PROFESSIONAL MINDWARE é

UNLIMITED EDITION

.
N
O
LL]
L
o =
—
c
O
(C
=
Q
.

o
L*]
T
o
=
3
Q
!

0
v
—
)
o0
£
LL]

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge]

Your Guide to Cutting-Edge J2EE Programming Techniques.

Back Cover

Enterprise Java Beans and JavaServer Pages deliver the tools you need to
develop state-of-the-art multi-tier applications for the Internet or an intranet. But
how do you create robust components for these two APIs--and get them to work
together with each other and the rest of the containers in Java 2 Enterprise
Edition? This unique guide delivers the answers. With lucid explanations and
lots of sample code illustrating the development of a hotel reservation system,
Lou Marco shows you step by step how to harness the power of JSP and EJB--
and create cutting-edge J2EE applications.

Make JSP, EJB, and J2EE Work Together

. Get the lowdown on J2EE N-tier application development

. Work with JSP objects, standard actions, and Web sessions

. Use JavaBeans or JSP tags to access a database with JDBC

. Understand how JSP works with Java servlets

. Take control of JSP errors, exceptions, and debugging

. Master EJB basics, from clesses to session and entity Beans

. Harness EJB tools to secure your application

. Manage transactions using EJB with JDBC, JTS, and JTA

. Build Bean- or container-managed persistence in EJB components

. Learn the ins and outs of JSP and EJB as you create a fully functional
hotel reservation system

About the Authors

Lou Marco is a consultant, writer, and the owner of Lou Marco and Associates,
a firm that designs Web sites and writes custom software. An IT professional
with more than two decades of experience, he contributes frequently to
Enterprise Systems Journal and is the author of ISPF/REXX Development for

Experienced Programmers.

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part I: EJB & JSP—Java On the Edge

Chapter List

Chapter 1: Enterprise Computing Concepts

Chapter 2: J2EE Component APIs

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 1. Enterprise Computing Concepts

JavaServer Pages (JSPs) and Enterprise JavaBeans (EJBs) are part of a server-side application development
specification called the Java 2 Platform, Enterprise Edition (J2EE). Before you jump into the specifics of JSPs or
EJBs, some background on enterprise application development, J2EE, and how JSP and EJB fit into J2EE is in order.

This chapter sets the stage with information on the characteristics of a typical computing environment found in a
modern corporation. Next, you read about two significant advancements in computer science that provide application
developers with the means to satisfy their customers’ demands for computing services. You get a high-level look at
J2EE and see how J2EE addresses the needs of application developers. You read about the components of J2EE,
which include JSP and EJB. The chapter closes with a short discussion on the roles that JSPs and EJBs play in
developing enterprise applications with the J2EE specification.

The Enterprise Computing Environment

Today'’s corporate computing environment is a different animal from its ancestors. Typically, enterprise computing
environments are:

. Data-Obsessed: These days, the modern company is addicted to its data. With storage costs low, companies are
less likely to purge data stores today than in years past. Some industries, such as brokerage and insurance, keep
decades’ worth of data and subject their data to intense analysis. The astute corporate mavens realize that
corporate data is an asset worth exploiting. Those in charge look to their computing professionals to provide tools
that exploit this valuable asset.

. Distributed: Today’s enterprise computing environment has grown beyond the scenario of a single machine in an
air-conditioned room, with rows and rows of storage devices, serving hundreds or thousands of dumb green
screens. The more likely scenario for today’s environment is one of networked servers in diverse geographical
locations that serve data to hundreds or thousands of comparatively smart GUI clients.

. Secure: A good deal of corporate data must be kept from the prying eyes of the pesky, prying employee itching to
know who got the biggest raise in the department, the dementedly disgruntled employee looking to vend
proprietary information, and the capriciously curious employee trying to learn about various systems and
applications.

. Scalable: The environment that serves the needs of one hundred may be inadequate to serve the needs of one
thousand. As the number of users increases, resources, such as bandwidth or database connections, have a bad
habit of thinning out to unacceptable levels or simply running out.

. Fault tolerant: With the computing environment distributed among many parts, the possibility of any single part
failing increases with the number of parts. The company cannot afford to have its systems crash and burn every
time a server winks out or a data store goes offline.

. Heterogeneous: The days of a company using products from a single vendor are gone. More likely, a company
uses a mix of hardware and software from several competing vendors. Today, everything from the physical disk

packs to the video card on the desktop may be purchased from different vendors.

The modern computing environment clearly shares the characteristics of today’s diverse corporation doing business in
today’s diverse world.

The challenges facing systems professionals tasked with developing enterprise applications are legion. How have
today’s systems folk risen to the challenge? Two powerful technologies developed over the past few decades have
proven instrumental in developing applications that allow the modern corporation to conduct its business. These
technologies are client-server architectures and object technologies.

Client-server architectures describe how to partition the major functions of an application in layers. Object
technologies deal with constructing software systems as groups of communicating objects; each object has a set of
well-defined behaviors (called methods) and comes with its own data (called properties).

Developing Applications in Layers

In the days of bell-bottoms and disco music, companies used networks primarily to connect mainframes using
dedicated hardware and proprietary software and protocols. In the 1980s, companies started to use UNIX servers and
the TCP/IP protocol, which quickly became an industry standard. In response to servers’ not adequately scaling to
meet the needs of ever-increasing numbers of users, those in charge of the shop began to shift processing power
from centralized servers to the network. The era of client-server computing had begun.

Developing client-server applications is different from developing applications that run on green-screen, glass house
systems. The distributing of processing power between client and server demands that client-server software be
developed to reflect this division.

One strategy devised to develop client-server applications is to write the software in layers. A layer is a logical level
that deals with related application tasks. The basic idea is to develop the software to implement the layer’s functions
independently of features in other layers.

By partitioning software into layers, application developers could concentrate on the features and problems peculiar to
a particular layer. Division of application features among layers meant division of development responsibility. In
addition, the marketplace started to offer tools to support this software development strategy.

The layers commonly used to abstract a software system these days are a presentation layer, an application logic
layer, and a data layer. Each layer is responsible for functions not found in the other layers:

. The presentation layer is responsible for user interface tasks. These tasks include accepting user input, performing
various edit checks on input, and displaying relevant application output.

. The application logic layer is responsible for tasks that execute the algorithms that solve business problems. These
tasks include performing calculations, handling security, and accessing data. The application logic layer contains
most of the code for the application.

. The data layer is responsible for tasks that maintain permanent data stores in the form of one or more databases.
These tasks include data locking, data integrity support, and transaction support.

Code that implements tasks within a layer communicates with code in adjacent layers only. For example, code within
the presentation layer communicates with code within the application logic layer but does not communicate with code
within the data layer.

To implement a layered application, you need an architecture that describes the physical boundaries between the
above layers. The components that reside within the physical boundaries of the layers are called tiers. A summary of
two common client-server architectures, called two-tier and three-tier (or n-tier) architectures, follows.

Note The term architecture as used throughout this chapter refers to a partitioning strategy and a coordination
strategy. The partitioning strategy leads to dividing the entire system in discrete, non-overlapping parts or
components. The coordination strategy leads to explicitly defined interfaces between those parts.

Two-Tier Architectures in Brief

Some two-tier architectures combine most of the application logic layer tasks with the presentation layer, while others
combine most of the application logic layer with the data layer.

A two-tier architecture could have one tier consisting of client PCs containing application logic code and database
access routines and the other tier consisting of one or more databases. This arrangement is often referred to as a fat
client.

Another way to implement the two-tier architecture is placing the application logic layer with the data layer to form a
tier and having the presentation layer in the other tier. Here, the database would rely on stored procedures and
triggers to implement most of the application logic. This arrangement is often referred to as a thin client.

Figure 1-1 shows the differences between fat and thin client arrangements.

Presentation, Presentation
App Logic Layer Layer

FAT Client With THIM Client
Application Logic With Mo App
Cade Logic Code

Data Stores,
Data Stores, Stared Procediures,
Mo Stored Procedures Triggers
Data Layer Application Logic,
Data Layer

Figure 1-1: Fat and thin clients compared and contrasted

As you can see in Figure 1-1, the fat client architecture containing application logic code is a combination of the
functionality of the presentation and application logic layers. The thin client architecture has the application logic code
buried within the DBMS in the form of stored procedures (code stored within the database that performs some
application-specific task) and triggers (a feature of a DBMS that executes stored procedures based on one or more
conditions). Most two-tier architectures fall somewhere in between these extremes. The dashed line represents the
tier boundary.

Conventional wisdom these days is that two-tier architectures can satisfactorily handle a hundred or so users. For
larger numbers of users, performance may start to degrade because of the client’s need to maintain a connection to
the server. These constant connections drain network bandwidth and use scarce database connections. This problem
is more severe in the fat client than in the thin client scenario. For the fat client implementation, every request for data
requires reaching across the network, dipping into the database, and returning data to the client. For the thin client
implementation, one request for data can trigger a DBMS stored procedure that executes on the server. This stored
procedure could return the same data that a fat client would need multiple requests for. Although using stored
procedures helps alleviate the bandwidth problem, the thin client still requires the database connection.

More bad news for adopters of a two-tier architecture follows. In the fat client scenario, any change to the application
logic (and you know that there will be changes) involves compiling and installing the changed code on all the clients —
an expensive proposition. In the thin client scenario, the enterprise usually relies on vendor-specific databases and the
vendor’s implementation of triggers and stored procedures. Typically, proprietary implementations of DBMS features
are not portable to different platforms and usually will not work with different vendor products.

Every strain of technology solves some old problems while introducing new ones. Two-tier architectures are certainly
no exception; although applications developed with a two-tier architecture achieve some benefits by isolating tasks
into separate tiers, the disadvantages of the architecture remain. A sensible question is: Are there ways of exploiting
the advantages of these architectures while taking the sting out of their problems?

N-tier Architectures in Brief

Perhaps | can shed some light on a possible answer to the $64,000 question posed in the previous section by posing
another question: What are the root causes of the deficiencies of the two-tier architectures? One cause is the
architecture’s failure to give the application logic layer its own tier. By trying to divvy up the functionality of the
application logic layer, the resulting architecture ties applications to high-maintenance clients, proprietary and
nonportable databases, and clogged networks. Why not give the application logic layer its very own tier?

You don't have to be a rocket scientist to guess what the architecture is called when the presentation, application
logic, and data layers have their own tier. The “n” in n-tier means that a particular layer (the application logic layer,
really) may have more than one physical tier. Whether you're talking about three-tier (a specific case of the more
general n-tier) or n-tier, the basic concepts are the same — to encapsulate the application logic from the presentation
and data layers.

What does this buy you? With the computations, business logic code, and other application logic layer tasks isolated
in one or more separate tiers, these tasks do not reside in the client, nor do they reside in the database. Put another
way, n-tier architectures typically deploy thin clients and DBMSs devoid of application code.

There are several paths to the road of three-tier architecture implementation. A popular implementation places the
application logic layer on one or more application servers. These servers provide many essential services to a three-
tier application, such as transaction management, resource pooling, and security.

Rather than allow a fat client or stored procedure—laden database to handle transactions (when to commit one or
more transactions or when to rollback, for example), a three-tier architecture implementation delegates this vitally
important function to the application server. Because business logic dictates what constitutes a transaction, support
services dealing with transaction management belong on the application server because the business logic is
implemented there.

As previously mentioned, a shortcoming of two-tier architectures is the consumption of resources, such as database
connections, even when such resources are not needed. A characteristic of two-tier architectures is that each client
needs a connection to the databases. Three- or n-tier architecture implementations allow a client to request data from
one or more databases by communicating with code in the application logic layer tier. This code can dynamically
connect to a database to fetch and return the requested data to the client. Also, this code can queue the data request
until a database connection becomes available, and then fetch and return the requested data to the client.

Application servers — both hardware and software — are more secure than desktop client PCs. The hardware that
houses the application server usually resides in a physically protected space. Rarely would you worry about stumbling
over a power cord for the hardware that houses an application server! On the software side, most server software is
built with security in mind unlike client desktop operating systems, such as Windows or Mac OS.

Do three-tier architectures solve the problems of two-tier architectures cited above? For the most part, they do. The
problems caused by fat clients simply do not apply to n-tier architectures. Thin clients are relatively inexpensive to
install and maintain. Application changes will not have much of an impact on thin clients; the application servers take
the brunt of the changes.

Pulling application logic out of the DBMS by not using stored procedures places less reliance on proprietary stored
procedure implementations. Three-tier implementations have a wider choice of DBMS products for use in the data

layer than two-tier, thin-client implementations.

In general, the isolation of functions in discrete layers, implemented in discrete tiers, means that each tier can be
tweaked by using best-of-breed products without much impact on the remaining tiers.

As previously mentioned, any technology worth its salt solves old problems while introducing new ones. Some
problems caused by implementing applications that follow the n-tier architecture are described below.

N-tier architectures are flexible. One result of this flexibility is that the three- or n-tier implementer has to cope with
more hardware and software components than its two-tier counterpart. The addition of the application server opens up
new system configuration possibilities. While selecting best-of-breed products to implement the system’s layers is a
good thing, the problems with having a multiple vendor environment, replete with finger pointing, persist. As you might
imagine, maintenance costs for a large n-tier system are high.

Imagine a large n-tier application, such as a banking/ATM system, with thousands of clients dispersed all over the
world securely reading and writing terabytes of data to multiple data stores. The activity between tiers necessary to
get the job done must be staggering! The overhead produced by transmitting and receiving all this data across
networks that connect hardware and software components that implement the multiple tiers can slow down things, to
be sure.

The problems I've mentioned can be solved for the most part by spending more money for additional hardware — not
exactly the favorite solution!

We've talked about the benefits of developing software in layers, or tiers. As we’'ll see here and throughout
subsequent chapters, J2EE provides an architecture for constructing n-tier applications. Before we move on to discuss
J2EE particulars, we need to take a look at another essential technology instrumental to J2EE application
development that has proved its worth in theory and practice: object technology.

Top <

| <= Prov_ | Noxt =

Presentation, Presentation

App Logic Layer Layer

FAT Client With THIN Client

Application Logic With No App

Code Logic Code
)

Y Data Stores,
Data Stores Stored Procedures,
No Stored Procedures Triggers

Data Layer Application Logic,
Data Layer

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 2: J2EE Component APIs

This chapter provides an overview of the J2EE component APIs. As mentioned in Chapter 1, J2EE is a collection of
approximately 12 application programming interfaces (APIs) for developing enterprise applications. These APIs define
a complete set of services that software engineers use to develop software components. J2EE simplifies the work of
an application development team by providing a rich set of services that manage many application details without
programming.

J2EE API Classifications

The J2EE APIs provide numerous services to n-tier application developers. We may group the J2EE APIs into three
classifications corresponding to the category of service, or function, the APIs provide to the application development
team. The classifications are as follows:

. Application components: These include applets, which are Java programs that execute in the client browser;
servlets, which execute on the server; and JSP pages, which provide dynamic content to Web pages. J2EE also
enables clients to run applications that can access data (by using a database API) without going to a Web server.

. Resource managers: These enable customer components to connect to an external component. These external
components can be another piece of J2EE, such as JavaMail (for mail messaging) or an IBM mainframe
transaction processor (such as IMS or CICS).

. Database access: J2EE database access relies on the Java Database Connectivity APl or JDBC, which enables
a customer container to issue industry-standard SQL. Relational database access in Java also relies heavily on
Java Transaction Services, or JTS, and the Java Transaction API.

The J2EE APIs work in concert to provide the services mentioned in the aforementioned classifications. For example,
a developer would use an application component API, such as JSP, to create a Web interface for an application that
accesses data from a relational database using JDBC. In the following section, we'll take a look at J2EE APIs that fall
within the preceding classifications.

Top <

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

J2EE APIs

Sun Microsystems provides a list of technologies that developers use in creating J2EE applications. Most of these
technologies have an associated API. A few, notably XML, are used in several J2EE APIs. Here is a list of the J2EE
APIs with a brief description:

. JavaServer Pages (JSP): Enables developers to dynamically generate Web pages with HTML, XML, and Java
code. JSP pages execute on the Web server.

. Java Servlets: Enables developers to dynamically create Web content as well as provide additional functionality to
a Web server. Java servlets execute on the Web server.

. Enterprise JavaBeans (EJB): Defines an architecture that enables developers to create reusable, server-side
components called enterprise beans.

. Java Messaging Services (JMS): A set of APIs that invoke asynchronous messaging services such as broadcast
and point-to-point (client-to-client) messages.

. Java Transaction API (JTA): Provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

. Java Transaction Services (JTS): Provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources.

. JavaMail: Enables a J2EE application to send and receive e-mail.

. Java Naming and Directory Interface (JNDI): Provides an interface for accessing name and directory services,
such as LDAP directory services and Domain Name Service (DNS).

. Java Database Connectivity (JDBC): Provides the J2EE application with a standard interface to databases
(usually relational databases).

. Remote Method Invocation (RMI/IIOP): Enables a Java application to invoke methods on different Java Virtual
Machines.

. Interface Definition Language (IDL): Enables J2EE-based applications to use CORBA objects.

In the following sections of this chapter, we explore the APIs in the preceding list in greater detail.

CORBA at a Glance

CORBA, the Common Object Request Broker Architecture, defines a standard for creating distributed object request
systems. The CORBA standard is the result of the collaboration of well over a hundred companies. The end result is a
standard that is language, platform, and vendor neutral.

CORBA enables the enterprise to use existing software by providing features that developers can use to wrap existing
software as CORBA objects. With CORBA, applications written in several languages can happily coexist and
communicate with each other.

A great deal of Enterprise JavaBeans was derived from CORBA. Indeed, a cursory look at EJB could lead one to think
that EJB is a slimmed-down, Java-centric version of CORBA. EJB and CORBA can be used together, specifically
when an enterprise bean needs access to code written in another language, or code written in another language
needs access to an enterprise bean.

Because CORBA is the brainchild of numerous companies, no single company controls CORBA. A committee (the
Object Management Group, or OMG) must agree upon changes made to the CORBA specification, which has both
positive and negative consequences. On the plus side, you are fairly assured that you are not tied to a single vendor,
product, or architecture when using a CORBA implementation. On the minus side, you may have to wait years for the
OMG to make decisions on CORBA-related issues.

The OMG Interface Definition Language (IDL) defines the interface to objects in the CORBA universe. Although IDL is
a language, you, the application programmer, do not necessarily execute IDL code. Rather, you write IDL code and
use a code generator to transform IDL into a specific programming language. Java programmers use an IDL-to-Java
translator to generate a representation of their IDL as Java. If you're curious, you can take a look at how IDL
translates to Java by examining f t p: / / www. ong. or g/ pub/ docs/ f or mat . 98- 02- 29. pdf .

JavaServer Pages

You've already read some of the skinny on JavaServer Pages (JSP). Some call JSP the front door to enterprise
applications, and with good reason. JSPs enable the enterprise application developer to separate presentation code
from business logic code on the server, thereby providing the application with a robust presentation layer.

Java Servlets

As with JSP, servlets enable developers to dynamically create Web content as well as provide additional functionality
to a Web server.

If a JSP gets translated into a servlet, why are JSPs important in the J2EE arena? JSP pages are easier to code and
maintain than servlets because servlets require the Java programmer to explicitly write out HTML statements to a
response object, whereas the Web page developer using JSP merely codes HTML.

cross-reference Please refer to Chapter 3, “A First Look at JavaServer Pages” and Chapter 8, “JSP

Pages and Servlets Revisited,” for more detailed discussions of servlets and their
relationship to JSP pages.

For example, assuming you is the current Web page viewer below, the following code is a JSP that generates an
HTML page that displays the string Yes, it’ s concatenated with the current user.

Listing 2-1: Your first JSP page

<htm >

<body>

<%@ page | anguage="java" %

<p> Yes, it'’s,

<% String you = (String) session.getAttribute(‘you);
out.println(you); %

</ p>

</ body>

</htm >

The code in Listing 2-1 is the functional equivalent to the servlet code shown in Listing 2-2.
Note Recall that JSP pages get translated into servlets. However, the servlet code shown in Listing 2-2 is not the
result of translating the JSP in Listing 2-1 into a servlet. The JSP translator generates a servlet that performs

the same function as the servlet shown in Listing 2-2 but with different Java code .

Listing 2-2: A servlet functionally equivalent to the JSP page in listing 2-1

i mport java.io.*;

i mport javax.servlet.*;
public class HeyltsYou extends HttpServlet {
public void doGet(HttpServl et Request req,
Ht t pServl et Response res) throws Servl et Exception, | CException {
res.set Content Type("text/htm");

Ht t pSessi on session = req. get Session(false) ;
PrintWiter out = res.getWiter();
out.println("<htm >");
out. println("<body>");
out.println ("<p> Hey, it’'sey, it’'s,");
out.print("String you = ");
out.println((String) session.getAttribute(‘you’));
out.println(user);
out.println("</p>");
out.println("</body>");
out.println("</htm>");

The JSP page is smaller than the servlet, and most users agree that the JSP is easier to understand and maintain.
Many others also agree that writing out HTML (or XML, of course) by way of out . pri ntl n() statements is a major

drag because a large page can have hundreds of out . pri ntl n() statements.

Hence, the bottom line is that, while JSPs and servlets often accomplish the same task, you'll still need servlets from
time to time to do what JSPs cannot.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) define an architecture that enables developers to create reusable, server-side
components called enterprise beans. Enterprise beans typically reside on the application server or may have their own
dedicated server. Of course, you can read much more about EJB in the following chapters.

Please note that enterprise beans are not JavaBeans! One difference is that calling a JavaBean (from a servlet or JSP
page) involves intra-process communication, whereas calling an EJB (from a servlet or JSP page) involves inter-
process communication. You can read about other differences in the following chapters.

Java Messaging Services

Java Messaging Services (JMS) is an API that invokes asynchronous messaging services such as broadcast and
point-to-point (client-to-client) messages.

JMS is an API for using networked messaging services. A messaging system accepts messages from "producer”
clients and delivers them to "consumer"” clients. Data sent in a message is often intended as a sort of event notification
(for example, an e-mail-handling process may need to be notified when a request is queued). Another common use
for messaging (thus, JMS) is for interfacing with remote legacy applications. It can be complex and sometimes risky to
use Remote Procedure Call (RPC) or a Java variant such as Remote Method Invocation (RMI) to directly invoke
remote applications while a messaging solution can provide an easier and more reliable interconnection. In short, why
write remote procedure calls when you have access to an API specifically designed for sending messages across a
network from one object to another?

JMS calls frequently rely on the Java Naming and Directory Interface (JNDI) to locate message recipients. JNDI is
discussed later in this chapter.

Java Transaction API

Java Transaction API (JTA) provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

JTA is used for managing distributed transactions (e.g., updates to multiple databases that must be handled in a
single transaction). JTA is a low-level APl and associated coding is complex and error-prone — not in the spirit of
J2EE!

Fortunately, EJB containers or application servers generally provide support for distributed transactions using JTA.
For this reason, the EJB developer is able to gain the benefit of distributed transactions, leaving the complex
implementation details to the provider of the EJB container. Now, that's more in the J2EE spirit!

Java Transaction Services

The Java Transaction Service (JTS) provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources. Of course, JTS provides high-level support for JTA as well as other
transaction services.

The Java Transaction Service plays the role of an intermediary for all the constituent components of the EJB
architecture. In JTS terminology, the director is called the transaction manager. The participants in the transaction that
implement transaction-protected resources such as relational databases are called resource managers. When an
application begins a transaction, it creates a transaction object that represents the transaction. You would use JNDI
(Java Naming and Directory Interface) to access this transaction object. The application invokes the resource
managers to perform the work of the transaction. As the transaction progresses, the transaction manager keeps track
of each of the resource managers enlisted in the transaction. Often, JTS assists in managing the activities involved in
a two-phase commit.

JavaMail

The JavaMail API offers a standard Java extension API to talk to all your favorite standard Internet mail protocols. The
API provides a platform-independent and protocol-independent framework to build Java technology—based mail and
messaging applications. Put differently, JavaMail represents a standardized, extensible platform for communicating,
presenting, and manipulating all current and future Multipurpose Internet Mail Extension (MIME) types. The JavaMalil
APl is implemented as a Java platform standard extension.

Say goodbye to writing your own classes for talking to mail protocols! Say goodbye to learning yet another unique
third-party or in-house class library for dealing with e-mail or newsgroups! JavaMail was designed to communicate
with popular protocols and MIME types.

Java Naming and Directory Interface

Java Naming and Directory Interface (JNDI) provides an interface for accessing name and directory services, such as
LDAP directory services and Domain Name Service (DNS). JNDI enables Java programs to use hame servers and
directory servers to look up objects or data by name. This important feature enables a client object to locate a remote
server object or data.

JNDI is a generic API that can work with any name or directory server. As such, JNDI was not designed to replace
existing technology, but instead it provides a common interface to existing naming services. For example, JNDI
provides methods to bind a name to an object, enabling that object to be located, regardless of its location on the
network.

Server providers have been implemented for many common protocols (e.g., NIS, LDAP, and NDS) and for CORBA
object registries. Of particular interest to users of J2EE, JNDI is used to locate Enterprise JavaBean (EJB)
components on the network.

Again, the thrust of J2EE technology is to provide enterprise application developers with much-needed services in the
distributed realm. It's hard to think of a more valuable service than a naming service. JNDI provides the Java
application developer with this much-needed service.

Java Database Connectivity

Java Database Connectivity (JDBC) provides the J2EE application a standard interface to databases (usually
relational databases). In principle, JDBC serves the same purpose as Open Database Connectivity (ODBC). JDBC
provides a database-independent protocol for accessing relational databases from Java. JDBC supports Data
Manipulation Language (DML) statements such as i nsert, updat e, del et e, and sel ect . It also includes Data

Definition Language (DDL) statements such as Cr eat e Tabl e, Al ter Tabl e, and so on.

Database vendors usually provide a JDBC driver that enables a Java program to access the vendor's RDBMS
product. As of this writing, Sun has 154 JDBC drivers listed in its driver database

Note Seehttp://industry.java.sun. conm products/jdbc/drivers for a listing of available drivers for
use with JDBC.

JDBC was included in core Java starting with version 1.1. With JDBC, the SQL is always dynamically generated at
runtime and sent to the database. Many have griped about the inefficiencies of applying dynamically created SQL
against databases. In response, another standard for Java database access has emerged and is called SQLJ. SQLJ
enables static SQL to be used and it requires less cumbersome syntax than JDBC. One SQLJ advantage over JDBC
is better code quality because SQL is checked at compile-time. Also, SQLJ usually shows better performance than
JDBC because access paths to the database are generated once and reused for subsequent executions of the static
SQL.

We speak of levels for JDBC drivers; the slowest are level 1 drivers and the quickest are level 4 drivers. In addition,
some drivers serve as a bridge between JDBC and ODBC, mostly as an easy way to access ODBC databases (MS-
something or other databases, usually).

A type 1 driver provides JDBC access using a JDBC-ODBC bridge. This bridge provides JDBC access to most ODBC
drivers. Disadvantages of this type of JDBC driver include additional performance overhead of the ODBC layer, and
the requirement to load client code on each client machine.

A type 2 driver is a partial Java driver that converts JDBC calls into the native client database API. As with the type 1
driver, this driver requires some client code to be loaded on each client machine.

A type 3 driver is a pure Java driver that translates JDBC calls into a database-independent network protocol. The
database-independent protocol is implemented using a middleware server. The middleware server translates the
database-independent protocol into the native database server protocol. Middleware vendors typically offer a type 3

driver. Because the driver is written purely in Java, it requires no configuration on the client machine other than telling
the application the location of the driver.

A type 4 driver is a pure Java driver that uses a native protocol to convert JDBC calls into the database server network
protocol. Using this type of driver, the application can make direct calls from a Java client to the database. A type 4
driver, such as Informix JDBC Driver, is typically offered by the database vendor. Because the driver is written purely
in Java, it requires no configuration on the client machine other than telling the application where to find the driver.

As you might imagine, JDBC relies on a host of other J2EE API sets, such as JTA and JTS, to get the job done.

Remote Method Invocation and IIOP

Remote Method Invocation (RMI) enables a Java application to invoke methods on different Java Virtual Machines.
RMI is an important API used for supporting distributed computing and has been supported in core Java since version
1.1. RMI enables a Java client application to communicate with a Java server application by invoking methods on that
remote object. With RMI, the client gets a reference to a server object, and then it can invoke methods on that object
as if it were a local object within the same virtual machine.

For server objects developed in other languages, you must employ other technigues such as using Java IDL with
CORBA or RMI/IIOP (the Internet Inter-ORB Protocol) to access the server object.

Java Interface Definition Language

By using the Java Interface Definition Language (IDL), the Java programmer has access to CORBA objects. As
previously mentioned, the Java programmer uses the “IDL to Java” compiler, called idlj, to generate Java code to
interact with CORBA objects.

Listing 2-3 is an example of CORBA IDL taken from the CORBA Document Object Model specification.

Note The Document Object Model (DOM) is the recommendation of the Worldwide Web Consortium (W3C) for
expressing a document as a set of related nodes. A common use of DOM is to model XML documents. See
Appendix D for an overview on XML. Refer to ht t p: / / ww. w3c. or g/ DOMfor the definitive specification of

the Document Object Model.

Listing 2-3: Example IDL code from the W3C DOM

interface El ement : Node {

readonly attribute DOVString t agNane;
DOVBt ri ng getAttribute(in DOVString nane);
voi d setAttribute(in DOVString nane,

in DOVBtring val ue)
rai ses(DOVExcepti on);

voi d renoveAttribute(in DOVString nane)
rai ses(DOVExcepti on);

Attr get Attri but eNode(in DOVString nane);
Attr set AttributeNode(in Attr newAttr)

rai ses(DOVExcepti on);
Attr renoveAttri but eNode(in Attr ol dAttr)

rai ses(DOVExcepti on);
NodelLi st get El enent sByTagNane(in DOVt ri ng nane);
voi d normal i ze();

1

The idlj compiler produces Listing 2-4, the Java language binding for the IDL shown above.

Listing 2-4: Java code from the W3C DOM

public interface El enent extends Node {

public String get TagNane() ;
public String getAttribute(String nane);
public void setAttribute(String nane,

String val ue)
t hrows DOVExcepti on;

public void renoveAttribute(String nane)
t hrows DOVExcepti on;
public Attr get Attri but eNode(String nane);
public Attr set Attri buteNode(Attr newAttr)
t hrows DOVExcepti on;
public Attr renoveAttri but eNode(Attr ol dAttr)
t hrows DOVExcepti on;
publ i ¢ Nodeli st get El enent sByTagNane(String nane);
public void normal i ze();
}

J2EE Connector

The J2EE Connector provides a Java solution to the problem of connectivity among the many application servers and
Enterprise Information Systems (EIS) already in existence. By using the J2EE Connector architecture, EIS vendors no
longer need to customize their product for each application server. Application server vendors who conform to the
J2EE Connector architecture do not need to add custom code whenever they want to add connectivity to a new EIS.

Before the J2EE Connector architecture was defined, no specification for the Java platform addressed the problem of
providing a standard architecture for integrating heterogeneous EISs. Most EIS vendors and application server
vendors use nonstandard vendor-specific architectures to provide connectivity between application servers and
enterprise information systems.

Top <

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 3: A First Look at JavaServer Pages

This chapter provides you with a bird's eye view of JavaServer Pages (JSP). You can read how to execute JSP and
how JSP is intimately related to Java servlets. You can also see a couple of simple JSPs and read about what
happens during the execution of these JSPs. This chapter continues with a brief discussion on the advantages and
disadvantages of using JSP over several competing technologies and is followed by a recap of the material presented.

JavaServer Pages

JavaServer Pages (JSP) is one solution to providing dynamic Web content. The days of displaying the same old
HTML page to all customers, or to the same customer, who has visited the site several times, is rapidly becoming a
thing of the past. Today, Web pages need to display different content customized according to user input or relevant
events.

Customers want and expect some sort of personalization from sites. A return customer does not want to be forced to
reenter the same information when revisiting the site. Also, a Web page displaying data relevant to your inputs may
need to differ from pages displayed for other users. Imagine an online banking site where you enter your password
and see not only information on your accounts, but information for other bank customers as well!

Sites that change based on relevant events also provide a good example of dynamic content. Sites with stock market
quotes or weather information need to be refreshed at regular intervals to be useful. News sites must also refresh
content to stay on top of what's happening in the world. Stores that have online catalogs that often change inventory
and prices should not contain static content. Today’s Internet-related technologies, such as JavaServer Pages, give
the Web application developer the means to create pages with dynamic content.

JSP combines static text with special JSP tags. The static text represents invariant parts of the Web page, typically
but not necessarily HTML.

Note JSP pages mostly use HTML and XML for the static, template portion. Rather than constantly writing “HTML
or XML,” I've taken the liberty of writing “HTML” in this chapter and trusting you to know if “HTML or XML” or
“HTML” applies.

The JSP tags represent parts of the page that can change depending on the factors the page designer deems
appropriate. The basic mechanics are that the static text and the JSP tags are eventually sent to a Java-enabled
server that generates HTML from both the static part and the JSP tag. Once done, the server sends the generated
HTML back to the browser for display and continued user interaction.

This approach of mixing static text with tags is not unique to JSP. Indeed, several competing technologies employ this
approach. However, JSP enables you to leverage the full power of the Java programming language to make your
pages very flexible. The pros and cons of JSP are discussed later in this chapter, in the section “JSP Versus the

Competition.”

Creating and Using JSP Pages

A special IDE is not required to create JSP pages. You don't develop JSP pages as you would a Java application or
servlet. You don't have to wrap JSP pages in packages or deal with system settings (such as CLASSPATH). You don't
even have to (but you could) compile JSP pages! All you need is a good Web page editor that enables you to easily
enter the various JSP tags.

A site development team using JSP pages can have part of the team develop the static HTML portion, while others
develop the dynamic portion. The HTML developers need not know how to code JSP pages, or know anything about
programming in Java. But, as you might imagine, the JSP developer needs to be adept in coding HTML. When you
recall that the end result of a JSP is a Web page containing generated HTML, how could any self-respecting JSP
developer not be HTML-fluent?

It's simple to use a JSP page. The JSP page user must have access to a server that understands JSP tags, or a JSP-
enabled server. To use a JSP page with such a server, you enter the name of the page as you would any Web page
in the location area of your browser. A file representing a JSP page has a . j sp extension, which a JSP-enabled

server recognizes as a JSP page and, in turn, processes the special tags as JSP tags.

Note The term “JSP page,” although redundant, enjoys widespread use among the JSP development community.
Hence, the term is used throughout this book.

For Web pages that submit a JSP page to the server with a GET or POST service, the customer may never realize that
JSP pages are in play on the site. The ACTI ON attribute of an HTML form may specify that the action upon submitting

the form is to send the name of a JSP page with one or more parameters to the server. Again, the JSP-enabled server
recognizes the . j sp extension and takes appropriate action.

The Relationship Between JSP Pages and Java Servlets

The simple mechanics of creating and using JSP pages masks the complexity of the under-the-covers activity. JSP
pages actually are compiled into Java servlets. All those environment issues dealing with compiling and executing
servlets come into play. Whereas you don't compile JSPs, your Java-enabled server performs the compilation from
JSP page into a Java servlet for you. Although you, the JSP developer, need not care about CLASSPATH and other
settings, your server needs to know these settings. Your server needs access to the Java compiler and various
classes required for servlet and JSP compilation.

The first time you request a JSP page, the server translates the page into a Java class. Recall from Chapter 1 the

concept of J2EE containers. The JSP-enabled server has a JSP container that provides the environment necessary
for this translation. Sometimes, the JSP container is called the JSP engine; both terms are used interchangeably in
this book.

The server compiles the class generated by the JSP engine into a servlet. This servlet contains Java pri ntl n
statements that write the static text to the output stream, and Java code that implements the functionality of your JSP
tags. Depending on the amount of Java code generated by the JSP and the speed of the server, you may notice a
slight delay during the JSP-to-servlet compilation. However, subsequent requests of the JSP page do not cause a
page retranslation and recompilation. The JSP request accesses the already compiled servlet in memory.

As an aside, some servers enable you to establish file aliases. You can avoid the delay caused by the first-time JSP
translation and compilation by requesting your JSP page (causing translation and servlet generation), followed by
creating an alias of your JSP page to the generated servlet. Now, when your customer requests your JSP page, the
server references the previously generated servlet, which is already compiled and in memory.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Versus the Competition

As previously mentioned, JSP is not the only technology available to the Web application developer that generates
dynamic Web output. As with any technology, JSP has its advantages and disadvantages. This section describes
what JSPs can offer that competing technologies cannot.

Separating Logic from Presentation

As you read previously, coding business logic apart from presentation is a good design feature. Do you recall reading
about multitier architectures from Chapter 1? When properly separated, the code that implements the business logic

can be changed without affecting the code that implements the presentation, and vice-versa. JavaServer Pages give
the Web developer the ability to cleanly separate the logic from look-and-feel.

JSP enables Web developers to encapsulate the business logic in custom JSP tags (discussed in Chapter 7, “JSP

Tag Extensions”) and Java software components, such as JavaBeans and Enterprise JavaBeans. The code,
implementing the logic, is tied together with JSP scriptlets, expressions, and other JSP tags, which haven’'t been
discussed yet, and is sent to the Web server for execution.

This separation enables developers to practice their particular specialty; the skilled HTML author has no need to learn
JSP and the JSP author doesn’t need to be an HTML maven. The HTML author can concentrate on coding HTML
(presentation) tags and the JSP developer can concentrate on coding JSP (logic) tags.

The Strength of Java

Because JSP pages eventually are translated and compiled into Java servlets, you can use JSP pages on any server
that supports Java. You are not tied to any particular vendor or platform when you go the JSP route.

Of course, you have full command and control of the Java programming language when you use JSP. JSP make
extensive use of Java Beans and can communicate with other J2EE technologies, such as JDBC and, of course,
Enterprise JavaBeans.

JSP Versus Java Servlets

Before the advent of JSP, the most-used Java technology that could generate dynamic Web page content was Java
servlets. Because JSPs eventually are compiled into Java servlets, you can do as much with JSPs as you can do with
Java servlets. However, coding JSPs is easier than coding Java servlets. With JSPs, you place static text by coding
HTML tags as opposed to Java servlets, in which you place static text by coding a plentitude of pri nt | n statements.
With JSPs, you change static text by changing HTML; and with Java servlets, you change static text by modifying a
Java servlet (don't forget the compile/debug cycle!).

JSP Versus Active Server Pages

Active Server Pages (ASP) is the Microsoft solution for providing dynamic Web content. Actually, ASP looks very
similar to JSP; both use custom tags to implement business logic and text (HTML) for invariant Web page parts.
However, the devil is in the details, as described in the following:

. ASP uses VBScript or JScript, a Microsoft flavor of JavaScript, as its scripting language, whereas JSP uses Java,
a more powerful language than VBScript or JScript.

. The ASP developer typically uses a Microsoft Web server platform or requires a third-party product that permits
ASP execution on non-Microsoft platforms. The JSP developer has a wide variety of Web server platforms
available for use.

Note These third parties must port Microsoft software components, such as ActiveX, to different platforms in order
for ASP to be used on these platforms.

. An ASP is interpreted every time the page is invoked, whereas a JSP is interpreted only the first time the page is
invoked (or when the page is changed).

However, Microsoft has overcome the previously mentioned limitations of ASP with its release of ASP.NET. ASP.NET,
formerly ASP+, promises to be a serious contender against JSP. As of this writing, you may download the ASP.NET
Beta-2 release from htt p: / / wwv. asp. net /.

JSPs Versus Client-Side Scripting

Client-side scripting with JavaScript or VBScript is certainly handy and useful, but it does present several problems,
including the following:

. You must count on the customer’s browser to have scripting enabled, which, of course, you can't.

. Different customers may use different browsers. And coding client-side scripts that work on different browsers can
be a headache.

. Scripting languages used on the client side cannot match the strength and versatility of Java.

. Client-side scripting languages have very limited access to server-side resources, such as databases. JavaServer
pages have access to all server-side resources within the well-defined architecture of J2EE.

. You have the usual problems of maintaining software on the client that caused your organization to thin the client
in the first place.

In short, the advantages of using JSP over competing technologies are as follows:

. JSP enables a clean separation of business logic from presentation.
. JSP, by using Java as the scripting language, is not limited to a specific vendor’s platform.

. JSP, as an integral part of the J2EE architecture, has full access to server-side resources. Because JSP pages
execute on the server, you need not require the client to use a particular browser or have a fixed configuration

Disadvantages of Using JSP

What technology doesn’t have problems? Certainly, JSP technology has room for improvement. That said, what one
Web application developer views as a weakness, another may view as a strength (remember “bug” versus
“features”?). Here is a (short) list of real or perceived shortcomings of JavaServer Pages:

. JSP implementations typically issue poor diagnostics. Because JSP pages are translated, and then compiled into
Java servlets, errors that creep in your pages are rarely seen as errors arising from the coding of JSP pages.
Instead, such errors are seen as either Java servlet errors or HTML errors. You could look at this as an example of
a perceived strength of JSP — that of not needing to compile them — as opposed to a weakness. For example, a
JSP developer coding a scriptlet where a JSP declaration is called for would have to interpret a Java compile error.
The JSP developer would need access to the generated source to properly diagnose the error. Of course,
generated code is rarely a thing of beauty, and often, not easily understood.

. The JSP developer needs to know Java. Again, one developer’s asset is another’s liability. Whereas Java is
certainly more full-featured and flexible than other page scripting languages, no one can argue that the learning
curve for Java is far steeper than other scripting languages. If you already know Java (you do, right?), this is not an
issue. However, if a corporation is short on Java mavens but wants to use a dynamic Web technology, JSP may
not be the route to go. (Another way to look at the need to know Java is that if you had to train a rookie in using
either JSP or, say, ASP, and you had two days to produce half a dozen pages, which technology would you opt
for?)

. JSP pages require about double the disk space to hold the page. Because JSP pages are translated into class
files, the server has to store the resultant class files with the JSP pages.

. JSP pages must be compiled on the server when first accessed. This initial compilation produces a noticeable
delay when accessing the JSP page for the first time. The developer may compile JSP pages and place them on
the server in compiled form (as one or more class files) to speed up the initial page access. The JSP developer
may need to bring down the server to make the changed classes corresponding to the changed JSP page.

All'in all, it's a pretty short list.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 7. JSP Tag Extensions

Overview

At this point, you've been introduced to JSPs containing Java code in the form of scriptlets and expressions, custom
JSP constructs such as directives, and JSP action tags, which include other JSP pages or which enable your JSPs to
access JavaBeans. It certainly looks as if JSPs have covered all the bases for enabling JSP authors to generate
dynamic Web content.

You may recall that one goal of using JSPs is to clearly delineate presentation details from business logic. As you
write more scriptlet code in your JSPs, the delineation begins to blur. If you're not careful, your JSPs may contain
more business logic code than presentation details. This needs to be avoided for two reasons. First, JSP authors may
not be Java experts and hence won't be able to maintain the Java code contained in these constructs. Second, the
coupling of business code and presentation code makes it harder to change either independently.

JSP tag extensions allow you to add functionality to JSP pages without having to add many Java scriptlets to your
pages. In this chapter you will learn what JSP tag extensions are, what you can do with them, and how to create them.

[tad

Previous Next

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you examined the code for a simple JavaBean and saw how this bean is used in some JSP pages. In
addition, you also explored several JSP statements that you can use to transfer data between beans and JSP pages,
and you learned that you can create and share beans among several JSPs.

By now, you have a good understanding of a powerful feature of JavaServer Pages — the feature of using software
components within your pages.

Top

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Bean Usage Odds and Ends

A few points about using beans in JSP pages haven't been discussed yet. You probably surmised that you can use
more than one bean instance from the same or different bean classes in your JSPs. All you need to do is code an
appropriate jsp:useBean action for each bean instance.

When the JSP engine encounters a j sp: useBean action, the JSP engine searches for a bean with the same i d and
scope as the bean cited in the j sp: useBean action. If such a bean is not found, the JSP engine generates code to
create the bean. If such a bean is found, the JSP engine makes that bean available to the page containing the

j sp: useBean action. Beans may have the same i d but be instantiated from different classes. If so, the JSP engine
generates code to do a cast. If the cast is illegal, the generated servlet throws a O assCast Except i on.

As a result of this bean usage, multiple visits to the same page containing a j sp: useBean action during the same
session will not create multiple beans. Another consequence of this use involves conditionally executing JSP
commands, as explained in the following.

The examples of j sp: useBean you've seen use the empty tag XML syntax form. However, you can code the
j sp: useBean construct by using separate opening and closing tags as follows:

<j sp: useBean i d=soneBeanNane...>
Static HTM., JSP commands, whatever ...
</ sp: useBean>

The virtue of using separate opening and closing tags is that the code sandwiched between the tags is executed only
if the bean instance does not exist. If you want to share a bean among several pages, you can place the same code in
every page, knowing that the code gets executed once, depending on where the bean gets created. Remember, JSP
knows the bean by the values of the j sp: useBean attributes i d and cl ass. Different beans (objects) may be the
"same" bean to JSP.

Top

[<= Prov_ | Next —_

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JavaBeans in Multiple JSPs

The syntax of the j sp: useBean action has a couple of additional parameters, as follows, which have not been
mentioned:

<j sp: useBean i d="beanl nst anceNane"
cl ass="cl assNane"
scope="beanScope"
type="cl assType" />

The scope attribute is the focus of our discussion. The value of the scope attribute governs the bean’s visibility.
Different values for the scope attribute place instantiated beans within different contexts. Refer to Table 4-3 in
Chapter 4 for a list of scope attribute values and the relevant contexts.

The default scope attribute value is page. Page scope means that bean instances are accessible on the existing JSP,
or the JSP containing the j sp: useBean action. Stated differently, other JSPs within your application cannot use
instantiated bean objects without containing a j sp: useBean action.

Trying with page Scope

To bring the point home, here’s the JSP page cal cul at e.] sp with a few changes. The following lines of code are
the substantial change:

<j sp: useBean i d="Cal cBean" cl ass="chean. Cal cBean" scope="page"/>

Because scope="page" is the default, this code really doesn’t change the JSP’s behavior. The next line invokes
another JSP, coded remarkably similar to cal cul ate. j sp.

Click Here for Next JSP Page

Figure 6-3 shows cal cpage. ht nl , the page that calls cal cul at e. j sp, and the revised cal cul at e. j sp:

B S5P Sampls Page - Cabiulatei Bean |uull _I:!_F_.?_ W Shm Lkt Aty o - i ot it rorl H.EI-E_-:

P g ™ AgewifE oy e 7] ctie LR | P D8 Ve Tpwte fen v L]
ﬁ o FI; A i wled ML v Irr.j i
. X = : : =
A Simple AP s 2 A
Calculator e S o 3
s el
Ervter Dparandl ard Operand? (Tribegsrs)
i o ceseraiion Freem i Pull i"'."'-."-i _I_."'I'-'-_: "' _"., -I-- .
Arncrt

[atere
u, Uy Chck: Calowlabe: bo Conbinos
Updrandl HEdHEny

Crperaned? F2F323

Jparaticn f

Fasul®t B
= £
Figure 6-3: The calcpage.html and the revised calculate.jsp that contain a link to calculate2.jsp

Keep in mind that cal cul at e. j sp has the j sp: useBean action coded such that bean instances are known only
within the page. Listing 6-4 contains the code for cal cul at e2. j sp.

Listing 6-4: Accessing CalcBean in a second JSP page

<% - Tell JSP that this page renders HTM. --%

<%@ page content Type="text/htm" %

<% - Tell JSP to nap Cal cBean properties to |ike-naned variables --%

<j sp: set Property nane="Cal cBean" property="*" />

<htm >

<head>

<title>Calculate 2 Page</title>

</ head>

<body bgcol or ="#dddddd" >

Here's what was entered from <i >cal cpage. html </i > <p>

<P>The next 4 |lines show using the jsp:getProperty action to fetch bean properties
<% - jsp:getProperty wites the value of the bean property where coded --%
<p>QCper andl <jsp: get Property nane="Cal cBean" property="operandl" />
<p>QCper and2 <j sp: get Property nane="Cal cBean" property="operand2" />
<p>QCperati on <j sp: get Property nane="Cal cBean" property="operation" />
<p>Resul t <jsp: get Property nanme="Cal cBean" property="result" />

</ body>

</htm >

The cal cul at e2. j sp file refers to the bean instance Cal cBean. However, cal cul at e2. j sp does not contain a
j sp: useBean action. Because the instance of bean Cal cBean created in cal cul at e. j sp has page scope, you
would expect problems to occur when cal cul at e2. j sp attempts to access properties of the bean. Figure 6-4
illustrates what Tomcat indicates when you click the link and tell the JSP translator to process cal cul at e2. j sp.

ol SEEEL 0 armpi o hras cabimieled rop . B i Brteeant | aplmieg

Fla D& Yew Fpeied Jook [Hep [k

H"I'lllv!_'llm--’n—cdl-ﬂ-ﬂm-m Rars e dodesl on ﬂ o
Sy S A Ry e | e
Baci Lz Flpip i, iy Gamoh gy Lz, g

Error: 500
Location: fexamples/jsp/cbean/calculated.jsp

Intesmal Serddet Erroe:

G o i B ok T - SR g T DRl O
BE B0 MpACES . JRERAr. ruse s Jeplan asslbrsry. ten respact ke i par | Arplunn sl ibrary. S
»E prg.spache jerper cusd s JepTa asel ibcwr y, inf roepact | Jrpliued sewl ibrea s Sevar 152
a4 Jap. plaas. OS0LE pep G500 folbens. G050 Fealoulane 03500 GbEdeiepaeliulanel_dew_14._ 40
B 0. MpECES | JRERT . CULE LSS el epBase parvacs |Bocpdepbaes . pevacd LF
ot jeesr prrvlst hitpoFitplervirt eecyece| Bt pRerviet . favm 1 8351
B . e Rl B DG JEEER Y AL S SR PR SR W T B R SRR LR, e b T
[
L3

SO MERCEE , RN . By LEG , Jopdarviet . secvicel sl o Le | AepSe oy et e 5 18]

£y mpacha ; Jarpar . pervlet Jeplerviet secvice ddepliery lat Jevna FI1D u_‘l
=

Figure 6-4: Tomcat tells you off.

You do not need the entire stack trace; the essential message is (as usual) on the first line of the trace.

Trying with application Scope

We saw in the previous section, "Trying with page Scope", that if we set the value of scope to page in
cal cul at e. j sp, CalcBean is no longer accessible when we attempt to access it in cal cul at e2. j sp. Let's change
the value of scope from page to appl i cati on as follows:

<j sp: useBean i d="Cal cBean" cl ass="chean. Cal cBean" scope="application"/>

Using the appl i cat i on scope places the instantiated beans in the Servlet Context, which makes the bean
accessible to any servlet running on the server. Figure 6-5 shows what you see after shutting down Tomcat, restarting
Tomcat, displaying cal cpage. ht il , entering some numbers, and clicking "Calculate."”

(357 Sampi Page_Catcuiaie ean i MBS
[l [8 Yow gl Jook Hep [|
Hﬂll-llll_: ser DML g o i T i 'IHj ol ’*"lﬁh"c--'h'-lh\-ﬂ T e 'r-r\-'i-n'_"'l -
SISOy BT | | R s ey
Bmi Firmamit i Firtrds Bk ke L
- = Hong's what wes entered fom A
A Simple cakpage.himi
Calculator T et < lines Shiow Using the
|sp:gebProperty acthon to fetch bean
gt i

Enter Opsrand] ard Operand?
(Integars)
and Select an operation From thae Pull
Dermis iy
hare, then Click Caloulaie to Contings Opsranadl 11

Opseranufll XTI

Opsaaration +

g
:

Enkgr O ared] | Faersult F22X33.0
Solect Operation: [- = | |

o | o o

Figure 6-5: Running the calculator again with application scope

No news here. You may recall that the JSP page cal cul at e. j sp has its j sp: useBean action coded to enable
application access to bean instances in general and the bean instance named in the useBean action in particular.
When you click the link for the next (cal cul at e2. j sp) JSP page, Figure 6-6 is what you see.

1 Calciilate 2 Page - Miciosoll Intéimel Exploia:

| B E® Vew Fagoder ok Heb ([|
| | Address [@] rip ocabast B ke cheancakculate? o x| G
' - w

- T
=

Here's what was entered from calcpage. himi:

The next 4 lines show using the jspogetProperty
action to fetch bean properties

Dperanal 22222
Operand? 11
Cperation +

Result 22233.0

=

Figure 6-6: Accessing a bean instance from a page that didn’t create the instance

Refresh your memory by glancing at Listing 6-4 to note that cal cul at e2. j sp does not contain aj sp: useBean
action.

Other scope Attribute Values

The scope attribute of the j sp: useBean action may also have a value of session or request. When you code
scope="sessi on", you are telling the JSP engine to store your bean instance in the sessi on object. You can turn
off sessions with a JSP page directive containing a sessi on attribute with the value of "false." A useBean scope
value of sessi on is incompatible with a page directive sessi on value of false.

The remaining scope value is r equest . You've seen input data access with the r equest implicit object. Coding a
bean with scope of r equest stores the bean instance within this implicit object.

Coding a bean scope of r equest accomplishes little. You get the same access to the r equest object with the
default scope of page.

Top

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP : by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming

Techniques.
i | ‘.E';‘ .‘:

Coding JSP Standard Actions

Actions cause something to happen. In JSP, you have two categories of actions at your disposal: custom actions and standard actions.
You implement custom actions with tag libraries. You'll have to wait until you get to Chapter 7 for the nitty-gritty on tag libraries. You don’t
implement standard actions; these actions are instead provided to you, the JSP developer, free of charge. Please note that a server
provider may provide vendor-specific actions above and beyond the standard set.

Table 4-2 shows the JSP standard actions, an example of the syntax, and a brief description of each action.

Table 4-2: Short Descriptions of JSP Standard Actions

Short

Action Name Syntax Example Description

j sp: param <j sp: par am name=@lppar anmNanme @2lp This action
val ue=@@ppar anval ue@p /> works with
other standard
j sp: par ans action tags

(i ncl ude,
forward, and
pl ugi n tags)
to provide a
value to a
named
parameter.

and

jsp:forward <j sp: forward page=@apsonmeURL@alp> This action
provides a
convenient
</jsp: forward> mechanism to
forward a
request to
another JSP or
servlet.

j sp: get Property

<j sp: get Property

name=@@pbeanl| nst anceNane@@p

property=@@ppr opert yNane@ip />

The JSP
author uses
the

get Property
action to
access the
properties of a
bean coded in
auseBean
action. The
get Property
action is the
compliment to
the

set Property
action.

j sp:include

<j sp:include page=@@lppageName@lp fl|ush=@@ptrue@p />

The JSP
author codes
the i ncl ude
action to direct
the engine to
include a
resource at
request time.
Do not confuse
this action with
the JSP

i ncl ude
directive.

jsp:plugin

<j sp: pl ugi n type=@@ipappl et @ip

code=@Ripj avaCode @Rip

codebase=@@pj avad asses@p

al i gn=@alpal i gnnent @p

ar chi ve=@apj ar Fi | es@lp

hei ght =@@Ippi xel sH gh@@ip

wi dt h=@@ppi xel sW de@ap

jreversi on=@@pl. 2@@lp
nane=@@pconponent Nane @@ p

titl e=@pconponent Tit | e@@p
vspace=@@ppaddi ngAr ound@lp

nspl ugi nurl =@ pwher eNSPI ugi nsAr e@lp
i epl ugi nurl =@ pwher el EPI ugi nsAr e@p

Show Thi s When Applet or Bean Fails to Load

<j sp: fal | back>
</jsp:fall back>
</jsp: plugi n>

The JSP
author codes
the pl ugi n
action when he
or she needs
to generate
client-specific
HTML OBJECT
or EMBED tags
that ensure
that a
particular
object is
available and
to invoke that
bean or object.
Most of the
attributes are
identical in
function and
coding to the
HTML
attributes for
the OBJECT

tag.

j sp: set Property

j sp: useBean

<j sp: set Property nane=@pbeanNane@p
property=@@ppr opertyNane@@p
par anF@@ppar anNane@ip / >

<j sp: set Property nane=@@pbeanNane@ip
property=@@ppropertyName@dlp

val ue=@@lpscriptl et O Stri ngVal ue@lp
/>

<j sp: useBean i d=@@lpbeanl nst anceNane@lp
scope=@Rlppage@@p
cl ass=@lpcl assName@lp
t ype=@lpcl assType@@p />

The JSP
author uses
the

set Property
action with the
useBean
action to set
the values of
properties in
the beans
named in the
nane attribute.
The bean
properties are
coded in the
property
attribute; the
value can be a
string or
scriptlet coded
in the val ue
attribute.

This action
allows the JSP
author to use
objects
instantiated
from a
JavaBean. The
scope
attribute may
be page,
request,
sessi on, or
appl ication.
The useBean
action works
with other
actions
described
earlier.

The standard action commands are coded as tags following XML syntax rules. (See Appendix D for information on XML syntax.) In the
sections that follow, you learn more about the set of standard actions available to the JSP developer on any JSP Web server.

The param and params Action

The par amaction provides other tags with parameter data. Use par amto get data to the f or war d, pl ugi n, and i ncl ude actions. The

syntax for the par amaction is as follows:

<j sp: param

If you have a need to create more than one parameter name-value pair for use in another action, you need to enclose the multiple par am

name="par anet er Nane" val ue="par anet er Val ue" />

actions inside a par ans action, as follows:

<j sp: par ans>
<j sp: param

<j sp: param

<j sp: param
</j sp: parans>

name="par anet er Nanel" val ue="par anet er Val uel" />
nanme="par anet er Nane2" val ue="par anet er Val ue2" />
nanme="par anet er Nane3" val ue="par anet er Val ue3" />

The forward Action

The f or war d action causes processing to immediately redirect to the indicated page. For example, when processing hits the following
statement:

<j sp: forward page="t henext page. htm " />
t henext page. ht m is immediately displayed.

Before displaying the forwarded page, the output stream buffer (if one exists) will be cleared. If you want to make a name-value parameter
known to the forwarded page, you use the par amaction as follows:

<j sp: forward page="t henext page. ht i " >
<j sp: param nane="par anNang" val ue="par anval ue" />
</jsp: forward>

Using the f or war d action enables you to direct categories of activities to specific pages.

The getProperty and setProperty Actions

The get Property action accesses one or more properties of a JavaBean used by the JSP page. The get Pr oper t y action accesses
the value of pr oper ty from a JavaBean, converts the value to a string, and writes the string representation to output.

The get Pr operty action has the following syntax:

<j sp: get Property nane="beanl nst anceNane"
property="propertyName />

As you might imagine, set Pr oper ty is how the bean gets the property value set in the first place. The syntax for the set Property
action has several forms, as shown here:

<j sp: set Property nane="beanl nst anceNanme" property="*" />

<j sp: set Property name=" beanl nst anceNang"
property="propertyNane" />

<j sp: set Property nane=" beanl nst anceNane"
property="propertyNanme"
par ane" par anet er Nane" />

<j sp: set Property nane=" beanl nst anceNane"

property="propertyNanme"
val ue="propertyVval ue" />

The attribute pr oper t yNane is the name of the bean property you want to set.
The attribute pr opert yVal ue is a string or JSP expression that, of course, represents the value of the property you wish to set.
The attribute par amNane is the value of a parameter that replaces the existing value of the property coded in the set Pr oper ty action.

You cannot code both par amand val ue in the same set Pr operty action.

The include Action

The i ncl ude action enables you to include content in your JSP page. Before you think that the i ncl ude action is the same thing as the
<%@ i ncl ude % directive, recall that the i ncl ude directive brings in the external content at translation time whereas the i ncl ude
action is processed at runtime (or page request time).

The syntax of the i ncl ude action is straightforward, as shown here:

<j sp:include page="rel ativeURL" flush="true" />

When considering the i ncl ude action, it's important to note that the value of the page attribute can be a JSP expression or some other
dynamically generated expression.

The f | ush attribute must be coded as true.

You can code par amtags with the i ncl ude action, as shown here:

<j sp:include page="incl uded. ht " flush="true" >
<j sp: param nane="par anNane" val ue="par anval ue" />
</jsp:include>

The plugin and fallback Actions

You use the pl ugi n action to generate HTML tags for embedding Java applets in the generated output page to ensure that the browser
contains an appropriate Java runtime, and that it executes the applet properly.

All but 4 of the 13 attributes of the pl ugi n action have the same meaning as the HTML counterparts. The parameters that have different
meaning are:

. type: Identifies the type of the component; a bean or an applet

. jreversion: Java runtime required to execute the component

. nspl ugi nurl : Location of the Netscape JRE download, as a URL

. i epluginurl: Location of the Internet Explorer JRE download, as a URL
The pl ugi n action takes an optional par amaction as well.

You may code af al | back action to provide information when the pl ugi n fails to load. Basically, the f al | back action provides
alternate text that performs the same function as the ALT attribute.

The useBean Action

The useBean action is used to make a JavaBean known to your JSP. You read more about bean use with your JSPs in Chapter 6, "JSP,
JavaBeans, and JDBC." In this section, you get exposure to the syntax for the useBean action.

There are several forms for coding the useBean action, as shown here:

<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
cl ass="cl assNane" />

<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
cl ass="cl assNane" type="typeNane" />
<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"

beanNane="beanNane" type="typeNane" />
<j sp: useBean i d="beanl nst anceNane" scope="cont ext Scope"
type="t ypeNanme" />
The attributes coded for useBean have the following meaning:
. i d: The name of the bean object instance.
. scope: A context in which the bean reference is known. The different scope contexts are represented by implicit objects, covered

more fully in the next section. Think of the bean object as having a different life cycle for different scope values. Table 4-3 lists the
values and meaning of the scope attribute of the useBean action.

. cl ass: The fully qualified class name of the bean being associated with the JSP.

. beanNane: The same name you would use to instantiate the bean, or the name you would supply to the i nst ant i at e method of
j ava. beans. Beans.

. type: Defaults to the value of the cl ass attribute but can be a valid superclass or interface implemented by the bean class.

Table 4-3: Values of the Scope Attribute Used in the JSP useBean Action

| Scope | Description
| page | The bean object dies after the servlet completes its ser vi ce() invocation.
request The bean lives for as long as the HTTP request lives, even if the HTTP request object is passed
among different JSP pages.
| sessi on | The bean object lives as long as the session exists.
| application | The bean object lives for the duration of the application’s execution.

As you might imagine, the useBean action enables you to load JavaBeans for use in your JSP pages, thereby opening your JSP pages to
the full power of the Java programming language. Also, you can take advantage of using software components, something that you
cannot easily do with other products.

Top

EJB & JSP: Java On The Edge, Unlimited Edition

EJB & JSP | by Lou Marco ISBN: 0764548026
Java On The Edge :

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix D: XML Overview

Throughout this book, you've read about JSP elements and EJB files coded in XML syntax. Although the examples of
such elements and files presented in the book convey the essential flavor of XML syntax, a more thorough
presentation is called for. Thus, the purpose of this appendix is to present the essentials of XML syntax.

This appendix provides an overview of XML, or Extensible Markup Language, a universal document format for
structuring data for presentation on the Web. The appendix starts with an overview of XML features that overcome
existing problems with HTML. Next, an extremely simple XML document is provided along with a discussion of XML
document components. The important XML terms, well-formed documents and valid documents, are covered, as are
XML Document Type Definitions (DTDs). Finally, a brief description of related technologies wraps up this appendix.

XML Features

XML does not have a fixed set of markup tags, overcoming HTML'’s greatest deficiency, according to some experts.
XML is not a markup language per se; XML is a meta-markup language that enables document authors to define their
own tags. As a result, authors can create markup languages peculiar to their particular industries, and XML document
authors can use this markup language to encode data in industry-specific terminology.

XML requires document authors to follow certain rules in creating what is known as well-formed XML documents. If
these rules are not followed, the XML document is useless. This XML specification prohibits XML tools from trying to
fix problems with the document. The intent is to stop the browser madness prevalent in HTML, in which different
browsers attempt to “fix” broken HTML and, of course, parse and display this HTML differently. For example, an HTML
document author can write HTML with missing end tags, which the major browsers parse and display. Such
foolishness cannot fly with XML; if an XML document is broken, the document cannot be rendered. Therefore, an XML
author can confidently create XML documents, knowing that these documents are parsed identically with different
pieces of compliant software.

XML stresses the separation of data content from data presentation. Over time, HTML has blurred the distinction
between organizing document content and displaying the content. A typical HTML document has tags that describe
relationships among document content (such as tags) and tags that govern the display of this content (<U>,
, and so on). XML describes document content structure and semantic relationships, not the content formatting.
The XML author uses a related style sheet technology, such as CSS (Cascading Style Sheets) or XSL (Extensible
Style Language), to govern the display of the document. One upshot of this clean separation of structure and display
is that the same XML document can be displayed in various ways by using different style sheets, or the same style
sheet can govern the display of similarly structured XML documents.

The nonproprietary nature of XML, combined with its ease of writing, makes XML an ideal format for data exchange
among applications.

Top

| <= Prov | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EJE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

There are many JSP engines on the market today, and you may or may not use Tomcat in your JSP projects. Since
Tomcat is the reference JSP implementation endorsed by Sun Microsystems, it will support new JSP specifications
more quickly than most other JSP engines. For this reason you will want to become familiar with Tomcat whether you
use it regularly or not because it will be a valuable tool for both regular use and for examining new JSP releases now
and in the future.

Top

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP | by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix C: Configuring the Tomcat Web Server

This appendix discusses Tomcat and provides advice on how to get the Tomcat release 3.2 Web server. Tomcat is
the Reference Implementation for the Java Servlet 2.2 and JavaServer Pages 1.1 Technologies. In other words,
Tomcat is a Web server that implements the most current release of JSP and Java Servlets.

The Tomcat Web Server

Tomcat is a Web server that contains a JSP container. Tomcat is quick and easy to install and to use, and offers the
following advantages:

. Tomcat is free.

. You can download the source code for Tomcat as well as the binaries. If you really want to learn about server
internals, the Tomcat source is a great resource.

. Mailing lists about Tomcat are available to one and all. These lists are devoted to disseminating information,
including posted questions and answers.

Tomcat is designed to work as both a standalone Web server or in conjunction with application servers, such as
Apache or JBoss. For your purposes here, it is more interesting to run Tomcat as a standalone Web server because it
offers a straightforward way to learn about JSPs. However, in the real world, if you opt to use Tomcat, you may want
to integrate Tomcat with another Web application server.

Tomcat was, and currently is, developed by a community of dedicated individuals under the umbrella of the Jakarta
Project. You are encouraged to learn about the Jakarta Project by taking a look at
http://jakarta.apache. org/i ndex. ht m . From this site, you can get to the page where you can download the

Tomcat Web server.

As of this writing, the latest release of Tomcat is release 3.2.

Note By the time you read this book, it is very likely that the Jakarta folk will have a more recent version of Tomcat
available, probably release 4.0. Be advised that the description of Tomcat given here applies to release 3.2.
Several details and particulars may change between successive releases.

Downloading Tomcat Release 3.2

You can get to the download page for Tomcat from the Jakarta URL or go to
http://jakarta.apache. org/site/binindex. htn . (If you prefer, you can get to the source code download

from here as well.)

The Tomcat download site classifies downloads into release builds, milestone builds, and nightly builds. The release
builds are the stable versions of the Tomcat product. Once you get to the download site, scroll to the release builds
section and select “Tomcat 3.2.1” (or whatever is the most current release being offered). Figure C-1 shows the

screen containing the download files.

T Feip fubarin. mpan ke peey baday | b sty dmrs o e be ase)P 1 Bin - Blcioga brirese B aplaie
[l [8 e Fpeie [k ek |
“ o, = : : § - -
Bk n'?p n.“-'.;l.-. IEI.. l.Em r...—._' H:njnq. i
L T T L T r———————— T] e
=

Index of /builds/jakarta-
tomcat/release/v3.2.1/bin

T Lat el L Ji0E EERRi L L

- S REARLALY -dns-5o01 4153
|:' Jmicwrre: pepyinsap; Rar §2-Bec-BB00 K148 ATk Emr sechive
Ll RN R PR G [0S g 15-See-P080 pEian SEIW GEEF suspaessdd T1iE
l:' AmiaTL s pRpy Lata M o] i A3
4
]| SR a- et =1, . 1, B *-dar 5501 1] a
) canrinvmmcns-3 2 1oaen . SF-dan-beEl S35 42N
.
£ S w- et =10, 1, s 15 -Paa-D000 J4idd B0 naw ssekive
LN snrsrcscoipmosr-) Bl tar.gn l-Sec-bEOO GiiES BT GEIF compresssd fils
L] quiaptm-f opeat LuiiiE JicPer-3900 B4l B.0m .
™M
= s FLEET]
|
I 1= Pee=3000 11140
=
i [- SITT § =}
el L BT

Figure C-1: Tomcat release 3.2 download page

From this page you can select a Tomcat version for Windows 9x, Windows NT, or Windows 2000, or for various UNIX
flavors.

Assuming you are using some version of Windows, select j akart a-t ontat - 3. 2. 1. zi p to commence the

download. After a successful download, you should have a zip file called j akart a-t ontat - 3. 2. 1. zi p on your
hard drive.

Installing Tomcat

Installing Tomcat is a straightforward process. Just open the zip file and extract all contained files in the archive.

Note You need a copy of PKZIP to extract the contained files. You can get a copy at
http: //ww. pkwar e. com . This site has compression/extraction tools for several operating systems.

You may want to create a directory at your disk root; for example, use d: \ t ontat 32 to hold all the Tomcat files. After
extracting the files, your directory structure should resemble that shown in Figure C-2.

B8 Exploving - My Computer M= E

e
i
B

Figure C-2: Tomcat directory structure

As you can see, several directories shown in the figure have subdirectories. Not all the subdirectories within Tomcat
can be shown here because of space limitations. Throughout this appendix we will examine different directories in the
Tomcat installation that are relevant to the Tomcat configuration and JSP processing.

Assuming you see something similar to Figure C-2 on your screen, you are almost ready to check whether your

Tomcat installation was successful. However, first you need to set up a few environment variables, as described in the
following section.

Setting Your Tomcat Environment Variables
Tomcat uses a script located in the bi n directory called, appropriately enough, st ar t up. bat , which requires several

environment variables to be set on your system for proper execution. Table C-1 lists these variables and their
purpose.

Table C-1: Tomcat Environment Variables

| Variable Name | Purpose
| JAVA HOVE ’ Points to the root directory of your Java installation.
Points to the root directory of your Tomcat

TOMCAT _HOVE
installation.

If you are running Windows 9x, you can assign these environment variables in your aut oexec. bat file as follows:

set JAVA HOVE=d:\j dkl. 3
set TOMCAT HOMVE=d: \tontat 32

After you code the assignments, you need to restart your machine or execute your aut oexec. bat file to make the
variable assignments.

If you are running Windows 2000 or Windows NT, you can use the System Properties control panel to set these
environment variables. From your Start button, select Settings @ @> Control Panel @ @> System @ @> Environment.
Figure C-3 shows the Environment control panel.

Ganeisl | Metwork [dentiication | Hadware | Use Profles Advanced |
Ermvironmant Varlables K E

Wl i Syetem Variahle

Varisbla Mama: | tomest_homa

Yariabls valse: | d:\pomea 3z

[] o |

ot warishled
Warabaly T |-
ComSpec TN sy stem X] e
HUMEER _OF PR... |
o ‘Wiradows_ T
D2 bPath oI sy sten 2 sl
Ptk AT i 2 s 'I_'k‘."i'-l'ﬁT CTWIN. .. _I

mewo, | B | D |

e | |
L]

Figure C-3: The Windows NT Environment control panel

If you find existing entries for environment variables in the control panel, you may click the entry to view and edit its
value as necessary. Click OK or Apply to set the variables.

Caution Be careful when setting environment variables in command windows. Windows starts a separate process
for each command window opened. Therefore, if you issue a SET command to assign environment

variables values in one window, the variables have these values when executing programs from within
this command window only. Placing your SET commands in your aut oexec. bat file or setting variable

values in the control panel makes the values known to all processes.

Okay, you're almost home. With the Tomcat environment variables set, you are ready to test your Tomcat installation.

Testing Your Tomcat Installation

The directory TOMCAT _HOVE\ bi n contains several startup and shutdown files. The files you are interested in are
called st art up. bat and shut down. bat . First, run the startup file by double-clicking its icon or running the file from
a command window. Once you execute the startup file, you should see two windows that resemble those shown in
Figure C-4.

Figure C-4: What you should see when executing startup.bat

The windows in Figure C-4 are stacked for display purposes, so your display will differ. If you see two command
windows such as the ones shown, you can be pretty sure that your Tomcat installation was successful.

You want to display Web pages in your Web server, right? Although the command windows shown in Figure C-4 show

Tomcat executing, you need to call up a Web page and check out some servlets and JSPs. This process is covered in
the following sections.

Displaying Web Pages in Tomcat

Open a browser and enter the following URL:
http://1 ocal host: 8080/

Figure C-5 shows what you should see on your screen.

e [& Yo P Jas B

Tomcat

: README, 1l FAG) .
BT
« JEPEsenies
« Serdet Eamples
« AP docs lor Serdet snd 15 Packages

#l L enaw

Figure C-5: The Tomcat greeting screen

If you see this screen, congratulations! You have a working version of the Tomcat Web server installed on your
system.

Try out the JSP and servlet examples next. Figure C-6 shows the page of JSP examples.

B [# e P Qe B ﬁ

e, SN - K F | a @ 9 | @

Bk T Famapr. . gt Pge e Ty bl
w'm"ﬁ'hdvimﬂ" i made L _'.'] &
JSP Samples

This is a collection of samples demonsirates the uvsage of different parts of the lava Serear
Pages (5P specificakion

Tharse gxamides will only work when hess pages ane being served by tha ServietRunres. T

Friry
il Pl el (T Wil B0 vidwingg Thaas DbgeE vib & il LR
Ty Pl ol oo wilry Theough tFe axarmndles, the Mollowineg iKord will Fedp
h Endcli sl ax il
¥ Look of the source code for the sxample
ohy Rt o Hhis soreen
Tigp Foor gdeition doopsid Dhaarsd 0o wirk, P cook g rea il Beb dsnuahl sl This cam bed dorsd ol
bevrerser opdkors
Pk gumsss Q:L ead L
Dk *-‘_ L &
=

T

Figure C-6: The Tomcat JSP example page
The page in Figure C-6 contains 15 JSP examples, of which two are shown.

You have not seen a JSP execute yet. Click on the link labeled "Execute" next to the Date example. If you see a
screen such as Figure C-7, you have a working, JSP-enabled Web server!

'illlr.p'. Mocalbost:BIH0 e x ampletjep'd sles dale.jsp Micia... M=l E1
B G Yww Fovostes Dok el ' |

e o A | B A
Eack CRop Fedresh Mo
e

Address F-l'_] it locatho: BV examplesipfdster/dabe p

[
=

« Day of month: is 16
Year: is 2001
Month: is May
Time: is 9:15:19

« Date: is 5/16/2001
« Day: is Wednasday
Day Of Year: is 136
Weelk Of Year: is 20
era: is 1

« DST Offset: Is 1

« Zona Offsak: s -6

L]

L]

L]

L]

- - -
£] Dore Iy Local infraret 5
Figure C-7: The Date JSP executing in Tomcat

Tomcat Directories and JSP Processing

The documentation contained in TOMCAT_HOVE\ doc covers nearly everything you need to know about using Tomcat.
In this section, you can see a quick rundown on placement of JSP files in Tomcat.

You have two options for running JSPs in Tomcat: You can create your own Web application or use the example
directory to run your JSP pages. This section describes how to use the example directory. Consult the documentation
for configuring Tomcat for your own Web application.

You have to place your JSP and HTML files in one directory and your class files from JavaBeans in another directory.
First, let's look at the directories and read about where you'll place JSP and HTML files.

To run a set of related JSPs, you need to create a directory in the TOMCAT _HOVE\ Webapps directory. For example,
let's create the directory TOMCAT _HOVE\ Webapps\ exanpl es\ | sp.

Caution Do not be misled by looking at the URLs in the browser. Notice that the URL shown in Figure C-7,
http://1 ocal host: 8080/ exanpl es/j sp/ dat esdat e. j sp, does not include the Webapps
directory. When placing your JSPs, remember that the directory shown in the URL is really found in
TOMCAT_HOVE\ Webapps.

Put your JSP files and static HTML files in your directory. For example, the series of JSPs for the Hotel Reservation
System are stored in the directory TOMCAT _HOVE\ Webapps\ exanpl es\ j sp\ hot el res.

Caution Do not invoke your JSPs or static HTML files by clicking their icons. You must invoke JSPs or HTML
pages from the browser from the ht t p: / /| ocal host : 8080 address. If you click HTML page icons,

you see the pages in the browser (of course), but you cannot invoke any JSPs from the pages.

As for your class files representing your JavaBeans, Tomcat understands that the directory
TOMCAT_HOVE\ Webapps\ exanpl es\ cl asses holds class files. Because you are a sharp Java programmer, you've

already coded your bean classes within a package, which corresponds to a directory within the classes directory cited
above. For example, beans created for the Hotel Reservation System are stored in
TOMCAT _HOVE\ Webapps\ exanpl es\ cl asses\ hot el res.

Once again, store your JSPs and HTML pages together in a directory located in the JSP subdirectory and your bean
classes in a directory (package) located in the cl asses subdirectory.

More Information on Tomcat

As previously mentioned, mailing lists are dedicated to disseminating information about Tomcat. If you have a
question, you can post it to the Web site for this book, of course, or join one of the Tomcat mailing lists.

Tip To join the Tomcat mailing list, visitht t p: / /| akart a. apache. or g/ t ontat and follow the directions

found there.

Top <

| <= Prov_ | Noxt =

EJB & JSP: Java On The Edge, Unlimited Edition

EIE & ISP ; by Lou Marco ISBN: 0764548026

Java On The Edge

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix B: The EJB API

This appendix lists the classes and interfaces that comprise Sun Microsystems’ Enterprise JavaBeans API for quick
reference.

The EJB API

Here, you can read about the EJB 1.1 API and Sun’s proposed changes for the upcoming EJB 2.0 release.

The entire EJB APl is contained within the following two packages:

. javax.ejb
. javax. ej b.spi (2.0 only)

Before examining the contents of these two packages, let’s take a quick look at the class and interface hierarchies for
the j avax. ej b package.

Class and Inheritance Hierarchies for Package javax.ejb

The proposed classes and interfaces introduced with release 2.0 are noted in the following list. Notice that EJB works
with interfaces; the classes in the javax.ejb package are representations of exceptions.

cl ass java.l ang. Obj ect
class java.l ang. Throwabl e (inplenments java.io. Serializable)
cl ass java.l ang. Excepti on
cl ass javax. ejb. Creat eException
cl ass javax. ejb. Duplicat eKeyException
cl ass javax. ejb. Fi nder Excepti on
cl ass javax. ej b. Obj ect Not FoundExcepti on
cl ass javax. ej b. RenoveExcepti on
cl ass java.l ang. Runti neException
cl ass javax. ej b. EJBException
cl ass javax. ejb. AccessLocal Excepti on
cl ass javax.ejb. NoSuchEntityException
cl ass javax. ej b. NoSuchObj ect Local Excepti on (2.0)
cl ass javax.ejb. Transacti onRequi r edLocal Exception (2. 0)
cl ass javax.ejb. Transacti onRol | edbackLocal Excepti on (2.0)

Interface Hierarchy

Here is the interface hierarchy:

i nterface javax. ej b. EJBCont ext
interface javax.ejb. EntityContext
i nterface javax.ejb. MessageDrivenContext (2.0)
i nterface javax. ejb. Sessi onCont ext
i nterface javax.ejb. EJBLocal Hone (2.0)
i nterface javax.ejb. EJBLocal Object (2.0)
i nterface javax.ejb. EJBMet abDat a
interface java.rm . Renote
i nterface javax. ejb. EJBHone
i nterface javax. ejb. EJIBObj ect
interface java.io. Serializable
interface javax.ejb. EnterpriseBean
interface javax.ejb. EntityBean
interface javax.ejb. MessageDri venBean (2.0)
i nterface javax. ejb. Sessi onBean
i nterface javax.ejb. Handl e
i nterface javax. ejb. HoneHandl e
i nterface javax. ejb. Sessi onSynchroni zati on

Because the javax.ejb.spi package (new with release 2.0, remember?) contains a single interface, let's go ahead and
discuss it.

The javax.ejb.spi Package and Its Interface

The j avax. ej b. spi package contains a single interface called Handl eDel egat e, which is implemented by the
EJB container. This interface is used by portable implementations of j avax. ej b. Handl e and

j avax. ej b. HoneHandl e. Handl eDel egat e is not used by EJB components or by client components. It provides
methods to serialize and deserialize EJBObj ect and EJBHone references to streams. Table B-1 lists the methods
available in the Handl eDel egat e interface.

Table B-1: Methods of the HandleDelegate Interface

Method Signature Description
EJBHone readEJBHome(Cbj ect I nput Stream Invoked by the EJB container to deserialize the
i stream EJBHone reference corresponding to a
HoneHandl e.
EJBOhj ect readEIJBObj ect (Invoked by the EJB container to deserialize the
oj ect I nput Stream i stream EJBObj ect reference corresponding to a Handl e.
void witeEJBHome(EJBHome hone, Serializes the EJBHone reference corresponding to
bj ect Qut put Stream ostream) a HomeHandl e.
void witeEIJBObj ect(EJBObj ect object, Serializes the EJBObj ect corresponding to a
bj ect Qut put St ream ostream) Handl e.

The vast bulk of the EJB API is contained in the j avax. ej b package. Let's take a look at j avax. ej b now.

The javax.ejb Package

Enterprise JavaBeans work with remote interfaces. Hence, the majority of the methods defined in the EJB spec are

contained within interfaces. EJB classes are limited to exception classes. Later in this appendix, you can examine a
list of all available methods from the interfaces contained in j avax. ej b. For now, let’s look at the exception classes,

which are listed in Table B-2. These exception classes inherit the "usual" methods, such as pri nt St ackTrace, and
use the "usual” constructors.

Table B-2: Exception Classes of the javax.ejb Package

Class Name Description

AccesslLocal Exception An AccesslLocal Excepti on is thrown to indicate

that the caller does not have permission to call the
method.

Cr eat eExcepti on The Cr eat eExcept i on exception must be included

in the throws clauses of all create methods defined
in an enterprise bean's hone interface.

Dupl i cat eKeyExcepti on The Dupl i cat eKeyExcept i on exception is

thrown if an entity EJB object cannot be created
because an object with the same key already exists.

EJBExcepti on The EJBExcept i on exception is thrown by an
enterprise bean instance to its container to report
that the invoked business method or callback
method could not be completed because of an
unexpected error (for example, the instance failed to
open a database connection).

Fi nder Excepti on The Fi nder Except i on exception must be included
in the throws clause of every f i ndMETHOD()
method of an entity bean's homne interface.

NoSuchEnt i t yExcepti on The NoSuchEnt i t yExcept i on exception is
thrown by an entity bean instance to its container to
report that the invoked business method or callback
method could not be completed because the
underlying entity was removed from the database.

NoSuchChj ect Local Excepti on A NoSuchnj ect Local Except i on is thrown if an

attempt is made to invoke a method on an object
that no longer exists (new with release 2.0).

hj ect Not FoundExcept i on The Obj ect Not FoundExcept i on exception is
thrown by a f i nder method to indicate that the
specified EJB object does not exist.

RenoveExcepti on The RenoveExcept i on exception is thrown at an
attempt to remove an EJB object when the
enterprise bean or the container does not enable the
EJB object to be removed.

Transacti onRequi r edLocal Excepti on This exception indicates that a request carried a null
transaction context, but the target object requires an
activate transaction (new with release 2.0).

Transacti onRol | backLocal Excepti on This exception indicates that the transaction
associated with processing of the request has been
rolled back, or marked to roll back (new with release
2.0).

As you see, the new exception classes in release 2.0 deal with exceptions thrown by local objects.

The j avax. ej b package defines no other classes than the exception classes listed in Table B-2; the remainder of
the package consists of interfaces. Table B-3 lists the interfaces available in the j avax. ej b package. The interfaces
newly available with the release 2.0 are noted.

Table B-3: Interfaces of the javax.ejb Package

Interface Name | Description

EJBCont ext The EJBCont ext interface provides an instance
with access to the container-provided runtime
context of an enterprise bean instance.

EJBHone The EJBHone interface must be extended by all

enterprise bean’s remote home interfaces.

EJBLocal Hone

The EJBLocal Hone interface must be extended by

all enterprise bean’s local home interfaces (new with
release 2.0).

EJBLocal Obj ect

The EJBLocal Obj ect interface must be extended
by all enterprise bean'’s local interfaces.

EJBMet aDat a The EJBMet aDat a interface enables a client to
obtain the enterprise bean’s metadata information.
EJBhj ect The EJBObj ect interface is extended by all

enterprise bean’s remote interfaces.

Ent er pri seBean

The Ent er pri seBean interface must be
implemented by every enterprise bean class.

Entit yBean

The Ent i t yBean interface is implemented by every
entity enterprise bean class.

Enti t yCont ext

The Ent i t yCont ext interface provides an instance

with access to the container-provided runtime
context of an entity enterprise bean instance.

Handl e The Handl e interface is implemented by all EJB
object handles.
HomeHandl e The HoneHandl e interface is implemented by all

home object handles.

MessageDri venBean

The MessageDr i venBean interface is implemented
by every message-driven enterprise bean class (new
with release 2.0).

MessageDri venCont ext

The MessageDri venCont ext interface provides
access to the runtime message-driven context that
the container provides for a message-driven
enterprise bean instance (new with release 2.0).

Sessi onBean

The Sessi onBean interface is implemented by
every session enterprise bean class.

Sessi onCont ext

The Sessi onCont ext interface provides access to
the runtime session context that the container
provides for a session enterprise bean instance.

Sessi onSynchroni zati on

The Sessi onSynchr oni zat i on interface enables

a session bean instance to be notified by its
container of transaction boundaries.

Note that all of the new interfaces available with release 2.0 deal with the MessageDr i venBean and local objects.
The rest of the interfaces in the j avax. ej b package existed in the previous EJB specification release. All of these
interfaces are discussed in this appendix.

The EJBContext Interface
The EJBCont ext interface provides a bean with the context of the EJB container. As such, the methods available

through EJBCont ext enable a bean to glean information about the container and the beans contained within. Table B-
4 lists the methods from the EJBCont ext interface.

Table B-4;: Methods of the EJBContext Interface

| Method Signature | Description

Princi pal getCallerPrincipal() Returns the security Principal that identifies the
method caller.

| EJBHone get EJBHome() Returns the bean’s (remote) home interface.

EJBLocal Hone get EJBLocal Home() Returns the bean’s local home interface (new with
release 2.0).

| bool ean get Rol | backOnl y() Determines if the transaction is marked for rollback.

User Transacti on get User Tr ansacti on() Returns a reference to the current transaction
demarcation interface.

bool ean i sCall erl nRol e() Determines if the method caller has a given security
role.

voi d set Rol | backOnl y() ’ Sets the current transaction for rollback.

The EJBCont ext interface is extended by the Sessi onCont ext and Ent i t yCont ext interfaces, which contain
methods peculiar to the two bean types.

The EJBHome Interface

The EJBHone interface must be extended by all remote home interfaces. With release 2.0, EJB draws a distinction

between a remote home interface and a local home interface. Later in this appendix you'll read about the methods in
the EJBLocal Honre interface. All methods contained in the EJBHone interface throw (minimally) a

Renot eExcept i on. The proposed 2.0 release does not add new methods, or deprecate existing ones. Table B-5
lists the methods in the EJBHone interface.

Table B-5: Methods of the EJBHome Interface

| Method Signature | Description

’ EJBMet aDat a get EJBMet aDat a() ’ Returns th_e metadata for the be'an..The bean’s
metadata is rarely used by application developers.

| HormeHandl e get HoneHandl e() ’ Returns a handle for the (remote) home object.

| voi d renmove(Handl e handle) ’ Removes an EJB object referenced by its handle.

voi d renmove(Object primaryKey) ’ Removes an EJB object referenced by its primary
key.

get EJBHome() Returns the bean’s (remote) home interface.

The EJBLocalHome Interface

The EJBLocal Hone interface is conceptually similar to the EJBHone interface except that the EJBLocal Home
interface should be extended for all local clients of enterprise beans. This interface, new with release 2.0, contains one
method, r enove, which has the following signature:
voi d renove(Object prinmaryKey)

t hrows RenpbveException, EJBException ;

The r enove method can be called only by local clients of an entity bean. Recall that session beans do not have

methods that rely on the existence of a primary key (such as finder methods). The implementation of this interface is
the responsibility of the EJB container.

The EJBLocalObject Interface

The EJBLocal Obj ect interface, new with release 2.0, serves the same function as the EJBObj ect interface, but for

local clients. An enterprise bean's local interface provides the local client view of an EJB object. An enterprise bean's
local interface defines the business methods callable by local clients. The implementation of this interface is the
responsibility of the EJB container. Table B-6 lists the methods available from a class that implements the

EJBLocal Obj ect interface.

Table B-6: Methods of the EJBLocalHome Interface

| Method Signature | Description

| EJBLocal Hone get EJBLocal Home() ’ Returns the bean’s local home interface.

| hj ect get Pri mar yKey() ’ Returns the primary key for the EJB local object.
bool ean isldentical (EJBLocal Obj ect Determines if the given EJB local object is identical
[obj) to the invoking EJB local object.

| voi d remove() ’ Removes the EJB local object.

The EJBMetaData Interface

The EJBMet aDat a interface enables a client to obtain the enterprise bean's metadata information. The metadata is

intended for development tools used for building applications that use deployed enterprise beans, and for clients using
a scripting language to access the enterprise bean. Table B-7 shows the methods available by a class that
implements the EJBMet aDat a interface.

Table B-7: Methods of the EJBMetaData Interface

| Method Signature | Description
| EJBHone get EJBHome() ’ Returns the bean’s remote home interface.
Cl ass get Horel nt erfaced ass() Returns the class for the enterprise bean’s remote

home interface.

Cl ass getRenotel nterfaced ass() Returns the class for the enterprise bean’s remote
interface.

bool ean i sSessi on() Determines if the bean’s type is session as opposed

to entity, or (with release 2.0 only) message driven.

| bool ean