

iBATIS in Action

iBATIS in Action

CLINTON BEGIN
BRANDON GOODIN

LARRY MEADORS

M A N N I N G
Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please go to
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department
Manning Publications Co.
Cherokee Station
PO Box 20386 Fax: (609) 877-8256
New York, NY 10021 email:manning@manning.com

©2007 Manning Publications. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without
prior written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books they publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co.
Cherokee Station Copyeditor: Liz Welch
PO Box 20386 Typesetter: Gordan Salinovic
New York, NY 10021 Cover designer: Leslie Haimes

ISBN 1-932394-82-6
Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – MAL – 11 10 09 08 07

 To our families

brief contents
PART I INTRODUCTION .. 1

1 ■ The iBATIS philosophy 3

2 ■ What is iBATIS? 33

PART II IBATIS BASICS .. 55

3 ■ Installing and configuring iBATIS 57

4 ■ Working with mapped statements 80

5 ■ Executing nonquery statements 105

6 ■ Using advanced query techniques 122

7 ■ Transactions 145

8 ■ Using Dynamic SQL 163
vii

viii BRIEF CONTENTS
PART III IBATIS IN THE REAL WORLD 193

9 ■ Improving performance with caching 195

 10 ■ iBATIS data access objects 217

 11 ■ Doing more with DAO 242

 12 ■ Extending iBATIS 267

PART IV IBATIS RECIPES ... 285

 13 ■ iBATIS best practices 287

 14 ■ Putting it all together 303

appendix ■ iBATIS.NET Quick Start 329

contents
preface xvii
acknowledgments xix
about this book xxiii
about the authors xxvii
about the title xxviii
about the cover illustration xxix

PART 1 INTRODUCTION ..1

1 The iBATIS philosophy 3
1.1 A hybrid solution: combining the best of the best 4

Exploring the roots of iBATIS 5
Understanding the iBATIS advantage 10

1.2 Where iBATIS fits 14
The business object model 15 ■ The presentation layer 15
The business logic layer 17 ■ The persistence layer 18
The relational database 19

1.3 Working with different database types 22
Application databases 22 ■ Enterprise databases 23
Proprietary databases 25 ■ Legacy databases 25
ix

x CONTENTS
1.4 How iBATIS handles common database challenges 26
Ownership and control 26 ■ Access by multiple disparate
systems 27 ■ Complex keys and relationships 28 ■ Denormalized
or overnormalized models 29 ■ Skinny data models 30

1.5 Summary 32

2 What is iBATIS? 33
2.1 Mapping SQL 35

2.2 How it works 37
iBATIS for small, simple systems 38
iBATIS for large, enterprise systems 39

2.3 Why use iBATIS? 40
Simplicity 40 ■ Productivity 41 ■ Performance 41
Separation of concerns 42 ■ Division of labor 42 ■ Portability:
Java, .NET, and others 42 ■ Open source and honesty 43

2.4 When not to use iBATIS 43
When you have full control…forever 43 ■ When your application
requires fully dynamic SQL 44 ■ When you’re not using a relational
database 44 ■ When it simply does not work 45

2.5 iBATIS in five minutes 45
Setting up the database 46 ■ Writing the code 46 ■ Configuring
iBATIS (a preview) 47 ■ Building the application 49
Running the application 49

2.6 The future: where is iBATIS going? 50
Apache Software Foundation 50 ■ Simpler, smaller, with fewer
dependencies 51 ■ More extensions and plug-ins 51
Additional platforms and languages 51

2.7 Summary 52

PART 2 IBATIS BASICS ..55

3 Installing and configuring iBATIS 57
3.1 Getting an iBATIS distribution 58

Binary distribution 59 ■ Building from source 59
3.2 Distribution contents 62

CONTENTS xi
3.3 Dependencies 62
Bytecode enhancement for lazy loading 63 ■ Jakarta Commons
Database Connection Pool 63 ■ Distributed caching 64

3.4 Adding iBATIS to your application 64
Using iBATIS with a stand-alone application 64
Using iBATIS with a web application 65

3.5 iBATIS and JDBC 65
Releasing JDBC resources 66 ■ SQL injection 66
Reducing the complexity 67

3.6 iBATIS configuration continued 68
The SQL Map configuration file 69 ■ The <properties> element 70
The <settings> element 71 ■ The <typeAlias> elements 73 ■ The
<transactionManager> element 75 ■ The <typeHandler>
element 77 ■ The <sqlMap> element 78

3.7 Summary 78

4 Working with mapped statements 80
4.1 Starting with the basics 81

Creating JavaBeans 81 ■ The SqlMap API 85
Mapped statement types 86

4.2 Using <select> mapped statements 89
Using inline parameters with the # placeholders 89 ■ Using
inline parameters with the $ placeholders 91 ■ A quick look
at SQL injection 92 ■ Automatic result maps 93
Joining related data 95

4.3 Mapping parameters 95
External parameter maps 95 ■ Inline parameter
mapping revisited 97 ■ Primitive parameters 99
JavaBean and Map parameters 99

4.4 Using inline and explicit result maps 100
Primitive results 101 ■ JavaBean and Map results 102

4.5 Summary 103

5 Executing nonquery statements 105
5.1 The building blocks for updating data 106

The SqlMap API for nonquery SQL statements 106
Nonquery mapped statements 107

xii CONTENTS
5.2 Inserting data 108
Using inline parameter mapping 108 ■ Using an
external ■ parameter map 109 ■ Autogenerated keys 110

5.3 Updating and deleting data 113
Handling concurrent updates 114
Updating or deleting child records 114

5.4 Running batch updates 115

5.5 Working with stored procedures 117
Considering the pros and cons 117
IN, OUT, and INOUT parameters 119

5.6 Summary 121

6 Using advanced query techniques 122
6.1 Using XML with iBATIS 123

XML parameters 123 ■ XML results 125
6.2 Relating objects with mapped statements 128

Complex collections 128 ■ Lazy loading 131
Avoiding the N+1 Selects problem 132

6.3 Inheritance 134
Mapping Inheritance 136

6.4 Other miscellaneous uses 137
Using the statement type and DDL 137
Processing extremely large data sets 138

6.5 Summary 144

7 Transactions 145
7.1 What is a transaction? 146

A simple banking example 146
Understanding transaction properties 148

7.2 Automatic transactions 151

7.3 Local transactions 152

7.4 Global transactions 153
Using active or passive transactions 154 ■ Starting, committing, and
ending the transaction 155 ■ Do I need a global transaction? 156

7.5 Custom transactions 156

CONTENTS xiii
7.6 Demarcating transactions 158
Demarcating transactions at the presentation layer 159
Demarcating transactions at the persistence layer 160
Demarcating transactions at the business logic layer 160

7.7 Summary 161

8 Using Dynamic SQL 163
8.1 Dealing with Dynamic WHERE clause criteria 164

8.2 Getting familiar with the dynamic tags 166
The <dynamic> tag 168 ■ Binary tags 169 ■ Unary tags 171
Parameter tags 172 ■ The <iterate> tag 173

8.3 A complete simple example 175
Defining how to retrieve and display data 176 ■ Determining which
database structures are involved 176 ■ Writing the SQL in static
format 176 ■ Applying Dynamic SQL tags to static SQL 177

8.4 Advanced Dynamic SQL techniques 178
Defining the resulting data 178 ■ Defining the required input 179
Writing the SQL in static format 180 ■ Applying Dynamic SQL tags
to static SQL 181

8.5 Alternative approaches to Dynamic SQL 183
Using Java code 184 ■ Using stored procedures 187
Comparing to iBATIS 189

8.6 The future of Dynamic SQL 190
Simplified conditional tags 190 ■ Expression language 191

8.7 Summary 191

PART 3 IBATIS IN THE REAL WORLD193

9 Improving performance with caching 195
9.1 A simple iBATIS caching example 196

9.2 iBATIS’s caching philosophy 197

9.3 Understanding the cache model 198
Type 198 ■ The readOnly attribute 199 ■ The serialize
attribute 199 ■ Combining readOnly and serialize 200

xiv CONTENTS
9.4 Using tags inside the cache model 201
Cache flushing 201
Setting cache model implementation properties 204

9.5 Cache model types 204
MEMORY 205 ■ LRU 206 ■ FIFO 207 ■ OSCACHE 208
Your cache model here 208

9.6 Determining a caching strategy 208
Caching read-only, long-term data 209 ■ Caching read-write
data 211 ■ Caching aging static data 213

9.7 Summary 216

10 iBATIS data access objects 217
10.1 Hiding implementation details 218

Why the separation? 219 ■ A simple example 220
10.2 Configuring the DAO 223

The <properties> element 223 ■ The <context> element 223
The <transactionManager> element 224 ■ The DAO elements 229

10.3 Configuration tips 230
Multiple servers 230 ■ Multiple database dialects 231
Runtime configuration changes 232

10.4 A SQL Map DAO implementation example 233
Configuring the DAO in iBATIS 234 ■ Creating a DaoManager in-
stance 235 ■ Defining the transaction manager 235 ■ Loading
the maps 236 ■ Coding the DAO implementation 239

10.5 Summary 241

11 Doing more with DAO 242
11.1 Non-SQLMap DAO implementations 243

A Hibernate DAO implementation 243
A JDBC DAO implementation 248

11.2 Using the DAO pattern with other data sources 253
Example: using a DAO with LDAP 253
Example: using a DAO with a web service 258

11.3 Using the Spring DAO 260
Writing the code 260 ■ Why use Spring instead of iBATIS? 262

CONTENTS xv
11.4 Creating your own DAO layer 262
Separating interface from implementation 263
Decoupling and creating a factory 263

11.5 Summary 266

12 Extending iBATIS 267
12.1 Understanding pluggable component design 268

12.2 Working with custom type handlers 269
Implementing a custom type handler 270
Creating a TypeHandlerCallback 271
Registering a TypeHandlerCallback for use 275

12.3 Working with a CacheController 276
Creating a CacheController 277 ■ Putting, getting, and flushing a
CacheController 277 ■ Registering a CacheController for use 278

12.4 Configuring an unsupported DataSource 279

12.5 Customizing transaction management 280
Understanding the TransactionConfig interface 281
Understanding the Transaction interface 282

12.6 Summary 283

PART 4 IBATIS RECIPES ...285

13 iBATIS best practices 287
13.1 Unit testing with iBATIS 288

Unit-testing the mapping layer 288 ■ Unit-testing data access
objects 291 ■ Unit-testing DAO consumer layers 293

13.2 Managing iBATIS configuration files 295
Keep it on the classpath 295 ■ Keep your files together 297
Organize mostly by return type 298

13.3 Naming conventions 298
Naming statements 298 ■ Naming parameter maps 298
Naming result maps 299 ■ XML files 299

13.4 Beans, maps, or XML? 300
JavaBeans 300 ■ Maps 300 ■ XML 301 ■ Primitives 301

13.5 Summary 301

xvi CONTENTS
14 Putting it all together 303
14.1 Design concept 304

Account 304 ■ Catalog 304 ■ Cart 305 ■ Order 305
14.2 Choosing technologies 305

Presentation 305 ■ Service 305 ■ Persistence 306
14.3 Tweaking Struts: the BeanAction 306

BeanBase 307 ■ BeanAction 307 ■ ActionContext 307
14.4 Laying the foundation 308

src 308 ■ test 309 ■ web 309
build 310 ■ devlib 310 ■ lib 310

14.5 Configuring the web.xml 311

14.6 Setting up the presentation 312
The first step 312 ■ Utilizing a presentation bean 315

14.7 Writing your service 320
Configuring dao.xml 321 ■ Transaction demarcation 322

14.8 Writing the DAO 323
SQLMap configuration 324 ■ SQLMap 325
Interface and implementation 326

14.9 Summary 328

appendix iBATIS.NET Quick Start 329
index 337

preface
In my career as a software developer, I have worked in many diverse
environments. Within a single company, software will often be developed in many
different ways. When you consider the various challenges, people, and tools that
make up a developer’s day-to-day world, you quickly realize just how diverse that
world is. I never know what surprising challenges the next consulting project will
bring, so I always keep a variety of tools in my toolbox. For a few years, iBATIS was
just a little chunk of code that saved me some time when I would normally be
handcoding JDBC.

 So how did iBATIS go from being a tool in my toolbox to an Apache project
used by thousands? I had never intended to make iBATIS a full-blown open source
project. The source was out there, but I hadn’t marketed it or actively shared it
with anyone. Enter JPetStore.

 On July 1, 2002, I posted my response to the Pet Store story that was traveling the
Internet. A large software company in Redmond was claiming that the C# language
and the .NET platform were vastly more productive than Java, by several orders of
magnitude. I’m a technology agnostic, and even though C# and .NET are pretty
decent, I just couldn’t accept a claim like that. So I spent my evenings for a couple
of weeks writing JPetStore in the shadow of the “monstrosities” that had been fash-
ioned by the enterprise software vendors. JPetStore created much discussion in the
Java community. The hottest issue was its lack of an Enterprise JavaBeans (EJB) per-
sistence layer—replaced instead by a tiny little framework called iBATIS.
xvii

xviii PREFACE
 I’m often asked, “Why didn’t you use other open source tools?” At the time
there were no other tools like iBATIS. There were plenty of code generators, but
I’ll spare you my soapbox rant on development-time and build-time code genera-
tion. I’ll just say that anything that can be generated can also be generalized into a
framework. And that’s what iBATIS essentially is: a generalized framework for
quicker JDBC coding.

 The next question often asked is, “Why not use an object/relational mapping
tool?” An O/RM tool can be used in the right environment. It works very well
when you have full control over your database and the object model: you can eas-
ily achieve ideal mappings and avoid nightmarish tweaking and jumping through
hoops due to a mismatch between the two. However, no one would dream of map-
ping an object model to the kinds of databases that I usually work with. With a
decent O/RM tool, like Hibernate or TopLink, you probably could. The question
is, should you map it?

 Someone once told me a story about a guy with a hammer who saw everything
as a nail…you know the one. O/RM tools are frameworks. Frameworks are built
on constraints and assumptions. Those constraints and assumptions are ideal in
certain environments, but not in all environments…not everything is a nail. Our
job as software developers is to match ideal solutions to the problems at hand—
not to use the only solution we know or the most popular solution or the hottest
solution on the Net—but the one that best solves the problem we are facing. For
different environments, we need different tools—iBATIS is one of them.

 Today iBATIS has been implemented in three languages: Java, C#, and Ruby. It
is maintained by a team of more than a dozen developers and it has a community
of thousands of developers. You can read about it in books and articles and blogs
on the Web. While iBATIS isn’t the top dog of persistence, and it likely never will
be, it is a success story. I realized that the day I stopped answering questions on
the mailing list: the community had taken over.

 A self-sustaining community is the true mark of success of an open source
project. If you’ve read this far, I assume you’re part of that community. So let me
join you in celebrating the success of our little framework.

 CLINTON BEGIN

acknowledgments
Writing books is harder than writing software. Having been through both, we, the
three authors of this book, can easily agree on that. And when you notice the
number of people who were involved in our book, we’re sure you’ll agree as well.

 The talented and committed people at Manning Publications deserve a lot of
the credit. Special thanks to publisher Marjan Bace, production director Mary
Piergies, and our development editor, Jackie Carter. Without Jackie, the book
would have never been started—or completed. She made the call, she cracked the
whip, and she put up with the three of us without prescribing any drugs to deal
with our severe attention deficit disorder. Thanks, Jackie, for going above and
beyond to make this book happen at both ends.

 Next, we would like to thank our reviewers, who had the tough job of reading
our book and commenting on more than just technical errors—something soft-
ware developers are good at. They also had to tell us what was good and what was
bad about the book. They helped us to change the feel of the book, front to back;
their input was essential. A big thanks to Sven Boden, Nathan Maves, Rick
Reumann, Jeff Cunningham, Suresh Kumar, Scott Sauyet, Dick Zetterberg, Anjan
Bacchu, Benjamin Gorlick, Oliver Zeigermann, Doug Warren, Matt Raible, Yoav
Shapira, Cos DiFazio, Nick Heudecker, Ryan Breidenbach, and Patrick Peak. Spe-
cial thanks to Sven Boden who proofread the manuscript for technical accuracy
before it went to press.
xix

xx ACKNOWLEDGMENTS
 Without the iBATIS team, we would have neither the software nor the book. As
of this writing, the team includes the three authors: Clinton Begin, Brandon Goo-
din, and Larry Meadors. Two of our reviewers are also on the iBATIS team: Sven
Boden and Nathan Maves, who are joined by Jeff Butler and Brice Ruth to form
the rest of the iBATIS for Java team. iBATIS also has a .NET implementation, origi-
nally created by Gilles Bayon, who has since assembled a highly skilled team of
.NET developers, including Ron Grabowski and Roberto Rabe. We’ve learned a lot
from the iBATIS.NET team and they’re likely to take the .NET world by storm.
More recently, we were joined by Jon Tirsen who implemented iBATIS in Ruby
and affectionately named it RBatis. It’s the newest member of the family and we
have high hopes for its continued success alongside Rails and ActiveRecord.

 There’s one more member of our team who deserves a special thanks. Ted
Husted has truly brought iBATIS from “a tool in Clinton’s toolbox” to the Apache
project that it is today. He helped build the vision for the .NET version as well as
the Apache project as a whole. He showed us the way. Thanks, Ted.

 Finally, there’s the community. iBATIS would be nowhere without all of the
users, contributors, bug finders, documenters, translators, reviewers, authors,
bloggers, fellow framework developers—and those of us who are just generally
loud and can spread the word. Among these I’d like to name a few people, includ-
ing Bruce Tate, Rod Johnson, and Matt Raible. We’d also like to thank the staff
and communities of a few sites, including IBM Developerworks, JavaLobby.org,
DZone.com, InfoQ.com, and TheServerSide.com.

CLINTON BEGIN

Open source software developers are crazy. We spend our days at work for money
and our evenings at our keyboards writing open source software (or books) for
fame and glory. We fight for the right to earn the respect of those who would just
as soon forget us. All the while, every minute we’ve spent at our keyboards we’ve
spent away from the very people who would give us love and respect for free. No
books, no code, no keyboard necessary. For fame and glory we need only to step
away from that keyboard, walk upstairs, and look into the eyes of our family. They
are ready to offer their full support for our wild and crazy adventures. But with age
and maturity we begin to realize that their loss of our time is not what we should worry
about, but our loss of their time.

 First, I’d like to thank my wife, Jennifer. She started as the girl behind the
bookstore counter, then became my college sweetheart, and eventually I talked
her into saying “yes” by bribing her with fine jewelry. Her selflessness, strength,

ACKNOWLEDGMENTS xxi
and support have made all of this possible. She’s also at least fifty percent respon-
sible for our absolutely precious sons, Cameron and Myles.

 I’d also like to thank my parents, Donna and Reginald, for their love and
encouragement. In the ’80s few parents knew what a computer was, and even if
they did, they could not afford one. Somehow my parents managed to find room
in the family budget to buy me a Vic-20. They had no idea what I wanted to do
with my life, but they trusted me and believed in me enough to let me do it. They
led by example with courage and unwavering optimism to show me that success is
possible against even the most unrealistic odds.

 Finally, I’d like to thank my Aunt Catherine for being the owner of the first x86
computer I ever used and eventually owned—and for trusting a 16-year-old kid
enough to lend him $1,600 in 1993 to replace that old 8088.

BRANDON GOODIN

I’m sure that many of us hardcore geeks share the same story. We have fond mem-
ories of our first computer and the trusting parents who knew somehow their
investment in these confounding machines would reap some benefit. As we grow
older, we find ourselves with spouses and children who continue to hope that our
endeavors will be lucrative. I’m not sure the payoff has happened yet. But I’m still
having a great time!

 I wouldn’t have been able to pursue my passion for software development
without support and encouragement from my family and friends. There have
been many who gave me the room to dream, play, work, and fume. To these peo-
ple I owe a debt of gratitude for giving me the opportunity to do what I
love…chuck code!

 First, I thank God for the opportunity to write code. There have been many
opportunities that have come along in my career that I can only ascribe to provi-
dence. To write code and be able to provide for my family is a true blessing.

 To my wife, Candas, and children, Felicity, Kailey, and Amery, who have lov-
ingly given me tons of room to spend countless hours noodling at my keyboard, I
say thank you. You are the reason I stay motivated.

 I’d also like to say thanks to my mom and dad, Gerald and Linda Goodin.
When you brought home that first Atari 400 with a BASIC cartridge, I was hooked.
The two of you gave me my first taste.

 To my friend, Sean Dillon, thanks for all your mentorship and for giving me a
huge chance to break into the world of software development.

 Finally, but not least, thanks, Clinton, for the golden opportunity to be a part
of the iBATIS team.

xxii ACKNOWLEDGMENTS
LARRY MEADORS

After reading the other guys’ notes, I feel like I am an echo, but we were all head-
ing in the same direction at the same time, just from different places, with differ-
ent people. When I received my first computer in 1983, I am sure my parents
didn’t know what to expect, but it was a powerful addiction, and turned into a
great learning tool, too.

 There have been so many people who helped me learn technology, and it
would be impossible to thank all of them, so I won’t even try. I’ll just mention the
ones who made the biggest impact.

 First, I want to thank God for putting me in a place where I have so many sup-
portive friends, and for giving me such a great family who puts up with dad having
his notebook on his lap for so many hours every day.

 Second, I want to thank my wife, Darla, and my two kiddos, Brandon and
Micah, for being so understanding (writing a book takes forever!) and for all the
encouragement they offered. They have spent many hours without dad and
haven’t complained (well, not too much anyway—and not nearly as much as they
deserved to).

 Last, I want to thank Brandon for introducing me to this iBATIS thing, and
Clinton for being the guy who made it work, gave it away, and then invited me to
be a part of the team. Thanks, dudes!

about this book
iBATIS is all about simplicity. There was a time when I said, “If I ever need to write
a book about iBATIS, I’m doing something wrong.” And here I am, writing a
book about iBATIS. It turns out that no matter how simple something is, a book is
sometimes the best way to learn about it. There’s a lot of speculation these days
that books might be replaced by e-books or by a jack in the back of our head that
uploads information in a matter of seconds. Neither of those sounds terribly
comfortable. I like books because they’re portable and flexible. I can write on
them, bend the pages, crack the spine. Nothing would make me happier than to
see a well-worn copy of iBATIS in Action littering the floor of a busy developer’s
office. Success.

 CLINTON BEGIN

What you should know
We hope that this book will keep the theme of iBATIS simplicity, but sometimes
abstract concepts require more words. Certain chapters may be long and drawn out
if you’re not concerned with theory. Other chapters will be quick and to the point
as if to say, “Here’s how it works, and here’s an example—now get to it.”

 The book assumes some knowledge. We expect you to know Java. We won’t
pull any punches here. This should not be the first or second Java book you’ve
read. You should have felt the pain of using JDBC and possibly even experienced
some of the pitfalls of O/RM.
xxiii

xxiv ABOUT THIS BOOK
 We also expect you to know SQL. iBATIS is a SQL-centric framework. We don’t
attempt to hide the SQL; it’s not generated and you’re in full control of it. So you
should have some SQL development experience under your belt.

 Finally, you should be familiar with XML. As much as we wish there were a bet-
ter solution, XML just makes sense for iBATIS development. It supports authoring
of large blocks of text (i.e., SQL) much better than Java (which has no multiline
string support), and it supports rich markup, allowing for the creation of a cus-
tom configuration syntax. Future versions of iBATIS may have other means of con-
figuration and development, but for now, it’s XML and you need to be familiar
with it.

Who should read this book?
The developer community is our primary target audience. We fully expect that
you will skip this section, skim through most of the early chapters on higher-level
abstract topics, and move on to the first section where you see code. We expect
you to read through the book while coding something completely unrelated with
South Park on the television in the background.

 Recovering O/RM users will enjoy iBATIS and this book. O/RM has a history of
being a silver bullet solution that simply does not deliver. A lot of projects have
started with O/RM but were finished with SQL. iBATIS focuses on solving existing
problems without introducing new ones. We’re not against using O/RM, but
chances are good that you’ve hit a snag or two when trying to use an O/RM solu-
tion where a different approach would have been more efficient.

 Architects will enjoy the higher-level section, which discusses the unique
approach that iBATIS takes. There is a lot of hype about O/RM, and architects
need to be informed that O/RM is not the only way. They need to learn to draw a
new box with new lines to that old box that sits beside the O/RM box and con-
nects it with a line to some other box—all the while ensuring that the Law of
Demeter is never broken, of course!

 Data modelers will probably not want to read this book, but we hope that some-
one will encourage them to. iBATIS was a product partially created in frustration
with the database designs that came from people who refused to follow the rules of
proper database normalization (and judicious denormalization). Data modelers
will be familiar with the challenges of most legacy and ERP systems that have been
built by some of the largest software companies in the world.

 Others who should read this book include managers/executives, database
administrators, quality assurance/testers, and analysts. Of course, anyone is more
than welcome to buy it, if only for the cool cover.

ABOUT THIS BOOK xxv
Roadmap
Part 1 of this book offers a high-level introduction of iBATIS. It includes chapters 1
and 2, which describe the iBATIS philosophy and what iBATIS is. These chapters
provide background for people interested in the foundations of iBATIS. If you’re
looking for the more practical application of iBATIS and want to get right down to
work, skip to part 2.

 Chapters 3 through 7 comprise part 2 of the book, which takes you through
the basic applications of iBATIS. These chapters are essential reading if you
intend to develop with iBATIS. Chapter 3 walks you through installation of the
framework. Chapters 4, 5, and 6 teach you how to work with various kinds of
statements. Chapter 7 wraps up part 2 with a detailed discussion of transaction
support in iBATIS, which will help ensure that transactions are used properly in
your application.

 Part 3 begins our discussion of advanced iBATIS topics. Chapter 8 examines
Dynamic SQL, which is one of the key innovations of iBATIS and essential for intro-
ducing complex query capabilities into your application. Chapter 9 continues the
advanced topics with a discussion of caching data. As it turns out, caching is one of
the more complex challenges with a SQL mapping framework, and you’ll want to
read this chapter to ensure that you understand how it’s implemented. iBATIS is
actually two frameworks in one: the SQL Mapper and the DAO framework. The DAO
framework is completely independent, but it’s always been part of iBATIS, so it’s
important to discuss it here. Chapters 10 and 11 discuss the DAO framework in
detail. iBATIS is also a flexible framework. Wherever possible, pluggable interfaces
have been used so you can include your own custom behavior into the framework.
Chapter 12 investigates how you can extend iBATIS to do just that.

 Part 4 places iBATIS in the real world. Chapter 13 examines a number of best
practices for working with iBATIS. We wrap up the book in chapter 14 with a com-
prehensive web application called JGameStore. The full source of the JGameStore
application is available from the iBATIS homepage and Manning’s website. Like
all of the source code in this book, JGameStore is licensed under the Apache
License 2.0, so you’re free to download it and use it as you like.

Source code conventions and downloads
Source code in listings or code terms in text appear in a fixed-width font like
this. Code annotations accompany many of the listings, highlighting important
concepts. In some cases, numbered cueballs link to additional explanations that
follow the listing.

xxvi ABOUT THIS BOOK
 You can download the source code for all of the examples in the book and for
the JGameStore application from the publisher’s website at www.manning.com/
begin.

Author Online
Purchase of iBATIS in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the authors and from other users.
To access the forum and subscribe to it, point your web browser to
www.manning.com/begin. This page provides information on how to get on
the forum once you are registered, what kind of help is available, and the rules
of conduct on the forum. It also provides links to the source code for the
examples in the book, errata, and other downloads.

 Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialog between individual readers and between readers and the authors can
take place. It is not a commitment to any specific amount of participation on the
part of the authors, whose contribution to the AO remains voluntary (and
unpaid). We suggest you try asking the authors some challenging questions lest
their interest stray!

 The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

http://www.manning.com/begin
http://www.manning.com/begin
http://www.manning.com/begin

about the authors
CLINTON BEGIN is a Senior Developer and Agile Mentor for ThoughtWorks Can-
ada. He has been building enterprise applications for nine years based on plat-
forms such as Java and .NET. Clinton has extensive experience with agile
methodologies, persistence frameworks, and relational databases. He is the origi-
nal creator of the iBATIS persistence framework, which he designed in response to
the challenges faced by object-oriented developers dealing with enterprise rela-
tional databases. Clinton is an experienced speaker, having delivered formal pre-
sentations, tutorials, and training sessions from San Francisco to New York City.

BRANDON GOODIN is an independent consultant who has been developing enter-
prise applications for over seven years, utilizing a varied set of languages and
technologies. His industry experience spans manufacturing, health care, e-com-
merce, real estate, and recreation. He has been contributing to the iBATIS
project since 2003.

LARRY MEADORS is an independent consultant offering development, support,
and training services. He has been building enterprise web applications with mul-
tiple databases and multiple languages since the late ’90s, and became involved
with the iBATIS project back in the 1.x days.
xxvii

about the title
By combining introductions, overviews, and how-to examples, Manning’s In Action
books are designed to help learning and remembering. According to research in
cognitive science, the things people remember are things they discover during
self-motivated exploration.

 Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent, it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, play with new code,
and explore new ideas.

 There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want, just
when they want it. They need books that aid them in action. The books in this
series are designed for such readers.
xxviii

about the cover illustration
The figure on the cover of iBATIS in Action is a “Geisiques,” an inhabitant of the
Har-Geisa region in the Horn of Africa, in what is today the country of Somalia.
The illustration is taken from a Spanish compendium of regional dress customs
first published in Madrid in 1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacionas
del Mundo desubierto, dibujados y grabados con la mayor exactitud por
R.M.V.A.R. Obra muy util y en special para los que tienen la del viajero
universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the known
world, designed and printed with great exactitude by R.M.V.A.R. This work
is very useful especially for those who hold themselves to be universal travelers

Although nothing is known of the designers, engravers, and workers who colored
this illustration by hand, the “exactitude” of their execution is evident in this draw-
ing. The “Geisiques” is just one of many figures in this colorful collection. Their
diversity speaks vividly of the uniqueness and individuality of the world’s towns and
regions just 200 years ago. This was a time when the dress codes of two regions sep-
arated by a few dozen miles identified people uniquely as belonging to one or the
other. The collection brings to life a sense of isolation and distance of that period—
and of every other historic period except our own hyperkinetic present.
xxix

xxx ABOUT THE COVER ILLUSTRATION
 Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

 We at Manning celebrate the inventiveness, the initiative, and, yes, the fun of
the computer business with book covers based on the rich diversity of regional life
of two centuries ago‚ brought back to life by the pictures from this collection.

Part 1

Introduction

We begin this book with a high-level introduction to iBATIS. The two chapters
that follow will describe the iBATIS philosophy and distinguish it from other persis-
tence solutions. A lot of persistence options are available for Java, and it can be a
challenge to know which one to use and when. After reading the chapters in this
part, you should understand the principles and values that iBATIS was built on and
where you can apply them.

The iBATIS philosophy
This chapter covers
■ iBATIS history
■ Understanding iBATIS
■ Database types
3

4 CHAPTER 1

The iBATIS philosophy
Structured Query Language (SQL) has been around for a long time. It’s been
over 35 years since Edgar F. Codd first suggested the idea that data could be nor-
malized into sets of related tables. Since then, corporate IT has invested billions
of dollars into relational database management systems (RDBMSs). Few software
technologies can claim to have stood the test of time as well as the relational data-
base and SQL. Indeed, after all this time, there is still a great deal of momentum
behind relational technology and it is a cornerstone offering of the largest soft-
ware companies in the world. All indicators suggest that SQL will be around for
another 30 years.

 iBATIS is based on the idea that there is value in relational databases and SQL,
and that it is a good idea to embrace the industrywide investment in SQL. We have
experiences whereby the database and even the SQL itself have outlived the appli-
cation source code, and even multiple versions of the source code. In some cases
we have seen that an application was rewritten in a different language, but the
SQL and database remained largely unchanged.

 It is for such reasons that iBATIS does not attempt to hide SQL or avoid SQL. It
is a persistence layer framework that instead embraces SQL by making it easier to
work with and easier to integrate into modern object-oriented software. These
days, there are rumors that databases and SQL threaten our object models, but
that does not have to be the case. iBATIS can help to ensure that it is not.

 In this chapter, we will look at the history and rationale for iBATIS, and discuss
the forces that influenced its creation.

1.1 A hybrid solution: combining the best of the best

In the modern world, hybrid solutions can be found everywhere. Taking two seem-
ingly opposing ideas and merging them in the middle has proven to be an effective
means to filling a niche, which in some cases has resulted in the creation of entire
industries. This is certainly true of the automotive industry, as most of the innova-
tion in vehicle designs has come from mixing various ideas. Mix a car with a cargo
van and you have the ultimate family minivan. Marry a truck with an all-terrain
vehicle, and you have an urban status symbol known as a sport utility vehicle. Cross
a hotrod and a station wagon and you have a family car that Dad isn’t embarrassed
to drive. Set a gasoline engine side by side with an electric motor, and you have the
answer for a great deal of the North American pollution problem.

 Hybrid solutions have proven effective in the IT industry too. iBATIS is one
such hybrid solution for the persistence layer of your application. Over time, vari-
ous methods have been developed to enable applications to execute SQL against a

A hybrid solution: combining the best of the best 5
database. iBATIS is a unique solution that borrows concepts from several other
approaches. Let’s start by taking a quick look at these approaches.

1.1.1 Exploring the roots of iBATIS

iBATIS takes the best attributes and ideas from the most popular means of access-
ing a relational database, and finds synergy among them. Figure 1.1 shows how
the iBATIS framework takes what was learned through years of development using
different approaches to database integration, and combines the best of those les-
sons to create a hybrid solution.

 The following sections discuss these various approaches to interacting with the
database and describe the parts of each that iBATIS leverages.

Structured Query Language
At the heart of iBATIS is SQL. By definition, all relational databases support SQL as
the primary means of interacting with the database. SQL is a simple, nonproce-
dural language for working with the database, and is really two languages in one.

 The first is Data Definition Language (DDL), which includes statements like
CREATE, DROP, and ALTER. These statements are used to define the structure and
design of the database, including the tables, columns, indexes, constraints, proce-
dures, and foreign key relationships. DDL is not something that iBATIS supports
directly. Although many people have successfully executed DDL using iBATIS, DDL
is usually owned and controlled by a database administration group and is often
beyond the reach of developers.

iBATIS
Stored

Procedures

Dynamic

SQL

Inline

SQL

Object

Relational

Mapping

Figure 1.1
Some of the ideas that iBATIS
pulls together to simplify the
development process

6 CHAPTER 1

The iBATIS philosophy
The second part of SQL is the Data Manipulation Language (DML). It includes
statements such as SELECT, INSERT, UPDATE, and DELETE. DML is used to manipulate
the data directly. Originally SQL was designed to be a language simple enough for
end users to use. It was designed so that there should be no need for a rich user
interface or even an application at all. Of course, this was back in the day of
green-screen terminals, a time when we had more hope for our end users!

 These days, databases are much too complex to allow SQL to be run directly
against the database by end users. Can you imagine handing a bunch of SQL state-
ments to your accounting department as if to say, “Here you go, you’ll find the
information you’re looking for in the BSHEET table.” Indeed.

 SQL alone is no longer an effective interface for end users, but it is an
extremely powerful tool for developers. SQL is the only complete means of access-
ing the database; everything else is a subset of the complete set of capabilities of
SQL. For this reason, iBATIS fully embraces SQL as the primary means of accessing
the relational database. At the same time, iBATIS provides many of the benefits of
the other approaches discussed in this chapter, including stored procedures and
object/relational mapping tools.

Old-school stored procedures
Stored procedures may be the oldest means of application programming with a
relational database. Many legacy applications used what is now known as a two-tier
design. A two-tier design involved a rich client interface that directly called stored
procedures in the database. The stored procedures would contain the SQL that was
to be run against the database. In addition to the SQL, the stored procedures could
(and often would) contain business logic. Unlike SQL, these stored procedure lan-
guages were procedural and had flow control such as conditionals and iteration.
Indeed, one could write an entire application using nothing but stored proce-
dures. Many software vendors developed rich client tools, such as Oracle Forms,
PowerBuilder, and Visual Basic, for developing two-tier database applications.

 The problems with two-tier applications were primarily performance and scal-
ability. Although databases are extremely powerful machines, they aren’t neces-
sarily the best choice for dealing with hundreds, thousands, or possibly millions of
users. With modern web applications, these scalability requirements are not
uncommon. Limitations, including concurrent licenses, hardware resources, and
even network sockets, would prevent such architecture from succeeding on a mas-
sive scale. Furthermore, deployment of two-tier applications was a nightmare. In
addition to the usual rich client deployment issues, complex runtime database
engines often had to be deployed to the client machine as well.

A hybrid solution: combining the best of the best 7
Modern stored procedures
In some circles stored procedures are still considered best practice for three-tier
and N-tier applications, such as web applications. Stored procedures are now
treated more like remote procedure calls from the middle tier, and many of the
performance constraints are solved by pooling connections and managing data-
base resources. Stored procedures are still a valid design choice for implementing
the entire data access layer in a modern object-oriented application. Stored proce-
dures have the benefit of performance on their side, as they can often manipulate
data in the database faster than any other solution. However, there are other con-
cerns beyond simply performance.

 Putting business logic in stored procedures is widely accepted as being a bad
practice. The primary reason is that stored procedures are more difficult to
develop in line with modern application architectures. They are harder to write,
test, and deploy. To make things worse, databases are often owned by other teams
and are protected by tight change controls. They may not be able to change as fast
as they need to to keep up with modern software development methodologies.
Furthermore, stored procedures are more limited in their capability to imple-
ment the business logic completely. If the business logic involves other systems,
resources, or user interfaces, the stored procedure will not likely be able to han-
dle all of the logic. Modern applications are very complex and require a more
generic language than a stored procedure that is optimized to manipulate data.
To deal with this, some vendors are embedding more powerful languages like Java
in their database engines to allow for more robust stored procedures. This really
doesn’t improve the situation at all. It only serves to further confuse the bound-
aries of the application and the database and puts a new burden on the database
administrators: now they have to worry about Java and C# in their database. It’s
simply the wrong tool for the job.

 A common theme in software development is overcorrection. When one problem
is found, the first solution attempted is often the exact opposite approach. Instead
of solving the problem, the result is an equal number of completely different
problems. This brings us to the discussion of inline SQL.

Inline SQL
An approach to dealing with the limitations of stored procedures was to embed
SQL into more generic languages. Instead of moving the logic into the database,
the SQL was moved from the database to the application code. This allowed SQL
statements to interact with the language directly. In a sense, SQL became a feature

8 CHAPTER 1

The iBATIS philosophy
of the language. This has been done with a number of languages, including
COBOL, C, and even Java. The following is an example of SQLJ in Java:

 String name;
Date hiredate;

#sql {
 SELECT emp_name, hire_date
 INTO :name, :hiredate
 FROM employee
 WHERE emp_num = 28959

 };

Inline SQL is quite elegant in that it integrates tightly with the language. Native
language variables can be passed directly to the SQL as parameters, and results
can be selected directly into similar variables. In a sense, the SQL becomes a fea-
ture of the language.

 Unfortunately, inline SQL is not widely adopted and has some significant issues
keeping it from gaining any ground. First, SQL is not a standard. There are many
extensions to SQL and each only works with one particular database. This frag-
mentation of the SQL language makes it difficult to implement an inline SQL
parser that is both complete and portable across database platforms. The second
problem with inline SQL is that it is often not implemented as a true language fea-
ture. Instead, a precompiler is used to first translate the inline SQL into proper
code for the given language. This creates problems for tools like integrated devel-
opment environments (IDEs) that might have to interpret the code to enable
advanced features like syntax highlighting and code completion. Code that con-
tains inline SQL may not even be able to compile without the precompiler, a
dependency that creates concerns around the future maintainability of the code.

 One solution to the pains of inline SQL is to remove the SQL from the lan-
guage level, and instead represent it as a data structure (i.e., a string) in the appli-
cation. This approach is commonly known as Dynamic SQL.

Dynamic SQL
Dynamic SQL deals with some of the problems of inline SQL by avoiding the pre-
compiler. Instead, SQL is represented as a string type that can be manipulated just
like any other character data in a modern language. Because the SQL is repre-
sented as a string type, it cannot interact with the language directly like inline SQL
can. Therefore, Dynamic SQL implementations require a robust API for setting
SQL parameters and retrieving the resulting data.

A hybrid solution: combining the best of the best 9
 Dynamic SQL has the advantage of flexibility. The SQL can be manipulated at
runtime based on different parameters or dynamic application functions. For exam-
ple, a query-by-example web form might allow the user to select the fields to search
upon and what data to search for. This would require a dynamic change to the WHERE
clause of the SQL statement, which can be easily done with Dynamic SQL.

 Dynamic SQL is currently the most popular means of accessing relational data-
bases from modern languages. Most such languages include a standard API for
database access. Java developers and .NET developers will be familiar with the
standard APIs in those languages: JDBC and ADO.NET, respectively. These stan-
dard SQL APIs are generally very robust and offer a great deal of flexibility to the
developer. The following is a simple example of Dynamic SQL in Java:

 String name;
Date hiredate;
String sql = "SELECT emp_name, hire_date"
 + " FROM employee WHERE emp_num = ? ";
Connection conn = dataSource.getConnection();
PreparedStatement ps = conn.prepareStatement (sql);
ps.setInt (1, 28959);
ResultSet rs = ps.executeQuery();
while (rs.next) {
name = rs.getString("emp_name");
hiredate = rs.getDate("hire_date");
}
rs.close();

 conn.close();

Without a doubt, Dynamic SQL is not as elegant as inline SQL, or even stored pro-
cedures (and we even left out the exception handling). The APIs are often com-
plex and very verbose, just like the previous example. Using these frameworks
generally results in a lot of code, which is often very repetitive. In addition, the
SQL itself is often too long to be on a single line. This means that the string has to
be broken up into multiple strings that are concatenated. Concatenation results
in unreadable SQL code that is difficult to maintain and work with.

 So if the SQL isn’t best placed in the database as a stored procedure, or in the
language as inline SQL, or in the application as a data structure, what do we do
with it? We avoid it. In modern object-oriented applications, one of the most com-
pelling solutions to interacting with a relational database is through the use of an
object/relational mapping tool.

Should be in try-catch
block

10 CHAPTER 1

The iBATIS philosophy
Object/relational mapping
Object/relational mapping (O/RM) was designed to simplify persistence of
objects by eliminating SQL from the developer’s responsibility altogether. Instead,
the SQL is generated. Some tools generate the SQL statically at build or compile
time, while others generate it dynamically at runtime. The SQL is generated based
on mappings made between application classes and relational database tables. In
addition to eliminating the SQL, the API for working with an O/RM tool is usually
a lot simpler than the typical SQL APIs. Object/relational mapping is not a new
concept and is almost as old as object-oriented programming languages. There
have been a lot of advances in recent years that make object/relational mapping a
compelling approach to persistence.

 Modern object/relational mapping tools do more than simply generate SQL.
They offer a complete persistence architecture that benefits the entire applica-
tion. Any good object/relational mapping tool will provide transaction manage-
ment. This includes simple APIs for dealing with both local and distributed
transactions. O/RM tools also usually offer multiple caching strategies for dealing
with different kinds of data to avoid needless access of the database. Another way
that an O/RM tool can reduce database hits is by lazy loading of data. Lazy loading
delays the retrieval of data until absolutely necessary, right at the point where the
data is used.

 Despite these features, object/relational mapping tools are not a silver-bullet
solution and do not work in all situations. O/RM tools are based on assumptions
and rules. The most common assumption is that the database will be properly nor-
malized. As we will discuss in section 1.4, the largest and most valuable databases
are rarely normalized perfectly. This can complicate the mappings and may
require workarounds or create inefficiencies in the design. No object relational
solution will ever be able to provide support for every feature, capability, and
design flaw of every single database available. As stated earlier, SQL is not a reli-
able standard. For this reason, every O/RM tool will always be a subset of the full
capabilities of any particular database.

 Enter the hybrid.

1.1.2 Understanding the iBATIS advantage

iBATIS is a hybrid solution. It takes the best ideas from each of these solutions and
creates synergy between them. Table 1.1 summarizes some of the ideas from each
of the approaches discussed earlier that are incorporated into iBATIS.

A hybrid solution: combining the best of the best 11
Now that you understand the roots of iBATIS, the following sections discuss two of
the most important qualities of the iBATIS persistence layer: externalization and
encapsulation of the SQL. Together, these concepts provide much of the value
and enable many of the advanced features that the framework achieves.

Externalized SQL
One of the wisdoms learned in the last decade of software development has been
to design one’s systems to correspond to different users of the subsystem. You want
to separate out the things that are dealt with by different programming roles such
as user interface design, application programming, and database administration.
Even if only a single person is playing all of these roles, it helps to have a nicely
layered design that allows you to focus on a particular part of the system. If you
embed your SQL within Java source code, it will not generally be useful to a
database administrator or perhaps a .NET developer who might be working with the
same database. Externalization separates the SQL from the application source
code, thus keeping both cleaner. Doing so ensures that the SQL is relatively
independent of any particular language or platform. Most modern development

Table 1.1 Advantages provided by iBATIS, which are the same as those provided by other solutions

Approach Similar benefit Solved problems

Stored procedures iBATIS encapsulates and externalizes
SQL such that it is outside of your
application code. It describes an API
similar to that of a stored procedure,
but the iBATIS API is object oriented.
iBATIS also fully supports calling
stored procedures directly.

Business logic is kept out of
the database, and the appli-
cation is easier to deploy and
test, and is more portable.

Inline SQL iBATIS allows SQL to be written the
way it was intended to be written.
There’s no string concatenation, “set-
ting” of parameters, or “getting” of
results.

iBATIS doesn’t impose on your
application code. No precom-
piler is needed, and you have
full access to all of the fea-
tures of SQL—not a subset.

Dynamic SQL iBATIS provides features for dynami-
cally building queries based on
parameters. No “query-builder” APIs
are required.

iBATIS doesn’t force SQL to
be written in blocks of concat-
enated strings interlaced with
application code.

Object/relational mapping iBATIS supports many of the same fea-
tures as an O/RM tool, such as lazy
loading, join fetching, caching, runtime
code generation, and inheritance.

iBATIS will work with any com-
bination of data model and
object model. There are nearly
no restrictions or rules to how
either is designed.

12 CHAPTER 1

The iBATIS philosophy
languages represent SQL as a string type, which introduces concatenation for long
SQL statements. Consider the following simple SQL statement:

 SELECT
 PRODUCTID,
 NAME,
 DESCRIPTION,
 CATEGORY
FROM PRODUCT

 WHERE CATEGORY = ?

When embedded in a String data type in a modern programming language such
as Java, this gentle SQL statement becomes a mess of multiple language character-
istics and unmanageable code:

 String s = "SELECT"
 + " PRODUCTID,"
 + " NAME,"
 + " DESCRIPTION,"
 + " CATEGORY"
 + " FROM PRODUCT"

 + " WHERE CATEGORY = ?";

Simply forgetting to lead the FROM clause with a space will cause a SQL error to
occur. You can easily imagine the trouble a complex SQL statement could cause.

 Therein lies one of the key advantages of iBATIS: the ability to write SQL the
way it was meant to be written. The following gives you a sense of what an iBATIS
mapped SQL statement looks like:

 SELECT
 PRODUCTID,
 NAME,
 DESCRIPTION,
 CATEGORY
FROM PRODUCT

 WHERE CATEGORY = #categoryId#

Notice how the SQL does not change in terms of structure or simplicity. The biggest
difference in the SQL is the format of the parameter #categoryId#, which is nor-
mally a language-specific detail. iBATIS makes it portable and more readable.

 Now that we have our SQL out of the source code and into a place where we
can work with it more naturally, we need to link it back to the software so that it
can be executed in a way that is useful.

A hybrid solution: combining the best of the best 13
Encapsulated SQL
One of the oldest concepts in computer programming is the idea of modulariza-
tion. In a procedural application, code may be separated into files, functions, and
procedures. In an object-oriented application, code is often organized into classes
and methods. Encapsulation is a form of modularization that not only organizes
the code into cohesive modules, but also hides the implementation details while
exposing only the interface to the calling code.

 This concept can be extended into our persistence layer. We can encapsulate
SQL by defining its inputs and outputs (i.e., its interface), but otherwise hide the
SQL code from the rest of the application. If you’re an object-oriented software
developer, you can think of this encapsulation in the same way that you think of
separating an interface from its implementation. If you’re a SQL developer, you
can think of this encapsulation much like you’d think of hiding a SQL statement
inside a stored procedure.

 iBATIS uses Extensible Markup Language (XML) to encapsulate SQL. XML was
chosen because of its general portability across platforms, its industrywide adop-
tion, and the fact that it’s more likely to live as long as SQL than any other lan-
guage and any file format. Using XML, iBATIS maps the inputs and outputs of the
statement. Most SQL statements have one or more parameters and produce some
sort of tabulated results. That is, results are organized into a series of columns and
rows. iBATIS allows you to easily map both parameters and results to properties of
objects. Consider the next example:

 <select id="categoryById"
 parameterClass="string" resultClass="category">
 SELECT CATEGORYID, NAME, DESCRIPTION
 FROM CATEGORY
 WHERE CATEGORYID = #categoryId#

 </select>

Notice the XML element surrounding the SQL. This is the encapsulation of the
SQL. The simple <select> element defines the name of the statement, the param-
eter input type, and the resulting output type. To an object-oriented software
developer, this is much like a method signature.

 Both simplicity and consistency are achieved through externalizing and encap-
sulating the SQL. More details of the exact usage of the API and mapping syntax
will follow in chapter 2. Before we get to that, it’s important to understand where
iBATIS fits in your application architecture.

14 CHAPTER 1

The iBATIS philosophy
1.2 Where iBATIS fits

Nearly any well-written piece of software
uses a layered design. A layered design
separates the technical responsibilities
of an application into cohesive parts
that isolate the implementation details
of a particular technology or interface.
A layered design can be achieved in any
robust (3GL/4GL) programming lan-
guage. Figure 1.2 shows a high-level
view of a typical layering strategy that is
useful for many business applications.

 You can read the arrows in figure 1.2
as “depends on” or “uses.” This layering
approach is inspired by the Law of
Demeter, which in one form states,
“Each layer should have only limited
knowledge about other layers: only lay-
ers closely related to the current layer.”

 The idea is that each layer will only
talk to the layer directly below it. This
ensures that the dependency flows only in one direction and avoids the typical
“spaghetti code” that is common of applications designed without layers.

 iBATIS is a persistence layer framework. The persistence layer sits between the
business logic layer of the application and the database. This separation is impor-
tant to ensuring that your persistence strategy is not mixed with your business
logic code, or vice versa. The benefit of this separation is that your code can be
more easily maintained, as it will allow your object model to evolve independently
of your database design.

 Although iBATIS is heavily focused on the persistence layer, it is important to
understand all of the layers of application architecture. Although you separate
your concerns so that there are minimal (or no) dependencies on any particular
implementation, it would be naive to think that you can be blind to the interaction
among these layers. Regardless of how well you design your application, there will
be indirect behavioral associations between the layers that you must be aware of.
The following sections describe the layers and describe how iBATIS relates to them.

Presentation

Business Logic

Persistence

Database

Business Object

Model

Figure 1.2 A typical layering strategy following
the Law of Demeter

Where iBATIS fits 15
1.2.1 The business object model

The business object serves as the foundation for the rest of the application. It is
the object-oriented representation of the problem domain, and therefore the
classes that make up the business object model are sometimes called domain
classes. All other layers use the business object model to represent data and per-
form certain business logic functions.

 Application designers usually start with the design of the business object
model before anything else. Even if at a very high level, the classes are identified
by deriving them from the nouns in the system. For example, in a bookstore
application, the business object model might include a class called Genre with
instances like Science Fiction, Mystery, and Children’s. It might also have a
class called Book with instances such as The Long Walk, The Firm, and Curious
George. As the application grows more advanced, classes represent more abstract
concepts, like InvoiceLineItem.

 Business object model classes may contain some logic as well, but they should
never contain any code that accesses any other layer, especially the presentation
and persistence layers. Furthermore, the business object model should never
depend on any other layer. Other layers use the business object model—it’s never
the other way around.

 A persistence layer like iBATIS will generally use the business object model for
representing data that is stored in the database. The domain classes of the busi-
ness object model will become the parameters and return values of the persis-
tence methods. It is for this reason that these classes are sometimes referred to as
data transfer objects (DTOs). Although data transfer is not their only purpose, it is a
fair name from the perspective of a persistence framework.

1.2.2 The presentation layer

The presentation layer is responsible for displaying application controls and data
to the end user. It is responsible for the layout and formatting of all information.
The most popular presentation approach in business applications today are web
front ends that use HTML and JavaScript to provide a look and feel to the user via
a web browser.

 Web applications have the advantage of cross-platform compatibility, ease of
deployment, and scalability. Amazon.com is a perfect example of a web application
that allows you to buy books online. This is a good use of a web application, as it
would be impractical to have everyone download an application just to buy books.

16 CHAPTER 1

The iBATIS philosophy
 Web applications generally break down when advanced user controls or com-
plex data manipulation are a requirement. In such cases, rich clients that use
native operating system widgets like tabs, tables, tree views, and embedded objects
are preferred. Rich clients allow for a much more powerful user interface, but are
somewhat more difficult to deploy and require more care to achieve the level of
performance and security a web application can offer. Examples of rich client
technologies include Swing in Java and WinForms in .NET.

 Recently the two concepts have been mixed into hybrid clients to attempt to
achieve the benefits of both web applications and rich clients. Very small rich cli-
ents with advanced controls can be downloaded to the users’ desktop, perhaps
transparently via the web browser. This hybrid-rich client does not contain any
business logic and it may not even have the layout of its user interface built in.
Instead, the application look and feel and the available business functionality are
configured via a web service, or a web application that uses XML as an interface
between the rich client and the server. The only disadvantage is that more soft-
ware is required to both develop and deploy such applications. For example, both
Adobe Flex and Laszlo from Laszlo Systems are based on Macromedia’s Flash
browser plug-in.

 Then of course there is the epitome of all hybrid presentation layers, Ajax.
Ajax, a term coined by Jesse James Garrett, used to be an acronym for Asynchro-
nous JavaScript and XML, until everyone realized that it need not be asynchro-
nous, or XML. So now Ajax has simply come to mean “a really rich web-based user
interface driven by a lot of really funky JavaScript.” Ajax is a new approach to
using old technology to build very rich and interactive user interfaces. Google
demonstrates some of the best examples of Ajax, putting it to good use with its
Gmail, Google Maps, and Google Calendar applications.

 iBATIS can be used for both web applications, rich client applications and
hybrids. Although the presentation layer does not generally talk directly to the
persistence framework, certain decisions about the user interface will impact the
requirements for your persistence layer. For example, consider a web application
that deals with a large list of 5,000 items. We wouldn’t want to show all 5,000 at
the same time, nor would it be ideal to load 5,000 items from the database all at
once if we weren’t going to use them right away. A better approach would be to
load and display 10 items at a time. Therefore, our persistence layer should allow
for some flexibility in the amount of data returned and possibly even offer us the
ability to select and retrieve the exact 10 items that we want. This would improve
performance by avoiding needless object creation and data retrieval, and by

Where iBATIS fits 17
reducing network traffic and memory requirements for our application. iBATIS
can help achieve these goals using features that allow querying for specific ranges
of data.

1.2.3 The business logic layer

The business logic layer of the application describes the coarse-grained services
that the application provides. For this reason they are sometimes called service
classes. At a high level, anyone should be able to look at the classes and methods
in the business logic layer and understand what the system does. For example, in a
banking application, the business logic layer might have a class called TellerSer-
vice, with methods like openAccount(), deposit(), withdrawal(), and getBal-
ance(). These are very large functions that involve complex interactions with
databases and possibly other systems. They are much too heavy to place into a
domain class, as the code would quickly become incohesive, coupled, and gener-
ally unmanageable. The solution is to separate the coarse-grained business func-
tions from their related business object model. This separation of object model
classes from logic classes is sometimes called noun-verb separation.

 Object-oriented purists might claim that this design is less object oriented than
having such methods directly on the related domain class. Regardless of what is
more or less object oriented, it is a better design choice to separate these concerns.
The primary reason is that business functions are often very complex. They usu-
ally involve more than one class and deal with a number of infrastructural compo-
nents, including databases, message queues, and other systems. Furthermore,
there are often a number of domain classes involved in a business function, which
would make it hard to decide which class the method should belong to. It is for
these reasons that coarse-grained business functions are best implemented as sep-
arate methods on a class that is part of the business logic layer.

 Don’t be afraid to put finer-grained business logic directly on related domain
classes. The coarse-grained service methods in the business logic layer are free to
call the finer-grained pure logic methods built into domain classes.

 In our layered architecture, the business logic layer is the consumer of the per-
sistence layer services. It makes calls to the persistence layer to fetch and change
data. The business logic layer also makes an excellent place to demarcate transac-
tions, because it defines the coarse-grained business functions that can be con-
sumed by a number of different user interfaces or possibly other interfaces, such
as a web service. There are other schools of thought regarding transaction demar-
cation, but we’ll discuss the topic more in chapter 8.

18 CHAPTER 1

The iBATIS philosophy
1.2.4 The persistence layer

The persistence layer is where iBATIS
fits and is therefore the focus of this
book. In an object-oriented system, the
primary concern of the persistence
layer is the storage and retrieval of
objects, or more specifically the data
stored in those objects. In enterprise
applications persistence layers usually
interact with relational database systems
for storing data, although in some cases
other durable data structures and medi-
ums might be used. Some systems may
use simple comma-delimited flat files or
XML files. Because of the disparate
nature of persistence strategies in
enterprise applications, a secondary
concern of the persistence layer is
abstraction. The persistence layer
should hide all details of how the data is
being stored and how it is retrieved.
Such details should never be exposed
to the other layers of the application.

 To better understand these concerns
and how they’re managed, it helps to sep-
arate the persistence layer into three basic parts: the abstraction layer, the persis-
tence framework, and the driver or interface, as shown in the lower part of figure 1.3.

 Let’s take a closer look at each of these three parts.

The abstraction layer
The role of the abstraction layer is to provide a consistent and meaningful inter-
face to the persistence layer. It is a set of classes and methods that act as a façade
to the persistence implementation details. Methods in the abstraction layer
should never require any implementation-specific parameters, nor should it
return any values or throw any exceptions that are exclusive to the persistence
implementation. With a proper abstraction layer in place, the entire persistence
approach—including both the persistence API and the storage infrastructure—
should be able to change without modifications to the abstraction layer or any of

Presentation

Business Logic

Persistence

Database

Business Object

Model

Abstraction Layer

Persistence Framework

Driver / Interface

Figure 1.3 Persistence layer zoomed to show
internal layered design

Where iBATIS fits 19
the layers that depend on it. There are patterns that can help with the implemen-
tation of a proper abstraction layer, the most popular of which is the Data Access
Objects (DAO) pattern. Some frameworks, including iBATIS, implement this pattern
for you. We discuss the iBATIS DAO framework in chapter 11.

The persistence framework
The persistence framework is responsible for interfacing with the driver (or inter-
face). The persistence framework will provide methods for storing, retrieving,
updating, searching, and managing data. Unlike the abstraction layer, a persis-
tence framework is generally specific to one class of storage infrastructure. For
example, you might find a persistence API that deals exclusively with XML files for
storing data. However, with most modern enterprise applications, a relational
database is the storage infrastructure of choice. Most popular languages come
with standard APIs for accessing relational databases. JDBC is the standard frame-
work for Java applications to access databases, while ADO.NET is the standard data-
base persistence framework for .NET applications. The standard APIs are general
purpose and as a result are very complete in their implementation, but also very
verbose and repetitive in their use. For these reasons many frameworks have been
built on top of the standard ones to extend the functionality to be more specific,
and therefore more powerful. iBATIS is a persistence framework that deals exclu-
sively with relational databases of all kinds and supports both Java and .NET using
a consistent approach.

The driver or interface
The storage infrastructure can be as simple as a comma-delimited flat file or as
complex as a multimillion-dollar enterprise database server. In either case, a soft-
ware driver is used to communicate with the storage infrastructure at a low level.
Some drivers, such as native file system drivers, are very generic in functionality
but specific to a platform. You will likely never see a file input/output (I/O)
driver, but you can be sure that it is there. Database drivers, on the other hand,
tend to be complex and differ in implementation, size, and behavior. It is the job
of the persistence framework to communicate with the driver so that these differ-
ences are minimized and simplified. Since iBATIS only supports relational data-
bases, that is what we’ll focus on in this book.

1.2.5 The relational database

iBATIS exists entirely to make accessing relational databases easier. Databases are
complex beasts that can involve a lot of work to use them properly. The database

20 CHAPTER 1

The iBATIS philosophy
is responsible for managing data and changes to that data. The reason we use a
database instead of simply a flat file is that a database can offer a lot of benefits,
primarily in the areas of integrity, performance, and security.

Integrity
Integrity is probably the most important benefit, as without it not much else mat-
ters. If our data isn’t consistent, reliable, and correct, then it is less valuable to
us—or possibly even useless. Databases achieve integrity by using strong data
types, enforcing constraints, and working within transactions.

 Databases are strongly typed, which means that when a database table is cre-
ated, its columns are configured to store a specific type of data. The database
management system ensures that the data stored in the tables are valid for the col-
umn types. For example, a table might define a column as VARCHAR(25) NOT NULL.
This type ensures that the value is character data that is not of a length greater
than 25. The NOT NULL part of the definition means that the data is required and
so a value must be provided for this column.

 In addition to strong typing, other constraints can be applied to tables. Such
constraints are usually broader in scope in that they deal with more than just a sin-
gle column. A constraint usually involves validation of multiple rows or possibly
even multiple tables. One type of constraint is a UNIQUE constraint, which ensured
that for a given column in a table a particular value can be used only once.
Another kind of constraint is a FOREIGN KEY constraint, which ensures that the
value in one column of a table is the same value as a similar column in another
table. Foreign key constraints are used to describe relationships among tables,
and so they are imperative to relational database design and data integrity.

 One of the most important ways a database maintains integrity is through the
use of transactions. Most business functions will require many different types of
data, possibly from many different databases. Generally this data is related in
some way and therefore must be updated consistently. Using transactions, a data-
base management system can ensure that all related data is updated in a consis-
tent fashion. Furthermore, transactions allow multiple users of the system to
update data concurrently without colliding. There is a lot more to know about
transactions, so we’ll discuss them in more detail in chapter 8.

Performance
Relational databases help us achieve a greater level of performance that is not eas-
ily made possible using flat files. That said, database performance is not free and
it can take a great deal of time and expertise to get it right. Database performance
can be broken into three key factors: design, software tuning, and hardware.

Where iBATIS fits 21
 The number one performance consideration for a database is design. A bad
relational database design can lead to inefficiencies so great that no amount of soft-
ware tuning or extra hardware can correct it. Bad designs can lead to deadlocking,
exponential relational calculations, or simply table scans of millions of rows.
Proper design is such a great concern that we’ll talk more about it in section 1.3.

 Software tuning is the second-most important performance consideration for
large databases. Tuning a relational database management system requires a per-
son educated and experienced in the particular RDBMS software being used.
Although some characteristics of RDBMS software are transferable across different
products, generally each product has intricacies and sneaky differences that
require a specialist for that particular software. Performance tuning can yield
some great benefits. Proper tuning of a database index alone can cause a complex
query to execute in seconds instead of minutes. There are a lot of parts to an
RDBMS, such as caches, file managers, various index algorithms, and even operat-
ing system considerations. The same RDBMS software will behave differently if the
operating system changes, and therefore must be tuned differently. Needless to
say, a lot of effort is involved with tuning database software. Exactly how we do that
is beyond the scope of this book, but it is important to know that this is one of the
most important factors for improving database performance. Work with your DBA!

 Large relational database systems are usually very demanding on computer
hardware. For this reason, it is not uncommon that the most powerful servers in a
company are the database servers. In many companies the database is the center
of their universe, so it makes sense that big investments are made in hardware for
databases. Fast disk arrays, I/O controllers, hardware caches, and network inter-
faces are all critical to the performance of large database management systems.
Given that, you should avoid using hardware as an excuse for bad database design
or as a replacement for RDBMS tuning. Hardware should not be used to solve per-
formance problems—it should be used to meet performance requirements. Fur-
ther discussion of hardware is also beyond the scope of this book, but it is
important to consider it when you’re working with a large database system. Again,
work with your DBA!

Security
Relational database systems also provide the benefit of added security. Much of
the data that we work with in everyday business is confidential. In recent years, pri-
vacy has become more of a concern, as has security in general. For this reason,
even something as simple as a person’s full name can be considered confidential
because it is potentially “uniquely identifiable information.” Other information—

22 CHAPTER 1

The iBATIS philosophy
for example, such as social security numbers and credit card numbers—must be
protected with even higher levels of security such as strong encryption. Most com-
mercial-quality relational databases include advanced security features that allow
for fine-grained security as well as data encryption. Each database will have
unique security requirements. It’s important to understand them, as the applica-
tion code must not weaken the security policy of the database.

 Different databases will have different levels of integrity, performance, and
security. Generally the size of the database, the value of the data, and the number
of dependents will determine these levels. In the next section we’ll explore differ-
ent database types.

1.3 Working with different database types

Not every database is so complex that it requires an expensive database manage-
ment system and enterprise class hardware. Some databases are small enough to
run on an old desktop machine hidden in a closet. All databases are different.
They have different requirements and different challenges. iBATIS will help you
work with almost any relational database, but it is always important to understand
the type of database you’re working with.

 Databases are classified more by their relationships with other systems than by
their design or size. However, the design and size of a database can often be
driven by its relationships. Another factor that will affect the design and size of a
database is the age of the database. As time passes, databases tend to change in dif-
ferent ways, and often the way that these changes are applied are less than ideal.
In this section, we’ll talk about four types of databases: application, enterprise,
proprietary, and legacy.

1.3.1 Application databases

Application databases are generally the smallest, simplest, and easiest databases to
work with. These databases are usually the ones that we developers don’t mind
working with, or perhaps even like working with. Application databases are usually
designed and implemented alongside the application as part of the same project.
For this reason, there is generally more freedom in terms of design and are there-
fore more capable of making the design right for our particular application. There
is minimal external influence in an application database, and there are usually
only one or two interfaces. The first interface will be to the application, and the
second might just be a simple reporting framework or tool like Crystal Reports.
Figure 1.4 shows an application database and its relationships at a very high level.

Working with different database types 23
Application databases are sometimes small enough that they can be deployed to
the same server as the application. With application databases there is more infra-
structure freedom as well.

 With small application databases, it is generally easier to convince companies to
buy into using cheaper open source RDBMS solutions such as MySQL or PostgreSQL
instead of spending money on Oracle or SQL Server. Some applications may even
use an embedded application database that runs within the same virtual environ-
ment as the application itself, and therefore does not require a separate SQL at all.

 iBATIS works very well as a persistence framework for application databases.
Because of the simplicity of iBATIS, a team can get up to speed very quickly with a
new application. For simple databases, it’s even possible to generate the SQL from
the database schema using the administrative tools that come with your RDBMS.
Tools are also available that will generate all of the iBATIS SQL Map files for you.

1.3.2 Enterprise databases

Enterprise databases are larger than application databases and have greater exter-
nal influence. They have more relationships with other systems that include both
dependencies, as well as dependents. These relationships might be web applica-
tions and reporting tools, but they might also be interfaces to complex systems
and databases. With an enterprise database, not only are there a greater number
of external interfaces, but the way that the interfaces work is different too. Some
interfaces might be nightly batch load interfaces, while others are real-time trans-
actional interfaces. For this reason, the enterprise database itself might actually be
composed of more than one database. Figure 1.5 depicts a high-level example of
an enterprise database.

 Enterprise databases impose many more constraints on the design and use of
the database. There is a lot more to consider in terms of integrity, performance,
and security. For this reason, enterprise databases are often split up to separate
concerns and isolate requirements. If you tried to create a single database to meet
all the requirements of an enterprise system, it would be extremely expensive and
complex, or it would be completely impractical or even impossible.

Web
Application Database

Reporting
Tool

Figure 1.4 Application database relationships

24 CHAPTER 1

The iBATIS philosophy
In the example depicted by figure 1.5, the requirements have been separated in
terms of horizontal and nonfunctional requirements. That is, the databases have
been separated into integration concerns, online transactional concerns, and
reporting concerns. Both the integration database and the reporting database
interface with the transactional system via a batch load, which implies that for this
system it is acceptable to have reports that are not exactly up-to-date and that the
transactional database only requires periodic updates from third-party systems.
The advantage is that the transactional system has a great deal of load lifted from
it and can have a simpler design as well. Generally it is not practical to design a
database that is efficient for integration, transactions, and reporting. There are
patterns for each that ensures the best performance and design. However, it is
sometimes a requirement to have near real-time integration and reporting func-
tions. For that reason this kind of design may not work. You might instead find
that your enterprise database has to be partitioned vertically by business function.

 Regardless of your enterprise database design, it’s easy to appreciate the differ-
ence between an application database and an enterprise database. It’s important
to understand the particular limitations of your environment to ensure that your
application uses the database effectively and is a good neighbor to other applica-
tions that are using the same database.

Web

Application
Integration

Database

Reporting

Tool

Transactional

Database

Reporting

Database

Web

Application

Reporting

Tool

Web

Service

Web

Service

Third-Party

Interface

batch Third-Party

Interface

batch

Figure 1.5 An example of enterprise database architecture

Working with different database types 25
 iBATIS works extremely well in an enterprise database environment. It has a
number of features that make it ideal for working with complex database designs
and large data sets. iBATIS also works well with multiple databases and does not
assume that any type of object is coming from only one database. It also supports
complex transactions that require multiple databases to be involved in a single
transaction. Furthermore, iBATIS isn’t only useful for online transactional systems,
but works very well for both implementing reporting and integration systems.

1.3.3 Proprietary databases

If you’ve been working with software for any length of time, you’ve no doubt heard
of the “build versus buy” debate. That is, should we build our own solution to a busi-
ness problem, or buy a package that claims to solve the problem already. Often the
cost is about the same (otherwise there would be no debate), but the real trade-off
is between time to implement and the fit to the problem. Custom-built software can
be tailored to an exact fit to business need, but takes more time to implement. Pack-
ages can be implemented very quickly, but sometimes don’t quite meet every need.
For that reason, when a choice is made to buy a package, businesses often decide
that they can get the best of both worlds by digging into the proprietary database
of the software to “extend” it just for the features that are missing.

 We could discuss the horror stories of such a scenario, but it’s probably better
just to know that such proprietary databases were likely not meant to be touched
by third parties. The designs are often full of assumptions, limitations, nonstand-
ard data types, and other warning signs that can be easily read as “Enter at Your
Own Risk.” Regardless of the warning signs, businesses will do amazing things to
save a few dollars. So software developers get stuck with navigating the jungle that
is the proprietary database.

 iBATIS is an excellent persistence layer for interfacing with proprietary data-
bases. Often such databases allow for read-only access, which you can feel confi-
dent about when using iBATIS because you can restrict the kinds of SQL that are
run. iBATIS won’t perform any magical updates to the database when they aren’t
expected. If updates are required, proprietary databases are often very picky
about how the data is structured. iBATIS allows you to write very specific update
statements to deal with that.

1.3.4 Legacy databases

If ever there were a bane of a modern object-oriented developer’s existence, it
would be the legacy database. Legacy databases are generally the prehistoric
remains of what was once an enterprise database. They have all of the complexities,

26 CHAPTER 1

The iBATIS philosophy
intricacies, and dependencies of an enterprise database. In addition, they have bat-
tle scars from years of modifications, quick fixes, cover-ups, workarounds, bandage
solutions, and technical limitations. Furthermore, legacy databases are often
implemented on older platforms that are not only outdated but are sometimes
totally unsupported. There may not be adequate drivers or tools available for mod-
ern developers to work with.

 iBATIS can still help with legacy databases. As long as there’s an appropriate
database driver available for the system you’re working with, iBATIS will work the
same way it does for any database. In fact, iBATIS is probably one of the best persis-
tence frameworks around for dealing with legacy data, because it makes no
assumptions about the database design and can therefore deal with even the most
nightmarish of legacy designs.

1.4 How iBATIS handles common database challenges

On modern software projects databases are often considered legacy components.
They have a history of being difficult to work with for both technical and nontech-
nical reasons. Most developers probably wish that they could simply start over and
rebuild the database entirely. If the database is to remain, some developers might
just wish that the DBAs responsible for it would take a long walk off a short pier.
Both of these cases are impractical and unlikely to ever happen. Believe it or not,
databases are usually the way they are for a reason—even if the reason isn’t a good
one. It may be that the change would be too costly or there may be other depen-
dencies barring us from changing it. Regardless of why the database is challenged,
we have to learn to work effectively with all databases, even challenged ones. iBA-
TIS was developed mostly in response to databases that had very complex designs
or even poor designs. The following sections describe some common database
challenges and how iBATIS can help with them.

1.4.1 Ownership and control

The first and foremost difficulty with databases in a modern enterprise environ-
ment is not technical at all. It is simply the fact that most enterprises separate the
ownership and responsibility for the database from the application development
teams. Databases are often owned by a separate group within the enterprise alto-
gether. If you’re lucky, this group may work with your project team to help deliver
the software. If you’re unlucky, there will be a wall between your project team and
the database group, over which you must volley your requirements and hope that
they are received and understood. It’s a sad truth, but it happens all the time.

How iBATIS handles common database challenges 27
 Database teams are often difficult to work with. The primary reason is that they
are under enormous pressure and are often dealing with more than one project.
They often deal with multiple and sometimes even conflicting requirements.
Administration of database systems can be difficult and many companies consider
it a mission-critical responsibility. When an enterprise database system fails, corpo-
rate executives will know about it. For this reason, database administration teams
are cautious. Change control processes are often much stricter for database sys-
tems than they are for application code. Some changes to a database might
require data migration. Other changes may require significant testing to ensure
that they don’t impact performance. Database teams have good reasons for being
difficult to work with, and therefore it’s nice to be able to help them out a bit.

 iBATIS allows a lot of flexibility when it comes to database design and interac-
tion. DBAs like to be able to see the SQL that is being run and can also help tune
complex queries, and iBATIS allows them to do that. Some teams that use iBATIS
even have a DBA or data modeler maintain the iBATIS SQL files directly. Database
administrators and SQL programmers will have no problem understanding iBA-
TIS, as there is no magic happening in the background and they can see the SQL.

1.4.2 Access by multiple disparate systems

A database of any importance will no doubt have more than one dependent. Even
if it is simply two small web applications sharing a single database, there will be a
number of things to consider. Imagine a web application called Web Shopping Cart,
which uses a database that contains Category codes. As far as Web Shopping Cart is
concerned, Category codes are static and never change, so the application caches
the codes to improve performance. Now imagine that a second web application
called Web Admin is written to update Category codes. The Web Admin application
is a separate program running on a different server. When Web Admin updates a
category code, how does Web Shopping Cart know when to flush its cache of Cat-
egory codes? This is a simple example of what is sometimes a complex problem.

 Different systems might access and use the database in different ways. One
application might be a web-based e-commerce system that performs a lot of data-
base updates and data creation. Another might be a scheduled batch job for load-
ing data from a third-party interface that requires exclusive access to the database
tables. Still another might be a reporting engine that constantly stresses the data-
base with complex queries. One can easily imagine the complexity that is possible.

 The important point is that as soon as a database is accessed by more than one
system, the situation heats up. iBATIS can help in a number of ways. First of all,
iBATIS is a persistence framework that is useful for all types of systems, including

28 CHAPTER 1

The iBATIS philosophy
transactional systems, batch systems, and reporting systems. This means that
regardless of what systems are accessing a given database, iBATIS is a great tool.
Second, if you are able to use iBATIS, or even a consistent platform like Java, then
you can use distributed caches to communicate among different systems. Finally,
in the most complex of cases, you can easily disable iBATIS caching and write spe-
cific queries and update statements that behave perfectly, even when other sys-
tems using the same database do not.

1.4.3 Complex keys and relationships

Relational databases were designed and intended to follow a set of strict design
rules. Sometimes these rules are broken, perhaps for a good reason, or perhaps
not. Complex keys and relationships are usually the result of a rule being broken,
misinterpreted, or possibly even overused. One of the relational design rules
requires that each row of data be uniquely identified by a primary key. The sim-
plest database designs will use a meaningless key as the primary key. However,
some database designs might use what is called a natural key, in which case a part
of the real data is used as the key. Still more complex designs will use a composite
key of two or more columns. Primary keys are also often used to create relation-
ships between other tables. So any complex or erroneous primary key definitions
will propagate problems to the relationships between the other tables as well.

 Sometimes the primary key rule is not followed. That is, sometimes data
doesn’t have a primary key at all. This complicates database queries a great deal as
it becomes difficult to uniquely identify data. It makes creating relationships
between tables difficult and messy at best. It also has a performance impact on the
database in that the primary key usually provides a performance-enhancing index
and is also used to determine the physical order of the data.

 In other cases, the primary key rule might be overdone. A database might use
composite natural keys for no practical reason. Instead the design was the result of
taking the rule too seriously and implementing it in the strictest sense possible. Cre-
ating relationships between tables that use natural keys will actually create some
duplication of real data, which is always a bad thing for database maintainability.
Composite keys also create more redundancy when used as relationships, as multi-
ple columns must be carried over to the related table to uniquely identify a single
row. In these cases flexibility is lost because both natural keys and composite keys
are much more difficult to maintain and can cause data-migration nightmares.

 iBATIS can deal with any kind of complex key definition and relationship.
Although it is always best to design the database properly, iBATIS can deal with
tables with meaningless keys, natural keys, composite keys, or even no keys at all.

How iBATIS handles common database challenges 29
1.4.4 Denormalized or overnormalized models

Relational database design involves a process of eliminating redundancy. Elimina-
tion of redundancy is important to ensure that a database provides high perfor-
mance and is flexible and maintainable. The process of eliminating redundancy
in a data model is called normalization, and certain levels of normalization can be
achieved. Raw data in tabular form generally will contain a great deal of redun-
dancy and is therefore considered denormalized. Normalization is a complex
topic that we won’t discuss in great detail here.

 When a database is first being designed, the raw data is analyzed for redun-
dancy. A database administrator, a data modeler, or even a developer will take the
raw data and normalize it using a collection of specific rules that are intended to
eliminate redundancy. A denormalized relational model will contain redundant
data in a few tables, each with a lot of rows and columns. A normalized model will
have minimal or no redundancy and will have a greater number of tables, but
each table will have fewer rows and columns.

 There is no perfect level of normalization. Denormalization does have advan-
tages in terms of simplicity and sometimes performance as well. A denormalized
model can allow data to be stored and retrieved more quickly than if the data were
normalized. This is true simply because there are fewer statements to issue, fewer
joins to calculate, and generally less overhead. That said, denormalization should
always be the exception and not the rule. A good approach to database design is to
begin with a “by the book” normalized model. Then the model can be denormal-
ized as needed. It is much easier to denormalize the database after the fact than it
is to renormalize it. So always start new database designs with a normalized model.

 It is possible to overnormalize a database, and the results can be problematic.
Too many tables create a lot of relationships that need to be managed. This can
include a lot of table joins when querying data, and it means multiple update
statements are required to update data that is very closely related. Both of these
characteristics can have a negative impact on performance. It also means that it’s
harder to map to an object model, as you may not want to have such fine-grained
classes as the data model does.

 Denormalized models are problematic too, possibly more so than overnormal-
ized models. Denormalized models tend to have more rows and columns. Having
too many rows impacts performance negatively in that there is simply more data to
search through. Having too many columns is similar in that each row is bigger and
therefore requires more resources to work with each time an update or a query is
performed. Care must be taken with these wide tables to ensure that only columns

30 CHAPTER 1

The iBATIS philosophy
that are required for the particular operation are included in the update or query.
Furthermore, a denormalized model can make efficient indexing impossible.

 iBATIS works with both denormalized models and overnormalized models. It
makes no assumptions about the granularity of your object model or database,
nor does it assume that they are the same or even remotely alike. iBATIS does the
best job possible of separating the object model from the relational model.

1.4.5 Skinny data models

Skinny data models are one of the most notorious and problematic abuses of rela-
tional database systems. Unfortunately, they’re sometimes necessary. A skinny data
model basically turns each table into a generic data structure that can store sets of
name and value pairs, much like a properties file in Java or an old-school INI (ini-
tialization) file in Windows. Sometimes these tables also store metadata such as
the intended data type. This is necessary because the database only allows one
type definition for a column. To better understand a skinny data model, consider
the following example of typical address data, shown in table 1.2.

Obviously this address data could be normalized in a better way. For example, we
could have related tables for COUNTRY, STATE and CITY, and ZIP. But this is a sim-
ple and effective design that works for a lot of applications. Unless your require-
ments are complex, this is unlikely to be a problematic design.

 If we were to take this data and arrange it in a skinny table design, it would
look like table 1.3.

Table 1.2 Address data in typical model

ADDRESS_ID STREET CITY STATE ZIP COUNTRY

1 123 Some Street San Francisco California 12345 USA

2 456 Another Street New York New York 54321 USA

Table 1.3 Address data in a skinny model

ADDRESS_ID FIELD VALUE

1 STREET 123 Some Street

1 CITY San Francisco

1 STATE California

1 ZIP 12345

How iBATIS handles common database challenges 31
This design is an absolute nightmare. To start, there is no hope of possibly nor-
malizing this data any better than it already is, which can only be classified as first
normal form. There’s no chance of creating managed relationships with COUN-
TRY, CITY, STATE, or ZIP tables, as we can’t define multiple foreign key definitions
on a single column. This data is also difficult to query and would require complex
subqueries if we wanted to perform a query-by-example style query that involved a
number of the address fields (e.g., searching for an address with both street and
city as criteria). When it comes to updates, this design is especially poor in terms
of performance; inserting a single address requires not one, but five insert state-
ments on a single table. This can create greater potential for lock contention and
possibly even deadlocks. Furthermore, the number of rows in the skinny design is
now five times that of the normalized model. Due to the number of rows, the lack
of data definition, and the number of update statements required to modify this
data, effective indexing becomes impossible.

 Without going further, it’s easy to see why this design is problematic and why it
should be avoided at all costs. The one place that it is useful is for dynamic fields in
an application. Some applications have a need to allow users to add additional data
to their records. If the user wants to be able to define new fields and insert data into
those fields dynamically while the application is running, then this model works
well. That said, all known data should still be properly normalized, and then these
additional dynamic fields can be associated to a parent record. The design still suf-
fers all of the consequences as discussed, but they are minimized because most of
the data (probably the important data) is still properly normalized.

 Even if you encounter a skinny data model in an enterprise database, iBATIS
can help you deal with it. It is difficult or maybe even impossible to map classes to
a skinny data model, because you don’t know what fields there might be. You’d
have better luck mapping such a thing to a hashtable, and luckily iBATIS supports

1 COUNTRY USA

2 STREET 456 Another Street

2 CITY New York

2 STATE New York

2 ZIP 54321

2 COUNTRY USA

Table 1.3 Address data in a skinny model (continued)

ADDRESS_ID FIELD VALUE

32 CHAPTER 1

The iBATIS philosophy
that. With iBATIS, you don’t necessarily have to map every table to a user-defined
class. iBATIS allows you to map relational data to primitives, maps, XML, and user-
defined classes (e.g., JavaBeans). This great flexibility makes iBATIS extremely
effective for complex data models, including skinny data models.

1.5 Summary

iBATIS was designed as a hybrid solution that does not attempt to solve every prob-
lem, but instead solves the most important problems. iBATIS borrows from the var-
ious other methods of access. Like a stored procedure, every iBATIS statement has
a signature that gives it a name and defines its inputs and outputs (encapsula-
tion). Similar to inline SQL, iBATIS allows the SQL to be written in the way it was
supposed to be, and to use language variables directly for parameters and results.
Like Dynamic SQL, iBATIS provides a means of modifying the SQL at runtime.
Such queries can be dynamically built to reflect a user request. From object/rela-
tional mapping tools, iBATIS borrows a number of concepts, including caching,
lazy loading, and advanced transaction management.

 In an application architecture, iBATIS fits in at the persistence layer. iBATIS
supports other layers by providing features that allow for easier implementation
of requirements at all layers of the application. For example, a web search engine
may require paginated lists of search results. iBATIS supports such features by
allowing a query to specify an offset (i.e., a starting point) and the number of rows
to return. This allows the pagination to operate at a low level, while keeping the
database details out of the application.

 iBATIS works with databases of any size or purpose. It works well for small
application databases because it is simple to learn and quick to ramp up. It is
excellent for large enterprise applications because it doesn’t make any assump-
tions about the database design, behaviors, or dependencies that might impact
how our application uses the database. Even databases that have challenging
designs or are perhaps surrounded by political turmoil can easily work with iBA-
TIS. Above all else, iBATIS has been designed to be flexible enough to suit almost
any situation while saving you time by eliminating redundant boilerplate code.

 In this chapter we’ve discussed the philosophy and the roots of iBATIS. In the
next chapter we’ll explain exactly what iBATIS is and how it works.

What is iBATIS?
This chapter covers
■ When to use iBATIS
■ When not to use iBATIS
■ Getting started
■ Future direction
33

34 CHAPTER 2

What is iBATIS?
In the previous chapter we discussed in detail the philosophy behind iBATIS and
how the framework came to be. We also stated that iBATIS is a hybrid solution that
borrows ideas from various other methods of working with a relational database.
So what exactly is iBATIS? This chapter will answer that question.

 iBATIS is what is known as a data mapper. In his book Patterns of Enterprise Appli-
cation Architecture (Addison-Wesley Professional, 2002), Martin Fowler describes
the Data Mapper pattern as follows:

A layer of Mappers1 that moves data between objects and a database while keep-
ing them independent of each other and the mapper itself.

Martin does a good job of distinguishing between data mapping and metadata
mapping, which is where an object/relational mapping tool fits in. Such a tool
maps the tables and columns of the database to the classes and fields of the appli-
cation. That is, an object relational mapper maps database metadata to class meta-
data. Figure 2.1 shows an object/relational mapping between a class and a database
table. In this case, each field of the class is mapped to a single corresponding col-
umn in the database.

 iBATIS is different in that it does not directly tie classes to tables or fields to col-
umns, but instead maps the parameters and results (i.e., the inputs and outputs)
of a SQL statement to a class. As you’ll discover throughout the rest of the book,
iBATIS is an additional layer of indirection between the classes and the tables,
allowing it more flexibility in how classes and tables can be mapped, without
requiring any changes to the data model or the object model. The layer of indi-
rection we’re talking about is in fact SQL. This extra layer of indirection allows
iBATIS to do a better job of isolating the database design from the object model.
This means relatively few dependencies exist between the two. Figure 2.2 shows
how iBATIS maps data using SQL.

1 Mapper: An object that sets up a communication between two independent objects.
—Martin Fowler in Patterns of Enterprise Architecture

identifier

firstName

lastName

middleName

hairColor

height

weight

Person

ID

FIRST_NAME

LAST_NAME

MIDDLE_NAME

HAIR_COLOR

HEIGHT

WEIGHT

Person

Direct Mapping

The Person class... ...has to match the PERSON table
Figure 2.1
Object/relational mapping

Mapping SQL 35
As you can see in figure 2.2, the mapping layer of iBATIS is actual SQL. iBATIS lets
you write your SQL. iBATIS takes care of mapping the parameters and results
between the class properties and the columns of the database table. For this rea-
son, and to eliminate any confusion around the various mapping approaches, the
iBATIS team often refers to the data mapper as a SQL mapper.

2.1 Mapping SQL

Any SQL statement can be viewed as a set of
inputs and outputs. The inputs are the param-
eters, typically found in the WHERE clause of the
SQL statement. The outputs are the columns
found in the SELECT clause. Figure 2.3 depicts
this idea.

 The advantage to this approach is that the
SQL statement leaves a great deal of flexibility
in the hands of the developer. One can easily
manipulate the data to match the object
model without changing the underlying table
design. Furthermore, developers can actually introduce multiple tables or results
from built-in database functions or stored procedures. The full power of SQL is at
their fingertips.

 iBATIS maps the inputs and outputs of the statement using a simple XML
descriptor file. Listing 2.1 shows an example of this.

identifier
firstName
lastName
middleName
hairColor
height
weight

Person

ID
FIRST_NAME
LAST_NAME
MIDDLE_NAME
HAIR_COLOR
HEIGHT
WEIGHT

PersonSELECT
 ID as identifier,
 FIRST_NAME as firstName,
 LAST_NAME as lastName
 MIDDLE_NAME as middleName,
 HAIR_COLOR as hairColor,
 HEIGHT as height,
 WEIGHT as weight
FROM PERSON
WHERE ID = #identifier#

Figure 2.2 iBATIS SQL mapping

SELECT FIRST_NAME, LAST_NAME

FROM EMPLOYEE

WHERE EMPLOYEE_NUMBER=1234

Output Output

Input

Figure 2.3 SQL can be viewed as inputs
and outputs.

36 CHAPTER 2

What is iBATIS?
 <select id="getAddress"
 parameterClass="int"
 resultClass="Address">

 SELECT
 ADR_ID as id,
 ADR_DESCRIPTION as description,
 ADR_STREET as street,
 ADR_CITY as city,
 ADR_PROVINCE as province,
 ADR_POSTAL_CODE as postalCode
 FROM ADDRESS
 WHERE ADR_ID = #id#
 </select>

Here we can see a SQL SELECT statement that returns address data. From the
<select> element we can see that it takes an Integer object as a parameter, which
is marked by the #id# token in the WHERE clause. We can also see that the result is
an object instance of the Address class, which is assumed to contain the properties
of the same name as the aliases assigned to each column in the SELECT clause. For
example, the alias id would be mapped to a property of the Address class also
called id. Believe it or not, that is all it takes to map a SQL statement that receives
an integer as a parameter and returns an Address object as output. The Java code
used to execute this statement would be

 Address address = (Address) sqlMap.queryForObject("getAddress",
 new Integer(5));

The SQL mapping approach is a very portable concept that can be applied to any
full-featured programming language. For example, the C# code from iBATIS.NET
is nearly identical:

Address address = (Address) sqlMap.QueryForObject("getAddress", 5);

Of course there are more advanced options for mapping, especially around
results. But we’ll discuss those in greater detail in part 2, “iBATIS basics.” Right
now, it’s more important to understand the features and benefits of iBATIS and
how it works.

Listing 2.1 A sample SQL mapping descriptor

How it works 37
2.2 How it works

More than anything else, iBATIS is an alternative to writing JDBC and ADO.NET
code. APIs like JDBC and ADO.NET are powerful, but tend to be verbose and repet-
itive. Consider the JDBC example in listing 2.2.

 public Employee getEmployee (int id) throws SQLException {
 Employee employee = null;
 String sql = "SELECT * FROM EMPLOYEE " +
 "WHERE EMPLOYEE_NUMBER = ?";
 Connection conn = null;
 PreparedStatement ps = null;
 ResultSet rs = null;
 try {
 conn = dataSource.getConnection();
 ps = conn.prepareStatement(sql);
 ps.setInt(1, id);
 rs = ps.executeQuery();
 employee = null;
 while (rs.next()) {
 employee = new Employee();
 employee.setId(rs.getInt("ID"));
 employee.setEmployeeNumber(rs.getInt("EMPLOYEE_NUMBER"));
 employee.setFirstName(rs.getString("FIRST_NAME"));
 employee.setLastName(rs.getString("LAST_NAME"));
 employee.setTitle(rs.getString("TITLE"));
 }
 } finally {
 try {
 if (rs != null) rs.close();
 } finally {
 try {
 if (ps != null) ps.close();
 } finally {
 if (conn != null) conn.close();
 }
 }
 }
 return employee;
 }

It’s easy to see the overhead created by the JDBC API. Every line is necessary,
though, so there’s no easy way to reduce it. At best, a few of the lines can be
extracted into utility methods, most notably the closing of resources such as the
PreparedStatement and the ResultSet.

Listing 2.2 Example of well-written JDBC code

Our SQL is buried here

38 CHAPTER 2

What is iBATIS?
 Under the hood, iBATIS will run nearly the same JDBC code. iBATIS will get a
connection to the database, set the parameters, execute the statement, retrieve
the results, and close all of the resources. However, the amount of code that you
need to write is significantly reduced. Listing 2.3 shows the code needed for iBA-
TIS to run the exact same statement.

 <select id="getEmployee"
 parameterClass="java.lang.Integer"
 resultClass="Employee">
 SELECT ID as id,
 EMPLOYEE_NUMBER as employeeNumber,
 FIRST_NAME as firstName,
 LAST_NAME as lastName,
 TITLE as title
 FROM EMPLOYEE
 WHERE EMPLOYEE_NUMBER = #empNum#
 </select>

There is no comparison. The iBATIS code is more concise and easier to read,
and thus easier to maintain. We’ll discuss more of the benefits of iBATIS later in
this chapter. But for now, you’re probably wondering how this gets executed
from the Java code. As you’ve seen in earlier examples,, it’s a very simple single
line of code:

 Employee emp = (Employee) sqlMap.queryForObject("getEmployee",
 new Integer(5));

There’s nothing to it. This line of code executes the statement, sets the parame-
ters, and retrieves the results as a real Java object. The SQL is encapsulated and
externalized neatly in an Extensible Markup Language (XML) file. iBATIS man-
ages all of the resources behind the scenes, and the net effect is the same as the
JDBC code we saw earlier in listing 2.2.

 This begs the question, does iBATIS work the same way for all systems? Is it best
suited for a particular kind of application? The next few sections will answer that,
starting with how well iBATIS works with small applications.

2.2.1 iBATIS for small, simple systems

Small applications often work with only a single database, and they often have a
fairly simple user interface and domain model. The business logic is very basic, or

Listing 2.3 iBATIS, which is much less verbose than JDBC

How it works 39
perhaps nonexistent for some simple CRUD (Create, Read, Update, Delete) appli-
cations. There are three reasons why iBATIS works well with small applications.

 First, iBATIS itself is small and simple. It doesn’t require a server or any sort of
middleware. No additional infrastructure is required at all. iBATIS has no third-
party dependencies. A minimal installation of iBATIS consists of only two JAR files
that total about 375KB of disk space. There is no setup beyond the SQL Mapping
files themselves, so in a matter of minutes you can have a working persistence layer.

 Second, iBATIS does not impose on the existing design of the application or
the database. Therefore, if you have a small system that is already partially imple-
mented or perhaps even released, it is still easy to refactor the persistence layer to
use iBATIS. Because iBATIS is simple, it won’t overcomplicate the architecture of
the application at all. The same might not be true of object/relational mapping
tools or code generators that make assumptions about the design of either the
application or the database.

 Finally, if you’ve been working with software for any length of time, you’ll likely
agree that it’s almost inevitable that any small piece of software will one day
become a large piece of software. All successful software has a tendency to grow.
It’s a good thing, then, that iBATIS is also very good for large systems, and that it
can grow to meet the needs of even enterprise-class applications.

2.2.2 iBATIS for large, enterprise systems

iBATIS was designed for enterprise-class applications. More than anything, iBATIS
has a great number of advantages in this area over other solutions. The original
creator of iBATIS has only ever had the luxury of working applications ranging
from large-scale to enterprise-class systems. These systems typically involved not
one, but many databases, none of which he had control over. In chapter 1 we dis-
cussed various types of databases, including enterprise databases, proprietary
databases, and legacy databases. iBATIS was written largely in response to the need
to deal with such databases. As a result, iBATIS has a great many features that lend
themselves well to the enterprise environment.

 The first reason has been stated in other areas, but is so important that it can-
not be overstated: iBATIS does not make any assumptions about the design of your data-
base or your object model. Regardless of how mismatched these two designs are,
iBATIS will work with the application. Furthermore, iBATIS does not make assump-
tions about the architecture of your enterprise system. If you have partitioned
your database vertically by business function, or horizontally by technology, iBATIS
will still allow you to effectively work with that data and integrate it into your
object-oriented application.

40 CHAPTER 2

What is iBATIS?
 Second, iBATIS has features that allow it to effectively work with very large data
sets. iBATIS supports features like row handlers that allow batch processing of very
large record sets, one record at a time. It also supports fetching a range of results,
allowing you to fetch only the data absolutely necessary for your immediate needs.
If you have 10,000 records and only want records 500 to 600, then you can easily
fetch just those records. iBATIS supports driver hints that allow it to perform such
operations very efficiently.

 Finally, iBATIS allows you to map your objects to the database in multiple ways.
It’s pretty rare that an enterprise system functions only in a single mode. Many
enterprise-class systems need to perform transactional functions throughout the
day and perform batch functions during the night. iBATIS allows you to have the
same class mapped in multiple ways to ensure that each function is supported in
the most efficient way possible. iBATIS also supports multiple fetch strategies. That
is, you can choose to have some data loaded lazily, while other complex object
graphs are loaded with a single SQL join to avoid serious performance problems.

 This sounds a lot like a sales pitch. So while we’re in the mood, why don’t we go
into some reasons why you want to use iBATIS? We’ll do exactly that in section 2.5.
To be fair, a little later in section 2.5 we’ll discuss some times when you may not want
to use iBATIS.

2.3 Why use iBATIS?

There are a great many reasons to use iBATIS in nearly any system. As you learned
earlier in this chapter, a framework like iBATIS offers opportunities to inject archi-
tectural benefits into your application. Here we’ll discuss these benefits and the
features that make them possible.

2.3.1 Simplicity

iBATIS is widely regarded as being one of the simplest persistence frameworks
available today. Simplicity is at the heart of the design goals of the iBATIS team,
and it takes priority over nearly everything else. This simplicity is achieved by
maintaining a very solid foundation upon which iBATIS is built: JDBC and SQL.
iBATIS is easy for Java developers because it works like JDBC, only with much less
code. Almost everything you knew about JDBC applies to iBATIS as well. You can
almost think of iBATIS as JDBC code described in XML format. That said, iBATIS
includes a number of other architectural benefits that JDBC does not have, which
we’ll discuss next. iBATIS is also easy to understand for database administrators

Why use iBATIS? 41
and SQL programmers. iBATIS configuration files can be easily understood by
nearly anyone with any SQL programming experience.

2.3.2 Productivity

The primary purpose of any good framework is to make the developer more pro-
ductive. Generally a framework exists to take care of common tasks, reduce boiler-
plate code, and solve complex architectural challenges. iBATIS succeeds in making
developers more productive. In one case study presented at a Java Users Group in
Italy (www.jugsardegna.org/vqwiki/jsp/Wiki?IBatisCaseStudy), Fabrizio Giannes-
chi found that iBATIS reduced the amount of code in the persistence layer by a sig-
nificant 62 percent. This savings was primarily due to the fact that no JDBC code
had to be written. The SQL was still handcoded, but as you saw earlier in this chap-
ter, the SQL is not the problem—it’s the JDBC API, and ADO.NET is no different.

2.3.3 Performance

The topic of performance will spark debate among framework authors, users, and
even commercial software vendors. The fact is, at a low level all frameworks incur
some sort of overhead. Generally, if you compare handcoded JDBC to iBATIS and
iterate it 1,000,000 times in a for loop, you’ll likely see a performance hit in favor
of JDBC. Fortunately, this is not the kind of performance that matters in modern
application development. What is much more significant is how you fetch data
from the database, when you fetch it, and how often. For example, using a pagi-
nated list of data that dynamically fetches records from the database can signifi-
cantly increase the performance of the application because you aren’t
unnecessarily loading potentially thousands of records from the database at once.
Similarly, using features like lazy loading will avoid loading data that isn’t neces-
sarily used in a given use case. On the other hand, if you know for certain that you
have to load a complex object graph that involves a large amount of data from a
number of tables, loading it using a single SQL statement will improve perfor-
mance greatly. iBATIS supports a number of performance optimizations that we’ll
discuss in more detail later. For now, it is important to know that iBATIS can usu-
ally be configured and used in such a way that is simple, yet it performs as well as
JDBC, or possibly better. Another important consideration is that not all JDBC
code is well written. JDBC is a complex API that requires a lot of care to code cor-
rectly. Unfortunately, much JDBC code is poorly written and therefore will not
even perform as well as iBATIS at a low level.

42 CHAPTER 2

What is iBATIS?
2.3.4 Separation of concerns

With typical JDBC code, it was not uncommon to find database resources such as
connections and result sets strewn throughout the application at all layers. We’ve
all seen the nasty applications with database connections and statements in JSP
pages, results being iterated over, and HTML in between it all. It’s truly nightmar-
ish. In chapter 1 we discussed the importance of application layering. We saw how
the application is layered at a high level and also how the persistence layer is lay-
ered internally. iBATIS helps to support this layering by managing all of the persis-
tence-related resources, such as database connections, prepared statements, and
result sets. It provides database-independent interfaces and APIs that help the rest
of the application remain independent of any persistence-related resources. With
iBATIS, you’re always working only with true objects and never with arbitrary
result sets. iBATIS actually makes it hard to break layering best practices.

2.3.5 Division of labor

Some database administrators love their database so much that they won’t let any-
one else write the SQL for it. Others are just so good at it that everyone else wants
them to write the SQL. Whatever the reason, it’s always nice to leverage the
strengths in your development team. If you have someone who is particularly
good at writing SQL but not so hot at writing Java or C#, then let them write the
SQL unimpeded. iBATIS allows this to happen. Because the SQL statements are
largely separated from the application source code, SQL programmers can write
the SQL the way it was meant to be written, without having to worry about string
concatenation. Even if the same developers write both the Java code and the SQL,
a common request from DBAs while performance tuning a database is “Show me
the SQL.” This is not an easy thing to do with JDBC, as the SQL is often wound up
in a series of concatenated strings or perhaps even dynamically built from a com-
bination of iteration and conditionals. With an object relational mapper the situa-
tion is even worse, as you usually have to run the application and log the
statements, and once you find them, you may not be able to do anything to
change them. iBATIS allows full freedom to enable anyone to develop, view, and
change the SQL statements run against the database.

2.3.6 Portability: Java, .NET, and others

iBATIS is a very portable concept. Because of its relatively simple design, it can be
implemented for nearly any language or platform. At the time of this writing, iBA-
TIS supports the three most popular development platforms: Java, Ruby, and C#
for Microsoft .NET.

When not to use iBATIS 43
 The configuration files aren’t entirely compatible across the platforms at this
time, but there are plans to make that more of a reality. More important, the con-
cept and approach are very portable. This allows you to be consistent in the design
of all of your applications. iBATIS works with more languages and more types of
applications than any other framework, regardless of the design of the applica-
tion. If consistency across your applications is important to you, then iBATIS will
work very well for you.

2.3.7 Open source and honesty

Earlier we called this section a “sales pitch.” The truth is, iBATIS is free, open
source software. We don’t make a dime on it whether you use it or not. You’ve
already bought the book, so we’ve made as much money as we’re going to. That
said, one of the greatest advantages of open source software is honesty. We have no
reason to stretch the truth or lie to you. We’ll be very up-front and say that iBATIS
isn’t the perfect solution for all problems. So let’s do something that is rarely
done in commercial software documentation. Let’s discuss some reasons why you
may not want to use iBATIS, and suggest alternatives where appropriate.

2.4 When not to use iBATIS

Every framework is built around rules and constraints. Lower-level frameworks
like JDBC provide a flexible and complete feature set, but they are harder and
more tedious to use. High-level frameworks like object/relational mapping tools
are much easier to use and save you a lot of work, but they are built with more
assumptions and constraints that make them applicable to fewer applications.

 iBATIS is a mid-level framework. It’s higher level than JDBC, but lower level
than an object relational mapper. That puts iBATIS in a unique position that
makes it applicable to a unique set of applications. In the previous sections we
discussed why iBATIS is useful in various types of applications, including small,
rich client applications and large, enterprise, web applications—and everything in
between. So when does iBATIS not fit? The next few sections detail situations
where iBATIS is not the best solution and offer recommendations for alternatives.

2.4.1 When you have full control…forever

If you are guaranteed to have full control of your application design and
database design, then you are a very lucky person indeed. This is rare in an
enterprise environment or any business where the core competency is not
software development. However, if you work at a software company that develops

44 CHAPTER 2

What is iBATIS?
a shrink-wrapped product for which you have full design control, then you might
be in this situation.

 When you have full control, you have a good reason to use a full object/
relational mapping solution such as Hibernate. You can fully leverage the design
benefits and productivity gains that an object relational mapper can provide.
There will probably not be any interference from an enterprise database group,
or a legacy system to integrate with. Furthermore, the database is probably
deployed with the application, which places this into the category of an
application database (see chapter 1). A good example of a packaged application
that uses Hibernate is JIRA from Atlassian. They supply their issue-tracking
software as a shrink-wrapped product over which they have full control.

 It’s important to consider where the application will be in the future, though.
If there is any chance that the database could fall out of the control of the
application developers, then you might want to carefully consider the impacts that
could have on your persistence strategy.

2.4.2 When your application requires fully dynamic SQL

If the core functionality of your application is the dynamic generation of SQL, then
iBATIS is the wrong choice. iBATIS supports very powerful dynamic SQL features that
in turn support advanced query capability and even some dynamic update
functions. However, if every statement in your system is dynamically generated, then
you’re better off sticking with raw JDBC and possibly building your own framework.

 Much of the power of iBATIS is that it allows you complete freedom to
manually write and manipulate SQL directly. This advantage is quickly lost when
the majority of your SQL is built dynamically from some SQL generator class.

2.4.3 When you’re not using a relational database

There are JDBC drivers available for more than relational databases. There are
JDBC drivers for flat files, Microsoft Excel spreadsheets, XML, and other types of
data stores. Although some people have been successful using such drivers with
iBATIS, we don’t recommend them for the majority of users.

 iBATIS doesn’t make many assumptions about your environment. But it does
expect that you’re using a real relational database that supports transactions and
relatively typical SQL and stored procedure semantics. Even some well-known
databases don’t support very key features of a relational database. Early versions
of MySQL did not support transactions, and therefore iBATIS did not work well
with it. Luckily today MySQL does support transactions and has a fairly compliant
JDBC driver.

iBATIS in five minutes 45
 If you’re not using a real relational database, we recommend that you stick
with raw JDBC or even a lower-level file I/O API.

2.4.4 When it simply does not work

iBATIS has a lot of great features that continue to be implemented as the needs of
the community grow. However, iBATIS does have a direction as well as design goals
that will sometimes conflict with the needs of some applications. People do
amazing things with software, and there have been cases where iBATIS simply did
not work because of a complex requirement. Although we may have been able to
add features to support the requirement, it would have added significant
complexity or perhaps would have changed the scope of the iBATIS framework. As
a result, we would not change the framework. To support these cases, we try to
offer pluggable interfaces so that you can extend iBATIS to meet nearly any need.
The simple fact is, sometimes it just doesn’t work. In these cases it’s best to find a
better solution, rather than try to twist iBATIS (or any framework) into something
that it is not.

 So instead of continuing to discuss the whys and why nots, let’s look at a simple
example.

2.5 iBATIS in five minutes

The iBATIS framework is a very simple one, and getting started with it is equally
simple. How simple? Well, simple enough that we can build an entire application
that uses iBATIS in five minutes—not a big Enterprise Resource Planning (ERP)
solution or massive e-commerce website, but a simple command-line tool to exe-
cute a SQL statement from an iBATIS SQL Map and output the results to the con-
sole. The following example will configure a simple static SQL statement to query
a simple database table and write it to the console like this:

 java -classpath <…> Main

Selected 2 records.
{USERNAME=LMEADORS, PASSSWORD=PICKLE, USERID=1, GROUPNAME=EMPLOYEE}

 {USERNAME=JDOE, PASSSWORD=TEST, USERID=2, GROUPNAME=EMPLOYEE}

Not exactly the prettiest data output, but you get the picture of what it is going to
do. In the next few sections, we will walk through the steps to get you from noth-
ing to this level of functionality.

46 CHAPTER 2

What is iBATIS?
2.5.1 Setting up the database

For the purpose of the sample application, we will use a MySQL database. The iBA-
TIS framework works with any database, as long as it has a JDBC-compliant driver.
You simply need to supply a driver class name and a JDBC URL in the configuration.

 Setting up a database server is beyond the scope of this book, so we will only
provide you with what you need to do on the assumption that the database is
already set up and functional. Here is the MySQL script that creates the table we
will use and adds some sample data to it:

 #
Table structure for table 'user'
#

CREATE TABLE USER_ACCOUNT (
 USERID INT(3) NOT NULL AUTO_INCREMENT,
 USERNAME VARCHAR(10) NOT NULL,
 PASSSWORD VARCHAR(30) NOT NULL,
 GROUPNAME VARCHAR(10),
 PRIMARY KEY (USERID)
);

#
Data for table 'user'
#

INSERT INTO USER_ACCOUNT (USERNAME, PASSSWORD, GROUPNAME)
 VALUES ('LMEADORS', 'PICKLE', 'EMPLOYEE');
INSERT INTO USER_ACCOUNT (USERNAME, PASSSWORD, GROUPNAME)
 VALUES ('JDOE', 'TEST', 'EMPLOYEE');

 COMMIT;

If you have a different database server already set up with other data that you
would like to execute some SQL queries over, feel free to use it for the example.
You will need to modify the query in the SqlMap.xml file to have your SQL in it and
will also need to modify the SqlMapConfig.xml file to configure iBATIS to use your
database instead. To make it work, you have to know the driver name, the JDBC
URL, and a username and password to connect with.

2.5.2 Writing the code

Because this application is our first full example, and an introduction to using
iBATIS, the code will be much simpler than a real application would be. We dis-
cuss type safety and exception handling later, so we will not be considering those
topics here. Listing 2.4 contains the complete code.

iBATIS in five minutes 47
import com.ibatis.sqlmap.client.*;
import com.ibatis.common.resources.Resources;

import java.io.Reader;
import java.util.List;

public class Main {
 public static void main(String arg[]) throws Exception {
 String resource = "SqlMapConfig.xml";
 Reader reader = Resources.getResourceAsReader (resource);
 SqlMapClient sqlMap = SqlMapClientBuilder.buildSqlMapClient(reader);
 List list = sqlMap.queryForList("getAllUsers", "EMPLOYEE");
 System.out.println("Selected " + list.size() + " records.");
 for(int i = 0; i < list.size(); i++) {
 System.out.println(list.get(i));
 }
 }
}

That’s it! We’ve configured iBATIS, executed the statement, and printed the
results in about 10 lines of Java code. That’s all the Java code required for a fully
functional iBATIS application. Later, we will refine how things happen, but for
now, let’s move on to the basics of the configuration.

2.5.3 Configuring iBATIS (a preview)

Since we cover the configuration of iBATIS in depth in the next chapter, we dis-
cuss it only briefly here. You won’t find much in the way of explanation of the
options here, but we cover the essential information.

 First, let’s look at the SqlMapConfig.xml file. This is the starting point for iBA-
TIS, and ties all of the SQL Maps together. Listing 2.5 contains the SqlMapCon-
fig.xml file for our simple application.

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE sqlMapConfig
 PUBLIC "-//ibatis.apache.org//DTD SQL Map Config 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-config-2.dtd">

<sqlMapConfig>
 <transactionManager type="JDBC" >

Listing 2.4 Main.java

Configures
iBATIS

Prints the results

Executes the statement

Listing 2.5 The SQL map configuration for the simplest iBATIS application ever written

Provides
DOCTYPE
and DTD for
validation

B

48 CHAPTER 2

What is iBATIS?
 <dataSource type="SIMPLE">
 <property name="JDBC.Driver"
 value="com.mysql.jdbc.Driver"/>
 <property name="JDBC.ConnectionURL"
 value="jdbc:mysql://localhost/test"/>
 <property name="JDBC.Username"
 value="root"/>
 <property name="JDBC.Password"
 value="blah"/>
 </dataSource>
 </transactionManager>
 <sqlMap resource="SqlMap.xml" />
</sqlMapConfig>

As you may have guessed, this is where we tell iBATIS how to connect to the data-
base and which SQL Map files are available. Since it is an XML document, we need
to provide a doctype and DTD for validation . SIMPLE is the name of a built-in
transaction manager . Here is where you provide the name of your JDBC driver,
the JDBC URL, a username, and a password that lets you connect to the database.
Then you provide your SQL Maps . Here, we only have one SQL Map, but you
can have as many as you want. There are a few other things you can do here, but
we cover them all in the next chapter.

 Now that you have seen the main configuration file, let’s take a look at the
SqlMap.xml file (listing 2.6). This is the file that contains the SQL statement that
we will be running.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMap PUBLIC "-//ibatis.apache.org//DTD SQL Map 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-2.dtd">

<sqlMap>
 <select id="getAllUsers" parameterClass="string"
 resultClass="hashmap">
 SELECT * FROM USER_ACCOUNT WHERE GROUPNAME = #groupName#
 </select>
</sqlMap>

In the XML code in listing 2.6, we’re accepting a String parameter (parameter-
Class) for the GROUPNAME parameter, and mapping the results (resultClass) to a
HashMap.

Listing 2.6 The simplest SQL Map ever

C Provides name of
built-in transaction
manager

D Provides your SQL Maps

B
C

D

iBATIS in five minutes 49
WARNING Using a Map (e.g., HashMap, TreeMap) as your domain model is not rec-
ommended, but this does show the level of mapping flexibility that iBA-
TIS provides. You don’t necessarily always need a JavaBean to map to—
you can map directly to Maps and primitives as well.

Believe it or not, you have now seen all of the code and configuration required to
use iBATIS. We have intentionally spread it out for printing, but even with that, it
is only about 50 lines of code, including Java and XML. But the more important
point is that 45 of the 50 lines are configuration and are only written once in an
application, not for every single statement. As you saw earlier in this chapter, JDBC
can end up costing you 50 lines of code or more per statement.

2.5.4 Building the application

Usually when building a large application, you will use something like Ant to
make it simpler. Because this is only one class, we are not going to bother building
an Ant script for it. To build it, the only JAR files you need on the classpath are
ibatis-common-2.jar and ibatis-sqlmap-2.jar, so we will just key them in on the
command line to the Java compiler:

 javac -classpath <your-path>ibatis-common-2.jar;
<your-path>ibatis-sqlmap-2.jar Main.java

Of course, that should all be on one line, and instead of <your-path>, you should
substitute the actual path to the JAR files. If everything is OK, there should be no
output from the compiler to the screen, but a Main.class file should be created in
the current directory.

2.5.5 Running the application

We will have a few more JARs when we run the application, but not many. To run
our application, the only JAR files we need on the classpath are ibatis-common-
2.jar, ibatis-sqlmap-2.jar, commons-logging.jar, and our JDBC driver (in this
case, mysql-connector-java.jar), so next enter this command:

 java -classpath <your-path>;mysql-connector.jar;commons-logging.jar;
 ibatis-common-2.jar;ibatis-sqlmap-2.jar;.

 Main

Again, as with the compilation, this should all go on one line, and <your-path>
should be replaced with the actual paths on your system.

 The program should run and tell you how many records were selected, and
then output the data in a rough format, something like this:

50 CHAPTER 2

What is iBATIS?
 Selected 2 records.
{USERID=1, USERNAME=LMEADORS, PASSSWORD=PICKLE, GROUPNAME=EMPLOYEE}

 {USERID=2, USERNAME=JDOE, PASSSWORD=TEST, GROUPNAME=EMPLOYEE}

The iBATIS framework is designed to be very flexible. It can be a very lightweight
and simple framework that simply executes SQL and returns data, or it can be
used to do much more.

 One key to that flexibility is in the proper configuration of the framework. In
the next chapter, we are going to look at the two main types of configuration files,
and then we'll look at some patterns for solving difficult situations through the
use of configuration.

NOTE The configuration files are very standard XML documents. That means
that if you have a modern XML editor, the Document Type Definition
(DTD) can be used to validate the document, and in some cases even
provide code completion while editing.

You’ve now seen iBATIS in its simplest form. Before we continue, let’s talk a bit
about where iBATIS is going, so that you can be confident in your decision to use it.

2.6 The future: where is iBATIS going?

iBATIS has gained a great deal of momentum in recent months. As a result, the
team has grown, the product has moved, and we’ve started talking about support-
ing new platforms. Let’s discuss the future in more detail.

2.6.1 Apache Software Foundation

Recently iBATIS became a part of the Apache Software Foundation. We chose to
move to Apache because we believe in their mission and respect their attitude.
Apache is more than a bunch of servers and infrastructure; it’s a system and a true
home for open source software. Apache focuses on the community that surrounds
software rather than the technology behind it, because without a community the
software is a dead project.

 What this means to iBATIS users is that iBATIS is not under the direction of a sin-
gle entity, nor is it dependent on a single entity. Nobody owns iBATIS—it belongs to
the community. Apache is there to protect the software and ensure that it stays that
way. That said, the Apache license does not restrict the use of open source software
as some licenses such as the GPL might. The Apache license is not a viral license,
which means that you can use the software freely in a commercial environment
without worrying about being compliant with unreasonable conditions.

The future: where is iBATIS going? 51
 Although Apache doesn’t focus on infrastructure, they do have some very
good infrastructure. Currently iBATIS makes use of Subversion source control
(SVN), Atlassian’s JIRA for issue tracking, Atlassian’s Confluence for collaborative
wiki documentation, and Apache’s mailing list servers for communication among
the development team, users, and the community in general.

 Apache has what it takes to protect iBATIS and ensure that it will be around for
as long as there are people who want to use it.

2.6.2 Simpler, smaller, with fewer dependencies

Unlike some frameworks, the iBATIS project has no goals to branch out into new
areas and take over the world. iBATIS is a very focused project and with each
release we only hope to make it smaller and simpler and maintain independence
from third-party libraries.

 We believe that iBATIS has much room for innovation. There are a lot of new tech-
nologies and design approaches that iBATIS can benefit from to make configuration
more concise and easier to work with. For example, both C# and Java have attribute
(a.k.a. annotation) functionality built in. In future versions, iBATIS will likely lever-
age this to reduce the amount of XML needed to configure the framework.

 There is also a lot of room for tools development. The iBATIS design lends
itself well to graphical tools such as integrated development environments. It is
also possible for iBATIS configurations to be generated from database schemas,
for which there are already tools available. You can see examples of some of the
tools on our website at http://ibatis.apache.org.

2.6.3 More extensions and plug-ins

iBATIS already has a number of extension points. We’ll talk about them in detail in
chapter 12. You can already implement your own transaction manager, data source,
cache controllers, and more. But we have a goal to make iBATIS even more extend-
ible. We’d like to see a pluggable design at nearly every layer of JDBC architecture,
meaning you’d be able to implement your own ResultSet handlers and SQL exe-
cution engines. This would help us support more complex or legacy systems that
operate in a proprietary way. It would also enable developers to take greater advan-
tage of customized features of particular databases or application servers.

2.6.4 Additional platforms and languages

As you’ve noticed in both chapters 1 and 2, we’ve discussed iBATIS for .NET and
Java. The remainder of this book will focus mostly on the Java APIs, but most of
the information is transferable to the .NET platform as well. We’ll also discuss

52 CHAPTER 2

What is iBATIS?
.NET in more detail in appendix. iBATIS has been implemented for Ruby as well,
but Ruby is a significantly different language, and therefore iBATIS for Ruby is
quite different as well. We’ll not discuss the Ruby implementation here.

 In addition to Java and C#, the iBATIS team has discussed implementing iBATIS
in other languages, including PHP 5 and Python. We believe that iBATIS can con-
tribute significant value to almost any platform where the choices are limited to a
low-level database API and a high-level object/relational mapping tool. iBATIS can
fill the middle ground and again allow you to implement all of your applications
in a consistent way across the board.

 We’ve also discussed drafting a specification that would make it easier to
migrate iBATIS to different platforms and ensure reasonable consistency. Of
course, we’d like iBATIS to take full advantage of unique language and platform
features, but we’d also like to see some level of similarity to ensure that they can
all be called iBATIS and be recognizable to developers experienced with iBATIS in
another language.

2.7 Summary

In this chapter you learned that iBATIS is a unique data mapper that uses an
approach called SQL mapping to persist objects to a relational database. iBATIS is
consistently implemented in both Java and .NET, and there is significant value in a
consistent approach to persistence in your applications.

 You also learned how iBATIS works. Generally, under the hood iBATIS will run
well-written JDBC or ADO.NET code that would otherwise be hard to maintain
when coded manually. You found that when compared to JDBC, iBATIS code is less
verbose and easier to code.

 We discussed how iBATIS, despite its simple design, is a very appropriate frame-
work for both small and large enterprise applications alike. iBATIS has many fea-
tures that support enterprise-level persistence requirements. Features such as row
handlers allow large data sets to be processed efficiently, one record at a time, to
ensure that you don’t completely drain the system memory.

 We also discussed a number of important features that distinguish iBATIS from
the competition, and we made a strong case for using iBATIS. These features
include the following:

Summary 53
■ Simplicity—iBATIS is widely regarded as the simplest persistence framework
available.

■ Productivity—Concise code and simple configuration reduces the code to 62
percent of the corresponding JDBC code.

■ Performance—Architectural enhancements like join mapping speed up data
access.

■ Separation of concerns—iBATIS improves design to ensure future maintain-
ability.

■ Division of labor—iBATIS helps break up the work to allow teams to leverage
expertise.

■ Portability—iBATIS can be implemented for any full-featured programming
language.

After our sales pitch, we admitted that iBATIS is not a silver bullet, because no
framework is. We discussed situations where iBATIS would likely not be the ideal
approach. For example, if you have full control over the application and the data-
base now and forever, then a full-blown object relational mapper is probably a bet-
ter choice. On the other hand, if your application works primarily with
dynamically generated SQL code, then raw JDBC is the way to go. We also men-
tioned that iBATIS is primarily designed for relational databases, and if you are
using flat files, XML, Excel spreadsheets, or any other nonrelational technology,
then you’re better off with a different API altogether.

 Finally, we ended the chapter by discussing the future of iBATIS. The team has
a lot of great design goals for the future, and the Apache Software Foundation
will ensure that there is an energetic community capable of supporting it for
years to come.

Part 2

iBATIS basics

As you saw in part 1, iBATIS was built on a foundation of simplicity. If you’re
familiar with JDBC, XML, and SQL, there is very little more you need to learn. This
section will tie together the basic features of iBATIS, including installation, config-
uration, statements, and transactions. It sounds like a lot to learn, but iBATIS sim-
plifies the usual challenges in these areas and these five chapters will have you up
and running very quickly.

Installing and
configuring iBATIS
This chapter covers
■ Getting iBATIS
■ iBATIS vs. JDBC
■ Configuration basics
57

58 CHAPTER 3

Installing and configuring iBATIS
Installing iBATIS is a quick and simple process. Because it is a library, and not an
application, there is no installation process, but you do need to go through a few
steps to use iBATIS in your application.

 If you are familiar with Java and JDBC, then you will probably read all you need
to get up and running in the next paragraph or two. Just in case, we provide an
overview of the process that you can read through, and then the rest of the chap-
ter gives more details on the installation process.

 To get iBATIS, you have two choices. You can either download a binary distribu-
tion and unzip it into a directory, or check out a copy of the source from the Sub-
version repository and build it. In either case, you will have the same set of files
when you are done.

 Once you have a build of the distribution, you simply need to add the required
JAR files to your application’s classpath. If you are using JDK 1.4 or later, there are
only two required files:

■ ibatis-common-2.jar—Shared iBATIS classes1

■ ibatis-sqlmap-2.jar—The iBATIS SQL mapping classes

Those two JAR files contain the most important iBATIS functionality and will be
enough for nearly any application that uses iBATIS. Notice that there are no
required dependencies on third-party libraries. This is intentional to avoid con-
flicts with various versions of other frameworks—a welcome benefit for anyone
who’s been bitten by version conflicts in the past. There are optional JAR files that
enable certain features; these will be discussed later in this chapter.

 That is all there is to it! You are now ready to start using iBATIS in your applica-
tion. If that was enough detail, you can skip ahead to section 3.3 to see if there are
any other dependencies you may need for other features in iBATIS, or you can
jump to section 3.6 and see how to configure iBATIS. If you need more informa-
tion, the next few sections go into greater detail.

3.1 Getting an iBATIS distribution

As we mentioned earlier, you have two choices for procuring an iBATIS distribu-
tion: you can download the ready-to-use prebuilt binary distribution or you can
get the source from the Subversion repository and build the distribution from
that. Both methods produce the same result—a finished distribution that can be

1 By the time you read this, the common jar file may be merged into a single JAR file with the sqlmap
classes, thus reducing the classpath requirement to a single JAR file and further simplifying deployment.

Getting an iBATIS distribution 59
used to add iBATIS to your application, and full source code with debugging infor-
mation available when necessary.

3.1.1 Binary distribution

This approach is the quickest and easiest way to get started with iBATIS. Because
the distribution comes prebuilt, you can simply download it, unpack it, and get
started using it.

NOTE The binary distribution of iBATIS is currently available at
http://ibatis.apache.org.

The binary distribution of iBATIS contains the precompiled JAR files required to
use iBATIS, all of the relevant Java source code that was used to build it, and the
basic documentation as well.

3.1.2 Building from source

If you are interested in enhancing the framework, fixing a bug, or if you just want
to build it from source so that you know exactly what you have, you can obtain a
copy from the Subversion repository and build it yourself from that source. Chap-
ter 12 will delve into the details of building iBATIS in the context of extending the
framework, so this section will be somewhat brief, but you should find enough
information to get you started.

NOTE The Subversion (or SVN) repository that is referred to here is the version
control system used by all new Apache projects. Subversion is a replace-
ment for the Concurrent Version System (CVS) that has been used on
many open source projects in the past. The purpose of SVN is to provide
an environment where changes to the framework can be made without
fear of losing source code (because each developer has a copy of it, and
the server has multiple copies of it).

If you want to learn more about Subversion, its home page is
http://subversion.tigris.org/.

The Subversion repository for iBATIS is currently located at
http://svn.apache.org/repos/asf/ibatis/.

Digging into the repository
The Subversion repository includes both a batch file for Windows and a bash shell
script for Linux to build the entire iBATIS distribution. This means that, once you
have the source, the only requirement is that you have a JDK installed and that you
have JAVA_HOME set properly.

60 CHAPTER 3

Installing and configuring iBATIS
 All of the requirements for building iBATIS are in the repository either as JAR
files or as stub classes that satisfy the compile-time requirements. The repository
has the top-level directories shown in table 3.1.

Running the build
To build iBATIS, you need to run build.bat (for Windows), or build.sh (for
Linux or Macintosh). The build process will do the following:

1 Clear out the directories that the build puts its files into.

2 Compile all of the source code.

3 Instrument the compiled classes.

4 Run the unit tests.

5 Build the unit-test and coverage reports.

6 Build the JavaDoc-generated documentation.

7 Build the JAR files for distribution.

8 Zip all of that into a single file, ready for use as the binary distribution.

Table 3.1 The directory structure of the source code as available from the Apache Subversion source
control system

Directory Purpose

build This is where you will find the Ant script used to build the framework, and where the build
will put everything that it builds.

devlib Compile-time requirements that can be included in an Apache project are in this directory.

devsrc Compile-time requirements that are unavailable for distribution in an Apache project, or
are just too big to include in the repository. For those requirements, we have dummy ver-
sions of them in the repository that “look like” the application programming interfaces
(APIs) and allow us to build iBATIS.

doc This is where you will find the project documentation.

javadoc JavaDoc is a tool for generating API documentation in HTML format from doc comments in
source code, and this is where example configuration files are placed for the build process.

src This is where you will find the actual code for the framework. In chapter 12 we will look at
the structure of the application in more detail.

test Unit testing is one way to test the correctness of code. The iBATIS framework uses JUnit
for automated unit testing during the build process. The build procedure will run the tests
and generate reports based on the results.

tools Tools that are useful for working with iBATIS are here. For example, you’ll find the Abator
tool in this directory.

Getting an iBATIS distribution 61
While it is not necessary to understand the steps that are being performed at this
point, we will go over them quickly so that you have some idea of what is happen-
ing as the messages fly by on the screen.

 The first step is required to make sure that previous builds do not affect the
current build—each time you run it, it starts with a clean slate.

 The second step is obvious (the code has to be compiled), but the third one
may not be. What happens here is that the compiled code is copied and instru-
mented by a coverage-tracking tool called EMMA. This will be explained shortly.

 Next, the unit tests are run over the framework components. As mentioned
earlier, this is to verify that the components work as expected at a low level (i.e.,
when you call a method with known inputs, you see the expected results).

 The compatibility tests are used to verify that users who are using version 1.x
of the framework are able to replace it with version 2.x without rewriting their
application.

 The reports generated by the build process are intended to provide two
pieces of information: first, the JUnit report shows the tests that were run and
whether or not they were successful. The entry point for those reports is
reports\junit\index.html (relative to the build directory), and is useful when
you are making changes to the framework and want to see if the tests were
successful. The second report, which is located at reports\coverage\co-

verage.html, shows coverage for the tests that were run. Code coverage is a measure
used in software testing that describes the degree to which the source code of a
program has been tested. In other words, it shows how effective the tests were.
The coverage reports show four statistics:

■ Class coverage—Which classes have been tested?

■ Method coverage—Which methods have been tested?

■ Block coverage—Which blocks of code have been tested?

■ Line coverage—Which lines of code have been tested?

If you do make a change in the framework, be sure that that you check the test
reports to make sure that the existing tests are successful and that the unit tests
have been modified to adequately test your change. Once that is done, feel free to
upload the changes to the Apache issue-tracking system (JIRA), and if it is some-
thing that needs to be added to the framework, one of the committers will try to
include it in the next distribution.

 So, now that you built a distribution, what do you have? Read on to find out!

62 CHAPTER 3

Installing and configuring iBATIS
3.2 Distribution contents

Regardless of how you get the distribution (unzip or build), you will end up with
the same set of seven JAR and ZIP files. A JAR file is a Java archive and is how most
Java libraries are distributed—it is actually just a ZIP file with extra information in
it. The important files in the distribution are shown in table 3.2.

You can begin to see of how lightweight the iBATIS framework is by how few
dependencies and files are required. That said, the framework has some optional
functionality that can be enabled by including other frameworks such as cglib, a
common bytecode enhancement framework that you will learn more about in the
next section.

3.3 Dependencies

There are other features of iBATIS that you will probably want to configure, such
as bytecode enhancement for lazy loading, which we look at next. Furthermore,
in the rest of the book we will be exploring the capabilities of the iBATIS frame-
work. Many of those features will require other open source or commercial pack-
ages to make them work properly. To enable those additional features, you will
need to fulfill their dependencies and configure iBATIS to use them. This section
provides a brief overview of these features.

Table 3.2 The most important files in the iBATIS distribution

File Purpose

ibatis-common-2.jar This file contains common components that are used in both the SQL Map
and DAO frameworks. In the near future (by the time this book ships) these
common classes may be merged into a single JAR file along with the SQL
mapper classes currently found in the ibatis-sqlmap-2.jar file.

ibatis-sqlmap-2.jar This file contains the SQL Map framework components.

ibatis-dao-2.jar This file contains the DAO framework components.

user-javadoc.zip This file contains a limited set of the JavaDoc documentation for the
project that is specifically trimmed down for people who are only working
with the framework, not on the framework.

dev-javadoc.zip This file contains all of the JavaDoc documentation for the project.

ibatis-src.zip This file contains the entire source used to build the framework JAR files.

Dependencies 63
3.3.1 Bytecode enhancement for lazy loading

Bytecode enhancement is a technique that modifies your code at runtime, based on
configuration or other rules that you define. For example, the iBATIS framework
allows you to relate SQL queries with other SQL queries. It is easy to imagine a sit-
uation where you may have a list of customers, a list of orders for each customer (as
part of that customer object), and a list of line items as part of the order objects. In
that case, you can define your SQL map so that all of those lists are related and
loaded from the database automatically, but only if they are actually requested by
the application.

NOTE If you are familiar with O/RM tools, you may be thinking that this is the
same functionality that they provide. While the functionality is similar,
the iBATIS framework does something a bit more flexible. While O/RM
tools allow you to relate tables and views only, the iBATIS framework
allows you to relate any number of queries, not just database objects.

This functionality is very useful, and can save you some coding in cases where you
have related queries. However, if you have 1,000 customers who each have 1,000
orders with 25 line items, the combined data would consist of 25,000,000 objects.
Needless to say, this has grown to a point where it is not feasible to have it all in
memory at once.

 Lazy loading is intended to deal with these kinds of situations. What iBATIS lets
you do is load only the data that you actually need.

 So, in the previous example, you could reconfigure the SQL map to load the
related lists lazily. Therefore, when your user is looking at the list of customers, only
the list of 1,000 customers is in memory. The information to load the other lists is
kept available, but the data is not loaded until it is actually requested. In other
words, the order information is not loaded until the user clicks on a customer to
see that customer’s orders. At that point, the framework loads that customer’s list
of 1,000 orders; none of the others are loaded. If the user then clicks on an order
to drill down more, only the 25 line items on the selected order are loaded.

 So, by making a configuration change and not changing a single line of code,
we have gone from 25,000,000 objects to 2,025. This means our application runs
in about one ten-thousandth of the time as it did in the original configuration.

3.3.2 Jakarta Commons Database Connection Pool

Because iBATIS is a tool for simplifying interaction with a database, connecting to
a database is obviously a requirement. Creating new connections on demand can
be a time-consuming process (in some cases, taking seconds to complete).

64 CHAPTER 3

Installing and configuring iBATIS
Instead, iBATIS uses a pool of connections that are kept open and shared by all
users of the application.

 Many vendors provide pooled versions of their drivers, but one problem is that
the features and configuration of the pools are as varied as the implementations.

 The Jakarta Commons Database Connection Pool (DBCP) project is a wrapper
that makes it possible to easily use any JDBC driver as part of a connection pool.

3.3.3 Distributed caching

Caching data in a multiuser environment can be tricky. Caching data in a multi-
server environment makes the multiuser environment look simple.

 To deal with this problem, iBATIS provides an implementation of caching that
uses the OpenSymphony cache (OSCache). OSCache can be configured to cluster
across multiple servers to provide scalability and fail-over support.

 Now that we’ve looked at some of the features you can configure in iBATIS,
let’s add it to your application!

3.4 Adding iBATIS to your application

Once you’ve configured iBATIS, the only change required to make it available to
your application is to add it (and any other dependencies you choose) to your
compile-time and runtime classpaths. Let’s start with a look at the classpath.

 Every computer system needs a way to find what it needs to work. Just like the
$PATH variable on Linux or %PATH% variable on Windows, Java has a path that it
uses to find its required components that is called the classpath.

 In the early days of Java, you would set a CLASSPATH environment variable.
While this still works, it is messy because it is inherited by every Java application on
the system.

 The Java Runtime Environment (JRE) also has a special lib/ext directory that
can be used, but this is not recommended except for a few special cases because
all classes in this directory are shared by all applications that use the JRE. We rec-
ommend that you don’t put iBATIS in that directory.

 So how do you make iBATIS available to your application? There are a couple
of ways.

3.4.1 Using iBATIS with a stand-alone application

For a stand-alone application, you can set the classpath in a startup script. This is
a reasonable approach used by many applications. For example, if you have a
stand-alone application that is console based, you would add the iBATIS JARs to
the classpath in Linux using the -cp switch, like this:

iBATIS and JDBC 65
java –cp ibatis-sqlmap-2.jar:ibatis-common-2.jar:. MyMainClass

If you are using iBATIS in an application server, consult the documentation that
comes with the server for the appropriate way to add iBATIS to the classpath for
your application.

3.4.2 Using iBATIS with a web application

When setting up a web application, you should put the iBATIS JAR files in the web
application’s WEB-INF/lib directory.

NOTE It may be tempting to put the iBATIS jars into a shared location. For
example, with Tomcat, those would be the shared/lib or common/lib
directories. However, putting JARs like this in a shared location is gener-
ally a bad idea unless it is required for some reason (like a JDBC driver
that is being used by a JNDI data source).

One reason that putting jar files in a shared location is a bad idea is
that upgrading becomes riskier. For example, in an environment where
you have 10 applications sharing a JAR file, if you need to upgrade the
JAR for one application, you have to test it for all 10 that use it. In addi-
tion, there are classloader issues to consider. The exact same bytecode
loaded by two different classloaders are considered by Java to be different
classes. This means that static variables are not shared, and if you try to
cast one to the other, you will get a ClassCastException, even though
the classes are identical. Another classloader issue that you would likely
encounter is the matter of how the classloader finds resources. For exam-
ple, if the common/lib classloader in Tomcat loads iBATIS, it cannot see a
configuration file in a web application using that classloader.

To sum it up: if you put your iBATIS JAR anywhere but in the WEB-INF/lib direc-
tory of your web application and it does not work, do not bother posting a ques-
tion to the mailing lists. The first thing you will be told is to move it to the WEB-
INF/lib directory.

3.5 iBATIS and JDBC

A deep definition of JDBC is beyond the scope of this book, but we will cover it
from a high level to provide a foundation for the rest of the book.

 Sun’s JDBC API is the standard for database connectivity for the Java program-
ming language. JDBC is one part of the Java technology that allows you to realize
the “write once, run anywhere” promise, because all database interaction uses
JDBC to access data.

66 CHAPTER 3

Installing and configuring iBATIS
 Sun’s biggest contribution to JDBC is not in the implementations but in the
interfaces. Vendors are required to implement connectivity to their database
according to the interfaces defined by JDBC. If they do not, developers are
unlikely to use them, because (in the Java world at least) vendor lock-in is consid-
ered an anti-pattern to be avoided.

 The JDBC API borrows many concepts from Microsoft’s ODBC API, and has
been a core component of Java since version 1.1, which was released in 1997. In
1999, version 2 of the JDBC API was released, and in 2002, version 3 was released.
Version 4 is being designed now as part of JCP-221.

 The iBATIS framework currently requires at least version 2 of the API, but is
compatible with version 3 as well.

 With that brief introduction to JDBC, let’s take a look at a few issues you need
to be aware of when using it without iBATIS.

3.5.1 Releasing JDBC resources

When using JDBC, it is easy to acquire resources and forget to properly release
them. While the garbage collection process may eventually release them, this can
take time and is not guaranteed. If these objects do not get released, the application
eventually runs out of available resources and crashes. The iBATIS framework helps
to manage these resources by removing the burden of managing them from the
application developer. Instead of worrying about what resources are being allo-
cated and released, developers can focus on the data they need and how to get it.
However, developers can still manage these resources manually if they so choose.

3.5.2 SQL injection

Another common problem (more prevalent in web applications) is that of SQL
injection, which is a way of using an application to execute SQL in a way that was
not intended by the developer. If an application uses string concatenation to
build SQL statements without properly escaping the parameters, a malicious user
can pass in parameters that will change the query. Take the example of a query
like select * from product where id = 5. If the 5 comes directly from the user, and
is concatenated to select * from product where id = then the user could pass in 5
or 1=1 to change the meaning of the SQL statement. It would be even worse if the
user passed in 5; delete from orders, which would dutifully select the one
record, then clean out your orders table. With flexibility comes risk, and
therefore using iBATIS incorrectly can still expose your application to a SQL
injection attack. However, iBATIS makes it easier to protect the application by
always using PreparedStatements that are not susceptible to this type of attack.

iBATIS and JDBC 67
Only statements that use the explicit SQL string substitution syntax are at risk in
iBATIS. Consider this quick example. The following statement allows for a
dynamic table name and column name:

SELECT * FROM $TABLE_NAME$ WHERE $COLUMN_NAME$ = #value#

Such a statement is flexible and useful in some situations, but exposes you to SQL
injection and should therefore be used judiciously. This is not an iBATIS problem,
as you’d have the same problem no matter how you executed such a statement.
Always be sure to validate user input that will have an impact on dynamically con-
structed SQL statements.

3.5.3 Reducing the complexity

While JDBC is a very powerful tool, it is also a very low-level API. To help better
understand where iBATIS fits in your application, let’s draw an analogy.

 Years ago, to create a web application with Java, you would have to start at the
HTTP level, and write an application that listened to a port and responded to
requests. After a few years of this, Sun provided us with a Servlet specification that
we could use as a starting point so that we would not have to do this sort of socket-
and port-level development. Not long after that came the Struts framework, which
took web development with Java to the next level.

 Most Java developers today would never seriously consider writing a web-based
application starting at the HTTP protocol or even with straight Servlets—instead
they would get a Servlet container like Tomcat and use it with the Struts frame-
work (or something similar like Spring or WebWork).

 To draw a parallel to persistence, when Java 1.0 came out, there was no JDBC
specification. Developers doing database work had to figure out how to talk
directly to the database via its native network protocols. With the release of ver-
sion 1.1 of Java, JDBC entered the picture, and we were given a starting point for
working with databases instead of having to work with sockets and ports. The iBA-
TIS framework is to database development what Struts is to HTTP. Although you
could write applications by opening a port to the database server or using straight
JDBC, it is much simpler to write your application using a tool like iBATIS and let-
ting it deal with Connection, Statement, and ResultSet objects instead of mixing
them into your business logic.

 Just as Struts does, iBATIS provides you with an abstraction to suppress a great
deal of complexity that comes along with the lower-level components that it uses.
It does not completely remove them from your application, but it lets you avoid
dealing with them until you need to.

68 CHAPTER 3

Installing and configuring iBATIS
 As an example of the complexity that iBATIS takes care of for you, let’s look at
the pattern for properly allocating and ensuring the release of a JDBC connection:

 Connection connection = null;
 try {
 connection = dataSource.getConnection();
 if (null == connection){
 // kaboom
 } else {
 useConnection(connection);
 }
 } catch (SQLException e) {
 // kaboom
 }finally{
 if (null != connection) {
 try {
 connection.close();
 } catch (SQLException e) {
 // kaboom
 }
 }

 }

That is almost 20 lines of code to simply get a Connection object, use it, and then
close it properly. Beyond that, the same pattern is required for safely working with
Statement and ResultSet objects. When you consider what is required to imple-
ment many of the features using plain JDBC that iBATIS handles for you—such as
getting a connection to the database, parameter and result mapping, lazy loading,
and caching—it becomes clear that it would take a great deal of careful coding.
Luckily, iBATIS is a lot easier to configure and work with, as you’ll see in the
remainder of this and the next few chapters.

3.6 iBATIS configuration continued

In chapter 2, we looked very briefly at how to configure iBATIS (so briefly, in fact,
that if you haven’t read that section, don’t worry about it). In this section, we build
on that basic configuration by creating the SQL Map configuration file. This file is
the brain of iBATIS, as shown in figure 3.1.

 In this figure, we have the SqlMapConfig file at the top, which is where we define
global configuration options, and also reference the individual SqlMaps them-
selves. The SqlMaps in turn define the mapped statements that will be used in con-
junction with input that your application provides to interact with the database.

 Let’s take a closer look at how you’d use this configuration file.

iBATIS configuration continued 69
3.6.1 The SQL Map configuration file

The SQL Map configuration file (SqlMapConfig.xml) is the central hub for config-
uring iBATIS, as you can see in the conceptual diagram in figure 3.1. Everything
from the database connection to the actual SqlMaps to be used is supplied to the
framework by this file.

NOTE The main configuration file is commonly named SqlMapConfig.xml.
Although it does not have to use that name, we will follow the convention
here.

Listing 3.1 shows an example configuration file that we will discuss in the follow-
ing sections.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMapConfig
 PUBLIC "-//ibatis.apache.org//DTD SQL Map Config 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-config-2.dtd">

Mapped

Statement

Database

SqlMaps

SqlMapConfig

Input

Hashtable

POJO

Primitive

Output

Hashtable

POJO

Primitive

Database

Figure 3.1
Conceptual iBATIS
configuration hub
with SqlMapConfig
at the head of it all

Listing 3.1 SqlMapConfig.xml

70 CHAPTER 3

Installing and configuring iBATIS
<sqlMapConfig>

 <properties resource="db.properties" />

 <settings
 useStatementNamespaces="false"
 cacheModelsEnabled="true"
 enhancementEnabled="true"
 lazyLoadingEnabled="true"
 maxRequests="32"
 maxSessions="10"
 maxTransactions="5"
 />

 <transactionManager type="JDBC" >
 <dataSource type="SIMPLE">
 <property name="JDBC.Driver" value="${driver}"/>
 <property name="JDBC.ConnectionURL" value="${url}"/>
 <property name="JDBC.Username" value="${user}"/>
 <property name="JDBC.Password" value="${pword}"/>
 </dataSource>
 </transactionManager>

 <sqlMap resource="org/apache/mapper2/ii15/SqlMap.xml" />

</sqlMapConfig>

In the next few sections, we will explore the options at in listing 3.1, as well as
describe the transaction manager . In the next three chapters (4, 5, and 6), we
will examine mapped statements that are defined in . Then in chapter 7, we will
come back and talk about transactions in detail.

3.6.2 The <properties> element

The <properties> element allows you to provide a list of name/value pairs out-
side of the main configuration file that can be used to further generalize the con-
figuration. This is useful when deploying an application, because you can have the
shared configuration in one place but isolate values that vary depending on the
environment in a properties file.

 There are two ways to specify the properties file to be used, each of which is an
attribute of the <properties> element. The choices are

■ resource—A resource (or file) on the classpath

■ url—A Uniform Resource Locator (URL)

B Global configuration options

C Transaction manager

References to
SqlMap files

D

b
C

D

iBATIS configuration continued 71
When using the resource attribute, the classloader will attempt to locate that
resource on the application’s classpath. This is called a resource, because we are using
a classloader to read it. The Java documentation refers to resources when accessing
data this way, because while it may just be a file on the local files system, it is just as
possible that it is an entry in a JAR file, possibly even on a different computer.

 The url attribute is handled by the java.net.URL class, so it can be any valid
URL that it understands and can use to load data.

 In our earlier example, we used the <properties> element to keep the data-
base configuration details out of our XML file and put them in a simple properties
file called db.properties that exits on our classpath. This separation is useful for a
number of reasons, not the least of which is simplicity. Let’s assume that our
db.properties file contained the following four property definitions:

 driver=com.mysql.jdbc.Driver
 url=jdbc:mysql://localhost/test
 user=root
 pword=apple

We refer to the properties file with the following line taken from our previous
example:

 <properties resource="db.properties" />

Finally, we use the properties by name using a syntax that will be familiar to many
people:

 <property name="JDBC.Driver" value="${driver}"/>
 <property name="JDBC.ConnectionURL" value="${url}"/>
 <property name="JDBC.Username" value="${user}"/>
 <property name="JDBC.Password" value="${pword}"/>

At this point you should be thinking to yourself, “Gee, that looks just like the way
every other tool uses properties!”

3.6.3 The <settings> element

The <settings> element is a bit of a grab bag of configuration options. You set
these options by inserting attributes into the <settings> element. Several settings
are available, and each of them is global to this SQL Map instance.

lazyLoadingEnabled
Lazy loading is a technique in which you load only the information that is essential,
and defer the loading of other data until it is specifically requested. In other words,
you want to have the application do as little as possible until it is absolutely required.

72 CHAPTER 3

Installing and configuring iBATIS
 In the previous chapter, we talked about an example where you had 1,000 cus-
tomer accounts with 1,000 orders each, and 25 items on each order. Loading all of
that data would require creating 25,000,000 objects, and keeping them in mem-
ory. Using lazy loading we reduce that requirement to a number closer to 2,500,
which is one ten-thousandth of the original number.

 The lazyLoadingEnabled setting is used to indicate whether or not you want to
use lazy loading when you have related mapped statements (which we will talk about
in section 6.2.2). Valid values are true or false, and the default value is true.

 In our sample SqlMapConfig.xml file earlier, lazy loading is enabled.

cacheModelsEnabled
Caching is a performance-enhancement technique where recently used data is
kept in memory based on the assumption that it will be needed again in the
future. The cacheModelsEnabled setting is used to indicate whether or not you
want iBATIS to use caching. As with most of the values of the <settings> element,
valid values are true or false.

 In our earlier example, caching is enabled, which is the default. To take advan-
tage of caching, you must also configure cache models for your mapped state-
ments, which are introduced in section 9.1.

enhancementEnabled
The enhancementEnabled setting is used to indicate whether or not you want to
use cglib optimized classes to improve performance with lazy loading. Again, valid
values are true or false, and the default value is true.

NOTE cglib is a runtime code generation library that allows iBATIS to optimize
certain functions, like the setting of JavaBeans properties. Also, it allows
you to lazily load concrete classes and thus avoid having to create an
interface for the lazy loaded type. You can get cglib from http://
cglib.sourceforge.net/. As with any performance enhancement, you
should probably avoid using it unless you are sure you need it.

In our previous example, we are allowing enhancements, but if cglib is not on the
classpath, the enhancements will be silently disabled.

useStatementNamespaces
The useStatementNamespaces setting is used to tell iBATIS to require qualified
names for mapped statements. Valid values are true or false, and the default
value is false.

 In other words, when the SQL maps are defined (see the section 4.2.1 for more
information on that), the map name is to be used to qualify the mapped statement.

iBATIS configuration continued 73
So, for example, you may have a SQL map named Account, with mapped statements
named insert, update, delete, and getAll. When you want to insert an account,
you would call the Account.insert mapped statement when namespaces are used.
You can have as many mapped statements (in other maps) named insert as
needed, and the names will not collide.

 While you could accomplish the same thing using names like insertAccount,
using namespaces can be very helpful when working with large systems, because it
helps in finding statements if they are not organized logically.

maxRequests (deprecated)
A request is any SQL operation—an insert, update, delete, or a stored procedure
call. In our example, we are scaling back and only allow 32 requests to be active at
one time instead of the default value of 512.

maxSessions (deprecated)
A session is a thread-level mechanism that is used to track information about a
group of related transactions and requests. In our example, we allow only 10 ses-
sions at any time, instead of the default value of 128.

maxTransactions (deprecated)
A transaction is just what it appears: a database transaction. As with maxRequests, we
have reduced the number of active transactions to 5 from the default value of 32.

NOTE These settings are complicated to understand, but luckily they are depre-
cated. In future versions of iBATIS, you won’t need to configure them
manually. So, for the most part, you should simply never modify them.
The default settings will work for most systems of a reasonable scale. If
you do modify the settings, always ensure that maxRequests is larger than
maxSessions, and that maxSessions is larger than maxTransactions. A
simple rule of thumb is to keep the ratios the same. Also note that none
of these settings directly impacts the number of connections in your con-
nection pool or any other resources that your application server is
responsible for managing.

OK, that is all you need to know about the <settings> element. Let’s move on—
we are almost done!

3.6.4 The <typeAlias> elements

Nobody likes to type in a name like org.apache.ibatis.jgamestore.domain.Ac-
count if they do not have to. The <typeAlias> element lets you define an alias
such as Account that can be used in place of that fully qualified class name.

74 CHAPTER 3

Installing and configuring iBATIS
 In our example, we do not have a real use for this yet, but we will soon. We
can demonstrate how it works by providing an alias that we will use later in our
SQL Map.

 To create that alias, insert an element like this:

 <typeAlias alias="Account"
 type="org.apache.ibatis.jgamestore.domain.Account" />

This Account alias is available any time after it is defined in the configuration
process. You can use either the fully qualified name or the alias to tell iBATIS what
you want to use any time you have to supply a data type.

 The framework defines several type aliases to save developers from having to
add them manually, as shown in table 3.3.

Table 3.3 Built-in type alias definitions that save you from having to type some of these very
long class names

Alias Type

Transaction manager aliases

JDBC com.ibatis.sqlmap.engine.transaction.jdbc.JdbcTransactionConfig

JTA com.ibatis.sqlmap.engine.transaction.jta.JtaTransactionConfig

EXTERNAL com.ibatis.sqlmap.engine.transaction.external.ExternalTransactionConfig

Data types

string java.lang.String

byte java.lang.Byte

long java.lang.Long

short java.lang.Short

int java.lang.Integer

integer java.lang.Integer

double java.lang.Double

float java.lang.Float

boolean java.lang.Boolean

date java.util.Date

decimal java.math.BigDecimal

object java.lang.Object

map java.util.Map

hashmap java.util.HashMap

iBATIS configuration continued 75
The built-in type aliases are real time-savers, but remember that you can also
define your own to simplify things even more.

3.6.5 The <transactionManager> element

Because iBATIS is about making database access simpler, it will deal with database
transactions for you. While transaction management will be discussed in greater
detail in chapter 8, what it means for now is that when you are using iBATIS, some
sort of transaction manager implementation is required. There are several pre-
defined transaction managers that you can choose from. The type attribute of the
<transactionManager> element is used to specify which transaction manager should
be used. Several implementations are provided out of the box, as listed in table 3.4.

Data types (continued)

list java.util.List

arraylist java.util.ArrayList

collection java.util.Collection

iterator java.util.Iterator

Data source factory types

SIMPLE com.ibatis.sqlmap.engine.datasource.SimpleDataSourceFactory

DBCP com.ibatis.sqlmap.engine.datasource.DbcpDataSourceFactory

JNDI com.ibatis.sqlmap.engine.datasource.JndiDataSourceFactory

Cache controller types

FIFO com.ibatis.sqlmap.engine.cache.fifo.FifoCacheController

LRU com.ibatis.sqlmap.engine.cache.lru.LruCacheController

MEMORY com.ibatis.sqlmap.engine.cache.memory.MemoryCacheController

OSCACHE com.ibatis.sqlmap.engine.cache.oscache.OSCacheController

XML result types

Dom com.ibatis.sqlmap.engine.type.DomTypeMarker

domCollection com.ibatis.sqlmap.engine.type.DomCollectionTypeMarker

Xml com.ibatis.sqlmap.engine.type.XmlTypeMarker

XmlCollection com.ibatis.sqlmap.engine.type.XmlCollectionTypeMarker

Table 3.3 Built-in type alias definitions that save you from having to type some of these very
long class names (continued)

Alias Type

76 CHAPTER 3

Installing and configuring iBATIS
NOTE You may recognize the names of those transaction managers from the
previous table. They are simply type aliases for the fully qualified names
of the classes that implement them. This is a common pattern in the iBA-
TIS configuration files.

Another setting that is available for the transaction manager is the commitRe-
quired attribute. This can be set to either true or false, and the default value is
false. This attribute is primarily used in situations where a commit or rollback is
required before a connection can be released.

 For some operations (like selects and stored procedure calls) transactions are
not normally required, and are generally ignored. Some drivers (like the Sybase
driver, for instance) will not release a connection until any transactions that were
started for that connection are either committed or rolled back. In those cases,
the commitRequired attribute can be used to force that to happen even if nothing
has happened that would normally require a transaction.

The <property> elements
Each transaction manager can have different configuration options. Because of
that, the iBATIS framework uses the <property> element to allow you to specify
any number of named values that can be supplied to the transaction manager
implementation.

The <dataSource> element
In Java, the standard method for working with a connection pool is by using a
javax.sql.DataSource object. The <dataSource> element of the transaction man-
ager has a type attribute that tells iBATIS what class to instantiate and use for its
data source factory. The name of this element is a bit misleading, because it does
not really define a DataSource, but a DataSourceFactory implementation, which
will be used to create the actual DataSource.

Table 3.4 Built-in transaction managers

Name Description

JDBC Used to provide simple JDBC-based transaction management. For most cases, this
is all you need.

JTA Used to provide container-based transaction management in your application.

EXTERNAL Used to provide no transaction management, and assumes that the application will
manage the transactions instead of iBATIS.

iBATIS configuration continued 77
 Three data source factory implementations come with iBATIS; each is listed in
table 3.5, along with a brief description. These will be discussed in more detail in
chapter 8.

Similar to the <transactionManager> element, the <dataSource> element can
have any number of properties passed to it for configuration using nested prop-
erty elements.

3.6.6 The <typeHandler> element

The iBATIS framework uses type handlers to convert data from the JDBC database-
specific data types to your application data types, so you can create an application
that uses a database in a way that makes the database as transparent as possible. A
type handler is essentially a translator—it takes a result set column and translates
it into a bean property.

 In most cases, these components are very simple, like the StringTypeHandler
that simply calls the result set’s getString method and returns it as a String. In
other cases, you may have more complex translation requirements. For example,
if your database does not have a Boolean data type, you may use a single character
with Y and N values to indicate true and false in the database, but then translate
that character to Boolean in your application classes.

 In chapter 12, you will learn more about how to build custom type handlers to
deal with these sorts of situations, so we will not go into much more detail here.
To deal with this situation, you need to create two classes: a custom type handler
and a type handler callback.

 If you write a custom type handler, you need to tell iBATIS how and when to
use them. You do that by using the <typeHandler> element and telling it what it is
translating between: the jdbcType and the javaType. In addition, the callback class
that is used to manage the type handler is required.

Table 3.5 Data source factories

Name Description

SIMPLE The simple data source factory is just that. It is used to configure a data
source that has a simple connection pool built into it, and everything it needs
is included with the iBATIS framework except the actual JDBC driver.

DBCP The DBCP data source factory is for using the Jakarta Commons Database
Connection Pool implementation.

JNDI The JNDI data source factory is used to allow iBATIS to share a container-
based data source that is located via JNDI.

78 CHAPTER 3

Installing and configuring iBATIS
 Note that in most cases you’ll never need to write a custom type handler. iBA-
TIS has prebuilt type handlers to deal with 99 percent of the cases. Usually a cus-
tom type handler is only necessary if you’re using an odd database or driver that
does not support the typical type mapping common to most databases. Avoid writ-
ing custom type handlers if you can, to keep your application simple.

3.6.7 The <sqlMap> element

The last section of the SqlMapConfig.xml file is where we configure the <sqlMap>
elements. This is where you start to get into the real “heavy lifting” that iBATIS can
do for you.

 The <sqlMap> element is actually one of the simplest elements in this file,
because it only requires one of two attributes to be set.

 The resource attribute is used if you want to put your SQL Map files on the
Java classpath and refer to them that way. Generally, this is the easiest way, because
they can be stored in a JAR file or a WAR file, and simply referenced relative to the
root of the classpath.

 In other cases, you may want to be more explicit about the location of the files.
In those cases, you can use the url attribute. This attribute can use the
java.net.URL class to resolve the location of the file, so you can use any URL value
that can be understood by that class.

3.7 Summary

Installing iBATIS is a very simple process. In this chapter, we looked at the two ways
to get the framework and what to do with it once you have it. Because iBATIS was
designed to be simple to use, it has very few dependencies and can be extended to
use other tools very easily.

 While JDBC is a very powerful API, it is also a low-level API, and writing solid
code that uses it can be difficult. With iBATIS you can step back from the complex-
ity of dealing with database components, and focus more on the business prob-
lems that you are trying to solve.

 We looked at a simple iBATIS configuration—quite possibly the simplest case
ever written! In the next chapter, we will examine how to configure it in more
detail and how to make it fit into your application perfectly.

 In this chapter, we also explored the iBATIS configuration files. When using
any framework it is essential to have a solid understanding of the fundamentals.
This chapter provided just that—an understanding of the fundamentals or a
quick reference guide.

Summary 79
 Put a bookmark in this chapter and return to it when you get stuck. If you do
not find the answer here, you are likely to find a pointer to another chapter where
the answer can be found.

 The Java API that we will examine in the next few chapters is pretty small in
scope, but the framework will behave differently based on how you configure it.
We will cover every configuration option again in the next few chapters in much
greater detail and with more context and code examples.

Working with
 mapped statements
This chapter covers
■ JavaBeans
■ Using the iBATIS API
■ Mapped statements
■ Using parameters and results
80

Starting with the basics 81
In previous chapters we looked at how to configure iBATIS SqlMaps, and you saw
an example of a mapped statement. You should now have a foundation on which
to start building more of the database access layer for an application.

 This chapter and the next examine mapped statements in greater detail, and dis-
cuss using SQL maps to create them. In this chapter, we first look at mapped state-
ments in general and what you need to know to use them. Then we explain how to
get data out of the database using mapped statements that return typed objects
(JavaBeans), and how to pass in parameters to limit the data being returned. In
chapter 5, you will learn how to update a database with mapped statements.

4.1 Starting with the basics

There are a few conceptual challenges to understand before getting started with
iBATIS. You will need to have a basic understanding of Java development using
JavaBeans. You will also need to know what iBATIS makes available in terms of the
types of SQL statements you can use, and the API that you need to use to execute
those statements.

 As mentioned before, iBATIS is not an object/relational mapping (O/RM)
tool; it is a query mapping tool. Because of that, the API that we will be looking at
is not the only API you have available. You can still use any other API you want to
create the beans that your application will use or to access your database. So, if
you find that you are unable to accomplish something with iBATIS, you can still
use the straight JDBC API without too much concern about the repercussions.
Keep that freedom in mind as we look at what iBATIS does make available—while
it does not solve every problem, it does attempt to simplify most of your data
access chores.

4.1.1 Creating JavaBeans

While the use of JavaBeans is not required by iBATIS, we do recommend using
them in most (but not all) cases. If you are new to Java, creating JavaBeans is quite
simple: a JavaBean is a reusable component that can be developed and then
assembled to create more sophisticated components and applications. The Java-
Bean specification (all 114 pages of it) is freely available from Sun. A simple
search at http://java.sun.com should yield this document.

 We do not have that many pages to spare here, so we will try to condense the
specification down to something more relevant to iBATIS.

82 CHAPTER 4

Working with mapped statements
What makes a bean?
Essentially, the JavaBean specification is a set of rules for defining components for
use with Java. We have those rules to make it possible for tool creators (like the
people who work on iBATIS) to know how to interact with the components that we
use in our applications. Think of the specification as a middle-ground common
language for framework developers and application developers.

 The only rules in the specification that apply to iBATIS are the ones that con-
cern property naming. Property names are defined in a JavaBean by a pair of
methods that the specification refers to as accessor methods. Here is the pattern for
creating accessor methods for a property named value:

public void setValue(ValueType newValue);
public ValueType getValue();

These accessor methods define a simple property named value with a lowercase v.
Java bean properties should always start with a lowercase letter, with very few
exceptions. The types for the two methods should always be the same. If you have
a setter that accepts a Long, and a getter that returns an Integer, you will have
problems. Always make them the same.

 Property names with multiple words are named using a pattern known as
camel case (or camelCase), which means that uppercase letters are used to sepa-
rate the words:

public void setSomeValue(ValueType newValue);
public ValueType getSomeValue();

When creating properties for JavaBeans, it’s important to remember that abbrevi-
ations are generally treated as words, not individual letters. For example, the
abbreviation URL would become a property named url, and the methods getUrl
and setUrl would be used to access that property.

 Another oddity in the specification is that property names with the second let-
ter capitalized are treated differently. If the second letter of the property name is
uppercase, then the name after the get or set part of the method for that property
is used as the property name, and the case is left unchanged. We will clarify this
confusing rule in table 4.1 (which also shows get and set methods for the proper-
ties listed).

 Properties of type boolean (the primitive) are allowed to use isProperty for
the getter, but if the type is Boolean (the object, or boxed version), then the stan-
dard getProperty name is required instead.

Starting with the basics 83
Indexed properties are properties that represent an array of values. For example,
if you have an Order bean, you may want an indexed property for the OrderItem
objects associated with that Order. According to the specification, the signatures
for the get and set methods for it would be

public void setOrderItem(OrderItem[] newArray);
public OrderItem[] getOrderItem();
public void setOrderItem(int index, OrderItem oi);
public OrderItem getOrderItem(int index);

In our experience, overloading bean properties (as the specification suggests, and
as demonstrated in the previous example of indexed properties) is not very well
supported by most tools and can often cause a great deal of confusion for devel-
opers. It is also not immediately clear by looking at the names what the difference
is between the two getOrderItem() methods. For that reason, we prefer to use the
following signatures instead:

public void setOrderItemArray(OrderItem[] newArray);
public OrderItem[] getOrderItemArray();
public void setOrderItem(int index, OrderItem oi);
public OrderItem getOrderItem(int index);

Here’s another (nonstandard, but more functional) way to implement set methods:

 public BeanType setProperty(PropType newValue){
 this.property = newValue;
 return this;
};

Table 4.1 Sample JavaBean property names and methods

Property name/type Get method Set method

xcoordinate/Double public Double getXcoordinate() public void setXcoordinate
(Double newValue)

xCoordinate/Double public Double getxCoordinate() public void setxCoordinate
(Double newValue)

XCoordinate/Double public Double getXCoordinate() public void setXCoordinate
(Double newValue)

Xcoordinate/Double Not allowed Not allowed

student/Boolean public Boolean getStudent() public void setStudent(Boolean
newValue)

student/boolean public boolean getStudent()
public boolean isStudent()

public void setStudent(boolean
newValue)

84 CHAPTER 4

Working with mapped statements
The reason for having the setter return the bean instance is so that you can chain
calls to the setters:

 myBean.setProperty(x)
 .setSomeProperty(y);

For two properties, it is not all that useful, but if you have a bean in which you
have more, it can save you some typing.

Bean navigation
When using tools that are bean aware, properties are often referred to using
something called dot notation, which means that instead of calling getters and set-
ters, you refer to the properties defined by them. The property name is deter-
mined by using the rules discussed earlier. Table 4.2 contains some examples.

If you have a bean and want to see the names of the properties of that bean, the fol-
lowing sample method will use the built-in Java Introspector class to output them:

 public void listPropertyNames(Class c)
 throws IntrospectionException {
 PropertyDescriptor[] pd;
 pd = Introspector.getBeanInfo(c).getPropertyDescriptors();
 for(int i=0; i< pd.length; i++) {
 System.out.println(pd[i].getName()
 + " (" + pd[i].getPropertyType().getName() + ")");
 }

 }

This example uses the Introspector class to get an array of PropertyDescriptor
objects for a bean, and then walks through that array to display the name and type
of the properties that the bean exposes, which can be a useful troubleshooting aid.

Table 4.2 Bean navigation examples

Java code Dot notation

anOrder.getAccount().getUsername() anOrder.account.username

anOrder.getOrderItem().get(0).getProductId() anOrder.orderItem[0].productId

anObject.getID() anObject.ID

anObject.getxCoordinate() anObject.xCoordinate

Starting with the basics 85
4.1.2 The SqlMap API

Now that you have an understanding of what JavaBeans are, we can start to look at
the API that iBATIS gives you for working with them. The SqlMapClient interface
has over 30 methods on it, and we will get to all of them in the coming chapters.
But for now, let’s look only at the parts of it that we will be using in this chapter.

The queryForObject() methods
The queryForObject() methods are used to get a single row from the database
into a Java object, and come with two signatures:

■ Object queryForObject(String id, Object parameter) throws SQLExcep-
tion;

■ Object queryForObject(String id, Object parameter, Object result)
throws SQLException;

The first version is the more commonly used one, and creates the returned object
for you if it has a default constructor (and throws a runtime exception if it does not).

 The second form accepts an object that will be used as the return value—after
running the mapped statement the properties will be set on it instead of creating
a new object. The second form is useful if you have an object that cannot be easily
created because of a protected constructor or the lack of a default constructor.

 Something to remember when using queryForObject() is that if the query
returns more than one row, this method will throw an exception, because it
checks to make sure that only one row is returned.

The queryForList() methods
The queryForList() methods are used to get one or more rows from the database
into a List of Java objects, and like queryForObject(), they also come in two versions:

■ List queryForList(String id, Object parameter) throws SQLException;

■ List queryForList(String id, Object parameter, int skip, int max)
throws SQLException;

The first method returns all of the objects that are returned by the mapped state-
ment. The second returns only a subset of them—it skips ahead up to the number
indicated by the skip parameter, and returns only max rows from the query. So, if
you have a mapped statement that returns 100 rows but you only want the first set
of 10 rows, you can pass in 0 for skip and 10 for max to get them. If you want the
second set of 10 records, you can repeat the call with a value of 10 for skip to get
the next 10 rows.

86 CHAPTER 4

Working with mapped statements
The queryForMap() methods
The queryForMap() methods return a Map (instead of a List) of one or more rows
from the database as Java objects. Just like the other query methods, it has two
forms as well:

■ Map queryForMap(String id, Object parameter, String key) throws SQLEx-
ception;

■ Map queryForMap(String id, Object parameter, String key, String value)
throws SQLException;

The first method will execute a query and return a Map of objects, where the key
to the objects is identified by the property named by the key parameter, and the
value objects are the complete objects from the mapped statement. The second
form will return a similar Map, but the objects will be the property of the objects
identified by the value parameter.

 This is one of those times when an example is worth a thousand words. Let’s
consider an example where you have a mapped statement that returns a set of
accounts. By using the first method, you could create a Map that had the accoun-
tId property as the key to the map and the full account bean as the value. Using
the second method, you could create a Map that had the accountId property as
the key to the map, and only the account name as the value:

 Map accountMap = sqlMap.queryForMap(
 "Account.getAll",
 null,
 "accountId");
 System.out.println(accountMap);
 accountMap = sqlMap.queryForMap(
 "Account.getAll",
 null,
 "accountId",
 "username");
 System.out.println(accountMap);

Now that you have seen all the portions of the API that you need to start using
iBATIS, let’s take a look at the different ways in which you can create mapped
statements.

4.1.3 Mapped statement types

Before you can use the SqlMap API that you just learned about, you need to know
how to create mapped statements to make it work. In the previous example, we
called a mapped statement named Account.getAll, but we did not talk about

Starting with the basics 87
where it came from (except in chapter 2, where we did our simple application).
This was an example of a <select> mapped statement.

 There are several types of mapped statements, each with its own purpose and
set of attributes and child elements. This may sound obvious, but generally it is
best to use the statement type that matches what you are trying to do (i.e., use an
<insert> to insert data instead of an <update> statement, or the more generic
<statement> type), because the specific types are more descriptive, and in some
cases provide additional functionality (as is the case with <insert> and its
<selectKey> child element—which we’ll cover in section 5.2).

 Table 4.3 contains each type of mapped statement (and two other related
XML elements that we will discuss later) as well as some additional information
about them.

Table 4.3 Mapped statement types and related XML elements

Statement type Attributes Child elements Uses More details

<select> id
parameterClass
resultClass
parameterMap
resultMap
cacheModel

All dynamic elements Selecting data Section 4.2;
chapter 8

<insert> id
parameterClass
parameterMap

All dynamic elements
selectKey

Inserting data Section 5.2;
chapter 8

<update> id
parameterClass
parameterMap

All dynamic elements Updating data Section 5.3;
chapter 8

<delete> id
parameterClass
parameterMap

All dynamic elements Deleting data Section 5.3;
chapter 8

<procedure> id
parameterClass
resultClass
parameterMap
resultMap
xmlResultName

All dynamic elements Calling a stored
procedure

Section 5.5;
chapter 8

88 CHAPTER 4

Working with mapped statements
In this chapter, we focus on the <select> mapped statement type. In addition to
the mapped statement types, two additional elements are included in table 4.3
that are commonly used to build mapped statements: the <sql> element and the
<include> element. These elements work together to create and insert compo-
nents into mapped statements. You will find them useful when you have complex
SQL fragments that you want to be able to reuse without duplicating them.

 The <sql> element is used to create text fragments that can be grouped
together to create complete SQL statements. For example, you may have a query
with a complex set of conditions for the WHERE section. If you need to select a
record count using the same complex set of conditions but do not want to dupli-
cate them, you can put them into a <sql> fragment and include them in the query
that does the count, as well as in the query that returns the actual data. Listing 4.1
contains a simple example.

 <sql id="select-order">
 select * from order
 </sql>

 <sql id="select-count">
 select count(*) as value from order

<statement> id
parameterClass
resultClass
parameterMap
resultMap
cacheModel
xmlResultName

All dynamic elements Catching all statement
types that can be used to
execute nearly anything

Section
6.3.1;
chapter 8

<sql> id All dynamic elements Not really a mapped
statement, but used to
make components that
can be used in mapped
statements

Section 4.2;
chapter 8

<include> refid None Not really a mapped
statement, but used to
insert components cre-
ated with the <sql> type
into mapped statements

Section 4.2

Listing 4.1 An example of the <sql> and <include> tags

Table 4.3 Mapped statement types and related XML elements (continued)

Statement type Attributes Child elements Uses More details

B Gets all columns

C Gets count

Using <select> mapped statements 89
 </sql>

 <sql id="where-shipped-after-value">
 <![CDATA[
 where shipDate > #value:DATE#
]]>
 </sql>

 <select
 id="getOrderShippedAfter"
 resultClass="map">
 <include refid="select-order" />
 <include refid="where-shipped-after-value" />
 </select>

 <select
 id="getOrderCountShippedAfter"
 resultClass="int">
 <include refid="select-count" />
 <include refid="where-shipped-after-value" />
 </select>

While listing 4.1 is a fairly trivial example, it shows the technique clearly without
making it overly complex. We define three SQL fragments: one to get all the columns
from a table , another to get a count of the rows returned from a query , and
one more for the condition to use to filter that data. We then build two mapped
statements that return the full objects, getOrderShippedAfter , and the count,
getOrderCountShippedAfter , using those fragments. In this case it would have
been easier to just duplicate the SQL code, but the process of duplication becomes
much more error-prone when you start to use more complex operations or dynamic
SQL (see chapter 8 for more on Dynamic SQL use) in a SQL fragment.

4.2 Using <select> mapped statements

Selecting data from a database is one of the most fundamental uses of an applica-
tion. The iBATIS framework makes most SELECT statements effortless, and pro-
vides many features to make it possible to access virtually any data you want out of
your database.

4.2.1 Using inline parameters with the # placeholders

So far, all of the previous examples have been unrealistically simple, because rarely
do you want to execute a query without any selection criteria. Inline parameters are

D
Includes orders
shipped after date

Gets all columns for or-
ders shipped after dateE

Gets count of orders
shipped after dateF

b C
D

E
F

90 CHAPTER 4

Working with mapped statements
an easy way to start adding selection criteria to your mapped statements and can be
designated by using one of two different methods.

 The first method is by using the hash (#) syntax. Here is an example using that
syntax to pass a simple inline parameter in to get a single Account bean out by its
accountId value:

 <select id="getByIdValue" resultClass="Account">
 select
 accountId,
 username,
 password,
 firstName,
 lastName,
 address1,
 address2,
 city,
 state,
 postalCode,
 country
 from Account
 where accountId = #value#

 </select>

The #value# string in this mapped statement is a placeholder that tells iBATIS that
you are going to pass in a simple parameter that it needs to apply to the SQL
before executing it. This mapped statement could be called this way:

 account = (Account) sqlMap.queryForObject(
 "Account.getByIdValue",
 new Integer(1));

Let’s take a few minutes to look into what the iBATIS framework does with this
statement. First, it looks up the mapped statement named Account.getByIdValue,
and transforms the #value# placeholder into a prepared statement parameter:

 select
 accountId,
 username,
 password,
 firstName,
 lastName,
 address1,
 address2,
 city,
 state,
 postalCode,
 country
 from Account

 where accountId = ?

Using <select> mapped statements 91
Next, it sets the parameter to 1 (from the Integer passed to queryForObject() as
the second parameter above), and finally executes the prepared statement. It
then takes the resulting row, maps it to an object, and returns it.

 While this may seem like low-level information, it is important to understand
what is happening here. One of the most frequently asked questions regarding
iBATIS is: “How do I use LIKE in my WHERE clauses?” Looking at the previous state-
ment, it is obvious why the parameter that is coming in has to have the wildcards
in it, and why they cannot be inserted into the SQL statement easily. There are
three possible solutions to that dilemma:

■ The value of the parameter passed in has to have the SQL wildcard charac-
ters in it.

■ The text to search for has to be part of a SQL expression (e.g., '%' ||
#value# || '%') that can be parameterized.

■ The substitution syntax (which is the next topic, in section 4.2.2) has to be
used instead.

4.2.2 Using inline parameters with the $ placeholders

Another way to use inline parameters is with the substitution ($) syntax, which is
used to insert a value directly into the SQL before it is turned into a parameterized
statement. Use this approach with caution, as it may leave you open to SQL injection, and
it may cause performance problems if overused.

 This is one approach to handling LIKE operators. Here is an example:

 <select id="getByLikeCity" resultClass="Account">
 select
 accountId,
 username,
 password,
 firstName,
 lastName,
 address1,
 address2,
 city,
 state,
 postalCode,
 country
 from Account
 where city like '%$value$%'

 </select>

The difference between this statement and the last one is how iBATIS handles the
parameter passed into the statement. This statement is called the same way:

92 CHAPTER 4

Working with mapped statements
 accountList = sqlMap.queryForList(
 "Account.getByLikeCity",

 "burg");

This time, iBATIS turns the statement into this:

 select
 accountId,
 username,
 password,
 firstName,
 lastName,
 address1,
 address2,
 city,
 state,
 postalCode,
 country
 from Account

 where city like '%burg%'

No parameters are set, because the statement is already complete, but one impor-
tant thing to remember when using this technique is that it makes your applica-
tion more susceptible to SQL injection attacks.

4.2.3 A quick look at SQL injection

A SQL injection attack is one where a malicious user passes specially formed data
to an application to make it do something it is not supposed to do. For example,
in the latter case, if a user provided this text:

 burg'; drop table Account;--

it would turn our simple little select statement into this more nefarious set of
statements:

 select
 accountId,
 username,
 password,
 firstName,
 lastName,
 address1,
 address2,
 city,
 state,
 postalCode,
 country
 from Account

 where city like '%burg';drop table Account;--%'

Using <select> mapped statements 93
Now your clever user has managed to select all the records in the database that
end in burg, which is no big deal. But he also managed to drop a table from your
database (and only one, if you are lucky—if he is a real clever user, he will realize
that this is a one-chance deal and drop multiple tables). The -- at the end of the
string tells the database to ignore anything that comes after the drop table state-
ment, so no error is thrown.

 If this happens in a real application in a production environment because of
your code, it is going to be a very bad day at the office. As we mentioned earlier,
use substitution syntax with caution.

4.2.4 Automatic result maps

You may have already noticed that in our examples we did not define any result
maps, but we did define result classes. This works through the automatic result
mapping done by iBATIS, which creates a result map on the fly and applies it to
the mapped statement the first time it is executed.

 There are three ways to use this feature: single-column selection, fixed-column
list selection, and dynamic-column list selection.

WARNING If you do not provide either a result map or a result class, iBATIS will exe-
cute your statement and simply return nothing. This is a behavior that
has been in iBATIS since the earliest days, and has caused many cases of
heartburn. Unfortunately, some users use select statements to do inserts
and updates, and while this may seem like a bad idea, we have left this in
to avoid breaking working applications.

If you only want to get a single column out of a query, you can use the alias value
as a shortcut to accomplish that:

 <select id="getAllAccountIdValues"
 resultClass="int">
 select accountId as value
 from Account
 </select>

 List list = sqlMap.queryForList(

 "Account.getAllAccountIdValues", null);

This returns all of the accountId values in the Account table as a List of simple
Integer objects.

 If you need multiple columns, you can tell iBATIS to use the column names as
bean property names, or as Map keys using automatic result mapping.

94 CHAPTER 4

Working with mapped statements
 When mapping in this way to a bean, there is one caveat to remember: if the
column you are selecting exists in the database but does not exist in the bean you
are mapping to, you will get no error, no warning, and no data—the data will sim-
ply be quietly ignored. When mapping to a Map object, the problem is similar:
while you will still get the data, it will not be where you expect it to be.

 If you want a firmer approach to data mapping, look at using external result
maps (in section 4.3.1).

 In spite of these two potential issues, automatic mapping works well in cases
where you are willing to let the framework do the mapping for you, and when you
do not mind paying the price when the mapping is done the first time.

 If the list of fields being selected in the statement can change at runtime,
dynamic result mapping can also be used. Listing 4.2 shows an example of a query
using dynamic result mapping.

 <select id="getAccountRemapExample"
 remapResults="true"
 resultClass="java.util.HashMap" >
 select
 accountId,
 username,
 <dynamic>
 <isEqual
 property="includePassword"
 compareValue="true" >
 password,
 </isEqual>
 </dynamic>
 firstName,
 lastName
 from Account
 <dynamic prepend=" where ">
 <isNotEmpty property="city">
 city like #city#
 </isNotEmpty>
 <isNotNull
 property="accountId"
 prepend=" and ">
 accountId = #accountId#
 </isNotNull>
 </dynamic>
 </select>

Listing 4.2 Dynamic result mapping example

B
Remaps results when
mapped statement executes

C
Contains simple Dynamic SQL
to demonstrate technique

Mapping parameters 95
The example in listing 4.2 uses the remapResults attribute combined with
Dynamic SQL to demonstrate how to change the data returned from a
mapped statement on the fly. While Dynamic SQL is not covered until chapter 8,
this example uses it to create a mapped statement where the value of the
includePassword property determines the fields that are in the results. Depend-
ing on its value, you may or may not get the password field back in your results.
One thing to be aware of is that the performance hit for determining a result
map each and every time a statement is run may be prohibitive, so use this fea-
ture only when it is an absolute requirement.

4.2.5 Joining related data

There are times when you want to join multiple data tables into a single “flat-
tened-out” structure for reporting or other purposes. The iBATIS framework
makes this completely effortless, because it maps SQL statements to objects, not
tables to objects. There is literally no difference between mapping a single-table
select and a multitable select.

 In chapter 7, we will look at how to perform more advanced multitable opera-
tions for the purpose of providing lists of child objects that are related to their
containing objects—such as a list of orders details for an order.

 For now, we will simply restate that there is literally no difference between
mapping a single-table select and a multitable select.

 We have talked about how SQL is similar to a function in that it has input val-
ues and, based on those input values, it produces output values. In the next sec-
tion, let’s see how you provide those input values.

4.3 Mapping parameters

There are two ways to map parameters into your mapped statements: inline map-
ping and external mapping. Using inline parameter mapping means that you give
iBATIS some hints as to what you want, and let it figure out the details. External
parameter mapping, on the other hand, is more explicit—you tell iBATIS exactly
what you want it to do.

4.3.1 External parameter maps

You can specify up to six attributes when using an external parameter map. If you
do not specify them, iBATIS will try to decide on reasonable values using reflec-
tion, but this takes time and may not be as accurate. Table 4.4 lists the attributes
that are available for mapping parameters, and briefly describes how each is used.

b
C

96 CHAPTER 4

Working with mapped statements
Table 4.4 Parameter mapping attributes

Attribute Description

property The property attribute of the parameter map is the name of a JavaBean property or
Map entry of the parameter object passed to a mapped statement.

The name can be used more than once, depending on the number of times it is
needed in the statement.

For example, if the same property is being updated in the set clause of a SQL UPDATE
statement, and is also used as part of the key in the WHERE clause, the name can be
referenced twice in the mapped statement.

javaType The javaType attribute is used to explicitly specify the Java property type of the
parameter to be set.

Normally this can be derived from a JavaBean property through reflection, but certain
mappings such as Map and XML mappings cannot provide the type to the framework.
In those cases, if the javaType is not set and the framework cannot otherwise deter-
mine the type, the type is assumed to be Object.

jdbcType The jdbcType attribute is used to explicitly specify the database type of the parameter.

Some JDBC drivers are not able to identify the type of a column for certain operations
without explicitly telling the driver the column type. A perfect example of this is the
PreparedStatement.setNull(int parameterIndex, int sqlType) method.
This method requires the type to be specified. Some drivers will allow the type to be
implicit by simply sending Types.OTHER or Types.NULL.

However, the behavior is inconsistent and some drivers need the exact type to be
specified. For such situations, iBATIS allows the type to be specified using the jdbc-
Type attribute of the parameterMap property element.

This attribute is normally only required if the column can be set to null.

Another reason to use the type attribute is to explicitly specify date types when the
Java type may be ambiguous. For example, Java only has one Date value type
(java.util.Date), but most SQL databases usually have at least three different
types. Because of this you might want to specify explicitly that your column type is
DATE versus DATETIME.

The jdbcType attribute can be set to any string value that matches a constant in the
JDBC Types class.

Mapping parameters 97
While inline parameter mapping in iBATIS works well for most mapped state-
ments, if you want to improve performance or encounter a case where things are
not working as expected, an external parameter map may be just what you need.
In chapter 5, we will look at a full-blown external parameter map, but for our pur-
poses here, that is not needed.

4.3.2 Inline parameter mapping revisited

In the beginning of section 4.2, we talked about using inline parameter mapping in
its simplest form to tell iBATIS the names of properties that we wanted to substitute
into your query at runtime. In addition to that, you can provide some of the
attributes that external parameter maps allow, such as the database type and a null
value placeholder for your parameters, by separating the parameter name, the
type, and the null value placeholder with colon characters. The database type is
commonly required when you use null-capable columns in your database. The rea-
son for this is that the JDBC API uses this method to send null values to the database:

 public void setNull(
 int parameterIndex,
 int sqlType);

If you do not tell iBATIS what the type is, then it will use java.sql.Types.OTHER for
the second parameter, and some drivers do not allow that (for example, the Ora-
cle driver currently does not) and you will get an error in that case.

nullValue The nullValue attribute can be set to any valid value based on property type.

The nullValue attribute is used to specify an outgoing null value replacement. What
this means is that when the value is detected in the JavaBeans property or Map entry,
a NULL will be written to the database (the opposite behavior of an inbound null value
replacement).

This allows you to use a “magic” null number in your application for types that do not
support null values (e.g., int, double, float, etc.). When these types of properties con-
tain a matching null value (e.g., –9999), a NULL will be written to the database
instead of the value.

mode This attribute is used exclusively for stored procedure support. It is covered in detail
in section 5.5.2.

typeHandler If you want to specify a type handler (instead of letting iBATIS select one based on the
javaType and jdbcType attributes), you can do that here.

More commonly, this is used to provide a custom type handler, which will be covered
in chapter 12.

Table 4.4 Parameter mapping attributes (continued)

Attribute Description

98 CHAPTER 4

Working with mapped statements
TIP If you see an unexpected 1111 number in your log when you get an error
with an inline parameter map and null values, chances are good that the
problem is that your driver does not like null values without an explicit
type. The integer value used for OTHER is 1111.

To tell iBATIS what the type is with an inline parameter, you add the type name from
java.sql.Types after the property name and separate them with a colon character.
Here is an example of a mapped statement that specifies a database type:

 <select id="getOrderShippedAfter"
 resultClass="java.util.HashMap">
 select *
 from order
 where shipDate > #value:DATE#

 </select>

NOTE Remember that we are working with XML. In the previous example, had
we wanted to create a statement named getOrderShippedBefore and
make the condition shipDate < #value:DATE# we would have had to use
< instead of <, because in XML, the less-than symbol means you are
starting a new element. A CDATA section could also be used, but be careful
with Dynamic SQL (chapter 9) and CDATA, because Dynamic SQL tags in
a CDATA section will not be parsed. Generally, you can get away with > in
XML, but it is probably better to be safe and use the > entity instead.

Null value replacement lets you treat “magic numbers” in your Java code as null
values in your database. Developing with “magic numbers” is a bad design for
most applications (in fact, we cannot think of a single case where it is the right
thing to do), and is only supported as a way for people to start using iBATIS in
spite of poor model design. If you need to have a null value in your database, you
should map it to a null value in your Java model as well.

 In current releases of iBATIS, you can specify any value for the parameter map
using a name=value syntax. For example, the following example is equivalent to
the previous one:

 <select id="getOrderShippedAfter" resultClass="hashmap">
 select *
 from "order"
 where shipDate > #value,jdbcType=DATE#

 </select>

Remember that an inline parameter map is just a shortcut to creating a parameter
map. If you get an error with a mapped statement telling you there was an error with
the parameter map YourNamespace.YourStatement-InlineParameterMap, look at
the inline parameter mapping for the statement YourStatement in the namespace

Mapping parameters 99
YourNamespace. That is where the error is occurring. If you do not define a param-
eter map, that does not necessarily mean that one does not exist.

4.3.3 Primitive parameters

As we saw with result mapping, primitive values can only be used if they are
wrapped in another object (this assumes that you are not using Java 5, in which
case you can pass in primitive parameters anywhere you want to because of the
“autoboxing” feature). If you want to pass a primitive value into iBATIS, you can
do it by using a bean (see section 4.3.2) or by using one of the primitive wrapper
classes (i.e., Integer, Long, etc.).

NOTE Arrays of primitive types can be passed into iBATIS, but using arrays is
beyond the scope of this chapter. For information related to using arrays
with Dynamic SQL, see section 8.2.5.

OK, now let’s move on and not be so primitive...

4.3.4 JavaBean and Map parameters

Although there is a difference between bean and Map parameters, the syntax is
identical when you are working with them. The difference lies in the behavior of
the two when the parameter maps are loading.

 If you create a parameter map with a bean and attempt to refer to a property
that does not exist, you will get an immediate failure when the parameter map is
loaded. This is a good thing, because it helps you keep from letting users find the
bugs—you will find them yourself.

 If you do the same thing with a Map, there is no way for iBATIS to know that the
property does not exist (because the Map is built at runtime instead of at compile
time), so there is no way for it to help you identify a potential failure.

 This brings up an important point: early failure is a good thing. Every bug you
see and correct before releasing your application is a bug that does not impact
your users. Fewer bugs sent to your users means that your users are more produc-
tive, and the value of your software increases.

 OK, so now that we have input values nailed down, let’s move on to getting the
output values that you need.

100 CHAPTER 4

Working with mapped statements
4.4 Using inline and explicit result maps

Inline result maps are great, because they are super easy to use, and in most cases
work well enough.

 Explicit result maps are also valuable in iBATIS because they provide higher
performance, tighter configuration validation, and more precise behavior. When
using explicit result mapping, there are very few surprises at runtime. Table 4.5
describes the attributes available for explicit result maps.

Table 4.5 Result map attributes

Attribute Description

property The property attribute of the result map is the name of a JavaBean property or Map
entry of the result object that will be returned by the mapped statement.

The name can be used more than once depending on the number of times it is needed
to populate the results.

column The column attribute is used to provide the name of the column in the ResultSet
that will be used to populate the property.

columnIndex As an optional (minimal) performance enhancement, the columnIndex attribute can
be used to provide the index of the column in the ResultSet instead of the column
name.

This is not likely necessary in 99 percent of applications and sacrifices maintainability
and readability for performance. Depending on your JDBC driver, you may or may not
experience any performance increase.

jdbcType The jdbcType attribute is used to explicitly specify the database column type of the
ResultSet column that will be used to populate the property.

Although result maps do not have the same difficulties with null values as parameter
maps do, specifying the type can be useful for certain mapping types, such as Date
properties.

Because Java only has one Date value type and SQL databases may have many (usu-
ally at least three), specifying the date may become necessary in some cases to
ensure that dates (or other types) are set correctly.

Similarly, a VARCHAR, CHAR, or CLOB may populate String types, so specifying the
type might be needed in those cases too.

Depending on your driver, you may not need to set this attribute.

javaType The javaType attribute is used to explicitly specify the Java property type of the prop-
erty to be set. Normally this can be derived from a JavaBeans property through reflec-
tion, but certain mappings such as Map and XML mappings cannot provide the type to
the framework.

If the javaType is not set and the framework cannot otherwise determine the type,
the type is assumed to be Object.

Using inline and explicit result maps 101
So, now that you know what the attributes are, how do you use them? Keep read-
ing to find out.

4.4.1 Primitive results

The Java language has eight primitive types (boolean, char, byte, short, int, long,
float, and double), each with its corresponding wrapper class (Boolean, Char, Byte,
Short, Integer, Long, Float, and Double).

 While iBATIS does not allow you to get a primitive result directly, it does allow
you to get wrapped primitive results. For example, if you want a count of orders
for a customer, you can do it as an Integer, but not as a primitive int, as the next
example shows:

 Integer count = (Integer)sqlMap.queryForObject(
 "Account.getOrderCountByAccount",
 new Integer(1));

 <select
 id="getOrderCountByAccount"
 resultClass="java.lang.Integer" >
 select count(*) as value
 from order
 where accountId = #value#

 </select>

nullValue The nullValue attribute specifies the value to be used in place of a NULL value in the
database.

So if a NULL is read from the ResultSet, the JavaBean property will be set to the
value specified by the nullValue attribute instead of NULL.

The nullValue attribute can be any value, but must be appropriate for the property
type.

select The select attribute is used to describe a relationship between objects so that iBATIS
can automatically load complex (i.e., user-defined) property types.

The value of the statement property must be the name of another mapped statement.

The value of the database column (the column attribute) that is defined in the same
property element as this statement attribute will be passed to the related mapped
statement as the parameter.

Therefore the column must be a supported, primitive type.

This will be discussed in more detail in chapter 5.

Table 4.5 Result map attributes (continued)

Attribute Description

102 CHAPTER 4

Working with mapped statements
If we had used a bean for the results, that bean could have an int property to
receive the results, as in the following example:

 public class PrimitiveResult {
 private int orderCount;
 public int getOrderCount() {
 return orderCount;
 }
 public void setOrderCount(int orderCount) {
 this.orderCount = orderCount;
 }
 }

 <resultMap id="primitiveResultMapExample"
 class="PrimitiveResult">
 <result property="orderCount"
 column="orderCount" />
 </resultMap>

 <select id="getPrimitiveById"
 resultMap="primitiveResultMapExample">
 select count(*) as orderCount
 from order
 where accountId = #accountId#
 </select>

So, the bottom line is this: iBATIS can map results into any type, but because it
only returns Object instances, primitive values must be wrapped in one of the fol-
lowing: a simple value wrapper, a bean, or a Map.

NOTE Again, if you are able to use J2SE 5, this is not completely true. Methods
such as queryForObject() still return an instance of Object. You cannot
cast Object directly to a primitive (such as int or long), but you can cast it
to the boxed type (Integer or Long), then let the compiler unbox that
into the primitive type. In this case, however, there is a caveat: if the
returned Object is null, the value of the boxed type will also be null.
When that situation arises, the application will throw a NullPointerEx-
ception because the unboxed type cannot be null.

Sometimes (most of the time, actually) you will want to get more than just a single
column from your SQL statement. In those cases, you will want to put your results
into a JavaBean or Map.

4.4.2 JavaBean and Map results

The iBATIS framework will allow you to use either Map or bean objects for result
mapping (in addition to the primitive wrapper classes—Integer, Long, etc.). Both

Summary 103
approaches have their advantages and disadvantages, which are summarized in
table 4.6.

As a general rule, using a bean is the recommended practice for domain data
(i.e., getting an account or order out of the database for editing), whereas using a
Map is recommended for less critical and more dynamic data (i.e., a report or
other output methods).

 When creating a result map, if you map a field to a property that does not
exist, you will get an exception immediately when the result map is loaded. This
early failure loading the SQL Map is a good thing, because it means that you catch
the error before your users see it.

 On the other hand, if you map a column that does not exist to a property that
does exist, you experience a rather nasty runtime failure when trying to get the
data. This is a good reason to have lots of unit tests around your DAO layer (see
chapter 13 for more of these sorts of best practices with iBATIS).

4.5 Summary

In this chapter, we delved into the basics of JavaBeans, the SQL Map API, and map-
ping statements. As you become more familiar with the topics presented here, cre-
ating mapping statements will become as easy as any other development tasks you
perform, and just like anything else, the more you do it, the easier it will be.

 If you want to tighten down your application and eliminate as many runtime
errors as possible, be explicit! Use explicit parameter and result maps as well as
strongly typed beans for both parameters and results. This will also make your

Table 4.6 Advantages and disadvantages of JavaBeans and Maps as data structures

Approach Advantage Disadvantage

Bean Performance
Strong typing at compile time
Compile-time name checking
Refactoring support in IDE
Less type casting

More code (get/set)

Map Less code Slower
No compile-time check
Weakly typed
More runtime errors
No refactoring support

104 CHAPTER 4

Working with mapped statements
application start faster (because iBATIS will not be trying to figure it all out on the
fly), run faster, and use less memory.

 In the next chapter, we will explore the nonquery aspects of iBATIS as we finish
up looking at all of the essential operations required for database maintenance.

Executing
nonquery statements
This chapter covers
■ More of the iBATIS API
■ Inserting data
■ Updating and deleting data
■ Using stored procedures
105

106 CHAPTER 5

Executing nonquery statements
Running a query over your database is definitely worthwhile, but most applica-
tions also need to get data into the database. In this chapter, we explore some of
the ways to populate your database using the iBATIS framework. We build on the
concepts introduced in chapter 4, so if you are new to iBATIS and have not read
that chapter yet, you may want to take a quick look. Nearly all of the parameter-
mapping information (and result-mapping information too, to a small extent)
from chapter 4 will apply to nonquery mapped statements as well.

5.1 The building blocks for updating data

In chapter 4, you learned about all of the available statement types and the parts
of the API relevant to basic queries. Here we look at the API that you will com-
monly use for executing nonquery statements, and review the mapped statement
types for updating your database.

5.1.1 The SqlMap API for nonquery SQL statements

We save the topic of advanced ways to update your database for the next chapter,
so for now, let’s stick to the basics of insert, update, and delete—the three meth-
ods that you will most often use to update your database. We cover each of these
methods in more detail later in this chapter, but right now, we offer a brief intro-
duction, which may be enough for you to get started using them.

The insert method
As you may have guessed, the insert method is used to execute mapped state-
ments that correspond to the SQL insert statement:

Object insert(String id, Object parameterObject)
 throws SQLException;

The insert method takes two parameters: the name of the mapped statement to
execute, and the parameter object to be used to build the insert statement that
will insert your data into the database.

 Of the three methods that are generally used to update your database, the
insert method is unusual in that it returns Object (see section 5.2.3).

The update method
The update method is used to execute mapped statements that correspond to SQL
update statements:

int update(String id, Object parameterObject)
 throws SQLException;

The building blocks for updating data 107
As with the insert method, the update method takes two parameters: the name of
the mapped statement to execute, and the parameter object to be used in provid-
ing the values for completing the mapped statement. The returned value is the
number of rows affected by the update statement (when the specific JDBC driver
supports this).

The delete method
The delete method is almost identical to the update method, but instead of being
used to execute update SQL statements, it is used to execute delete statements:

int delete(String id, Object parameterObject)
 throws SQLException;

The same two parameters are used for delete as were used for the other two
methods: the name of the mapped statement to execute, and the parameter
object that will be used to complete the mapped statement. The value returned by
this method is the number of rows deleted by it.

5.1.2 Nonquery mapped statements

Table 5.1 is a subset of table 4.3 from chapter 4. There are three primary mapped
statement types commonly used to update the database, and two other top-level
configuration elements that can be used to create them.

Table 5.1 Mapped statement types for updating data (and related XML elements)

Mapped
statement type

Attributes Child elements Uses More details

<insert> id
parameterClass
parameterMap

All dynamic elements
<selectKey>

Inserting data Section 5.2;
chapter 8

<update> id
parameterClass
parameterMap

All dynamic elements Updating data Section 5.3;
chapter 8

<delete> id
parameterClass
parameterMap

All dynamic elements Deleting data Section 5.3;
chapter 8

<procedure> id
parameterClass
resultClass
parameterMap
resultMap
xmlResultName

All dynamic elements Calling a stored procedure Section 5.5;
chapter 8

108 CHAPTER 5

Executing nonquery statements
For more information on the <sql> and <include> elements, refer to section 4.1.3
in the previous chapter.

 Now that you have the building blocks, let’s look at how you can put them
together.

5.2 Inserting data

Inserting data into your database is not exactly the same as selecting data, but the
process is very similar. Regardless of whether you use inline or external parameter
mapping (both of which are explained in detail in the previous chapter—see sec-
tions 4.3.1 and 4.3.2), they work just like they do with all other mapped statements.

5.2.1 Using inline parameter mapping

Inline parameter mapping lets you very quickly build your mapped statements by
providing hints in your markup that tell iBATIS how you want it to map your input
to your mapped statement. Here is an example of an insert statement using
inline parameter mapping:

 <insert id="insertWithInlineInfo">
 insert into account (
 accountId,
 username, password,
 memberSince,
 firstName, lastName,
 address1, address2,
 city, state, postalCode,
 country, version
) values (

<sql> id All dynamic elements Not really a mapped state-
ment, but used to make
components that can be
used in mapped state-
ments

Section 4.2;
chapter 8

<include> refid None Not really a mapped state-
ment, but used to insert
components created with
the <sql> type into
mapped statements

Section 4.2

Table 5.1 Mapped statement types for updating data (and related XML elements) (continued)

Mapped
statement type

Attributes Child elements Uses More details

Inserting data 109
 #accountId:NUMBER#,
 #username:VARCHAR#, #password:VARCHAR#,
 #memberSince:TIMESTAMP#,
 #firstName:VARCHAR#, #lastName:VARCHAR#,
 #address1:VARCHAR#, #address2:VARCHAR#,
 #city:VARCHAR#, #state:VARCHAR#, #postalCode:VARCHAR#,
 #country:VARCHAR#, #version:NUMBER#
)
 </insert>

That was the mapped statement, and here is the code used to execute it (from a
unit test):

 Account account = new Account();
 account.setAccountId(new Integer(9999));
 account.setUsername("inlineins");
 account.setPassword("poohbear");
 account.setFirstName("Inline");
 account.setLastName("Example");
 sqlMapClient.insert("Account.insertWithInlineInfo", account);

While this mapped statement will work, it can become verbose and difficult to
maintain once you reach the point where you have a few different versions of the
insert statement as well as some update statements, and you throw in a couple
dozen queries. When that happens, an external parameter map may help simplify
the maintenance of your SQL Map files.

5.2.2 Using an external parameter map

Along with providing the same functionality as inline parameter mapping, using
an external parameter map has the added benefit of improved performance and
additional validation at load time (which means that fewer errors slip through the
cracks during testing for your users to find at runtime).

 Here is an example of an insert statement that uses an external parameter
map. The following code is functionally identical to the previous example, but
uses an external parameter map instead of an inline one:

 <parameterMap id="fullParameterMapExample" class="Account">
 <parameter property="accountId" jdbcType="NUMBER" />
 <parameter property="username" jdbcType="VARCHAR" />
 <parameter property="password" jdbcType="VARCHAR" />
 <parameter property="memberSince" jdbcType="TIMESTAMP" />
 <parameter property="firstName" jdbcType="VARCHAR" />
 <parameter property="lastName" jdbcType="VARCHAR" />
 <parameter property="address1" jdbcType="VARCHAR" />
 <parameter property="address2" jdbcType="VARCHAR" />
 <parameter property="city" jdbcType="VARCHAR" />
 <parameter property="state" jdbcType="VARCHAR" />

110 CHAPTER 5

Executing nonquery statements
 <parameter property="postalCode" jdbcType="VARCHAR" />
 <parameter property="country" jdbcType="VARCHAR" />
 <parameter property="version" jdbcType="NUMBER" />
 </parameterMap>

 <insert id="insertWithExternalInfo"
 parameterMap="fullParameterMapExample">
 insert into account (
 accountId,
 username, password,
 memberSince
 firstName, lastName,
 address1, address2,
 city, state, postalCode,
 country, version
) values (
 ?,?,?,?,?,?,?,?,?,?,?,?,?
)
 </insert>

While that does not look any less verbose than the inline version, the difference
becomes more apparent when you start including additional statements. Not only
will they be simplified (because you do not need to specify the types for each
property), but the centralized maintenance also means that when you make
changes to the parameter map, you only have to do it once.

 For example, everywhere that the memberSince property is passed in, it is auto-
matically handled as a TIMESTAMP database type. If later, we decide that DATE is
adequate (because we do not need to know the number of seconds since an
account was created), we do it in exactly one place—the parameter map.

 Another added benefit to this approach is that the inline parameter map does
not need to be generated dynamically when first called.

 In both of the previous examples, the code to call the statements is identical
(except for the name of the mapped statement in our example):

sqlMap.insert("Account.insertWithInlineInfo", account);
sqlMap.insert("Account.insertWithExternalInfo", account);

The difference between inline and explicit parameter maps is maintenance cost
and performance—both are improved by using externally defined parameter maps.

5.2.3 Autogenerated keys

With any database, the ability to uniquely identify a row in a table is absolutely crit-
ical. Nearly all databases include the means to automatically generate primary key
values for newly inserted rows. While this is convenient, it can be problematic

Inserting data 111
when you’re inserting a record into a database if you need to know the primary
key after the insert completes.

 Most database vendors provide a way to determine the last-generated key for
the current session using standard SQL to facilitate using this functionality from a
stored procedure. Several database vendors (including Oracle and PostgreSQL)
also provide a way to generate identity values without inserting a column. Also,
with JDBC 3.0, the API was modified to allow fetching generated keys when insert-
ing data.

 If you design your database to use generated primary keys, you can use iBATIS
to get those generated keys back into your object by using the <selectKey> ele-
ment, which is a special child element of the <insert> element. There are two pat-
terns you can follow with this approach, and the choice will be driven by the key-
generation technique you are using.

 The first approach is to fetch the key after you have inserted the record and
the database has generated the key. Be aware that you will need to ensure that the
driver you are using is guaranteed to return the key generated by the last insert
statement you performed. For example, if two threads execute insert statements
nearly simultaneously, the order of the execution could be [insert for user #1],
[insert for user #2], [selectKey for user #1], [selectKey for user #2]. If the
driver simply returns the last-generated key (globally), then the [selectKey for
user #1] will get the generated key for user #2, which would wreak havoc in the
application. Most drivers should work fine for this, but be sure to test this if you
are not absolutely certain whether yours does or not. Also, be aware that triggers
may also cause problems with this approach. For example, with Microsoft SQL
Server, the @@identity value is affected by triggers, so if you insert a record into a
table with a trigger that inserts a record that also generates a key value, the value
returned by @@identity will be the generated key for the record inserted by the
trigger, not the generated key for the first record you inserted. In that case, you
would want to use the SCOPE_IDENTITY function instead.

 The second approach to consider is fetching the key before you insert the
record. This method entails more work if you are inserting records using an inter-
active database tool, because you have to allocate a key value before inserting a
record. However, this strategy avoids the potential risks associated with threading
and getting the key after it has been inserted, and is generally the safest since it
requires very few assumptions in the code. With the first method, there are poten-
tial issues that could cause things to not work as expected. With this approach, all
we need is a guarantee that the generated key is unique when we get it. We do not

112 CHAPTER 5

Executing nonquery statements
require it to be managed by the database for the session; we just need it generated
and passed back to us.

 In both cases, iBATIS can help make this easier for you. The <selectKey> ele-
ment makes this task transparent to your application (at least in the calling code).
The signature for the insert method is:

Object insert(
 String id,
 Object parameterObject
) throws SQLException;

The reason that the insert method returns an Object is so that you can get the
key that was generated. For example, if you had this mapped statement and code
in your application that uses the second approach explained earlier:

 <insert id="insert">
 <selectKey
 keyProperty="accountId"
 resultClass="int">
 SELECT nextVal('account_accountid_seq')
 </selectKey>
 INSERT INTO Account (
 accountId, username, password
) VALUES(
 #accountId#, #username#, #password#)
 </insert>

 Integer returnValue = (Integer) sqlMap.insert(
 "Account.insert", account);

the returnValue variable would contain your generated key. But there is more—
the keyProperty attribute in the <selectKey> element tells iBATIS to get the value
and set it on the object to be inserted. This means that if you want, you can even
ignore the returned value, because the object that was inserted already has the key
value set for you.

 Something to remember is that the <selectKey> element defines a mapped
statement, and this mapped statement has access to the same parameter map that
the containing insert statement does. So, in the previous example, if you wanted
to select the sequence to use for inserted records, you could do so by using this
mapped statement:

 <insert id="insertSequence">
 <selectKey keyProperty="accountId" resultClass="int">
 SELECT nextVal(#sequence#)
 </selectKey>
 INSERT INTO Account (

Updating and deleting data 113
 accountId, username, password
) VALUES(
 #accountId#, #username#, #password#)
 </insert>

That mapped statement would expect a property named sequence which would
contain the name of the sequence to be used for the inserted record.

 In the previous examples, we acquired the key by fetching the next value from
a sequence and setting it on the object before the record was inserted. On the
other hand, if we were using Microsoft SQL Server, we might use this mapped
statement instead:

 <insert id="insert">
 INSERT INTO Account (
 username, password
) VALUES(
 #username#, #password#)
 <selectKey
 keyProperty="accountId"
 resultClass="int">
 SELECT SCOPE_IDENTITY()
 </selectKey>
 </insert>

This example lets the database create the key when we insert the record, then
fetches the generated key and sets it onto the object that was passed into the
insert method. As far as your application is concerned, there is no difference at
all between these two mapped statements.

 Earlier, we touched on the API that the JDBC 3.0 specification exposes to get
generated keys. At this point, iBATIS does not support this API, because only a lim-
ited numbers of JDBC drivers support it. As more and more begin to implement it,
it will be an option for using automatically generated keys as well.

5.3 Updating and deleting data

Now that we can insert rows into our database and figure out what the generated
keys are for the inserted data, let’s take a look at updating and deleting data.

 While the insert method returns an object, both the update and delete meth-
ods return a primitive integer value (or, an int value to be more correct) which
indicates how many records were updated or deleted by the mapped statement.

 The iBATIS framework allows you to affect either single or multiple rows in
your database, depending on your need, with a single SQL statement. This is one

114 CHAPTER 5

Executing nonquery statements
of the differentiating factors between it and most object relational mapping tools,
which generally only allow single record changes.

5.3.1 Handling concurrent updates

One thing that iBATIS does not currently implement is any sort of record locking
to manage concurrent modifications to the same data. You can use one of several
techniques to handle concurrent updates, such as using a timestamp or version
number on rows in the database. For example, if you have an account table
defined thusly:

CREATE TABLE account (
 accountid serial NOT NULL,
 username varchar(10),
 passwd varchar(10),
 firstname varchar(30),
 lastname varchar(30),
 address1 varchar(30),
 address2 varchar(30),
 city varchar(30),
 state varchar(5),
 postalcode varchar(10),
 country varchar(5),
 version int8,
 CONSTRAINT account_pkey PRIMARY KEY (accountid)
)

you can increment the version column in the record when you update it, and use
both the accountId and version fields in the where clause of the update statement.
When the update runs, if the record that is being updated has not been changed
by another user, then the update will be successful because the version number
has not been changed, and the mapped statement will return the expected record
count of one. If it returns zero, and no exception is thrown, then you know that
someone else updated the data since you read it from the database. How you pro-
ceed in your application once you have this information is up to you.

5.3.2 Updating or deleting child records

It is not unusual for an object model to include components that also contain
child objects. For example, an Order object may contain a list or array of Order-
Item objects that represent the items that were ordered.

 Because the iBATIS framework is primarily a SQL mapping tool, it does not
manage these sorts of relationships when updating the database. As a result, this
functionality is something that must be handled in the data layer of your applica-
tion rather than in iBATIS. The code to accomplish this is pretty simple:

Running batch updates 115
 public void saveOrder(SqlMapClient sqlMapClient, Order order)
 throws SQLException {
 if (null == order.getOrderId()) {
 sqlMapClient.insert("Order.insert", order);
 } else {
 sqlMapClient.update("Order.update", order);
 }

 sqlMapClient.delete("Order.deleteDetails", order);

 for(int i=0;i<order.getOrderItems().size();i++) {
 OrderItem oi = (OrderItem) order.getOrderItems().get(i);
 oi.setOrderId(order.getOrderId());
 sqlMapClient.insert("OrderItem.insert", oi);
 }
 }

While this code works adequately, it does not provide for any sort of transaction
isolation, so if the update of the last OrderItem fails, all of the other data is left in
an inconsistent state because the transactions happen on each insert or update. In
addition, performance is hindered because each statement is committed as soon
as it happens. In the next section, you will learn how to resolve both of those
issues using batch updates.

5.4 Running batch updates

Batch updates are one way to improve performance with iBATIS. By creating a
batch of statements, the driver can perform such tasks as compression to improve
performance.

 One important tip for using batched statements is to wrap the batch in a single
transaction. If you fail to do so, a new transaction will be started for each state-
ment, and performance will suffer as the batch size grows.

 In section 5.2.2, we saw one way to update an object that contained child
objects. There were two issues with that solution: performance and data integrity.
To remedy the second issue, we could simply wrap the method in a transaction
and roll it back if anything threw an exception while doing the update.

 This would also improve performance, but we can improve it further if we also
execute the statements in a batch:

 public void saveOrder(SqlMapClient sqlMapClient, Order order)
 throws SQLException {
 sqlMapClient.startTransaction();
 try {
 if (null == order.getOrderId()) {
 sqlMapClient.insert("Order.insert", order);

116 CHAPTER 5

Executing nonquery statements
 } else {
 sqlMapClient.update("Order.update", order);
 }
 sqlMapClient.startBatch();

 sqlMapClient.delete("Order.deleteDetails", order);

 for (int i=0;i<order.getOrderItems().size();i++) {
 OrderItem oi = (OrderItem) order.getOrderItems().get(i);
 oi.setOrderId(order.getOrderId());
 sqlMapClient.insert("OrderItem.insert", oi);
 }
 sqlMapClient.executeBatch();
 sqlMapClient.commitTransaction();
 } finally {
 sqlMapClient.endTransaction();
 }
 }

You may have noticed that we did not start the batch until after the parent record
was already updated (or potentially inserted). The reason is that when you are
using a batched set of statements, database-generated keys will not be generated
until you execute the batch by calling the executeBatch() method. In simpler
terms, this means that if you are using selectKey statements to update your
inserted objects with system-generated keys, they will return null for the gener-
ated keys, and nothing will work as expected. Here is an example:

 sqlMapClient.startBatch();
 sqlMapClient.insert("Account.insert", account);
 order.setAccountId(account.getAccountId()); // error!
 sqlMapClient.insert("Order.insert", order);
 sqlMapClient.executeBatch();

In that example, everything looks right: we insert the account, set the generated
key onto the order, and then we insert the order. However, none of the SQL state-
ments execute until you call the executeBatch() method. So, when the third line
executes, the account still has a null value for the accountId property. When the
fourth line executes, the object passed to the insert method has a null accountId,
too, creating an orphaned record in the order table.

 Keep in mind also that batched statements only reuse the PreparedStatement
objects if they are exactly the same as the previous mapped statements. This can
be problematic if you have many mapped statements that you are executing, and
they occur in an order that causes them not to be reused. If you can, execute state-
ments that are the same all together.

Working with stored procedures 117
NOTE This behavior is almost a bug—not quite, but almost. If you do not care
about the order that the statements get executed in, one person did man-
age to hack the SqlExecutor class to make it reuse the prepared state-
ments out of order. However, this is not yet supported in iBATIS.

Some people use batched statements to insert a group of records that differ only by
a value that can be easily determined. One example is a system that inserted up
to 200 records that represented tickets in the database. The tickets differed only by
the database-generated primary key, and a ticket number had a starting value and
was incremented for each ticket inserted. A loop in the DAO was used to accomplish
the job, but a stored procedure would have been a faster and cleaner solution.

 While running statements in batch mode may improve performance slightly,
using a stored procedure (section 5.5) will generally provide more of an improve-
ment if the statements can be grouped into a stored procedure easily. For exam-
ple, we could implement a deleteOrder method using the same approach as with
the update example earlier. However, to delete an order and its related order
items, all we need to know is the identity of the order, which in this case is just an
integer. Deleting the order and its children would be faster and easier using a
stored procedure than the equivalent iBATIS code would be.

5.5 Working with stored procedures

Stored procedures are blocks of code that execute in the database server process.
While most stored procedures are written in a database-specific language that is
generally based on SQL, some vendors are now allowing other languages (e.g.,
Oracle allows stored procedures in Java, Microsoft has planned support for stored
procedures in C#, and PostgreSQL allows nearly any language).

5.5.1 Considering the pros and cons

Stored procedures are often seen as an enemy by Java developers, because they
are platform specific (database platform specific, not necessarily operating system
specific), which offends the sensibilities of some Java developers.

 As developers who are more interested in solving problems than using a partic-
ular solution, we find stored procedures to be a compelling option for optimiza-
tion and also for encapsulating the solutions to complex data-centric problems.

Don’t be an extremist!
There are two polar extremes in discussing when to use stored procedures. On
one end, you have Java purists who believe that stored procedures are never to be

118 CHAPTER 5

Executing nonquery statements
used by applications (and for that matter, there are even some who believe that
SQL itself should not be used). On the other end, you have the database purists
who believe that every single database interaction should be performed through a
stored procedure.

 The simple fact of the matter is that the old adage that “Purists are always
wrong” applies here, because both extremes are wrong. Stored procedures are a
tool, and should be viewed as nothing more and nothing less than that. As an anal-
ogy, let’s look at the carpenter: he uses a hammer, a tape measure, and a saw. While
he could use a hammer to measure a board, a tape measure does a much better job
of it (and the same can be said for using the saw to drive nails). Every job has a tool
that is the most appropriate, and every tool has a job that it was designed to do.
Any time you use the wrong tool for a job, it does not work very well.

Using the right tool for the job
Such is the case with SQL, stored procedures, and application code. Some opera-
tions are accomplished very well by simple SQL, others by stored procedures, and
still others by application code.

 For example, consider a case in which you have to query a handful of tables for
a report. Grabbing all of the data from all of the tables and then filtering and join-
ing it all back together in application code makes very little sense. Creating a
stored procedure for a simple query also adds complexity with very little added
value. Putting that SQL into an iBATIS mapped statement and running it that way
is a quick, easy, and efficient solution to the problem in this case.

 Now, for a more complex report that has to do multiple subqueries and left
joins to gather the data from tables with millions of rows in them, a stored proce-
dure makes much more sense. Using a stored procedure, you have many more
options available for optimization.

 For an application where you want to use Dynamic SQL, mapped statements
are also very useful. In chapter 8, we have an example of using Dynamic SQL
where the SQL statement is built using Java, a stored procedure, and a mapped
statement with dynamic elements in it. We won’t spoil the surprise, but if you just
can’t wait to find out, skip ahead to section 8.5 and take a look.

 Another consideration with stored procedures is that they can be called to do
updates and return data. This can cause issues when transactions are not commit-
ted because the method used to call the procedure does not normally require a
commit. In those cases, the transaction manager needs to be configured to always
commit, even after read operations, or you have to manually manage the transac-
tions yourself, as in the following example:

Working with stored procedures 119
 try {
 sqlMapClient.startTransaction();
 sqlMapClient.queryForObject("Account.insertAndReturn", a);
 sqlMapClient.commitTransaction();
 } finally {
 sqlMapClient.endTransaction();
 }

Transactions are covered in more detail in chapter 7, so if you have more ques-
tions about them, that is the best place to go.

5.5.2 IN, OUT, and INOUT parameters

So far, the only parameters that we have seen are input only—you pass them into
iBATIS, and (with the exception of the <selectKey> element) what you pass in
remains unchanged. With stored procedures, you are given three types of param-
eters: IN, OUT, and INOUT.

 IN parameters are very simple to use with iBATIS and stored procedures. They
are passed into the procedure just as you would pass a parameter into any other
mapped statement. Here is a simple stored procedure that accepts two IN parame-
ters and returns a value:

CREATE OR REPLACE FUNCTION max_in_example
 (a float4, b float4)
 RETURNS float4 AS
$BODY$
BEGIN
 if (a > b) then
 return a;
 else
 return b;
 end if;
END;
$BODY$
LANGUAGE 'plpgsql' VOLATILE;

Here is the parameter map, mapped statement, and Java code to use this procedure:

 <parameterMap id="pm_in_example" class="java.util.Map">
 <parameter property="a" />
 <parameter property="b" />
 </parameterMap>
 <procedure id="in_example" parameterMap="pm_in_example"
 resultClass="int" >
 { call max_in_example(?, ?) }
 </procedure>

 // Call a max function

120 CHAPTER 5

Executing nonquery statements
 Map m = new HashMap(2);
 m.put("a", new Integer(7));
 m.put("b", new Integer(5));
 Integer val =
 (Integer)sqlMap.queryForObject("Account.in_example", m);

INOUT parameters are parameters that are passed into a procedure and can be
changed by the procedure, as in the following example, which takes two numbers
and swaps them. Here is the code for the procedure (in Oracle PL/SQL):

create procedure swap(a in out integer, b in out integer) as
 temp integer;
begin
 temp := a;
 a := b;
 b := temp;
end;

Here is the parameter map, mapped statement, and Java code to use it:

 <parameterMap id="swapProcedureMap" class="java.util.Map">
 <parameter property="a" mode="INOUT" />
 <parameter property="b" mode="INOUT" />
 </parameterMap>

 <procedure id="swapProcedure" parameterMap="swapProcedureMap">
 { call swap(?, ?) }
 </procedure>

 // Call swap function
 Map m = new HashMap(2);
 m.put("a", new Integer(7));
 m.put("b", new Integer(5));
 Integer val =
 (Integer) sqlMap.queryForObject("Account.in_example", m);

OUT parameters are a bit more peculiar. They are similar to results (as in resultMap
results), but are passed in like parameters. The value passed in is ignored and
then replaced with a return value from the stored procedure. An OUT parameter
can return anything from a single value (as in our next example) to a complete
set of records (as in the case of an Oracle REFCURSOR).

 Here is an example of a somewhat trivial stored procedure that uses two IN
parameters and an OUT parameter (Oracle PL/SQL):

create or replace procedure maximum
 (a in integer, b in integer, c out integer) as
begin
 if (a > b) then c := a; end if;
 if (b >= a) then c := b; end if;
end;

Summary 121
This procedure accepts three parameters and returns void. However, the third
parameter is out only, so depending on which of the other two parameters is
greater, it is replaced with one of them. To call this using iBATIS, you would create
a parameter map and a mapped statement:

 <parameterMap id="maxOutProcedureMap" class="java.util.Map">
 <parameter property="a" mode="IN" />
 <parameter property="b" mode="IN" />
 <parameter property="c" mode="OUT" />
 </parameterMap>
 <procedure id="maxOutProcedure"
 parameterMap="maxOutProcedureMap">
 { call maximum (?, ?, ?) }
 </procedure>

 // Call maximum function
 Map m = new HashMap(2);
 m.put("a", new Integer(7));
 m.put("b", new Integer(5));
 sqlMap.queryForObject("Account.maxOutProcedure", m);
 // m.get("c") should be 7 now.

Stored procedures can also return multiple rows of data, as mentioned earlier in
this chapter. This capability can be used to dramatically improve the performance
of complex queries over large data sets that cannot be optimized using traditional
SQL optimization techniques. Some examples of more difficult operations to opti-
mize are outer joins and filters requiring calculations. If you are planning on
using stored procedures for this purpose in your application, you should make
sure that you have a good understanding of the real bottlenecks, or you may end
up wasting time instead of saving it.

5.6 Summary

In this chapter, we looked at nearly all of the options for modifying data in a data-
base using iBATIS. After reading chapter 4 and this chapter, you should have all of
the information you need to create an application that maintains data using the
iBATIS framework.

 In chapter 6, we continue to expand on what you have learned. We examine
more advanced query techniques to help you better leverage the investment you
have made in your database skills and platform.

Using advanced
query techniques
This chapter covers
■ Using XML
■ Declaring relationships
■ N+1 solutions
122

Using XML with iBATIS 123
Beyond the simple database operations we have looked at in the last two chapters,
iBATIS can be used to perform much more advanced tasks. In this chapter, we will
examine techniques that you can use to reduce the amount of code you need to
write, and you will learn ways to improve performance and minimize the footprint
of your application.

6.1 Using XML with iBATIS

Sometimes, you may need to work with XML-based data. The iBATIS framework
will allow you to use XML when passing parameters into a query, and also for
returning results from them. In both cases, it probably does not add much value
to use XML where you do not need to—using a plain old Java object (POJO)
instead is much more efficient in most cases.

 In addition, it is possible that this feature will be dropped in the next major
release for a couple of reasons. One of those reasons will become apparent as we
look at the functionality. The other reason is that it just doesn’t fit with the philos-
ophy of the iBATIS framework, which is to make mapping queries to objects easier.

 We will take a look at this feature, in case you have a system where you have to
use it; but we will also show you some ways to transition away from it so that if it
does disappear, you won’t be left hanging high and dry looking for a way to make
your application work.

6.1.1 XML parameters

Using XML to pass parameters into a mapped statement can be accomplished with
either a String value or a DOM object, both of which use the exact same structure.

 The structure of parameters is not exactly XML, but it is a well-formed XML
fragment. In this structure, a parameter element wraps the values to be passed in
and the values themselves are wrapped in elements, which provide the names.
For example:

<parameter><accountId>3</accountId></parameter>

Here, the mapped statement would get a single parameter named accountId, with
a value of 3. The following example uses an XML string to pass a parameter into a
mapped statement:

 <select id="getByXmlId" resultClass="Account" parameterClass="xml">
 select
 accountId,
 username,
 password,

124 CHAPTER 6

Using advanced query techniques
 firstName,
 lastName,
 address1,
 address2,
 city,
 state,
 postalCode,
 country
 from Account
 where accountId = #accountId#
 </select>

 String parameter = "<parameter><accountId>3</accountId></parameter>";
 Account account = (Account) sqlMapClient.queryForObject(
 "Account.getByXmlId",
 parameter);

Similarly, a DOM object can be passed into iBATIS to achieve the same results:

 <select id="getByDomId" resultClass="Account" parameterClass="dom">
 select
 accountId,
 username,
 password,
 firstName,
 lastName,
 address1,
 address2,
 city,
 state,
 postalCode,
 country
 from Account
 where accountId = #accountId#
 </select>

 Document parameterDocument = DocumentBuilderFactory.newInstance()
 .newDocumentBuilder().newDocument();
 Element paramElement = parameterDocument
 .createElement("parameterDocument");
 Element accountIdElement = parameterDocument
 .createElement("accountId");
 accountIdElement.setTextContent("3");
 paramElement.appendChild(accountIdElement);
 parameterDocument.appendChild(paramElement);
 Account account = (Account) sqlMapClient.queryForObject(
 "Account.getByXmlId", parameterDocument);

As we mentioned earlier, that is a lot of code just to make your parameters into
XML. However, if you are working with a tool like Cocoon, or writing web services
in a framework that does not transform XML into objects for you, it can be useful.

Using XML with iBATIS 125
Depending on the structure of the XML that you are starting with, it could be eas-
ier to use XSL to transform it into the structure required by iBATIS than to process
the XML and turn it into a Java object, which is your alternative in those cases.

6.1.2 XML results

The iBATIS framework also allows you to create XML results from mapped state-
ments. When running a mapped statement that returns XML, you get a complete
XML document for each returned object.

 To use this feature, you create a mapped statement that has a result class of
xml. Here is a simple example:

 <select id="getByIdValueXml" resultClass="xml"
 xmlResultName="account">
 select
 accountId,
 username,
 password
 from Account
 where accountId = #value#
 </select>

 String xmlData = (String) sqlMap.queryForObject(
 "Account.getByIdValueXml",
 new Integer(1));

The results returned in this case will look like this (well, not exactly; we added
some whitespace and line feeds to make it more readable):

<?xml version="1.0" encoding="UTF-8"?>
<account>
 <accountid>1</accountid>
 <username>lmeadors</username>
 <password>blah</password>
</account>

Getting that data back is real handy if you have a single record that you want to get
as an XML document. If you want to get multiple objects, you can do that as well:

 <select id="getAllXml" resultClass="xml" xmlResultName="account">
 select
 accountId,
 username,
 password,
 firstName,
 lastName,
 address1,
 address2,
 city,

126 CHAPTER 6

Using advanced query techniques
 state,
 postalCode,
 country
 from Account
 </select>

 List xmlList = sqlMap.queryForList("Account.getAllXml", null);

The resulting list in this case is a list of XML documents. Just what you wanted,
right? Well, in some cases, maybe—but in most cases, no. Instead of a single XML
document with multiple account elements in it, you get a list of strings like our pre-
vious result, which means that you have to manipulate the strings if you want to
concatenate them all together into a single document. This is not exactly optimal.

 The workaround is to not use iBATIS to get the XML results. A simple approach
is to use a normal iBATIS mapped statement that returns a collection and creates
the XML from that. One way to do that (if you are using a bean for your results) is
to create a method like the following to help create the XML:

 public String toXml(){
 StringBuffer returnValue = new StringBuffer("");
 returnValue.append("<account>");
 returnValue.append("<accountid>" + getAccountId() +"</accountid>");
 returnValue.append("<username>" + getUsername() + "</username>");
 returnValue.append("<password>" + getPassword() + "</password>");
 returnValue.append("</account>");
 return returnValue.toString();
 }

Another approach to this issue is to create a class that uses reflection to convert a
bean to XML. This is a fairly simple exercise. Here is a small utility that will get you
started on this. Although this code is abbreviated to save some space, it demon-
strates the technique.

public class XmlReflector {
 private Class sourceClass;
 private BeanInfo beanInfo;
 private String name;

 XmlReflector(Class sourceClass, String name) throws Exception {
 this.sourceClass = sourceClass;
 this.name = name;
 beanInfo = Introspector.getBeanInfo(sourceClass);
 }

 public String convertToXml(Object o) throws Exception {
 StringBuffer returnValue = new StringBuffer("");
 if (o.getClass().isAssignableFrom(sourceClass)) {
 PropertyDescriptor[] pd = beanInfo.getPropertyDescriptors();

Using XML with iBATIS 127
 if (pd.length > 0){
 returnValue.append("<" + name + ">");
 for (int i = 0; i < pd.length; i++) {
 returnValue.append(getProp(o, pd[i]));
 }
 returnValue.append("</" + name + ">");
 } else {
 returnValue.append("<" + name + "/>");
 }
 } else {
 throw new ClassCastException("Class " + o.getClass().getName() +
 " is not compatible with " + sourceClass.getName());
 }
 return returnValue.toString();
 }

 private String getProp(Object o, PropertyDescriptor pd)
 throws Exception {
 StringBuffer propValue = new StringBuffer("");
 Method m = pd.getReadMethod();
 Object ret = m.invoke(o);
 if(null == ret){
 propValue.append("<" + pd.getName() + "/>");
 }else{
 propValue.append("<" + pd.getName() + ">");
 propValue.append(ret.toString());
 propValue.append("</" + pd.getName() + ">");
 }
 return propValue.toString();
 }
}

This sample class can be used to easily take a bean and convert it to an XML frag-
ment instead of an XML document. Here is an example:

 XmlReflector xr = new XmlReflector(Account.class, "account");
 xmlList = sqlMap.queryForList("Account.getAll", null);
 StringBuffer sb = new StringBuffer(
 "<?xml version=\"1.0\" encoding=\"UTF-8\" ?><accounts>");
 for (int i = 0; i < xmlList.size(); i++) {
 sb.append(xr.convertToXml(xmlList.get(i)));
 }
 sb.append("</accounts>");

Using this technique to process a large set of records would be very expensive in
terms of memory—there would be a list of objects in memory, as well as the string
buffer used to build the XML document. In section 6.3, we revisit this example as
we look at more effective ways to manage larger results.

128 CHAPTER 6

Using advanced query techniques
6.2 Relating objects with mapped statements

The iBATIS framework also offers various means by which you can relate complex
objects, such as an order and its order lines (and their products, customers, etc.).
Each method has its own advantages and disadvantages, and as with most things,
no single solution is the right one. Depending on your needs, one of them may do
what you need.

NOTE For brevity's sake, in the rest of the examples in this chapter, we are leav-
ing out attributes of the data that are not required to show what we are
doing. For example, when we get a customer, we are not going to get all
of the fields of the customer, but only the primary and foreign keys.

6.2.1 Complex collections

In chapter 4, you learned how to get data out of your database using SELECT state-
ments. In those examples, we only worked with a single object type in the results,
even when joining multiple tables. If you have more complex objects, you can also
use iBATIS to load them.

 This capability is useful if you like to have your application’s model look like
your data model. It is possible to use iBATIS to define your data model in terms of
related objects, and have iBATIS load them all at once. For example, if you have a
database in which Account records have related Order records that have related
OrderItem records, those relationships can be set up so that when you request an
Account, you also get all of the Order objects and all of the OrderItem objects as
well. Listing 6.1 shows how you would define your SQL map to make this work.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMap
 PUBLIC "-//ibatis.apache.org//DTD SQL Map 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-2.dtd">
<sqlMap namespace="Ch7">

 <resultMap id="ResultAccountInfoMap"
 class="org.apache.mapper2.examples.bean.AccountInfo">
 <result property="account.accountId"
 column="accountId" />
 <result property="orderList"
 select="Ch6.getOrderInfoList"
 column="accountId" />
 </resultMap>

 <resultMap id="ResultOrderInfoMap"

Listing 6.1 Mapping a complex collection

B

C

Relating objects with mapped statements 129
 class="org.apache.mapper2.examples.bean.OrderInfo">
 <result property="order.orderId" column="orderId" />
 <result property="orderItemList" column="orderId"
 select="Ch6.getOrderItemList" />
 </resultMap>

 <resultMap id="ResultOrderItemMap"
 class="org.apache.mapper2.examples.bean.OrderItem">
 <result property="orderId" column="orderId" />
 <result property="orderItemId" column="orderItemId" />
 </resultMap>

 <select id="getAccountInfoList"
 resultMap="ResultAccountInfoMap" >
 select accountId
 from Account
 </select>

 <select id="getOrderInfoList"
 resultMap="ResultOrderInfoMap">
 select orderId
 from orders
 where accountId = #value#
 </select>

 <select id="getOrderItemList"
 resultMap="ResultOrderItemMap">
 select
 orderId,
 orderItemId
 from orderItem
 where orderid = #value#
 </select>
 </sqlMap>

If you look at the result maps (ResultAccountInfoMap , ResultOrderInfoMap ,
and ResultOrderItemMap), you will see that the first two use the select
attribute for one of the mapped properties. The presence of that attribute tells
iBATIS that the property is to be set using the results of another mapped state-
ment, which is named by its value. For example, when we run the getAccountIn-
foList mapped statement , the ResultAccountInfoMap result map has <result
property="orderList" select="Ch6.getOrderInfoList" column="accountId" />.
That tells iBATIS to get the value for the orderList property by running the
"Ch6.getOrderInfoList" mapped statement , passing it the value of the
accountId column, and then putting the returned data into orderList. Similarly,

D

E

F

G

b C
D

E

F

130 CHAPTER 6

Using advanced query techniques
the getOrderItemList mapped statement is executed to get the value of the
orderItemList property in the result map ResultOrderInfoMap .

 In spite of the convenience this functionality offers, two issues can arise. First,
the creation of lists with many objects in them can turn into a massive memory
consumer. Second, this approach can cause major database I/O problems very
quickly due to a phenomenon known as the “N+1 Selects” problem, which we will
talk about in a moment. The iBATIS framework provides solutions to each of those
problems, but nothing can solve both at once.

Database I/O
Database I/O is one measure of how your database is being used, and is one of the
major bottlenecks in database performance. When reading or writing to a data-
base, the data has to be transferred from disk to memory or from memory to disk,
which are expensive operations in terms of time. Avoiding database I/O with cach-
ing will make your application faster, but this strategy can be problematic if not
used with caution. For more information on when and how to use the caching
mechanisms that iBATIS provides, see chapter 10.

 To illustrate the database I/O problems you can encounter when using related
data, imagine a case where you have 1,000 Accounts, each related to 1,000 Orders that
have 25 OrderItems each. If you try to load all of that into memory, it would result
in the execution of over 1,000,000 SQL statements (one for the accounts, 1,000 for
the orders, and 1,000,000 for the order items) and the creation of around 25 million
Java objects—doing this will certainly get you a slap on the wrist from your system
administrators!

Looking at the N+1 Selects problem
The N+1 Selects problem is caused by trying to load child records that are related
to a list of parent records. So, if you run one query to get the parent records, and
there are some number, N, of them, then you have to run N more queries to get
the child records for the parent records, resulting in “N+1 Selects.”

Solutions to these problems
Lazy loading (which we cover in more detail in section 6.2.2) can mitigate some of
the memory problem by breaking the loading process into smaller, more manage-
able pieces. However, it still leaves the database I/O problem, because in the worst
case it will still hit your database just as hard as the non-lazy version did since it
still uses the N+1 Selects approach (which we’ll solve in section 6.2.3) as it loads
the data. When we solve the N+1 Selects problem to reduce the database I/O,

G
C

Relating objects with mapped statements 131
however, we can do it with a single database query, but we get all 25,000,000 rows
in one big chunk.

 To decide whether to use complex properties, you need to understand your
database and how your application will use it. If you use the techniques described
in this section, you can save yourself a good deal of programming effort, but if you
misuse it, you can create a big mess. In the next two sections, we look at how to
decide which strategy to use, depending on your goals.

 Let’s start by asking this question: is the example of relating accounts to orders
to order items a good example of when to relate your data this way? Actually, no—
the order-to-order item relationship is solid, but the account-to-order relationship
is not a requirement.

 Our reasoning is that the order items are not complete objects without the
order that owns them, while the account is. Think about it in terms of how you
would use them. Generally, you would not be able to do much with an order with-
out its order items, and conversely, the order items without the order are some-
what meaningless. An account, on the other hand, is something that could be
thought of as a complete object.

 For the purposes of our example, however, the relationship shows the tech-
nique well using concepts that are familiar and recognizable (Accounts have
Orders, Orders have Order Items), and that is what we are trying to accomplish
here, so we will stick with it for a while longer.

6.2.2 Lazy loading

The first of the options we will look at is lazy loading. Lazy loading is useful if all of
the related data will not be needed immediately. For example, if our application
called for a web page to show all accounts, then a sales representative (our user)
could click on an account to view all of the orders for that account, and then click
on an order to view all of the details for that order. All we need in this case is a sin-
gle list at any time. This is a reasonable use of lazy loading.

 To use lazy loading, we need to edit the SqlMapConfig.xml file to enable it by
changing the lazyLoadingEnabled attribute to true in the <setting> element. If
you want to use the cglib enhanced version of lazy loading, you will want to down-
load it, add it to your application’s classpath, and change the enhancementEnabled
attribute of the <setting> element to true as well. One thing to note is that this is
a global setting, so all of the mapped statements in the SQL map will use lazy load-
ing if these properties are enabled.

 Once we have enabled lazy loading, we can get to more reasonable numbers
for object creation and database I/O. For one user to get down to the order

132 CHAPTER 6

Using advanced query techniques
detail level, we have three queries (one for the accounts, one for the orders, and
one for the order details), and the application would only create 2,025 objects
(1,000 accounts, 1,000 orders, and 25 order details). This is all done without any
changes to the application code and only minor changes to the XML configura-
tion of iBATIS.

 In one totally nonscientific test that we performed, using a non-lazy loading
relationship to load the data took over three times as long to get the first list than
the lazy version. However, to get all of the data, the lazy version took about 20 per-
cent longer than the non-lazy loader. Obviously, this will depend greatly on the
amount of data being loaded, and as with most things, your mileage may vary.
Experience is the best guide.

 There are times when you do not want to defer the loading of all the data but
want it all loaded when the data is first requested. In those cases, you can use the
technique described in the next section, which will do just that, and do it all in one
single query instead of several. This next approach avoids the N+1 Selects problem.

6.2.3 Avoiding the N+1 Selects problem

There are two ways to avoid the “N+1 Selects” problem that we will consider. One
is by using the groupBy attribute in iBATIS, and the other is by using a custom com-
ponent called a RowHandler.

 Using the groupBy attribute is similar to the previous technique. In short, you
define the relationships using result maps, and then associate the top-level result
map with the mapped statement. The following example builds the same struc-
ture as the lazy loading example earlier, but with only one SQL statement run on
the database server.

 Three result maps are involved: one for the accounts, one for the orders, and
one for the order items.

 The result map for the accounts has three functions:

■ It maps the properties for the account objects.

■ It tells iBATIS what property indicates that a new account needs to be created.

■ It tells iBATIS how to map the next set of related objects, which in this case is
the related set of order objects for the account.

One very important thing to note here is that the groupBy attribute is referring to
a property name, not a column name.

 The result map for the orders has the same three functions:

Relating objects with mapped statements 133
■ It maps the order data to the order objects.

■ It tells iBATIS what property indicates a new order.

■ It tells iBATIS what result map is to be used for any child records.

Finally, the order item result map is a normal result map that is only responsible
for mapping the order items to objects. Listing 6.2 shows the mapping for this
example.

 <resultMap id="ResultAccountInfoNMap"
 class="AccountInfo"
 groupBy="account.accountId" >
 <result property="account.accountId"
 column="accountId" />
 <result property="orderList"
 resultMap="Ch6.ResultOrderInfoNMap" />
 </resultMap>

 <resultMap id="ResultOrderInfoNMap"
 class="OrderInfo"
 groupBy="order.orderId" >
 <result property="order.orderId" column="orderId" />
 <result property="orderItemList"
 resultMap="Ch6.ResultOrderItemNMap" />
 </resultMap>

 <resultMap id="ResultOrderItemNMap"
 class="OrderItem">
 <result property="orderId"
 column="orderId" />
 <result property="orderItemId"
 column="orderItemId" />
 </resultMap>

 <select id="getAccountInfoListN"
 resultMap="ResultAccountInfoNMap">
 select
 account.accountId as accountid,
 orders.orderid as orderid,
 orderitem.orderitemid as orderitemid
 from account
 join orders on account.accountId = orders.accountId
 join orderitem on orders.orderId = orderitem.orderId
 order by accountId, orderid, orderitemid
 </select>

Listing 6.2 Using the N+1 Selects solution

B
Declares the result
map for account data

C
Declares the result
map for the order data

D
Declares the result
map for the order item

E
Ties the result map to
the <select> element

134 CHAPTER 6

Using advanced query techniques
By calling the getAccountInfoListN mapped statement , we get the same data
back that we did with the previous two examples (a list of accounts, each with a list
of orders that have their associated order items as a list property on them), but
because we are running only one SQL statement it is much faster. The getAc-
countInfoListN mapped statement is run, and the results are mapped using
the resultAccountInfoNMap result map , which uses the groupBy attribute. That
attribute tells iBATIS that it only needs to create a new AccountInfo instance when
the account.accountId property changes. Further, because the orderList prop-
erty is mapped to the ResultOrderInfoNMap result map , that list is populated as
rows from the query are processed. Since the ResultOrderInfoNMap result map
also uses the groupBy attribute, the process is repeated for the orderItemList
using the ResultOrderItemNMap result map for the orderItemList property.

 Using our totally nonscientific measurement from earlier, we receive a per-
formance improvement of about 7 to 1 with a small set of data. We suspect that
with the example we started with (25 million records), both cases would still be
showstoppers.

 It is important to remember that in spite of the performance increase, the
memory consumption is still the same as the non-lazy version. All rows are in
memory at one time, so even though it gets the list faster, memory utilization may
still be a problem.

 The bottom line here is that, depending on your needs, one of these tech-
niques may help you out. How do you decide? Table 6.1 provides a guide.

So, that is about all there is to mapping complex results. Next, let’s see some other
uses of iBATIS.

6.3 Inheritance

Inheritance is a fundamental concept in object-oriented programming. Inherit-
ance allows us to extend classes, effectively inheriting fields and methods from a
base class—or even a hierarchy of many base classes. The new class can override

Table 6.1 Differences between lazy loading and the N+1 select solution

Lazy loading N+1 Select solution

Good for cases when you are getting a larger
data set that may not all be used.

Good for a smaller data set or a data set where
you know you will use all of the data.

Performance up front is a priority and you are
willing to pay for it later.

Overall performance is the priority.

E

E
b

C

D

Inheritance 135
the existing methods to enhance or replace the functionality. Inheritance features
of an object-oriented language such as Java yields many benefits, including:

■ Code reuse—An abstract base class can be built that contains a lot of common
logic, but by itself is incomplete. The subclasses that extend the base class
can complete the functionality while reusing the common features of the
base class. The result is that you can have a number of implementations of a
feature without rewriting or duplicating the common aspects.

■ Enhancement and specialization—Sometimes you might decide to extend a
class to add more useful features. This is a common reason to extend collec-
tion classes. For example, one might decide to extend the ArrayList class to
only support Strings called StringArray. New features could then be added,
such as features for searching based on a regular expression.

■ Common interface—Although using an actual interface instead of an abstract
class might be a better choice here, it is possible to use a base class as a com-
mon interface in a framework or some other sort of pluggable system.

There are other benefits of inheritance, but there are also many risks. Inheritance
is notoriously inflexible for modeling business domains. Business is often too
complex to commit to a single hierarchy. This is especially true in a language such
as Java, where you can only extend from a single superclass (single inheritance).
Even if your programming language of choice supports multiple inheritance, it
still may not be the best choice.

 Many patterns and best practices that have emerged over the years have sug-
gested favoring alternatives to inheritance. These alternatives include:

■ Favor composition over inheritance—A good example of this is roles that people
play. A generally poor design would have a Manager class extending from
Employee, which extends from Person. That is to say that a Manager “is an”
Employee and an Employee “is a” Person. This may indeed be true, but
what happens when that same person is a Customer? For example, a Man-
ager decides to shop at his own store. Where does a person who is both a
Customer and an Employee fit in that hierarchy? Certainly a Customer is
not necessarily an Employee, nor is an Employee necessarily a customer.
Instead of modeling this using inheritance, you might want to consider
using composition. Change the “is a” relationship to a “has a” relationship
by keeping a collection of Roles on the Person class. That way a person can
have any combination of the roles described.

■ Favor interfaces over abstract classes—In cases in which your intent is to have a
common interface to describe a certain set of functionality, you’re better off

136 CHAPTER 6

Using advanced query techniques
using an actual interface type instead of an abstract class directly. A good
approach to achieve both code reuse and a separation between interface
and implementation is a tripartite design. In a tripartite design you still use
an abstract class to achieve some level of code reuse, but you design the
abstract class to implement an interface, and then expose only the interface
to the public application programming interface (API). Finally, the special-
ized (or concrete) classes extend from the base class and inherently imple-
ment the interface.

6.3.1 Mapping Inheritance

iBATIS supports inheritance hierarchies by using a special mapping called a dis-
criminator. Using a discriminator you can determine the type of class to be instan-
tiated based on a value in the database. The discriminator is a part of the Result
Map and works much like a switch statement. For example:

<resultMap id="document" class="testdomain.Document">
 <result property="id" column="DOCUMENT_ID"/>
 <result property="title" column="TITLE"/>
 <result property="type" column="TYPE"/>
 <discriminator column="TYPE" javaType="string" >
 <subMap value="Book" resultMap="book"/>
 <subMap value="Newspaper" resultMap="news"/>
 </discriminator>
</resultMap>

The discriminator above can be read this way:

If the column “TYPE” contains the value “Book,” then use the result
map called “book,” otherwise if the column TYPE contains the value
“Newspaper,” then use the result map called “news.”

The sub maps are just normal result maps referenced by name (see below). If the
discriminator can’t find a value to match one of the sub maps, then the parent
result map is applied. If an appropriate value is found, then only the sub map is
applied—the parent’s defined result mappings are not applied unless the sub
maps explicitly extend the parent map, as you can see in the following example.

<resultMap id="book" class="testdomain.Book" extends="document">
 <result property="pages" column="DOCUMENT_PAGENUMBER"/>
</resultMap>

The extends attribute of the result map effectively copies all of the result mappings
from the referenced result map. However, it does not imply anything about the class
hierarchy. Remember, iBATIS is not an object/relational mapping framework per

Other miscellaneous uses 137
se. It is a SQL Mapper. The difference is that iBATIS does not know or care about the
mappings between classes and database tables. Therefore there is no requirement
that the sub maps use a class that extends from the class referenced in the parent
result map. In other words, you’re free to use discriminators however you like, for
whatever purpose seems natural. Of course, inheritance is an obvious application,
but you may find other situations where discriminators come in handy.

6.4 Other miscellaneous uses

The iBATIS framework is designed to be flexible. The <statement> mapped state-
ment type is another way to open more doors for uses that may not be possible
using the other mapped statement types.

6.4.1 Using the statement type and DDL

The <statement> type is a bit of an oddball in that unlike all of the other types
(<insert>, <update>, <delete>, and <select>) it has no corresponding method to
call it with. That is a hint: the use of <statement> is not encouraged, and it should
be employed only as a last resort.

 Data Definition Language (DDL) is a subset of SQL statements that are used to
define the structure of a database schema. You would use DDL to define tables
and indexes, and to perform other operations that do not change the data, but
change the data structure instead.

 Although using DDL is officially unsupported, your database may allow you to
execute DDL statements via iBATIS using the <statement> type. The PostgreSQL
database, for example, allows using the <statement> type to create and drop data-
base tables:

 <statement id="dropTable">
 DROP TABLE Account CASCADE;
 </statement>

 sqlMap.update("Account.dropTable", null);

There are no guarantees that your database will support running DDL statements
this way, but if so, it can be useful for writing routines that create or modify data-
base structures.

 In the next section, we look at one of the features of iBATIS that makes it very
flexible but that is often overlooked: row handlers.

138 CHAPTER 6

Using advanced query techniques
6.4.2 Processing extremely large data sets

Occasionally you may find that requirements for an application seem to make the
use of large data sets look like the right choice. In most cases, those requirements
can be met in other ways, and in those cases, some probing questions can uncover
the real need.

 For instance, suppose you are handed a requirement document dictating that
the entire contents of a 30,000-row data table be output as HTML for users to
browse. The first question to ask is, “Do you really need all of that data?” It’s our
experience that there is no “Yes” answer from a logical and defensible position.
While we do not doubt that the users do need to see all of that data, we do question
whether they need to see all of that data at one time. In almost every case, a filter that
limits what is returned will work better for your users than a “fire hose” report that
just dumps the output of a “select * from table” type of query onto a screen.

 If the results are not required for output but are required for processing, you
should seriously consider whether a stored procedure would work better for it
than Java code. Although stored procedures are often viewed as the anathema of
the “Write once, run anywhere” goal of Java, we have seen cases where an applica-
tion that took 10–15 minutes to run as pure Java ran in under 10 seconds with a
stored procedure. The users of that system do not care about the purity of the
application; they care about being able to use it to get their job done.

No more dodging the question...
So, now that we have tried to avoid the issue of dealing with massive data sets, and
decided that we really do have to deal with them, let’s look at what iBATIS provides
to handle them: the RowHandler interface was created just for these cases.

 The RowHandler interface is a simple one that allows you to insert behavior into
the processing of a mapped statement’s result set. The interface has only one
method:

public interface RowHandler {
 void handleRow(Object valueObject);
}

The handleRow method is called once for each row that is in the result set of a
mapped statement. Using this interface, you are able to handle very large
amounts of data without loading it all into memory at one time. Only one row of
the data is loaded into memory, your code is called, that object is discarded, and
the process repeats until the results have all been processed.

Other miscellaneous uses 139
 RowHandler objects can help speed up the processing of large sets of data if
needed. This is a last resort for dealing with large data sets, but it is also the Swiss
army knife of iBATIS. You can do almost anything with a RowHandler.

 In section 6.1.2, we looked at the XML result-generation capabilities in iBATIS,
and found them to be lacking in some ways—notably in the case where you want
to get a single XML document for a list of objects or for a complex object. In that
section we promised to show you how to get XML data using less memory than get-
ting an entire list or object graph and iterating through it. Using a RowHandler, we
still iterate through the objects, but only one element of that list is in memory at
one time. Here is a row handler that builds a single XML document with multiple
<account> elements in it:

public class AccountXmlRowHandler implements RowHandler {
 private StringBuffer xmlDocument = new StringBuffer("<AccountList>");
 private String returnValue = null;

 public void handleRow(Object valueObject) {
 Account account = (Account) valueObject;
 xmlDocument.append("<account>");

 xmlDocument.append("<accountId>");
 xmlDocument.append(account.getAccountId());
 xmlDocument.append("</accountId>");

 xmlDocument.append("<username>");
 xmlDocument.append(account.getUsername());
 xmlDocument.append("</username>");

 xmlDocument.append("<password>");
 xmlDocument.append(account.getPassword());
 xmlDocument.append("</password>");

 xmlDocument.append("</account>");
 }

 public String getAccountListXml(){
 if (null == returnValue){
 xmlDocument.append("</AccountList>");
 returnValue = xmlDocument.toString();
 }
 return returnValue;
 }
}

The code to use this with an existing mapped statement that returns a list of
Account objects is remarkably simple. The basic design is that you create an
instance of a RowHandler and call the queryWithRowHandler method, passing in the

140 CHAPTER 6

Using advanced query techniques
mapped statement to run, the parameters required by the mapped statement, and
the row handler instance. The following example creates an XML document with
all of the accounts returned by a mapped statement encoded as XML:

 AccountXmlRowHandler rh = new AccountXmlRowHandler();
 sqlMapClient.queryWithRowHandler("Account.getAll", null, rh);
 String xmlData = rh.getAccountListXml();

If XML is not your cup of tea, maybe this next example will help you see how use-
ful row handlers can be.

Another more interesting RowHandler example
Another example of how to use a row handler is to handle several aspects of mul-
tiple table relationships. For example, in our sample database, we have accounts
(or customers), who can have multiple orders, which can have multiple order
items, which have a product, and each product has a manufacturer. Figure 6.1
shows the data model for the relationships.

 Let’s imagine a requirement where we need to provide a list of products that
were ordered and a list of the accounts that had ordered that product. We also
want a list of accounts, and we want each of those accounts to have a list of manu-
facturers that they had ordered from. It might also be nice to have these as a Map
object (by ID) that we could use to quickly find an account or product.

 Although we could do that using the existing groupBy attribute and the query-
ForMap method, using four mapped statements, this approach would require four
separate select statements (meaning more database I/O) and would potentially
give us multiple copies of each object. The customer objects returned by the first

Order

PK orderId

FK1 accountId

OrderItem

PK orderItemId

FK1 orderId
FK2 productId

Account

PK accountId

Manufacturer

PK manufacturerId

Product

PK productId

FK1 manufacturerId

Figure 6.1 Entity relationship diagram for examples

Other miscellaneous uses 141
mapped statement would not be the same objects as those returned by the second
mapped statement (meaning more memory use). We can do better than that!

 Using a RowHandler, we can meet this requirement with a single SQL state-
ment. That way, we have to process the results only once to get both of the main
lists with the related lists, the Maps, and all of that without any duplicate objects.
Using this approach requires a bit more coding but uses less processing time, less
database I/O, and less memory.

 To make this happen, we join the data, then as we look at each row, we add
new items to the lists (of products and accounts) and to the maps. That sounds
simple enough, so let’s look at the code.

 First, we create the mapped statement. It will join the tables, retrieve the rele-
vant data, and map it into three distinct objects in a composite that has all three
things that we care about:

 <resultMap id="AmpRHExample"
 class="org.apache.mapper2.examples.chapter6.AccountManufacturerProduct">
 <result property="account.accountId" column="accountId" />
 <result property="manufacturer.manufacturerId"
 column="manufacturerId" />
 <result property="product.productId" column="productId" />
 </resultMap>

 <select id="AMPRowHandlerExample" resultMap="AmpRHExample">
 select distinct
 p.productId as productId,
 o.accountId as accountId,
 m.manufacturerId as manufacturerId
 from product p
 join manufacturer m
 on p.manufacturerId = m.manufacturerId
 join orderitem oi
 on oi.productId = p.productId
 join orders o
 on oi.orderId = o.orderId
 order by 1,2,3
 </select>

The AccountManufacturerProduct class is simply a class with three properties:
account, manufacturer, and product. The result map populates the properties, just
as we would do if we were going to create a regular flattened view of the data.

 Next, the row handler takes these objects as it encounters them, and catego-
rizes them by productId, accountId, and manufacturerId into maps. The first time
it encounters a particular account or product, it also adds that object to the
account List or product List, respectively. If the selected objects have already been

142 CHAPTER 6

Using advanced query techniques
loaded, the existing one (from the maps) replaces the one that was just loaded
from the database.

 Finally, after it has gotten the single instance of a particular account, manufac-
turer, or product, it adds them to the appropriate objects, as shown in listing 6.3.

public class AMPRowHandler implements RowHandler {
 private Map<Integer, AccountManufacturers> accountMap
 = new HashMap<Integer, AccountManufacturers>();
 private Map<Integer, Manufacturer> manufacturerMap
 = new HashMap<Integer, Manufacturer>();
 private Map<Integer, ProductAccounts> productMap
 = new HashMap<Integer, ProductAccounts>();
 private List<ProductAccounts> productAccountList
 = new ArrayList<ProductAccounts>();
 private List<AccountManufacturers> accountManufacturerList
 = new ArrayList<AccountManufacturers>();

 public void handleRow(Object valueObject) {
 AccountManufacturerProduct amp;
 amp = (AccountManufacturerProduct)valueObject;
 Account currentAccount = amp.getAccount();
 Manufacturer currentMfgr = amp.getManufacturer();
 AccountManufacturers am;
 ProductAccounts pa;
 Product currentProduct = amp.getProduct();
 if (null == accountMap.get(currentAccount.getAccountId())) {
 // this is the first time we have seen this account
 am = new AccountManufacturers();
 am.setAccount(currentAccount);
 accountMap.put(currentAccount.getAccountId(), am);
 accountManufacturerList.add(am);
 } else {
 // Use the accoutn from the account map
 am = accountMap.get(currentAccount.getAccountId());
 currentAccount = am.getAccount();
 }
 // am is now the current account / manufacturerlist

 if (null ==
 manufacturerMap.get(currentMfgr.getManufacturerId())) {
 // we have not seen this manufacturer yet
 manufacturerMap.put(
 currentMfgr.getManufacturerId(),
 currentMfgr);
 } else {
 // we already have this manufacturer loaded, reuse it
 currentMfgr = manufacturerMap.get(

Listing 6.3 A very powerful row handler

B
Contains only
required method

Checks for
duplicate accounts

C

Checks for duplicate
manufacturers D

Other miscellaneous uses 143
 currentMfgr.getManufacturerId());
 }
 am.getManufacturerList().add(currentMfgr);

 if (null == productMap.get(currentProduct.getProductId())) {
 // this is a new product
 pa = new ProductAccounts();
 pa.setProduct(currentProduct);
 productMap.put(currentProduct.getProductId(), pa);
 productAccountList.add(pa);
 } else {
 // this prodcut has been loaded already
 pa = productMap.get(currentProduct.getProductId());
 }
 // pa is now the current product's product / account list
 pa.getAccountList().add(currentAccount);
 am.getManufacturerList().add(currentMfgr);
 }

 public List<ProductAccounts> getProductAccountList() {
 return productAccountList;
 }

 public List<AccountManufacturers> getAccountManufacturerList() {
 return accountManufacturerList;
 }

 public Map<Integer, ProductAccounts> getProductMap() {
 return productMap;
 }

 public Map<Integer, AccountManufacturers> getAccountMap() {
 return accountMap;
 }
}

Although the code here looks pretty complex, keep in mind that what it is doing is
also quite complex. We start with the one and only required method , and in it
we process the returned data to build the exact lists and maps that we want by keep-
ing only unique account objects , manufacturer objects , and product objects

, which we then expose to the caller using the getters (, , , and) on the
row handler. In addition, we provide object identity, so the account, product, and
manufacturer instances in all cases are the same objects. In other words, the account
with an ID value of 1 is the same instance of the account class in all of the data struc-
tures—therefore, a change to it will be reflected in all other places that it occurs.

Checks for
duplicate products

E

Gets list of
ProductAccount beans

F

Gets list of
AccountManufacturer beans

G

Gets product map H

Gets account map I

b

C D
E F G H I

144 CHAPTER 6

Using advanced query techniques
6.5 Summary

In this chapter, you learned how to map XML data into iBATIS as well as how to
use iBATIS to generate XML for your results. We also discussed relating multiple
tables using multiple SQL statements, or one statement to bring all of the related
data together.

 In chapters 4 through 6, you have seen almost everything that iBATIS can do
when mapping statements—from the simple to the exotic. In the next chapter,
you’ll learn how to use iBATIS in a more transaction-oriented environment.

Transactions
This chapter covers
■ Introduction to transactions
■ Automatic, local, and global transactions
■ Custom transactions
■ Transaction demarcation
145

146 CHAPTER 7

Transactions
Transactions are one of the most important concepts to understand when work-
ing with a relational database. Few decisions you make will have a greater impact
on stability, performance, and data integrity. Knowing how to identify and demar-
cate the transactions in the system you are building is imperative. In this chapter,
we’ll discuss what transactions are and how to work with them.

7.1 What is a transaction?

In the simplest terms, a transaction is a unit of work, usually involving a number of
steps that must succeed or fail as a group. Should any step in the transaction fail,
all steps are rolled back so that the data is left in a consistent state. The easiest way
to explain a transaction is with an example.

7.1.1 A simple banking example

A common example of why transactions are important is a bank funds transfer.
Consider two bank accounts owned by Alice and Bob, as shown in table 7.1.

Now consider a transfer of $1,000.00 from Alice to Bob (table 7.2).

The withdrawal from Alice’s account and the deposit into Bob’s account must be
completed within a single transaction. Otherwise, if the deposit failed, Alice’s
account balance would be $4,000.00, but Bob’s would still only be $10,000.00
(table 7.3). The $1,000.00 would be lost in limbo.

Table 7.1 Starting balances

Alice’s account Bob’s account

Balance $5,000.00 Balance $10,000.00

Table 7.2 Desired transaction

Alice’s account Bob’s account

Balance $5,000.00 Balance $10,000.00

Withdrawal $1,000.00

 Deposit $1,000.00

Balance $4,000.00 Balance $11,000.00

What is a transaction? 147
A transaction would ensure that if the deposit failed, the withdrawal would be
rolled back. After the rollback, the data would be in the same state it was before
the transaction began (table 7.4).

This is quite a simple example. As you can imagine, a true-life transfer of funds
within a banking system would be much more complex. For that reason, there
are various types of transactions that allow transactions to encompass a much
broader scope.

 Transactions can be very small and basic, perhaps consisting of only a couple
of SQL statements that change data in a single table of a single database. How-
ever, transactions can also become very large and complex. A business-to-business
transaction could even leave the realm of computers and require physical inter-
action with human beings (e.g., a signature). The topic of transactions could eas-
ily fill a book of its own, so we’ll only consider four scopes of transactions that
iBATIS supports:

■ Automatic—For simple, single statements that don’t require an explicitly
demarcated transaction.

■ Local—A simple, narrowly scoped transaction involving many statements
but only a single database.

Table 7.3 Failed deposit

Alice’s account Bob’s account

Balance $5,000.00 Balance $10,000.00

Withdrawal $1,000.00

 Deposit (FAILS) $1,000.00

Balance $4,000.00 Balance $10,000.00

Table 7.4 Failed deposit

Alice’s account TX Bob’s account

Balance $5,000.00 Balance $10,000.00

Withdrawal (Rollback) $1,000.00 TX1

TX1 Deposit (FAILS) $1,000.00

Balance $5,000.00 Balance $10,000.00

148 CHAPTER 7

Transactions
■ Global—A complex, broadly scoped transaction involving many statements
and many databases or potentially other transaction capable resources such
as JMS (Java Messaging Service) queues or JCA (J2EE Connector Architec-
ture) connections.

■ Custom—iBATIS supports user-provided connections for which you can man-
age the transactions however you like.

We’ve dedicated a section of this chapter to each of these scopes. Before we dis-
cuss them in more detail, let’s first talk about the properties of transactions.

7.1.2 Understanding transaction properties

Certain properties, or features, are required for a system to be able to honestly
claim it is capable of performing transaction processing. Nearly all modern rela-
tional databases support transactions, and any that don’t should not be consid-
ered for enterprise solutions. The properties are known as the ACID (atomicity,
consistency, isolation, and durability) properties.

Atomicity
The feature that guarantees that all steps in a transaction either succeed or fail as
a group is called atomicity. Without this, it’s possible that the database could be left
in an inaccurate state because one step of the transaction failed. This can be illus-
trated very simply by thinking of mathematical addition. Let’s add up some num-
bers and consider each addition as a step in the transaction (table 7.5).

Table 7.5 Desired transaction

Transaction state Operation

Initial State 10

Step 1 + 30

Step 2 + 45

Step 3 + 15

End State = 100

What is a transaction? 149
Now let’s say one of those additions failed, say step 3 (table 7.6).

The data is incorrect because one of the steps in the transaction failed (table 7.7).

In a system that guarantees atomicity, none of the operations would be per-
formed, and the data in the database would not be impacted.

Consistency
Many good database schemas define constraints to ensure integrity and consis-
tency. The ACID feature called consistency requires that at both the beginning and
the end of a transaction the database must be in a consistent state. A consistent
state is defined as one whereby all constraints—including integrity constraints,
foreign keys, and uniqueness—are met.

Isolation
Databases are often centralized resources shared by a number of users. It doesn’t
matter how many users you have; if there’s more than one user, it becomes very
important to keep transactions from conflicting with each other. The ACID feature

Table 7.6 Nonatomic transaction

Transaction state Operation

Initial State 10

Step 1 + 30

Step 2 + 45

Failed Step 3 + 15

End State = 85

Table 7.7 Atomic transaction

Transaction state Operation

Initial State 10

Step 1 + 30

Step 2 + 45

Failed Step 3 + 15

Rolled Back Initial
State

= 10

150 CHAPTER 7

Transactions
that prevents conflicts is called isolation. Think about the math scenario again.
What would happen if another user tried to query the value halfway through the
transaction (table 7.8)?

There is no simple answer, as there are various isolation levels that a database may
support. The trade-off for the level of isolation is performance. The more isolated
a transaction needs to be, the slower it will be—especially concurrent access per-
formance. The isolation levels are as follows:

■ Read uncommitted—This is the lowest level of isolation, and is really no isola-
tion at all. It will read data from a table, even if it is the result of an incomplete
transaction. Hence, in our example, this isolation level would result in 85
being returned.

■ Read committed—This level of isolation prevents uncommitted data from
being returned. However, within a transaction, if rows are selected there is
nothing stopping those rows from being modified by another user, even
before the transaction is complete. This means that if the same rows are
queried once at the beginning of the transaction and once at the end, they
aren’t guaranteed to be the same.

■ Repeatable read—This level ensures that only committed data will be read,
and in addition will acquire read-locks on queried rows to prevent them
from being modified by another user before the end of the transaction.
However, this level of protection depends completely on the type of query
used. If the query contains a range clause (e.g., BETWEEN), a range lock will
not be acquired, and therefore the rows may be changed by another user

Table 7.8 Isolated transaction

User 1 Operation User 2

Initial State 10

Step 1 + 30

Step 2 + 45

Intermediate State = 85 << Read

Step 3 + 15

End State = 100

Automatic transactions 151
and again cause different results when the same ranged query is run twice
within the same transaction (known as phantom reads).

■ Serializable—This is the highest level of isolation possible. Essentially it exe-
cutes all transactions in order, one after the other, so that there is no con-
flict among any one of them. Obviously this imposes a significant
performance penalty for highly concurrent systems, because everyone ends
up standing in line to complete their work.

Durability
A database that doesn’t persist data in a durable way is like a bridge that doesn’t
support the cars that drive on it. The ACID feature of durability requires that once
the database has reported a transaction as ending successfully, the results are safe.
Even if a system failure occurs after the transaction, the data should be safe.

 Now that you’re familiar with the basics of transactions and the qualities that
make them what they are, let’s discuss how you work with various types of transac-
tions in iBATIS.

7.2 Automatic transactions

iBATIS only deals in transactions; it has no concept of ever working outside of a
transaction scope. So although JDBC has a concept of “autocommit” mode, iBATIS
does not support it directly. Instead, iBATIS supports automatic transactions. This
allows you to run a simple update statement or query with a single method call, and
without worrying about demarcating the transaction. The statement will still be
run inside a transaction, but you do not have to explicitly start, commit, or end it.

 There’s nothing special you need to do to run a statement within an automatic
transaction—you simply execute your statement. The configuration is the same as
for local transactions, which we discuss in the next section. Listing 7.1 shows how
this is done. Note that each statement is a separate transaction, including the calls
to queryForObject and update().

public void runStatementsUsingAutomaticTransactions()
{
 SqlMapClient sqlMapClient =
 SqlMapClientConfig.getSqlMapClient();
 Person p = (Person)
 sqlMapClient.queryForObject("getPerson",
 new Integer(9));

Listing 7.1 Automatic transaction

152 CHAPTER 7

Transactions
 p.setLastName("Smith");
 sqlMapClient.update("updatePerson", p);
}

Where is the transaction? Well, since it’s automatic, it just happens behind the
scenes, but it does happen. Many times that is adequate, but sometimes you need
to have finer control, and in those cases, you’ll need to use more explicit local or
global transactions.

7.3 Local transactions

Local transactions are the most
common type of transaction, and
are really the minimum you
should use on any project involv-
ing a relational database. Even
automatic transactions, as dis-
cussed in the previous section, are a less verbose form of local transaction. A local
transaction is one that is contained within a single application and involves a
resource, such as a relational database, that is capable of only a single transaction.
Figure 7.1 depicts this.

 Local transactions are configured in the iBATIS SQL Map configuration XML
file as a JDBC transaction manager. Listing 7.2 shows how the transaction manager
configuration might read.

<transactionManager type="JDBC">
 <dataSource type="SIMPLE">
 <property …/>
 <property …/>
 <property …/>
 </dataSource>
</transactionManager>

The type="JDBC" attribute tells iBATIS to use the standard JDBC Connection API
for managing transactions. Using the SqlMapClient API to demarcate transactions
is very easy. Listing 7.3 shows the typical pattern for transaction demarcation.

Listing 7.2 Local transaction manager configuration

Application

Start

Commit

End
DB2

Figure 7.1 Local transaction scope

Global transactions 153
public void runStatementsUsingLocalTransactions() {
 SqlMapClient sqlMapClient =
 SqlMapClientConfig.getSqlMapClient();
 try {
 sqlMapClient.startTransaction();
 Person p =
 (Person)sqlMapClient.queryForObject
 ("getPerson", new Integer(9));
 p.setLastName("Smith");
 sqlMapClient.update("updatePerson", p);

 Department d =
 (Department)sqlMapClient.queryForObject
 ("getDept", new Integer(3));
 p.setDepartment(d);
 sqlMapClient.update("updatePersonDept", p);
 sqlMapClient.commitTransaction();
 } finally {
 sqlMapClient.endTransaction();
 }
}

The two update statements in listing 7.3 will be run within the same transaction,
and therefore if either one fails, both will fail.

 It’s very important to note the try/finally block that surrounds the transac-
tion demarcation methods. This pattern ensures that the transaction will be prop-
erly ended, even in the event of an error. Using a try/finally block is simpler
and more effective than using a try/catch block, because it doesn’t require you to
catch an exception that you probably can’t do anything with anyway.

7.4 Global transactions

Global transactions define a much wider transaction scope than local transactions
do. They can involve other databases, message queues, and even other applica-
tions. Figure 7.2 shows such systems and illustrates just how complicated global
transactions can become.

 Luckily, as far as iBATIS goes, using a global transaction isn’t any harder than
using a local one. But, there are some things to be aware of, as well as some
choices to make, some of which are best discovered through trial and error.

Listing 7.3 Local transaction

154 CHAPTER 7

Transactions
7.4.1 Using active or passive transactions

iBATIS can participate in a global transaction in one of two ways: actively or pas-
sively. When configured to actively participate, iBATIS will look for the global
transaction context and attempt to manage it appropriately. This means that iBA-
TIS can check the state of an existing transaction or start one if necessary. It will
also be able to set the state to “rollback-only” in the event of an error, which will
notify other participating resources that the transaction should not be committed.

 When configured to passively participate in a global transaction, iBATIS will
simply ignore all instructions to start, commit, and end transactions. It will throw
exceptions in the case of an error, which iBATIS assumes will cause the transaction
to be rolled back.

 Deciding which to use is sometimes a matter of just trying it. Different applica-
tion servers and different architectures will work better one way or the other. The
good thing is, it’s very easy to switch back and forth. Listing 7.4 shows the configu-
ration for both active participation and passive participation.

<transactionManager type="JTA">
 <property name="UserTransaction"
 value="java:/ctx/con/someUserTransaction"/>
 <dataSource type="JNDI">
 <property name="DataSource"
 value="java:comp/env/jdbc/someDataSource"/>
 </dataSource>
</transactionManager>

<transactionManager type="EXTERNAL">
 <dataSource type="JNDI">

Legacy

CICS

Application

Oracle

Application

DB2

Message

Queue Figure 7.2
Example of global transaction scope

Listing 7.4 Global transaction manager configuration options

Active participation

Passive participation

Global transactions 155
 <property name="DataSource"
 value="java:comp/env/jdbc/someDataSource"/>
 </dataSource>
</transactionManager>

Notice how in both cases the DataSource is retrieved from a JNDI context. This is a
practical requirement, since the connections you will need must be managed
within a global transaction manager scope. In the case of JTA, a UserTransaction
instance is also required from a JNDI context, so that it can actively participate. In
the case of the EXTERNAL transaction manager, it does not need the UserTrans-
action instance, as it assumes that some external system is managing the transac-
tion participation.

7.4.2 Starting, committing, and ending the transaction

Coding for a global transaction is exactly the same as coding for automatic or local
transactions. So you should still start, commit, and end the “inner transaction
scope.” You might ask why, considering the transaction is globally defined. There
are two reasons. First, it helps iBATIS manage other resources such as connections
to the database so that you don’t unnecessarily keep requesting and returning con-
nections from the data source. Second, it allows you to switch back and forth
between local and global transactions without any code changes. Listing 7.5 shows
the same transaction as in the local example; and as you can see, it doesn’t make a
difference to iBATIS whether you’re using local or global transactions.

public void runStatementsUsingGlobalTransactions() {
 SqlMapClient sqlMapClient =
 SqlMapClientConfig.getSqlMapClient();
 try {
 sqlMapClient.startTransaction();
 Person p =
 (Person)sqlMapClient.queryForObject
 ("getPerson", new Integer(9));
 p.setLastName("Smith");
 sqlMapClient.update("updatePerson", p);

 Department d =
 (Department)sqlMapClient.queryForObject
 ("getDept", new Integer(3));
 p.setDepartment(d);
 sqlMapClient.update("updatePersonDept", p);
 sqlMapClient.commitTransaction();

Passive participation

Listing 7.5 Global transaction

156 CHAPTER 7

Transactions
 } finally {
 sqlMapClient.endTransaction();
 }
}

So, now that you know how to carry out either local or global transactions, how do
you decide which to use? Read on for help making that decision.

7.4.3 Do I need a global transaction?

The answer to this question is: “probably not.” In general, there is a great deal of
overhead involved with global transactions. This is mostly due to the fact that they
are distributed and that they typically require more network traffic and state man-
agement than local transactions. If there were no cost, we probably would just use
global transactions for everything. In addition to the lost performance, global
transactions are harder to set up. They need more infrastructure, more software,
and more resources. So even if you’re using container-managed transactions,
ensure that you’re only using global transactions if you’re absolutely certain you
need them. Most good application servers have very simple configuration options
to enable or disable distributed transactions.

 If none of the options we have looked at will meet your needs, more options
are available.

7.5 Custom transactions

As you’ve already seen, iBATIS allows you to manage transactions in various ways. If
none of the provided transaction management approaches works for you, then
there are a couple of options for managing transactions yourself. The first is by writ-
ing your own transaction manager using the iBATIS interfaces and then plugging it
into the SQL Map configuration file. This approach is discussed in chapter 12. The
second approach is to simply pass iBATIS a JDBC Connection instance to work with,
thereby allowing you full control over the connection and transaction. There are
two ways to pass a Connection instance to a SqlMapClient. The first is setUserCon-
nection(Connection), which is shown in listing 7.6.

public void runStatementsUsingSetUserConnection() {
 SqlMapClient sqlMapClient =
 SqlMapClientConfig.getSqlMapClient();
 Connection conn = null;

Listing 7.6 Custom transaction control with setUserTransaction()

Custom transactions 157
 try {
 conn = dataSource.getConnection();
 conn.setAutoCommit(false);
 sqlMapClient.setUserConnection(conn);
 Person p =
 (Person)sqlMapClient.queryForObject
 ("getPerson", new Integer(9));
 p.setLastName("Smith");
 sqlMapClient.update("updatePerson", p);

 Department d =
 (Department)sqlMapClient.queryForObject
 ("getDept", new Integer(3));
 p.setDepartment(d);
 sqlMapClient.update("updatePersonDept", p);
 conn.commit();
 } finally {
 sqlMapClient.setUserConnection(null);
 if (conn != null) conn.close();
 }
}

The second way is to use openSession (Connection). This is the preferred
approach, because iBATIS can do a better job of resource management. Listing 7.7
shows how this is done with openSession().

public void runStatementsUsingSetUserConnection() {
 SqlMapClient sqlMapClient =
 SqlMapClientConfig.getSqlMapClient();
 Connection conn = null;
 SqlMapSession session = null;
 try {
 conn = dataSource.getConnection();
 conn.setAutoCommit(false);
 session = sqlMapClient.openSession(conn);
 Person p =
 (Person)session.queryForObject("getPerson",
 new Integer(9));
 p.setLastName("Smith");
 session.update("updatePerson", p);

 Department d =
 (Department)session.queryForObject
 ("getDept", new Integer(3));
 p.setDepartment(d);
 session.update("updatePersonDept", p);

Listing 7.7 Custom transaction control with openSession()

158 CHAPTER 7

Transactions
 conn.commit();
 } finally {
 if (session != null) session.close();
 if (conn != null) conn.close();
 }
}

The code isn’t as elegant this way, which is sometimes a good reason to write your
own transaction manager. Furthermore, you should still define a transaction man-
ager of type EXTERNAL and also provide at least a SIMPLE DataSource; otherwise
certain features such as lazy loading will not work properly.

 Avoid using this approach if possible, and always consider writing your own
transaction manager.

7.6 Demarcating transactions

Now that you know how to start and end transactions in various ways, you might
be asking yourself, “Where should I start and end my transaction?” As it turns out,
this question of where can be harder to answer than the question of how. As with
most difficult questions, the answer is: “It depends.” You’ll find a lot of different
answers depending on whom you ask.

 Where you demarcate your transaction will determine how long the transac-
tion remains open, as well as how much work is included within the scope of the
transaction. Knowing this, it is obvious that performance will suffer with longer-
lived, wider-scoped transactions. However, these larger transactions are also some-
what safer in that they ensure the integrity of what is probably a group of related
work (otherwise, why would it all be taking place within a single request?).
Because it can be difficult to make the decision, here is a simple rule of thumb:

The scope of a transaction should be as wide as possible, but should not extend
beyond the scope of a single user action.

For example, in a web application, when a user clicks a button to submit a form,
the transaction scope should begin immediately, but by the time the response
page is rendered in the user’s browser, the transaction should be complete. In a
rich client application, the rule is generally the same. A transaction should
include all of the work involved in a single user operation—which is generally rep-
resented by a single button click. Another way to think about it is this: a user
should never be able to walk away from their computer and leave a transaction
open, or incomplete.

Demarcating transactions 159
 So where do we stop and start transactions then? Ideally, you would start the
transaction nowhere. In other words, you’d let the container do it. So declara-
tively you would configure your application such that the transactions were
demarcated by the container. Whether you’re using an application server with
stateless session beans, or a lightweight container like the Spring Framework, you
can configure transactions declaratively. The container will ensure that the trans-
actions are started, committed, and ended appropriately. iBATIS has a unified pro-
gramming model for transactions, meaning you can and should still use
startTransaction(), commitTransaction(), and endTransaction() within your
code, even if the container itself will demarcate the real transaction. This allows
you to port your persistence code outside of a container and still have a relatively
clean transaction story. When config-
ured for EXTERNAL transaction man-
agement, iBATIS will let the container
handle the transactions.

 If you’re not in a position to allow
for container-managed transactions,
you can manage them yourself. With
a layered architecture, you have a
number of options for starting and
ending your transactions. Regardless
of what you choose, it’s important
that you remain consistent. Referring
to figure 7.3, which shows a diagram
of a layered architecture, you could
conceivably demarcate your transac-
tions at the presentation layer, the
business logic layer, or the persis-
tence layer.

 Let’s take a close look at how you
would demarcate transactions in each
of these three layers.

7.6.1 Demarcating transactions at the presentation layer

Demarcating transactions at the presentation layer will create very large, wide-
scoped, long-lived transactions. However, such transactions are also very safe,
provide the best data integrity, and are easy to implement. You can use a Servlet filter
or a plug-in for your presentation framework to start, commit, and end your

Presentation

Business Logic

Persistence

Database

Business Object

Model

Figure 7.3 Layered architecture

160 CHAPTER 7

Transactions
transactions. The disadvantage of this approach is that performance may suffer with
such long-lived transactions. The presentation layer is also generally unaware of
exactly why the transaction is being started, as it is quite far from the persistence
layer. As a result, many transactions can end up being unnecessarily long-lived. The
other disadvantage is that if you have multiple user interfaces for your application,
such as a website, a web services API, and a rich client, then you must reimplement
the transaction scopes for each UI, which can create some inconsistencies.

 Since the presentation tier is too far away from the persistence layer to be a log-
ical place to demarcate transactions, why not go straight to the persistence layer?

7.6.2 Demarcating transactions at the persistence layer

The persistence layer is where most people would naturally think to demarcate
transactions. However, it makes a surprisingly poor choice. The reason is that a
good persistence layer is built of rather narrowly scoped methods, loosely coupled
and yet highly cohesive database operations. It’s actually rare that one would use a
single one of these operations alone within a transaction, as that would make the
transaction rather useless. It’s more common that a group of these database oper-
ations requires execution to perform some useful business function. So the persis-
tence layer is simply too fine grained. It’s possible to build an additional layer that
binds these groups of persistence operations together, and therefore makes for a
sensible choice for transaction demarcation. However, that’s creating more
unnecessary work and complicates the design, all for the sake of something that
should ideally be transparent.

7.6.3 Demarcating transactions at the business logic layer

Having eliminated the presentation and persistence layers, we are left with the busi-
ness logic layer, which you’ve probably guessed is the right choice. Well, as we’ve
said before, depending on the application requirements, any one of these layers
could be the right choice. However, experience has shown that the business logic
layer often makes a good choice for demarcating transactions. This is a common
and familiar approach to both EJB developers and Spring framework developers
alike. Stateless session beans are a business logic component, and often transaction
requirements are declared as part of their configuration. In a similar way, Spring
allows transactions to be declared for almost any method, and often the business
logic components are chosen over the DAOs, simply because it’s common for a sin-
gle business operation to require more than one DAO.

Summary 161
 On another technical note, demarcating your transactions at the business logic
layer also allows you to have multiple interfaces to your application while main-
taining a single, consistent transaction model.

 So what do you think? Does demarcating transactions at the business logic layer
feel natural? Well, it should. Architects, database administrators, and developers
often think of transactions as a technical concept. After all, a transaction is “some-
thing that a database does.” But we should think of transactions at a higher level. A
transaction scope should encompass a business operation or a business function. It
shouldn’t just be thought of as a database feature. Furthermore, databases are not
the only infrastructural elements that support transactions. Our business operation
may include calls through a connector to a mainframe or publishing messages to a
message queue, or it may even involve human intervention (think workflow) as part
of the transaction—all of which may indeed support transactions.

 The business layer is a perfect place to demarcate transactions, both logically
and technically speaking.

7.7 Summary

In this chapter we discussed transactions, what they are, and how to use them
within iBATIS. We discussed the ACID properties that are imperative for proper
transaction management. Atomicity ensures that all transaction steps succeed or
fail as a group. Consistency ensures that all database constraints are met both at
the beginning and at the end of a transaction. Isolation ensures that concurrent
transactions do not unexpectedly conflict with each other. Durability ensures that
the data is safe once the transaction has successfully completed.

 We discussed the various transaction scopes, including automatic transactions,
local transactions, global transactions, and custom transactions. Automatic trans-
actions are the narrowest-scoped transactions, involving only a single statement,
but within a transaction nevertheless. Local transactions are wider-scoped transac-
tions involving multiple update statements, but still only a single application with
a single database. Global transactions are much more complicated and allow for
transactions to span multiple databases, resources, and applications. Custom
transactions provide a means for developers to gain full control over the connec-
tion, and therefore the transaction, used by iBATIS.

 Local transaction scope, including automatic transactions, is the narrowest
scope that should be used for any application involving a relational database. Glo-
bal transactions should be used whenever multiple resources are involved. Cus-
tom transactions (user-provided connections) should be used judiciously and, if
possible, avoided by writing a custom transaction manager implementation.

162 CHAPTER 7

Transactions
 Choosing where to demarcate your transactions can be difficult sometimes,
but for the most part you should think of transactions as encompassing a business
function. Therefore, the business logic layer often makes the best choice.

Using Dynamic SQL
This chapter covers
■ Introduction to Dynamic SQL
■ Simple Dynamic SQL example
■ Advanced Dynamic SQL
■ Future directions
163

164 CHAPTER 8

Using Dynamic SQL
In chapter 4 we discussed how to write simple static SQL. Static SQL only requires
that values be assigned via the property (#...#) or literal ($...$) syntax. Although
most of the SQL you will write in iBATIS will likely be static, there are several occa-
sions where it will not remain that simple. For example, you will quickly run into
more involved scenarios where you need to iterate over a list of values for an IN state-
ment, provide users with the ability to determine which columns will be displayed,
or simply have a changing WHERE criterion based on your parameter object’s state.
iBATIS provides a set of dynamic SQL tags that can be used within mapped state-
ments to enhance the reusability and flexibility of the SQL.

 In this chapter we’ll provide you with an understanding of what Dynamic SQL
is, its usefulness, and when best to use it. We’ll also give you some comparative
context regarding other solutions you may use for dealing with Dynamic SQL
requirements. In the end you should have a strong understanding of how to add
Dynamic SQL to your arsenal of problem-solving techniques.

 Before we examine dynamic tags in detail, let’s demonstrate their value by
jumping right into an example of one of the most common situations where you
will need Dynamic SQL: the WHERE clause.

8.1 Dealing with Dynamic WHERE clause criteria

In the following example we are querying a table named
Category from our shopping cart application. The table
column parentCategoryId is a self-referencing column. In
other words, parentCategoryId references categoryId in
the same Category table, as shown in figure 8.1.

 The requirements are simple. If the parentCategoryId
property of the passed-in Category object is null, then it
means that we want to query all top-level categories. If the
parentCategoryId property has a non-null numeric value,
then that means that we want to query for all child Cate-
gory objects of the parent Category. The parent Category
is indicated by the parentCategoryId value.

 In SQL, an equal sign (=) cannot be used to compare
null equalities. The IS keyword is needed to successfully test for equality with a
NULL. Since we want to use the same SQL statement to handle both NULL and
non-NULL comparisons, we will use Dynamic SQL to accomplish this with one
mapped statement. We will use this mapped statement to examine the anatomy of
Dynamic SQL (listing 8.1).

Category

PK categoryId

 title
 description
FK1 parentCategoryId
 sequence
 leftNode
 rightNode
 ancestorTree
 imageId

Figure 8.1 Category
table diagram

Dealing with Dynamic WHERE clause criteria 165
…
<select id="getChildCategories" parameterClass="Category"
 resultClass="Category">
SELECT *
FROM category
<dynamic prepend="WHERE ">
 <isNull property="parentCategoryId">
 parentCategoryId IS NULL
 </isNull>
 <isNotNull property="parentCategoryId">
 parentCategoryId=#parentCategoryId#
 </isNotNull>
</dynamic>
</select>
…

The anatomy of Dynamic SQL always begins with a parent tag. A parent tag can be
any of the Dynamic SQL tags. In this case we are using the <dynamic> tag as the
parent. The <dynamic> tag does not evaluate any values or state like the other
Dynamic SQL tags do. It will generally use only the prepend attribute, which will
prefix the attribute’s value to the resulting body content of the <dynamic> tag. In
our example, the value WHERE will be prefixed to any resulting SQL produced by
the processing of the nested Dynamic SQL tags.

 The body of the parent tag may contain either simple SQL syntax or other
Dynamic SQL tags. You can see in the example that we have <isNull> and
<isNotNull> tags nested in the body of the <dynamic> tag. Our concern here is
that the appropriate SQL be part of the WHERE criteria depending on the null state
of the parentCategoryId property of the Category parameter class (parameter-
Class="Category").

 At this point it is important to note how the prepend attribute is evaluated for
prefixing. If the body content were to result in no text being produced, then the
prepend value would be ignored. In order for the prepend attribute to be prefixed,
there needs to be resulting SQL to prepend to. In our scenario there will always be
resulting SQL. In other cases where the body resulted in no content being pro-
duced, the WHERE value in the prepend attribute would simply be ignored.

 One of the benefits of Dynamic SQL is that it enhances the reusability of your SQL
code. Had we not used Dynamic SQL in this example, we would have found
ourselves writing two select statements to accommodate the scenario. We would also
be required to push the examination of our category object’s parentCategoryId

Listing 8.1 Example of Dynamic WHERE clause

166 CHAPTER 8

Using Dynamic SQL
property into the DAO layer (see chapter 10) and call the appropriate select
statement based on the parentCategoryId’s null state. Although handling this
simple example without Dynamic SQL would not have inconvenienced us that
much, the real value of Dynamic SQL becomes evident when several different
combinations of properties result in an exponential growth of statement
possibilities. By using Dynamic SQL, we increase mapped statement reuse and avoid
having to write multiple static SQL statements.

 Now that we have gained a good context for the usage and power of Dynamic
SQL, let’s delve deeper into exploring all the tags and their attributes.

8.2 Getting familiar with the dynamic tags

iBATIS addresses the need for Dynamic SQL through a robust set of tags which are
used to evaluate various conditions surrounding the parameter object that you
pass into your mapped statement. It is important to know the full range of tags
that exist and the various roles they play in producing correct SQL output. The
following sections break the tags into five categories: <dynamic>, binary, unary,
parameter, and <iterate>. Each grouping contains one or more related tags that
share common traits. Before we examine each of these groupings, let’s take a
moment to note some common attributes and behaviors shared by all Dynamic
SQL tags.

 All of the dynamic tags share the prepend, open, and close attributes. The open
and close attributes function the same in each of the tags. They unconditionally
place their values on either the beginning or the end of the resulting content of a
tag. The prepend attribute functions the same in all of the tags except the
<dynamic> tag. The <dynamic> tag will always prefix the prepend value when the
processing of its body results in content. There is no way to prevent the value from
being prefixed with the <dynamic> tag. Listing 8.2 shows some of the Dynamic SQL
tags in action.

…
<dynamic prepend="WHERE ">
…
 <isNotEmpty property="y">
 y=#y#
 </isNotEmpty>

 <isNotNull property="x" removeFirstPrepend="true"
 prepend="AND" open="(" close=")">

Listing 8.2 Mock removeFirstPrepend example

B Opening <dynamic> tag

C Simple isNotEmpty tag

D More complex
isNotEmpty tag

Getting familiar with the dynamic tags 167

 <isNotEmpty property="x.a" prepend="OR">
 a=#x.a#
 </isNotEmpty>

 <isNotEmpty property="x.b" prepend="OR">
 a=#x.b#
 </isNotEmpty>

 <isNotEmpty property="x.c" prepend="OR">
 a=#x.c#
 </isNotEmpty>

 </isNotNull>
…
</dynamic>
…

At , the opening <dynamic> tag implicitly enforces the remove first prepend func-
tionality on child tags. If this <isNotEmpty> tag proves true , then the implicit
removeFirstPrepend will be met for the <dynamic> tag. Any following tags on the
same level will have their prepend values prepended. This <isNotNull> tag spec-
ifies the removeFirstPrepend attribute. The open and close attribute values will
wrap the content produced in its body. At , the first nested content-producing
<isNotEmpty> tag will satisfy the removeFirstPrepend requirement. The first con-
tent-producing <isNotEmpty> tag will not have its OR prepend value prepended. This
will produce correct SQL wrapped in the parentheses.

 The remove first prepend functionality is supported implicitly or explicitly in all of
the tags. The <dynamic> tag supports it implicitly. All other tags support it explic-
itly with the removeFirstPrepend attribute. The remove first prepend functionality
removes the first prepend of a child tag that produces content. If the first content-
producing child does not specify a prepend attribute, it will still count and all fol-
lowing content-producing child tags will have their prepend attribute prefixed to
their content.

 The final piece of shared functionality to note is that all tags can be used inde-
pendently of each other. This means that you do not have to nest all of your
Dynamic SQL tags inside the <dynamic> tag. You could start with an <iterate> tag
and nest <isNull> tags inside as easily as you could wrap them both with a <dynamic>
tag. This functionality is provided because it is only necessary to use a <dynamic> tag
when you want to use its open, close, or prepend value on its resulting content.

 Let’s now analyze each tag category.

E Nested dynamic tag

B
C

D

E

168 CHAPTER 8

Using Dynamic SQL
8.2.1 The <dynamic> tag

The <dynamic> tag is a top-level only tag; this means that it cannot be nested. It is
used to demarcate a section of Dynamic SQL. The tag is meant to provide a means
for prefixing a common prepend, open, or close value to the resulting content of
its body. The <dynamic> tag attributes are shown in table 8.1.

Now that you have a reference for the attributes that can be used in the tag, list-
ing 8.3 illustrates how to use the <dynamic> tag.

…
<select id="getChildCategories" parameterClass="Category"
 resultClass="Category">
SELECT *
FROM category
<dynamic prepend="WHERE ">
 <isNull property="parentCategoryId">
 parentCategoryId IS NULL
 </isNull>
 <isNotNull property="parentCategoryId">
 parentCategoryId=#parentCategoryId#
 </isNotNull>
</dynamic>
</select>
…

In listing 8.3, we use Dynamic SQL to build a WHERE clause for our select statement
that looks at the parentCategoryId property and builds the SQL based on it.

Table 8.1 <dynamic> tag attributes

prepend
(optional)

This value is used to prepend to the tag’s resulting body content. The prepend value
will not be prepended when the tag’s resulting body content is empty.

open
(optional)

This value is used to prefix to the tag’s resulting body content. The open value will not
be prefixed if the tag’s resulting body content is empty. The open value is prefixed
before the prepend attribute’s value is prefixed. For example, if prepend="WHEN" and

open="(", then the resulting combined prefix would be "WHEN (".

close
(optional)

This value is used to append to the tag’s resulting body content. The append value will
not be appended if the tag’s resulting body content is empty.

Listing 8.3 <dynamic> tag example

Getting familiar with the dynamic tags 169
8.2.2 Binary tags

Binary tags compare the value of a parameter property to another value or param-
eter property. The body content is included if the result of the comparison is true.
All binary tags share the property compareProperty as well as compareValue
attributes. The property attribute serves as the primary value to be compared
against, while compareProperty and compareValue serve as the secondary com-
pare values. The compareProperty attribute specifies a property of the parameter
object that will contain a value used to compare against the primary value. com-
pareValue specifies a static value that will be used to compare against the primary
value. The name of the tag indicates how the values should be compared. The tag
attributes are shown in table 8.2.

Table 8.2 Binary tag attributes

property
(required)

The property of the parameter used to compare against the compare-
Value or compareProperty.

prepend
(optional)

This value is used to prepend to the tag’s resulting body content. The
prepend value will not be prepended (a) when the tag’s resulting body
content is empty; (b) if the tag is the first to produce body content and
is nested in a tag with the removeFirstPrepend attribute set to true;
or (c) if the tag is the first to produce body content following a
<dynamic> tag with a prepend attribute value that is not empty.

open
(optional)

This value is used to prefix to the tag’s resulting body content. The open
value will not be prefixed if the tag’s resulting body content is empty.
The open value is prefixed before the prepend attribute’s value is pre-
fixed. For example, if prepend="OR " and open="(" then the resulting
combined prefix would be "OR (".

close
(optional)

The close value is used to append to the tag’s resulting body content.
The append value will not be appended if the tag’s resulting body con-
tent is empty.

removeFirstPrepend
(optional)

This value defines whether the first nested content-producing tag will
have its prepend value removed (optional).

compareProperty
(required if compareValue is
not specified)

This value names a property on the parameter object to compare
against the property named by the property attribute.

compareValue
(required if compareProp-
erty is not specified)

This static comparison value is compared against the property named
by the property attribute.

170 CHAPTER 8

Using Dynamic SQL
All of the binary dynamic tags share those attributes, and the tags themselves are
listed in table 8.3.

Tables are good references but provide lousy examples, so listing 8.4 shows how to
put these tags together.

…
<select id="getShippingType" parameterClass="Cart"
 resultClass="Shipping">
 SELECT * FROM Shipping
 <dynamic prepend="WHERE ">
 <isGreaterEqual property="weight" compareValue="100">
 shippingType='FREIGHT'
 </isEqual>
 <isLessThan property="weight" compareValue="100">
 shippingType='STANDARD'
 </isLessThan>
 </dynamic>
</select>
…

In listing 8.4, we create a select statement, and then examine the weight property
to determine which shipping type to use for it—less than 100 means standard
shipping, and greater than or equal to 100 means freight.

Table 8.3 iBATIS binary dynamic tags

<isEqual> Compares the property attribute with compareProperty or compareValue to
determine if they are equal

<isNotEqual> Compares the property attribute with compareProperty or compareValue to
determine if they are equal

<isGreaterThan> Determines whether the property attribute is greater than compareProperty or
compareValue

<isGreat-
erEqual>

Determines whether the property attribute is greater than or equal to compare-
Property or compareValue

<isLessThan> Determines whether the property attribute is less than compareProperty or
compareValue

<isLessEqual> Determines whether the property attribute is less than or equal to compare-
Property or compareValue

Listing 8.4 Binary tag example

Getting familiar with the dynamic tags 171
8.2.3 Unary tags

Unary tags examine the state of a bean property and do not perform comparisons
against any other values. The body content is included if the result of the state is
true. All unary tags share the property attribute. The property attribute is used to
specify the property on the parameter object that will be used to examine the
state. The name of the tag indicates the type of state that is being examined. The
unary tag attributes are shown in table 8.4.

All of the attributes in table 8.4 are available in the unary dynamic SQL tags listed
in table 8.5.

Table 8.4 Unary tag attributes

property
(required)

The property of the parameter used for state comparison.

prepend
(optional)

This value is used to prepend to the tag’s resulting body content. The prepend
value will not be prepended (a) when the tag’s resulting body content is empty; (b) if
the tag is the first to produce body content and is nested in a tag with the remove-
FirstPrepend attribute set to true; or (c) if the tag is the first to produce body con-
tent following a <dynamic> tag with a prepend attribute value that is not empty.

open
(optional)

This value is used to prefix to the tag’s resulting body content. The open value will
not be prefixed if the tag’s resulting body content is empty. The open value is pre-
fixed before the prepend attribute’s value is prefixed. For example, if prepend="OR
" and open="(", then the resulting combined prefix would be "OR (".

close
(optional)

This value is used to append to the tag’s resulting body content. The append value
will not be appended if the tag’s resulting body content is empty.

removeFirst-
Prepend
(optional)

This attribute value defines whether the first nested content-producing tag will have
its prepend value removed.

Table 8.5 Unary tags

<isProperty-
Available>

Determines whether the specified property exists in the parameter. With a
bean, it looks for a property. With a map, it looks for a key.

<isNotProperty-
Available>

Checks whether the specified property does not exist in the parameter. With
a bean, it looks for a property. With a map, it looks for a key.

<isNull> Determines whether the specified property is null. With a bean, it looks at
the value of the property getter. With a map, it looks for a key. If the key
does not exist, it will return true.

<isNotNull> Determines whether the specified property is anything other than null. With
a bean, it looks at the value of the property getter. With a map, it looks for a
key. If the key does not exist, it will return false.

172 CHAPTER 8

Using Dynamic SQL
Listing 8.5 shows how to use the unary dynamic SQL tags.

…
<select id="getProducts" parameterClass="Product"
 resultClass="Product">
 SELECT * FROM Products
 <dynamic prepend="WHERE ">
 <isNotEmpty property="productType">
 productType=#productType#
 </isNotEmpty>
 </dynamic>
</select>
…

In listing 8.5, we create a simple select mapped statement, then use a dynamic
SQL tag to optionally filter the results based on the productType property.

8.2.4 Parameter tags

It is possible to define a mapped statement without a parameter. The parame-
ter tags were created to check whether a parameter has been passed in to the
mapped statement. The tag attributes are shown in table 8.6.

<isEmpty> Determines whether the specified property is a null or empty String, Col-
lection, or String.valueOf().

<isNotEmpty> Determines whether the specified property is not a null or empty String,
Collection, or String.valueOf().

Listing 8.5 Unary tag example

Table 8.5 Unary tags (continued)

Table 8.6 Parameter tag attributes

prepend
(optional)

This value is used to prepend to the tag’s resulting body content. The prepend
value will not be prepended (a) when the tag’s resulting body content is empty;
(b) if the tag is the first to produce body content and is nested in a tag with the
removeFirstPrepend attribute set to true; or (c) if the tag is the first to pro-
duce body content following a <dynamic> tag with a prepend attribute value
that is not empty.

open
(optional)

This value is used to prefix to the tag’s resulting body content. The open value
will not be prefixed if the tag’s resulting body content is empty. The open value is
prefixed before the prepend attribute’s value is prefixed. For example, if
prepend="OR " and open="(", then the resulting combined prefix would be
"OR (".

Getting familiar with the dynamic tags 173
All of the attributes in table 8.6 are available in the tags listed in table 8.7.

Listing 8.6 shows how to use a parameter tag in a select statement.

…
<select id="getProducts" resultClass="Product">
 SELECT * FROM Products
 <isParameterPresent prepend="WHERE ">
 <isNotEmpty property="productType">
 productType=#productType#
 </isNotEmpty>
 </ isParameterPresent >
</select>
…

In this example, we create a simple select statement again, and this time we option-
ally create the WHERE for filtering the results based on the productType parameter.

8.2.5 The <iterate> tag

The <iterate> tag takes a property that is a Collection or array to produce repet-
itive portions of SQL from a set of values. The list is rendered by rendering the val-
ues of the list to a SQL fragment separated by the conjunction attribute’s value.
The open attribute value is what is prefixed to the beginning of the rendered value
list. The close attribute is what is appended to the rendered value list. The tag
attributes are shown in table 8.8.

close
(optional)

This value is used to append to the tag’s resulting body content. The append
value will not be appended if the tag’s resulting body content is empty.

removeFirst-
Prepend
(optional)

This attribute value defines whether the first nested content-producing tag will
have its prepend value removed.

Table 8.7 Parameter tags

<isParameterPresent> Determines whether a parameter object is present

<isNotParameterPresent> Determines whether the parameter does not exist

Listing 8.6 Parameter tag example

Table 8.6 Parameter tag attributes (continued)

174 CHAPTER 8

Using Dynamic SQL
Listing 8.7 shows how to use the iterate tag to build a more complex WHERE condi-
tion for our SQL statement.

…
<select id="getProducts" parameterClass="Product"
 resultClass="Product">
 SELECT * FROM Products
 <dynamic prepend="WHERE productType IN ">
 <iterate property="productTypes"
 open="(" close=")"
 conjunction=",">
 productType=#productType#
 </iterate>
 </dynamic>
</select>
…

In this example, we create a select statement, then iterate over a list of product
types to create a more complex filter for it.

Table 8.8 <iterate> tag attributes

property
(required)

The property of the parameter containing the list.

prepend
(optional)

This value is used to prepend to the tag’s resulting body content. The
prepend value will not be prepended (a) when the tag’s resulting body con-
tent is empty; (b) if the tag is the first to produce body content and is
nested in a tag with the removeFirstPrepend attribute set to true; or (c) if
the tag is the first to produce body content following a <dynamic> tag with
a prepend attribute value that is not empty.

open
(optional)

This value is used to prefix to the tag’s resulting body content. The open
value will not be prefixed if the tag’s resulting body content is empty. The
open value is prefixed before the prepend attribute’s value is prefixed. For
example, if prepend="OR " and open="(", then the resulting combined
prefix would be "OR (".

close
(optional)

The close value is used to append to the tag’s resulting body content. The
append value will not be appended if the tag’s resulting body content is
empty.

conjunction
(optional)

This is the value used in between the rendering of the list values to the SQL
statement.

removeFirstPrepend
(optional)

The removeFirstPrepend attribute value defines whether the first nested
content-producing tag will have its prepend value removed.

Listing 8.7 <iterate> tag example

A complete simple example 175
8.3 A complete simple example

Now that you have a basic knowledge of Dynamic SQL, let’s implement a simple
search that is used throughout an application. For this example we’ll use the
JGameStore application (see figure 8.2), to which you’ll be more formally intro-
duced in chapter 14. While we build our example, we will be applying a simple
approach to help you conceptualize and assemble your Dynamic SQL.

 Before we move into our example, let’s examine the process we’ll use. The
process itself is quite simple and the steps involved may be applied in a different
order and with varying degrees of effort as your application matures. Everything
starts out with a little more work up front because you have to build the founda-
tion. Once the foundation is laid, it becomes less complex to build upon.

Figure 8.2 Search results screen from JGameStore

176 CHAPTER 8

Using Dynamic SQL
 The process consists of a few basic steps:

1 Describe how the data will be retrieved and displayed.

2 Determine which database structures are involved.

3 Write out the SQL in static form.

4 Apply Dynamic SQL tags to static SQL.

This is a pretty simple page but, as you know, there is always more behind it than
meets the eye. So in the following sections, we’ll look at the code to make this work.

8.3.1 Defining how to retrieve and display data

On each page of the JGameStore application we want to implement a simple
search field with a search button. The search field will tokenize terms by spaces.
For example, if we enter Adventure Deus the two terms will be Adventure and
Deus. Each term should check for an inclusive match against the product’s cate-
goryId, name, and description. Once the search button is clicked, any resulting
products should be paged in increments of four.

8.3.2 Determining which database structures are involved

Let’s move on to defining which table structures are involved.
Since we are only searching against the categoryId, name,
and description, we will require only the Product table to ful-
fill our requirements (figure 8.3). The Product table contains
all of the individual product information that we will need
for search and display.

8.3.3 Writing the SQL in static format

For starters we will construct some static SQL that will select
all the necessary fields we will need to display in our search
results. Listing 8.8 shows the static query we have assembled
to accomplish the display of product information.

SELECT
 PRODUCTID,
 NAME,
 DESCRIPTION,
 IMAGE,
 CATEGORYID
FROM PRODUCT

Listing 8.8 Static SQL mock-up

Figure 8.3 Diagram
of the table involved
in the simple product
query

A complete simple example 177
WHERE
 lower(name) like 'adventure%' OR
 lower(categoryid) like 'adventure%' OR
 lower(description) like 'adventure%' OR
 lower(name) like 'Deus%' OR
 lower(categoryid) like 'deus%' OR
 lower(description) like 'deus%'

We have now defined our input, output, and table, and it is time to mock up our
SQL statement. Once you have the previous information it is quite simple to con-
struct your SQL. The SELECT statement will fulfill our need to return a list of prod-
ucts. The WHERE clause provides the needed criteria for querying based on the
supplied terms again the name, categoryId, and description.

8.3.4 Applying Dynamic SQL tags to static SQL

Let’s examine our mocked-up SQL statement so we can dissect it and determine
where we need to introduce dynamic tags. Since the SELECT clause is static, we will
not need to make any dynamic alterations to it. The WHERE clause is where we will
have to make dynamic adjustments. Listing 8.9 shows the SQL that we will be look-
ing at.

<select id="searchProductList" resultClass="product" >
 SELECT
 PRODUCTID,
 NAME,
 DESCRIPTION,
 IMAGE,
 CATEGORYID
 FROM PRODUCT
 <dynamic prepend="WHERE">
 <iterate property="keywordList" conjunction="OR">
 lower(name) like lower(#keywordList[]#) OR
 lower(categoryid) like lower(#keywordList[]#) OR
 lower(description) like lower(#keywordList[]#)
 </iterate>
 </dynamic>
</select>

Since the dynamic tags utilize the parameter that is passed into the mapped state-
ment, we need to consider what it is here and how we will use the dynamic tags
with it. The parameter that will be provided to the mapped statement is a List of

Listing 8.9 Dynamic SQL

178 CHAPTER 8

Using Dynamic SQL
Strings. Since we are using a simple List directly, we will use the iterate tag. The
iterate tag will traverse through the List of Strings while its body creates the crite-
ria that looks for the provided term in the categoryId, name, and description. We
need to be sure to add the conjunction attribute with a value of OR. The conjunc-
tion will join each set of term criteria together. Note that it is smart to name your
mapped statements in such a way that it adequately describes the function of the
SQL contained within it. In this case, we named our mapped statement search-
ProductList. When you read the name of the mapped statement, the statement’s
purpose becomes immediately clear.

sqlMap.queryForPaginatedList(
 "searchProducts", parameterObject, PAGE_SIZE);

As a final requirement, we need to make sure that we return only four records at a
time. To accomplish this, we will call our statement using the queryForPaginat-
edList() method, which takes a pageSize parameter. This will allow us to control
how many records are returned.

 We have now stepped through a simple example and learned how to plan and
develop our Dynamic SQL. It is important to remember that Dynamic SQL should
be used with a single purpose that requires multiple options; avoid using it to
accomplish multiple purposes. In our example, the purpose was to address how a
user can select products. Bear in mind that Dynamic SQL was invented to make
the complex simpler and not the simple more complex. Next, let’s move on to a
more advanced usage of Dynamic SQL.

8.4 Advanced Dynamic SQL techniques

In this example, we will use a shopping cart application that needs to provide a way
for customers to search for products using more detail. We’ll build on some of the
structures involved in our previous examples and step up the complexity. Again
we’ll apply the analysis approach that you learned about in the previous example.

8.4.1 Defining the resulting data

Let’s define our output in generic terms. Our shopping cart application requires
that a list of products be displayed when a set of criteria are searched on by a user
(see figure 8.4). The output is determined based on specific selected criteria
involving the categories, products, and manufacturers. The products must be dis-
played in increments of four products per page. Our Dynamic SQL must be able
to produce the paged product list and handle the complex variations of values the
user may enter.

Advanced Dynamic SQL techniques 179
So, how does the search page work with the database? Listing 8.10 shows part of
the answer.

public class ProductSearchCriteria {

 private String[] categoryIds;
 private String productName;
 private String productDescription;
 private String itemName;
 private String itemDescription;
 …
 // setters and getters
}

Essentially, each field on the search page is mapped to a property on the search
criteria class, which is a simple JavaBean.

8.4.2 Defining the required input

We are going to break from the form we used in our previous example by deter-
mining the input requirements before we identify the database structures
involved. The user will perform searches based on five criteria. The list of criteria
will contain the categories, product name, product description, item name, and
item description. The product name and product description will allow for wild-
card searches using the standard database percent (%) syntax. There will be a
multiselect drop-down list that will allow users to narrow the search to a list of cat-
egories. With these complex input requirements, we will need to understand

Listing 8.10 SearchCriteria.java parameter class

Product

PK productId

FK1 categoryId
 name
 description
 image

Item

PK itemId

FK1 productId
 name
 description
 listPrice
 unitPrice
 supplier
 status
 attr1
 attr2
 attr3
 attr4
 attr5

Category

PK categoryId

 name
 color
 description
 image

Figure 8.4
Our search form

180 CHAPTER 8

Using Dynamic SQL
which database structures are involved with accomplishing this. Figure 8.5 shows
the tables that we will be working with in our examination of Dynamic SQL.

 Now let’s define which table structures are involved. Three database tables are
involved in fulfilling our requirements (figure 8.5). We are using the Product table
from our previous example. The two new tables introduced in this example are
named Category and Item. Category is a simple table that defines the category that
the product belongs in. The Item table defines the various product permutations.

8.4.3 Writing the SQL in static format

Now that we have defined the inputs and outputs, we can write the SQL using sim-
ple static SQL that we can run in a query tool. Listing 8.11 shows a static SQL state-
ment that we will start with and make into a dynamic statement.

SELECT
 p.PRODUCTID AS PRODUCTID,
 p.NAME AS NAME,
 p.DESCRIPTION AS DESCRIPTION,
 p.IMAGE AS IMAGE,
 p.CATEGORYID AS CATEGORYID
 FROM Product p
 INNER JOIN Category c ON
 c.categoryId=p.categoryId
 INNER JOIN Item i ON
 i.productId = p.productId

Figure 8.5 The relationships between the various tables involved in searching
for a list of products

Listing 8.11 Static SQL mock-up

Advanced Dynamic SQL techniques 181
 WHERE
 c.categoryId IN ('ACTADV')
 AND
 p.name LIKE '007'
 AND
 p.description LIKE '007'
 AND
 i.name LIKE 'PS2'
 AND
 i.description LIKE 'PS2'

Now that we know our input needs and what tables are involved, we can mock up
a static SQL query. In our static example (listing 8.11), you may have noticed that
the WHERE criteria has been expanded to include the largest possible combination
of criteria. It is important to make your static SQL as complex as possible in order
to provide a good sense of what the dynamic needs will be. Let’s move on to
assembling the Dynamic SQL.

8.4.4 Applying Dynamic SQL tags to static SQL

Now that we have constructed our static SQL mock-up, let’s apply the dynamic
tags. As you can see in listing 8.12, the Dynamic SQL has become a bit more com-
plex. Note the use of <isEqual> as a top-level tag. It’s not necessary to use the
<dynamic> parent because there’s no need for any prepend, open, or close values.
We simply want to either display the content, or not. The same <isEqual> tag is
used to determine the inclusion of a LEFT JOIN.

<select id="searchProductsWithProductSearch"
 parameterClass="productSearch"
 resultClass="product" >
 SELECT DISTINCT
 p.PRODUCTID,
 p.NAME,
 p.DESCRIPTION,
 p.IMAGE,
 p.CATEGORYID
 FROM Product p
 <isEqual property="itemProperties" compareValue="true">
 INNER JOIN Item i ON i.productId=p.productId
 </isEqual>
 <dynamic prepend="WHERE">

Listing 8.12 Dynamic SQL for advanced search

B Contains opening select tag

C Contains minimal
SQL statement

D
Checks to
see if join
needed for
item criteria

Contains simple
opening dynamic tagE

182 CHAPTER 8

Using Dynamic SQL
 <iterate
 property="categoryIds"
 open="p.categoryId IN (" close=")"
 conjunction="," prepend="BOGUS">
 #categoryIds[]#
 </iterate>

 <isNotEmpty property="productName" prepend="AND">
 p.name LIKE #productName#
 </isNotEmpty>

 <isNotEmpty property="productDescription" prepend="AND">
 p.description LIKE #productDescription#
 </isNotEmpty>

 <isNotEmpty property="itemName" prepend="AND">
 i.name LIKE #itemName#
 </isNotEmpty>

 <isNotEmpty property="itemDescription" prepend="AND">
 i.description LIKE #itemDescription#
 </isNotEmpty>
 </dynamic>
 </select>

The opening select tag use aliases to define our parameter class type as prod-
uctSearch and the result class type as product. The SQL fragment is the most
minimal portion of SQL that could be used—for example, in case the user simply
wanted to perform a search that returned everything. The <isEqual> tag is
used outside of the dynamic fragment to determine if a join is needed. We use the
opening dynamic tag , which has a prepend value of WHERE. If no content results
in its body, then the WHERE value specified in the prepend attribute will be ignored.
As a reminder, the dynamic tag also implicitly removes the prepend value of the
first content-producing tag in its body. The <iterate> tag is the thing to note
because it works hand in hand with the dynamic tag to make available all the
necessary SQL components that will provide search constraints around certain cat-
egories. The prepend attribute is needed on the <iterate> tag because of a cur-
rent issue in iBATIS. Content produced by the first nested tag is not counted as the
first prepend and will cause the prepend of the next tag to be ignored. As a rule, be
sure to specify the prepend attribute even if the tag will never need it. The pro-
ductName, productDescription, itemName, and itemDescription properties are
evaluated with the <isNotEmpty> tag to determine if they have a value other than
'' (empty) or NULL.

F Evaluates the
categories
property

Evaluates
productName
property

Evaluates
product-
Description
property

Evaluates item-
Name property

Evaluates
itemDescription
property

B
C

D

E

F
E

Alternative approaches to Dynamic SQL 183
 So, how do we call that monster?

queryForPaginatedList(
 "Product.searchProductsWithProductSearch",
 productSearch, PAGE_SIZE);

As in the previous example, our final requirement is to make sure that we only
return four records at a time. To accomplish this, we call our statement using the
queryForPaginatedList method, which takes a page size parameter. See the previ-
ous example for some pointers on how to use the ranged queryForPaginatedList.

 You have now seen a complex example and learned how to perform some
intense Dynamic SQL. Keeping in mind the advice from the previous example, we
had a single purpose for our Dynamic SQL—to provide product listings based on
search criteria entered by the user—and we accomplished that. Although this
example may have looked a bit complex, it would be significantly more difficult to
write this from scratch in Java code. You should now be armed with what you need
to build your own dynamic SQL.

 It’s important to understand how iBATIS Dynamic SQL compares against other
solutions for handling dynamic SQL. Let’s take a brief look at how Dynamic SQL
might be accomplished with a couple of other means.

8.5 Alternative approaches to Dynamic SQL

Dynamic SQL is by no means a new concept. The complex requirements of a con-
ditionally manufactured SQL query have always been a bit of a challenge. In the
past we have had to deal with proprietary internal database approaches that use
stored procedures to gain efficiency in the execution of Dynamic SQL. In other
cases we paid the price of performance by constructing SQL in a more robust pro-
gramming language and passed the query into our database via a driver. In both
cases, the means of constructing that simple SQL string became unwieldy and
increasingly complex. If you are already an iBATIS user, this will be a brief jog down
memory lane that will remind you of what you are missing. If you are new to iBATIS,
this may be a fresh introductory comparison. Regardless of your background, we
hope that this section will provide fresh insight into your practices and convince
you that iBATIS can reduce much of the complexity you may be experiencing.

 We’ll share the same SQL statement between the Java code example and the
stored procedure example. Listing 8.13 is a mildly complex select statement that
should be fairly simple to code. Once we have shown how each approach solves
the problem of Dynamic SQL, we will provide a quick summary of how these
approaches compare to using iBATIS.

184 CHAPTER 8

Using Dynamic SQL
SELECT *
FROM Category
WHERE
categoryId IN ('ACTADV','SPORTS','STRATEGY') AND
name LIKE ('N%')

8.5.1 Using Java code

Coding in Java is a great thing. But when you mix Java and SQL together, you have
to take care to craft your code in such a way that it retains clarity. As requirements
grow more complex, it will become easy to lose track of where all the pieces are.
Let’s take a look at a mildly complex example that uses straight JDBC to assemble
a Dynamic SQL statement and pass it to the database. Listing 8.14 shows the
search criteria that we will use to build our SQL statement.

public class CategorySearchCriteria implements Serializable {

 private String firstLetter;
 private List categoryIds;
 …
 // setters and getters
}

Our mildly complex SQL statement will receive an unknown quantity of category
IDs from the categoryIds property of the CategorySearchCriteria. This will be
used to populate the IN statement. The firstLetter property containing a single
alpha character will be provided to perform the search against the first letter of
the category name. In this example, our focus is on the JDBC interactions and
comparing Dynamic SQL solutions. So, we will not expound on anything outside
of that. Listing 8.15 shows how to build the Dynamic SQL using only Java code.

public class CategorySearchDao {
…
 public List searchCategory(
 CategorySearchCriteria categorySearchCriteria) {

 List retVal = new ArrayList();

Listing 8.13 Static SQL mock-up

Listing 8.14 CategorySearchCriteria.java

Listing 8.15 CategorySearchDao.java

Alternative approaches to Dynamic SQL 185

 try {

 Connection conn =
 ConnectionPool.getConnection("MyConnectionPool");

 PreparedStatement ps = null;
 ResultSet rs = null;

 List valueList = new ArrayList();

 StringBuffer sql = new StringBuffer("");
 sql.append("SELECT * ");
 sql.append("FROM Category ");

 if(categorySearchCriteria.getCategoryIds() != null
 && categorySearchCriteria.getCategoryIds().size() > 0) {

 Iterator categoryIdIt =
 categorySearchCriteria.getCategoryIds().iterator();

 sql.append("WHERE ");
 sql.append("categoryId IN (");

 if(categoryIdIt.hasNext()) {
 Object value = categoryIdIt.next();
 valueList.add(value);
 sql.append("?");
 }

 while(categoryIdIt.hasNext()) {
 Object value = categoryIdIt.next();
 valueList.add(value);
 sql.append(",?");
 }

 sql.append(") ");

 }

 if(categorySearchCriteria.getFirstLetter() != null
 &&
 !categorySearchCriteria.getFirstLetter().trim().equals(""))
 {
 if(valueList.size() != 0) {
 sql.append("AND ");
 }

 sql.append("name LIKE (?)");
 valueList.add(categorySearchCriteria.getFirstLetter()
 + "%");

Gets JDBC
resources

Starts building
SQL query

Starts building
dynamic part

Don’t forget
the AND!

186 CHAPTER 8

Using Dynamic SQL
 }

 ps = conn.prepareStatement(sql.toString());

 Iterator valueListIt =
 valueList.iterator();

 int indexCount = 1;

 while(valueListIt.hasNext()) {
 ps.setObject(indexCount,valueListIt.next());
 indexCount++;
 }

 rs = ps.executeQuery();

 while(rs.next()) {
 Category category = new Category();
 category.setCategoryId(rs.getInt("categoryId"));
 category.setTitle(rs.getString("title"));
 category.setDescription(rs.getString("description"));
 category.setParentCategoryId(
 rs.getInt("parentCategoryId"));
 category.setSequence(rs.getInt("sequence"));

 retVal.add(category);
 }
 } catch (SQLException ex) {
 logger.error(ex.getMessage(), ex.fillInStackTrace());
 } finally {
 if (rs != null)
 try { rs.close(); }
 catch (SQLException ex)
 {logger.error(ex.getMessage(), ex.fillInStackTrace());}
 if (ps != null)
 try { ps.close(); }
 catch (SQLException ex)
 {logger.error(ex.getMessage(), ex.fillInStackTrace());}
 if (conn != null)
 try { conn.close(); }
 catch (SQLException ex)
 {logger.error(ex.getMessage(), ex.fillInStackTrace());}
 }

 return retVal;
 }
…
}

Prepares statement
and sets parameters

Runs the query

Iterates through results and
builds objects to return

The joy of resource cleanup

Alternative approaches to Dynamic SQL 187
When using Java code, you are left to handle all the basic repetitious tasks such as
connection retrieval, parameter preparation, result set iteration, and object popu-
lation over and over again. On top of managing the common tasks, in this exam-
ple we also deal with the minimal complexity introduced by the need to create an
IN statement. To deal with this, a List of parameters is created and populated.
Even after writing all the code we are still left with less functionality than would be
desired to handle our scenario properly. You may have noticed that the Prepared-
Statement simply uses setObject to assign the parameters. Ideally we would want
to have our types specified, but that requirement would have pushed this code to
an unreasonable size.

 In the end, this code is reminiscent of those activities in children’s magazines
in which you attempt to find cleverly hidden pictures contained in a larger pic-
ture. Here the challenge would be to find the “Hidden SQL.” In this example,
straight JDBC becomes seriously inhibitive. Let’s move on to take a look at using a
stored procedure for Dynamic SQL.

8.5.2 Using stored procedures

Stored procedures can be a real lifesaver for many tasks and they should be appre-
ciated for what they can do. When used for Dynamic SQL, they often suffer the
same problems as the Java-coded Dynamic SQL. Listing 8.16 shows you how a stored
procedure written in Oracle’s PL/SQL deals with Dynamic SQL construction.

create or replace package category_pkg
 as
 type ref_cursor is ref cursor;

 function get_category(
 categoryid varchar default null,
 name category.name%type default null)
 return ref_cursor;
 end;
 /

 create or replace package body category_pkg
 as
 function get_category(
 categoryid varchar default null,
 name category.name%TYPE default null)
 return ref_cursor
 is
 return_cursor ref_cursor;

Listing 8.16 Oracle stored procedure (provided by Sven Boden)

188 CHAPTER 8

Using Dynamic SQL
 sqltext varchar(4000);
 first char(1) default 'Y';
 begin
 sqltext :=
 'select c.categoryid, c.title, c.description, ' ||
 'c.sequence ' ||
 ' from category c ';
 if (categoryid is not null) then
 if (first = 'Y') then
 sqltext := sqltext ||
 'where c.categoryid in (' ||
 categoryid || ') ';
 first := 'N';
 end if;
 end if;

 if (name is not null) then
 if (first = 'Y') then
 sqltext := sqltext || 'where ';
 else
 sqltext := sqltext || 'and ';
 end if;
 sqltext := sqltext || 'c.name like ''' ||
 name || '%''' ;
 first := 'N';
 end if;

 open return_cursor for sqltext;

 return return_cursor;
 end get_category;

 end;
 /

Admittedly the example in listing 8.16 breaks a valuable rule of stored proce-
dures: we did not use parameter binding, which would prevent SQL injection and
increase performance. Given that, we would not have reduced our complexity but
would have increased it. So, is avoiding complexity always the rule by which we
live? Of course not! But in the case of Dynamic SQL we would be hard pressed to
arrive at a reason for performing this in a stored procedure.

 Two of the major reasons why we use stored procedures are security and perfor-
mance, neither of which is applicable when it comes to Dynamic SQL. Using param-
eterized SQL on either the Java side or the stored procedure side will provide an
equivalent level of performance and security. When we shift our attention to legi-
bility and maintainability, we may become a bit discouraged. This procedure is

Starts building
the SQL

Adds category
IDs to the SQL

Adds names to the SQL

Executes the SQL

Returns results

Alternative approaches to Dynamic SQL 189
more legible than our Java example, and likely this is due to the fact that it is not
secured with parameterized SQL. As far as maintainability goes, things become a bit
more complex. With a stored procedure, we are left to depend on the database
administrator to deploy our DDL scripts when we deploy our application. With the
Java example, our SQL stays with the developer and can be deployed with the rest
of our code base.

 Stored procedures can have varying mileage depending on the database you
are using and how well its internal language is suited for complex tasks. When
using stored procedures for Dynamic SQL, you end up with the same complexity
of the Java example—no security gain, no performance gain, and a more compli-
cated deployment. The other thing to note is that we didn’t even include the Java
code it takes to call the stored procedure in the first place. If we were drawing up
an evaluation, it might be hard to choose between straight Java or a stored proce-
dure. This is where iBATIS comes in.

8.5.3 Comparing to iBATIS

After examining straight Java and stored procedures for Dynamic SQL, we are left
wanting something that can give us performance, security, and productivity. List-
ing 8.17 shows the same Dynamic SQL from listings 8.15 and 8.16 but uses the iBA-
TIS SqlMaps framework for Dynamic SQL.

<select id="getCategories" parameterClass="SearchClass"
 resultClass="CategorySearchCriteria">
 SELECT *
 FROM Category
 <dynamic prepend="WHERE">
 <iterate prepend=" categoryId IN"
 open="(" close=")" conjunction=",">
 #categoryIds[]#
 </iterate>
 <isNotEmpty property="categoryName" prepend="AND">
 name LIKE (#categoryName# || '%')
 </isNotEmpty>
 </dynamic>
</select>

So, that is what the mapped statement looks like, and here is how you would call it:

queryForList("getCategories",searchObject);

Listing 8.17 iBATIS Dynamic SQL

190 CHAPTER 8

Using Dynamic SQL
You can see that in approximately 14 lines of code we have accomplished what
took us several times that to accomplish with Java code or a stored procedure.
Since iBATIS uses PreparedStatements internally, we were able to gain security
against SQL injection and gain the performance of the parameterized SQL. By
keeping the SQL in a simple XML file that resides with our Java source code, we
are also able to more easily maintain our SQL and deploy it with our application.
If iBATIS were in the analysis against straight Java or a stored procedure, there
would be no question as to which would be the logical winner.

8.6 The future of Dynamic SQL

iBATIS is already looking into the future and making moves to improve Dynamic
SQL. Nearly everything you we have learned in this chapter will continue to be rel-
evant in the future of Dynamic SQL. That aside, it is important that you know the
direction iBATIS is heading with its Dynamic SQL.

 The initial idea of the Dynamic SQL tag set was developed in iBATIS version 1.x.
The Dynamic SQL tag set was based largely on concepts borrowed from the Struts
taglibs (see Ted Husted’s Struts in Action [Manning, 2002] for more details). As
standards have improved in the Java community, iBATIS has sought once again to
borrow concepts from more standard Java concepts and incorporate them into
iBATIS. Two areas in need of improvement have emerged: a simplified and more
robust tag set, and a simple expression language that can be used in conjunction
with the tags. Let’s take a moment and look at where iBATIS will be making
improvements in Dynamic SQL.

8.6.1 Simplified conditional tags

Currently iBATIS boasts a healthy 16 tags that are used to accomplish Dynamic
SQL. These tags are all very specific. In an effort to provide for more general-pur-
pose conditional tags, the iBATIS team plans to introduce a simplified tag set
alongside the existing. The goal is that the new-generation Dynamic SQL tags will
eventually phase out the old. The new-generation Dynamic SQL will be modeled
after JSTL (Java Standard Tag Library). This would reduce our now 16 tags to a
mere 6 tags. As of this writing, the proposed new tags are <choose>, <when>, <oth-
erwise>, <if>, <foreach>, and <while>. For the most part, these tags will function
in an identical way to their JSTL sister tags, with the exception that they will con-
tain the additional prepend, open, close, and removeFirstPrepend attributes.

Summary 191
8.6.2 Expression language

Because the new Dynamic SQL tag set will be more general purpose, a simple
expression language is needed. The iBATIS team has decided to model the expres-
sion language after Java’s J2EE Expression Language (EL). This will provide better
support for multiple conditional analyses in a single evaluation. The current
dynamic SQL tag set does not support boolean operations such as “and” and “or.”
With the combination of general-purpose tags and a powerful EL, it will be easier
to fulfill complex Dynamic SQL requirements.

8.7 Summary

Dynamic SQL in iBATIS is a powerful tool to have in your arsenal. Taking care to
understand its place in developing your database interaction is important.
Remember to make simplicity your goal.

 In this chapter, you saw how to write simple and more complex Dynamic SQL
using Java and PL/SQL code, and also how to accomplish the same thing in iBA-
TIS. While there are times when Dynamic SQL in iBATIS may not do exactly what
you want, given the alternatives it is a good way to perform the other 90 percent of
your queries.

Part 3

iBATIS in the real world

The iBATIS framework uses a layered architecture that makes it easy to use only
the pieces you need without dealing with any features you don’t need. However,
sometimes you will require a bit more than the basics. Part 3 takes iBATIS to the next
level and shows you how to leverage its advanced features. You’ll learn about
Dynamic SQL and data layer abstraction, and we’ll tell you how to extend iBATIS
when all else fails.

Improving performance
with caching
This chapter covers
■ Cache philosophy
■ Cache configuration
■ Caching strategies
195

196 CHAPTER 9

Improving performance with caching
Caching in general has broad meaning. For example, in a traditional web applica-
tion that contains presentation, service, and data access layers, it could make
sense to cache on any or all of those layers. The iBATIS cache focuses on caching
results within the persistence layer. As such, it is independent of the service or pre-
sentation layers, and is not based on object identity.

 In this chapter, we will look at how to configure, optimize, and even extend the
iBATIS caching implementations.

9.1 A simple iBATIS caching example

IBATIS’s robust and simple caching mechanism is completely configuration based
and removes the burden of managing the cache directly. Before we get into when,
why, and how to use iBATIS caching, let’s walk through a quick introduction. List-
ing 9.1 shows a simple cache configuration and a single mapped statement that
uses it.

<cacheModel id="categoryCache" type="MEMORY">
 <flushOnExecute statement="insert"/>
 <flushOnExecute statement="update"/>
 <flushOnExecute statement="delete"/>
 <property name="reference-type" value="WEAK"/>
</cacheModel>

<select
 id="getCategory" parameterClass="Category"
 resultClass="Category" cacheModel="categoryCache">
 SELECT *
 FROM Category
 WHERE categoryId=#categoryId#
</select>

In the example in listing 9.1, you can see the two major components: the cache
model and the mapped statement (select). The cache model defines how the
cache will store fresh results and clear stale data from the cache. Mapped state-
ments that want to use the cache just need to reference it using the cacheModel
attributes of the <select> and <procedure> tags.

 In listing 9.1 the cache model specifies a cache type of MEMORY. This is a built-
in iBATIS caching that stores results into memory. This is usually the most-used
means of caching in iBATIS. Within the body of the cache model are a couple of

Listing 9.1 Basic caching example

iBATIS’s caching philosophy 197
tags. <flushOnExecute> specifies that stored results will be flushed when a particu-
lar cache is accessed. It’s important to note that all of the cache contents are
cleared. This means that if you have several mapped statements that use the same
cache model, then all of the results of those mapped statements will be flushed.
The final tag to notice is named <property>. Each type of cache model has prop-
erties that can be specified for custom configuration of the cache model. The
name attribute is the name of the property that will be set. The value, of course,
provides the assigned value to the defined property.

 As you can see, the iBATIS cache is quite simple. The most work you will expe-
rience is discovering the properties that are available for each of the cache model
types. We will take time in this chapter to explain what cache models are available
and provide some direction on when and how to use them after we take a quick
look at the iBATIS caching philosophy.

9.2 iBATIS’s caching philosophy

Most caching that developers incorporate into their apps is for long-term, seem-
ingly unchanging data. This is the type of data you usually see in drop-down or
selection lists. Data like states, cities, and countries are prime candidates for this
type of caching. But caching can reach beyond long-term read-only data and can
be used to cache objects that are read/write as well.

 The difficulties at this point often have to do with the manual process of check-
ing to see whether the data exists in the cache and then storing it into the cache
yourself. Another difficulty with a cache is figuring out how to know whether the
data contained within is either stale or fresh. It’s easy enough to write simple rules
like timed cache flushes, but it is not so easy when the execution of several proc-
esses should invalidate a cache’s contents. Once dependencies between executing
code become important to maintaining the integrity of your cached objects,
things begin to get difficult. Often when caching reaches this point of complexity,
the performance-to-effort ratio can become less than convincing or at minimum be
seen as a very annoying task. This is why iBATIS has focused itself on providing
caching implementations and strategies for the data access layer only. This focus
on the data access layer enables the framework to manage the cache in accor-
dance with an easy-to-manage configuration.

 Consider the philosophy of the iBATIS caching framework and how it differs
from other persistence solutions. This can often be a sore point for some who are
used to how traditional O/RM solutions perform caching. IBATIS is built on the
idea of mapping SQL to objects, not mapping database tables to objects. This is an

198 CHAPTER 9

Improving performance with caching
important distinction to make. Traditional O/RM tools primarily focus on map-
ping database tables to objects, which influences their caching. Traditional O/RM
caching maintains object identification (OID) just as the database would manage
the uniqueness of a row in a table. This further means that if two different results
return the same object, the object will be cached only once. This is not the case
with iBATIS. Because iBATIS is a data-centric framework that is focused on SQL
results, we do not cache objects based on their uniqueness. IBATIS caches the full
returned result regardless of whether an identical object (value-wise) exists else-
where in a cache.

 Let’s take some time to look at the cache model and discuss more in depth what
it is and what its common components are. We will see how they can help avoid the
mundane manual management of caching results and their dependencies.

9.3 Understanding the cache model

The simplest description of the cache model is that it is a cache configuration.
More specifically, it is the base from which all iBATIS cache implementations are
defined. The cache model configuration is defined within a SQL Map configura-
tion and can be utilized by one or more query mapped statements.

 The cache configuration is defined by the <cacheModel> tag, which contains
the attributes in table 9.1.

The id attribute is used to identify the cache so that we can tell iBATIS which
mapped statements to store in it. Let’s take a closer look at the other attributes.

9.3.1 Type

iBATIS provides four default cache implementations that the cache model can
take advantage of out of the box. The four types are shown in table 9.2.

Table 9.1 <cacheModel> tag attributes

id
(required)

This value specifies the unique ID that will be referenced by query mapped statements
that want to use the cache model’s configured cache.

type
(required)

This is the type of cache that the cache model will be configuring. Valid values include
MEMORY, LRU, FIFO, and OSCACHE. This attribute can also contain the fully qualified
class name of a custom CacheController implementation.

readOnly
(optional)

When set to true, this denotes that the cache will be used solely as a read-only cache.
Objects retrieved from a read-only cache should not have their properties changed.

serialize
(optional)

This attribute specifies whether the cache contents should be “deep copied” upon retrieval.

Understanding the cache model 199
The caching implementation used is specified by adding its default keyword
(MEMORY, LRU, FIFO, and OSCACHE) to the type attribute of the <cacheModel> tag.
Section 9.5 will discuss the four default cache implementations in detail.

 It is also possible to provide your own caching by writing an implementation of
the CacheController interface and specifying its fully qualified class name in the
type attribute (see chapter 12).

9.3.2 The readOnly attribute

The <cacheModel> tag provides a readOnly attribute. This attribute is simply an
indicator that provides instruction to the cache model, telling it how it should
retrieve and store the cached object. Setting this attribute to true does not pre-
vent retrieved objects from having their contents altered. When specifying a cache
as read only, you tell the cache model that it is allowed to pass back a reference to
the object that exists in the cache because it is not going to be altered by the appli-
cation that is requesting it. If the readOnly attribute is set to false, this ensures that
more than one user does not retrieve the same instance of a cached reference.
The readOnly attribute works in conjunction with the serialize attribute. It is
important to understand how these two attributes work together.

9.3.3 The serialize attribute

The serialize attribute is used to instruct how cached objects are returned.
When serialize is set to true, each object requested from the cache is returned
as a deep copy. This means that the object you retrieve from the cache will have an
identical value but will not be the same instance. This ensures that the actual ver-
sion that is stored in the cache is never returned. It is important to call attention
to the fact that this is not serialization as most would think of it. The objects do
not get serialized to disk. This is memory-based serialization that creates deep
copies of the cached objects that are in memory.

Table 9.2 Built-in cache model types

Cache model type Description

MEMORY This model simply stores the cached data in memory
until the garbage collector removes it.

FIFO This is a fixed size model that uses a “first in, first out”
algorithm to remove items from memory.

LRU This is another fixed-size model that uses a “least
recently used” algorithm to remove items from memory.

OSCACHE This model uses the OpenSymphony (or OS) cache.

200 CHAPTER 9

Improving performance with caching
9.3.4 Combining readOnly and serialize

Now that you understand each of these attributes, it may appear that they overlap
functionality to some degree. The truth is that they simply work very tightly
together. It’s important to understand what happens under the hood when you
have different combinations of these attributes. We’ll look at all four possible
combinations and analyze what their benefit is (or lack thereof) in table 9.3.

The default combination of these two attributes is readOnly=true and serial-
ize=false. This combination instructs the cache to pass back the same reference
that is contained within the cache. When using this combination, it is possible to
actually alter the cached object. This can be problematic because the object is
shared globally. All users who access the cached object through the query mapped
statement using the same parameters could possibly retrieve objects that were
inappropriately altered by another session.

 When dealing with cached objects that you do want to alter, you should mark
readOnly as false. This will force the cache to return an instance that is specific to
the session. When using this in combination with serialize set to true, you are
able to get a deep copy of the cached object. This isolates the changes of the
retrieved object to the calling session.

 Another combination that can be used is to set readOnly as false and serialize
as false. This can be a useful approach, but it's a rare case where it is appropriate.
Setting the two attributes to false requires the cache to produce unique instances
of the requested objects for the calling thread. Since serialize is set to false, it
does not use the deep copy strategy. Instead, the cache is created to be used only
for the life of the session. This means that if you called the same query mapped

Table 9.3 Summary of readOnly and serialize attribute combinations

readOnly serialize Result Reason

True False Good Fastest retrieval of cached objects. Returns a shared
instance of the cached objects, which can be problematic
if misused.

False True Good Fast retrieval of cached objects. Retrieves a deep copy of
the cached objects.

False False Caution! Cache is only relevant for the life of the calling thread’s
session and cannot be utilized by other threads.

True True Bad This combination would work the same as read-
Only=false and serialize=true, except that it would
not make any sense semantically.

Using tags inside the cache model 201
statement several times in the same session, then you would get the benefit of the
caching. However, each time a session calls a cached query mapped statement for
the first time, the database will be hit.

 The final combination of these attributes is readOnly=true and serial-
ize=true. This combination is functionally identical to setting readOnly as false
and serialize as true. The problem here is the semantic that it expresses. It does
not make any sense to create a readOnly result that you would want to serialize.
The intention of serialize is that you expect or plan for the objects contained in
the cache to be serialized. So, to serialize a read-only cache is quite absurd.

 Now that you have a philosophical understanding of the cache, let’s dig into
setting it up and using it.

9.4 Using tags inside the cache model

Before we examine the different types of cache model implementations that are
available, you should become familiar with the common tags that are used within
the body of the <cacheModel> tag. These tags are used to define common behav-
iors for flushing caches as well as specifying property values relevant only to the
particular cache model implementation.

9.4.1 Cache flushing

Each cache implementation shares a common set of tags for flushing their con-
tents. When thinking through your caching, determine how and when you want
objects to be removed from the cache. By default, each cache model type has a
means of managing the cached data on a granular level. They can remove individ-
ual objects based on memory, recent access, or age. Beyond each cache model’s
inherent behavior you can further give them instruction on when to the flush their
entire contents. The flush tags are made available to provide such functionality.

 There are two flush tags, as shown in table 9.4.

Let’s look at each of these flush tags in more depth.

Table 9.4 Flush tags, which define rules for clearing items from the cache

Tag name Purpose

<flushOnExecute> Defines query mapped statements whose execu-
tion should flush the associated cache

<flushInterval> Defines a recurring timed flush of the cache

202 CHAPTER 9

Improving performance with caching
<flushOnExecute>
The <flushOnExecute> tag has a single attribute, statement, and allows for a cache
flush to be triggered upon the execution of a particular mapped statement. This
is useful when you have results that should be updated when a change is made to
the underlying database. For example, if you have a cache containing a list of Cat-
egories, you could use <flushOnExecute> to flush the cache whenever a new Cate-
gory is inserted.

 As stated earlier, the cache will be entirely flushed, and therefore you should
take care to avoid creating mapped statement flushing dependencies with con-
stantly changing data. This could effectively render your cache useless because of
the high rate of flushing and populating the cache. Listing 9.2 defines a cache
model and shows an example of how to use the <flushOnExecute> tag to invali-
date the cache when new data is added to the database.

<sqlMap namespace="Category">
…
<cacheModel id="categoryCache" type="MEMORY">
 …
 <flushOnExecute statement="Category.insert"/>
 …
</cacheModel>
…
<select
 id="getCategory" parameterClass="Category"
 resultClass="Category" cacheModel="categoryCache">
 SELECT *
 FROM Category
 WHERE parentCategoryId=#categoryId#
</select>
…
<insert id="insert" parameterClass="Category" >
 INSERT INTO Category
 (title,description,sequence)
 VALUES
 (#title#,#description#,#sequence#)
</insert>
…
</sqlMap>

To use the <flushOnExecute> tag, you need to specify the statement name, using
the statement attribute, which should trigger the cache flush. If the statement is
contained within a sqlMap that uses a namespace attribute, you must specify the full

Listing 9.2 flushOnExecute caching example

Using tags inside the cache model 203
namespace in the statement attribute. The full namespace notation is required
even if the statement attribute is referencing a mapped statement within the con-
fines of the same sqlMap configuration. When specifying mapped statements that
exist in another sqlMap configuration, you must also make sure that the depen-
dent sqlMaps have been loaded prior to the statement attribute referencing it.

<flushInterval>
The other flush tag used to manage the contents of the cache is <flushinterval>.
The <flushInterval> tag is a bit simpler than <flushOnExecute> since it does not
have any configuration dependencies other than time itself. The <flushInterval>
tag will flush the cache on a recurring interval. This interval is started at the time
the cache is created during the configuration loading and continues until the
application is shut down. The <flushInterval> tag allows you to specify hours,
minutes, seconds, or milliseconds, as shown in table 9.5.

To remove any potential confusion, <flushInterval> does not allow you to specify
particular times to flush the cache. It is purely interval based. Listing 9.3 shows an
example that uses the <flushInterval> tag to limit the lifespan of cached objects
to 12 hours.

<sqlMap namespace="Category">
…
<cacheModel id="categoryCache" type="MEMORY">
 …
 <flushInterval hours= "12" />
 …
</cacheModel>

Table 9.5 <flushInterval> tag attributes

Attribute Represents

hours
(optional)

The number of hours that should pass before the cache is flushed

minutes
(optional)

The number of minutes that should pass before the cache is flushed

seconds
(optional)

The number of seconds that should pass before the cache is flushed

milliseconds
(optional)

The number of milliseconds that should pass before the cache is flushed

Listing 9.3 <flushInterval> caching example

204 CHAPTER 9

Improving performance with caching
…
<select
 id="getCategory" parameterClass="Category"
 resultClass="Category" cacheModel="categoryCache">
 SELECT *
 FROM Category
 WHERE parentCategoryId=#categoryId#
</select>
…
</sqlMap>

Something to keep in mind when using <flushInterval> is that only one attribute
is allowed. So if you want to flush a cache every 12 hours, 10 minutes, 10 seconds,
and 5 milliseconds, you have to calculate that as milliseconds, and enter the value
as such.

9.4.2 Setting cache model implementation properties

Because cache models are components that can be plugged into the framework,
there must be a way to supply arbitrary values to the component. The <property>
tag is used to do just that. This tag’s attributes appear in table 9.6.

Both the name and value attributes are required, and are used to build a Proper-
ties object that is passed to the cache model component to initialize it.

 So, in general, configuration of the cache is not completely independent of
the type of cache you use. Therefore, an understanding of the types available, and
the options specific to each of them, is required.

9.5 Cache model types

As mentioned in section 9.3.1, four cache model types that come with iBATIS for
use in your application:

■ MEMORY

■ LRU

Table 9.6 <property> tag attributes

name
(required)

The name of the property being set

value
(required)

The value of the property being set

Cache model types 205
■ FIFO

■ OSCACHE

We look at each of these types in the next four sections.

9.5.1 MEMORY

The MEMORY cache is a reference-based cache (see the java.lang.ref Java-
Docs). Each object in the cache is given a reference type. The reference type pro-
vides hints to the garbage collector that let it know how to handle the object.
Like the java.lang.ref package, the MEMORY cache provides WEAK and SOFT
references. Additionally, when specifying the reference type as WEAK or SOFT, the
garbage collector determines what stays and what goes, based on memory con-
straints and/or current access to the cached objects. When you use a STRONG
reference type, the cache is guaranteed to retain the object no matter what until
a flush interval is called.

 The MEMORY cache model is ideal for applications that are more interested in
memory management than in object access strategies. Because of the STRONG,
SOFT, and WEAK reference types, you can determine which results should persist
longer than others. Table 9.7 provides a quick view of how each reference type
functions and how the different types determine the length of time the object is
cached in memory.

Table 9.7 MEMORY cache reference types

WEAK The WEAK reference type discards cached objects quickly. This reference type does not pre-
vent the object from being collected by the garbage collector. It merely provides a way to
access an object in the cache that will be removed with the first pass of the garbage collec-
tor. This is the default reference type and works great for keeping your cache occupied with
objects that are accessed on a very consistent basis. Because of the faster rate of discard,
your cache is guaranteed to not exceed memory limits. It is more likely that you will get a
higher rate of database hits with this reference type.

SOFT The SOFT reference type is also good for objects that may need to be released when mem-
ory constraints are important. This reference type retains the cached object as long as
memory constraints allow. The garbage collector will not collect this object unless it is deter-
mined that more memory is needed. The SOFT reference is also guaranteed to not exceed
memory limits and will likely have fewer database hits than the WEAK reference type.

STRONG The STRONG reference type holds onto cached objects regardless of memory constraints.
Objects stored as STRONG are not discarded until the specified flush interval. The STRONG
cache should be reserved for static, small, regularly accessed objects. This reference type
will increase performance by reducing database hits and runs the risk of running out of
memory if the cache grows too large.

206 CHAPTER 9

Improving performance with caching
The MEMORY cache type has only one property: reference-type, which specifies
the unique ID that will be referenced by query mapped statements that want to
use the cache model’s configured cache.

 Listing 9.4 shows a simple MEMORY cache model that uses weak references to
hold cached data for no more than 24 hours, and is flushed whenever the insert,
update, or delete mapped statement is executed.

<cacheModel id="categoryCache" type="MEMORY">
 <flushInterval hours="24"/>
 <flushOnExecute statement="insert"/>
 <flushOnExecute statement="update"/>
 <flushOnExecute statement="delete"/>
 <property name="reference-type" value="WEAK"/>
</cacheModel>

The MEMORY cache type is a simple but effective way to cache the data in your
application.

9.5.2 LRU

The LRU cache model type uses a least recently used strategy to manage the cache.
The internals to this cache determine which objects are accessed least recently
and discard them when size limits are exceeded. The discarding of cache objects
only occurs when the cache exceeds the size-limit constraint. The size limit
defines the number of objects that can be contained within the cache. Avoid plac-
ing large memory objects into this type of cache and thus running out of memory.

 The LRU cache is a great fit for managing a cache based on popular access to
particular objects. Often this kind of caching strategy is used in applications that
need to cache objects used for paged results or keyed search results.

 The only property that can be specified for the LRU cache type when using the
<property> tag is size, which specifies the maximum number of objects that can
be stored in the cache.

 Listing 9.5 shows a simple LRU cache model that keeps the last 200 cached
objects in memory for up to 24 hours and also flushes the cache whenever the
insert, update, or delete mapped statement is called.

<cacheModel id="categoryCache" type="LRU">
 <flushInterval hours="24"/>
 <flushOnExecute statement="insert"/>

Listing 9.4 Sample MEMORY cacheModel

Listing 9.5 Sample LRU cacheModel

Cache model types 207
 <flushOnExecute statement="update"/>
 <flushOnExecute statement="delete"/>
 <property name="size" value="200"/>
</cacheModel>

The LRU cache is quite useful for applications where different subsets of data are
used for periods of time.

9.5.3 FIFO

The FIFO cache model uses a first in, first out strategy. The FIFO is an age-based
strategy and removes the oldest cached objects first. The discarding of cache
objects occurs only when the cache exceeds the size-limit constraint. The size limit
defines the number of objects that can be contained within the cache. Again,
avoid placing large memory-consuming objects into this type of cache and thus
running out of memory.

 Since the FIFO is age based, it is good for caching objects that are more rele-
vant when initially placed into the cache. Over time the results may become less
relevant yet still be accessed. A time-based reporting application may find this type
of caching useful. If you were reporting stock prices, most inquiries would be rele-
vant in the beginning and yet decline in importance as time went on.

 The only property that can be specified for the FIFO cache type when using the
<property> tag is size, which specifies the maximum number of objects that can
be stored in the cache.

 Listing 9.6 shows a simple FIFO cache model that keeps the last 1,000 cached
objects in memory for up to 24 hours, and also flushes the cache whenever the
insert, update, or delete mapped statement is called.

<cacheModel id="categoryCache" type="FIFO">
 <flushInterval hours="24"/>
 <flushOnExecute statement="insert"/>
 <flushOnExecute statement="update"/>
 <flushOnExecute statement="delete"/>
 <property name="size" value="1000"/>
</cacheModel>

The FIFO cache is useful for applications where rolling subsets of data are used for
periods of time, like a shopping cart.

Listing 9.6 Sample FIFO cacheModel

208 CHAPTER 9

Improving performance with caching
9.5.4 OSCACHE

The OSCACHE cache model uses the OSCache 2.0 product from OpenSymphony
(www.opensymphony.com/oscache/). OSCache is a robust caching framework that
is able to perform many of the same type of caching strategies that iBATIS provides
in its other cache models. When using the OSCACHE model, you create a depen-
dency on the OSCache JARs. You will need to include the OSCache JAR in your
project when you use this setting. This cache is configured in the same manner as
a standard OSCache install. This means that you will need to have an oscache.prop-
erties file available on the root of your classpath for OSCache to read. For more
information on how to install and configure OSCache, access the documentation
online at www.opensymphony.com/oscache/documentation.action. Listing 9.7
shows an example of what the OSCACHE cache model may look like.

<cacheModel id="categoryCache" type="OSCACHE">
 <flushInterval hours="24"/>
 <flushOnExecute statement="insert"/>
 <flushOnExecute statement="update"/>
 <flushOnExecute statement="delete"/>
</cacheModel>

9.5.5 Your cache model here

Earlier, we mentioned that the cache model was a pluggable component in the
framework. You may be wondering how you create your own cache model, or
maybe you’re just curious about how you would do it.

 There are only two things to remember. First, the four cache model types that
come with iBATIS are implementations of the com.ibatis.sqlmap.engine.cache.
CacheController interface. Second, the names are type aliases that map to the
fully qualified names of those implementations.

 Moving right along, now that you have a cache model, let’s look at some ways
to make it work for you.

9.6 Determining a caching strategy

When you’re making a determination about caching strategies, you first have to
clarify your requirements. IBATIS provides the previously mentioned set of cach-
ing strategies for the data access layer. These caching strategies can—and likely
will—play into your overall caching strategy, but they probably won’t be the sum

Listing 9.7 Sample OSCACHE cacheModel

Determining a caching strategy 209
total of your application’s overall caching. If you are exploring an overall caching
strategy, there is a lot to consider and the discussion reaches beyond the scope of
this book. However, it is important to determine what part iBATIS caching can play
in your overall caching strategy.

 When caching data on the data access layer, you will be working with either a
dedicated or a shared database. With a dedicated database, all access to that data-
base will take place through the application you are developing. With a shared
database, multiple applications will access the database and be capable of making
alterations to the data.

 If your application connects to a database that has a variety of other applications
accessing it and altering its data, you will likely want to avoid caching much of it.
Using <flushOnExecute> will not be an effective strategy if the underlying data has
long since expired because another application has made changes to your data-
base. You can still take advantage of caching the more static read-only data that will
not impact your read/write data. Examples include time-based report data that
does not change, shopping cart page data, or static drop-down list data.

 On the other hand, if you are caching for a database that is accessed only
through a single application, you can be much more aggressive about your use of
iBATIS caching. In a dedicated application, <flushOnExecute> becomes much
more valuable. You know that the execution of certain mapped statements will
force cached data to be invalid and therefore can affect your flush strategies.

 Suppose you want more granular control over when certain items are released
from the cache, or you want a clustered cache. IBATIS by itself provides no means
of caching in this manner, but it can be combined with the OSCACHE cache type
(section 9.5.4) to provide this type of robust functionality. However, the same
rules apply here as stated earlier. You can be much more aggressive about your
use of caching when you know that access to your database is limited to one
application. But exercise caution when your application is not the dedicated
access to the database.

 In the next few sections, we look at some case studies of cache use, as well as
some code snippets that illustrate how to get started implementing them.

9.6.1 Caching read-only, long-term data

Often read-only, long-term data is what we cache. It is easy to cache because it
doesn’t change often. We can place such data into the cache and forget about it
until an interval expires for flushing or a mapped statement is executed that trig-
gers a flush. Let’s revisit our shopping cart application and step through setting
up a read-only cache.

210 CHAPTER 9

Improving performance with caching
 We looked at the shopping cart category in the previous chapter, so we will use
it again here. When visitors to the shopping cart select a category, it usually has
related subcategories that are also displayed. These categories are accessed quite a
bit, and do not change often; consequently, they are prime candidates for long-
term, read-only caching.

 When thinking through how to set up category caching, consider how the
results will be queried and the caching strategy that best fits the pattern of access
to that data. In the case of caching subcategory lists, users will typically query for a
list of child categories based on their related parent category. Expressing this in
SQL terms would mean that the WHERE criteria will be based on equality of the
parentCategoryId with a passed-in parameter. Another consideration is how often
this cache should be flushed and which caching strategy should be used. Often
users interact with some categories more than others. So, surveying the options
we may want to go with a LRU strategy (listing 9.8). Using this approach will keep
items around that are accessed more recently while discarding those that have
been in the cache longer.

<cacheModel id="categoryCache" type="LRU">
 <flushInterval hours="24"/>
 <flushOnExecute statement="insert"/>
 <flushOnExecute statement="update"/>
 <flushOnExecute statement="delete"/>
 <property name="size" value="50"/>
</cacheModel>

In listing 9.8 we start by setting up the cache model. We specify the type attribute
as LRU. The id attribute provides us with a unique identifier to reference when
setting up query mapped statements that will use the cache. By using the <flush-
Interval> tag, we ensure that the cache is never older than 24 hours. <flush-
Interval> will clear any cached results that are stored in the identified
categoryCache. Using <flushInterval> we specify that calling the identified
insert, update, or delete mapped statement will also trigger a flush of any results
stored in the identified categoryCache. Finally, we set the limit for how many
items will be stored in the cache by using the <property> tag and the <size>
property. Once the cache exceeds 50 stored results, it will begin to remove the
least recently used items.

Listing 9.8 Sample LRU cacheModel

Determining a caching strategy 211
 In listing 9.9, the query mapped statement getChildCategories takes advan-
tage of categoryCache via the cacheModel attribute, which identifies category-
Cache as its associated cache. As users peruse the categories of the shopping cart
application, the getChildCategories query mapped statement is called. This
causes any child results to be cached. As the cache reaches its size of 50, it begins
to remove any aged results from the cache. This causes constantly accessed lists of
child categories to remain in the cache longer and provides better performance
for the users. If an administrator performs an insert, update, or delete on the cat-
egories, a flush is triggered and the buildup of the cached results begins all over.
This combination of flushing and culling keeps the child categories fresh and up
to date while reducing the constant burden of unnecessary database hits.

<select id="getChildCategories" parameterClass="Category"
 resultClass="Category" cacheModel="categoryCache">
 SELECT *
 FROM category
 <dynamic prepend="WHERE ">
 <isNull property="categoryId">
 parentCategoryId IS NULL
 </isNull>
 <isNotNull property="categoryId">
 parentCategoryId=#categoryId:INTEGER:0#
 </isNotNull>
 </dynamic>
 ORDER BY sequence, title
</select>

The removing process of the LRU cache can be fine-tuned by adjusting the size
property up or down to allow for more or fewer categories to be cached. Remember
that the goal of the LRU is to cache only items that are accessed constantly. Don’t
set the size too high. If you do, you effectively make your LRU cache into a STRONG
memory cache—which would defeat the whole purpose of the LRU cache.

 Now that we’ve discussed an effective means of caching long-term, read-only
data, let’s consider another situation that you will often face when asking the “to
cache or not to cache” question: caching read-write data.

9.6.2 Caching read-write data

Suppose you want to cache objects that are of a changing nature. You must do this
with caution; if you have a high-transaction environment, you may find that your

Listing 9.9 Query mapped statement that uses the categoryCache

212 CHAPTER 9

Improving performance with caching
cache is overburdened and effectively useless. The reason for this is that an
attempt to keep high-transaction data cached would require that you flush the
cache often. Flushing the cache too often could create a twofold burden. First,
your application would constantly be in a state of checking the cache, clearing the
cache, and repopulating the cache on every request to the database. Conse-
quently, if the cache is constantly being cleared, this means that the database is
also being hit to retrieve fresh results. You’ll come to a point where it is simply bet-
ter for performance if you use database techniques such as indexing and table
pinning and avoid application-based caching.

 Even though you need to be careful when caching data that may change, it
also makes sense to do so when the data is of a less volatile state. In the
JGameStore application, we find a good example of this with caching products.
With many storefronts, there is a need for administrators to enter new products,
update existing ones, mark others as sale items, and similar tasks. These kinds of
activities will produce a mild level of volatility. Since this is not a high-transaction
environment, caching can play a role in improving overall application perfor-
mance. As long as the cache has time to build up and provide users with improved
performance over a span of time, you will avoid the sinkhole described previously.

 When examining the nature of the data that you want to cache, consider sev-
eral factors:

■ The number of products will likely be significant.
■ The products data is of a changing nature.
■ The products that are most often accessed will change throughout the day

depending on consumer habits.

In our example, we decide to use the WEAK memory cache because it is a less
restrictive means of caching. Unlike LRU, which requires a certain level of predict-
ability for determining the number of results that should be cached, the WEAK
memory cache allows us to decide which items to retain and discard before a pre-
determined artificial limit is met. Since the cache uses the java.lang.ref.Refer-
ence implementations to store data in the cache, it can remove or retain results
based on internal analytics. When using the WEAK reference type with the MEMORY
cache, the results are wrapped with a WeakReference (java.lang.ref.WeakRefer-
ence) and stored in the cache. Then, the garbage collector is able to handle the
wrapped results at its discretion.

 Now let’s move on to configuring the <cacheModel> tag. As expected, the
cacheModel type attribute is specified as MEMORY. Note that we are setting the

Determining a caching strategy 213
readOnly attribute on the <cacheModel> tag to true in an environment that is a
read-write environment. Additionally, we set serialize to false to eliminate the
burden of the deep copy. That means that objects that are retrieved from the
cache may be altered. This is a safe approach for several reasons. First, only the
person managing the cart will be altering product objects. The users who are
actually shopping will never change the product object through their actions.
Second, whenever a product update occurs, the cache is flushed. Finally,
specifying the reference-type property as WEAK will not allow products to hang
around very long because it discards them at the discretion of the garbage
collector. Listing 9.10 shows an example of our cache model configuration.

<cacheModel id="productCache" type="MEMORY"
 readOnly="true" serialize="false">
 <flushOnExecute statement="Product.add" />
 <flushOnExecute statement="Product.edit" />
 <flushOnExecute statement="Product.remove" />
 <property name="reference-type" value="WEAK" />
</cacheModel>

We can now use the defined <cacheModel> from a query mapped statement. We
tell the getProductById query mapped statement to use productCache by specify-
ing it in the cacheModel. Whenever the getProductById select is called from the
application, the cached product object will be retrieved according to the specifica-
tions of the productCache cache model. Listing 9.11 shows a simple example of
how a <select> statement can take advantage of the defined <cacheModel>.

<select id="getProductById" resultClass="Product"
 parameterClass="Product" cacheModel="productCache">
 SELECT * FROM Product WHERE productId=#productId#
</select>

9.6.3 Caching aging static data

This final case study is a somewhat unusual situation, but it’s a fun test case none-
theless. Situations arise where you need to deal with smaller static portions of data
that become less relevant as time goes on. Often this type of caching is associated
with time-based analytics. Examples of time-based analytics include performance

Listing 9.10 Cache model for productCache

Listing 9.11 Query mapped statement that uses productCache

214 CHAPTER 9

Improving performance with caching
statistics in a call center application, or a stock ticker that provides statistics from
previous hours/days/months. To summarize the attributes of the data, we could
say that it becomes less relevant as time goes on. It is not a large set of data; it is
accessed with high frequency early on and with less frequency as time goes by. The
data does not change, or in other words it is “static.”

 Our JGameStore application does not have this type of requirement, but we
will continue with the shopping cart analogy. Let’s say that we need to collect sta-
tistics on the top five products that guests are purchasing every hour. We’ll then
use this data on the home page of the cart to tell shoppers what the hot items are
on an hourly basis. Let’s also say that we provide a drop-down list that allows users
to choose previous hours to see previous hot-product purchases. Once product
purchases take place, they do not change. If five copies of the newest 3D block-
buster are purchased in the last hour, then that will remain true into the future.
With these simple requirements, let’s see how we might use iBATIS caching to
ensure enhanced performance.

 Due to the fact that this data becomes less relevant over time and is of an aging
nature, FIFO comes to mind as a prime candidate cache. Our description of the
FIFO cache mentioned that it is an “aging” cache. Any data that is placed into it
will “age out” as the size limits are exceeded. So, as the hours tick away and items
are added to the cache, the product listings that are not the most current will be
accessed less and less. Those items will eventually be discarded as newer product
lists are cached each hour. If we set the FIFO cache size to 24, then our list will
only retain the last 24 hours’ worth of items; anything past that will be discarded.
Let’s move on and see how the other requirements fit with the FIFO cache.

 Since the product purchases will remain the same over time, we can safely
assume they are static. Storing static data in the FIFO cache works well. The static
data will eventually age out and does not require the use of constant flushing to
subvert the aging process. The only time we would need to flush the cache is
when there are updates to products. Since this is not a constant occurrence, we
can simply allow processes to flow as needed and push the items on through the
FIFO cache.

 The five products we will be storing each hour should have a small memory
footprint. Since FIFO only discards when the specified size is exceeded, it is unde-
sirable to place large memory-consuming objects into it. The FIFO cache will not
discard items if memory restrictions become strained, which could ultimately
result in an out-of-memory exception. In the case of our product listings, we
should be perfectly safe.

Determining a caching strategy 215
 High-frequency access and low-frequency access are part of the game when it
comes to caching. It doesn’t matter which you experience as long as there is a true
benefit from the fact that it is or may be accessed more than once. Fine-tuning the
size is the only thing we need to be concerned with. Depending on the number of
people who are accessing the current popular purchases or past popular pur-
chases, we can set our cache size to accommodate.

 Now that we have looked at the list of requirements and how the FIFO cache
fits with them, let’s move on to configuring the cache model. Our cache model is
quite simple. As shown in listing 9.12, we want to display correct product informa-
tion for purchased products. This requires that we first set up the appropriate
<flushOnExcecute> tags to flush hotProductsCache when product data changes.
We only need to specify Product.update or Product.delete to flush the cache. We
do not include insert here because we don’t care about products that don’t exist.
If a product is added and then becomes a popular purchase, we will have no prob-
lem adding it to hotProductCache. It is only when the product is updated or
deleted that we need to worry at all about a flush. We would not want to display a
cached product that is no longer for sale (i.e., deleted). We would also not want to
display an old pricing on a product that has had a pricing update.

<cacheModel id="hotProductCache" type="FIFO">
 <flushOnExecute statement="Product.update"/>
 <flushOnExecute statement="Product.delete"/>
 <property name="size" value="12"/>
</cacheModel>

<select
 id="getPopularProductsByPurchaseDate"
 parameterClass="Product"
 resultClass="Product" cacheModel="hotProductsCache">
 SELECT count(productId) countNum, productId
 FROM productPurchase
 WHERE
 purchaseDate
 BETWEEN
 #startDate#
 AND
 #endDate#
 GROUP BY productId
 ORDER BY countNum DESC
 LIMIT 5
</select>

Listing 9.12 Cache model and mapped statement for hotProductsCache

216 CHAPTER 9

Improving performance with caching
With the cache flush configuration behind us, let’s move on to setting up the FIFO
cache size property. Setting the size property to 12 allows us to hold a maximum
of 12 results in the cache (see listing 9.12). Once 12 results occupy the cache, the
oldest item is discarded and the newest item is added to the beginning of the
cache. Since the SQL we use will only provide our cache with a new result every
hour or more, our cache should hold up just fine to aging the data appropriately.
The newer results will always occupy the “front” of the cache while the older
results are discarded.

9.7 Summary

iBATIS provides a good selection of persistence layer cache options. Making the
appropriate choice requires that you exercise thought and care. It’s important to
remember that iBATIS caching is value based (versus OID) and intended to han-
dle caching specifically on the persistence layer.

 If the default iBATIS cache options do not meet your needs, you can look into
extending iBATIS (chapter 12) to provide a cache that does. The examples in this
chapter can help you get started; experience will be the best guide. Spend time
getting to know the various types of caches and their options. Become familiar
with each type’s particular strengths and weaknesses. This knowledge will help
you determine which option will meet your particular needs.

iBATIS data access objects
This chapter covers
■ DAO rationale
■ Configuration
■ A SQL Map DAO example
217

218 CHAPTER 10

iBATIS data access objects
Applications often need to access data from multiple data sources: relational data-
bases, file systems, directory services, web services, and other providers. Each of
these data stores has a different API to access the underlying storage mechanism,
along with a whole set of idiosyncrasies.

 The Data Access Object (DAO) pattern is used to hide the unique implementa-
tion quirks of these APIs. It provides a simple and common API for application
developers so that the consumers of the data can be free of the complexities of
the data access APIs.

 The iBATIS Data Access Objects subproject is a simple implementation of the
core J2EE pattern of the same name.

10.1 Hiding implementation details

One of the key principles of object-oriented programming is encapsulation—the
separation of an implementation and its public interface. The DAO pattern is one
more tool that allows you to do that in your applications. Before we go too far into
the DAO pattern, let’s look at figure 10.1, to see what one looks like.

 If you are thinking that figure 10.1 looks more like JDBC than a DAO, then you
are only half right. It is JDBC, but the JDBC API in Java is a good example of the
DAO pattern in action.

«interface»

javax.sql.DataSource

«interface»

java.sql.Connection

«interface»

java.sql.CallableStatement
«interface»

java.sql.PreparedStatement

«interface»

java.sql.ResultSet
Figure 10.1
A simplified DAO (or is it JDBC?)

Hiding implementation details 219
You have a factory on the top (the DataSource interface), which creates instances
of objects that implement the Connection interface. Once you have the Connec-
tion, you can get PreparedStatement or CallableStatement objects, which in turn
provide you with ResultSet objects. You do not need to know how the DataSource
creates the connection, or how the connection creates the PreparedStatement,
how the PreparedStatement binds the parameters to the query, or even how the
ResultSet is constructed. All of the details are irrelevant as long as you know that
when you call the Connection’s prepareStatement() method you get a Prepared-
Statement back.

10.1.1 Why the separation?

By separating the data access implementation from the data access interface, we
are able to provide a homogenous set of interfaces to heterogeneous data. An
application can access data from multiple databases, each with a different under-
lying data access mechanism using a single consistent data access API.

 The JDBC API is just one type of DAO pattern. In that realm, you have a set of
interfaces, and database vendors implement them in a way that makes it possible
to use them interchangeably—for the most part. In a few cases, where vendors
feel that the interfaces do not provide the capability to do things they want to do,
they work outside the interface.

 To give you an idea of how much the DAO pattern in the JDBC API simplified
its use (and yes, we really mean “simplified”), take a look at a JDBC driver imple-
mentation some time. For example, one major database vendor’s implementation
of the five interfaces in figure 10.1 is composed of nine more (vendor-specific)
interfaces before getting to the five classes that actually implement them (this is
not counting any classes or interfaces that are outside of the lineage of the actual
implementing classes). One of the authors did actually build the UML for this,
and intended on putting it in here as an example, but this chapter was already too
long, and we would have had to add another page. Yes, it was that complex.

 This pattern is one reason why tools like iBATIS SQL maps and O/RM tools
are possible. Because nearly all database vendors implement the JDBC APIs very
accurately, tools can be written that operate against those interfaces instead of
the underlying implementations. For the most part, those tools will work with
any vendor’s implementation, and you only need to refer to the vendor’s soft-
ware when you create the DataSource—from there on, you are working with the
common API.

220 CHAPTER 10

iBATIS data access objects
 This is also one of the goals of the iBATIS DAO: to help you provide a set of
interfaces to your applications that hide the underlying implementation of the
data access. So, if you have a Hibernate-based application that uses the DAO pat-
tern, you can replace that with a SQL Map–based implementation, or a JDBC-
based implementation, without having to rewrite the entire application. Instead,
all that needs to be changed is the implementations of the interfaces that the
application is using. As long as the DAO interface is implemented correctly, the
application will continue to function as expected.

 As a rule, the DAO will not expose any interfaces that involve objects from the
java.sql or javax.sql packages. This means that the DAO is the layer of your applica-
tion where the integration with the data sources happens, and that the layers
accessing it do not have to be concerned with those low-level details. It also means
that in addition to being able to change the data access mechanism (i.e., SqlMaps,
Hibernate, JDBC, etc.), the DAO pattern allows you to change the data source in a
similar fashion. Because the interface is created in a data source–agnostic man-
ner, the application does not need to know if the data is coming from Oracle or
PostgreSQL—or even from a non-SQL-based database for that matter. All it has to
deal with are JavaBeans. Where those beans originate from is irrelevant as far as
the application is concerned.

 An added benefit of this sort of separation is that testing becomes much easier,
because you are not working with interfaces that are specific to the data access
method that the DAO uses—you are working with more common objects like List
and Map, as well as beans specific to your application.

10.1.2 A simple example

Let’s start with a simple example of
how to configure and use the iBA-
TIS DAO. Before we do that, look at
figure 10.2, which is the DAO that
we will be configuring.

 This DAO (which is much sim-
pler than the JDBC example) is
composed of one interface (Ac-
countDao), and its implementation
(AccountDaoImpl). The other two
classes show one use of the inter-
face, and the DaoManager class,
which is the factory class used by

<<interface>>
AccountDao

AccountService

Dao.xml

AccountDaoImpl

DaoManager

Figure 10.2 An even simpler DAO (really)

Hiding implementation details 221
iBATIS to create DAOs. The DaoManager class is configured using the Dao.xml con-
figuration file.

The Dao.xml configuration file
To configure the DaoManager, you start with an XML configuration file, commonly
named dao.xml, which contains the information required to tell iBATIS how to
put the DAO together. Listing 10.1 contains an example of an XML configuration
file for a SQL Map–based DAO layer.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE daoConfig
 PUBLIC
 "-//ibatis.apache.org//DTD DAO Configuration 2.0//EN"
 "http://ibatis.apache.org/dtd/dao-2.dtd">
<daoConfig>
 <context id="example">
 <transactionManager type="SQLMAP">
 <property
 name="SqlMapConfigResource"
 value="examples/SqlMapConfig.xml"/>
 </transactionManager>
 <dao
 interface="examples.dao.AccountDao"
 implementation="examples.dao.impl.AccountDao"/>
 </context>
</daoConfig>

Listing 10.1 defines a DAO context named example that will use SQL Maps for
managing transactions (which were covered in chapter 7) and contains a single
Account DAO . In the next section, we’ll look more closely at this file’s contents,
so if you are not totally clear on it, that is OK.

Creating the DaoManager
Next, you need to create a DaoManager instance (which is analogous to JDBC’s Data-
Source as the starting point of our data access layer) from which you can get the
DAO. Because building the DAO manager takes time, you will want to create an
instance of it and store it in a known location for later use. In section 10.4, we look
at some other ways to accomplish this; but for now, let’s create a simple DaoService
class that will create and store our DaoManager instance for us (see listing 10.2).

Listing 10.1 A simple dao.xml example

The DAO contextB
The transaction
managerC

The one and only DAO definedD

b C

D

222 CHAPTER 10

iBATIS data access objects
package org.apache.mapper2.examples.chapter10.dao;

import com.ibatis.dao.client.DaoManager;
import com.ibatis.dao.client.DaoManagerBuilder;
import com.ibatis.common.resources.Resources;
import java.io.Reader;
import java.io.IOException;

public class DaoService {
 private static DaoManager daoManager;

 public static synchronized DaoManager getDaoManager(){
 String daoXmlResource = "dao.xml";
 Reader reader;
 if (null == daoManager){
 try {
 reader =
 Resources.getResourceAsReader(daoXmlResource);
 daoManager =
 DaoManagerBuilder.buildDaoManager(reader);
 return daoManager;
 } catch (IOException e) {
 throw new RuntimeException(
 "Unable to create DAO manager.", e);
 }
 } else {
 return daoManager;
 }
 }

 public static Dao getDao(Class interfaceClass){
 return getDaoManager().getDao(interfaceClass);
 }
}

We will look briefly at this listing, because it does have some bits of code that will
prove relevant later. The first in order of importance is the daoXmlResource vari-
able , which contains the location of the dao.xml file we saw in listing 10.1 ear-
lier. That is important because it is not a path, but rather a resource location on
the classpath. For example, if you are working on a web application, it would be in
the WEB-INF/classes directory. The Resources class searches the classpath for
that file, and then we pass it as a Reader to the DaoManagerBuilder to get our
DaoManager instance. Now, for our DAO, we can simply call this:

Listing 10.2 A simple example of using a DAO

Specifies location
of config fileB

Gets a reader for
the builder

C

Builds DAO
managerD

b

C
D

Configuring the DAO 223
AccountDao accountDao = (AccountDao)
 DaoService.getDao(AccountDao.class);

So, now that you have seen an example of the goodness of using the DAO pattern,
you may be wondering just how to use it. First, you have to set up the configura-
tion—which is the next topic we’ll discuss.

10.2 Configuring the DAO

The dao.xml file is the only configuration file required when using the iBATIS
DAO framework. It is a very simple file, and is used to provide the DAO manager
with the information required to manage transactions for your DAO classes and
tell it how to supply DAO implementations for your interfaces.

 First, we look at the configuration elements that are available, and then exam-
ine some ways to use them to solve common problems.

10.2.1 The <properties> element

The <properties> element is used in the same manner as it is in the SqlMapCon-
fig.xml file. It is used to specify a properties file, and any properties listed in it are
available for use in the configuration of the DAO layer using the ${name} syntax.

 This approach is very useful in cases where you have separate servers for devel-
opment and production (and potentially staging and testing servers as well). In
these cases, you can configure all of your DAO classes and put just the items that
differ by environment into the properties file. Then, when you deploy to each
environment, all that has to be changed is the properties file.

10.2.2 The <context> element

A DAO context is a grouping of related configuration information and DAO
implementations:

<context id="example">

Usually a context is associated with a single data source such as a relational data-
base or a flat file. By configuring multiple contexts, you can easily centralize
access configuration to multiple databases.

 In section 10.3, we look at using contexts to create multiple DAO groups that
employ different data access models—one that uses SQL maps (of course!), one
that uses Hibernate, and finally, one that uses straight JDBC.

 Each context has its own transaction manager and set of DAO implementations.
In the next two sections, you will learn how to configure each of those items.

224 CHAPTER 10

iBATIS data access objects
10.2.3 The <transactionManager> element

As the name implies, the transaction manager manages transactions (which were
covered in detail in chapter 7) for your DAO classes. The <transactionManager>
element provides the name of a DaoTransactionManager implementation. The
iBATIS DAO framework comes with seven different transaction managers that can
work with different data access tools, as shown in table 10.1.

Table 10.1 Transaction managers available with the iBATIS DAO framework

Type alias Transaction manager/properties Comments

EXTERNAL ExternalDaoTransactionManager A “do-nothing” transaction that allows you to
manage your own transactions outside of
the iBATIS DAO framework.

HIBERNATE HibernateDaoTransactionManager Delegates to the Hibernate transaction man-
agement functionality.

JDBC JdbcDaoTransactionManager

 * DataSource
 * JDBC.Driver
 * JDBC.ConnectionURL
 * JDBC.Username
 * JDBC.Password
 * JDBC.DefaultAutoCommit

Uses JDBC to provide connection pooling
services via the DataSource API. Three
DataSource implementations are sup-
ported: SIMPLE, DBCP, and JNDI.
SIMPLE is an implementation of the iBATIS
SimpleDataSource, which is a stand-alone
implementation ideal for minimal overhead
and dependencies.
DBCP is an implementation that uses the
Jakarta DBCP DataSource.
Finally, JNDI is an implementation that
retrieves a DataSource reference from a
JNDI directory. This is the most common and
flexible configuration, as it allows you to cen-
trally configure your application via your
application server.

JTA JtaDaoTransactionManager
 * DBJndiContext
 * UserTransaction

Manages transactions using the Java Trans-
action Architecture (JTA) API.
Requires that the DataSource implementa-
tion be retrieved via JNDI and that User-
Transaction instances also be accessible
via JNDI.

OJB OjbBrokerTransactionManager Delegates to the OJB transaction manage-
ment functionality.

SQLMAP SqlMapDaoTransactionManager Delegates to the SQL map transaction man-
agement functionality.

TOPLINK ToplinkDaoTransactionManager Delegates to the TOPLINK transaction man-
agement functionality.

Configuring the DAO 225
OK, so now that you know what your options are, let’s take a closer look to see
what makes each one unique.

The EXTERNAL transaction manager
The EXTERNAL transaction manager is the simplest to configure (it has no prop-
erties, and any that are passed to it are ignored), but potentially the most difficult
to use, because you are 100 percent responsible for all transaction management
in your application.

The HIBERNATE transaction manager
The HIBERNATE transaction manager is also very simple to configure. It takes all
of the properties that are passed to it, and simply passes them on to the Hibernate
session factory. In addition, any properties that are passed in with names that
begin with class. are assumed to be classes to be managed by Hibernate, and are
added to the configuration object that is used to build the session factory. Like-
wise, any properties passed in that begin with map. are assumed to be mapping
files, and are also added to the configuration object.

The JDBC transaction manager
The JDBC transaction manager is probably the most difficult one to configure.
The DataSource property is required for this transaction manager and must be
one of the following: SIMPLE, DBCP, or JNDI.

The SIMPLE data source
The SIMPLE data source is an implementation of the iBATIS SimpleDataSource,
which is a stand-alone implementation ideal for minimal overhead and depen-
dencies. It has five required properties:

■ JDBC.Driver—This is the fully qualified name of the JDBC driver to be used
for managing transactions in this DAO context.

■ JDBC.ConnectionURL—This is the JDBC URL that is to be used to connect to
the database for this DAO context.

■ JDBC.Username—This is the username that is to be used to connect to the
database for this DAO context.

■ JDBC.Password—This is the password of the user to be used to connect to
the database for this DAO context.

■ JDBC.DefaultAutoCommit—If true (or any expression that the Boolean class
in Java interprets as true), then the autoCommit property of connections
returned by this data source will be set to true in this DAO context.

226 CHAPTER 10

iBATIS data access objects
In addition to those required properties, eight optional properties can be used to
configure the connection pool:

■ Pool.MaximumActiveConnections—This is the number of connections that
the pool can have active at one time. The default value of this property is 10
connections.

■ Pool.MaximumIdleConnections—This specifies the number of connections
that the pool can have idle at one time. The default value of this property
is 5 connections.

■ Pool.MaximumCheckoutTime—This is the maximum number of milliseconds
that a connection is reserved before it can be given to another request. The
default value of this property is 20,000 milliseconds, or 20 seconds.

■ Pool.TimeToWait—This represents the number of milliseconds to wait for a
connection if one is not available when requested. The default value of this
property is 20,000 milliseconds, or 20 seconds.

■ Pool.PingEnabled—If true (or any expression that the Boolean class in Java
interprets as true), then connections will be tested using the query defined
in the Pool.PingQuery property when they are determined to be at risk for
invalidation. The default value for this property is false, meaning that con-
nections will never be pinged before use. The next three properties are
used to determine the behavior of connection pinging.

■ Pool.PingQuery—This is the query to be executed if a connection needs to
be tested to see if it is still valid. Be sure to make this a statement that will
return very quickly. For example, on Oracle, something like select 0 from
dual would work very well.

■ Pool.PingConnectionsOlderThan—This represents the age (in millisec-
onds) at which connections are considered to be at risk for invalidation.
The default value for this property is 0, which means that if pinging is
enabled, then every time a connection is used it will be checked. In a high-
transaction environment, this could have a serious impact on performance.

■ Pool.PingConnectionsNotUsedFor—This is the number of milliseconds to
let a connection sit idle before considering it “at risk” for invalidation.

The DBCP data source
The DBCP data source is a wrapper around the Jakarta Commons Database Con-
nection Pooling (DBCP) project’s data source implementation, and is intended to
allow you to use a more robust implementation at the expense of an added

Configuring the DAO 227
dependency. The properties for this transaction manager are handled differently,
based on what properties are available. The old way of setting up a DBCP transac-
tion manager (which is still supported) was to set these eight properties:

■ JDBC.Driver—This specifies the JDBC driver to be used by this DAO context.

■ JDBC.ConnectionURL—This is the JDBC URL to be used for connecting to
this DAO context’s database.

■ JDBC.Username—This is the username to be used when connecting to the
database.

■ JDBC.Password—This is the password to be used when connecting to the
database.

■ Pool.ValidationQuery—This is a query to use to validate database connec-
tions.

■ Pool.MaximumActiveConnections—This specifies the maximum number of
active connections that are to be in the connection pool.

■ Pool.MaximumIdleConnections—This specifies the maximum number of
idle connections that are to be in the connection pool.

■ Pool.MaximumWait—This specifies the maximum time (in milliseconds) to
wait for a connection before giving up.

The new way of configuring the DBCP data source is much more flexible, because
it simply treats it as a bean, so that all properties exposed with get/set methods
are available for your use in iBATIS. For example, to set the driverClassName for
the data source, you would do this:

<property
 name="driverClassName"
 value="com.mysql.jdbc.Driver"/>

NOTE To learn more about using and configuring the DBCP data source, visit
the official website at the Jakarta project: http://jakarta.apache.org/
commons/dbcp/.

The JNDI data source
The JNDI data source is intended to allow you to leverage any JNDI context that
your applications container may provide. It is also probably the simplest one to set
up. It has one required property, DBJndiContext, which provides the name of the
context that contains the data source.

228 CHAPTER 10

iBATIS data access objects
 This data source also allows you to pass other properties to the InitialContext
constructor by using the prefix context. in any contained properties elements.
For example, to pass a property named someProperty, you would use this syntax:

<property name="context.someProperty" value="someValue"/>

The JTA transaction manager
The Java Transaction API (JTA) transaction manager allows you to use distributed
transactions with multiple databases. This means that you can commit or roll
back changes made across multiple databases as easily as you would with a single
database.

 Only two properties are required to configure this transaction manager,
because the bulk of the configuration work is done in JNDI. The first property,
DBJndiContext, specifies the name of the context that contains the data source to
be used for the transaction manager. The other required property, UserTransac-
tion, provides the name of the context that contains the user transaction.

The OJB transaction manager
ObJectRelationalBridge (OJB) is another object/relational mapping tool to pro-
vide persistence for Java Objects using relational databases. The OJB transaction
manager is a wrapper for the transaction management interface provided by OJB.

 All of the configuration for OJB transaction management is done just as it
would be done without the iBATIS DAO.

NOTE For more information on the OJB tool, and to see how to configure its
transaction manager, visit http://db.apache.org/ojb/.

The SQLMAP transaction manager
SQLMAP is probably the most common choice of transaction manager when using
the iBATIS DAO. The SQLMAP transaction manager requires either the SqlMapCon-
figURL or the SqlMapConfigResource property to be present. It uses the same
transaction manager that the SQL Map uses for its transaction manager.

 The SqlMapConfigURL property is expected to be a string that the java.net.URL
class can parse and retrieve a resource from, including the http: and file: proto-
cols. The SqlMapConfigResource property is used to refer to a resource that exists
on the current classpath.

The TOPLINK transaction manager
Oracle’s TopLink product is yet another O/RM tool. The only required property
for the TOPLINK transaction manager is session.name, which is used to get the
session that will be used by this DAO context.

Configuring the DAO 229
Using your own or another transaction manager
In addition to these transaction manager implementations, the DaoTransaction-
Manager is an interface that you can implement and insert into the DAO configura-
tion by providing the fully qualified name of your implementation in the type
attribute of the transaction manager configuration element. Any properties that
are listed in the body of the transaction manager element are passed to the con-
figure() method of the transaction manager class:

<transactionManager
 type="com.mycompany.MyNiftyTransactionManager">
 <property name="someProp" value="aValue"/>
 <property name="someOtherProp" value="anotherValue"/>
</transactionManager>

In the previous example, the iBATIS DAO framework would create an instance of
the MyNiftyTransactionManager class, and pass it a Properties object with entries
for someProp and someOtherProp. We will look at the anatomy of an existing
DaoTransactionManager implementation in more detail in chapter 11.

10.2.4 The DAO elements

Once the transaction manager has been chosen and configured, the DAO ele-
ments can be added to the DAO context to define the DAO interfaces and imple-
mentations that your context will make available for your application.

 The <dao> element only has two properties: interface and implementation.

NOTE Just because the attribute name interface is used to identify the DAO
implementation, you do not actually need to use an interface. In our pre-
vious example, both of the attributes (interface and implementation)
could have been the fully qualified class name of the implementation.
While this may seem like an easy way to reduce some code, it is strongly
discouraged, because it essentially eliminates the value added by the DAO
layer—that is, the separation of the interface from the implementation.
As for the code savings, nearly all IDEs now provide refactoring tools to
allow you to extract an interface from an implementation, meaning that
you are able to write and test your DAO implementation without creating
the interface and then create the interface with a few mouse clicks.

The interface property is used to identify the DAO in the DAO map, and is gen-
erally used in the following way:

 <dao interface="com.mycompany.system.dao.AccountDao"
 implementation=
 "com.mycompany.system.dao.impl.AccountDaoImpl"/>

230 CHAPTER 10

iBATIS data access objects
Let’s look at an example of this. Assume a class relationship like the one described
earlier in figure 10.2. In this diagram, there is an AccountDao interface and an
AccountDaoImpl class that implements that interface. To use the DaoManager to get
the DAO, use the following code:

AccountDao accountDao = (AccountDao)
 daoManager.getDao(AccountDao.class);

In this line of code, we declare our AccountDao variable, request it from the
DaoManager instance using the interface name, and then cast it to the AccountDao
interface, because the DAO manager simply returns Object.

 In the previous version of the DAO, it was also possible to pass in a String
instead of an interface class. In version 2.x, that functionality was dropped,
because it eliminated a potential point of failure. By forcing the use of a class
name for identifying DAO implementations, you ensure that misspellings can be
avoided in the Java environment, because if the interface name is misspelled, the
code will not compile. Early failure is a good thing.

 So, now that you have a solid foundational understanding of what you can do
with the iBATIS DAO framework, we can start looking at other more advanced uses
of it.

10.3 Configuration tips

Although the DAO configuration looks very simple on the surface, it still offers a
great deal of flexibility. By creatively configuring the DAO manager, you can
accomplish some pretty sophisticated approaches to common problems. Let’s
look at a few of them.

10.3.1 Multiple servers

As mentioned earlier, it is not uncommon in most development shops to have
different servers for their development, QC testing, UA testing, and production
environments.

 In these cases, it is very useful to be able to remove the environment-specific
information from the dao.xml file and put it into an external file. The properties
element was created to accomplish just that sort of thing. Listing 10.3 is a sample
dao.xml file that uses this technique to make the JDBC settings external to the
dao.xml file.

Configuration tips 231
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE daoConfig
 PUBLIC
 "-//ibatis.apache.org//DTD DAO Configuration 2.0//EN"
 "http://ibatis.apache.org/dtd/dao-2.dtd">
<daoConfig>
 <properties resource="server.properties"/>
 <context>
 <transactionManager type="JDBC">
 <property name="DataSource" value="SIMPLE"/>
 <property name="JDBC.Driver" value="${jdbcDriver}" />
 <property name="JDBC.ConnectionURL"
 value="${jdbcUrl}" />
 <property name="JDBC.Username" value="${jdbcUser}" />
 <property name="JDBC.Password"
 value="${jdbcPassword}" />
 <property name="JDBC.DefaultAutoCommit"
 value="${jdbcAutoCommit}" />
 </transactionManager>
 <dao interface="..." implementation="..."/>
 </context>
</daoConfig>

In this example, all of the property values are stored in a file named server.prop-
erties that is to be loaded from the root of the classpath.

 This is an approach that we like to use, because all of the files can be kept
under version control, and the different versions of the properties files can be
named in a way that identifies them based on the environment (i.e., server-pro-
duction.properties, server-user.properties, etc.) so that the build procedure
can automatically copy the correct version to the correct location.

 This approach also works well in more sensitive environments, where the con-
figuration settings are considered to be more secure by not having them under
version control. In those environments, it makes manual configuration simpler,
because the configuration file that changes based on the environment is always
the same file.

10.3.2 Multiple database dialects

If you are using the DAO pattern to support database platforms that are different
enough to require different code (i.e., using MySQL without stored procedures,
and Oracle with stored procedures), you can do something similar to the way we
performed earlier with the JDBC settings and make the package name part of the
properties file (see listing 10.4).

Listing 10.3 A sample dao.xml with JDBC settings inserted with a <properties /> element

232 CHAPTER 10

iBATIS data access objects
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE daoConfig
 PUBLIC
 "-//ibatis.apache.org//DTD DAO Configuration 2.0//EN"
 "http://ibatis.apache.org/dtd/dao-2.dtd">
<daoConfig>
 <properties resource="config.properties"/>
 <context>
 <transactionManager type="JDBC">
 <property name="DataSource" value="SIMPLE"/>
 <property name="JDBC.Driver" value="${jdbcDriver}" />
 <property name="JDBC.ConnectionURL"
 value="${jdbcUrl}" />
 <property name="JDBC.Username" value="${jdbcUser}" />
 <property name="JDBC.Password"
 value="${jdbcPassword}" />
 <property name="JDBC.DefaultAutoCommit"
 value="${jdbcAutoCommit}" />
 </transactionManager>
 <dao interface="com.company.system.dao.AccountDao"
 implementation="${impl}.AccountDaoImpl"/>
 </context>
</daoConfig>

In listing 10.4, all of the server settings and the data access implementation are
external to the main configuration file.

10.3.3 Runtime configuration changes

As if this were not enough flexibility, the DAO manager can also be built with
properties that are determined at runtime and passed in when the DAO manager
is created.

 A second form of the code we saw in section 10.1.1 to pass in runtime configu-
ration information might provide a method like listing 10.5.

 public static DaoManager getDaoManager(Properties props)
 {
 String daoXml = "/org/apache/mapper2/examples/Dao.xml";
 Reader reader;
 DaoManager localDaoManager;

 try {

Listing 10.4 A dao.xml using a <properties /> element to insert implementation
 information

Listing 10.5 Creating a DaoManager with runtime properties

A SQL Map DAO implementation example 233
 reader = Resources.getResourceAsReader(daoXml);
 localDaoManager =
 DaoManagerBuilder.buildDaoManager(reader, props);
 } catch (IOException e) {
 throw new RuntimeException(
 "Unable to create DAO manager.", e);
 }

 return localDaoManager;
 }

The code in listing 10.5 would create a dynamically configured DAO manager
whose properties were passed in at runtime, instead of the shared one that would
normally be returned. While this would provide much more flexibility, it would
also require the user of this DAO manager to keep a copy of it around, instead of
creating it every time it was needed.

 Next we’ll look at how to use the iBATIS DAO framework, and create some DAO
classes that it will manage for us.

10.4 A SQL Map DAO implementation example

The DAO pattern is all about hiding the data access implementations behind
interfaces, but you still have to build the underlying implementations. In this sec-
tion, we build a SQL Map implementation of our DAO interface. You’ll learn more
about how to use the DAO pattern in chapter 11, where we will implement this
same interface again using different data access technologies: one with Hiber-
nate, and one with straight JDBC.

 Before we build the implementations, let’s build our DAO interface (listing 10.6).

package org.apache.mapper2.examples.chapter10.dao;

import org.apache.mapper2.examples.bean.Account;
import org.apache.mapper2.examples.bean.IdDescription;

import java.util.List;
import java.util.Map;

public interface AccountDao {
 public void insert(Account account);
 public void update(Account account);
 public int delete(Account account);

Listing 10.6 The interface for our DAO

234 CHAPTER 10

iBATIS data access objects
 public int delete(Integer accountId);
 public List<Account> getAccountListByExample(
 Account account);
 public List<Map<String, Object>>
 getMapListByExample(Account account);
 public List<IdDescription>
 getIdDescriptionListByExample(Account account);
 public Account getById(Integer accountId);
 public Account getById(Account account);
}

This is a reasonable interface for the account table—we have all the basic CRUD
operations, as well as a few more convenience methods to make the API simpler to
use. Because we are talking primarily about iBATIS, let’s start our DAO implemen-
tations with a SQL Map–based version of the interface we defined earlier. First, we
will look at the dao.xml that is used to describe the configuration for iBATIS.

10.4.1 Configuring the DAO in iBATIS

Listing 10.7 shows a DAO configuration that uses a single SQL Map–based DAO.
We define a context named sqlmap that will be defined in a SqlMapConfig.xml file
which is available on the classpath (for example, if this were used in a web applica-
tion, that file would live in /WEB-INF/classes/).

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE daoConfig
 PUBLIC
 "-//ibatis.apache.org//DTD DAO Configuration 2.0//EN"
 "http://ibatis.apache.org/dtd/dao-2.dtd">
<daoConfig>
 <context id="sqlmap">
 <transactionManager type="SQLMAP">
 <property name="SqlMapConfigResource"
 value="SqlMapConfig.xml"/>
 </transactionManager>
 <dao interface="com.mycompany.system.dao.AccountDao"
 implementation=
 "com.mycompany.system.dao.sqlmap.AccountDaoImpl"/>
 </context>
</daoConfig>

Listing 10.7 Sample iBATIS dao.xml

A SQL Map DAO implementation example 235
The dao.xml file is used by the DaoManagerBuilder to create a DaoManager
instance. Let’s look at that next.

10.4.2 Creating a DaoManager instance

In order to use the DAO manager we have defined, we need to use a DaoManager-
Builder to create an instance of it. Listing 10.8 shows a fragment of code that you
can use to create a DaoManager instance.

 private DaoManager getDaoManager() {
 DaoManager tempDaoManager = null;
 Reader reader;
 try {
 reader = Resources.getResourceAsReader("Dao.xml");
 tempDaoManager =
 DaoManagerBuilder.buildDaoManager(reader);
 } catch (Exception e) {
 e.printStackTrace();
 fail("Cannot load dao.xml file.");
 }
 return tempDaoManager;
 }

Now that we have some code and configuration elements to look at, let’s take a
closer look to see what is going on with all this stuff.

 This code looks for a resource named Dao.xml, which is located at the root of
some location that the classloader will look in. For example, in Tomcat, it might
be in your web application’s WEB-INF/classes directory or in a JAR file in its WEB-
INF/lib directory (as long as it was at the top level of the JAR file).

 Once it has the configuration file, it passes the data to the DaoManagerBuilder,
and requests that it build a DaoManager instance.

 This code is from a JUnit test that we used to build and test the DAO implemen-
tations which we are looking at, so the exception handling is pretty weak. In a real
production application, this is not how you would want to handle the exception.

10.4.3 Defining the transaction manager

Next, we define a transaction manager that will be based on the transaction man-
ager we defined in our SQL Map configuration file, which we define using the
SqlMapConfigResource property nested in the <transactionManager> element. All

Listing 10.8 Sample code to build a DaoManager

236 CHAPTER 10

iBATIS data access objects
of the transaction management functionality that was available when using SQL
Maps directly is still available in our DAO implementation. Listing 10.9 contains
the SQLMapConfig.xml we used for this example.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMapConfig
 PUBLIC
 "-//ibatis.apache.org//DTD SQL Map Config 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-config-2.dtd">
<sqlMapConfig>
 <properties resource="SqlMapConfig.properties" />
 <settings
 errorTracingEnabled="true"
 cacheModelsEnabled="true"
 enhancementEnabled="true"
 lazyLoadingEnabled="true"
 maxRequests="32"
 maxSessions="10"
 maxTransactions="5"
 useStatementNamespaces="true"
 />
 <transactionManager type="JDBC" >
 <dataSource type="SIMPLE">
 <property name="JDBC.Driver" value="${driver}"/>
 <property name="JDBC.ConnectionURL"
 value="${connectionUrl}"/>
 <property name="JDBC.Username" value="${username}"/>
 <property name="JDBC.Password" value="${password}"/>
 </dataSource>
 </transactionManager>
 <sqlMap
 resource=
 "com/mycompany/system/dao/sqlmap/Account.xml" />
</sqlMapConfig>

All of the settings for this file are covered in detail in chapter 4, so we won’t
rehash them here.

10.4.4 Loading the maps

In addition to defining transaction management, all of the maps defined in our
SQL Map configuration file are loaded as well. For this example, that is simply a
sample Account.xml file that defines all of the mapped statements for our DAO
class, as shown in listing 10.10.

Listing 10.9 Sample SQLMapConfig.xml file

A SQL Map DAO implementation example 237
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE sqlMap
 PUBLIC "-//ibatis.apache.org//DTD SQL Map 2.0//EN"
 "http://ibatis.apache.org/dtd/sql-map-2.dtd">
<sqlMap namespace="Account">

 <typeAlias alias="Account"
 type="${BeanPackage}.Account" />
 <typeAlias alias="IdDescription"
 type="${BeanPackage}.IdDescription" />

 <insert id="insert" parameterClass="Account">
 <selectKey keyProperty="accountId" resultClass="int">
 SELECT nextVal('account_accountid_seq')
 </selectKey>
 INSERT INTO Account (
 accountId,
 username,
 password,
 firstName,
 lastName,
 address1,
 address2,
 city,
 state,
 postalCode,
 country
) VALUES(
 #accountId#,
 #username:varchar#,
 #password:varchar#,
 #firstName:varchar#,
 #lastName:varchar#,
 #address1:varchar#,
 #address2:varchar#,
 #city:varchar#,
 #state:varchar#,
 #postalCode:varchar#,
 #country:varchar#
)
 </insert>

 <update id="update">
 update Account set
 username = #username:varchar#,
 password = #password:varchar#,
 firstName = #firstName:varchar#,
 lastName = #lastName:varchar#,
 address1 = #address1:varchar#,

Listing 10.10 A sample SQL Map file

238 CHAPTER 10

iBATIS data access objects
 address2 = #address2:varchar#,
 city = #city:varchar#,
 state = #state:varchar#,
 postalCode = #postalCode:varchar#,
 country = #country:varchar#
 where accountId = #accountId#
 </update>

 <delete id="delete">
 delete from Account
 where accountId = #accountId#
 </delete>

 <sql id="allFields">
 accountId as "accountId",
 username,
 password,
 firstName as "firstName",
 lastName as "lastName",
 address1,
 address2,
 city,
 state,
 postalCode as "postalCode",
 country
 </sql>

 <sql id="whereByExample">
 <dynamic prepend=" where ">
 <isNotEmpty property="city">
 city like #city#
 </isNotEmpty>
 <isNotNull property="accountId" prepend=" and ">
 accountId = #accountId#
 </isNotNull>
 </dynamic>
 </sql>

 <sql id="getByExample">
 select
 <include refid="allFields" />
 from Account
 <include refid="whereByExample" />
 </sql>

 <select id="getAccountListByExample"
 resultClass="Account">
 <include refid="getByExample" />
 </select>

SQL fragment
for the field list

B

SQL fragment
for the WHERE

C

Composite
SQL fragment

D

Mapped statement
for a bean

E

A SQL Map DAO implementation example 239
 <select id="getMapListByExample" resultClass="hashmap">
 <include refid="getByExample" />
 </select>

 <select id="getIdDescriptionListByExample"
 resultClass="IdDescription">
 select
 accountId as id,
 COALESCE(firstname, '(no first name)')
 || ' '
 || COALESCE(lastname, '(no last name)')
 as description
 from Account
 <include refid="whereByExample" />
 </select>

 <select id="getById" resultClass="Account">
 select
 <include refid="allFields" />
 from Account
 where accountId = #value#
 </select>

</sqlMap>

In this SQL map, we define a SQL fragment that list all of our fields. In this case,
the driver we are using messes with the case of the columns, so we used explicit col-
umn aliases to make sure they were right for our implicit property mapping.
Another SQL fragment is used to define a complex WHERE clause that we will use.
A third SQL fragment is used to pull the other two into a single fragment that we
then use in two select statements—one to get a List of beans and another to get
a List of Maps . In the getIdDescriptionListByExample mapped statement , we
use the complex WHERE clause again to get a List of a different type of beans.

10.4.5 Coding the DAO implementation

Finally, we get to the actual DAO implementation. As we mentioned before, to cre-
ate a DAO, we provide both an interface and an implementation. In this case, the
interface is defined as com.mycompany.system.dao.AccountDao, and the imple-
mentation is defined as com.mycompany.system.dao.sqlmap.AccountDaoImpl.

 We saw the interface in section 10.3, so we will not repeat it here, but we will
take a look at the DAO implementation class (see listing 10.11).

Mapped statement
for a mapF

Mapped statement
for a name/value listG

b

C
D

E
F G

240 CHAPTER 10

iBATIS data access objects
package org.apache.mapper2.examples.chapter10.dao.sqlmap;

import com.ibatis.dao.client.DaoManager;
import com.ibatis.dao.client.template.SqlMapDaoTemplate;
import org.apache.mapper2.examples.bean.Account;
import org.apache.mapper2.examples.bean.IdDescription;
import
 org.apache.mapper2.examples.chapter10.dao.AccountDao;

import java.util.List;
import java.util.Map;

public class AccountDaoImpl extends SqlMapDaoTemplate
 implements AccountDao {
 public AccountDaoImpl(DaoManager daoManager) {
 super(daoManager);
 }

 public Integer insert(Account account) {
 return (Integer) insert("Account.insert", account);
 }

 public int update(Account account) {
 return update("Account.update", account);
 }

 public int delete(Account account) {
 return delete(account.getAccountId());
 }

 public int delete(Integer accountId) {
 return delete("Account.delete", accountId);
 }

 public List<Account> getAccountListByExample(
 Account account) {
 return queryForList("Account.getAccountListByExample",
 account);
 }

 public List<Map<String, Object>>
 getMapListByExample(Account account) {
 return queryForList("Account.getMapListByExample",
 account);
 }

 public List<IdDescription>
 getIdDescriptionListByExample(
 Account account) {

Listing 10.11 Our Account DAO implementation

Summary 241
 return
 queryForList("Account.getIdDescriptionListByExample",
 account);
 }

 public Account getById(Integer accountId) {
 return (Account)queryForObject("Account.getById",
 accountId);
 }

 public Account getById(Account account) {
 return getById(account.getAccountId());
 }
}

On the surface, it does not look like there is really much there. In the class decla-
ration, we see that the class implements the AccountDao interface and extends the
SqlMapDaoTemplate class.

 The SqlMapDaoTemplate class does much of the heavy lifting for us by providing
all of the components of the SQL Map API in one tidy little package. In addition, it
provides local methods that delegate calls to the SqlMapExecutor for us, so instead
of getting an instance of a SqlMapClient or a SqlMapExecutor, we can just call their
methods as though they were part of our DAO class.

 While this may seem like a lot of work just to separate our DAO class from its
implementation, subsequent DAO classes only require the creation of the inter-
face, the creation of the implementation, the creation of the SQL Map, and finally
a one-line addition to the Dao.xml file. In the next chapter, we implement the
same DAO interface with Hibernate and JDBC directly. All three implementations
use the same API (the AccountDao interface), in spite of using radically different
underlying technologies for accessing the database.

10.5 Summary

In this chapter, we explained the rationale for using a data access layer in an appli-
cation, and how to set up the iBATIS DAO framework. We also looked at some of
the more advanced ways to configure the iBATIS DAO framework, and you saw
how to create a SQL Map–based DAO.

 In the next chapter, we will look at how to set up other DAO types, as well as a
more advanced use of the iBATIS DAO framework by building a non–SQL DAO
implementation. We will also explore other ways to implement a DAO layer in
your application using the Spring framework, and look at some things you need
to consider when creating your own DAO layer from scratch.

Doing more with DAO
This chapter covers
■ More sample DAOs
■ Using Spring instead of IBATIS
■ Creating a DAO layer from scratch
242

Non-SQLMap DAO implementations 243
As we saw in the previous chapter, the Data Access Object (DAO) pattern can be
used to hide the unique implementation peculiarities of data-related APIs to pro-
vide a simple and common API for application developers. This pattern is very
powerful, and is not unique to iBATIS, as other projects have created DAO imple-
mentations that you can use with iBATIS.

 In this chapter, we look at a couple more SQL-based DAO implementations, as
well as a couple of DAO implementations for other data sources (LDAP and web
services). Then we explore the other options for DAO layers, including the Spring
framework’s excellent DAO implementation. We also consider the implications of
creating your own custom DAO layer.

11.1 Non-SQLMap DAO implementations

In the last chapter, we defined an interface for a DAO, and then built a SQL
Map–based implementation of it. In the next two sections, we implement that
interface again with both Hibernate and JDBC to show you how the DAO pat-
tern can make it easier to use different database access technologies with iBATIS
in your application.

11.1.1 A Hibernate DAO implementation

The Hibernate DAO implementation is very different from the SQL Map version,
but because of the DAO interface, it is used in exactly the same manner as far as
the application code that uses it is concerned.

Defining the DAO context
Listing 11.1 shows the XML fragment that we need in the Dao.xml file to describe
the DAO context that will use Hibernate.

 <context id="hibernate">
 <transactionManager type="HIBERNATE">
 <property name="hibernate.connection.driver_class"
 value="org.postgresql.Driver" />
 <property name="hibernate.connection.url"
 value="jdbc:postgresql:ibatisdemo" />
 <property name="hibernate.connection.username"
 value="ibatis" />
 <property name="hibernate.connection.password"
 value="ibatis" />
 <property name="hibernate.connection.pool_size"
 value="5" />

Listing 11.1 XML fragment defining a DAO context using Hibernate

244 CHAPTER 11

Doing more with DAO
 <property name="hibernate.dialect"
 value=
 "net.sf.hibernate.dialect.PostgreSQLDialect" />
 <property name="map.Account"
 value=
 "${DaoHomeRes}/hibernate/Account.hbm.xml" />
 </transactionManager>
 <dao interface="${DaoHome}.AccountDao"
 implementation=
 "${DaoHome}.hibernate.AccountDaoImpl"/>
 </context>

As was discussed in chapter 10 (section 10.2.2), the HIBERNATE transaction man-
ager simply expects that the properties you would normally put in the hiber-
nate.properties file are listed as properties to the <transactionManager> element.

 Because we wanted to keep our source tree clean, we did not put the Hiber-
nate mapping file for the Account bean (Account.hbm.xml) in the same package as
our Account bean, but instead added it to the configuration by using a map. prop-
erty that added it to our Hibernate configuration. Remember, it is all about keep-
ing the implementation of the data access separate from the interface.

Mapping the Account table
The mapping file, shown in listing 11.2, is very simple, because we map directly
from the properties files to the columns that have the same names, and there are
no related entities.

<?xml version="1.0"?>
<!DOCTYPE hibernate-mapping
 PUBLIC "-//Hibernate/Hibernate Mapping DTD//EN"
 "http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">
<hibernate-mapping>
 <class
 name="org.apache.mapper2.examples.bean.Account"
 table="Account">
 <id name="accountId" type="int" column="accountid">
 <generator class="sequence">
 <param
 name="sequence">account_accountid_seq</param>
 </generator>
 </id>
 <property name="username" />
 <property name="password" />
 <property name="firstName" />

Listing 11.2 Hibernate mapping file for our Account table

Mapping table
to a class

B

Hooking up sequence
for ID generationC

Non-SQLMap DAO implementations 245
 <property name="lastName" />
 <property name="address1" />
 <property name="address2" />
 <property name="city" />
 <property name="state" />
 <property name="postalCode" />
 <property name="country" />
 </class>
</hibernate-mapping>

If you have used Hibernate before, the file in listing 11.2 will be obvious to you—
it is a fairly simple table mapping. If you have not used Hibernate before, it may
not be so clear. What this configuration file does is map the properties from our
Account bean to columns in our account table in the database . It also tells
Hibernate how we want to generate the id property in the bean for newly created
database rows .

The actual DAO implementation
The Java source code for the DAO implementation is more verbose, because we
are mapping the Account table to several different classes of objects. This is a bit
more difficult with Hibernate, as listing 11.3 shows.

public class AccountDaoImpl
 extends HibernateDaoTemplate
 implements AccountDao {

 private static final Log log =
 LogFactory.getLog(AccountDaoImpl.class);

 public AccountDaoImpl(DaoManager daoManager) {
 super(daoManager);
 if(log.isDebugEnabled()){
 log.debug("Creating instance of " + getClass());
 }
 }

 public Integer insert(Account account) {
 try {
 getSession().save(account);
 } catch (HibernateException e) {
 log.error(e);
 throw new DaoException(e);
 }
 return account.getAccountId();

Listing 11.3 Hibernate implementation of our Account DAO interface

b

C

Inserts new accountB

246 CHAPTER 11

Doing more with DAO
 }

 public int update(Account account) {
 try {
 getSession().save(account);
 } catch (HibernateException e) {
 log.error(e);
 throw new DaoException(e);
 }
 return 1;
 }

 public int delete(Account account) {
 try {
 getSession().delete(account);
 } catch (HibernateException e) {
 log.error(e);
 throw new DaoException(e);
 }
 return 1;
 }

 public int delete(Integer accountId) {
 Account account = new Account();
 account.setAccountId(accountId);
 return delete(account);
 }

 public List<Account> getAccountListByExample(
 Account acct) {
 List accountList;
 Session session = this.getSession();

 Criteria criteria =
 session.createCriteria(Account.class);
 if (!nullOrEmpty(acct.getCity())) {
 criteria.add(
 Expression.like("city", acct.getCity())
);
 }
 If (!nullOrEmpty(acct.getAccountId())) {
 criteria.add(
 Expression.eq("accountId", acct.getAccountId())
);
 }

 try {
 accountList = criteria.list();
 } catch (HibernateException e) {
 log.error(
 "Exception getting list: " +

Updates accountC

Deletes accountD

Deletes accountE

Gets list of beansF

Non-SQLMap DAO implementations 247
 e.getLocalizedMessage(), e);
 throw new DaoException(e);
 }
 return (List<Account>)accountList;
 }

 public List<Map<String, Object>> getMapListByExample(
 Account account
)
 {
 List<Account> accountList =
 getAccountListByExample(account);
 List<Map<String, Object>> mapList =
 new ArrayList<Map<String, Object>>();
 for (Account acctToAdd : accountList) {
 Map<String, Object> map =
 new HashMap<String, Object>();
 map.put("accountId", acctToAdd.getAccountId());
 map.put("address1", acctToAdd.getAddress1());
 map.put("address2", acctToAdd.getAddress2());
 map.put("city", acctToAdd.getCity());
 map.put("country", acctToAdd.getCountry());
 map.put("firstName", acctToAdd.getFirstName());
 map.put("lastName", acctToAdd.getLastName());
 map.put("password", acctToAdd.getPassword());
 map.put("postalCode", acctToAdd.getPostalCode());
 map.put("state", acctToAdd.getState());
 map.put("username", acctToAdd.getUsername());
 mapList.add(map);
 }
 return mapList;
 }

 public List<IdDescription> getIdDescriptionListByExample(
 Account exAcct
) {
 List<Account> acctList =
 getAccountListByExample(exAcct);
 List<IdDescription> idDescriptionList =
 new ArrayList<IdDescription>();
 for (Account acct : acctList) {
 idDescriptionList.add(
 new IdDescription(
 acct.getAccountId(),
 acct.getFirstName() + " " + acct.getLastName()
)
);
 }
 return idDescriptionList;
 }

Gets list
of maps

G

Gets different
list of beansH

248 CHAPTER 11

Doing more with DAO
 public Account getById(Integer accountId) {
 Session session = this.getSession();
 try {
 return (Account) session.get(
 Account.class, accountId);
 } catch (HibernateException e) {
 log.error(e);
 throw new DaoException(e);
 }
 }

 public Account getById(Account account) {
 return getById(account.getAccountId());
 }
}

There is a good deal more here than in the SQL Map implementation. In the cases
where we are dealing with Account objects (through and through), it
is pretty simple, but things get more interesting when we start looking at returning
a List of Map objects or IdDescription objects . Because Hibernate is designed
to map a database table to a Java class, it becomes more difficult to map the same
table to different classes.

 In the next example DAO implementation, we will get away from any mapping
tool, and use straight JDBC to build our DAO.

11.1.2 A JDBC DAO implementation

The last DAO implementation that we will build under this interface will use
straight JDBC. The greatest advantages that a simple JDBC-based implementation
provides are minimal configuration and increased flexibility.

 Listing 11.4 shows our dao.xml configuration file.

 <context id="jdbc">
 <transactionManager type="JDBC">
 <property name="DataSource"
 value="SIMPLE"/>
 <property name="JDBC.Driver"
 value="org.postgresql.Driver" />
 <property name="JDBC.ConnectionURL"
 value="jdbc:postgresql:ibatisdemo" />
 <property name="JDBC.Username"
 value="ibatis" />
 <property name="JDBC.Password"

Fetches single accountI

Fetches single accountJ

b F I J

G H

Listing 11.4 XML fragment defining a DAO context using JDBC

Non-SQLMap DAO implementations 249
 value="ibatis" />
 <property name="JDBC.DefaultAutoCommit"
 value="true" />
 </transactionManager>
 <dao interface="${DaoHome}.AccountDao"
 implementation="${DaoHome}.jdbc.AccountDaoImpl"/>
 </context>

That is the end of the configuration—everything else is in the code that follows,
and it shows. The JDBC implementation of this DAO is over twice as many lines of
code as the Hibernate version, and nearly seven times longer than the SQL Map
version. If we include configuration files, our “lines of code” statistics look like
table 11.1. So, by eliminating configuration, we still end up doubling our total
coding effort. We are not saying that developing applications with JDBC is a bad
idea; we are simply saying that the trade-off for flexibility and minimal configura-
tion is that much more code needs to be written.

Looking at the JDBC DAO implementation
Because of the size of the JDBC DAO implementation, we will not be looking at the
entire class here, but we focus on some of the tricks used to build it.

 The first thing that we do is build our DAO by extending the JdbcDaoTemplate
class provided by iBATIS. By doing that, we get to be a little lazy, because it man-
ages the connection for us—which means we do not have to close it in our code.

 While that may seem like a trivial matter, failing to manage connections cor-
rectly in a large system will cripple it in a matter of hours (if not minutes). That
brings us to our next code-saving tip, which is creating methods to help manage
the other resources we need to use:

 private boolean closeStatement(Statement statement) {
 boolean returnValue = true;
 if(null != statement){
 try {
 statement.close();

Table 11.1 Lines of code and configuration for DAO implementations

Version Configuration Code Total

iBATIS 118+8=126 53 179

Hibernate 23+20=43 141 184

JDBC 18 370 388

250 CHAPTER 11

Doing more with DAO
 } catch (SQLException e) {
 log.error("Exception closing statement", e);
 returnValue = false;
 }
 }
 return returnValue;
 }

Because closing a Statement can throw a SQLException, this method closes it and
wraps the SQLException as a DaoException. So instead of the code above, we sim-
ply call closeStatement() and it logs the original exception and throws the DaoEx-
ception. A similar method is used to close ResultSet objects for the same reasons.

 The next shortcuts we build are ways to extract our data structures from a
ResultSet object:

 private Account extractAccount(ResultSet rs
) throws SQLException {
 Account accountToAdd = new Account();
 accountToAdd.setAccountId(rs.getInt("accountId"));
 accountToAdd.setAddress1(rs.getString("address1"));
 accountToAdd.setAddress2(rs.getString("address2"));
 accountToAdd.setCity(rs.getString("city"));
 accountToAdd.setCountry(rs.getString("country"));
 accountToAdd.setFirstName(rs.getString("firstname"));
 accountToAdd.setLastName(rs.getString("lastname"));
 accountToAdd.setPassword(rs.getString("password"));
 accountToAdd.setPostalCode(rs.getString("postalcode"));
 accountToAdd.setState(rs.getString("state"));
 accountToAdd.setUsername(rs.getString("username"));
 return accountToAdd;
 }

 private Map<String, Object> accountAsMap(ResultSet rs
) throws SQLException {
 Map<String, Object> acct =
 new HashMap<String, Object>();
 acct.put("accountId", rs.getInt("accountId"));
 acct.put("address1", rs.getString("address1"));
 acct.put("address2", rs.getString("address2"));
 acct.put("city", rs.getString("city"));
 acct.put("country", rs.getString("country"));
 acct.put("firstName", rs.getString("firstname"));
 acct.put("lastName", rs.getString("lastname"));
 acct.put("password", rs.getString("password"));
 acct.put("postalCode", rs.getString("postalcode"));
 acct.put("state", rs.getString("state"));
 acct.put("username", rs.getString("username"));
 return acct;
 }

Non-SQLMap DAO implementations 251
 private IdDescription accountAsIdDesc(ResultSet rs
) throws SQLException {
 return new IdDescription(
 new Integer(rs.getInt("id")),
 rs.getString("description"));
 }

Because there are several places where we need to perform these tasks, building
methods to simplify the mapping saves us some errors and time when creating our
real methods later.

 The next method creates our PreparedStatement for the “query-by-example”
methods in the DAO interface. This is where we have the most complexity, and it’s
where the SQL Map implementation starts to look much more attractive. While
the other helper methods were simple but tedious, this one is tedious, error
prone, and difficult to test—not a good combination to have to write:

 private PreparedStatement prepareQBEStatement(
 Account account,
 Connection connection,
 PreparedStatement ps,
 String baseSql
) throws SQLException {
 StringBuffer sqlBase = new StringBuffer(baseSql);
 StringBuffer sqlWhere = new StringBuffer("");
 List<Object> params = new ArrayList<Object>();

 String city = account.getCity();
 if (!nullOrEmpty(city)) {
 sqlWhere.append(" city like ?");
 params.add(account.getCity());
 }

 Integer accountId = account.getAccountId();
 if (!nullOrZero(accountId)) {
 if sqlWhere.length() > 0) {
 sqlWhere.append(" and");
 }
 sqlWhere.append(" accountId = ?");
 params.add(account.getAccountId());
 }

 if (sqlWhere.length() > 0) {
 sqlWhere.insert(0, " where");
 sqlBase.append(sqlWhere);
 }

 ps = connection.prepareStatement(sqlBase.toString());
 for (int i = 0; i < params.size(); i++) {

252 CHAPTER 11

Doing more with DAO
 ps.setObject(i+1, params.get(i));
 }
 return ps;
 }

Now that we have all of the helper methods in place, we can start to build the pub-
lic interface. The insert method is the most involved, because it requires both a
query and an insert:

 public Integer insert(Account account) {
 Connection connection = this.getConnection();
 Statement statement = null;
 PreparedStatement ps = null;
 ResultSet rs = null;
 Integer key = null;
 if (null != connection) {
 try{
 statement = connection.createStatement();
 rs = statement.executeQuery(sqlGetSequenceId);
 if (rs.next()) {
 key = new Integer(rs.getInt(1));
 account.setAccountId(key);
 if (log.isDebugEnabled()) {
 log.debug("Key for inserted record is " + key);
 }
 }
 ps = connection.prepareStatement(sqlInsert);
 int i = 1;
 ps.setObject(i++, account.getAccountId());
 ps.setObject(i++, account.getUsername());
 ps.setObject(i++, account.getPassword());
 ps.setObject(i++, account.getFirstName());
 ps.setObject(i++, account.getLastName());
 ps.setObject(i++, account.getAddress1());
 ps.setObject(i++, account.getAddress2());
 ps.setObject(i++, account.getCity());
 ps.setObject(i++, account.getState());
 ps.setObject(i++, account.getPostalCode());
 ps.setObject(i++, account.getCountry());
 ps.executeUpdate();
 } catch (SQLException e) {
 log.error("Error inserting data", e);
 throw new DaoException(e);
 } finally {
 closeStatement(ps);
 closeResources(statement, rs);
 }
 }
 return key;
 }

Using the DAO pattern with other data sources 253
Here, we get the new id for the record to be inserted, set it on the bean that was
passed in, and then insert that bean into the database. The code is very simple to
follow, just a bit verbose when compared to either the iBATIS or Hibernate versions.

 The other methods are equally straightforward, so we will not take up any
more space on them.

11.2 Using the DAO pattern with other data sources

The DAO pattern is very similar to the Gateway pattern, which makes it suitable
for many other data sources such as LDAP or web services.

 If you are not familiar with the Gateway pattern, it is also sometimes referred to
as a Wrapper, because that is what it does. It “wraps” an API to make it look like a
simple object, as shown in figure 11.1, where the WebServiceGateway interface
hides the underlying implementation.

 If you are thinking that sounds familiar, it should, because that is also the idea
behind the DAO pattern, which is just a specialized gateway that also helps you
manage transactions, pooling, and other database-specific issues.

11.2.1 Example: using a DAO with LDAP

LDAP is an awesome tool for storing hierarchical data, and is often used by net-
work administrators for tracking users, group memberships, and other similar
data. For example, both Novell Directory Services (NDS) and Microsoft’s ActiveDi-
rectory are based on LDAP and expose LDAP APIs.

 Using the DAO pattern to access a directory using LDAP is a great way to keep
the nuances of JNDI programming out of your application code. By creating a

«interface»

WebServiceGateway

Actual Web

Service

MockWebService

ServiceClient

Figure 11.1 The DAO pattern is similar to the Gateway pattern.

254 CHAPTER 11

Doing more with DAO
small special-purpose set of classes, you can build lightweight, testable JNDI com-
ponents, and then hook them into your DAO implementation without exposing
the data source.

Understanding LDAP terminology
Before launching into a complete example of building an LDAP directory–based
DAO implementation, let’s review some terminology. LDAP is intentionally vague,
because it is intended to be a very flexible general-purpose protocol for accessing
a repository of hierarchical data.

 The basic building block of an LDAP directory is called an entry, which can con-
tain data (called attributes), other entries, or both. Every entry has exactly one par-
ent and is uniquely identified by a Distinguished Name (DN), which is unique
across the entire directory. The data elements in that entry are defined by one or
more object classes that the entry represents.

 The data stored in LDAP directory entries are made up of attributes, which are
name/value pairs that are virtually identical to Java’s Map interface. The object
class (or classes) of the entry will determine which optional attributes the entry
can have, as well as which required attributes it must have.

 For example, if we want to create a contact manager that manages normal
LDAP entities with a Java application, we might have a bean to represent an entry,
and that bean would look like this:

public class Contact {
 private String userId;
 private String mail;
 private String description;
 private String firstName;
 private String lastName;
 // Getters and Setters to make properties...
}

One approach to storing this object in an LDAP directory would be to simply seri-
alize the Java object into the directory. For our example, we are not going to do
that for two reasons. One reason is that we want to be able to use our directory to
interoperate with other, potentially non-Java systems. The other is that we want to
take advantage of LDAP-based queries—we want to use the database as it was
intended to be used.

Mapping from Java to LDAP
As mentioned earlier, every LDAP directory entry represents one or more object
classes. These object classes define groups of attributes. Because of the similarity

Using the DAO pattern with other data sources 255
between these attributes and Java’s Map interface, it would be trivial to create a
Map-based version of the DAO that simply used a Map to hide the JNDI attributes
structure. In this section however, we will create a DAO that will use the bean from
the previous section by mapping it to an LDAP inetOrgPerson entry using the
mapping in table 11.2.

This mapping will be accomplished in our DAO implementation by using meth-
ods to create a bean from an Attributes object, or an Attributes object from a
bean. While it would be possible to create a reflection-based mapping mechanism
for this, we are going to make our DAO implementation very simple and just hard-
code the mapping. Listing 11.5 contains the three methods from our DAO imple-
mentation that are responsible for that mapping.

private Attributes getAttributes(Contact contact){
 Attributes returnValue = new BasicAttributes();
 returnValue.put("mail", contact.getMail());
 returnValue.put("uid", contact.getUserId());
 returnValue.put("objectClass", "inetOrgPerson");
 returnValue.put(
 "description", contact.getDescription());
 returnValue.put("sn", contact.getLastName());
 returnValue.put("cn", contact.getUserId());
 returnValue.put("givenName", contact.getFirstName());
 return returnValue;
 }

 private Contact getContact(Attributes attributes) {
 Contact contact = new Contact();
 contact.setDescription(
 getAttributeValue(attributes, "description"));
 contact.setLastName(
 getAttributeValue(attributes, "sn"));

Table 11.1 JavaBean to LDAP attribute mapping

Bean property LDAP attribute

userId uid

mail mail

description description

lastName sn

firstName givenName

Listing 11.5 Support methods for our LDAP DAO implementation

256 CHAPTER 11

Doing more with DAO
 contact.setFirstName(
 getAttributeValue(attributes, "givenName"));
 contact.setMail(getAttributeValue(attributes, "mail"));
 contact.setUserId(
 getAttributeValue(attributes, "uid"));
 return contact;
 }

 private String getAttributeValue(
 Attributes attributes, String attrID
) {
 Attribute attribute = attributes.get(attrID);
 try {
 return (null==attribute?"":(String)attribute.get());
 } catch (NamingException e) {
 throw new DaoException(e);
 }
 }

The Attributes interface is part of the JNDI package that comes with Sun’s JDK,
and is implemented by the BasicAttributes class, which is also part of that pack-
age. The Contact class is our bean that we want to map to our LDAP directory.
Finally, the getAttributeValue() method is a helper method that simplifies the
mapping process by handling null values and turning JNDI-specific exceptions
into DaoExceptions.

 Just as with other DAO implementations, we need to make some decisions
about where and how we will get to our database. If you are working with a J2EE
container that can provide you with a JNDI context, you might be tempted to use
it. If it meets your needs, there is no reason not to. However, there are some trade-
offs when doing this. Although this approach will simplify the code, it will make
testing more difficult. Depending on your requirements, this may be an accept-
able sacrifice.

 In this example, we wanted to make things as testable as possible, so we used
constructor-based injection to configure the DAO class at runtime. Because the
iBATIS DAO does not allow this, we also created a default constructor that uses the
two values we wanted as the defaults. In section 11.3, we look at using the Spring
framework for our DAO layer, which allows us to do this via configuration files, but
for now, let’s use the default constructor method.

 The second constructor takes two parameters for the two settings I hardcoded
into the default constructor. One of those was the determination of the LDAP DN
attribute for our contact bean. This attribute is analogous to the primary key of a

Using the DAO pattern with other data sources 257
database table, but is unique through the entire directory, not just in a single seg-
ment of it like the primary key for a row in a table. The following method in the
DAO implementation creates a unique DN for our contact bean:

 private String getDn(String userId){
 return MessageFormat.format(this.dnTemplate, userId);
 }

The second setting we need is for getting the initial directory context. The default
constructor for our DAO will use the hardcoded properties to connect to our
LDAP directory, but again, the second constructor will allow us to inject custom
properties if needed for other purposes. Those properties are used to get the ini-
tial directory context:

 private DirContext getInitialContext() {
 DirContext ctx = null;
 try {
 ctx = new InitialDirContext(env);
 } catch (NamingException e) {
 log.error("Exception getting initial context", e);
 throw new DaoException(e);
 }
 return ctx;
 }

Now that we have all of the required infrastructure code in place to deal with
mapping our bean and connecting to our LDAP directory, we can start to build
our DAO implementation.

 The first method we will look at is the simplest—we will look up a contact by
userId. Here is the code to implement that method:

 public Contact getById(String id) {
 DirContext ctx = getInitialContext();
 Attributes attributes;
 try {
 attributes = ctx.getAttributes(getDn(id));
 } catch (NamingException e) {
 throw new DaoException(e);
 }
 return getContact(attributes);
 }

Here, we take the directory context, and use it to get the attributes of our contact,
based on the DN of the passed-in user’s id value. Once we have the attributes, we
convert them into a contact bean and return it. If an LDAP-specific NamingExcep-
tion is thrown, it is re-thrown as DaoException instead to make sure that the
method signature does not indicate the data source.

258 CHAPTER 11

Doing more with DAO
 The insert operation is called binding in LDAP-speak. Our application will
never know this, because we are going to wrap that in the DAO, and call it insert
instead.

 public Contact insert(Contact contact) {
 try {
 DirContext ctx = getInitialContext();
 ctx.bind(getDn(
 contact.getUserId()),
 null,
 getAttributes(contact));
 } catch (Exception e) {
 log.error("Error adding contact", e);
 throw new DaoException(e);
 }
 return contact;
 }

Similarly, the update and delete methods use LDAP-specific classes to accomplish
their work and re-throw exceptions using the same technique. In JNDI terminol-
ogy, updating is called rebinding, and deleting is called unbinding. However,
because of our use of the DAO pattern, those terms will never appear in our appli-
cation—it is completely unaware of the LDAP dependency that we have created in
our DAO implementation.

 LDAP is not the only strange data source we’ll ever have to deal with, and while
there is no way to look at them all in one chapter (or even one book!), we will take
a look at another that you will most likely have to deal with in the near future: the
web service.

11.2.2 Example: using a DAO with a web service

Using a DAO pattern for web services is a great idea. The reason for using a web
service with some sort of abstraction layer is to simplify testing the components
that use it. For example, if you have a credit card processor service that you want
to use or some other distant service that takes time to connect to, time to execute,
and time to process results, it can seriously hinder testing if you have to wait for it
(possibly several times). In addition, if the service requires a payment per call, or
is a public one (like Amazon, Google, or eBay) where the data that is returned
may change unexpectedly, it could be prohibitive to use for any purpose other
than integration or user acceptance testing because of the cost or variability of the
returned data. Adding to those issues is the need to prepare data that may change
over time for the tests—instead, you want to have reasonably static (or easily pre-
dictable) data requirements around your unit tests.

Using the DAO pattern with other data sources 259
 So let’s say you were making a system and wanted to give your users the ability
to do Google searches from within your application. The Google API for calling
their web service is simple enough to use, but because other search engines are pro-
viding similar APIs now, we are going to create a more generic search API that will
be used to wrap the Google implementation, and call that API from our application.

 First we need to come up with a search interface and structure for returning
search results, so let’s start with a simple bean and an interface:

public class SearchResult {
 private String url;
 private String summary;
 private String title;
 // getters and setters omitted...
}

public interface WebSearchDao {
 List<SearchResult> getSearchResults(String text);
}

Our bean has three properties, and our interface has one method that returns a
typed list. Here is the implementation of that search API, using the Google API:

public class GoogleDaoImpl implements WebSearchDao {
 private String googleKey;

 public GoogleDaoImpl(){
 this("insert-your-key-value-here");
 }

 public GoogleDaoImpl(String key){
 this.googleKey = key;
 }

 public List<SearchResult> getSearchResults(String text){
 List<SearchResult> returnValue = new
 ArrayList<SearchResult>();
 GoogleSearch s = new GoogleSearch();
 s.setKey(googleKey);
 s.setQueryString(text);
 try {
 GoogleSearchResult gsr = s.doSearch();
 for (int i = 0; i < gsr.getResultElements().length;
 i++){
 GoogleSearchResultElement sre =
 gsr.getResultElements()[i];
 SearchResult sr = new SearchResult();
 sr.setSummary(sre.getSummary());
 sr.setTitle(sre.getTitle());
 sr.setUrl(sre.getURL());

260 CHAPTER 11

Doing more with DAO
 returnValue.add(sr);
 }
 return returnValue;
 } catch (GoogleSearchFault googleSearchFault) {
 throw new DaoException(googleSearchFault);
 }
 }
}

The Google API is very similar to the DAO interface, which is no surprise, but it
requires a key to work. This is not a problem in our example, because we just
hardcoded the key into our implementation. In a production application, you
would want something better than that, perhaps providing a way for you to use a
user-specific key instead of a shared key.

 This shows another limitation of the iBATIS DAO layer. Because it cannot pro-
vide multiple instances of a DAO class and can only use the default constructor,
making this DAO work the way we want it to will require that we jump through
some extra hoops.

 In the next section, we look at how to use the Spring framework to make a
more capable DAO layer that allows us to perform some pretty advanced tricks
with configuration.

11.3 Using the Spring DAO

There are many different ways that you could use the Spring framework in the
data access layer of your application that do not have anything to do with iBATIS.
In this section, you’ll learn how to use Spring’s support for iBATIS to build a data
access layer.

11.3.1 Writing the code

The Spring framework supports iBATIS using a template pattern for the data
access objects, meaning that you start with an existing Spring class (SqlMapClient-
Template) and extend it for your DAO. Using this technique, our AccountDao
implementation would look like listing 11.6 using Spring.

public class AccountDaoImplSpring
 extends SqlMapClientTemplate
 implements AccountDao
{
 public Integer insert(Account account) {
 return (Integer) insert("Account.insert", account);

Listing 11.6 Spring version of our SQL Maps Account DAO

Using the Spring DAO 261
 }

 public int update(Account account) {
 return update("Account.update", account);
 }

 public int delete(Account account) {
 return delete(account.getAccountId());
 }

 public int delete(Integer accountId) {
 return delete("Account.delete", accountId);
 }

 public List<Account> getAccountListByExample(
 Account account) {
 return queryForList("Account.getAccountListByExample",
 account);
 }

 public List<Map<String, Object>>
 getMapListByExample(Account account) {
 return queryForList("Account.getMapListByExample",
 account);
 }

 public List<IdDescription>
 getIdDescriptionListByExample(Account account) {
 return
 queryForList("Account.getIdDescriptionListByExample",
 account);
 }

 public Account getById(Integer accountId) {
 return (Account) queryForObject("Account.getById",
 accountId);
 }

 public Account getById(Account account) {
 return (Account) queryForList("Account.getById",
 account);
 }
}

The astute reader may notice that this is almost exactly the same as the code we
saw in listing 10.11; the only difference is the class that we extend. Everything else
in this class is identical. Right now, you might be asking yourself when you would
want to use one class or the other. Let’s take a look at that next.

262 CHAPTER 11

Doing more with DAO
11.3.2 Why use Spring instead of iBATIS?

This is a fair question to ask—this is a book about iBATIS, so why are we talking
about using something else for the DAO layer? Both Spring and iBATIS have their
advantages and disadvantages, and the decision requires that you have an under-
standing of those pros and cons as well as the needs of your application.

 The advantage of the iBATIS DAO layer is that it is a quick and easy solution. If
you have the iBATIS SQL Map download, you have the iBATIS DAO framework,
too. It is a much simpler framework than Spring if all you need is transaction and
connection management. In that case, the iBATIS DAO layer is probably adequate
for your application.

 The simplicity of the iBATIS DAO is also its biggest disadvantage: once you
begin using the DAO pattern, and start taking advantage of the testability that
decoupling provides, you will want to use the same approach in different areas of
your application.

 For example, in a Struts application we will use the same approach with our
Action class and our business logic class that we use between our business logic
class and our DAO class. Instead of the code knowing the implementations it
needs, it only knows the interfaces that it needs, and the implementations are
plugged in through configuration. This keeps the Action classes simple, and
makes every layer easier to test.

 In addition to being able to manage that separation, Spring can be used to
manage your connections and transactions, just like the iBATIS DAO layer does.
The big advantage of Spring is that it is not only for DAO classes but for all seg-
ments of your application.

11.4 Creating your own DAO layer

Sometimes, neither the iBATIS DAO support nor the Spring DAO support is
exactly what you need. In those cases, you need to “roll your own” DAO layer.

 Creating a DAO layer from scratch may sound like a daunting task. However,
you could be surprised, because it is actually a fairly straightforward pattern to
implement. There are essentially three tiers to an effective DAO layer:

1 Separate interface from implementation.

2 Decouple implementation with an externally configured factory.

3 Provide transaction and connection management.

Creating your own DAO layer 263
For our purposes, we will look at what is required to accomplish the first two
tiers, but for transaction and connection management, you will need to refer to
chapter 7, and go from there.

11.4.1 Separating interface from implementation

The reason you want to separate your DAO into an interface and an implementa-
tion is twofold. First, you want to be able to replace the implementation if you
have to support a different type of data access. Second, separation makes testing
much simpler and faster because you can plug in a mock DAO instead of working
with the database.

 If you use an IDE, you may think that this is going to be the easiest part of the proc-
ess. With most development environments, you have a refactoring tool to extract an
interface from the class. However, that is only a small part of the process.

 If you are just getting started with the DAO pattern, it is likely that your inter-
face is exposing classes specific to JDBC, iBATIS, or some other tool for dealing
with your database. That is the part of the interface that is more difficult to man-
age. This creates a problem because it binds more of your application to the data
access implementation than just the DAO. Although it is not a huge difficulty, it is
not a trivial matter either.

 Changing code that uses a result set to use a collection (such as a List of beans)
is straightforward, but as with any change, it will require testing, and depending
on where the code is located in your application, the process can be challenging.
For example, if you have a web application that uses a “Fast Lane Reader” pattern
to provide lightweight reporting over large data sets, your JDBC code may interact
directly with the view layer. This can be very difficult to test, because anything
requiring human interaction takes more time. In addition, it may be difficult to
rewrite in a way that performs as well as the original. One solution is to write the
code using callbacks to speed up the data access (so, in this example, you may
want to consider a RowHandler that responds to view requests for data).

 Changing applications that directly access the SQL Map API to access a more
encapsulated API is a reasonably trivial matter. For example, if you are developing
a class that calls queryForList() on a SqlMapClient object, you simply need to
refactor that call into your DAO class, and then return the List object from it so
that your data consumer only talks to your DAO.

11.4.2 Decoupling and creating a factory

So, now that we have separated the interface and implementation, we do not want
to introduce both of those into our classes that use the DAO, because instead of

264 CHAPTER 11

Doing more with DAO
removing the dependency on the implementation, we have just added a depen-
dency on the interface.

 What we mean is that if you have an interface for your DAO and an implemen-
tation for it, how do you use the implementation? If you are not using a factory,
you are likely doing it this way:

AccountDao accountDao = new AccountDaoImpl();

See the problem? While we have separated our DAO and its implementation, we
are still referring to each of them in a single place. This is not adding much value,
unless you pass the DAO all over your application. A better pattern would be to
use something like this:

AccountDao accountDao =
 (AccountDao)DaoFactory.get(AccountDao.class);

In that example, what is the implementation? We neither know nor care, because
the DaoFactory handles it for us. All we care about is that this DaoFactory item
returns an object that implements the AccountDao interface. We do not care if it
uses LDAP, JDBC, or smoke and mirrors to make it happen, as long as it does.

 Creating an abstract factory is fun and easy! OK, maybe not fun, but still easy.
In this section, we build a simple one, and talk about why you would want to use
one for your DAO classes.

 So, what does this DaoFactory look like under the hood? Surprisingly, it is just a
few dozen lines of code, as listing 11.7 shows.

public class DaoFactory {
 private static DaoFactory instance = new DaoFactory();
 private final String defaultConfigLocation =
 "DaoFactory.properties";
 private Properties daoMap;
 private Properties instanceMap;

 private String configLocation = System.getProperty(
 "dao.factory.config",
 defaultConfigLocation
);

 private DaoFactory(){
 daoMap = new Properties();
 instanceMap = new Properties();
 try {
 daoMap.load(getInputStream(configLocation));

Listing 11.7 A super simple DAO factory

Declares a Private
constructor—it’s a singleton

B

Creating your own DAO layer 265
 } catch (IOException e) {
 throw new RuntimeException(e);
 }
 }

 private InputStream getInputStream(String configLocation)
 {
 return Thread
 .currentThread()
 .getContextClassLoader()
 .getResourceAsStream(configLocation);
 }

 public static DaoFactory getInstance() {
 return instance;
 }

 public Object getDao(Class daoInterface){
 if (instanceMap.containsKey(daoInterface)) {
 return instanceMap.get(daoInterface);
 }
 return createDao(daoInterface);
 }

 private synchronized Object createDao(
 Class daoInterface
) {
 Class implementationClass;
 try {
 implementationClass = Class.forName((String)
 daoMap.get(daoInterface));
 Object implementation =
 implementationClass.newInstance();
 instanceMap.put(implementationClass, implementation);
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 return instanceMap.get(daoInterface);
 }
}

Clearly, this is not the greatest factory ever written, but it is pretty darn small and
efficient. Its public interface consists of only two methods: getInstance() and
getDao(). The private constructor loads the configuration file, which in this
case is just a properties file with name/value pairs for the interface and implemen-
tation names. This class is a self-contained singleton, so the getInstance()
method just returns the one instance of the class. The getDao() method

Declares a simple
factory method

C

Gets a DAOD

Makes sure we only
have one DAO per type

E

b

C D

266 CHAPTER 11

Doing more with DAO
returns an implementation of an interface. Creation of the DAOs comes later in
the createDao() method when they are actually requested.

11.5 Summary

In this chapter, we wrapped up our exploration of the Data Access Object (DAO)
pattern, and you learned how to use it with data access tools other than iBATIS
SqlMaps. You also saw how the DAO pattern could be used as a type of gateway pat-
tern, and how to adapt it to wrap not just typical data sources but also more
unusual sources of data, such as an LDAP directory or web service.

 We explored some of the limitations of the iBATIS DAO framework in terms of
the creation of the DAOs that it provides. You saw how by using the Spring frame-
work it is possible to do almost anything to create and configure your DAO classes.

 We also looked briefly at what would be required to build a custom DAO layer,
and even put together a very simple starter DAO factory.

 At this point, you have seen all that comes with iBATIS. In the next chapter, you
will learn how you can extend the framework to do things beyond what is possible
through configuration only!

E

Extending iBATIS
This chapter covers
■ Custom type handlers
■ Cache controllers
■ Custom data sources
267

268 CHAPTER 12

Extending iBATIS
No framework meets everyone’s needs out of the box, which is why it is important
that the framework provide extension points where the users can modify the behav-
ior of the framework—in other words, it is essential that the framework be pluggable.

 Although iBATIS is open source software, and end users could easily modify the
code to do whatever they need, it is important to provide a consistent and sup-
portable means of extending the framework. Otherwise, every time a new version
of iBATIS was released, the users who had modified their copies of iBATIS would
have to merge their changes and recompile the entire framework.

 iBATIS provides a number of levels of customization. First, as a general best
practice, iBATIS uses interfaces between design layers of the framework. This
means that even if there isn’t a standard extension supported by the framework,
the most an end user would need to do is implement the interface and replace
the standard implementation with their own. We’ll see an example of this later in
this chapter when we discuss customizing the SqlMapClient interface.

 For areas that are more likely to require customization on a per-application, or
per-platform, basis, iBATIS provides a standard pluggable component architecture
for features such as type handlers, transaction managers, data sources, and cache
controllers.

 The next sections examine each of these in detail. Let’s first discuss general
concepts in plug-in architecture.

12.1 Understanding pluggable component design

A pluggable component design is generally made up of three parts:

■ Interface
■ Implementation
■ Factory

The interface describes the intended functionality and is a contract that all imple-
mentations must follow. The interface describes what the feature does.

 The implementation is the specific behavior that describes how the feature
works. It may have dependencies on third-party frameworks or even large infra-
structure, such as an advanced caching system or application server.

 The factory is responsible for binding the implementation to the interface
based on some configuration. The whole idea is to ensure that the application is
not dependent on anything other than the single consistent interface to the
framework. The framework would be failing at its job if the application were to

Working with custom type handlers 269
still require dependencies on the third-party
implementation details.

 Figure 12.1 depicts this. The arrows can be
read as “depends on,” or at least “knows about.”

 As stated earlier, iBATIS supports plugga-
ble component design for a number of its fea-
tures. But what exactly does that mean?
Generally a plug-in is an extension to an appli-
cation or framework that adds new function-
ality that wasn’t there before, or that replaces
existing functionality with something differ-
ent. For the most part, iBATIS extension
involves replacing existing functionality.

 iBATIS is designed in layers, and it is within each layer that iBATIS may provide
a plug-point into which you can inject your own functionality. Table 12.1 describes
the iBATIS layers, and summarizes the extensibility at a high level.

The next sections describe each of these in more detail, beginning with the most
common type of extension: TypeHandlerCallback.

12.2 Working with custom type handlers

As much as we’d all like relational database management systems to be standard,
unfortunately they just aren’t. They all tend to implement their own SQL exten-
sions, as well as their own data types. Although more common data types like
binary large objects (BLOBs) and character large objects (CLOBs) are supported
by most relational databases, they are usually handled differently by each driver.

Table 12.1 Layered extension summary

Extendible feature Description

TypeHandlerCallback Implement your own type handling logic to deal with nonstandard
databases, drivers, and/or data types.

CacheController Implement your own CacheController for your own cache code
or to provide support for a third-party caching solution.

DataSourceFactory Supply any standard JDBC DataSource implementation.

TransactionConfig Implement a custom transaction manager to work best with your
environment.

Figure 12.1 Example of a pluggable
framework design

270 CHAPTER 12

Extending iBATIS
Therefore it is difficult for the iBATIS framework to support all databases using a
single type handler implementation. To deal with these situations, iBATIS supports
custom type handlers that allow you to customize the way that certain types are
handled. Using a custom type handler, you can tell iBATIS how to map relational
database types to Java types. You can even override the built-in type handlers. This
section will explain how.

12.2.1 Implementing a custom type handler

To implement a custom TypeHandler, you only need to implement part of the
functionality. That functionality is defined in a simple interface called TypeHan-
dlerCallback. It is defined in listing 12.1.

public interface TypeHandlerCallback {

 public void setParameter(
 ParameterSetter setter, Object parameter)
 throws SQLException;

 public Object getResult(ResultGetter getter)
 throws SQLException;

 public Object valueOf(String s);

}

Let’s step through the implementation of a TypeHandlerCallback. For the pur-
poses of this example, let’s assume we have a database that uses the words “YES” and
“NO” to represent boolean values (i.e., true and false, respectively). Table 12.2
shows this example.

Listing 12.1 TypeHandlerCallback

Table 12.2 Using YES and NO to represent boolean values

UserID Username PasswordHashcode Enabled

1 asmith 1190B32A35FACBEF YES

2 brobertson 35FACBEFAF35FAC2 YES

3 cjohnson AF35FAC21190B32A NO

Working with custom type handlers 271
Imagine we’re mapping this table to a class as the following:

public class User {
 private int id;
 private String username;
 private String passwordHashcode;
 private boolean enabled;
 // assume compliant JavaBeans properties
 // (getters/setters) below
}

Notice the mismatch between data types here. In the database, the Enabled col-
umn is a VARCHAR storing YES and NO values, whereas our Java class is a boolean
type. We can’t directly set a value of YES or NO to a boolean type. Therefore, we
need to translate it. It’s certainly possible that a JDBC driver could do this for us,
but let’s assume that is not the case.

 The purpose of a TypeHandlerCallback is to deal with these situations. So let’s
write the implementation that would do just that.

12.2.2 Creating a TypeHandlerCallback

As we’ve seen, the TypeHandlerCallback interface is simple. All we need to do is
create a class that implements the interface. We’ll give the new class a nice,
descriptive name, and also include a couple of private constants:

public class YesNoTypeHandlerCallback
 implements TypeHandlerCallback {

 private static final String YES = "YES";
 private static final String NO = "NO";

 public void setParameter(
 ParameterSetter setter, Object parameter)
 throws SQLException {
 }

 public Object getResult(ResultGetter getter)
 throws SQLException {
 }

 public Object valueOf(String s) {
 }
}

This is just a skeletal implementation of a type handler; in the following sections
we’ll flesh it out.

272 CHAPTER 12

Extending iBATIS
Setting parameters
When we send a value to the database, it has to be YES or NO. In this case, null is
not valid. From the Java class, we’re going to get a strongly typed boolean value of
true or false. So we need to translate true into a YES value and false into a NO
value. To do that, we could use a simple method like this:

private String booleanToYesNo(Boolean b) {
 if (b == null) {
 throw new IllegalArgumentException (
 "Could not convert null to a boolean value. " +
 "Valid arguments are 'true' and 'false'.");
 } else if (b.booleanValue()) {
 return YES;
 } else {
 return NO;
 }
}

We can now use this method to translate parameter values before we set them. Set-
ting a parameter is easy. The setParameter() method of the TypeHandlerCallback
interface takes two parameters. The first, ParameterSetter, gives you access to a
number of setter methods, each of which works for a different data type. For
example, there is a setString() method, a setInt() method, and a setDate()
method. There are too many to list here completely, but rest assured that almost
any Java data type you’re familiar with will probably have an associated set
method. In our case, the data type in the database table is a VARCHAR, so we’ll use
the setString() method of the ParameterSetter.

 The second parameter is the value we’re passing to the database that needs to
be translated. In our case, we will be receiving the boolean value from the enabled
property from our User class. Here’s the code for our setParameter() method
that uses our convenient booleanToYesNo() method that we wrote earlier:

public void setParameter(
 ParameterSetter setter, Object parameter
) throws SQLException {
 setter.setString(booleanToYesNo((Boolean) parameter));
}

The body of the method simply uses the ParameterSetter to set the string value
translated by our conversion method. We have to cast the incoming parameter to
Boolean, as the TypeHandlerCallback is an interface that can support any type.

 That was simple, was it not? As you’ll see in the next section, attaining results is
just as easy.

Working with custom type handlers 273
Getting results
When we receive the YES or NO value from the database, we need to translate it
into a boolean value of true or false. This is the exact opposite of what we just
did to set parameters. So why don’t we start the same way? Let’s build a method to
translate the string type to the boolean type, like this:

private Boolean yesNoToBoolean(String s) {
 if (YES.equalsIgnoreCase(s)) {
 return Boolean.TRUE;
 } else if (NO.equalsIgnoreCase(s)) {
 return Boolean.FALSE;
 } else {
 throw new IllegalArgumentException (
 "Could not convert " + s +
 " to a boolean value. " +
 "Valid arguments are 'YES' and 'NO'.");
 }
}

We can now use this method to translate the String results from the database into
the boolean values we need. We can do this by calling our new translation method
from the getResult() method of the TypeHandlerCallback. The getResult()
method has only one parameter: ResultGetter. ResultGetter contains methods
for retrieving values of different types. In our case, we need to get a String value.
Here’s the code for the getResult() implementation:

public Object getResult(ResultGetter getter)
 throws SQLException {
 return yesNoToBoolean(getter.getString());
}

In this case we’re calling getString() on the ResultGetter to return the database
value as a String. We then pass the returned value to our convenient translation
method, which returns the Boolean value that we ultimately want to be set in the
enabled property of our User class.

Dealing with nulls: what the heck is this valueOf() method for?
iBATIS has a null value translation feature that allows you to work with nullable col-
umns in the database without requiring a nullable type in the object model. This is
especially valuable when you don’t have full design control over the object model
or the database but you must map the two together. So for example, if you have an
int typed property on your Java class, it will not accept a null value. If you must
map that property to a nullable column in the database, then you have to use a
constant to represent the null value. Sometimes this is called a “magic number,”

274 CHAPTER 12

Extending iBATIS
and generally speaking, using it is a bad practice. But sometimes, you don’t have
any choice—and in some cases it may make perfect sense.

 Because iBATIS is configured with XML files, the null value replacement is
specified as a String. For example:

<result property="enabled" column="Enabled" nullValue="NO"/>

For that reason, something has to perform the translation into the real type. iBA-
TIS relies on the valueOf() method of the TypeHandlerCallback to do the transla-
tion. In our case, we’d need to translate the value NO into a boolean value of false.
Luckily, doing this is usually very similar to the translation we’ve already done to
get a result. In fact, in the case of our YesNoTypeHandlerCallback, it is exactly the
same. So the implementation would look like this:

public Object valueOf(String s) {
 return yesNoToBoolean(s);
}

That’s it! We’ve completed our custom type handler. Listing 12.2 contains the
complete source.

public class YesNoTypeHandlerCallback
 implements TypeHandlerCallback {

 public static final String YES = "YES";
 public static final String NO = "NO";

 public void setParameter(
 ParameterSetter setter, Object parameter
)
 throws SQLException {
 setter.setString(booleanToYesNo((Boolean)parameter));
 }

 public Object getResult(ResultGetter getter)
 throws SQLException {
 return yesNoToBoolean(getter.getString());
 }

 public Object valueOf(String s) {
 return yesNoToBoolean(s);
 }

 private Boolean yesNoToBoolean(String s) {
 if (YES.equalsIgnoreCase(s)) {
 return Boolean.TRUE;

Listing 12.2 A TypeHandler

Contains constants for yes
and no database values

Sets parameters with
our type handler

Gets results with our
type handler

Converts string to our type

Converts string to Boolean

Working with custom type handlers 275
 } else if (NO.equalsIgnoreCase(s)) {
 return Boolean.FALSE;
 } else {
 throw new IllegalArgumentException (
 "Could not convert " + s +
 " to a boolean value. " +
 "Valid arguments are 'YES' and 'NO'.");
 }
 }

 private String booleanToYesNo(Boolean b) {
 if (b == null) {
 throw new IllegalArgumentException (
 "Could not convert null to a boolean value. " +
 "Valid arguments are 'true' and 'false'.");
 } else if (b.booleanValue()) {
 return YES;
 } else {
 return NO;
 }
 }
}

Now that we’ve written our TypeHandlerCallback, we need to register it to be
used. The next section deals with that.

12.2.3 Registering a TypeHandlerCallback for use

To use a TypeHandlerCallback, we need some way to specify where and when it
should be used. There are three options:

■ Register it globally, in the SqlMapConfig.xml file.
■ Register it locally, within a single SqlMap.xml file.
■ Register it for a single result or parameter mapping.

To register the TypeHandlerCallback globally, simply add a <typeHandler> ele-
ment to your SqlMapConfig.xml. Here is the full example of the <typeHandler>
element:

<typeHandler
 callback="com.domain.package.YesNoTypeHandlerCallback"
 javaType="boolean" jdbcType="VARCHAR" />

The <typeHandler> element accepts two or three attributes. The first is the Type-
HandlerCallback class itself. Simply specify the fully qualified class name, or if you
like, you can also use a type alias to keep your configuration more readable. The

Converts Boolean to string

276 CHAPTER 12

Extending iBATIS
second is the javaType attribute, which specifies which Java types should be han-
dled by this TypeHandlerCallback. Finally, the third attribute, which is optional,
allows you to specify the JDBC (i.e., database) type that this TypeHandlerCallback
should be applied to. So in our case, we’re working with a Java type of boolean
and a JDBC type of VARCHAR. If we didn’t specify the data type, this type handler
would be used by default for all boolean types. However, it would not override any
type handlers with a more specific definition. Thus the type handler registration
that most specifically matches both the Java type and the JDBC type is the one that
will be used.

 Custom type handlers are by far the most common form of extension in iBA-
TIS. This is mostly due to the wide range of nonstandard features and data types
supported by relational database systems. In the remaining sections, we discuss
other forms of extension that are rarer but still useful to know about.

12.3 Working with a CacheController

iBATIS includes a number of built-in caching implementations. These have already
been discussed in previous chapters, but to refresh your memory, table 12.3 sum-
marizes the various cache implementations.

iBATIS provides an interface called CacheController that allows you to implement
your own custom caching solution, or to plug in an existing third-party caching
solution. The CacheController interface is fairly simple, and looks like this:

 public interface CacheController {
 public void configure(Properties props);
 public void putObject(CacheModel cacheModel,
 Object key, Object object);

Table 12.3 Summary of cache implementations

Class Description

LruCacheController The least recently used (LRU) cache keeps track of cached entries based
upon when they were last accessed. The cache entry accessed least
recently is removed if needed to make room for newer entries.

FifoCacheController The first-in, first-out (FIFO) cache simply removes the oldest item in the
cache to make room for new items.

MemoryCacheController The Memory cache allows the Java memory model and garbage collector
to determine when cached entries should be removed.

OSCacheController The OpenSymphony cache is an adapter to a very advanced third-party cach-
ing solution called OSCache. OSCache supports various caching models of
its own, as well as advanced features such as distributed caching.

Working with a CacheController 277
 public Object getObject(CacheModel cacheModel,
 Object key);
 public Object removeObject(CacheModel cacheModel,
 Object key);
 public void flush(CacheModel cacheModel);
 }

The next few sections will take you through an example of implementing a cache.
This is not meant to teach you how to write an enterprise capable cache controller.
We’re going to employ a simple caching approach using a Map. A more common
case would be to plug in a third-party cache that has advanced features. We do not
recommend that you make the following example your caching strategy of choice.

12.3.1 Creating a CacheController

The CacheController implementation starts out with configuration. Configuration
is achieved by implementing the configure() method; this method takes a Java
Properties instance, which can contain relevant configuration information. For
our cache, we don’t need any configuration properties, but we will need the map
in which to store our objects. Here’s a start to implementing our CacheController:

 public class MapCacheController {

 private Map cache = new HashMap();

 public void configure(Properties props) {
 // There is no configuration necessary, and therefore
 // this cache will depend upon external
 // flush policies (e.g. time interval)
 }

 // other methods implied …
 }

OK, now that we have a skeletal cache model, let’s build the rest of it.

12.3.2 Putting, getting, and flushing a CacheController

At this point, we can start to think about adding objects to the cache. The iBATIS
CacheModel manages all of the keys and determines how to distinguish various
statement calls and result sets. So to put an object on the cache, all you need to do
is pass the key and the object to your cache implementation of choice.

 For example, here are the put, get, and remove methods:

 public void putObject(CacheModel cacheModel, Object key,
 Object object) {
 cache.put (key, object);

278 CHAPTER 12

Extending iBATIS
 }

 public Object getObject(CacheModel cacheModel,
 Object key) {
 return cache.get(key);
 }

 public Object removeObject(CacheModel cacheModel,
 Object key) {
 return cache.remove(key);
 }

Notice how each method also provides access to the CacheModel instance that is
controlling the cache. This allows you to access any properties from the
CacheModel that you might need. The key parameter is an instance of CacheKey, a
special class within iBATIS that compares sets of parameters passed to a statement.
For the most part, you shouldn’t have to manipulate it in any way. In the case of
putObject(), the object parameter contains the instance or collection of objects
to cache.

 The last method that CacheModel describes is the flush() method. This
method simply clears the entire cache.

 public void flush(CacheModel cacheModel) {
 cache.clear();
 }

That is, in a nutshell, a complete CacheController implementation. Now we need
to learn how to use our CacheController.

12.3.3 Registering a CacheController for use

Like all other iBATIS configurations, CacheModels and CacheControllers are con-
figured within the XML configuration files. The easiest way to start using your
CacheModel is to first declare a type alias for your new class. This will save you some
typing later.

 <typeAlias alias="MapCacheController"
 type="com.domain.package.MapCacheController"/>

Now that we’ve saved ourselves some keystrokes, we can apply the cache control-
ler type to a <cacheModel> definition, just like we do with any other cache model
type. For example:

 <cacheModel id="PersonCache" type="MapCacheController" >
 <flushInterval hours="24"/>
 <flushOnExecute statement="updatePerson"/>

Configuring an unsupported DataSource 279
 <flushOnExecute statement="insertPerson"/>
 <flushOnExecute statement="deletePerson"/>
 </cacheModel>

That completes the custom cache implementation. Remember, though, this was a
simple example. You probably want to look into other caching alternatives to plug
into iBATIS, as writing your own may cost you more time than writing the rest of
your application!

12.4 Configuring an unsupported DataSource

iBATIS includes support for the most common DataSource alternatives, including
JNDI (application server–managed DataSource), Apache DBCP, and a built-in
DataSource implementation called SimpleDataSource. You also have the option of
adding support for additional DataSource implementations.

 To configure a new DataSource implementation, you need to provide iBATIS
with a factory that will supply the framework with an instance of the DataSource.
This factory class must implement the DataSourceFactory interface, which looks
like this:

 public interface DataSourceFactory {

 public void initialize(Map map);
 public DataSource getDataSource();

 }

The DataSourceFactory has only two methods: one to initialize the DataSource,
and another to access the DataSource. The initialize() method provides a Map
instance which contains configuration information, such as the JDBC driver name,
database URL, username, and password.

 The getDataSource() method simply needs to return the configured Data-
Source. This is a simple interface, and the implementation only gets as complex as
the DataSource implementation you plug into it. The following is an example
taken from the iBATIS source code. This is the DataSourceFactory for the Simple-
DataSource implementation. As you can see, it truly is “simple.”

 public class SimpleDataSourceFactory
 implements DataSourceFactory {

 private DataSource dataSource;

 public void initialize(Map map) {

280 CHAPTER 12

Extending iBATIS
 dataSource = new SimpleDataSource(map);
 }

 public DataSource getDataSource() {
 return dataSource;
 }
 }

As we’ve said before, more complex DataSource implementations might take a lot
more work, but we hope that never becomes an issue you need to worry over.

 The final topic we will cover in extending iBATIS is customizing your transac-
tion management.

12.5 Customizing transaction management

iBATIS offers a number of transaction options, as you’ve read in earlier chapters.
However, there is always room for customization with today’s wide range of appli-
cation servers and custom approaches to transaction management. From the out-
side, transactions seem simple, offering only a few functions: start, commit, roll
back, and end. But on the inside, transactions are very complex and are one of
the behaviors of application servers that tend to deviate from the standard. For
that reason, iBATIS allows you to customize your own transaction management sys-
tem. If you’ve had any experience in the area, that statement probably sent shivers
down your spine—and so it should. Implementing a transaction manager cor-
rectly is a terribly difficult thing to do. For that reason, we won’t even bother tack-
ling a true implementation here. Instead, we’ll discuss the interfaces in detail,
which will help you gain a head start should you ever be tasked with implement-
ing them. If you do want an example, iBATIS comes with three implementations:
JDBC, JTA, and EXTERNAL. Table 12.4 summarizes these, in case you missed them
in previous chapters.

Table 12.4 Built-in transaction manager configurations

Implementation Description

JdbcTransactionConfig Uses the transaction facilities provided by the JDBC Connection API

JtaTransactionConfig Starts a global transaction, or joins an existing global transaction

ExternalTransactionConfig “No-op” implementation of commit and rollback, thus leaving com-
mit and rollback to some external transaction manager

Customizing transaction management 281
In most cases, one of the options in table 12.4 should work for you. However, if
your application server or transaction manager is nonstandard (or buggy), iBATIS
provides interfaces for you to build your own transaction management adapter:
TransactionConfig and Transaction. You will generally need to implement both
to have a complete implementation, unless your situation allows you to reuse one
of the Transaction classes from one of the other implementations.

12.5.1 Understanding the TransactionConfig interface

The TransactionConfig interface is a factory of sorts, but is mostly responsible for
configuring the transaction facilities for the implementation. The interface is as
follows:

 public interface TransactionConfig {

 public void initialize(Properties props)
 throws SQLException, TransactionException;

 public Transaction newTransaction(int
 transactionIsolation)
 throws SQLException, TransactionException;

 public int getMaximumConcurrentTransactions();

 public void setMaximumConcurrentTransactions(int max);

 public DataSource getDataSource();

 public void setDataSource(DataSource ds);

}

The first method is initialize(). As we’ve seen with other parts of the framework
that can be extended, this method is used to configure the transaction facilities. It
takes a Properties instance as its only parameter, which can contain any number
of configuration options. For example, the JTA implementation requires a User-
Transaction instance that is retrieved from a JNDI tree. So one of the properties
passed to the JTA implementation is the JNDI path to the UserTransaction it needs.

 Next is the newTransaction() method. This is a factory method for creating
new instances of transactions. It takes an int parameter (unfortunately; it should
be a type-safe enumeration) that describes the transaction isolation level within
which the transaction should behave. Available transaction isolation levels are
defined on the JDBC Connection class as constants as follows:

282 CHAPTER 12

Extending iBATIS
■ TRANSACTION_READ_UNCOMMITTED

■ TRANSACTION_READ_COMMITTED
■ TRANSACTION_REPEATABLE_READ

■ TRANSACTION_SERIALIZABLE

■ TRANSACTION_NONE

Each of these is documented in the JDBC Connection API, and you can learn more
in chapter 7. The important thing to note here is that if your transaction manager
implementation does not support one or more of these, you should be sure to
throw an exception to let the developer know. Otherwise, there could be unex-
pected consequences that are difficult for your users to debug.

 The next pair of methods are getDataSource() and setDataSource(). These
methods describe a JavaBeans property for the DataSource associated with this
TransactionConfig instance. Usually you won’t have to do anything special with
the DataSource, but it is provided here so that you can decorate it with additional
behavior if you need to. Many transaction manager implementations wrap the
DataSource and the Connection objects it provides, to add transaction related
functionality to each of them.

 The final pair of methods makes up another JavaBeans property that allows
the framework to configure a maximum number of concurrent transactions sup-
ported. Your implementation may or may not be configurable, but it is important
to ensure that you throw an appropriate exception if the number set is too high
for your system to handle.

12.5.2 Understanding the Transaction interface

Recall the factory method called newTransaction() on the TransactionConfig
class discussed in the previous section. The return value of that method is a
Transaction instance. The Transaction interface describes the behavior neces-
sary to support transactions within the iBATIS framework. It’s a pretty typical set of
functionality, which will be familiar to anyone who has worked with transactions
before. The Transaction interface looks like this:

 public interface Transaction {

 public void commit() throws SQLException,
 TransactionException;

 public void rollback() throws SQLException,
 TransactionException;

Summary 283
 public void close() throws SQLException,
 TransactionException;

 public Connection getConnection()
 throws SQLException, TransactionException;

}

There’s really nothing special about this particular interface. If you have any expe-
rience with transactions at all, it will look familiar. The commit() method is, as
expected, the means of making permanent all of the changes involved in the unit
of work. The rollback() method, on the other hand, is meant to undo all of the
changes that have occurred in the unit of work, or at least since the last commit.
The close() method is responsible for releasing any, and all, resources that may
have been allocated or reserved for the transaction.

 The last method, getConnection(), is the one that you may not have expected.
By design, iBATIS is a high-level framework around the JDBC API. Loosely speak-
ing, the connection is the transaction in JDBC. At the very least, transactions are
managed, controlled, and understood at the JDBC connection level. For that rea-
son, most transaction implementations are bound to a Connection instance. This
is useful, because iBATIS needs access to the connection currently associated to
the transaction.

12.6 Summary

In this chapter we’ve explored various ways of extending iBATIS. Standard exten-
sions are important, even for open source software, to avoid uncontrolled custom-
ization of the framework in potentially undesirable and unmaintainable ways.
iBATIS supports a number of different extensions, including TypeHandlerCall-
back, CacheController, DataSourceFactory, and TransactionConfig.

 TypeHandlerCallback is the most common type of extension, since it deals with
the common problem of proprietary data types. TypeHandlerCallback is simple to
implement; it requires only a few methods to be implemented that allow for cus-
tomization of the mapping between Java types and JDBC types. In a nutshell, Type-
HandlerCallback becomes responsible for setting parameters on statements,
getting results from the result set, and translating null value replacements for
mapping nullable database types to non-nullable Java types.

 CacheControllers provide a simple means of integrating third-party caching
solutions into iBATIS. Of course, you could also write your own, but writing a decent
cache is amazingly difficult. The CacheController interface includes methods for

284 CHAPTER 12

Extending iBATIS
configuring the implementation, putting items in the cache, retrieving items from
the cache, and removing or flushing items from the cache.

 A DataSourceFactory is responsible for configuring and providing access to a
standard JDBC DataSource implementation. You’ll likely be configuring some
third-party DataSources, unless you have a really compelling reason to write your
own, which we suggest avoiding if possible. The DataSourceFactory has only two
methods: one configures the DataSource, and the other provides access to the
DataSource.

 The TransactionConfig and Transaction interfaces are the most complex to
implement and the least common as well. Situations that require a custom Trans-
actionConfig should be rare, but if you absolutely need to, iBATIS allows you to
write your own.

 These are the standard, supported extension points in iBATIS. Wherever possi-
ble, iBATIS uses interfaces by design to allow you to replace existing functionality.
We couldn’t explore all of the possibilities in this chapter, or even in this book,
but if you look through the code, most layers of the design offer a decent separa-
tion of interface and implementation. In most cases the design will be similar to
that presented here.

Part 4

iBATIS recipes

By now you should have a good handle on the basic and advanced features of
iBATIS, as well as a complete understanding of how and when to use it. This fourth
and final section of the book wraps up with a discussion of the best practices, and
then demonstrates them in a full sample application. If a picture is worth a thousand
words, then a sample application is worth a few thousand lines of code. We hope you
enjoy it.

iBATIS best practices
This chapter covers
■ Unit testing
■ Configuration management
■ Naming
■ Data structures
287

288 CHAPTER 13

iBATIS best practices
iBATIS is all about best practices—it is largely the reason iBATIS was created. For
starters, iBATIS helps you maintain separation of concerns between your applica-
tion and the persistence layer. It also helps you avoid mixing Java and SQL and
ending up with a mess of twisted code. iBATIS lets you separate the design of your
object-oriented domain model from your relational data model. This chapter dis-
cusses a number of best practices that will help you get the most out of iBATIS.

13.1 Unit testing with iBATIS

Unit testing has become a very important part of modern
software development methodologies. Even if you don’t
subscribe to the benefits of extreme programming or
other agile methods, unit testing should be a cornerstone
practice in your software development life cycle.

 Conceptually, the persistence tier is separated into
three layers, and iBATIS makes it easy to unit-test those lay-
ers, as illustrated in figure 13.1.

 iBATIS facilitates testing these layers in at least three
ways:

■ Testing the mapping layer itself, including the map-
pings, SQL statements, and the domain objects
they’re mapped to

■ Testing the DAO layer, which allows you to test any
persistence specific logic that may be in your DAO

■ Testing within the DAO consumer layer

13.1.1 Unit-testing the mapping layer

This is generally the lowest level of unit testing that will take place in most
applications. The process involves testing the SQL statements and the domain
objects they’re mapped to as well. This means that we’ll need a database instance
to test against.

The test database instance
The test database instance might be a true instance of a database that you’re actu-
ally using, such as Oracle or Microsoft SQL Server. If your environment is friendly
to unit testing, then this is a simple option to get up and running. Using real data-
bases might be necessary if you’re planning to take advantage of nonstandard

DAO Consumer

Persistence Logic

SQL Mapping

Figure 13.1 These
are the typical layers
immediately involved
with persistence
(nonpersistence-related
layers are not shown in
this diagram).

Unit testing with iBATIS 289
database features such as stored procedures. Stored procedures and other non-
portable database design choices make it difficult to unit-test the database in any
way other than against a real instance of the database.

 The disadvantage of using a real database instance is that your unit tests can
only run when connected to the network. Alternatively, you could use a local
instance of one of these databases, which means your unit tests would require
additional local environment setup before they could run. Either way, you’ll also
be faced with having to rebuild the test data and possibly even the schema
between test suites or even between each unit test. Doing so can be an extremely
slow process even on large enterprise-class database servers. Another problem is
that with a centralized database, multiple developers running the unit tests at the
same time may cause a collision. Therefore, you will have to isolate each devel-
oper with a separate schema. As you can see, the general problem with this
approach is that the unit tests are dependent on a fairly large piece of infrastruc-
ture, which is not ideal to most experienced test-driven developers.

 Luckily for Java developers, there is at least one fantastic in-memory database
that makes unit testing of relatively standard database designs quite easy. HSQLDB
is an in-memory database written entirely in Java. It doesn’t require any files on disk
or network connectivity to work. Furthermore, it is capable of reproducing most
database designs from typical databases such as Oracle and Microsoft SQL Server.
Even if it can’t re-create an entire database due to design complications (such as
stored procedures), it should be able to reproduce most of it. HSQLDB allows you
to rebuild a database, including the schema and test data, very quickly. The suite of
unit tests for iBATIS itself uses HSQLDB and rebuilds the schema and test data
between each individual test. We’ve personally witnessed test suites of nearly 1,000
database-dependent tests that run in under 30 seconds using HSQLDB.

 For more information about HSQLDB, visit http://hsqldb.sourceforge.net/.
Microsoft .NET developers will be happy to know that there are initiatives to port
HSQLDB as well as to create other in-memory database alternatives.

Database scripts
Now that we have the database instance, what do we do about the schema and the
test data? You probably have scripts to create the database schema and to create
the test data. Ideally, you have checked the scripts into your version control system
(such as CVS or Subversion). These scripts should be treated as any other code in
your application. Even if you are not in control of your database, you should
expect regular updates from the people who are. Your application source code
and database scripts should always be in sync, and your unit tests are there to

290 CHAPTER 13

iBATIS best practices
ensure that they are. Each time you run your unit-test suite, you should also run
these scripts to create the database schema. Using this approach, it should be easy
to commit a new set of database-creation scripts to your version control system,
and then run your unit tests to see if any changes caused problems for your appli-
cation. This is the ideal situation. If you are using an in-memory database such as
HSQLDB to run your tests, there might be an additional step to convert the sche-
mas. Consider automating this conversion as well to avoid the potential for
human error and speed up your integration time.

The iBATIS configuration file (i.e., SqlMapConfig.xml)
For the purposes of unit testing, you might want to use a separate iBATIS configu-
ration file. The configuration file controls your data source and transaction man-
ager configuration, which will likely vary greatly between the testing and
production environments. For example, in production you might be in a man-
aged environment such as a J2EE application server. In such an environment, a
managed DataSource instance is probably retrieved from JNDI. You may also be
leveraging global transactions in production. However, in your test environment
your application will probably not be running in a server; you’ll have a simple
DataSource configured and will be using local transactions. The easiest way to con-
figure the test and production configurations independently is to have a different
iBATIS configuration file that references all of the same SQL mapping files as the
production one.

An iBATIS SqlMapClient unit test
Now that all of our prerequisites are ready, including a database instance, auto-
mated database build scripts, and a configuration file for testing, we’re ready to
create a unit test. Listing 13.1 shows an example of using JUnit to create a simple
unit test.

public class PersonMapTest extends TestCase {

 private SqlMapClient sqlMapClient;

 public void setup () {
 sqlMapClient = SqlMapClientBuilder.
 build("maps/TestSqlMapConfig.xml");
 runSqlScript("scripts/drop-person-schema.sql");
 runSqlScript("scripts/create-person-schema.sql");
 runSqlScript("scripts/create-person-test-data.sql");
 }

Listing 13.1 Example of a SqlMapClient unit test

Setting up unit
test and test data

B

Unit testing with iBATIS 291
 public void testShouldGetPersonWithIdOfOne() {
 Person person = (Person) sqlMapClient.
 queryForObject("getPerson", new Integer(1));
 assertNotNull("Expected to find a person.", person);
 assertEquals("Expected person ID to be 1.",
 new Integer(1), person.getId());
 }
}

The example in listing 13.1 uses the JUnit unit-testing framework for Java. (You can
find out more about JUnit at www.junit.org. Similar tools are available for the .NET
Framework, including NUnit, which you can find at www.nunit.org.) In our setup
method , we drop and re-create our database tables and then repopulate them.
Rebuilding everything for each test ensures test isolation, but this approach may be
too slow to use on an RDBMS like Oracle or SQL Server. In cases where that is an
issue, consider an in-memory database like HSQLDB. In our actual test case , we
fetch a record, map it into a bean, and assert that the values in the bean are the val-
ues that we expected to be there.

 That’s all there is to testing our mapping layer. The next layer we need to test is
the DAO layer, assuming your application has one.

13.1.2 Unit-testing data access objects

The data access object layer is an abstraction layer, so by their very nature DAOs
should be easy to test. DAOs make testing consumers of the DAO layer easier as
well. In this section, we’ll discuss testing a DAO itself. DAOs are generally sepa-
rated into an interface and an implementation. Because we’re testing the DAO
directly, the interface does not play a role. We’ll work directly with the DAO imple-
mentation for the purposes of testing. This might sound contrary to how the DAO
pattern is supposed to work, but that’s the great thing about unit testing… it lets
us get bad habits out of our system!

 If possible, testing at the DAO level should not involve the database or underly-
ing infrastructure. The DAO layer is an interface to the persistence implementa-
tion, but in testing a DAO we’re more interested in testing what is inside the DAO
itself, not what is beyond it.

 The complexity of testing a DAO depends solely on the DAO implementation.
For example, testing a JDBC DAO can be quite difficult. You’ll need a good mock-
ing framework to replace all of the typical JDBC components such as Connection,
ResultSet, and PreparedStatement. Even then, it’s a lot of work managing such a

Testing retrieval of single
person by primary key value

C

B

C

292 CHAPTER 13

iBATIS best practices
complicated API with mock objects. It’s somewhat easier to mock the iBATIS Sql-
MapClient interface. Let’s try that now.

Unit-testing a DAO with mock objects
Mock objects are objects that stand in place of true implementations for the pur-
pose of unit testing. Mocks don’t generally have very much functionality; they sat-
isfy a single case to allow the unit test to focus on some other area without having
to worry about additional complexity. We’ll use mocks in this example to demon-
strate an approach to testing the DAO layer.

 In our example, we’ll use a simple DAO. We’ll leave out the iBATIS DAO frame-
work so that we don’t have to worry about transactions and such. The purpose of
this example is to demonstrate testing the DAO layer regardless of which DAO
framework you use, if any at all.

 First, let’s consider the DAO we want to test. Listing 13.2 shows a SqlMapPerson-
Dao implementation that calls a SQL map similar to the example in section 13.1.1.

public class SqlMapPersonDao implements PersonDao {

 private SqlMapClient sqlMapClient;

 public SqlMapPersonDao(SqlMapClient sqlMapClient) {
 this.sqlMapClient = sqlMapClient;
 }

 public Person getPerson (int id) {
 try {
 return (Person)
 sqlMapClient.queryForObject("getPerson", id);
 } catch (SQLException e) {
 throw new DaoRuntimeException(
 "Error getting person. Cause: " + e, e);
 }
 }
}

Notice how we inject the SqlMapClient into the constructor of the DAO in
listing 13.2. This provides an easy way to unit-test this DAO, because we can mock
the SqlMapClient interface. Obviously this is a simple example, and we’re not test-
ing very much at all, but every test counts. Listing 13.3 shows the unit test that will
mock the SqlMapClient and test the getPerson() method.

Listing 13.2 A simple DAO to test

Unit testing with iBATIS 293
 public void testShouldGetPersonFromDaoWithIDofOne() {
 final Integer PERSON_ID = new Integer(1);

 Mock mock = new Mock(SqlMapClient.class);
 mock.expects(once())
 .method("queryForObject")
 .with(eq("getPerson"),eq(PERSON_ID))
 .will(returnValue(new Person (PERSON_ID)));

 PersonDao daoSqlMap =
 new SqlMapPersonDao((SqlMapClient) mock.proxy());
 Person person = daoSqlMap.getPerson(PERSON_ID);

 assertNotNull("Expected non-null person instance.",
 person);
 assertEquals("Expected ID to be " + PERSON_ID,
 PERSON_ID, person.getId());
 }

The example in listing 13.3 uses the JUnit as well as the JMock object-mocking
framework for Java. As you can see in the bolded section, mocking the SqlMapCli-
ent interface with JMock allows us to test the behavior of the DAO without worry-
ing about the actual SqlMapClient, including the SQL, the XML, and the database
that comes along with it. JMock is a handy tool that you can learn more about at
www.jmock.org. As you might have already guessed, there is also a mocking frame-
work for .NET called NMock, which you can find at http://nmock.org.

13.1.3 Unit-testing DAO consumer layers

The other layers of your application that use the DAO layer are called consumers.
The DAO pattern can help you test the functionality of those consumers without
depending on the full functionality of your persistence layer. A good DAO imple-
mentation has an interface that describes the available functionality. The key to
testing the consumer layer lies in having that interface. Consider the interface in
listing 13.4; you may recognize the getPerson() method from the previous section.

public interface PersonDao extends Dao {
 Person getPerson(Integer id);
}

Listing 13.3 A unit test for the PersonDao with a mock SqlMapClient

Listing 13.4 Simple DAO interface

294 CHAPTER 13

iBATIS best practices
The interface in listing 13.4 is all we need to begin testing the consumers of our
DAO layer. We don’t even need a completed implementation. Using JMock, we
can easily mock the expected behavior for the getPerson() method. Consider the
service that makes use of the PersonDao interface (listing 13.5).

public class PersonService {

 private PersonDao personDao;

 public PersonService(PersonDao personDao) {
 this.personDao = personDao;
 }

 public Person getValidatedPerson(Integer personId) {

 Person person = personDao.getPerson(personId);

 validateAgainstPublicSystems(person);
 validateAgainstPrivateSystems(person);
 validateAgainstInternalSystems(person);

 return person;
 }

}

The target of our unit tests is not the DAO—it’s the getValidatedPerson()
method logic, such as the various validations it performs. Each of the validations
may be a private method, and for argument’s sake, let’s just agree that we’re only
testing the private interface here.

 Testing this logic without a database will be easy, thanks to that PersonDao inter-
face that we saw earlier. All we need to do is mock the PersonDao, pass it to the con-
structor of our service, and call the getValidatedPerson() method. Listing 13.6
shows the unit test that does exactly that.

public void testShouldRetrieveAValidatedPerson (){
 final Integer PERSON_ID = new Integer(1);

 Mock mock = new Mock(PersonDao.class);
 mock.expects(once())
 .method("getPerson")

Listing 13.5 A service that makes use of PersonDao

Listing 13.6 Using a mock instead of the real DAO to avoid hitting the database

Managing iBATIS configuration files 295
 .with(eq(PERSON_ID))
 .will(returnValue(new Person(PERSON_ID)));

 PersonService service =
 new PersonService((PersonDao)mock.proxy());
 service.isPersonalInformationValid(
 new Person(new Integer(1)), new Integer(1));

 assertNotNull("Expected non-null person instance.",
 person);
 assertEquals("Expected ID to be " + PERSON_ID,
 PERSON_ID, person.getId());
 assertTrue("Expected valid person.",
 person.isValid());
}

Again we’re making use of both JUnit and JMock. As you can see in listing 13.6,
the testing approach is consistent at each layer of the application. This is a good
thing, as it makes for simple, focused unit tests that are easy to maintain.

 That’s as far as we’ll go with unit testing for iBATIS. There are a number of
great resources that discuss unit testing in general. Try a Google search for “unit
testing.” You’ll find plenty to help you to improve your unit-testing skills and per-
haps discover even better ways than those described here.

13.2 Managing iBATIS configuration files

By now it’s pretty clear that iBATIS uses XML files for configuration and statement
mapping. These XML files can become unwieldy very quickly. This section dis-
cusses some best practices for organizing your SQL mapping files.

13.2.1 Keep it on the classpath

Location transparency is one of the most important aspects of application maintain-
ability. It simplifies testing and deployment of your application. Part of location
transparency is keeping your application free of static file locations such as /usr/
local/myapp/config/ or C:\myapp\. Although iBATIS will allow you to use specific
file locations, you are better off using the classpath. The Java classpath is helpful
when you want to keep your application free of any specific file paths. You can
think of the classpath as a mini file system that your application can refer to inter-
nally through the use of a classloader. A classloader is able to read resources from
the classpath, including classes and other files. Let’s take a look at an example.
Imagine the following file structure on your classpath:

296 CHAPTER 13

iBATIS best practices
 /org
 /example
 /myapp
 /domain
 /persistence
 /presentation
 /service

Given this structure, we can refer to the persistence package using the fully quali-
fied classpath of org/example/myapp/persistence. A good place to put our maps
might be in org/example/myapp/persistence/sqlmaps, which would look like this
in the structure:

 /org
 /example
 /myapp
 /domain
 /persistence
 /sqlmaps
 SqlMapConfig.xml
 Person.xml
 Department.xml
 /presentation
 /service

Alternatively, if you want a more shallow structure for configuration files, you
could put the mapping files in a common configuration package. For example,
we could use config/sqlmaps, which would look like this:

 /config
 /sqlmaps
 SqlMapConfig.xml
 Person.xml
 Department.xml
 /org
 /example
 /myapp
 /domain
 /persistence
 /presentation
 /service

With your mapping files on the classpath, iBATIS makes it easy to load these files
using the included Resources utility class. This class contains methods like getRe-
sourceAsReader(), which is compatible with SqlMapBuilder. So given the previous
classpath, we could load SqlMapConfig.xml as follows:

Reader reader = Resources
 .getResourceAsReader("config/maps/SqlMapConfig.xml");

Managing iBATIS configuration files 297
If you’re in an environment where you find it necessary to keep the configuration
of database resources in a centralized location, such as a fixed file path, then you
should still keep the mapping files on the classpath. That is, use a hybrid
approach where SqlMapConfig.xml is at the fixed file location but the mapping
files are still on the classpath. For example, consider the following structure:

C:\common\config\
 /sqlmaps
 SqlMapConfig.xml

 /config
 /sqlmaps
 Person.xml
 Department.xml
 /org
 /example
 /myapp
 /domain
 /persistence
 /presentation
 /service

Even though SqlMapConfig.xml is at a fixed location, internally it can still refer to
the XML mapping files on the classpath. This keeps most of your resources where
you want them, and reduces the chance of having inappropriate mapping files
deployed with your application.

13.2.2 Keep your files together

Keep your mapping files together; avoid spreading them out through your class-
path. Don’t attempt to organize them beside the classes that they work with or
into separate packages. Doing so will complicate your configuration and make it
difficult to get an idea of what mapping files are available. The internal structure
inside the mapping files themselves makes further categorization is unnecessary.
Use smart filenames and keep the XML files in a single directory by themselves.
Try to avoid keeping classes in the same directory (i.e., package), and of course
don’t mix them with other XML files!

 This approach makes it easier to navigate your mapping files and the project in
general. It makes no difference to the iBATIS framework where you put your files,
but it will make a difference to your fellow developers.

298 CHAPTER 13

iBATIS best practices
13.2.3 Organize mostly by return type

The most common question with regard to mapping file organization is what to
organize them by. Should you organize them by database table? How about by
class? Perhaps organize them by the type of statement?

 The answer depends on your environment. Although there is no “right”
answer, don’t get too fancy about it. iBATIS is very flexible, and you can always
move the statements around later.

 As a starting point, it’s best to organize your maps by the type that the statements
return and the types they take as a parameter. This generally creates a nice organi-
zation of maps that you can navigate based on what you’re looking for. So for exam-
ple, in a Person.xml mapping file, you should expect to find mapped statements
that return Person objects (or collections of Person objects), as well as statements
that take a Person object as a parameter (like insertPerson or updatePerson).

13.3 Naming conventions

There can be a lot of things to name in iBATIS: statements, result maps, parame-
ter maps, SQL maps, and XML files all need names. Therefore, it’s a good idea to
have some sort of convention. We’ll discuss one convention here, but feel free to
use your own. As long as you’re consistent within your application, you won’t
have any trouble.

13.3.1 Naming statements

Statements should generally follow the same naming convention as methods in the
language in which you’re programming. That is, in a Java application, use state-
ment names like loadPerson or getPerson. In C#, use statement names like Save-
Person or UpdatePerson. Using this convention will help you maintain consistency,
but it also will help with method-binding features and code-generation tools.

13.3.2 Naming parameter maps

Most of the time parameter maps will not have to be named, because inline
parameter maps are much more common than explicitly defined ones. Due to the
nature of SQL statements, parameter maps have limited reusability. You generally
can’t use the same one for both an INSERT statement and an UPDATE statement. For
this reason, if you do use an explicitly defined parameter map, we recommend
adding the suffix Param to the name of the statement that uses it. For example:

<select id="getPerson" parameterMap="getPersonParam" ... >

Naming conventions 299
13.3.3 Naming result maps

Result maps are bound to a single class type and the reusability of result maps is
quite high. For this reason, we recommend naming result maps using the type
they are bound against; also, append Result to the name. For example:

<resultMap id="PersonResult" type="com.domain.Person">

13.3.4 XML files

There are two kinds of XML files in iBATIS. The first is the master configuration
file and the others are the SQL mapping files.

The master configuration file
The master configuration file can be called whatever you like; however, we recom-
mend calling it SqlMapConfig.xml. If you have multiple configuration files for dif-
ferent parts of the application, then prefix the configuration filename with the
name of the application module. So if your application has a web client and a GUI
client with different configurations, you might use WebSqlMapConfig.xml and
GuiSqlMapConfig.xml. You may also have multiple environments in which you
deploy, such as production and test environments. In this case, prefix the filename
with the type of environment as well. Continuing with the previous example, you
might have ProductionWebSqlMapConfig.xml and TestWebSqlMapConfig.xml. These
names are descriptive, and the consistency creates opportunities to automate builds
to different environments.

The SQL mapping files
How you name the SQL mapping files will depend a lot on how you’ve organized
your mapped statements. Earlier in this book we recommended that you organize
your mapped statements into separate XML files based on their return types and
parameters. If you’ve done that, naming the file after the return types and
parameters will also work. For example, if one mapping XML file contains SQL
statements involving the Person class, then naming the mapping file Person.xml
would be appropriate. Most applications will do fine with this naming approach.
There are other considerations, though.

 Some applications may require multiple implementations of the same
statement to match different databases. For the most part, SQL can be written in a
portable way. For example, the original JPetStore application that was written with
iBATIS was compatible with 11 different databases. However, sometimes there are
features of the database that are not portable but that are ideal for the solution
being implemented. In cases like this, it becomes acceptable and even important

300 CHAPTER 13

iBATIS best practices
to name your mapping files so that they include the database for which they were
specifically written. For instance, if we had an Oracle-specific file for Person, we’d
name it OraclePerson.xml. Another approach is to use a separate directory for
each database, named after the database. Don’t go crazy with these approaches.
Only specifically name the files or directories that you have to, and make sure
there’s enough Oracle-specific matter in the mapping file to make the name
appropriate. If there’s only a single statement that is Oracle dependent, then you
might be better off naming the one statement to include the word Oracle.

13.4 Beans, maps, or XML?

iBATIS supports many types for parameter and result mappings. You have a choice
of JavaBeans, Maps (such as HashMap), XML, and of course primitive types.
Which should you choose to map your statements to? Our default position is
always JavaBeans.

13.4.1 JavaBeans

JavaBeans provide the highest performance, the greatest amount of flexibility,
and type safety. JavaBeans are fast because they use simple, low-level method calls
for property mappings. JavaBeans won’t degrade performance as you add more
properties, and they are more memory efficient than the alternatives. A more
important consideration is that JavaBeans are type safe. This type safety allows iBA-
TIS to determine the appropriate type of value that should be returned from the
database and binds it tightly. There is not the guesswork that you experience with
maps or XML. You also have more flexibility with JavaBeans because you are able
to customize your getters and setters to fine-tune your data.

13.4.2 Maps

iBATIS supports maps for two purposes. First, iBATIS uses maps as the mechanism
for sending multiple complex parameters to mapped statements. Second, maps
are supported because sometimes a table in a database represents just that—a set
of keyed values.

 However, maps make horrible domain models, and therefore you should not
use maps to represent your business objects. This is not an iBATIS-specific recom-
mendation; you shouldn’t use maps to model your domain regardless of your per-
sistence layer. Maps are slow, they are not type-safe, they use up more memory
than JavaBeans, and they can become unpredictable and difficult to maintain.
Use maps judiciously.

Summary 301
13.4.3 XML

iBATIS supports XML directly to and from the database, either as a Document
Object Model (DOM) or simply as a String. There is somewhat limited value in
doing so; however, it can be useful in simpler applications that just need to con-
vert data into a portable and parsable format quickly.

 However, like maps, XML should not be your first choice for a domain model.
XML is the slowest, least type-safe, and most memory-demanding type of all. It is
the closest thing to the end state of your data (i.e., often HTML), but that advan-
tage comes at the price of being difficult to manipulate and hard to maintain over
time. As with maps, use XML judiciously.

13.4.4 Primitives

Primitives are supported directly by iBATIS as parameters and results. There is no
issue with using a primitive in either way. Primitives are fast and type-safe. Obviously
you’re somewhat limited with how complex your data can be; however, if you have
a simple requirement to count the rows for a given query, a primitive integer is the
way to go. Feel free to use primitives as long as they can satisfy the requirement.

13.5 Summary

Using iBATIS is not hard, but as with any framework, you can always improve the
results if you follow the recommended best practices.

 In this chapter we discussed how to ensure that the persistence layer of your
application is appropriately tested. Using two popular unit-testing frameworks,
JUnit and JMock, we are able to test three separate layers of our application in a
simple and consistent way. We discussed appropriate ways to set up a test database
to ensure that your tests don’t require a network connection or a complex piece
of infrastructure such as a relational database management system.

 We also discussed the best way to manage your XML files. Location
transparency is the key to simple deployment and ensures easy testing and future
maintainability. Location transparency can be achieved in Java applications by
keeping all of the SQL map files in the classpath. Because in some cases you can’t
keep all of them in the classpath, we discussed an approach to separating the
configuration so that it can be kept in a centralized location while keeping all of
the other mapping files on the classpath where you want them.

 Next, we discussed how to name all of the different iBATIS objects. Naming is
as important as organization to ensure that your maps are easy to read and follow.
Keeping statement names consistent with method names makes for a familiar

302 CHAPTER 13

iBATIS best practices
paradigm, as mapped statements are not unlike methods. Parameter map names,
if used at all, are based on statement names because they have limited reusability.
However, result maps are reusable and are therefore named after the type that
they map.

 Choosing which type to map was the focus of the final topic of the chapter.
Should you use JavaBeans, maps, or XML in your domain model? The answer is
clear. You should use JavaBeans for your business object model. Maps and XML
suffer from similar disadvantages, including poor performance and lack of type
safety, and both can be a maintenance nightmare in the future.

Putting it all together
This chapter covers
■ Choosing tools
■ Setting up your project
■ Wiring components together
303

304 CHAPTER 14

Putting it all together
iBATIS is not an island unto itself—it is meant to be part of a whole. iBATIS can be
used in conjunction with any application that accesses a SQL database. Given that
there are a lot of different applications that may access a SQL database, we’ll focus
on one popular type. Web applications are well known and usually access a SQL
database somewhere behind the scenes. To put iBATIS into a useful context, we
will walk through the creation of a shopping cart application. We tried to come up
with something original, so we decided to make it a game store rather than a pet
store. Let’s move ahead with putting this application together.

14.1 Design concept

It’s always good to begin writing an application with some sense of direction. A
good overview of what we want an application to accomplish is important.
Another term for this is requirements. Shopping carts are an easy concept to delin-
eate requirements for because they have been done many times. Tiresome as it
may be, we will do the same thing for this round. (Hey, at least it’s not a pet store!)

 We are going to keep the design of this shopping cart simple and focus our
efforts on the design of four major parts: the account, the catalog, the cart, and
the order. We’ll forgo any management portions to the application, as those add
significant time and complexity to the requirements while adding little to the bot-
tom line of this book. With the group of application components defined, let’s
now provide some details on each of their requirements.

14.1.1 Account

The account will house information relevant to a user. An account will contain per-
sonal address information and preferences. The user should be able to create and
edit an account. The account will also handle security for customer logins.

14.1.2 Catalog

The catalog will house a significant number of the pieces we need to code. The cat-
egory, product, and item will be utilized here. The category, product, and item will
be only one level deep and will contain products. A product will then contain
items. Items are variations of the product. For example, a category named Action
would contain a game/product like Doom. The game/product would then con-
tain items like PC, PlayStation, XBox, and similar variations.

Choosing technologies 305
14.1.3 Cart

The cart will be used to maintain a user's product selections. The cart should tally
up the current items that are in the cart in preparation for the order.

14.1.4 Order

The order portion of the application will be used for checkout. Once the customer
has made all of their item selections and wants to purchase the items, they will
select checkout from the cart. The cart will take them through a process of confir-
mation, payment, billing, shipping, and final confirmation. Once the order is
completed, it will be viewable by the user in their order history.

14.2 Choosing technologies

Now that we have derived some perspective on our requirements, we need to
make some decisions about what technologies we will use to meet the required
functionality. Since this is a web application, we will look at options for different
layers. The standard web application can be broken into a few pieces:

■ The presentation layer, the portion of the application that is web specific
■ The service layer, where most of our business rules will exist
■ The persistence layer, where we will deal with elements specific to database

access

14.2.1 Presentation

For the presentation layer we have several options. Some of the top frameworks
are Struts, JSF, Spring, and WebWork. All of these frameworks have their evange-
lists and are known to perform well in their own right. Out of all of these we
choose to use Struts. Struts is stable and predictable, continues to be progressive,
and is very much alive for both new and existing applications. From this point on
we will assume that you have a moderate understanding of the Struts framework.
If you don’t, then Struts in Action by Ted N. Husted, Cedric Dumoulin, George
Franciscus, and David Winterfeldt (Manning, 2002) is an excellent resource.

14.2.2 Service

The service layer will be pretty straightforward. Since this is a book about iBATIS,
we will utilize the iBATIS DAO within the service classes. The iBATIS DAO will be
used to retrieve and store the data access object instances as instance variables on
the service classes. This will allow us to hide the DAO implementation from the

306 CHAPTER 14

Putting it all together
service classes. The iBATIS DAO will also be used for transaction demarcation so
that we can aggregate fine-grained calls against the persistence layer.

14.2.3 Persistence

We’re sure it won’t surprise you that we plan to use iBATIS SQLMaps in the persis-
tence layer. iBATIS SQLMaps will fulfill the responsibility of managing SQL, persis-
tence caches and executing calls against the database. We’ll avoid going into too
much detail about this since this is a book on the very subject.

14.3 Tweaking Struts: the BeanAction

Recently, web application frameworks have experienced a bit of a transformation.
Features like state management, bean-based presentation classes, enhanced GUI
components, and sophisticated event models have been introduced to make
development easier. Even in the midst of these next-generation frameworks,
Struts continues to enjoy a strong presence. In assessing the best approach for the
JGameStore application, we wanted to use Struts while keeping a forward rele-
vance to the new-generation frameworks. With this in mind, we decided to use an
approach that we have dubbed the BeanAction. The BeanAction allows developers
of standard Struts applications to easily grasp how iBATIS fits into a standard
Struts application. At the same time, developers who use next-generation frame-
works like JSF, Wicket, and Tapestry will understand the semantics of the BeanAc-
tion approach. In the end, we are not trying to make Struts different; we are
simply making our application relevant to a wider audience.

 The BeanAction successfully flattens the responsibilities of the Action and
ActionForm into one class. It also
abstracts you away from direct access
to the web-specific components like
session and request. This type of archi-
tecture is reminiscent of WebWork and
JSF. This flattening is accomplished
through a few key components: the
BeanAction that extends the Struts
Action class, the BaseBean, and the
ActionContext. These components are
important to understanding how the
BeanAction works, and are illustrated
in figure 14.1.

BeanAction

CatalogBean

ActionContext

OrderBean

AccountBean

CartBean

AbstractBean

BaseBean

Figure 14.1 UML diagram of the BeanAction
architecture

Tweaking Struts: the BeanAction 307
14.3.1 BeanBase

It’s important to understand the purpose of the BaseBean before we look into the
ActionContext and the BeanAction. The BaseBean extends ValidatorActionForm
to allow for standard Struts validation to occur. Instead of extending an Action-
Form directly, you extend the BaseBean. The BaseBean contains your normal prop-
erties, as an ActionForm normally would. Thus, it is populated as Struts would
populate the ActionForm because it is an ActionForm. The only difference is that
your extended BaseBean would also contain behavior methods that follow the sim-
plified signature of public String methodName().

14.3.2 BeanAction

The next piece of this puzzle that we should introduce is the BeanAction. The
BeanAction has a couple of responsibilities. First, the BeanAction populates the
ActionContext. Next, it routes behavior calls to your extended BaseBean and trans-
lates the returned behavior method’s String into an ActionForward for Struts. This
is how the BaseBean is able to stay clear of Struts-specific components in the
behavior signatures. The BeanAction class looks in two different places to deter-
mine which behavior method to call on the extended BaseBean. First, it checks to
see if the action mapping has a specified parameter that explicitly states the
method to call. If the parameter specifies *, then a method is not called and the
success action forward is used. If the action mapping parameter attribute is not
specified or is empty, then the ActionBean looks at the path and uses the filename
minus the extension for the method call. So, if you used a standard .do mapping
and had a path that ended with /myMethod.do, the myMethod behavior method
would be called on your extended BaseBean.

14.3.3 ActionContext

Finally, the ActionContext is used to abstract from specific web semantics. It pro-
vides you access to the request, parameters, cookies, session, and application all
through a Map interface. This gives you the option of reducing direct dependen-
cies on the web layer. Most of the ActionContext successfully isolates you from
Struts and even the Servlet API. However, the ActionContext still provides direct
access to the HttpServletRequest and the HttpServletResponse for those times
when you need access to it.

 There are several advantages to this approach. First of all, we don’t need to spend
time and code casting ActionForm objects to their extended types. This is avoided
because the Action is the ActionForm. All you need to do is access the properties
directly on the bean object that extends BaseBean. Second, the behavior methods

308 CHAPTER 14

Putting it all together
that are called are reduced in their complexity. Normally, you would need to have
a signature that receives an HttpServletRequest, an HttpServletResponse, an
ActionForm, and an ActionMapping. The Action execute method also requires that
you return an ActionForward. The BeanAction reduces all this by simply requiring
an empty signature with a String as a return value. Third, it is far easier to unit-test
a simple bean than it is to unit-test an ActionForm and an Action. Testing Struts
Action classes is thoroughly possible with the use of MockObjects and or Struts-
TestCase. However, it is quite a bit easier to test a simple bean. Finally, since the
BeanAction architecture works seamlessly with existing Struts applications, it allows
you to migrate your application architecture to a modern approach without destroy-
ing all of your previous hard work.

14.4 Laying the foundation

Now let’s set up our development environment. We won’t concentrate on specific
tools to use for the development of an iBATIS-enabled application, but we’d like
to take some time to provide a basic structure that has been useful for us. Organiz-
ing your source tree is an important part of writing good, clean, and simple code.
If you’d like, you can use the source in the iBATIS JGameStore application to fol-
low along with the rest of this chapter. We won’t be able to cover all of the require-
ments we specified previously. However, if you examine the iBATIS JGameStore
application’s source, you will be able to examine the code we did not cover and
understand what is going on.

 Let’s start by creating a base folder called jgamestore. This will be your project
folder and will contain your source tree. You can set this folder up in your favorite
IDE and name the project jgamestore, or you can simply do this manually from
the OS. Below the project folder create several folders: src, test, web, build, devlib,
and lib:

/jgamestore
 /src
 /test
 /web
 /build
 /devlib
 /lib

Let’s take a close look at each of these folders.

14.4.1 src

The name src is short for source. The src folder will hold all Java source code and
any property or XML files that must exist on the classpath. These files will be used

Laying the foundation 309
in the distributed application. This folder should not contain any test code, such
as unit tests.

 All source will be contained within the org.apache.ibatis.jgamestore base pack-
age. Each package beneath the base package categorizes components of the appli-
cation.

 The subpackages will be as follows:

■ domain—This package will contain DTO/POJO classes that are the transient
objects in the application. These objects will be passed among and used by
each of the other layers of the application.

■ persistence—This is where our data access interfaces and implementations
will reside along with the SQLMap XML files. The data access implementa-
tions will use the iBATIS SQLMaps API.

■ presentation—This package will contain our presentation beans. These
classes will contain properties and behaviors that are relevant to different
screens in the web application.

■ service—This package will contain the business logic. These coarse-grained
classes will be used to group together fine-grained calls to the persistence
layer.

14.4.2 test

The test directory will hold the entire unit-testing code. The package structure
will be identical to that of the src directory. Each of the packages will contain unit
tests that test the classes located in the sister packages of the src directory. There
are various reasons for this and most have to do with maintaining secure and test-
able code.

14.4.3 web

The web folder will contain all web-related artifacts such as JSP, images, Struts con-
fig files, and similar files.

 The web folder structure is as follows:

■ JSP directories—The account, cart, catalog, common, and order directories
all contain JSPs for the relevant portion of the application. Their directory
names are pretty self-explanatory as to what the contained JSPs represent.

■ css—This directory contains the Cascading Style Sheets (CSS). If you are not
familiar with CSS, you can find many resources on them using a quick web
search.

310 CHAPTER 14

Putting it all together
■ images—This directory will contain all images relevant to the site.
■ WEB-INF—This directory contains configuration files relevant to Servlet spec

configuration files and Struts configuration files.

14.4.4 build

The build directory will hold the Ant scripts along with helper shell scripts and
Windows BAT scripts to easily run the build.

14.4.5 devlib

The devlib directory will contain JAR files that are necessary for compilation but
will not be distributed in the WAR.

 Libraries required for development (devlib) include the following:
■ ant.jar
■ ant-junit.jar
■ ant-launcher.jar
■ cgilib-nodep-2.1.3.jar
■ emma_ant.jar
■ emma.jar
■ jmock-1.0.1.jar
■ jmock-cglib-1.0.1.jar
■ junit.jar
■ servlet.jar

14.4.6 lib

The lib directory will contain all JARs that are required for compilation and are
distributed with the WAR.

 Libraries required for runtime and distribution (lib) include the following:
■ antlr.jar
■ beanaction.jar
■ commons-beanutils.jar
■ commons-digester.jar
■ commons-fileupload.jar
■ commons-logging.jar
■ commons-validator.jar
■ hsqldb.jar
■ ibatis-common-2.jar
■ ibatis-dao-2.jar

Configuring the web.xml 311
■ ibatis-sqlmap-2.jar
■ jakarta-oro.jar
■ struts.jar

With this basic source tree structure in place, let’s move on to coding our working
application. Since the catalog portion of the application is the first one that a cus-
tomer views, let’s concentrate our efforts there.

14.5 Configuring the web.xml

Setting up web.xml is pretty straightforward. We will set up our Struts ActionServlet
and some simple security to prevent direct access to the JSP pages (see listing 14.1).

 <servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
 </servlet>

 <servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.shtml</url-pattern>
 </servlet-mapping>

When setting up the ActionServlet to process requests, we do so with the <serv-
let> tag. The settings for the ActionServlet are plain-vanilla Struts—nothing
fancy. The ActionServlet specified in the <servlet-class> tag is the standard
ActionServlet. We provide a standard struts-config.xml location, a debug level
of 2, a detail level of 2, and a load-on-startup setting of 2.

Listing 14.1 ActionServlet configuration in web.xml

312 CHAPTER 14

Putting it all together
 Notice the <servlet-mapping> tag. Because we like to feel as if we are clever,
we decided to depart from the standard .do extension to map requests to the
ActionServlet. Instead of the standard .do, we have gone with an .shtml. The
only reason for this is to jokingly make it look as if we are using an old technology.
Who knows—perhaps it will also deter a few people from trying to hack the site
(not likely).

 When using Struts, it is important to prevent direct access to JSP pages. All JSP
pages that are used by JGameStore are placed under the pages directory. Since all
the JSP pages are under a directory, we can simply prevent direct access to that
directory (listing 14.2). This ensures that access to the JSP pages goes through the
Struts ActionServlet.

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>
 Restrict access to JSP pages
 </web-resource-name>
 <url-pattern>/pages/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <description>
 With no roles defined, no access granted
 </description>
 </auth-constraint>
 </security-constraint>

Having set up our web.xml, we can focus on creating the specific classes and con-
figurations for the Struts presentation layer. We’ll go into some detail on taking
advantage of Struts’ BeanAction approach.

14.6 Setting up the presentation

Because the catalog is the portion of the application that is used first by shopping
cart visitors, let’s focus our efforts next on setting up the presentation portion that
supports it.

14.6.1 The first step

When a visitor arrives in JGameStore, they are greeted with an initial page. It is an
important rule in web applications that when using Struts you always forward

Listing 14.2 security configuration in web.xml

Setting up the presentation 313
requests through the Struts controller (ActionServlet). To get people into that
initial page by passing through the Struts framework, we must create a simple
index.jsp with a forward, define the URL we are forwarding to in the struts-con-
fig.xml file, define the tile in the tiles-defs.xml file, and create the initial JSP
page our visitors will be arriving at.

 In order for the JSP forward to work, we first need to set up the initial page
(figure 14.2) for our visitors.

 This page will be located in the web/catalog/ directory of our source tree and
will be named Main.jsp. Since the catalog is the first thing a visitor will view, we’ll
place our main page in the catalog directory.

 In addition, we will need to drop a definition for the page in the tiles-
defs.xml file (listing 14.3). Tiles make it easier to create common templates and
reuse them, thus avoiding the redundant JSP includes. To learn more about tiles,
check out Struts in Action.

Figure 14.2 The Main.jsp page is the first page a visitor will view.

314 CHAPTER 14

Putting it all together
 <tiles-definitions>
 …
 <definition name="layout.main" path="/pages/main.jsp" >
 <put name="header"
 value="/pages/common/header.jsp" />
 <put name="footer"
 value="/pages/common/footer.jsp" />
 <put name="left"
 value="/pages/common/left-blank.jsp" />
 </definition>

 <definition name="layout.catalog"
 extends="layout.main" >
 <put name="header"
 value="/pages/common/header.jsp" />
 <put name="footer"
 value="/pages/common/footer.jsp" />
 <put name="left"
 value="/pages/common/left.jsp" />
 </definition>

 <definition name="index.tiles"
 extends="layout.catalog" >
 <put name="body"
 value="/pages/catalog/Main.jsp" />
 </definition>
 …
 <tiles-definitions>

In tiles-defs.xml there needs to be a layout.main and a layout.catalog defini-
tion before we can define index.tiles. The index.tiles definition extends the
layout.catalog definition, which further extends the layout.main definition.
layout.main defines the base template JSP located at web/pages/main.jsp in the
source tree.

 Once we have our main page set up, we need to define a forward to it so that our
index.jsp forward works. Note that we defined the parameter attribute as index in
our action mapping configuration. As a result, the index() method (listing 14.4)
will be called on the catalogBean before being forwarded to /catalog/Main.jsp.

 <action-mappings>
 <action path="/index"
 type="org.apache.struts.beanaction.BeanAction"

Listing 14.3 Tiles definition config

Listing 14.4 Struts config action mapping

Setting up the presentation 315
 name="catalogBean" parameter="index"
 validate="false">
 <forward name="success" path="index.tiles"/>
 </action>
 </action-mappings>

In the JGameStore application, the index() method of the CatalogBean makes a
call to the CatalogService to populate a List of the newest products from each
category. Since we provide a better example of this bit later, we won’t explain it
here. At this point, we’ll just accept that the index() method returns a success
String and is forwarded to the first page in the cart (see listing 14.5).

 public String index() {
 …
 return SUCCESS;
 }

Next, we can use our index.jsp to successfully forward to the main page through
the Struts controller. There is nothing to the index.jsp except a forward. Be sure
to specify the .shtml extension on your forward URL so that your servlet container
will route the request through the Struts controller (see listing 14.6).

 <jsp:forward page="/index.shtml"/>

Next, you’ll learn how to set up a presentation bean and create a behavior
method that can be called.

14.6.2 Utilizing a presentation bean

When visitors arrive at the cart, they select a category they wish to examine. Our
next step is to capture the category and display a listing of products on a subse-
quent page. To achieve this, we need to create the following:

■ A tiles definition in our tiles-defs.xml
■ Our Category domain object (see listing 14.7)
■ Our Product domain object (see listing 14.8)

Listing 14.5 index() method of catalogBean

Listing 14.6 JSP forward

316 CHAPTER 14

Putting it all together
■ Our presentation bean with properties and behaviors to capture visitor
input (see listing 14.9)

■ A JSP page that lists products of a category (see listing 14.10)

Then we’ll add an action mapping to our Struts configuration.
 Since what we are about to code involves the use of the category, let’s go ahead

and create this object in the org.apache.ibatis.jgamestore.domain package as Cat-
egory.java. The Category domain object (listing 14.7) is a simple object that con-
sists only of a categoryId, a name, a description, and an image. Since our category
is never more than one level deep, we won’t need to concern ourselves with any
parent categories.

 …
 public class Category implements Serializable {

 private String categoryId;
 private String name;
 private String description;
 private String image;

 // simple setters and getters
 …

The code we are writing will also involve the use of the Product domain object
(listing 14.8). The product objects will be loaded in a list for display on the JSP
page. This means that the product will not be accessed directly by any Java code at
this point. Regardless, it will be smart to code it for the sake of thoroughness. Let’s
add it to the org.apache.ibatis.jgamestore.domain package as Product.java. The
Product object will consist of a productId, categoryId, name, description, and
image. Product is not much different from the Category domain object except
that the Product domain object contains an associated categoryId.

 …
 public class Product implements Serializable {

 private String productId;
 private String categoryId;
 private String name;

Listing 14.7 Category domain object

Listing 14.8 Product domain object

Setting up the presentation 317
 private String description;
 private String image;

 // simple setters and getters
 …

Now that we have our domain classes set up, let’s tackle the presentation bean.
Looking at the CatalogBean presentation class (listing 14.9) will provide our first
glimpse at how the BeanAction functions in the real world. We need to create the
CatalogBean with a viewCategory behavior. The behavior method will use the
BeanAction style behavior signature of public String <behaviorName> (). The
viewCategory behavior is quite simple. Its job is to retrieve a list of products that
are related to the selected category, fully populate the Category object, and then
forward to a view. In the body of our viewCategory method, the productList and
the categoryList are populated by making calls to the CatalogService class. We
will get into the service class later. For now, suffice it to say we’ll assume that the
service class will return our objects appropriately.

 …
 private String categoryId;
 private Category category;
 …
 private PaginatedList productList;
 …
 public String viewCategory() {
 if (categoryId != null) {
 productList =
 catalogService.getProductListByCategory(categoryId);
 category = catalogService.getCategory(categoryId);
 }
 return SUCCESS;
 }
 …
 // category setter/getter
 …
 // productList setter/getter
 …

To get the CatalogBean to compile, we’ll create a simple CatalogService interface
in the org.apache.ibatis.jgamestore.service package. We’ll add two necessary meth-
ods—public List getProductListByCategory(Integer categoryId) and public

Listing 14.9 CatalogBean presentation class with properties and viewCategory Behavior

318 CHAPTER 14

Putting it all together
Category getCategory(Integer categoryId)—to the interface. Then, we can con-
tinue coding without worrying about the implementation.

 When the viewCategory method completes, it uses a public static String called
SUCCESS as the return value. The value of the SUCCESS variable is success. The
returned String is used to provide the BeanAction with the name of the action for-
ward to call. This results in our JSP display (see listing 14.10).

 …
 <c:set var="category"
 value="${catalogBean.category}"/>
 <c:set var="productList"
 value="${catalogBean.productList}"/>

 <table width="100%">
 <tr>
 <td colspan="2" class="PageHeader" align="left">
 <c:out value="${category.name}"/>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="left">
 <html:link page="/index.shtml" styleClass="BackLink">
 Return to Main Page
 </html:link>
 </td>
 </tr>

 <c:forEach var="product" items="${productList}">
 <tr>
 <td width="128" align="center"
 style="border-bottom: 1px solid #ccc">
 <html:link paramId="productId"
 paramName="product"
 paramProperty="productId"
 page="/viewProduct.shtml">
 <c:out value="${product.image}"
 escapeXml="false"/>
 </html:link>
 <html:link paramId="productId"
 paramName="product"
 paramProperty="productId"
 page="/viewProduct.shtml">
 View Items
 </html:link>
 </td>
 <td align="left"
 style="border-bottom: 1px solid #ccc">

Listing 14.10 Product listing - /catalog/Category.jsp

Sets Category object and
productList to page scope

B

Iterates over
productList

C

Renders links
and display text

D

Setting up the presentation 319
 <html:link styleClass="ZLink"
 paramId="productId"
 paramName="product"
 paramProperty="productId"
 page="/viewProduct.shtml">
 <c:out value="${product.name}"/>
 </html:link>
 </td>
 </tr>
 </c:forEach>
 …

The <c:set> tags are initially used to expose our Category object and pro-
ductList to the page scope. Once these objects are exposed to the page, they are
available for the other tags that need them. The list of products and the category
will be used by the JSTL core tags and the Struts <html> tags to accomplish
the display of these objects. The <c:out> tag is used to display the name property of
our Category object. The <c:forEach> tag is used to iterate over the list of prod-
ucts and expose each product in the list to its body, <html:link> is then able to
use the exposed product and create a link to the page that views the product.
Within the body of the <html:link> tag we use the <c:out> tag to render the value
of the product name.

 The Struts tags use a common nomenclature for working with objects. The
name attribute is the key that points to the object which is exposed in a scope. For
example, suppose you expose an object to the page using the name category.
category is what the name attribute should refer to. A corresponding attribute to
the name attribute is the property attribute, which gives the tag access to a particu-
lar property of the named object.

 In contrast, the JSTL tags have an EL (Expression Language) that is more
robust than the name and property attributes of the Struts tags. The EL is used to
expose objects in a scope to a particular JSTL attribute. We will not discuss EL in
detail here, but if you want to learn more we recommend Shawn Bayern’s JSTL in
Action (Manning, 2002).

 After coding all of the necessary components, we can now add an action map-
ping to our struts-config.xml (see listing 14.11) so that our application can use
those components. We first specify our CatalogBean as a form bean by assigning
the name catalogBean and providing a type of our fully qualified class name for
the CatalogBean. We now have a form bean that our action mapping can take
advantage of.

D Renders links and display text

B

C D

320 CHAPTER 14

Putting it all together
 <form-bean
 name="catalogBean"
 type=
 "org.apache.ibatis.jgamestore.presentation.CatalogBean"/>
 …
 <action
 path="/viewCategory"
 type="org.apache.struts.beanaction.BeanAction"
 name="catalogBean" scope="session" validate="false">
 <forward name="success" path="/catalog/Category.jsp"/>
 </action>

For the final touch, let’s configure the action mapping, as shown in listing 14.11.
The mapping requires us to specify a path—in this case, /viewCategory. We then
use the type attribute to identify the fully qualified class name of the Action class
that will be used to process the request. In this example, our type is BeanAction.
BeanAction will relay the request to a behavior method located on the form bean
that the action mapping uses. This is determined based on the form bean name
used in the name attribute of the action mapping. Here we will use the catalog-
Bean that we configured earlier. We then use the scope attribute to specify that the
form remain in a session scope. We set the validate attribute to false because
there is no input to validate.

 Lastly, the <forward> tag, which rests in the body of the action mapping, is
used to determine which page will be forwarded to. The name attribute maps to
the value returned by the behavior method of the presentation bean. In our case,
we will always receive a return value of success and thus forward to /catalog/
Category.jsp.

 Next let’s try our hand at the service layer.

14.7 Writing your service

The service layer will consist of just two pieces: the service interface and the imple-
mentation. The service class is meant to be a coarse-grained class that pulls
together more fine-grained data access calls. This may sound quite simple, but the
contents of a service class can pose some difficulties. Since it is important to keep
our service classes clean of any database-specific information, we need to take
extra measures to ensure proper abstraction.

Listing 14.11 Action mapping for /viewCategory

Writing your service 321
 Because the service layer needs to call the data access layer and handle transac-
tion demarcation, it would be easy to simply retrieve a database connection and
manage the transaction demarcation with the database connection. But if we did
this, we’d introduce a JDBC-specific semantic into our service layer. This means
that the service layer would now be aware of the data-store implementation we are
using. As soon as our service layer becomes aware of the type of data store we are
using, we compromise its purpose.

 As you learned in chapter 10, iBATIS provides a small framework called iBATIS
DAO that will be of use to us here. iBATIS DAO will fill a couple of important
responsibilities. First, it will be our data access object factory. Second, we will use the
iBATIS DAO for transaction demarcation, thus reducing the dependency our ser-
vice layer has on the underlying data access technology. In this section, we con-
tinue with our previous example and you’ll learn how to set up our service layer
using iBATIS DAO.

14.7.1 Configuring dao.xml

Unlike with our presentation layer, we will start our exploration of the service
layer by first configuring the iBATIS DAO framework. This makes it easier for us to
understand the components involved in the service layer. The iBATIS DAO frame-
work allows us to manage the necessary abstraction through configuration, so it is
appropriate to start here.

 The first component to configure in the iBATIS DAO is the transaction man-
ager (see listing 14.12). The transaction manager is used to handle transaction
demarcation over calls to the data access layer. In our example, we will use a trans-
action manager type of SQLMAP; this is the type that integrates with the iBATIS
SQLMap framework. Even though it may be difficult to distinguish iBATIS DAO from
iBATIS SQLMap, they are indeed different frameworks. The SQLMAP transaction
manager is a nice and easy route to go. Unless you are using the iBATIS DAO
framework in conjunction with another persistence layer, SQLMAP is the best
transaction manager to use for most occasions. The only property that needs to be
specified for the SQLMAP transaction manager is SqlMapConfigResource, which is
specified using the <property> tag in the body of the <transactionManager> tag.
The value of the SqlMapConfigResources property simply points to the sql-map-
config file that will contain all the necessary connection configuration informa-
tion. Whenever calls are made to start, commit, and end transactions, they will
transparently make the necessary calls against the hidden connection object spec-
ified in the SQLMap configuration file.

322 CHAPTER 14

Putting it all together
 <transactionManager type="SQLMAP">
 <property name="SqlMapConfigResource"
 value=
"org/apache/ibatis/jgamestore/persistence/sqlmapdao/sql/sql -map-

config.xml"/>
 </transactionManager>

The next step involved in configuring dao.xml is mapping the interface to the
implementation (see listing 14.13). This is quite easy to do—it only requires that
the <dao> tag provide a value to the interface attribute that corresponds with a
fully qualified interface name. The implementation will then be a fully qualified
class name implementation of that interface. If the configured implementation
class does not utilize the specified interface, iBATIS DAO will be sure to let you
know at runtime.

<dao
interface=
 "org.apache.ibatis.jgamestore.persistence.iface.ProductDao"
implementation=
 "org.apache.ibatis.jgamestore.persistence.sqlmapdao.ProductSqlMapDao"/>

14.7.2 Transaction demarcation

When using the SQLMAP type with the iBATIS DAO framework, you have implicit
and explicit transaction management. By default, if you do not specify a transac-
tion explicitly, it will be started automatically for you. There are ways to avoid this;
you can read about that in chapters 4 and 10.

 Implicit transaction management with the SQLMAP type is simple—all we need
to do is call the method on our data access object (see listing 14.14). The transac-
tion management is performed automatically for us. In the case of a select, we
don’t need the transaction, but it doesn’t hurt to have it.

 public PaginatedList getProductListByCategory(
 String categoryId
) {

Listing 14.12 transactionManager configuration in dao.xml

Listing 14.13 DAO configuration in dao.xml

Listing 14.14 Example of implicit transaction management

Writing the DAO 323
 return productDao.getProductListByCategory(categoryId);
 }

Explicit transaction management (see listing 14.15) is a bit more involved. It is
only needed when we are making more than one call to the data access objects.
Within a try block, we would first call daoManager.startTransaction(); we would
then perform our calls to one or more data access objects. When we have com-
pleted our calls to the data access layer, we would commit the transaction by call-
ing daoManager.commitTransaction(). If the call(s) were to fail for any reason, we
would have a daoManager.endTransaction() located in the finally block. This
would roll back our transaction and prevent any damage to our data store. For the
simple select we are performing, there is no need for this level of transaction
management. However, you could do it either way if you prefer.

 public PaginatedList getProductListByCategory(
 String categoryId
) {
 PaginatedList retVal = null;
 try {
 // Get the next id within a separate transaction
 daoManager.startTransaction();
 retVal = productDao
 .getProductListByCategory(categoryId);
 daoManager.commitTransaction();
 } finally {
 daoManager.endTransaction();
 }
 return retVal;
 }

Now that we have made it through the service layer in our simple view category
example, let’s finish this up by assembling the remaining pieces in the DAO layer.

14.8 Writing the DAO

The data access layer is where the Java code touches the database. The iBATIS
SQLMap framework is used here to make handling SQL easier. A data access layer
that uses iBATIS SQLMaps can be broken out into three basics pieces: the SQLMap
configuration file, the associated SQLMap SQL files, and the data access objects.

Listing 14.15 Example of explicit transaction management

324 CHAPTER 14

Putting it all together
Let’s see how to apply them in our view category example in order to retrieve our
product list.

14.8.1 SQLMap configuration

We will use sql-map-config.xml to specify database properties, set up the transac-
tion manager, and tie together all of the SQLmap files (see listing 14.16). The
<properties> tag will point to a database.properties file that contains key/value
pairs that are used to substitute the items written as ${…}. We should make sure
that our database.properties file contains the appropriate driver, URL, user-
name, and password for the chosen database.

 <sqlMapConfig>
 <properties resource="properties/database.properties"/>
 <transactionManager type="JDBC">
 <dataSource type="SIMPLE">
 <property value="${driver}" name="JDBC.Driver"/>
 <property value="${url}" name="JDBC.ConnectionURL"/>
 <property value="${username}" name="JDBC.Username"/>
 <property value="${password}" name="JDBC.Password"/>
 </dataSource>
 </transactionManager>

 <sqlMap resource= ~CCC
 "org/apache/ibatis/jgamestore/persistence/sqlmapdao/sql/Product.xml"/>
</sqlMapConfig>

Next, we’ll move on to configuring our transaction manager. For our purposes,
we will use the easiest transaction manager type of JDBC. The JDBC type specifies
that the SQLMap will use the standard Connection object commit and rollback
methods. Since we are handling the transaction demarcation on the service layer,
this configuration is more important. However, this transaction manager configu-
ration is required in order for the transaction manager configured with iBATIS
DAO to work correctly.

 The data source inside the transactionManager defines the JDBC data source
that the transaction manager will use to retrieve connections. We specify a type of
SIMPLE because we will have iBATIS handling the data source connection pool.
The <property> tag is then used to specify the driver, connection URL, username,
and password. Each <property> tag uses the ${…} notation and retrieves values
from the database.properties file.

Listing 14.16 SQLMAP transaction manager configuration

Writing the DAO 325
 The final element to set up is the <sqlMap> tag. This tag specifies the location
of the SQLMap configuration files. Whenever iBATIS is accessed for the first time,
the configured SQLMaps and their contents will be loaded into memory so that the
SQL contents can be executed when needed.

14.8.2 SQLMap

We’ll need to create a SQLMap file to house our SQL call for the category product
list. Within this file, which we’ll name Product.xml, we will need to define a
typeAlias for the Product object, a cache model to cache results, and a select
statement to house our select SQL (see listing 14.17).

 <sqlMap namespace="Product">

 <typeAlias
 alias="product"
 type="org.apache.ibatis.jgamestore.domain.Product"/>

 <cacheModel id="productCache" type="LRU">
 <flushInterval hours="24"/>
 <property name="size" value="100"/>
 </cacheModel>
 …
 <select
 id="getProductListByCategory" resultClass="product"
 parameterClass="string" cacheModel="productCache">
 SELECT
 PRODUCTID,
 NAME,
 DESCRIPTION,
 IMAGE,
 CATEGORYID
 FROM PRODUCT
 WHERE CATEGORYID = #value#
 </select>
 …
 </sqlMap>

The typeAlias will define an alias to the fully qualified class name of the Product
domain object. Here, we’ll specify the alias product. This saves us time typing the
fully qualified class name every time we refer to the Product domain object.

 Our cache model is going to be quite simple. We’ll configure its type as LRU
and name it productCache. Since the LRU has the potential to last a long time, we

Listing 14.17 SQLMap Product.xml SQL file

326 CHAPTER 14

Putting it all together
will make sure it doesn’t hang around longer than the 24 hours indicated by the
<flushInterval> tag. This will help to keep things relatively fresh in our applica-
tion. Setting the size of our LRU will allow one hundred different results to be
stored in the productCache cache model. If we receive high traffic on our site, we
are sure to retain good performance with at least a daily mandatory flush.

 Next comes our select statement. We provide the id of the select with some-
thing that represents what the SQL actually does. Don’t be afraid of verbosity; ver-
bosity clarifies the purpose of the SQL that is contained in the body of the select.
In this case we provide an id of getProductListByCategory. There is no mistaking
that the SQL contained within will return a list based on the category provided.

 Taking advantage of the typeAlias that we defined, we will specify the select
statement’s resultClass as product. Note that even though we are retrieving a list
by running this select in our data access object, we do not specify a List as our
return result. The reason is that this same select could be used to return a single
Product object. This may seem absurd since we named it getProductListByCate-
gory, but there are situations where a select will be multipurpose and return a sin-
gle object or a list of objects.

 The parameterClass for this select will use an alias of string (defined by
default). As you have probably guessed, this alias represents the String object. A
parameterClass attribute may also use a user-defined alias.

 The final attribute that we take advantage of on our select is cacheModel,
which references our previously defined productCache cache model. Specifying
cacheModel ensures that all category product lists that are queried will be
cached. This provides us with speedy performance and fewer unnecessary hits
on the database.

 The next step is to fill the body of the select tag with our SQL. Our select state-
ment will retrieve a result set of records from the Product table and map them
into a list of product objects as specified by our select tag configuration. All of the
fields will map smoothly to properties in the Product object because the column
names correspond with the property names.

 Once we have finished configuring our sql-map-config.xml, our alias, our
cacheModel, and our select, we are ready to use the iBATIS API in Java code. We
will take advantage of the SQLMap by writing an implementation to our Product-
Dao interface.

14.8.3 Interface and implementation

It’s a good practice to code against an interface when working between layers of an
application. In this case we are working between the service layer and the data access

Writing the DAO 327
layer. The service layer should always interact with the DAO interface and be free of
any DAO implementations. This case is no different, as you can see here:

 public interface ProductDao {
 PaginatedList getProductListByCategory(
 String categoryId);
 …
 }

We have a ProductDao interface that will be used by the CatalogService class.
Since CatalogService interacts with the ProductDao interface, it doesn’t care
about the actual implementation. On our ProductDao, we need to define a get-
ProductListByCategory method that CatalogService is able to take advantage of.
The return type is PaginatedList and the method signature consists of a catego-
ryId of type String:

 public class ProductSqlMapDao
 extends BaseSqlMapDao
 implements ProductDao {
 …
 public ProductSqlMapDao(DaoManager daoManager) {
 super(daoManager);
 }
 …
 public PaginatedList getProductListByCategory(
 String categoryId
) {
 return queryForPaginatedList(
 "Product.getProductListByCategory",
 categoryId, PAGE_SIZE);
 }
 …
 }

The implementation of the ProductDao will be the ProductSqlMapDao, which is
located in the org.apache.ibatis.jgamestore.persistence.sqlmapdao package. Prod-
uctSqlMapDao extends BaseSqlMapDao, and in turn BaseSqlMapDao extends SqlMap-
DaoTemplate. SqlMapDaoTemplate is a base iBATIS SQLMap class; this class contains
methods that are used to call the SQL that is defined in the SQLMap XML files. We
will use the queryForPaginatedList method in the body of the getProductListBy-
Category method implementation on the ProductSqlMapDao class. When we call
queryForPaginatedList we pass in the namespace and the statement name we
want to call (i.e., Product.getProductListByCategory), the categoryId that we are
querying against, and the page size that we want the returned list to represent.

328 CHAPTER 14

Putting it all together
14.9 Summary

That’s it! We have now put together all the components of a simple application.
We walked through the presentation, service, and data access layers. Each layer
has its own set of classes and frameworks to explore. We examined Struts, BeanAc-
tion, iBATIS DAO, and iBATIS SQLMaps, but there remains plenty more to experi-
ment with. We didn’t touch on updates, inserts, deletes, and searches that require
Dynamic SQL. Much of this is covered in the JGameStore sample application. It
would be beneficial to take the understanding that you gained here and explore
the whole of JGameStore.

appendix:
iBATIS.NET Quick Start
329

330 APPENDIX

iBATIS.NET Quick Start
Early in this book we stated that iBATIS is a portable concept. It wasn’t long after
the release of iBATIS 2.0 that a new group of team members ported iBATIS to the
.NET platform. This appendix will give you a quick overview of iBATIS for the .NET
platform.

A.1 Comparing iBATIS and iBATIS.NET

It’s common in open source projects to have half-hearted ports to other platforms
that often fizzle out shortly after their inception. Not so with iBATIS.NET.

 The iBATIS.NET team has been diligently keeping iBATIS.NET up to date with
the Java version, as well as improving the core feature set. iBATIS.NET is under the
same project umbrella as iBATIS for Java; we are the same team. This is a signifi-
cant advantage, because we are in constant communication and the developers
for each platform learn from each other every day. There are a lot of advantages
to both the Java and .NET platforms that we have been using to help encourage
innovation between the two.

Why should Java developers care about iBATIS.NET?

The fact is, .NET is here to stay. We are in a heterogeneous environment, and we
always have been. If you’re a professional software developer who intends to stay
in the field for any length of time, you will need to expand your horizons beyond
Java. That’s not to say that Java is going anywhere, but neither is .NET. If you’re an
independent consultant, .NET is probably 50 percent of your market. Ignoring
this market is not good for business. If you’re a full-time employee in a large orga-
nization, then chances are .NET will find its way into your environment in one
form or another. .NET is a valid platform that has its place in the enterprise.

 The value to you as a Java developer learning iBATIS is that you can apply all of
the same principles to the persistence layer in .NET as you do in Java. There’s no
difference, and there’s no reason to be different. .NET has a lot of neat features
like DataSets, which make a compelling argument for quick-and-dirty software
development, but for real enterprise applications, you’re always better off with a
domain model. As you’ve learned by reading this book, the ability to map domain
models to databases in the enterprise is an advantage of using iBATIS.

Why should .NET developers care about iBATIS.NET?

Many .NET developers are new to open source. .NET is a commercial product, and
therefore many of the recommended third-party solutions are commercial, closed

Working with iBATIS.NET 331
source products. One might say that open source freeware is not within the cul-
ture of the .NET community. That is about to change, if it hasn’t already.

 Free open source solutions are becoming more popular in the .NET commu-
nity. This is partially due to the increase in open source build and test tools that
have been lacking in commercial software for a long time. Projects like Mono,
SharpDevelop, NAnt, NUnit, NHibernate, and CruiseControl.NET have been mak-
ing a significant impact on the traditional .NET developer, who may have only
been exposed to Microsoft tools. The .NET community has seen the value of open
source software. Even Microsoft has invested in open source with the release of
www.CodePlex.com. Welcome to .NET open source mania!

What are the major differences?

The talented iBATIS.NET developers have done a great job of keeping iBATIS con-
sistent. There are a few minor differences that have mostly to do with design phi-
losophies that differ between the Java and .NET platforms. Obviously things like
naming conventions for classes, interfaces, and methods were honored for the
.NET platform. In addition, the XML structure differs somewhat, but we’ll discuss
that more in a moment.

What are the similarities?

iBATIS.NET holds all of the same principles and values as the Java version. Simplic-
ity is the goal, while maintaining a great deal of flexibility to ensure that iBA-
TIS.NET will work for as many applications as possible. iBATIS.NET has few
dependencies and makes few assumptions about your application architecture.
This means that many of the same benefits and considerations apply to iBA-
TIS.NET as we discussed for iBATIS for Java earlier in this book.

 The remainder of this appendix will describe the basic usage of the iBATIS.NET
Data Mapper framework. iBATIS.NET also has a DAO framework called Ibatis-
Net.DataAccess. However, we do not explore the full feature set of iBATIS.NET,
including the DAO framework, in great detail in this book.

A.2 Working with iBATIS.NET

If you have any experience with iBATIS, you’ll become comfortable with iBA-
TIS.NET very quickly. This section explores the key points you need to understand
in order to use iBATS.NET. We start with a look at the dependencies (DLLs) and
configuration of iBATIS.NET. We then draw on your existing iBATIS knowledge
and demonstrate the usage of various SQL mapping files.

332 APPENDIX

iBATIS.NET Quick Start
DLLs and dependencies

Luckily, having read the rest of this book, there is little else you need to know.
Because we’re working with .NET now, there are of course no JAR files. Instead,
iBATIS.NET Data Mapper is deployed as DLL files that you need to include as refer-
ences in your assembly. Like its Java sibling, the .NET version has very few depen-
dencies. In fact, only three DLLs are required; see table A.1.

The XML configuration file

iBATIS.NET has an XML configuration file, just as iBATIS for Java does. The struc-
ture of the file is a bit different, but it’s similar enough that you can no doubt
understand it. All of the configuration files are validated by XSD schemas. If you
install the XSD for these files in Visual Studio, you will gain the benefit of having
IntelliSense support. This will make coding these files a lot easier. See the Visual
Studio documentation for information on installing XSD files. Listing A.1 shows a
sample iBATIS.NET configuration file for a simple application.

<?xml version="1.0" encoding="utf-8"?>
<sqlMapConfig
 xmlns="http://ibatis.apache.org/dataMapper"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <providers resource="providers.config"/>

 <!-- Database connection information -->
 <database>
 <provider name="sqlServer2.0"/>

Table A.1 iBATIS.NET has dependencies only on these three assemblies.

Filename Purpose

IbatisNet.Common.dll The common utilities of the iBATIS.NET framework. Generally these
common classes are shared between the iBATIS Data Mapper and
Data Access frameworks.

IbatisNet.DataMapper.dll The core classes for the iBATIS.NET data Mapper. Contained within are
the classes that you will most often use to interact with iBATIS.NET.

Castle.DynamicProxy.dll One of only two third-party dependencies, Castle Dynamic Proxy pro-
vides functionality to support dynamic extension of classes and imple-
mentation of interfaces at runtime. iBATIS uses such proxies for lazy
loading as well as automatic transaction management in some cases.

Listing A.1 SqlMap.config XML configuration file

Working with iBATIS.NET 333
 <dataSource name="Northwind"
➥ connectionString="server=localhost,1403;database=Northwind;
➥ user id=sa;password=sa;connection reset=false;connection
➥ lifetime=5;min pool size=1; max pool size=50"/>
 </database>

 <sqlMaps>
 <sqlMap resource="Employee.xml"/>
 </sqlMaps>

 </sqlMapConfig>

If you’re familiar with iBATIS for Java, then the configuration file in listing A.1
should look somewhat familiar. It begins with a declaration of providers, which
are included configurations for various database drivers. The ADO.NET database
driver model requires a bit more initial setup than JDBC does. That configuration
is contained within the providers.config file, which is included with the iBA-
TIS.NET distribution. Notice that the database connectivity configuration is quite
different. It goes without saying that iBATIS.NET makes use of ADO.NET, whereas
Java uses JDBC. Each of these low-level APIs uses different driver models and dif-
ferent connection strings—hence the difference in the structure of this part of
the XML. However, the configuration file maintains its simplicity. Usually, you
need only specify the provider, a data source name, and a connection string.

 The provider tells iBATIS which kind of database you are connecting to. Pro-
viders are pluggable components of iBATIS.NET, and there is one for each data-
base type supported. However, you might want to look in providers.config and
disable or remove any providers that you don’t have drivers for; otherwise, you’ll
get an error if you try to run the application without them.

 The database name and connection string set up a database connection using
the credentials and other information that you provide (e.g., username and pass-
word). If you’re used to Java, this is not unlike a typical JDBC connection URL.

 The last part of the configuration file is the <sqlMaps> stanza, which lists all of
the SQL mapping files that contain the SQL statements, result maps, and other
iBATIS elements. In this example, we have only one mapping file, which is called
Employee.xml.

 As you’ve probably noticed, these examples all make use of the Northwind
database included with Microsoft SQL Server and Microsoft Access. This database
is popular for sample code such as that listed throughout this appendix.

334 APPENDIX

iBATIS.NET Quick Start
The configuration API

The configuration file in listing A.1 is used to configure an instance of SqlMapper,
the class that you’ll be using to work with your mapped statements. The SqlMapper
instance is created by a factory class called DomSqlMapBuilder, which reads
through the XML configuration file to build the SqlMapper. The following is an
example of what this configuration looks like:

ISqlMapper sqlMap =
new DomSqlMapBuilder().Configure("SqlMap.config");

This single line of code (split in this example) is all you need.
 We now have a configured ISqlMapper instance that we can use to call the state-

ments in Employee.xml. The next section takes a look at what’s inside Employee.xml.

SQL mapping files

Like the configuration file in listing A.1, the SQL mapping files are also a bit dif-
ferent, but they are similar enough to make any iBATIS user comfortable. iBA-
TIS.NET supports all of the same types of statements, including stored procedures.
Here is a simple query statement from Employee.xml:

<select id="SelectEmployee" parameterClass="int"
 resultClass="Employee">
select
 EmployeeID as ID,
 FirstName,
 LastName
 from
 Employees
 where
 EmployeeID = #value#
</select>

The select statement takes an integer as a parameter, and returns an Employee
object populated with some of the data from the Employees table from the North-
wind database. As you might recognize, this particular statement is making use of
automapping. That is, no result map is specified. Instead, columns are mapped to
class properties by their names. Notice how EmployeeID is aliased to ID, as that is
the name of the property in the Employee class. We could have defined an explicit
result map, which would have changed the listing as follows:

<resultMap id="EmployeeResult" class="Employee">
 <result property="ID" column="EmployeeId"/>
 <result property="FirstName" column="FirstName"/>
 <result property="LastName" column="LastName "/>
</resultMap>

Working with iBATIS.NET 335
<select id="SelectEmployee" parameterClass="int"
 resultMap="EmployeeResult">
select *
 from
 Employees
 where
 EmployeeID = #value#
</select>

Notice how we were able to simplify the SQL statement, but at the cost of an addi-
tional XML element called <resultMap>. This is a trade-off that you’ll make often,
but as with the Java version, sometimes the <resultMap> is necessary because it
provides added functionality to your results processing.

 Now that we’ve mapped the statement, we can call it from C# as follows:

Employee emp =
 sqlMap.QueryForObject<Employee>("SelectEmployee", 1);

// You can get a sense of the result by writing out to the
// console… which should return "1: Nancy Davolio"
Console.WriteLine(emp.ID + ": " + emp.FirstName + " " +
 emp.LastName);

Nonquery statements are no different in iBATIS.NET. The following examples
show how we define an insert statement.

 First, take a look at this code:

<insert id="InsertEmployee" parameterClass="Employee">
 insert into Employees
 (FirstName, LastName)
 values
 (#FirstName#, #LastName#)
 <selectKey resultClass="int" property="ID" >
 select @@IDENTITY
 </selectKey>
</insert>

For the most part, this is just a simple insert statement. However, notice the
bolded section of the statement. The embedded <selectKey> stanza should be
familiar to any iBATIS user: it is the mechanism used to acquire the values of gen-
erated primary key columns.

 When we call this statement from C#, the generated key is returned from the
Insert() method, and it is also set as the value of the ID property of the Employee
instance passed to the Insert() method. Let’s take a look at the example C# code
to make this clearer:

336 APPENDIX

iBATIS.NET Quick Start
Employee employee = new Employee();
employee.FirstName = "Clinton";
employee.LastName = "Begin";
Object id = sqlMap.Insert("InsertEmployee", employee);

The Northwind database uses an IDENTITY column for the EmployeeId primary
key of the Employees table. Therefore we don’t pass the value of the primary key
into the insert statement. However, the employee instance ID property will be
updated with the generated primary key value. The generated key is also returned
from the Insert() method.

 As with iBATIS for Java, once you’ve seen a couple of statements, the rest
become fairly obvious. Updates and deletes are implemented much like inserts,
but with their own <update> and <delete> elements, respectively.

A.3 Where to go for more information

As you’ve seen, there is not a lot of difference between iBATIS for Java and iBA-
TIS.NET. They are distinguished primarily by features that are relevant to each lan-
guage, but they maintain a consistent feel. There is much more to learn about
iBATIS.NET, though, and resources are available on the Web for you. Visit http://
ibatis.apache.org, where you’ll find the iBATIS.NET user guide as well as the NPet-
Shop sample application.

index
Symbols

placeholders
using inline parameters

with 89–91
$ placeholders

using inline parameters
with 91–92

@@identity value 111

A

abbreviations 82
abstraction layer 19, 258
accessor methods 82
account 304
Account objects 248
account.accountId property 134
Account.getByIdValue mapped

statement 90
Account.xml file 236
AccountDao interface

230, 241, 264
AccountDao variable 230
AccountDaoImpl class 230
accountId parameter 123
accountId property 86, 116
accountId value 90, 93
AccountManufacturerProduct

class 141
Action 306

class 262
ActionContext 306–308

ActionForm 306–307
ActionForward 307
ActionMapping 308
ActionServlet 311
active transactions 154–155
address fields 31
advanced query techniques.

See query techniques,
advanced

advantages of iBATIS
encapsulated Structured

Query Language (SQL) 13
externalized Structured Query

Language (SQL) 11–12
overview 10–11

Adventure Deus 176
aging static data

caching 213–216
Ajax 16
Apache issue tracking system

JIRA 61
Apache license 50
Apache Software

Foundation 50–51
application architecture layers

business logic layer 17
business object model 15
overview 14
persistence layer

abstraction layer 18–19
driver or interface 19
overview 18
persistence framework 19

presentation layer 15–17

relational database
integrity 20
overview 19–20
performance 20–21
security 21–22

application database 22–24
application server 159
application source code 4
Atlassian 51
atomicity 148–149
attributes function 166
attributes interface 256
autocommit mode 151
auto-generated keys 110–113
automatic mapping 94
automatic result maps 93–95
automatic transactions

147, 151–152

B

BaseSqlMapDao class 327
bash shell script for Linux 59
BasicAttributes class 256
batch file for Windows 59
batch updates, running

115–117
Bean 103
bean property names 93
BeanAction 307

ActionContext 307–308
BeanAction 307
BeanBase 307
337

338 INDEX
BeanAction (continued)
overview 306
style behavior 317

BeanBase 307
beans. See JavaBeans
<behaviorName> () method,

public String 317
best practices

managing iBATIS configura-
tion files 295–298

naming conventions
overview 298
parameter maps 298
result maps 299
statements 298
XML files 299–300

overview 288
unit testing with iBATIS

overview 288
unit testing Data Access

Objects (DAO)
291–293

consumer layers
293, 295

unit testing mapping
layer 288–291

whether to use beans, maps or
XML
JavaBeans 300
maps 300
overview 300
primitives 301
XML 301

binary distribution 58
binary tags 169–170
BLOBs 269
boolean values 270, 272
booleanToYesNo() method 272
build 310
build directory 60
build.bat process 60
build.sh process 60
business logic layer 17

demarcating transactions
at 160–161

business object model 15
classes 15

business-to-business
transactions 147

bytecode enhancement for lazy
loading 62–63

C

c:forEach tag 319
c:set tags 319
cache implementation 201
Cache Model configuration 198
CacheController 269

creating 277
interface 199, 276
overview 276–277
putting, getting and

flushing 277–278
registering for use 278–279

cached object 200
CacheKey instance 278
cacheModel 325–326

instance 278
tag 198
type attribute 212

cacheModelsEnabled 72
caching 72

aging static data 213–216
Cache Model

combining read only and
serialize 200–201

default cache implementa-
tion types 198–199

overview 198
readOnly attribute 199
serialize attribute 199
types 204–208
using tags inside 201–204

data 64
determining caching

strategy 208–209
distributed 64
iBATIS caching

philosophy 197–198
overview 196
read-only long term data

209–211
read-write data 212–213
simple example 196–197

CallableStatement object 219
calling thread 200
camel-case pattern 82
cart 305
catalog 304
CatalogBean 315, 319
CatalogService 315

class 317, 327

Category
caching 210
codes 27
object 164
parameter class 165
table 180

categoryCache 210
#categoryId# parameter 12
categoryId 327

name 176
property 164, 184

CategorySearchCriteria 184
CDATA 98
CGLIB 62, 131

optimized classes 72
child records, updating or

deleting 115
class loaders 65, 71
class path 64
ClassCastException 65
ClassLoader 295
Classpath 234, 295–297

environment variable 64
CLOBs 269
close attribute

Binary Tag 169
Dynamic Tag 168
Iterate Tag 174
Parameter Tag 173
Unary Tag 171

close() method 283
closeStatement(s) 250
coarse grained service

methods 17
Cocoon 124
code coverage 61
column 100
columnIndex attribute 100
com.iBATIS.sql-

map.engine.cache.Cache-
Controller interface 208

commit() method 283
commitRequired attribute 76
commitTransaction()

method 159
compareProperty attribute 169

Binary Tag 169
compareValue attribute 169

Binary Tag 169
complex keys and

relationships 28
composite key 28

INDEX 339
concurrent updates 114
Concurrent Version System

(CVS) 59
conditional tags

simplified 190
configuration files 43, 50

managing 295–298
configure() method 277
configuring iBATIS 48–49

See also installing and configur-
ing iBATIS

configuring web.xml 311–312
conjunction attribute 173

Iterate Tag 174
Connection instance 156
Connection object 68
consistency 149
constraints 20
Contact class 256
control of databases 26–27
createDao() method 266
CRUD operations 234
css directory 309
culling process 211
custom transactions

148, 156–158
custom type handlers 77

creating TypeHandlerCall-
back
getting results 273
nulls 273–275
overview 271
setting parameters 272

implementing 270–271
overview 269–270
registering TypeHandlerCall-

back for use 275–276
CVS 289

D

dao tag 322
DAO. See Data Acess Object

(DAO)
dao.xml

configuration file 221, 248
configuring 321–322
file 223, 230, 243

DaoException 250, 257

DaoFactory interface 264
DaoManager

class 221
creating 221–223
instance 222

daoManager.commitTransac-
tion() method 323

daoManager.endTransaction()
method 323

daoManager.startTransaction()
method 323

DaoManagerBuilder
instance 222, 235

DaoService class 221
DaoTransactionManager 229

implementation 224
daoXmlResource variable 222
data access layer 197, 209, 326
data access mechanism 220
Data Access Object (DAO)

class 241
configuration 229
configuring

context element 223
Data Access Objects (DAO)

elements 229–230
overview 223
properties element 223
tips for 230–233
transaction manager

element 224–229
creating own DAO layer

decoupling and creating
factory 263–266

overview 263
separating interface from

implementation 263
framework 262
Hibernate DAO implementa-

tion
actual DAO

implementation
245–248

defining DAO context
243–244

mapping Account
table 244–245

overview 243
hiding implementation details

overview 218

reasons for separating data
access from data access
interface 219–220

simple example 220–223
JDBC DAO

implementation 248–253
layer 166, 262

testing 288
manager 232
overview 218, 243
pattern 19, 218, 243
SQL Map DAO implementa-

tion example
coding DAO

implementation
239–241

configuring DAO in
iBATIS 234–235

creating DaoManager
instance 235

defining transaction
manager 235–236

loading maps 236–239
overview 233–234

unit testing
DAO consumer layers

293–295
overview 291–292
with mock objects 292–293

using DAO pattern with other
data sources
examples 253–260
overview 253

using Spring DAO
overview 260
reasons for using instead of

iBATIS 262
writing code 260–261

writing
interface and

implementation
326–327

overview 323–324
SQLMap 325–326
configuration 324–325

data access object factory 321
Data Definition Language

(DDL) 5, 137
DDL scripts 189

data manipulation 16

340 INDEX
Data Manipulation Language
(DML) 6

data source 290
data transfer objects 15
database administration

teams 27
database challenges

access by multiple disparate
systems 27–28

complex keys and
relationships 28

denormalized or overnormal-
ized models 29–30

overview 26
ownership and control 26–27
skinny data models 30–32

database management
system 20

database percent (%)
syntax 179

database server 46
database tables 20, 197
database teams 27
database transaction 73
database types

application databases 22–23
enterprise databases 23–25
legacy databases 25–26
overview 22
proprietary databases 25

database vendors 111
database.properties file 324
databases, age of 22
DataSource 324

connection pool 324
DataSourceFactory 269

implementation 76
interface 279–280

element 76–77
instance 290
interface 219
property 225
unsupported, configuring

DataSourceFactory
interface 279–280

overview 279
db.properties properties file 71
DBCP data source 226–227
DBCP data source factory 77
DBJndiContext property 228

deep copy 199
default constructor 85
default keyword 199
default settings 73
<delete> statement type 87, 107
delete method 107
deleteOrder method 117
deleting data. See updating and

deleting data
demarcating transactions

at business logic layer
160–161

at presentation layer 159–160
overview 158–159

denormalization 29
denormalized models 29–30
dependencies

bytecode enhancement for
lazy loading 63

distributed caching 64
Jakarta Commons Database

Connection Pool
(DBCP) 63–64

overview 62
design concept

account 304
cart 305
catalog 304
order 305
overview 304

design layers 268
dev-javadoc.zip file 62
devlib 310

directory 60
devsrc directory 60
Distinguished Name (DN) 254
distributed caching 64
distribution of iBATIS, obtaining

binary distribution 59
building from source

digging into repository
59–60

overview 59
running build 60–61

overview 58–59
.do extension 312
doc directory 60
Document Object Model 301

DOM object 123

Document Type Definition
(DTD) 50

domain classes 15
domain package 309
dot notation 84
duplication 89
durability 151
<dynamic> parent 181
<dynamic> tag 165
dynamic fields 31
dynamic result mapping 94
dynamic Structured Query Lan-

guage (SQL) 8–9, 11, 118
advanced techniques

applying dynamic SQL tags
to static SQL 181–183

defining what input is
required 179–180

defining what resulting data
will be 178–179

overview 178
writing out SQL in static

format 180–181
alternative approaches to

comparing to iBATIS
189–190

overview 183–184
using Java code 184–187
using stored

procedures 187–189
dynamic tags

binary tags 169–170
dynamic tag 168
iterate tag 174
overview 166–167
parameter tags 172–173
unary tags 171–172

dynamic WHERE clause
criteria 164–166

future of
expression language 191
overview 190
simplified conditional

tags 190
overview 164
simple example

apply SQL tags to static
SQL 177–178

define how to retrieve and
display data 176

INDEX 341
dynamic Structured Query Lan-
guage (SQL) (continued)
determine which database

structures are
involved 176

overview 176
write out SQL in static

format 176–177
dynamic tags 166

E

EMMA 61
enabled property 272
encapsulated Structured Query

Language (SQL) 13
encapsulation 13
endTransaction() method 159
enhancementEnabled 72

attribute 131
enterprise databases 23–25
equal sign (=) 164
example application

building application 49
configuring iBATIS 48–49
overview 45
running application 49–50
setting up database 46
writing code 46–47

execute delete statements 107
executeBatch() method 116
explicit result maps

JavaBean and Map
results 102–103

overview 100–101
primitive results 101–102

expression language 191
J2EE 191

extending iBATIS
CacheController

creating 277
overview 276–277
putting, getting and

flushing 277–278
registering for use 278–279

configuring unsupported
DataSource
DataSourceFactory

interface 279–280

overview 279
custom type handlers

creating
TypeHandlerCallback
271–275

implementing 270–271
overview 269–270
registering TypeHandler-

Callback for use
275–276

customizing transaction man-
agement
overview 280–281
Transaction interface

282–283
TransactionConfig

interface 281–282
overview 268
pluggable component

design 268–269
eXtensible Markup Language

(XML). See XML
extensions 51
EXTERNAL 76
external mapping 95
external parameter

mapping 108
external parameter maps 97

inserting data using 110
EXTERNAL transaction 155
External transaction

manager 225
ExternalDaoTransactionMan-

ager
EXTERNAL type 224

externalization 11
externalized Structured Query

Language (SQL) 11–12
ExternalTransactionConfig

implementation 280
eXtreme Programming 288

F

FIFO type, cacheModel 199
FifoCacheController class 276
finer grained business logic 17
First in, first out (FIFO)

cache 214

cache model 207
strategy 207

firstLetter property 184
flush tags 201
flush() method 278
<flushInterval> tag

201, 203–204
flushInterval tag 210
<flushOnExecute> tag 201–203
flushOnExecute 197, 209

tag 203, 215
FOREIGN KEY constraint 20
FROM clause 12
future of iBATIS

additional platforms and
languages 51–52

Apache Software
Foundation 50–51

more extensions and plug-
ins 51

overview 50
simpler, smaller, with fewer

dependencies 51

G

garbage collection process 66
Garbage Collector 212
Gateway pattern 253
generated keys 111, 113
generation dynamic SQL

tags 190
getAccountInfoList mapped

statement 129
getAccountInfoListN mapped

statement 134
getAttributeValue method 256
getChildCateogries query

mapped statement 211
getConnection() method 283
getDao() method 265
getDataSource() method

279, 282
getIdDescriptionListByExample

mapped statement 239
getInstance() method 265
getOrderItem() methods 83
getOrderItemList mapped

statement 130

342 INDEX
getPerson() method 292–293
getProductById query mapped

statement 213
getProductListByCategory

326–327
method 327

getProperty 82
getResourceAsReader()

method 296
getResult() method 273
getString() method 77, 273
getValidatedPerson()

method 294
global transactions 148, 156

context 154
overview 153
starting, committing, and end-

ing transaction 155–156
using active or passive

transactions 154–155
Google 259
groupBy attribute 132, 140
GROUPNAME parameter 48
GuiSqlMapConfig.xml 299

H

handleRow method 138
hash (#) syntax 90
HashMap 48
Hibernate 44, 220, 223
Hibernate DAO implementation

actual DAO
implementation 245–248

defining DAO context
243–244

mapping Account table
244–245

overview 243
Hibernate session factory 225
Hibernate transaction

manager 225, 244
HIBERNATE type

HibernateDaoTransaction-
Manager 224

hibernate.properties file 244
HibernateDaoTransaction-

Manager
HIBERNATE type 224

hotProductsCache tag 215

hours attribute, flushInterval
tag 203

HSQLDB memory database 289
html:link 319
HttpServletRequest 307
HttpServletResponse 307

I

iBATIS
advantages of

encapsulated Structured
Query Language
(SQL) 13

externalized Structured
Query Language
(SQL) 11–12

overview 10–11
example application

building application 49
configuring iBATIS 48–49
overview 45
running application 49–50
setting up database 46
writing code 46–47

future of
additional platforms and

languages 51–52
Apache Software

Foundation 50–51
more extensions and plug-

ins 51
overview 50
simpler, smaller, with fewer

dependencies 51
how handles common data-

base challenges
access by multiple disparate

systems 27–28
complex keys and

relationships 28
denormalized or overnor-

malized models 29–30
overview 26
ownership and control

26–27
skinny data models 30–32

overview 4–5
reasons for using

division of labor 42

open source and
honesty 43

portability 42–43
relationship with application

architecture layers
business logic layer 17
business object model 15
overview 14
persistence layer 18–19
presentation layer 15–17
relational database 19–22

roots of
dynamic Structured Query

Language (SQL) 8–9
inline Structured Query

Language (SQL) 7–8
modern stored

procedures 7
object relational mapping

(ORM) 10
old-school stored

procedures 6
overview 5
Structured Query Language

(SQL) 5–6
when not to use

overview 43
when application requires

fully dynamic Struc-
tured Query Language
(SQL) 44

when doesn't work 45
when have full control

43–44
when not using relational

database 44–45
working with different data-

base types
application databases

22–23
enterprise databases 23–25
legacy databases 25–26
overview 22
proprietary databases 25

See also best practices; extend-
ing iBatis

iBATIS configuration file 290
ibatis-common-2.jar file 62
ibatis-dao-2.jar file 62

INDEX 343
ibatis-sqlmap-2.jar file 62
ibatis-src.zip file 62
iBSqlMapConfig.xml 290
id attribute 210

cacheModel Tag 198
IdDescription objects 248
images directory 310
implementation 320
IN parameters 119
IN statement 164, 187
<include> statement type

88, 108
include element 88
includePassword property 95
index method 314
index.jsp 313
index.tiles definition 314
indexed properties 83
InitialContext constructor 228
initialize() method 279, 281
inline mapping 95
inline parameter mapping

97, 108
inserting data using 108–109
revisited 97–99

inline parameters
using with # placeholders

89–91
using with $ placeholders

91–92
inline result maps

JavaBean and Map
results 102–103

overview 100–101
primitive results 101–102

Inline SQL 11
inline Structured Query Lan-

guage (SQL) 7–8
inner transaction scope 155
INOUT parameters 120
<insert> statement type 87, 107
insert method 106, 112–113
INSERT statement 298
inserting data

auto-generated keys 110–113
overview 108
using external parameter

map 110
using inline parameter

mapping 108–109

installing and configuring iBA-
TIS

adding iBATIS to your appli-
cation
overview 64
using iBATIS with stand-

alone application
64–65

using iBATIS with web
application 65

dependencies
bytecode enhancement for

lazy loading 63
distributed caching 64
Jakarta Commons Database

Connection Pool
(DBCP) 63–64

overview 62
distribution contents 62
getting iBATIS distribution

binary distribution 59
building from source 59–61
overview 58–59

iBATIS and JDBC
overview 65–66
reducing complexity 67–68
releasing JDBC

resources 66
Structured Query Language

(SQL) injection 66–67
overview 58, 68
properties element 70–71
settings element

cacheModelsEnabled 72
enhancementEnabled 72
lazyLoadingEnabled 71–72
maxRequests

(Deprecated) 73
maxSessions

(Deprecated) 73
maxTransactions

(Deprecated) 73
overview 71–72
useStatementNamespaces

72–73
sqlMap element 78
Structured Query Language

(SQL) Map Configuration
file 69–70

transactionManager element
dataSource element 76–77
overview 75–76
property elements 76

typeAlias elements 73–75
typeHandler element 77–78

int parameter 281
int property 102
int typed property 273
Integer objects 93
integration database 24
integrity

relational database 20
interface attribute 322
interface property 229
Introspector class, Java 84
IS keyword 164
<isEmpty> unary tag 172
<isEqual> tag 181–182

binary dynamic tag 170
<isGreaterEqual> binary

dynamic tag 170
<isGreaterThan> binary

dynamic tag 170
<isLessEqual> binary dynamic

tag 170
<isLessThan> binary dynamic

tag 170
<isNotEmpty> tag 167, 182

unary tag 172
<isNotEqual> binary dynamic

tag 170
<isNotNull> tag 165, 167

unary tag 171
<isNotParameterPresent>

parameter tag 173
<isNotPropertyAvailable> unary

tag 171
<isNull> tag 165, 167

unary tag 171
isolation-overview 149–150
isolation-read

committed 150
uncommitted 150

isolation-repeatable read
150–151

isolation-serializable 151
<isParameterPresent> parameter

tag 173
isProperty 82

344 INDEX
<isPropertyAvailable> unary
tag 171

Item table 180
<iterate> tag 167, 182
iterate tag 174, 178

J

J2EE 191
Jakarta Commons Database Con-

nection Pool (DBCP)
63–64

project 64, 226
JAR file 62
Java 42–43

mapping to LDAP 254–258
Java code 187

using as alternative approach
to dynamic SQL 184–187

Java Runtime Environment
(JRE) 64

Java Transaction API (JTA)
transaction manager 228

java.net.URL class 71
JavaBeans 81, 300

creating
bean navigation 84
overview 81
what makes a bean 82–84

JavaBean and Map
parameters 99

javadoc directory 60
javaType

attribute 100
mapping attribute 96

JDBC 76
and iBATIS

overview 65–66
reducing complexity 67–68
releasing JDBC

resources 66
Structured Query Language

(SQL) injection 66–67
JDBC DAO 291

implementation 248–253
JDBC driver

implementation 219
JDBC transaction manager

DBCP data source 226–227
JNDI data source 227–228

overview 225
SIMPLE data source 225–226

JDBC type
JdbcDaoTransactionManager

224
JDBC.ConnectionURL property

DBCP data source 227
SIMPLE data source 225

JDBC.DefaultAutoCommit prop-
erty, SIMPLE data
source 225

JDBC.Driver property
DBCP data source 227
SIMPLE data source 225

JDBC.Password property
DBCP data source 227
SIMPLE data source 225

JDBC.Username property
DBCP data source 227
SIMPLE data source 225

JdbcDaoTemplate class 249
JdbcDaoTransactionManager

JDBC type 224
JdbcTransactionConfig

implementation 280
jdbcType

attribute 100
mapping attribute 96

JGameStore application 175
JIRA 61

Atlassian’s 51
JMock object 293
JNDI context 155
JNDI data source 227–228
JNDI data source factory 77
joining related data 95
JSP directory 309
JSTL (Java Standard Tag

Library) 190
core tags 319

JTA 76, 155
JTA type

JtaDaoTransactionManager 2
24

JtaDaoTransactionManager
JTA type 224

JtaTransactionConfig
implementation 280

JUnit report 61

K

key
complex 28
generation technique 111
parameter 86
value 111

keyProperty attribute 112

L

languages 51–52
layered architecture 159
layering strategy 14
layout.catalog definition 314
layout.main definition 314
lazy loading 62, 130–132

bytecode enhancement for 63
data 10

lazyLoadingEnabled 71–72
attribute 131

LDAP
using Data Access Object

(DAO) with
mapping from Java to

LDAP 254–258
overview 253–254
understanding LDAP

terminology 254
LDAP DN attribute 256
Least Recently Used (LRU)

cache model 206–207
cacheModel 199
strategy 206, 210

legacy databases 25–26
lib 310–311
List of Map objects 248
List of Strings 177
local transactions 147, 151–153
LruCacheController class 276

M

magic numbers 98, 273
Main.jsp 313
managed transactions 156
manufacturer objects 143
Map 103
Map configuration, SQL 198
Map interface, Java 255

INDEX 345
Map keys 93
Map objects 140
Map parameters 99
mapped statements

73, 85–86, 125
creating JavaBeans

bean navigation 84
overview 81
what makes a bean 82–84

inline and explicit result maps
JavaBean and Map

results 102–103
overview 100–101
primitive results 101–102

mapped statement types
87–89

mapping parameters
external parameter

maps 97
inline parameter mapping

revisited 97–99
JavaBean and Map

parameters 99
overview 95
primitive parameters 99

overview 81
relating objects with

avoiding N+1 Selects
problem 132–134

complex collections
129–130

lazy loading 131–132
overview 128

SELECT statements
automatic result maps

93–95
joining related data 95
overview 89
Structured Query Language

(SQL) injection 92–93
using inline parameters

with #
placeholders 89–91

using inline parameters
with $
placeholders 91–92

SqlMap API
overview 85
queryForList() methods 85

queryForMap()
methods 86

queryForObject()
methods 85

mapping 133
mapping parameters

external parameter maps 97
inline parameter mapping

revisited 97–99
JavaBean and Map

parameters 99
overview 95
primitive parameters 99

maps 300
master configuration file 299
mathematical addition 148
maxRequests 73

(Deprecated) 73
maxSessions 73

(Deprecated) 73
maxTransactions 73

(Deprecated) 73
memberSince property 110
MEMORY cacheModel

199, 205–206
MemoryCacheController

class 276
methodName() method, public

String 307
milliseconds attribute, flush-

Interval tag 203
minutes attribute, flushInterval

tag 203
mock objects

unit testing Data Access
Object (DAO) with
292–293

MockObjects 308
mode mapping attribute 97
modern stored procedures 7
modularization 13
multiple databases 25
multiple sub-queries 118
multiple user interfaces 160
multi-select dropdown 179
multi-table select

mapping a 95
MyNiftyTransactionManager

class 229
MySQL 44

N

N+1 Selects problem
130, 132–134

name attribute 320
property tag 204

name property 319
namespace attribute 202
naming conventions

overview 298
parameter maps 298
result maps 299
statements 298
XML files

master configuration
file 299

overview 299
Structured Query Language

(SQL) mapping
files 299–300

NamingException 257
native file system drivers 19
natural key 28
.NET 42–43
.NET framework 291
newTransaction() method

281–282
non-query statements

building blocks for updating
data
overview 106
SqlMap API for non-query

Structured Query Lan-
guage (SQL)
statements 106–107

executing 109
executing building blocks for

updating data
non-query mapped

statements 108
inserting data

auto-generated keys
110–113

overview 108
using external parameter

map 110
using inline parameter

mapping 108–109
overview 106
running batch updates

115–117

346 INDEX
non-query statements (continued)
stored procedures

IN parameters 119
INOUT parameters 120
OUT parameters 120–121
overview 117
pros and cons 117–119

updating and deleting data
handling concurrent

updates 114
overview 113–114
updating or deleting child

records 115
normalization 29
noun-verb separation 17
null state, parentCategoryId

property 166
nullable columns 273
NullPointerException 102
nullValue

attribute 101
mapping attribute 97

NUnit 291

O

O/RM tools 198
Object / Relational Mapping

(O/RM) 10–11
solution 44
tools 81, 114

object identification (OID) 198
object identity 143
ObJectRelationalBridge

(OJB) 228
transaction manager 228

ODBC API, Microsoft's 66
OjbBrokerTransactionManager

OJB type 224
old-school stored procedures 6
open attribute

Binary Tag 169
Dynamic Tag 168
Iterate Tag 174
Parameter Tag 172
Unary Tag 171
value 173

OpenSymphony cache
(OSCache) 64

OraclePerson.xml 300
order 305

Order object 114
OrderItem objects 83, 114, 128
orderItemList property 130, 134
orderList property 129
org.apache.iba-

tis.jgamestore.domain
package 316

org.apache.iba-
tis.jgamestore.persis-
tence.sqlmapdao
package 327

org.apache.ibatis.jgamestore.ser-
vice package 317

OSCACHE
cache model 199, 208
OSCache 2.0 208

OSCache jars 208
oscache.properties file 208
OSCacheController class 276
OUT parameters 120–121
overcorrection 7
overnormalize a database 29
overnormalized models 29–30
overview 306
ownership of databases 26–27

P

packages 25
pages directory 312
pageSize parameter 178
PaginatedList 327
parameter attribute 307, 314
parameter class type 182
parameter element 123
parameter maps 121

naming 298
parameter object 166
parameter property 169
parameter tags 172–173
parameterClass attribute 326
parameters 177
ParameterSetter interface 272
parent tag 165
parentCategoryId 210

property 164
passive transactions 154–155
$PATH variable, Linux 64
%PATH% variable, Windows 64
performance, relational

database 20–21

performance-to-effort ratio 197
persistence 306
persistence layer 16, 160

abstraction layer 18–19
driver or interface 19
framework 14
overview 18
persistence framework 19

persistence package 309
Person.xml mapping file 298
PersonDao interface 294
plain old Java object

(POJO) 123
platforms 51–52
pluggable component

design 268–269
pluggable interfaces 45
plug-ins 51
polar extremes 117
Pool.MaximumActiveConnec-

tions property
DBCP data source 227
SIMPLE data source 226

Pool.MaximumCheckoutTime
property, SIMPLE data
source 226

Pool.MaximumIdleConnections
property

DBCP data source 227
SIMPLE data source 226

Pool.MaximumWait property,
DBCP data source 227

Pool.PingConnectionsNotUsed-
For property, SIMPLE data
source 226

Pool.PingConnectionsOlder-
Than property, SIMPLE
data source 226

Pool.PingEnabled property,
SIMPLE data source 226

Pool.PingQuery property, SIM-
PLE data source 226

Pool.TimeToWait property, SIM-
PLE data source 226

Pool.ValidationQuery property,
DBCP data source 227

portability 42–43
PostgreSQL 220

database 137
PreparedStatement 66, 187, 251

objects 116, 219

INDEX 347
prepend attribute 165, 182
Binary Tag 169
Dynamic Tag 168
Iterate Tag 174
Parameter Tag 172
Unary Tag 171

prepend value 182
presentation 305

setting up 312, 320
presentation layer 15–17, 160

demarcating transactions
at 159–160

presentation package 309
presentation, setting up

312–319
primary key 28

values 110
primitive integer value 113
primitive parameters 99
primitive wrapper classes 99
primitives 301
<procedure> statement type

87, 107
product objects 143
Product table 176, 180
Product.java 316
Product.xml 325
productCache 325

cache model 326
ProductDao interface 326–327
ProductionWebSqlMap-

Config.xml 299
ProductSqlMapDao class 327
productType parameter 173
productType property 172
properties element 70–71
properties file 70
Properties object 204
property attribute 100, 171, 319

Binary Tag 169
Iterate Tag 174
Unary Tag 171

property elements 76
property mapping attribute 96
property tag 197, 204, 321
PropertyDescriptor objects 84
proprietary databases 25
public Category getCate-

gory(Integer
categoryId) 317

public List getProductListByCat-
egory(Integer
categoryId) 317

public String 307, 317
putObject() method 278

Q

query mapping tool 81
query techniques, advanced

overview 123
processing extremely large

data sets
overview 138
RowHandler example 141
RowHandler interface

138–143
relating objects with mapped

statements
avoiding N+1 selects

problem 132–134
complex collections

129–131
lazy loading 131–132
overview 128

using statement type and data
definition language
(DDL) 137

using XML with iBATIS
overview 123
XML parameters 123–125
XML results 125–127

queryForList() methods
85, 263

queryForMap()methods
86, 140

queryForObject() methods
85, 102

queryForPaginatedList
class 327
method 178, 183

queryWithRowHandler
method 139

R

range clause 150
range lock 150
RDBMS software 21

readOnly attribute 199, 213
cacheModel Tag 198

read-only long term data
caching 209–211

read-write data
caching 212–213

reasons for using iBATIS
division of labor 42
open source and honesty 43
portability 42–43

redundancy 29
reference-type 205

property, MEMORY
cache 206

relational database
integrity 20
overview 19–20
performance 20–21
security 21–22
systems 21

relational database manage-
ment systems (RDBMS) 4

relationships, complex 28
remapResults attribute 95
removeFirstPrepend

attribute 167, 190
Binary Tag 169
Iterate Tag 174
Parameter Tag 173
Unary Tag 171

reporting database 24
resource attribute 71, 78
Resources class 222
result class type 182
result maps 103, 132

automatic 93–95
inline and explicit

JavaBean and Map
results 102–103

overview 100–101
primitive results 101–102

naming 299
ResultAccountInfoMap 129

result map 129
resultClass 326
ResultGetter interface 273
ResultOrderInfoMap 129
ResultOrderInfoNMap

result map 134
ResultOrderItemMap 129
ResultSet handlers 51

348 INDEX
ResultSet object 68
return value 85
returnValue variable 112
rollback() method 283
roots of iBATIS

dynamic Structured Query
Language (SQL) 8–9

inline Structured Query Lan-
guage (SQL) 7–8

modern stored procedures 7
object relational mapping

(ORM) 10
old-school stored

procedures 6
overview 5
Structured Query Language

(SQL) 5–6
RowHandler

example 141
interface 138–143

S

scope attribute 320
SCOPE_IDENTITY

function 111
searchProductList mapped

statement 178
seconds attribute, flushInterval

tag 203
security, relational database

21–22
<select> element 13
<select> statement type 87

mapped statement 87
SELECT … FROM Products 177
select attribute 101
SELECT clause 177
SELECT statements

automatic result maps 93–95
joining related data 95
overview 89
Structured Query Language

(SQL) injection 92–93
using inline parameters with

placeholders 89–91
using inline parameters with

$ placeholders 91–92
selectKey element 111–112
selectKey statement 116

serialize attribute, cacheModel
Tag 198

server.properties file 231
service 305–306
service classes 17
service interface 320
service layer 320, 326
service package 309
service, writing

configuring dao.xml 321–322
overview 320–321
transaction demarcation

322–323
Servlet filter 159
Servlet specification 67
servlet tag 311
servlet-class tag 311
servlet-mapping tag 312
Servlets 67
session.name property 228
setDataSource() method 282
setDate() method 272
setInt() method 272
setObject 187
setParameter() method 272
setString() method 272
settings element 72

cacheModelsEnabled 72
enhancementEnabled 72
lazyLoadingEnabled 71–72
maxRequests

(Deprecated) 73
maxSessions (Deprecated) 73
maxTransactions

(Deprecated) 73
overview 71–72
useStatementNamespaces

72–73
shared key 260
.shtml extension 315
SIMPLE data source 225–226
SIMPLE data source factory 77
SIMPLE DataSource 158
SimpleDataSource, iBATIS 225
simplified conditional tags 190
single-table select, mapping a 95
size property 216
skinny data models 30–32
SOFT reference, MEMORY

cache 205
software tuning 21

spaghetti code 14
specific key 260
Spring class 260
Spring DAO

overview 260
reasons for using instead of

iBATIS 262
writing code 260–261

Spring framework
159–160, 256, 260

<sql> statement type 88, 108
sql element 88
SQL execution engines 51
SQL fragment 239
SQL Map 72, 223, 262

Config file 156
configuration file 68
version 243

SQL parser 8
SQL statements 42

mappings 288
SQL string substitution

syntax 67
SQLException method 250
SqlExecutor class 117
SQLJ, in Java 8
SQLMAP

SqlMapDaoTransaction-
Manager 224

transaction manager 228
type 321

SQLMap 68, 325–326
configuration 324–325

SqlMap API
for non-query Structured

Query Language (SQL)
statements
delete method 107
insert method 106
overview 106
update method 106–107

overview 85
queryForList() methods 85
queryForMap()methods 86
queryForObject()

methods 85
sqlMap configuration 203
sqlMap elements 78
sqlmap files 324
SqlMap.xml file 46
SqlMapBuilder interface 296

INDEX 349
SqlMapClient interface
85, 268, 292–293

SqlMapClient object 263
SqlMapClient unit test 290–291
SqlMapConfig file 68, 321
SqlMapConfig.xml 46–47, 78,

131, 234, 296, 299, 324, 326
SqlMapConfigResource

property 228, 235, 321
SqlMapConfigURL

property 228
SqlMapDaoTemplate class

241, 327
SqlMapDaoTransactionManager

SQLMAP type 224
SqlMapExecutor instance 241
SqlMapPersonDao

implementation 292
SqlMaps framework 189
src 308–309
src directory 60, 309
standard web application 305
startTransaction() method 159
startup script 64
Stateless Session Beans 159–160
<statement> statement type 88
statement attribute 202
Statement object 68
statements, naming 298
static data, aging, caching

213–216
static SQL 164
stored procedures 11, 117, 188

IN parameters 119
INOUT parameters 120
modern 7
old-school 6
OUT parameters 120–121
overview 117
pros and cons 117–119
using as alternative approach

to dynamic SQL 187–189
String 77, 301
string buffer 127
String data type 12
String parameter 48
String value 123
StringTypeHandler 77
Strong Memory Cache 211

STRONG reference, MEM-
ORY cache 205

Structured Query Language
(SQL) 4–6

dynamic 8–9
encapsulated 13
externalized 11–12
fully dynamic 44
injection 66–67, 92–93
inline 7–8
mapping files 299–300
See also dynamic Structured

Query Language (SQL)
Struts 67, 262, 305, 312
Struts Action classes 308
Struts html tags 319
Struts taglibs 190
struts-config.xml 313, 319

location 311
StrutsTestCase 308
substitution ($) syntax 91, 93
Subversion (SVN) 289

repository 58–59
source control 51

Sun 65

T

tag attributes 168–169, 172
technologies, choosing

overview 305
persistence 306
presentation 305
service 305–306

TellerService class 17
template pattern 260
test 309
test directory 60
TestWebSqlMapConfig.xml 299
tickets 117
tiles-defs.xml 313, 315
TIMESTAMP database type 110
Tomcat 65
tools directory 60
TOPLINK

transaction manger 228
type, ToplinkDaoTransaction-

Manager 224
transaction demarcation 152
transaction interface 281–283
transaction management 75
transaction manager 48, 321

configuration 152, 290

transaction manager element
External transaction

manager 225
Hibernate transaction

manager 225
Java Transaction API (JTA)

transaction manager 228
JDBC transaction

manager 225
DBCP data source 226–227
JNDI data source 227–228
overview 225
SIMPLE data source

225–226
ObJectRelationalBridge

(OJB) transaction
manager 228

SQLMAP transaction
manger 228

TOPLINK transaction
manger 228

TransactionConfig 269
TransactionConfig class 282
TransactionConfig instance 282
TransactionConfig

interface 281–282
transactionManager 324

dataSource element 76–77
element 235
overview 75–76
property elements 76
tag 321

transactions
automatic 151–152
custom 156–158
demarcating

at business logic layer
160–161

at presentation layer
159–160

overview 158–159
global

overview 153
starting, committing, and

ending
transaction 155–156

using active or passive
transactions 154–155

local 152–153
overview 146

350 INDEX
transactions (continued)
properties

atomicity 148–149
consistency 149
durability 151
isolation-overview 149–150
isolation-read

committed 150
isolation-read

uncommitted 150
isolation-repeatable

read 150–151
isolation-serializable 151
overview 148

simple banking example
146–148

two-tier applications 6
type attribute 75, 199, 320

cacheModel Tag 198
type handler callback 77
typeAlias 325

elements 73–75
<typeHandler> element 275
typeHandler element 77–78
TypeHandler interface 270
typeHandler mapping

attribute 97
TypeHandlerCallback 269

class 275
creating

getting results 273
nulls 273–275
overview 271
setting parameters 272

interface 270, 272
registering for use 275–276

U

unary tags 171–172
UNIQUE constraint 20
unit testing with iBATIS

Data Access Object (DAO)
consumer layers 293–295

Data Access Objects (DAO)
overview 291–292
unit testing DAO with mock

objects 292–293
mapping layer

database scripts 289–290

iBATIS configuration file
(i.e.
SqlMapConfig.xml)
290

iBATIS SqlMapClient unit
test 290–291

overview 288
test database instance

288–289
overview 288

<update> statement type 87, 107
update method 106–107
UPDATE statement 298
update statement 114
updating and deleting data

handling concurrent
updates 114

overview 113–114
updating or deleting child

records 115
updating data

building blocks for
non-query mapped

statements 108
overview 106
SqlMap API for non-query

Structured Query Lan-
guage (SQL)
statements 106–107

url attribute 71, 78
User class 272
user-javadoc.zip file 62
UserTransaction instance

154, 281
UserTransaction property 228
useStatementNamespaces

72–73

V

validate attribute 320
ValidatorActionForm 307
#value# string 90
value attribute, property tag 204
value parameter 86
value property 82
valueOf() method 274
view category 323
viewCategory behavior 317

W

Weak Memory cache 212
WEAK reference, MEMORY

cache 205
web 309–310
web service, using Data Access

Object (DAO) with
258–260

web.xml
configuring 311–312

WEB-INF
/classes directory 235
/lib directory 65, 235
directory 310

WebServiceGateway
interface 253

WebSqlMapConfig.xml 299
WebWork 306
WHERE clause 177
wide tables 29
wrapper class 101

X

XML 13, 301
documents 50
using with iBATIS

overview 123
XML parameters 123–125
XML results 125–127

XML files 299
naming

master configuration
file 299

overview 299
Structured Query Language

(SQL) mapping
files 299–300

Y

YesNoTypeHandlerCallback
interface 274

Z

ZIP file 62

	iBATIS in Action
	contents
	preface
	acknowledgments
	Introduction
	The iBATIS philosophy
	1.1 A hybrid solution: combining the best of the best
	1.1.1 Exploring the roots of iBATIS
	1.1.2 Understanding the iBATIS advantage

	1.2 Where iBATIS fits
	1.2.1 The business object model
	1.2.2 The presentation layer
	1.2.3 The business logic layer
	1.2.4 The persistence layer
	1.2.5 The relational database

	1.3 Working with different database types
	1.3.1 Application databases
	1.3.2 Enterprise databases
	1.3.3 Proprietary databases
	1.3.4 Legacy databases

	1.4 How iBATIS handles common database challenges
	1.4.1 Ownership and control
	1.4.2 Access by multiple disparate systems
	1.4.3 Complex keys and relationships
	1.4.4 Denormalized or overnormalized models
	1.4.5 Skinny data models

	1.5 Summary

	What is iBATIS?
	2.1 Mapping SQL
	2.2 How it works
	2.2.1 iBATIS for small, simple systems
	2.2.2 iBATIS for large, enterprise systems

	2.3 Why use iBATIS?
	2.3.1 Simplicity
	2.3.2 Productivity
	2.3.3 Performance
	2.3.4 Separation of concerns
	2.3.5 Division of labor
	2.3.6 Portability: Java, .NET, and others
	2.3.7 Open source and honesty

	2.4 When not to use iBATIS
	2.4.1 When you have full control…forever
	2.4.2 When your application requires fully dynamic SQL
	2.4.3 When you’re not using a relational database
	2.4.4 When it simply does not work

	2.5 iBATIS in five minutes
	2.5.1 Setting up the database
	2.5.2 Writing the code
	2.5.3 Configuring iBATIS (a preview)
	2.5.4 Building the application
	2.5.5 Running the application

	2.6 The future: where is iBATIS going?
	2.6.1 Apache Software Foundation
	2.6.2 Simpler, smaller, with fewer dependencies
	2.6.3 More extensions and plug-ins
	2.6.4 Additional platforms and languages

	2.7 Summary

	iBATIS basics
	Installing and configuring iBATIS
	3.1 Getting an iBATIS distribution
	3.1.1 Binary distribution
	3.1.2 Building from source

	3.2 Distribution contents
	3.3 Dependencies
	3.3.1 Bytecode enhancement for lazy loading
	3.3.2 Jakarta Commons Database Connection Pool
	3.3.3 Distributed caching

	3.4 Adding iBATIS to your application
	3.4.1 Using iBATIS with a stand-alone application
	3.4.2 Using iBATIS with a web application

	3.5 iBATIS and JDBC
	3.5.1 Releasing JDBC resources
	3.5.2 SQL injection
	3.5.3 Reducing the complexity

	3.6 iBATIS configuration continued
	3.6.1 The SQL Map configuration file
	3.6.2 The <properties> element
	3.6.3 The <settings> element
	3.6.4 The <typeAlias> elements
	3.6.5 The <transactionManager> element
	3.6.6 The <typeHandler> element
	3.6.7 The <sqlMap> element

	3.7 Summary

	Working with mapped statements
	4.1 Starting with the basics
	4.1.1 Creating JavaBeans
	4.1.2 The SqlMap API
	4.1.3 Mapped statement types

	4.2 Using <select> mapped statements
	4.2.1 Using inline parameters with the # placeholders
	4.2.2 Using inline parameters with the $ placeholders
	4.2.3 A quick look at SQL injection
	4.2.4 Automatic result maps
	4.2.5 Joining related data

	4.3 Mapping parameters
	4.3.1 External parameter maps
	4.3.2 Inline parameter mapping revisited
	4.3.3 Primitive parameters
	4.3.4 JavaBean and Map parameters

	4.4 Using inline and explicit result maps
	4.4.1 Primitive results
	4.4.2 JavaBean and Map results

	4.5 Summary

	Executing nonquery statements
	5.1 The building blocks for updating data
	5.1.1 The SqlMap API for nonquery SQL statements
	5.1.2 Nonquery mapped statements

	5.2 Inserting data
	5.2.1 Using inline parameter mapping
	5.2.2 Using an external parameter map
	5.2.3 Autogenerated keys

	5.3 Updating and deleting data
	5.3.1 Handling concurrent updates
	5.3.2 Updating or deleting child records

	5.4 Running batch updates
	5.5 Working with stored procedures
	5.5.1 Considering the pros and cons
	5.5.2 IN, OUT, and INOUT parameters

	5.6 Summary

	Using advanced query techniques
	6.1 Using XML with iBATIS
	6.1.1 XML parameters
	6.1.2 XML results

	6.2 Relating objects with mapped statements
	6.2.1 Complex collections
	6.2.2 Lazy loading
	6.2.3 Avoiding the N+1 Selects problem

	6.3 Inheritance
	6.3.1 Mapping Inheritance

	6.4 Other miscellaneous uses
	6.4.1 Using the statement type and DDL
	6.4.2 Processing extremely large data sets

	6.5 Summary

	Transactions
	7.1 What is a transaction?
	7.1.1 A simple banking example
	7.1.2 Understanding transaction properties

	7.2 Automatic transactions
	7.3 Local transactions
	7.4 Global transactions
	7.4.1 Using active or passive transactions
	7.4.2 Starting, committing, and ending the transaction
	7.4.3 Do I need a global transaction?

	7.5 Custom transactions
	7.6 Demarcating transactions
	7.6.1 Demarcating transactions at the presentation layer
	7.6.2 Demarcating transactions at the persistence layer
	7.6.3 Demarcating transactions at the business logic layer

	7.7 Summary

	Using Dynamic SQL
	8.1 Dealing with Dynamic WHERE clause criteria
	8.2 Getting familiar with the dynamic tags
	8.2.1 The <dynamic> tag
	8.2.2 Binary tags
	8.2.3 Unary tags
	8.2.4 Parameter tags
	8.2.5 The <iterate> tag

	8.3 A complete simple example
	8.3.1 Defining how to retrieve and display data
	8.3.2 Determining which database structures are involved
	8.3.3 Writing the SQL in static format
	8.3.4 Applying Dynamic SQL tags to static SQL

	8.4 Advanced Dynamic SQL techniques
	8.4.1 Defining the resulting data
	8.4.2 Defining the required input
	8.4.3 Writing the SQL in static format
	8.4.4 Applying Dynamic SQL tags to static SQL

	8.5 Alternative approaches to Dynamic SQL
	8.5.1 Using Java code
	8.5.2 Using stored procedures
	8.5.3 Comparing to iBATIS

	8.6 The future of Dynamic SQL
	8.6.1 Simplified conditional tags
	8.6.2 Expression language

	8.7 Summary

	iBATIS in the real world
	Improving performance with caching
	9.1 A simple iBATIS caching example
	9.2 iBATIS’s caching philosophy
	9.3 Understanding the cache model
	9.3.1 Type
	9.3.2 The readOnly attribute
	9.3.3 The serialize attribute
	9.3.4 Combining readOnly and serialize

	9.4 Using tags inside the cache model
	9.4.1 Cache flushing
	9.4.2 Setting cache model implementation properties

	9.5 Cache model types
	9.5.1 MEMORY
	9.5.2 LRU
	9.5.3 FIFO
	9.5.4 OSCACHE
	9.5.5 Your cache model here

	9.6 Determining a caching strategy
	9.6.1 Caching read-only, long-term data
	9.6.2 Caching read-write data
	9.6.3 Caching aging static data

	9.7 Summary

	iBATIS data access objects
	10.1 Hiding implementation details
	10.1.1 Why the separation?
	10.1.2 A simple example

	10.2 Configuring the DAO
	10.2.1 The <properties> element
	10.2.2 The <context> element
	10.2.3 The <transactionManager> element
	10.2.4 The DAO elements

	10.3 Configuration tips
	10.3.1 Multiple servers
	10.3.2 Multiple database dialects
	10.3.3 Runtime configuration changes

	10.4 A SQL Map DAO implementation example
	10.4.1 Configuring the DAO in iBATIS
	10.4.2 Creating a DaoManager instance
	10.4.3 Defining the transaction manager
	10.4.4 Loading the maps
	10.4.5 Coding the DAO implementation

	10.5 Summary

	Doing more with DAO
	11.1 Non-SQLMap DAO implementations
	11.1.1 A Hibernate DAO implementation
	11.1.2 A JDBC DAO implementation

	11.2 Using the DAO pattern with other data sources
	11.2.1 Example: using a DAO with LDAP
	11.2.2 Example: using a DAO with a web service

	11.3 Using the Spring DAO
	11.3.1 Writing the code
	11.3.2 Why use Spring instead of iBATIS?

	11.4 Creating your own DAO layer
	11.4.1 Separating interface from implementation
	11.4.2 Decoupling and creating a factory

	11.5 Summary

	Extending iBATIS
	12.1 Understanding pluggable component design
	12.2 Working with custom type handlers
	12.2.1 Implementing a custom type handler
	12.2.2 Creating a TypeHandlerCallback
	12.2.3 Registering a TypeHandlerCallback for use

	12.3 Working with a CacheController
	12.3.1 Creating a CacheController
	12.3.2 Putting, getting, and flushing a CacheController
	12.3.3 Registering a CacheController for use

	12.4 Configuring an unsupported DataSource
	12.5 Customizing transaction management
	12.5.1 Understanding the TransactionConfig interface
	12.5.2 Understanding the Transaction interface

	12.6 Summary

	iBATIS recipes
	iBATIS best practices
	13.1 Unit testing with iBATIS
	13.1.1 Unit-testing the mapping layer
	13.1.2 Unit-testing data access objects
	13.1.3 Unit-testing DAO consumer layers

	13.2 Managing iBATIS configuration files
	13.2.1 Keep it on the classpath
	13.2.2 Keep your files together
	13.2.3 Organize mostly by return type

	13.3 Naming conventions
	13.3.1 Naming statements
	13.3.2 Naming parameter maps
	13.3.3 Naming result maps
	13.3.4 XML files

	13.4 Beans, maps, or XML?
	13.4.1 JavaBeans
	13.4.2 Maps
	13.4.3 XML
	13.4.4 Primitives

	13.5 Summary

	Putting it all together
	14.1 Design concept
	14.1.1 Account
	14.1.2 Catalog
	14.1.3 Cart
	14.1.4 Order

	14.2 Choosing technologies
	14.2.1 Presentation
	14.2.2 Service
	14.2.3 Persistence

	14.3 Tweaking Struts: the BeanAction
	14.3.1 BeanBase
	14.3.2 BeanAction
	14.3.3 ActionContext

	14.4 Laying the foundation
	14.4.1 src
	14.4.2 test
	14.4.3 web
	14.4.4 build
	14.4.5 devlib
	14.4.6 lib

	14.5 Configuring the web.xml
	14.6 Setting up the presentation
	14.6.1 The first step
	14.6.2 Utilizing a presentation bean

	14.7 Writing your service
	14.7.1 Configuring dao.xml
	14.7.2 Transaction demarcation

	14.8 Writing the DAO
	14.8.1 SQLMap configuration
	14.8.2 SQLMap
	14.8.3 Interface and implementation

	14.9 Summary

	appendix: iBATIS.NET Quick Start
	A.1 Comparing iBATIS and iBATIS.NET
	Why should Java developers care about iBATIS.NET?
	Why should .NET developers care about iBATIS.NET?
	What are the major differences?
	What are the similarities?

	A.2 Working with iBATIS.NET
	DLLs and dependencies
	The XML configuration file
	The configuration API
	SQL mapping files

	A.3 Where to go for more information

	index

