandler multipartHandler
annotation, of a Page Flow, 55

Jpf.SimpleAction[] simpleAction annotation,
of a Page Flow, 55

Jpf.ValidatableBean[] annotation, of a Page
Flow, 55

204 ■I N D E X

Jpf.ValidatableProperty[]
validatableProperties annotation,
available for an action class, 57

JSP, accessing methods of the shared flow
from, 100

JSR 109 (Implementing Enterprise Web
Services), using to deploy Web
Services, 139

JSR 175 (A Metadata Facility for the Java
Programming Language), Web site
address for information about, 31

JSR 181 (Web Services Metadata for the Java
Platform)

addressing common needs of Web
Services programming, 31–32

annotation for, 136
and Apache Beehive Web Services,

135–152
architecture overview, 138–139
introduction to, 135–139
runtime processor diagram for Web

Service, 138
simple use case diagram for Web

Service, 137
Web site address for information about,

12, 32
JSR 181 architecture, diagram of, 138
JSR 181 runtime processor, diagram for Web

Service, 138
JVM. See also Java Virtual Machine (JVM)

included in Java 2 Development Kit, 4
.jws extention, for WebLogic Workshop Web

Services files, 39

■L
lazy instantiation. See also instantiation

used by Controls, 113
libraryTemplate.jsp, code for, 98–99
lists, subscribing to, 191–193
login functionality, helloworld.jpf extended

for, 51–52
LoginForm class, code listing for, 53–54
login.jsp, code listing for, 53
lookupISBN method, defining, 125

■M
Messages file, in bookstore application

classpath, 70
Metadata, defined, 27
Multithreading, Java capability of, 5–6

MVC architecture, of Page Flows and NetUI, 62
MySQL Connector/J, downloading, 117
MySQL database, downloading and

installing, 115

■N
.NET vs. J2EE, 6
NetUI

dissecting, 45–64
form data binding, 75
Java Page Flows included in, 11
MVC architecture of Page Flows and, 62
tag libraries that make up, 58

NetUI and Page Flows, using, 65–100
NetUI components, 58–62
NetUI tag libraries

examining, 83–92
references to, 45
tag table, 59–60

NetUI tags
code for accessing, 86
dissecting, 83–92

<netui:anchor> tag, for creating links, 83–84
<netui:area> tag, for creating image maps, 84
<netui:attribute> tag, for creating attributes

in other tags, 84
<netui:base> tag, specifying base URL for

each URL on a page with, 85
<netui:behavior> tag, for adding information

to the parent tag, 85
<netui:bindingUpdateErrors> tag, for

displaying binding errors, 85
<netui:body> tag, function of, 85
<netui:button> tag, for creating buttons, 85–86
<netui:checkBox> tag, defining a single

checkbox in your forms with, 86
<netui:checkBoxGroup> tag, for creating

groups of checkbox tags, 86
<netui:checkBoxOption> tag, code example

for, 86
<netui:configurePopup> tag, for configuring

a pop-up window, 87
<netui:content> tag, function of, 87
NetUI-data tag library

for binding data from forms and
controllers to the JSP, 61

examining, 93–97
tag table, 61

<netui-data:AnchorCell> tag, function of, 95

205■I N D E X

<netui-data:anchorCell> tag, for generating
anchor cells, 93

<netui-data:callMethod> tag, for calling any
method in a Page Flow, 93

<netui-data:callPageFlow> tag, for calling
any method in the current Page
Flow, 93

<netui-data:caption> tag, for displaying a
caption in any data grid, 93

<netui-data:cellRepeater> tag, for rendering
a single cell within an HTML table, 93

<netui-data:configurePager> tag, for
providing pagination capabilities to
a NetUI data grid, 94

<netui-data:dataGrid> tag, for displaying a
set of data, 94

<netui-data:declareBundle> tag, for
specifying a resource bundle for
internationalization, 94

<netui-data:declarePageInput> tag, function
of, 94

<netui-data:footer> tag, for rendering a
footer to a data grid, 94

<netui-data:getData> tag, function of, 94
<netui-data:header> tag, for rendering a

header to a data grid, 95
<netui-data:headerCell> tag, for rendering a

table header cell, 95
<netui-data:imageAnchorCell> tag, function

of, 95
<netui-data:imageCell> tag, function of, 95
<netui-data:message> tag, for generating a

customizable message for your
page, 95

<netui-data:messageArg> tag, for passing
arguments to the
<netui-data:message> tag, 95

<netui-data:methodParameter> tag, for
passing parameters to the
<netui-data:callPageFlow> tag, 96

<netui-data:pad> tag, for passing some
padding in an HTML table, 96

<netui-data:renderPager> tag, function of, 96
<netui-data:repeater> tag, function of, 96
<netui-data:repeaterFooter> tag, for

generating a footer in the
<netui-data:repeater> tag, 96

<netui-data:repeaterHeader> tag, for
generating a header in the
<netui-data:repeater> tag, 96

<netui-data:repeatItem> tag, for rendering
data in the <netui-data:repeater>
tag, 97

<netui-data:rows> tag, container tag for a set
of data rows, 97

<netui-data:serializeXML> tag, for serializing
an XMLBean, 97

<netui-data:spanCell> tag, for rendering a
cell in a column, 97

<netui-data:templateCell> tag, using to
render a templated cell in a table, 97

<netui:divPanel> tag, using with DHTML to
generate an HTML <div> tag, 87

<netui:error> tag, code for displaying
field-level validation errors, 87

<netui:errors> tag, for displaying all
validation errors, 87

<netui:exceptions> tag, function of, 88
<netui:fileUpload> tag, for uploading files

from JSP, 88
<netui:form> tag, function of, 88
<netui:formatDate> tag, function of, 88
<netui:formatNumber> tag

code for, 88–89
<netui:formatString> tag, code for, 89
<netui:hidden> tag, for adding values to a

page that’s hidden, 89
<netui:HTML> tag, for building the HTML

tag in a page, 89
<netui:image> tag, for displaying images, 89
<netui:imageAnchor> tag, for using an image

as an anchor, 89
<netui:imageButton> tag, for using an image

as the anchor, 89
<netui:label> tag, for displaying text to

users, 90
<netui:parameter> tag, function of, 90
<netui:parameterMap> tag, function of, 90
<netui:radioButtonGroup> tag, function of, 90
<netui:radioButtonOption> tag, used with the

<netui:radioButtonGroup> tag, 90
<netui:retrievePopupOutput> tag, for getting

data from the pop-up window, 90
<netui:rewriteName> tag, function of, 90
<netui:rewriteURL> tag, that supports URL

rewriting, 90

206 ■I N D E X

<netui:scriptBlock> tag, for generating a
block of JavaScript code, 91

<netui:scriptContainer> tag, function of, 91
<netui:scriptHeader> tag, function of, 91
<netui:select> tag, that supports data

binding, 91
<netui:selectOption> tag, function of, 91
<netui:span> tag, for generating an HTML

 tag, 91
NetUI-template tag library

examining, 97–99
tag table, 62

<netui-template:attribute> tag, for defining
any property placeholder as part of a
template, 97

<netui-template:divPanel> tag, for creating
HTML <div> tag that may contain
other tags, 98

<netui-template:includeSection> tag, for
defining a section to include as part
of a template, 98

<netui-template:section> tag, for defining a
section, 98

<netui-template:setAttribute> tag, for setting
value of an attribute in a template, 98

<netui-template:template> tag, as parent tag
for any template, 98

<netui:textArea> tag, that supports data
binding, 91

<netui:textBox> tag, that supports data
binding, 91

<netui:tree> tag, for generating a navigable
tree of TreeElement objects, 91–92

<netui:treeContent> tag, for displaying text
within the tree, 92

<netui:treeHtmlAttribute> tag, for setting
attributes on a tree, 92

<netui:treeItem> tag, for adding a node to a
tree, 92

<netui:treeLabel> tag, for adding a label to a
given node of a tree, 92

<netui:treePropertyOverride> tag, for
overriding properties of
<netui:tree>, 92

newCursor method, for creating a cursor on
BookDetailDocument, 166

■O
object-oreinted programming vs.

service-oriented programming, 22
object-oriented language, Java as, 4
Object-Relational (OR) mapper, XMLBeans

as, 153
onCreate method, function of, 56
onDestroy method, function of, 57
@OneWay annotation

available in Apache Beehive, 136
in the bookstore Web Service, 143–144

onRefresh method, function of, 57
operations, understanding in Control

architecture, 104
output files, working with Web Services and

JSR 181, 139

■P
Page Flow architecture, reviewing, 62–63
Page Flow components, 54–58
Page Flow controllers, 54–58

action classes and forward classes, 57–58
for bookstore application, 67–71

Page Flows. See also Java Page Flows; Page
Flows/NetUI

accessing methods of the shared flow
from, 99–100

advantages of over Struts, 63
in Apache Beehive, 48–54
begin method in all, 47
compiling and deploying to Tomcat, 50
different annotations of, 55
introduction to architecture and

components, 54–58
MVC architecture of NetUI and, 62
WebLogic Workshop vs. Apache Beehive,

42–43
Page Flows and NetUI, using, 65–100
Page Flows/NetUI, annotations defining,

42–43
PageFlowController class

class diagram of with FlowController
parent class, 56

relationship between FlowController
parent class and, 55–57

PageFlowUtils class, referring to for helper
methods, 57

Petstore application, deploying on
Tomcat 5, 177

207■I N D E X

Petstore sample, running on Tomcat 5, 176
Plain Old Java Object (POJO), 101
POJO. See Plain Old Java Object (POJO)
Pollinate. See Eclipse Pollinate
Pollinate project, launched by Eclipse IDE,

11–12
Pollinate Web application, creating, 65–66
programmatic model, understanding,

112–113
project folder

copying runtime JARs to, 50
making for running Helloworld

examples, 49

■R
registry, 14
remote code, accessing over a network with

Web Services, 14–15
Repositories Show View dialog box. See CVS

Repositories Show View dialog box
request prefix, binding data to request

objects with, 85
resource client, understanding in Control

architecture, 103
resource proxy, understanding in Control

architecture, 103
response times, importance of low for high

volume of users, 3
RetentionPolicy type, values for

java.lang.annotation.Retention
annotation, 30

■S
sample code, how to set up and run the

HelloWorld example, 49–50
Saxon XQuery processor, Web site address

for downloading, 156
sayHelloWorldInParam Web Service

method, Web site address for
testing, 141

schema compiler (scomp), running on your
schema, 162

schema validator
function of, 159
results of, 162

searchAmazon.jsp, code for, 130–131
searchBook method, defining, 125
security, importance of for your applications, 3
@SecurityIdentity annotation, available in

Beehive, 136

@SecurityRoles annotation, available in
Beehive, 136

Service, definition and characteristics of,
20–21

service provider, defined in WSDL, 14
service requestor (Web Service client),

function of, 14
Service-Oriented Architecture (SOA)-based

development. See SOA, development
“Service-Oriented Modeling and

Architecture: How to Identify,
Specify, and Realize Services for Your
SOA”, Web site address for, 20

service-oriented programming
defining, 22–23
vs. object-oreinted programming, 22

Service-Oriented Unified Process (SOUP),
new methodology for SOA-based
development, 22

session prefix, binding data to session
objects with, 85

shared flows
accessing methods of from your JSP, 100
accessing methods of from your Page

Flow, 99–100
code for accessing data from, 100
introduction to, 99–100

Simple Object Access Protocol (SOAP)
as basic Web Services technology, 16
Web site address for information about, 9, 16

SOA (Service-Oriented Architecture)
defining, 22
development, 1
exploring the role of XML in, 23
how Apache Beehive Controls relate to, 24
how Apache Beehive enables, 23–24
how Apache Beehive Web Services relate

to, 24
how Beehive fits into, 24
how XMLBeans relate to, 24
introduction to, 7, 19–23
relationship to Web Services, 21
using different technologies, 20
Web site address for information about, 22

“SOA Learning Guide”, Web site address
for, 23

SOA-based development
Web site address for information about a

new methodology for, 22

208 ■I N D E X

SOAP (Simple Object Access Protocol). See
also Simple Object Access Protocol
(SOAP)

Web site address for information about, 9
@SOAPBinding annotation

available in Apache Beehive, 136
in the bookstore Web Service, 143

software applications
downloading and installing for Beehive

and XMLBeans development,
173–174

getting the best performance from, 3
importance of security for, 3
importance of time to market, 2
integration of into large enterprises, 3

source code, getting for Apache Beehive, 194
String outputFormBean annotation,

available for a forward class, 57
String path annotation, available for a

forward class, 58
String returnAction annotation, available for

a forward class, 58
String strutsMerge annotation, of a Page

Flow, 55
String useFormBean annotation, available

for an action class, 57
String validatorMerge annotation, of a Page

Flow, 55
String[] rolesAllowed annotation

available for an action class, 57
of a Page Flow, 55

Struts
advantages of Page Flows over, 63
Java Page Flows built on top of, 11, 45–46

Sun Microsystems, Web site address for Java
programming information, 6

SVN/Wiki change list, subscribing to, 192
system architecture, importance of having

freedom of choice for, 4

■T
tables

miscellaneous Web Service standards, 18
NetUI tag library, 59–60
NetUI-data tag library, 61
NetUI-template tag library, 62

tag library documentation
Web site address for, 77

token types
in bookstore XML file, 168
list of constants, 167

TokenType class, list of constants, 167
Tomcat, working with, 175–177
Tomcat 5

deploying the petstore application on, 177
downloading and installing, 174
running the petstore sample on, 176

Tomcat 5.5. See Apache Tomcat 5.5
Tomcat server, starting, 176
tomcat-users.xml file, code for, 176
tools, Web site addresses for XML-Java

binding, 154
tools.jar file

Annotation Processing Tool located in, 180
needed to run Pollinate, 65–66

type-safe collections issue, annotation for
suppressing warnings in code, 29

■U
UDDI of Web Services. See Universal

Description, Discovery and
Integration (UDDI) of Web Services

Universal Description, Discovery and
Integration (UDDI) of Web Services

search engine defined by, 17
Web site address for information about,

10, 17
Update site, installing Eclipse Pollinate from,

187

■V
validation errors, NetUI tags for displaying, 87
validationErrorForward annotation, in

bookstore application, 71
viewBook.jsp

code for, 80–82
shown in a browser, 82

■W
Web Service Control, building for the

bookstore application, 123–128
Web Services. See also Java Web Service

annotations available for in Apache
Beehive, 136

Apache Beehive, 43–44
basic flow of, 16
basic technologies used when working

with, 16–18

209■I N D E X

building with the JSR 181 processor, 139
code for a simple banking Web Service,

39–42
deployment options, 139
enterprise class, 18–19
vs. enterprise-class Web Services, 18–19
exposing from the bookstore application,

141–152
Gartner quote about, 7
introduction to, 14–19
overview, 14–15
potential for in the EAI world, 18–19
relationship to SOA, 21, 24
table of miscellaneous standards, 18
using with XMLBeans, 168–172
in WebLogic Workshop, 42
WebLogic Workshop annotations, 39–42
writing your first, 139–141

Web Services Description Language (WSDL)
as basic Web Services technology, 16–17
contents of, 16–17
service provider defined in, 14
Web site address for information about,

10, 17
Web Services Metadata for the Java Platform.

See JSR 181 (Web Services Metadata
for the Java Platform)

Web Service standards
table of miscellaneous standards, 18

Web site address
for “A Defining Moment for SOA” article, 22
for Apache Beehive documentation page, 59
for Apache Beehive information, 12
for Apache Beehive tag library

documentation, 77
for article about annotations, 27
for BEA customers information, 7
for BEA WebLogic 9.x, 48
for BEA’s SOA Resource Center, 23
for Betwixt XML-Java binding tool, 154
for Castor XML-Java binding tool, 154
for a comparison of XML-Java binding

technologies, 155
for ControlHaus, 114
for details on how to use ant task, 163
for downloading Amazon.com WSDL, 124
for downloading Ant 1.6.2, 173
for downloading BEA WebLogic Workshop

8.1, 46

for downloading Beehive 1.0.3 binary
distribution, 174–175

for downloading Eclipse, 180
for downloading J2SE 5 (JDK), 173
for downloading latest Pollinate

integration build, 188
for downloading latest version of

XMLBeans, 156
for downloading Saxon XQuery

processor, 156
for downloading Tomcat 5, 174
for downloading Tomcat 5.5, 174
for downloading XMLBeans alpha binary

distribution, 175
for Eclipse Pollinate information, 12
for Forrester Research, 1
for Gartner, 7
for generating an XML Schema from an

XML file, 161
for generating XMLBeans online, 161
for getting the source to Beehive, 194
for getting the source to XMLBeans, 194
for index.jsp page, 140
for information about Apache Axis, 124
for information about BEA customers, 7
for information about building the

Beehive code, 194
for information about Controls Packaging

API, 112
for information about JSR 175, 31, 32
for information about JSR 181, 12, 32, 135
for information about services, 20
for information about UDDI, 17
for information about working with

tokens, 167
for information about working with XML

cursors, 166
Jakarta Diegester XML-Java binding

tool, 134
for Javadocs for XMLToken class, 167
for Javadocs methods and functionality, 55
for JaxME XML-Java binding tool, 154
for JDOM XML-Java binding tool, 154
for learning to work with BEA Page Flows, 46
for list of Beehive mailing lists, 192
for list of methods provided with

XMLCursor classes, 166
for miscellaneous Web Service

standards, 18

210 ■I N D E X

for registering for Amazon.com
subscription ID, 124

for Simple Object Access Protocol (SOAP)
information, 9, 16

for SOA-based development, 22
for “SOA Learning Guide”, 23
for some general Beehive and XMLBeans

links, 195
for Sun introduction to Java

programming, 6
for tag library documentation, 77
for testing HelloWorld Web Service, 140
for testing sayHelloWorldInParam Web

Service method, 141
for UDDI of Web Services information, 10
for understanding the Beehive

distribution structure, 194
for understanding the Beehive process, 194
for validating your XML Schema online, 161
for visiting the XMLBeans issue log, 195
for Web Services Description Language

(WSDL) information, 10, 17
for WebServices.org site, 23
for XMLBeans information, 13

WebLogic Workshop. See also BEA WebLogic
Workshop

vs. Apache Beehive Page Flows, 42–43
code for a simple banking Web Service,

39–42
Database Control in, 37
defining forwards in, 43
detailed example of a Page Flow view in, 35
EJB Control in, 37–38
EJBs in, 38–39
example of multiple Controls in, 38
helloworld.jpf code in, 46–47
helloworld.jsp code in, 47–48
Java Controls introduced by, 35–39
a Java Page Flow Controller in, 32–33
Page Flows in, 46–48
simple Page Flow view in, 34
using annotations in, 32–42
XMLBeans technology as part of, 153

@WebMethod annotation
in the bookstore Web Service, 143

webMethods
definition of an enterprise Web Service, 18

@WebParam annotation
in the bookstore Web Service, 144
defining parameters for a method with, 136

@WebResult annotation
in the bookstore Web Service, 143
for naming your return value, 136

@WebService annotation
available in Apache Beehive, 136
in the bookstore Web Service, 143

WebServices.org site
for information about SOA and Web

Services, 23
WSDL. See also Web Services Description

Language (WSDL)
consuming, 124–125
getting the Amazon.com, 124

WSDL file
looking at for the bookstore Web Service,

146–150

■X
XML, exploring the role of in SOA, 23
XML cursors. See also cursors

functions allowed by, 166
using, 165–166
working with, 166

XML documents
using TokenType class to determine

contents of, 167
using XML cursors to navigate through,

165–166
XML Schemas

defined, 159
generating Java code from, 162–163
hierarchy of data types in, 157
Web site address for, 161

XML tokens, working with, 167–168
XMLBean classes, generating Java code to

work with, 162–163
XMLBeans

building the code, 194–195
contributing code to, 194–195
contributing to, 191–195
data types in, 157–159
downloading and installing, 156
getting data from, 165
hierarchy of data types in, 157
how they relate to SOA, 24
how to put data into, 164–165

211■I N D E X

introduction to, 13
as Object Relational (OR) mapper, 153
overview of, 155–159
table of data type mappings in, 158–159
using, 153–172
using with Web Services, 168–172
visiting the issue log, 195
Web site address for generating online, 161
Web site address for getting the source

to, 194
Web site address for information about, 13
Web site address for up-to-date list of

mailing lists, 193
working with, 159–165
working with cursors, 166
as an XML-Java binding technology, 155

XMLBeans alpha binary distribution,
downloading and installing, 175

XMLBeans classes
class diagram of generated, 164
contents of JAR file after generating, 163
walking through, 163–164

XMLBeans developer list, subscribing to, 193

XMLBeans lists, subscribing to, 193
XMLBeans SVN/Wiki change list,

subscribing to, 193
XMLBeans user list, subscribing to, 193
XMLCursor classes, Web site address for list

of methods provided with, 166
XML-Java binding

how it works, 154
what it is, 153–155

XML-Java binding technologies, Web site
address for a great comparison of, 155

XML-Java binding tools, Web site addresses
for, 154

XMLToken class
use of by cursors, 166
Web site address for Javadocs for, 167

Xpath, using Saxon XQuery for support, 156
Xquery, downloading Saxon XQuery

processor, 156
XSD file. See also XML Schemas

code for building, 162

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

